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Parkinson’s disease (PD) is taking a staggering toll on healthcare systems

worldwide, with the bulk of the expenditures invested in the late stages

of the disease. Considering the rising life expectancy and the increasing

prevalence of PD across the globe, a clear understanding of the early signs

and treatment options available for advanced PD (APD), will facilitate tailoring

management programs and support services. This task is complicated by

the lack of both global consensus in defining APD and standardized care

guidelines. This perspective prepared by a panel of movement disorder

specialists, proposes to extend and optimize currently accepted PD coding

to better reflect the diverse disease manifestations, with emphasis on

non-motor features. The panel seeks to promote timely diagnosis by

adjustment of evaluation tools for use by community neurologists and

suggests modification of eligibility criteria for advanced therapy. Moreover, it

advocates multidisciplinary assessments of APD patients to drive personalized,

patient-centered and holistic management. Overall, earlier and more targeted

intervention is expected to markedly improve patient quality of life.

KEYWORDS

Parkinson’s disease stage-appropriate healthcare facilities, Delphi criteria, burden
on public health care systems, clinical challenges, tailored management programs,
patient-centered holistic management, intensified device aided therapies, advanced
Parkinson’s disease
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Introduction

Parkinson’s disease (PD) currently affects 41 in 100,000
individuals between the ages of 40 and 49 and 1,607 in 100,000
individuals over the age of 80 (Pringsheim et al., 2014; Elbaz
et al., 2016; Dorsey and Bloem, 2018). In Israel, the prevalence in
2007 was estimated at 256:100,000 (Chillag-Talmor et al., 2011).
By 2040, PD is expected to affect approximately 14.2 million
individuals worldwide (Dorsey and Bloem, 2018). Its onset
is influenced by a host of genetic and environmental factors,
with age serving as a central determinant, as well as the most
critical risk factor of disease progression and responsiveness
to treatment (Levy, 2007; Collier et al., 2011). The disease
takes a marked toll on healthcare resources, incurring an
estimated $51.9 billion in direct and indirect costs in 2017 in the
United States alone (Yang et al., 2020). The largest proportion of
expenditures is invested in patients in late stages of the disease,
as unidirectional phenotype shifts result in progressive disability
and severely compromised patient quality of life (Lim et al.,
2009). Given the rising life expectancy across the globe, and
increased PD prevalence in the world (GBD 2016 Parkinson’s
Disease Collaborators, 2018), PD burden on public healthcare
systems is expected to grow, and will require reconsideration of
health policies and programs to adequately address the growing
needs of the PD population. In this viewpoint, special attention
is given to advanced PD (APD), also referred to as complex PD,
estimated to impact 10% of the PD patient population (Worth,
2013; Giugni and Okun, 2014).

Evolution of the clinical picture of
Parkinson’s disease

Historically, motor syndrome was the main recognized
clinical manifestation of PD and the prevalence of severe
disability and mortality within 5 and 10 years of onset
was 25 and 65%, respectively (Maier Hoehn, 1992). Yet,
since the introduction of levodopa, the mainstay of modern
PD treatment, PD-associated motor syndrome has proven
responsive to the pharmaceutical treatments and mortality rates
have declined, albeit remaining higher than in age-matched
controls (Chen et al., 2006). Owing to the remarkable progress
in the treatment of motor manifestations, PD is now considered
a relatively slowly-progressing, chronic disease with distinctly
different manifestations at its various stages, with the APD
stage being the most challenging for patients and healthcare
providers.

Advanced Parkinson’s disease: A
multisystem disease

This stage is characterized by moderate to severe motor
deficits (Hoehn & Yahr stage III-V during off periods),

generally accompanied by troublesome motor and non-
motor symptoms: fluctuations, dyskinesias, frequent off-
periods, postural instability leading to frequent falls with
increased risk of fractures, sleep disturbances, hallucinations,
and cognitive decline, among others. However, with close
support, patients are not entirely dependent at this stage and
are still capable of independent activity, and may be effectively
managed by timely adjustment of the treatment. As PD patients
progress to the advanced stage, they typically require intensive
and individualized multidisciplinary pharmacological and non-
pharmacological care to manage disease and treatment-related
complications (Figure 1). Furthermore, as PD symptoms
become less controlled with conventional therapies, targeted
treatment options, including device-assisted therapies (DAT),
such as deep brain stimulation or continuous levodopa-
carbidopa infusions via pumps, are needed to improve response
fluctuations.

Clinical challenges of advanced
Parkinson’s disease

Despite the wealth of knowledge of PD pathology and its
natural course, there is a lack of global consensus regarding the
precise definition of APD. This is largely due to its heterogenic
origins, the vast variety of subphenotypes, variable trajectories
and prognostics, as well as the absence of robust biomarkers
for disease progression. In turn, it has challenged development
of standardized care guidelines, and has brought to a lag in
appropriate alignment of diagnostic instruments and grading
scales for classification of disease severity and evaluation of
treatment and management strategies. Furthermore, it has
stymied early APD identification, and tailoring of interventional
programs and appropriate allocation of funds. The most popular
assessment tools use PD duration as an anchor and primarily
focus on cardinal overt motor features. They have been proven
to lack universality due to different phenotypes and rates of
disease progression and generally fail to recognize the true
weight of non-motor features on patient performance and
quality of life (Braak et al., 2003; Wolters, 2008). Recent
initiatives to develop comprehensive toolkits for evaluating PD
status have been steered by the increasing understanding that
motor disability, non-motor manifestations, treatment-related
complications, and comorbidities are central contributors to
APD and its associated limited activities of daily living
(ADL), disability and greatly impaired quality of life (Korczyn,
1999; Martinez-Martin et al., 2011; Ray Chaudhuri et al.,
2013). All these aspects are well-represented in the recently
defined Delphi criteria for APD, which integrate degree of
control achieved with oral anti-PD medications, assessment
of an array of motor and non-motor symptoms, as well as
patient functioning and independence (Antonini et al., 2018).
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FIGURE 1

Parkinson’s disease stages and stage-appropriate healthcare facilities.

The cross-sectional, multinational, observational OBSERVE-
PD review of 2,615 PD patient charts (Fasano et al., 2019)
found most significant agreement between physician global
assessment and APD diagnosis based on the Delphi criteria, with
regards to current treatment programs, limited ADL, motor
fluctuations and time from diagnosis. In a subanalysis of the
Israeli cohort of 120 patients, physician judgment in classifying
APD correlated with select Delphi criteria (Djaldetti et al.,
2018). Recently, the intensified therapy component of the “5-
2-1” criteria proposed by the Delphi expert consensus panel for
identifying APD, has been shown to correlate with established
disease burden predictors, including extended disease duration,
increased motor and non-motor burden, and compromised
quality of life (Fasano et al., 2019; Aldred et al., 2020; Santos-
Garcia et al., 2020; Barer et al., 2022) and is included in the
recently published MANAGE-PD comprehensive screening tool
(Antonini et al., 2019). Integration of wearable sensors into
clinical practice are projected to provide objective, quantitative
digital patient function-related markers, and thereby improve
the sensitivity, accuracy and feasibility of the assessment of
motor and non-motor symptoms of PD and diagnosis of APD
(Mirelman et al., 2021).

Discussion

Definition and diagnosis of advanced
Parkinson’s disease

In line with the global efforts to moderate PD impact
on quality of life, the authors, representing a panel of Israeli
movement disorders specialists, propose to define APD in the
International Classification of Disease 11th revision (ICD-11)
as a unique health entity that demands adjusted healthcare

provider attitudes and relevant social services. Modification of
the ICD-11 PD coding should include severity- and fluctuation-
based subcodes that accurately capture APD and distinguish it
from early-stage PD. While very few diseases have been assigned
severity-based subcodes in ICD-10 (diabetes, alcoholic liver
disease, renal insufficiency, residual schizophrenia), the growing
evidence of the distinct clinical manifestations and medical
needs of this patient subpopulation, justifies reconsideration of
its coding status.

In addition, we call for optimization of the Delphi criteria
by extending them to include a more extensive list of non-
motor features, such as autonomic disturbances (e.g., orthostatic
hypotension, urinary incontinence), pain, daytime somnolence,
and apathy. Furthermore, in the opinion of the Israeli panel,
the Delphi criteria for APD from motor fluctuations, regardless
of their duration and severity, should be the main eligibility
criteria for advanced therapy. Evaluation of PD patients should
be based on a structured questionnaire applied as a preliminary
tool geared to be implemented by community neurologists or
case managers (e.g., nurse practitioners). Patients with suspected
APD should undergo multidisciplinary evaluation, ideally in
specialized APD centers, to define the extent of disability,
outline an individualized treatment program, and weigh the
need for rehabilitation and social support services. Routine
evaluations should be adequately sensitive to allow for timely
diagnosis of palliative-stage PD, which should be addressed by
end-of-life palliative/hospice referral (Akbar et al., 2021).

Comprehensive management of
advanced Parkinson’s disease

Management protocols should implement personalized
patient-centered and holistic approaches to target the
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heterogenic manifestations and course of PD. These should
include tools for timely diagnosis and treatment of osteoporosis.
Furthermore, patients should be informed of opportunities
to participate in relevant clinical trials. In addition to the
clinical benefits of integrated and coordinated care (Nijkrake
et al., 2009; van der Eijk et al., 2011; Loewenbrück et al., 2020;
Tenison et al., 2020), such programs have been associated with
improved psychological health indicators and self-management
capacities (Coulter et al., 2015; Minkman, 2016). Rehabilitation
facilities should be staffed by multidisciplinary teams of
physiotherapists, speech and swallowing therapists, occupation
therapists and social workers. Such programs should be
coordinated by specialized nurses (or nurse practitioners) under
the supervision of a movement disorders specialist (Cohen
et al., 2021).

The panel also suggests standardization of DAT eligibility
and prioritization of its use to early-stage APD patients, while
minimizing its use in palliative-stage patients. Furthermore,
integration of telemedicine and nurse practitioners can
tighten surveillance and improve treatment optimization
efforts.

These can be further supported by establishment of a
network of community physicians, led by movement disorder
specialists, to promote case-sharing, research dissemination and
exchange of professional know-how.

Social assistance to patients with
advanced Parkinson’s disease

Expanded APD-geared health baskets clearly outline
eligibility for reimbursement for a part/full time paid
attendant, mobility allowance, and rehabilitation services.
In parallel, attention should be paid to informal
and non-specialized caregivers by providing them
PD-specific education and support (Rosqvist et al.,
2021). Patients and caregivers should be made aware
of PD-oriented organizations and social networking
groups.

Summary

In summary, the globally rising life expectancy has
increased the prevalence of PD in general, and of APD, in
particular. Appreciation of the heterogeneity of PD etiology
and manifestations has underscored the need for updated PD
coding. Precise and standardized definition and evaluation
of APD will promote earlier APD identification and timely
referral to adequate therapies and specialists. Moreover, it
will enhance holistic management, which is expected to
markedly improve APD patient quality of life. Future works
should focus on validating the proposed extension of the

Delphi APD criteria, and on tailoring treatment to APD
phenotypes.
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Introduction: The cerebellum and basal ganglia were initially considered 
anatomically distinct regions, each connected via thalamic relays which project to 
the same cerebral cortical targets, such as the motor cortex. In the last two decades, 
transneuronal viral transport studies in non-human primates showed bidirectional 
connections between the cerebellum and basal ganglia at the subcortical level, 
without involving the cerebral cortical motor areas. These findings have significant 
implications for our understanding of neurodevelopmental and neurodegenerative 
diseases. While these subcortical connections were established in smaller studies on 
humans, their evolution with natural aging is less understood.

Methods: In this study, we validated and expanded the previous findings of the structural 
connectivity within the cerebellum-basal ganglia subcortical network, in a larger dataset 
of 64 subjects, across different age ranges. Tractography and fixel-based analysis were 
performed on the 3 T diffusion-weighted dataset using Mrtrix3 software, considering 
fiber density and cross-section as indicators of axonal integrity. Tractography of the well-
established cerebello-thalamo-cortical tract was conducted as a control. We tested the 
relationship between the structural white matter integrity of these connections with aging 
and with the performance in different domains of Addenbrooke’s Cognitive Examination.

Results: Tractography analysis isolated connections from the dentate nucleus to the 
contralateral putamen via the thalamus, and reciprocal tracts from the subthalamic 
nucleus to the contralateral cerebellar cortex via the pontine nuclei. Control tracts of 
cerebello-thalamo-cortical tracts were also isolated, including associative cerebello-
prefrontal tracts. A negative linear relationship was found between the fiber density of both 
the ascending and descending cerebellum-basal ganglia tracts and age. Considering the 
cognitive assessments, the fiber density values of cerebello-thalamo-putaminal tracts 
correlated with the registration/learning domain scores. In addition, the fiber density 
values of cerebello-frontal and subthalamo-cerebellar (Crus II) tracts correlated with the 
cognitive assessment scores from the memory domain.

Conclusion: We validated the structural connectivity within the cerebellum-basal 
ganglia reciprocal network, in a larger dataset of human subjects, across wider age 
range. The structural features of the subcortical cerebello-basal ganglia tracts in 
human subjects display age-related neurodegeneration. Individual morphological 
variability of cerebellar tracts to the striatum and prefrontal cortex was associated 
with different cognitive functions, suggesting a functional contribution of cerebellar 
tracts to cognitive decline with aging. This study offers new perspectives to consider 
the functional role of these pathways in motor learning and the pathophysiology of 
movement disorders involving the cerebellum and striatum.
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1. Introduction

For a long time, basal ganglia (BG) and cerebellum (CB) were 
considered anatomically and functionally distinct subcortical structures, 
each involved in specific types of learning (Doya, 2000), namely 
reinforcement and supervised learning (Kawato and Gomi, 1992; 
Schultz et  al., 1997; Doya, 2000; O’Doherty et  al., 2003). The two 
structures project to cortical areas via separate thalamic nuclei forming 
the striato-thalamo-cortical (STC) and cerebello-thalamocortical (CTC) 
loops (Kemp and Powell, 1971; Allen et al., 1978; Asanuma et al., 1983; 
Sakai et al., 1996). Abnormal engagement of these loops in diseases 
involving BG and/or CB results in different behavioral impairments. For 
instance, Parkinson’s disease (PD) with dysregulation of the striatal 
dopaminergic pathway shows impaired reinforcement learning (Voon 
et al., 2010), while ataxic patients with structural abnormalities of the 
CB show decreased error-based (supervised) learning during 
sensorimotor adaptation (Panouillères et al., 2017). These traditional 
perspectives were challenged by neuroanatomical studies in primates 
that demonstrated reciprocal connections between BG and CB through 
thalamic and pontine structures without involving cortical cerebral 
areas, raising doubts about such clear functional dissociation. Dense 
disynaptic projections were demonstrated between the dentate nucleus 
(DN) of the CB and the putamen via the central-lateral nucleus of the 
thalamus and between the subthalamic nucleus (STN) and the cerebellar 
cortex via the pontine nucleus (Hoshi et al., 2005; Bostan et al., 2010; 
Bostan and Strick, 2018). A pathological interaction between the two 
structures is also suspected in movement disorders such as PD (Wu and 
Hallett, 2013; Kishore et al., 2014; Kishore and Popa, 2014), dystonia 
(Sadnicka et  al., 2012; Kaji et  al., 2018), Tourette’s syndrome and 
psychiatric disorders such as attention-defcit/hyperactivity disorder, and 
schizophrenia (Strick et al., 2009; Maia and Frank, 2011; O’Halloran 
et  al., 2012). However, whether the morphology and the functional 
contribution of CB-BG reciprocal connections are affected by normal 
aging is not well-delineated.

Investigating anatomical connections within the CB-BG network in 
the human brain is possible in-vivo with non-invasive diffusion-
weighted imaging (DWI) and tractography. These techniques can 
measure connectivity strength, i.e., the probability of connection based 
on the density of streamlines from a seed to a target region. In 12 
participants, an exploratory study quantified the connectivity strength 
of the cerebellar output pathways involving the DN, respectively, to the 
caudate (12%), the putamen (9%), and the pallidum (11%; Pelzer et al., 
2013). In 15 participants, another study used constrained spherical 
deconvolution (CSD) capable of resolving the crossing, kissing, or 
branching white matter bundles (Milardi et  al., 2016). This study 
established contralateral tracts from the DN to the thalamus as in the 
primate studies and also proposed the presence of contralateral and 
ipsilateral tracts from DN to the thalamus, and from STN to the CB 
cortex (Hoshi et  al., 2005). Given the inter-individual variability of 
human anatomy, studies involving a larger number of participants are 
needed to validate these exploratory findings.

While the cognitive functions of the BG are well-recognized (Haber, 
2003), CB is more recently considered as a hub that regulates various 

non-motor functions (Hoche et  al., 2018; Schmahmann, 2019). 
Descending and ascending connections between the CB and the cerebral 
cortical areas involving the prefrontal cortex have been described and 
corroborate the role of the CB in modulating cognitive behavior (Parker 
et al., 2014; Jobson et al., 2021). Lobules I–VI and VIII are involved in 
sensorimotor tasks, whereas the Crus II lobule is primarily associated 
with non-motor functions (Stoodley et al., 2012, 2020), especially social 
mentalizing, and emotional self-experiences (Van Overwalle et  al., 
2020a, b) language, emotions, and working memory (Habas et al., 2009; 
Stoodley and Schmahmann, 2009). The functional contribution of the 
CB-BG connections is often inferred and not directly assessed. Recent 
studies showed that both CB and BG contribute to associative and 
reward-based learning, suggesting a physiological interaction between 
them (Wu and Hallett, 2013; Kishore et  al., 2014; Kishore and 
Popa, 2014).

Age-related degeneration of white matter tracts such as CB-BG 
interconnections could result in the decline of functions, including 
movement and cognition. Age-related degeneration of white matter 
tracts affects cortical brain areas and subcortical structures including BG 
(Raz et  al., 2003; Koikkalainen et  al., 2007; Zwirner et  al., 2016). 
Age-related changes in water diffusivity in the white matter of the 
middle cerebellar peduncles were observed in several studies (Cox et al., 
2016; Coelho et al., 2021). Recent technical advances of DTI provide an 
opportunity to investigate the evolution of the integrity of white matter 
connections with age. For instance, the “disconnection hypothesis” 
suggests that age-related cognitive decline is linked to brain structural 
changes, i.e., the alteration of white matter tracts between cortical 
regions can lead to a decline in cognitive performance (Bennett and 
Madden, 2014; Fjell et al., 2016). However, the specific contribution of 
cerebellar connections to this process is unclear. As healthy aging itself 
influences the morphological characteristics of white matter tracts, 
including cerebellar tracts, its impact on CB-BG connections should 
be known to better understand the changes in pathological conditions. 
Since aging affects cognitive functions (Bendlin et al., 2010; Coelho 
et al., 2021), we hypothesized that aging will affect cerebellar pathways 
(including the CB-BG connections) proportionally to cognitive abilities.

In the present study, we  aimed to (i) validate and expand the 
imaging evidence of the presence of the anatomical tracks linking CB 
and BG as reported in non-human primates (Hoshi et al., 2005; Bostan 
et al., 2010) and (ii) evaluate age-related changes in the morphology of 
CB-BG reciprocal connections and its relation to specific cognitive 
domains. We enrolled 64 human healthy subjects across a wide age 
range (30–80 yrs.). We applied DWI with CSD.

We evaluated the age-related neurodegeneration on the CB-BG 
reciprocal white matter tracts using the fixel-based analysis (FBA) 
technique. This novel model for diffusion MRI analysis is optimized to 
isolate crossing or kissing fibers and allows evaluating axonal parameters 
along a tract, namely fiber density (FD, reflecting intra-axonal volume), 
fiber cross-section (FC, reflecting the area occupied by the axons), and 
a combination of FD and FC, namely FDC (Raffelt et al., 2015). In 
addition, we tested the association between the individual characteristics 
of FBA metrics and the measures of specific cognitive performance. 
Since the cerebellum and prefrontal cortices are involved in learning and 
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retention (Elhalal et al., 2014), cognitive assessments in these domains 
were used to explore their relationship with the FBA metrics.

2. Materials and methods

2.1. Subjects and neuropsychological testing

Sixty-four healthy volunteers (HV; mean age:55.69 ± 9.96 years, 
M/F:34/30, age range:30–80 years) with no history of neurological or 
psychiatric illness and formal education > 6 years were recruited for the 
study over 3 years from a single center (Sree Chitra Tirunal Institute for 
Medical Sciences and Technology, India). The MRI scans were screened 
by a radiologist for any structural non-symptomatic lesions. The subjects 
were recruited via notification exhibited at the hospital campus. Among 
these 64 participants, 20 subjects (mean age:56.8 ± 8.7 years, age range: 
41–66 years) with a Clinical Dementia Rating (CDR) score of 0, 
underwent neuropsychological battery tests assessing global cognitive 
score via vernacular (Malayalam, a south Indian language) adaptation 
of Addenbrooke’s Cognitive Examination battery (ACE-M) along with 
Rey Auditory Verbal Learning Test (RAVLT; Mathuranath et al., 2004; 
Menon et al., 2014). Learning and retention were assessed via distinct 
domains of ACE neuropsychological analysis: ACE-M-Reg-24 
(Registration/learning: 24 point scale; registration of 3 words = 3 points; 
3-trial learning of an address = 21 points), ACE-M-Recall [10 point scale 
(recall of 3 words, each after a delay of 5 min = 3 points; recall of 
address = 7 points)], along with the total score of ACE-M. Other 
retention scores included the delayed recall and total scores of RAVLT.

2.2. Ethics statement

All subjects provided written informed consent according to the 
declaration of Helsinki and the study was approved by the Institutional 
Ethics Committee (SCT/IEC/816/OCTOBER-2015).

2.3. MRI data acquisition

Structural and diffusion MRI data were acquired in a 3-tesla scanner 
(GE MEDICAL SYSTEMS, Discovery MR750w, Chicago, Illinois, 
United States) using a 32-channel, phased-array head coil designed for 
parallel imaging. A high-resolution 3D, T1-weighted, fast spoiled, 
gradient-echo sequence (TR = 7.924 ms, TE = 2.984 ms, Flip angle = 12, 
matrix = 256 × 256, 172 sections of 1 mm each) and diffusion-weighted 
MRI (dMRI) of single-shot echo-planar spin-echo sequence with 64 
directions (TR = 9,000 ms, TE = 99.8 ms, matrix = 256 × 256, b = 0 and 
1,000 s/mm2, 57 slices of 2 mm thick) were acquired for each subject.

2.4. Tractography

The tractography analysis was performed using the Mrtrix3 
toolbox (Tournier et al., 2019) and the functions in the FSL toolkit as 
shown in Figure 1. Standard pre-processing was performed including 
denoising using the Marchenko-Pastur Principal Component 
Analysis (MP-PCA; Veraart et al., 2016; Cordero-Grande et al., 2019) 
followed by Gibbs ringing removal (Kellner et al., 2015), and Eddy 
current correction (Smith et al., 2004). The non-brain tissues were 

removed using Brain Extraction Tool (BET; Smith, 2002; Smith et al., 
2004). We estimated the response function from the brain using the 
dwi2response function with the “dhollander” algorithm (Tournier 
et al., 2004). We then estimated the fiber orientation distribution 
(FOD) based on eighth-order CSD using the dwi2fod function 
(Jenkinson et al., 2002; Tournier et al., 2004). Fiber tracking was 
performed for each subject using the tckgen function with the 
“iFOD2” option which performs improved second-order integration 
over fiber orientation distribution. This option enhances anatomical 
plausibility by facilitating more accurate fiber reconstruction in 
heavily curved regions (Tournier et al., 2004). During the tracking 
process, the probability of a particular direction is set to 
be proportional to the amplitude of the FOD along that direction. 
The following additional tckgen settings were used: max angle 
between successive steps = 22.5°, max length = 250 mm, min 
length = 10 mm, cut-off FA value = 0.4, and the maximum number of 
fibers = 1 million. The cut-off value for FA and max angle between 
successive steps are kept at a conservative level to ensure minimal 
false positives in the streamline estimation. The Region of Interests 
(ROIs) to extract the targeted interconnecting tracts were manually 
segmented by two independent observers and intersection of the two 
ROIs with overlap greater than 80% was considered as the final 
ROI. To extract the tract parameters, a fixel mask for the tracts was 
created using the tck2fixel function and applied over the whole brain 
FD (measure of density of intra-axonal space), FC (measure of cross-
sectional size of the bundle in each voxel), FDC (the total capacity of 
the fiber bundle to carry information), and logFC fixel images of 
individual subjects after transforming them into a common 
template space.

2.5. Definition of regions of interest

ROIs were defined based on the automated anatomical labeling atlas 
3 (AAL3; Rolls et al., 2020) and included the motor (region indexes: 1–2, 
15–16, 61–62, 73–74) and prefrontal cortices (region indexes 19–20, 
151–156). Masks of these regions were denormalized from MNI to 
individual native space using the inverse transform. For deep and small 
nuclei for which the inverse transform lacked spatial precision, we used 
a manual segmentation protocol. Two independent observers (V.R. and 
S.K.) draw the ROIs using FSLeyes (McCarthy, 2019), on the T1w MRI 
images (Thalamus and Putamen) and FOD images (STN and Dentate 
Nucleus). To control for inter-observer variability for each manual ROI, 
voxels that overlapped between the observers were considered for the 
analysis. We  computed (i) the intersection volume of the ROIs by 
multiplying the binary mask of the ROI from two observers using 
fslmaths and fslstats; (ii) the total volume of their combination was 
calculated by adding them using fslmaths and fslstats. The ratio between 
the volume of intersection and combination of ROIs was computed. The 
overlap between each given ROI drawn by the two observers had to 
be greater than at least 80% to consider the ROI for the analysis.

2.5.1. Thalamus
The thalamus was segmented on the T1-weighted image of each 

subject in the coronal plane (Figure 2A). The anterior boundary was the 
stria terminalis; the lateral and ventromedial boundaries were formed 
by the internal capsule; the genu and the caudate nucleus formed the 
dorsolateral boundary. Corrections were made in the sagittal and 
axial planes.
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2.5.2. Putamen
The putamen was segmented on the T1-weighted image of each 

subject in the axial plane (Figure 2B). The lateral border was the external 
capsule. The ventromedial boundary was the anterior limb of the 
internal capsule, whereas the posterior limb formed the posteromedial 
boundary. The mask was corrected for in the sagittal and coronal planes.

2.5.3. Subthalamic nucleus
The STN (subthalamic nucleus) was segmented on the FOD image 

obtained from the diffusion-weighted image. It was located relative to 
the red nucleus, observable as the hypointense region at the brain stem 
as seen in the axial slice (Figure 2C). The STN was drawn 3 mm from 
the red nucleus in the anterolateral direction below the thalamus. The 
overlap between the manually drawn STN and standard atlas STN ROI 
denormalized to subject space is shown in Appendix Figure A1(B).

2.5.4. Dentate
The DN (dentate nucleus) was drawn on the fiber orientation 

density image obtained from the diffusion-weighted image of individual 
subjects (Figure  2D) and defined by the hypointense semi-circular 
region in the CB with the opening facing the midline.

2.5.5. Ventral tegmental area
VTA was segmented on the axial section of the FOD image obtained 

from the diffusion image as previously outlined by Ballard et al. (2011) 
as shown in Figure 2E. The overlap between the manually drawn VTA 
and standard atlas VTA ROI denormalized to subject space is shown in 
Appendix Figure A1(A).

2.6. Total intracranial volume

The total intracranial volume (TIV) was computed from the acquired 
T1-weighted images using Computational Anatomy Toolbox (CAT12) in 

the Statistical Parametric Mapping (SPM12) software running in 
MATLAB (R2019a: The MathWorks, Inc., Natick, Massachusetts, 
United States). The TIV value was calculated as the sum of volumes for 
White Matter (WM), Gray Matter (GM), and Cerebrospinal Fluid (CSF) 
obtained by segmenting the T1-weighted images into respective  
components.

2.7. Tract reconstruction

For all the ascending tracts described below, we considered the 
thalamus as an inclusion mask to build a reliable trajectory based on 
the anatomy of human and non-human primates (Hoshi et al., 2005; 
Bostan et  al., 2010; Bostan and Strick, 2018). To identify the 
contralateral tracts, exclusion masks of the opposite cerebellar 
hemisphere and an interhemispheric mask covering the corpus 
callosum were considered.

2.7.1. Cerebello-thalamocortical ascending tracts
Cerebello-thalamocortical (CTC) tracts projecting to cortical motor 

areas with known trajectories (Yamada et al., 2010) were studied as 
controls. We defined the cerebellar dentate nucleus as the seed region 
and the contralateral cortical motor areas as target regions (inclusion 
mask = contralateral thalamus).

2.7.2. Cerebello-thalamo-striatal (CB-BG) 
ascending tract

We defined the dentate nucleus as the seed and the contralateral 
putamen as a target region (inclusion mask = contralateral thalamus).

2.7.3. Subthalamo-cerebellar (a) crus II (b) VIIb 
descending tract

We defined the STN as the seed and the contralateral CrusII and 
VIIb as the target.

FIGURE 1

Figure showing the steps involved in the generation of tract-specific FBA metrics.
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2.7.4. Cerebello-prefrontal tracts via (a) VTA and (b) 
thalamus

Tractography was performed on tracts from the dentate nucleus to 
the contralateral prefrontal cortex (ACC/mPFC) with VTA (Carta et al., 
2019) or thalamus as inclusion regions.

2.8. Statistical analysis

After verification of the normal distribution of data, to study the 
effect of age on morphological features of cerebellar tracts, a linear 
regression model was used to identify the association between 

A B

C D

E

FIGURE 2

ROI definition in the individual native space. (A) Thalamic ROI mask superimposed on the T1 image. (B) Putamen ROI mask superimposed on the T1 image. 
(C) STN ROI superimposed on the Fiber Orientation Distribution (FOD) image. (D) Hypointense regions in the FOD image around the DN in the CB. (E) VTA 
ROI superimposed on the FOD image. CB, cerebellum; DN, dentate nucleus; STN, subthalamic nucleus; VTA, ventral tegmental area.
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individual mean parameters of FD, FC, and FDC across fixels of 
each tract (cerebello-thalamo-striatal and STN-Crus7b;) 
considering age as a covariable of interest, using the sex, education, 
and total intracranial volume (TIV) of the subjects as regressors of 
nuisance. The statistics and machine learning toolbox in MATLAB 
(R2019a: The MathWorks, Inc., Natick, Massachusetts, 
United States) was used for the analysis. Statistical significance was 
corrected for multiple comparisons using Bonferroni correction at 
p < 0.05. To study the relationship between the neuropsychological 
scores determined from ACE-M/RAVLT and FBA tract parameters, 
partial Pearson’s correlation analysis was performed after controlling 
for variables age, sex and education. Statistical significance was 
corrected for multiple comparisons using Bonferroni correction at 
p < 0.05.

2.9. Data availability statement

All the subject MRI data were collected at the Imaging Sciences and 
Interventional Radiology (IS/IR) Department and is the property of the 
Neurology Department at SCTIMST. These data will be made available 
to the academic researchers upon reasonable request to the 
corresponding author and the approval of the Institute Ethics Committee 
(IEC) at SCTIMST.

2.10. Declaration of competing interest

The authors declare that they have no known competing financial 
interests or personal ties that could have influenced the research presented 
in this study.

3. Results

Table  1 shows the demographics and the neuropsychological 
measures for the cognitive subject group.

3.1. Tractography of CB-BG interconnecting 
networks

The tractography analysis revealed the bilateral and reciprocal 
tracts between the CB and BG. The ascending tract between the 
dentate nucleus to the contralateral thalamus traversed the superior 
cerebellar peduncles and decussated at the level of the midbrain to 
the contralateral side, terminating in the Putamen (Figure  3A).  
The descending tract between STN to the contralateral cerebellar 
cortex, C7b and Crus II, traversed the basilar part of the pons, 
decussated along regions associated with the pontine nuclei,  
and passed through the middle cerebellar peduncle  
(Figure 3B).

We generated a specific fixel mask for each of the ascending 
and descending tracts (in the study template space) using the 
individual white matter FOD image that was spatially normalized 
in the study template space. The fixel mask generated from the 
tracts was intersected with the whole brain white matter FD, FC, 
and FDC fixel data image to obtain the tract-specific metric for 
individual subjects.

3.2. Tractography on the control tracts

We successfully reconstructed the CTC tracts (Figure 3C). For the 
sensorimotor tracts, the DN exited the CB via the superior cerebellar 
peduncle, decussated at the level of the midbrain, traversed the 
contralateral thalamus via the ventral intermediary nucleus (VIM), and 
reached the contralateral primary motor and sensory cortices 
(Figure 3C). For the associative tracts, the dentate exited the CB via the 
superior cerebellar peduncle, traversed the contralateral thalamus via 
the mediodorsal nuclei, and reached the contralateral frontal cortex 
(ACC/mPFC; Figure  3C). In addition, we  reconstructed the tracts 
between the dentate nucleus to the contralateral frontal cortex (ACC/
mPFC) passing through the VTA (Figure 3C). The reconstruction of the 
cerebellar tract was performed using an inclusion mask comprising the 
whole thalamus. However, looking at the tract trajectories through their 
thalamic relays, (i) the CB-BG tract passed through the central-medial 
nucleus; (ii) the CTC connecting the sensorimotor areas passed through 
the ventral intermediary nucleus; (iii) the CTC connecting the prefrontal 
areas passed through the medial-dorsal nucleus. These thalamic relays 
(Figure  4A) are in correspondence with what is known of the 
neuroanatomy of these pathways.

The linear regression analysis showed a significant negative linear 
relationship between FD and age for the ascending and descending 
CB-BG tracts (Figures 4B, C; Table 2). In all the tracts, the mean FC and 
logFC values were unaffected by age. FDC values were found to 
be negatively correlated with age in the ascending tract between the 
right Dentate to left Putamen.

Mean values of FDC across fixels within all the tracts showed a 
significant positive linear relationship with TIV (Table 2). TIV was also 
found to have a significant positive linear relationship with the mean 
parameter, log_FC of the bilateral tract from STN to the Cerebellar 
cortex. TIV was significantly higher in males compared to females, most 

TABLE 1 Table showing the demographics and the neuropsychological 
measures for the cognitive subject group.

Characteristic Mean (n = 20) Std. deviation

Age (years) 56.8 8.7

Sex (M/F) 11\09

Education (years) 12.58 2.53

MMSE 29.1 0.95

ACE-M (Reg-24)* 21.86 1.58

ACE-M (Recall-10)* 7.52 1.53

ACE-M (total) 92.9 3

ACE-orientation 9.95 0.22

ACE-attention 7.95 0.22

ACE-memory 28.22 2.53

ACE-verbal fluency 13.6 0.66

ACE-visuospatial 4.6 0.74

ACE-language 27.85 0.65

RAVLT (total)* 47.24 8.08

RAVLT delayed recall 9.62 2.85

*ACE-M (Reg-24): Subdomain of ACE-Malayalam, registration/learning with 24-point scale  
(3 points for registration of 3 words and 21 points for learning of 3-trial learning of an address); 
ACE-M (Recall-10): subdomain of ACE-Malayalam with 10-point scale (3 points for recall of  
3 words and 7 points for recall of address, each after a delay of 5 min); RAVLT, Rey Auditory 
Verbal Learning Test.
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A

B

C

FIGURE 3

Tractography of crossed reciprocal tracts between the CB-BG and cortical targets in a representative subject. Tracts are superimposed on the study 
template (3D view, and axial views for a display of the tract trajectory). (A) Ascending cerebellum basal ganglia tracts; From left to right, Tracts between 
Right DN and Left Putamen, traversing Left Thalamus; Tracts between Left DN and Right Putamen, traversing Right Thalamus. (B) Descending cerebellum 

(Continued)
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A

B

C

FIGURE 4

(A) Thalamic nuclei as specific relays of the cerebellar tracts. From left to right, Medial Dorsal (MD) nuclei with cerebello-frontal tracts; Central median (CM) 
nuclei with cerebello-thalamo-striatal (CTS) tracts; Ventral Intermediary (VIM) nuclei with cerebello-thalamocortical (CTC) tracts. Scatterplots (B,C) show 
the mean FD values of the corresponding CB-BG tracts included in the analysis. The black solid lines represent the regression line, whereas the dashed red 
lines represent the 95% confidence interval and the black dashed lines represent the 95% prediction interval. (*) indicates the significant linear relationship 
with age.

FIGURE 3 (Continued)
basal ganglia tracts; In the clockwise direction, Tracts between Right STN and contralateral Cerebellar cortex, C7b Left; Tracts between Left STN and 
contralateral Cerebellar cortex, C7b Right; Tracts between Right STN and contralateral Cerebellar cortex, C7b Left; Tracts between Left STN and 
contralateral CB cortex, Crus II Right; Tracts between Right STN and contralateral Cerebellar cortex, Crus II Left; (C) Cerebellar cortical tracts; From top to 
bottom, the first row shows the tracts between the DN and the sensorimotor cortex traversing the ventral intermediary nucleus of the thalamus. The top 
and bottom rows display axial views of the right CB-left thalamus/Cortex and left CB-right Thalamus/Cortex respectively; The second row shows the tracts 
between the DN to the contralateral mPFC/ACC via the medial dorsal nuclei of the thalamus. The top and bottom rows display axial views of the left CB-
right Thalamus/Cortex and right CB-left thalamus/Cortex, respectively. The third row shows the tracts from the dentate to the contralateral mPFC/ACC via 
the ventral tegmental area.
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likely reflecting a gender effect. Multiple regression analysis of gray 
matter volume with age considering education, TIV, and sex as covariates 
yielded no significant relation at FWE corrected p-value of 0.05.

3.3. Neuropsychological analysis

3.3.1. Ascending tracts
FD in the cerebello-thalamo-striatal tracts was positively correlated 

with the ACE-M (Reg-24) score (DN_L to Putamen_R, pcorrected = 0.0117; 
DN_R to Putamen_R, pcorrected  = 0.0386 as in Figures  5A, B). For the 
DN-mPFC tracts passing through thalamic or VTA relays, FD was 
positively correlated with the ACE-M (Recall-10) score (DN_L-VTA-
ACC_R, pcorrected  = 0.0070; DN_R-VTA-ACC_L, pcorrected  = 0.0201 as in 
Figures 5C, D; DN L-Thal-ACC_R, pcorrected = 0.0014; DN_R-Thal-ACC_L 
pcorrected = 0.0061 as in Figures 5E, F). The RAVLT, ACE-M (total), and 
ACE-M (Reg-24) scores did not correlate with FD in any of these tracts. In 
the case of CTC tracts, none of the tract parameters correlated with the 
neuropsychological parameters. Other subdomains of ACE-M were not 
found to be significant with any of the FBA metric of the ascending tracts.

3.3.2. Descending tracts
The FBA metrics for the tracts from STN to the contralateral 

cerebellar cortex were extracted for STN-C7b tracts as well as 
STN-CrusII tracts. Pearson’s correlation between the FBA metrics of the 
C7b tract and neuropsychological scores of ACE-M and RAVLT did not 
yield any significant relationship. FD in the STN-R_CrusII_L was 
positively correlated with ACE-M(Recall-10) score (pcorrected = 0.0431) as 
in Figures  5G, H. The ACE-M, ACE-M (Reg-24), ACE-M (total), 
RAVLT, and RAVLT Delayed Recall scores did not correlate with FD in 
this tract. Other subdomains of ACE-M were not found to be significant 
with any of the FBA metric of the descending tracts.

4. Discussion

We validated the subcortical CB-BG connection in a large 
database of 64 healthy volunteers and expanded the findings reported 

earlier in primates and small samples of healthy subjects. In addition, 
we showed for the first time, that the microstructure of subcortical 
reciprocal connections between the CB and BG in human subjects 
was affected by aging. We further explored the cognitive functional 
roles of these tracts and found that inter-individual variability of 
descending and ascending CB-BG reciprocal tracts was associated 
with cognitive scores. These findings bring important consideration 
for the understanding of neurodevelopmental and neurodegenerative  
diseases.

4.1. White matter tracts constituting the 
CB-BG direct subcortical network

The tractography using constrained spherical deconvolution that 
addresses the issue of crossing fibers present in the majority of the white 
matter voxels (Raffelt et al., 2015), validated the presence of ascending 
tracts from the output nuclei of the CB, the dentate nucleus, to the 
contralateral putamen, via the thalamus. The tracts traversed primarily 
through the centromedian nucleus of the thalamus before reaching the 
putamen (Figure  4A). This is an important validation since the 
connections from the dentate to the striatum in mice pass through the 
anatomical equivalent thalamic nucleus (Coutant et al., 2022). A similar 
trajectory of the dentato-thalamo-striatal pathway through the thalamus 
was reported in the transneuronal viral transport study in macaques 
(Hoshi et al., 2005).

The descending tracts from the STN were found to innervate the 
contralateral cerebellar cortex via the middle cerebellar peduncles 
with decussations along the regions that include the pontine nuclei 
(Figure 3B). We showed that the CB-BG subcortical tracts in healthy 
human subjects have similar trajectories as reported in non-human 
primate studies and is congruent with the findings of Milardi et al. 
which established the dentato-thalamic pathways (Milardi 
et al., 2016).

We performed tractography on the cerebello-thalamo-cortical tract 
as a control tract with a known trajectory (Yamada et al., 2010) from the 
dentate nucleus to the primary motor and sensory cortical areas. 
We confirmed that this tract passes via the VIM nucleus of the thalamus, 

TABLE 2 Table showing the estimated value of the standardized regression coefficients for the tract-level analysis metrics along with their p-values.

FBA 
metric

Tracts
Age Sex TIV Education

β p β p β p β p

FD Dn_L → Put_R −0.40994 0.00087457 −0.03281 0.82751 −0.18287 0.2317 0.190501 0.10523

Dn_R → Put_L −0.49802 5.26E-05 0.01276 0.93086 −0.1371 0.35745 0.097072 0.39419

STN_R → C7b_L −0.35857 0.00024516 0.324362 0.59763 −0.23155 0.83761 0.184973 0.5422

STN_L → C7b_R −0.4552 0.0031548 0.079334 0.053923 −0.03106 0.12995 0.070781 0.11418

FDC Dn_L → Put_R −0.25413 0.0624673 −0.11796 0.40737 0.502846 0.00083 0.075748 0.4905

Dn_R → Put_L −0.29739 0.0054045 −0.09823 0.45983 0.563221 8.36E-05 −0.01399 0.89133

STN_R → C7b_L −0.10082 0.078241 0.124569 0.65756 0.394158 0.00022 0.114996 0.69805

STN_L → C7b_R −0.22577 0.37206 −0.06085 0.38969 0.542427 0.00865 0.041124 0.30452

log_FC Dn_L → Put_R −0.20606 0.1115 −0.11263 0.49373 −0.09478 0.56809 0.060059 0.6362

Dn_R → Put_L −0.13495 0.29755 −0.1608 0.33275 −0.06666 0.68981 0.050139 0.69481

STN_R → C7b_L 0.128051 0.58676 −0.12466 0.26621 0.507762 0.00575 0.019757 0.74253

STN_L → C7b_R 0.067096 0.28536 −0.17672 0.4164 0.455513 0.00163 0.040131 0.86719

The values of regression coefficients in bold are significant at Bonferroni corrected p-value of p < 0.05.
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FIGURE 5

Figure showing the scatterplot between Fiber Density (FD) and neuropsychological scores. (A,B) Scatterplot for ACE-M (Reg-24) against FD for the dentate 
nucleus to contralateral Putamen tract. (C,D) Scatter plot for ACE-M (Recall-10) against FD for the dentate nucleus to prefrontal cortex tract via VTA (E,F) 
Scatter plot for ACE-M (Recall-10) against FD for the dentate nucleus to prefrontal cortex tract via thalamus (G,H) Scatter plot for ACE-M (Recall-10) against 
FD for tracts from STN to contralateral Crus II tract.
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thus establishing that the tractography algorithms used in the study have 
anatomical validity. In addition, we showed that CB tracts also reach 
ACC, and mPFC, passing through the VTA and medial-dorsal nucleus 
of the thalamus.

The projections from VTA to the prefrontal cortex (Björklund and 
Dunnett, 2007) mediate higher-order cognitive functions, and the recent 
work of Carta et  al. (2019) proves the role of cerebellum-VTA 
connection in social behavior and reward circuitry. We, therefore, tested 
for a direct connection from cerebellar output nuclei to the prefrontal 
cortex via VTA. The tractography results in Figure 3C demonstrate the 
anatomical connections from the dentate nucleus to the prefrontal 
cortex via VTA.

4.2. Age-related changes in the 
morphometry of the CB-BG connections

Going further than the anatomical description of the tracts, 
we demonstrated for the first time, a negative linear relationship between 
age and FD in the ascending and descending tracts between 
CB-BG. Fiber morphometric measures are an indicator of the ability of 
the axonal bundle to relay information, depending on the number of 
axons and the volume of the axonal cross-section. In the FBA analysis 
technique used in this study, the FD metric, calculated as an integral of 
the fiber orientation distribution in a fixel, is proportional to the intra-
axonal volume of the fiber bundles in that fixel and is a measure of the 
number of axons in a fiber bundle (Raffelt et al., 2012). The relationship 
between FD and age in CB-BG reciprocal tracts could arise from 
reduced free water volume in the fixel associated with aging and possibly 
axonal loss.

Age-related changes to whole-brain white matter morphology 
have been widely reported both in human and animal studies using 
the diffusion scalar metrics such as Fractional Anisotropy (FA), 
Radial Diffusivity (RD), and Axial Diffusivity (AD) as well as 
postmortem studies (Tang et al., 1997; Salat et al., 2005; Bowley 
et al., 2010; Sala et al., 2012; Bennett and Madden, 2014; Cox et al., 
2016). However, very few studies have investigated precise cerebellar 
tracts. The age-related decline in FD indicates a reduction in the 
number of fibers in the white matter bundle connecting the CB-BG 
with advancing age. Postmortem studies on age-related WM atrophy 
in human subjects at the corpus callosum have identified a reduction 
in the number of fibers and density as the primary factor 
contributing to WM atrophy (Hou and Pakkenberg, 2012). FD and 
FC provide a macrostructural and microstructural measure of 
change in the fiber tracts, respectively, and their combined measure 
of FDC obtained as a product of FD and FC provides an overall 
measure of the ability of the fiber bundle to relay information 
(Raffelt et al., 2017). One of the arguments proposed to explain the 
relative preservation of FC with age is the presence of different 
caliber axons in the bundle. The larger axons are better preserved 
during aging, thus maintaining FC (Choy et  al., 2020). and this 
could explain preserved FC in the CB-BG connections in this study. 
Greater axonal caliber is associated with a higher information rate 
(Perge et al., 2012). The preservation of FC in the CB-BG with aging 
could indicate these tracts may be involved in the rapid information 
exchanges that are necessary to efficiently update the comparison 
between expectations with the current state of the cognitive and 
motor system, a function that is dear to the cerebellum. Future 
studies including more of older subjects are required to quantify the 

relation between age-related deterioration in motor function and 
FC of the CB-BG network.

To fully comprehend the functional changes associated with the 
age-related degeneration of the CB-BG tracts, it is imperative to 
understand the changes in BG as well as thalamic regions. The striatal 
regions of the putamen and caudate undergo bilateral shrinkage with 
age and their volumes display a negative trend with age (Gunning-Dixon 
et al., 1998; Raz et al., 2003; Koikkalainen et al., 2007). Similarly, STN 
volumes and cell count also decrease in an age-dependent fashion 
(Zwirner et al., 2016). In the case of the thalamus which forms the relay 
between the CB and BG regions, the volume also has a downward trend 
with aging (Pfefferbaum et al., 2013). The regions of the brain that age 
first and result in changes in the FD of CB-BG tracts are yet to 
be identified.

4.3. Psychometric and behavioral 
correlations with CB-BG tract 
microstructure

We found a positive association between FD of subthalamo-
cerebellar and cerebello-frontal tracts and the learning/retention 
domain of ACE-M scoring. Descending tracts between STN to 
CrusII have been primarily associated with non-motor processes 
(Guell and Schmahmann, 2020). Viral tracing studies on non-human 
primates demonstrated the presence of second-order neurons 
projecting from CrusIIp to STN (Bostan et al., 2010). In addition, 
the basic framework for a resting-state executive control network 
consists of regions from BG such as the associative territory of the 
striatum, the caudate, and regions of CB such as Crus I and II along 
with the prefrontal cortical region and is associated with non-motor 
functions such as verbal fluency and working as well as episodic 
memory (Habas et al., 2009). The relationship we show between the 
tract FBA metrics and cognitive scores involves the cerebello-frontal 
network and reciprocal CB-BG network. Subthalamo-cerebellar 
tract from STN to pontine nuclei to Crus II showed a positive linear 
relationship with the FD metric while the FBA metrics of the 
subthalamo-cerebellar tract to C7b showed no significant linear 
relationship with any of the neuropsychological scores. This is 
congruent with the fact that the CB C7b region is primarily 
associated with motor tasks and CrusII is primarily involved in 
non-motor functions (Van Overwalle et al., 2020a,b).

We found that individual neuropsychological scores were 
correlated with individual FD values in tracts from the CB to ACC/
mPFC region traversing (a) VTA and (b) mediodorsal nuclei of the 
thalamus. FD for these tracts had a positive linear relationship with 
the 10-point score of 10 min recall of 3 words and address, ACE-M 
(Recall-10). Lower FD values could be associated with a reduction in 
the information-carrying capability of the white matter bundle 
leading to a reduction in the ability to recall the word list and address 
from memory and vice-versa. In the case of the cerebello-thalamo-
striatal tract (putamen), FD had a positive linear relationship with the 
ACE-M (Reg-24) scores, implying that this tract could be primarily 
associated with the initial learning capability of the words/address. 
Neuroimaging studies on instrumental learning have demonstrated 
the role of putamen in the acquisition of cue-response association 
during the exploration phase (Brovelli et al., 2011). This could imply 
the cerebello-thalamo-putamen tract properties can affect learning 
and memory registration.
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4.4. Implication for movement disorders 
where BG and CB are affected

Connections between CB and BG are particularly relevant to BG 
disorders such as PD and dystonia (Wu and Hallett, 2013; Bologna 
and Berardelli, 2017). Supporting findings for the presence of the 
dentato-thalamo-striatal pathway in human subjects come from deep 
brain stimulation (DBS) studies on dystonia and tremor patients 
(Paraguay et al., 2021). Despite being conventionally classified as a BG 
disorder, in PD patients with tremor symptoms, DBS of the thalamic 
nuclei, ventral intermediary nuclei (VIM), which receive input from 
the CB, provides greater beneficial effects rather than the nuclei 
receiving inputs from BG (Narabayashi et  al., 1987). Preliminary 
finding on DBS of the dentate nucleus has shown positive outcomes 
for dystonia and tremor patients (Diniz et al., 2021). The STN is an 
excitatory nucleus that drives the output of the BG. Thus, 
age-dependent structural changes of CB-BG tracts might influence 
the efficacy of STN-DBS.

In the reciprocal connections of the CB-BG tract, little is known 
about the functional involvement of feedback loops connecting the 
cerebrum to the cerebellum through the STN.

Basal ganglia hyperactivity in PD patients was supposedly 
transferred to the cerebellum via subthalamo-cerebellar connections 
(Asanuma et al., 2005) and STN-DBS ameliorates the hyperactivity in 
the CB thereby improving motor function in PD patients (Payoux 
et al., 2004; Asanuma et al., 2006). Age-related progressive loss in 
nigrostriatal dopamine neurons has been recorded to result in 
age-related functional deficits (Gibb and Lees, 1991). A multi-fold 
acceleration of this phenomenon leads to PD. Similarly, it can 
be  hypothesized that over time, an accelerated loss of CB-BG 
subcortical tracts as demonstrated in aging could substantially 
weaken the cerebellar control over BG and contribute to the 
pathophysiology of PD. In the case of spinocerebellar ataxias (SCA), 
which are clinically and genetically heterogeneous, the mean age at 
onset of symptoms differs for SCA1, SCA2, SCA3, SCA6, SCA7, and 
could vary from third to fourth and even sixth decade of life 
(Warrenburg et al., 2005). The knowledge of the age effects of CB-BG 
circuits could help better understand the clinically diverse 
manifestation of the disease including the occurrence of parkinsonism 
and dystonia in some of the SCA (Meira et al., 2019).

4.5. Limitations

One of the limitations of this study is the use of a single shell 
and relatively low b-value (b = 1000S/mm2) for the acquisition of 
diffusion data. Estimation of FOD and apparent FD (AFD) could 
be made more robust with higher and multiple b-value acquisitions. 
Another limitation of the study is the medium range of the effect 
size (Cohen’s f2: 0.15–0.35) for the multiple linear regression analysis 
for age vs. FD. Even though the negative linear relation is statistically 
significant, the change in FD with unit change in age is smaller. 
Another limitation is the small sample size of cognitive data. 
Although the results provide a new perspective on the functional 
role of these tracts in memory registration and recall, a longitudinal 
study with a larger sample size is required to further validate the 
results of the association between CB-BG tract parameters and 
cognitive scores. Even though the correlation values between the 

neuropsychological scores and FD values provide information on 
the involvement of these tracts on the task, the exact role played by 
these tracts in the memory and learning network needs to 
be further explored.

5. Conclusion

In this study, we  confirmed the existence and trajectories of 
subcortical connections between the CB and BG in a large group of 
human subjects, as reported in non-human primates. We observed 
that FD in reciprocal CB-BG tracts was negatively correlated with age 
and positively correlated with specific cognitive psychometric scores. 
The recall memory assessment domain of ACE-M was associated with 
FD for both the subthalamic-cerebello (Crus II) tract and the 
cerebello-frontal tracts to the prefrontal cortex. The FD metric in the 
cerebello-thalamo-putamen tracts was positively correlated with the 
learning/registration domain of the ACE-M score. Further 
investigation is required to study the functional roles of these tracts in 
movement disorders particularly PD and dystonia and its therapeutic 
implications. Deepening our knowledge of the functional 
neuroanatomy of the CB-BG connections in humans has much value 
in understanding their interactions in health and disease. This 
warrants more studies, including post-mortem studies, for 
confirmation of these interconnections.
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Introduction: TP73 was recently identified as a novel causative gene for amyotrophic 
lateral sclerosis (ALS). We aimed to determine the contribution of variations in TP73 
in the Chinese ALS population and to further explore the genotype-phenotype 
correlations.

Methods: We screened rare, putative pathogenic TP73 mutations in a large Chinese 
ALS cohort and performed association analysis of both rare and common TP73 
variations between cases and controls.

Results: Of the 985 ALS patients studied, six rare, heterozygous putative pathogenic 
variants in TP73 were identified among six unrelated sALS patients. Exon 14 of TP73 
might be a mutant hotspot in our cohort. Patients with ALS with only rare, putative 
pathogenic TP73 mutations exhibited a characteristic clinical profile. Patients harboring 
multiple mutations in TP73 and other ALS-related genes displayed a significantly earlier 
onset of ALS. Association analysis revealed that rare TP73 variants in the untranslated 
regions (UTRs) were enriched among ALS patients; meanwhile, two common variants in 
the exon-intron boundary were discovered to be associated with ALS.

Discussion: We demonstrate that TP73 variations also have contributed to ALS in 
the Asian population and broaden the genotypic and phenotypic spectrum of TP73 
variants in the ALS-frontotemporal dementia (FTD) spectrum. Furthermore, our 
findings first suggest that TP73 is not only a causative gene, but also exerts a disease-
modifying effect. These results may contribute to a better understanding of the 
molecular mechanism of ALS.

KEYWORDS

amyotrophic lateral sclerosis, TP73, gene mutation, phenotype–genotype association, 
neurodegenerative disease, clinical characteristic

1. Introduction

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder characterized by the rapidly 
progressive loss of motor neurons in the brain and spinal cord, resulting in relentlessly worsening 
weakness and wasting of voluntary muscle until death from respiratory failure occurs, typically within 
2–4 years of symptom onset (Al-Chalabi and Hardiman, 2013; Feldman et al., 2022; Goutman et al., 2022). 
ALS has generally been considered a relatively rare disease, nonetheless, the number of ALS patients 
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worldwide is projected to reach 376,674 by 2040, predominantly due to 
aging (Al-Chalabi and Hardiman, 2013; Arthur et al., 2016). This rise is 
expected to put a huge socioeconomic strain on global healthcare systems. 
As with most neurodegenerative diseases, only 10% of ALS cases are 
hereditary, referred to as familial ALS (fALS), with the remaining 90% of 
cases classified as sporadic ALS (sALS) (Renton et al., 2014). ALS shows a 
significant degree of clinical and genetic heterogeneity, and still, much 
remains unclear about the etiology and pathophysiological mechanisms 
underlying this disease (Swinnen and Robberecht, 2014). Genetic variation 
contributed to ALS (Renton et al., 2014; Taylor et al., 2016). To date, over 40 
genes have been identified as being implicated in the pathogenesis of ALS 
(Ghasemi and Brown, 2018).

Recently, a published study identified the gene of tumor protein P73 
(TP73) as a novel causative gene for ALS (Russell et al., 2021). By screening 
the whole-exome sequencing (WES) data from a discovery cohort of 87 
European patients with sALS and two replication cohorts comprising 2,853 
individuals with sALS, the researchers discovered 24 rare protein-coding 
variants in TP73. To further validate the pathogenic role of TP73 variants 
in ALS, they then performed functional experiments including C2C12 
myoblast differentiation assays in vitro and spinal motor neuron (SMN) 
axonal branching assay in vivo. Furthermore, they first proposed that 
apoptosis in motor neurons may be  involved in the pathology of 
ALS. Following that, Pereira and colleagues linked rare mutations in TP73 
with frontotemporal dementia (FTD), particularly primary progressive 
aphasia, which further corroborated the contribution of TP73 variations in 
the ALS-FTD spectrum (Tabuas-Pereira et al., 2022).

However, mutation analysis of the TP73 gene conducted on other 
countries and Asian populations is insufficient. A plethora of studies has 
highlighted that the genetic epidemiology of ALS varies among different 
racial groups (Zou et al., 2017). Therefore, we performed a thorough 
genetic analysis using whole-exome sequencing to investigate the 
contributions of TP73 variations in the Chinese ALS population and 
further characterized the clinical features of these patients to explore the 
genotype–phenotype correlations in this work.

2. Materials and methods

2.1. Participants

In this study, a large cohort of 1,004 patients with ALS was enrolled 
from Xiangya Hospital, Central South University, in either an inpatient or 
outpatient setting. Each patient got a thorough examination and was 
diagnosed with ALS by at least two experienced neurologists based on the 
current Gold Coast criteria (Shefner et al., 2020). Detailed demographic 
data and clinical information were collected when enrolled and updated 
at follow-up visits. Participants having known pathogenic mutations in 
the established ALS causative genes were excluded first. In total, 1,258 
neurological disease-free individuals of Chinese ancestry matched by 
geography were recruited as healthy controls (HCs). This study was 
approved by the Ethics Committee and the Expert Committee of Xiangya 
Hospital, Central South University. All participants completed written 
informed consent in compliance with the Helsinki Declaration.

2.2. WES analysis

Genomic DNA was prepared from peripheral blood leukocytes 
of each subject via standard extraction procedures. The purity and 

quantity of extracted DNA were detected with a NanoDrop 
spectrophotometer 1,000 (Thermo Scientific). WES was performed 
on all participants using a previously published method (Zeng 
et  al., 2019). The resulting data were mapped to the reference 
genome (GRCh37/hg19). Variants with a depth of coverage <10, 
allele balance <0.25, or Phred quality score <20 were removed. 
Proceed to annotate variations with the ANNOVAR software 
(Wang et al., 2010). After the quality control, totaling 985 patients 
and 1,224 healthy controls were included for further analysis. The 
data generation processes have already been described in detail 
(Liu et al., 2021).

We screened for rare, putative pathogenic variants of TP73 in the 
Chinese ALS population. Inclusion criteria for the rare, putative pathogenic 
variants were: (1). the frequency was lower than 0.001 in our in-house and 
the following public database: the 1,000 Genome Project-East Asian 
(1000G_EAS), the NHLBI Exome Sequencing Project-East Asian 
(ESP6500s_EAS), the Exome Aggregation Consortium-East Asian (ExAC_
EAS), and the Genome Aggregation Database-East Asian (GnomAD_EAS); 
(2). absent from HCs (3). located in the protein-coding regions; (4). present 
in a heterozygous state; (5). annotated as missense, stop gain/loss, frameshift, 
or splice-site variants; and (6). rare missense variants predicted to 
be pathogenic by at least five of 11 in silico (Quadri et al., 2018). It’s worth 
emphasizing that, considering the relatively small number of our control 
group, we only judged the pathogenicity of a rare variant to be robust if it 
was absent from HCs.

2.3. The single common variant association 
test

The common and rare variants were defined according to the minor 
allele frequency (MAF) in all participants in our cohort (common 
variants: MAF ≥ 0.01; rare variants: MAF < 0.01).

To evaluate the association of TP73 variants with ALS risk in 
the Chinese population, we conducted the single common variant 
association test between the ALS and control groups using the 
Mixed Linear Model (MLM). The extracted top three principal 
components of population stratification in the principal component 
analysis (PCA) were included as covariates in our cohort. The 
possible effect of common variants inside exon-intron boundaries 
on the TP73 gene expression was assessed by Expression 
Quantitative Trait Locus (eQTL) analysis (Zhu et al., 2016), which 
was widely utilized to compare the gene expression levels among 
individuals with different genotypes. All data were available from 
the Genotype-Tissue Expression (GTEx) database.

2.4. The gene-based rare variants 
association test

For the gene-based rare variants association test, the cumulative 
burden of rare variants across defined genomic regions of TP73 
between cases and controls was evaluated using the optimal 
sequence kernel association test (SKAT-O) implemented in the R 
package SKAT (Lee et al., 2012). The SKAT-O test maximized the 
test power of detecting the target gene by unifying the advantages 
of both the burden test and SKAT (Lee et al., 2012). Gender, age, 
and WES coverage were considered as possible covariates for 
adjustment before computing the p value.
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2.5. Statistical analysis

Descriptive statistics are reported as mean ± SD or median ± SD 
(standard deviation, SD) for continuous variables and percentages for 
categorical variables. The comparison of continuous variables was 
assessed by Student’s t-test. For categorical variables, the Fisher’s exact 
test or Chi-square test was used to verify the significant differences 
between the two compared groups. Statistical analyses were carried out 
in SPSS (version 26.0) software. All tests were two-tailed, and 
significance was set at p < 0.05.

3. Results

3.1. Demographics

In all, 985 patients with ALS and 1,224 healthy controls were 
analyzed in our study. The 985 ALS patients were on average 54.2 years 
old at the time of onset, and 56.2 years old at the time of sampling; the 
geographically matched controls were older (mean age 68.47 years). 
75.3% (740/985) of our ALS cohort had limb onset, while 19.39% 
(191/985) had bulbar onset. Detailed demographic information for all 
individuals is shown in Supplementary Table S1.

3.2. Rare, putative pathogenic mutation 
analysis

We screened all TP73 exon regions and their surrounding sequences 
in each ALS patient. A total of six rare, heterozygous putative pathogenic 
mutations that fulfilled pathogenicity criteria were discovered among six 
unrelated sALS patients but not in HCs. The overall frequency of patients 
with rare pathogenic TP73 mutations was 0.6%. All these six variations 
were protein-altering missense mutations. And the majority of them 
substituted amino acids that were highly conserved across species. The 
six variants were c.187G > A (p.A63T), c.1226C > T (p.P409L), 
c.1613G > A (p.R538H), c.1628G > A (p.R543Q), c.1679 T > C (p.L560P), 
and c.1736G > A (p.R579H). The variant, c.187G > A (p.A63T), was novel 
and absent from all databases. Three of these six variations (50%), namely 
c.187G > A (p.A63T), c.1226C > T (p.P409L), and c.1613G > A (p.R538H) 
have never been reported in association with the ALS-FTD spectrum. 
Interestingly, when investigating the distribution of these six potential 
pathogenic loci present in TP73, we discovered that a significant portion 
of them (4/6, 66.7%) were located inside exon 14, which differed from 
earlier studies. Consequently, we hypothesize that exon 14 of TP73 might 
be a mutant hotspot in our ALS series. The location and pathogenicity 
information of these six variants identified in this study were summarized 
in Figure 1 and Supplementary Tables S2, S3 (Liu et al., 2015).

3.3. Clinical features of ALS patients with 
rare, putative pathogenic TP73 mutations

For the six patients carrying potential pathogenic TP73 variants 
described above, the age at disease onset ranged from 32 to 69 years old. 
We observed a completely masculine involvement since all six patients 
were men. In addition, we screened for other pathogenic mutations in the 
known ALS genes in these patients (Supplementary Table S4). There were 
no reported pathogenic mutations in the causative genes for ALS in each 
of these six individuals. Notably, two of the six patients (patient A0048 and 

patient S7918) had multiple variants in ALS-related genes with uncertain 
pathogenicity (patient A0048: KIF5A c.A86G: p.K29R and TP73 
c.1613G > A: p.R538H; patient S7918: CCNF c.2199delC: p.D733fs and 
TP73 c.187G > A: p.A63T), and the remaining four patients only had TP73 
mutations. Considering the burden of multiple variants in ALS-causing 
genes on the disease expression, including the age at onset, progression 
rate, and survival, we separated these six patients into two subgroups for 
further clinical phenotype analysis (one subgroup with only TP73 
mutations, the other with multiple mutations in both TP73 and other 
ALS-related genes) (Cady et al., 2015; Pang et al., 2017; Naruse et al., 2019). 
When the clinical phenotype analysis was restricted to patients with ALS 
with only TP73 mutations, a distinct clinical profile emerges, with a 
considerably higher mean age at onset (61.5 ± 7.72 years), a shorter survival 
time (19.25 ± 10.01 months), and invariably limb onset. In the other 
subgroup, in contrast to patients carrying only TP73 mutations, the age at 
onset in patients with ALS with multiple mutations is accelerated (patient 
A0048: 32-year-old, patient S7918:38-year-old). Furthermore, one of the 
six patients, S0423, suffered from cognitive impairment and behavioral 
problems and was eventually diagnosed with ALS-FTD. Most of these 
affected individuals exhibited typical symptoms and signs of the 
simultaneous impairment of upper and lower motor neurons. The clinical 
features of the six sALS patients were listed in Table 1.

The variant, c.1226C > T (p.P409L), was identified in patient S0423, 
diagnosed with ALS-FTD. He was a farmer without specific environmental 
exposure. At the age of 65, he presented with muscle weakness in his upper 
limbs initiated from bilateral hands, which quickly extended to all four 
extremities in only 1 month. He then developed dysarthria and dysphagia 
2 months later. Concurrently, his primary care providers complained of his 
language difficulties, behavioral changes, and cognitive impairment, which 
included trouble retrieving words, effortful speech restricted to short, simple 
sentences, hyperphagia, irritability, attacks on others, decreased memory, 
dropped comprehension, inability to find out things, and failure to 
understand some instructions. At the time of the first observation after 
8 months of onset (at 66 years old), he was unable to walk or talk, and was 
reliant on family members for his daily requirements. On comprehensive 
neurological evaluation, he showed signs of upper motor neuron (UMN) 
damage and lower motor neuron (LMN) depletion features, such as positive 
palmomental reflex, hyperreflexia, and muscle atrophy of all four 
extremities. Electromyogram (EMG) revealed abundant and diffuse 
ongoing denervation (spontaneous potentials) and chronic reinnervation 
changes in all four segments (bulbar, cervical, thoracic, and lumbar). Brain 
magnetic resonance imaging (MRI) scan indicated mild age-related brain 
atrophy (Supplementary Figure S1). A battery of neuropsychological tests, 
including the Edinburgh Cognitive and Behavior ALS Screen (ECAS), the 
Mini-Mental State Examination (MMSE), the Montreal Cognitive 
Assessment (MoCA), and the Frontal Assessment Battery (FAB) was not 
completed due to his inability to communicate. He  eventually died of 
respiratory failure 13 months after disease onset.

Another two male patients, S3513 and S4096, carrying variants 
c.1736G > A (p.R579H) and c.1628G > A (p.R543Q) separately, had 
similar clinical manifestations. They all began with muscle weakness in 
the right hand, at the ages of 61 and 69, respectively. They both 
developed muscle weakness and atrophy in all four limbs over the next 
year, along with extensive fasciculation, and dysarthria. Patient S3513 
subsequently reported simultaneous involvement of the contralateral 
arm, and bilateral legs, accompanied by fasciculation, 5 months after 
disease onset. He developed dysarthria in the seventh month of onset, 
at which point the weakness of four limbs aggravated: he was unable to 
lift heavy objects with his upper limbs and had difficulty walking 
independently. For patient S4096 with a right-hand onset, his left upper 
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limb and bulbar (choking) were reported as the second symptomatic 
sites. Following that, at the fifth month of the disease course, the 
weakness continuously progressed to both lower limbs, and dysarthria 
appeared. Their bilateral deep tendon reflexes were brisk, the Hoffman 
sign and palmomental reflex were present. EMGs both showed abundant 
and diffuse ongoing denervation as well as chronic reinnervation 
alterations at four segments. However, brain MRI revealed that patient 
S4096 with the c.1628G > A (p.R543Q) variant had mild brain atrophy 
(Supplementary Figure S1), whereas patient S3513 with the c.1736G > A 
(p.R579H) had no obvious abnormalities. ECAS score of patient S4096 
was 56/136, and each subgroup score of this scale suggested that the 
decline was driven from executive dysfunction and memory 
impairments, rather than behavioral dysfunction. In the end, patient 
S3513 died at 13 months after onset and 17 months for patient S4096.

Another patient (S5941), carrying c.1679 T > C (p.L560P) variants, 
was a male, who complained of progressive muscle weakness and 
atrophy in his right arm at the 51-year-old. The weakness gradually 

extended to his bilateral lower limbs, making stair climbing difficult. 
Besides, he developed autonomic dysfunction, manifesting as sometimes 
excessive sweating during the day and heat intolerance, with no 
nocturnal sweating or cold intolerance, as revealed by the Scale for 
Outcomes in Parkinson’s disease (PD) for Autonomic Symptoms 
(SCOPA-AUT), a self-reported questionnaire widely used for the 
assessment of autonomic function in neurodegenerative disease (Visser 
et al., 2004; Damon-Perriere et al., 2012; Del et al., 2020; Assante et al., 
2022). Neurological examination revealed no evidence of upper motor 
neuron damage, and EMG demonstrated abundant and diffuse ongoing 
denervation and chronic reinnervation changes in three segments 
(cervical, thoracic, and lumbar). No symptoms of dysphagia or 
dysarthria were found at the most recent follow-up visit after 34 months 
of onset. Based on all the available information thus far, he was clinically 
diagnosed with progressive muscular atrophy (PMA).

The remaining two patients, both harbored multiple variants in TP73 
and other ALS-related genes. Patient A0048 who carried the c.1613G > A 

A

B

FIGURE 1

Rare TP73 variants identified in Russell et al.’s (2021), Dilliott et al.’s (2022), and this study. (A) Schematic representation of the TP73 transcript NM_005427. 
Rare, putative pathogenic missense variants identified in this study’s ALS cohort (yellow font); rare variants identified in this study’s control group (purple 
font); rare, protein-coding variants in TP73 identified by Russell et al. (2021) (black font); rare, non-synonymous variants in TP73 identified by Dilliott et al. 
(2022) (blue font). (B) Schematic representation of the TAp73 protein. Rare, putative pathogenic missense variants identified in this study (black font).
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TABLE 1 Clinical features of patients with ALS with rare, putative pathogenic variants in the TP73 gene.

Patients no. S0423 S3513 S4096 S5941 A0048 S7918

Variants c.1226C > T (p.P409L) c.1736G > A (p.R579H) c.1628G > A (p.R543Q) c.1679 T > C (p.L560P) c.1613G > A (p.R538H) c.187G > A (p.A63T)

Family history S S S S S S

Sex M M M M M M

Age at onset, y 65 61 69 51 32 38

Disease duration, m 13a 13a 17a 34 49 42

Site of onset Spinal Spinal Spinal Spinal Spinal Bulbar

Muscle weakness and atrophy Generalized Generalized Generalized lower limbs, right upper limb Generalized Lower limbs, right upper limb

Muscle fasciculation NA Extensive Extensive NA Extensive Right upper limb

Dysarthria + + + − + +

Dysphagia + + + − + +

Dyspnea + + + − − −

Autonomic dysfunction − − − + − −

Reflexes Hyperreflexia Hyperreflexia Hyperreflexia Normal Hyperreflexia Hyporeflexia in upper limbs; 

hyperreflexia in lower limbs

Cognition FTD Normal Executive dysfunction and 

memory impairments

Normal Executive dysfunction and 

memory impairments

Normal

Brain MRI Brain atrophy No obvious abnormalities Brain atrophy No obvious abnormalities No obvious abnormalities No obvious abnormalities

Education level, y NA 0 9 8 9 15

MMSE score # 20/30 NA NA NA NA

ECAS score # NA 56/136 104/136 63/136 101/136

ALS-FRS score 32/48 31/48 41/48 43/48 26/48 35/48

EMG Ongoing denervation and 

chronic reinnervation in all four 

segments

Ongoing denervation and 

chronic reinnervation in all four 

segments

Ongoing denervation and 

chronic reinnervation in all four 

segments

Ongoing denervation and 

chronic reinnervation in three 

segments

Ongoing denervation and 

chronic reinnervation in all four 

segments

Ongoing denervation and 

chronic reinnervation in all four 

segments

ALS, Amyotrophic lateral sclerosis; MMSE, Mini-Mental State Examination; ECAS, Edinburgh Cognitive and Behavioral ALS Screen; ALSFRS-R, ALS Functional Rating Scale–Revised; MRI, Magnetic resonance imaging; EMG, Electromyogram; NA, Data not available; +, 
Affected; −, Unaffected. 
aThe patient was dead at the time of the study. 
#: Unable to complete the scale.
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(p.R538H) variant, and patient S7918 who had the c.187G > A (p.A63T) 
variant, were both young men with no family history of the condition, 
starting with ALS phenotype at 32 and 38-year-old, respectively. Patient 
A0048 first displayed weakness in his left lower extremity, and then spread 
fast in the early disease course. By the fourth month from symptom 
onward, he had weakness in all four limbs; he then gradually experienced 
bulbar muscle weakness, presenting with dysarthria, dysphagia, and 
bucking during the next 2 years. Patient S7918 showed bulbar onset, 
initially with dysarthria and dysphagia, then developed asymmetric 
weakness and atrophy in bilateral lower limbs and the right arm within 
3 years, accompanied by extensive fasciculation. Neurological evaluation 
and EMGs on them both indicated evident signs of involvement of both 
upper and lower motor neurons. According to ECAS, patient A0048 had 
executive function deficits and memory impairments (total score: 63/136, 
subscore of executive function:14/60; subscore of memory: 3/24), whereas 
patient S7918 had no cognitive changes.

3.4. Association analysis and eQTL analysis 
of single common variants in TP73

We performed the single-variant analysis of each common variant 
discovered in the exon and near exon-intron boundary regions to ascertain 
the association between common variations of TP73 and ALS. As shown in 
Figure 2, 36 common TP73 variants were identified in our cohort (Figure 2, 
Supplementary Table S5). Then, utilizing PLINK 1.90, we obtained linkage 
disequilibrium (LD) statistics for these 36 common variants to plot linkage 
blocks (Supplementary Table S6). As 24 of the 36 common variants were 
mapped to 6 separate blocks, the estimated number of independent tests 

was 18, and the corresponding assumed Bonferroni-corrected significance 
threshold of p was 0.0028 (0.05/18). The resulting data revealed that none 
of the common variants inside the exon regions displayed significant 
univariate association with ALS. While two common variants rs2181486 
and rs2146657  in the same block at exon-intron boundary, attained 
Bonferroni-corrected statistical significance (Table  2). Taking into 
consideration these two common variants in nearly perfect LD (the R2 of 
these two variants is 0.9850), we next chose the rs2181486 mutant locus to 
search the publicly accessible GTEx database to find if these two common 
variations impact the expression of TP73. Of note, based on the calculation 
of the eQTL algorithm, the rs2181486 variants might give rise to a decreased 
TP73 protein level in the cerebral cortex, spinal cord, as well as skeletal 
muscles (Table 3). These results provided suggestive evidence for association 
of ALS and common TP73 variants in the near-exon intron boundaries.

3.5. Burden analysis of rare TP73 variants at 
the gene level

We applied the SKAT-O test to compare the aggregate burden of 
rare variants residing in the coding regions, untranslated regions, and 
intron-exon boundaries of TP73 between ALS cases and HCs, separately. 
Compared with HCs, the frequency of carriers of rare TP73 variants in 
the coding regions and intron-exon boundaries was not significantly 
higher in the ALS group. We observed an enrichment of rare TP73 
variations in the UTRs among ALS cases, with a p value of 0.046 for the 
cumulative burden of rare TP73 variations in the UTRs between the two 
compared groups, indicating that rare TP73 UTRs variants were 
significantly associated with ALS (Supplementary Table S7).

FIGURE 2

Locuszoom of the 36 common TP73 variants identified in this study (http://locuszoom.org/).
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4. Discussion

The p73 protein belonging to the p53 family, encoded by the 
TP73 gene, has five functional domains: a transactivation domain 
(TAD), a DNA binding domain (DBD), an oligomerization domain 
(OD), a Sterile-alpha motif domain (SAM), and a transactivation 
inhibitory domain (TID) (Figure 1B; Jost et al., 1997; Dotsch et al., 
2010; Osterburg and Dotsch, 2022). The p73 is a multifunctional 
protein in neurobiology and P73-deficient mice were found to 
develop neurological defects (Pozniak et al., 2000; Yang et al., 2000; 
Lee et  al., 2004). Wetzel et  al. (2008) demonstrated that p73 
haploinsufficiency can cause age-related neuronal degeneration, 
indicating that p73 is implicated in neurodegeneration diseases. 
Recently, a large case–control research demonstrated TP73 as a new 
ALS risk gene, although a replication study yielded conflicting results 
(Dilliott et al., 2022). Of note, neither of these two studies included 
the Asian population. Considering the distinct genetic architecture 
among different ethnicities, we screened TP73 variants in a large 
Chinese ALS cohort to evaluate the contribution of TP73 variants to 
Chinese ALS patients.

We identified six rare, heterozygous putative pathogenic variants 
among six unrelated sALS patients. Overall, TP73 mutation accounted 
for 0.60% of Chinese sALS patients, which was similar with previously 
reported in Russell’s research (0.60% & 0.82%), both implying that it is 
an uncommon genetic determination in ALS population worldwide. 
Interestingly, we discovered that exon 14 of the TP73 gene appeared to 
be  a mutant hotspot in the Chinese ALS cohort, unlike the earlier 
studies where the mutated sites were relatively clustered in exons eight, 
nine, ten, eleven and twelve (Figure 1A; Russell et al., 2021; Dilliott 
et al., 2022). To clarify whether exon 14 was simply more prone to 
variation and under less selection pressure in the Asian population, 
we examined the distribution of rare TP73 variants found in HCs that 
met similar criteria (except for the (2) in the inclusion criteria). The 
nine rare variants detected in the control group were dispersed across 
whole coding regions of TP73, with just one mutant site situated in 
exon 14, which did not exhibit any mutant site clustering 
(Supplementary Table S8; Figure 1A). These data provided support to 
the hypothesis that exon 14 may be a hotspot mutation in the Chinese 
ALS population. However, there was no significant difference in the 
frequency of rare TP73 variants within exon 14 between cases and 
controls (p = 0.1789). In the current study, we found four of the six 
(66.7%) variants at exon 14 (Figure 1A), which were all located in the 

C-terminal functional domains of p73 protein. Variants p.R538H and 
p.R543Q are in the SAM region, which is involved in hetero-
oligomerization; variants p.L560P and R579H vitiations are in the TIA 
region, which is critical for suppressing its own transcriptional activity. 
This distribution of mutant sites may be  unique to Chinese ALS 
patients, due to the combined effect of different ethnic origins and 
environmental circumstances. More multicenter research with larger 
sample sizes is needed to validate it further. Moreover, the functional 
impact of these six rare, putative pathogenic variants should be studied 
to clarify the molecular etiology of ALS, too.

In terms of the genotype–phenotype correlations, 
we systematically described the clinical manifestations of these six 
patients with rare, putative pathogenic TP73 variations to establish 
the existence of any commonalities between these individuals. Among 
the six carriers of TP73 mutations, there were both pure ALS patients 
and ALS patient with concomitant frontotemporal dementia. 
Compared with the common features of Chinese ALS population, the 
patients only carrying rare, putative pathogenic TP73 mutations 
showed a later age at onset (61.5 vs. 54.3 years), the lower disease 
duration (19.25 months vs. 71 months), and the higher spinal onset 
rate (100% vs. 76.6%) (Chen et  al., 2015; Liu et  al., 2021). These 
findings suggest that ALS patients with only rare, putative pathogenic 
TP73 mutations tend to have a late onset, a rapidly progressive course, 
and a poorer prognosis. Next, we  further analyzed the clinical 
characteristics of patients with ALS with multiple variants in TP73 
and other ALS-related genes. We  observed an obviously earlier 
disease onset in these two patients when compared to ALS patients 
with only KIF5A, or CCNF mutations (Nicolas et al., 2018; Tian et al., 
2018). Based on these data, we deduced that TP73 also exerts disease-
modifying effects in the presence of a combination with other rare 
variants in the known causative genes for ALS, mainly in accelerating 
the age at onset, rather than shortening survival time. Our current 
findings corroborate the previously published research that the 
burden of multiple rare variants advances the age at onset of ALS 
(Cady et  al., 2015). Nevertheless, there is no clear relationship 
between mutation sites and clinical phenotypes.

A most recent publication by Li et al. (2022) identified 24 rare TP73 
variants among 34 sALS patients in a large Chinese ALS cohort and briefly 
described the clinical presentation of these patients having rare TP73 
mutation: the average age at onset was 54.32 (11.76) years, with a sex ratio 
of 1.45:1. There was no data on disease progression or survival available. 
Our findings suggest that patients with ALS with only rare, putative 

TABLE 2 Association analysis for the two common variants achieving statistical significance in the TP73 gene.

Position Ref Alt dbSNP Frequency N
MAF_ 
case

MAF_ 
control

p-value
p*-

value
SE

Chr1:3644349 A G rs2181486 0.3014 2,209 0.2766 0.3215 0.002 0.0359 0.0168

Chr1:3644374 A G rs2146657 0.2997 2,209 0.2751 0.3194 0.002 0.0406 0.0169

Chr: chromosome; Ref: reference allele; Alt: alternate allele; dbSNP: dbSNP137 (https://www.ncbi.nlm.nih.gov/snp/); N: number of subjects in this study; p*-value: p-value after the Bonferroni 
correction; SE: standard error.

TABLE 3 Effect of the common variant rs2181486 on TP73 protein expression in different regions of normal human brain and skeletal muscles.

rsID Chr:position Alt
Frequency of 
the Alt_cases

Frequency of the 
Alt_controls

Ensebl 
Gencode ID

Tissue NES

rs2181486 chr1_3,644,349_A_G G 0.2732 0.3213 ENSG00000078900.14 Brain - Cortex 0.24

rs2181486 chr1_3,644,349_A_G G 0.2732 0.3213 ENSG00000078900.14 Brain - Spinal cord (cervical c-1) 0.13

rs2181486 chr1_3,644,349_A_G G 0.2732 0.3213 ENSG00000078900.14 Muscle - Skeletal 0.24

Chr: chromosome; Alt: alternate allele; NES: normalized effect size.
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pathogenic TP73 mutations tend to have a late onset, faster progression, and 
worse prognosis. The following might be  the causes of these clinical 
phenotypic contradictions: Patients and controls in Li, Chunyu et al’s and 
our studies came from different Chinese areas; The criteria for rare, 
pathogenic variants in Li, Chunyu et al’s study were inconsistent with those 
in our study; Two studies varied in the exclusion of patients with ALS with 
known pathogenic mutations in established ALS genes, making Li, Chunyu 
et al’ patients’ clinical presentation more complex and variable; However, in 
the present study, we tightly restricted the rarity and pathogenicity of TP73 
variations, and separated these ALS patients with TP73 mutation into two 
subgroups for further clinical phenotype analysis (one subgroup with only 
TP73 mutations, the other with multiple mutations).

Herein, we also found two common TP73 variants in the exon-
intron boundaries associated with ALS, and both can lead to a reduced 
P73 protein expression in the human brain based on the eQTL analysis. 
In addition, we noted an enrichment of rare variants in the UTRs of 
TP73 among our ALS patients. Increasing evidence has shown that 
variations in the UTRs are strongly linked to human diseases by 
impacting the transcription of nearby genes and protein expression level 
by changing the poly(A) motifs, RNA secondary structure, and RNA 
binding protein-binding sites (Li et  al., 2021). From these findings, 
we suggest that these ALS-related TP73 variants in the UTRs and exon-
intron boundaries may have a haploinsufficiency effect that confers a 
loss-of-function phenotype, and hence impart a risk of ALS. Of course, 
further biological research is warranted to validate this concept.

In summary, we screened TP73 variants in a large Chinese ALS 
cohort and identified six rare, candidate pathogenic mutations in six 
unrelated sALS patients. We provide the systematical characterization 
of the clinical manifestations of ALS patients carrying TP73 mutations 
and investigate the phenotype–genotype associations. Our research 
expands the genotypic and phenotypic spectrum of TP73 mutations in 
the ALS-FTD spectrum, adding to our current understanding of the 
characteristic clinical phenotype of ALS patients carrying rare 
pathogenic TP73 variants. These results may contribute to a better 
grasp of the molecular mechanism of ALS. More research with larger 
sample size and robust functional studies are warranted to elucidate the 
contribution and potential molecular mechanisms of TP73 mutations 
in the ALS-FTD spectrum.
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Objectives: Low-beta oscillation (13–20 Hz) has rarely been studied in patients 
with early-onset Parkinson’s disease (EOPD, age of onset ≤50 years). We aimed to 
explore the characteristics of low-beta oscillation in the subthalamic nucleus (STN) 
of patients with EOPD and investigate the differences between EOPD and late-onset 
Parkinson’s disease (LOPD).

Methods: We enrolled 31 EOPD and 31 LOPD patients, who were matched using 
propensity score matching. Patients underwent bilateral STN deep brain stimulation 
(DBS). Local field potentials were recorded using intraoperative microelectrode 
recording. We analyzed the low-beta band parameters, including aperiodic/periodic 
components, beta burst, and phase-amplitude coupling. We  compared low-beta 
band activity between EOPD and LOPD. Correlation analyses were performed 
between the low-beta parameters and clinical assessment results for each group.

Results: We found that the EOPD group had lower aperiodic parameters, including 
offset (p = 0.010) and exponent (p = 0.047). Low-beta burst analysis showed that 
EOPD patients had significantly higher average burst amplitude (p = 0.016) and longer 
average burst duration (p = 0.011). Furthermore, EOPD had higher proportion of long 
burst (500–650 ms, p = 0.008), while LOPD had higher proportion of short burst (200–
350 ms, p = 0.007). There was a significant difference in phase-amplitude coupling 
values between low-beta phase and fast high frequency oscillation (300–460 Hz) 
amplitude (p = 0.019).

Conclusion: We found that low-beta activity in the STN of patients with EOPD 
had characteristics that varied when compared with LOPD, and provided 
electrophysiological evidence for different pathological mechanisms between the 
two types of PD. These differences need to be considered when applying adaptive 
DBS on patients of different ages.
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1. Introduction

Parkinson’s disease (PD) is a movement disorder characterized by 
bradykinesia and at least one of resting tremor and rigidity, as well as a 
variety of non-motor symptoms (Postuma et  al., 2015). PD can 
be classified into two subtypes according to age of onset: early-onset PD 
[EOPD, age of onset ≤50 years (Butterfield et  al., 1993; Schrag and 
Schott, 2006; Mehanna and Jankovic, 2019; Niemann and Jankovic, 
2019), although some studies define the upper age limit as 40 years 
(Quinn et al., 1987; Schrag et al., 2000)] and late-onset PD (LOPD). 
Patients with EOPD typically have poorer social adjustment, higher 
rates of depression, and inferior quality of life compared to LOPD 
patients, as it affects those who are in the prime of their productivity 
(Mehanna and Jankovic, 2019). EOPD patients may experience more 
severe physical, financial, and psychological problems by the time they 
reach the age of LOPD patients, because of their longer disease duration. 
Therefore, maintaining daily social and occupational functioning is the 
treatment focus in EOPD, while postponing or ameliorating motor 
complications of treatment, offering psychological support, and, if 
possible, preventing psychiatric problems such as anxiety and depression 
(Schrag and Schott, 2006; Niemann and Jankovic, 2019).

Although current medication can provide good symptomatic 
remission, patients will still develop motor complications and 
fluctuations as the disease progresses. Deep brain stimulation (DBS) is 
a well-established treatment for PD, and provides a unique opportunity 
to gain insights into local field potentials (LFPs), which are recorded 
from the neuron population surrounding the target area by the depth 
electrodes (Okun, 2012; Fox et al., 2018). Aiming to save energy and 
reduce side effects, adaptive DBS (aDBS) automatically trims stimulation 
depending on neurophysiological feedback, in which sensitive and 
specific electrophysiological biomarkers play a vital role (Rosin et al., 
2011; Swann et al., 2018).

In recent years, aperiodic components of spectra have been noticed 
in electrophysiological signal analyze, which was considered as 1/f-like 
instructed noise before. In oscillatory analysis, reliance on a priori 
frequency bands may lead to the inclusion of aperiodic activity from 
outside the real physiological oscillation range (Donoghue et al., 2020). 
Studies have proved that there is correlation between age and this 1/f-
like component (Voytek et al., 2015). Many researchers have found that 
beta activity could potentially be a feedback signal for aDBS, owing to 
its correlation with parkinsonian symptom severity and because it can 
be regulated by medical treatment and DBS. Evidence has shown that 
low-beta activity is more dominant within the subthalamic nucleus 
(STN) and is regarded as a pathological oscillation (Tsiokos et al., 2017). 
In addition, low beta has been proved to be  more sensitive to 
dopaminergic or STN DBS (Litvak et al., 2011; Neumann et al., 2016a). 
Furthermore, beta burst has been proved to have a closer relationship 
with motor impairment and etiology of PD (Tinkhauser et al., 2017a; 
Torrecillos et al., 2018; Lofredi et al., 2019a,b). Moreover, a recent study 
with a large cohort of 106 PD patients shows similar results that both 
band power and burst duration of frequency-specific low beta 
(13–20 Hz) have significant correlations with motor symptom severity, 
and the dopamine-related reduction of band power and burst duration 
are paralleled by dopamine-related symptom alleviation (Lofredi et al., 
2023). Phase-amplitude coupling (PAC) may be interpreted considerably 
differently between STN PAC and cortical PAC, as cortical PAC involves 
the amplitude of broadband activity (50–200 Hz), not an oscillatory 
rhythm, whereas STN PAC involves the amplitude of high frequency 
oscillation (HFO, 200–500 Hz). Beta/HFO PAC in the basal ganglia has 

been found to be  correlated to motor impairment severity (Lopez-
Azcarate et  al., 2010). Another study has similar findings, and 
furthermore, this effect was more pronounced within the low-beta 
range, while coherence between subthalamic nucleus and motor cortex 
was dominant in the high-beta range (van Wijk et al., 2016). However, 
most previous studies on PD electrophysiology have obtained signals 
from elderly patients. It is noted that most EOPD cases result from Lewy 
body like LOPD, or less commonly, gene mutation (Schrag and Schott, 
2006). Nevertheless, EOPD has the characteristics such as increased 
genetic predisposition, slower progression, and increased risk of 
levodopa-related complications, when compared to LOPD (Niemann 
and Jankovic, 2019). So we  hypothesized that electrophysiological 
features of low beta in the STN of patients with EOPD would be different 
from those of patients with LOPD. This study aimed to explore the 
low-beta oscillation characteristics of the STN in patients with EOPD, 
to promote the development of aDBS in PD. In particular, we separated 
the aperiodic and periodic components, and addressed the differences 
in low-beta burst and beta/HFO PAC in the STN between patients with 
EOPD and those with LOPD.

2. Materials and methods

2.1. Patient inclusion

A total of 202 consecutive patients diagnosed with PD who 
underwent STN-DBS surgery between December 2019 and January 
2021 at Tiantan Hospital were sampled. In our center, patients who 
showed dyskinesia or other L-dopa related complications were 
recommended to STN DBS, while patients with cognitive decline or 
mental disorder were prone to globus pallidus internus (GPi) DBS 
(Rughani et  al., 2018). The inclusion criteria were (1) diagnosis of 
idiopathic PD, according to the United Kingdom Parkinson’s Disease 
Society Brain Bank Clinical Diagnostic Criteria, (2) bilateral STN-DBS 
surgery was performed, and (3) preoperative clinical assessments were 
completed, including minimum demographic information; age of 
disease onset; disease duration; levodopa equivalent daily dose (LEDD); 
Movement Disorders Society Unified Parkinson’s Disease Rating Scale 
(MDS-UPDRS) including medication (Med) ON and OFF; Hamilton 
Anxiety Scale (HAMA), Hamilton Depression Scale (HAMD); Beijing 
version of Mini-Mental State Examination (MMSE; Li et al., 2016); and 
Chinese version of Montreal Cognitive Assessment (MoCA; Huang 
et al., 2018; permission was obtained at https://www.mocatest.org/). 
Excluded were (1) patients who had received any other intracranial 
surgery previously and (2) patients who had severe surgery-related 
complications such as cerebral hemorrhage and hemiplegia. Patients 
were matched in terms of clinical baseline by propensity score matching 
(PSM; details in Statistical Analysis section). Patients gave informed 
written consent, and the study was approved by the institutional review 
board of Beijing Tiantan Hospital.

2.2. Surgical procedures and signal 
recording

Patients were operated by the same team and a standard surgical 
procedure was conducted as previously reported (Fan et al., 2020; Xie 
et al., 2022). Briefly, the STN target coordinates and trajectory were 
determined using a surgical planning system (Surgiplan, Elekta 
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Instrument AB, Stockholm, Sweden) with which we combined the CT 
scan with a stereotactic frame and 3-D high resolution magnetic 
resonance (MR) images, preoperatively. The STN target coordinates for 
the lower contact were 2–3 mm posterior to the mid commissural point 
(MCP), 12–14 mm lateral to the anterior commissure–posterior 
commissure (AC-PC), and 4–6 mm below the inter-commissural line. 
We performed intraoperative microelectrode recording (MER) using a 
tungsten microelectrode (10–20 μm at the tip with impedance 0.4–1 MΩ, 
Alpha Omega Engineering, Nazareth, Israel) and the Neuro-Omega 
system (Alpha Omega Engineering, Nazareth, Israel), sampled at 
44 kHz. MER was started at 10 mm above the target and advanced in 
small discrete steps (stepwise ranging from 0.1 to 0.5 mm), controlled 
by the neurophysiologist to achieve optimal recording and identification 
of the borders of the STN. The STN was identified visually as 
characterized by a prominent increase in background activity with 
typical multiple neuronal discharges of high frequency. During MER, 
patients were awake and not under sedation. Data were obtained in the 
resting state and at least 12 h since last dopaminergic medication. 
Macro-stimulation was then performed to confirm the target position, 
testing the effect on motor symptom control and observing for any side 
effects. The programmable pulse generator (IPG) was then implanted in 
the subclavicular area under general anesthesia. Postoperative CT was 
performed to exclude intracranial hemorrhage and the exact locations 
of the DBS leads verified by merging with preoperative MR images.

2.3. Electrophysiological data processing

Data preprocessing was performed in MATLAB (Version 2020b, 
MathWorks, United States) with customized scripts and the Fieldtrip 
toolbox (Oostenveld et al., 2011).1 All electrophysiological data were 
manually visualized offline and recordings with obvious artifacts were 
discarded. Artifact-free LFP data from all the recording depths inside 
STN were accumulated for further analysis. The electrophysiology data 
were downsampled to 2000 Hz and a notch filter was applied to the data 
to remove the 50 Hz line noise and harmonics. Data were z-score 
normalized for subsequent process and analysis.

2.3.1. Aperiodic and periodic component
The data were filtered between 2 and 500 Hz using a zero-phase 

third-order Butterworth bandpass filter. The power spectral density 
(PSD) was calculated in each trace using Welch’s method with a 1 s 
Hanning window (50% overlap). We separated the aperiodic and 
periodic component of the LFP signal using the FOOOF algorithm 
(Donoghue et al., 2020). We set the FOOOF parameters as follows: 
peak width limits: 2–12; maximum number of peaks: infinite; 
minimum peak height: 0; peak threshold: 2; and aperiodic model: 
fixed. The Welch’s PSD was fitted into the FOOOF model and 
parameterized across the frequency range of 2–45 Hz, which 
separated the aperiodic components (offset and exponent) from the 
periodic components, which included peak frequency (arrow in 
Figure  1A) for further analysis of beta burst. After the 
parameterization of the power spectra, the fitted spectra were used 
to subtract the aperiodic power (area under the aperiodic fit curve) 
to obtain periodic PSD (blue shadow in Figure 1B).

1 https://www.fieldtriptoolbox.org/

2.3.2. Low-beta burst
The criteria for burst determination generally followed a previous 

study (Tinkhauser et  al., 2017b). The low-beta band power was 
represented as the averaged power across the corresponding frequency 
band (13–20 Hz). The beta peak frequency with the highest power of 
each recording trace, which was acquired from FOOOF peak 
identification, was selected. The envelope of the beta peak band filtered 
LFP was calculated using the Hilbert transform with a 6 Hz bandwidth 
centered around the selected peak frequency (beta peak band; 
Figure 2A). Threshold was defined in terms of the 75th percentiles of 
the Hilbert envelope amplitude (red dash line in Figures 2B,C). Beta 
burst was identified as wavelet amplitude exceeding the applied 
amplitude threshold. Bursts with durations shorter than 100 ms were 
excluded to limit the contribution of spontaneous fluctuations in 
amplitude due to noise (Deffains et al., 2018). The burst amplitude was 
defined as the area between the signal curve and threshold line (yellow 
shadow in Figure  2C). The distribution of burst durations was 
considered by categorizing them into five time windows of 150 ms, 
starting from 200 ms to >800 ms in duration (Lofredi et al., 2019a). 
Considering that the absolute number of bursts may have varied 
across traces, we calculated the percentage distribution of bursts in 
each time window, which served as a normalization step. The averaged 
amplitude and duration of all identified bursts were also calculated 
(Figure 3).

2.3.3. Phase-amplitude coupling
PAC was calculated as we previously reported (Yin et al., 2022). 

We investigated 2–45 Hz as phase frequencies and 50–500 Hz range as 
amplitude frequencies. LFP data were bandpass filtered with a third-
order Butterworth filter from 2 to 50 Hz with a 2 Hz bandwidth and 1 Hz 
shift, while the same LFP data were filtered from 50 to 500 Hz with a 
4 Hz bandwidth and 2 Hz shift. Then, the instantaneous phase of the low 
frequency bandpass filtered signal and the instantaneous amplitude of 
the high frequency filtered signal were extracted using the Hilbert 
transform. We used the Kullback–Leibler distance, which measures the 
divergence between the probability distribution of high frequency 
amplitudes and uniform distribution, to calculate the modulation index 
(MI; Tort et al., 2010). The obtained MI was normalized by calculating 
the z-score of 200 surrogates generated by randomly swapping amplitude 
time blocks. Z-scored PAC computed for multiple frequencies of phase 
and amplitude were demonstrated as a comodulogram. The PAC 
calculations were conducted in Python 3 using the Tensorpac toolbox 
(Combrisson et al., 2020).2

2.4. Statistical analysis

We performed PSM to minimize the effects of potential confounding 
factors. Patients in this study were divided into two groups, EOPD group 
and LOPD group. Patients in the EOPD group were matched with a 
similar cohort of patients with LOPD (age of onset >50 years) in our 
dataset with a 1:1 ratio for disease duration, LEDD, MDS-UPDRS III 
scores (Med OFF), HAMA, HAMD, MMSE, and MoCA. PSM was 
performed using the nearest neighbor method within a caliper of 0.01 in 
SPSS (Version 27.0, IBM, United States).

2 https://etiennecmb.github.io/tensorpac/
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Independent non-parametric tests (Wilcoxon rank-sum test) and 
Spearman’s correlation were used when the data were not normally 
distributed, which was tested by the Kolmogorov–Smirnov test; 
otherwise, independent Student’s t-tests and Person’s correlation were 
used. Correlation analysis was performed between age of onset and LFP 

characteristics in whole population. Correlation analysis was also 
performed between LFP characteristics and MDS-UPDRS III total and 
subdivided scores, including Med ON/OFF and improvement rate in 
whole population and within each groups, respectively. False Discovery 
Rate (FDR) correction was used for multiple comparison. A value of p 

A B

FIGURE 1

Schematic diagram of parameterization of power spectra. (A) An example of parameterizing the power spectra: the aperiodic component (blue dashed line) 
and the fitted spectra (orange full line). Mixed power is equal to the sum of periodic power (light blue shadow) and aperiodic power (light purple shadow). 
Peak frequency (green point and arrowed) in low-beta band with highest power was selected for subsequent burst analysis. (B Left) Early-onset Parkinson 
disease (EOPD) patients demonstrated lower offset than late-onset Parkinson disease (LOPD) patients (EOPD: −0.14 ± 0.28, LOPD: −0.02 ± 0.19, p = 0.010), 
meaning EOPD patients had a lower spectrum curve. (B Middle) EOPD patients demonstrated lower exponent than LOPD patients (EOPD: 1.92 ± 0.25, 
LOPD: 2.00 ± 0.16, p = 0.047), meaning LOPD patients had a steeper spectrum curve. (B Right) After separating the aperiodic components from the periodic 
components, we observed periodic low-beta power that was significantly higher in EOPD patients than LOPD patients (EOPD: 0.26 ± 0.09, LOPD: 
0.22 ± 0.08, p = 0.002).

A

B

C

FIGURE 2

Schematic diagram of burst analysis. (A) Raw signal recorded from the subthalamic nucleus using microelectrode recoding. (B) Calculating the envelope: 
we used the Hilbert transform with a 6 Hz bandwidth centered around the selected peak frequency (peak frequency is shown in Figure 1A). (C) Threshold 
was defined in terms of the 75th percentile of the Hilbert envelope amplitude, as shown by the red dashed line. Burst was identified as wavelet amplitude 
exceeding the applied amplitude threshold. Burst duration was defined by the time points at which the selected time evolution of the wavelet amplitude 
exceeded a given amplitude threshold. To reduce the contribution of other noise, bursts with durations shorter than 100 ms were excluded before further 
analysis.
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<0.05 was considered significant. Statistical analyses were performed in 
MATLAB and R Studio (Version 1.4.17, PBC, United States).
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3. Results

3.1. Patients

A total of 62 patients were enrolled including 31 with EOPD (11 
female, 20 male) and 31 with LOPD (16 female, 15 male), matched 
through PSM. There were no significant differences between the 
two groups in preoperative clinical assessments such as disease 
duration (p = 0.963), LEDD (p = 0.086), MDS-UPDRS III scores 
(Med OFF, p = 0.832), HAMA (p = 0.216), HAMD (p = 0.061), 
MMSE (p = 0.140), and MoCA (p = 0.154). EOPD patients had a 
significantly higher improvement rate (p = 0.005) in MDS-UPDRS 
III scores, including total and some subdivided (bradykinesia and 
rigidity) scores, than the LOPD patients. The detailed patient 
demographics and clinical characteristics are summarized in 
Table  1. There was no significance difference in average signal 
duration between groups (EOPD: 229.39 ± 106.10 s, LOPD: 
188.04 ± 125.29 s, p = 0.16).

3.2. Aperiodic components and periodic 
power spectral density

After parameterizing the LFP, we found significant differences 
in offset (EOPD: −0.14 ± 0.28, LOPD: −0.02 ± 0.19, p = 0.010) and 
exponent (EOPD: 1.92 ± 0.25, LOPD: 2.00 ± 0.16, p = 0.047) 
parameters between the two groups. Offset parameters represent 
broadband up/down shift of the whole spectrum, and our results 
showed that EOPD patients had a lower spectrum curve than LOPD 
patients. However, exponent represents the slope of the spectrum, 
which means in our study LOPD patients had a steeper 
spectrum curve than EOPD patients. By subtracting the aperiodic 
power with the fitted power, low-beta periodic PSD was found to 
be higher in EOPD patients (EOPD: 0.26 ± 0.09, LOPD: 0.22 ± 0.08, 
p = 0.002). The results are shown in Figure 1B.

3.3. Comparison of low-beta burst

The average amplitude of low-beta burst was significantly higher 
in EOPD (EOPD: 56.70 ± 20.10 au, LOPD: 47.27 ± 14.73 au, 
p = 0.016). The average low-beta burst duration of EOPD was 
significantly longer than that of LOPD (EOPD: 203.74 ± 22.55 ms, 
LOPD: 193.79 ± 20.80 ms, p = 0.011). Also, the ratio of long bursts 
(burst duration 500–650 ms) was significantly increased in EOPD 
when compared to LOPD (EOPD: 4.79% ± 3.86%, LOPD, 
2.88% ± 2.87%, p = 0.008). In contrast, the proportion of short 

FIGURE 3

Comparison of low-beta burst between EOPD and LOPD. (A) The average low-beta burst power was significantly higher in EOPD (EOPD: 56.70 ± 20.10 au. 
LOPD: 47.27 ± 14.73 au, p = 0.016). (B) The average low-beta burst duration of EOPD was significantly longer than that of LOPD (EOPD: 203.74 ± 22.55 ms, 
LOPD: 193.79 ± 20.80 ms, p = 0.011). (C) Illustration of beta burst duration categorized into five time windows. The proportion of long burst (burst duration 
500–650 ms) was significantly increased in EOPD when compared to LOPD (EOPD: 4.79% ± 3.86%, LOPD, 2.88% ± 2.87%, p = 0.008). In contrast, the 
proportion of short low-beta bursts (burst duration 200–350 ms) was significantly higher in LOPD when compared to EOPD (EOPD: 75.00% ± 10.52%, LOPD, 
80.22% ± 10.79%, p = 0.007).
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low-beta bursts (burst duration 200–350 ms) was significantly 
higher in LOPD when compared to EOPD (EOPD: 75.00% ± 10.52%, 
LOPD, 80.22% ± 10.79%, p = 0.007).

3.4. Beta/fHFO phase-amplitude coupling

The comodulograms of group-level PAC for EOPD and LOPD and 
their subtraction are shown in Figure  4. There was a significant 
difference between EOPD and LOPD groups in MI of low-beta phase 
(13–20 Hz) and fast HFO (fHFO, 300–460 Hz) amplitude coupling 
(p = 0.019), as shown in the right image of Figure 4.

3.5. Correlation analysis

After calculating the results above, we tried to establish their 
relationship with clinical data. As show in Figure  5, age had 
significant correlation with offset (r = 0.305, FDR corrected 
p = 0.047, Figure 5A) and periodic low-beta PSD (r = −0.315, FDR 
corrected p = 0.047, Figure  5C) in whole population. Moreover, 
exponent (r = 0.271, FDR corrected p = 0.050, Figure 5B) and PAC 
value of low beta/fHFO (r = −0.284, FDR corrected p = 0.050, 
Figure  5F) were marginal significantly correlated with age. In 
Figure 6, circles with uncorrected p value greater than 0.05 were 
crossed. However, after FDR correction, there were no significant 
correlations between LFP parameters and the motor scores 
(including total scores and subdivided scores), neither within whole 
population nor each groups, respectively.

4. Discussion

To date, there has been no specific research on LFP in EOPD. Here, 
we  demonstrated for the first time several characteristics of the 
electrophysiological signals recorded from the STN of patients 
with EOPD.

In the past few decades, the vast majority of electrophysiological 
investigations have examined the combined periodic oscillatory 
component and the aperiodic component rather than separating 
them. Because apparent changes in narrowband power may 
represent a variety of physiological processes, using narrowband 
filtering (for example, 13–30 Hz for the beta band) without 
parameterization can lead to a misrepresentation and incorrect 
interpretation of physiological phenomena (Donoghue et al., 2020). 
The aperiodic offset parameter represents total up/down shift of the 
whole spectrum, and it was proved to be correlated with both the 
blood-oxygen-level-dependent (BOLD) signal from functional MR 

TABLE 1 Demographic and clinical characteristics.

EOPD LOPD p value

Age* 43.6 ± 6.3 60.0 ± 6.0 <0.001*

Gender(F/M) 11/20 16/15

LEDD (mg/day) 936.26 ± 372.89 788.13 ± 289.25 0.086

Disease duration (years) 8.13 ± 2.60 8.16 ± 2.89 0.963

MDS-UPDRS 49.94 ± 16.36 49.03 ± 16.97 0.832

Part III (Med off)

  Axial 10.42 ± 4.65 10.26 ± 4.95 0.896

  Bradykinesia 21.32 ± 7.46 20.71 ± 9.36 0.776

  Rigidity 8.55 ± 3.01 7.81 ± 3.64 0.385

  Tremor 9.65 ± 7.85 10.26 ± 6.64 0.741

MDS-UPDRS 17.97 ± 8.86 25.00 ± 13.44 0.018*

Part III (Med on)

  Axial 3.94 ± 3.04 5.39 ± 3.73 0.098

  Bradykinesia 7.90 ± 4.85 11.29 ± 7.26 0.035*

  Rigidity 3.03 ± 1.663 3.94 ± 2.41 0.091

  Tremor 3.10 ± 2.95 4.39 ± 4.90 0.214

Improve rate (%) 63.06 ± 17.77 51.07 ± 14.70 0.005*

  Axial 60.79 ± 25.01 49.28 ± 26.64 0.085

  Bradykinesia 62.37 ± 20.00 47.28 ± 17.17 0.002*

  Rigidity 64.53 ± 18.35 50.19 ± 20.21 0.005*

  Tremor 70.73 ± 25.65 64.05 ± 28.22 0.356

HAMA 19.97 ± 8.94 16.90 ± 10.31 0.216

HAMD 20.03 ± 8.67 15.58 ± 9.64 0.061

MMSE 26.61 ± 5.36 24.77 ± 4.24 0.140

MoCA 22.35 ± 6.67 20.03 ± 5.99 0.154

Values are presented as mean ± standard deviation (SD). LEDD, Levodopa equivalent daily 
doses; MDS-UPDRS, Movement Disorders Society Unified Parkinson’s Disease Rating Scale; 
HAMA, Hamilton Anxiety scale; HAMD, Hamilton Depression scale; MMSE, Mini-mental 
State Examination; MoCA, Montreal Cognitive Assessment. MDS-UPDRS III off-medication 
evaluations were performed after the withdrawal of anti-parkinsonism medications for 8–12 h, 
and on-medication evaluations were performed when the patient had maximum clinical benefit 
following the patient’s regular dose of anti-parkinsonism medication.  
*A significant difference.

FIGURE 4

Comodulograms of phase-amplitude coupling. Modulation index (MI) was averaged across all EOPD (Left) and LOPD patients (Middle), with phase 
frequency (range from 2 to 45 Hz) and amplitude frequency (range from 50 to 500 Hz) shown. (Right) Inter-group comparison showed a significant 
difference in MI of low beta phase (13–20 Hz) and fast HFO (fHFO, 300–460 Hz) amplitude coupling (p = 0.019).
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imaging (Winawer et  al., 2013) and neuronal spiking (Manning 
et  al., 2009). The aperiodic exponent has been related to the 
integration of the synaptic currents (Buzsáki et al., 2012). Recent 
studies have found the 1/f-like aperiodic components, which had 
been considered as noise before, have a unique function and are 
associated with brain activity (Adelhöfer et al., 2021; Zhang et al., 
2021) and age (Voytek et  al., 2015; Schaworonkow and Voytek, 
2021). Here, our study found the results analogous to previous 
research, in which offset (r = 0.305, corrected p = 0.047, Figure 5A) 
and exponent (r = 0.271, corrected p = 0.050, Figure  5B) were 
positively correlated with age.

By investigating the relationship between resting-state EEG activity 
and the efficiency of cognitive functioning, Ouyang et al. (2020) found 
that 1/f brain activity plays an essential role in cognitive function, and 
pointed out the necessity of isolating the 1/f component from oscillatory 
activities. Synaptic excitation (E) and inhibition (I), typically represented 
by quick glutamate and slower GABA inputs, are balanced in neural 
circuits (Xue et al., 2014). The balance of E:I interaction is essential for 
the formation of neural oscillations (Atallah and Scanziani, 2009). One 
study found that reduced E/I ratio resulted in steeper power spectra, 
reflecting conscious state over time (Gao et al., 2017). In other words, 
exponent will be lower when E/I ratio increases, and larger when E/I 
ratio decreases. As in our study, the positive correlation between the 
aperiodic parameters and age provided evidence that neurons located in 
the STN of patients with EOPD showed higher excitability than in 
LOPD. It is noted that symptoms of most PD patients with older onset 
age result from neurodegeneration, whereas some patients with younger 
onset age suffer from motor impairment owing to selective dysregulation 
of dopaminergic production and transfer caused by variable factors such 
as genetic mutation (Angeli et al., 2013; Pal et al., 2016; Mehanna and 
Jankovic, 2019; Leuzzi et al., 2021).

The beta pathological oscillatory band has become the most studied 
band in PD, as it is strongly correlated with movement impairment and 
can be  suppressed by medication (Brown et  al., 2001) and DBS 
(Neumann et  al., 2016b). Evidence shows that low-beta activity 
(13–20 Hz) is more sensitive to levodopa or DBS than high beta (Litvak 
et al., 2011), and a sub-band (10–14 Hz) partially within the low-beta 
range is most robustly correlated with UPDRS III total score (Neumann 
et al., 2016a). Weinberger et al. found positive correlation between the 
incidence of beta oscillatory neurons and the patient’s response to 
dopaminergic medications, but not with baseline motor deficits off 
medication (Weinberger et al., 2006). Similarly in our study, EOPD 
patients, with higher periodic low-beta power, had better response to 
anti-parkinsonism medication when compared to LOPD patients, under 
similar clinical baseline measurements such as LEDD and disease 
severity (UPDRS III total scores under Med OFF condition) for the PSM 
we used.

The amount of low-beta burst activity in STN correlates with the 
progressive decline in movement velocity in a spectrally specific manner, 
which can better explain motor impairment when compared to average 
beta power (Lofredi et al., 2019b). The presence, amplitude, and duration 
of beta bursts in the STN of PD patients were modulated by context and 
may be  crucial for the transformation of physiological information 
(Torrecillos et  al., 2018; Kehnemouyi et  al., 2021). The presence of 
abnormal beta bursts was significantly correlated with the severity of 
motor impairment in PD, and the distribution of beta burst duration 
could be changed from long to short by medication and DBS, which 
represented a more physiological state (Tinkhauser et al., 2017b). They 
also proved that beta bursts of longer duration were positively correlated 
and bursts of shorter duration were negatively correlated with motor 
impairment (Tinkhauser et  al., 2017a). Furthermore, Lofredi et  al. 
discovered that frequency-specific low-beta (13–20 Hz) band power and 

A B C

D E F

FIGURE 5

The correlations of age and the LFP parameters. There were significant correlations between age and offset (r = 0.305, FDR corrected p = 0.047), (A) and 
periodic low-beta PSD (r = −0.315, FDR corrected p = 0.047), (C) in whole population. Moreover, exponent (r = 0.271, FDR corrected p = 0.050), (B) and PAC 
value of low-beta/fHFO (r = −0.284, FDR corrected p = 0.050), (E) were marginal significantly correlated with age. The amplitude (FDR corrected p = 0.115) 
(D) and duration (FDR corrected p = 0.257) (F) had no significant correlations with age.
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burst duration exhibited substantial relationships with the severity of 
motor impairments, and that dopamine-related symptom relief occurred 
simultaneously with reduction of both band power and burst duration 
(Lofredi et al., 2023). These features indicated low-beta burst duration 
as a better potential biomarker for aDBS. Our study showed that the 
average low-beta burst duration of EOPD was significantly longer than 
that of LOPD. Additionally, EOPD had more longer durations whereas 
LOPD had more shorter durations. These findings showed that neurons 
in the STN of patients with EOPD showed more over-synchronization, 
which was thought to be  responsible for pathological beta bursts. 
Because synchronized neurons are prone to firing simultaneously, they 

are less likely to fire separately, which means the chances for them to 
transfer different information individually decrease, leading to 
restriction of the overall information coding capacity of the circuit 
(Brittain and Brown, 2014). Our study about burst provided 
electrophysiological evidence that neurons in the STN of patients with 
EOPD had higher excitability as we  mentioned above. This may 
be because EOPD involves dysregulation of dopaminergic production 
and transfer rather than neurodegeneration.

Another potential biomarker for adaptive stimulation is PAC, 
modulation of the amplitude of high frequency oscillations by the 
phase of low frequency oscillations (Hwang et  al., 2020). By 

FIGURE 6

The correlation matrix shows the correlation between the local field potential (LFP) parameter and motor symptom scores (total scores and subdivided 
scores) and improvement rates in all patients (Top), EOPD (Middle) and LOPD (Bottom), respectively. Red represents positive correlation and blue 
represents negative correlation. Circles with uncorrected p values greater than 0.05 were crossed. However, after FDR correction, there were no significant 
correlations between LFP parameters and the motor scores (including total scores and subdivided scores), neither within whole population nor each group, 
respectively. *_on indicates Med ON. *_off indicates Med OFF. *_improve indicates improvement rate.
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coordinating the activity time of neurons in connected networks, 
PAC plays an important role in the mechanism for communication 
within and between neurons in different brain regions (Canolty and 
Knight, 2010). PAC from different brain regions in PD has been 
found to be associated with motor impairment (Yin et al., 2022) and 
cognitive decline (Sacks et  al., 2021), and can be  affected by 
medication (Ozturk et  al., 2020) and DBS (de Hemptinne et  al., 
2015; Steiner et al., 2017). Evidence has shown that exaggerated STN 
PAC between beta band and HFO is correlated with severity of 
motor impairments (bradykinesia/rigidity), and sub-band low beta 
is more closely linked to pathology in PD (Lopez-Azcarate et al., 
2010; Connolly et al., 2015; van Wijk et al., 2016). Beta/HFO PAC 
was also found predictive of response to DBS therapy as the PAC 
with the greatest strength was found to be located in the dorsal STN, 
where stimulation was most clinically effective (Yang et al., 2014). 
In our study, with EOPD patients having stronger beta/HFO PAC in 
the STN, suggesting that neurons in the STN of younger patients 
may maintain their capacity for information processing 
and communications.

In our study, the age limit (50 years) was defined based on past 
experience, habits, epidemiology and clinical characteristics. There 
were still doubts that this age limit may not truly separate the groups 
so that the results should be  interpreted cautiously. Continuous 
recordings from DBS device with sensing technology (i.e., Percept™ 
PC Neurostimulator, Medtronic) may provide a chance to get insight 
of the electrophysiological changes as age grows. More researches are 
needed to deepen our understanding of the relationship between age 
and disease.

5. Limitations

There were several limitations in our study. First, the data were 
recorded under the resting state, and the electrophysiological 
properties of the STN may vary in different movement states, which 
was not fully evaluated. Second, postoperative data were not 
complete and the follow-up period was short, so we were unable to 
identify the relationship between symptom improvement and 
electrophysiological signals of the STN. Third, we  lacked patient 
genetic information, so we  were unable to explore the genetic 
mechanism underlying the electrophysiological phenotype, which is 
worth exploring in the future.

In addition, the fact that the different median ages of the groups 
differed raised another important concern that some of the observed 
differences may be  caused by age differences, when the patients 
underwent DBS and the signals were recorded, rather than disease 
factors. Further research of recordings from patients with other diseases 
or EOPD patients after aging may help ease this issue.

6. Conclusion

Our study revealed the electrophysiological features of the STN 
in EOPD for the first time. It is widely acknowledged that aDBS will 
play an inevitable role in the management of functional disease of 
the central nervous system, and sensitive and specific 
electrophysiological biomarkers in cohorts of different ages are 
required. We found that low-beta activity in the STN of patients with 

EOPD had different characteristics to LOPD, which may be because 
the different pathological processes in EOPD cause neurons to 
exhibit higher excitability. This should be considered when applying 
aDBS on patients of different ages.
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Real world validation of activity 
recognition algorithm and 
development of novel behavioral 
biomarkers of falls in aged control 
and movement disorder patients
Ali Nouriani 1, Alec Jonason 2, Luke T. Sabal 2, Jacob T. Hanson 3, 
James N. Jean 2, Thomas Lisko 2, Emma Reid 2, Yeng Moua 2, 
Shane Rozeboom 2, Kaiser Neverman 2, Casey Stowe 2, 
Rajesh Rajamani 1 and Robert A. McGovern 2,4*
1 Laboratory for Innovations in Sensing, Estimation and Control, Department of Mechanical Engineering, 
University of Minnesota, Minneapolis, MN, United States, 2 Department of Neurosurgery, University of 
Minnesota Medical School, Minneapolis, MN, United States, 3 Rocky Vista University College of 
Osteopathic Medicine, Parker, CO, United States, 4 Division of Neurosurgery, Minneapolis Veterans 
Affairs Health Care System, Minneapolis, MN, United States

The use of wearable sensors in movement disorder patients such as Parkinson’s 
disease (PD) and normal pressure hydrocephalus (NPH) is becoming more 
widespread, but most studies are limited to characterizing general aspects of 
mobility using smartphones. There is a need to accurately identify specific activities 
at home in order to properly evaluate gait and balance at home, where most falls 
occur. We developed an activity recognition algorithm to classify multiple daily 
living activities including high fall risk activities such as sit to stand transfers, turns 
and near-falls using data from 5 inertial sensors placed on the chest, upper-legs 
and lower-legs of the subjects. The algorithm is then verified with ground truth 
by collecting video footage of our patients wearing the sensors at home. Our 
activity recognition algorithm showed >95% sensitivity in detection of activities. 
Extracted features from our home monitoring system showed significantly 
better correlation (~69%) with prospectively measured fall frequency of our 
subjects compared to the standard clinical tests (~30%) or other quantitative gait 
metrics used in past studies when attempting to predict future falls over 1 year 
of prospective follow-up. Although detecting near-falls at home is difficult, our 
proposed model suggests that near-fall frequency is the most predictive criterion 
in fall detection through correlation analysis and fitting regression models.

KEYWORDS

Parkinson’s disease, postural instability, gait, wearable sensors, falls, near-falls

1. Introduction

Postural instability is both a cardinal symptom of movement disorders like Parkinson’s 
disease (PD) and a major cause of falls in these patients (Palakurthi and Burugupally, 2019). 
Injurious falls and hip fractures occur at higher rates in PD patients, with approximately 75% of 
international hospitalizations in patients with PD occurring due to fractures or falls (Chou et al., 
2011). Therefore, if subtle balance dysfunction could be properly identified and characterized, 
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TABLE 1 Demography of participants.

Condition*
Age (year) Female Height (cm) Weight (kg) UPDRS pull 

test
UPDRS gait Duration of 

disease (year)

Mean (SD) N, % Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD)

PD (n = 11) 65 (4.76) 2, 20% 181.54 (8.97) 92.94 (23.63) 0.56 (0.96) 0.90 (0.74) 10.50 (5.41)

NPH (n = 8) 69.8 (8.21) 1, 11% 180.72 (3.50) 102.57 (20.71) 1.04 (0.56) 1.85 (0.89) N/A

C (n = 10) 61.1 (9.97) 8, 80% 172.20 (6.83) 79.75 (27.69) 0 (0) 0 (0) N/A

*PD, Parkinson’s disease; NPH, normal pressure hydrocephalus; C, control.

this information could be  used to initiate falls preventions and 
physical therapy programs, improve fall prediction algorithms, and 
monitor or evaluate new treatments.

The Movement Disorder Society-Unified Parkinson’s Disease 
rating scale (MDS-UPDRS) (Goetz et al., 2008) analyzes all motor 
symptoms using a semi-quantitative scale. Its validity and reliability 
are well recognized and it is the clinical gold-standard in terms of 
monitoring symptoms related to PD (Ramaker et al., 2002). However, 
these assessments are subject to inter-rater variability, and the 
unavailability of continuous monitoring limits these methods. The 
score of the evaluation depends on the patient’s current status, which 
may fluctuate day-to-day and depending on the time since the last 
dose of medication was taken. On the other hand, traditional 
lab-based assessments using infrared cameras or quantitative analysis 
to characterize postural instability in patients with movement 
disorders are costly, not portable, and are unable to track long-term 
movement data from these patients in their day-to-day lives when 
most falls occur. Therefore, there is a serious need for long-term, real-
time, and objective characterization of movement as a complement to 
clinical and lab-based assessments (Ramaker et al., 2002).

A few methods of characterizing mobility in patients with 
movement disorders have been proposed, including home movement 
diaries (Hauser et  al., 2006) and characterizing mobility using 
smartphone applications (Lorenzi et  al., 2016; Zhan et  al., 2018). 
Patient diaries and questionnaires at home are frequently used in 
clinical routine to study motor stages and fluctuations in late-stage PD 
(Papapetropoulos, 2012). However, diaries are subject to fatigue, 
errors, and bias which impacts the quality and credibility of the data, 
particularly in patients with cognitive dysfunction (Papapetropoulos, 
2012). Some methods of tracking participants at home may involve 
using mobile phone-based systems that gather data using inertial 
sensors that are built into smartphones (Motolese et al., 2020). This 
yields data that allows for general tracking of activities such as 
walking, sitting and sleeping, but does not provide quantitative 
insights into participants’ postural responses when experiencing a fall 
or near-fall. Additionally, relying on data from a device that is not 
fixed to the patient’s body may introduce error or leave long gaps in 
data. More elaborate systems using multiple cameras throughout a 
person’s home in order to track their movements may also be used, but 
this may not be feasible on a wide scale due to its cost, complexity, and 
privacy concerns (Rougier et al., 2011). In past studies, IMUs have 
shown to be  both accurate and repeatable for measuring gait 
parameters in healthy young adults (Washabaugh et  al., 2017). 
Additionally, publicly available datasets collected from patients with 
movement disorders using IMUs have been utilized to analyze gait 
parameters and freezing of gait episodes (O’Day et al., 2022).

To address some of the problems with characterizing mobility in 
patients with movement disorders, we have developed an algorithm 

that can both accurately measure gait parameters and enable real-time 
detection of high-risk activities in the patient’s home environment 
using inexpensive and widely available wearable technology. The 
merging of cost-effective technology with deep learning techniques 
yields significant promise in the field of wearable sensor technology 
(Ramanujam et al., 2021). The goal of this study was to create a video-
validated dataset of movement disorder patients and healthy controls 
engaged in daily living activities in their homes, develop an algorithm 
for automatic recognition of near-falls/high fall risk activities and 
subsequently quantitatively characterize the patient’s response to these 
events in order to predict future fall risk. Our collected dataset 
includes 29 participants in total, comprised of 11 participants with 
Parkinson’s disease (PD), eight participants with Normal Pressure 
Hydrocephalus (NPH) and 10 Healthy Controls (C). Finally, 
we developed novel behavioral biomarkers based on this data to assess 
their relationship to patients’ prospective fall risk over 1 year of 
follow-up.

2. Methods

2.1. Participant population characteristics

Nineteen movement disorder patients who were being clinically 
evaluated and/or treated for either normal pressure hydrocephalus or 
Parkinson’s disease and 10 age-matched healthy control participants 
were enrolled over a period of 2 years from the Minneapolis VA 
Health Care System (MVAHCS) and University of Minnesota (UMN). 
Enrollment was designed to enroll a variety of types of movement 
disorder patients with varying gait dysfunction and postural instability 
ranging from normal gait and balance (MDS-UPDRS gait and pull test 
item scores of 0) to moderate dysfunction (MDS-UPDRS scores of 3). 
Patient participants were excluded if they were non-ambulatory or if 
they were unable to give consent. Control participants were excluded 
if they had any movement, gait, or balance disorders. Demographic 
information was collected (Table 1). This study was approved by the 
MVAHCS and UMN Institutional Review Boards, and all participants 
provided informed consent for participation according to the 
Declaration of Helsinki.

2.2. Measurement setup

The measurement sensors were customized and reprogrammed 
inertial measurement units (IMU; SparkFun, Inc. Boulder, CO, 
United States). The board was equipped with a high-performance ARM 
Cortex-M4 processor powered by 500 mAh high-capacity Lithium 
battery (InvenSense. ICM-20948 - SparkFun Electronics, 2017). The 
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measurement Integrated circuit (IC) was an ICM-20948 (InvenSense, 
San Jose, CA, United States) which can log nine degrees of freedom 
(accelerometer, gyroscope, magnetometer) at nearly 250 Hz (ICM-
20948 Datasheet|TDK, 2021). The data from the IMU was sampled with 
a 100 Hz frequency and stored on a flash memory though it can 
be streamed wirelessly through Bluetooth connectivity to a smartphone 
or computer (Figure 1).

The sensor configuration is one IMU sensor on each shank (just 
above the ankle), one IMU on each thigh, and one IMU sensor on the 
chest. This five sensor configuration uses an angle-based method 
taking advantage of the geometry of human in-plane walking. Each 
IMU sensor measures the acceleration and angular rate of movement 
of different body segments. An LMI-based non-linear sensor fusion 
algorithm is designed to estimate the limb segment orientations by 
taking advantage of the acceleration for lower frequencies and gyro in 
higher frequencies. The details of our estimation algorithm and the 
accuracy of a variety of kinematic variables which can be calculated 
using this configuration compared to a gold standard infrared camera 
measurements has been previously described (Nouriani et al., 2021).

2.3. Home wearable sensor usage

Each participant was shown how to properly place the IMUs 
(Figure 1) in the clinic at their baseline visit. They were then sent 
home for 1 week and were instructed to wear the IMUs during all 
waking hours. The IMUs were charged overnight. The entirety of the 
dataset was able to be stored on the available flash memory on the 
sensor board and therefore participants did not need to upload data 
or stream any data to an app. They simply wore the sensors during the 
day and charged them at night. Each patient is provided with a custom 
charger connected to a Raspberry Pi Zero board (Raspberry Pi 
Foundation, Cambridge, England) which is programmed to 

synchronize the sensors together using threading with an extremely 
accurate real-time clock module (DS3231 RTC, Adafruit, New York, 
NY, United States) every time the sensors are connected to the charger 
(Extremely Accurate I2C-Integrated DS3231 RTC Datasheet, 2015). 
During the week of wearable sensor use, a research coordinator 
contacted the participants daily to troubleshoot any technical 
problems and check in. Participants were then prospectively followed 
for 1 year and asked to complete fall diaries according to accepted fall 
data formatting. To supplement the fall diaries, a research coordinator 
called the participants weekly for the follow-up year to inquire about 
any falls occurring during the past week.

2.4. Home wearable sensor activity 
definitions and video validation

In order to properly identify home activities, we first defined a 
variety of activities using the IMU data (Supplementary Table S1). The 
algorithm used to identify each home activity is a deep learning-based 
activity recognition architecture using a convolutional neural network 
with long short term memory cells (CNN-LSTM). The CNN-LSTM 
network implements a nonlinear observer for the estimation of the tilt 
angles of the human body limb segments as the input of the CNN 
layers followed by LSTM layers and finally fully connected layers with 
Softmax activation which we have detailed previously (Nouriani et al., 
2022). We also used three other commonly used classifiers (logistic 
regression, support vector machine, decision tree) to compare their 
performance to our CNN-LSTM. The details of these algorithms can 
be  found in the Supplementary methods. In order to validate the 
algorithm-defined activities, we asked a subset of participants (n = 10) 
to wear a small video camera (Runcam, Aberdeen, Hong Kong Island, 
Hong Kong; Runcam 5 Datasheet, 2020) with a necklace to wear at 
home. Each patient was asked to record for 45–60 min each day, 
ideally while ambulating or performing some type of algorithm-
detectable activity. The videos were then manually annotated using a 
video-defined equivalent of each IMU-defined home activity 
(Supplementary Table S1) and synchronized with the sensors using 
the camera timestamps. Examples of the video footage captured by the 
patients are provided in Supplementary materials.

2.5. Fall prediction modeling

We prospectively followed all patient participants for 1 year with 
fall diaries and weekly individual participant contact to document the 
presence of any falls and the total number of falls over the entire year. 
From this data, we calculated the fall frequency as #falls/week. Using 
fall frequency as our outcome, we  then examined the correlation 
between multiple computed features and fall frequency. These features 
ranged from standard demographic characteristics such as age, height, 
and weight, to clinical measurements such as the MDS-UPDRS pull 
test score, and also included a number of quantitative features from 
home measurements (denoted with an “_h”) that have been used in 
prior studies such as the total ambulatory time each day and number 
of ambulatory bouts each day (Supplementary Table S2). We also 
computed several novel features based on our previously video-
validated activities described above. These include the frequency of 
near falls, turns and bends among others (events defined in 

FIGURE 1

Inertial sensors placement on the body in 5-sensor configuration, 
one on the chest and one on each lower leg and on each upper leg.
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Supplementary Table S1, all features used for correlation analysis are 
seen in Supplementary Table S2). We  then created correlation 
confusion matrices to examine correlation of the previously 
mentioned data features with fall frequency. Using the fall diary data 
above, we also examined the time to first fall within the first year.

From the 29 participants, we have collected fall diaries and have 
survival data for 17 subjects. We did not collect the fall diaries from 
the control subjects and hence excluded them for the fall prediction 
model. From the remaining subjects, nine are censored since they are 
either new patients, or their home data is missing, or stopped sending 
their fall diaries to us before week 52.

3. Results

3.1. Population characteristics

Eight patients with NPH and 11 with PD were enrolled for a total 
of 19 patient participants. Ten healthy, age-matched control 
participants were also enrolled. Demographic characteristics are 
demonstrated in Table 1. There were no significant differences in age, 
sex, height or weight between controls and patient participants. As 
expected, patient participants had significantly worse gait and postural 
stability MDS-UPDRS scores as compared to healthy, age-matched 
control participants.

3.2. Activity recognition algorithm 
validation

Ten of our patients generated more than 40 h of video footage 
which was manually annotated (see Supplementary Table S1 for 
definitions). Figure 2 demonstrates an example of 1 day of recorded 
data using our sensors compared to the video footage obtained from 
a patient at home. This patient generated approximately 90 min of 
video footage during which he was ambulatory for approximately 
45 min punctuated in the middle by 45 min where he was sitting at 
rest. The algorithm-predicted activity (blue) overlies the actual video-
annotated activity (orange) for the vast majority of the time, with an 

example of one misclassified activity (~8:58 am, standing misclassified 
as walking, seen in the Figure 2 inset).

The sum total of video footage in the entire subset of patients 
resulted in more than 14,000 total events which were used for 
algorithm predictions. Figure  3 demonstrates the home activities 
predicted by our activity recognition algorithm in comparison to the 
video-annotated data collected on the subset of patients with video 
recorded events. Events which were common and straightforward to 
both define and detect such as walking, standing and turning 
demonstrated the highest accuracy (>99%). Because these three events 
were the most common overall, they also represented most of the false 
positive and false negative errors for all events. Bending, sitting and 
transitions from sit to stand or stand to sit were significantly less 
common and slightly less accurately predicted (91–94%). Near falls in 
any direction were among the least common events and were less 
accurately predicted (~80%).

Table 2 shows the number of true positive (TP), false positive 
(FP), true negative (TN), and false negative (FN) samples from our 
activity recognition algorithm compared to the ground truth from 
video annotations. We can use these values to calculate the sensitivity 
(true positive rate or TPR), specificity (true negative rate or TNR), 
positive predictive value (PPV), negative predictive value (NPV), and 
accuracy (ACC). Because the number of total events is quite high, the 
specificity and overall accuracy of all the events are high, particularly 
for the low likelihood events such as sit to stand transitions, near-falls 
and falls. Nonetheless, even the low likelihood events had sensitivities 
>95% with the exception of near-falls which was 80%.

To compare our LSTM algorithm to other standard classifiers 
commonly used to make predictions on large datasets, we have created 
receiver operating characteristic (ROC) curves for 6 activities of 
standing, walking, sit-stand transitions, turning, bending and near-
falls. Figure 4 shows the ROC curves for four binary classifiers of 
Logistic Regression (LOG), Support Vector Machines (SVM), 
Decision Tree (DT), and our Long-Short-Term-Memory cells (LSTM) 
for each activity (Nouriani et al., 2022). The area under the curve for 
each plot is summarized in Table 3. The performance of the LSTM 
classifier is superior in all activities with AUCs ranging from 0.982 to 
0.999 for all activities while DT performs next best with slightly worse 
results. The SVM and LOG methods are significantly less accurate 

FIGURE 2

Predicted activities compared to the video annotations obtained from a patient at home environment.
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than LSTM or DT but still show acceptable results for a diagnostic 
classifier with AUCs ranging from 0.65 to 0.97. All classifiers worked 
well for relatively easily classified activities such as standing, walking 
or bending, but more difficult activities to classify such as near falls 
required the more sophisticated CNN-LSTM algorithm. There were 
no differences in activity classification between groups such that the 
CNN-LSTM algorithm was able to accurately classify activities in 
controls, NPH and PD patients equally well (Supplementary Figure S2). 
The overall performance (in terms of area under the curve) of each 
classifier is very similar across different patient groups.

Figure 5 demonstrates a correlation matrix examining the top 10 
features correlated with prospectively observed fall frequency over the 
subsequent year of follow-up. Two of our novel metrics: the total 
number and frequency of near falls detected by the home monitoring 

setup showed the highest correlation with patient fall frequency (0.69 
and 0.67, respectively). Supplementary Figure S1 shows the median of 
number of near-falls per week (Nfalls_h) for the three groups of our 
subjects. As expected, control subjects had significantly lower number 
of near-falls than our PD and NPH patients. PD patients showed a 
slightly higher median compared to NPH patients.

Eight of the most correlated features with fall frequency come 
from values calculated solely using the IMUs while the patient moves 
around their home and surrounding environment. For example, time 
spent lying down per day (lie down frequency, i.e., lying duration/
total time), the total number of ambulatory bouts at home 
(totNumABs), the frequency of sitting at home (sit_freq_h, i.e., 
sitting duration/total time), walking frequency at home (walk_
freq_h), the peak acceleration of the chest at home (peak_acc_h, 

FIGURE 3

Confusion matrix of activity recognition algorithm result compared to the annotated videos for six subjects.

TABLE 2 Statistics of each activity in our activity recognition algorithm.

Activity TP FP TN FN TPR TNR PPV NPV ACC

Stand 2,323 54 11,998 14 0.994009 0.995519 0.977282 0.998834 0.995274

Walk 5,309 47 9,006 27 0.99494 0.994808 0.991225 0.997011 0.994857

Stand to sit 119 0 14,259 11 0.915385 1 1 0.999229 0.999236

Sit 300 26 14,045 18 0.943396 0.998152 0.920245 0.99872 0.996942

Sit to stand 112 1 14,268 8 0.933333 0.99993 0.99115 0.99944 0.999375

Turn 5,414 30 8,898 47 0.991394 0.99664 0.994489 0.994746 0.994649

Lie down 1 3 14,385 0 1 0.999791 0.25 1 0.999792

Bend 577 5 13,779 28 0.953719 0.999637 0.991409 0.997972 0.997707

Near-fall 58 5 14,311 15 0.794521 0.999651 0.920635 0.998953 0.99861

Fall 2 0 14,387 0 1 1 1 1 1
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which represents the strongest perturbation the subject experiences 
at home as measured by the chest accelerometer in each day) and the 
distribution of ambulatory bouts in time [alpha parameter for ABs of 
more than 8 s (alpha_8) (Nouriani et al., 2022)] at home are all within 
the 10 features with the highest correlation with fall frequency. It 
should be noted that some features were inversely correlated with fall 

frequency such that increased number of ambulatory bouts and 
increased walking frequency at home were associated with fewer falls 
(−0.40 and –0.36, respectively). Furthermore, Figure 5 also shows 
how correlated some of these features are with each other. For 
example, the total number of ABs are highly correlated with walking 
frequency (0.81), and the total number and frequency of near falls are 

FIGURE 4

Receiver operating characteristic curves for four binary classifiers plotted separately for each activity.

TABLE 3 Area under the ROC curves for each activity.

Classifier Standing Walking Sit-stands Turning Bending Near-falls

LOG 0.85759 0.85745 0.65548 0.69863 0.96702 0.73180

SVM 0.99691 0.91850 0.71383 0.78733 0.95410 0.73401

DT 0.99999 0.99881 0.95043 0.95940 0.98589 0.90834

LSTM 0.99999 0.99985 0.98920 0.99288 0.99774 0.98253
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almost perfectly correlated (0.98). We constructed a linear regression 
model on 5 features which are not highly correlated with each other. 
The details of the regression model are presented in Tables 4, 5. The 
model shows that near-fall frequency (nfall_freq), alpha parameter 
for ABs of more than 8 s (alpha_8) and UPDRS score (updrs) were 
the most significant predictors, respectively. The regression model 
parameters are summarized in Table 5. The only non-quantitative 
features included in the 10 most correlated features were the 
MDS-UPDRS pull test item score measured in clinic, and the total 
number of failures (needing to be caught by examiner) in clinical pull 
tests (tot_failures). These were among the most weakly correlated 
features (0.30 and 0.26, respectively) overall and were not significantly 
associated with fall frequency in the multivariable linear 
regression model.

4. Discussion

Using a combination of domain specific knowledge and machine 
learning techniques, we  developed an automatic algorithm for 
detection and characterization of near-falls and high fall risk activities 
of the patients. We  created a validated, video annotated and 
quantitative dataset of movement disorder subjects wearing inertial 
sensors at their home environment. The statistical analysis of our 
algorithm shows >95% sensitivity in detection of activities apart from 
near-falls, which showed 80% sensitivity. The correlation analysis of 
the computed features in our dataset showed that our novel metrics 
based on near-falls are superior in terms of the highest correlation 
with patient fall frequency over an entire year of follow-up while 

clinic-based features were either not correlated or were among the 
most weakly correlated features.

4.1. Video validation of CNN-LSTM 
algorithm in the home setting

Using video to validate algorithm predictions based on IMU data 
is a necessary component to reliably interpret any wearable dataset, 

FIGURE 5

Correlation matrix including the first 10 features with the most correlation with the fall frequency of patients at home.

TABLE 4 Linear regression coefficients for fall frequency prediction.

Feature Estimate
Standard 

error
t-stat p-value

Intercept 0.047251 0.020211 2.337934 0.041485

Nfall_Freq_h 0.696391 0.188534 3.69372 0.004151

Tot_Num_Abs 6.82E-08 1.62E-06 0.042112 0.967239

Sit_Freq_h −0.00035 0.000178 −1.99592 0.073889

UPDRS −0.01573 0.006449 −2.43948 0.03488

Alpha_8 −0.00391 0.001185 −3.30116 0.007998

TABLE 5 Linear regression model summary for fall frequency prediction.

Feature SumSq MeanSq F p-value

Total 0.014705 0.0009803

Model 0.012228 0.0024457 9.8737 0.001268

Residual 0.002477 0.0002477
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but is frequently lacking in studies employing wearable sensors (Del 
Din et al., 2019). Studies that do employ some measure of validation 
typically do so in the clinic or laboratory setting, rather than “in the 
wild” as we have done in this study (Nouredanesh et al., 2021). There 
are essentially no studies that have attempted to capture and validate 
near falls or “stumbles” in the wild. Nor are there any widely accepted 
definitions or datasets that contain or even attempt to define these 
events. For example, one study asked participants in a survey whether 
they had near falls which they defined as “a fall initiated but arrested 
by support from the wall, railing or another person.” This study used 
purely clinical data to predict falls and near falls. No quantitative data 
was included (Lindholm et  al., 2015). Another study artificially 
induced “missteps” in the laboratory and then developed an algorithm 
to detect such “missteps” during 3 days of home wearable use. There 
were no video recordings to validate these missteps and as such, they 
acknowledge there is no way to know if any of their detected missteps 
was in fact a misstep. Additionally, anything that did not look like a 
misstep in the lab would, by definition, be missing from their dataset 
(Iluz et al., 2014).

As such, our video-validated home data represents an ecologically 
valid quantitative dataset that can then be leveraged to understand the 
factors relevant in producing falls with far more detail compared to 
the current standard solution which involves qualitative clinical 
examination or laboratory-based task assessments that may or not 
be related to real world balance perturbations. Since most falls occur 
at home and surrounding environment, a wearable dataset that is 
“validated” in the clinic or lab may not be ecologically valid for fall 
prediction or other uses. On the other hand, some activities such as 
walking, standing and bending may be able to be easily validated in 
the clinic setting and so datasets validated with video “in the wild” 
should be compared to datasets using clinic-based assessments in 
order to better understand what can accurately assessed in the clinic 
vs. which assessments need to occur at home.

Our activity recognition algorithm uses a nonlinear switched-gain 
observer based on measurements from IMUs worn on leg segments 
and the chest in order to estimate body segment orientation. The 
observer estimates the tilt angles and measurement bias is estimated 
and removed. This has been measured in prior studies using infrared-
based motion capture systems to ensure its accuracy (Nouriani et al., 
2021). These estimates are then used to train the LSTM deep learning 
algorithm on all of the activities. Since many of the activity definitions 
are based on the tilt angles (Supplementary Table S1), this may be one 
reason that our LSTM activity recognition method showed superior 
accuracy. In addition, our deep learning network demonstrated lower 
computation cost compared to the other methods as it reduces the 
number of raw IMU signals necessary for activity recognition. Future 
studies should investigate how to reduce both the number of worn 
IMUs and number of recorded events without affecting diagnostic 
accuracy in order to minimize the burden on patients wearing 
the IMUs.

4.2. Development of novel behavioral 
biomarkers of falls

We have developed prospective, predictive falls risk metrics that 
integrate the patient’s postural response along with data that reflects 
the patient’s home environment based on near-falls detection. We have 

included all known gait parameters used in prior studies and current 
clinical standards in the study, however our proposed metrics showed 
superior performance in predicting falls in these patients. While there 
are simple measures which may be  more easily measured with a 
smartphone or smartwatch (e.g., frequency of lying down, number of 
ambulatory bouts), our study suggests these are inferior to the number 
or frequency of near-falls. Similarly, clinical tests are typically 
inadequate in describing the likelihood of the subject falling and in 
characterizing the extent of their postural instability (Ramaker et al., 
2002). Inter-and intra-rater variability in the execution and 
interpretation of clinical testing likely is responsible for some of their 
poor predictive power. Furthermore, incidents that trigger stumbles 
and falls at home are almost certainly different from testing conducted 
by clinicians or researchers in an artificial environment. Unfortunately, 
there are few studies on postural instability in home environments and 
these studies typically do not provide enough validation for their 
results in real-life situations at home or at least the demonstration of 
generalizability to the home environment (Silva de Lima et al., 2020). 
While there may be overlap in the postural response to balance testing 
in the clinic or lab and that at home, datasets such as the one described 
in our study should be used to investigate similarities and differences 
between these two settings in the future. This could lead to better fall 
prediction algorithms and improved diagnostic monitoring and 
treatment evaluations in the clinic, lab and at home in the future.

Despite being the most relevant feature of the dataset for fall 
prediction, near-falls were the most difficult activity to accurately 
detect with a sensitivity of 80%. This was for several reasons. First, 
near-falls look similar to other activities (like sit-stand transitions and 
bending) when examining inertial sensor data. Second, some of the 
near-falls were so subtle that they could not even be  detected in 
videos. Finally, the natural occurrence of near-falls is relatively rare 
and obtaining video-validated samples is difficult since most of the 
patients who are at risk of falling are usually less active or use a 
walking aid to avoid falling. As such, they were also among the least 
common events and our algorithm, like all machine learning 
algorithms, performs better with more samples. Continued data 
collection with more validated events will likely help increase the 
accuracy of the algorithm over time.

4.3. Future dataset usage

We have collected our dataset using an inexpensive wearable 
system based on inertial sensors to provide kinematic data of PD and 
NPH patients at home. Typical uses of IMUs worn by movement 
disorder patients at home are detailed gait analysis and metrics on 
mobility/ambulation which can be used for a wide variety of purposes 
such as disease stage assessment, fall prediction, and treatment 
evaluation, among others (Lee et al., 2014; Mohammadian Rad et al., 
2018; Pang et al., 2019; Pardoel et al., 2019). An advantage of our 
system is that it contains data from sensors on the chest and both feet 
that can be used to give detailed information on the postural response 
to near falls that occur in a natural setting in addition to all of those 
typical uses described above. Given the contribution of postural 
instability to falls in these patients, characterizing postural instability 
at home could potentially be very useful in their monitoring and 
treatment evaluation, particularly as their disease progresses and their 
likelihood of falling increases. Most studies of postural instability are 

51

https://doi.org/10.3389/fnagi.2023.1117802
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org


Nouriani et al. 10.3389/fnagi.2023.1117802

Frontiers in Aging Neuroscience 09 frontiersin.org

still based on questionnaires or short-term simulations of near-falls in 
a clinical or lab setup (Ramaker et  al., 2002). In addition, while 
wearable studies are becoming more common, clinical fall risk 
assessment is usually performed using diaries and questionnaires or 
one-time evaluations of gait and balance factors of the patients in a 
clinical trial (Ramaker et al., 2002; Hauser et al., 2006; Papapetropoulos, 
2012). These methods are questionable in their quality and credibility 
due to their short-term and subjective assessment of the patients’ 
response (Ramaker et al., 2002). Thus, there is a crucial need for a 
long-term, easily obtained, and objective characterization of gait and 
postural instability in the home setting as a complement to clinical 
assessments. We would argue that a dataset such as the one described 
in this manuscript would represent the first step toward that goal.

One limitation of this dataset is its practicality as the current setup 
with five sensors might not be practical for everyday patient use. Future 
research should develop algorithms to use as few sensors as possible in 
optimal locations on the body. Because we were interested mainly in 
postural instability and falls, we did not include IMUs on the upper 
limbs and so our dataset does not include hand or arm movements. 
Given the frequent presence of upper extremity tremor in PD, this is 
particularly relevant for these patients in their diagnosis, monitoring 
and treatment evaluation. In addition, many activities of daily living 
can likely be classified with an upper extremity IMU. Further research 
should plan to integrate IMU/smartwatch-based data to obtain the 
widest variety of activities with the best diagnostic accuracy. Wearable 
usage should also be  tailored to the specific usage desired by the 
clinician and patient. Finally, we  plan to further develop activity 
recognition algorithms using unsupervised and semi-supervised 
learning methods to increase their accuracy or discover new activities 
which might have been missed by the current methods.

Even though near-fall detection is difficult to recognize and our 
algorithm shows 80% sensitivity, near-fall frequency at home was still 
the most predictive criterion in the linear regression model compared 
to any other metric. Our results showed that the detection of near-falls 
is a far more powerful way to examine home monitoring data compared 
to current methods and should be incorporated into fall prediction 
algorithms. This validated dataset of movement disorder patients 
engaged in daily living activities in their homes can serve as a valuable 
resource for researchers to provide a ground truth for IMU algorithm 
comparison that include the natural responses of patients at home.
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Introduction: Although the relationship between psychiatric disorders and 
Parkinson’s disease (PD) has attracted continuous research attention, the causal 
linkage between them has not reached a definite conclusion.

Methods: To identify the causal relationship between psychiatric disorders 
and PD, we used public summary-level data from the most recent and largest 
genome-wide association studies (GWASs) on psychiatric disorders and PD to 
conduct a bidirectional two-sample Mendelian randomization (MR). We applied 
stringent control steps in instrumental variable selection using the Mendelian 
randomization pleiotropy residual sum and outlier (MR-PRESSO) method to 
rule out pleiotropy. The inverse-variance weighted (IVW) method was used to 
identify the causal relationship between psychiatric disorders and PD. Multiple 
MR analysis methods, including MR-Egger, weighted-median, and leave-one-
out analyses, were used for sensitivity analysis, followed by heterogeneity tests. 
Further validation and reverse MR analyses were conducted to strengthen the 
results of the forward MR analysis.

Results: The lack of sufficient estimation results could suggest a causal relationship 
between psychiatric disorders and PD in the forward MR analysis. However, the 
subsequent reverse MR analysis detected a causal relationship between PD and 
bipolar disorder (IVW: odds ratios [OR] =1.053, 95% confidence interval [CI] =1.02–
1.09, p = 0.001). Further analysis demonstrated a causal relationship between 
genetically predicted PD and the risk of bipolar disorder subtype. No pleiotropy 
or heterogeneity was detected in the analyses.

Discussion: Our study suggested that while psychiatric disorders and traits might 
play various roles in the risk of developing PD, PD might also be involved in the 
risk of developing psychiatric disorders.

KEYWORDS

Parkinson’s disease, psychiatric disorders, Mendelian randomization, genome-wide 
association studies, causal relationship
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Introduction

Parkinson’s disease (PD), the most common movement disorder 
and the second most common neurodegenerative disease, is 
characterised by a wide range of motor and non-motor symptoms 
(NMS) (Lees et al., 2009). PD affects 1% of the population over 
60 years of age, and its prevalence generally ranges from 100 to 200 
per 100,000 persons in unselected populations (von Campenhausen 
et al., 2005). Owing to PD aetiology, particularly in sporadic cases, 
distinguishing causal risk factors could be meaningful for treatment 
and prevention of this disease. PD diagnosis is mainly based on 
typical motor symptoms, including tremors, rigidity, bradykinesia, 
and motor impairment, which have also been increasingly 
considered an important component of PD (Armstrong and Okun, 
2020). NMS, including sleep disorders, autonomic dysfunction, 
cognitive/neurobehavioural abnormalities, and sensory 
abnormalities (such as anosmia, pain, and paraesthesia) have an 
even higher negative impact on the quality of life than motor 
symptoms (Karlsen et  al., 2000). In general, NMS are highly 
prevalent in PD patients; NMS can also develop at any phases of the 
disease and frequently precedes the onset of motor symptoms 
(Krishnan et  al., 2011; Kim et  al., 2013). Psychiatric disorders, 
including anxiety, depression, psychosis, sleep disturbances, and 
behavioural and cognitive changes, are widely recognised as 
common NMS in PD and are more frequent in PD patients than in 
the general population (Aarsland et  al., 2009). Furthermore, 
numerous studies have shown that the morbidity of psychotic 
illnesses is higher in PD patients (Djamshidian and Friedman, 2014; 
Ghaddar et al., 2016; Ffytche et al., 2017).

Increasing evidence points to the multifactorial aetiology of PD, 
which involves ageing, genetic predisposition, environmental agents, 
trauma, and psychosocial impact (Perry et al., 2016). Additionally, 
psychiatric disorders have a significant influence on the quality of life 
of PD patients and may play a critical role in the rapid deterioration 
of clinical manifestations (Alvarado-Bolanos et al., 2015; Ng et al., 
2015; Elefante et al., 2021). Therefore, further understanding of the 
association between psychiatric disorders and PD is valuable for 
research and clinical practice.

Psychiatric disorders have been proposed to precede PD 
development and be a possible PD risk factor, which has been proven 
in observational studies (Ishihara-Paul et al., 2008; Jacob et al., 2010; 
Sanyal et al., 2010; Lin et al., 2014; Gustafsson et al., 2015; Schrag et al., 
2015). A meta-analysis of prospective studies using a large 
United Kingdom biobank indicated that neuroticism was consistently 
associated with a higher risk of PD (Terracciano et al., 2021). Another 
analysis of four cohort studies and three cross-sectional studies, 
consisting of 4,374,211 individuals, also reported that patients with 
bipolar disorder (BD) might be  at risk of having a subsequent 
idiopathic PD diagnosis (Dols and Lemstra, 2020). Additionally, sleep 
disturbances, including insomnia and rapid eye movement sleep 
behaviour disorder (RBD), are often considered early markers of PD 
pathology and an independent PD risk factor (Hsiao et al., 2017). 
Although specific underlying mechanism of this phenomenon 
remains unclear, recent studies have indicated that this process could 
be related to abnormal brainstem α-synucleinopathy, which caused 
RBD (Bohnen and Hu, 2019). These studies suggested that psychiatric 
disorders might potentially trigger the onset of PD. With the global 
escalation of the ageing process, the rapidly increasing incidence of 

PD is impacting the quality of life of more people. Therefore, clarifying 
the causality of these associations could be  of practical value for 
improving the health of the elderly.

Mendelian randomization (MR) is an epidemiological technique 
that investigates the causal relationship between risk factors and 
outcomes. MR tends to avoid confounding issues and reverse causality 
by using genetic variants as instrumental variables (IVs). This 
technique has been extensively used to validate causal relationships 
discovered in observational studies (Plotnikov and Guggenheim, 
2019). Owing to the development of genomic techniques and 
methodologies, an increasing number of disease-associated variants 
have been detected by genome-wide association studies (GWAS), 
which provide sufficient IV resources that could be used to increase 
the power of MR. Therefore, we  used publicly available GWAS 
summary-level data of psychiatric disorders and PD for a bidirectional 
two-sample MR analysis to validate and explore the relationships 
among these traits.

Methods

Data source

In this two-sample MR analysis, we included publicly available 
GWAS results of eight psychiatric disorders/traits and PD conducted 
in European populations. The basic characteristics of GWASs, 
including exposures and outcomes, are listed in Table 1. Exposure to 
interest included anorexia nervosa (AN) (Watson et al., 2019), anxiety 
disorder (Purves et al., 2020), BD (Mullins et al., 2021), insomnia 
(Watanabe et al., 2022), major depressive disorder (MDD) (Howard 
et al., 2019), neuroticism (Nagel et al., 2018), obsessive–compulsive 
disorder (OCD) [International Obsessive Compulsive Disorder 
Foundation Genetics Collaborative (LOCDF-GC) and OCD 
Collaborative Genetics Association Studies (OCGAS), 2018], and 
schizophrenia (Trubetskoy et al., 2022). For PD, we used the largest 
GWAS conducted in the European population (Nalls et al., 2019) as a 
discovery study and a GWAS conducted in the Finnish population 
(Kurki et  al., 2023) as a validation study. Detailed information 
regarding genotype platforms, statistical analysis protocols, and 
participants for each study is available in the corresponding papers 
(Data presentation).

IV selection

Valid IVs need to meet the following three assumptions: (1) 
association with the risk exposure of interest (relevance); (2) no shared 
common cause with the outcome (independence); and (3) they affect 
the outcome only through the risk factor (exclusion restriction 
assumption) (Davies et al., 2018). To ensure that all included IVs were 
valid, we employed a series of stringent control steps (Figure 1). First, 
we extracted genome-wide significant (p < 5 × 10−8) single-nucleotide 
polymorphisms (SNPs) from exposure GWASs. Since no genome-
wide significant SNPs were detected in the GWAS of OCD, we chose 
to use suggestive significant SNPs (p < 1 × 10−5) as IVs. We  then 
performed linkage disequilibrium (LD) clumping (R2 < 0.001, window 
size = 10,000 kb) based on the European 1,000 Genomes Project 
reference panel to select independent significant SNPs. Those with 
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minor allele frequency (MAF) >0.01 and the lowest value of p were 
retained. F and weak instrumental variables.

Using the selected SNPs, we extracted SNPs from the outcome/PD 
GWASs. For those absent in the outcome GWASs, a proxy SNP in LD 
(R2 > 0.8) with the requested SNP was searched according to 1,000 
genomes of European samples. After harmonisation of the two 
aforementioned sets of SNPs, palindromic SNPs with intermediate 
allele frequencies were removed, and the remaining SNPs were kept 
as primary IVs. Next, we performed the Steiger test for each SNP to 
determine whether the R2 (variance of disease/trait explained by 
selected SNPs) of the exposure was larger than the R2 of the outcome. 

SNPs tested as “FALSE” direction (R2 of the outcome >R2 of the 
exposure) would be excluded.

The horizontal pleiotropy, which occurs when an IV affects the 
outcome outside of its effect on the exposure, is the main factor that 
violates the assumptions (Hemani et al., 2018). The MR pleiotropy 
residual sum and outlier (MR-PRESSO) test was developed to identify 
horizontal pleiotropy in multi-instrument summary-level MR testing 
(Verbanck et al., 2018). It is a sequential method comprising three 
components: a global test for horizontal pleiotropy, an outlier test for 
each genetic variant, and a distortion test of the difference in the 
causal estimates before and after outlier removal. At the stage of IV 
selection, we adopted a stringent filtering step by discarding SNPs 
with a value of p < 1 in the outlier test and repeated this step until no 
outliers were detected. Finally, the remaining SNPs were uploaded to 
PhenoScanner to examine whether any of them was previously 
associated with PD (p < 5 × 10−8 in published PD GWASs) and remove 
possible confounding SNPs (Kamat et al., 2019).

Utilizing R2 (variance of exposure explained by the selected IVs) 
generated from the Steiger test, we calculated the overall F statistics 
(F = R2 [n – k – 1]/k[1 − R2], n: sample size, k: number of IVs) to 
quantify the strength of the IVs, and F > 10 was considered sufficient 
to overcome the weak instrumental variable bias (Burgess et al., 2013).

MR analysis

The inverse variance weighted (IVW) fixed-effect method, which 
combines the ratio estimated using each variant in a fixed-effect meta-
analysis mode, was adopted to estimate the causative effect of each 
exposure on the outcome (Burgess et al., 2013). Because the IVW 
method provides an unbiased causal estimation only when all IVs are 
valid, we adopted other methods of sensitive analysis when a violation 
of the assumptions inevitably existed. The weighted-median method 
can provide a consistent estimate when 50% of the IVs are invalid, at 
the cost of reduced statistical power (Bowden et al., 2016). MR-Egger 
regression allows all genetic variants to be  invalid IVs under the 
Instrument Strength Independent of Direct Effect (InSIDE) 

TABLE 1 Characteristics of GWASs used for each disorder.

Traits Sample size (cases/controls) Population Consortium PMID

Exposure

Anorexia nervosa 72,517 (16,992/55,525) Europeans PGC* 31,308,545

Anxiety 83,565 (25,453/58,113) Europeans UKBB* 31,748,690

Bipolar disorder 413,466 (41,917/371,549) Europeans PGC 34,002,096

Insomnia 2,365,010 (593,724/1,771,286) Europeans CNCR* 30,804,565

MDD* 500,199 (170,756/329,443) Europeans PGC 30,718,901

Neuroticism 390,278# Europeans CNCR 29,942,085

OCD* 9,725 (2,688/7,037) Europeans PGC 28,761,083

Schizophrenia 130,644 (53,386/77,258) Europeans PGC 35,396,580

Outcome

Parkinson’s disease 482,730 (33,674/449,056) Europeans IPDGC* 31,701,892

Parkinson’s disease 260,405 (2,496/257,909) Finnish FinnGen www.finngen.fi

*MDD, major depressive disorder; OCD, obsessive–compulsive disorder; PGC, Psychiatric Genomics Consortium; UKB, UK Biobank; CNCR, Center for Neurogenomics and Cognitive 
Research; IPDGC, International Parkinson Disease Genomics Consortium. #Weighted neuroticism sum-score.

FIGURE 1

Flowchart of IVs selection strategy.
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assumption, which indicates that the pleiotropic effects of genetic 
variants on the outcome are direct (not through a confounder) 
(Bowden et al., 2015). The MR-Egger regression method also provides 
an intercept term for estimating the average pleiotropic effect across 
genetic variants. Even though we adopted stringent control steps, the 
MR-PRESSO method might still detect horizontal pleiotropy in the 
global test in the absence of detected outliers, which may be caused by 
a violation of the InSIDE assumption (Verbanck et  al., 2018). 
Therefore, if pleiotropy was detected by the MR-PRESSO global test 
or the value of p of MR-Egger intercept was below 0.05, we used the 
results from the weighted-median method as the main method. The 
Cochran’s Q statistic was implemented to quantify heterogeneities, 
and a value of p < 0.05 was considered significant heterogeneity. 
We also performed a leave-one-out sensitivity analysis by sequential 
exclusion of each SNP at a time to determine whether particular 
variants were driving the association between the exposure and the 
outcome, and an IVW method was performed on the remaining SNPs. 
To ensure the stability of our results, we used another PD GWAS, 
conducted among the Finnish population, as the outcome as described 
above. Individual estimates were pooled using a fixed-effect meta-
analysis. To adjust for multiple testing, a Bonferroni-corrected value 
of p was set as 0.05/8, meanwhile value of p < 0.05 was regarded as 
nominally significant.

In addition, we performed reverse MR to examine for reverse 
causality of PD on psychiatric disorders/traits. Genetic variant 
selection steps and MR analysis were conducted in a similar manner 
to that of forward MR. All statistical analyses were conducted using R 
version 4.2.1, with the use of the ‘TwoSampleMR’, ‘MRPRESSO’ and 
‘META’ packages for the MR analysis.

Results

Details of the IVs used for each MR analysis (both primary and 
validation analyses) are presented in the Supplementary Tables S1–S9. 
The main results, including causal estimation, the pleiotropy test, and 
the heterogeneity test, are presented in Tables 2, 3.

Causal effect of psychiatric disorders on 
PD

For the primary analysis, instrumental variables from GWAS of 
psychiatric disorders collectively explained 0.18–4.40% of the 
variance. The F-statistic ranged from 22.40 to 109.40, suggesting no 
possible weak instrument bias. Under the IVW model, genetic 
predispositions to psychiatric disorders were not associated with PD 
(Table  2). Although we  performed stringent control steps and no 
outliers were detected before we  conducted MR analysis, the 
MR-PRESSO global test still indicated the existence of pleiotropy 
among IVs from schizophrenia GWAS, which indicated that the 
violation of the InSIDE assumption made causation estimates of IVW 
and MR-Egger unreliable. However, the estimates calculated using the 
weighted-median method were not significant. Horizontal pleiotropy 
in variants generated from MDD was detected by the MR-Egger 
regression intercept (p = 0.037), but not by the MR-PRESSO global test 
(p = 0.491). Therefore, it is more precise to adopt the estimation from 
MR-Egger calculation that genetically predicted MDD was negatively 

nominally associated with PD risk (OR = 0.278, 95%CI, 0.09–0.88, 
p = 0.035). However, this association was not confirmed by the 
weighted-median method. Leave-one-out analysis suggested no 
potential influence of a particular variant on the estimate 
(Supplementary Tables S2–S9).

In the validation analysis, no horizontal pleiotropy was detected 
using the MR-PRESSO global test, and the Cochran’s Q statistic 
value of p suggested no heterogeneity within each set of variants. 
Under the IVW model, genetically predicted AN was associated 
with PD risk (OR = 1.381, 95% CI = 1.02–1.87, p = 0.037). However, 
this association was not confirmed in the sensitivity analysis, which 
also showed a different association direction. Anxiety, insomnia, 
and MDD were predicted to be inversely associated with PD risk. 
Similar to AN, the causal estimation of anxiety in PD was not 
confirmed by other methods, which also showed a different 
association direction. However, estimation of the causal effect of 
insomnia and MDD on PD was validated by sensitivity analysis in 
the same direction, without observance of pleiotropy and 
heterogeneity. For neuroticism, the MR-Egger regression intercept 
indicated the presence of pleiotropy (p = 0.03), and MR-Egger 
showed an opposite causal estimate of PD risk (OR = 0.050, 95% 
CI = 0.00–0.62, p = 0.022). The sensitivity analysis also showed the 
same causal direction. Leave-one-out plots demonstrated that these 
associations were unlikely to be  driven by extreme SNPs 
(Supplementary Tables S2–S9).

Due to the inconsistent results of the primary and validation 
analyses, we meta-analysed the results using a fixed-effect model. No 
significant results were detected, except for anxiety disorders (Pooled 
OR = 0.84, 95%CI, 0.71–0.99).

Causal effect of PD on psychiatric 
disorders

To clarify the precise causal relationship between psychiatric 
disorders and PD, we performed a reverse MR analysis, with PD as the 
exposure and psychiatric disorders as the outcome. Interestingly, 
we detected a causal relationship between genetically predicted PD 
and BD risk (Table 3). No pleiotropy or heterogeneity was detected in 
these results, and leave-one-out analysis demonstrated no potentially 
influential SNPs driving the causal link (Figure 2).

Discussion

Based on the potential relevance between psychiatric disorders 
and PD, our study appears to be the first research using bidirectional 
two-sample MR analysis to thoroughly investigate the causal 
relationship between genetically predicted psychiatric disorders/traits 
and PD. We found some evidence of different effects of psychiatric 
disorders/traits on the liabilities of PD. For MR detection of certain 
causal relationships, no reverse causal association was detected in the 
reverse MR analysis. Notably, we found evidence for the causality of 
PD on the risk of developing BD.

Although we found no statistical significance to support a causal 
association between AN and PD in the discovery cohort, the 
sensitivity analysis showed a consistent trend. Furthermore, a causal 
relationship was observed in the validation cohort. To our best 
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knowledge, few studies have addressed the association between AN 
and PD. Although both diseases share some common clinical and 
pathological phenotypes, such as dopamine deficits, hyposmia, 
micrographia, and hypophonia (Roessner et al., 2005; Schreder et al., 
2008; Sekar et al., 2010; Stievenard et al., 2017; Favier et al., 2020), the 
relationship between these diseases has yet to be  firmly verified. 

Hence, this MR result needs to be interpreted cautiously and requires 
confirmation through additional relevant studies.

To date, many prospective historical cohorts and observational 
studies have proven epidemiological links between depression and 
PD (Wang et al., 2018). Many studies have attempted to demonstrate 
that depression and PD shared a similar pathophysiological brain 

TABLE 2 Causal relations of psychiatric disorders with PD (IPDGC).

Exposure Methods nSNPsa OR 95%CI Pval MR-PRESSO 
global Pval

Egger intercept 
Pval

Q_pval

AN versus PD IVWb 6 1.172 (0.98, 1.40) 0.085 0.877 0.842

MR Egger 6 1.327 (0.68, 2.58) 0.450 0.722 0.753

Weighted median 6 1.150 (0.91, 1.46) 0.252

Anxiety versus PD IVW 3 0.895 (0.73, 1.10) 0.297 - d 0.391

MR Egger 3 1.540 (0.09, 26.29) 0.816 0.771 0.200

Weighted median 3 0.872 (0.68, 1.12) 0.290

BD versus PD IVW 50 1.070 (0.98, 1.17) 0.136 0.443 0.502

MR Egger 50 0.830 (0.53, 1.29) 0.411 0.254 0.515

Weighted median 50 1.085 (0.95, 1.23) 0.215

Insomnia versus 

PD

IVW 295 0.839 (0.58, 1.21) 0.348 0.081 0.068

MR Egger 295 0.688 (0.18, 2.66) 0.588 0.857 0.063

Weighted median 295 0.698 (0.42, 1.17) 0.175

MDD versus PD IVW 43 0.960 (0.77, 1.20) 0.723 0.491 0.488

MR Egger 43 0.278 (0.09, 0.88) 0.035c 0.037c 0.651

Weighted median 43 0.834 (0.59, 1.18) 0.305

Neuroticism versus 

PD

IVW 79 0.997 (0.72, 1.38) 0.986 0.207 0.218

MR Egger 79 0.543 (0.08, 3.94) 0.548 0.544 0.204

Weighted median 79 1.133 (0.71, 1.81) 0.603

OCD versus PD IVW 20 0.994 (0.94, 1.05) 0.834 0.422 0.402

MR Egger 20 1.025 (0.89, 1.19) 0.753 0.677 0.351

Weighted median 20 0.973 (0.90, 1.05) 0.499

Schizophrenia 

versus PD

IVW 141 1.042 (0.98, 1.12) 0.208 0.008c 0.008c

MR Egger 141 0.920 (0.72, 1.18) 0.513 0.312 0.008c

Weighted median 141 1.017 (0.93, 1.11) 0.702

anSNPs: number of SNPs used as instrumental variables; bIVW: inverse-variance weighted; cp < 0.05; dNumber of SNPs is not enough for MR-PRESSO pleiotropy test.

TABLE 3 Causal relations of psychiatric disorders with PD.

Outcome Methods nSNPs OR 95%CI Pval MR-PRESSO 
global Pval

Egger 
intercept Pval

Q_pval

BD IVW 19 1.059 (1.02, 1.09) 0.001# 0.741 0.725

MR Egger 19 1.074 (0.99, 1.17) 0.124 0.586 0.671

Weighted median 19 1.059 (1.01, 1.11) 0.014*

BDI IVW 16 1.074 (1.03, 1.12) 0.002# 0.946 0.732

MR Egger 16 1.067 (0.95, 1.20) 0.297 0.568 0.694

Weighted median 16 1.075 (1.01, 1.14) 0.019*

BDII IVW 20 1.025 (0.96, 1.10) 0.476 0.841 0.856

MR Egger 20 1.072 (0.87, 1.32) 0.518 0.658 0.823

Weighted median 20 1.038 (0.94, 1.14) 0.451

#p < 6.25 × 10−3; *p < 0.05.
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dysfunction. Specifically, monoamine deficiency (i.e., dopamine, 
5-hydroxytryptamine, and noradrenaline), one of the earliest 
suggested biological mechanisms of MDD, has also been observed in 
PD patients, particularly in early and prodromal patients with RBD 
(Hamon and Blier, 2013; Barber et  al., 2018). In addition to 
monoaminergic neurotransmission and chronic inflammation, 
gamma-aminobutyric acid decline and cerebral atrophy are 
considered common pathophysiological characteristics underlying 
depression and PD (Gao and Bao, 2011; Saiki, 2014; Blaszczyk, 2016; 
Huang et al., 2016; D'Mello and Swain, 2017; Li et al., 2022). On one 
hand, since approximately 60% of PD patients have experienced 
psychosis, and many are taking or have taken antipsychotic 
medications (Weintraub et al., 2017), clinicians are more inclined to 
misdiagnose drug-induced parkinsonism as PD. On the other hand, 
as a frequently observed symptom of NMS, depression is more likely 
to be considered a common complication secondary to PD. First, in 
the discovery cohort, our analysis revealed a clear causal relationship 
between MDD and PD. This result was verified by subsequent 
duplicating assays with different GWAS. However, instead of 
increasing the risk of PD, genetically predicted MDD had a protective 
role against PD risk. Such opposing trends have also been observed 

in the association between insomnia and PD. However, the significant 
finding in the validation MR (IVW: OR = 0.563, 95%CI: 0.33–0.97, 
p = 0.037) was not supported by the sensitivity analysis. Moreover, 
these findings also contradicted those from the few current studies in 
this field, which considered that these diseases could predict an 
increased risk of PD (Weisskopf et al., 2003; Bower et al., 2010; Lin 
et al., 2015; Terracciano et al., 2021). This anomalous protective effect 
may be attributed to the survivor bias, caused by the reduced life 
expectancy of severe mental illness patients, and the increasing 
prevalence of PD in the older age group (Lees et al., 2009; Boef et al., 
2015; Vansteelandt et al., 2018; Plana-Ripoll et al., 2019).

To clarify the exact causal relationship between psychiatric 
disorders and PD, we performed a reverse MR analysis, with PD as the 
exposure and psychiatric disorders as the outcomes. Interestingly, 
we detected a causal relationship between genetically predicted PD and 
BD risk. According to the Diagnostic and Statistical Manual Disorders, 
Fifth Edition (DSM-5), BD I and BD II are the major two clinical 
subtypes of BD, which are characterized by the classification of mania 
or hypomania. BD II is sometimes considered a milder form of BD I, 
because these two subtypes of BD share some phenomenological 
features (Liu et al., 2022). However, with increasing advances in BD 

A B C

D E F

FIGURE 2

Causal effect estimation of PD on BD. (A–C) Scatterplots of potential effects of SNPs on BD (BD/BD I/BD II) and PD. Corresponding slope of each 
represents the estimated MR effect of each method. (D–F) Leave-one-out-sensitivity forest plots of PD-BD (BD/BD I/BD II) results.
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epidemiology, clinical presentation (Zimmerman et al., 2013), and 
genetic basis (Charney et al., 2017), the important difference between 
the two subtypes is gradually being recognised. Further exploration of 
the specific role of BD subtypes in this association revealed that PD 
might be a risk factor for BD I rather than BD II. There is growing 
evidence that PD patients have a high prevalence rate of various 
psychiatric disorders. BD is generally considered a specific risk factor 
for PD, rather than an ensuing complication (Huang et al., 2019), which 
is contrary to our results. However, the diagnosis of PD is currently 
based on clinical manifestations which became evident when 50% of 
dopaminergic neurons were lost in the substantia nigra (Marsden, 
1990). So it’s difficult to find out the exact beginning of the PD 
pathologic process. Taking the shared molecular mechanism into 
account, some may think it more appropriate that BD be viewed as an 
early symptom of PD (Pontone and Koch, 2019). As PD advances 
psychiatric complications emerge. 17% of patients with PD treated with 
dopaminergic therapy and 4% undergone DBS develop mania or 
hypomania, symptomatically similar to that of BD (Temel et al., 2006; 
Maier et al., 2014). In clinical terms, depression is not only a typical 
presentation of BD (Vieta et al., 2018), but also an important NMS of 
PD, which may hint to potential common clinical features between 
these diseases. However, similar to previous analyses, further related 
studies are needed to verify this finding.

Regarding other psychiatric disorders/traits, including OCD and 
schizophrenia, contrary to epidemiologic and other studies, we did 
not detect the causal association between these psychiatric conditions 
and PD. However, a close relationship exists between these two 
conditions. In the most updated nationwide longitudinal study 
published in 2022, OCD was reportedly an independent risk factor 
for PD (Liou et al., 2022). Another retrospective record-based case–
control study demonstrated that schizophrenia spectrum disorder 
contributed to the incremental risk of PD in the elderly population 
(Kuusimaki et al., 2021). Understanding these potential association 
mechanisms may advance our knowledge of the underlying biology 
of these diseases and facilitate the early diagnosis of PD.

Our results should be viewed in the context of several limitations. 
Considering the existence of ethnicity-specific genomic heterogeneity, 
our findings must be  interpreted with caution and may not 
be applicable to other racial/ethnic backgrounds, since all GWASs 
were conducted in European populations. Moreover, despite recent 
advances, existing GWAS methodology may still lack the ability to 
detect sufficient heritability of diseases, thus limiting the statistical 
power of the IVs used in this MR analysis. Owing to the lack of 
explicit measures and knowledge of potential confounders, pleiotropy 
may not be completely ruled out, and it is difficult to discuss the 
extent by which the results are influenced by this phenomenon. It is 
also difficult to determine the degree of sample overlap between the 
original GWASs of exposures and outcomes, which could cause weak 
instrument bias and violation of the independence assumption. 
However, bias from weak instruments in very large consortia may not 
be  substantial and the F statistics was calculated to insure and 
minimize such bias (Burgess et  al., 2016). For the violation of 
independence assumption, 2-sample MR methods can be  safely 
applied to one-sample MR performed within large bio banks (Minelli 
et  al., 2021). As presented above, many patients with psychiatric 
disorders have a history of antipsychotic use, which makes them 
more inclined to be  diagnosed with drug-induced parkinsonism 

rather than PD. This possible misdiagnosis may have increased the 
effect of confounding factors on our results. Nevertheless, this study 
has several strengths. First, for each psychiatric exposure trait, 
we selected the latest and largest GWASs in European populations to 
ensure a reliable conclusion. Second, we applied a very stringent SNP 
quality threshold to reduce potential pleiotropic effects as much as 
possible. Moreover, this bidirectional MR analysis covered a wide 
variety of psychiatric disorders and traits, filling a gap in the 
observational literature and broadening our understanding of the 
relationship between psychosis and PD.

Collectively, in European populations, this 2-sample MR analysis 
provided evidence that genetically predicted psychiatric disorders may 
play various roles in the risk of PD. Concurrently, reverse MR analysis 
suggested that PD should be considered as a risk factor for BD subtype 
I. This significant result, supported by sensitive MR methods, showed 
no obvious heterogeneity or pleiotropy. Although these findings could 
be biased due to horizontal pleiotropy, we did not consider and detect 
hypotheses between psychiatric disorders and PD. As such, this topic 
merits further exploration.
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Introduction: Parkinson’s disease is one of the most prevalent neurodegenerative

diseases. In the most advanced stages, PD produces motor dysfunction that

impairs basic activities of daily living such as balance, gait, sitting, or standing.

Early identification allows healthcare personnel to intervene more e�ectively in

rehabilitation. Understanding the altered aspects and impact on the progression

of the disease is important for improving the quality of life. This study proposes a

two-stage neural network model for the classifying the initial stages of PD using

data recorded with smartphone sensors during a modified Timed Up & Go test.

Methods: The proposed model consists on two stages: in the first stage, a

semantic segmentation of the raw sensor signals classifies the activities included in

the test and obtains biomechanical variables that are considered clinically relevant

parameters for functional assessment. The second stage is a neural network

with three input branches: one with the biomechanical variables, one with the

spectrogram image of the sensor signals, and the third with the raw sensor signals.

Results: This stage employs convolutional layers and long short-term memory.

The results show a mean accuracy of 99.64% for the stratified k-fold

training/validation process and 100% success rate of participants in the test phase.

Discussion: The proposed model is capable of identifying the three initial stages

of Parkinson’s disease using a 2-min functional test. The test easy instrumentation

requirements and short duration make it feasible for use feasible in the clinical

context.
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1. Introduction

Parkinson’s disease (PD) is a prevalent progressive neurodegenerative disease (Ascherio

and Schwarzschild, 2016; Simon et al., 2020). In the advanced stages, PD can cause motor

dysfunction that alters the performance of basic activities of daily living (ADLs). Early

identification of PD through clinical evaluation and functional tests allows the healthcare

personnel to intervene properly in rehabilitation plans (Ascherio and Schwarzschild, 2016).

Understanding the specific functional alterations in ADL, such as balance, gait, sitting, or

standing, can help clinicians develop individualized rehabilitation plans and improve the

quality of life of PD patients (Ascherio and Schwarzschild, 2016).

Frontiers in AgingNeuroscience 01 frontiersin.org63

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/journals/aging-neuroscience#editorial-board
https://www.frontiersin.org/journals/aging-neuroscience#editorial-board
https://www.frontiersin.org/journals/aging-neuroscience#editorial-board
https://www.frontiersin.org/journals/aging-neuroscience#editorial-board
https://doi.org/10.3389/fnagi.2023.1152917
http://crossmark.crossref.org/dialog/?doi=10.3389/fnagi.2023.1152917&domain=pdf&date_stamp=2023-06-02
mailto:sara.molla@uv.es
https://doi.org/10.3389/fnagi.2023.1152917
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnagi.2023.1152917/full
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org


Pedrero-Sánchez et al. 10.3389/fnagi.2023.1152917

In the recent years there has been a trend toward sensorizing

and applying data processing techniques to clinical functional tests.

Portable sensors such as instrumented insoles, accelerometers,

or inertial sensors (Ponciano et al., 2020) have been used to

obtain clinically relevant parameters for studying the functional

alterations of PD patients (Serra-Añó et al., 2020; Mollà-Casanova

et al., 2022). The use of instrumented functional tests have also

resulted in the generation of significant amounts of data (Weiss

et al., 2011; Channa et al., 2020; Fuentes-Abolafio et al., 2020),

opening up the possibility of applying advanced data analysis

techniques such as machine learning and deep learning (Rehman

et al., 2019; Butt et al., 2020; Xia et al., 2020; Mirelman et al., 2021).

In PD, clinically relevant parameters obtained from functional

tests have been used to generate mathematical models that

establish disease severity classifications (Bhidayasiri and Tarsy,

2012), determine functional status categories (Wrisley and Kumar,

2010), or identify risk levels (Sun and Sosnoff, 2018; Friedrich

et al., 2021). Many studies have focused on analysing signals in

the space-time domain, calculating biomechanical variables such as

the trajectory of the center of pressures or time distribution during

gait phases (Tong et al., 2021). Various classification techniques,

including support vector machine (SVM), random forest (RF),

decision trees (DT), or k-nearest neighbors (KNN; Trabassi et al.,

2022), have been used to classify the severity of Parkinson’s disease

with an accuracy around 80 and 90%.

Although discrete variables-based methods have shown good

results, they have a significant disadvantage of requiring prior

feature selection and signal parametrization. This process is time-

consuming and may lead to the loss of valuable information. These

drawbacks may be overcome using the sensor raw data as the input

to an artificial neural network (ANN), letting the ANN itself to

identify the relevant information and extract the features to build

the model. This approach has already shown very good results in

the classification of PD severity, with an accuracy between 95 and

98%, using convolutional neural networks (CNN; El Maachi et al.,

2020), long short-term memory (LSTM; Zhao et al., 2018a; Butt

et al., 2020), or a combination of both (Zhao et al., 2018b; Xia et al.,

2020).

Some authors have explored the analysis in the frequency

domain instead of the time domain (Kim et al., 2018). The

processed the spectrogram image of inertial sensors recordings

using CNN, hypothesizing that the frequency components of

involuntary movements could aid in identifying the level of

severity of the disease. Although the accuracy rate in classifying

PD stages was lower with this frequency analysis approach (83–

85%) compared to the time domain approach, it may provide

complementary information valuable for clinical evaluation of PD.

Considering the aforementioned findings, we hypothesize

that a mixed input model comprising all three types of data

(biomechanical variables, time domain, and frequency domain)

would be capable of extracting all the relevant clinical features,

outperforming the accuracy of simpler models.

The main objective of this study is to assess the accuracy of

a mixed input model for classifying the early stages of PD using

an instrumented functional assessment test. To achieve this, we

developed a two-stagemodel that employs biomechanical variables,

sensor raw data, and frequency analysis as inputs. We compared

the performance of the proposed model was with that of simpler

models that only utilized a subset of the inputs (raw signals only,

frequency analysis only, and biomechanical variables only). As a

secondary objective, we tested the accuracy of a CNN in automating

the process of signal semantic segmentation and biomechanical

variables calculation from the sensor raw data.

2. Materials and methods

2.1. Participants

Eighty-seven participants with PD distributed according to

the Hoehn and Yahr (HY) scale (21 stage I, 30 stage II, and

36 stage III) agreed to participate in this cross-sectional study.

Inclusion criteria for participation in the study has been as follows:

(i) PD diagnosed by a neurologist [HY I, II, and III] (Hoehn

and Yahr, 1967), (ii) have optimized and stable medical therapy

at least one month before enrolment; (iii) have good cognitive

status, defined as a score higher than 23 on the Mini-Mental State

Exam (Folstein et al., 1975), (iv) ability to perform a modified

Timed up & go (TUG) independently.

Exclusion criteria has been: (i) medical contraindications to

physical activity, (ii) neurological or orthopedic injuries limiting

independent walking and sitting or standing up from a chair,

(iii) deafness or hearing problems, (iv) vestibular impairment, (v)

blindness or a visual impairment, (vi) mental illness, (vii) any

surgical procedure within the past 6 months before enrolment;

(viii) people with IV and V stages of PD.

Participants were prospectively classified using the HY scale by

their referring neurologist. Then, a physiotherapist conducted the

functional assessment proposed, and scored the participant again

on the HY scale. Stages IV and V were excluded from the study

due to the implied severe disability that made it difficult to perform

the test independently without the use of assistive products (Giladi

et al., 2001; Goetz et al., 2004; Lescano et al., 2016).

All procedures were conducted in agreement with the World

Medical Association Declaration of Helsinki principles. Ethical

approval for the study was granted by the Ethics Committee of

Universitat de València (H1517239006520), and all volunteers that

participated in the study provided written informed consent.

2.2. Functional assessment

The functional assessment test is based on a modification

of the TUG test already used and validated in this type of

population (Serra-Añó et al., 2020; Mollà-Casanova et al., 2022).

The modification to the TUG consists on: the inclusion of a pre-

balance phase, the assessment of the reaction time to an external

sound stimulus (Serra-Añó et al., 2019). The assessment of sitting-

up and standing-up from a chair. The test consists of the following

four phases (Figure 1):

• Phase 1: bipodal balance for 30 s with arms alongside the body.

• Phase 2: walking in a straight line toward a chair 3 m away

when the external sound stimulus is produced.
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FIGURE 1

Functional assessment test execution sequence. 1. Balance standing upright for 30 s until the sound stimulus sounds; 2. Walk in a straight line toward

the chair located 3 m away; 3. Turn around and sit in the chair; 4. Walk 3 m to the starting area and end the recording of the functional test.

FIGURE 2

Structure of the two-stage Parkinson classifier model.

• Phase 3: turn around and sit on the chair, get up from the

chair.

• Phase 4: walk 3 m back to the starting area.

The participants were asked to perform the protocol as

quickly as possible while staying within their safety margins

to avoid any possible harm. The test was conducted using an

inertial sensor embedded in an Android smartphone (High

Performance 6-Axis MEMS MotionTrackingTM composed

of 3-axis gyroscope; 3-axis accelerometer at 100 Hz) attached

to the back of the waist (L4-L5 vertebrae) with a strap.

Throughout the study, the sensor signals were recorded

using the Fallskipr system app. FallSkipr is a commercial

system developed by the IBV (Instituto de Biomecánica

de Valencia). This system was solely used in our study for

recording the measurements and controlling the testing

times. No calculations or analysis were performed by the

FallSkipr application. Instead, all the calculations and analysis

were performed offline on dedicated scripts for the analysis

of the data.
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FIGURE 3

Structure of the Unet model for semantic segmentation of functional assessment. It is composed of four encoder blocks and four decoder blocks

interconnected with a bridge in the central part where all the characteristics of the input signals are encoded. Each encoder/decoder block is

composed of a series of 1D convolutional layers and a normalization (blue arrows). The outputs of these blocks (Sn and Pn) are interconnected with

the next encoder block (red arrows) and with the analog decoder (gray arrows). The output of the model is the probability of each timestamp (64

input timestamps) of the activity of the functional test.

FIGURE 4

Structure of the Parkinson level classification model with mixed input data. The temporal input data (upper branch) is a moving window of 64

timestamps with the three axes of each sensor (accelerometer and gyroscope); this branch of the model is composed with a series of convolutional

layers and LSTM to automatically extract the temporal characteristics of the signals. The branch with the frequency information (center branch) is the

spectrogram image of the temporal signal, this branch is composed of convolutional layers to extract the information contained in the images. The

branch with biomechanical variables (the lower branch) is composed of densely connected layers. All these branches are joined before the Top

Model with a linear output layer between 0 and 1 with the points of 0.33 and 0.66 for the di�erent levels.
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TABLE 1 Demographic characteristics and biomechanical variables of the participants.

All participants HY-I HY-II HY-III ANOVA

(n = 87) (n = 21) (n = 30) (n = 36) (p-value)

Age (years) 69.09 (8.71) 67.14 (8.20)∗ 66.10 (9.40)∗∗ 72.58 (7.22) 0.005

Weight (Kg) 74.41 (15.97) 72.36 (11.88)∗∗∗ 85.03 (18.72)∗∗ 66.75 (9.80) <0.001

Height (cm) 166.14 (8.31) 166.81 (6.92) 170.57 (7.34)∗∗ 162.06 (7.97) <0.001

Sex (n, %)

Women 30, 34.48 8, 38.10 5, 16.67 17, 47.22 –

Men 57, 65.52 13, 61.90 25, 93.33 19, 52.78 –

MLDisp (mm) 9.29 (7.95) 5.43 (2.65) 8.86 (8.34) 11.89 (8.81) 0.01

APDisp (mm) 22.90 (11.56) 18.44 (9.52) 21.02 (8.57) 27.07 (13.52) 0.012

DispA (mm2) 773.63 (1191.73) 294.41 (258.85) 717.18 (1251.94) 1100.22 (1379.32) 0.044

VRange (mm) 24.34 (7.08) 28.34 (6.84) 25.27 (6.58) 21.22 (6.36) <0.001

MLRange (mm) 47.71 (23.75) 49.03 (16.81) 45.12 (24.77) 49.09 (26.60) 0.766

PTurnSit (W) 87.41 (42.33) 111.66 (29.56) 96.93 (50.27) 65.33 (29.64) <0.001

PStand (W) 271.03 (86.50) 252.65 (97.75) 236.76 (74.02) 179.81 (76.59) 0.002

JerkSit (m/s3) 16.99 (7.40) 16.91 (4.14) 18.34 (7.96) 15.90 (8.35) 0.419

JerkStand (m/s3) 21.66 (11.42) 21.08 (5.90) 24.66 (16.22) 19.51 (8.36) 0.184

TTime (s) 14.74 (3.75) 11.83 (1.52) 14.34 (2.66) 16.76 (4.24) <0.001

RTime (s) 1.18 (0.42) 1.03 (0.41) 1.23 (0.49) 1.23 (0.34) 0.147

HY-I, participant in stage according to Hoehn & Yahr; HY-II, participant in stage according to Hoehn & Yahr; HY-III, participant in stage according to Hoehn & Yahr.

MLDisp, range of the Medial-lateral displacement of center of mass (COM); APDisp, range of the Anterior-posterior displacement of COM; DispA, Displacement Area; VRange, range of the

Vertical displacement of COM; MLRange, range of the Medial-lateral displacement of COM; PTurnSit, Turn-to-sit power; PStand, Sit-to- stand power; TTime, total time; RTime, reaction time.

Data are expressed as mean (standard deviation).
∗p < 0.05 between participants with level I and III.
∗∗p < 0.05 between participants with level II and III.
∗∗∗p < 0.05 between participants with level I and II.

Bold < 0.05 ANOVA between levels I, II, and III.

Table adapted fromMollà-Casanova et al. (2022).

2.3. Model data flow

A two-stage model has been designed (Figure 2). The raw

sensor signals are the input of Stage 1, where are filtered

and normalized in a first step (Step 1) before running the

automatic segmentation of the test phases at step 2 (Step 2)

which delivers the start and end times of each phase. Finally, the

biomechanical variables are computed in step 3 (Step 3; Mollà-

Casanova et al., 2022). The classification model based on neural

networks ofmixed input data is implemented in Stage 2. Each input

branch of the model characterizes one aspect of the input signal:

(Input 1) time-domain analysis, (Input 2) frequency-domain

analysis (from the spectrogram), and (Input 3) biomechanical

variables selected from literature (Serra-Añó et al., 2020; Mollà-

Casanova et al., 2022). All this information is concatenated

into a model (Stage 2) that classifies into the first three

Parkinson’s stages.

In the following sections, each of the processes that comprise

the proposed two-stage model are described. All data processing

were written in Python (v3.X).

2.4. Stage 1

2.4.1. Step 1—Signal preprocessing
Signal processing was carried out following the methodology

proposed in Pedrero-Sánchez et al. (2022) which builds on the work

of Zijlstra (2004) and Nishiguchi et al. (2012) for analyzing the

data from inertial sensors. First, a linear interpolation was applied

to standardize the sampling frequency of all signals to 100 Hz.

Next, a 4th-order zero-lag Butterworth low-pass filter with a cutoff

frequency of 20 Hz was applied. Then, we used the MinMaxScaler

preprocessing function from the SciKitLearn library (Pedregosa

et al., 2011) to normalize each signal between−1 and 1.

Before segmenting the functional test with the model, we

employed a sliding window process because the segmentation

model uses convolutional layers that require input data of uniform

shape. Specifically, we applied a 64-sample moving window to the

six sensor signals (three axes of accelerometer and three axes of

gyroscope) to produce a matrix of shape 64 timestamps by six

signals. The sliding window was then shifted through the entire

signal, overlapping by 63 samples.
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FIGURE 5

Results of segmentation assessment. (Top) Acceleration signal. (Middle) Gyroscope signal. (Bottom) Result of classification phases of the assessment.

Shaded colors are the ground truth segmentation; Green, phase 2 gait; Red, phase 3 turn to sit; Blue, stand from the chair; Yellow, phase 4 gait.

2.4.2. Step 2—Functional test segmentation
To automatically segment the different phases of the functional

test, a 1D Unet model was set up. This model is necessary

to calculate the features of the sensor signals before passing

them as input to the classification model. Typically, semantic

segmentation RNN models have an Encoder-Decoder structure,

where the input and output have the same shape. A forward

feedback is performed between the layers forming a Unet

structure (Ronneberger et al., 2015). The segmentation model

proposed by Ronneberger was originally designed to segment

images, but for this study, the internal structure of each

encoding and decoding block has been modified to work with

1D vectors.

The structure of the model is depicted in Figure 3, where

the input consists of the sliding windows from Step 1 (Section

2.4.1). The output has a shape 64 samples by 6 possible categories,

corresponding to each of the possible phases of the test: balance,

walking, turning and sitting, sitting, getting up, and a noise

category.

Given that the model outputs an activity type for each sample

in the window, we opted to identify the activity within the window

by choosing the activity with the highest frequency as the identified

activity. Then, once we identified all the activities in each sample of

the complete functional test, we proceeded to detect the start and

end instants of each phase of the test where the changes in activity

occurred.

The model was developed from scratch, with the Adam

optimizer, a learning rate of 0.001, and “categorical crossentropy”

as the loss function. The Adam optimizer (Bock and

Weiss, 2019) is the most widely used variation of gradient

descent algorithms.

2.4.3. Step 3—Signal features
The input features calculated for the model (Step 3) have been

previously validated in studies such as Ribeiro et al. (2003), Zijlstra

(2004), Esser et al. (2009), and Nishiguchi et al. (2012). The features

included are:

• Phase 1, balance: range of the Medial-Lateral Displacement

(MLDisp) of the Center Of Mass (COM); range of Anterior-

Posterior Displacement (APDisp) of the COM; and Swept

Area (DispA).

• Phase 2 and 4, gait: range of the Vertical displacement

(Vrange) of the COM; range of the Medial-Lateral

displacement (MLRange) of the COM.

• Phase 3, turn-to-sit-to-stand: Turn-to-sit power (PTurnSit);

Sit-to-stand power (PStand) (Lindemann et al., 2003); range

of jerk to sit (JerkSit); range of jerk to stand (JerkStand; Weiss

et al., 2011).

• Complete assessment: Reaction time (Reaction Time); Total

time (Total Time).

The variables have been transformed with the MinMaxScaler

from SciKitLearn library (Pedregosa et al., 2011) to the range

between 0 and 1.

2.5. Stage 2

2.5.1. Windowing
This windowing differs from the previously performed for

segmentation and it was intended to feed the time domain and

frequency domain analysis (Section 2.4.1). The size of the window
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TABLE 2 Validation and comparison of the classification models.

Three-fold
cross (%)
validation

F1-score
(%)

G-
mean
(%)

CNN+LSTM 86.46 79.00 84.00

CNN+

Biomechanical

variables

92.23 81.00 84.00

Proposed two-stage

model

99.64 100.00 100.00

TABLE 3 Sensibility of Stratified three-folds Cross Validation forcing one

of the inputs to be all zeros then making the inference with the other two

inputs.

Mean accuracy Di�erence with all
inputs

Time-domain

analysis

68.97 30.67

Frequency-domain

analysis

65.85 33.79

Biomechanics

variables

71.23 28.41

Mean accuracy is the accuracy in cross validation when the input is set to zero. Difference

with all inputs is the difference in the mean accuracy obtained with the full input substracting

the mean accuracy when the input is set to zero.

was 64 timestamps with a 50% overlap. The size and overlap

were chosen based on the literature recommendations for human

activities to capture the temporal dynamics of the signal while

ensuring that the data had sufficient resolution for analysis (Banos

et al., 2014; Dehghani et al., 2019).

2.5.2. Model inputs
2.5.2.1. Input 1—Time-domain analysis

The Input 1 of the classificator is the time-domain analysis

branch. This branch was feeded with the 64-sample moving

window (Section 2.5.1) made with the six sensor signals (three

accelerometer axes and three gyroscope axes).

2.5.2.2. Input 2—Frequency-domain analysis

The Input 2 is the branch for frequency-domain analysis. The

input are the windowing signals (Section 2.5.1). We applied the

short-time Fourier Transform (STFT) provided by the TensorFlow

2.9.1 framework. All the signals are concatenated as if they were a

single signal of 384 samples (6 signals × 64 samples). The STFT

is then performed on this new signal with frame length = 20 and

frame step = 2 to obtain a spectrogram. Then we applied the

logarithm of the magnitude of the Fourier transform.

2.5.2.3. Input 3—Biomechanics variables

The biomechanical variables used were those described in

Section 2.4.3.

2.5.3. Classification model
Keras API (Chollet et al., 2015) and Tensor Flow (Abadi

et al., 2015) 2.0 in Python 3.7.x were used for classification model

development (Figure 4).

For Input 1, the accelerometer and gyroscope signals were

used with a series of 1D convolutional layer concatenations with

ReLu activation functions (Rectified Linear Unit), which can extract

the features automatically. ReLu is preferred over other activation

functions like sigmoid or tanh because it is computationally

efficient and avoids the vanishing gradient problem, which can

occur when the derivative of the activation function becomes very

small (Szandała, 2021). The extracted features were then passed

through two Long-Short-Term Memory (LSTM) layers to obtain

the signals sequential properties (Matias et al., 2021). Finally, three

dense layers with ReLu activation functions were concatenated with

the other two input branches.

The Input 2 the spectrogram image of the signals was used

(Ronneberger et al., 2015; Demir et al., 2019), where three 2D

convolutional layers with a kernel size of 3× 3 and ReLu activation

functions were concatenated.

For Input 3 the biomechanical variables were used, and dense

layers with ReLu activation function were employed.

Finally, on top of the above networks, two dense layers are used

with 128 and 64 neurons with Relu activation function and one

output layer with one neuron were used for regression, with a linear

activation, to produce a continuous output in the range [0, 1]. The

cut-off points for each Parkinson’s level were at 0.33 and 0.66.

To compile the model, mean square error was used as the loss

measure for the regression problem, and the Adam optimizer.was

employed. The evaluation metrics used was “mean square error”

which considers the distance between the various categories

and imposes a higher error penalty on the categories that are

further away from the true value. An iterative design process was

performed to fit the model, and the best results were obtained for a

configuration with a batch size of 32 for 50 training epochs.

A grid search approach was used to systematically explore

different combinations of hyperparameters, such as learning rate,

batch size, and number of epochs, and evaluated the model’s

performance on the training and validation sets. Based on the

results of each experiment, the hyperparameters were adjusted, and

the process was repeated until the best performance was achieved.

2.6. Training, validation, and testing of the
classification model

For training and validation the sample has been divided in

different dataset:

Firstly, the sample has been divided in two separated datasets.

Fifteen participants (five subjects from each group) have been

reserved as test dataset for testing the classifier. This dataset did

not intervened in the training, neither in the validation process. It

was just kept apart for the final assessment of performance of the

classifier.

The remaining 72 participants composed the training and

validation dataset. This dataset was itself divided into three

independent folds to perform a stratified three-fold cross-validation
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FIGURE 6

Confusion matrices comparison: Convolutional with Long short-term memory classification Parkinson disease model (left); Convolutional with

biomechanical parameters classification Parkinson disease model (center); Proposed two-stage classification Parkinson disease model (right).

(Xia et al., 2020). Two of the three-folds were combined and used

in the model training, while the remaining fold was used for model

validation. Each training set was resampled and resized using the

SMOTE algorithm (Chawla et al., 2002) for the biomechanical

variables and with data augmentation (rotating the axes of the

sensors artificially 90 and 180◦; Pedrero-Sánchez et al., 2022) for

the signals, so that the number of instances of each class was

approximately balanced. The accuracy and loss evolution plots over

the training epochs were obtained.

Once the training was complete, the test dataset was used to

evaluate the model performance using a confusion matrix and the

geometric mean (G-mean; Kubat and Matwin, 1997).

2.7. Sensitivity analysis and comparison
with simpler models

To assess the effectiveness of the model topologies identified

in the literature and to perform a sensitivity analysis, it

is important to evaluate the model’s explainability in a

clinical setting. Understanding the deep learning model’s

explainability aids in accurately interpreting the results it

generates. To this end, we conducted a sensitivity analysis of

the classifier to determine the impact of each input on the

model’s output.

The sensitivity analysis was performed by making alterations

to the inputs and forcing one input to be all zeros when making

the inference. This process was repeated for each input. Finally,

we compared the outputs obtained for each input variation and

analyzed their influence on the output.

Additionally, we used the same training and validation data

to train two simplified models based on previous literature:

(i) a simplified model that uses only input 1 (which includes

convolutional layers and LSTM) called CNN+LSTM (Butt et al.,

2020; Xia et al., 2020), and (ii) a simplified model that uses input

1 (including convolutional layers) and input 3 (including dense

connected layers) called CNN+biomechanical variables (Pedrero-

Sánchez et al., 2022). Input 2 was excluded because no models were

found in the literature that used only the spectrogram image as

input for Parkinson’s disease classification.

We also obtained confusion matrices and mean accuracy for

the training and validation folds of these models using the same

test dataset.

3. Results

3.1. Participants

A description of the demographic characteristics and

biomechanical variables of the participants, as well as the

differences among the HY groups (Table 1).

3.2. Validation of the segmentation model

From the second epoch on, the segmentation model achieved

an accuracy of 90% and a loss below 0.1. The comparison between

the segmentation of the model and a manual segmentation from an

expert shows a good agreement (Figure 5).

Therefore, we have used this automatic segmentation to

calculate the biomechanical variables and use them as input for the

classifier model.

3.3. Validation and comparison of the
classification models

The accuracy evolution curve during the training of the two-

stage classification stabilized at 100% after 5th epoch. The mean of

the accuracy results obtained from the three-fold stratified cross-

validation for each model in the training and validation phases

shown in Table 2.
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• CNN + LSTM: 86.42%

• CNN + biomechanical variables: 92.23%

• Proposed Two-stage: 99.64%

The two-stage classification model performed an accurate

classification of all the 15 participants of the test sample (Figure 6)

and the G-mean obtained was 1.00. Both, the CNN + LSTM and

CNN+ biomechanical variables achieved a G-mean of 0.84. For, the

f1-score, was 0.79 for CNN+ LSTM, 0.81 for CNN+Biomechanical

variables, and 1.0 for two-stage.

The sensitivity analysis results shows that the major

contributions to the model were the image of spectrogram

with an accuracy decay of 33.79% (Table 3).

For a better understanding of the influence of the

anthropometric data in the results, a separate analysis using

a standard classifier with only the subject parameters (age, weight,

height) as input variables was conducted. The results are presented

as Supplementary material.

4. Discussion

This paper proposes a two-stage model to classify the early

stages of PD (HY-I, HY-II, and HY-III) using a functional

assessment test. The test involves the assessment of static balance,

gait and lower limb power while sitting and rising from a chair, all

within a 2 min timeframe using a single inertial sensor embedded

in an Android smartphone (Serra-Añó et al., 2020; Mollà-Casanova

et al., 2022).

As already shown in the previous study (Mollà-Casanova et al.,

2022), the biomechanical variables obtained from the test are

already indicators of disease progression, such as the total time (i.e.,

Ttime) that increases proportionally. The proposed test provides

information on the state of balance MLDisp (p < 0.05), APDisp (p

< 0.05), DispA (p< 0.05), gait Vrange (p< 0.05), and power in the

lower limbs during sit to stand from a chair. There are significant

differences (p < 0.05) in the biomechanical variables PTurnSit and

PStand between the three groups.

The proposed model has been built on two Stages. Regarding

Stage 1, the model is able to classify the activity on an instant-

by-instant basis, reaching 90% of accuracy from the third epoch

onwards. This has been accomplished by utilizing the signals from

the inertial sensors and employing semantic segmentation models

that have been validated in previous studies for pixel classification

in images (Ronneberger et al., 2015) and for electrocardiogram

(ECG) analysis (Matias et al., 2021). This semantic segmentation

allowed to obtain the signal features that will later be used as

input in the classification models. This automatic segmentation

has a direct impact on the accuracy of the model. On the other

hand, to ensure that all relevant characteristics of the signal in

the time domain are captured, one of the input branches of the

neural network includes the raw signals themselves, combined with

convolutional and LSTM layers of the neural network as Zhao et al.

(2018b) and El Maachi et al. (2020), respectively.

With respect to the Stage 2, the proposed model demonstrates

a significant improvement in accuracy compared to variables

based models in previous studies: 99.64% accuracy using the

proposed model, compared to 80% accuracy using SVM, KNN,

DT, and RF models (Trabassi et al., 2022). These classifiers have

the limitation of using only signal-derived variables, which are

clinically relevant for assessing Parkinson’s grades, but still have

potential for improvement.

When comparing neural network-based classifiers, such as

CNN or LSTM, the results are similar, 98% accuracy with CNN

(El Maachi et al., 2020) and 92.3% accuracy with LSTM (Butt

et al., 2020) and 99% with the combination of CNN and LSTM

(Zhao et al., 2018a). Although these results are already very good

at classifying PD stages, they have the limitation of only focusing

on the time domain. However, it should be noted that in more

advanced stages of the disease, certain involuntary tremors may

appear, which should be taken into account (Xing et al., 2022).

Although some authors have found interesting results analyzing the

consequences of tremors using variables in the time domain (e.g.,

sample entropy; di Biase et al., 2017; Su et al., 2021), the most direct

approach would be to consider studying the frequency domain.

Despite the unbalanced training sample, the model responds

correctly. To address this issue, training and validation have been

carried out using stratified k-fold with artificially augmented data,

which allowed balancing and data augmentation to fine-tune the

model following the process used in Xia et al. (2020).

Another benefit presented in this paper is the combination

of time domain and signal frequency information, along with

clinically relevant biomechanical variables selected from the

literature. It is worth noting that anthropometric variables of the

subjects such as age, sex, height, and weight which have been shown

to be important in determining the severity of the diseases (Joshi

et al., 2010) have not been used in the classification model. This

is because a comparative analysis by group was carried out and

there were differences. These variables have been excluded in order

to avoid bias in the classification, even though we know that they

are important. In this way, the classification model only takes into

account the functional test itself (Supplementary material).

The results of our study provide to the scientific community

a new model to classify the early stages of PD. The model

automatically processes the data recorded by a portable inertial

sensor during the execution of a fast an easy functional assessment.

Although we do not intend to substitute clinical assessment, we

hypothesize that this model may be of interest in the future

to better extract functional features in this population, beyond

the instability, asymmetry or independence reported in the HY

scale. This could lead to more accurate classifications and patient

monitoring related to functional capability. To achieve this, further

research is needed to validate this new method by comparing it

to other clinical scales, such as the PD Questionnaire-8 or the

Unified Parkinson’s Disease Rating Scale (UPDRS). We believe

that detecting different Parkinson’s profiles may redefine the

stages of Parkinson’s and enable anticipation and prevention of

its deleterious effects. Additionally, this approach provides a first

step toward the development of automated, continuous, and non-

invasive monitoring of functionality.

It is important to cautiously interpret the results of this study

due to the limitations related to the small sample size. Although

the anthropometric parameters were excluded from the model, the

differences found between the HY groups could have biased the
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results. It would be important in future research to consider the use

of the modified HY scale, including the intermediate stages (i.e.,

0.5, 1.5, and 2.5) to explore the capability of the model to classify

all the early-to-moderate stages of the disease. A wider validation

including multicentric data, homogeneous samples (regarding

anthropometric variables) and additional diagnostic tools would be

needed to confirm future clinical applications.

5. Conclusion

We show that our two-stage deep learningmodel can accurately

classify people suffering from the first stages of PD. This CNN and

LSTM-based technique is more accurate than another parametric

technique of machine learning. These results demonstrated that

the use of techniques managing raw data, combine with frequency

analysis and biomechanical variables, prevents unexpected loss of

information. Further, these classification models have been based

on the information of a single sensor easily placed on the waist

region of the participants in 2 min assessment test. The easy

instrumentation required and the short duration of the test make

its use feasible in the clinical context.
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Introduction: The ventral tegmental area (VTA) is less a�ected compared to

substantia nigra pars compacta (SNc) in Parkinson’s disease (PD). This study aimed

to quantitatively evaluate iron content in the VTA across di�erent stages of PD in

order to help explain the selective loss of dopamine neurons in PD.

Methods: Quantitative susceptibility mapping (QSM) data were obtained from

101 PD patients, 35 idiopathic rapid eye movement sleep behavior disorder (RBD)

patients, and 62 healthy controls (HCs). The mean QSM values in the VTA and SNc

were calculated and compared among the groups.

Results: Both RBD and PD patients had increased iron values in the bilateral SNc

compared with HCs. RBD and PD patients in the Hoehn–Yahr (H & Y) stage 1 did

not show elevated iron values in the VTA, while PD patients with more than 1.5H

& Y staging had increased iron values in bilateral VTA compared to HCs.

Discussion: This study shows that there is no increased iron accumulation in

the VTA during the prodromal and early clinical stages of PD, but iron deposition

increases significantly as the disease becomes more severe.

KEYWORDS

Parkinson’s disease, ventral tegmental area (VTA), idiopathic rapid eye movement sleep

behavior disorder (RBD), iron deposition, quantitative susceptibility mapping

1. Introduction

The dopamine (DA) neurons in the ventral tegmental area (VTA) principally project

to the nucleus accumbens in the ventral striatum, as well as the amygdala and prefrontal

cortex, as part of the mesocorticolimbic pathway, whereas the DA neurons in the

substantia nigra pars compacta (SNc) mainly project to the dorsal striatum, as part of

the nigrostriatal pathway. The mesocorticolimbic pathway involves a variety of behaviors

and psychopathological states, such as depression, anxiety, feeding, and reward-related and

goal-directed behaviors (Alberico et al., 2015). In Parkinson’s disease (PD), an impaired

dopaminergic mesocorticolimbic system is considered the leading cause of neuropsychiatric

symptoms (Castrioto et al., 2016). In PD, degeneration of the DA neurons in the SNc is the

most prominent symptom; in contrast, the DA neurons in the VTA are less affected (Ropper

et al., 2019). Although some theories have been suggested, such as the variety of neurons

found in the VTA (Nair-Roberts et al., 2008), lower expression of the dopamine transporters

(Lammel et al., 2008), differences in calcium channel expression (Mosharov et al., 2009),

levels of cytosolic DA, and the presence of α-synuclein (Mosharov et al., 2009; Pan and Ryan,

2012), it remains unclear why the VTA is relatively spared in PD.
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It has been demonstrated that abnormal iron deposition may

contribute to the damage of DA neurons in PD (Hare and Double,

2016). Quantitative susceptibility mapping (QSM) is more sensitive

and can better detect increased iron in PD than R2 and R2∗

mapping (Barbosa et al., 2015). Using QSM, several research studies

have shown that iron accumulation was both cross-sectionally and

longitudinally increased in the substantia nigra (SN) in PD patients,

and iron levels were correlated with clinical manifestations, using

QSM (Bergsland et al., 2019; Sun et al., 2020; Uchida et al., 2020).

In contrast, our knowledge of iron accumulation in the VTA in

PD remains limited. A study on chronic 1-methyl-4-phenyl-1,2,3,6-

tetrahydropyridine (MPTP)-treated PDmice detected an increased

iron level in the SNc, but not in the VTA, and suggested that

difference in iron deposition might be a reason contributing to

the selective degeneration of DA neurons (Lv et al., 2011). So

far, only one imaging study has investigated iron accumulation

in the VTA in PD patients and found increased iron content

(Ahmadi et al., 2020). However, as the primary purpose was to use

transcranial sonography and QSM to localize the SN, the previous

study did not investigate the iron levels at prodromal and different

clinical stages of PD or the relationship between iron levels and

clinical characteristics.

Thus, it is still unclear if increased iron deposition occurs in the

VTA during the prodromal and early clinical stage of PD, whether

iron accumulation increases as the disease becomes more severe,

and whether iron deposition in the VTA correlates with clinical

manifestations. Therefore, this study aimed to quantitatively

evaluate iron contents in the VTA across the prodromal and

different clinical stages of PD. Idiopathic rapid eye movement sleep

behavior disorder (RBD) patients were included in the current

study to evaluate iron content in the prodromal stage. RBD is

considered a prodromal stage of α-synucleinopathies since RBD

patients have a high rate of conversion to neurodegenerative

disorders, especially α-synucleinopathies, such as PD, dementia

with Lewy bodies, and multiple system atrophy (Schenck et al.,

2013).We hypothesized that iron content in the VTA is not elevated

in the early stage of PD but gradually increased as the disease

becomes more severe. This study will help to clarify the pattern of

iron deposition in the VTA and may provide an explanation of the

selective damage of DA neurons in PD.

2. Materials and methods

2.1. Participants

This experiment was performed in accordance with the

Declaration of Helsinki and was approved by the Institutional

Review Board of Xuanwu Hospital of Capital Medical University.

All participants (35 RBD patients, 101 PD patients, and 62

HCs) provided written consent before the experiment and were

recruited from the Movement Disorders Clinic of the Xuanwu

Hospital of Capital Medical University. The RBD patients were

screened by the International Classification of Sleep Disorder-

Third Edition diagnostic criteria (American Academy of Sleep

Medicine, 2014) and were confirmed by polysomnography.

PD patients were diagnosed by the MDS Clinical Diagnostic

Criteria (Andrew et al., 1992). The inclusion criteria for

HCs were (1) no family history of movement disorders, (2)

no neurological or psychiatric diseases, and (3) no obvious

cerebral lesions on structural images in magnetic resonance

imaging (MRI).

The PD patients were evaluated using the Movement Disorder

Society (MDS) Unified Parkinson’s Disease Rating Scale, Part

III (MDS-UPDRS III) and Hoehn and Yahr (H & Y) stage

while off their anti-parkinsonian medicine for 12 h. The RBD

patients were assessed by the Rapid Eye Movement Sleep Behavior

Disorder Questionnaire–Hong Kong (RBDQ-HK) and the MDS-

UPDRS III. In addition, all participants were evaluated using

the Hamilton Depression Scale (HAMD), Montreal Cognitive

Assessment (Chinese version; C-MoCA), Non-Motor Symptoms

Scale for Parkinson’s Disease (NMSS), Brief Smell Identification

Test (BSIT), Epworth Sleepiness Scale (ESS), Pittsburgh Sleep

Quality Index (PSQI), and Apathy Scale (AS). Demographic

information is summarized in Table 1.

2.2. MRI data collection

MRI data were collected on a 3T MAGNETOM Skyra scanner

(Siemens, Erlangen, Germany) using a 20-channel head coil. The

signals from different coils were combined by the sum of squares

method. A single-echo 3-dimensional (3-D) gradient echo (GRE)

sequence was collected with the following parameters: voxel size

= 0.667 × 0.667 × 1.5 mm3, repetition time (TR) = 25ms,

echo time (TE) = 17.5ms, slice thickness = 1.5mm, flip angle

= 15◦, field of view (FoV) = 256 × 192 mm2, and scanning

time = 5min 6 s. A whole-brain sagittal 3-D T1 magnetization-

prepared rapid gradient echo (MP-RAGE) imaging was performed

with the following parameter: voxel size = 1 × 1 × 1 mm3,

TR = 2,530ms, TE = 2.98ms, TI = 1,100ms; slice thickness =

1mm, flip angle = 7◦, FoV = 256 × 224 mm2, and scanning

time= 5min 13 s.

2.3. Image analysis

The QSM reconstruction was performed using MATLAB

2017b based STI Suite.1 The phase images were unwrapped

using a Laplacian-based algorithm method (Wu et al., 2012). The

unwrapped phase images were used to remove the background

field using the V-SHARP method (Li et al., 2014). The magnetic

susceptibility was determined using streaking artifact reduction for

QSM (STAR-QSM; Wei et al., 2015).

Image registration was performed using FMRIB Software

Library (FSL) v6.0.2 Individual 3D-T1 images were first skull

stripped and registered to a standard space [Montreal Neurological

Institute (MNI) 152] using FSL’s FLIRT and FNIRT tools. The

inverted warping field from standard to native space was then

obtained by inverting the warping field. Thereafter, the individual

3D-T1 image was also registered to GRE’s magnitude image using

1 https://people.eecs.berkeley.edu/∼chunlei.liu/software.html

2 https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/
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TABLE 1 Demographic and clinical data of participants and the QSM values in ROIs.

HC
(mean ± SD)

n = 62

RBD
(mean ± SD)

n = 35

PD
(mean ± SD)

n = 101

P P (post-hoc)

HC vs.
RBD

RBD vs.
PD

HC vs.
PD

Age 64.97± 5.76 65.86± 6.31 64.21± 6.67 0.388a 1 0.550 1

Sex (M/F) 25/37 21/14 54/47 0.123a 0.062 0.503 0.103

RBDQ-HK 7.11± 5.75 34.44± 13.69 20.89± 16.36 <0.001
a

<0.001 <0.001 <0.001

HAMD 3.20± 3.10 5.76± 4.04 5.67± 3.96 <0.001
a

0.024 1 <0.001

C-MoCA 26.00± 2.28 25.11± 2.84 23.76± 3.74 0.001
a 0.781 0.212 <0.001

NMSS 14.04± 13.21 21.65± 13.54 38.77± 33.79 <0.001
a 0.688 0.013 <0.001

BSIT 8.86± 2.48 7.37± 2.13 7.27± 2.91 0.002
a 0.052 1 0.002

ESS 4.26± 2.98 5.47± 3.03 5.72± 3.26 0.061a 0.394 1 0.061

PSQI 6.21± 5.26 7.09± 4.09 6.09± 3.70 0.518a 1 0.793 1

AS 6.49± 6.30 9.35± 7.57 12.48± 9.04 <0.001
a 0.508 0.360 <0.001

UPDRS III - 5.09± 3.83 32.27± 13.68 - - - -

Duration (year) - 3.01± 1.48 4.85± 2.68 - - - -

H & Y stage - - 1.97± 0.69 - - - -

VTA_L (ppm) 0.0193± 0.003 0.0204± 0.003 0.0213± 0.002 <0.001
b 0.174 0.341 <0.001

VTA_R 0.0197± 0.003 0.0208± 0.002 0.0214± 0.002 <0.001
b 0.137 0.570 <0.001

SNc_L 0.0280± 0.011 0.0393± 0.014 0.0508± 0.022 <0.001
b

0.009 0.004 <0.001

SNc_R 0.0263± 0.014 0.0398± 0.014 0.0467± 0.026 0.001
b

0.008 0.240 <0.001

HC, healthy control; RBD, rapid eye movement sleep behavior disorder; PD, Parkinson’s disease; M, male; F, female; RBDQ-HK, Rapid Eye Movement Sleep Behavior Disorder Questionnaire–

Hong Kong; HAMD, Hamilton Depression Scale; C-MoCA, Montreal Cognitive Assessment (Chinese version); NMSS, Non-Motor Symptoms Scale for Parkinson’s Disease; BSIT, Brief Smell

Identification Test; ESS, Epworth Sleepiness Scale; PSQI, Pittsburgh Sleep Quality Index; AS, Apathy Scale; MDS-UPDRS III, Movement Disorder Society Unified Parkinson’s Disease Rating

Scale, Part III; VTA, ventral tegmental area; SNc, substantia nigra pars compacta; ppm, parts per million; L, left; R, right.
aANOVA, analysis of variance.
bANCOVA, analysis of covariance.

-, Not applicable. Bold values: P < 0.05.

the FLIRT tool to get a second warping field. Both warping

fields were combined to converted to obtain warping fields

covert MNI152 so that it was well-coregistered with individual’s

susceptibility map.

The VTA and SNc were defined by the California Institute of

Technology (CIT) 168 atlas of subcortical nuclei (Pauli et al., 2018),

with a threshold of 0.25. The CIT168 atlas divides the VTA into

the parabrachial pigmented nucleus (PBP) and VTA nucleus. Using

FSL, we merged the VTA nucleus and PBP into a whole VTA for

two reasons: (1) there is little evidence that the VTA component

nuclei represent neural populations specialized and distinct in

function (Trutti et al., 2019) and (2) as a probabilistic atlas (Pauli

et al., 2018), there is some overlap between the VTA nucleus and

PBP. The bilateral SNc and merged VTA were used as the ROIs in

the current study (Figure 1). The ROIs in standard MNI152 space

were normalized to individual magnitude space using the above-

mentioned warping fields using FSL. Finally, the individual ROIs

were obtained in order to calculate QSM values.

2.4. Statistical analyses

The demographic and clinical characteristics of HC, RBD, and

PD groups were compared using the analysis of variance (ANOVA).

FIGURE 1

Definition of regions of interest (ROIs). The ROIs include the VTA

(green) and SNc (red). VTA, ventral tegmental area; SNc, substantia

nigra pars compacta.

Post-hoc tests with Bonferroni correction were used for intergroup

comparisons. The Pearson chi-square test was applied for sex

frequency among the groups.
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FIGURE 2

QSM values in the VTA and SNc in three groups. (A, B) QSM values in the VTA in HC, RBD, and PD groups. (C, D) QSM values in the SNc in HC, RBD,

and PD groups. HC, healthy control; RBD, idiopathic rapid eye movement sleep behavior disorder; PD, Parkinson’s disease. VTA, ventral tegmental

area; SNc, substantia nigra pars compacta; ppm, parts per million; L, left; R, right. ***P < 0.001; **P < 0.01.

The normal distribution of QSM values was confirmed using

the one-sample Kolmogorov–Smirnov test. The differences in

QSM values among the three groups in each ROI were analyzed

using the analysis of covariance (ANCOVA) with age and sex as

covariables. Post-hoc tests with Bonferroni correction were used

for intergroup comparisons (P < 0.05). In order to reveal the

iron levels in different stages of PD, we further divided our PD

patients into three subgroups according to the H & Y stage: 26

PD patients with H & Y stage 1 (PD-H&Y1), 43 PD patients

with H & Y stage 1.5 and 2 (PD-H&Y2, including four patients

with H & Y stage 1.5), and 32 PD patients with H & Y stage

2.5 and 3 (PD-H&Y3, including 14 patients with H & Y stage

2.5). The differences in QSM values among the HCs and three

PD subgroups in each ROI were also analyzed using ANCOVA.

Post-hoc tests with Bonferroni correction were used for intergroup

comparisons (P < 0.05).

In addition, we calculated the mean QSM values of the bilateral

VTA, as well as the differences in mean QSM values between the

groups and the different H & Y stages.

Correlations between QSM values and clinical assessments

in RBD and PD patients were performed using Pearson’s

correlation analysis, while Spearman’s correlation analysis was

used to analyze the correlation between H & Y stage and

QSM values in PD patients. Statistical analyses were performed

using IBM SPSS Statistics (version 20, IBM Corp, Armonk,

NY, USA).

3. Results

No significant differences were observed among the three

groups in age, sex, and PSQI (ANOVA, P > 0.05), while there were

significant differences in RBDQ-HK, HAMD, C-MoCA, NMSS,

BSIT, ESS, and AS scores (ANOVA, P < 0.05; Table 1).

There were significant differences in QSM values in the bilateral

VTA and SNc among the HC, RBD, and PD groups (ANCOVA, P

< 0.001). The RBD group did not show enhanced iron values in

the bilateral VTA (post-hoc test, P > 0.05, Bonferroni corrected),

but had increased iron values in the bilateral SNc (post-hoc test,

P < 0.01, Bonferroni corrected) compared with HCs. PD patients

had increased iron values in the bilateral VTA and SNc compared

with HCs (post-hoc test, P < 0.001, Bonferroni corrected) and

had enhanced iron values in the left SNc compared with RBD

patients (post-hoc test, P < 0.01, Bonferroni corrected; Table 1 and

Figures 2A–D).

The QSM values had significant differences among the HCs

and three PD subgroups in the bilateral VTA and SNc (ANCOVA,

P < 0.001). In the bilateral VTA, the PD-H&Y1 group did not

show significantly higher iron values than the HC group (post-

hoc test, P > 0.05, Bonferroni corrected), while the PD-H&Y2 and

PD-H&Y3 groups showed higher values (post-hoc test, P < 0.01,

Bonferroni corrected). In the left VTA, the PD-H&Y3 group had

increased iron values compared with the PD-H&Y1 and PD-H&Y2

groups (post-hoc test, P < 0.001, Bonferroni corrected), while the
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PD-H&Y2 group also had an increase of iron values compared

with the PD-H&Y1 group (post-hoc test, P < 0.05, Bonferroni

corrected). In comparison to HCs, all three PD subgroups showed

higher iron values in the bilateral SNc (post-hoc test, P < 0.05,

Bonferroni corrected). The PD-H&Y3 group had increased iron

values in the left SNc compared with the PD-H&Y1 and PD-H&Y2

groups (post-hoc test, P < 0.001, Bonferroni corrected) and had

elevated iron values in the right SNc compared with the PD-H&Y1

group (post-hoc test, P < 0.05, Bonferroni corrected; Table 2 and

Figures 3A, B).

We found significant differences in mean VTA QSM

values between the groups and at different stages, which was

similar to the results of the left and right VTA QSM values

(Supplementary Tables 1, 2).

In PD patients, the QSM values in the left VTA were positively

correlated with H & Y stage (r = 0.543, p < 0.001, Figure 4A),

HAMD scores (r = 0.275, p = 0.007, Figure 4B), and NMSS (r =

0.238, p = 0.027, Figure 4C). In RBD patients, QSM values in the

left SNc were positively correlated with disease duration (r= 0.356,

p = 0.045) and RBDQ-HK scores (r = 0.388, p = 0.023), while

QSM values in the right SNc were negatively correlated with BSIT

scores (r=−0.496, p= 0.008). The QSM values in the bilateral SNc

were positively correlated with disease duration (left: r = 0.306, p

= 0.002; right: r = 0.211, p = 0.034). In addition, the QSM values

in the left SNc were positively correlated with the H & Y stage (r

= 0.462, p < 0.001), MDS-UPDRS III (r = 0.250, p = 0.013), and

HAMD scores (r = 0.233, p = 0.022), while the QSM values in the

right SNc were positively correlated with the AS scores (r = 0.226,

p= 0.045) in PD patients.

4. Discussion

In the current study, we investigated iron accumulation in the

VTA across different stages of PD. The novel finding is that iron

contents are not increased in the RBD patients and PD patients at H

& Y stage 1. The iron accumulation in the VTA becomes significant

in PD patients at mid stages and advanced stages. QSM values in

the left VTA positively correlate with the H & Y stage, NMSS, and

HAMD scores in PD patients.

We found that both RBD and PD patients had enhanced

iron contents in the bilateral SNc, which is consistent with

previous reports (Guan et al., 2017; Sun et al., 2020). In

contrast, there was no increased iron content in the VTA in

RBD patients and PD patients at H & Y stage 1. Age-related

iron accumulation might be an important factor contributing

to neurodegeneration, as aging processes might compromise the

iron homoeostatic system, leading to an excess of iron that is

not efficiently chelated by storage proteins or other molecules

(Killilea et al., 2004; Ward et al., 2014). An elevated level of

iron deposition in PD may result from increased iron influx

(Moos et al., 2007), loss of intracellular homeostasis (Zucca

et al., 2017), or impaired iron efflux (Bonaccorsi di Patti et al.,

2018). The interaction between excess iron and DA can produce

neurotoxic intermediate or end-products, leading to the formation

of DNA adducts, lipid peroxidation, loss of membrane integrity,

and induction of apoptosis (Blum et al., 2001; Hare and Double,

2016). It has been approved that α-synuclein could form toxic
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FIGURE 3

QSM values in the VTA in HCs and PD patients with di�erent H & Y stages. (A) The QSM values in the left VTA; (B) the QSM values in the right VTA; HC,

healthy control; PD, Parkinson’s disease; H & Y stage, Hoehn and Yahr stage; VTA, ventral tegmental area; ppm, parts per million; L, left; R, right. ***P

< 0.001; **P < 0.01; *P < 0.05.

FIGURE 4

Correlations between QSM values in the VTA and clinical features in PD patients. Correlation between QSM values in the left VTA and H & Y stage (A),

HAMD (B), and NMSS scores (C). VTA, ventral tegmental area; QSM, quantitative susceptibility mapping; PD, Parkinson’s disease; H & Y stage, Hoehn

and Yahr stage; HAMD, Hamilton Depression Scale; NMSS, Non-Motor Symptoms Scale for Parkinson’s Disease. ***P < 0.001; **P < 0.01; *P < 0.05.

aggregates in the presence of iron, which is considered to

contribute to the formation of Lewy bodies in DA neurons

via oxidative stress (Ostrerova-Golts et al., 2000). It has been

proposed that the vulnerability of DA neurons requires redox

load from a combination of relatively high iron and dopamine

together (Hare et al., 2014). Therefore, increased iron deposition

is believed to mediate the death of SNc dopaminergic neurons

(Hare and Double, 2016). Previous studies have suggested that

several reasons may relate to less damaged DA neurons in

the VTA compared with SNc, such as the variety of neurons

found in the VTA (Nair-Roberts et al., 2008), lower expression

of the dopamine transporter (Lammel et al., 2008), differences

in calcium channel expression and the presence of α-synuclein

(Mosharov et al., 2009), differences in vesicular monoamine

transporter-2 and neuromelanin (Liang et al., 2004), less degree

of oxidative stress and more inducible copper-zinc superoxide

dismutase activities (Hung and Lee, 1998), and more brain-

derived neurotrophic factor mRNA gene expression (Hung and

Lee, 1996). According to our findings, less accumulation of iron

is also a likely reason contributing to the relatively spared DA

neurons in the VTA during the prodromal and early clinical stages

of PD.

The underlying reasons contributing to the less accumulation

of iron in the VTA compared with SNc remain unclear. Previous

studies on chronic MPTP-treated mice have suggested that

misregulation of iron transporters, such as increased expression

of divalent metal transporter 1 and decreased expression of

ferroportin 1, might correlate with nigral iron accumulation.

However, this pattern of misregulation of iron transporters was not

detected in the VTA (Lv et al., 2011). These selective changes in iron

transporters may help explain the differential iron accumulation in

the SNc and VTA in PD.
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Our PD patients at more than 1.5H & Y staging had enhanced

iron deposition in the VTA. This finding is consistent with a

previous report (Ahmadi et al., 2020), in which PD patients with an

average of 1.97H & Y staging showed increased iron accumulation

in the VTA compared with HC. In addition, the QSM values in the

left VTA were positively correlated with the H & Y stage. These

observations suggest that as the disease becomes more severe, iron

deposition in the VTA becomes more significant, and may induce

the death of DA neurons at the mid-stage and advanced stage of

PD. Studies on the post-mortem brain of PD patients have proved

that there was a 40–77% loss of DA neurons in the VTA (Alberico

et al., 2015).

The neurons in the VTA project to extensive brain regions,

including the nucleus accumbens, amygdala, prefrontal cortex,

hippocampus, ventral pallidum, periaqueductal gray, bed nucleus

of the stria terminalis, olfactory tubercle, and locus coeruleus,

which are related to the various non-motor symptoms (Alberico

et al., 2015; Morales and Margolis, 2017). However, only a small

number of imaging studies have focused on the relationship

between physiological changes in the VTA and clinical phenotypes

of PD. The VTA showed an attenuated neural response to reward

outcomes in PD patients (van der Vegt et al., 2013). Increased

functional coupling between the VTA and default mode network

has been reported in PD patients with freezing of gait (Steidel et al.,

2021). In addition, increased functional connectivity between the

VTA and anterior cingulate cortex was related to depression in

PD (Wei et al., 2018). We found that the QSM values in the left

VTA were positively correlated with NMSS and HAMD scores,

which provides further support that damaged VTA is a reason

contributing to non-motor symptoms, especially depression, in

PD patients.

We found that only the iron contents of left VTA, not right

VTA, were significantly correlated with clinical symptoms in PD

patients. This phenomenon is likely due to the asymmetry of motor

symptoms as most of our PD patients had right-side onset (65

of 101 patients). As our RBD patients did not show significant

motor symptoms, we could not define the more- and less-affected

sides in RBD patients. Thus, we only performed between-group

comparisons of QSM values on the left and right sides.

In RBD patients, the QSM values in the SNc were positively

correlated with disease duration, which is consistent with our

previous report (Sun et al., 2020) and indicates that iron deposition

in the SNc increases with the progression of RBD. In addition,

the QSM values in the SNc correlated with RBDQ-HK and

BSIT scores. Olfactory dysfunction is associated with an increased

risk of developing PD, and RBD patients with hyposmia are at

high risk for converting to PD (Lyu et al., 2021). These results

suggest that iron accumulation in the SNc is associated with

the severity of RBD and may have the potential to predict the

conversion to α-synucleinopathies, which needs to be proved in

future longitudinal studies.

In the bilateral SNc, PD patients had significantly enhanced

iron contents, which is consistent with previous studies (He et al.,

2015; Guan et al., 2017; Bergsland et al., 2019; Ahmadi et al.,

2020; Sun et al., 2020; Fu et al., 2021), and the QSM values

were positively correlated with disease duration and the H & Y

stage (Du et al., 2016; Fu et al., 2021). The QSM values were

positively correlated with the MDS-UPDRS III and HAMD scores

in the left SNc (He et al., 2015; Fu et al., 2021) as well as the AS

scores in the right SNc. The enhanced iron might aggravate the

dysfunction of the nigrostriatal pathway with disease progression

and severity (Hare and Double, 2016), which exacerbates the

motor and non-motor symptoms. These findings suggest that the

QSM technique has the potential to be a neuroimaging marker

of disease progression, which needs to be examined in future

longitudinal studies.

There are some limitations in our study. First, this is a cross-

sectional study, and longitudinal studies are needed to reveal the

progress of iron deposition in the VTA and its relationship with

clinical progression. Second, as we only had a small number of

patients at the H & Y stage 4, the iron accumulation in the

VTA in more advanced PD patients was not investigated in the

current study.

5. Conclusion

Using the QSM, we demonstrate that the iron content in

the VTA is not enhanced in the prodromal and early clinical

stage of PD but becomes significantly increased as the disorder

becomes more severe. Moreover, the iron deposition in the

VTA is associated with the non-motor symptoms in PD. Our

findings may help to understand the iron deposition in the

VTA at different stages of PD and its relationship with clinical

manifestations of PD.
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Introduction: Lycium barbarum glycopeptide (LbGp) is the main bioactive

compound extracted from the traditional Chinese medicine. L. barbarum berries

and has been proven to have numerous health benefits, including antioxidative,

anti-inflammatory, anticancer, and cytoprotective activities. However, the

antiaging effect of LbGp remains unknown.

Methods: The lifespan and body movement of C. elegans were used to evaluate

the effect of LbGp on lifespan and health span. The thrashing assay was used to

determine the role of LbGp in Parkinson’s disease. To investigate the mechanisms

of LbGp-induced antiaging effects, we analyzed changes in lifespan, movement,

and the expression of longevity-related genes in a series of worm mutants after

LbGp treatment.

Results: We found that LbGp treatment prolonged the lifespan and health

span of C. elegans. Mechanistically, we found that LbGp could activate the

transcription factors DAF-16/FOXO, SKN-1/Nrf2, and HSF-1, as well as the

nuclear receptor DAF-12, thereby upregulating longevity-related genes to achieve

lifespan extension. In addition, we found that the lifespan extension induced

by LbGp partially depends on mitochondrial function. Intriguingly, LbGp also

ameliorated neurodegenerative diseases such as Parkinson’s disease in a DAF-16-,

SKN-1-, and HSF-1-dependent manner.

Conclusion: Our work suggests that LbGp might be a viable candidate for the

treatment and prevention of aging and age-related diseases.

KEYWORDS

Lycium barbarum glycopeptide, Caenorhabditis elegans, antiaging, Parkinson’s disease,
health span

1. Introduction

Aging, an intrinsic biological process of life, is commonly characterized as a progressive
loss of physiological integrity, eventually leading to organ failure (Moskalev et al., 2022).
This deterioration of aging is the principal risk factor for many chronic diseases, such
as cancer, neurodegenerative disorders, diabetes and cardiovascular diseases (Niccoli and
Partridge, 2012). Currently, the percentage of the population over the age of 65 years old
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has been increasing steadily, which has led to a global burden of
age-related chronic diseases (Stegemann et al., 2010). Therefore,
slowing the rate of biological aging and the progression of aging-
associated diseases will considerably improve the quality of human
life. For years, people have been searching for and discovering
many natural substances that can prevent aging and aging-related
diseases. For example, previous studies have shown that numerous
plant extracts and natural bioactive products, such as usnic acid
(Xiao et al., 2022), urolithin (Ryu et al., 2016), resveratrol (Park
et al., 2012), saponins isolated from Radix polygalae (Zeng et al.,
2021), and flavonoids from Lycium barbarum (L. barbarum) leaves
(Niu et al., 2022), have lifespan-extending properties in different
organism models.

Plant polysaccharides play increasingly important roles in
human health and nutrition due to their multiple physiological
activities and pharmacological functions (Wang et al., 2020). The
berries of L. barbarum (Goji) (a Solanaceous defoliated shrubbery),
a well-known traditional Chinese medicine and super functional
food, contain a variety of health-promoting bioactive compounds
with numerous nutritional and pharmacological functions (Jin
et al., 2013). L. barbarum polysaccharides (LBPs) are the main
functional constituents of L. barbarum and are composed of
a variety of acidic heteropolysaccharides and polypeptides or
proteins (Masci et al., 2018). Numerous studies have shown
different biological activities of LBPs, including antioxidation
(Liang et al., 2021), anticancer effects (Mao et al., 2011), antiaging
effects (Tang et al., 2019; Zhang et al., 2019), immunoregulation
(Ding et al., 2019), reproductive protection, and cytoprotective
activity (Zhang et al., 2020). Among them, increasing attention
has been given to the functions of LBPs in antioxidative stress
and antiaging. Recently, researchers have deeply excavated the
main antiaging active ingredients in LBPs and elucidated the
underlying molecular mechanisms. For example, Huang W. et al.
(2022) showed that the arabinogalactan-protein complex LBGP70
from crude LBPs were able to delay cellular senescence by
activating aging-related genes. Zhang et al. (2022) revealed that
the acidic heteropolysaccharide LFP-05S from LBPs could prolong
the lifespan and enhance stress resistance in Caenorhabditis elegans
(C. elegans) by eliminating unfavorable ROS overproduction.

Recently, researchers further separated and purified LBPs and
obtained another component, L. barbarum glycopeptide (LbGp),
which is the most promising monomeric substance (Peng et al.,
2001). LbGp is a kind of glycoprotein whose monosaccharide
composition includes glucose, arabinose and galactose and contains
30% protein linked to glycans by O-linkages (Tian, 1995).
Accumulating evidence has shown that LbGp protects the kidney,
promotes reproduction, enhances immunity, and exerts antitumor
and anti-inflammatory effects (Gong et al., 2020; Zhou et al., 2022).
The pharmacological functions of LbGp have many similarities
with LBPs but also have many differences. For example, previous
studies have shown that both LBPs and LbGp can maintain the
balance of the intestinal environment by promoting the growth of
probiotics, but their effects on the abundance of different types of
gut microflora, such as Akkermansia and Alistipes, are distinctly
different (Huang Y. et al., 2022). Therefore, it is valuable to deeply
explore the pharmacological activities and underlying molecular
mechanisms of LbGp. Considering that LBPs have antioxidant,
antiaging and neuroprotective effects, and LbGp is the main active
ingredient in LBP, we questioned whether and how LbGp plays a

role in ameliorating aging and aging-related disease. Therefore, in
this study, we used C. elegans to explore the longevity effect of LbGp
and its underlying molecular mechanisms.

The nematode C. elegans is a robust multicellular model
organism with multiple advantages, including a short life
cycle, simple physiological structure and easy procedures for
manipulation (Wan et al., 2021). Most aging-associated signaling
pathways are evolutionarily conserved between C. elegans and
mammals, including the insulin/insulin-like growth factor
signaling (IIS) pathway, dietary restriction (DR)-related pathway,
reproductive signaling pathway and mitochondrial dysfunction-
related pathways (Xiao et al., 2022). Therefore, C. elegans has been
widely used in aging research and screening of natural bioactive
extracts with antiaging effects (Park et al., 2012; Ryu et al., 2016;
Zeng et al., 2021; Xiao et al., 2022).

Our results showed that LbGp significantly increased the
lifespan and health span and ameliorated PD-related features
in C. elegans. Further studies revealed that several aging-related
signaling pathways, including the IIS pathway, reproductive
signaling pathway and mitochondrial function, were involved in
the LbGp-induced longevity effect.

2. Materials and methods

2.1. Reagents, C. elegans strains, and
maintenance

Lycium barbarum glycopeptide (LbGp) was provided by
Ningxia Tianren Goji Biotechnology. LbGp was dissolved in
water, and all NGM plates with LbGp were equilibrated
overnight before use.

The Caenorhabditis Genetics Center (University of Minnesota,
Minneapolis, MN, USA) provided the C. elegans strains used in this
study: wild-type Bristol N2, GR1310 akt-1(mg144)V, CB1370 daf-
2(e1370)III, CF1038 daf-16(mu86)I, PS3551 hsf-1(sy441)I, CF1903
glp-1(e2144)III, AA86 daf-12(rh61rh411)X, CB4876 clk-1(e2519)III,
MQ887 isp-1(qm150)IV, RB754 aak-2(ok524)X, CF1553 muIs84
[(pAD76)sod-3p::GFP + rol-6(su1006)], CL2070 dvIs70 [hsp-
16.2p::GFP + rol-6(su1006)], and UM0010 dat-1p::GFP; aex-3p::α-
syn(A53T). New strains were generated by standard genetic
crosses, and genotypes were confirmed by PCR or sequencing.
Here, UM0010 was crossed with CF1038, PS3551, and AA86
to create the double mutants daf-16(mu86)I; dat-1p::GFP; aex-
3p::α-syn(A53T), hsf-1(sy441)I; dat-1p::GFP; aex-3p::α-syn(A53T),
and daf-12(rh61rh411)X; dat-1p::GFP; aex-3p::α-syn(A53T). All
strains were grown and maintained using standard protocols
(Jia et al., 2022).

2.2. Lifespan assays

All lifespan experiments, except for those with the CF1903
strains, were performed according to the standard protocols
at 20◦C, as previously described (Jia et al., 2022). In brief,
approximately 100–150 young adult worms were picked into fresh
plates containing different concentrations of LbGp and 10 µM 5-
fluoro-2′-deoxyuridine (FUDR, Sigma), which was used to prevent
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progeny production. For CF1903, the synchronized L1 worms
were grown at 20◦C for 12 h, transferred to 25◦C until the
young adult stage to eliminate the germline, and finally returned
to 20◦C for the lifespan assays. For all lifespan assays, heat-
inactivated (65◦C, 30 min) Escherichia coli OP50 was used as food
to prevent the metabolism of LbGp by bacteria. Worms were
transferred to fresh plates with LbGp every other day. Death events
were scored daily, and the lifespan assays were repeated three
times. Statistical analyses were performed using the SPSS package,
and the P-value was determined by the log-rank (Mantel-Cox)
method. P-value < 0.05 was considered statistically significant.
The mean, SEM, P-value and lifespan value are summarized in
Supplementary Table 1.

2.3. Movement assays

The body movement assays were performed using the standard
protocol as previously described (Jia et al., 2022). In brief,
approximately 150 young adult worms were transferred to plates
with or without LbGp at 20◦C and maintained as described in
the lifespan assays. Then, the movement of the worms was scored
daily. When the plates were tapped, the worms moving in a
continuous and coordinated sinusoidal pattern were defined to
have fast movement; otherwise, they were defined as having non-
fast movement.

2.4. Thrashing assays

The synchronized L1 PD model worms were grown at 20◦C
on NGM plates to the young adult stage, transferred to FUDR-
containing plates with or without LbGp at 25◦C and maintained
as described in the lifespan assays. Day 5 worms were picked
into a drop of M9 buffer, and the thrashing was recorded for
30 s at × 0.75 magnification with a Motic stereomicroscope as
previously described (Huang et al., 2021). At least 30 worms were
counted per experiment, and the thrashing assays were repeated
three times.

2.5. RNA extraction and quantitative
RT-PCR

The synchronized L1 worms were grown on plates with or
without LbGp to the young adult stage, collected in M9 buffer
and washed several times. Worm samples were resuspended using
AG RNAex PRO reagent (Accurate Biology, Changsha, China), and
total RNA was isolated by chloroform extraction and isopropanol
precipitation. Then, 500 ng RNA was used to synthesize cDNA
with a high-capacity cDNA transcription kit (RK20400, ABclonal,
Wuhan, China). Quantitative RT-PCR was performed using SYBR
Green Select Master Mix (RK21203, ABclonal, Wuhan, China) on
a LightCycler480 real-time system (Roche, USA), and each assay
was repeated three times. The mRNA expression of the genes was
quantified after normalization to the reference gene cdc-42, and
the P-value was computed using the two-tailed Student’s t-test. The
primers used in this study are shown in Supplementary Table 2.

2.6. Fluorescence microscopy and image
analyses

For analysis of the fluorescence intensity of sod-3p::GFP and
hsp-16.2p::GFP, the CF1553 and CL2070 strains were grown on
plates with or without LbGp to the young adult stage. For CF1553,
animals were picked onto 2% agar pads after anesthetizing with
10 µM levamisole, and then, the fluorescence was observed under
a Nikon Ti2-U microscope with a 20 × air objective. For CL2070,
young adult worms were heated at 35◦C for 2 h to stimulate the
expression of hsp-16.2p::GFP. After recovery at 20◦C for 12 h, the
CL2070 worms were observed using a Nikon Ti2-U fluorescence
microscope with a 20 × air objective. The fluorescence intensity
was quantified using ImageJ software. At least 30 animals were
used in each group. The P-value was calculated by the two-tailed
Student’s t-test.

2.7. Measurement of reactive oxygen
species (ROS)

2′7′-Dichlorofluorescein diacetate (H2DCF-DA) was used to
detect the levels of intracellular ROS. The synchronized L1 worms
were grown on plates with or without LbGp to the young adult
stage, transferred to plates with 10 µM H2DCF-DA and incubated
for 1 h. In addition, to create oxidative stress conditions, worms
were treated with 5 mM paraquat for 12 h before staining with
H2DCF-DA. Then, animals were picked onto 2% agar pads after
anesthetizing with 10 µM levamisole, and the fluorescence was
observed under a Nikon Ti2-U microscope with a 20 × air
objective. The fluorescence intensity was quantified using ImageJ
software. At least 30 animals were used in each group. The P-value
was calculated by the two-tailed Student’s t-test.

2.8. Western blot analyses

CF1553 and CL2070 worms were treated and maintained as
described in the section on quantification of fluorescence intensity.
Worms were collected in M9 buffer, subjected to three rounds
of freezing and thawing, and then lysed in RIPA buffer. The
protein samples were boiled at 95◦C for 5 min after quantification
using a BCA Protein Assay Kit. Next, the protein samples were
separated by SDS-PAGE and transferred to PVDF membranes. The
membranes were then blocked in 5% milk and incubated with
primary antibodies against β-actin (1:5,000, Sigma-Aldrich, A1978)
or GFP (1:5,000, Roche, 11814460001). The primary antibodies
were visualized by horseradish peroxidase-conjugated anti-mouse
secondary antibody and ECL Western Blotting Substrate.

2.9. Statistical analyses

The lifespan statistical analyses were performed using the SPSS
package, and survival analyses were conducted using the Kaplan-
Meier method. P-value was determined by log-rank (Mantel-
Cox) test for individual experiments. Other data were analyzed
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by the two-tailed Student’s t-test. Statistical significance was
defined as P < 0.05 and represented as stars (∗P < 0.05,
∗∗P < 0.01, and ∗∗∗P < 0.001). All experiments were repeated three
times independently.

3. Results

3.1. LbGp enhances lifespan and
ameliorates PD-related features in
C. elegans

To determine whether LbGp plays a role in lifespan regulation,
we treated adult worms with different doses of LbGp (200, 400,
600, and 800 µg/mL) and recorded their survival. We found that
LbGp dose-dependently enhanced the lifespan of wild-type N2
worms (Figures 1A, B), with 600 µg/mL LbGp showing the best
lifespan extension effect (Figures 1A, B). Therefore, 600 µg/mL
was selected as the optimal concentration in all subsequent
experiments. We also investigated the effect of LbGp on the health
span by examining the effect of LbGp on body movement, an
aging-related parameter (Huang et al., 2004). The results showed
that the period of fast movement was significantly prolonged when
worms were treated with LbGp compared with that of the untreated
controls (Figure 1C). Taken together, these results demonstrated
that LbGp not only prolonged lifespan but also had pronounced
health span effects in C. elegans, with a concentration of 600 µg/mL
showing the best effect.

Given that LbGp can extend lifespan and health span, we
asked whether it could have benefits on aging-related diseases, such
as Parkinson’s disease (PD). UM0010 is a well-characterized PD
model in C. elegans by pan-neuron overexpression of human α-
synuclein (A53T), which recapitulates some distinct characteristics
of PD, including the loss of dopaminergic neurons and motor
deficits (Deng and Yuan, 2014). Using UM0010 transgenic worms,
we found that LbGp significantly increased the rate of body bending
of UM0010 worms at Day 5 (Figure 1D) through a thrashing assay,
suggesting that LbGp could ameliorate PD features in C. elegans.

3.2. LbGp-induced lifespan extension
requires the IIS pathway

We next determined which molecular mechanisms contribute
to the lifespan extension conferred by LbGp. The transcription
factor DAF-16, a homolog of human Forkhead box O (FOXO),
is one of the main downstream regulators of oxidative stress
resistance and the aging process (Li et al., 2019). DAF-16 is
the determinant of the longevity effect induced by LBPs and
L. barbarum berry extracts (Zhang et al., 2019; Xiong et al., 2021).
Therefore, we first investigated the role of DAF-16 in the beneficial
longevity induced by LbGp. Our results showed that the lifespan
of daf-16(mu86) worms was not extended by LbGp (Figure 2A). In
addition, we found that the transcription levels of the DAF-16 target
genes (ctl-1, ctl-2, sod-2, and sod-3) were significantly increased
by LbGp (Figure 2B). Furthermore, using the GFP fused reporter
strain CF1553 (containing a sod-3p::GFP fusing transgene), we
found that both the fluorescence intensity (Figures 2C, D) and

GFP expression level (Figure 2E) were considerably increased when
worms treated with LbGP, suggesting that LbGp triggered the
expression of sod-3, a specific downstream target gene of DAF-16.
Consequently, these results indicated that LbGp-induced lifespan
extension depends on DAF-16. In addition, we found that LbGp
was unable to increase the rate of body bending of UM0010 worms
with a daf-16-null background (Figure 2F), indicating that similar
to lifespan extension, amelioration of PD conferred by LbGp also
depends on DAF-16.

Considering that DAF-16 is a key effector downstream of
the IIS pathway, we speculated that the LbGp-induced longevity
effects might depend on inhibiting the IIS signaling pathway,
which is a well-known aging-related signaling pathway (Li et al.,
2019). In C. elegans, DAF-2 is the insulin/IGF-1 transmembrane
receptor homologous to mammals, which cascades to regulate
the activity of the phosphoinositide 3-kinase (PI3K)/Akt kinase,
eventually leading to the nuclear translocation of DAF-16/FOXO
transcription factor and regulating longevity (Li et al., 2019). Using
daf-2(e1370) and akt-1(mg144) mutants, we found that LbGp-
induced lifespan extension was abrogated by daf-2 and akt-1
mutants (Figures 2G, H), indicating that LbGp-induced lifespan
extension was associated with the IIS signaling pathway.

3.3. The transcription factors SKN-1/Nrf2
and HSF-1 mediate LbGp-induced
longevity

In addition to DAF-16, the transcription factor SKN-1 is a
key longevity regulator downstream of the IIS signaling pathway,
which activates various downstream antioxidant and phase II
detoxification genes in response to oxidative stress (Tullet et al.,
2008). Previous studies have shown that L. barbarum extracts and
LBPs could activate the antioxidant system of C. elegans through the
transcription factor SKN-1 to enhance oxidative stress resistance
(Meng et al., 2022). We first analyzed the antioxidant activity of
LbGp in worms by detecting intracellular ROS accumulation levels
using H2DCF-DA (a free radical sensor that can be deacetylated by
intracellular esterases to emit fluorescence signals associated with
ROS). We found that LbGp treatment significantly reduced the
level of ROS under normal conditions (Figure 3A) or oxidative
stress conditions (treatment with paraquat) (Figure 3B), suggesting
that LbGp has antioxidant capacity to scavenge harmful ROS.
Then, we wondered whether SKN-1 functions in lifespan extension
induced by LbGp. Conducting survival analyses, we found that
similar to the results of daf-16, the LbGp-induced survival benefit
was blocked by RNAi knockdown of skn-1 (Figures 3C, D).
Moreover, we found that LbGp failed to improve motility in
UM0010 worms under skn-1 RNAi conditions (Figure 3E).
Altogether, these results demonstrated that amelioration of aging
and aging-related PD conferred by LbGp required the transcription
factor SKN-1.

The heat-shock transcription factor HSF-1, another
downstream target of the IIS pathway, plays a key role in the
lifespan-extending effects of LBPs (Chiang et al., 2012). We
also determined the effect of LbGp on the hsf-1 mutant and
found that LbGp-induced lifespan extension was abrogated in
the hsf-1-null mutant (Figure 3F). Meanwhile, LbGp failed to
prolong the lifespan in WT worms under hsf-1 RNAi conditions
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FIGURE 1

LbGp extended the lifespan and health span of C. elegans and improved the body motility of the nematode model of PD. (A) Lifespan analyses of N2
worms cultured at different doses of LbGp (200, 400, 600, and 800 µg/mL). (B) Statistical analyses of the effect of LbGp on N2 worms lifespan. The
data are presented as the mean ± SD of three independent lifespan assays. (C) Movement analyses of N2 worms treated with LbGp (600 µg/mL) or
vehicle (water). (D) Body bend analyses of the PD model strain UM0010 [aex-3p::α-syn(A53T)] treated with LbGp (600 µg/mL) or vehicle (water) at
Day 5. In panels (A,B), lifespan analyses were performed using Kaplan-Meier plotter, and the P-value was calculated by the log-rank test. In panels
(C,D), mean ± SD, n ≥ 30 per group. **P < 0.01, ***P < 0.001 (two-tailed Student’s t-test).

(Figure 3G). Subsequently, we also confirmed that the mRNA
levels of HSF-1 targets, including hsp-12.6, hsp-16.1, hsp-16.2,
and hsp-70, were obviously increased by LbGp (Figure 3H).
Moreover, we observed an elevated transcription level of hsp-16.2
by detecting the fluorescence intensity and GFP protein level of
the hsp-16.2p::GFP transgenic strains in the presence or absence
of LbGp (Figures 3I, J, K). Similar to DAF-16 and SKN-1, we
also found that the deletion of hsf-1 eliminated the beneficial
effect of LbGp on PD models (Figure 3L). Collectively, these
results demonstrated that the LbGp-induced longevity effect was
attributed to regulation of the IIS signaling pathway in a DAF-16-,
HSF-1- and SKN-1-dependent manner.

3.4. LbGp-induced longevity depends on
the reproductive signaling pathway

In C. elegans, germline depletion extends lifespan by
remodeling the transcriptional landscape through activation
of several aging-related transcription factors, including DAF-16
and SKN-1 (Berman and Kenyon, 2006). Based on our results
above, we questioned whether the LbGp-induced longevity effect
was related to the reproductive signaling pathway. Our results

showed that LbGp was unable to further increase the lifespan
of glp-1(e2144) worms, a germline-less and long-lived mutant
(Figure 4A). The nuclear steroid receptor DAF-12 is activated
by bile acid-like steroids to extend lifespan in germline-less
worms (Motola et al., 2006). A recent study showed that DAF-
12 contributed to the lifespan extension conferred by LBPs in
C. elegans (Zhang et al., 2019). Concordantly, we also found
that LbGp failed to extend the lifespan of daf-12(rh61rh411)
(Figure 4B). Additionally, LbGp significantly enhanced the
expression of DAF-12 target genes (cdr-6 and lips-17) (Figure 4C).
Furthermore, we found that improvement of motility of UM0010
worms was disappeared in a daf-12-null background (Figure 4D).
Altogether, these findings illustrated that the survival benefits
induced by LbGp were mediated by the reproductive signaling
pathway.

3.5. LbGp-induced longevity partially
depends on mitochondrial function

Attenuated mitochondrial respiratory function and
mitochondrial dysfunction are major causes of aging. SKN-1
has been shown to improve mitochondrial function by regulating
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FIGURE 2

LbGp-induced lifespan extension depended on the IIS pathway. (A) Survival curves of daf-16(mu86) mutants treated with LbGp (600 µg/mL) or
vehicle (water). (B) The relative mRNA expression of DAF-16-targeted genes (ctl-1, ctl-2, ctl-3, sod-1, sod-2, and sod-3) in N2 worms treated with
LbGp (600 µg/mL) or vehicle (water). (C,D) Image (C) and quantification (D) of GFP fluorescence in the head region of the sod-3-reporter strain
CF1553 (sod-3p::GFP) treated with LbGp (600 µg/mL) or vehicle (water). (E) Western blot analyses of GFP from LbGp-treated and non-LbGp-treated
CF1553 (sod-3p::GFP) transgenic worms. The experiment was repeated three times. The corresponding uncropped western blot figure is shown in
Supplementary Figure 1A. (F) Body bend analyses of the strain daf-16(mu86); aex-3p::α-syn(A53T) treated with LbGp (600 µg/mL) or vehicle (water)
at Day 5. (G,H) Survival curves of akt-1(mg144) (G) and daf-2(e1370) (H) mutants treated with LbGp (600 µg/mL) or vehicle (water). In panels (D,F),
mean ± SD, n ≥ 30 per group. In panels (B,D,F), ns, not significant, *P < 0.05, **P < 0.01, and ***P < 0.001 (two-tailed Student’s t-test).

mitochondrial biogenesis, ultimately extending the lifespan of
C. elegans (Palikaras et al., 2015). Thus, we further investigated
the effect of LbGp on the long-lived mitochondrial mutants
clk-1(e2519) and isp-1(qm150). clk-1 encodes the human coenzyme
Q7 hydroxylase homolog, and isp-1 is the Rieske iron-sulfur

polypeptide 1 homolog in C. elegans. Our results showed that
the lifespan of clk-1(e2519) was unable to be extended by LbGp
(Figure 5A), but that of isp-1(qm150) could be (Figure 5B),
suggesting that the LbGp-induced longevity effect required
mitochondrial function in a clk-1-specific manner.
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FIGURE 3

LbGp-induced lifespan extension was mediated by the transcription factors HSF-1 and SKN-1/Nrf2. (A,B) Quantitation of intracellular levels of ROS in
N2 worms treated with LbGp (600 µg/mL) or vehicle (water) under normal conditions (A) or oxidative stress conditions (treatment with 5 mM
paraquat) (B). (C) Survival curves of N2 worms treated with LbGp (600 µg/mL) or vehicle (water) under skn-1 RNAi conditions. (D) Relative skn-1
mRNA expression in N2 worms fed HT115 bacteria carrying the skn-1 RNAi vector or empty vector L4440. (E) Body bend analyses of the PD model
strain UM0010 [aex-3p::α-syn(A53T)] treated with LbGp (600 µg/mL) or vehicle (water) at Day 5 under skn-1 RNAi conditions. (F) Survival curves of
hsf-1(sy441) mutants treated with LbGp (600 µg/mL) or vehicle (water). (G) Survival curves of N2 worms treated with LbGp (600 µg/mL) or vehicle
(water) under hsf-1 RNAi conditions. (H) The relative mRNA expression of hsf-1-targeted genes (hsp-12.6, hsp-16.1, hsp-16.2, and hsp-70) in the N2
worms treated with LbGp (600 µg/mL) or vehicle (water). (I,J) Image (I) and quantification (J) of GFP fluorescence in the hsp-16.2-reporter strain
CL2070 (hsp-16.2p::GFP) treated with LbGp (600 µg/mL) or vehicle (water). (K) Western blot analyses of GFP from LbGp-treated and
non-LbGp-treated CL2070 (hsp-16.2p::GFP) transgenic worms. The experiment was repeated three times. The corresponding uncropped western
blot figure is shown in Supplementary Figure 1B. (L) Body bend analyses of the strain hsf-1(sy441); aex-3p::α-syn(A53T) treated with LbGp
(600 µg/mL) or vehicle (water) at Day 5. In panels (A,B,E,J,L), mean ± SD, n > 30 per group. In panels (A,B,D,E,H,J,L), ns, not significant, *P < 0.05,
**P < 0.01, and ***P < 0.001 (two-tailed Student’s t-test).
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FIGURE 4

LbGp-induced lifespan extension depended on the reproductive signaling pathway. (A,B) Survival curves of glp-1(e2144) (A) and daf-12(rh61rh411)
(B) mutants treated with LbGp (600 µg/mL) or vehicle (water). (C) The relative mRNA expression of the daf-12-targeted genes (fard-1, cdr-6 and
lips-17) in the N2 worms treated with LbGp (600 µg/mL) or vehicle (water). (D) Body bend analyses of the strain daf-12(rh61rh411);
aex-3p::α-syn(A53T) treated with LbGp (600 µg/mL) or vehicle (water) at Day 5. In panel (D), mean ± SD, n > 30 per group. In panels (C,D),
mean ± SD, ns, not significant, *P < 0.05 (two-tailed Student’s t-test).

Mitochondrial are the central organelle of energy production.
The discovery of a mechanism by which LbGp regulates
lifespan associated with mitochondrial function motivated us to
deduce whether LbGp prolongs lifespan by influencing energy
generation. In C. elegans, aak-2 encodes a catalytic subunit
of AMP-activated kinase (AMPK), which senses energy levels
and is activated by a low ATP level to regulate lifespan
(Apfeld et al., 2004). We found that LbGp could further
extend the lifespan of the aak-2 mutant (Figure 5C), suggesting
that aak-2 is dispensable for the survival advantage induced
by LbGp. Therefore, this result indicated that LbGp-induced
lifespan extension was independent of the regulation of energy
production.

4. Discussion

Aging is always accompanied by a deterioration of physiological
function and an increase in degenerative disease (e.g., Alzheimer’s
disease and Parkinson’s disease) (Niccoli and Partridge, 2012). As
the global population ages, the need to find substances that can treat
aging-related diseases, delay the aging process, and prolong lifespan
is urgent. Functional and nutraceutical foods have gradually
attracted attention because of their few side effects. L. barbarum
has been recognized and used as traditional Chinese medicine for
2,500 years, and its use is now expanding to all Western countries,
where it is consumed mostly as food supplements (Amagase and
Farnsworth, 2011). In this study, we found that LbGp, a potential

Frontiers in Aging Neuroscience 08 frontiersin.org90

https://doi.org/10.3389/fnagi.2023.1156265
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/


fnagi-15-1156265 June 30, 2023 Time: 12:43 # 9

Zheng et al. 10.3389/fnagi.2023.1156265

FIGURE 5

LbGp-induced lifespan extension partially depended on mitochondrial function. (A–C) Survival curves of clk-1(e2519) (A), isp-1(qm150) (B) and
aak-2(ok524) (C) mutants treated with LbGp (600 µg/mL) or vehicle (water). (D) Mechanisms of action of LbGp in C. elegans.

ingredient of L. barbarum berry, could extend lifespan and health
span, as well as alleviate the progression of aging-related PD. In an
in-depth study of the mechanism, we found that the amelioration
of aging and aging-related disease conferred by LbGp was mediated
by regulating the IIS signaling pathway and reproductive signaling
pathway, subsequently activating the stress response transcription
factors DAF-16, HSF-1 and SKN-1 and the nuclear receptor DAF-
12, thereby triggering the expression of downstream longevity-
related target genes to extend lifespan. Furthermore, mitochondrial
function was involved in the survival benefits induced by LbGp
(Figure 5D).

The imbalance between the production and elimination of free
radicals is one of the major factors in aging and aging-associated
disorders, and the supplementation of antioxidants can delay aging
and improve oxidative stress resistance (Hekimi et al., 2011).
Previous studies have shown that LBPs have antioxidant bioactivity
and can reduce DNA damage by eliminating free radicals and
inhibiting oxidative stress (Zhang et al., 2017). Consistently, we
also found that LbGp could activate the expression of several
antioxidant genes. Moreover, we confirmed that SKN-1, a major
oxidative stress response factor, contributes to LbGp-induced

lifespan extension. These results demonstrated that, similar to
LBPs, LbGp prolonged lifespan depending on its antioxidant
bioactivity, at least in part. Indeed, we also found that LbGp
extended lifespan in an antioxidant-independent manner, that is,
regulation of glp-1 by LbGp. The longevity of germline-deficient
mutants is associated with increased ROS in the soma (Wei and
Kenyon, 2016). However, we found that LbGp, an antioxidant, did
not influence the lifespan of glp-1(e2144) worms, which seems to
contradict our observation that LbGp improves the antioxidant
capacity. These findings implied that LbGp-induced lifespan
extension in C. elegans depended not only on the antioxidant
capacity but also on other biological activities.

Aging is the greatest risk factor for most age-related disorders,
and delaying the rate of biological aging through the consumption
of antiaging drugs or foods is able to slow the onset and progression
of age-related diseases (Xiao et al., 2022). In the present study, we
found that LbGp could improve motility in a PD model of C. elegans
through mechanisms consistent with antiaging, indicating that
LbGp can ameliorate the progression of PD. In support of our
findings, previous studies reported that the crude extracts and
polysaccharides of L. barbarum berry have protective effects against
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many aging-associated disorders, including cardiovascular diseases
and neurodegenerative diseases. For example, supplementation
with LBPs protected neurons against β-amyloid-induced apoptosis
and improved the learning and memory abilities of Sprague Dawley
rats with scopolamine-induced brain injury; crude extracts from LB
can alleviate the neurotoxicity of α-synuclein protein, β-amyloid,
and Aβ peptide in vitro and in vivo (Meng et al., 2022). Those
studies and our present results indicated that LbPs could improve
the symptoms of neurodegenerative disorders and that LbGp may
be the one of the main active ingredients in LBPs exert these
protective effects.

5. Conclusion

In conclusion, the innovation of this study lies in the
discovery that LbGp extracted from L. barbarum berries can
prolong the lifespan and health span and delay the occurrence
of aging-related diseases such as PD in C. elegans. These
findings provide a new strategy for preventing aging and aging-
related diseases. Mechanistically, the molecular mechanism of
LbGp-induced longevity is closely related to the IIS pathway,
reproductive signaling pathway and mitochondrial function-
related signaling pathway. It is necessary to expand our findings
on LbGp to mammalian model organisms. Therefore, in future
research, we will continue to search for new protective effects
against other neurodegenerative diseases and clarify the molecular
mechanisms of LbGp against aging and aging-related diseases in
different animal models.

Data availability statement

All data needed to evaluate the conclusions in this manuscript
are present in this manuscript and/or the Supplementarymaterial.
Requests to access the datasets should be directed to Q-LW,
wanqinli@hotmail.com.

Author contributions

JZ: investigation, methodology, software, visualization, and
writing–editing. ZL: investigation, methodology, visualization,
and writing–original draft. KC: investigation, methodology,

and visualization. YL and JY: methodology. QZ: investigation and
funding acquisition. K-FS: investigation and writing–reviewing and
editing. Q-LW: investigation, writing–reviewing and editing,
and funding acquisition. All authors contributed to the article and
approved the submitted version.

Funding

This work was supported by the National Key R&D Program
of China (2021YFA0804903), the National Natural Science
Foundation of China (No. 82001465), and the Guangdong
Provincial Basic Research Program, China (2020A1515111026).

Acknowledgments

We thank the Caenorhabditis Genetic Center (CGC) for
providing the worm strains.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fnagi.2023.
1156265/full#supplementary-material

References

Amagase, H., and Farnsworth, N. R. (2011). A review of botanical characteristics,
phytochemistry, clinical relevance in efficacy and safety of Lycium barbarum fruit
(Goji). Food Res. Int. 44, 1702–1717. doi: 10.1016/j.foodres.2011.03.027

Apfeld, J., O’connor, G., Mcdonagh, T., Distefano, P. S., and Curtis, R. (2004). The
AMP-activated protein kinase AAK-2 links energy levels and insulin-like signals to
lifespan in C. elegans. Genes Dev. 18, 3004–3009. doi: 10.1101/gad.1255404

Berman, J. R., and Kenyon, C. (2006). Germ-cell loss extends C. elegans life span
through regulation of DAF-16 by kri-1 and lipophilic-hormone signaling. Cell 124,
1055–1068. doi: 10.1016/j.cell.2006.01.039

Chiang, W. C., Ching, T. T., Lee, H. C., Mousigian, C., and Hsu, A. L. (2012).
HSF-1 regulators DDL-1/2 link insulin-like signaling to heat-shock responses and
modulation of longevity. Cell 148, 322–334. doi: 10.1016/j.cell.2011.12.019

Deng, H., and Yuan, L. (2014). Genetic variants and animal models in SNCA and
Parkinson disease. Ageing Res. Rev. 15, 161–176. doi: 10.1016/j.arr.2014.04.002

Ding, Y., Yan, Y., Chen, D., Ran, L., Mi, J., Lu, L., et al. (2019). Modulating effects
of polysaccharides from the fruits of Lycium barbarum on the immune response
and gut microbiota in cyclophosphamide-treated mice. Food Funct. 10, 3671–3683.
doi: 10.1039/C9FO00638A

Frontiers in Aging Neuroscience 10 frontiersin.org92

https://doi.org/10.3389/fnagi.2023.1156265
mailto:wanqinli@hotmail.com
https://www.frontiersin.org/articles/10.3389/fnagi.2023.1156265/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fnagi.2023.1156265/full#supplementary-material
https://doi.org/10.1016/j.foodres.2011.03.027
https://doi.org/10.1101/gad.1255404
https://doi.org/10.1016/j.cell.2006.01.039
https://doi.org/10.1016/j.cell.2011.12.019
https://doi.org/10.1016/j.arr.2014.04.002
https://doi.org/10.1039/C9FO00638A
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/


fnagi-15-1156265 June 30, 2023 Time: 12:43 # 11

Zheng et al. 10.3389/fnagi.2023.1156265

Gong, G., Liu, Q., Deng, Y., Dang, T., Dai, W., Liu, T., et al. (2020). Arabinogalactan
derived from Lycium barbarum fruit inhibits cancer cell growth via cell cycle arrest and
apoptosis. Int. J. Biol. Macromol. 149, 639–650. doi: 10.1016/j.ijbiomac.2020.01.251

Hekimi, S., Lapointe, J., and Wen, Y. (2011). Taking a “good” look at free radicals in
the aging process. Trends Cell Biol. 21, 569–576. doi: 10.1016/j.tcb.2011.06.008

Huang, C., Xiong, C., and Kornfeld, K. (2004). Measurements of age-related changes
of physiological processes that predict lifespan of Caenorhabditis elegans. Proc. Natl.
Acad. Sci. U.S.A. 101, 8084–8089. doi: 10.1073/pnas.0400848101

Huang, W., Zhao, M., Wang, X., Tian, Y., Wang, C., Sun, J., et al. (2022). Revisiting
the structure of arabinogalactan from Lycium barbarum and the impact of its side
chain on anti-ageing activity. Carbohydr. Polym. 286, 119282. doi: 10.1016/j.carbpol.
2022.119282

Huang, X., Wang, C., Chen, L., Zhang, T., Leung, K. L., and Wong, G.
(2021). Human amyloid beta and α-synuclein co-expression in neurons impair
behavior and recapitulate features for Lewy body dementia in Caenorhabditis elegans.
Biochim. Biophys. Acta Mol. Basis Dis. 1867:166203. doi: 10.1016/j.bbadis.2021.
166203

Huang, Y., Zheng, Y., Yang, F., Feng, Y., Xu, K., Wu, J., et al. (2022). Lycium
barbarum Glycopeptide prevents the development and progression of acute colitis by
regulating the composition and diversity of the gut microbiota in mice. Front. Cell.
Infect. Microbiol. 12:921075. doi: 10.3389/fcimb.2022.921075

Jia, W., Wang, C., Zheng, J., Li, Y., Yang, C., Wan, Q.-L., et al. (2022). Pioglitazone
hydrochloride extends the lifespan of Caenorhabditis elegans by activating DAF-
16/FOXO- and SKN-1/NRF2-Related signaling pathways. Oxid. Med. Cell. Longev.
2022:8496063. doi: 10.1155/2022/8496063

Jin, M., Huang, Q., Zhao, K., and Shang, P. (2013). Biological activities and potential
health benefit effects of polysaccharides isolated from Lycium barbarum L. Int. J. Biol.
Macromol. 54, 16–23. doi: 10.1016/j.ijbiomac.2012.11.023

Li, S.-T., Zhao, H.-Q., Zhang, P., Liang, C.-Y., Zhang, Y.-P., Hsu, A.-L., et al. (2019).
DAF-16 stabilizes the aging transcriptome and is activated in mid-aged Caenorhabditis
elegans to cope with internal stress. Aging Cell 18:e12896. doi: 10.1111/acel.12896

Liang, R., Zhao, Q., Zhu, Q., He, X., Gao, M., and Wang, Y. (2021). Lycium barbarum
polysaccharide protects ARPE-19 cells against H2O2-induced oxidative stress via the
Nrf2/HO-1 pathway. Mol. Med. Rep. 24:769. doi: 10.3892/mmr.2021.12409

Mao, F., Xiao, B., Jiang, Z., Zhao, J., Huang, X., and Guo, J. (2011). Anticancer
effect of Lycium barbarum polysaccharides on colon cancer cells involves G0/G1 phase
arrest. Med. Oncol. 28, 121–126. doi: 10.1007/s12032-009-9415-5

Masci, A., Carradori, S., Casadei, M. A., Paolicelli, P., Petralito, S., Ragno, R.,
et al. (2018). Lycium barbarum polysaccharides: Extraction, purification, structural
characterisation and evidence about hypoglycaemic and hypolipidaemic effects.
A review. Food Chem. 254, 377–389. doi: 10.1016/j.foodchem.2018.01.176

Meng, J., Lv, Z., Guo, M., Sun, C., Li, X., Jiang, Z., et al. (2022). A Lycium barbarum
extract inhibits β-amyloid toxicity by activating the antioxidant system and mtUPR
in a Caenorhabditis elegans model of Alzheimer’s disease. FASEB J. 36:e22156. doi:
10.1096/fj.202101116RR

Moskalev, A., Guvatova, Z., Lopes, I. A., Beckett, C. W., Kennedy, B. K.,
De Magalhaes, J. P., et al. (2022). Targeting aging mechanisms: Pharmacological
perspectives. Trends Endocrinol. Metab. 33, 266–280. doi: 10.1016/j.tem.2022.01.007

Motola, D. L., Cummins, C. L., Rottiers, V., Sharma, K. K., Li, T., Li, Y., et al. (2006).
Identification of ligands for DAF-12 that govern dauer formation and reproduction in
C. elegans. Cell 124, 1209–1223. doi: 10.1016/j.cell.2006.01.037

Niccoli, T., and Partridge, L. (2012). Ageing as a risk factor for disease. Curr. Biol.
22, R741–R752. doi: 10.1016/j.cub.2012.07.024

Niu, Y., Liao, J., Zhou, H., Wang, C. C., Wang, L., and Fan, Y. (2022).
Flavonoids from Lycium barbarum leaves exhibit anti-aging effects through the redox-
modulation. Molecules 27:4952. doi: 10.3390/molecules27154952

Palikaras, K., Lionaki, E., and Tavernarakis, N. (2015). Coordination of mitophagy
and mitochondrial biogenesis during ageing in C. elegans. Nature 521, 525–528. doi:
10.1038/nature14300

Park, S.-J., Ahmad, F., Philp, A., Baar, K., Williams, T., Luo, H., et al. (2012).
Resveratrol ameliorates aging-related metabolic phenotypes by inhibiting cAMP
phosphodiesterases. Cell 148, 421–433. doi: 10.1016/j.cell.2012.01.017

Peng, X.-M., Huang, L.-J., Qi, C.-H., Zhang, Y.-X., and Tian, G.-Y. (2001). Studies
on chemistry and immunomodulating mechanism of a glycoconjugate from Lycium
barbarum L. Chin. J. Chem. 19, 1190–1197. doi: 10.1002/cjoc.20010191206

Ryu, D., Mouchiroud, L., Andreux, P. A., Katsyuba, E., Moullan, N., Nicolet-Dit-
Félix, A. A., et al. (2016). Urolithin A induces mitophagy and prolongs lifespan in
C. elegans and increases muscle function in rodents. Nat. Med. 22, 879–888. doi:
10.1038/nm.4132

Stegemann, S., Ecker, F., Maio, M., Kraahs, P., Wohlfart, R., Breitkreutz, J., et al.
(2010). Geriatric drug therapy: Neglecting the inevitable majority. Ageing Res. Rev. 9,
384–398. doi: 10.1016/j.arr.2010.04.005

Tang, R., Chen, X., Dang, T., Deng, Y., Zou, Z., Liu, Q., et al. (2019). Lycium
barbarum polysaccharides extend the mean lifespan of Drosophila melanogaster. Food
Funct. 10, 4231–4241. doi: 10.1039/C8FO01751D

Tian, G. (1995). Isolation, Purification and Properties of LbGP and Characterization
of Its Glycan-Peptide Bond. Chin. Sci. Abstr. Ser. B 4:38.

Tullet, J. M., Hertweck, M., An, J. H., Baker, J., Hwang, J. Y., Liu, S., et al. (2008).
Direct inhibition of the longevity-promoting factor SKN-1 by insulin-like signaling in
C. elegans. Cell 132, 1025–1038. doi: 10.1016/j.cell.2008.01.030

Wan, Q. L., Meng, X., Dai, W., Luo, Z., Wang, C., Fu, X., et al. (2021). N(6)-
methyldeoxyadenine and histone methylation mediate transgenerational survival
advantages induced by hormetic heat stress. Sci. Adv. 7:eabc3026. doi: 10.1126/sciadv.
abc3026

Wang, W., Xue, C., and Mao, X. (2020). Radioprotective effects and mechanisms
of animal, plant and microbial polysaccharides. Int. J. Biol. Macromol. 153, 373–384.
doi: 10.1016/j.ijbiomac.2020.02.203

Wei, Y., and Kenyon, C. (2016). Roles for ROS and hydrogen sulfide in the longevity
response to germline loss in Caenorhabditis elegans. Proc. Natl. Acad. Sci. U.S.A. 113,
E2832–E2841. doi: 10.1073/pnas.1524727113

Xiao, Y., Zhang, H., Sheng, Y., Liu, F., Gao, J., Liu, G., et al. (2022). Usnic Acid
extends healthspan and improves the neurodegeneration diseases via mTOR/PHA-4
signaling pathway in Caenorhabditis elegans. iScience 25:105539. doi: 10.1016/j.isci.
2022.105539

Xiong, L., Deng, N., Zheng, B., Li, T., and Liu, R. H. (2021). HSF-1 and SIR-2.1
linked insulin-like signaling is involved in goji berry (Lycium spp.) extracts promoting
lifespan extension of Caenorhabditis elegans. Food Funct. 12, 7851–7866. doi: 10.1039/
D0FO03300F

Zeng, W., Wu, A. G., Zhou, X.-G., Khan, I., Zhang, R. L., Lo, H. H., et al. (2021).
Saponins isolated from Radix polygalae extent lifespan by modulating complement
C3 and gut microbiota. Pharmacol. Res. 170:105697. doi: 10.1016/j.phrs.2021.105697

Zhang, F., Zhang, X., Guo, S., Cao, F., Zhang, X., Wang, Y., et al. (2020). An acidic
heteropolysaccharide from Lycii fructus: Purification, characterization, neurotrophic
and neuroprotective activities in vitro. Carbohydr. Polym. 249:116894. doi: 10.1016/j.
carbpol.2020.116894

Zhang, F., Zhang, X., Liang, X., Wu, K., Cao, Y., Ma, T., et al. (2022). Defensing
against oxidative stress in Caenorhabditis elegans of a polysaccharide LFP-05S from
Lycii fructus. Carbohydr. Polym. 289:119433. doi: 10.1016/j.carbpol.2022.119433

Zhang, L., Li, Q., Zheng, G., Chen, Y., Huang, M., Zhang, L., et al. (2017).
Protective effect of Lycium barbarum polysaccharides against cadmium-induced
testicular toxicity in male mice. Food Funct 8, 2322–2330. doi: 10.1039/c6fo01583b

Zhang, Z., Zhou, Y., Fan, H., Billy, K. J., Zhao, Y., Zhan, X., et al. (2019). Effects
of Lycium barbarum polysaccharides on health and aging of C. elegans depend on
daf-12/daf-16. Oxid. Med. Cell. Longev. 2019:6379493. doi: 10.1155/2019/6379493

Zhou, X., Zhang, Z., Shi, H., Liu, Q., Chang, Y., Feng, W., et al. (2022). Effects
of Lycium barbarum glycopeptide on renal and testicular injury induced by di(2-
ethylhexyl) phthalate. Cell Stress Chaperones 27, 257–271. doi: 10.1007/s12192-022-
01266-0

Frontiers in Aging Neuroscience 11 frontiersin.org93

https://doi.org/10.3389/fnagi.2023.1156265
https://doi.org/10.1016/j.ijbiomac.2020.01.251
https://doi.org/10.1016/j.tcb.2011.06.008
https://doi.org/10.1073/pnas.0400848101
https://doi.org/10.1016/j.carbpol.2022.119282
https://doi.org/10.1016/j.carbpol.2022.119282
https://doi.org/10.1016/j.bbadis.2021.166203
https://doi.org/10.1016/j.bbadis.2021.166203
https://doi.org/10.3389/fcimb.2022.921075
https://doi.org/10.1155/2022/8496063
https://doi.org/10.1016/j.ijbiomac.2012.11.023
https://doi.org/10.1111/acel.12896
https://doi.org/10.3892/mmr.2021.12409
https://doi.org/10.1007/s12032-009-9415-5
https://doi.org/10.1016/j.foodchem.2018.01.176
https://doi.org/10.1096/fj.202101116RR
https://doi.org/10.1096/fj.202101116RR
https://doi.org/10.1016/j.tem.2022.01.007
https://doi.org/10.1016/j.cell.2006.01.037
https://doi.org/10.1016/j.cub.2012.07.024
https://doi.org/10.3390/molecules27154952
https://doi.org/10.1038/nature14300
https://doi.org/10.1038/nature14300
https://doi.org/10.1016/j.cell.2012.01.017
https://doi.org/10.1002/cjoc.20010191206
https://doi.org/10.1038/nm.4132
https://doi.org/10.1038/nm.4132
https://doi.org/10.1016/j.arr.2010.04.005
https://doi.org/10.1039/C8FO01751D
https://doi.org/10.1016/j.cell.2008.01.030
https://doi.org/10.1126/sciadv.abc3026
https://doi.org/10.1126/sciadv.abc3026
https://doi.org/10.1016/j.ijbiomac.2020.02.203
https://doi.org/10.1073/pnas.1524727113
https://doi.org/10.1016/j.isci.2022.105539
https://doi.org/10.1016/j.isci.2022.105539
https://doi.org/10.1039/D0FO03300F
https://doi.org/10.1039/D0FO03300F
https://doi.org/10.1016/j.phrs.2021.105697
https://doi.org/10.1016/j.carbpol.2020.116894
https://doi.org/10.1016/j.carbpol.2020.116894
https://doi.org/10.1016/j.carbpol.2022.119433
https://doi.org/10.1039/c6fo01583b
https://doi.org/10.1155/2019/6379493
https://doi.org/10.1007/s12192-022-01266-0
https://doi.org/10.1007/s12192-022-01266-0
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/


fnagi-15-1213977 July 12, 2023 Time: 14:24 # 1

TYPE Original Research
PUBLISHED 18 July 2023
DOI 10.3389/fnagi.2023.1213977

OPEN ACCESS

EDITED BY

Muthuraman Muthuraman,
University Hospital Würzburg, Germany

REVIEWED BY

Wooyoung Jang,
Gangneung Asan Hospital, Republic of Korea
Steven Gunzler,
University Hospitals Cleveland Medical Center,
United States

*CORRESPONDENCE

Ming-Hong Chang
cmh500809@gmail.com

RECEIVED 28 April 2023
ACCEPTED 04 July 2023
PUBLISHED 18 July 2023

CITATION

Fang T-C, Tsai Y-S and Chang M-H (2023)
Sequential change in olfaction and (non)
motor symptoms: the difference between
anosmia and non-anosmia in Parkinson’s
disease.
Front. Aging Neurosci. 15:1213977.
doi: 10.3389/fnagi.2023.1213977

COPYRIGHT

© 2023 Fang, Tsai and Chang. This is an
open-access article distributed under the terms
of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction
in other forums is permitted, provided the
original author(s) and the copyright owner(s)
are credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted which
does not comply with these terms.

Sequential change in olfaction
and (non) motor symptoms: the
difference between anosmia and
non-anosmia in Parkinson’s
disease
Ting-Chun Fang1, Yu-Shan Tsai1 and Ming-Hong Chang1,2,3*
1Department of Neurology, Taichung Veterans General Hospital, Neurological Institute, Taichung,
Taiwan, 2Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing
University, Taichung, Taiwan, 3Brain and Neuroscience Research Center, College of Medicine, National
Chung Hsing University, Taichung, Taiwan

Introduction: Hyposmia is a common prodrome in patients with Parkinson’s

disease (PD). This study investigates whether olfactory changes in PD differ

according to the degree of olfactory dysfunction and whether there are changes

in motor and non-motor symptoms.

Methods: The 129 subjects with PD were divided into two groups: anosmia

and non-anosmia. All cases were reassessed within 1–3 years after the initial

assessment. The assessment included the MDS-Unified PD Rating Scale (MDS-

UPDRS), the University of Pennsylvania Smell Identification Test (UPSIT), Beck’s

Depression Inventory-II (BDI-II), Montreal Cognitive Assessment (MoCA), and

equivalence dose of daily levodopa (LEDD). The generalized estimating equation

(GEE) model with an exchangeable correlation structure was used to analyze the

change in baseline and follow-up tracking and the disparity in change between

these two groups.

Results: The anosmia group was older and had a longer disease duration than the

non-anosmia group. There was a significant decrease in UPSIT after follow-up

in the non-anosmia group (β = −3.62, p < 0.001) and a significant difference in

the change between the two groups (group-by-time effect, β = 4.03, p < 0.001).

In the third part of the UPDRS motor scores, there was a tendency to increase

the score in the non-anosmia group compared to the anosmia group (group-

by-time effect, β = −4.2, p < 0.038). There was no significant difference in the

group-by-time effect for UPDRS total score, LEDD, BDI-II, and MoCA scores.

Discussion: In conclusion, this study found that olfactory sensation may still

regress in PD with a shorter disease course without anosmia, but it remains stable

in the anosmia group. Such a decline in olfaction may not be related to cognitive

status but may be associated with motor progression.

KEYWORDS

Parkinson’s disease, olfactory dysfunction, UPSIT, MDS-UPDRS, equivalence dose of daily
levodopa, cognition, depression
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1. Introduction

Parkinson’s disease (PD) is the second most common
neurodegenerative disease, with a prevalence of around 1.4–3.0
per thousand in Taiwan which increases with aging (Liu et al.,
2016a,b). In addition to motor symptoms such as bradykinesia,
tremor, and rigidity, non-motor symptoms contribute to poor
quality of life in patients with PD (Rodríguez-Violante et al., 2015;
Tibar et al., 2018; Santos Garcia et al., 2019). Some non-motor
symptoms appear before motor symptoms, known as prodromal
non-motor symptoms of PD (Poewe et al., 2017). Olfactory
dysfunction, constipation, depression, and rapid eye movement
(REM) sleep behavior disorder (RBD) can represent prodromal
symptoms.

The Braak staging system explains prodromal symptoms
because alpha-synuclein aggregates, a pathological hallmark of
PD, are initially found in the olfactory bulb and the dorsal
motor nucleus of the vagus (Braak et al., 2003). One route
of propagation of alpha-synuclein inclusion in the dual-hit
hypothesis starts from the enteric nervous system with the gut
to brain spreading. This route is suggested to be associated
with the involvement of the autonomic nervous system and
premotor RBD, naming the body-first subtype. The other route
of alpha-synuclein pathology starts from the olfactory bulb and
anterior olfactory nucleus and spreads to adjacent areas such
as the olfactory tubercle, piriform cortex, periamygdaloid cortex,
and entorhinal cortex. However, the evidence of entry via the
olfactory pathway is still controversial because no advanced
lesions are found in non-olfactory cortical areas (Braak et al.,
2003; Horsager et al., 2020). In a PD mouse model, RBD-
like behavior occurred earlier than hyposmia, which correlates
with the finding in humans that PD patients with RBD were
more hyposmic than PD patients without RBD (Taguchi et al.,
2020). These findings suggest that the ascending pathway of the
brainstem may predominate in the spread of alpha-synuclein,
despite the initial deposition in the olfactory bulb (Braak et al., 2003;
Horsager et al., 2020).

However, hyposmia is still one of the common non-
motor symptoms in PD related to Lewy body pathology in
the olfactory system (Haehner et al., 2009; Rodríguez-Violante
et al., 2017). As the disease progresses, Lewy body pathology
increases in the olfactory system, but most studies show
inconsistent results in the relationship between hyposmia and
disease severity (Berendse et al., 2011; Yoo et al., 2020). Few
studies discuss the association between the duration of the
disease and olfactory dysfunction, and most of them did not
show an obvious correlation, and even the results of some
longitudinal studies are inconsistent (Ercoli et al., 2022). Due to
the ambiguous relationship between olfactory dysfunction and
disease duration, this study aims to investigate the longitudinal
change of olfactory function in PD patients based on their
degree of olfactory dysfunction. Given this uncertainty, we
also conducted a comprehensive analysis of disease severity,
medication usage, cognitive function, and depression during the
longitudinal follow-up period to provide a more comprehensive
comparison.

2. Materials and methods

2.1. Participants

Participants were recruited from the outpatient clinic at
Taichung Veteran General Hospital from 2017. Subjects were
selected on the basis of International Parkinson and MDS Clinical
Diagnostic Criteria for Parkinson’s disease. At the first visit
(T0), all subjects received a complete survey that included the
MDS-Unified Parkinson’s Disease Rating Scale (MDS-UPDRS),
the University of Pennsylvania Smell Identification Test (UPSIT),
Beck’s Depression Inventory-II (BDI-II), and Montreal’s Cognitive
Assessment (MoCA). Follow-up (T1) was conducted for these
patients with PD in 1–3 years after the first visit, and a
comprehensive survey was also conducted including MDS-UPDRS,
UPDIT, BDI, and MoCA. The equivalent dose of daily levodopa
was also calculated on the date of the first visit and the follow-
up, respectively. Individuals were excluded if they did not meet
the MDS clinical diagnostic criteria for Parkinson’s disease during
follow-up or could not complete the questionnaire. Those who
had upper respiratory tract infection and sinonasal disease which
might affect olfaction were also excluded. Written informed
consent was obtained from all participants. This study was
approved by Taichung Veterans General Hospital Institutional
Review Board/Ethics Committee (No. CE22189B). All methods
were performed in accordance with the Declaration of Helsinki
guidelines and hospital regulations.

2.2. Variables

The olfactory function was evaluated with the validated
Taiwanese version of UPSIT, an odor identification (Jiang et al.,
2010). The total score was 40 in this test and the cutoff value of
total anosmia was less than 19. Considering that the mean UPSIT
score is 17–20 in PD patients which is close to the cutoff value
19 of anomia in UPSIT, we divided subjects into two groups,
anosmia and non-anosmia based on the UPSIT score at the
first visit to represent the characteristics of profound olfactory
deficit or milder symptom in PD, respectively (Doty, 2001, 2012;
Picillo et al., 2014; Lawton et al., 2016). Non-motor symptoms
of PD were also assessed. For cognition, we used MoCA due
to its validation for assessing global cognitive abilities in PD
(Litvan et al., 2012). BDI-II was used for mood investigation
(Beck et al., 1996). Regarding the severity of motor symptoms
in PD, the part 3 score of MDS-UPDRS (UPDRS 3) and the
equivalent dose of daily levodopa (LEDD) were used to determine
the severity of motor symptoms (Goetz et al., 2008). The total
score of MDS-UPDRS (UPDRS T) was used to represent the
disease burden of PD. Scores of MDS-UPDRS Part 1 and Part
2 were used to represent the non-motor and motor experiences
of daily living, and Part 4 was used for motor complication.
To determine the motor subtypes, we utilized 11 items (2.10,
3.15–3.18) for tremor and five items (2.12, 2.13, 3.10–3.12) for
postural instability/gait difficulty (PIGD) from the MDS-UPDRS.
The ratio of mean tremor scores to the mean PIGD scores was
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employed to define the following subtypes: (1) tremor subtype
with a ratio ≥ 1.15 and (2) PIGD subtype with a ratio ≤ 0.90
(Stebbins et al., 2013).

2.3. Statistical analysis

Baseline clinical characteristics between the anosmia and
non-anosmia groups were compared by using chi-square test
for binary variables. UPSIT, MoCA, BDI-II, MDS UPDRS
scores, and LEDD scores were analyzed as continuous variables.
For continuous variables that follow a normal distribution,
Student t-tests were used for analysis. For variables that do
not follow a normal distribution, non-parametric Mann–Whitney
U tests were used for analysis. Multiple linear regression
adjusted for age, gender and disease was carried out to analyze
the relationship between UPSIT and each variable including
MoCA, BDI-II, UPDRS 3, UPDRS T, and LEDD scores at
baseline. Generalized estimating equation (GEE) model with an
exchangeable correlation structure, was used to assess the change
of longitudinal data, including MoCA, BDI-II, UPDRS 3, UPDRS
T, and LEDD, between the anosmia and non-anosmia groups at T1
compared with T0.

All tests were with a statistical significance level of p < 0.05 and
were reported with 95% confidence intervals (CIs). Data analysis
was performed with SPSS software (IBM Corporation, Armonk,
New York, NY, USA).

3. Results

3.1. Demographic data

A total of 129 participants were enrolled in this study. Table 1
shows that the anosmia and non-anosmia groups comprised 73
and 56 subjects, respectively. At baseline, the anosmia group was
older than the non-anosmia group (66.65 vs. 63.21, p = 0.032) and
had a longer disease duration (4.89 years vs. 3.27, p = 0.033). The
group with anosmia also demonstrated higher scores on UPDRST
and UPDRS3, but exhibited lower scores on the MoCA. However,
no significant differences were found between the two groups
regarding gender, follow-up interval, motor subtypes, scores of
UPDRS1, 2, and 4, LEDD and BDI scores. After the follow-up
for UPSIT re-evaluation, it was observed that 20 patients from
the non-anosmia group at the first visit had developed anosmia,
accounting for 35.7% of the non-anosmia group. Conversely, seven
patients from the anosmia group had transitioned to non-anosmia.
Eventually, the anosmia and non-anosmia groups comprised 86
and 43 subjects, respectively.

3.2. Correlations between UPSIT and
clinical features at baseline

The UPSIT scores of all participants at baseline were
significantly correlated with MoCA (β = 0.14, p = 0.015),
UPDRS 3 (β = −0.67, p = 0.001), and UPDRS T (β = −0.84,

TABLE 1 Characteristics of the participants at baseline.

Characteristic Anosmia
(n = 73)

Non-
anosmia
(n = 56)

P-value

Age, mean (SD), y 66.65 (8.63) 63.21 (9.33) 0.032*

Gender (%)

Male 39 (53.5) 37 (66.1) 0.148

Female 34 (46.5) 19 (33.9)

Disease duration,
mean (SD), y

4.89 (5.07) 3.27 (3.46) 0.033*

Follow-up interval,
mean (SD), y

1.52 (0.63) 1.65 (0.73) 0.288

UPDRST† 51.0 (37.0, 66.0) 43.0 (28.2, 53.0) 0.007*

UPDRS1† 9.0 (5.0, 14.0) 8.0 (5.0, 11.0) 0.378

UPDRS2† 8.0 (3.0, 13.5) 7.0 (3.2, 10.7) 0.211

UPDRS3† 32.0 (23.0, 41.0) 25.5 (17.0, 34.7) 0.002*

UPDRS4† 0 (0, 1.0) 0 (0, 0.7) 0.843

Motor subtype (%) 0.907

PIGD 34 (46.6) 24 (42.9)

Tremor 25 (34.2) 21 (37.5)

Indeterminate 14 (19.2) 11 (19.6)

LEDD† 474.0 (201.8,
787.5)

377.5 (140.6,
637.5)

0.090

MoCA† 26.0 (21.5, 28.0) 27.0 (25.0, 29.0) 0.016*

BDI† 10.0 (4.0, 17.0) 8.5 (4.0, 14.5) 0.447

y, years; SD, standard deviation; UPDRS, MDS-UPDRS; LEDD, equivalent dose of daily
levodopa; MoCA, Montreal’s Cognitive Assessment; BDI-II, Beck’s Depression Inventory-
II; PIGD, postural instability/gait difficulty. †Analyzed by non-parametric Mann–Whitney
U-tests, and presented with median (1st and 3rd quartile). *Significance, p < 0.05.

p = 0.007), after adjusting for age, gender, and disease duration.
However, no significant correlations were found between UPSIT
and BDI or LEDD.

3.3. Change in olfactory identification in
anosmia/non-anosmia groups

In the GEE analysis (Table 2), a significant group effect
revealed a lower UPSIT score in the anosmia group (β = −10.58,
p < 0.001). The time effect was significant in the non-anosmia
group (β = −3.62, p < 0.001) but not in the anosmia group. The
group-by-time effect was also significant (β = 4.03, p < 0.001),
indicating that the UPSIT score remained stable in the anosmia
group but decreased significantly in the non-anosmia group
(Figure 1A). These results remained significant after adjusting for
age, gender, and disease duration (Table 3).

3.4. Change in motor symptoms in
anosmia/non-anosmia groups

Significant group effects were found for UPDRS 3 and UPDRS
T (Table 3), indicating higher scores in the anosmia group at
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TABLE 2 Generalized estimating equation analysis for the comparison of outcomes.

Mean (SD) Group effect
(anosmia vs.

non-anosmia)

Time effect, anosmia
(T1 vs. T0)

Time effect, non-anosmia
(T1 vs. T0)

Group × time effect

Outcome Anosmia Non-anosmia B P-value B P-value B P-value B P-value

UPSIT

T0 12.57 (4.45) 23.16 (3.46) −10.58 <0.001* NA NA NA NA NA NA

T1 12.98 (4.75) 19.53 (6.29) 0.41 0.55 −3.62 <0.001* 4.03 <0.001*

LEDD

T0 545.39 (389.33) 429.43 (325.62) 115.95 0.064 NA NA NA NA NA NA

T1 697.40 (443.47) 588.23 (360.69) 152.01 <0.001* 158.79 <0.001* −6.78 0.879

MoCA

T0 24.19 (5.36) 26.32 (3.57) −2.13 0.007* NA NA NA NA NA NA

T1 24.00 (5.22) 25.85 (3.88) −0.19 0.684 −0.46 0.183 0.27 0.642

BDI-II

T0 11.20 (8.63) 10.00 (8.23) 1.2 0.416 NA NA NA NA NA NA

T1 10.73 (7.89) 10.90 (9.82) −0.46 0.682 0.83 0.462 −1.29 0.418

UPDRS3

T0 34.10 (14.82) 25.87 (12.23) 8.23 <0.001* NA NA NA NA NA NA

T1 32.86 (13.64) 28.91 (9.54) −1.24 0.425 3.03 0.022* −4.28 0.037*

UPDRST

T0 55.21 (25.71) 42.75 (18.66) 12.46 0.001* NA NA NA NA NA NA

T1 54.06 (24.00) 49.12 (21.29) −1.15 0.683 6.37 0.014* −7.52 0.049*

T0, first visit; T1, follow-up visit; SD, standard deviation; B, beta coefficient; UPSIT, University of Pennsylvania Smell Identification Test; LEDD, equivalent dose of daily levodopa; MoCA, Montreal’s Cognitive Assessment; BDI-II, Beck’s Depression Inventory-II;
UPDRS3, part 3 score of MDS-UPDRS; UPDRST, total score of MDS-UPDRS. *Significance, p < 0.05.
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FIGURE 1

Difference in changes between non-anosmia and anosmia group in UPSIT (A), UPDRST (B), UPDRS3 (C), LEDD (D), MoCA (E), and BDI-II (F) during
the follow-up. T0, first visit; T1, follow-up visit; UPSIT, University of Pennsylvania Smell Identification Test; UPDRST, total score of MDS-UPDRS;
UPDRS3, part 3 score of MDS-UPDRS; LEDD, equivalent dose of daily levodopa; MoCA, Montreal’s Cognitive Assessment; BDI-II, Beck’s Depression
Inventory-II.

baseline. Although there were trends of increasing UPDRS T
and UPDRS 3 scores in the non-anosmia group at follow-up
(Figures 1B, C and Table 2), the time effect lost its significance
after adjustment (Table 3). However, the group-by-time effect for
UPDRS 3 remained significant (β = −4.2, p < 0.038) after adjusting
for age, gender, and disease duration (Table 3). The increase in
UPDRS 3 score was much more pronounced in the non-anosmia
group (Figure 1C).

Regarding LEDD, the time effects for both the anosmia group
(β = 116.90, p = 0.001) and the non-anosmia group (β = 122.28,
p = 0.001) were significant, but there was no significance in either
group effect or group-by-time effect (Figure 1D and Table 3).

3.5. Change in cognition and mood in
anosmia/non-anosmia groups

The MoCA score was lower in the anosmia group with a
significant group effect (β = −2.13, p = 0.007) (Table 2), but the
significance disappeared after adjusting for age, gender, and disease
duration (Table 3). No significant effects for MoCA were found for
time or group-by-time effects (Figure 1E and Table 3). Likewise, no
significant effects were found for BDI in terms of group effect, time
effect, or group-by-time effect (Figure 1F and Table 3).

4. Discussion

The present study demonstrated that the UPSIT score regressed
in the non-anosmia group while remaining stable in the anosmia
group. Notably, the non-anosmia group had a relatively short
course of the disease in this study. Our findings are consistent with

those of other longitudinal studies. For instance, Lewis et al. (2020)
analyzed PD patients annually and found that UPSIT significantly
decreased in early and middle-stage PD but not in later-stage PD
with disease duration exceeding 5 years. Domellof et al. (2017)
explored the UPSIT outcome with the interaction effect between
the group (hyposmic/normosmic) and time, revealing that UPSIT
deteriorated over time in the normosmic group while remaining
stable in the hyposmic group. Meusel et al. (2010) showed a larger
olfactory decline in the subgroup of patients with no severe initial
olfactory deficit over 5 years of tracking. The patients with marked
olfactory regression had an average disease duration of 2.3 years at
the beginning of the visit.

Our results support these findings by indicating that the rate
of olfactory decline with disease progression is more pronounced
in patients without severe initial olfactory deficits, whereas the
olfactory deficit remains relatively stable in patients with profound
olfactory deficits. While olfactory impairment is considered a
premotor feature of Parkinson’s disease (PD), it is important to
note that the olfactory impairment may continue to progress even
after motor symptoms have emerged until it reaches a point known
as the “floor effect” in the current olfactory test (Fullard et al.,
2017). This corresponds to the hypothesis proposed by Huisman
et al. (2004) suggesting that dopaminergic neurons in the olfactory
bulb, which act as possible suppressors in olfactory transmission,
increase as a compensatory mechanism to the dopamine deficit
in the basal ganglia. With disease progression, the decrease in
olfactory bulb volume and the deposition of Lewy bodies in the
olfactory bulb may neutralize such inhibitory changes, resulting
in less significant olfactory degeneration (Herting et al., 2008).
However, olfactory loss in PD may not be simply explained
by imbalance of dopamine projection because the olfactory
function involves several neurotransmitters such as acetylcholine,
norepinephrine, serotonin and GABA (Doty, 2017). As olfactory

Frontiers in Aging Neuroscience 05 frontiersin.org98

https://doi.org/10.3389/fnagi.2023.1213977
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/


fnagi-15-1213977
July

12,2023
Tim

e:14:24
#

6

Fan
g

e
t

al.
10

.3
3

8
9

/fn
ag

i.2
0

2
3

.12
13

9
77

TABLE 3 Generalized estimating equation analysis for the comparison of outcomes, adjusted for age, gender, and disease duration.

Mean (SD) Group effect (anosmia vs.
non-anosmia)

Time effect, anosmia
(T1 vs. T0)

Time effect, non-anosmia
(T1 vs. T0)

Group × time effect

Outcome Anosmia Non-anosmia B P-value B P-value B P-value B P-value

UPSIT

T0 12.57 (4.45) 23.16 (3.46) −10.39 <0.001* NA NA NA NA NA NA

T1 12.98 (4.75) 19.53 (6.29) 0.55 0.435 −3.48 <0.001* 4.03 <0.001*

LEDD

T0 545.39 (389.33) 429.43 (325.62) 84.79 0.112 NA NA NA NA NA NA

T1 697.40 (443.47) 588.23 (360.69) 116.9 0.001* 122.28 0.001* −5.37 0.904

MoCA

T0 24.19 (5.36) 26.32 (3.57) −1.26 0.061 NA NA NA NA NA NA

T1 24.00 (5.22) 25.85 (3.88) −0.01 0.978 −0.23 0.53 0.21 0.711

BDI-II

T0 11.20 (8.63) 10.00 (8.23) 0.47 0.751 NA NA NA NA NA NA

T1 10.73 (7.89) 10.90 (9.82) −0.8 0.491 0.42 0.712 0 0.447

UPDRS3

T0 34.10 (14.82) 25.87 (12.23) 6.9 0.002* NA NA NA NA NA NA

T1 32.86 (13.64) 28.91 (9.54) −1.9 0.239 2.32 0.095 −4.2 0.038*

UPDRST

T0 55.21 (25.71) 42.75 (18.66) 8.52 0.015* NA NA NA NA NA NA

T1 54.06 (24.00) 49.12 (21.29) −3.31 0.265 4.01 0.138 −7.33 0.054

T0, first visit; T1, follow-up visit; SD, standard deviation; B, beta coefficient; UPSIT, University of Pennsylvania Smell Identification Test; LEDD, equivalent dose of daily levodopa; MoCA, Montreal’s Cognitive Assessment; BDI-II, Beck’s Depression Inventory-II;
UPDRS3, part 3 score of MDS-UPDRS; UPDRST, total score of MDS-UPDRS. *Significance, p < 0.05.
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dysfunction appears to be more closely associated with the body-
first type of alpha-synuclein propagation, the pathology primarily
affecting the dorsal motor nucleus of the vagus or brainstem
may impact olfactory function through the development of
alpha-synucleinopathy in the bilateral olfactory bulbs or other
brainstem nuclei that project to the olfactory system (Borghammer,
2021). Some cross-sectional studies have shown that olfactory
degeneration is unrelated to the disease’s course (Cavaco et al., 2015;
Masala et al., 2018). Other longitudinal studies have also shown no
significant change in olfaction over time in patients with PD (Doty
et al., 1988; Muller et al., 2002; Herting et al., 2008; Campabadal
et al., 2017; Fujio et al., 2020). Such different results may be related
to different study designs, such as the number of patients enrolled,
the characteristics of different patient groups, and so on. In our
study, patients were divided into two groups, anosmia and non-
anosmia, and the course of the disease differed between the two
groups. Therefore, grouping patients according to the degree or
duration of olfactory abnormalities may explain the discrepancies
between the results of these studies.

Olfactory deterioration in patients with PD is thought to be
associated with cognitive decline, and in particular, the accuracy
of olfactory identification tests is often affected by cognitive
decline (Laing and Doty, 2003). However, the results of this
study showed that although the UPSIT scores of the non-anosmia
group decreased after follow-up, there was no significant difference
in the MoCA scores for the cognitive function component.
This may suggest that while there is a significant association
between hyposmia in PD patients and cognitive decline, the
initial regression in olfactory identification is not solely attributed
to cognitive decline. Other factors, such as Lewy body-related
pathology in the peripheral and central olfactory organs or change
in the balance of neurotransmitters, may play a role.

Regarding disease severity, although the association with
olfactory abnormalities remains inconclusive, our study found a
significant association between UPSIT and UPDRS T score and
UPDRS 3 scores, in line with the results of other studies (Roos
et al., 2019). Unlike the longitudinal study by He et al. (2020) which
showed that olfactory abnormalities were predictive of disease
progression, our study found no change in UPDRS T and UPDRS
3 score in the anosmia group during short-term follow-up, but
there was a tendency for symptoms to progress in the non-anosmia
group. These different results may be due to differences in the
length of follow-up, patient subgroups, and analysis methods.

In addition, the worsening of Parkinson’s symptoms and
olfaction in the non-anosmia group during the follow-up period
may indirectly support the theory of Lewy body pathology between
the brainstem and olfactory organs, as well as the influence of
neurotransmitters such as dopamine. In the Braak staging system,
Lewy body pathology was initially found in the olfactory bulb,
but this lesion did not progress further, suggesting that a cascade
of pathological changes from the brainstem upward is the main
pathway (Braak et al., 2003). Horsager et al. (2020) proposed
a body-first and brain-first model for the progression of PD
pathology based on the presence or absence of RBD and the results
of 123I-metaiodobenzylguanidine (MIBG) scintigraphy. The body-
first model corresponds to the spreading pathway of the Braak
staging system. In addition to autonomic-related prodrome and
RBD, the body-first model has a faster progression of motor
symptoms and earlier olfactory abnormalities than the brain-first

model (Borghammer et al., 2021). These features of the body-
first model may reflect the association between olfactory Lewy
pathology and the caudo-rostral progression of Lewy pathology.
However, olfactory Lewy pathology is not only related to caudo-
rostral progression. Kok et al. (2021) found two features of
olfactory Lewy pathology in the Vantaa85 + cohort: caudo-rostral
progression and amygdala-based progression, corresponding to
the body-first and brain-first models, respectively. This may also
explain why not all patients in the non-anosmia group in our
study turned to anosmia during follow-up and indicates that the
severity and pathological changes of olfaction in PD are not a single
pattern of progression. Further research with larger, more definitive
patient classification, longer follow-up studies, and the inclusion
of pathology and imaging is required to elucidate the relationship
between olfaction and PD.

This study has some limitations. First, the follow-up period
of 1–3 years and the single follow-up session may not have been
sufficient to detect changes in clinical data over a longer period.
However, changes in olfaction in patients with shorter disease
duration and non-anosmia progressed within 3 years, while the
severity of significant motor symptoms and cognitive function may
require a longer follow-up period to observe a difference. Second,
although we tried to exclude the possibility that olfactory tests were
affected by diseases such as sinonasal disease or upper respiratory
tract infection, which commonly affect the sense of smell, there are
many other causes of olfactory abnormalities, including idiopathic
causes (which may account for 18% of patients with olfactory
abnormalities), that may affect test results (Temmel et al., 2002).
Thirdly, for safety and the subjects’ preference, we used the On
status UPDRS score for the assessment of motor symptoms and
disease severity, and therefore, the assessment may be influenced by
medication. Nevertheless, these patients are regularly followed up
in the outpatient clinic, and the physician ensures that the patient’s
medication dosage is adequate. We also analyzed LEDD, which
showed that the non-anosmia group had a lower LEDD than the
anosmia group, but there was no significant difference between
the two. This indirectly implies that the non-anosmia group was
not using fewer medications despite having a lower UPDRS score.
Therefore, the effect of insufficient dosage of medication on the
increasing UPDRS score in the non-anosmia group in this study
may be subtle.

5. Conclusion

In conclusion, this study shows that olfactory sensation may
still regress in Parkinson’s patients with a shorter course of the
disease without anosmia, while it remains stable in the anosmia
group. Such a decline in olfaction may not be related to cognitive
status but may be associated with disease progression. Larger,
long-term follow-up studies incorporating pathology and imaging
analysis are needed to elucidate the underlying mechanisms.
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Machine learning models for
diagnosis and prognosis of
Parkinson’s disease using brain
imaging: general overview, main
challenges, and future directions
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2Imaging AI Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg,
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Parkinson’s disease (PD) is a progressive and complex neurodegenerative disorder

associatedwith age that a�ectsmotor and cognitive functions. As there is currently

no cure, early diagnosis and accurate prognosis are essential to increase the

e�ectiveness of treatment and control its symptoms. Medical imaging, specifically

magnetic resonance imaging (MRI), has emerged as a valuable tool for developing

support systems to assist in diagnosis and prognosis. The current literature aims

to improve understanding of the disease’s structural and functional manifestations

in the brain. By applying artificial intelligence to neuroimaging, such as deep

learning (DL) and other machine learning (ML) techniques, previously unknown

relationships and patterns can be revealed in this high-dimensional data. However,

several issues must be addressed before these solutions can be safely integrated

into clinical practice. This review provides a comprehensive overview of recent

ML techniques analyzed for the automatic diagnosis and prognosis of PD in brain

MRI. The main challenges in applying ML to medical diagnosis and its implications

for PD are also addressed, including current limitations for safe translation into

hospitals. These challenges are analyzed at three levels: disease-specific, task-

specific, and technology-specific. Finally, potential future directions for each

challenge and future perspectives are discussed.

KEYWORDS

Parkinson’s disease, translational ML, neuroimaging, machine learning, deep learning,

computer-aided diagnosis, digital health

Introduction

Computer-aided diagnosis (CAD) systems based onmedical imaging has the potential to

assist clinical practice in the diagnosis of Parkinson’s disease (PD). However, the suitability

of CAD systems for this application is still being evaluated, and several key aspects must be

taken into consideration.

The primary objective of CAD systems is not to replace radiologists and clinicians, but to

support them in improving the quality and efficiency of their diagnoses (Chen et al., 2013).

Although CAD systems have been in use for several decades, with successful applications in

detecting pulmonary nodules (Xu et al., 1997) and breast cancer (Mangasarian et al., 1995),

they were previously reliant on manual feature extraction based on domain knowledge.

However, with the recent emergence of Machine Learning (ML) techniques, such as Deep

Learning (DL), the automatic extraction of features from imaging data has become possible

Frontiers in AgingNeuroscience 01 frontiersin.org103

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/journals/aging-neuroscience#editorial-board
https://www.frontiersin.org/journals/aging-neuroscience#editorial-board
https://www.frontiersin.org/journals/aging-neuroscience#editorial-board
https://www.frontiersin.org/journals/aging-neuroscience#editorial-board
https://doi.org/10.3389/fnagi.2023.1216163
http://crossmark.crossref.org/dialog/?doi=10.3389/fnagi.2023.1216163&domain=pdf&date_stamp=2023-07-19
mailto:garciasantacruz.beatriz@chl.lu
https://doi.org/10.3389/fnagi.2023.1216163
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnagi.2023.1216163/full
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org


Garcia Santa Cruz et al. 10.3389/fnagi.2023.1216163

(Doi, 2007). Furthermore, the availability of large datasets and

more powerful computational infrastructure has facilitated the

development of advanced ML algorithms, which have the potential

to significantly improve the accuracy of CAD systems (Neri et al.,

2019).

Although CAD systems based on Artificial Intelligence (AI)

have the potential to greatly enhance the effectiveness of clinical

diagnosis and prognosis workflows, it is essential to carefully

consider several key factors to ensure their safe and effective

implementation in clinical practice. In fact, there is often a gap

between the research literature on ML models and their final

deployment in clinical applications. Closing this gap requires

careful consideration and addressing several crucial aspects such

as model robustness, data quality and bias, regulatory compliance,

integration with existing clinical workflows, and ongoing validation

in real-world settings.

A good example of a clinical deployment of an AI system that

exemplified this gap is the AI-based tool by Google, Automated

Retinal Disease Assessment (ARDA) system. Although this DL

system was successfully developed and internally validated at the

research level in 2016 (Gulshan et al., 2016), it faced several

challenges in transitioning from the theoretical expectations to the

reality of deploying the AI model tool in India and Thailand, as

discussed in a recent paper highlighting the necessity of considering

this gap (Widner et al., 2023).

While previous review papers have thoroughly covered the

topic of using ML as a proof-of-concept for CAD systems

(Sakai and Yamada, 2019; Mei et al., 2021), there has not been

a previous review that specifically addresses the changes and

potential solutions associated with the translation of these models

into clinical practice for PD imaging using ML.

This review is organized as follows: first, a comprehensive

background on PD, including related conditions and proposed

clinical subtypes is presented. Second, the diagnosis and prognosis

of PD is introduced, with a specific focus on the employment

of magnetic resonance imaging (MRI). Lastly, a comprehensive

analysis of the present status of computer-aided diagnosis, will be

discussed, emphasizing the main limitations and future directions

at three different levels. These considerations will take into account

the unique features of PD, as well as the limitations of clinical

brain imaging datasets, and the challenges associated with ML

and DL approaches. By considering these factors, this review

aims to provide insights into the potential of CAD in assisting

clinical practice in the diagnosis of PD, while also highlighting the

challenges that need to be addressed to ensure its safe and effective

translation into clinical practice.

Parkinson’s disease and related
disorders

It has been more than 200 years since the first description

of the symptoms of PD by James Parkinson in his essay “The

Shaking Palsy” (Parkinson, 2002). This first description refers to

some of the most prominent physical landmarks of the disease,

such as tremors and flexed posture. Nowadays, we have a more

holistic understanding of this complex neurodegenerative disease,

but currently, there is no cure, and no established biomarker for

differential diagnosis of the disease (Tolosa et al., 2021).

PD is the second most common neurodegenerative disorder

after Alzheimer’s disease (AD), with more than 10 million people

affected worldwide (Marras et al., 2018). One of the main risk

factor associated with PD is advanced age. Considering that the

elderly population is expected to double by 2050, the number of

PD patients is expected to increase accordingly (Nerius et al., 2017).

It is characterized by visible motor symptoms such as slowness of

movement, muscle rigidity, and tremors at rest (Sveinbjornsdottir,

2016). However, non-motor symptoms such as depression, anxiety,

cognitive deficits, sleep disturbance, hyposmia, cardiovascular

problems, and bladder dysfunction can also be debilitating and

may present before the motor problems (Chaudhuri et al., 2006).

Notably, there is growing evidence that PD is associated with

gastrointestinal dysfunction and changes to the microbiome, which

may have potential as a biomarker (Elfil et al., 2020). By the time

the main physical symptoms of PD appear and the patient receives

a diagnosis, 30%–50% of the dopamine neurons vulnerable to

PD are already lost. Hence, a key goal is to detect and quantify

PD biology before their symptoms appear, during the prodromal

phase (Pellicano et al., 2007). Clinical markers of this phase are

non-motor and motor symptoms. Non-motor symptoms include

hyposmia, constipation, REM sleep behavior disorder (RBD),

excessive daytime somnolence, depression and/or anxiety, global

cognitive deficit, and orthostatic hypotension. Motor symptoms

include voice and face akinesia (Hustad and Aasly, 2020).

PD affects various regions of the nervous system and different

types of neurons. However, much attention has been given

to neurons in brain regions associated with motor symptoms,

particularly the substantia nigra pars compacta in the midbrain.

This region is involved in a critical brain pathway that facilitates

movements, known as the nigrostriatal pathway (Eriksen et al.,

2009). One of the most widely accepted frameworks to describe the

spread of sporadic PD is Braak’s hypothesis, which suggests that PD

progresses through six different stages, gradually evolving from the

lower brain stem to the neocortex (Rietdijk et al., 2017). The gradual

degeneration of dopaminergic neurons in the substantia nigra leads

to the malfunction of this pathway and the characteristic motor

problems. It has been proposed that not all patients follow this

progression, and two subtypes have been suggested for the disease

evolution: peripheral nervous system first (PNS-first) and central

nervous system first (CNS-first) (Borghammer and Van Den Berge,

2019). The existence of these subtypes is supported by in vivo

imaging studies of RBD-positive and RBD-negative patient groups

(Borghammer and Van Den Berge, 2019), as well as for genetic

makers (Blauwendraat et al., 2020).

Current treatments for deficits in dopamine often involve

the use of drugs that either replace or mimic dopamine in

the brain (Cools, 2006). However, over time, the effectiveness

of these drugs tends to diminish. In addition to medication,

physical therapy can be employed as a complementary approach to

enhance cognitive function in individuals with dopamine deficits

(da Silva et al., 2018). Physical therapy focuses on improving

mobility, balance, and coordination, which can positively impact

cognitive abilities. Furthermore, alternative therapeutic avenues

are being explored. Probiotics have shown potential in reducing
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constipation associated with Parkinson’s disease (Tan et al.,

2021). Additionally, anaerobic exercise has been investigated as a

current approach for managing dopamine deficits (Schootemeijer

et al., 2020). Moreover, emerging treatment options include drug

repurposing, regenerative therapies, gene therapies, and cell-

based treatments (Stoker and Barker, 2020). These innovative

approaches offer promising prospects in the management of

dopamine-related deficits.

Deep brain stimulation (DBS) is an effective treatment option

for PD by targeting the subthalamic nucleus, globus pallidus (Lee

et al., 2019), ventral intermedius nucleus (Fasano et al., 2012),

and pedunculopontine nucleus (Thevathasan et al., 2018). Next-

generation noninvasive DBS technologies, such as noninvasive

or minimally invasive DBS (Lozano, 2017), transcranial direct

current stimulation (tDCS) (Broeder et al., 2015), and transcranial

magnetic stimulation (TMS) (Cantello et al., 2002), have also shown

positive effects in reducing non-motor symptoms of PD when

appropriate controls for side effects are in place. However, there is

currently no cure for neurodegeneration, and current efforts focus

on reducing symptoms to improve the quality of life.

Related conditions

Several neurological movement disorders are closely associated

with PD, and differentiating it from other diseases can be

challenging, especially during the initial stages of the disease

(Poewe and Wenning, 2002). Related disorders that share

similar clinical features with PD can be classified into two

broad categories: degenerative disorders and non-degenerative

disorders (Politis, 2014). Degenerative disorders, such as Multiple

System Atrophy (MSA), Progressive Supranuclear Palsy (PSP),

Corticobasal Degeneration (CBD), Dementia with Lewy Bodies

(DLB), and AD, can present with clinical features that overlap

with PD. On the other hand, non-degenerative disorders such as

Essential Tremor (ET), dystonic tremor, exaggerated physiological

tremor, tremor related to hyperthyroidism, vascular parkinsonism,

normal pressure hydrocephalus (NPH) (Stolze et al., 2001) and

drug-induced parkinsonism can also mimic some of the clinical

features of PD.

Parkinson’s disease clinical subtypes

The clinical and neuropathological heterogeneity of PD

patients is well known, and consequently there have been many

attempts to identify different subtypes. Initial approaches consisted

of empirical classifications using a priori hypotheses (Zetusky

et al., 1985; Jankovic et al., 1990). In recent years, research

works have progressively employed data-driven cluster analysis

that includes longitudinal assessment of motor and non-motor

symptoms (De Pablo-Fernández et al., 2019; Zhang et al., 2019;

Dadu et al., 2022). This classification method looks promising

for informing patients about the future progression of the disease

and for personalizing treatment. However, these criteria are not

yet applied in clinics since more research is needed to unify

and validate the criteria using well-curated longitudinal cohorts.

Among the multiple attempts to separate the disease, several

criteria have been applied, including early-onset vs. late-onset

(Riboldi et al., 2022) slow vs. fast progression, with or without

dementia or tremor-dominant vs. gait-dominant (Dadu et al.,

2022).

Machine learning, deep learning and
computer vision

In recent years, ML and DL have gained significant attention

in healthcare and medical research. These computational tools

enable the analysis of large and complex datasets to learn patterns

and relationships, with DL algorithms utilizing multiple layers of

artificial neural networks to extract abstract data representations

such as images. Furthermore, Computer Vision (CV) seeks to

enable computers to interpret and understand visual information

from the surrounding environment. Supervised learning is a

common type of ML employed in PD research, where labeled

datasets are used to train the algorithm to make predictions on

unseen data. Convolutional neural networks (CNNs) are the most

frequently used type of neural network for image recognition to

conduct tasks such as classification in medical imaging. In Figure 1,

a graphical representation of the training and development of a

ml-based system for clinical use is depicted.

The quality of data and labels are crucial factors that can

significantly impact the performance of ML models. In current

ML models, data is the most important component as the models

learn from the data presented to them. Therefore, the quality

of the data used in the training process is crucial. Other factors

that can influence the quality of models include the choice of

ML algorithms, feature engineering, hyperparameter tuning, and

model selection. In addition to data quality, the quality of labels

is also critical. Poor quality labels can result in biased models,

incorrect predictions, and suboptimal performance.Moreover, data

representation is equally important for a good model performance.

A training set should be a representation of the event that we want

to model, and a good validation strategy is essential for assessing

the generability of the model.

Parkinson’s disease diagnosis and
prognosis

Accurate diagnosis of PD is essential, and achieving enough

specificity to distinguish between similar conditions during the

clinical phase is crucial. Developing monitoring tools to track

disease progression and evaluate individual patient response,

including the presence and magnitude of treatment side effects,

is also necessary. Furthermore, quantifying the different systems,

such as motor, memory, and limbic system, could help stratify

patients. In terms of prognosis, ongoing efforts are focused on

establishing clear criteria for patient stratification into different

subtypes, which would aid in the development of targeted
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FIGURE 1

Training and using an ML model in the clinic involves two main phases. In the blue phase, the model is trained and validated using data from the same

hospital. This ensures it learns from the hospital’s specific context and performs well within that setting. After this, the model undergoes clinical

validation to ensure its reliability and safety before deployment. In the green phase, the model can be used in new hospitals, but caution is needed to

address potential generalization issues. Variations in healthcare systems and patient populations may a�ect its performance. Thorough testing and

evaluation are necessary to ensure accurate and safe application in di�erent healthcare settings.

FIGURE 2

Proposed biomarkers for PD using MRI: (A) Prodromal biomarker: identifying brain changes during the prodromal phase. (B) Di�erential diagnosis

biomarker: assisting in distinguishing PD from related diseases. For instance, ET or MSA. (C) Subtype biomarker: classifying PD patients into their

corresponding subtypes. (D) Progression biomarker: aiding in predicting the progression of the disease and treatment response with disease

monitoring. (E) Therapy response biomarker: facilitating personalized medicine by finding the best drug, dietary protocols, physical or cognitive

therapies, and predicting the potential response to other therapies such as DBS and non-invasive DBS.

treatment approaches. Figure 2 proposes five different biomarkers

that are relevant in the context of PD.

The current diagnostic criteria for PD is biased on a

comprehensive evaluation of a patient’s clinical presentation and

medical history. Given the lack of a definitive diagnostic test for PD,

clinicians rely on a variety of subjective and objective measures to

make an accurate diagnosis. Clinical evaluation, involving detailed

inquiry into the patient’s symptoms, medical history, and family

history, represents a fundamental component of the diagnostic

process. Alongside this, a thorough physical examination aimed

at assessing motor function, including muscle strength, reflexes,

and coordination, as well as cognitive function and mood, is also
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typically conducted. To support a clinical diagnosis, objective tests

may be employed. Imaging modalities such as MRI or computed

tomography (CT) scans are typically employed to rule out other

conditions that may present similarly to PD. Furthermore, nuclear

imaging techniques such as Single Photon Emission Computed

Tomography (SPECT) and Positron Emission Tomography (PET)

can serve to buttress the diagnosis of PD.

Nowadays, there is a significant effort to find biomarkers for

PD. In the preclinical phase, it highlights biomedical markers, such

as those that measure the activity of mitochondria dysfunction

and oxidative stress (He et al., 2018). Others focus on measuring

abnormal protein aggregation and accumulation, such as alpha-

synuclein (Foulds et al., 2011) or tau protein (Constantinescu and

Mondello, 2013). Some try to measure established clinical features

such as olfactory dysfunction, RBD, or constipation. During the

prodromal phase, genetic biomarkers have been explored, such

as mutations in Parkin (Pickrell and Youle, 2015), Leucine-rich

repeat kinase 2 (LRRK2) (Tolosa et al., 2020), or Alpha-synuclein

(SNCA) (Mata et al., 2010). Finally, neuroimaging techniques are

also promising.

In the context of brain imaging, a biomarker is an objective

characteristic derived from an in vivo image that measures a

normal biological process, pathological process, or response to a

therapeutic intervention (Mohammadi, 2013). It must fulfill the

following criteria: be quantitative, repeatable, reproducible, precise,

reliable, sensitive, and specific, and be measured on a ratio or

interval scale (Smith et al., 2003).

Medical imaging in Parkinson’s disease

The main advantage of brain imaging is that it allows for the

visualization of the functional and structural brain changes that

result from underlying pathophysiological abnormalities (Saeed

et al., 2017). There are several imaging techniques that can be used

to aid in the diagnosis and prognosis of PD.

On the one hand, there is a set of non-invasive techniques for

investigating PD, such as structural magnetic resonance imaging

(MRI) with T1, T2, and susceptibility-weighted sequences, which

allow for volumetric and voxel-based morphometric analyses,

as well as MRI-derived visual signatures (Saeed et al., 2017;

Chougar et al., 2021). For instance, Schwarz et al. (2014) proposed

that the appearance of the dorsolateral substantia nigra as a

“swallow tail” shape on high-resolution, iron-sensitive, MRI at

3T, where healthy nigrosome-1 appears as a characteristic feature

that could be employed as a marker of degeneration in that area.

Further, a promising structural MRI sequence for PD diagnosis

is neuromelanin-sensitive MRI (NM MRI), which can detect

neuromelanin, a pigment synthesized by the substantia nigra

dopamine neurons that is lost when neurons die in PD patients.

NM’s avid binding of iron enables its detection via magnetic

resonance imaging (Sulzer et al., 2018). The use of NM MRI

to define regions of interest (ROIs) in the substantia nigra pars

compacta (SNpc) has shown promising results compared to using

T2*-weighted contrasts. This approach has yielded consistent

results, and studies have found that the mean R2* in the SNpc, as

defined by neuromelanin-sensitiveMRI, was significantly increased

in PD patients (Langley et al., 2019).

Diffusion tensor MRI (DT-MRI) is another technique used

to study the structural connectivity of the brain in PD. DT-MRI

investigates the integrity of white matter tracts connecting different

brain regions, and studies have shown that it can detect changes in

white matter connectivity in PD patients. Specifically, Yoshikawa

et al. (2004) demonstrated that DT-MRI can detect the loss of

fractional anisotropy (FA) in the nigrostriatal projection, indicating

that more than half of the dopaminergic neurons in this projection

may be lost before the onset of PD.

Furthermore, functional magnetic resonance imaging (fMRI)

can detect changes in blood flow in response to neural activity,

which enables researchers to study brain function. In PD, fMRI

has been used to investigate changes in brain activity related to

both motor and non-motor symptoms. For instance, Tahmasian

et al. (2015) employed resting-state (rs-fMRI) to assess the effect of

dopamine replacement therapies, such as levodopa and dopamine

agonists, on PD patients. Additionally, researchers have used

fMRI techniques to investigate the effect of DBS therapy in the

modulation of specific brain regions. An example of this is a

study by Boutet et al. (2021), in which fMRI brain response

patterns were used to predict the optimal parameters for DBS by

identifying patterns associated with clinically effective stimulation

that preferentially engages the motor circuit.

Additionally, Transcranial sonography (TCS) is an

ultrasound-based neuroimaging technique that utilizes low

frequency sound waves to generate images of the brain. In the

context of PD diagnosis, TCS has been employed to investigate

the structure and function of the SN, among other brain regions.

Mahlknecht et al. (2013) demonstrated that TCS exhibits favorable

diagnostic accuracy in detecting PD subjects based on the presence

of hyperechogenicity in the SN Furthermore, TCS has been

investigated as a potential tool to establish disease progression

biomarkers that could provide real-time feedback on the rate of

dopaminergic neuronal death in animal models (Zhang et al.,

2020).

On the other hand, invasive molecular imaging techniques

such as PET and SPECT can detect reduced density of

dopaminergic nerve terminals in the basal ganglia. PET is an

in vivo functional neuroimaging technique that utilizes a variety

of radionuclides to assess the integrity of the dopaminergic

system, cerebral metabolism, pathological protein accumulation,

and inflammation in the brain (Saeed et al., 2017). Radiotracers,

such as 18F-dopa (Morrish et al., 1996) and 11C-raclopride

(Politis et al., 2008), can image the integrity of presynaptic

and postsynaptic nigrostriatal and hypothalamus projections,

respectively. Using SPECT, dopamine transporter SPECT (DAT

SPECT) imaging is an objective tool for assessing dopaminergic

function of presynaptic terminals, differentiating parkinsonian

disorders related to striatal dopaminergic deficiency from those not

related. DAT SPECT imaging can confirm or exclude a diagnosis

of dopamine-deficient parkinsonism and detect dopaminergic

dysfunction in presymptomatic subjects at risk for PD. Normal

DAT SPECT findings exclude presynaptic striatal dopaminergic

insufficiency, while abnormal findings indicate a variety of diseases

with this insufficiency as a common pathophysiological process

(Akdemir et al., 2021). For instance, DaT SPECT imaging with

(123I)ioflupane is a useful tool to distinguish between PD-tremor

and non-PD tremor, such as ET (Bajaj et al., 2013). Besides,
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other non-dopaminergic imaging techniques such as glucose

metabolism and PDE10A expression have been proposed to study

PD (Pagano et al., 2016). Additionally, extrastriatal 123I-FP-CIT

SPECT impairment has been proposed to detect early cases of PD

(Nicastro et al., 2020).

While imaging techniques are currently used for research

purposes and can assist in challenging cases, they are not commonly

used for diagnosing PD. However, it is worth noting that most

PD diagnoses do not involve imaging. In the future, brain imaging

could be integrated into the diagnostic process as advancements in

techniques likeML andCVhold promise for improving the analysis

of imaging data. These developments may enable more accurate

and reliable diagnostic applications of imaging in PD.

Computer-aided diagnosis using brain
imaging: main limitations and future
directions

The main limitations of CAD systems in the context of PD

can be grouped into three categories. The first set of limitations

represented in Figure 3 pertains to the particularities of PD, its

diagnosis, and prognosis. The second set of limitations is associated

with the characteristics of datasets consisting of brain imaging.

These limitations include factors such as the heterogeneity of the

imaging modalities used, variability in image acquisition protocols,

challenges in image preprocessing and feature extraction, and

issues related to sample size and data quality. The third set of

limitations is associated with the use of ML/DL-based algorithms

for CAD systems. These limitations include challenges such as

overfitting, lack of interpretability, bias and generalization issues,

and difficulties in integrating multiple data sources. A summary of

the main limitations can be found in Table 1, which will serve as a

reference point throughout the discussion of potential solutions to

address these limitations.

CAD systems have the potential to improve the accuracy and

efficiency of diagnosing various diseases. By analyzing medical

imaging data, genetic data, and clinical data, these systems can

identify patterns and biomarkers associated with the disease that

may be difficult to detect otherwise, which can accelerate the

diagnostic and treatment workflows in clinical pathways.Moreover,

CAD systems can be employed to evaluate disease progression,

measure therapeutic responses to drugs in clinical trials, and speed

up the development of new treatments.

Other benefits of CAD systems include the objectification of

diagnosis, as the current diagnosis relies on subjective evaluation of

motor and non-motor symptoms, making CAD systems promising

tools for the objective evaluation of symptoms. In the context of

MRI for PD, CAD systems can provide quantitative measures of

the changes associated with the disease at physical, functional,

and metabolic levels. Furthermore, the employment of CAD

systems could aid in the unification of clinical diagnosis criteria.

Additionally, CV solutions, including those that employ DL as

an optimisation technique, have been shown to excel at detecting

subtle changes and complex patterns in comparison with human

vision. Therefore, CAD systems have the potential to serve as a

valuable second or supporting opinion, as they do not experience

a reduction in productivity over time, as can happen with

human experts.

There are many research-level papers proposing proof-of-

concept approaches for CAD systems in PD, emphasizing the

importance of robust models. For instance, Castillo-Barnes et al.

(2018) utilized the PPMI dataset and proposed an Ensemble

Classification model to classify PD patients. Similarly, Augimeri

et al. (2016) demonstrated the potential of support vector

machines in combination with careful feature extraction to analyze

DaTSCAN scans for PD applications. In line with these studies,

Martínez-Murcia et al. (2014) also proposed a PD classification

method using DaTSCAN scans.

Similarly, machine learning (ML) has been employed to

distinguish between PD and related disorders. For instance,

Talai et al. (2021) propose a multimedia approach using T1-

weighted, T2-weighted, and diffusion tensor imaging (DTI) to

aid in the differential diagnosis of progressive supranuclear palsy

Richardson’s syndrome (PSP-RS). In the same vein, Martins

et al. (2021) reported on the use of PET uptake and MRI for

distinguishing Parkinsonian syndromes. Similarly, Castillo-Barnes

et al. (2020) conducted a study that employed SPECT scans from

the PPMI database and compared different ML methods.

More recently, CNN has been successfully proposed for the

classification of brain imaging in PD. For instance, Chakraborty

et al. (2020) proposed a classification using T1 weighted MRI scans

using CNNs. Similarly, Martinez-Murcia et al. (2019) demonstrated

the use of autoencoders to classify complex neurological diseases

such as Alzheimer’s. Finally, Shinde et al. (2019) also demonstrated

the potential of CNNs in the modality of neuromelanin-sensitive

MRI with great performance (Biondetti et al., 2020).

The mentioned research-level papers and alike ones, provide

a valuable insights into the potential of CAD systems for PD.

However, it is crucial to acknowledge that these studies primarily

focus on demonstrating the effectiveness of specific methodologies

or models in isolated aspects of PD diagnosis or classification.

While their findings are promising and essential to the progress in

the area, they represent only a fraction of what is required for the

development of comprehensive and practical clinical systems.

To build end-to-end clinically useful CAD systems for PD,

various aspects need to be considered beyond the individual proof-

of-concept models. These aspects may include data acquisition

and quality assurance, integration with existing clinical workflows,

interpretability of the models, regulatory compliance, ethical

considerations, scalability, and validation in diverse patient

populations. The following sections of the paper will delve into

these critical considerations and discuss potential solutions to

ensure the successful implementation and utilization of CAD

systems in real-world clinical settings.

Limitations associated with
Parkinson’s disease

Disease heterogeneity: intra-class variance
and inter-class similarity

Medical conditions may have several etiologies. Moreover,

one etiology may lead to more than one disease (Coleman and

Tsongalis, 2009). Consequently, medical conditions are commonly
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FIGURE 3

Summary of the specific limitations in computer-aided diagnosis (CAD) for Parkinson’s disease (PD) associated with idiosyncrasies of the disease, as

addressed in Section Limitations associated with Parkinson’s disease: (1) During the labeling of datasets for supervised learning, several problems can

be encountered. (1A) Building a solution for di�erential diagnosis can be challenging due to the overlapping symptoms of PD and related disorders.

This challenge is especially significant during the initial phases of clinical diagnosis, where such solutions would be most useful. (1B) PD is known to

have several subtypes with implications for clinical treatment, but there is a lack of clear global consensus, adding another layer of complexity. (2) PD

being an age-related disorder, the control subjects used in age-pairing may have additional health conditions or factors that can a�ect their

(Continued)
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FIGURE 3 (Continued)

representatives as healthy individuals. (3) Due to the complexity of PD, there is a notable rate of misdiagnosis, even in specialized centers, particularly

during the early phases of clinical diagnosis. This hampers the accuracy of labels used in supervised learning solutions. (4) When acquiring data and

building a model, a simplification of the disease within the context of human biology is necessary, as it is the case with any other data-driven

solution. Consequently, any developed solution will have errors, particularly if the model is used in di�erent conditions than those it was designed

for. (5) Detecting PD in the prodromal phase is particularly challenging. A common approach is to employ known markers that increase the

probability of developing the disease, such as genetic mutations. However, the specificity of these markers to PD is variable. (6) Conducting

long-term longitudinal studies that are consistent in terms of acquisition protocol while maintaining low levels of drop-out rates is extremely di�cult

for PD, given its nature as a complex, long-term neurodegenerative disease.

TABLE 1 Overview of limitations and future directions at the three levels: disease-specific, task-specific, and technology-specific.

Limitations Directions

Parkinson’s disease

Disease heterogeneity Considering subgroups of PD and careful assessment of controls

Patients’ comorbidities Large and Long studies and control of unwanted correlations

Error rate at diagnosis Acknowledging errors and employing noise-labeled techniques

Extended times of disease progression Institutional incentives, importance of consistency in protocols

High variability of prodromal markers Multimodal prodromal markers, epigenetics changes

Lack of ground truth Objective measures, holistic multidisciplinary approach

Clinical brain imaging datasets

Complexity of brain imaging Multimodal approach, combination with clinical measures

Lack of standardization in acquisition Standardization of acquisition, sharing study assumptions

Lack of standardization in preprocessing Sharing raw data and reproducible code ability

Lack of standardization in annotation Assisted annotation with guidelines and unsupervised learning

Machine learning/deep learning

Generalization issues Avoid overfitting, control for spurious correlations

Algorithmic Bias Acknowledge algorithm bias and prioritize fairness strategies

Need for better interpretability Prioritize transparency and ethics, GDPR compliance

Model explainability Use explainable ML algorithms, employ interpretability methods

Model uncertainty Documentation of uncertainty sources, calibration methods

Costly systems to develop and maintain Pre-train models, cloud computing, decentralized ML

Security and privacy challenges Proactive security and privacy strategies

defined clinically or pathologically (instead of etiologically). PD

presents high variability at both prodromal and clinical phases

(He et al., 2018). We can refer to this variability as an intra-class

variance. However, another level of complexity exists due to the

overlap of PD symptoms with those from other diseases, which

calls for thorough differential diagnosis (Kalia and Lang, 2015). For

instance, patients with arterial hypertension may exhibit distinct

neuroimaging abnormalities detectable by brain MRI (van Veluw

et al., 2014), which may complicate the diagnosis of PD using

medical imaging techniques in these individuals. Thus, we can

find a high inter-class similarity. Finally, diseases are described

based on a definable deviation from a normal phenotype made

evident through symptoms, and pathological markers, to then

become grouped into categories. However, studies and taxonomies

struggle to find a consensus for PD subtypes (Albrecht et al., 2022).

Hence, studies may employ different subtypes to refer to the same

biological mechanism and therapy response.

Patients’ comorbidities

In addition to the aforementioned complexity, the onset age of

PD in patients is typically around 60 years, making it difficult to

differentiate symptoms caused by aging and other comorbidities

from those of PD (Deeb et al., 2019). For instance, common

comorbidities in PD patients, such as hypertension and diabetes,

have an unknown effect on the pathogenesis and progression of

PD (Santiago et al., 2017). This presents a twofold challenge: first,

it complicates the identification of a reliable set of control and

diseased subjects, making it difficult to distinguish between groups.

Second, due to the lack of knowledge regarding the effects of

comorbidities on PD onset and development, controlling for these

characteristics is challenging. As a result, researchers may face a

“lose–lose” situation, as ML models may make assumptions that

cannot be refuted or confirmed by the researcher. This situation is

also referred to as butterfly bias, in which a variable or feature may
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be considered both a confounder and a source of M-bias (Ding and

Miratrix, 2015).

To mitigate the effects of comorbidities and the heterogeneity

of PD, researchers often employ large sample sizes to account for

the variability in the population and the disease. For example,

datasets like the Parkinson’s Progression Markers Initiative (PPMI)

(Marek et al., 2011) and the Oxford Parkinson’s Disease Centre

discovery cohort (OPDC) (Lawton et al., 2015) acknowledge the

presence of subtypes and follow patients over extended periods,

presenting clinical data in addition to imaging data. Moreover,

studies frequently use statistical techniques such as propensity

score matching (Huang et al., 2013), stratification (Virreira Winter

et al., 2021), and multivariable regression (Pechevis et al., 2005) to

control for confounding variables. Another approach is to utilize

ML algorithms that can handlemultiple confounders and nonlinear

relationships between variables, such as random forest (Oprescu

et al., 2019) or support vector machine models (Westreich et al.,

2010).

Error rate at diagnosis

The aforementioned challenges are further compounded by the

difficulty of accurately diagnosing PD. According toHess andOkun

(2016), the misdiagnosis rate of PD can range from 10 to 20%

or greater, depending on clinician experience. Other studies have

reported misdiagnosis rates of 20%–30% in the early stages, with

the main causes being the failure to recognize atypical parkinsonian

disorders such as dementia with Lewy bodies or multiple system

atrophy (Poewe and Wenning, 2002). Consequently, researchers

must address the challenges of training models with noisy labeled

data (Karthik et al., 2021), where label noise can potentially degrade

model performance.

To address noisy labeled data several approaches have been

proposed, including semi-supervised learning, where a small set

of labeled data is combined with a large set of unlabeled data to

improve themodel’s accuracy (Adeli et al., 2018). Another approach

is active learning, where the model is iterative trained on a small

set of labeled data, and the most informative samples are selected

for annotation by a human expert, reducing labeling costs while

maintaining or even improving the model’s accuracy (Settles, 2009;

Garcia Santa Cruz et al., 2022a). Recent developments in DL have

led to the emergence of new techniques that can handle label

noise more robustly, such as the label Smoothing technique (Müller

et al., 2019) that reduces the impact of noisy labels on the loss

function by smoothing the label distribution. Ensemble techniques

also help mitigate the impact of label noise on model performance

by combining the predictions of multiple models, each trained on a

slightly different subset of the data (Adeli et al., 2018).

Extended times of disease progression

PD is characterized by a slow progression, with a period of

up to 20 years before the clinical phase (Kalia and Lang, 2015),

and can survive up to 20 years in the clinical phase (Hassan et al.,

2015), with a mean survival onset of 12 years (Rajput, 1992).

This slow progression impacts longitudinal follow-up of study

participants, which becomes difficult and prone to high dropout

rates and protocol changes. It also brings another important

dimension into play, as data subjects may showcase both different

ages and distinct PD stages. Moreover, assumed control subjects

may reveal PD symptoms in the long term, increasing the risk of

ascertainment bias.

The extended duration of longitudinal studies can lead to

higher rates of dropout and protocol changes. To mitigate these

issues, researchers can employ remote monitoring technologies

that allow patients to be monitored from their homes, reducing

the need for in-person visits. Wearable sensors can also provide

continuous, objective measurements of symptoms and mobility

(Kubota et al., 2016; Arroyo-Gallego et al., 2018). Additionally,

providing incentives to patients and institutions can help improve

retention rates (Smith et al., 2019). For brain imaging studies, it is

important to maintain consistent imaging protocols and analysis

methods to reduce the risk of acquisition bias (Castro et al., 2020).

Lack of specificity and variable penetrance
of prodromal markers

Finding markers for the prodromal phase of PD is complex in

many aspects. One of the key factors hindering the discovery of

such markers is the low frequency of the disease, which is estimated

to be under 2% (Muangpaisan et al., 2011). This low frequency

makes it challenging to find participants in the prodromal phase

of the disease, as large sample sizes are required for such studies.

To overcome this challenge, researchers often employ non-specific

markers to identify individuals who may be in the prodromal phase

of PD. These non-specific markers include rapid eye movement

sleep behavior disorder (RBD), hyposmia (reduced ability to smell),

depression, gastrointestinal symptoms, and mild motor symptoms.

However, the use of non-specific markers has limitations, as they

are not specific to PD andmay be present in individuals who do not

develop the disease (Durcan et al., 2019). Although specific markers

such as genetic markers have been identified, their use is limited by

their variable penetrance, which is often incomplete and dependent

on the population. Some of the most commonly associated genes

with PD are LRRK2, Glucocerebrosidase (GBA), and SNCA (Niotis

et al., 2022). This means that even if an individual has a genetic

marker associated with an increased risk of developing PD, there is

still a significant chance that they may never develop the disease.

Finding markers for the prodromal phase of PD is complex,

but one potential solution to overcome the challenge of low disease

frequency and the need for large sample sizes is to collaborate

with multiple research centers and establish consortium. Another

approach to identifying specific markers for the prodromal phase

of PD is to consider multiple sources of data, such as the hyposmia

test (Siderowf et al., 2012). Finally, to address the limitations

of genetic markers with incomplete penetrance, researchers can

focus on identifying epigenetic modifications associated with the

prodromal phase of PD, which may provide more accurate and

specific markers for early detection of the disease (Chen and Ritz,

2018).
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Lack of ground truth

In addition to the challenges of finding markers for the

prodromal phase, there are also challenges related to generating

accurate ground truth data for supervised learning. PD is not fully

understood yet, which can lead to errors in the models. Deliberate

idealisations are inherent in anymodel, but inaccurate assumptions

based on insufficient knowledge can lead to biased and inaccurate

representations. An example of this is the lack of understanding

about comorbidity effects. Disparities in these regards can affect

coherence between studies, as causal assumptions may vary across

research teams and over time. Conducting further research on the

disease could be a potential solution to enhance the understanding

of the disease. This research can include a better understanding of

the various aspects that contribute to the disease, such as adopting

a complex systems approach (Cohen et al., 2022). Another solution

is to develop more objective and quantitative measures of motor

symptoms using wearable sensors and digital technologies.

Current diagnosis relies on assessments by physicians, often

employing the current gold standard, the Unified Parkinson’s

Disease Rating Scale (UPDRS) (Movement Disorder Society Task

Force on Rating Scales for Parkinson’s Disease, 2003). Furthermore

efforts are underway to develop more objective and continuous

measures of motor symptoms using wearable sensors and digital

technologies (Parisi et al., 2015; Lu et al., 2021). These emerging

technologies can provide more accurate and reliable data for the

diagnosis and monitoring of PD (Kubota et al., 2016). By replacing

subjective evaluations with objective measurements, the accuracy

of diagnoses may be improved, leading to earlier identification

and treatment of PD. Further research on the missing link

between genetic and environmental causes of the disease can also

contribute to a better understanding of PD (Hill-Burns et al.,

2017). Additionally, standardizing diagnostic criteria and protocols

across research teams and clinical settings can increase coherence

between studies and improve the accuracy of the diagnosis. One

such criterion is the UK Brain Bank criteria (Postuma et al., 2018).

Enhanced collaboration and communication between researchers

and clinicians may serve as a valuable means to reinforce the

aforementioned efforts.

Limitations associated with clinical
brain imaging datasets

Diversity and complexity of in vivo imaging
brain markers

The pathology underlying PDmotor symptoms such as tremors

and bradykinesia is mainly associated with the loss of dopaminergic

neurons in the substantia nigra and other gray matter alterations

visible through brain imaging. However, non-motor symptoms of

PD such as hyposmia, sleep disturbances, and depression do not

present a clear in vivo imaging brain marker, even though some

NMS-related brain alterations have been described. In particular,

Prell (2018) state that imaging NMS characteristics may require

different modalities, e.g., rs-fMRI for fatigue, fMRI and FDG-PET

formild cognitive impairment. In addition, studies have shown that

quantitative iron imaging techniques such as R2*, SWI, and QSM

are reliable markers of iron content in PD. These measurements

have also been found to correlate with the severity of motor

symptoms. Among these techniques, QSM has been identified as

more robust and reproducible than R2* and is more adequate for

use in multicenter studies (Pyatigorskaya et al., 2020). Finally, some

authors have even discouraged the routine use of neuroimaging

techniques in clinical practice for PD (Pagano et al., 2016). As stated

by Pagano et al. (2016), “despite significant evidence for the utility

of neuroimaging in assessing parkinsonian patients, none of the

neuroimaging techniques is specifically recommended for routine

use in clinical practice.”

Therefore, the impact of this variety is threefold. First, the

symptoms may not associate with structural or functional brain

patterns. Second, when existing, such patterns require particular

brain imaging modalities. Finally, such patterns may not be specific

to PD. On top of these three circumstances, the temporal evolution

of the disease adds another layer of complexity. Each stage calls

for different symptoms, which in turn require dedicated imaging

modalities with different diagnosis specificity. In this light, accurate

PD subtyping becomes challenging, as obtaining a complete view

of the brain manifestations of PD symptoms requires image

acquisition of several modalities or the employment of multimodal

approaches (Saeed et al., 2017; Chougar et al., 2020; Albrecht et al.,

2022).

One potential solution to address this issue is to use

a combination of multiple imaging techniques. Multimodal

approaches can provide a more complete and accurate picture

of the disease by capturing different aspects of brain function

and structure, as well as the density of neurotransmitter receptors

such as dopamine receptors. Additionally, clinical assessments can

be supplemented by specific neuropsychological questionnaires or

physiological tests, with subsequent confirmation by imaging or a

biochemical marker, as different modalities are suitable at different

stages of disease progression (Michell et al., 2004). Moreover, the

use of multi-modal data, combining clinical, motor, cognitive,

and neuroimaging data, can aid in subtyping PD and potentially

identifying correlations between the pathology manifested in the

brain and the motor and non-motor symptoms of the patient

(Albrecht et al., 2022). However, it is important to note that

using multiple imaging modalities can also pose some challenges,

such as the need for specialized expertise, the complexity of data

integration (Behrad and Abadeh, 2022), and the increased cost and

time required for imaging and analysis.

Lack of standardization in acquisition,
preprocessing, and annotation pipelines

After image acquisition, another set of problems may

compromise research. First, variations in the acquisition

parameters may alter the observed changes in longitudinal studies.

Chua et al. (2015) showed how variability in MRI acquisition

parameters between scans can confound observations. Then, the

diversity of preprocessing pipelines across studies presents another

dimension for potential unwanted interactions and errors. For

instance, the exclusion criteria for head motion may vary across

studies without common criteria. Strother (2006) highlighted how

Frontiers in AgingNeuroscience 10 frontiersin.org112

https://doi.org/10.3389/fnagi.2023.1216163
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org


Garcia Santa Cruz et al. 10.3389/fnagi.2023.1216163

the preprocessing steps interact with every decision taken during

the design and execution of fMRI experiments. The authors argue

that “applying a new processing pipeline to a raw dataset may

result in significantly modified spatial activation patterns as a

result of changing/optimizing preprocessing techniques and/or the

data analysis approach.” Similarly, Power et al. (2017) identified

several contributors to global fMRI signals such as hardware

artifacts and head motion that were not removed from scans

through denoising techniques, affecting the observed covariances.

Bhagwat et al. (2021) underscored the variability introduced

by preprocessing in neuroimaging pipelines. Hence, the lack of

standardization in acquisition, preprocessing, and annotation

pipelines can lead to unwanted interactions and errors, which has

significant implications for the reliability and reproducibility of

neuroimaging research (Brauneck et al., 2023).

To address this issue, it is crucial to develop and validate

standardized protocols and criteria for data acquisition,

preprocessing, and analysis. This can be achieved through a

variety of approaches, such as establishing international consortia,

promoting open data sharing, and providing training and resources

for researchers. For example, the International Society forMagnetic

Resonance in Medicine (ISMRM) has developed several standards

for MRI data acquisition and analysis, including quantitative

MR (Weingärtner et al., 2022). In addition, promoting open

data sharing and encouraging researchers to openly share their

raw data and analysis pipelines can help to identify potential

sources of variability and errors in data processing and analysis.

This can facilitate the development of more robust and reliable

methods for data preprocessing and analysis. Several initiatives

have already been developed to promote open data sharing in

neuroimaging, such as the OpenfMRI (Poldrack et al., 2013) and

NeuroVault (Gorgolewski et al., 2015) repositories. Furthermore,

educating researchers about the importance of standardization

in neuroimaging research (Laird et al., 2011) and providing

them with the necessary tools and resources to implement

standardized protocols and criteria in their research is crucial,

including standardization of the metadata as a way to reflect

the causal and anti-causal assumptions made during the data

collection and annotation (Garcia Santa Cruz et al., 2022b).

Further, standardization of the annotation pipeline is important

to improve the consistency and quality of annotations. To tackle

this issue, it is important to have standardized guidelines and

procedures. This can reduce misinterpretation, which may result

in inconsistency, making the subsequent training of the machine

learning solution difficult (Miceli et al., 2020). Additionally,

it’s crucial to have a good way to integrate annotations from

multiple annotators, carefully considering how to deal with

labeling merging in unmatched results when and the seniority

of the experts. Furthermore, as labeling is an expensive task,

unsupervised or semi-supervised techniques could be employed

to generate cheaper but potentially more consistent labels (dos

Santos Ferreira et al., 2019).

To fully exploit the potential for personalized healthcare,

collecting metadata may be necessary. However, current General

Data Protection Regulation (GDPR) regulations impose limitations

to ensure both data privacy and security. To address this challenge,

several approaches have been proposed, including federated

machine learning, multi-party computation, and differential

privacy. These methods provide a win-win solution by enabling

the collection of necessary data while preserving the privacy and

security of sensitive information (Brauneck et al., 2023).

This can be achieved through training programs, workshops,

and online resources that provide guidance on best practices

for data acquisition, preprocessing, and analysis in neuroimaging

(Borghi and Van Gulick, 2018). The development of established

protocols in standardization and analysis, such as those proposed

for other neurodegenerative diseases like the Alzheimer’s Disease

Neuroimaging Initiative (ADNI) database (Wyman et al., 2013),

can also serve as important models for promoting consistency and

reliability in neuroimaging research.

Limitations associated with machine
learning/deep learning

Generalization issues that hinder
transferability

Neural networks (NNs) have been shown to be highly effective

in approximating complex functions and achieving accurate

predictions by leveraging large and high-quality datasets. However,

despite demonstrating good performance on the training data,

there is no guarantee that the model will continue to perform well

on new and unseen data. This phenomenon, known as overfitting,

occurs when the model is too closely tailored to the training data,

and thus, is not generalizable to new data. Out-of-distribution

and out-of-domain examples can cause neural networks to learn

incorrect correlations and make inaccurate predictions. Common

causes of overfitting include domain shift (Kondrateva et al., 2021),

task mismatch (Castro et al., 2020), and catastrophic forgetting

(Gupta et al., 2021). Poor generalization can lead to unreliable

and incorrect predictions on real-world tasks where the data

distribution may differ significantly from the training data (Yagis

et al., 2019; Ge et al., 2023). In the context of CAD for PD, this

may result in incorrect predictions that could lead to misdiagnosis

or failure to detect the disease, ultimately resulting in incorrect

treatment or delayed diagnosis.

To reduce overfitting, techniques such as regularization

(Kukačka et al., 2017) and early stopping (Prechelt, 1998) can

be employed. Data augmentation techniques can also expand

the dataset size and improve internal generalization (Chlap

et al., 2021). However, data augmentation alone cannot address

demographic representativeness issues. Thorough internal and

external validation is essential to ensure reliable and accurate

model performance, especially for new and unseen data (Garcia

Santa Cruz et al., 2021). Cross-validation techniques such as

stratified cross-validation (Zeng and Martinez, 2000) and leave-

one-out cross-validation (Hastie et al., 2009) can be used for

internal validation, while external validation can be achieved

through external datasets. These techniques can enhance model

transferability and promote generalizability.

Additionally, when dealing with a small sample size, as is often

the case in biomedical datasets, splitting the dataset for cross-

validation may lead to a loss of the algorithm’s generalization

capacity. This limitation arises from the fact that when the sample

size is small, dividing it into training and validation sets further

reduces the amount of data available for training, potentially

hindering the algorithm’s ability to generalize well. Despite the
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conventional wisdom that attributes this small generalization error

to properties of the model family or regularization techniques used

during training (Zhang et al., 2021), it has been demonstrated

that even with explicit regularization, state-of-the-art convolutional

networks can fit random labeling of the training data, suggesting

that these models have enough capacity to memorize the

training data. A potential solution is to employ distribution-free

performance bounds (Jakubovitz et al., 2019), which have been

successfully implemented in neuroimaging (Górriz et al., 2019;

Jimenez-Mesa et al., 2023).

To address data drift, various techniques can be employed.

Calibration techniques (Wald et al., 2021) and appropriate

metrics for evaluating model generalization (Jiang et al., 2019)

can be used. Additionally, selecting the appropriate model

architecture and hyperparameters can significantly enhance the

model’s generalization ability. Techniques such as grid search or

Bayesian optimization (Kandasamy et al., 2018) can be employed

to optimize hyperparameters. Furthermore, transfer learning

has been demonstrated as an effective approach for improving

model generalization, particularly when working with limited data

(Yosinski et al., 2014).

Another big issue that can hinder the generalization of models

is when they fail to learn the desirable patterns that characterize

the phenomena we are trying to model, and instead learn spurious

correlations. This can result in the model learning potential

confounders, colliders, and other unwanted biases.

To address these issues, it is important to carefully evaluate the

data used to train the model, identify potential confounders and

colliders biases, and use appropriate statistical methods to account

for them (Wang et al., 2018). Additionally, confounding removal

strategies such as domain adaptation techniques can be employed

during the harmonization phase (Dinsdale et al., 2021) and during

the training process (Qin et al., 2020). Finally, it is crucial to

regularly monitor the performance of the model and validate its

results against independent and temporally updated data sets to

identify and correct potential unwanted biases (Tamburri, 2020).

Algorithmic bias
This can be considered an extension of a generalization issue.

Algorithmic bias is another significant challenge inML, particularly

in medical diagnosis and other decision-making applications.

Societal biases and data acquisition biases can result in systematic

and repeatable errors that lead to unfair outcomes and lower

accuracy for certain groups (Ricci Lara et al., 2022). It is essential

to address these biases in the design, training, and evaluation of

NNs to ensure fairness and avoid perpetuating existing inequalities.

These biases can result in systematic and repeatable errors, leading

to unfair outcomes that favor certain groups over others, ultimately

lowering the accuracy of the recommendation for some patient

groups, particularly when there are racial biases. These biases can

originate from existing inequality (Ricci Lara et al., 2022) or can

also stem from selection bias introduced during the acquisition

process (Garcia Santa Cruz et al., 2022b).

For example, Obermeyer et al. (2019) identified some systemic

conditional disparities in risk scores based on the medical history

of Black patients. In such cases, bias-correcting techniques can

be employed (Wiens et al., 2020). Bias can also be introduced

during the data acquisition process, resulting in technical debt and

downstream effects known as data cascades (Sambasivan et al.,

2021). Moreover, it is essential to address the issue of unwanted

biases in the data used for current AI systems, as these systems

not only have the risk of making incorrect predictions, but also of

perpetuating and amplifying biases present in the data (Zhao et al.,

2017).

The ML community has made interdisciplinary efforts to

address the aforementioned issues, leading to the development of a

range of solutions that fall under the umbrella of fairness (Mehrabi

et al., 2021). By implementing such strategies in algorithm

design, training, and evaluation, performance across groups can

be improved, thereby mitigating the risk of unfairness in the final

solution. These solutions typically target characteristics that have

traditionally been the source of unfair discrepancies, such as gender

and ethnicity. However, it is also crucial to ensure that algorithms

perform well in cases where diseases have subgroups, such PD

subtypes (Thenganatt and Jankovic, 2014) and varying degrees

of disease penetrance (Espay et al., 2017). In such cases, similar

metrics can be used, with the subgroups or disease penetrance

considered as protected attributes.

Need for better interpretability

Another significant issue with NNs is their inability to

accurately represent uncertainty in their predictions (Abdar et al.,

2021). Since NNs are deterministic, they cannot capture the notion

of what they know and what they do not know, or the confidence

level of their predictions. Furthermore, current NNs are limited

to accessing the knowledge contained in the dataset. This lack

of uncertainty estimation can lead to overconfidence in their

predictions, which can be problematic in critical applications such

as medical diagnosis or self-driving cars.

Before implementing CAD systems for PD as decision-

making tools in clinical practice, it is essential to establish

an interpretability strategy (Chan et al., 2020). CAD systems

with low interpretability can have severe consequences, such as

decreased trust and acceptance among clinicians and patients,

misdiagnoses, and ineffective treatment strategies. A transparent

and understandable model can help clinicians validate the

system’s predictions and ensure that the model is not making

decisions based on spurious correlations or biases. Additionally,

interpretability can help researchers gain new insights into PD and

refine the diagnostic criteria.

The lack of uncertainty estimation can lead to overconfidence

in their predictions, which can have severe consequences such

as misdiagnoses and ineffective treatment strategies. Therefore,

it is essential to establish an interpretability strategy before

implementing CAD systems in clinical practice. Furthermore, the

limitations of current explainability methods used in ML decision-

making systems suggest that unless there are significant advances in

explainableML, wemust treat these systems as black boxes, justified

by their reliable and experimentally confirmed performance.

Finally, it is recommended that healthcare workers exercise caution

when using explanations from ML systems and regulators be

judicious in listing explanations among the requirements needed

for clinical deployment of ML (Ghassemi et al., 2021).
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Recent regulations, such as the GDPR in the European Union

(EU), emphasize the right to be informed and the right to contest an

automated decision. In such cases, interpretability of AI becomes

crucial for auditing the decision-making of automated agents

such as ML models. In particular, Article 22 of the GDPR deals

with the rights related to automated individual decision-making

since data subjects cannot be subject to a decision based solely

on automated processing (Council of European Union, 2016).

Additionally, Articles 12 and 13 specify the right to be informed

about the use of their data in an easily understandable and

accessible manner. The most common use cases for participant

data fall into two main scenarios: (1) data subjects provide their

data to train AI models, and (2) data subjects receive a result

from an AI model after providing some data. The first scenario

requires informing the participants about the purpose and usage

of their data. However, the second scenario requires additional

clarification, as the participants should understand how a decision

was made and, in particular, which input data was relevant for

obtaining a specific result.

To meet the above requirements, ML solutions must be

designed with transparency inmind. SomeML approaches produce

models that are inherently easier to inspect. Decision tree predictive

models are popular due to their intelligibility and simplicity.

However, this approach does not suit all tasks. Essentially, models

optimize a function that draws the boundary to separate the given

classes (e.g., healthy vs. diseased) by grouping nearby instances.

However, the definition of proximity differs across ML learners

and interpretability measures become complex. For instance,

random forest methods constitute an evolution of decision trees

but at the cost of intrinsic interpretability since their internal

model consists of a collection of decision trees, obfuscating the

“reasoning” of the trained model (Nair et al., 2013). Another

approach includes tracking the decision-making process on CNNs.

For instance, Magesh et al. (2020) employ Local Interpretable

Model-Agnostic Explainer (LIME) to increase the explainability of

CNN-basedmodels for PD diagnosis. Two key elements to improve

interpretability are solutions to improve model explainability and

model uncertainty.

Model explainability
Model explainability refers to the ability to understand how

a ML model makes its predictions. It is important because in

critical applications, such as healthcare or finance, it is necessary

to understand why the model makes certain decisions, especially

when human lives or significant resources are at stake. For example,

if a model is predicting whether a patient has PD or make a

recomendation about the treatment, it is important to know which

factors the model is considering in its decision-making process.

Explainability and interpretability terms are is frequently used

interchangeably and for this work, we do not distinguish between

them. Of course, interpretability tools vary across ML methods,

but there are some important methods worth mentioning that can

facilitate the interpretability of the results. Molnar (2020) provides

an overview of the available techniques for ML interpretability.

The author distinguishes between intrinsic and post hoc methods.

The first group concerns models whose simple structure permits

human interpretation, e.g., short decision trees. The second group

of methods are used after model training. Additionally, the author

divides interpretability methods into model-specific and model-

agnostic. The author provides yet another criterion to separate the

methods into two groups, i.e., local (for methods that explain a

particular result) and global (for methods that explain the whole

model behavior) interpretability.

Aside from the above, solution design can impact model

interpretability as well. Often models are designed in an end-to-

end way that attempts to map input data with the final result

with a single model. For instance, a medical imaging CAD

system can be designed as a chain of several models, with the

first dedicated to finding pathologies and the subsequent models

mapping pathologies to diseases or conditions (e.g., through several

one class classifiers) (Vega, 2021). This approach eases solution

maintainance and increases interpretability, allowing inspection of

the intermediate results.

To address this challenge, researchers have proposed various

methods for interpreting and explaining the decisions of ML

models, including model-agnostic techniques such as LIME (Visani

et al., 2022) and SHapley Additive exPlanations (SHAP) (Kaur

et al., 2020), as well as model-specific approaches such as attention

mechanisms (Vaswani et al., 2017) and gradient-based attribution

methods (Ancona et al., 2019).

Model uncertainty
In the context of medical diagnosis, the concept of model

uncertainty plays a crucial role in determining the degree of

confidence or uncertainty that a model has in its predictions.

This consideration is particularly pertinent given the high stakes

involved in clinical decision-making. The degree of certainty or

uncertainty in a model’s output is a crucial factor in determining

appropriate actions to be taken based on the model’s predictions.

As such, accounting for model uncertainty can enhance the

transparency and reliability of medical diagnosis, leading to more

effective treatment strategies and improved patient outcomes.

Uncertainty in ML can stem from multiple sources. Some

of them include data variance, lack of representativity in the

data sample, label noise, and the intrinsic imperfections of

any ML model developed from such data. The literature also

refers to these types of uncertainty as systematic, aleatoric and

epistemic, (Hüllermeier and Waegeman, 2021; Gal et al., 2022).

Most of these issues cannot be fixed a posteriori and must

be avoided through careful data acquisition design. However,

documenting uncertainty sources and quantifying its magnitude

in data, labels and model is of uttermost importance, in the same

way we should document other aspects such as the representativity

of the sample. This information is key to assess the generalization

power of the solutions to new settings. For instance, reporting

probability estimates together with the model prediction can

indicate the model prediction confidence. However, these estimates

may not accurately reflect model uncertainity calling for calibration

methods (Lemay et al., 2022).

Costly systems to develop and maintain

ML solutions are also expensive in terms of data and

computation. Developing and training ML models requires a
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substantial amount of data, computing power, and specialized

expertise. Acquiring large and diverse datasets can be challenging,

and data collection, cleaning, and preprocessing can be time-

consuming and labor-intensive (Ngiam andKhor, 2019).Moreover,

the development and training of ML models often require

specialized hardware, such as Graphics Processing Units (GPUs),

which can increase energy consumption and carbon footprint

(Patterson et al., 2021). It is important to consider the

environmental impact of ML and take steps to reduce it, such as

using energy-efficient hardware or exploring alternative training

methods that require fewer computing resources (Wang et al.,

2020).

In addition, ML models require ongoing monitoring, updating,

and maintenance to ensure their continued accuracy. As data

changes over time, the models may need to be retrained or

updated to account for new patterns or trends. In the case of

PD, this can be particularly challenging due to the variability in

disease progression across patients, making it difficult to develop

models that accurately capture the underlying patterns of the

disease. Furthermore, implementingML systems in clinical practice

requires careful consideration of regulatory and ethical concerns

to ensure patient safety and privacy. ML models used in clinical

practice must undergo rigorous testing and validation to ensure

their safety, efficacy, and reliability. The validation process involves

evaluating the model’s performance on independent datasets and

comparing it to other established diagnostic methods (Liu et al.,

2019). Additionally, models must be regularly audited to identify

and mitigate biases and errors that may affect their performance

(Reddy et al., 2020).

To address the challenges of cost and development associated

with ML, there has been a concerted effort to develop open-

source platforms and tools that make ML more accessible to

researchers and clinicians. For instance, several open-source

libraries, including TensorFlow (Abadi et al., 2016a), PyTorch

(Paszke et al., 2019) andMONAI (Cardoso et al., 2022) provide pre-

built ML models and algorithms that can be readily adapted and

customized for specific applications. In addition, cloud computing

platforms, such as Amazon Web Services and Google Cloud, offer

scalable and cost-effective solutions for training and deploying ML

models. Moreover, there is a growing trend toward collaborative

and decentralized approaches to ML development (Castiglioni

et al., 2021). One such approach is federated learning, which

allows multiple parties to train a shared ML model without

sharing their data, thus preserving data privacy and security

(Tedeschini et al., 2022). Another approach is to use blockchain

technology to create decentralized ML models that are transparent,

auditable, and resistant to tampering (Neelakandan et al., 2022).

These developments are expected to enhance the accessibility

and affordability of ML solutions, thereby facilitating their wider

adoption and implementation in clinical practice.

Security and privacy challenges

Healthcare institutions are frequent targets of malicious

hackers, resulting in data breaches and ransomware attacks (Branch

et al., 2019; Devi, 2023). In March 2023, the Hospital Clinic

de Barcelona, which serves half a million people, suffered a

ransomware attack by the RansomHouse group, resulting in the

theft of 4.4 TB of data (Toulas, 2023). Healthcare ML models often

deal with very sensitive patient data, making them attractive targets

for malicious attacks.

Adversarial training is a technique used to improve the

robustness of ML models against adversarial attacks (Madry et al.,

2017). It involves training the model on adversarial examples

generated by an adversary system to make the model more resilient

to similar attacks. However, these techniques can also be used

maliciously. Adversarial attacks can cause the model to make

incorrect predictions, which could potentially expose personal

information from healthcare ML models. In membership inference

attacks, an adversary attempts to determine whether a particular

individual’s data was used to train a machine learning model (Hu

et al., 2022). In model inversion attacks, the aim is to reconstruct

an individual’s data from the outputs of a machine learning model.

This can be achieved by generating adversarial examples that

maximize the likelihood of the individual’s data, given the model

outputs (Fredrikson et al., 2015). These attacks highlight the need

for robust security measures to be in place to protect healthcare ML

models from malicious attacks.

The most effective safety measure for healthcare ML models

is to restrict access to the trained models to authorized personnel.

Additionally, privacy-preserving machine learning techniques such

as differential privacy and homomorphic encryption can help

prevent these attacks (Abadi et al., 2016b; Aono et al., 2017). It is

advisable to take a proactive approach to healthcare privacy and

security during the solution design instead of a reactive approach

(Song et al., 2019; Bhuyan et al., 2020).

Concluding remarks and perspectives

During recent years, both the ML and the medical community

have begun to consider data quality as the most crucial

factor impacting the performance of the solutions and their

robustness, (Sambasivan et al., 2021). However, acquiring high-

quality data, building a suitable model for the task, and determining

the appropriate use for such models, remain challenging objectives

toward clinically relevant models. In particular, Sambasivan

et al. (2021) insist on building incentive structures across all

stakeholders, stating that “many practitioners described data work

as time-consuming, invisible to track, and often done under

pressures to move fast due to margins–investment, constraints,

and deadlines often came in the way of focusing on improving

data quality.” Data bootstrapping is yet another source of

issues in high-stakes AI domains, as many researchers begin

the AI/ML work employing existing data or data collected

for non-AI purposes that leads to poor generalization. It is

essential to ensure that ML models are rigorously validated

and tested before they can be used in clinical practice. The

employment of datasets from multiple independent studies can

boost the statistical power and lead to more accurate, reliable

and reproducible research. In ML, a common practice to this

end is to mix several datasets. However, if the mixed datasets

do not share certain degree of methodological similarity, biases

may be introduced due to differences in acquisition, preprocessing

or annotation.
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The circumstances previously described hinder the availability

of large datasets containing multiple imaging modalities as large

datasets often consist of multi-center cohorts employing different

acquisition devices, protocols and pipelines. Overall, developing

and maintaining ML systems for clinical practice can be a costly

and time-consuming process that requires significant expertise

and resources. However, the potential benefits, such as improved

diagnosis and treatment outcomes for patients with PD, make it

a worthwhile investment. The use of CAD tools to interpreted

brain images is the context of PD is very promising. However,

as previously mentioned, these solutions will be used as assisting

tools in a very specific context and under specialized supervision

and must pass a series of verification before they can be used, as

is the case with other medical products or treatments. To achieve

this, the models must be accompanied by interpretability methods

to ensure that clinicians can understand how the model makes

its predictions.

While this review focuses primarily on brain imaging, it has

become increasingly clear that a single measure is unlikely to be

sufficient for diagnosing PD in the foreseeable future. Instead, a

combination of measures will likely be necessary. The most critical

aspect of a biomarker is not its ability to diagnose PD in its early

stages, but rather its ability to reflect the disease’s pathogenesis

and progression. By using a multimodal approach that combines

various imaging biomarkers, clinicians can make early, accurate,

and objective diagnostic decisions, identify neuroanatomical and

pathophysiological mechanisms, and evaluate disease progression

and therapeutic responses to drugs in clinical trials.

A common approach in developing multimodal CAD systems

involves combining multiple imaging modalities as well as

leveraging ensemble learning to integrate data from various

sources for obtaining the final result. A concrete example of

a multimodal approach in PD is the employment of multiple

modalities to characterize a specific pathological process in

certain regions of the brain. For instance, multimodal approaches

employing hybrid images created through the integration of

different MRI parameters offer a valuable tool. By combining

T1-, T2*-, and diffusion-weighted MRI, Barbagallo et al. (2016)

proposed to enable the detection and analysis of macro- and

micro-structural abnormalities in the nigrostriatal pathway. The

key benefit of integrating hybrid images enhances the accuracy

and reliability of CAD systems by capturing diverse aspects of

neurodegeneration.

Another example of a multimodal approach consists in

combining MRI techniques, particularly those visualizing

pathological changes in the substantia nigra using diffusion, iron-

sensitive susceptibility, and neuromelanin-sensitive sequences,

which offer a more accessible imaging tool. However, these

techniques may be insufficient for phenotyping or prognostication

due to the heterogeneous nature of PD resulting from extranigral

pathologies. In Siderowf et al. (2023) highlight the emerging role of

retinal optical coherence tomography as a non-invasive technique

to visualize structural changes in the retina, which can serve as

potential biomarkers for early diagnosis and prognostication in PD.

Ensemble learning, a popular technique employed in multimodal

CAD systems, plays a crucial role in fusing information from

diverse data sources. Through ensemble learning, multiple models

are trained independently on different subsets of data or using

distinct feature representations. Ensemble learning had been

successfully applied in PD classification using multimodal voice

and speech data (Ali et al., 2021).

Recent promising markers that use the biochemistry of alpha-

synuclein seed amplification assays have shown potential (Siderowf

et al., 2023). For instance when recommending DBS as a therapy

option for PD, it is important to consider genetic information,

specifically whether the patient is a carrier of mutations in the

glucocerebrosidase (GBA) gene. PD patients with GBA mutations

are at particularly high risk for cognitive impairment with DBS

due to dysfunction of the glucocerebrosidase (GCase) enzyme,

resulting in more rapid accumulation and spread of Lewy

bodies. Recent research has shown that PD patients experience

cognitive impairment after DBS, and this risk is even greater

for those with GBA mutations. Therefore, models that assist

with therapy recommendations for PD patients should carefully

evaluate whether patients are carriers of GBA mutations before

recommending DBS as a treatment option (Pal et al., 2022).

Furthermore, there is an extended literature of ML models

that have the potential to become CAD systems in the future

from diagnosis and monitoring of PD, by providing more accurate

and objective measurements of motor symptoms and disease

progression. However, until this model are properly validated there

are far to be ready for its used in clinical settings to ensure their

safety and effectiveness in clinical practice.

Ultimately, our review emphasizes the critical importance

of taking a multidisciplinary approach and putting in extensive

effort during the data preparation and clinical validation phases

of developing ML models. It is crucial to recognize that

proper design and clinical validation may be undervalued

in comparison to the training of ML models, but they are

indispensable for data-driven CAD solutions that are safe for a

clinical use. We hope that this review will inspire both future

users and developers of these systems in the context of MRI

for PD.
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Introduction: Although the subthalamic nucleus (STN) has proven to be a safe

and effective target for deep brain stimulation (DBS) in the treatment of primary

dystonia, the rates of individual improvement vary considerably. On the premise

of selecting appropriate patients, the location of the stimulation contacts in the

dorsolateral sensorimotor area of the STN may be an important factor affecting

therapeutic effects, but the optimal location remains unclear. This study aimed

to define an optimal location using the medial subthalamic nucleus border as

an anatomical reference and to explore the influence of the location of active

contacts on outcomes and programming strategies in a series of patients with

primary dystonia.

Methods: Data from 18 patients who underwent bilateral STN-DBS were

retrospectively acquired and analyzed. Patients were assessed preoperatively and

postoperatively (1 month, 3 months, 6 months, 1 year, 2 years, and last follow-up

after neurostimulator initiation) using the Toronto Western Spasmodic Torticollis

Rating Scale (for cervical dystonia) and the Burke–Fahn–Marsden Dystonia Rating

Scale (for other types). Optimal parameters and active contact locations were

determined during clinical follow-up. The position of the active contacts relative

to the medial STN border was determined using postoperative stereotactic MRI.

Results: The clinical improvement showed a significant negative correlation with

the y-axis position (anterior–posterior; A+, P−). The more posterior the electrode

contacts were positioned in the dorsolateral sensorimotor area of the STN,

the better the therapeutic effects. Cluster analysis of the improvement rates

delineated optimal and sub-optimal groups. The optimal contact coordinates

from the optimal group were 2.56 mm lateral, 0.15 mm anterior, and 1.34 mm

superior relative to the medial STN border.

Conclusion: STN-DBS was effective for primary dystonia, but outcomes

were dependent on the active contact location. Bilateral stimulation contacts
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located behind or adjacent to Bejjani’s line were most likely to produce

ideal therapeutic effects. These findings may help guide STN-DBS preoperative

planning, stimulation programming, and prognosis for optimal therapeutic

efficacy in primary dystonia.

KEYWORDS

dystonia, deep brain stimulation, subthalamic nucleus, movement disorders,
neurological function

1. Introduction

Dystonia is a movement disorder characterized by sustained
or intermittent muscle contractions that result in abnormal
movements and/or posture (Balint and Bhatia, 2014). Treatment
is challenging because of dystonia’s highly complex etiology
and pathogenesis (Batla et al., 2012; Balint et al., 2018;
Albanese et al., 2019). Deep brain stimulation (DBS) has
been widely used in the treatment of various types of drug-
resistant dystonia, and the globus pallidus internus (GPi) is
the most commonly used stimulation target (Kupsch et al.,
2006; Volkmann et al., 2014; Meoni et al., 2017; Sobstyl et al.,
2017; Tsuboi et al., 2020). Although its safety and efficacy have
been proven, stimulation-induced side effects are frequent and
insurmountable (Balint et al., 2018; Kosutzka et al., 2020). The
high energy consumption of DBS is another drawback (Lin et al.,
2019).

Increasing evidence has shown that the subthalamic nucleus
(STN) is an effective target for the treatment of primary dystonia
(Yao et al., 2019; Wang and Yu, 2021; Li et al., 2022; Yin et al.,
2022). However, the benefits of stimulation and the required
stimulation complexity vary greatly between patients, highlighting
the necessity of exploring outcome and treatment predictors. The
main factors affecting the success of STN-DBS include patient
selection, the correct positioning of the electrodes in the target,
and the optimization of stimulation programming. Choosing the
optimal DBS site is a prerequisite for obtaining good therapeutic
effects.

The midcommissural point (MCP) is a common anatomical
reference point used in stereotactic neurosurgery. However,
using this for STN-DBS localization is not ideal, as the exact
location of the MCP varies among individuals (Bot et al.,
2018). The red nucleus (RN) is a useful internal reference for
targeting the anteroposterior coordinates of the STN (Chang
et al., 2008). Bejjani’s line (Bejjani et al., 2000) and the medial
STN border, based on the anatomic relationship between the
RN and STN, have also been used with good results in STN-
DBS treatment of Parkinson’s disease (PD), and a theoretical
stimulation “hotspot” has been defined (Bot et al., 2018).
However, the usefulness of this location in dystonia remains
unclear. Therefore, we used the medial border of the STN as
a reference to determine the optimal electrode location and to
evaluate the relationship between active contact locations, clinical
outcomes, and programming in the STN-DBS treatment of primary
dystonia.

2. Materials and methods

2.1. Patients

We retrospectively analyzed data collected from 18 patients
with primary dystonia who received STN-DBS in the Department
of Neurosurgery at the Aerospace Center Hospital from September
2014 to January 2020. The inclusion criteria were as follows: a
diagnosis of idiopathic isolated dystonia; severe dysfunction that
did not respond to oral medication, botulinum toxin, or selective
peripheral denervation; no other secondary cause, including the
use of antipsychotic medications, was present before the onset
of dystonia; normal neurological examination and brain MRI
except for dystonia; and the patient was willing to receive regular
counseling visits and a long-term follow up. The exclusion
criteria were medical contraindications to surgery; MRI evidence
of another neurological disorder, extensive brain atrophy, or
anatomic abnormalities in the basal ganglia region; and severe
cognitive impairment, depression, or severe mental illness. This
study received ethical approval from the Aerospace Center Hospital
(approval number: 20190301-YN-03), and all protocols were
implemented in accordance with the Declaration of Helsinki. All
patients provided written informed consent.

2.2. Surgical procedures and stimulation
programming

The dorsolateral regions of the bilateral STN were selected
as the targets for electrode implantation in all enrolled patients.
DBS surgery was performed by the same two experienced
neurosurgeons following a previously published procedure (Yin
et al., 2022). All patients underwent post-operative brain CT
to rule out hemorrhage. Programming was initiated 3 weeks
after DBS surgery. The lead locations were confirmed by fusing
post-operative high-resolution CT images with pre-operative MRI
before programming. The programming method has also been
described previously (Yin et al., 2022).

2.3. Clinical evaluation

Symptoms of dystonia were assessed by an independent
neurologist specializing in movement disorders, who was neither
aware of the stimulation status nor responsible for programming,
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before (baseline) and after surgery (1 month, 3 months, 6 months,
1 year, 2 years, and at the last follow-up after neurostimulator
initiation). The Toronto Western Spasmodic Torticollis Rating
Scale was used to assess cervical dystonia (CD), and the Burke–
Fahn–Marsden Dystonia Rating Scale (BFMDRS) was used to
assess generalized dystonia, cranial dystonia, and myoclonus–
dystonia. The results were normalized by calculating the percentage
changes of both rating scale scores.

2.4. Electrode contact placement relative
to medial STN border

The methods of Bot et al. (2018) were followed for electrode
contact positioning relative to the medial STN border. In brief,
1.5-T T2-weighted MRI was performed, and measurements were
performed using SurgiPlan. The medial STN border was identified
in the axial plane containing the maximum diameter of the
RN, which was determined using both axial- and coronal-
orientated images. A line was drawn perpendicular to the
anterior commissure–posterior commissure line coinciding with
the anterior border of the RN, which is Bejjani’s line. The point of
intersection with the medial boundary of the STN was determined,
defined as the medial STN border, and the stereotactic coordinates
with respect to the MCP were recorded. Post-operative CT images
were coregistered with stereotactic T1-weighted MRI images, and
the stereotactic x- (lateral), y- (anterior–posterior), and z- (dorsal–
ventral) coordinates of the contact point of active stimulation
relative to the medial STN border were determined. This was done
separately for the left and right hemispheres. The x-coordinates of
both bilateral contacts were defined as the location of the positive
contact, and the y- and z-coordinates were used to define the
anterior and dorsal directions of Bejjani’s line as positive and the
reverse as negative.

2.5. Statistical analysis

Statistical analysis was performed using SPSS (v19.0; IBM
Corp., Armonk, NY, USA). The Shapiro–Wilk test was used to
analyze the distribution of the grouped data. Cluster analysis
(K-means clustering) was used to identify subgroups using
improvement rates. The Mann–Whitney U test was used to
compare differences between clusters, between dystonia subtypes,
and between coordinate values. Correlations were performed
using Spearman’s correlation analysis. Two-tailed p-values < 0.05
were considered statistically significant. The results are presented
as mean ± SD.

3. Results

3.1. Participants

Table 1 summarizes the clinical characteristics, percentages
of improvement at different follow-up times, and stimulation
parameters at the last follow-up of the 18 included patients (9 male,

TABLE 1 Summary of patient characteristics, percent improvement at
different follow-up times, and stimulation parameters at last follow-up.

Sex

Male 9

Female 9

Age at onset (year) 39.3 ± 15.1

Childhood 1

Adolescence 1

Early adulthood 7

Late adulthood 9

Disease duration (year) 4.4 ± 2.2

Disease subtype

Generalized 5

Cervical 9

Cranial 3

Myoclonus 1

Age at surgery (year) 43.7 ± 14.9

Duration of follow-up (year) 5.5 ± 1.8

Percentage of improvement

1 month 23.8 ± 10.9

3 months 52.3 ± 17.2

6 months 69.4 ± 25.6

1 year 83.0 ± 22.8

2 years 85.7 ± 23.6

Last follow-up 90.6 ± 13.0

DBS parameters

Amplitude (V) 2.4 ± 0.5

Pulse width (µs) 60.6 ± 2.3

Frequency (Hz) 134.0 ± 6.7

Data on age at onset, disease duration, age at surgery, duration of follow-up, percentage of
improvement, and DBS parameters expressed as mean ± SD, and other data expressed as
numbers; DBS, deep brain stimulation.

9 female). Nine patients had CD, five had generalized dystonia,
three had cranial dystonia (one with cervical symptoms and two
without), and one had myoclonus–dystonia. The mean age of
onset was 39.3 ± 15.1 (range, 7–62) years. The duration of disease
was 4.4 ± 2.2 (range, 1–9) years. The average age at surgery was
43.7 ± 14.9 (range, 14–69) years. The mean follow-up time was
5.5 ± 1.8 (range, 2–8) years. Two patients received routine battery
replacements.

3.2. Clinical outcomes

A total of 36 DBS electrodes were placed in 18 patients, and
all used the monopolar stimulation mode. For the entire cohort,
the mean improvement was 23.8% at 1 month, 52.3% at 3 months,
69.4% at 6 months, 83.0% at 1 year, 85.7% at 2 years, and 90.6%
at the last follow-up. The mean improvement rates of five patients
with generalized dystonia at 1, 3, and 6 months and 1 year, 2 years,
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FIGURE 1

Improvement rates at different follow-up times: (A) mean percent improvement at different follow-up times after surgery in three types of dystonia;
(B) line graphs showing individual percent improvement at different follow-up times after surgery; (C) mean percent improvement at different
follow-up times after surgery in Clusters 1 and 2; ∗p < 0.05.

and the last follow-up were 29.9, 57.9, 79.2, 88.8, 92.6, and 94.0%,
respectively. Correspondingly, in the nine patients with CD, these
were 18.7, 52.6, 72.1, 81.0, 80.8, and 89.0%, respectively. In the
three patients with cranial dystonia, these were 25.1, 41.9, 43.0, 73.5,
84.3, and 86.8%, respectively. There was no significant difference
among the three types of dystonia during follow-up except for
a slight difference between generalized and cranial dystonia at
6 months (Figure 1A). The patient with myoclonus–dystonia
showed improvement rates at 1 month, 3 months, 6 months, 1 year,
2 years, and the last follow-up of 35.7, 52.4, 74.7, 100.0, 100.0, and
100.0%, respectively.

At the last follow-up visit, all the patients received a monopolar
stimulus mode. The mean pulse width was 60.6 ± 2.3 µs, the mean
frequency was 134.0 ± 6.7 Hz, and 17 patients were using constant-
voltage stimulation (mean amplitude, 2.4 ± 0.5 V) and 1 patient
was using constant-current stimulation (bilateral, 2.4 mA).

Cluster analysis of the improvement rates identified two
different groups (Figures 1B, C). Cluster 1 included 12 patients (6
CD, 4 generalized dystonia, 1 cranial dystonia, and 1 myoclonus–
dystonia), and the mean improvement rates at 1 month, 3 months,
6 months, 1 year, 2 years, and the last follow-up were 28.1, 61.9,
84.4, 97.2, 98.3, and 98.3%, respectively. Cluster 2 included six
patients (3 CD, 1 generalized dystonia, and 2 cranial dystonia),
and the improvement rates were 15.3, 32.9, 39.4, 54.6, 60.6,
and 75.3%, respectively. The mean improvement was statistically
different between these two groups at each follow-up time.
Cluster 1 represents the optimal response group, and Cluster
2 represents the suboptimal response group. The two groups
had no significant differences in sex (p = 0.331), age at disease
onset (p = 0.174), duration of disease (p = 0.479), age at
surgery (p = 0.189), duration of stimulation (p = 0.743), and
stimulation parameters (left amplitude, p = 0.850; right amplitude,
p = 0.395; left pulse width, p = 1.000; right pulse width, p = 0.606;
frequency, p = 0.538).

3.3. Location of active electrode contacts

The mean stereotactic distances of the left and right active
electrode contacts of Cluster 1 and Cluster 2 relative to the medial
STN border are shown in Table 2. The active contacts in Cluster
2 were more anterior than those in Cluster 1 on both the left

and right sides, but there was no significant difference in the
x- or z- coordinates. In both clusters, there was no significant
difference between the right and left sides for the x-, y-, or z-
coordinates. For Cluster 1, the average x-, y-, and z-coordinates
were 2.56 mm, 0.15 mm, and 1.34 mm, respectively. The optimal
contact coordinates were obtained according to these. For Cluster
2, the average x-, y-, and z-coordinates were 2.66 mm, 1.48 mm,
and 1.08 mm, respectively. Cluster 1 and Cluster 2 were statistically
different in their average y-coordinates but not in their average x-
or z-coordinates (Table 2).

The bilateral active contacts in all the patients are shown in
Figure 2. In Cluster 2, both bilateral active contacts were more
anterior in three patients, and the active contacts on one side were
more anterior than the other side in three patients. The former
group showed less improvement at the last follow-up than the
latter group (69.7 vs. 80.9%), and the small number of cases limited
statistical analysis.

3.4. Correlation between active contacts
locations and outcomes

Correlations between the improvement rate at the last follow-
up and the x-, y-, and z-coordinates relative to the medial STN
border are shown in Figure 3. For the entire cohort, there was
a significant inverse correlation between the right y-coordinate
and the improvement rate at the last follow-up (p = 0.006). The
improvement rate at the last follow-up showed no correlation with
the left y-, bilateral x-, or bilateral z- coordinates. The average
y-coordinate of the bilateral contacts was negatively correlated with
the improvement rate at the last follow-up (p = 0.011), while the
average x- and z- coordinates were not significantly correlated with
the improvement rate at the last follow-up.

3.5. Long-term motor outcome
predictors and associated factors

None of the tested factors were found to be an independent
predictor of long-term movement improvement (sex, p = 0.281; age
at disease onset, p = 0.061; duration of disease, p = 0.793; age at

Frontiers in Aging Neuroscience 04 frontiersin.org126

https://doi.org/10.3389/fnagi.2023.1187167
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/


fnagi-15-1187167 July 17, 2023 Time: 12:43 # 5

Zhao et al. 10.3389/fnagi.2023.1187167

T
A
B
LE

2
M
ea

n
st
er
eo

ta
ct
ic

co
o
rd
in
at
es

o
f
le
ft
an

d
ri
g
h
t
ac

ti
ve

el
ec

tr
o
d
e
co

n
ta
ct
s
in

C
lu
st
er

1
an

d
C
lu
st
er

2
re
la
ti
ve

to
th
e
m
ed

ia
lS

T
N
b
o
rd
er

an
d
av

er
ag

e
co

o
rd
in
at
es

o
n
b
o
th

si
d
es
.

n
Le

ft
co

n
ta

ct
lo

ca
ti

o
n

R
ig

h
t

co
n

ta
ct

lo
ca

ti
o

n
A

ve
ra

g
e

co
o

rd
in

at
e

s
o

f
b

ila
te

ra
lc

o
n

ta
ct

lo
ca

ti
o

n

x
y

z
x

y
z

x
y

Z

C
lu

st
er

1
12

2.
65

±
0.

33
−

0.
05

±
0.

65
1.

28
±

1.
33

2.
47

±
0.

3
0.

36
±

0.
59

1.
87

±
1.

04
2.

56
±

0.
22

0.
15

±
0.

60
1.

34
±

1.
24

C
lu

st
er

2
6

2.
55

±
0.

44
1.

02
±

0.
67

0.
3

±
1.

61
2.

77
±

0.
3

1.
93

±
0.

6
1.

4
±

1.
26

2.
66

±
0.

36
1.

48
±

0.
57

1.
08

±
0.

86

P-
va

lu
es

p
=

0.
74

1
p
=
0.
01
7

p
=

0.
28

0
p

=
0.

06
6

p
=
0.
00
1

p
=

0.
60

6
p

=
0.

28
0

p
=
0.
00
1

p
=

0.
39

8

Si
gn

ifi
ca

nt
di

ffe
re

nc
es

be
tw

ee
n

cl
us

te
rs

in
di

ca
te

d
in

bo
ld

.

surgery, p = 0.057; duration of stimulation, p = 0.163). However,
the improvement rates at 1 month (p = 0.022) and 3 months
(p = 0.001) were positively correlated with the improvement rate
at the last follow-up.

3.6. Adverse events

No surgery-related complications (e.g., intracranial and
extracranial hematoma or epileptic seizures) or hardware-related
infections were found during the entire follow-up. Six patients
experienced uncomfortable sensations due to the extension wire,
but none required additional surgery. One patient sometimes
experienced mild pain at the site of the neurostimulator, but it had
no practical effect on activities of daily living. Stimulus-related
adverse events included mild balance disorder (one patient), manic
symptoms (one patient), mild hand weakness (two patients), and
movement disorders (10 patients), all of which were alleviated
through programming alterations.

4. Discussion

This study has once again confirmed the long-term safety and
sustained effectiveness of STN-DBS for the treatment of different
subtypes of dystonia (up to 8 years). We determined the optimal
contact coordinates, which were relative to the medial STN border,
for STN-DBS in the treatment of dystonia and found that the
improvement of symptoms was closely related to the y-axis position
of the electrode contact. The more posterior the electrode contacts
were in the dorsolateral sensorimotor area of the STN, the better
the therapeutic effects. This study demonstrated significant effects
of STN-DBS in the treatment of myoclonus–dystonia.

Treatment with STN-DBS is more likely to induce stimulus-
related dyskinesia than GPi-DBS, and this most often occurs in the
early stages after the stimulator is first activated (Zheng et al., 2010;
Lin et al., 2019; Liu et al., 2019). We reduced the voltage within
1 month after neurostimulator initiation to prevent discomfort
and lower the risk of adverse events. If the treatment threshold
was not reached, the improvement rate at the 1-month follow-up
was lower. Then, by gradually increasing the stimulation voltage,
the dyskinesia was overcome, and the treatment effect gradually
became significant. The same strategy was used by our group for
the treatment of all types of dystonia.

Cervical dystonia is the most common form of focal dystonia,
and there are more reports on STN-DBS treatment of CD than
other subtypes (Pahapill and O’Connell, 2010; Ostrem et al., 2011,
2017; Wagle Shukla et al., 2018; Gupta, 2020). In the present
study, long-term improvement was higher than in a previous study
(Ostrem et al., 2017). Our current study included five patients with
generalized dystonia, who showed no significant difference in their
mean motor symptom improvement rate compared with patients
with CD during follow-up; this was in line with a previous study
(Deng et al., 2018). A recent study showed that STN-DBS provided
relatively steady improvement in the severity of generalized isolated
dystonia, with increases of 66.8 and 72.6% at 1-year and last long-
term follow-up, respectively (Li et al., 2022). In the three patients
in the present study with cranial dystonia, the mean improvement

Frontiers in Aging Neuroscience 05 frontiersin.org127

https://doi.org/10.3389/fnagi.2023.1187167
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/


fnagi-15-1187167 July 17, 2023 Time: 12:43 # 6

Zhao et al. 10.3389/fnagi.2023.1187167

FIGURE 2

Plot of the y- and z-coordinates of the bilateral stimulation contacts
for all 18 patients; the origin of the plot is the medial STN border;
Clusters 1 and 2 are represented in different colors; the shaded area
includes all bilateral active contacts of patients in Cluster 1 and
unilateral active contacts of patients in Cluster 2.

rate was not significantly different from that in the patients with CD
and generalized dystonia. A recent study showed that 32 patients
with Meige syndrome had a mean improvement of 79.0% at the
last follow-up (mean, 16.3 months; Wang et al., 2021), which is
similar to that reported here. Another study showed that 14 patients
with Meige syndrome had a mean improvement of 70.9% at the last
follow-up (mean, 14.8 months; Yao et al., 2019).

Myoclonus–dystonia is a relatively rare movement disorder
typically characterized by childhood-onset myoclonic jerks in the
upper limbs and various extents of dystonia (Roze et al., 2018).
Most studies have selected GPi as the stimulation target, and few
have chosen the ventral intermediate nucleus of the thalamus. Both
targets have been effective, but GPi stimulation may be preferred
due to fewer stimulation-induced events (Wang and Yu, 2021).
In the present study, we included one patient with myoclonus–
dystonia who achieved complete improvement 1 year after STN-
DBS. Similar reports have not been found.

Studies of STN-DBS for the treatment of PD, when the MCP
was selected as the reference, have shown no correlation between
the DBS location and motor improvement (McClelland et al., 2005,
2009; Kasasbeh et al., 2013; Weise et al., 2013; Nestor et al., 2014).
Bot et al. (2018) proposed the medial STN border, which was
defined as the intersection of Bejjani’s line with the medial border
of the STN (Bejjani et al., 2000), as a new, individualized reference
point that is well delineated on standard MRI (Bot et al., 2018).
They found that the medial STN border was superior compared
to the MCP as an anatomical reference for correlation between
the DBS location and motor improvement and defined a theoretic
stimulation “hotspot.” A study with a larger patient cohort study
refined the “hotspot” within the STN at 2.6 mm lateral, 0.7 mm
anterior, and 1.9 mm superior to the medial STN border using
T2-weighted imaging (Bolier et al., 2021). Inspired by this, in the
present study, we found that the “hotspot” for STN-DBS in the
treatment of primary dystonia was at 2.56 mm lateral, 0.15 mm
anterior, and 1.34 mm superior to the medium STN border
using T2-weighted imaging. The “hotspots” for the treatment of

dystonia and PD are, thus, similar. The subsequent findings of
an exclusive correlation between the y-coordinate and clinical
outcome suggested that the y-axis placement was an important
predictor of electrode contact efficacy.

The explanation for these findings may relate to the anatomy
of the STN. The STN is composed of a dorsolateral motor area, a
central associative region, and a ventromedial limbic component
(Haynes and Haber, 2013). The more forward the electrode contact
deviates from Bejjani’s line, the closer it is to the associative region,
and it can thus can easily cause stimulation side effects. The
dorsolateral motor area neurons are then less stimulated, resulting
in a poor therapeutic effect.

In the present study, Cluster 1 represented the optimal
response group, and Cluster 2 represented the suboptimal response
group. During the entire follow-up period, the improvement
rate of Cluster 1 was significantly better than that of Cluster 2.
Interestingly, the improvement of three patients from Cluster 2,
with active contacts on one side more anterior to those on the other,
was superior to the three patients for whom both bilateral active
contacts were more anterior, although the number of cases limited
statistical analysis. This may mean that the optimal therapeutic
effect requires bilateral stimulation contacts to be in an ideal
location. Even if one of the stimulation contacts deviates from
this position, the long-term outcome may be affected. The present
study also confirmed that axial symptoms of dystonia are regulated
bilaterally in the brain. The electrode deviation may have been
related to brain drift caused by the loss of cerebrospinal fluid (CSF)
during implantation, and the second electrode is especially more
vulnerable to this. Direct puncture of the dura over the planned
cortical entry point during surgery can significantly reduce the loss
of CSF compared to standard incision of the dura (Piacentino et al.,
2021).

The “up–top–down” rule is the programming strategy we
apply, as described in our previous article, which minimizes
stimulus-related side effects and reduces the energy consumption
of the stimulator while maintaining efficacy (Yin et al., 2022). No
significant difference was detected between Cluster 1 and Cluster 2
in the incidence of stimulation-induced dyskinesia in the present
study, but Cluster 1 was less severe and easier to adapt than Cluster
2. This may be related to the better contact positions in Cluster 1.

In the present cohort, the optimal selection of active contacts
was determined within 3 months for Cluster 1, and with the
increase of the stimulation voltage, motor symptoms continued
to improve until becoming stable. However, for Cluster 2, the
mean improvement rate at 3 months was less than that in Cluster
1 (32.9 vs. 62.9%). In order to obtain better therapeutic effects,
it is necessary to alter the active contacts and/or stimulation
mode after 3 months of stimulation. In the present study,
one patient’s paroxysmal dystonia disappeared immediately after
switching from constant-voltage to constant-current stimulation.
The improvement rate at 3 months could predict the effects of long-
term stimulation, and using the 3-month rate for prediction was
superior to the 1-month rate. Thus, when the improvement rate is
not ideal after 3 months, an adjustment of the stimulation strategy
should be considered.

One patient in the present study became hypomanic after the
stimulator was turned on, indicating that the stimulation contact
was located in the ventral limbic region (Mallet et al., 2007; Prange
et al., 2022). When the dorsal contacts were selected as the active
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FIGURE 3

Correlations between percent improvement at last follow-up and the (A–C) x-, (D–F) y-, and (G–I) z-coordinates of the active contacts in all
patients.

contacts, the hypomania disappeared, but the stimulation effect was
poor because the stimulation contacts deviated from Bejjani’s line
on both sides.

This study has some limitations. First, it was not randomized or
fully blinded, which may have introduced bias. Future studies are
warranted that group patients randomly, by differentiation using
the stimulation electrode y-coordinates, or using blind clinical
assessment, which will help confirm our findings. Second, the
analysis of the predictors may not be robust enough due to a
lack of sufficient case numbers. Therefore, more cases and more
rigorously designed studies are needed for further confirmation.
Genetic testing data were not available for most of the patients
in the present cohort. A growing number of studies have found
that genetic signatures are some of the most promising predictors
(Jinnah et al., 2017; Tisch and Kumar, 2020).

5. Conclusion

Subthalamic nucleus-deep brain stimulation can provide
significant, sustained, and stable effects in the treatment of patients
with various subtypes of primary dystonia. In addition, stimulation
at posterior contacts in the STN on the y-axis was found to be more
advantageous than at anterior contacts for improving dystonia.
Special attention should be paid to electrode positioning along the

anterior–posterior axis to ensure that the electrodes are positioned
as close to Bejjani’s line as possible.
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