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New-generation sequencing technologies, among them SNP chips for massive genotyping, are useful for the effective management of genetic resources. To date, molecular studies in Peruvian cattle are still scarce. For the first time, the genetic diversity and population structure of a reproductive nucleus cattle herd of four commercial breeds from a Peruvian institution were determined. This nucleus comprises Brahman (N = 9), Braunvieh (N = 9), Gyr (N = 5), and Simmental (N = 15) breeds. Additionally, samples from a locally adapted creole cattle, the Arequipa Fighting Bull (AFB, N = 9), were incorporated. Female individuals were genotyped with the GGPBovine100K and males with the BovineHD. Quality control, and the proportion of polymorphic SNPs, minor allele frequency, expected heterozygosity, observed heterozygosity, and inbreeding coefficient were estimated for the five breeds. Admixture, principal component analysis (PCA), and discriminant analysis of principal components (DAPC) were performed. Also, a dendrogram was constructed using the Neighbor-Joining clustering algorithm. The genetic diversity indices in all breeds showed a high proportion of polymorphic SNPs, varying from 51.42% in Gyr to 97.58% in AFB. Also, AFB showed the highest expected heterozygosity estimate (0.41 ± 0.01), while Brahman the lowest (0.33 ± 0.01). Besides, Braunvieh possessed the highest observed heterozygosity (0.43 ± 0.01), while Brahman the lowest (0.37 ± 0.02), indicating that Brahman was less diverse. According to the molecular variance analysis, 75.71% of the variance occurs within individuals, whereas 24.29% occurs among populations. The pairwise genetic differentiation estimates (FST) between breeds showed values that ranged from 0.08 (Braunvieh vs. AFB) to 0.37 (Brahman vs. Braunvieh). Similarly, pairwise Reynold’s distance ranged from 0.09 (Braunvieh vs. AFB) to 0.46 (Brahman vs. Braunvieh). The dendrogram, similar to the PCA, identified two groups, showing a clear separation between Bos indicus (Brahman and Gyr) and B. taurus breeds (Braunvieh, Simmental, and AFB). Simmental and Braunvieh grouped closely with the AFB cattle. Similar results were obtained for the population structure analysis with K = 2. The results from this study would contribute to the appropriate management, avoiding loss of genetic variability in these breeds and for future improvements in this nucleus. Additional work is needed to speed up the breeding process in the Peruvian cattle system.
Keywords: cattle breeds, genotypes, diversity, genomics, NGS
1 INTRODUCTION
Livestock production around the world is a large sector with an important contribution of 40% and 20% to agriculture production in developed and developing countries, respectively (Herrero et al., 2013; Baltenweck et al., 2020; FAO, 2022). A large part of Peru’s livestock economy revolves around cattle production (León-Velarde and Quiroz, 2004). According to the latest Peruvian National Agricultural Census (Instituto Nacional de Estadística e Informática, 2012), Peruvian creole cattle (PCC) is the most predominant cattle population (64.03%). PCC is prevalent in the Andean sector of the country, where it has been adapted to the highlands climate conditions (Quispe, 2016; Delgado et al., 2019). However, in comparison with exotic breeds, PCC achieves smaller body weights and milk production records (Espinoza and Urviola, 2005; Dipas Vargas, 2015; Ruiz et al., 2021).
Due to the low productivity, small farmers breeding strategy is to crossbred PCC with other specialized breeds in order to take advantage of the heterosis effect (Seré et al., 1996; W. et al., 2019). Nowadays, there are a high availability of bovine breeds that can be used to improve milk, meat or double purpose production (Thibier and Wagner, 2002; Mebratu et al., 2020). However, Peruvian initiatives are lacking the understanding of the genetics behind. Genetic diversity knowledge is essential for the effective management of genetic resources (Groeneveld et al., 2010; Hoban et al., 2013). In recent years the availability of genotyping technology has become affordable in livestock allowing to increase genetic studies (Mukhopadhyay et al., 2020). As a result, SNP markers are becoming increasingly common for diversity analysis and population structure studies (Morin et al., 2009; Haasl and Payseur, 2011). SNP markers have the advantage of being abundant in the genome, as well as the ability to be automated through high-through genotyping panels (Beuzen et al., 2000; Vignal et al., 2002).
In developing countries, nucleus breeding systems represent a good strategy for animal genetic improvement for ruminants. Concentrating nucleus cattle in one or a few herds to disseminate genetic material to other populations is helpful (Kiwuwa, 1992; Schrooten and van Arendonk, 1992). In 1993, a Peruvian government herd composed of Brahman, Braunvieh, Gyr and Simmental breeds was established with the aim to develop reproductive technology research, such as artificial insemination and embryo transfer. Currently, the herd is distributing semen straws and embryos to producers’ associations in order to disseminated specialized cattle breed genetics. This herd is been called a genetic nucleus herd, however, there is scarcity of data available in pedigrees and production records. Therefore, this study aims to provide understanding of the genetic diversity among the breeds on this herd, and its population structure, including a PCC group on the study. We expect to genomic characterize the nucleus using SNP markers, by obtaining genetic diversity and population structure parameters.
2 MATERIALS AND METHODS
2.1 Animal sampling and DNA extraction
A total of 63 blood samples were collected from four commercial breeds of taurus (Braunvieh and Simmental) and indicus cattle (Brahman and Gyr). According to their pedigree, up to grandfathers, genetic origins for Brahman and Gyr were predominantly from Brazil; for Braunvieh, Switzerland and Colombia; while for Simmental was Germany (Supplementary Table S1). Blood sampling was performed from a government herd, the Donoso Agricultural Research Station (EEA Donoso in Spanish) located in Huaral, Lima (128 masl; 11°31′18″ S and 77°14′06″ W). Pedigree was checked to avoid sampling from related individuals, animals were not siblings or had a parental relationship. Blood samples were collecterelated individuals, animals were not siblings or have a parentald from the epidural vein using a vacutainer containing EDTA as an anticoagulant and were immediately transferred to the laboratory for DNA extraction. Additionally, we got access to 12 hair samples that were collected from the tail of individuals that were considered as “Arequipa fighting bull” (AFB), which are bovines from Arequipa region (2,335 masl; 15°29′58″ S and 72°21′36″ W). Most of these individuals were selected as they possessed most of the morphological characteristics of a PCC as identified by their owners, where its body is unbalanced with the topline being higher on the front and becoming smaller toward the rear. For the PCC, the hooks to pin are lower-level hipped when compared to other breeds of cattle, dairy or beef. The length of the body is shorter, as is the topline. Colors of hair have multiple variations. The diversity of colors ranges from a total color cover to mixed ones and spotting ones.
We extracted genomic DNA from whole blood and hair samples with the Wizard Genomic DNA Purification Kit (Fitchburg, WI, United States) following the manufacturer’s instructions. The quality and quantity of genomic DNA were assessed using agarose gel electrophoresis and a Nanodrop spectrophotometer (Model ND 2000, Thermo Fisher Scientific, Wilmington, DE, United States) prior to genotyping. In addition, 40 genotypes from reference breeds were included in the analyses. The reference breeds were sourced from Decker et al. (2014) and the world reference dataset in Web-Interfaced Next-Generation Database (WIDDE) database (Sempéré et al., 2015). Breeds included were Brahman, Braunvieh, Gyr, and Simmental.
2.2 SNP genotyping and quality control
DNA samples were genotyped using Illumina Bovine HD Genotyping BeadChip and Illumina GGP Bovine 100K BeadChip with the help of the commercial genotyping service provider (Neogen, Geneseek, NL, United States). Female individuals were genotyped with the GGPBovine100K and males with the BovineHD. The Bovine HD and 100K chips possess 777,962 and 95,256 SNPs, respectively, uniformly spanning over the entire bovine genome. A total of 87,669 common markers between both SNP panels were used for the following analysis. From the total of 71 animals sampled, we discarded the ones with a genotype call rate minor to 85% (Purfield et al., 2016). A total of 18 samples were discarded before starting the SNP quality control. We started the SNP quality control with 53 animals and 47 remained for the following analysis after quality control.
SNPs quality control was performed using the PLINK v1.9 program (Purcell et al., 2007). SNPs assigned to sex chromosomes and those lacking genomic locations were excluded from the analysis. SNPs with missing genotypes in more than 10% of individuals, missing rate per SNP of 10%, and minor allele frequency (MAF) lower than 0.05 were excluded. However, SNP filtering based on the Hardy–Weinberg equilibrium was not performed since we expected Hardy–Weinberg deviations in the studied populations due to their small and possibly sub-structured population and genetic drift (Chen et al., 2017). We used 80,178 autosomal SNPs that remained after applying filtering criteria to assess genetic diversity. Additionally, linkage disequilibrium pruning, using the parameter indep (50 5 2), was performed before the population structure analysis. A total of 16,345 SNPs were obtained after pruning for LD.
2.3 Genetic diversity
To assess the genetic diversity within the studied population we used different genetic diversity parameters. The proportion of polymorphic SNPs (Pn), MAF, expected heterozygosity (He), observed heterozygosity (Ho), and inbreeding coefficient (FIS) were estimated using R package dartR (Gruber et al., 2018). The distribution of MAF was grouped into five different categories based on the frequency of rare alleles (0 < MAF ≤0.1), intermediate alleles (0.1 < MAF ≤0.2, 0.2 < MAF ≤0.3, and 0.3 < MAF ≤0.4), and common alleles (0.4 < MAF ≤0.5).
2.4 Population structure
Different approaches were employed to investigate the genetic structure among the cattle populations of the EEA Donoso herd, and assess their relationships with the AFB cattle. First, an analysis of molecular variance (AMOVA) was performed with ARLEQUIN v.3.5.2 software (Excoffier and Lischer, 2010), with the locus by locus option and 1,000 permutations. PGDSpider v.2.1.1.5 software (Lischer and Excoffier, 2012) was used to convert files between PLINK and Arlequin formats. We used ARLEQUIN to assess the divergence among breeds. Genetic differentiation among breed (FST) fixation indices were calculated using 20,000 permutations and a significance level of 0.05. Also, Reynold’s distance was performed. Second, a principal component analysis (PCA), and a discriminant analysis of principal components (DAPC) were perform with PLINK. The factorextra (Kassambara and Mundt, 2017) and adegenet (Jombart and Collins, 2017) R packages were used to generate eigenvectors and eigenvalues, and the outputs were visualized using the package ggplot2 (Gómez-Rubio, 2017). For PCA and DAPC, animals form the referenced population were included in the analyses. Third, an assessment of population genetic structure was performed using the default settings of ADMIXTURE v.1.3 software (Alexander et al., 2009). The most appropriate K value was selected after considering 10-fold cross-validations whereby the best K exhibits low cross validation error compared to other K values (Alexander and Lange, 2011). Finally, a Neighbor-Joining tree was constructed using vcfR (Knaus and Grünwald, 2017), pegas (Paradis, 2010), and ape (Paradis and Schliep, 2019) packages in R. Additionally, 1,000 bootstrap replicates were conducted.
3 RESULTS
3.1 Genetic diversity analysis
The results of the genetic diversity parameters calculated for the different cattle breed groups genotyped are summarized in Table 1. Most of the breeds show a high Pn, varying from 51.42% in Gyr to 97.58% in AFB. The highest mean MAF value was observed in AFB (0.32 ± 0.13), and the lowest value was observed in Gyr (0.13 ± 0.16) with a mean value of 0.23 across populations. The He ranged from 0.33 (Brahman) to 0.41 (AFB). The highest observed heterozygosity was observed in Braunvieh (0.43 ± 0.01), while the lowest was in Brahman (0.37 ± 0.02). The Ho was greater than the He and the inbreeding coefficient was negative for the breeds, except for AFB.
TABLE 1 | Genetic diversity, showing the name of the breed, sample size (N), the proportion of polymorphic SNPs (Pn), minor allele frequency (MAF), expected heterozygosity (He), observed heterozygosity (Ho), and inbreeding coefficient (FIS).
[image: Table 1]Minor allele frequency distribution for different categories is shown in Figure 1. Among the five cattle breeds, AFB (25,504) and Gyr (3,903) showed the highest and the lowest count of SNPs when MAF greater than or equal to 0.3.
[image: Figure 1]FIGURE 1 | Distribution of minor allele frequency for each cattle breed.
The Gyr breed had a higher count of SNPs in the lowest MAF interval (MAF≤0.1) compared to the counts of SNPs in the higher MAF intervals. The count of SNPs for the Braunvieh, AFB, and Simmental cattle breeds was shown to be higher as the MAF interval increased. For the Brahman and Gyr breeds the count of SNPs decreased.
3.2 Population structure
The AMOVA results (Table 2) showed that the most important part of the genetic variation (75.71%) was observed within the cattle breeds and variability among the cattle breeds was 24.29%. Also, pairwise FST and Reynold’s distance among all populations were estimated (Table 3). The pairwise FST estimates among breeds ranged from 0.08 (AFB-Braunviehpair) to 0.37 (Braunvieh-Brahman pair). The pairs Braunvieh-Brahman and Braunvieh-Gyr showed high pairwise FST values, with 0.37 and 0.36, respectively. Furthermore, the pairs Braunvieh-AFB, and AFB-Simmental showed the lowest pairwise FST values, with 0.08 and 0.09, respectively. The pairwise Reynold’s distance showed a pattern similar to the one obtained with the FST statistics, with values ranging from 0.09 (AFB-Braunvieh pair) to 0.46 (Braunvieh-Brahman pair). The pairs Brahman-Braunvieh and Braunvieh-Gyr showed high pairwise Reynold’s distance values, with 0.46 and 0.44, respectively. Furthermore, the pairs AFB-Braunvieh, and AFB-Simmental showed the lowest pairwise FST values, with 0.09, respectively each.
TABLE 2 | Analysis of molecular variance among five cattle breeds.
[image: Table 2]TABLE 3 | Estimates of the pairwise genetic differentiation statistic (FST statistics; below the diagonal) and the Reynold’s genetic distance (above the diagonal) among five cattle breeds.
[image: Table 3]Figure 2 presents the result of PCA and DAPC analysis performed to visualize individual relationships among populations. Individuals were grouped according to their breed origins. The first and second component accounted for a total of 23.60% and 13.10%, respectively. PCA and DAPC showed a low differentiation among the AFB, Braunvieh, and Simmental populations, while the Brahman and Gyr herds are clearly separated from the other three populations. In the PCA a substructure was observed corresponding to samples from Gyr, from the reference populations. The populations included in this study come from different selection environments. Brahman and Gyr individuals have been selected for tropical climates. The Simmental and Braunvieh groups have been selected in template environments, while AFB individuals have been mainly selected under artificial selection pressure.
[image: Figure 2]FIGURE 2 | Principal component analysis (PCA) and Discriminant analysis of principal components (DAPC) plots. Samples belong to a reproductive cattle herd that comprises with Brahman (N = 9), Braunvieh (N = 9), Gyr (N = 5), and Simmental (N = 15) breeds; a locally adapted creole cattle, the Arequipa Fighting Bull (AFB, N = 9); and 40 genotype samples from reference breeds included in the analyses (subscript with _REF). Symbols and colors indicate breed affiliation, each symbol represents an individual. (A). For PCA plot, the x- and y-axes are indicated by the first and second components, respectively, and the values in parentheses show the percentages of total variance explained. (B). For DAPC plot, the scatterplot shows only the first two linear discriminants of the analysis.
A graphic representation of cluster structure analysis is depicted in Figure 3. Based on the ΔK value, K = 2 was the most optimal number for the inferred genetic structure of the populations (Supplementary Figure S1). At K = 2 a considerable source of variation among cattle breeds was perceptible. Cluster 1 comprised of the Brahman and Gyr breed groups (N = 14 genotypes), whereas cluster 2 consisted of the Braunvieh Simmental, and AFB cattle groups (N = 33 genotypes). The Brahman and Gyr populations displayed a separated cluster, whereas the Braunvieh, and AFB, and Simmental populations presented similar genetic construction.
[image: Figure 3]FIGURE 3 | Population structure using 16,345 SNPs for five cattle breeds consisting of 47 individuals. Admixture analysis showing the proportions of ancestral populations for K = 2, each vertical bar exemplifies an individual.
A neighbor-joining tree was constructed from SNPs (Figure 4), displaying bootstrap support greater than 70%. The first group is composed of fifteen Simmental individuals with 100% bootstrap support. The second group is composed of nine Braunvieh individuals with 100% bootstrap support. Nine individuals AFB composed the third group. In concordance with the principal coordinate analysis, these groups are together. The fourth group is composed of nine Braunvieh individuals with 100% bootstrap support. Five individuals Gyr composed the fifth group. These groups are together with 100% bootstrap support, also in agreement with principal coordinate analysis. However, an individual AFB (TP−027A) was integrated into this group of Brahman and Gyr with 100% bootstrap support.
[image: Figure 4]FIGURE 4 | Phylogenetic relationship constructed using a neighbor-joining tree from a dataset of 80,178 SNPs in five breeds. Numbers above the branches represent bootstrap values, with only values higher than 70% shown.
4 DISCUSSION
Investigating genetic diversity parameters of populations is critical for developing future breeding objectives (Notter, 1999). Here for the first time, we examined population genetic structure of a group of animals that are been used as a genetic nucleus in Peru, as well as a group of PCC (AFB). Our results of Pn, MAF, He, Ho showed that the populations have a moderate genomic diversity. In this study, all the average values of MAF recorded in taurine cattle (i.e., Braunvieh, Simmental, and AFB) were higher than those recorded in zebu cattle (i.e., Brahman and Gyr). This result might be due to the low representation of zebuine cattle breeds in the SNP genotyping array used (Chagunda et al., 2018). Most of the bovine SNP panels available have been developed of the sequences of individuals belonging to European bovine breeds (European Cattle Genetic Diversity Consortium et al., 2006; The Bovine Hapmap Consortium et al., 2009). This might explain why the observed polymorphism of our SNP data set was higher in the Braunvieh, Simmental, and AFB breeds.
Previous studies have shown that breeding practices have a great effect on reducing genetic diversity, leading to a lower level of genetic diversity in selected germplasm compared with wild varieties (Tisdell, 2003; Zenger et al., 2007). Interestingly, our genetic diversity analysis with the four specialized breeds from the nucleus herd seems to agree. We observed a significantly higher genetic diversity level in the AFB group breed than in the specialized breeds, which is similar from those reported in previous studies (Giovambattista et al., 2001; Egito et al., 2007; Edea et al., 2015). In the case of AFB, it showed the highest levels of He and one of the highest for Ho. For these cattle population, there is a marked effect due to mating control by breeders, which can certainly play an important role (Hidalgo et al., 2015; Delgado et al., 2019). Creole breeds are primarily used in the Peruvian livestock systems to establish crosses with other species of B. taurus, particularly Brown Swiss and Simmental in high Andean areas (Primo, 1992; Quispe, 2016). Considering AFB, the mean value of Ho (0.42) obtained in this study is lower than that (0.77) reported by Martínez et al. (2015) in Costa Rica, (0.75) Lirón et al. (2006) in Argentine and Bolivian Creole Breeds, (0.68) Egito et al. (2007), in Brazil, (0.67) Ginja et al. (2010) in Portuguese Native Cattle, (0.70) Acosta et al. (2012) in Cuban cattle breeds. However, most of these studies are also in creole cattle from Latin America where the values greatly differ from ours. One explanation for these differences is that our study was based on SNP markers, whereas the other studies used microsatellite markers. As population genetic statistics can easily be applied to SNPs because they are often bi-allelic, however, a greater number of polymorphic loci may be required to match the power of multi-allelic SSR loci (Guichoux et al., 2011; Laoun et al., 2020). Also, the reduced Ho of the AFB may be explained on the fact that these individuals, compared to other local breeds, go through a process of strict artificial selection as growers always look for fighting traits. AFB are always part of the traditional bullfight activity of Arequipa. It should be noted that the Brahman and Gyr breed presented the lowest levels of He and Ho. This lower level of heterozygotes is generally interpreted as a deviation from random mating (Zeng et al., 2013; Lamkey and Edwards, 2015).
Regarding the content of Pn, a study in six breeds including Simmental, determined an average proportion of polymorphic SNPs of 79% (Dadi et al., 2012), while in this study was 79.72%. FIS presented an average value of −0.04, which ranged from 0.03 (AFB) to −0.07 (Brahman and Braunvieh). So, this negative FIS values could indicate that the population was in outbreeding (Caballero and Toro, 2002). In addition, mating could be occurring between individuals from different populations (Wright, 1965; Chesser, 1991). The FIS value was negative for the studied breeds of the reproductive herd, where Brahman and Braunvieh had the lowest FIS values, suggesting an excess of heterozygotes and a lack of population structure (Tantia et al., 2006). This could be due to the small sample population size.
According to the AMOVA results (Table 2), the proportion of genetic variability attributable to the difference variation among populations, and within individuals was 24.29% and 75.71%, respectively. These results implied lower genetic differentiation among breeds than within breeds maintained at EEA Donoso. Similar studies have reported lower values for variation across populations (Cañón et al., 2001; Lirón et al., 2006; Egito et al., 2007). Lirón et al. (2006) reported that 8.8% of the total genetic variation corresponded to differences between populations (zebu and taurine breeds), while 91.2% was explained by differences between and within individuals. Cañón et al. (2001) indicated that about 7% of the total genetic variation corresponded to differences between racial groups, while the remaining 93% corresponded to differences between and within individuals. On the other hand, Egito et al. (2007) reported a value of 12% for genetic variation attributable to differences between breed groups. The higher value obtained in the present study may be linked to the characteristics of the sampling (Kitada et al., 2021). The AFB breed group is made up of highly heterogeneous animals, which magnifies the within-group (within individual) variance compared to the between-group (among population) variance. Many of these groups are also highly related to each other (i.e., Gyr-Brahman pair, Simmental-Braunvieh pair), which is further confirmed in the population structure analyses. The little degree of variation is consistent with the FST for AFB-Braunvieh pair (0.08) and AFB-Simmental pair (0.09).
Table 3 showed that the lowest genetic distance (0.08) was observed for the AFB and Braunvieh. Similarly, for the AFB and Simmental breeds the genetic distance was low (0.09). These values close to zero indicate that these breeds shared their genetic material through breeding. Likewise, Figure 2 showed that Simmental, Braunvieh, and AFB grouped closely to each other. In addition, many individuals of AFB possess traits of Braunvieh and Brown Swiss as they are also employed for beef and milk production. Also, concordant to the genetic distance, PCA and DAPC indicated that Brahman and Gyr are closely related. The share of genetic material between Brahman and Gyr can be explained as they belong to the same species, B. indicus. On the contrary, higher genetic distances were observed between Brahman with 1) Braunvieh (0.37), 2) Simmental (0.35), 3) and AFB (0.31), indicating some degree of isolation between these breeds, that is, they are not currently breeding with one another. This could be because the region where the AFB samples were collected is located in the southern parts of the country, where climatic conditions are cold. Hence, European breeds such as Brown Swiss, Braunvieh, Simmental, Overo negro, Jersey, etc., are more commonly used in these regions because of the cold climate, whereas Zebuine breeds, such as the Brahman and Gyr, are preferably used in the Amazon region of the country, in the north. Our phylogenetic reconstruction is in concordance with ADMIXTURE analysis and genetic distances. We identified that the AFB breed is closer to Braunvieh than the Simmental breed and others. Arbizu et al. (2022) examined the relationship between PCC and other B. taurus with an analysis of the mitochondrial genome and validated these relationships, probably influenced by the high introgression and crossing over. Also, a strong relationship between Gyr and Brahman breeds was identified.
We analyzed the genetic structure of the AFB cattle by using SNP markers. This information will be valuable to our farmers as well as future studies. The results of this study provide some insight that AFB can become a separate breed in the future. The analysis also provides evidence for two subgroups within the AFB group (Figure 4), with one level higher of genetic differentiation than the other one. Also, this new information of a Peruvian reproductive cattle herd would offer valuable information to establish a genetic nucleus herd and modern breeding programs. In addition, we expect molecular tools become widely employed in favor of the cattle industry in Peru.
5 CONCLUSION
We here determined for the first time the genetic diversity and population structure of a Peruvian cattle herd using SNP data. Braunvieh breed possessed the highest genetic diversity while Brahman the lowest. Most of the variance occurs within individuals among the five breeds evaluated in this study. A total of two clusters were identified, showing, as expected, a clear separation between B. indicus (Brahman and Gyr) and B. taurus breeds (Braunvieh, AFB and Simmental). Interestingly, the AFB was placed in a single cluster, providing evidence that this may be considered a breed as farmers from Arequipa breed their animals in favor of fighting traits. Additional work is needed to also characterize other cattle herd of INIA located in San Martin region. We hope this work will pave the way towards developing a modern cattle breeding program in Peru.
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The erosion of genetic diversity limits long-term genetic gain and impedes the sustainability of livestock production. In the South African (SA) dairy industry, the major commercial dairy breeds have been applying estimated breeding values (EBVs) and/or have been participating in Multiple Across Country Evaluations (MACE). The transition to genomic estimated breeding values (GEBVs) in selection strategies requires monitoring of the genetic diversity and inbreeding of current genotyped animals, especially considering the comparatively small population sizes of global dairy breeds in SA. This study aimed to perform a homozygosity-based evaluation of the SA Ayrshire (AYR), Holstein (HST), and Jersey (JER) dairy cattle breeds. Three sources of information, namely 1) single nucleotide polymorphism (SNP) genotypes (3,199 animals genotyped for 35,572 SNPs) 2) pedigree records (7,885 AYR; 28,391 HST; 18,755 JER), and 3) identified runs of homozygosity (ROH) segments were used to quantify inbreeding related parameters. The lowest pedigree completeness was for the HST population reducing from a value of 0.990 to 0.186 for generation depths of one to six. Across all breeds, 46.7% of the detected ROH were between 4 megabase pairs (Mb) and 8 Mb in length. Two conserved homozygous haplotypes were identified in more than 70% of the JER population on Bos taurus autosome (BTA) 7. The JER breed displayed the highest level of inbreeding across all inbreeding coefficients. The mean (± standard deviation) pedigree-based inbreeding coefficient (FPED) ranged from 0.051 (±0.020) for AYR to 0.062 (±0.027) for JER, whereas SNP-based inbreeding coefficients (FSNP) ranged from 0.020 (HST) to 0.190 (JER) and ROH-based inbreeding coefficients, considering all ROH segment coverage (FROH), ranged from 0.053 (AYR) to 0.085 (JER). Within-breed Spearman correlations between pedigree-based and genome-based estimates ranged from weak (AYR: 0.132 between FPED and FROH calculated for ROH <4Mb in size) to moderate (HST: 0.584 between FPED and FSNP). Correlations strengthened between FPED and FROH as the ROH length category was considered lengthened, suggesting a dependency on breed-specific pedigree depth. The genomic homozygosity-based parameters studied proved useful in investigating the current inbreeding status of reference populations genotyped to implement genomic selection in the three most prominent South African dairy cattle breeds.
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1 INTRODUCTION
The early migration of cattle to Southern Africa and the introduction of exotic cattle into the native landscape are still debated (Orton et al., 2013). Although it is commonly believed that dairy cattle were first introduced to South Africa (SA) by the Dutch East India Company (VOC) during the 17th century to supply fresh milk to crews of ships passing the Cape of Good Hope, Felius et al. (2014) reported that the first Friesian cattle were only introduced to South Africa in 1850. The first Holstein-Friesian was registered in 1906 with SA Stud Book, and the Breeders’ Society was founded in 1912 (Duvenhage, 2017).
The years 1881 and 1890 have been reported as the most probable dates for the arrival of the first Jersey and Ayrshire cattle in South Africa, respectively (SA Stud Book, 2004). The Ayrshire Cattle Breeders’ Society of South Africa was established in 1916, followed by the South African Jersey Cattle Breeders’ Society in 1920 (Nel, 1968). It can, therefore, be concluded that European dairy cattle have been farmed in South Africa for more than a century. No additional breed development was performed in South Africa, apart from normal selection practices. The SA dairy populations have strong international genetic linkage due to extensive use of artificial insemination. The composition of the breeding objectives is similar to those of other international populations (Cole & VanRaden, 2018).
Official animal recording for dairy cattle in South Africa dates back to 1917, with the inception of a milk recording scheme (Van Marle-Köster and Visser, 2018), which was developed over time to include contemporary comparison methods in the 1970s, followed by the implementation of the Best Linear Unbiased Prediction (BLUP) sire model in 1987 (Mostert et al., 2004). Since the early 1990s, routine genetic evaluations have provided the Ayrshire (AYR), Holstein (HST), and Jersey (JER) breeders with estimated breeding values (EBVs) to be used in selection decisions. Routine participation in INTERBULL for Multiple Across Country Evaluations followed in 2004 (Mostert et al., 2006).
The breeding objectives for all three breeds include milk yield, milk quality, fertility, and functional traits (Banga et al., 2014; SA Stud Book, 2022a; SA Stud Book, 2022b; SA Stud Book, 2022c). More recently, funding initiatives such as the Dairy Genomics Program (DGP) have facilitated the establishment of single nucleotide polymorphism (SNP)-genotyped reference populations to help generate genomic breeding values for these breeds (Van der Westhuizen and Mostert, 2020).
Inbreeding results from consanguineous mating inevitably leading to an increased frequency of homozygosity. The phenomenon of reduced performance due to inbreeding known as inbreeding depression has been reported for a plethora of traits in dairy cows including milk production, reproduction, and fitness (e.g., survival), thereby impacting overall herd profitability (Doekes et al., 2019; Makanjuola et al., 2021). Historically, inbreeding was measured using pedigree information, based on the calculation of the probability that an individual has inherited alleles identical by descent (Wright, 1978). This measure of inbreeding is, however, dependent on both accurate and deep ancestry records (Ablondi et al., 2022; Saif-ur-Rehman et al., 2022). With the growing availability of genome-wide genotype information on large populations of animals, genome-based estimates of inbreeding are replacing pedigree-based estimates as the statistics of choice.
Runs of homozygosity (ROH) segments are detected using genome-wide genotype information with the profiling of these segments providing a well-established methodology to quantify genetic autozygosity and genetic diversity (Gautason et al., 2021; Ablondi et al., 2022; Mulim et al., 2022). Detected ROH are identifiable as continuous segments of homozygous nucleotide sequences that are highly correlated with mutation loads (Makanjuola et al., 2021) and can be indicative of the age of inbreeding based on their length characteristics (Gautason et al., 2021). Additionally, shared ROH segments, harboring SNP haplotypes that have a higher incidence compared to a certain population-specific threshold (Gorssen et al., 2021), may help guide the localization and/or identification of chromosomal regions under artificial or natural selection.
The widespread use of certain local and international bulls may contribute to greater genome-wide and location-specific homozygosity with downstream repercussions on productivity. In the South African dairy industry, the majority of bull semen used is of foreign origin with more than 40% of Holstein semen imported from the United States of America (USA); Canadian bloodlines predominate in the Ayrshire bulls used in South Africa while most Jersey bulls used in South Africa are of USA origin. Semen from countries such as Great Britain, Denmark, France, the Netherlands, Australia, and New Zealand have also contributed to the South African dairy cattle gene pool (Opoola et al., 2020). The ancestral information of these sires is available through Interbull; the depth of pedigree available is, however, dependent on each participating organization (International Bull Evaluation Service—INTERBULL, 2022). South Africa, with a relatively small dairy population compared to many other countries, needs to be able to manage the extent of genetic diversity within its dairy sector. Having access to genome-wide genotype information on individual animals provides an opportunity to evaluate the genetic diversity and inbreeding of the local South African dairy populations.
The objectives of the present study were to 1) classify and quantify runs of homozygosity in three South African dairy cattle populations; 2) estimate inbreeding coefficients using various sources of information, and 3) compare the inbreeding statistics generated from either recorded ancestry or genomic information.
2 MATERIALS AND METHODS
Ethical approval was granted by the University of Pretoria’s Ethics Committee for external data use (EC170627-135). Consent was provided from the respective breeders’ societies to allow access to the available pedigree and genotypic data.
2.1 Pedigree data
Pedigree data of the genotyped South African Ayrshire (AYR), Holstein (HST), and Jersey (JER) populations used in the present study were provided by SA Stud Book. The pedigree information included 7,885 AYR (5,654 females, 2,231 males), 28,391 HST (20,921 females, 7,470 males), and 18,755 JER (14,138 females, 4,617 males) records as summarized in Table 1. The pedigree depth was up to 24, 30, and 26 generations deep for the genotyped AYR, HST, and JER breeds, respectively. The optiSel (Wellmann and Bennewitz, 2019) R package was utilized to calculate the complete generation equivalent (CGE) and the pedigree completeness index (PCI) for each of the individual genotyped animals.
TABLE 1 | A summary of the number of animals included in the pedigree analyses and genomic analyses for the Ayrshire (AYR), Holstein (HST), and Jersey (JER) breeds.
[image: Table 1]2.2 Single nucleotide polymorphism (SNP) genotypic data and quality control
A total of 3,199 genotyped animals (2,732 female, and 467 male cattle) with a sample call rate above 95% were available for this study consisting of 510 AYR, 1,360 HST, and 1,329 JER cattle. The animals included in this study originated from the national Dairy Genomic Program (DGP) with the aim of establishing reference populations for genomic selection. Animals that were included in this program represented the local populations and were selected based on EBV accuracies of at least 60%. The data structure of the genotyped populations is summarized in Table 1. The year of birth of genotyped animals ranged from 1973 to 2017 for the AYR, 1981 to 2021 for the HST, and 1989 to 2021 for the JER. For pedigree depth and inbreeding estimates, only the pedigree of the genotyped animals was considered.
All AYR animals were genotyped using the BovineSNP50-24 version 3 (Illumina, Inc. San Diego, CA 92122 USA) array containing 53,218 SNPs. Genotypes of HST and JER animals originated from five different genotyping panels, namely, the Bovine SNP50 versions 1 (54,001 SNPs) and 3 (53,218 SNPs), GeneSeek® Genomic Profiler™ 150K (139,480 SNPs), International Dairy and Beef (IDB) version 3 (53,450 SNPs), Weatherbys Scientific VersaSNP 50K™ (49,788 SNPs), and the Unistel-SA Stud Book 50K version 1 (54,394 SNPs) panels. The GeneSeek® Genomic Profiler™ 150K genotypes were generated through the South African DGP that was initiated in 2016 to benefit herds that participate in pedigree-based genetic evaluations and/or milk recording schemes provided by the Agricultural Research Council (ARC) or SA Stud Book. Genotype calling was done through various local and international service providers using their respective protocols, and the raw genotype files were converted into PLINK software version 1.9 (Purcell et al., 2007) input files. A common set of 36,887 SNPs were extracted for each population and the data sets were merged for the across-population analyses.
Sample- and marker-based quality control edits were performed using PLINK software version 1.9 (Purcell et al., 2007) to filter out non-autosomal and low-quality (SNP call rate<95%) SNPs from the dataset. As suggested by Meyermans et al. (2020) for ROH detection, neither minor allele frequency (MAF) nor linkage disequilibrium (LD) filtering was applied. No SNP edits were performed based on Hardy-Weinberg Equilibrium (HWE). The post-editing data set consisted of 3,199 animals with 35,572 autosomal SNP genotypes and all subsequent analyses were undertaken using this data set. The same animals were thus used for the pedigree and genomic analyses.
2.3 Genomic relatedness
GCTA version 1.24 (Genome-wide Complex Trait Analysis; Yang et al., 2011) was used to estimate genetic relatedness between individuals from the set of 35,572 autosomal genome-wide SNPs. A genomic relationship matrix was calculated using the method by Yang et al. (2010) and was followed by the estimation of eigenvalues and eigenvectors for a principal component analysis (PCA). The eigenvectors per animal were plotted as a scatter plot to visualize genomic relatedness.
2.4 Runs of homozygosity detection
Runs of homozygosity (ROH) for all genotyped animals were detected using the R package detectRUNS (Biscarini et al., 2019) by executing both the consecutive-SNP-based detection method (CR) and sliding window approach (SW; Marras et al., 2015). The SW approach, and more specifically its application in PLINK software (Purcell et al., 2007), is generally the most common ROH detection approach (and, hence, resource for FROH estimation) used across all livestock species (Peripolli et al., 2017) and has previously proven to outperform other methods (e.g., Howrigan et al., 2011). Dixit et al. (2020), for example, reported similar results for the detectRUNS SW approach to that of PLINK. The CR algorithm, which executes a window-free SNP-by-SNP approach, has received less research attention, however, has previously been shown to produce FROH patterns similar to that of both PLINK and detectRUNS’ SW approaches despite discrepancies in the number of ROH identified (Dixit et al., 2020). Both approaches were, therefore, tested in this study for a more comprehensive profiling of ROH.
For CR, the following ROH defining parameters were set: i) a minimum length of 1Mb, ii) a maximum distance (gap) between consecutive SNPs of 500kb, iii) a lower density limit of one SNP per 75kb, and iv) a maximum of two missing and no opposing (heterozygous) genotypes were allowed. The aforementioned parameters were the same for the SW approach, but, the sliding window size was set to 50 SNPs. The minimum number of SNP that constituted an ROH segment was set to 54 based on the formula implemented by Purfield et al. (2012):
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where ns and ni were the numbers of SNPs and individuals, respectively, α represented the proportion of false-positive identifications (set to 0.05) and [image: image] was the average SNP heterozygosity. The detected ROH were assigned to one of four length categories: <4 Mb, 4≤ROH<8 Mb, 8≤ROH<16 Mb, or ≥16 Mb. The detectRUNS (Biscarini et al., 2019) package was additionally used to obtain the proportion of times each SNP fell inside an ROH within each population. Based on the produced Manhattan plots, ROH regions identified in >75% of the JER population, and >25% in the AYR and HST populations were investigated using the Ensemble BioMart online tool (http://asia.ensembl.org/biomart/martview/244b07db6f169a19f1e0362778df6ab5). Gene ontology and pathway analyses were carried out by PANTHER version 13.1 software tool (http://pantherdb.org).
2.5 Inbreeding coefficients
Three methods were used to estimate the inbreeding coefficients of all genotyped individuals: 1) FPED represented a pedigree-derived estimate, 2) FSNP represented an SNP-by-SNP excess in homozygosity, and 3) FROH represented genome-wide ROH coverage. The FPED and FSNP coefficients were calculated using optiSel (Wellmann and Bennewitz, 2019) and PLINK software version 1.9 (Purcell et al., 2007), respectively. The FPED coefficient was calculated using the summary.Pedig function in optiSel, which estimates the inbreeding coefficient as defined by Meuwissen and Luo (1992). For FSNP, the --het function in PLINK was executed, which is based on the formula [image: image], where O is the observed number of homozygous SNPs per individual, E is the expected number of homozygous SNPs under the Hardy-Weinberg equilibrium (HWE) calculated based on the estimated allele frequencies of the sample, and N is the total number of SNPs. Additionally, the observed as well as expected heterozygosity rates (HO, and HE, respectively) were estimated as the total number of non-missing genotypes (NNM) minus the number of observed homozygous genotypes (HOM) divided by the total non-missing genotypes (NNM).
All FROH coefficients were based on the ROH detected with the SW approach for comparability. The FROH coefficient was estimated as (McQuillan et al., 2008):
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where LROH represented the length of ROH in one individual, and LAUTO represented the length of the genome covered by SNPs, excluding the centromeres. Separate FROH coefficients were additionally calculated based on the length categories previously described and were labeled [image: image], [image: image], [image: image], and [image: image]. Comparisons between these statistics were made by means of Spearman rank (rho) correlations calculated within-breed using the cor.test function in R software (R Core Team, 2013).
2.6 Effective population size
The effective population size (Ne) of an actual population can be defined as the size of a hypothetical ideal population resulting in the same amount of genetic diversity as is present in the real population (Wright, 1978). The Ne based on both pedigree and SNP data were estimated separately. The estimated Ne based solely on pedigree information is limited by the pedigree depth (and accuracy of recording), whereas the SNP-based method is able to estimate both historical and recent Ne but is limited by the extent of LD captured (and hence, the SNP genotyping panel density as well as the number of animals genotyped). The pedigree-based Ne was calculated using the optiSel (Wellmann and Bennewitz, 2019) R package (R Core Team, 2013) for the last 10 complete generations. The SNP-based estimates of historical (highest number of generations ago) and recent Ne (least number of generations ago) were calculated using SNeP v.1.1 software (Barbato et al., 2015) based on linkage disequilibrium (LD) and by implementing the approximation proposed by Sved (1971) as a recombination rate modifier.
3 RESULTS
3.1 Pedigree completeness and pedigree-based population structure
The mean, interquartile range (IQR), and median years of birth for the genotyped AYR population was 1974, 1956 to 1994, and 1972, respectively; 1973, 1953 to 1992, and 1969 for the genotyped HST population, respectively and 1980, 1960 to 1998, and 1982 for the JER population, respectively. The mean pedigree completeness index (PCI) of the genotyped populations was 0.976 for the AYR, 0.967 for the HST, and 0.993 for the JER populations. The average pedigree depth based on CGE was equal to 9.75 for AYR, 11.70 for HST, and 10.05 for JER.
The mean six-generation deep pedigree completeness for genotyped animals born in the 10-year period between 2011 and 2021 for the HST and JER breeds, and between 2007 and 2017 for the AYR breed is summarized in Table 2. These animals represented between 9% and 11% of the fully-traced back pedigree of the genotyped populations. The genotyped HST breed consistently showed the lowest pedigree completeness from six to two generations ago at 0.186 to 0.544 while the genotyped AYR (0.288–0.702) and genotyped JER (0.278–0.682) breeds had similar pedigree completeness six to two generations ago.
TABLE 2 | The mean six-generation deep pedigree completeness for the genotyped South African Holstein (HST) and Jersey (JER) animals born within the period 2011 to 2021 as well as Ayrshire (AYR) animals born within the period 2007 to 2017.
[image: Table 2]3.2 Genome-based genetic relatedness
The first and second principal components of the autosomal SNP genotypes explained 8.3% and 4.6% of the genetic variation between all individuals and grouped the animals into three distinct clusters that corresponded with the three separate breeds. For the first principal component, the standard deviation of the eigenvectors ranged from 0.4 × 10−3 for AYR to 0.002 for JER (Figure 1). The number of outliers (encircled with gray dotted lines in Figure 1), defined as animals with eigenvectors outside the boundaries of mean ± 3 standard deviations for the first and/or second principal components, were three, 15, and 11 for the AYR, HST, and JER populations, respectively. While all identified outliers in the AYR and HST populations were South African animals, five of the JER outliers were international bulls (two from New Zealand and three from Denmark).
[image: Figure 1]FIGURE 1 | Principal components illustrate the genetic relatedness between and within the sampled Ayrshire (AYR), Holstein (HST), and Jersey (JER) populations with outliers encircled. INT, international animals; SA, South African animals.
3.3 Identified runs of homozygosity (ROH)
The per-breed statistics of the identified ROH are summarized in Table 3. Irrespective of breed, the CR ROH detection method identified more homozygous runs compared to the SW approach. For both detection methods, the majority of detected ROH was in the JER, followed by the HST and AYR breeds. The mean (±standard deviation) per individual ROH counts was 17.99 ± 4.96, 16.67 ± 5.47, and 28.30 ± 6.30 for the AYR, HST, and JER populations, respectively when the SW ROH detection approach was employed (CR method: AYR = 25.05 ± 6.89, HST = 23.70 ± 7.57, JER = 39.54 ± 8.32). The mean (±standard deviation) length ROH detected was the largest for the HST population (SW method: 8.66 Mb ± 6.82 Mb) and the smallest for the AYR populations (SW method: 7.69 Mb ± 5.99 Mb). However, the mean (±standard deviation) genome-wide ROH coverage (i.e., the total length of the genome covered by ROH) was the greatest for JER (SW method: 221.15 Mb ± 69.27 Mb) and the lowest for AYR (SW method: 7.69 Mb ± 5.99 Mb).
TABLE 3 | Summary statistics of runs of homozygosity (ROH) identified for the Ayrshire (AYR), Holstein (HST), and Jersey (JER) dairy breeds using two ROH detection methods.
[image: Table 3]The autosome-wide distribution of the total number of ROH as well as the percentage coverage per autosome is illustrated in Supplementary Material S1. For all breeds, the most ROH were detected on BTA1 (range: 708 ROH for AYR to 3,475 ROH for JER), which is the largest autosome (158.2 Mb), whilst the fewest ROH (range: 110 for AYR to 440 for JER) were detected on BTA28 (46.2 Mb). For all breeds, the percentage of ROH coverage showed an increasing trend towards smaller autosomes (line graph in Supplementary Material S1) and peaked for BTA25, with values of 20.8%, 17.2%, and 16.3% estimated for the AYR, HST, and JER breeds, respectively. The lowest overall percentage autosomal coverage was observed for BTA5 (across all breeds: 6.84%).
Across all breeds, and for both detection methods, the majority of detected ROH were within the 4 ≤ ROH<8 Mb length category. The distribution of ROH within different length (in Mb) categories is depicted in Figure 2. Despite the variation in the number of ROH identified per breed (e.g., SW method: 13,498 more ROH for HST compared to AYR and 14,943 more segments for JER compared to HST), the differences in the number per length category were negligible between AYR and JER. In comparison to the other breeds, the HST breed had a greater number of large (≥16 Mb) ROH identified by both detection methods (CR: 0.079; SW: 0.109).
[image: Figure 2]FIGURE 2 | The proportions of all detected runs of homozygosity (ROH) in different length categories for the Ayrshire (AYR), Holstein (HST), and Jersey (JER) dairy breeds. CR, consecutive SNP-based method; SW, sliding window approach.
The proportion of times an SNP resided within a detected ROH was estimated per population. Two ROH haplotypes on BTA7 were identified in 70.96% of the JER population. The first preserved region consisted of 20 SNPs spanning 1.19 Mb and the second of 31 SNPs spanning 2.60 Mb. The first region encompasses 35 protein-coding genes, including LYPD8 (Gram-negative bacteria defense response) and various olfactory receptor genes, whilst the second region encompassed 82 protein-coding genes, including HSPA4 (heat-shock protein), ELANE (immune response), and LEAP2 (antimicrobial humoral immune response). Manhattan plots of the incidence of each SNP within detected ROH per breed are illustrated in Figure 3. For the AYR breed, the highest occurring consensus ROH haplotype was on BTA6 (base pairs position: 90,665,860-90,902,316) in 28.82% of the population. The 0.236 Mb AYR region contains seven protein-coding genes, including the PPEF2 (Hsp90 protein binding), as well as the CXCL9 and CXCL10 (both antimicrobial humoral immune responses). Three smaller ROH haplotypes, close in proximity, were identified on BTA20 (base pair position ranges: 38,453,649–38,487,130, 38,578,200–39,046,015, and 38,761,711–38,920,878) in 28.31%, 28.16%, and 28.09% of the HST population, respectively. These 0.054Mb, 0.181Mb, and 0.112 Mb regions contained two, four, and three SNPs, respectively. The 0.181 Mb genomic region overlaps with the SPEF2 (sperm flagella 2 protein) protein-coding gene, whereas the 0.112 Mb overlaps with PRLR, a prolactin receptor.
[image: Figure 3]FIGURE 3 | The chromosome-wide proportion of times each SNP resided within a detected ROH for the Ayrshire (AYR), Holstein (HST), and Jersey (JER) breeds using both the sliding window (A) and consecutive SNP-based (B) detection methods.
3.4 Inbreeding coefficients
The variability in animal-specific inbreeding coefficients per breed for the genotyped animals is illustrated by box and whisker plots in Figure 4. Furthermore, a contingency table for pedigree versus genome-based estimates (i.e., FSNP and FROH) is included in Supplementary Material S2.
[image: Figure 4]FIGURE 4 | Box and whisker plots of the pedigree (FPED), single nucleotide polymorphism (FSNP), and runs of homozygosity (FROH) based inbreeding coefficients estimated for the South African Ayrshire (A), Holstein (B), and Jersey (C) populations.
The mean FPED for the AYR, HST, and JER genotyped populations was 0.051, 0.064, and 0.062, respectively. The highest frequency of AYR, HST, and JER animals fell within the 0.04-0.05, 0.05-0.06, and 0.07-0.08 coefficient classes, respectively. The greatest observed heterozygosity was in HST (HO = 0.356) while the lowest was in JER (HO = 0.332); hence, the FSNP-based inbreeding coefficient ranked the JER breed as the most inbred (FSNP = 0.190) followed by the AYR (FSNP = 0.088) and HST (FSNP = 0.020) breeds. For the JER breed, for example, the majority of animals (1,323 animals of the population of 1,329 animals) were categorized as having high FSNP values (>0.1) despite most of them having low (31.9% of animals) or moderate (62.7% of animals) FPED values (Supplementary Material S2). The rank order of breeds (from largest to smallest mean) was different for the ROH-based inbreeding coefficients observed; FROH was the highest for the JER breed (mean FROH=0.085), followed by the HST (mean FROH = 0.056) which was similar to the AYR (mean FROH = 0.053) breeds. The most AYR animals had FROH values in the 0.04 to 0.05 interval, whereas for HST and JER, most animals had FROH values of 0.05–0.06 and 0.06 to 0.07, respectively.
All FROH coefficients, irrespective of what length category was used to calculate the ROH, were highest for the JER population; the largest FROH statistic was obtained for FROH calculated for ROH that were larger than (or equal to) 4 Mb but smaller than 8 Mb ([image: image] = 0.029). For [image: image] and [image: image], the AYR breed was similar in value to the HST breed (0.006 for AYR versus 0.004 for HST, and 0.019 for AYR versus 0.017 for HST, respectively), whereas HST had higher mean values for FROH calculated on the basis of longer ROH. For both the AYR and HST breeds, the [image: image] estimates were the highest (AYR: 0.019; HST: 0.022).
The Spearman correlations (ρ) between FPED and genome-based F-statistics are given in Table 4. The correlation coefficients among all F statistics were strongest between the genome-based inbreeding estimates irrespective of the breed; the pairwise FSNP-FROH correlations ranged from ρ = 0.857 for AYR to ρ = 0.896 for JER. The FPED coefficient was weak to moderately correlated with FSNP and FROH within all breeds; the pairwise correlations between FPED and each of the genome-based coefficients were similar (e.g., for AYR, ρ = 396 for both the FPED-FSNP and FPED-FROH comparisons). The FPED coefficient was most strongly related to [image: image], compared to other FROH statistics, in both the AYR and HST breeds (ρ = 0.282, and ρ = 0.447, respectively); within the JER breed, however, the FPED coefficient was most strongly related to [image: image].
TABLE 4 | Spearman correlations between the pedigree-based inbreeding coefficient (FPED) and various genomics-based inbreeding coefficients for the Ayrshire (AYR), Holstein (HST), and Jersey (JER) breeds.
[image: Table 4]3.5 Effective population size
The pedigree-based Ne estimates increased for all three dairy cattle populations in this study (Figure 5) from 85 animals (generation 1) to 497 animals (generation 10) for HST, with a similar trend in the AYR and JER populations. The JER breed had the lowest pedigree-based estimates for the oldest (376 animals) and the youngest generation (57 animals). The AYR population experienced a large difference in Ne (362 animals) between generation 9 (419 animals) and generation 1 (57 animals). The most recent (12 generations ago) LD-based Ne was lowest for the AYR breed (Ne = 131) and the largest for JER (Ne = 149).
[image: Figure 5]FIGURE 5 | Pedigree-based estimates of effective population size (Ne) for the Ayrshire (AYR), Holstein (HST), and Jersey (JER) populations ten generations ago.
4 DISCUSSION
To ensure sustainable breeding programs within the South African dairy industry, and to optimize the adoption of genome-based selection strategies, it is important to characterize and routinely monitor the genetic variability and inbreeding levels of the prominent dairy breeds (Howard et al., 2017). In the global dairy industry, strong directional selection, achieved by means of methodologies that favor the overuse of a few elite families (e.g., BLUP), as well as the application of advanced reproductive technologies (e.g., artificial insemination (AI)), has resulted in the accumulation of inbreeding, and hence, homozygosity (Maltecca et al., 2020). South Africa historically followed this trend of data-driven breeding programs, making use of international semen from a limited number of genetically elite bulls. In 2003, up to 36% of all dairy calves born in South Africa originated from foreign sires (Maiwashe et al., 2006). Due to the widespread use of AI, and easy access to phenotypic data and routine genotyping, the global dairy industry was the first livestock industry to embrace genome-wide enabled selection (GS) (Wiggans et al., 2011). However, in South Africa, genotyping on a commercial scale was only possible post-2016 for the dairy sector with the establishment of a DGP (Van Marle-Koster & Visser, 2018). This program was fundamental for the establishment of reference populations for the most popular dairy breeds used in the South African dairy industry (i.e., the AYR, HST, and JER breeds). The South African training populations remain small compared to many developed countries, but reflect the breed demographics on the national level and contain sufficient genotypes to assist in the genomic management of the populations. This study aimed to quantify homozygosity-based parameters of the AYR, HST, and JER populations in South Africa by using their pedigrees as well as 35,572 autosomal SNPs.
4.1 Pedigree completeness
Results from the present study indicate growing pedigree completeness over the past 10 generations with greater overall completeness in the AYR and JER populations. Traditionally, pedigree data has been used in the estimation of population diversity, but limitations on the quality and pedigree depth present limitations (the present study; Ablondi et al., 2022).
The high CGE calculated for the HST breed in this study (CGE = 11.70) aligns with previous studies of Canadian Holstein (CGE = 15.5, Stachowicz et al., 2011), Dutch Holstein (CGE = 12.5, Doekes et al., 2019), and Italian Holstein (CGE = 10.67, Ablondi et al., 2022). The JER population in this study (CGE = 10.05) is similar to that reported for Canadian Jerseys at 9.8 (Stachowicz et al., 2011) and higher than documented in Danish Jerseys (7.36; Sorensen et al., 2005). These studies, however, included data from animals born in earlier years when pedigree recording may not have been so ubiquitous. No literature was available on CGE for a genotyped AYR population. The lower CGEs for AYR and JER in the present study can be attributed to shallower pedigree depths in comparison to the HST breed due to CGE being dependent on the sum of the proportion of known ancestors over all generations traced (Wellmann and Bennewitz, 2019).
4.2 Within-breed genomic relatedness
Results of the autosomal SNP-based principal component analysis suggested a strong genetic influence of international bulls on the South African gene pool within all breeds. This result supports the fact that for all three of the studied breeds, the 25 most used AI sires (i.e., with the most daughters per breed with completed first lactations in 2021) were predominantly of international descent (SA Stud Book, 2022a; SA Stud Book, 2022b; SA Stud Book, 2022c). The greater observed heterozygosity in the HST population supported the more dispersed PCA clustering (and more outliers) and could be explained by the inclusion of more herds compared to the other breeds (1,360 animals from 411 herds for HST compared to only 510 genotyped animals from 31 herds for AYR), which would inevitably increase the extent of variation captured within the sampled population. The relatedness between a genomic selection reference population and the current (and active) population subjected to directional selection should be maintained and is integral to the accuracy of the produced genomic estimated breeding values (GEBVs) (Goddard & Hayes, 2009). Considering that genetic progress is directly related to, amongst other factors, the extent of genetic variation in a given population (Bourdon, 2000), the PCA-based results may serve as guidelines for future sampling and/or genotyping strategies to optimize genetic relatedness in genomic selection pipelines.
4.3 Runs of homozygosity detected
The profiling of genome-wide ROH has become an increasingly popular parameter for explaining genetic differences between populations; many ROH-based analyses have been conducted on global dairy breeds (e.g., Purfield et al., 2012; Mastrangelo et al., 2018; Doekes et al., 2020). Comparing these studies is, however, not trivial due to differences in the extent of genomic information available (higher density genotypes are expected to capture ROH profiles more comprehensively) and the methodologies used to detect ROH including the parameters specified when detecting an ROH (Gautason et al., 2021; Mulim et al., 2022). Interbreed differences in ROH number and length characteristics indicate historical differences between breeds within a certain country or region, or due to recent management actions (Xu et al., 2019). Although the HST and JER populations in the present study had similar numbers of individuals genotyped, 66% more ROH was detected in the JER (37,617 for JER compared to 22,674 for HST). The difference in the abundance of ROH segments relative to the AYR in the present study could have been influenced by the much smaller genotyped AYR population. Taking the sample sizes into account, the JER still had the most ROH per individual, but the AYR had more ROH per individual than the HST, irrespective of the detection method.
Despite the higher ROH counts observed for the JER population, the percentage genome coverage by autozygotic segments was the highest for the HST population (10.02%), followed by the AYR (8.80%) and JER (8.78%) populations. The percentage coverage was similar to the 10% reported by Kim et al. (2013) in US Holsteins and the 9.8% documented by Gautason et al. (2021) in Icelandic cattle. The higher proportion of large ROH segments (≥16 Mb) in the present study, representing inbreeding effects introduced up to ∼6 generations ago (Ferenčaković, 2015), observed for the HST population (CR: 0.079; SW: 0.109) implies a greater influence of more recent inbreeding in the population studied. Conversely, the higher proportion of short (<4 Mb in size) ROHs is indicative of older inbreeding effects and/or, possibly, recent admixture (and, hence, recombination) that could result in the breakdown of larger ROH (Purfield et al., 2012; Liu et al., 2021). Liu et al. (2021), for example, reported that ROHs as short as <1 Mb may be a result of ancestral inbreeding that occurred up to 50 generations ago; these related mating would be almost impossible to capture with pedigree information alone (especially considering the poor participation of South African dairy breeds in pedigree recording). It is clear that an analysis of ROH abundance and distribution can, therefore, be used to more comprehensively (and descriptively) explore genetic diversity within and between populations.
The percentage occurrence of SNPs residing within identified ROH was analyzed to identify overlapping genomic regions of autozygosity among animals within breeds. These overlapping regions could be the result of positive selection and could be indicative of adaptation to specific environmental conditions (Xu et al., 2019). The most frequent overlapping region identified in the present study was similar to those documented by Lozada-Soto et al. (2022) for North American dairy breeds; in agreement with Lozada-Soto et al. (2022), ROH hotspots (i.e., containing the highest SNP incidence within ROH segments) were also identified on BTA6 for AYR, BTA20 for HST, and BTA7 for JER. Two hotspots of homozygosity on BTA7 (base pairs: 41417884-42609605, and 42811272-45412030 base pairs) were in 70.96% and 70.88%, respectively, of the JER breed in the present study; these regions fall within the most gene-dense ROH island also documented for US Jersey (BTA7: 39.76-45.56Mb; Lozada-Soto et al., 2022).
Amongst the 35 protein-coding genes located in the first preserved region identified in the present study, is the LYPD8 gene, which has been suggested to play a role in intestinal immunity in mice (Hsu et al., 2021) and more recently in sheep (Chen et al., 2022). The HSPA4 gene, identified within the second most conserved region in the JER, is a heat shock protein (HSP) 70 gene and is well known for its integral role in cellular stress response to heat (Deb et al., 2014). Because of its lower body weight and, consequently, lower maintenance requirements, the JER breed is growing in popularity globally, especially given concerns over climate change and the expected increase in environmental stressors. The identification of conserved ROH segments containing genes, such as the prolactin receptor (PRLR) gene, highlights the higher selective pressure for milk productivity (Zhang et al., 2008) in HST. Regions overlapping with genes that are associated with heat stress and immune response (e.g., PPEF2 for AYR as well as ELANE, and LEAP2 for JER) further support the integral role that these breeds may play in the future sustainability of the South African dairy industry.
4.4 Inbreeding coefficients
As would be expected for dairy cattle populations, given factors such as the increased utilization of AI and other reproductive technologies compared to, for example, beef cattle, all inbreeding coefficients estimated in the present study suggested inbreeding is occurring. The FPED values were generally lower than inbreeding estimates calculated from the genomic data. Perfect concordance was not expected between the FPED values and those estimated using genomic information for several reasons including: 1) pedigree information will not always be complete all the way to the founder population, 2) the Meuwissen and Luo (1992) algorithm to estimate inbreeding assumes that animals in the pedigree with no recorded parents are unrelated and non-inbred, 3) pedigree errors undoubtedly exist (e.g., Sanarana et al., 2021), and 4) FPED are based on expected relationships among individuals and cannot consider the variability that exists around this expectation owing to Mendelian sampling during gametogenesis (Kenny et al., 2023). The discrepancy between FSNP and FROH may be attributed to the fact that FSNP does not differentiate between alleles that are identical by descent (IBD) or identical by state (IBS) (Forutan et al., 2018) whereas FROH is influenced by, among other factors, the genome build (i.e., the reported position of each SNP relative to others) and SNP genotyping panel density. The suitability of each of the genomic measures is, therefore, dependent on the data available. The FROH coefficient is, however, more informative because of the additional information that the ROH length, for example, provides about the inbreeding history.
However, the means for FPED (ranging from 0.051 for AYR to 0.064 for HST), as well as FSNP (ranging from 0.02 for HST to 0.19 for JER) and FROH (ranging from 0.053 for AYR to 0.085 for JER), were similar in trend (albeit slightly lower in values) to those observed by Lozada-Soto et al. (2022) for North American dairy cattle; Lozada-Soto et al. (2022) reported FPED means ranging from 0.06 for AYR to 0.08 for HST and JER, and FROH means ranging from 0.11 for AYR to 0.17 for JER. The effect of incomplete pedigree on the estimates of inbreeding is well documented (e.g., Lutaaya et al., 1999; Marshall et al., 2002; Cassell et al., 2003), and it is generally accepted that incomplete and inaccurate pedigree recording leads to an underestimation of pedigree-based inbreeding coefficients. Tested against FPED per breed, the Spearman correlations with both FSNP and length-specific FROH estimates were weak to moderate and slightly weaker than, but comparable to, those reported by, for example, Gautason et al. (2021) using a 50,000 SNP genotyping panel on over 8,000 Icelandic cattle (ρ for FPED-FIS = 0.52; ρ for FPED-FROH = 0.63). Cortes-Hernández et al. (2021) observed similarly weak correlations between FPED and genome-based coefficients (e.g., 0.39 with FSNP and 0.30 with FROH) in a small Mexican Holstein population genotyped for 100,806 SNPs. Nonetheless, the pairwise correlations between FPED and FROH improved as ROH length increased. Irrespective of breed, the correlation between FPED and FROH<4MB was the weakest of all correlations between FPED and length-specific FROH coefficients. This observation agrees with previous suggestions that correlations between FPED and FROH strengthen when the shortest ROH fragments (typically those less than 4 Mb) are not considered in the calculation (Purfield et al., 2012). The phenomenon of a strengthening correlation between FPED and FROH as ROH length increases suggests that the relationship between FPED and FROH is probably influenced by the breed-specific pedigree depth (Cortes-Hernández et al., 2021). Many previous studies have reported stronger FPED-FROH correlations for populations with deeper recorded pedigree (e.g., Purfield et al., 2012; Ferenčaković, 2015; Peripolli et al., 2018), as was the case with the HST (pedigree depth = 11.70; ρ for FPED-FROH≥16Mb = 0.406) compared to AYR (pedigree depth = 9.75; ρ for FPED-FROH≥16Mb = 0.251). Considering the generally low within-breed participation in pedigree recording for South African dairy breeds (as low as 24%; Van Marle-Köster & Visser, 2018), the accuracy of pedigree-based inbreeding coefficients (and by extension relationships between individuals) should be interpreted with caution.
4.5 Effective population size
Factors that influence Ne estimates include the constant change in the real population size, unequal sex ratios, and the variance in the number of offspring per parent (Nielsen and Slatkin, 2013). A reduction in Ne in livestock is generally the consequence of selection pressure on traits of economic importance, exacerbated by the use of a few high-impact sires via reproductive technologies (Mulim et al., 2022). The pedigree-based Ne estimates of the youngest animals in the present study all exceed the FAO guideline of 50 animals (OECD-FAO, 2019) but it must be noted that they have all reduced substantially over the last 10 generations. Canadian, Danish, Dutch, Irish, Italian, and US HST populations have reported pedigree-based Ne of the youngest generation to be 39, 70, 49, 75, and 39 (Weigel, 2001; Sorensen et al., 2005; McParland et al., 2007; Makanjuola et al., 2020; Ablondi et al., 2022) animals, respectively. The South African HST population had the highest Ne (i.e., 85) of the three South African dairy breeds investigated in the present study which may be a consequence of the greater completeness of the pedigree used and/or the use of a larger number of genetically dissimilar sires sourced from multiple countries. Sorensen et al. (2005) reported the pedigree-based Ne of Danish Jersey cattle to be 116 while Stachowicz et al. (2011) reported a pedigree-based Ne of 54 for Canadian Jersey. A more recent study on Canadian Jersey cattle populations suggested an Ne of 49 animals (Makanjuola et al., 2020). Estimates of Ne for the South African Jersey yielded a similar low of 57 animals, as well as South African AYR with a Ne of 57 nine generations ago which points to lower genetic diversity within these two breeds in comparison to the HST breed. Although previously reported Ne estimates vary widely amongst populations, Brotherstone & Goddard (2005) reported that the Ne of most modern dairy cattle populations is circa. 100. The predictions for the South African dairy populations are also between 50 and 100 animals. Because of the hyperbolic relationship between LD (r2) and Ne, more recent (i.e., fewer generations ago), estimates of genome-based Ne are possible with a greater density of SNPs and, therefore, is better at capturing population-wide LD (Barbato et al., 2015). Genomic optimum contribution selection may be a viable tool for dairy breeding programs as it will increase genetic merit while maintaining genetic diversity (Clark et al., 2013). Genetic gain of South African dairy breeds may increase due to the current use of GEBVs (Van der Westhuizen and Mostert, 2020) and will aid in minimizing the loss of fitness by preventing any further reduction in Ne. Although the current Ne rates indicate that inbreeding is well-managed, it should still be monitored regularly to avoid adverse effects in future generations.
5 CONCLUSION
The South African AYR has always been a small population serving a niche market, while the South African HST and JER breeds are mainly responsible for the fresh milk supply. It will be important for these breeds to grow and maintain their reference populations and ensure that international bull families and genotypes are available for genetic evaluations and continuous monitoring of diversity and inbreeding. This study confirmed the usefulness of SNP genotypes for accurately assessing autozygosity and inbreeding levels, and the impact of these on the management of genetic resources. The analyzed results support the influence of globalized dairy germplasm and their observed influences on the genetic diversity within the JER, HST, and AYR reference populations in South Africa thus far. Since the erosion of genetic diversity limits long-term genetic gain and impedes resilience and sustainability amidst future challenges, these results may assist in strategies to improve and update reference populations for genomic selection.
DATA AVAILABILITY STATEMENT
The data analyzed in this study is subject to the following licenses/restrictions: Genomic data was obtained from SA Stud Book, a local service provider of genetic and genomic analyses in South Africa. The data thus belongs to third parties (SA Stud Book and Breed Societies). Requests to access these datasets should be directed to the corresponding authors.
ETHICS STATEMENT
The animal study was reviewed and approved by University of Pretoria’s Ethics Committee (EC170627-135). Written informed consent was obtained from the owners for the participation of their animals in this study.
AUTHOR CONTRIBUTIONS
CV conceptualized the project. CV and SL prepared the first draft. SL and JR performed the statistical analyses. All authors contributed to writing the discussion and editing the final manuscript.
FUNDING
All dairy cattle genotypes used in the analyses were generated within the SA Dairy Genomic Program funded by the Technology Innovation Agency (Grant number: DGP004).
ACKNOWLEDGMENTS
Authors wish to acknowledge the permission from the respective breed societies to use the genotypes for this study.
PUBLISHER’S NOTE
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.
SUPPLEMENTARY MATERIAL
The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fgene.2023.1136078/full#supplementary-material
Supplementary Material S1 | A figure showing the number of run of homozygosity (ROH) per chromosome on the primary axis (bar graphics), as well as the chromsome-wise ROH coverage on the secondary axis (line graphs), for the Ayrshire (AYR), Holstein (HST), AND Jersey (JER) population.
Supplementary Material S2 | Contingency tables of the frequency of animals within different classes of pedigree-based inbreeding coefficients (FPED) that fell within three categories (low, medium, and high) of genomics-based inbreeding coefficients (FSNP, and FROH) for the Ayrshire (AYR), Holstein (HST), and Jersey (JER) breeds.
REFERENCES
 Ablondi, M., Sabbioni, A., Stocco, G., Cipolat-Gotet, C., Dadousis, C., van Kaam, J-T., et al. (2022). Genetic diversity in the Italian Holstein dairy cattle based on pedigree and SNP data prior and after genomic selection. Front. Vet. Sci. 8, 773985. doi:10.3389/fvets.2021.773985
 Banga, C., Neser, F. W. C., and Garrick, D. J. (2014). Breeding objectives for Holstein cattle in South Africa South African. J. Animal Sci. 44 (3), 199–214. doi:10.4314/sajas.v44i3.1
 Barbato, M., Orozco-terWengel, P., Tapio, M., and Bruford, M. W. (2015). SNeP: A tool to estimate trends in recent effective population size trajectories using genome-wide SNP data. Front. Genet. 6, 109. doi:10.3389/fgene.2015.00109
 Biscarini, F., Cozzi, P., Gaspa, G., and Marras, G. (2019). detectRUNS: an R package to detect runs of homozygosity and heterozygosity in diploid genomes. Available at: https://cran.rproject.org/web/packages/detectRUNS/vignettes/detectRUNS.vignette.html#references. 
 Bourdon, R. M. (2000). Understanding animal breeding (Vol. 2). Upper Saddle River, NJ: Prentice-Hall. 
 Brotherstone, S., and Goddard, M. (2005). Artificial selection and maintenance of genetic variance in the global dairy cow population. Philosophical Trans. R. Soc. Biol. Sci. 360, 1479–1488. doi:10.1098/rstb.2005.1668
 Cassell, B. G., Adamec, V., and Pearson, R. E. (2003). Effect of incomplete pedigrees on estimates of inbreeding and inbreeding depression for days to first service and summit milk yield in Holsteins and Jerseys. J. Dairy Sci. 86 (9), 2967–2976. doi:10.3168/jds.S0022-0302(03)73894-6
 Chen, W., Lv, X., Zhang, W., Hu, T., Cao, X., Ren, Z., et al. (2022). Insights into long non-coding RNA and mRNA expression in the jejunum of lambs challenged with Escherichia coli F17. Front. Vet. Sci. 9, 819917. doi:10.3389/fvets.2022.819917
 Clark, S. A., Kinghorn, B. P., Hickey, J. M., and van der Werf, J. H. (2013). The effect of genomic information on optimal contribution selection in livestock breeding programs. Genet. Sel. Evol. 45, 1–8.
 Cole, J. B., and VanRaden, P. M. (2018). Symposium review: Possibilities in an age of genomics: The future of selection indices. J. Dairy Sci. 101 (4), 3686–3701. doi:10.3168/jds.2017-13335
 Cortes-Hernández, J., García-Ruiz, A., Vásquez-Peláez, C. G., and Ruiz-Lopez, F. D. J. (2021). Correlation of genomic and pedigree inbreeding coefficients in small cattle populations. Animals 11 (11), 3234. doi:10.3390/ani11113234
 Deb, R., Sajjanar, B., Singh, U., Kumar, S., Singh, R., Sengar, G., et al. (2014). Effect of heat stress on the expression profile of Hsp90 among sahiwal (Bos indicus) and frieswal (Bos indicus× Bos taurus) breed of cattle: A comparative study. Gene 536 (2), 435–440. doi:10.1016/j.gene.2013.11.086
 Dixit, S. P., Singh, S., Ganguly, I., Bhatia, A. K., Sharma, A., Kumar, N. A., et al. (2020). Genome-wide runs of homozygosity revealed selection signatures in Bos indicus. Front. Genet. 11, 92. doi:10.3389/fgene.2020.00092
 Doekes, H. P., Veerkamp, R. F., Bijma, P., de Jong, G., Hiemstra, S. J., and Windig, J. J. (2019). Inbreeding depression due to recent and ancient inbreeding in Dutch Holstein–Friesian dairy cattle. Genet. Sel. Evol. 51 (1), 54–16. doi:10.1186/s12711-019-0497-z
 Doekes, H. P., Bijma, P., Veerkamp, R. F., De Jong, G., Wientjes, Y. C. J., and Windig, J. J. (2020). Inbreeding depression across the genome of Dutch Holstein Friesian dairy cattle. Genet. Sel. Evol. 52, 64. doi:10.1186/s12711-020-00583-1
 Duvenhage, H. (2017). How well do you know your Holstein history?Dairy Mail 24 (2), 112–113. doi:10.10520/EJC-59ed8f8ff
 Felius, M., Beerling, M. L., Buchanan, D. S., Theunissen, B., Koolmees, P. A., and Lenstra, J. A. (2014). On the history of cattle genetic resources. Diversity 6 (4), 705–750. doi:10.3390/d6040705
 Ferenčaković, M. (2015). Molecular dissection of inbreeding depression for semen quality traits in cattle. Doctoral dissertation. University of Zagreb. Faculty of Agriculture. 
 Forutan, M., Ansari Mahyari, S., Baes, C., Melzer, N., Schenkel, F. S., and Sargolzaei, M. (2018). Inbreeding and runs of homozygosity before and after genomic selection in North American Holstein cattle. BMC Genomics 19, 98–12. doi:10.1186/s12864-018-4453-z
 Gautason, E., Schönherz, A. A., Sahana, G., and Guldbrandtsen, B. (2021). Genomic inbreeding and selection signatures in the local dairy breed Icelandic Cattle. Anim. Genet. 52, 251–262. doi:10.1111/age.13058
 Goddard, M. E., and Hayes, B. J. (2009). Mapping genes for complex traits in domestic animals and their use in breeding programmes. Nat. Rev. Genet. 10 (6), 381–391. doi:10.1038/nrg2575
 Gorssen, W., Meyermans, R., Janssens, S., and Buys, N. (2021). A publicly available repository of ROH islands reveals signatures of selection in different livestock and pet species. Genet. Sel. Evol. 53 (1), 2–10. doi:10.1186/s12711-020-00599-7
 Howard, R., Carriquiry, A. L., and Beavis, W. D. (2017). Application of response surface methods to determine conditions for optimal genomic prediction. G3: Genes, Genomes, Genet. 7 (9), 3103–3113. doi:10.1534/g3.117.044453
 Howrigan, D. P., Simonson, M. A., and Keller, M. C. (2011). Detecting autozygosity through runs of homozygosity: A comparison of three autozygosity detection algorithms. BMC genomics 12 (1), 1–15. doi:10.1186/1471-2164-12-460
 Hsu, C-C., Okumura, R., Motooka, D., Sasaki, R., Nakamura, S., Iida, T., et al. (2021). Alleviation of colonic inflammation by Lypd8 in a mouse model of inflammatory bowel disease. Int. Immunol. 33 (7), 359–372. doi:10.1093/intimm/dxab012
 INTERBULL (2022). International bull evaluation service (INTERBULL). https://interbull.org/ib/cop_chap2 (Accessed November 22, 2022). 
 Kenny, D., Berry, D. P., Pabiou, T., and Rafter, P. (2023). Variation in the proportion of the segregating genome shared between full-sibling cattle and sheep. Genetics, Selection, Evolution. (in Press). 
 Kim, E. S., Cole, J. B., Huson, H., Wiggans, G. R., Van Tassell, C. P., Crooker, B. A., et al. (2013). Effect of artificial selection on runs of homozygosity in US Holstein cattle. PloSone 8 (11), e80813. doi:10.1371/journal.pone.0080813
 Liu, D., Chen, Z., Zhao, W., Guo, L., Sun, H., Zhu, K., et al. (2021). Genome-wide selection signatures detection in Shanghai Holstein cattle population identified genes related to adaption, health and reproduction traits. BMC Genomics 22, 747. doi:10.1186/s12864-021-08042-x
 Lozada-Soto, E. A., Tiezzi, F., Jiang, J., Cole, J. B., VanRaden, P. M., and Maltecca, C. (2022). Genomic characterization of autozygosity and recent inbreeding trends in all major breeds of US dairy cattle. J. Dairy Sci. 105 (11), 8956–8971. doi:10.3168/jds.2022-22116
 Lutaaya, B. E., Misztal, I., Bertrand, J. K., and Mabry, J. W. (1999). Inbreeding in populations with incomplete pedigrees. J. Animal Breed. Genet. 116 (6), 475–480. doi:10.1046/j.1439-0388.1999.00210.x
 Maiwashe, A., Nephawe, K. A., Van der Westhuizen, R. R., Mostert, B. E., and Theron, H. E. (2006). Rate of inbreeding and effective population size in four major South African dairy cattle breeds. South Afr. J. Animal Sci. 36 (1), 50–57. doi:10.4314/sajas.v36i1.3986
 Makanjuola, B. O., Miglior, F., Abdalla, E. A., Maltecca, C., Schenkel, F. S., and Baes, C. F. (2020). Effect of genomic selection on rate of inbreeding and coancestry and effective population size of Holstein and Jersey cattle populations. J. Dairy Sci. 103 (6), 5183–5199. doi:10.3168/jds.2019-18013
 Makanjuola, B. O., Maltecca, C., Miglior, F., Marras, G., Abdalla, E. A., Schenkel, F. S., et al. (2021). Identification of unique ROH regions with unfavorable effects on production and fertility traits in Canadian Holsteins. Genet. Sel. Evol. 53 (1), 68–11. doi:10.1186/s12711-021-00660-z
 Maltecca, C., Tiezzi, F., Cole, J. B., and Baes, C. (2020). Symposium review: Exploiting homozygosity in the era of genomics—selection, inbreeding, and mating programs. J. Dairy Sci. 103 (6), 5302–5313. doi:10.3168/jds.2019-17846
 Marras, G., Gaspa, G., Sorbolini, S., Dimauro, C., Ajmone-Marsan, P., Valentini, A., et al. (2015). Analysis of runs of homozygosity and their relationship with inbreeding in five cattle breeds farmed in Italy. Anim. Genet. 46 (2), 110–121. doi:10.1111/age.12259
 Marshall, T. C., Coltman, D. W., Pemberton, J. M., Slate, J., Spalton, J. A., Guinness, F. E., et al. (2002). Estimating the prevalence of inbreeding from incomplete pedigrees. Proc. R. Soc. Lond. Ser. B: Biol. Sci. 269 (1500), 1533–1539. doi:10.1098/rspb.2002.2035
 Mastrangelo, S., Sardina, M. T., Tolone, M., Di Gerlando, R., Sutera, A. M., Fontanesi, L., et al. (2018). Genome-wide identification of runs of homozygosity islands and associated genes in local dairy cattle breeds. Animal 12 (12), 2480–2488. doi:10.1017/S1751731118000629
 McParland, S., Kearney, J. F., Rath, M., and Berry, D. P. (2007). Inbreeding effects on milk production, calving performance, fertility, and conformation in Irish Holstein-Friesians. J. Dairy Sci. 90, 4411–4419. doi:10.3168/jds.2007-0227
 McQuillan, R., Leutenegger, A. L., Abdel-Rahman, R., Franklin, C. S., Pericic, M., Barac-Lauc, L., et al. (2008). Runs of homozygosity in European populations. Am. J. Hum. Genet. 83 (3), 359–372. doi:10.1016/j.ajhg.2008.08.007
 Meuwissen, T. H. E., and Luo, Z. (1992). Computing inbreeding coefficients in large populations. Genet. Sel. Evol. 24, 305–313. doi:10.1186/1297-9686-24-4-305
 Meyermans, R., Gorssen, W., Buys, N., and Janssens, S. (2020). How to study runs of homozygosity using PLINK? A guide for analyzing medium density SNP data in livestock and pet species. BMC Genomics 21 (1), 94–14. doi:10.1186/s12864-020-6463-x
 Mostert, B. E., Groeneveld, E., and Kanfer, F. H. J. (2004). Testday models for production traits in dairy cattle. South Afr. J. Animal Sci. 24 (2), 35–37. doi:10.10520/EJC94421
 Mostert, B. E., Theron, H. E., Kanfer, F. H. J., and van Marle-Köster, E. (2006). Test-day models for South African dairy cattle for participation in international evaluations. South Afr. J. Animal Sci. 36, 1. doi:10.4314/sajas.v36i1.3987
 Mulim, H. A., Brito, L. F., Pinto, L. F. B., Ferraz, J. B. S., Grigoletto, L., Silva, M. R., et al. (2022). Characterization of runs of homozygosity, heterozygosity-enriched regions, and population structure in cattle populations selected for different breeding goals. BMC Genomics 23, 209. doi:10.1186/s12864-022-08384-0
 Nel, G. D. (1968). Historical origin of Jerseys (extract from “Jerseys of S.A.”). Available at: https://www.jerseysa.co.za/Breed-History.htm (Accessed November 10, 2022). 
 Nielsen, R., and Slatkin, M. (2013). An introduction to population genetics: theory and applications. Sunderland, MA, United States: Sinauer. 
 OECD-FAO (2019). OECD-FAO agricultural outlook 2019-2028. OECD. 
 Opoola, O., Banos, G., Ojango, J. M., Mrode, R., Simm, G., Banga, C. B., et al. (2020). Joint genetic analysis for dairy cattle performance across countries in sub-Saharan Africa. South Afr. J. Animal Sci. 50 (4), 507–520. doi:10.4314/sajas.v50i4.3
 Orton, J., Mitchell, P., Klein, R., Steele, T., and Horsburgh, K. A. (2013). An early date for cattle from namaqualand, South Africa: Implications for the origins of herding in southern Africa. Antiquity 87, 108–120. doi:10.1017/S0003598X00048651
 Peripolli, E., Munari, D. P., Silva, M. V. G. B., Lima, A. L. F., Irgang, R., and Baldi, F. (2017). Runs of homozygosity: Current knowledge and applications in livestock. Anim. Genet. 48 (3), 255–271. doi:10.1111/age.12526
 Peripolli, E., Stafuzza, N. B., Munari, D. P., Lima, A. L. F., Irgang, R., Machado, M. A., et al. (2018). Assessment of runs of homozygosity islands and estimates of genomic inbreeding in Gyr (Bos indicus) dairy cattle. BMC Genomics 19, 34. doi:10.1186/s12864-017-4365-3
 Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M. A., Bender, D., et al. (2007). Plink: A tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81 (3), 559–575. doi:10.1086/519795
 Purfield, D. C., Berry, D. P., McParland, S., and Bradley, D. G. (2012). Runs of homozygosity and population history in cattle. BMC Genet. 13 (1), 70–11. doi:10.1186/1471-2156-13-70
 R Core Team (2013). R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. Available at: http://www.R-project.org/. 
 SA Stud Book (2004). South African livestock breeding. Cape Town: Paarl Web Printers. 
 SA Stud Book (2022a). SA Stud Book Ayrshire and related types annual report 2021–2022. Pretoria, South Africa. 
 SA Stud Book (2022b). SA Stud Book Holstein, friesland and related types annual report 2021–2022. Pretoria, South Africa. 
 SA Stud Book (2022c). SA Stud Book Jersey and related types annual report 2021–2022. Pretoria, South Africa. 
 Saif-ur-Rehman, M., Hassan, F. U., Reecy, J., and Deng, T. (2022). Whole-genome SNP markers reveal runs of homozygosity in indigenous cattle breeds of Pakistan. Anim. Biotechnol. [Preprint], 1–13. doi:10.1080/10495398.2022.2026369
 Sanarana, Y. P., Maiwashe, A., Berry, D. P., Banga, C., and van Marle-Köster, E. (2021). Evaluation of the International Society for Animal Genetics bovine single nucleotide polymorphism parentage panel in South African Bonsmara and Drakensberger cattle. Trop. Animal Health Prod. 53, 32–38. doi:10.1007/s11250-020-02481-6
 Sorensen, A. C., Sorenson, M. K., and Berg, P. (2005). Inbreeding in Danish dairy cattle breeds. J. Dairy Sci. 94 (10), 1865–1872. doi:10.3168/jds.S0022-0302(05)72861-7
 Stachowicz, K., Sargolzaei, M., Miglior, F., and Schenkel, F. S. (2011). Rates of inbreeding and genetic diversity in Canadian Holstein and Jersey cattle. J. Dairy Sci. 94 (10), 5160–5175. doi:10.3168/jds.2010-3308
 Sved, J. A. (1971). Linkage disequilibrium and homozygosity of chromosome segments in finite populations. Theor. Popul. Biol. 2 (2), 125–141. doi:10.1016/0040-5809(71)90011-6
 Van der Westhuizen, R. R., and Mostert, B. (2020). Authentic South African genomic breeding values for the local dairy industry. Stockfarm 10 (6), 47. doi:10.10520/EJC-1f6450d139
 Van Marle-Köster, E., and Visser, C. (2018). Genetic improvement in South African livestock: Can genomics bridge the gap between the developed and developing sectors?Front. Genet. 9, 331. doi:10.3389/fgene.2018.00331
 Weigel, K. A. (2001). Controlling inbreeding in modern breeding programs. J. Dairy Sci. 84, E177–E184. doi:10.3168/jds.S0022-0302(01)70213-5
 Wellmann, R., and Bennewitz, J. (2019). Key genetic parameters for population management. Front. Genet. 10, 667. doi:10.3389/fgene.2019.00667
 Wiggans, G. R., Cooper, T. A., VanRaden, P. M., and Cole, J. B. (2011). Technical note: Adjustment of traditional cow evaluations to improve accuracy of genomic predictions. J. Dairy Sci. 94 (12), 6188–6193. doi:10.3168/jds.2011-4481
 Wright, S. (1978). Variability within and among Natural Population, 4. Chicago, IL: University of Chicago Press.Evolution and the genetics of populations
 Xu, L., Zhao, G., Yang, L., Zhu, B., Chen, Y., Zhang, L., et al. (2019). Genomic patterns of homozygosity in Chinese local cattle. Sci. Rep. 9, 16977. doi:10.1038/s41598-019-53274-3
 Yang, J., Benyamin, B., McEvoy, B. P., Gordon, S., Henders, A. K., Nyholt, D. R., et al. (2010). Common SNPs explain a large proportion of the heritability for human height. Nature genet. 42 (7), 565–569. doi:10.1038/ng.608
 Yang, J., Lee, S. H., Goddard, M. E., and Visscher, P. M. (2011). Gcta: A tool for genome-wide complex trait analysis. Am. J. Hum. Genet. 88 (1), 76–82. doi:10.1016/j.ajhg.2010.11.011
 Zhang, J., Zan, L., Fang, P., Zhang, F., Shen, G., and Tian, W. (2008). Genetic variation of PRLR gene and association with milk performance traits in dairy cattle. Can. J. Animal Sci. 88 (1), 33–39. doi:10.4141/cjas07052
Conflict of interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Copyright © 2023 Visser, Lashmar, Reding, Berry and van Marle-Köster. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
		ORIGINAL RESEARCH
published: 17 March 2023
doi: 10.3389/fgene.2023.1114381


[image: image2]
Going to scale—From community-based to population-wide genetic improvement and commercialized sheep meat supply in Ethiopia
Joaquin Mueller1†, Aynalem Haile2*, Tesfaye Getachew2, Bruno Santos3, Mourad Rekik4, Berhanu Belay2, Dawit Solomon5, Likawent Yeheyis6 and Barbara Rischkowsky2
1National Institute for Agricultural Technology (INTA), Bariloche, Argentina
2International Center for Agricultural Research in the Dry Areas (ICARDA), Addis Ababa, Ethiopia
3AbacusBio Limited, Dunedin, New Zealand
4International Center for Agricultural Research in the Dry Areas (ICARDA), Tunis, Tunisia
5International Livestock Research Institute (ILRI), Addis Ababa, Ethiopia
6Amhara Regional Research Institute (ARARI), Bahir Dar, Ethiopia
Edited by:
Ntanganedzeni Mapholi, University of South Africa, South Africa
Reviewed by:
Abdulmojeed Yakubu, Nasarawa State University, Nigeria
Muhammad Ihsan Andi Dagong, Hasanuddin University, Indonesia
* Correspondence: Aynalem Haile, a.haile@cgiar.org
Specialty section: This article was submitted to Livestock Genomics, a section of the journal Frontiers in Genetics
†ORCID: Joaquin Mueller, https://orcid.org/0000-0003-1209-5417; Aynalem Haile, https://orcid.org/0000-0001-5914-0487; Tesfaye Getachew, https://orcid.org/0000-0002-0544-6314; Mourad Rekik, https://orcid.org/0000-0001-7455-2017; Barbara Rischkowsky, https://orcid.org/0000-0002-0035-471X
Received: 02 December 2022
Accepted: 06 March 2023
Published: 17 March 2023
Citation: Mueller J, Haile A, Getachew T, Santos B, Rekik M, Belay B, Solomon D, Yeheyis L and Rischkowsky B (2023) Going to scale—From community-based to population-wide genetic improvement and commercialized sheep meat supply in Ethiopia. Front. Genet. 14:1114381. doi: 10.3389/fgene.2023.1114381

Community-based breeding programs (CBBPs) have shown, at pilot scale, to be effective and beneficial in achieving genetic progress and in improving livelihoods of smallholder communities. In Ethiopia 134 sheep and goat CBBPs were operational producing their own improved rams and bucks. Based on experience the implementation of further programs is possible with appropriate private and public support. A different challenge is the efficient dissemination of the improved genetics produced in current CBBPs to create population-wide economic impact. We present a framework applied to the Ethiopian Washera sheep breed to meet this challenge. We propose the establishment of a genetic improvement structure that supports a meat commercialization model based on the integration of community-based breeding program cooperatives, client communities and complementary services such as fattening enterprises. We calculated that the recently established 28 community-based breeding programs in the Washera breeding tract can provide genetically improved rams to 22% of the four million head. To reach the whole population 152 additional CBBPs are needed. We simulated the genetic improvements obtainable in the current 28 CBBPs assuming realized genetic progress in CBBPs of a similar breed and calculated the expected additional lamb carcass meat production after 10 years of selection to be 7 tons and the accumulated discounted benefit 327 thousand USD. These benefits could be increased if the CBBPs are linked to client communities by providing them with improved rams: additional meat production would be 138 tons with a value of 3,088 thousand USD. The total meat production of the existing Washera CBBPs was calculated at 152 tons and the joint meat production of CBBPs if integrated with client communities would be 3,495 tons. A full integration model, which includes enterprises purchasing lambs for fattening, can produce up to 4,255 tons of meat. We conclude that Washera CBBPs cooperatives can benefit from a higher level of organization to produce population-wide genetic improvement and economic benefits. Unlike in the dairy and chicken industries, for low input sheep and goat smallholder systems the proposed commercialization model puts breeder cooperatives at the center of the operation. Cooperatives need to be capacitated and supported to become fully functional business ventures.
Keywords: small ruminants, low-input system, animal breeding, lamb meat, selection, development, benefit
1 INTRODUCTION
Livelihood of smallholder farmers often relies on their ruminant livestock or poultry. Improving efficiency of smallholder systems is a major aim of research efforts and development projects, which usually focus on issues such as product marketing, pastoral range management, feed production, healthcare and genetic improvement (e.g., Shapiro et al., 2015). The latter includes local breed improvement through pure breeding and introduction of alternative breeds for crossbreeding or breed replacement. In any case improved germplasm, whether in the form of semen, embryos, eggs or live animals, has to be produced and disseminated efficiently. Increasing the productivity of animals through genetic improvement is usually slow and has a small immediate impact but it is cumulative, permanent and can be cost effective. Cost-effectiveness is particularly relevant in low-input systems where cash is needed for immediate household expenses. Genetic improvement programs also encompass non-monetary returns/outcomes. For example, improved livestock may have cultural or social value, new or improved products may contribute to overcome nutritional deficiencies, locally produced additional food may increase food security, more efficient animals may allow a decrease in stocking rates or reduce demand of feed and water, etc. (FAO, 2010).
Implementation of genetic improvement programs in smallholder small ruminant conditions is difficult for several reasons (Wurzinger et al., 2011) and effective programs are very rare. A recent development is the community-based breeding program (CBBP) approach of sheep and goat genetic improvement (Mueller et al., 2015). In these programs instead of focusing on the genetic improvement of the individual household flock or on external sire providers, the focus is on communities where small ruminant keepers agree on cooperating to produce their own improved sires. In Ethiopia 134 CBBPs were operational with different sheep and goat breeds. Each CBBP organized itself as a cooperative, designated enumerators and made them responsible for data collection. Local researchers were trained in data processing. CBBPs proved to work well but required support with seed funding for the revolving expenses, training, recording, breeding value estimation and other knowledge transfer associated costs (Haile et al., 2019). Support from public and private funding organizations allowed replication of pilot CBBPs in several locations and the pilot phase concluded that CBBPs are an effective and beneficial strategy to achieve genetic progress and to improve livelihood at community level (Haile et al., 2020a).
An additional challenge and opportunity is the efficient dissemination of the improved genetics produced in current individual CBBPs to create population-wide impact. Assuming demand for sheep and goat products continues to grow, a new supply chain structure will benefit from the support provided by CBBPs role of genetic improvement providers, i.e., breeding cooperatives, supplying improved sires to client communities which benefit from the higher productivity of their animals and can concentrate on efficient meat production within their smallholder systems. Such a structure would resemble pyramidal genetic structures known to work in developed countries. Development of a more structured and commercially-oriented small ruminant meat supply chain on a large scale requires a conceptual framework and several enabling activities. In this paper we present a framework applied to a specific sheep population, the Ethiopian Washera sheep breed. We proposed the necessary steps to establish a genetic improvement structure that supports a meat commercialization model based on the integration of CBBP cooperatives, client communities and complementary services such as fattening enterprises. The paper also demonstrates the potential impact, both genetic and the expected economic benefit, when a large proportion of the total sheep breed population is influenced by improved local genetics, and discusses implementation issues.
2 MATERIALS AND METHODS
2.1 Theoretical framework
The experience in established CBBPs demonstrates that selected surplus males become of increasing interest by neighboring farmers and communities to be used for breeding (Abate et al., 2020). Thus, in order to reach a large proportion of a small ruminant population with improved genetics, Mueller et al. (2019) suggested three strategies: 1) substantially increasing the number of male lambs sold for breeding per CBBP (up-scaling), 2) increasing the intensity of use of selected rams by means of artificial insemination (AI) and, 3) further replication of CBBPs (out-scaling). A theoretical analysis concluded that up-scaling the number of improved males from current CBBPs for dissemination and out-scaling current CBBPs are highly feasible strategies for population-wide genetic improvement (Mueller et al., 2019). The more intense use of rams using AI was not cost-effective and was only justified in specific circumstances. For example, sires with exceptional high and accurate breeding values may be used as foundation sires for new CBBPs. Thus, Washera up-scaling and out-scaling strategies were analyzed.
Recent experiences demonstrated the financial feasibility of fattening Horro and Bonga sheep (Zemedu et al., 2018). In the Washera area, the Ethiopia Livestock and Fishery Sector Development Project (LFSDP Regional PCU, 2022) established four cooperatives, each of them with a capacity to fatten 200 lambs at a time and three rounds of fattening per year or 600 lambs per year. There are also about ten other common interest groups with a fattening capacity of 150 lambs each, making a total capacity of 3,900 (4 × 600 + 1,500) lambs in fattening stations per year. The sheep fattening activity is becoming an interesting business opportunity for local development as it requires additional feed production facilities which have been established in the area. These sheep fattening developments were considered as part of an integrated sheep meat production structure.
2.2 The Washera sheep breed and current CBBPs
Washera, also known as Agew or Dangla, is short fat tail; large body size; short-haired; predominantly brown; both males and females are polled; reared by Amhara and Agew communities in Ethiopia (Gizaw et al., 2008). The breed is predominantly distributed in West Gojjam, East Gojjam and Awi zones in the Amhara Regional State in Ethiopia (Figure 1) and is one of the most popular and well-known breeds in the country with a total population of approximately four million heads in about 300 thousand households living in 2,800 communities. The area is well known for having good to very good agricultural potential and the three zones produce substantial surpluses that are sold to other areas and are important for the food supply of the country as a whole. Agriculture, both crop and livestock are the backbone of region’s economy and 85% of the population in the area depending on agriculture (Getahun and Shefine, 2015). Sheep are an important source of income and livelihoods for the local farmers with a potential to support the national economy because of its fast growth potential. Ewe mature weight is in the range of 27–31 kg. The breed is renowned for being prolific and fast growing. These features are highly appreciated in the region and are preferred breeding goals of local farmers. Washera sheep are also regularly used to improve other indigenous sheep breeds, typically in the Amhara region. Despite its importance, before the recent CBBPs there were no formal Washera sheep genetic improvement programs in the country.
[image: Figure 1]FIGURE 1 | Position of Amhara Regional State in Ethiopia, Washera sheep breed distribution and clusters and location of the current 28 CBBPs.
The pilot Washera CBBPs were established in 2021 through a typical approach in which the community establishes a cooperative where members formally agree on breeding goal, recording and selection procedures. Farmers with promising male lambs are paid to retain these lambs till final selection as replacement rams using a revolving fund which is cashed once these sires are cast for age and sold for meat. All unselected male lambs are culled for meat. In 2022 there were 28 community-based breeding initiatives covering several districts in five clusters (Figure 1) which were defined by taking into account availability of partners, geographic location, political administration, ram sharing potential, homogeneity in agro-ecology and the location of the implementing institutions.
A recent survey (Washera CBBP Survey, unpublished) indicates a total of 3,233 households engaged in the CBBPs with a mean flock size of 12.08 sheep including 6.73 breeding females. The total number of sires was estimated assuming communities follow the suggested mating ratio of 25 breeding females per sire and a serving period of 2.5 years. A ram survival rate of 0.95 was assumed. The total number of lambs produced were calculated assuming a conception rate of 0.9 and survival to selection or culling age 0.9 and a lambing interval of 8 months, all assumptions were based on field data. The figure for litter size (lambs born per ewe lambing) was taken from survey results in each cluster. Thus, assuming all female lambs and only replacement male lambs are kept for breeding, then a total of 17,154 Washera lambs are annually culled for meat (Table 1).
TABLE 1 | Current community-based breeding program (CBBP) statistics per geographical production cluster.
[image: Table 1]2.3 Meat production and commercialization model
The Washera meat production and commercialization model is proposed by combining existing up-scaling and out-scaling CBBP approaches. In this model, CBBPs produce improved breeding males for client communities, here called production units, which produce the bulk of lambs for meat and lambs for individual fattening enterprises or fattening cooperatives. In the proposed model CBBP cooperatives are the key organizations establishing the necessary business links between smallholder farmers in the village and market players who supply consumers. Thus, establishing a commercialization model of large scale that integrates production units, fattening enterprises, and supply of lambs to the live market or for processing in slaughter houses via the CBBP cooperatives.
The integration strategies were modelled with assumptions on numbers of potential ram lambs available for production units, proportions of lambs produced in these units sold for meat or diverted to be finished in individual fattening enterprises or cooperatives as well as number of additional CBBPs required to impact the whole Washera population. The meat production and commercialization model were parameterized such that a range of situations could be tested to predict industry scale, genetic progress and economic impact.
The analyses were done considering a planning period of 10 years and the following three levels or scenarios of integration.
a) Non-integrated scenario–the current situation where all surplus male lambs in CBBPs are culled for meat. No formal integration between CBBPs and production units or fattening enterprises and cooperatives.
b) Partially integrated scenario–above average CBBP male lambs are supplied for breeding in production units. No integration with fattening stations is considered in this case.
c) Integrated scenario–CBBPs supply rams to production units and these supply lambs to fattening enterprises with three fattening capacity options (see details in 2.5).
2.4 Calculation of genetic progress
Washera sheep provide meat for sale and consumption. Hence, sustained improvement of litter size (LS) and lamb weight (SMW) are obvious breeding goals. Selected animals should also be adapted to their production systems, particularly resilient to the environments and regular climatic hazards which may be exacerbated by climate change.
Genetic progress for these traits has not yet been calculated from field data in Washera CBBPs. In order to get an estimate of performance in current Washera sheep CBBPs, the genetic progress obtained in CBBPs of Horro breed was used. This breed has similar performance characteristics as Washera, for example, average litter size in Horro is 1.36 lambs/lambing and average lamb weight is 20.0 kg (Zemedu et al., 2018) while for Washera sheep mean ± SD are 1.32 ± 0.34 lambs/lambing and 19.77 ± 3.87 kg, respectively (recent field survey data, n = 437). Also selection procedures applied in both breeds are similar. In Horro, annual genetic progress achieved in SMW was 0.1800 kg/year and progress in LS was 0.0021 lambs/lambing over the period 2009–2018 (Haile et al., 2020a). These improvement rates were applied over 10 years to simulate expected improvement in newly established Washera CBBPs using gene flow methodology (Amer, 1999; FAO, 2010). Genetic progress at production units was calculated considering the average merit of selected males, assuming a parent average approach in which half of their genes and half of average production unit ewe genes are expressed in each year’s progeny batch (Santos et al., 2017).
Potential annual genetic progress in both SMW and LS was calculated using selection index theory (Hazel, 1943) and assuming the Horro sheep parameters, heritability of 0.4090 for SMW and 0.0515 for LS (Kebede, 2002; Haile et al., 2020b) and phenotypic and genetic correlations between SMW and LS of −0.0828 and 0.0340, respectively (Kebede, 2002). Selection differential was obtained considering selection of the top 10% of male candidates and no selection of females (average standardized selection intensity of 0.877) and generation length was estimated to be 3 years. These figures together with the market price of a 20.0 kg Washera lamb of 90 USD and about the same number of expressions for both traits allow calculation of standard index weights and potential genetic progress in both SMW and LS.
2.5 Calculation of meat production
Meat production was calculated for each production chain integration level by calculating the number and weight of male lambs culled or male lambs fattened considering dressing percentages of 44.2 and 49.48, respectively (Getachew et al., 2011). For the non-integrated scenario of the present 28 CBBPs, statistics from Table 1 were used. For the partially-integrated scenario, the remaining number of lambs culled for meat in CBBPs and the total number of lambs produced in production units were calculated and multiplied by the average lamb weight of 20.0 kg.
For the integrated scenario which also considers lamb fattening enterprises, three cases (c1, c2, and c3) were calculated: considering the current fattening capacity of 3,900 lambs (c1), increasing fattening capacity at the current rate of 1,000 more lambs a year up to 13,900 at year ten (c2), and increasing fattening capacity up to all acceptable (above average) lambs for fattening (c3). Following the financial feasibility analysis of Zemedu et al. (2018) with fattening of Horro male lambs, an average growth of 8 kg live weight after 90 days fattening period was assumed and survival of lambs in fattening stations of 0.95.
The slight but sustained increase in number of lambs and lamb weight due to genetic improvement of LS and SMW were also considered when calculating meat production but reported separately from a scenario of no genetic improvement. Sensitivity of the assumed rates of genetic progress in LS and SMW on meat production and economic outcome was tested setting rates to 80% and 120% of those observed in Horro CBBPs.
2.6 Calculation of economic parameters
Economic benefit of the different scenarios was calculated as revenue minus cost over a 10-year planning horizon assuming a discount rate of 0.07 as in previous studies (Mueller et al., 2019) to make revenues and costs comparable. In the non-integrated scenario the economic benefit from sale of lambs culled for meat was calculated based on lamb numbers and lamb weights and from known genetic trends for LS and SMW. Revenue per 20.0 kg Washera lamb was assumed at 90 USD or 4.5 USD per kg live weight. Several initial and annual costs were considered when establishing a new CBBP. Initial year costs due to the construction of a collection yard, purchase of a scale and ear tag applicator and training or meeting expenses were 700 USD, annual costs due to purchase of ear tags and payment of enumerator were 900 USD as in Mueller et al. (2019). Note that only additional income due to genetic improvement and only additional costs due to the selection program were considered, capital expenses were ignored.
In the partially-integrated scenario the economic benefit at CBBP level was calculated as before but considering that a proportion of lambs are sold for breeding and all male lambs in the production units are culled for meat. The only additional cost considered for production units was an overprice of purchased young CBBP rams. This additional cost for production units and additional income for CBBPs was taken as equivalent to 1 kg live lamb price (4.5 USD). The light annual increase in lamb weights and number of lambs due to genetic improvement were considered and reported separately.
In the three cases of fully integrated systems, those including fattening enterprise, the benefit per kg “finished” meat was calculated as the difference between meat market price minus fattening cost per kg. Costs included veterinary services and other associated costs such as concentrate feeding and watering troughs. This cost per kg was assumed to be 65% of its price, a figure obtained as average cost in two fattening experiments applied to young CBBP Horro rams (Zemedu et al., 2018).
The financial analysis for the three integration scenarios does not include other expenses than those related to the linking and fattening. Selection costs were considered for CBBPs since there would be no CBBP without selection and fattening costs didn’t include basal feed costs. Economic parameters were calculated separately with and without genetic improvement. selection costs, income from sale of cull lambs and income from sale of lambs for breeding were considered for CBBPs; costs due to purchase of breeding lambs, income from sale of lambs either for meat or for fattening were considered for production units; and costs due to purchase of lambs for fattening, costs of fattening and income from sale of fattened lambs were considered for fattening enterprises. Costs and incomes were discounted and accumulated to year 10, when c2 and c3 reach their fattening capacity target. Annual and accumulated discounted revenues, costs and benefits were obtained for the three integration systems at each production tier. Return on investment (ROI) was calculated as accumulated discounted revenues over accumulated discounted costs.
Meat production potential and economic impact were based on the current number of Washera CBBPs. The number of additional CBBPs required to reach the entire Washera population with improved males was extrapolated from the current landscape.
3 RESULTS
3.1 Genetic improvement of CBBPs and production units
After 10 years of selection in CBBPs the increase in SMW was 1.77 kg and in LS 0.021 lambs. First selected progeny in the CBBPs was born in year 0 (expressing superiority at lamb age, year 1) and first improved males are used in production units in year 1 with improved progeny expressing superiority in year 2. In the early years SMW and LS trends improve rapidly in the CBBPs and the genetic trends in the production units follows with a delay (lag) achieving at year 10 about half the improvement of the ram provided by the CBBPs. The increase in litter size at year 10 implied additional 272 and 1,676 lambs in CBBP and client production units, respectively (Table 4). At year 10 production units lag about two generations of improvement behind CBBPs (6 years), as presented in Figure 2.
[image: Figure 2]FIGURE 2 | Genetic progress of lamb weights (SMW) and litter size (LS) in CBBPs and client production units starting selecion in year) and assuming no initial genetic differences between CBBPs and production units.
3.2 Up-scaling washera CBBPs
In the current non-integrated situation, the 28 Washera CBBPs produce young replacement males for own use and all surplus male lambs (17,154) are culled for meat. In the partially integrated situation all CBBP lambs above average (8,322), excluding 5% of lambs culled for physical appearance are considered available for breeding. From these, 367 are used as own CBBP replacements and the remainder 7,956 are selected for use in production units. CBBP lambs not used for breeding (9,198) are culled for meat (Table 2). This amounts to about 2.8 (9,198/3,233 households) lambs culled for meat and about 2.5 (7,956/3,233) young sires sold for breeding per CBBP household per year. In addition, there is a potential for another 193,063 lambs to be made available for fattening.
TABLE 2 | The effect of CBBPs sire production capacity on production units, meat lamb and potential fattening lamb numbers. Estimated CBBP out-scaling requirements.
[image: Table 2]According to data compiled from the regional livestock office the total Washera ewe population in the five production clusters was 2,147,875. With current up-scaled CBBPs only 22% (472,376/2,147,875) of the ewes in this population could be served with CBBP born rams. Assuming that new CBBPs in each cluster will be of the average CBBP size in the cluster, it was estimated that 152 additional CBBPs are required to serve the whole Washera ewe population. In cluster one there are no more CBBPs needed, in fact with the proposed up-scaling strategy there are rams in excess to serve 63,563 additional ewes at another CBBP site or in production units. On the other hand, in cluster 5, 62 additional CBBPs are required to cover the target population of 490,750 ewes (Table 2). Clearly, these figures are indicative and open to arrangements between cooperatives of the different clusters. In any case the results show the need for specific extension services and CBBP promotion in each district.
3.3 Meat production
Current annual meat production of the 28 CBBPs is about 152 tons (carcass weight) and in the partially integrated scenario 3,495 tons, 81 tons from culled lambs in CBBPs and 3,413 tons from culled lambs from production units (Table 3). Note here and elsewhere in tables and text minor rounding effects in the report of numbers. The effect of genetic improvement in number of lambs and in lamb weights results in an increase of 7.4 tons in CBBPs and 138 tons in production units at year 10 (Table 4). This amount of additional meat due to genetic improvement is expected if genetic progress in the recently established Washera CBBPs achieves the progress obtained over 9 years in Horro CBBPs, that is 0.18 kg/year in SMW and 0.0021 lambs/lambing in LS. Using an index based on Horro and Washera parameters (section 2.4) would increase SMW progress to 0.46 kg/year and would increase meat production accordingly. In the fully integrated scenario, another 51 tons of finished lamb meat is produced using the current lamb fattening capacity (c1). Assuming a growing fattening capacity, fewer lambs are culled for meat but more are fattened. Considering the final (year 10) target capacity of 13,900 lambs (c2) and the maximum number of lambs available for fattening, 193,000 lambs (c3), a range between 183 tons and up to 2,541 tons finished carcass meat can be produced. The sensitivity test shows that the additional meat production is directly proportional to the assumed rates of genetic progress. If these rates in Washera CBBPs would be only 80% of those achieved in Horro CBBPs the total additional meat production would be 116 tons instead of 146 tons and if these rates would be 120% then the total additional meat production would be 175 tons (Table 4).
TABLE 3 | Yearly lamb and carcass meat production in three integration scenarios of CBBPs, production units and fattening enterprises, excluding the effect of genetic improvement. Based on current 28 CBBPs and three levels of expected final fattening capacity (c1, c2, and c3) described in section 2.5.
[image: Table 3]TABLE 4 | Predicted genetic merit in CBBP and client production units after 10 years of selection for simultaneous improvement of lamb weight and litter size and its effect on additional meat production and economic benefit. Assumed rates of genetic improvement in lamb weight and litter size are those observed in Horro sheep CBBPs.
[image: Table 4]3.4 Economic benefit for CBBPs and production units
The additional annual discounted benefit due to genetic improvement of SMW and LS in 28 CBBPs and their client production units over 10 years of selection is shown in Figure 3. The selection program in the CBBPs with first progeny born from selected parents starts in year 0 and the purchase of rams by production units starts in year 1. In year 0 CBBPs face initial costs with no economic benefit, but through the following 10 years CBBPs profit from higher lamb weights and sales of young rams to production units. Production units start to have expenses in year one when buying first improved young rams. At year three these expenses are compensated with increased lamb numbers and increased lamb weights. Due to the large number of ewes in the production units (472,376 ewes) the total benefit is much higher than in the CBBP level.
[image: Figure 3]FIGURE 3 | Additional annual discounted benefit in current CBBPs and production units. Selection starts at year 0. For CBBPs benefit becomes positive in year one mainly due to sale of breeding males to production units. For these, benefit becomes positive in year three and increases as improved genes flow through the population.
Return on investment (ROI) for the improvement program in the CBBP layer is much lower than in the production unit layer (2.5 vs. 13.3 USD per USD invested, Table 4) creating opportunity for a higher CBBP ram lamb price offered to production units. This might be contemplated once the improvement programs advance, and these ram lambs clearly stand out from those currently used. The ROI would also be much higher with more years of improvement and if we assume initial genetic differences in SMW and LS between CBBPs and production units. This is relevant in the future as CBBPs progress and new production units joining the integrated chain. Note also that the accumulated discounted benefit is directly proportional to the rates of genetic improvement assumed (Table 4).
Benefit for CBBPs integrated with production units resulted slightly greater than benefit for CBBPs in the current in the non-integrated situation. The combined benefit for CBBPs and production units is more than 20 times higher although this isn’t really an additional benefit to the benefit a similar number of unlinked farmers would have. The non-accounted benefit will be more related with genetic improvement and marketing capacity when joining the integration chain. Depending on the fully integrated scenario (c1, c2 or c3) more meat is produced (Table 3) but only a slightly higher benefit is obtained due to high costs to produce fattened meat. However, combined ROI are high for all scenarios (Table 5).
TABLE 5 | Financial analysis of three integration scenarios between CBBPs, production units and fattening enterprises. Integration scenarios c1, c2, and c3 involve increasing lamb fattening capacities (see text for a detailed description). Total refer to the sum of CBBP, production unit and fattening enterprise.
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4.1 Model and alternatives
We proposed a framework to impact the Washera sheep population with genetic improvement in litter size and lamb growth rate, affecting its entire lamb meat supply chain. The underlying structure is a pyramidal genetic structure where CBBPs cooperatives are the nucleus responsible for sustained genetic improvement and delivery of improved rams to production units. Eventually, genetic progress achieved in CBBPs reaches a large proportion of the total Washera population through reduction in genetic lags between tiers and through sustained improvements supported by current and future CBBPs. The proposed genetic improvement and dissemination model leading to a novel meat supply chain differs from models applied in the poultry and dairy cattle industry.
In Ethiopia, experiences with improved layer and broiler chicken breeds, in particular with dual purpose breeds or crossbreds between commercial and indigenous breeds, as well as their dissemination, has been in place for a long time. The dynamics of genetic improvement is “facilitated” since production of genetically improved eggs and chicks can be centralized and performed on a large scale. Improved eggs and chicks can be easily transported and distributed, but mostly under better control of specialized suppliers. The productive impact of improved poultry germplasm is almost immediate because broiler growth or laying hens production is quickly realized and generation length is short. Projects facilitating farmer’s access to preferred locally adapted improved breeds and a sustained multiplication and delivery system together with feed and health services are already in place (Sartas et al., 2021). These schemes are managed by private companies and are common in many developing countries.
Dissemination of improved dairy cattle genetics has also been experienced for a long time in Ethiopia and in many African countries. In this case, generation length is high, but improvement can be channeled through artificial insemination (AI) centers where proven bulls (often imported from developed countries) provide semen to be used on site to inseminate local cows. Performance testing and pedigree recording is well established in many dairy industries, so that information can be processed using BLUP breeding values in order to detect young dairy bull candidates for the AI center. Thus, a business structure has evolved around cattle AI centers providing semen doses and insemination services (Marshall et al., 2019).
In most developing countries, breeding and genetic improvement services in sheep and goat are rather uncommon and are more complicated to apply compared to poultry or dairy cattle. In many developed countries population wide genetic improvement of sheep and goats relies on effective pyramidal genetic structures with a stud (nucleus) tier producing males for multipliers and these producing males for the base (commercial) population. Fresh and frozen semen AI services are available and progeny testing facilities as well as sire referencing schemes are offered. Controlled matings and systematic performance recording structures allows both within and across breed genetic evaluations and optimum use of genetic variability.
In low-input smallholder situations such as in Ethiopia, pyramidal systems and structured crossbreeding are difficult to implement. Communal grazing of pastoral systems and limited infrastructure to control matings is challenging and therefore full pedigree recording is often impossible. This limits the ability to run proper population-wide BLUP evaluations. Insemination with frozen semen in sheep is also more challenging compared to other species and much costlier than in cattle since it requires laparoscopic AI instead of intrauterine non-surgery procedures. Moreover, farmers in smallholder systems have no easy access to improved genetics. Dedicated producers of locally adapted breeds are scarce. Frequently when improved genetics is available, it is from exotic breeds which in most cases are not at all adapted to smallholder system or environmental conditions faced locally.
A strategy to overcome at least partially these limitations is to concentrate breeding activities in public research stations and distribute improved males to private farmers or communities (Kosgey et al., 2006). There are concerns on the suitability of the particular breeding objectives, proper management and the actual genetic progress achieved in such governmental stations and the adaptation of station bred sires to perform in smallholder farmer environments. The main problem with this strategy is its dependence on the particular institutional funding policy and the risk to lose centralized structures due to natural disasters, disease outbreaks and conflict situations. For example, the Abergelle goat nucleus of the Sekota Dryland Research Center was lost due to the conflict in Northern Ethiopia. The consequence of these limitations with traditional pyramidal structures and centralized nucleus is that in countries like Ethiopia formal within breed selection programs for sheep and goats are rarely found.
The CBBP experience and its organization as cooperatives is conductive to solving most business-related issues and encourage genetic improvement limitations (e.g., pedigree and genetic evaluation structures) to be addressed. A pyramidal structure can be emulated through the proposed out-and up-scaling strategy and integration of CBBPs, production units and fattening enterprises. The proposed framework overcomes key issues related to stakeholder roles, breeding goals, meat production scaling strategy, sustainability, resilience and independence. There are, of course implementation issues and areas for further adjustments and research needs.
Finally, one of the biggest limitations that is minimized with the CBBP framework is that of ownership and funding of the breeding scheme. In this approach, ram lambs selected and commercialized under the breeding cooperative structure proposed, create enough revenue to support its maintenance and allow running costs to be met. There is also a significant opportunity to leverage this investment, made by the farmers themselves via improved rams and cooperative arrangements, through fattening and supplying finished lambs to better paying markets. Other collective arrangements may include lamb conditioning initiatives to provide export slaughter houses with appropriate lambs. Ultimately CBBPs can be seen as a “starting-point for initiators and participants to continuously discover new ways of collaboration and engagement” (Wurzinger et al., 2021).
4.2 Implementation of the model
4.2.1 How to make it work
Predictions of meat production and economic benefits were based on current 28 Washera CBBPs reaching an estimated 22% of the total Washera sheep population. To reach the whole Washera population additional 152 CBBPs would be needed. Experience for establishing new CBBPs has accumulated and guidelines for this task are available (Haile et al., 2018; Mueller et al., 2021). Nevertheless, each new CBBPs face challenges which need to be addressed (Haile et al., 2020b; Endris et al., 2022). The rapid multiplication of pilot CBBPs was largely possible with the joint complementary effort of a number of organizations. Further implementing institutions have to be detected and involved in the establishment of new CBBPs. Additional seed funding will be necessary and a comprehensive training program at community, extension and research centers must be organized and executed. Many more communities need the motivation, incentive and support to agree and organize themselves as a functional CBBP. This requires region-wide awareness and understanding of the CBBP concept. It needs training and technical advice, economic benefit and access to markets.
A key integration factor within the supply chain is the production and dissemination of improved ram lambs for breeding. In some cases, innovative arrangements between CBBP cooperatives and client production units may be found. Outstanding production unit females may be exchanged for selected CBBP males. This would open the nucleus to base population genes. Clients also need access to lamb markets and to fattening. Such complementary business options near the CBBPs were already initiated by various organizations, sometimes involving youth groups. Integrating these groups through genetic dissemination may also be an additional incentive for the establishment of these types of structures across multiple regions. Economic feasibility analyses have shown that fattened males accrued higher net profit than control males in Bonga and Horro sites but were unrewarding in Menz and Doyogena sites (Zemedu et al., 2018). Clearly, fattening depend heavily on supplement costs and economic benefit will depend on the ability to access cheap quality feed and the ability to market better lambs for higher prices. Since feed costs are volatile, close monitoring of economic parameters will be needed.
4.2.2 Increasing rate of genetic progress
The simulations described in this study were based on the recently established Washera CBBPs. For that reason, no difference in initial genetic merit between CBBPs and production units was assumed in this simulation. This might be different in future years when current CBBPs will have improved. In that case genetic progress in production units will be faster, but the initial lag is likely to be larger. To reach the entire Washera population with improved rams, another 152 CBBPs would need to be established and integrated with production units (Table 2). An alternative to guarantee supply of the required number of rams would be by reducing selection intensity of males, that is selecting more than 50% of the available males. But this affects genetic progress and makes selected male lambs less attractive for breeding. Another aspect to look at more carefully is selection efficiency given the much higher progress expected in SMW with efficient index selection. An analyses of the reasons for this difference may give hints to further adjustments of selection procedures. A large scale AI program would also increase the improved population but would require an important public or private financial support, i.e., business opportunities to be undertaken by private-sector. The most prominent solution is to out-scale CBBPs, a strategy which has proven to be sustainable with high ROI but which needs training activities, community engagements, and a highly qualified multidisciplinary team to combine research activities, extension and services to smallholder farmers. In any case, all means to make population-wide impact should be exploited, probably leading to a smart combination of up-scaling, out-scaling and AI opportunities.
Continuous genetic improvement has been achieved following an efficient performance recording protocol integrated with CBBP specific breeding value estimation systems. Breeding values were estimated for each CBBP separately since genetic links between CBBPs are weak or absent. In the long term, farmers would benefit from population-wide genetic evaluations and access to superior males across CBBPs. Such an evaluation is in principle not difficult but needs genetic links which can be created using reference sires, first within clusters and then across clusters. Artificial insemination will be a convenient tool to facilitate this linkage. A centralized database with a unique identification system and recording protocol applied across CBBPs has been progressively implemented (https://dtreo.io/), allowing a population-wide genetic evaluation to be targeted and thereby increasing the access to genetic diversity and consequent genetic progress.
Centralized genetic evaluations require agreements across communities on technical aspects such as measurements, economic weights, use of link sires, etc. It also requires agreements on promotion and marketing aspects. All these call for a close communication between communities which nowadays is facilitated by the increased accessibility to mobile phones and other communication means. Such linking of communities with similar breeding interest also lead to an across CBBP genetic evaluation. Other important cooperation items may include research needs, breed promotion programs, ram sale calendar, AI program, other.
4.2.3 Resilience and sustainability
A concern among livestock breeders is whether their animals are resilient to climate changes. A major advantage of CBBP livestock is that selection of local breeding stock takes place in the same environment where target production takes place. Thus, adaptation genes are secured as local breeds are more resilient (Tibbo et al., 2008). Climate changes are expected to produce more extreme situations and a slow but constant average temperature increase (IPCC, 2022). The integration enabled by the CBBP approach allows the breeding programs to accommodate to changes faced by smallholder farmers as climatic trends cause forage availability limitations, instance. Genetic improvement in this model is a low-cost way for these communities, as improved livestock tend to be more efficient, and the structure of the integrated supply chain allows more or less animals to be diverted to the lamb market or the breeding market accordingly.
In the future, traits susceptibility to climate changes (Berghof et al., 2019) will be included in breeding goals and selection indexes. In particular, health related traits representing the breeding goal and implemented with support from breeding values estimated within the CBBP structure. The financial sustainability of the proposed intervention is also largely guaranteed. Altogether, there are 134 CBBPs operating in Ethiopia, this success rate is partly the result of constructive involvement of all stakeholders and partly because the CBBP establishment isn’t based on large investments nor highly cash dependent. Experiences and lessons collected in Malawi and Uganda also highlight the importance for different actors to work together by pooling financial resources and technical expertise for establishment and sustainability of goat CBBPs (Kaumbata et al., 2020). CBBPs work with locally adapted animals, and therefore, the issue of environmental sustainability is embodied in the CBBP concept (Haile et al., 2019).
The general concept of CBBPs and the proposed framework should be conveyed by credible personnel and institutions, jointly or in close agreement with the national agricultural system (NARS). Involving personnel from a number of institutions, essentially from local agricultural stations and public extension service, is critical for success of such initiatives. This includes a strong collaboration as CBBPs must have a responsible extension officer network. These officers may attend one or more CBBPs and require periodical training related to the implementation, execution and monitoring of CBBPs. Senior extension officers and researchers are in charge of the most technically demanding genetic specific activities such as genetic evaluation, artificial insemination and ram selection. Evaluation of the programs and formal steps to implement adjustments and compliance requirements are also required and available (Lamuno et al., 2018).
4.2.4 Additional innovations and services
The necessary feed resource development, health intervention and market linkages require support and guidance. Such needs should be supported on top of genetic improvement. Under the Ethiopia Small ruminant value chain transformation (SmaRT Ethiopia) program, ICARDA and partners developed a number of innovations, including genetic improvement, dissemination of improved genetics, development of feed and forages, fattening of lambs/kids, animal health interventions, and innovative market outlet with capacity building and innovative credit accessibility through cooperative organization. These innovations were tested in different areas and positive socio-economic benefit reported (Kassie et al., 2021). Pro poor livestock development is about all the components of improvement working in concert and at scale. Therefore, in the proposed genetic improvement scheme, it is imperative that all value chain components are adequately addressed to bring about transformational change.
New research needs arise with implementation. If fattening initiatives multiply genetic improvement goals, CBBPs may need to consider additional traits such as growth rate to finishing weight and feed conversion or residual feed intake, since feeding cost would become an issue.
5 CONCLUSION
CBBPs produced a big impact on livelihood of individual communities. We have shown how individual CBBPs can benefit from a higher level of organization with cooperatives as main actors to achieve genetic improvement at population-wide level and estimated the resulting economic benefits. Through effective integration with fattening enterprises and output markets, this could also lead to more organized structures in the Washera meat supply chains. Institutional efforts focusing on supporting the role of the different tiers of the structure is essential.
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Improved knowledge of the diversity within and among local animal populations is increasingly necessary for their sustainable management. Accordingly, this study assessed the genetic diversity and structure of the indigenous goat population of Benin. Nine hundred and fifty-four goats were sampled across the three vegetation zones of Benin [i.e., Guineo-Congolese zone (GCZ), Guineo-Sudanian zone (GSZ), and Sudanian zone (SZ)] and genotyped with 12 multiplexed microsatellite markers. The genetic diversity and structure of the indigenous goat population of Benin were examined using the usual genetic indices (number of alleles Na, expected and observed heterozygosities He and Ho, Fixation index FST, coefficient of genetic differentiation GST), and three different methods of structure assessment [Bayesian admixture model in STRUCTURE, self-organizing map (SOM), and discriminant analysis of principal components (DAPC)]. The mean values of Na (11.25), He (0.69), Ho (0.66), FST (0.012), and GST (0.012) estimated in the indigenous Beninese goat population highlighted great genetic diversity. STRUCTURE and SOM results showed the existence of two distinct goat groups (Djallonké and Sahelian) with high crossbreeding effects. Furthermore, DAPC distinguished four clusters within the goat population descending from the two ancestry groups. Clusters 1 and 3 (most individuals from GCZ) respectively showed a mean Djallonké ancestry proportion of 73.79% and 71.18%, whereas cluster 4 (mainly of goats from SZ and some goats of GSZ) showed a mean Sahelian ancestry proportion of 78.65%. Cluster 2, which grouped almost all animals from the three zones, was also of Sahelian ancestry but with a high level of interbreeding, as shown by the mean membership proportion of only 62.73%. It is therefore urgent to develop community management programs and selection schemes for the main goat types to ensure the sustainability of goat production in Benin.
Keywords: Capra hircus, molecular genetic characterization, genetic structure, indigenous farm animal genetic resources, phytogeographic zones
1 INTRODUCTION
West African countries are characterized in general by high variability in farm animal genetic resources (Molina-Flores et al., 2020). Concerning goat species, Benin’s neighboring countries have remarkably diversified indigenous goat breeds, defined by different ecotypes of West African Dwarf goats (WAD, also named Djallonké goats) found in fifteen West and Central African countries including Togo, Burkina Faso, and Nigeria (Wilson, 1991; Awobajo et al., 2015); Red Sokoto goats in Niger and Nigeria, and a large population of Sahelian goat breeds in Mali, Niger, Burkina Faso and Nigeria (Wilson, 1991). In addition, some exotic goat breeds are also introduced into these countries such as the Boer and Kalahari goats imported into Niger (FAO, 2007). This pool of goat breeds from Benin’s neighboring countries certainly influences the genetic diversity of the indigenous Beninese goat population whose genetic diversity has not been documented to date, unlike that of other African countries like Nigeria (Awobajo et al., 2015; Ojo et al., 2018), Ghana (Ofori et al., 2021), and Burkina Faso (Traoré et al., 2009). Indeed, the previous characterization studies conducted on this species in Benin have been limited to documenting the existing between- and within-species morphological variability (Dossa et al., 2007; Kouato et al., 2021; Whannou et al., 2021) and, habitat suitability modeling of the goat population of Benin under climate change scenarios (Whannou et al., 2022). Thus, there remains a need to determine the genetic diversity within and among this indigenous goat population at the molecular level to optimize their management. Such a study is a response to the Food and Agriculture Organization of the United Nations (FAO, 2012) exhortation to document both phenotypic and molecular diversity of animal genetic resources for better knowledge and definition of policies for their sustainable management. Regarding molecular genetic characterization, different tools, including microsatellite markers, and single-nucleotide polymorphism (SNP) chips have been developed with advances in technology for a better exploration or analysis of the genome. However, although SNPs are highly informative and more nowadays recommended for population genetics studies, their accessibility remains limited, especially in developing countries due to the high costs associated with using this high-definition technology (e.g., cost of chips, high-level infrastructure, and equipment required, and continuous energy power) (Laoun et al., 2020). In contrast, microsatellite markers are less expensive, especially if they are multiplexed, and have demonstrated worldwide their ability to assess diversity in animal population genetics (Ben Sassi-Zaidy et al., 2022). This amply justifies their use in numerous genetic diversity studies conducted in the last years on different species including cattle (Msanga et al., 2012; Gororo et al., 2018; Demir and Balcioğlu, 2019), pigs (Djimènou et al., 2021) and small ruminants (Missohou et al., 2011; Mekuriaw, 2016; Ravimurugan, 2017; Ojo et al., 2018; Dayo et al., 2022). Therefore, microsatellite markers are still highly useful for preliminary studies of the diversity of populations that have never been characterized using molecular tools (Laoun et al., 2020). In such a context, the genetic diversity of the indigenous Beninese goat population could be better documented using microsatellite markers as only phenotype-related information has been reported so far. On the one hand, it should be noted that a review of previous knowledge on the diversity of goat breeds present in Benin has reported the cohabitation of a multitude of West African local breeds such as WAD/Djallonké, Red Sokoto or Maradi, Sahelian (Hounzangbe-Adode et al., 2011; Molina-Flores et al., 2020), and exotic breeds like Alpine and Saanen goats (Hounzangbe-Adode et al., 2011). On the other hand, the most recent study (Whannou et al., 2022) that addressed the phenotypic diversity of the local Beninese goat population revealed the existence of high diversity within and among this indigenous goat population. Moreover, two major groups of goats have been reported within the three vegetation zones (i.e., one group of small individuals mainly in the Guinean-Congolese zone in the South and another group of relatively large goats from the Guinean-Sudanese zone in central Benin to the Sudanese zone in northern Benin).
Hence, this study investigated the genetic diversity and structure of the indigenous goat population in Benin using microsatellite markers to allow a clear identification of breed groups or genetic types and to confirm or refute the phenotypic diversity aforementioned.
2 MATERIALS AND METHODS
2.1 Sampling procedure
To address the genetic base and structuring of the indigenous goat population of Benin, nine hundred and fifty-four (n = 954) randomly sampled goat hair from the three vegetation zones of Benin and used in a previous morphological characterization study (Whannou et al., 2022), were selected from a sample library (N = 2,114). These hair samples were selected from unrelated animals using the information provided by goat farmers on their animals. Some characteristics of these vegetation zones i.e., humidity index, soil characteristics, and predominant vegetation, can be found in Whannou et al. (2022). The vegetation zones are further subdivided into phytogeographic zones. The minimum sample size was about 286 individuals per vegetation zone and 92 individuals per phytogeographic zone. These samples were labeled, packaged, and transported to the laboratory in Belgium (CARAH, Ath, Hainaut) for DNA extraction and genotyping.
2.2 DNA extraction and genotyping
DNA was extracted from hair samples following the standard instructions described for the Qiagen DNeasy Blood and Tissue Kit used. Each DNA sample was then quantified using a NanoDrop ND-3300 fluorospectrometer device (Thermo Scientific; Waltham, MA, United States).
The genotyping analysis was performed with 15 μL of template DNA using the multiplex kit of 12 microsatellite markers and the PCR protocol developed by Spanoghe et al. (2022). The fragment lengths of the PCR products were estimated with the GeneMapper Software 6.0 (Applied Biosystems). They were then used to construct a genotypic dataset for statistical analyses.
2.3 Statistical analysis
2.3.1 Genetic diversity assessment
The number of alleles (Na), the effective number of alleles (Nae), observed (Ho) and expected (He) heterozygosities, and Polymorphic Information Content (PIC) of each microsatellite marker were first estimated from the dataset (n = 954) using the Cervus software v 3.0 (Kalinowski et al., 2007). These statistics were addressed to assess the performance of the loci and to describe the genetic diversity of the Beninese goat population. F-statistic indices (FIS, FST, FIT) (Wright, 1969; Weir and Cockerham, 1984), the coefficient of gene differentiation (GST), and Nei’s genetic distance (Nei, 1978) were then computed using the program SPAGeDi 1.5 days (Hardy and Vekemans, 2002) to assess the genetic variability existing within (intra-) and among (inter-) vegetation zones.
Additionally, an analysis of molecular variance (AMOVA) was performed to assess the partition of genetic variation between (inter-) and within (intra-) the goat groups (Excoffier et al., 1992; Paradis, 2010).
2.3.2 Genetic clustering analyses of the goat population under study
Three methods were used to estimate the genetic clustering of the goat samples of Benin and their genetic relationship.
First, the genetic structure of the indigenous goat population was analyzed using the Bayesian admixture approach in the STRUCTURE software 2.3.4 (Pritchard et al., 2000). The ancestry proportion was inferred from the genotypic dataset using correlated allele frequencies, a burn-in period of 50,000 iterations followed by 100,000 Markov Chain Monte Carlo (MCMC) for each number of possible clusters (K). As genotyping information for the assumed parent population was not available, we hypothesized K unknown populations of parents with k varying from 1 to 10, and three independent replicates (Negrini et al., 2012). The probable number K of ancestral populations and substructures was identified according to Evanno et al. (2005) and the obtained posterior probability values (Pritchard et al., 2000). The representation of the data was then performed using Structure Plot (Ramasamy et al., 2014), and the geographic distribution of the main genotype of goats across the vegetation and phytogeographic zones of Benin was mapped using the Q matrix out-put.
Second, the non-linear relationships of the genotypic data were estimated using the Self-Organizing Map (SOM) method (Kohonen, 1982; 2001) under unsupervised learning rules and based on the model of vegetation zones of Benin (See Spanoghe et al., 2020 for a full description of the method).
Third, Discriminant Analysis of Principal Components (DAPC) (Jombart, 2008; Jombart et al., 2010) was applied to the genotypic dataset to infer the relationship of goat individuals, while maximizing among-group variation and minimizing within-group variation. Unsupervised k-means clustering was first used through the “find.clusters” function of the R package adegenet version 2.1.1 (Jombart, 2008) to estimate the probable number of clusters existing in the Beninese goat population. The number of clusters (K) was then defined after a comparison of Bayesian Information Criterion (BIC) values (Jombart, 2008; Jombart and Ahmed, 2011). The resultant clusters were plotted in a scatterplot after the determination of the number of principal components (PCs) with associated linear discriminants (LD) using the cross-validation function “Xval.dapc” in the R package adegenet.
Finally, the genetic variation existing within and among the inferred goat groups from genetic clustering with DAPC was estimated using the genetic parameters previously calculated in the first section of Statistic analysis (i.e., Genetic diversity assessment).
3 RESULTS
3.1 Genetic diversity of the indigenous goat population from Benin
The different genetic indices Na, He, Ho, PIC, FIS, FST, FIT, and GST estimated from the Beninese goat dataset are presented in Table 1. Overall, 135 alleles were identified in the dataset with the multiplex of 12 microsatellite markers, with an average of 11.25 alleles per locus. The lowest Na (4) was recorded for the ILSTS5 locus, and the highest Na (23) was detected for the MAF065 locus. The average values of He and Ho were 0.66 and 0.69, respectively. The PIC ranged from 0.14 (ILSTS5) to 0.80 (SCRSP9 and CSRD247) with an average value of 0.66. The mean values of FST, FIT, FIS, and GST were 0.012, 0.047, 0.035, and 0.012 respectively.
TABLE 1 | Genetic diversity indices calculated for 12 SSR markers in 954 goat datasets sampled in the three vegetation zones of Benin.
[image: Table 1]The AMOVA results (Table 2) show that only 2.11% of the genetic variation of the Beninese goat population was observed between vegetation zones; the highest genetic variation (97.89%) resided within vegetation zones. Using the vegetation zones as a model of structuring (Table 3), Na ranged from 9.08 (GCZ) to 10.08 (GSZ), with a mean value of 9.55. SZ and GSZ showed the highest values of He (0.70 and 0.69, respectively) and Ho (0.67 for both vegetation zones) as well as the highest FIS values (0.05 and 0.04, respectively). The highest pairwise FST (0.021) and Nei’s genetic distance (0.047) were recorded between GCZ and SZ, whereas the lowest FST (0.006) and Nei’s genetic distance (0.013) were observed between GSZ and SZ (Table 3). However, the pairwise FST and Nei’s genetic distances estimated between GCZ and GSZ were also low and seemed less different from those recorded between GSZ and SZ (Table 3).
TABLE 2 | Analysis of molecular variance (AMOVA) of the 954 goats within and among the three vegetation zones of Benin.
[image: Table 2]TABLE 3 | Genetic diversity parameters of the 954 goats within and among the three vegetation zones of Benin.
[image: Table 3]3.2 Genetic structure of the indigenous goat population from Benin
The STRUCTURE results suggested the best grouping number (K = 2) based on the highest delta K value (53.17) resulting from the data (Supplementary Table S1; Supplementary Figure S1). The indigenous goat population of Benin was therefore composed of two ancestral genetic groups with different ancestry proportions of individuals. Overall, 50.20% of the population analyzed was estimated as Djallonké ancestry, whereas 49.80% was of Sahelian ancestry (Supplementary Table S2). The individuals’ membership proportion revealed some admixture, indicating that individuals share different proportions of the two distinct ancestral goat populations (i.e., Djallonké and Sahelian) (Figure 1). Considering that individuals presenting a membership proportion of more than 50% for ancestry population 1 (in green) were mainly ancestry of Djallonké and those that presented a membership proportion of more than 50% for ancestry population 2 (in blue) were mostly of Sahelian ancestry, it appeared that individuals from GCZ were predominantly of Djallonké ancestry, those of SZ were of Sahelian ancestry, whereas the GSZ predominantly included Sahelian genotypes (Figure 2). However, according to a smaller subdivision than vegetation zones i.e., the phytogeographic zones (Figure 3), a predominance of Djallonké ancestry was noted in the four phytogeographic zones of GCZ (i.e., CZ Coastal zone, PoZ Pobe zone, PlZ Plateau zone, and VOZ Oueme Valley zone), and the phytogeographic zone of the GSZ closest to the GCZ (i.e., ZZ Zou zone). In contrast, the two other phytogeographic zones of the GSZ (i.e., BZ Bassila zone, and BSZ Borgou-Sud zone) and the phytogeographic zones of the SZ (i.e., BNZ Borgou-Nord zone, CAZ Chaîne Atacora zone, and MPZ Mekrou-Pendjari zone) gathered mostly goats with predominant Sahelian ancestry (Figure 3).
[image: Figure 1]FIGURE 1 | Goat population structure determined by STRUCTURE 2.3. Estimated histogram of the population structure with two ancestral populations (K = 2). Each vertical bar represents one individual in the population based on the percentage of group membership, into the 2 inferred subpopulations.
[image: Figure 2]FIGURE 2 | Map of the spatial distribution of the two inferred ancestral populations based on membership assignment from the population structure analysis following vegetation zones pattern.
[image: Figure 3]FIGURE 3 | Map of the spatial distribution of the two inferred ancestral populations based on membership assignment from the population structure analysis following vegetation and phytogeographic zones patterns.
Furthermore, when the log-likelihood of the data Ln P(D) was plotted against K, the average log-likelihood of the data Ln P(D) increased up to K = 4, followed by a serrated decrease to K = 9 (Supplementary Figure S2). The run with the highest Ln P(D) was thus observed at K = 4 suggesting a structuration of the goat population under study into four subpopulations. The STRUCTURE plot for K = 4 (Figure 4) indicated the existence of two goat subpopulations of Djallonké distributed from the humid zone of South Benin (GCZ) to the first phytogeographic zone (i.e., ZZ) of the transitional vegetation zone in Central Benin (GSZ). Two other subpopulations of goats sharing mostly Sahelian ancestry were observed from the remaining two phytogeographic zones of the GSZ (i.e., BZ, and BSZ) to the drier Sudanian vegetation zone (SZ) in North Benin (Figure 4).
[image: Figure 4]FIGURE 4 | Goat population structure determined by STRUCTURE 2.3. Estimated histogram of the population structure with two ancestral populations (K = 4). Each vertical bar represents one individual in the population based on the percentage of group membership, into the 4 inferred subgroups.
SOM analysis showed the neural assignment of individuals on the network (Figure 5). The structuring of the goat population in the different vegetation zones seems rather diffuse and scattered since all neurons are occupied whatever the vegetation zones. Nevertheless, individuals from GCZ were mostly concentrated in left neurons in the network, while SZ individuals were mostly clustered in right neurons in the network. GSZ individuals, although widely distributed across grid neurons, appeared more concentrated in left and some upper right neurons.
[image: Figure 5]FIGURE 5 | Distribution of the genotyped goats on the SOM network according to the assignment of each of the vegetation zone groups. Each colored dot corresponds to a goat individual. The plots express individual’s assignment by emphasizing vegetation zone models where GCZ: Guineo-Congolese zone, GSZ: Guineo-Sudanian zone, and SZ: Sudanian zone.
The results of the unsupervised K-means clustering applied to the dataset prior to DAPC showed BIC values that decreased between K = 2 and K = 8 where they reach the lowest value of BIC (Supplementary Figure S3). Thus, any K value between 2 and 8 could be considered as the number of clusters present in the Beninese goat population. However, when plotting each probable clustering from 2 to 8, a distinction of goat clusters was first observed at K = 4. Indeed, all the previous K (i.e., K = 5, K = 6, K = 7, and K = 8) showed many overlaps and representation of four probable goat groups in the dataset (Supplementary Figures S4–S7). Thus, four genetic clusters were considered the most probable groups fitting the structure of the indigenous goat population from Benin. DAPC analysis was carried out to assess the sub-clusters at K = 4. After the cross-validation step, the 45 first PCs (85% of variance conserved) of PCA and two discriminant eigenvalues were retained. The resulting scatterplot (Figure 6) showed the separation between clusters 1 and 3 (which consisted mainly of individuals from GCZ) and clusters 2 and 4 (which consisted mainly of individuals from SZ and GSZ) concerning LD1. Furthermore, clusters 1 and 3 were distinct from clusters 2 and 4, respectively, with respect to LD2. Table 4 presents the composition of the goat clusters identified within the three vegetation zones of Benin.
[image: Figure 6]FIGURE 6 | Scatterplot of the first two Linear Discriminants (LD) showing genetic clusters for 954 indigenous goat sampled in the three vegetation zones of Benin applying unsupervised Discriminant Analysis of Principal Components (DAPC). Each ellipse represents a priori cluster and each dot an individual.
TABLE 4 | Genetic clusters inferred for 954 goats from the three vegetation zones of Benin by applying the unsupervised discriminant analysis of principal components (DAPC).
[image: Table 4]Additionally, when comparing the individuals of inferred DAPC clusters with membership proportions of ancestral goat groups resulting from STRUCTURE (Table 5), it was estimated that individuals of cluster 1 (C1) and cluster 3 (C3) were mainly of Djallonké ancestry with the mean proportion of 73.79% and 71.18%, respectively, while goats of cluster 2 (C2) and cluster 4 (C4) were of Sahelian ancestry with a mean proportion of 62.73% and 78.65%, respectively.
TABLE 5 | Mean, minimum, and maximum of ancestral proportions (estimated in structure) for the clusters inferred with the unsupervised clustering in DAPC in the sampled goat population (N = 954).
[image: Table 5]3.3 Genetic diversity of the estimated DAPC clusters
Table 6 presents the genetic variation within and among the estimated DAPC clusters. Na within the four inferred DAPC clusters ranged between 8.92 (C1) and 10.08 (C2) with an average value of 11.25. Nae ranged between 3.43 (C1) and 3.77 (C2 and C4) with a mean value of 3.93. However, clusters C4 and C2 showed high degrees of He (0.69 and 0.68, respectively) and Ho (0.67 for both clusters) compared with C1 (He = 0.64, Ho = 0.65) and C3 (He = 0.65, Ho = 0.65) that recorded the lowest values. FIS recorded within the clusters ranged between −0.01 (C1) and 0.03 (C4) with a mean value of 0.04. Considering the FST values recorded between the inferred DAPC clusters, the highest FST value (0.06) was estimated between C3 and C4. A similar FST value (0.04) was recorded between the pairs (C1-C3, C1-C4, C2-C3, and C2-C4). Additionally, a low Nei’s genetic distance was recorded between C1 and C3, whereas a high distance was estimated between C3 and C4, but smaller than that recorded between C1 and C3.
TABLE 6 | Genetic diversity parameters of the inferred clusters from the Beninese goat population (N = 954).
[image: Table 6]4 DISCUSSION
This study constitutes the first one performed on the genetic diversity within the goat population of Benin. All the microsatellite loci used in this study were informative because they recorded at least 4 alleles (Barker et al., 2001) and most of them obtained high PIC values (PIC>0.50) (Arora et al., 2010; Botstein et al., 1980). Regarding the genetic diversity indices estimated, the mean values of Na (11.25), He (0.69), Ho (0.66), and PIC (0.66) recorded in this study revealed a high genetic diversity within the goat population of Benin (Kumar et al., 2009; Jawasreh et al., 2018; Mihailova, 2021). The average Ho (0.66) obtained is higher than that reported for the Ardi goat from the Saudi Arabia Kingdom (0.55) (Aljumaah et al., 2012), the Nigerian West African Dwarf goat (0.60) (Awobajo et al., 2015), and the Nigerian indigenous goat population (0.61) (Ojo et al., 2018). However, it is lower than the mean Ho value (0.84) reported for four Algerian goat breeds (Tefiel et al., 2018). The mean value of PIC (0.66) obtained in this study was lower than values reported in Indian goat breeds (0.77) (Dixit et al., 2012), in Nigerian West African Dwarf goats (0.69) (Awobajo et al., 2015), and Algerian goat breeds (0.93) (Tefiel et al., 2018). Although the Beninese goat population appeared diverse, the low FIS (0.035) and FIT (0.047) values recorded suggest some inbreeding events in this population (Tolone et al., 2012). Indeed, a positive FIS value is generally considered as an indicator of heterozygosity deficit compared with Hardy-Weinberg equilibrium (Tefiel et al., 2018). Nevertheless, obtained values of FIS and FIT were lower than those (FIS = 0.090, FIT = 0.180) reported by Awobajo et al. (2015) (FIS = 0.105, FIT = 0.129) by Ojo et al. (2018) (FIS = 0.035, FIT = 0.063) by Traoré et al. (2009) in Burkina Faso goats, and to (FIS = 0.057, FIT = 0.102) reported by Tefiel et al. (2018) in the four Algerian goat breeds. This highlights the diversity of indigenous goat populations in Africa, and probably reflects the difference in the management of goat resources from one country to another.
The mean value of FST (0.012) obtained in this study was inferior to 0.05, indicating a very low genetic differentiation in the goat population of Benin. The coefficient of gene differentiation (GST) obtained with a mean value of 0.012 confirmed the limited genetic differentiation between vegetation zones. The result of the AMOVA applied to the dataset using vegetation zones as a like-effect of variation also confirmed this limited genetic differentiation. Therefore, the genetic differentiation of the Beninese goat population is intraspecific diversity, thus mainly due to the diversity between individuals within vegetation zones. The lack of genetic differentiation observed between vegetation zones is probably due to different factors including the proximity of production areas, similar extensive breeding practices in the different vegetation zones, but especially the gene flow that occurred between individuals of the main goat groups in the past. A similar finding has been reported by Tolone et al. (2012). The proximity of the breeding areas certainly favors the continuous exchange of breeds through the market system and other mechanisms developed by the different actors of the goat value chain, such as gifts. Moreover, the extensive breeding practices developed by goat breeders (notably the non-control of reproduction in most breeding areas) in all vegetation zones are probably also levers of diversity in the Beninese goat population and therefore favor the low genetic differentiation observed. In comparison to other studies, the average FST over loci (0.012) estimated in the Beninese goat population is lower than the value obtained in goat populations of Burkina Faso (0.035) (Traoré et al., 2009), Nigeria (0.10) (Awobajo et al., 2015) and (0.030) (Ojo et al., 2018), and Algeria (0.048) (Tefiel et al., 2018). Therefore, the indigenous goat population of Benin is less differentiated than those of other African countries.
The high mean values of Na, He, Ho, and FIS obtained in GSZ and SZ goat subpopulations when measuring the genetic diversity existing within and among the vegetation zones, underline that the goats of these vegetation zones are very diverse, but some individuals from these zones are also inbred. In a similar study, Tolone et al. (2012) also recorded high He and Na values within subpopulations or breed groups, with high FIS, and concluded a high genetic diversity within these subpopulations or breed groups. Furthermore, the highest values of pairwise FST and Nei’s genetic distance recorded between GCZ and SZ confirm that goats from these two vegetation zones are genetically different. In contrast, the lowest values of FST and Nei’s genetic distance obtained between GSZ and SZ suggest that goats from these zones are genetically close. However, some goats from GSZ would be also genetically closer to GCZ individuals, and their genetic proximity seems similar to that observed between GSZ and SZ, as shown by their near similarity between the indices of genetic differentiation and the genetic distance of Nei’s (Table 3). These results suggest that GSZ is an intermediate subpopulation of goats with a high gene flow. In a recent study of phenotypic diversity, Whannou et al. (2022) stated that GCZ grouped mainly small-size goats, namely, Djallonké, whereas large and intermediate goat types (i.e., Sahelian and crossbreed goats) predominated in SZ and GSZ. Moreover, these authors argued that GSZ may be considered an interbreeding zone. Therefore, the current genetic findings agree to some extent with previous results on phenotypic diversity.
The investigation of the genetic structure of the Beninese goat population using three different methods (STRUCTURE, SOM, and DAPC) confirmed the aforementioned results. First, the STRUCTURE results confirmed the widely accepted existence of two existing ancestral populations of goats in Benin (Meyer, 2002; Dossa et al., 2007; Hounzangbé-Adote et al., 2011) with gene flows between these populations, as suggested by the most probable value of K = 2 groups and proportions of individuals’ assignment. Moreover, the STRUCTURE results showed that goats in GCZ and SZ were genetically more distant than that observed between GSZ and SZ. Indeed, GSZ grouped the two distinct goat genotypes. Second, SOM results supported the lower genetic differentiation existing between individuals from vegetation zones and suggested a distinction between goats from GCZ and those from SZ, but the closeness of individuals from GSZ to those of the two other distinct zones. Finally, the DAPC results that reveal the existence of four goat genetic clusters (C) in Benin according to both vegetation and phytogeographic zones, confirm the geographic distribution of goat types in Benin as previously defined based on morphology (Whannou et al., 2022). These results also show that the two main ancestral goat populations are highly crossed, with a critical purity degree of only 70% for the purest subpopulations (i.e., C1, C3, and C4) (Table 5). Considering these results, there is a risk of losing part of genetic diversity if no breeding policy is defined to maintain some pure individuals of the main goat types. Moreover, there are no reliable updated data on the population size of the different goat genetic types identified due to the lack of organization in the goat farming sector in Benin. As a result, the sustainability of goat resources in Benin would be threatened if crossbreeding practices continue anarchically on farms without measures being taken to conserve the predominant genetic types. New management policies for goat keeping in Benin are therefore essential to ensure their sustainable use and to face the challenges of current and future climate and societal changes. To achieve this, an inventory of goat genetic resources should be organized at the national level together with the elicitation of goat farmers’ preferences for goat breeds and production objectives and will allow the establishment of guidelines for maintaining the existing diversity within the goat population in Benin.
5 CONCLUSION
This study provides valuable data on the genetic diversity and structure of the indigenous goat population of Benin and fairly confirms the phenotypic diversity observed within this population. Indeed, the results highlighted the presence of two ancestral genetic groups of goats in Benin with a high level of interbreeding, particularly in GSZ. However, although the indigenous goat population of Benin is highly diverse, the pressure of poorly planned and controlled crossbreeding might threaten the sustainability of goat farming systems. With the current pressure of climate and societal changes, any threat to local goat resources should be prevented more than ever. Measures for the conservation and sustainable management of indigenous goat resources need to be taken involving the farmers who are the owners of these animal genetic resources. For instance, sensitization and training sessions could be organized to raise the awareness of farmers on the need to maintain farm animal genetic resources, to show them the importance and necessity of monitoring and organizing reproduction in their herds, and to remind them or strengthen their knowledge of the qualities of local breeds such as the trypanotolerance and prolificacy of the Djallonké goats with a view to establishing purebred breeding. In addition, the Beninese government should, in the long term, introduce breeding laws and policies to control the movement of animals both at the borders and within Beninese localities. Finally, conservation programs for the local breeds should be urgently set up.
DATA AVAILABILITY STATEMENT
The original contributions presented in the study are included in the article/Supplementary Materials, further inquiries can be directed to the corresponding author.
ETHICS STATEMENT
As part of the Ph.D. study of the first author, the research protocol was approved by the Scientific Research Committee of the University of Abomey-Calavi (Benin). Data were collected in accordance with the FAO guidelines for the characterization of animal genetic resources (FAO, 2011, 2012). The management and husbandry of the animals followed the animal welfare assessment criteria as identified and defined by the Welfare Quality Project (WQP) (Vapnek and Chapman, 2011; FAO, 2012). However, there is no specific legislation for animal welfare and hair sampling in Benin (Gautier and Escobar, 2013). Hair sampling is a non-invasive method and therefore no approval was necessary. In addition, all goat farmers were aware of the study, gave their verbal consent through the decentralized government institution of Benin for the management of the agricultural sector in each survey municipality, and handled their animals during data collection.
AUTHOR CONTRIBUTIONS
HW and LD designed the study. HW collected the data. HW and MS performed statistical analyses and drafted the manuscript. MS, G-KD, DD, DL, and LD reviewed and edited the manuscript. All authors contributed to the article and approved the submitted version.
FUNDING
This work is financially supported by the Government of Belgium through the “Académie de Recherche et d’Enseignement Supérieur (ARES)”. ARES-PRD Project entitled “Amélioration des systèmes traditionnels d’élevage de petits ruminants (ovins et caprins) dans un contexte de mutation environnementale et sociétale au Bénin” https://www.ares-ac.be/fr/cooperation-au-developpement/pays-projets /projets-dans-le-monde/item/150-prd-amelioration-des-systemes-tradi tionnels-d-elevage-de-petits-ruminants-ovins-et-caprins-dans-un-cont exte-de-mutation-environnementale-et-societale-au-Benin.
ACKNOWLEDGMENTS
The authors gratefully acknowledge the “Académie de Recherche et de l’Enseignement Supérieur” for the financial support through the project PRD/ARES/2018 research project on small ruminant, Claire Billion, and Claire Avril (Haute-Ecole CONDORCET) and Marcel Houinato (Université d’Abomey-Calavi) for coordinating the research actions and implementing the enriching collaboration between the different actors of the project. The authors are grateful to goat farmers from the different vegetation zones of Benin for their active participation in this study.
PUBLISHER’S NOTE
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.
SUPPLEMENTARY MATERIAL
The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fgene.2023.1079048/full#supplementary-material
REFERENCES
 Aljumaah, R. S., Musthafa, M. M., Al-Shaikh, M. A., Badri, O. M., and Hussein, M. F. (2012). Genetic diversity of Ardi goat based on microsatellite analysis. Afr. J. Biotechnol. 11, 16539–16545. doi:10.5897/AJB12.542
 Arora, R., Bhatia, S., and Jain, A. (2010). Morphological and genetic characterization of Ganjam sheep. Anim. Genet. Resour. 46, 1–9. doi:10.1017/S2078633610000627
 Awobajo, O. K., Salako, A. E., and Osaiyuwu, O. H. (2015). Analysis of genetic structure of Nigerian West African Dwarf goats by microsatellite markers. Small Rumin. Res. 133, 112–117. doi:10.1016/j.smallrumres.2015.09.006
 Barker, J. S. F., Tan, S. G., Moore, S. S., Mukherjee, T. K., Matheson, J. L., and Selvaraj, O. S. (2001). Genetic variation within and relationships among populations of Asian goats (Capra hircus). J. Anim. Breed. Genet. 118, 213–233. doi:10.1046/j.1439-0388.2001.00296.x
 Ben Sassi-Zaidy, Y., Mohamed-Brahmi, A., Nouairia, G., Charfi-Cheikhrouha, F., Djemali, M. N., and Cassandro, M. (2022). Genetic variability and population structure of the Tunisian sicilo-sarde dairy sheep breed inferred from microsatellites analysis. Genes 13, 304. doi:10.3390/genes13020304
 Botstein, D., White, R. L., Skolnick, M., and Davis, R. W. (1980). Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am. J. Hum. Genet. 32, 314–331.
 Dayo, G. K., Houaga, I., Linguelegue, A., Ira, M., Konkobo, M., Djassi, B., et al. (2022). Morphological and microsatellite DNA diversity of Djallonké sheep in Guinea-bissau. BMC Genomic Data 23, 3–17. doi:10.1186/s12863-021-01009-7
 Demir, E., and Balcioğlu, M. S. (2019). Genetic diversity and population structure of four cattle breeds raised in Turkey using microsatellite markers. Czech J. Anim. Sci. 64, 411–419. doi:10.17221/62/2019-CJAS
 Dixit, S. P., Verma, N. K., Aggarwal, R. A. K., Vyas, M. K., Rana, J., and Sharma, A. (2012). Genetic diversity and relationship among Indian goat breeds based on microsatellite markers. Small Rumin. Res. 105, 38–45. doi:10.1016/j.smallrumres.2011.11.026
 Djimènou, D., Adoukonou-Sagbadja, H., Dayo, G.-K., Chrysostome, C. A. A. M., and Koudande, D. O. (2021). Genetic diversity and phylogenetic relationships within local pigs in southern Benin. Trop. Anim. Health Prod. 53, 434–514. doi:10.1007/s11250-021-02857-2
 Dossa, L. H., Wollny, C., and Gauly, M. (2007). Spatial variation in goat populations from Benin as revealed by multivariate analysis of morphological traits. Small Rumin. Res. 73, 150–159. doi:10.1016/j.smallrumres.2007.01.003
 Evanno, G., Regnaut, S., and Goudet, J. (2005). Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol. Ecol. 14, 2611–2620. doi:10.1111/j.1365-294X.2005.02553.x
 Excoffier, L., Smouse, P. E., and Quattro, J. M. (1992). Analysis of molecular variance inferred from metric distances among DNA haplotypes: Application to human mitochondrial DNA restriction data. Genetics 131, 479–491. doi:10.1093/genetics/131.2.479
 FAO (2011). Molecular Genetic Characterization of Animal Genetic Resources. Rome, Italy: FAO Animal Production and Health Guidelines. 
 FAO (2012). Phenotypic characterization of animal genetic resources. Rome, Italy: Food and Agriculture Organization of the United Nations. 
 FAO (2007). The state of the world’s animal genetic resources for food and agriculture. Rome, Italy: Barbara Rischkowsky and Dafydd Pilling. 
 Gautier, P., and Escobar, S. L. (2013). Rapport de la mission de suivi de l’évaluation PVS des services vétérinaires du Bénin. Paris, France: OIE—World Organisation for Animal Health.
 Gororo, E., Makuza, S. M., Chatiza, F. P., Chidzwondo, F., and Sanyika, T. W. (2018). Genetic diversity in Zimbabwean Sanga cattle breeds using microsatellite markers. S Afr. J. Anim. Sci. 48, 128. doi:10.4314/sajas.v48i1.15
 Hardy, O. J., and Vekemans, X. (2002). spagedi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol. Ecol. Notes 2, 618–620. doi:10.1046/j.1471-8286.2002.00305.x
 Hounzangbé-Adote, M. S., Azando, E., and Awohouedji, Y. (2011). “Biodiversité dans les zones d’élevage des petits ruminants Mammifères domestiques Benin,” in Atlas de la biodiversité de l'Afrique de l'Ouest ed . Editors B. Sinsin, and D. Kampmann (Cotonou, Benin and Frankfurt: Hardcover), 506–518. (Tome I). 
 Jawasreh, K. I., Ababneh, M. M., Ismail, Z. B., Younes, A. M. B., and Al Sukhni, I. (2018). Genetic diversity and population structure of local and exotic sheep breeds in Jordan using microsatellites markers. Vet. World 11, 778–781. doi:10.14202/vetworld.2018.778-781
 Jombart, T. (2008). adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24, 1403–1405. doi:10.1093/bioinformatics/btn129
 Jombart, T., and Ahmed, I. (2011). Adegenet 1.3-1: new tools for the analysis of genome-wide SNP data. Bioinformatics 27, 3070–3071. doi:10.1093/bioinformatics/btr521
 Jombart, T., Devillard, S., and Balloux, F. (2010). Discriminant analysis of principal components: A new method for the analysis of genetically structured populations. BMC Genet. 11, 94. doi:10.1186/1471-2156-11-94
 Kalinowski, S. T., Taper, M. L., and Marshall, T. C. (2007). Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol. Ecol. 16, 1099–1106. doi:10.1111/j.1365-294X.2007.03089.x
 Kohonen, T. (1982). Self-organized formation of topologically correct feature maps. Biol. Cybern. 43, 59–69. doi:10.1007/BF00337288
 Kohonen, T. (2001). Self-organizing maps. 3rd ed. New York: Springer. doi:10.1007/978-3-642-56927-2
 Kouato, O. G., Houndonougbo, V. P., Orounladji, B. M., Chabi Adjobo, M. A., Glele Kakaï, R., and Chrysostome, C. A. A. M. (2021). Comparative analysis of quantitative phenotypic parameters of Djallonke and hybrid (Djallonke × Sahelian) goats in Benin. J. Anim. Plant Sci. 47, 8472–8483. doi:10.35759/JAnmPlSci.v47-2.5
 Kumar, S., Dixit, S. P., Verma, N. K., Singh, D. K., Pande, A., Kumar, S., et al. (2009). Genetic diversity analysis of the Gohilwari breed of Indian goat (Capra hircus) using microsatellite markers. Am. J. Anim. Vet. Sci. 4, 49–57. doi:10.3844/ajavsp.2009.49.57
 Laoun, A., Harkat, S., Lafri, M., Gaouar, S. B. S., Belabdi, I., Ciani, E., et al. (2020). Inference of breed structure in farm animals: Empirical comparison between snp and microsatellite performance. Genes 11, 57. doi:10.3390/genes11010057
 Mekuriaw, G. T. (2016). “Molecular characterization of Ethiopian indigenous goat populations: Genetic diversity and structure, demographic dynamics and assessment of the kisspeptin gene polymorphism,” ([Addis Abeba, Ethiopie]: Université d’Addis Abeba). [Thèse de doctorat en Philosophie et génétique appliquée]. 
 Meyer, C. (2002). "Races d’ovins, de caprins et de camelins: Aires de répartition en afrique (breeds of sheep, goat and camelids. Geographic distribution in Africa)," in: CIRAD–GRET et Ministère des Affaires étrangères , Mémento de l’agronome, Cédérom principal, Zootechnie spéciale , Italy, Food and Agriculture Organization. 
 Mihailova, Y. (2021). Genetic diversity and structure of 2 indigenous sheep breeds (Kotel and Teteven) in Bulgaria using microsatellite markers. Biotechn. Biotechn. Equip. 35, 576–585. doi:10.1080/13102818.2021.1903339
 Missohou, A., Poutya, M. R., Nenonene, A., Dayo, G. K., Ayssiwede, S. B., Talaki, E., et al. (2011). Genetic diversity and differentiation in nine West African local goat breeds assessed via microsatellite polymorphism. Small Rumin. Res. 99, 20–24. doi:10.1016/j.smallrumres.2011.04.005
 Molina-Flores, B., Manzano-Baena, P., and Coulibaly, M. D. (2020). The role of livestock in food security, poverty reduction and wealth creation in West Africa. Accra, Ghana: FAO. doi:10.4060/ca8385en
 Msanga, Y. N., Mwakilembe, P. L., and Sendalo, D. (2012). The indigenous cattle of the Southern Highlands of Tanzania: Distinct phenotypic features, performance and uses. Livest. Res. Rural. Dev. 110, 1–24. 
 Negrini, R., D’Andrea, M., Crepaldi, P., Colli, L., Nicoloso, L., Guastella, A. M., et al. (2012). Effect of microsatellite outliers on the genetic structure of eight Italian goat breeds. Small Rumin. Res. 103, 99–107. doi:10.1016/j.smallrumres.2011.08.006
 Nei, M. (1978). Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89, 583–590. doi:10.1093/genetics/89.3.583
 Ofori, S. A., Hagan, J. K., Kyei, F., and Etim, N. N. (2021). Phenotypic and genetic characterization of qualitative traits in the West African Dwarf goat of Ghana. Sci. Afr. 13, e00857. doi:10.1016/j.sciaf.2021.e00857
 Ojo, O. A., Akpa, G. N., Orunmuyi, M., Adeyinka, I. A., Kabir, M., and Alphonsus, C. (2018). Genetic analysis of Nigerian indigenous goat populations using microsatellite markers. Iran. J. Appl. Anim. Sci. 8, 287–294. 
 Paradis, E. (2010). pegas: an R package for population genetics with an integrated-modular approach. Bioinformatics 26, 419–420. doi:10.1093/bioinformatics/btp696
 Pritchard, J. K., Stephens, M., and Donnelly, P. (2000). Inference of population structure using multilocus genotype data. Genetics 155, 945–959. doi:10.1093/genetics/155.2.945
 Ramasamy, R. K., Ramasamy, S., Bindroo, B. B., and Naik, V. (2014). Structure plot: A program for drawing elegant STRUCTURE bar plots in user friendly interface. SpringerPlus 3, 431. doi:10.1186/2193-1801-3-431
 Ravimurugan, T. (2017). Genetic diversity analysis of Kilakarsal sheep by microsatellite markers. Int. J. Curr. Microbiol. Appl. Sci. 9, 573–577. doi:10.20546/ijcmas.2017.609.069
 Spanoghe, M. C., Marique, T., Rivière, J., Moulin, M., Dekuijper, C., Nirsha, A., et al. (2020). Genetic patterns recognition in crop species using self-organizing map: The example of the highly heterozygous autotetraploid potato (Solanum tuberosum L.). Genet. Resour. Crop Evol. 67, 947–966. doi:10.1007/s10722-020-00894-8
 Spanoghe, M. C., Whannou, H. R. V., Dekuijper, C., Dossa, L. H., and Lanterbecq, D. (2022). Development of a standardized multiplex SSR kit for genotyping both goats and sheep. Small Rumin. Res. 206, 106575. doi:10.1016/j.smallrumres.2021.106575
 Tefiel, H., Ata, N., Chabbar, M., Benyarou, M., Fantazi, K., Yilmaz, O., et al. (2018). Genetic characterization of four Algerian goat breeds assessed by microsatellite markers. Small Rumin. Res. 160, 65–71. doi:10.1016/j.smallrumres.2018.01.021
 Tolone, M., Mastrangelo, S., Rosa, A. J. M., and Portolano, B. (2012). Genetic diversity and population structure of Sicilian sheep breeds using microsatellite markers. Small Rumin. Res. 102, 18–25. doi:10.1016/j.smallrumres.2011.09.010
 Traoré, A., Álvarez, I., Tambourá, H. H., Fernández, I., Kaboré, A., Royo, L. J., et al. (2009). Genetic characterisation of Burkina Faso goats using microsatellite polymorphism. Livest. Sci. 123, 322–328. doi:10.1016/j.livsci.2008.11.005
 Vapnek, J., and Chapman, M. (2011). Legislative and regulatory options for animal welfare. Rome, Italy: Food and Agriculture Organization of the United Nations.
 Weir, B. S., and Cockerham, C. C. (1984). Estimating F-statistics for the analysis of population structure. Evolution 38, 1358–1370. doi:10.1111/j.1558-5646.1984.tb05657.x
 Whannou, H. R. V., Afatondji, C. U., Linsoussi, C. A., Favi, G. A., Nguyen, T. T., Houinato, M. R. B., et al. (2022). Morphological characterization and habitat suitability modeling of the goat population of Benin under climate change scenarios. Ecol. Process 11, 47. doi:10.1186/s13717-022-00392-y
 Whannou, H. R. V., Afatondji, U. C., Demblon, D., Houinato, R. B. M., and Dossa, L. H. (2021). Morphological variability and geographical distribution of goat populations from Benin (West Africa). Genet. Resour. 2 (1). doi:10.46265/genresj.QULD1720.p46
 Wilson, R. T. (1991). “Small ruminant production and the small ruminant genetic resource in tropical Africa,” in FAO Animal production and Health papers 88 (Rome, Italy: FAO Food and Agricultural Organization of the United Nations), 231. 
 Wright, S. (1969). The theory of gene frequencies, evolution and the genetics of populations 2. Chicago: University of Chicago Press. 
Conflict of interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Copyright © 2023 Whannou, Spanoghe, Dayo, Demblon, Lanterbecq and Dossa. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
		ORIGINAL RESEARCH
published: 20 March 2023
doi: 10.3389/fgene.2023.1119024


[image: image2]
How to succeed in implementing community-based breeding programs: Lessons from the field in Eastern and Southern Africa
Aynalem Haile1*, Tesfaye Getachew1, Mourad Rekik1, Ayele Abebe2, Zelalem Abate3, Addisu Jimma4, Joram M. Mwacharo1, Joaquin Mueller5, Berhanu Belay1, Dawit Solomon6, Emil Hyera7, Athumani S. Nguluma7, Timothy Gondwe8 and Barbara Rischkowsky1
1International Centre for Agricultural Research in the Dry Areas, Addis Ababa, Ethiopia
2Debre Berhan Agricultural Research Center, Debre Berhan, Ethiopia
3Bonga Agricultural Research Center, Bonga, Ethiopia
4Areka Agricultural Research Center, Areka, Ethiopia
5National Institute for Agricultural Technology (INTA), Bariloche, Argentina
6International Livestock Research Institute (ILRI), Addis Ababa, Ethiopia
7Tanzania Livestock Research Institute, West Kilimanjaro Centre, Kilimanjaro, Tanzania
8Department of Animal Sciences, Lilongwe University of Agriculture and Natural Resources, Lilongwe, Malawi
Edited by:
Isidore Houaga, University of Edinburgh, United Kingdom
Reviewed by:
Şenol Çelik, Bingöl University, Türkiye
George R. Wiggans, Council on Dairy Cattle Breeding, United States
* Correspondence: Aynalem Haile, a.haile@cgiar.org
Specialty section: This article was submitted to Livestock Genomics, a section of the journal Frontiers in Genetics
Received: 08 December 2022
Accepted: 28 February 2023
Published: 20 March 2023
Citation: Haile A, Getachew T, Rekik M, Abebe A, Abate Z, Jimma A, Mwacharo JM, Mueller J, Belay B, Solomon D, Hyera E, Nguluma AS, Gondwe T and Rischkowsky B (2023) How to succeed in implementing community-based breeding programs: Lessons from the field in Eastern and Southern Africa. Front. Genet. 14:1119024. doi: 10.3389/fgene.2023.1119024

Breeding programs involving either centralized nucleus schemes and/or importation of exotic germplasm for crossbreeding were not successful and sustainable in most Africa countries. Community-based breeding programs (CBBPs) are now suggested as alternatives that aim to improve local breeds and concurrently conserve them. Community-based breeding program is unique in that it involves the different actors from the initial phase of design up until implementation of the programs, gives farmers the knowledge, skills and support they need to continue making improvements long into the future and is suitable for low input systems. In Ethiopia, we piloted CBBPs in sheep and goats, and the results show that they are technically feasible to implement, generate genetic gains in breeding goal traits and result in socio-economic impact. In Malawi, CBBPs were piloted in local goats, and results showed substantial gain in production traits of growth and carcass yields. CBBPs are currently being integrated into goat pass-on programs in few NGOs and is out-scaled to local pig production. Impressive results have also been generated from pilot CBBPs in Tanzania. From experiential monitoring and learning, their success depends on the following: 1) identification of the right beneficiaries; 2) clear framework for dissemination of improved genetics and an up/out scaling strategy; 3) institutional arrangements including establishment of breeders’ cooperatives to support functionality and sustainability; 4) capacity development of the different actors on animal husbandry, breeding practices, breeding value estimation and sound financial management; 5) easy to use mobile applications for data collection and management; 6) long-term technical support mainly in data management, analysis and feedback of estimated breeding values from committed and accessible technical staff; 7) complementary services including disease prevention and control, proper feeding, and market linkages for improved genotypes and non-selected counterparts; 8) a system for certification of breeding rams/bucks to ensure quality control; 9) periodic program evaluation and impact assessment; and 10) flexibility in the implementation of the programs. Lessons relating to technical, institutional, community dynamics and the innovative approaches followed are discussed.
Keywords: breeding schemes, lessons learnt, innovative approaches, sustainability, Africa
1 INTRODUCTION
The failure of centralized nucleus breeding schemes and crossbreeding programs for small ruminants has called for a mindset shift for sustainable options of genetic improvement in low input systems. Recently, a more participatory approach started gaining global interest (Mueller et al., 2015). Called “community-based breeding,” it combines farmer training to improve selection methods, pooling community flocks to create a larger gene pool from which breeding animals can be selected, technical support to provide farmers with information on breeding options, data collection and analysis to evaluate individual animal performance. This approach is inherently sustainable as it engages the communities, hence supports local-level decision making, focuses on locally adapted indigenous breeds, considers the constraints that smallholder farmers face and empowers farmers’ organizations (cooperatives) in low input systems.
Genetic improvement of livestock is often viewed as a complex process that requires technical and organizational sophistication. In Europe, animal breeding has been traditionally supported by the State where large national breeding programs have been implemented. Currently, these programs are mostly run and financed by farmer cooperatives/breeds’ associations and include data recording and processing, and the evaluation of the genetic merit of individual animals. In developing countries, the appropriate infrastructure to implement such programs is largely unavailable. Therefore, past attempts to replicate developed-country approaches often mismatched goals and targets, could not fit into low-input systems with many producers each owning small flock sizes, and have resulted in little success.
Community-based breeding programs cover a range of situations (e.g., Sölkner et al., 1998; ICAR-FAO, 2000; Haile et al., 2018) but typically target low input systems and farmers within limited geographical boundaries having a common interest to work together to preserve and improve their genetic resources (Mueller et al., 2015). They focus on indigenous stock and consider farmers’ needs, views, decisions and active participation, from inception through to implementation, and therefore provide a participatory and bottom-up approach. Their success is based upon proper consideration of farmers’ breeding objectives, infrastructure, participation, and ownership (Sölkner et al., 1998; Wurzinger et al., 2011; Mueller et al., 2015; Haile et al., 2020). In low input small holder production systems, flock sizes are typically small, and this makes the design of conventional breeding programs difficult and there is a danger of inbreeding. Pooling flocks together, which is done in community-based breeding programs (CBBPs), helps avert the challenge.
In 2009, the approach was introduced to Ethiopia by the International Center for Agricultural Research in the Dry Areas (ICARDA) in partnership with the International Livestock Research Institute (ILRI), Austria’s University of Natural Resources and Life Sciences (BOKU), and the Ethiopian National Agricultural Research System. In Ethiopia, the implementation of CBBPs started with 4 communities representing different breeds and productions systems. These pilot CBBPs have since expanded to include more than 130 communities. Though implemented at a pilot scale in Ethiopia, the CBBPs have resulted in quantifiable genetic gains and impacted the livelihoods of rural communities (Haile et al., 2020). There are also on-going breeding programs for local goats of Malawi and Tanzania which have generated similar gains in goats from four and three communities, respectively (Kaumbata et al., 2020). The approach has also been introduced to other countries including, Burkina Faso, Iran, Liberia, South Africa, Sudan, and Uganda. Currently, CBBPs focusing on local genotypes are being advocated as the strategy of choice for genetic improvement of sheep and goats (Sölkner et al., 1998; Kosgey and Okeyo, 2007; Mueller et al., 2015; Haile et al., 2019, 2020).
Designing a CBBP is much more comprehensive than simply applying genetic theories to achieve increased productivity. Its implementation combines infrastructure, capacity development of national partners, community development, and the opportunity to improve farmer livelihoods by creating integrated processes for productive breeding of adapted animals and the markets for their products. By working with local breeds, CBBPs offer a framework to achieving goals of breed improvement and conserving the animal genetic resources. Several studies have been conducted to design suitable CBBPs for smallholder farming systems in Ethiopia, Malawi and Tanzania (Gizaw et al., 2009; Haile et al., 2018; Kaumbata et al., 2020).
These pilot schemes need to be scaled out to have significant impact on the lives of larger populations. For this to happen, the substantial knowledge and experience gained in these pilots and the lessons learnt, need to be communicated and shared to guide new CBBPs and sustain existing programs. In this paper the essentials for success of CBBPs, lessons learned and innovations by communities are highlighted. The knowledge gaps which need to be addressed are also identified with specific knowledge users in mind.
2 HOW COMMUNITY-BASED BREEDING PROGRAMS WERE IMPLEMENTED IN THE ETHIOPIAN, MALAWI AND TANZANIA PILOTS
CBBPs combine selection of breeding rams/bucks based on systematic recording of important flock productivity improvement parameters, such as body weight at 4–6 months and lambing/kidding interval, with expert local opinion as to what constitutes a good ram/buck and communal use of selected rams/bucks. Farmers who wish to participate are organized into sheep/goat breeding associations, many of which evolve into formal cooperatives with a prominent financial profile (Haile et al., 2018). Local enumerators are recruited to help with data collection, which is then managed in a database and analyzed by scientists from local research centers to inform selection decisions. Extension staff are involved and they are educated on the required technical aspects to facilitate successful implementation of CBBPs.
All animals in a community are treated as one flock and two stages of ram/buck selection are usually applied: initial screening when traditionally sales of young lambs/kids occur (at 4–6 months of age) and final selection of yearling for admission to breeding. All young rams/bucks are collected at a central location in each community on an agreed screening date. Selection is then carried out based on the estimated breeding values or on selection indexes constructed to improve agreed multi-trait breeding objectives.
A breeding ram/buck selection committee comprised of 3–5 members that are elected by the community is involved in the selection. If, for example, 15 rams/bucks were to be selected from 100 candidates, 20 would be pre-selected based on their breeding values and the committee will then rank the selected rams/bucks and cull the last five. To arrive at the decision, the committee examines the conformation, coat colour, presence or absence of horns, horn type, tail type and other criteria. The number of rams/bucks to be selected depends on the number of ewes/does available for mating while accounting for the replacement rates. Unselected rams/bucks can be castrated, fattened and marketed for meat production. Ram/buck rotation can be practiced in order to avoid inbreeding as these rams/bucks can only stay and be used for breeding in the community for a maximum of 3 years and should be culled once its daughters are ready to be mated. The culled rams/bucks if still young can be sold as a breeding animal to other communities. In Ethiopia, the pilot CBBPs have been designed and implemented since 2009 by a team of researchers from ICARDA, ILRI, BOKU University, Austria and Ethiopian National Agricultural Research Centers. The pilot CBBPs were supported through various projects funded by multiple donors. The day-to-day follow-up of these CBBPs was done by the research and extension departments of the Ethiopian government. For Tanzania, the field implementation was supported by the government of Tanzania through the Tanzania Livestock Research Institute (TALIRI) and the local government authority of the respective districts where the program was implemented. For Malawi, pilot implementation by researchers from Lilongwe University of Agriculture and Natural Resources (LUANAR) started in 2015 with support from USDA, and backstopped by BOKU University. Department of Animal Health and Livestock Development and Department of Agriculture Research Services of Malawi collaborated in the project implementation.
3 RESULTS FROM COMMUNITY-BASED BREEDING PROGRAMS IN ETHIOPIA, MALAWI AND TANZANIA
In Ethiopia, there are more than 130 CBBPs with around 100 households each. As CBBP is a relatively new strategy for genetic improvement of small ruminants, the last 10 years have been spent on testing the functionality of the strategy and we have been refining and customizing the program to different species (sheep or goats), breeds, agro-ecologies and production systems. In Tanzania, we have started with 3 pilot CBBPs containing between 30 and 40 indigenous goat keeping households each. In Malawi, four CBBPs were established in 2013 with financial support by USDA. We have evaluated the biological and socio-economic performance of CBBPs in Ethiopia, Malawi and Tanzania and below are the findings as reported in Haile et al. (2020) and Kaumbata et al. (2020).
• Sheep/goat farming, once a side activity for the farmers in these countries, is now the main business and the linchpin of their livelihoods.
• High demand for breeding males from neighboring communities, other government programs and NGOs in all sites, provides the foundation for specific business models around production of breeding sires and semen for artificial insemination.
• In Ethiopia, more than 13,000 households in 130 villages derive direct benefits from the scheme and the emergence of a functional cooperative society in each village.
• Most of the participating households in Menz (a CBBP site in Ethiopia) have graduated from the government-run safety net program that meets short-term food needs through emergency relief. They now use income from the sale of sheep to meet their subsistence needs.
• “Best of stock” growing breeding lambs/kids, that were previously sold and slaughtered (“negative selection”), are now retained as breeding stock in all communities.
• Increased income from sheep and goat production (an average increase of 20 percent since CBBP inception in 2009 in Ethiopia) and increased mutton consumption (now an average of 3 sheep slaughtered for home consumption per family per year compared to 1 sheep at the start of the project) directly linked to CBBP production in Bonga, Horro and Menz sites in Ethiopia.
• Sheep/goats in CBBPs have shown improved performance, such as lamb/kid growth rate, lambing/kidding interval, reduced mortality and attract higher market prices compared to sheep/goats from non-CBBP farmers in all communities.
• Most of the established cooperatives have managed to build capital (e.g., Boka-Shuta cooperative in Ethiopia has about USD 110,000).
4 LESSONS LEARNT FROM IMPLEMENTING COMMUNITY-BASED BREEDING PROGRAMS
4.1 Technical
Breeding objective definition: there are many tools which can help define breeding objectives of communities, including structured surveys, choice card experiments, group and individual rankings (Duguma et al., 2011), bio-economic analyses or combinations of different approaches. However, given the complexity, resource need and the ultimate output generated, individual rankings offer the best option. This is very easy and allows the full participation of owners in choosing their best and worst animals from their flocks (Mirkena, 2010; Getachew et al., 2020).
Community-based breeding program structures: CBBPs should be tailored to different production systems. For instance, pastoral production systems need different schemes to mixed crop livestock systems (Getachew et al., 2022). In pastoral areas, the schemes must consider mobility patterns, larger flock sizes, and climate patterns leading to breeding objectives focusing on adaptive traits, etc. Communities with large flock sizes should be treated differently to those with small flock sizes. In the latter, households can pool their animals and selection can be organized from many flocks. However, in situations where individual household flock size is large, within flock (household) selection can be designed. Where some households keep large flocks, it may be difficult to identify and record all animals. In such cases, elite herds can be selected to serve as sires of dams based on interest of herd owners and individual animal performance. Other specific situations such as where flocks mix in communal grazing areas or where sires are separated from the flocks for various reasons, need to be evaluated as these would entail different sire use strategies.
Performance and pedigree recording: implementation of CBBPs should be simplified at the beginning. Selection of sires could start from simple mass selection where indexes could be constructed for maximum of three traits based on individual animal performance. This would be followed by calculating breeding values using spreadsheets (e.g., excel), after correcting for known variations. When experience is developed, selection can be based on estimated breeding values. BLUP breeding values are usually calculated considering the sire as “unknown” and therefore breeding values (BV) calculated with larger error variances and genetic trend will be underestimated. Henderson (1988) showed that by identifying possible sires and assigning to each a mating probability, one could estimate BV with greater accuracy. In many CBBPs pedigree databases, sire identification is uncertain rather than completely unknown. Farmers may be requested to provide possible sires with a mating probability estimation enabling the use of Henderson’s method to calculate BVs. The general lesson is that, inaction rather than the absence of perfect data is the major constraint in livestock breeding (Rege et al., 2011).
Performance and pedigree data recording is feasible in CBBPs (Gizaw et al., 2014). However, the characteristics and limitations of low input systems need to be considered. The general advice is, keep it simple and sustainable; agree on few/key economically important traits, especially at the start and align recording to routine practices (weaning, vaccination, sales, etc.).
Enumerators are very crucial for data collection and day to day follow-up of the breeding programs. Also, the extension is influential in facilitating the implementation of these programs. The extension staff are responsible for the provision of extension services and, they play a critical role of linking farmers with researchers (Kaumbata et al., 2020). Furthermore, public support is crucial for sustainability of the breeding programs. Governments should invest on some of the complementary services and hire enumerators over a longer period until the community becomes economically viable to absorb their costs.
Capacity development of the different actors, mainly farmers is extremely important for the success of CBBPs. Farmers need to be trained on basic animal husbandry, including healthcare, proper feeding, and selection practices. Cooperative leaders could also be trained on leadership, financial management and bookkeeping. Tailored trainings need to be organized for different actors in CBBP. Local researchers must be trained on implementation of CBBPs; focusing on data collection, management and analysis, animal ranking and sire use and mating plans; reproductive management and application of reproductive biotechnologies; flock health monitoring and health certification of the improved sires. Breeding programs need long-term commitment and support from different actors. Technical support from research and extension partners mainly in data management, analysis and feedback of estimated breeding values is crucial.
4.2 Institutional
Establishment of breeders’ cooperatives with clear by-laws and formal organizational structures are crucial for success of CBBPs. Although not uniform in all CBBP sites, groups of committees manage the cooperatives. These include, a main committee with a chair, a procurement committee, a control committee, a credit and savings committee and a capacity building committee. The committees are responsible for effective functioning of the breeding cooperatives and roles and responsibilities are shared among the committees. Overall, CBBP operation is managed by the cooperatives. Formally registered cooperatives are governed by their by-laws and members abide by their rules. Legally registered cooperatives had better management and financial resources, better selection and management of breeding rams (Gutu et al., 2015). The governments are keen to organize farmers and to support cooperatives. Formally registered cooperatives have access to free auditing services, training and support for financial record-keeping from district cooperative promotion offices.
Proper organizational link among the different actors in CBBP is crucial. In CBBP, as indicated earlier, there are cooperative committees at community level; team of researchers with team leader at research sites; and the CGIAR team. The day-to-day follow-up of CBBP including data collection is done by enumerators. The research team follows the activities on the ground including compilation of data collected by enumerators and estimation of breeding values and assist in selection decision. The research team also liaises with the implementing institutions on technical and financial matters.
These structures are very useful for close follow up and sustainability of the CBBPs. The close interaction also helps develop trust among the partners for similar interventions. The injection of revolving funds from projects, could help the cooperatives to purchase young sires that can be used for breeding. It also means that if a member needs cash, they could sell their young animal to the cooperative before selection decision is made so that the best breeding animals are retained in the community.
4.3 Community issues
Like any enterprise, communities need to see benefits from CBBPs for them to fully engage. Therefore, it is important that such schemes are properly planned with real benefits to farmers. Within-breed selection schemes will result in genetic improvement, improved productivity and profitability if properly executed (Haile et al., 2020). However, it should be noted that short-to perhaps medium-term returns on investment will most likely come from non-genetic gains, such as improvement in feeding, disease control and better reproductive management (for example, making breeding sires available in the required number to serve all females will result in more lambs/kids) and market linkages. Implementation of the CBBPs is also contributing to managing crosscutting issues including environmental conservation in the face of climate change mitigation and gender equity (Kaumbata et al., 2020). Therefore, genetic improvement effort should be part of an overall livestock development agenda across the whole value chain.
5 INNOVATIONS BY THE COMMUNITIES
CBBPs are implemented through clearly defined guidelines (Haile et al., 2018). However, in implementing CBBPs, communities innovate and do things differently and efficiently to strengthen their operations. Some examples of innovative approaches followed by communities in different CBBPs are summarized below.
• As indicated earlier, some of the cooperatives have built capital through sale of breeding sires and culled animals. This capital is being used for different purposes including uplifting the financial status of the members and others. They have therefore devised a system where they advance credit to their members and other cooperatives (https://bit.ly/2PpG4Xr).
• In Bonga (Ethiopia) CBBPs, the cooperative members agreed and are in the process of forming a breeding nucleus for elite ewes. They knew that not all ewes are of the same genetic merit and have started identifying best ewes based on their own criteria and will only allow breeding rams produced from these elite ewes to be used in the communities. The elite ewes shall be retained by their respective owner farmers and will not move into a central station. They are discussing mechanisms to reward farmers whose ewes are selected. Although the initiative is from the farmers, the research team will support the establishment of the nucleus with performance records derived from the breeding database. Hence, farmers selection criteria will be augmented with known performance data. Selection on the dam side has been found to result in genetic gain in CBBPs (Jembere et al., 2019), therefore, the breeder cooperatives are moving towards more effective selection.
• The cooperative leaders have established sub-groups based on neighborhoods and any information from both the research team and extension is channeled through the sub-groups to all the members and this ensures easy and reliable information flow and action.
• Ram/buck sharing and management has been one of the challenges in CBBPs. However, once bought by the cooperatives, the communities have developed different systems of sharing males and management of the potential candidate males. For example, in Bonga (Ethiopia), following the purchase of potential candidate rams, the cooperative leaders decide who keeps the ram depending on the number required in the mating group, individual experience in managing rams etc. The farmer manages the communal rams for the period the ram is in service, and thereafter when the ram is sold the profit realized from its sale (i.e., the difference between the cost when the young ram was bought and when sold) is shared between the farmers and the cooperative. Similar management of bucks was adopted in Malawi CBBP sites.
• Close follow-up is an important element for a successful CBBP. This is done by the research and extension team. However, in one of the sites (Bonga, Ethiopia) the cooperative leaders also took initiative to supervise their members every month and provide feedback to the research center, enumerators and their members.
• In the Abergelle (Ethiopia) goat CBBP, each CBBP participant operates a savings bank account. All members unanimously agreed to save ETB 200 (equivalent to US$ 5) for every buck kid sold. This has cultivated a saving culture in the community.
• Integration of CBBPs into local or community leadership systems. In the beginning it is hard to have every farmer in the community to accept the idea, something which might be a hinderance in progress of the program. Some farmers may not be willing to cull their poorly performing animals and use those selected by the committee. In the communities in Tanzania through the involvement of village leaders, rules for successful CBBPs are set and agreed in village meetings and are reinforced locally.
6 SUCCESS FACTORS
Based on the experience and lessons learnt from the implementation of CBBP pilots in the region, critical factors for the success of CBBPs were identified.
1. Identification of the right beneficiary following a clear guideline on who should be a member. Some essential factors to consider in selecting target communities for a CBBP as detailed in Haile et al. (2018) and include: a) External factors (market access, potential negative and/or positive impacts by other projects, synergies with other projects, government support, NGO support and availability of inputs and services); and b) community-related factors (willingness to participate in the program, prioritizing the species of interest, existence of communal/shared resources and/or institutional arrangements, presence of community leaders (elders) and champion farmers/pastoralists who are critical in socio-cultural structures in the region).
2. Institutional arrangements including the establishment of breeders’ cooperatives to support functionality and sustainability of the programs. There must be clear working modalities and implementation structures among the different CBBP actors, as detailed in Section 4.2. Legal cooperatives with clearly defined by-laws must be established for each CBBP.
3. Capacity development of the different actors on basic animal husbandry, breeding practices, estimation of breeding values and financial management. Capacity development of the different actors is of utmost importance for the success of CBBPs. The breeding programme should be supported by comprehensive extension work to train the farmers and boost their experiences and skills in small ruminant production techniques (Yapi-Gnaore, 2000). During that period, farmers should be informed of the long-term benefits they could derive from breeding programs and activities such as performance recording. Too little investment in expertise has contributed to low efficiency and in some cases failure of breeding programs and absence of science-based genetic improvement practices (Gizaw et al., 2018).
4. Breeding programs cannot be implemented without performance and pedigree recording. A mobile application for data recording and management would allow accurate recording and ease the job of the enumerators. Given the challenge of internet connection in villages of developing countries, an offline mobile application for data collection and management is vital. The International Center for Agricultural Research in the Dry Areas, in partnership with AbacusBio (https://abacusbio.com/), has established a cloud-based digital genetic database and data capture platform (DTREO) for Ethiopia, Tanzania and India. The platform captures and stores data and is designed for offline data capture in situations where internet connectivity is poor. Such a data system could be used.
5. Framework for dissemination of improved genetics and up/out scaling strategy. For CBBPs to have significant impact they need to scale. Improved genetics produced in CBBPs need to reach the production/base population. This requires a clear design as suggested by Mueller et al. (2019).
6. The expansion of a delivery system based on service provision in reproductive technologies such as artificial insemination (AI) to support the up/out scaling strategy, diet improvement at critical stages of the reproductive cycle and ultrasound-based pregnancy diagnosis mobile units to serve selection of the females for AI and to down-control infertility by identifying and culling problematic females.
7. Support for long periods by committed technical staff mainly in data management, analysis and feedback of estimated breeding values. We have clearly seen over the years that CBBPs that are supported and implemented by committed research and extension staff are the ones that succeed. While CBBP is a low investment intervention, it needs very close follow-up for the community to take up the challenge of ultimately running the programs.
8. Pro poor livestock development needs to consider the whole value chain development. This includes support in complementary services such as disease prevention and control, feeding interventions, market linkages for meat and breeding animals.
9. To ensure quality control, a system for certification of improved rams/bucks by an authorized body is needed. The quality and value of selected sires is the backbone of breeding programs. The vision is to gradually move from producing genetically improved sires to establishing a reliable stud where breeding excellence is certified. Emerging breeding programs are hindered and can collapse prematurely when farmers cannot access superior males of good breeding quality, reproductive and health standard.
10. Evaluation of the program and assessment of impact of the scheme. An integral component of a functional CBBP is monitoring technical and management issues related to the implementation of the breeding program; whether outputs, outcomes and impacts are achieved or achievable; and whether mechanisms to ensure sustainability of the breeding program are in place.
Table 1 summarizes the major requirements for setting up CBBPs and the support services that are needed. It also highlights the available knowledge, what needs to be done and the suggested institution to lead it.
TABLE 1 | Major requirements for setting up community-based breeding programs and support services needed.
[image: Table 1]7 CONCLUSION
Community-based breeding program is a new approach that has stimulated global interest. It has been implemented in Ethiopia since 2009 and scaled to Malawi and Tanzania as an alternative to the often-unsuccessful centralized nucleus breeding programs. Different schemes were designed and implemented in different production systems in the countries. The results indicated that measurable genetic gain could be achieved for important breeding goal traits and CBBPs resulted in socio-economic benefit to the communities. For the success of such schemes, we have identified factors that need to be followed. Additionally, there are several lessons drawn from these schemes and, innovative approaches were also followed by some communities which either solved emerging problems or helped to ensure sustainability of such schemes.
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Pig productivity is very low in the Eastern Himalayan hill region due to the poor performance of local pigs. To improve pig productivity, it was decided to develop a crossbred pig of Niang Megha indigenous and Hampshire as an exotic germplasm. The performance of crossbred pigs with different levels of Hampshire and indigenous inheritance—H-50 × NM-50 (HN-50), H-75 × NM-25 (HN-75), and H-87.5 × NM-12.5 (HN-87.5)—was compared for their performance to find a suitable level of genetic inheritance. Among the crossbreds, HN-75 performed better in terms of production, reproduction performance, and adaptability. Inter se mating and selection were carried out on six generations of HN-75 pigs, and genetic gain and trait stability were evaluated and released as a crossbred. These crossbred pigs attained body weights of 77.5–90.7 kg by 10 months of age, with FCR of 4.3:1. Age at puberty was 276.66 ± 2.25 days, and average birth weight was 0.92 ± 0.06 kg. Litter size at birth and weaning were 9.12 ± 0.55 and 8.52 ± 0.81. These pigs have good mothering abilities with a weaning percentage of 89.32 ± 2.52%, good carcass quality, and consumer preference. The lifetime productivity for an average of six farrowings/sow showed a total litter size at birth of 51.83 ± 1.61 and total litter size at weaning of 47.17 ± 2.69. In a smallholder production system, the crossbred pigs showed a better growth rate and a higher litter size at birth and at weaning than average local pigs. Hence, the popularization of this crossbreed would enhance the production, productivity, livelihood, and income of the regionʼs farmers.
Keywords: crossbred pig, Niang Megha, Hampshire inheritance, performance, Eastern Himalayan, hill ecosystem
1 INTRODUCTION
The Eastern Himalayan hill region of India has a distinct ecosystem, topography, and biodiversity. This subtropical hill region has less than 15% cultivable land; almost 90% of the area is covered by evergreen forest (Poffenberger et al., 2007) and mostly inhabited by tribal ethnicities (Govt. of India, 2011). Livestock plays a crucial role in the nutritional security, income, and livelihood of the farmers in the region. Among the various forms of livestock, pigs are the most popular and valued species and are an integral part of the diversified resource-poor agriculture in the region, especially among the tribal communities (Rangnekar, 2006; Banik et al., 2013; Jain, 2016). Pigs have a special significance in the socio-economic status of the farmers (Kadirvel et al., 2013). Pork is the most preferred meat among the population; this region has much higher pork consumption than the rest of the country (Kumaresan et al., 2006a). Due to the importance of pig in this region's dietary habits, almost every rural household rears two to three pigs as a livelihood resource (Kadirvel et al., 2013). However, pigs are reared under a smallholder low-input production system which utilizes locally available resources like agricultural bio-products and kitchen wastes as they feed off less than 1 ha of land (Kumaresan et al., 2007; Haldar et al., 2017; Kadirvel et al., 2017). The total pig population of India is 9.06 million, of which 7.16 million (79.03%) are contributed by indigenous and local pigs (Livestock census, 2019). The north-eastern states of India constitute almost half the of country's total pig population: 46.80% (Basic Animal Husbandry Fisheries Statistics, 2019). Low quality local pigs comprise 67.90% of the region's total pig population. Although a considerable pig population is present there, the productivity of the pigs is low due to the poor productive and reproductive performance of local pigs (Kadirvel et al., 2021). In order to improve pig productivity in the region and the preference for crossbred pigs among local farmers, a project was developed to crossbreed pigs with the Niang Megha pig as indigenous germplasm for better adaptability and Hampshire as an exotic germplasm for enhanced productivity in the hill ecosystem of the North-Eastern Hill (NEH) region of India. The indigenous pig Niang Megha was selected for the study since they have evolved over many years and are well suited in the hilly, low-input traditional tribal production system (Rajbongshi et al., 2017). Hampshire has been used extensively for breeding purpose for up-grading local pigs as it has well-balanced productive and reproductive performance in tropical humid environments (Kumaresan et al., 2006b; Oke et al., 2006), as well as the preference for black coloured pigs among the farmers. The objective of this study was to develop a crossbred pig with indigenous and Hampshire inheritance. Planning for the development of the crossbred pig was initiated in 1998—a crossbreeding program with rigorous selection. Further study was conducted to evaluate the performance of different traits of economic importance (including both productivity and adaptability traits), which resulted in the development of a crossbred pig named “Lumsniang,” based on the locality and its features.
2 MATERIALS AND METHODS
2.1 Study location
Experiments I and II were conducted in the pig breeding farm of the ICAR Research Complex for the NEH Region. The farm is located at 24.58°N to 26.07°N latitude and 89.48°E to 92.51°E longitude with an altitude of 1,010 m above mean sea level. Annual minimum, maximum, and mean temperatures are 13.06°C, 25.46°C, and 19.26°C, respectively. Relative humidity varies from 65% to 81.70% with an average of 72.24%. Experiment III was conducted in a smallholder production system with farmers having experience of rearing low-quality pigs. The agro-climatic conditions were similar, and the experiments were conducted in the same region of nearby villages/cluster of the institute. The study site is located 1,005–1120 m above mean sea level, which is in a high rainfall area of 2,239–2,953 mm annually. A subtropical climate prevails in the study area, with annual maximum and minimum temperatures ranging from 21.1 to 29.2°C and 7.0 to 20.9°C, respectively. In the study area, pig husbandry plays a significant role in supporting the social, cultural, and economic livelihood of the tribal people in the location. The pigs are mostly reared under a traditional smallholder low-input production system where every tribal household rears two to three average-quality pigs in their backyard, as reported previously (Kadirvel et al., 2017). Rice and pork are the staple foods in the study location; hence, pork is in great demand as a meat.
2.2 Management system
The pigs in the study were reared under an intensive management system and housed according to their sex, age, and physiological condition. Pregnant sows were transferred to farrowing pens 1 month before farrowing. Mature boars were kept in individual pens. Piglets were brooded and fed commercial mesh ad libitum as per standard recommendation—pig starter feed containing 22% crude protein and 3300 ME/kg. Protein contents of 18% for weaned piglets up to 3 months of age, 15% for growers, 16% for breeding boars and pregnant sows, and 14% for finisher/dry sows were incorporated in the ration. Drinking water was provided ad libitum throughout the period. Piglets were weaned at 56 days old. Iron injections were given on the 4th and 14th days, deworming and vaccination were carried out regularly, and other therapeutic treatments were provided as needed. Mating was carried out through natural service.
2.3 Breeding management
Niang Megha (NM), a registered small-sized indigenous breed of pig having a 35–40 kg body weight at 10 months of age, was used as the dam line (Figure 1). Some 40 pure NM were purchased in a sex ratio of 1:3 from different parts of its home tract to avoid inbreeding based on pedigree, phenotypic, and morphometric characteristics true to NM; they were maintained at the institute's pig breeding farm. These indigenous pigs have poor productive and reproductive performance. Similarly, 40 pure Hampshire pigs for the sire line were procured from pig breeding farm at Kyrdemkulai, Government of Meghalaya, and maintained under the same conditions. A group of selected NM gilts was bred with pure Hampshire boars to achieve 50% Hampshire-inheritance crossbred pigs. To select male and female F1, male animals were selected based on weaning weight and 8-month body weight, in a two-stage sequential selection. Female animals were selected on the dam’s litter size at birth (>7) and the weaning weight and number of functional teats (at least six pairs of functional teats). The progeny of F1 crossbred HN-50 (50% H × 50% NM) gilts were again backcrossed with Hampshire boars to produce crossbred HN-75 (75% H, 25% NM) pig. Pure-breed Hampshire boars were utilized to produce crossbred HN-87.5 (87.5% H and 12.5% NM). A 1:3 sex ratio of male to female animals was maintained to avoid inbreeding effects in the farm. The crossbred pigs with the desired level of exotic inheritance were maintained by inter se mating following strict selection for six generations for stabilization of (re)productive performance. The cross-breeding strategy followed in the present study is depicted in Figure 2.
[image: Figure 1]FIGURE 1 | Indigenous breed: adult Niang Megha pig.
[image: Figure 2]FIGURE 2 | Crossbreeding program.
2.3.1 Experiment I: Comparative performance of crossbred pigs with different levels of genetic inheritance
The performance of NM and crossbred pigs with different levels of Hampshire inheritance was compared with respect to their productive and reproductive performance, as well as their incidence of disease. The study was conducted to identify a suitable level of exotic inheritance for adaptability and better performance in the hill ecosystem. Data for this comparative study were obtained from pigs of the four genetic groups—NM, HN-50, HN-75, and HN-87.5—spread over 7 years from 1998 to 2006. A random sample of 55 piglets from each genetic group was selected for productive performance. From each genetic group, 25 random sows were selected to study reproductive performance at puberty, first conception, inter-farrowing interval, and litter size at birth and at weaning. A total of 30 random adult pigs from each genetic group were slaughtered at 10 months old over the years to study carcass traits. During this period, the incidence of different diseases was also recorded for each genetic group. The medicine and veterinary cost per year was also calculated by dividing the total expenditure by the number of pigs in each genetic group. Based on the phenotypic performance, HN-75 was selected in 2006 for further improvement.
2.3.2 Experiment II: Inter se mating and evaluation of selected crossbred pigs
Data were obtained from 240 pigs for production performance and from 30 breeding sows for reproduction traits over 9 years from 2006 to 2015. The selection of the sows was based on their lifetime productivity (over six generations) based on the number of piglets born over their lifetime, litter size at birth, weaning weight, litter weight at birth, and number of functional teats. Similarly, the selection of boars was based on phenotypic performance such as body conformity, presence of well-developed testicles, birth weight, weaning weight, and individual body weight as per age. The overall and generational genetic gain of the crossbred variety was estimated for different productive and reproductive parameters. After stable performance for 3–4 years in terms of productive and reproductive traits, the pigs were considered crossbred.
2.3.3 Experiment III: Performance evaluation of crossbred pigs under a smallholder production system
To evaluate the crossbreed, farmers rearing average local pigs were selected from 20 villages; 100 units of the crossbred pig were established, each unit consisting of two female animals and one male animal under the smallholder production system. Data were obtained from a total of 120 piglets for growth performance and 50 sows for reproductive traits over 3 years. The pigs were maintained in the pen system of housing made of locally available materials. Pigsties were made of either concrete, wooden planks, or bamboo poles with a tin roof. These pigs were fed different levels of concentrate feed/feed ingredients purchased from market, in addition to local agro-wastes and household kitchen wastes. Training in modern pig husbandry management with continuous technological backup was provided to the farmers as well as the provision of healthcare management. These farmers were also advised to carry out regular deworming and vaccination and to perform improved management practices, including preparation of low-cost feed formulation with locally available feed resources. The performance of crossbred piglets was monitored at monthly intervals to record their health, growth rate, and reproductive parameters. To compare their performance with existing local pigs, the same numbers of the latter were selected from different households in the same clusters/villages. The pig units were visited by project staff and monitored monthly to record their health, incidence of diseases conditions, growth rate, and reproductive parameters. These farmers were also advised to carry out regular deworming and vaccination and to follow improved management practices. Market demand as well as consumer preference for crossbred or average pigs was assessed using a pretested survey format. The 100 individual farmers interviewed on the market demand and consumer preference were scored using a scale from 1 (poor) to 5 (excellent).
2.4 Statistical analysis
All the collected data were analysed using SPSS statistical software 2008 (SPSS, 2008). Multiple ANOVA was performed to check if the means of various traits and market demand among the genetic groups were different at the 5% level of significance (p ≤ 0.05). For disease incidence, the Kruskal–Wallis H test was conducted with binary data for significant difference among the genetic groups. Duncan’s multiple range test was performed to make all pairwise comparisons among the means of traits of different genetic groups wherever a significant difference was obtained.
3 RESULTS
3.1 Experiment I: Comparative performance of crossbred pigs with different levels of genetic inheritance
The productive performance of NM, HN-50, HN-75, and HN-87.5 is presented in Table 1. Pre- and post-weaning growth rates were significantly higher in the crossbred pigs than NM. Among the crossbreds, HN-87.5 had a significantly higher pre-weaning (153.57 ± 1.71 g/day) and post-weaning growth rate (332.17 ± 1.27 g/day) than HN-50 and HN-75. Body weight at all age groups was significantly higher in HN-87.5 than other genetic groups. HN-87.5 pigs attained the highest body weight of 89.54 ± 0.97 kg at 10 months old, followed by HN-75 (83.92 ± 0.67 kg), HN-50 (65.21 ± 0.98 kg), and NM pigs (37.63 ± 0.86 kg).
TABLE 1 | Comparison of productive traits of different genetic groups of pigs (Mean ± S.E.).
[image: Table 1]Age at puberty, age at first farrowing, and inter-farrowing interval increased in the crossbred pigs with increased exotic inheritance (Table 2). Litter size at birth was significantly higher (p ≤ 0.05) in HN-87.5 compared to other genetic groups; however, no significant difference was observed for litter size at weaning. Hence, HN-87.5 was found to have a significantly lower weaning percentage than other genetic groups, mainly due to crushing, which indicates poor mothering ability. HN-75 was found to have better litter performance than HN-50, although there was no significant difference. However, traits such as age at puberty, at first conception, and at first farrowing were significantly earlier in NM than in crossbred pigs due to earlier sexual maturity.
TABLE 2 | Comparison of various reproductive traits of different genetic groups of pigs (Mean ± S.E.).
[image: Table 2]The incidence of different diseases as well as mortality patterns varies with different genetic groups of pigs (Table 3). The incidence of stillbirth and crushing of piglets was found to be significantly (p ≤ 0.05) higher in HN-87.5 pigs than other genetic groups. Similarly, piglet diarrhoea was found to be significantly (p ≤ 0.05) higher in HN-87.5 (10.23 ± 0.33%), followed by HN-75 (8.53 ± 0.31%) and HN-50 (8.24 ± 0.23%) and was lowest in NM (6.78 ± 0.11%). Pre-weaning mortality was found to be significantly higher (p ≤ 0.05) in HN-87.5 pigs (8.43 ± 0.32%) than other genetic groups. Post-weaning mortality was significantly higher (p ≤ 0.05) in HN-87.5 than in HN-50, but there was no significant difference with HN-75. However, adult mortality was significantly higher (p ≤ 0.05) in HN-87.5 than for other genetic groups. The medicine and veterinary costs per year were also highest in HN-87.5 crossbred pigs (Table 3).
TABLE 3 | Incidence (%) of major disease conditions in different genetic groups of pigs (mean ± S.E.).
[image: Table 3]It was noted from this comparative study that HN-87.5 has better productive performance than the other genetic groups; however, an exotic inheritance level that exceeds 75% can result in a longer inter-farrowing interval, poorer weaning percentage due to poorer mothering ability, higher incidence of different disease conditions, and higher mortality. Crossbred HN-75 had overall better phenotypic performance and better adaptability in terms of disease resistance. Therefore, this study selected crossbred pigs with 75% Hampshire inheritance (HN-75) for further improvement.
3.2 Experiment II: Inter se mating and evaluation of selected crossbred pigs
Selected HN-75 pigs were maintained by inter se mating and important economic traits were evaluated for their stability, along with their performance over six generations. All parameters showed gradual improvement along the generations due to selection (Table 4). The overall genetic gains for litter size at birth and at weaning were 4.59 and 5.84%, respectively. Similarly, the genetic gain for birth and weaning weight were 10.84 and 13.70%, respectively, over the six generations. Body weight at 120 days was found to have the highest overall genetic gain (22.94%) among all the parameters considered.
TABLE 4 | Improvement of performance and genetic gain of HN-75 crossbred pigs over six generations through selection (Mean ± S.E.).
[image: Table 4]3.3 Performance of the crossbred pig selected after inter se mating
The performance of the crossbred pigs in terms of production, reproduction, and carcass traits was evaluated and the results are presented in Table 5. The average pre- and post-weaning growth rates were 143.50 ± 1.22 and 320.33 ± 1.55 g/day, respectively. The pigs attained the average body weight of 86.48 ± 0.92 kg at 10 months with ranges from 77.5 to 90.7 kg. Age at first conception was found to be 331.13 ± 2.65 days (Table 5). Litter size at birth was 9.12 ± 0.55 and at weaning was 8.52 ± 0.81. The crossbred pig variety was slaughtered at 10 months old to study the carcass traits. The average dressing percentage was 73.33 ± 0.37% with back-fat thickness of 2.30 ± 0.21 cm (Table 5). Lifetime productivity of the crossbred pig was also evaluated for six farrowings (Table 6). The crossbred pigs were found to have a total litter size at birth of 51.83 ± 1.61, whereas total litter size at weaning was 47.17 ± 2.69 in the present study
TABLE 5 | Performance of crossbred pig variety.
[image: Table 5]TABLE 6 | Lifetime production traits of crossbred pig variety (N = 50).
[image: Table 6]3.4 Experiment III: Performance evaluation of crossbred pigs under a smallholder production system
For performance evaluation of the crossbred pig under a smallholder production system, data were collected from the established 100 units. The crossbred pig performed significantly better than average local pigs under the improved management condition (Table 7). Litter size at birth in the crossbred pigs was 8.87 ± 0.24 and at weaning was 8.27 ± 0.37; they were found to be significantly higher (58–65%) than local pigs under the same management in a smallholder production system. The crossbred pig attained a body weight of 82.54 ± 1.12 kg by 300 days—35–42% higher than local pigs. The number of piglets per sow per year ranged from five to seven in local pigs but 10 to 15 in the crossbred pigs—significantly higher (p < 0.01) (Table 7). Hence, the crossbred pigs performed better in terms of both production and reproduction than the local pigs. Incidences of different diseases were recorded: pre-weaning mortality did not differ significantly between crossbred and local average pigs (Supplementary Table S1). However, post-weaning and adult mortality was significantly higher (p < 0.05) in crossbred pigs than local pigs under a smallholder pig production system. For market demand between the crossbreed and local pigs based on the survey, the former had a significantly (p < 0.05) higher score than that of the latter. However, the score for consumer preference did not differ significantly between the two varieties (Table 7).
TABLE 7 | Performance of crossbred variety under a smallholder pig production system and its market demand and consumer preference.
[image: Table 7]4 DISCUSSION
Pigs occupy a unique role among the meat-producing animals of the Eastern Himalayan hill region and are the animal of choice for meat, especially for tribal populations in Northeast India (Talukdar et al., 2019). However, there is a high supply–demand gap in pork due to less-productive pigs under the traditional backyard production system (Mahajan et al., 2015). Crossbred pigs are superior on average than their purebred counterparts under harsh and diverse agro-climatic conditions (Li et al., 2022). Crossbreeding programs take advantage of the effect of individual as well as maternal and paternal heterosis (Versen et al., 2019). To enhance pig productivity in the region, there is an urgent need for the introduction of high-yielding crossbred varieties with indigenous inheritance under the changing climatic conditions. Thus, this study was conducted to develop a crossbred indigenous Niang Megha and Hampshire pig for better adaptability and performance in the hill ecosystem of the Eastern Himalayan hill region of India.
In the first phase, NM was crossed with Hampshire to develop F1 (HN-50), HN-75, and HN-87.50; their performance was evaluated to determine the optimum level of exotic inheritance for better adaptability to the region. HN-50 was better in terms of age at sexual maturity, waning percentage, and cost of veterinary medicine than other genetic groups due to higher NM inheritance in HN-50. However, HN-75 was superior to HN-50 for growth performance, litter size at birth and weaning, and for lifetime productivity (Tables 1–3). Based on productive and reproductive performance and disease incidence among the crossbred pigs, those with 75% Hampshire and 25% NM inheritance were selected for crossbreeding development.
Due to the planned crossbreeding program with rigorous selection, crossbred HN-75 pigs attained better adaptability and performance in the hill ecosystem, climatic resilient traits, promising growth rate, and good mothering ability with higher litter size (Banik et al., 2018). However, Kumar et al. (2018) observed that 50% Tamworth × 50% Desi cross pigs (T&D) performed better than 75% Hampshire × 25% Desi pigs due to their higher level of indigenous inheritance. In the present study, after inter se mating and selection of HN-75 pigs for six generations, their performance was found to gradually improve, which could be attributable to selective breeding. Production traits were found to have positive and higher genetic gains compared to reproduction traits, since production traits have higher heritability than the latter (Alam et al., 2021). Tribout et al. (2010) also reported similar results for positive genetic gain in production traits on French Large White pigs in two generations of selective breeding. After stability was established for economic traits, the HN-75 pigs were released as “Lumsniang” (lum means “hill” and sniang means “pig”) (AICRP, 2018).
The crossbred pig was evaluated for its performance and was found to perform well in productive, reproductive, and carcass traits in the hill ecosystem. It attained a body weight of 23.63 ± 0.55 kg at 3 months old and 86.48 ± 0.92 kg at 10 months old. The present finding was comparatively higher than the body weights of indigenous pigs (Niang Megha and Doom) for the corresponding ages (Khargharia et al., 2014), which is due to the Hampshire inheritance. The present findings, however, corroborate the findings of Haldar et al. (2017) who reported that the crossbred pigs—Ghungroo × Hampshire, Tripura Mali × Duroc, and Niang Megha × Hampshire—attained mean body weight of 71.58–89.50 kg at 12 months old. Reproductive performance of the crossbred pig variety was also found to be better than indigenous pigs. However, age at puberty (276.66 ± 2.23 days) and at first farrowing (425.26 ± 2.82 days) of the crossbred pigs in the present study was found to be higher than indigenous pigs like Niang Megha and Doom (Khargharia et al., 2014). The litter size at birth and weaning for the crossbred pigs was 9.02 ± 0.55 and 8.12 ± 0.81, respectively, which is higher than indigenous pigs owing to the Hampshire inheritance. Sharma et al. (2019) reported relatively higher litter size at birth and at weaning in synthetic three-way-cross pigs, Pakhribas in Nepal. Average weight at birth and weaning was found to be 0.92 ± 0.06 kg and 9.46 ± 0.81 kg. Similar findings were recorded in crossbred pigs of Large Black, Saddleback, and Hampshire in Bhutan (Thapa and Timsina, 2018). However, Sharma et al. (2019) reported higher average weight at birth and at weaning in synthetic three-way-cross pigs, Pakhribas in Nepal, than the present study. To study carcass traits, the crossbred pig variety in the present study was slaughtered at 300 days old. The carcass weight was found to be 64.27 ± 0.67 kg and was similar to that of three-way crossbred pigs (25% Large White Yorkshire × 25% Landrace × 50% Duroc) as reported by Sutha et al. (2015); however, they reported lower dressing percentage than the present study's crossbred pigs. The carcass length of these crossbred pigs was 70.62 ± 0.78 cm and back-fat thickness was 2.30 ± 0.21 cm—similar to the reports in crossbred pigs of 50% Tamworth × 50% Desi pigs of Assam by Kalita et al. (2016) and crossbred pigs of 75% Hampshire × 25% NM in Meghalaya (Indian Council of Agricultural Research, 2008). The back-fat thickness of the crossbred pigs in the present study was comparable to the findings of Zhang et al. (2019) in crossbred breeds of China obtained by crossing native Jiaxing Black Pigs with Berkshire, Duroc, and Landrace. Like this study, superior carcass quality was recently recorded in Iberian × Duroc crossbred pigs (Ortiz et al., 2021).
In the present study, the lifetime productivity of the crossbred pigs was calculated for six farrowings. The length of productive life and lifetime production traits are important in commercial swine production because of their association with stability, productivity, and cost of production (Hall et al., 2002). The crossbred pigs in the present study were found to have a total litter size at birth of 51.83 ± 1.61, which correlates well with the findings of Hall et al. (2002) in Meishan crossbred pigs but higher than Duroc crossbred pigs in the United Kingdom. The total litter size at weaning in the present study was found to be similar with that of Duroc crossbred pigs (Hall et al., 2002).
Smallholder production systems are very common in the North-eastern hill region of India, where pigs are reared utilising kitchen swill and free crop residues (Kumaresan et al., 2009). This type of pig production system is economically viable and sustainable at a household level. In the present study, the performance of the crossbred pig variety was compared with that of local average pigs reared under a smallholder production system. The crossbred variety performed significantly (p < 0.05) better than the local pigs under the same management conditions. Nath et al. (2013), comparing the performance of local with crossbred pigs under smallholder production system in Sikkim, reported similar findings. The higher incidence of disease in crossbred pigs might be associated with their slow adaptability to the existing environment (Bharati et al., 2022). Litter size at birth of the crossbred variety was 8.87 ± 0.24, whereas at weaning it was 8.27 ± 0.37, which was significantly higher (p < 0.05) than the local pigs—results due to the Hampshire inheritance. Haldar et al. (2017) reported similar litter performance in different crossbred pigs in a smallholder pig farming system for Hampshire × Ghungroo, NM × Hampshire, Duroc × Ghungroo, Duroc × Tripura Mali, and Tamworth × Ranchi local pigs. In the present study, the crossbred variety attained a body weight of 82.54 ± 1.12 kg by 300 days under a smallholder production system, which corroborates the findings of Haldar et al. (2017) in NM × Hampshire crossbreds in smallholder farms. Hence, rearing the crossbred pig variety under a smallholder production system was better in terms of production and reproduction performance and resulted in more profitability than average local pigs under the same management system.
5 CONCLUSION
The Lumsniang crossbred pig variety performed better in terms of productive and reproductive traits, besides having better adaptability in the hill ecosystem, over the existing indigenous/average pigs in the Eastern Himalayan hill region. Furthermore, the crossbred pigs performed better than local pigs under a low-input traditional production system. Large-scale dissemination of the crossbred variety in the smallholder production system is possible by introducing nuclear breeding farms at a district level in collaboration with state departments. Large-scale propagation of the crossbred pig variety could lead to increases in production, productivity, livelihood, and income of the region's farmers.
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The African livestock sector plays a key role in improving the livelihoods of people through the supply of food, improved nutrition and consequently health. However, its impact on the economy of the people and contribution to national GDP is highly variable and generally below its potential. This study was conducted to assess the current state of livestock phenomics and genetic evaluation methods being used across the continent, the main challenges, and to demonstrate the effects of various genetic models on the accuracy and rate of genetic gain that could be achieved. An online survey of livestock experts, academics, scientists, national focal points for animal genetic resources, policymakers, extension agents and animal breeding industry was conducted in 38 African countries. The results revealed 1) limited national livestock identification and data recording systems, 2) limited data on livestock production and health traits and genomic information, 3) mass selection was the common method used for genetic improvement with very limited application of genetic and genomic-based selection and evaluation, 4) limited human capacity, infrastructure, and funding for livestock genetic improvement programmes, as well as enabling animal breeding policies. A joint genetic evaluation of Holstein-Friesian using pooled data from Kenya and South Africa was piloted. The pilot analysis yielded higher accuracy of prediction of breeding values, pointing to possibility of higher genetic gains that could be achieved and demonstrating the potential power of multi-country evaluations: Kenya benefited on the 305-days milk yield and the age at first calving and South Africa on the age at first calving and the first calving interval. The findings from this study will help in developing harmonized protocols for animal identification, livestock data recording, and genetic evaluations (both national and across-countries) as well as in designing subsequent capacity building and training programmes for animal breeders and livestock farmers in Africa. National governments need to put in place enabling policies, the necessary infrastructure and funding for national and across country collaborations for a joint genetic evaluation which will revolutionize the livestock genetic improvement in Africa.
Keywords: animal identification, livestock data recording, genetic evaluation, ICT and mobile technologies, Africa
1 INTRODUCTION
African livestock sector plays an important role by contributing to the livelihoods of households as well as food, nutrition security and health. According to FAOSTAT (FAOSTAT, 2019), Africa’s total livestock population was estimated in 2018 at 2 billion poultry birds (chickens, guinea fowl, turkeys, ducks, and pigeons), 438 million goats, 384 million sheep, around 356 million cattle, 40.5 million pigs, nearly 31 million camels, and 38 million equines (donkeys, horses and mules). This livestock population comprises diverse breeds, well adapted to their environments with more than 70% under traditional production system (Ibeagha-Awemu et al., 2019), and mostly kept by the rural poor farmers. Most African livestock breeds have not been systematically improved and are characterized by low productivity. At this rate, the African livestock systems will not meet the increasing demand for animal proteins by a rapidly growing human population, urbanization and income growth (Thornton, 2010; OECD, 2018). However, in high income countries in the global North, genetic improvement has, over the past 70 years, led to dramatic gains in dairy, poultry and other commodities. To achieve these extraordinary results, structured and well-established livestock breeding programmes have been underpinned by adequate infrastructure, trained personnel, progressive farmers with access to inputs and markets. Unfortunately, the design and application of successful breeding programmes in Africa have been limited (Ibeagha-Awemu et al., 2019; Ouédraogo et al., 2021; Opoola et al., 2019; Missanjo, 2010; FAO, 2015).
Phenotypes play an important role in understanding the genetic basis of livestock performance and are essential in informing and ensuring effective herd and flock management (Mrode et al., 2020). Phenomics can be defined as the application of technologies to collect phenotypes easily, cheaply, and in large volume. Phenotypes combined with pedigree or genomic information help breeders to identify and select genetically superior animals to be parents of the next-generation, thus driving sustainable genetic improvement through genetic evaluation. Geneticists use statistical models to separate genetic effects from environmental effects by modelling the genetic effect as random with pedigree or genomic relationships between animals and modelling a herd or herd-season effects as fixed or random contemporary groups (Mrode, 2014).
Studies have shown that accuracy of predicted genetic merits of animals, and hence the genetic gains that could be realized, depend to some extent on different genetic models used for estimation (Tesfa et al., 2004; Tesfa and Garikipati, 2014; Shamia and El-Tajori, 2019; Opoola et al., 2020; Tshilate et al., 2021). Phenomics and genetic evaluation methods, and results obtained, are therefore fundamental at farm level for profitability; at the national level for effective agricultural policies formulation, and at the continental level for across country collaboration for livestock improvement (Mrode et al., 2020).
However, in most African countries, phenotyping or performance recording has always been a major challenge due limited investments in on-farm recording (Trivedi, 1998; Ojango et al., 2017; Tshilate et al., 2021). Livestock performance recording and genetic evaluation have been initiated and are on-going in a limited number of countries in Africa, with different levels of success and rigour. However, the current status of livestock performance recording, the availability of data, systems of management of such data, the genetic evaluations methods used as well as the challenges faced by such efforts are yet to be fully documented. Better understanding of the key factors that affect phenomics and genetic/genomic evaluations in African countries will inform the development of mitigation strategies as well as the design of livestock breeding programmes that meet the current and future needs of the continent.
The aim of this study was therefore to assess the current status of phenomics and other data systems and recording, livestock genetic evaluation approaches in Africa and to demonstrate the effects of various genetic models on the accuracy and rate of genetic gain that could be achieved in livestock.
2 MATERIALS AND METHODS
2.1 Data collection
2.1.1 Survey
A survey was carried out in 2020 using an online questionnaire, telephone and skype interviews. The questionnaire recipients included: 1) current Food and Agriculture Organization of the United Nations (FAO) national focal points for animal genetic resources, 2) individuals identified from lists of participants of scientific conferences and workshops on livestock production and genetics held in Africa from 2000 to 2019. The conferences and workshops were randomly selected and all the names on the delegate lists were contacted as respondents. The survey questionnaire was sent to 501 respondents from the 54 African countries. The contacted delegates were predominantly scientists and other professionals in animal/veterinary science, animal breeders and geneticists affiliated with government livestock ministries, research institutes, universities, farmers associations and NGO’s . The e-survey was active for a period of 68 days. A reminder e-mail was sent every 15 days after first dispatch. The survey questions were a combination of open-ended, close-ended, structured and unstructured questions (Supplementary Data Sheet S1). The main themes in the survey included: livestock species, genotypes (breeds and crossbreeds) in use, human capacity in animal science, livestock genetic improvement initiatives, data recording and animal ranking systems, genetic evaluation methods being used and challenges affecting livestock genetic evaluations, the available livestock data and if the custodians of such data are willing to be supported to use the same data to undertake better genetic evaluation and multi-country collaborations for livestock genetic improvement in Africa. Responses were obtained from 92 respondents in 38 African countries across the five regions. Northern Africa (Algeria, Egypt, Mauritania, Morocco, and Tunisia), Central Africa (Cameroon, Chad, Congo, Democratic Republic of Congo, Gabon), Southern Africa (Angola, Malawi, Mozambique, South Africa, Zambia, and Zimbabwe), Eastern Africa (Comoros, Djibouti, Ethiopia, Kenya, Rwanda, Seychelles, Sudan, Tanzania, and Uganda) and Western Africa (Benin, Burkina Faso, Cabo Verde, Côte d'Ivoire, The Gambia, Ghana, Liberia, Mali, Niger, Nigeria, Senegal, Sierra Leone, and Togo) (Supplementary Table S1).
2.1.2 Joint genetic analysis
The data used for joint genetic evaluation was reported by the respondents. Thus, performance and pedigree data were obtained from the Agricultural Research Council (ARC) in Pretoria, South Africa and the Kenya Livestock Breeders Association (KLBA), Kenya. In summary, the data comprised 305-day milk yield (MY305) records from 2,333 and 25,208 first lactation of Holstein-Friesian cows in Kenya (1979–2014) and South Africa (1997–2014), respectively. The pedigree data comprised 103 and 505 sires with daughter performance records in Kenya and South Africa, respectively. The common sires between both countries were 40. The reproduction traits were age at first calving (AFC, months) and the interval between first and second calving (CI1, months).
2.2 Statistical analysis
Survey data were analysed by country and region using descriptive statistics tools of the R software package (R Core Team, 2013). Proportions were estimated for each of the studied variables in the five regions specified. The proportions were averaged over regions without considering any heterogeneity among respondents within a given region. The Chi-square test was used to test for differences between observed proportions in the five African regions. Z-test was used for pairwise comparison between proportions.
In the joint-genetic analysis, a multi-trait animal model was used in Blupf90 (Misztal et al., 2018) to analyse first lactation MY305, AFC and CI1 within country using the model: 
[image: image]
Where: Yijk = an observation of MY305, AFC or CI1; Hj = fixed effect of herd j in which animal i was born; HYSk = fixed effect of the kth herd-year-season of production; age (cov) = age as covariate; ai = random additive genetic effect of animal i; and eijk = random error term. The calving age was not included in the analysis of AFC. The across-country analysis was implemented by pooling data from the two countries using the model similar to Eq. 1 with an additional fixed effect of country. Genetic gains per generation were predicted for each country and trait by using the Breeders’ equation (Falconer and Mackay, 1996): R = i. ρ. σg.
Where R: Response to selection or predicted genetic gain per generation, i: Selection intensity, ρ: Accuracy of selection (square root of reliability of sire EBVs), σ g: genetic standard deviation of studied traits. The R was based on sire selection only within- and across country (Rendel and Robertson, 1950). Different selection intensities were tested based on selection of the top 5, 10, 25, 50, 75, and 100 sires within- and across-country. Predicted levels of genetic gain achievable within-country was compared to the predicted genetic gains across-countries.
3 RESULTS
3.1 Current state of animal identification and data recording in Africa
At the herd level, Ear tagging (33.1%) was the most used animal identification method (p < 0.05) followed by branding (17.6%), ear notching (16.3%), ear tattooing and number tagging (11%) while the tribal signs (0.4%) and hindquarter tattooing (0.4%) were the least frequent animal identification methods. Only 18.5% of the respondents mentioned existence of national animal identification system (NAIS) in their respective countries (Egypt, Morocco, Mozambique, Nigeria, South Africa, Tanzania, Tunisia and Zimbabwe). No NAIS was mentioned in Central Africa. However, most of the mentioned NAISs are still rudimentary based on ear tags. Furthermore, it was reported that farmers are not interested to participate in the national animal identification system. The NAISs reported by the respondents are described below.
In Egypt, animal identification is limited to state organisations and farms. This is part of the preservation of the purebred and developed chickens in some governmental institutional stations and projects (in vivo) and in National Gene Bank (in vitro). In Morocco, the electronic chips identification for goat and sheep is managed by the ministry of agriculture. All goat and sheep farmers are recommended to use E-chips for identification of their animals. Horses are ear-tagged. In Tunisia, two NAISs were reported: the identification system for cattle, sheep, goat and camel based on ear tagging and managed by “Office de l' Elevage et des Pâturages (OEP)” and the identification system for horses based on electronic chips and managed by The National Foundation for the Improvement of The Horses Breed (FNARC). In Nigeria, the animal identification system is not well developed. However, there is a recent Livestock24 programme (https://livestock247.com/) that tracks animals from farm, livestock market and slaughter houses in Nigeria. In Tanzania, the Tanzania National Animal Identification and Traceability System (TANLITS; https://asdp.kilimo.go.tz/) has been recently developed. Thus, ear tagging or branding of unique national ID has been introduced but is yet to be practiced by all farmers. TANLITS is a web-based platform developed to drive the animal identification, registration and traceability Act Chapter 184 of the Tanzania laws and its regulations. The purposes of TANLITS include controlling livestock theft and animal diseases, to regulate movement of livestock, enhancing food safety assurance and promote access to livestock markets. In South Africa, systematic animal identification of cattle was reported by respondents. The Department of Agriculture, Land and Rural Development manages the South African NAIS. Farmers are given a branding criterion and from age of 7 months any cattle born in South Africa needs to be branded. The South Africa Studbook Association also manage animal identification through the registration and recording of the birth and ownership information of purebred animals and continuously update these animals’ pedigree information. In Mozambique, a national ear tag identification system was reported where a combination of letters (indicating year) and numbers indicating order of birth in the group are used to tag animals. Some units also use tattoos. However, the majority of farmers in Mozambique do not identify their animals. In Zimbabwe, a NAIS exists for Tuli cattle and is managed by the Livestock Identification Trust (LIT). Farms pay for tag and the LIT generates tag numbers. Tags give traceability and are specific to each farm. Each region with its own brand and each farm within a region with its own ID. The reported livestock data in Africa and the custodians are described below.
From the survey, 58.7% of respondents mentioned ongoing livestock genetic improvement programmes or projects with performance and pedigree and/or genotypic data available in their respective countries (Algeria, Benin, Burkina Faso, Cameroon, Chad, Côte d'Ivoire, Djibouti, DR Congo, Egypt, Ethiopia, Kenya, Malawi, Mali, Morocco, Niger, Nigeria, Rwanda, Senegal, South Africa, Sudan, Tanzania, The Gambia, Togo, Zambia, and Zimbabwe). Out of the positive responses, Eastern Africa (76.2%) and Southern Africa (75%) had the highest proportions of ongoing genetic improvement initiatives followed by Central Africa (60%), Western Africa (52.6%) and the Northern Africa (45.4%) had the lowest (p < 0.01). The available data per species and regions are shown in Figure 1.
[image: Figure 1]FIGURE 1 | Proportion of livestock species with both performance and pedigree/genotypic data recorded (p < 0.01).
The reported data were recorded mostly on dairy cattle (22.9%) followed by beef cattle (19.1%), chicken (16.8%), sheep (16.8%), goats (16%), pigs (5.3%), guinea fowl (2.3%) and horses (0.8%). In Western Africa, chicken was the most reported specie with production and pedigree data while dairy cattle, beef cattle and chicken were the most reported in Central Africa. Beef cattle was the most reported in Southern Africa. Dairy cattle and sheep were the most reported in Eastern and Northern Africa respectively. As shown in Figure 2, the most recorded data in Africa were on growth traits (19.9%), followed by pedigrees (19%), reproduction data (17.8%), milk traits data (12.6%), herd health data (8.7%), carcass and meat traits data (7.8%), low density genomic data (4.8%), high density genomic data (4.3%), economic data (3%) and egg laying performance (0.9%). Body condition score, eggs quality and wool quality were the least recorded traits (0.4%). There were significant differences across traits (p < 0.001). The most recorded traits in Western Africa were growth traits (23.7%) followed by reproduction traits (19.7%) and pedigree data (17.1%). In Eastern Africa, milk traits (19.2%), growth traits (19.2%), reproduction data (16.7%) and pedigrees (15.4%) were the most reported. In Northern Africa, reproduction data (27.8%), pedigree (22.2%) and Growth traits (16.7%) were the most reported while pedigree data (29.8%), growth traits (19.1%) and reproduction data (12.8%) were the most reported in Southern Africa. In Central Africa, milk traits (25%), reproduction data (16.7%), health data (16.7%) and economic data (16.7%) were the most reported.
[image: Figure 2]FIGURE 2 | Proportion of available livestock data in Africa (p < 0.001).
The most important custodians of the reported data in Africa were research institutes (48.4%) followed by government (26.6%), universities (7.8%), NGOs (6.3%), breeders/farmers association (6.3%), industries (3.1%) and individual farmers (1.6%), with significant differences across custodians (p < 0.001) as shown in Figure 3. In Western, Eastern and Northern Africa, research institutes were the most important custodians. In Central and Southern Africa, the available data were equally detained by research institute and government.
[image: Figure 3]FIGURE 3 | Custodians of reported livestock data in Africa (p < 0.001).
3.2 Genetic evaluation and animal ranking approaches in Africa
The livestock genetic evaluation methods being used in Africa are shown in Figure 4. The selection methods being used are mostly based on mass selection based on phenotypic data (53.9%) followed by genetic evaluation, including pedigree information (34.3%) and genomic evaluation (11.8%). There were significant differences between methods (p < 0.001). A similar trend was observed within each region, except in Central Africa where selection was based only on phenotypic performance data. Most respondents (90.7%) who have reported availability of livestock data believed that it is a good idea to share such data. Out of this number, 74.1% opined that the custodians of the reported data would be willing to be supported to use the same data to undertake better genetic evaluations. However, some (25.9%) of the respondents believe that the custodians may not be willing to be supported.
[image: Figure 4]FIGURE 4 | Proportions of livestock genetic evaluation methods in Africa. BGE, Based on Genetic evaluation; BGS, Based on Genomic evaluation; BMS, Based on mass selection; a,b,c p < 0.001.
Only 13% (12 out 92) of the respondents mentioned ongoing national animal ranking systems (NARS) in their respective countries (Côte d'Ivoire, Morocco, Niger, Nigeria, South Africa, Tanzania, Kenya, Tunisia, Uganda, and Zimbabwe) as presented in Table 1. No NARS was reported by Central African countries. The reported NARSs were based on genetic evaluation (77.8%), mass selection based on phenotypic performance data (66.7%) and genomic evaluation (22.2%). In Côte d'Ivoire and Niger, the national animal ranking systems are based solely on performance data (growth and milk traits). In Morocco, the best horses are ranked at the national level by either considering phenotypic performance or by integrating the pedigree (genetic) information. South Africa has a more advanced NARS where cattle are ranked using quantitative genetic models that integrate pedigree information and the genomic data to some extents. In Tanzania, the national animal ranking system for cattle is based on performance, pedigree, and genomic evaluation especially for dairy cattle. In Kenya, the Kenya Animal Genetic Resources Centre (KAGRC) does regular bull evaluations using performance and pedigree information. The national animal ranking system in Tunisia focused on cattle by using pedigree-based best linear unbiased prediction (BLUP) models. The animals in the Herdbook database in Zimbabwe are ranked using pedigree-based breeding value (EBVs) and this is mainly for the Zimbabwean Tuli Beef breed. In Uganda, it was reported that performances and pedigree data of individual animals are recorded over a period of time. The animals are then ranked either based on the phenotypic performance data only or pedigree information combined with performance data. The national animal ranking system in Nigeria was not described by the respondents. They believe that the information can be obtained from the National Animal Production Research Institute (NAPRI) or from the Federal Ministry of Agriculture and Rural Development (FMARD) in Nigeria.
TABLE 1 | Description of reported national animal ranking systems in Africa.
[image: Table 1]3.3 Potential for multi-country genetic evaluation and impact on genetic progress
The potential for multi-country genetic evaluation in Africa was assessed through the survey. Most of the respondents (92.4%) believe that across-country genetic evaluation will have some mileage in improving livestock production in Africa. According to these respondents, the reasons for a potential success in across-country genetic evaluation included 1) sharing of resources and benefits (42.4%), 2) existence of transboundary breeds across countries and regions (34.1%), 3) large reference population will give high accurate predictions making genomic selection possible (15.3%), 4) similar environmental conditions and breeding challenges across countries (8.2%), 5) high and fast genetic gain (4.7%), 6) existing high livestock genetic diversity in Africa (4.7%), 7) capacity of African diaspora already involved in across country genetic evaluation (3.5%) and 8) willingness to implementing multi-country genetic evaluation in Africa (1.2%) were expressed. However, some of the respondents (7.6%) mentioned that multi-country genetic evaluation would not work in the African livestock production systems, mainly because of: 1) limited genetic material exchange and hence lack of herd connectedness between countries (42.9%), 2) lack of functional national animal identification, data recording and evaluation systems (42.9%), 3) lack of required infrastructure for across country genetic evaluation (28.6%), 4) limited international collaboration (ICAR, Interbull) in Africa (14.3%), 5) lack of human capacity (14.3%), 6) lack of enabling breeding policies for across country genetic evaluation (14.3%) and 7) scepticism and concerns about data sharing (14.3%). Two respondents mentioned that multi-country genetic evaluation for poultry, pigs and small ruminants can be challenging, costly and not feasible.
Using the reported dairy performance and pedigree data from Holstein-Friesian in South Africa and Kenya, we assessed the impact of different genetic evaluation approaches and models, on accuracy and the rate of genetic progress that could be achieved for 305-day milk yield (MY305), age at first calving (AFC) and first calving interval (CI1) (Tables 2, 3). The results showed that the accuracies of prediction in multi-traits across-country genetic evaluation were higher than the accuracies of within country genetic evaluation for MY305 (0.7 vs. 0.56) and AFC (0.78 vs. 0.49) in Kenya and for AFC in South Africa (0.78 vs. 0.76) (Table 3). Regardless of proportion of selected sires (Top 5–100 sires), selection based on multi-country genetic evaluation resulted in higher and favourable gains for MY305 in first lactation in Kenya and for AFC in both Kenya and South Africa. Selection based on the top 50 to 100 sires in across-country genetic evaluation resulted in highest responses for all the studied traits in South Africa (Table 3). Kenya would only achieve 4%–73% and 3%–52% of genetic responses respectively for MY305 and AFC from within country genetic evaluations compared to multi-country. This translates to a benefit of 27%–96% and 48%–97% respectively for MY305 and AFC. Furthermore, South Africa would only achieve 63%–66% and 88%–92% of genetic responses respectively for AFC and CI1 from within country genetic evaluations compared to a multi-country. This translates to a benefit of 34%–37% and 8%–12% respectively for AFC and CI1. Kenya would benefit more from multi-country genetic evaluation of MY305 and AFC compared to South Africa.
TABLE 2 | Predicted genetic gain (PGG) per generation from sire selection only (i.e., the top 5–25 sires are selected) for 305-day milk yield (MY305, Kg), age at first calving (AFC) and first calving interval (CI1) in first lactation from multi-trait within- and across-country genetic selection (Holstein-Friesians) in Kenya (KE) and South Africa (SA) Top 5–25 sires.
[image: Table 2]TABLE 3 | Predicted genetic gain (PGG) per generation from sire selection only (i.e., the top 50–100 sires are selected) for 305-day milk yield (MY305, Kg), age at first calving (AFC) and first calving interval (CI1) in first lactation from multi-trait within- and across-country genetic selection (Holstein-Friesians) in Kenya (KE) and South Africa (SA) Top 50–100 sire.
[image: Table 3]3.4 Challenges in livestock phenomics and genetic evaluations in Africa
Respondents identified the main challenges affecting livestock data recording and genetic evaluation in Africa. The challenges varied across countries and regions. At the continental level, the following challenges were cited: 1) lack and/or inadequate human capacity and skills in livestock genetic evaluation (60.9%),2) lack of required infrastructure for livestock data recording and genetic evaluation (42.4%), 3) inadequate and lack of governmental funding for livestock genetic evaluation (39.1%), 4) lack of enabling animal breeding policies (32.6%), 5) poor animal identification and data recording (23.9%), and 6) lack of systematic animal performance and pedigree data recording (22.8%) among others. There was significant differences in the reported challenges across the five African regions (p < 0.05). The lack of human capacity in livestock genetic evaluation was the main challenge in Eastern Africa (85.7%), Southern Africa (66.7%) and Western Africa (60.5%). The major challenge in Northern Africa and Central Africa were poor animal identification and data recording (54.5%) and lack of government funding for livestock data recording and genetic evaluation (60%), respectively. The respondents mentioned the following challenges to potential implementation of multi-country genetic evaluation in Africa: 1) human capacity for multi-country genetic evaluation and management (28.4%) 2) differences in national breeding policies (26.1%), 3) lack of framework for joint funding for such an initiative (21.6%),4) required infrastructure for across country genetic evaluation (20.5%), 5) absence of standardization of data collection tools and methods (17%),6) differences in breeding goals/traits of interests among countries (15.9%) and 7) data access and benefits sharing issues across countries (14.8%), among others.
4 DISCUSSION
This study has highlighted, for the first time, the current state of livestock phenomics and genetic evaluation approaches in Africa, the main challenges at the national, sub-regional and continental levels. From this, possible solutions can be inferred. We further demonstrated that the multi-country genetic evaluation in South African and Kenyan Holstein-Friesian cattle increased accuracy of prediction and the expected genetic gains. The major challenges highlighted by the current study were related to animal identification and data recording systems, human capacity to analyse the data, infrastructure, funding, and animal breeding policies. Similar issues have been previously reported in dairy cattle and other livestock species in Africa (Zonabend et al., 2013; Wurzinger et al., 2014; Ibeagha-Awemu et al., 2019; Okpeku et al., 2019; Opoola et al., 2019; Rege et al., 2022). Although most of the respondents described themselves as experts in the livestock sector, it is important to acknowledge that some of them may not be fully aware of the reality in the field, and the increasingly available tools and methods.
4.1 Current state of phenomics and genetic evaluation approaches in Africa
Systematic animal identification and routine capture of livestock production and pedigree data are necessary for the prediction of relative genetic merits of animals and provide the required information needed to inform herd management and improvement (Mrode et al., 2020). This study has confirmed that, in many of the African countries, animal identification, pedigree and performance recording systems are generally absent (van Marle-Köster et al., 2014). In the African smallholders and even commercial production systems, data collection and storage still pose great challenges (Ibeagha-Awemu et al., 2019). Thus, it will be difficult to identify high genetic merit individuals that are both highly adapted to smallholder farmers’ systems and have optimal productivity for the environment. Some performance recording and genetic evaluation programmes exist in African smallholder farming systems. These include the African Dairy Genetic Gains Programme (ADGG) that routinely collect on-farm herd health, milk production traits and genetic information on dairy cattle in Tanzania, Ethiopia, Kenya, Uganda and Rwanda and digitally shares feedback of the findings from the collected data to farmers (ILRI, 2021). The ADGG programme has successfully implemented genomic selection in pure and crossbred dairy cattle in Eastern Africa (Marshall et al., 2019; Burrow et al., 2021; Mrode et al., 2021) and this could be extended to other African countries and regions. This will require important genomic and performance data generation across the continent. The reasons for successful genomic selection by ADGG include closer engagement of the farmers and co-definition of the problems, hence co-ownership of the strategies to solving the problems of lack of access to appropriate dairy seedstocks. Secondly, immediate use of the results from analyses and sharing these with the farmers help to inform their herd managements and profitability. The farmers therefore see the relevance of the recording and their roles in the generation of the data. First initiated in the year 2016, ADGG is relatively young, and it is still benefiting from donor support. Although much thought has been given to sustainability considerations, there is still uncertainty on what will happen when the donor support stops.
As observed in the present study, South Africa has a well-established cattle data recording and ranking system. It has been previously reported that South Africa is the only sub-Saharan Africa country having a sustainable national animal identification and performance recording scheme, as well as routine genetic evaluation programmes (Ramatsoma et al., 2015). South Africa could therefore serve as a model for other African countries for national animal identification and ranking systems. It must be emphasized that the systems in South Africa are focused on and driven by (large and medium) commercial farmers. The country could, therefore, benefit from collaborations with countries which have developed genetic evaluation models geared to and/or inclusive of smallholders. Other cases of successful animal data recording and genetic evaluation systems are the community-based breeding programmes (CBBP) for sheep and goats in Ethiopia run by ICARDA and partners where data are collected using AniCapture tool and stored at AniCloud database (https://anicloud.com), and the CBBP for goats in Tanzania, Uganda and Malawi. The successful data recording by ADGG and the CBBP programmes were due to innovative use of mobile technologies and ICT tools as reviewed by Mrode et al. (2020). The adoption of the ADGG approach to fit the specific local country needs, realities and environments in sustainable ways is needed. Therefore, understanding and embracing the partnerships between farmers/farmer organizations, sub-national, national, key private sector actors, local and national governments as well as the development partners are critical to the success of the on-going data recording systems in Africa and would be expanded to other programs.
The challenge of inadequate and lack of human capacity to undertake genetic evaluation is real (Rege et al., 2022). The adoption of mass selection methods by the majority of African animal breeders is partly due to the lack of animal identification, human capacity to handle pedigree and genomic data as well as the limited financial resourcing of livestock improvement programmes. In the present study, in regions where human capacity is lower there was a high dominance of phenotypic performance-based selection compared to pedigree-based and genomic evaluations. Furthermore, sub-regions with higher available livestock data (Eastern, Western, and Southern) lack human capacity to carry out livestock genetic evaluation. Past efforts to tackle the human capacity challenge has included the development of animal genetic training resources and “training the trainers” programme where more than 100 scientists from 25 countries in sub-Saharan Africa and 15 countries in South and South East Asia were trained through workshops and refresher courses (Ojango et al., 2009). The recently established African Animal Breeding Network (AABNet, http://animalbreeding-africa.org/) could also build on previous efforts to address the human capacity issue through annual and purposely designed short term training courses in animal breeding, quantitative genetics, genomics and bioinformatics. The tailor-made short courses will emphasize theoretical concepts, problem-solving and hands-on training. It is envisaged that, in addition to strengthening of the capacity of scientists AABNet will work with strategically selected individual countries to support the development of long-term genetic improvement programmes, including performance recording, pedigree information, genotyping to support genetic analysis, genomic prediction, inter alia. The case farms identified in target countries as part of the initiative will be supported by the trained scientists who will help them to select and disseminate genetically superior animals during implementation phase of breeding programmes. Systems for animal performance recording that provide feedbacks to farmers need to be developed with supportive policies to enable their large-scale adoption (Opoola et al., 2019). In southern and eastern African regions, it has been reported that institutional set up to support animal breeding programmes is fragmented and that livestock recording for the purpose of research and development breeding practices is lacking (Zonabend et al., 2013). Similar issues have been observed in the other African sub-regions in the present study. There is therefore a need for collaboration between countries and regions to tackle the common issues hindering livestock genetic improvement in the continent. This will require that African governments commit to setting aside a certain percentage of their livestock budgets to purchase state-of-the-art equipment and upgrade the existing ones with strong institutional support. At the same time there is need to strengthen livestock policies and ensure that they are adequately implemented.
4.2 Potential for across country genetic evaluation
Most of the respondents believe that across-country genetic evaluation in Africa will have an important mileage in livestock sector. Across-country evaluation will build genetic evaluation capacities of countries where such capacities are lacking. This will also partly solve the resource challenge as by pooling resources, the countries with inadequate resources can be supported by those who have, including international institutions (e.g., ICAR, AABNet, and ADGG). In addition to solving the inadequacy of human capacity, across country evaluation will enable more rigour and higher reliabilities of the genetic predictions. For example, the current study showed that Kenya benefitted more from selecting sires across different countries than using only its own national sires for genetic evaluation of MY305 and AFC while South Africa benefitted for AFC and CI1. The benefits from across country genetic evaluations in cattle have been well demonstrated in developed countries (Banos and Smith, 1991; Hammami et al., 2009; Nilforooshan, 2011). In a recent study in Sub-Saharan Africa, Opoola et al. (2020) utilized the across country method to examine MY305, AFC and CI1 in Holstein-Friesian and Jersey cattle breeds in Zimbabwe, South Africa and Kenya. Results showed that the genetic variance and heritability were not always estimable within-country but were significantly different from zero in the across country evaluation, and there was greater predicted genetic gains in all traits from the across-country genetic evaluation due to greater accuracy of selection compared to within-country. However, Opoola et al. (2020) used single trait animal model in contrast to the multi-trait analysis implemented in the present study. The multi-trait analyses take into consideration the genetic correlation between the studied traits. Furthermore, all previous attempts of across county genetic evaluation assumed a genetic correlation of unity and did not take into consideration the genotype-by-environment effect as the classical method implemented by Interbull. The greater predicted genetic gains in across country evaluation is due to the existence of genetic links across countries. For the computation of genetic gains only the sire pathways have been considered. Therefore, the rate of genetic gain reported in the present study represents approximately about 66% of possible genetic progress (Schmidt and Vleck, 1974). This implies that the benefit from across country genetic evaluation would even be higher if cows were also selected. Across country genetic evaluation requires strong expertise and collaborations (Opoola et al., 2020). Unfortunately, South Africa is the only African country participating in the Interbull of international Committee for Animal Recording (ICAR). Efforts need to be made to get other African countries to join the Interbull international genetic evaluation.
As alluded to above, a multi-country breeding programme based on joint genetic evaluation would be possible when there are genetic links across countries, and would provide a platform for accelerated genetic gains through selection and germplasm exchange between sub-Saharan African countries (Opoola et al., 2020). However, the lack of herd connectedness and pedigree data recording in African traditional production systems may limit the application of the classical multiple across country genetic evaluation in African indigenous livestock. This is where the use of genomic methodologies would be very useful. For example, a genomic matrix can be used to assess relationships allowing estimation of genomic breeding values to enable selection of superior parents to drive improvement. Genomic selection also offers the advantage of selecting young animals and hence reducing generation interval compared to the traditional approach. Therefore, across-country genomic evaluation could be the way for across country genetic evaluation in African indigenous livestock breeds. A recent study, has tested the feasibility of multiple country and breed genomic prediction of tick resistance in seven beef cattle breeds including the South African indigenous Nguni cattle breed (Cardoso et al., 2021). The results showed that genomic multi-traits approach improved predictive ability for resistance to ticks and could be used to improve tick resistance of the studied populations (Cardoso et al., 2021). Moreover, the ADGG programme is generating data across Ethiopia, Tanzania, Kenya, Uganda, and Rwanda using genomic evaluation methods and could serve as a testbed for multiple across country genomic evaluation in Africa. A recent study examining ADGG data between Ethiopia and Tanzania indicated a very low genetic correlation of about 0.13 for milk yield between the two countries and highlighted the need to deliberately exchange top ranking bulls between the countries (Mrode et al., 2022). Furthermore, the present study revealed the existence of livestock performance (milk traits, growth, reproduction, health, etc.), pedigree, genetic information data on various cattle breeds across African countries and sub-regions as well as the custodians of these data. As a next step, AABNet could put in place a Memorandum of Understanding between data custodians across countries. The governments and custodians of the available data in each country should be sensitized about the benefits of across country genetic evaluation and about sharing resources and capacity to carry out across-country genetic evaluation for common traits as done in western countries. The diversity displayed by African indigenous livestock breeds as well as the existence of capacity in the African diaspora already involved in the ICAR international genetic evaluation, and the establishment of AABNet, are important opportunities to be exploited to rapidly promote genetic improvement between African countries. Although the difference in breeding goals between countries has been listed as a challenge by respondents, scenarios can be assumed and analyses that speak to the similarities can be undertaken. A sustainable animal breeding programme in Africa would require a strong national and regional collaboration and collective actions by all the stakeholders (farmers, breed societies, research institutes, universities, governments, private businesses, and NGOs) working together to achieve a common goal as illustrated by Ibeagha-Awemu et al. (2019).
4.3 Future approaches for livestock phenomics and genetic evaluation in Africa
Application of ICT and mobile devices to record performance data on-farm in dairy cattle and small ruminants is already happening in Africa (Mrode et al., 2020). In South Africa successful attempts have been made in the use of mobile platforms and low-cost censors for precision phenotyping in both beef and dairy cattle (Visser et al., 2020). The current ICT and mobile technologies used for livestock data recording are still relying on internet which is a big challenge in Africa. Going forward, livestock phenomics and genetic evaluation in the continent will need to include digital tools and ICT that do not rely on internet (Mrode et al., 2020). Availability of requisite human capacity, infrastructure, appropriate animal breeding policies, and adequate financial resources will be required to underpin functional and sustainable genetic evaluation systems. These modest successes to date, have been made by countries working independently, mostly in donor-funded, time-bound projects. There is a need to build on these efforts to establish a continental initiative that leverages on potential complementarities and synergies. Moreover, most the traits currently being recorded are easy to measure. These include milk yield, live weights based on heart girth, body condition score, growth traits, age at calving and calving interval. The more difficult traits to measure such as residual feed efficiency, feed conversion ratio and disease resistance are yet to be recorded using the mobile technologies. There will be need to develop harmonized standards for livestock identification and precision phenotyping using ICAR as a reference. Given that there are already many Apps that are being used to collect data from farmers’ herds, there is a need for collaboration around data collection and sharing using agreed protocols and standards, and governed by formalized agreements, first within countries, and deploying more robust management tools (e.g., block chains) and automation of database links via APIs (Application Programming Interface).
There is also scope for inclusion of georeferencing of herds to enable connection of collected performance data with related global meta-weather data to estimate the effects of climatic conditions on productivity and hence integrate climate resilience in livestock breeding objectives. In addition, a combination of mobile telephony and collection of e GPS coordinates of farms can provide for a powerful spatial modelling to identify superior animals in smallholder farms (Selle et al., 2020), thus overcoming some of the current challenges associated with low connectedness among farms which are also widely scattered and difficult to reach. AABNet could play an important role in advancing the livestock phenomics and genetic evaluation agenda in the continent by facilitating the development of harmonized livestock identification and data recording systems for the willing African countries and supporting them to carry out their national routine genetic evaluation.
Availability of appropriate technical capacity is crucial for functioning genetic improvement programmes. Many African University curricular have not been responsive to the rapid developments in technologies and the opportunities these provide for animal genetic evaluations and overall design and execution of breeding programmes. As alluded to above, the mission of AABNet places it in good place to facilitate the retooling of African animal geneticists and breeders as well as private sector players, including farmers, to equip them with what they need to drive genetic improvement programmes using state-of-the art technologies and tools. One tool approach in this regard could be through organisation of massive open online courses (MOOCs) and annual summer classes. The key topics of the training sessions will focus on definition of breeding goals adapted to African livestock production system systems, hands-on training on inclusion of performance, pedigree, and genomic information in the estimation of genetic merit of animals, breeding programme design, optimisation and simulation. This will help to develop breeding programmes that are sustainable and adapted to the various livestock production systems in the continent. AABNet has recently organised a 3-week training (14 February—11 March 2022) to support 48 participants from 30 African countries. The training mode used included classroom lectures, and hands-on lab sessions covering various topics. A big emphasis on definition of standard and harmonisation animal identification and data recording systems will be needed in future trainings. A lesson learnt from the previous trainings organised in Africa is non-availability of real data from the attendees as well as the short duration of the trainings limiting the acquisition of hands-on skills. To address this challenge, AABNet could invite the participants from the institutions of the custodians of available livestock data (as reported in this study). The custodians of data could nominate participants from their institutions who would bring specific data sets with them to analyse as part of the training. This approach can potentially deliver huge benefits by contributing to the transfer of the acquired skills to the home organisations. After the national genetic evaluation, the across country genetic evaluation could be carried out under the coordination and technical support by the AABNet members—both in the continent and Diaspora—and the results shared with participating countries through processes which also include capacity development to enhance effective use of the results. For across country evaluation, emphasis should initially be on dairy cattle due to the evidence of use of international sires for artificial insemination in different African countries. As also mentioned by Mulder et al. (2017), the most critical point in establishing cross-country collaboration in the African context is to create an environment of fairness and equity in data and benefit sharing. This should be an important consideration from the start of discussions among partners from the different countries, and formal agreements should have clear statements of ownership and benefits.
5 CONCLUSION
This study has highlighted the current status of livestock phenomics and genetic evaluation approaches in Africa, with a focus on the main challenges at the national, sub-regional and continental levels, and possible solutions to these challenges. The challenges identified are related to animal identification and data recording systems, availability of digital tools and ICT not relying on internet, human capacity, infrastructure, funding and animal breeding policies. It is evident that the lack of a robust animal identification and data recording systems as well as human capacity has greatly influenced the choice of selection method, and explains the predominance of mass selection as the method currently being applied by most countries. A case example done as part of this study of joint genetic evaluation of Holstein-Friesian cattle data from Kenya and South Africa resulted in higher accuracy of prediction and genetic gains, demonstrating the benefits of such an approach. Results showed that Kenya benefited from the joint evaluation on the 305-days milk yield and the age at first calving, while South Africa got benefits on the age at first calving and the first calving interval. In addition to demonstrating these benefits, the findings of this study have identified issues around harmonized protocols for animal identification, livestock data recording and genetic evaluations (both national and across-country) as well as capacity building and training programmes for animal breeders and livestock farmers in Africa. Other needed enablers identified include policies, appropriate infrastructure and funding. It is concluded that the development of a joint genetic evaluation across African countries could revolutionize livestock genetic improvement in the continent.
DATA AVAILABILITY STATEMENT
The raw data supporting the conclusion of this article will be made available by the authors, without undue reservation. 
AUTHOR CONTRIBUTIONS
IH, RM, JR, MC, ON, AD, and OO conceptualized the study. IH conducted the data collection, data analysis and wrote the first draft of the manuscript. AD, RM, JR, and MC jointly supervised the study. All authors contributed to the article and approved the submitted version.
FUNDING
This research was funded in part by the Bill & Melinda Gates Foundation and with UK aid from the UK Foreign, Commonwealth and Development Office (Grant Agreement OPP1127286) under the auspices of the Centre for Tropical Livestock Genetics and Health (CTLGH), established jointly by the University of Edinburgh, SRUC (Scotland’s Rural College) and the International Livestock Research Institute. The findings and conclusion contained within are those of the authors and do not necessarily reflect positions or policies of the Bill & Melinda Gates Foundation nor the UK Government.
ACKNOWLEDGMENTS
The authors would like to acknowledge the respondents for their availability and collaboration during the survey.
PUBLISHER’S NOTE
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.
SUPPLEMENTARY MATERIAL
The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fgene.2023.1115973/full#supplementary-material
REFERENCES
 Banos, G., and Smith, C. (1991). Selecting bulls across countries to maximize genetic improvement in dairy cattle. J. Anim. Breed. Genet. 108 (1–6), 174–181. doi:10.1111/j.1439-0388.1991.tb00172.x
 Burrow, H. M., Mrode, R., Mwai, A. O., Coffey, M. P., and Hayes, B. J. (2021). Challenges and opportunities in applying genomic selection to ruminants owned by smallholder farmers. Agriculture 11, 1172. doi:10.3390/agriculture11111172
 Cardoso, F. F., Matika, O., Djikeng, A., Mapholi, N., Burrow, H. M., Yokoo, M. J. I., et al. (2021). Multiple country and breed genomic prediction of tick resistance in beef cattle. Front. Immunol. 12, 620847. doi:10.3389/fimmu.2021.620847
 Falconer, D. S., and Mackay, T. F. C. (1996). Introduction to quantitative genetics. Essex, England: Prentice Hall. 
 FAOSTAT (2019). FAO FAOSTAT Statistical Database. Data derived from: https://www.fao.org/faostat/en/#data/WCAD (Accessed May 20, 2023). 
 Hammami, H., Rekik, B., Stoll, J., Bormann, J., and Gengler, N. (2009). Sustainable dairy farming- A case study of holsteins in a developed and emerging country. Berlin, Germany: IDF World Dairy Summit. 
 Ibeagha-Awemu, E. M., Peters, S. O., Bemji, M. N., Adeleke, M. A., and Do, D. N. (2019). Leveraging available resources and stakeholder involvement for improved productivity of african livestock in the era of genomic breeding. Front. Genet. 10, 357. doi:10.3389/fgene.2019.00357
 ILRI (2021). African dairy genetic gains. Nairobi, Kenya: International Livestock Research Institute. Available at: https://www.ilri.org/research/projects/african-dairy-genetic-gains (Accessed May 30, 2023). 
 Marshall, K., Gibson, J. P., Mwai, O., Mwacharo, J. M., Haile, A., Getachew, T., et al. (2019). Livestock genomics for developing countries – african examples in practice. Front. Genet. 10, 297. doi:10.3389/fgene.2019.00297
 Missanjo, E. M. (2010). “Genetic and phenotypic evaluation of Zimbabwean Jersey cattle towards the development of a selection index,”. MSc thesis (Harare: University of Zimbabwe). 
 Misztal, I., Lourenco, D., Aguilar, I., Legarra, A., and Vitezica, Z. (2018). Manual for BLUPF90 family of programs. Athens: University of Georgia. Available at: http://nce.ads.uga.edu/wiki/lib/exe/fetch.php?media=blupf90_all7.pdf. 
 Mrode, R., Ojango, J., Ekine-Dzivenu, C., Aliloo, H., Gibson, J., and Okeyo, M. A. (2021). Genomic prediction of crossbred dairy cattle in Tanzania: A route to productivity gains in smallholder dairy systems. JDS 104 (11), 11779–11789. doi:10.3168/jds.2020-20052
 Mrode, R., Ekine Dzivenu, C., Marshall, K., Chagunda, M. G. G., Muasa, B. S., Ojango, J., et al. (2020). Phenomics and its potential impact on livestock development in low-income countries: Innovative applications of emerging related digital technology. Anim. Front. 10 (2), 6–11. doi:10.1093/af/vfaa002
 Mrode, R., Ekine-Dzivenu, H., Ojango, J. M., and Okeyo, M. A. (2022). Feasibility of joint genomic evaluations for smallholder dairy data in Tanzania and Ethiopia. INTERBULL Bull. 57, 54–57. 
 Mrode, R. (2014). Linear models for the prediction of animal breeding values. 3rd. Wallingford, UK: CAB International. 
 Mulder, N., Adebamowo, C. A., Adebamowo, S. N., Adebayo, O., Adeleye, O., Alibi, M., et al. (2017). Genomic research data generation, analysis and sharing – challenges in the african setting. Data Sci. J. 16, 49. doi:10.5334/dsj-2017-049
 Nilforooshan, M. A. (2011). “Multiple-trait multiple country genetic evaluation of fertility traits in dairy cattle,”. PhD thesis (Uppsala, Sweden: Swedish University of Agricultural Sciences). 
 OECD (2018). Education at a glance 2018: OECD indicators. Paris: OECD Publishing. 
 Ojango, J. M. K., Malmfors, B., Okeyo, A. M., Philipsson, J., Chagunda, M. G. G., and Kugonza, D. R. (2009). Capacity building for sustainable use of animal genetic resources in developing countries. Appl. Anim. Husb. Rural. Dev. 2, 23–26. 
 Ojango, J. M. K., Mrode, R., Okeyo, A. M., Rege, J. E. O., et al. International Livestock Research Institute (ILRI), KenyaEmerge-Africa, Kenya (2017). Improving smallholder dairy farming in Africa. Cambridge: Burleigh Dodds Science Publishing Limited, 1–26. 
 Okpeku, M., Ogah, D. M., and Adeleke, M. A. (2019). A review of challenges to genetic improvement of indigenous livestock for improved food production in Nigeria. Afr. J. Food, Agric. Nutr. Dev. 19 (1), 13959–13978. doi:10.18697/ajfand.84.BLFB1021
 Opoola, O., Banos, G., Ojango, J., Mrode, R., Simm, G., Banga, C., et al. (2020). Joint genetic analysis for dairy cattle performance across countries in sub-Saharan Africa. S. Afr. J. Anim. Sci. 50 (4), 507–520. doi:10.4314/sajas.v50i4.3
 Opoola, O., Mrode, R., Banos, G., Ojango, J., Banga, C., Simm, G., et al. (2019). Current situations of animal data recording, dairy improvement infrastructure, human capacity and strategic issues affecting dairy production in sub-Saharan Africa. Trop. Anim. Health Prod. 51 (6), 1699–1705. doi:10.1007/s11250-019-01871-9
 Ouédraogo, D., Soudré, A., Yougbaré, B., Ouédraogo-Koné, S., Zoma-Traoré, B., Khayatzadeh, N., et al. (2021). Genetic improvement of local cattle breeds in west Africa: A review of breeding programs. Sustainability 13 (4), 2125. doi:10.3390/su13042125
 R Core Team (2013). R: A language and environment for statistical computing. Vienna (Austria): R foundation for statistical computing. 
 Ramatsoma, N., Banga, C., Lehloenya, K., and Gibson, R. (2015). Estimation of genetic parameters for live weight in South African Holstein cattle. Open J. Anim. Sci. 5, 242–248. doi:10.4236/ojas.2015.53028
 Rege, J. E. O., Ochieng, J. W., and Kiambi, D. (2022). “The state of capacities for agricultural biotechnology applications in crop and livestock sectors,” in Agricultural biotechnology in sub-saharan Africa ed . Editors J. E. O. Rege, and K. Sones (Cham: Springer). doi:10.1007/978-3-031-04349-92
 Rendel, J. M., and Robertson, A. (1950). Estimation of genetic gain in milk yield by selection in a closed herd of dairy cattle. J. Genet. 50 (1), 1–8. doi:10.1007/BF02986789
 FAO (2015). “The second report on the state of the world’s animal genetic resources for food and agriculture,” in FAO commissnion on genetic resources for food and agriculture assessments ed . Editors B. D. Scherf, and D. Pilling (Rome, Italy: FAO). 
 Schmidt, G. H., and Vleck, L. V. (1974). Principles of dairy science. New York, NY: W.H. Freeman and Company. 
 Selle, M. L., Steinsland, I., Powell, O., Hickey, J. M., and Gorjanc, G. (2020). Spatial modelling improves genetic evaluation in smallholder breeding programs. Genet. Sel. 52 (1), 69. doi:10.1186/s12711-020-00588-w
 Shamia, G. M., and El-Tajori, S. S. (2019). Models for estimating genetic parameters of milk production dairy cattle breeding. J. Multidiscip. Eng. Sci. Technol. 6, 10154–10162. 
 Tesfa, A., and Garikipati, D. (2014). Genetic and non-genetic parameter estimates of dairy cattle in Ethiopia: A review. Online J. Anim. Feed Res. 4 (3), 83–90. 
 Tesfa, K. N., Van, Wyk, J. B., and Nesser, F. W. C. (2004). Genetic parameter estimates in South Africa Holstein cattle. S. Afr. J. Anim. Sci. 34 (2), 92–94. 
 Thornton, P. K . (2010). Livestock production: Recent trends, future prospects. Phil. Trans. R. Soc. B 365 (1554), 2853–2867. doi:10.1098/rstb.2010.0134
 Trivedi, K. R. (1998). “Recommendations and summaries,” in International Workshop on Animal Recording for Smallholders in Developing Countries,  (Anand, India, 20–23 October, 1997). 
 Tshilate, T. S., Bhebhe, E., Dube, B., Rhode, C., Mapholi, N. O., Matika, O., et al. (2021). Genetic parameter estimates for milkability traits and their relationship with somatic cell score in South African Holstein cattle. Trop. Anim. Health Prod. 53 (1), 18. doi:10.1007/s11250-020-02483-4
 van Marle-Köster, E., and Webb, E. C. (2014). “A perspective on the impact of reproductive technologies on food production in Africa,” in Current and future reproductive technologies and world food production ed . Editors G. C. Lamb, and N. DiLorenzo (New York: Springer), 199–211. 
 Visser, C., Van Marle-Köster, E., Myburgh, H. C., and De Freitas, A. (2020). Phenomics for sustainable production in the South African dairy and beef cattle industry. Anim. Front. 10 (2), 12–18. doi:10.1093/af/vfaa003
 Wurzinger, M., Mirkena, T., and Sölkner, J. (2014). Animal breeding strategies in Africa: Current issues and the way forward. J. Anim.Breed. Genet. 131 (5), 327–328. doi:10.1111/jbg.12116
 Zonabend, E., Okeyo, A., Ojango, J., Hoffmann, I., Moyo, S., and Philipsson, J. (2013). Infrastructure for sustainable use of animal genetic resources in Southern and Eastern Africa. Anim. Genet. Resour. Inf. 53, 79–93. doi:10.1017/S2078633613000295
Conflict of interest: Author VO was employed by Aviagen Limited.
The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Copyright © 2023 Houaga, Mrode, Opoola, Chagunda, Mwai, Rege, Olori, Nash, Banga, Okeno and Djikeng. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
		ORIGINAL RESEARCH
published: 19 July 2023
doi: 10.3389/fgene.2023.1217952


[image: image2]
Muscle transcriptome analysis provides new insights into the growth gap between fast- and slow-growing Sinocyclocheilus grahami
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Sinocyclocheilus grahami is an economically valuable and famous fish in Yunnan Province, China. However, given its slow growth (40 g/2 years) and large growth differences among individuals, its growth performance needs to be improved for sustainable future use, in which molecular breeding technology can play an important role. In the current study, we conducted muscle transcriptomic analysis to investigate the growth gaps among individuals and the mechanism underlying growth within 14 fast- and 14 slow-growth S. grahami. In total, 1,647 differentially expressed genes (DEGs) were obtained, including 947 up-regulated and 700 down-regulated DEGs in fast-growth group. Most DEGs were significantly enriched in ECM-receptor interaction, starch and sucrose metabolism, glycolysis/gluconeogenesis, pyruvate metabolism, amino acids biosynthesis and metabolism, peroxisome, and PPAR signaling pathway. Some genes related to glycogen degradation, glucose transport, and glycolysis (e.g., adipoq, prkag1, slc2a1, agl, pygm, pgm1, pfkm, gapdh, aldoa, pgk1, pgam2, bpgm, and eno3) were up-regulated, while some genes related to fatty acid degradation and transport (e.g., acox1, acaa1, fabp1b.1, slc27a1, and slc27a2) and amino acid metabolism (e.g., agxt, shmt1, glula, and cth) were down-regulated in the fast-growth group. Weighted gene co-expression network analysis identified col1a1, col1a2, col5a1, col6a2, col10a1, col26a1, bglap, and krt15 as crucial genes for S. grahami growth. Several genes related to bone and muscle growth (e.g., bmp2, bmp3, tgfb1, tgfb2, gdf10, and myog) were also up-regulated in the fast-growth group. These results suggest that fast-growth fish may uptake adequate energy (e.g., glucose, fatty acid, and amino acids) from fodder, with excess energy substances used to synthesize collagen to accelerate bone and muscle growth after normal life activities are maintained. Moreover, energy uptake may be the root cause, while collagen synthesis may be the direct reason for the growth gap between fast- and slow-growth fish. Hence, improving food intake and collagen synthesis may be crucial for accelerating S. grahami growth, and further research is required to fully understand and confirm these associations.
Keywords: growth, metabolism, collagen synthesis, WGCNA, crucial genes
1 INTRODUCTION
Sinocyclocheilus grahami (Cypriniformes, Cyprinidae) is an endemic fish species in China, with restricted distribution in Dianchi Lake and surrounding streams on the Yunnan Plateau (Zhao and Zhang, 2009). As one of the “Four Famous Fishes” in Yunnan, S. grahami is an economically valuable species known for its excellent quality and higher crude protein (∼20%), essential amino acids (∼18%) and polyunsaturated fatty acids (∼0.34%) content than Ctenopharyngodon idellus, Hypophthalmichthys nobilis, or Cyprinus carpio (Zhao et al., 2013), and possesses huge breeding potential, especially in freshwater aquaculture. From the 1960s, the species became highly endangered due to habitat destruction, water pollution, and alien species invasion (Yang et al., 2007). As such, over the past 2 decades, our team has successfully established an artificial breeding program to ensure the survival of the species and lay a foundation for its production, resulting in the creation of a new national breed (“S. grahami, Bayou No. 1”, hereafter S. grahami) with accelerated growth and weakened intermuscular bones via four generations of artificial selection (Yang et al., 2007; Pan et al., 2009; Yin et al., 2021). However, slow growth (40 g/2 years, 2 years = mature age) and growth gaps among individuals remain problematic, and further selective breeding is required to obtain a faster and more stable growing strain.
With the rapid development of molecular biology and sequencing technology, modern breeding techniques attempt to target the regulatory genes underpinning desired phenotypes and achieve superior varieties via the selection or manipulation of these genes, i.e., molecular-assisted breeding (Eze, 2019; Liu et al., 2022). Therefore, it has become increasingly important to understand the regulatory mechanisms and major genes behind desired phenotypes.
Although growth is a vital characteristic of farmed species, it is a complex trait influenced by many genes with minor effects. As such, the genetic mechanisms underlying growth remain unclear, although various relevant genes have been identified, including growth axis-related genes [growth hormone (gh), growth hormone receptor (ghr), insulin-like growth factor I (igf1), insulin-like growth factor II (igf2), somatostatin (sst)] and muscle growth regulating genes [myostatin (mstn), myogenic regulatory factors (mrfs)] and appetite, food intake regulate genes [melanocortin receptor-4 (mc4r), ghrelin (ghrl)] (De-Santis and Jerry, 2007; Blanco et al., 2017; Baldini and Phelan, 2019). Nevertheless, many genes related to growth remain unresolved, and the mechanisms for growth differ in different species (Laghari et al., 2014; Yu et al., 2016; Chen et al., 2022). Hence, mechanistic analysis of S. grahami is required to better guide breeding.
Fish growth can be achieved via skeletal muscle growth, primarily determined by hyperplasia and hypertrophy of muscle fibers (muscle cells) (Stoiber et al., 2002; Johnston, 2006; Fuentes et al., 2013). Muscle constitutes 50%–70% of body weight of most commercially important fish species and is the main consumed product (Li et al., 2019). Therefore, muscle growth plays a critical role in fish growth. Transcriptomic analysis plays a significant role in all fields of biological research and is widely used to study gene expression profiles and functional mechanisms of genotypes (Klopfleisch and Gruber, 2012; Papatheodorou et al., 2015). For instance, muscle transcriptomic studies have identified several genes correlated with growth in a variety of fish species, including Micropterus salmoides (Li et al., 2017), Ctenopharyngodon idella (Lu et al., 2020), Schizothorax prenanti (Li et al., 2019), and Mylopharyngodon piceus (Zhang et al., 2020).
Here, we focused on exploring the molecular mechanisms and major genes underlying growth of S. grahami, and aimed to verify differences in gene expression profiles between fast- and slow-growth fish and identify key genes involved in body length/weight based on muscle transcriptomic analysis. We hope that our study can provide valuable information for further studying of growth mechanisms and breeding strategies in S. grahami and other farmed species.
2 MATERIALS AND METHODS
2.1 Ethics statement
All research protocols and treatments of experimental fish were reviewed and approved by the Internal Review Board of the Kunming Institute of Zoology (KIZ), Chinese Academy of Sciences (CAS), China (approval ID: IACUC-PA-2021-07-053).
2.2 Preliminary study
To determine the effect of random variables caused by rearing environment and select the most appropriate samples for next analysis, a preliminary study was conducted. We carried out a bulk RNA-seq strategy for extremely large and small size samples in a sibling population (generated from one female × one male) and a random population (generated from multiple females × males) from the farmed “S. grahami, Bayou No. 1”. After RNA-seq data analysis, we observed that the major differentially expressed genes (DEGs) were similar between the two populations (Supplementary Figure S2). It is evident that when the rearing conditions are consistent, the random variables caused by rearing environment can be negligible. Therefore, to further investigate the mechanisms underlying growth, in the current study, we selected the random population (diverse genetic backgrounds) cultivated in one tank to perform further analysis. The detailed information for preliminary study was provided in Supplementary Material.
2.3 Fish cultivation, sample collection, and sequencing of S. grahami
Fish were obtained from the Endangered Fish Conservation Center (EFCC) of the Kunming Institute of Zoology (KIZ), Chinese Academy of Sciences, Kunming, Yunnan, China. In February 2018, a random population (generated from multiple females × males, ∼20,000 individuals) of farmed S. grahami was constructed using artificial reproduction. The resulting offspring were cultivated in a 3 m × 4 m × 1.5 m pond, with the water temperature, dissolved oxygen (DO) and PH levels maintained near 22°C ± 1°C, 6.5 mg/L and 8.0, respectively. One-third of water in pond was changed with fresh water daily. They were fed twice a day (fodder volume 3% of fish weight) to apparent satiation by a commercial diet (protein 40%, lipid 18%, Specialized and high-end feed for freshwater fish, Tongwei Group) for 8 months at the EFCC. We then separated individuals into large-, medium-, and small-sized groups (in different buckets) according to body size. To further observe the growth gap and minimize the effect of environmental random variables for our results, we transported 500 individuals (200 extremely large, 200 extremely small, and 100 medium-sized individuals) labeled with visible implant elastomer (VIE) of different colors to one fish tank (1 m × 0.6 m × 1 m) in the laboratory at KIZ. The rearing conditions and feeding regime were consistent with previous setup. After 2 months of regular feeding, we measured body weight and body length separately, and the growth gap between extremely large, medium-sized and extremely small individuals persists throughout the experiment. Therefore, we selected 14 extremely large and 14 extremely small individuals as the two extreme bulks of growth.
Fish samples from the two extreme bulks were first euthanized using MS-222. Muscle tissues of each individual were collected and kept under sterile conditions. Subsequently, total RNA was extracted using an RNA Purification Kit (Omega BioTek, United States) in accordance with the manufacturer’s instructions. For each sample, RNA concentration and quality were measured using a Nanophotometer (Implen, Germany) and Agilent 2100 Bioanalyzer (Agilent Technologies Inc., United States), respectively. High-quality samples (OD260/280 ≥ 1.8, OD260/230 ≥ 1.8) were labelled into a paired-end 150-bp library and sequenced using the Illumina Hiseq X-Ten platform.
2.4 Transcript-level gene expression analysis and functional enrichment of differentially expressed genes (DEGs)
Raw RNA sequencing (RNA-seq) reads from each sample were filtered using FastQC (v0.11.8) and Trimmomatic (v0.38). Clean reads were aligned to the reference genome (GenBank: GCA_001515645.1) using Hisat2 (v2.1.0) with default parameters. The unique mapped reads of each sample were used to calculate fragments per kilobase of exon model per million mapped fragments (FPKM) using Cufflinks (v2.2.1) with default settings. According to the gene expression level of each sample, package DEseq2 in R (v4.0.5) was used to detect significant DEGs, with |log2 (fold-change)| ≥ 1 and adjusted p ≤ 0.05 applied as filtering thresholds. To further clarify the functions of DEGs, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed using DAVID (https://david.ncifcrf.gov/summary.jsp) and the clusterProfiler package in R (v4.0.5).
2.5 Weighted gene co-expression network analysis (WGCNA)
The FPKM of all genes was used to build unsigned co-expression networks using the WGCNA package in R (v4.0.5) (Langfelder and Horvath, 2008). We first used the pickSoftThreshold function in the WGCNA package to calculate the weighting coefficient β to ensure that the resulting network was close to scale-free topology (linear regression model satisfies R2 = 0.85 as a threshold). The Pearson correlation matrix was then used to analyze the co-expression of the paired genes, and network construction was performed using the one-step function (blockwiseModules) in the WGCNA package with parameters “maxBlockSize = nGenes, TOMType = ‘unsigned’, minModuleSize = 30, reassignThreshold = 0, mergeCutHeight = 0.25, corType = ‘pearson’ ”. Next, the correlation coefficient between the module eigenvector (module eigengene, ME) and different influencing factors was calculated to determine the module most highly related to the phenotype. Module membership ≥ 0.8 and gene significance ≥ 0.2 were set as the threshold of hub genes screened in the optimal-related module. Cytoscape (v3.7.2) was used to analyze the degree of genes and construct the visualization network.
2.6 Quantitative real-time PCR
To validate the transcriptome data, ten DEGs were randomly chosen and their mRNA levels were assessed using qRT-PCR (quantitative real-time PCR) in six fast-growth and six slow-growth samples (randomly selected). All primers designed by Primer-BLAST (https://www.ncbi.nlm.nih.gov/tools/primer-blast/) according to CDS (Coding Sequence) sequences of S. grahami from the National Center for Biotechnology Information (NCBI) database. For qRT-PCR, 0.25 µg of total RNA was used for cDNA synthesis with PrimeScript™ RT Reagent Kit with gDNA Eraser (Takara, Japan) based on manuals. The two-step qRT-PCR program included enzyme activation at 95°C (30 s) and 40 cycles at 95°C (5 s), 60°C (30 s) was performed with TB Green® Premix Ex Taq™ II (TaKaRa, Japan) using the CFX Connect Real-Time System (BioRad, United States). PCR amplification of all samples was performed in triplicate. Eukaryotic translation elongation factor 2 (Eef2) was used as the reference gene to calculate the relative expression levels mainly because of its stability, which the CT values are similar in all samples (Zhang et al., 2017; Zhang et al., 2019). Fold changes in gene expression were calculated using the 2−ΔΔCT method (Livak and Schmittgen, 2001).
2.7 Statistical analysis
Statistical analysis was performed with Excel 2010 and SPSS 25.0 (SPSS, United States). All data were presented as mean ± standard deviation (SD). Significant differences were analyzed via one-way ANOVA (analysis of variance) and significance was accepted at the level of p < 0.05.
3 RESULTS
3.1 Sample collection and sequencing
In total, 28 individuals at the same developmental period (10 months old) but with different growth rates (14 fastest growing individuals, body length: 46.33 ± 2.08 mm, body weight 1.93 ± 0.26 g; 14 slowest growing individuals, body length: 19.88 ± 0.86 mm, body weight: 0.13 ± 0.02 g) were selected for analysis. Body length and weight were significantly different between the fast-growth and slow-growth groups (p < 0.01) (Figures 1A, B).
[image: Figure 1]FIGURE 1 | Phenotypes and DEGs of fast- and slow-growth S. grahami. (A) Living specimen of fast- and slow-growth S. grahami. (B) Body length/weight variations in fast- and slow-growth groups. P < 0.01 are represented with two asterisks. (C) PCA of correlation between phenotype and gene expression in fast- and slow-growth groups. (D) Heatmap of DEGs for fast- and slow-growth groups. (E) Volcano plot for fast- and slow-growth groups.
The 28 RNA samples were sequenced using the Illumina Hiseq X-Ten platform. After quality trimming, a total of 781,181,070 clean reads (150 bp) were generated for analysis (Supplementary Table S1). Among them, 390,057,252 reads were from the fast-growth individuals and 391,123,818 were from the slow-growth individuals. The Q30 range was 95.25%–95.78% for all individuals, indicating that data quality of each sample was sufficient for the following analyses. Principal component analysis (PCA) was performed to explore the relationship between gene expression and body length/weight before differential expression analysis. Results showed that the fast- and slow-growth groups could be differentiated by PC1 (explaining 53% of the variance) (Figure 1C), indicating that PC1 was correlated with body length/weight, and the following analyses for major DEGs was feasible.
3.2 Differential expression and functional enrichment analysis
In total, 1,647 DEGs (two-fold change in expression and adjusted p < 0.05) were identified in the fast- versus slow-growth groups, including 947 up-regulated and 700 down-regulated DEGs in the fast-growth group (Figures 1D, E). Based on the DEGs heatmap, DEGs expression were significantly different between the two groups, but were consistent in the 14 fast-growth samples and 14 slow-growth samples, indicating no significant differences within groups and that the DEGs were suitable for subsequent analyses (Figure 1D). The markedly up-regulated genes for fast-growth group included collagen alpha-1(X) chain (col10a1), papilin (papln), sarcolipin (sln), mid1-interacting protein 1-B (mid1ip1b), biglycan (bgn), cytochrome c oxidase subunit 4 isoform 2 (cox4i2), and keratin, type I cytoskeletal 15 (krt15), while the markedly down-regulated genes included neurofilament light polypeptide (nefl), dehydrogenase/reductase SDR family member 12 (dhr12), sodium/potassium-transporting ATPase subunit alpha-1 (atp1a1), myelin proteolipid protein (plp), and creatine kinase B-type (ckb) (Figure 1E).
To understand the functions of the DEGs, we performed GO enrichment analysis. The 947 up-regulated DEGs were classified into 37 GO terms (adjusted p < 0.05) (Figure 2A), including extracellular matrix organization (GO:0030198), glycolytic process (GO:0006096), skeletal muscle tissue development (GO:0007519), skeletal system development (GO:0001501), collagen fibril organization (GO:0030199), skeletal muscle fiber development (GO:0048741), and growth factor activity (GO:0008083). In addition, the 700 down-regulated DEGs were classified into nine GO terms (adjusted p < 0.05) (Figure 2B), including lipid metabolic process (GO:0006629), fatty acid metabolic process (GO:0006631), glycolytic process (GO: 0006096), oxidoreductase activity (GO:0016491), and catalytic activity (GO:0003824).
[image: Figure 2]FIGURE 2 | GO and KEGG enrichment analysis of DEGs. (A) GO enrichment analysis of up-regulated DEGs. (B) GO enrichment analysis of down-regulated DEGs. (C) KEGG enrichment analysis of up- and down-regulated DEGs. X-axis represents the rich factor, which reflects the degree of enrichment of DEGs in each KEGG pathway.
To further identify the biological pathways that regulate growth in S. grahami, we performed KEGG pathway analysis of the up- and down-regulated DEGs (adjusted p < 0.05). Results showed that the up-regulated DEGs were primarily enriched in ECM-receptor interaction, glycolysis/gluconeogenesis, carbon metabolism, biosynthesis of amino acids, FoxO signaling pathway, cardiac muscle contraction, arginine and proline metabolism, adipocytokine signaling pathway, starch and sucrose metabolism, glycine, serine, and threonine metabolism, galactose metabolism, pyruvate metabolism, pentose phosphate pathway, and fructose and mannose metabolism (Figure 2C). In addition, several down-regulated DEGs were also enriched in glycolysis/gluconeogenesis, biosynthesis of amino acids, fructose and mannose metabolism, carbon metabolism, pentose phosphate pathway, glycine, and serine and threonine metabolism (Figure 2C). Other down-regulated DEGs were enriched in the PPAR signaling pathway, peroxisome, glyoxylate and dicarboxylate metabolism, alanine, aspartate, and glutamate metabolism, steroid biosynthesis, biosynthesis of unsaturated fatty acids, and arachidonic acid metabolism (Figure 2C).
3.3 Weighted gene co-expression network analysis
To better understand the relationships between genes and phenotypes, we used 19,094 genes for WGCNA and a soft-power threshold of β = 6 for further analysis. In total, 20 modules were classified with module sizes ranging from 52 to 5,151, with 667 genes not assigned to any module (Figures 3A, B). The most abundant module was the turquoise module, containing 5,151 genes, including 690 up-regulated and 134 down-regulated DEGs (Figure 3B), followed by the blue module, containing 4,629 genes, including 132 up-regulated and 329 down-regulated DEGs (Figure 3B). Based on the correlation coefficient of modules and sample body weight/length, the turquoise (R > 0.87, p < 0.05) and blue (R < −0.82, p < 0.05) modules were significantly positively and negatively correlated with body length/weight, respectively (Figure 3B). Based on module membership ≥ 0.8 and gene significance ≥ 0.2, 739 and 529 genes were identified as hub genes in the turquoise and blue modules, respectively.
[image: Figure 3]FIGURE 3 | WGCNA for S. grahami. (A) Average linkage clustering tree (dendrogram) based on topological overlap distance in gene expression profiles in muscle datasets. Branches of dendrogram correspond to modules, shown in “module” color bar below dendrogram. (B) Correlation between module eigengenes and phenotype and module genes. Left: Correlation between module eigengenes and phenotype. Each row corresponds to a module identified on the left side by its color. Each column corresponds to a phenotype. Each cell reports Pearson correlation between module eigengene and phenotype. Cells are color-coded using correlation values according to color scale on the right; positive correlations are in red and negative correlations are in blue. Middle: Gene number in each module. Right: DEG number in each module. (C) Network view of turquoise module. Node are labeled with gene symbols, colored according to gene type, and sized according to gene degree. (D) Network view of blue module. Node are labeled with gene symbols, colored according to gene type, and sized according to gene degree.
As many hub genes were found under the threshold criteria, we identified crucial genes according to the degree of node connection. In the turquoise module, 65 genes with the strongest interaction (top 200 weight pairs, weight value > 0.5403) were chosen for network construction. Lysyl oxidase homolog 3 (loxl3), collagen alpha-2(VI) chain (col6a2), collagen alpha-1(I) chain (col1a1), collagen alpha-1(V) chain (col5a1), and collagen alpha 2(I) chain (col1a2), which showed the highest degree of node connection (degree ≥ 22), were up-regulated in the fast-growth group, and positively correlated with body weight/length (Figure 3C). Simultaneously, in the blue module, 69 genes with the strongest interaction (top 200 weight pairs, weight value > 0.5225) were chosen for network construction. Osteocalcin (bglap), collagen alpha-1 (XXVI) chain (col26a1), collagen alpha-1(X) chain (col10a1), keratin, type I cytoskeletal 15 (krt15), and mid1-interacting protein 1-B (mid1ip1b), which showed the highest degree of node connection (degree ≥ 18), were up-regulated in the fast-growth group, and positively correlated with body weight/length (Figure 3D). Thus, these identified genes may be crucial genes for S. grahami growth in the turquoise and blue modules.
3.4 Validation by quantitative real-time PCR
Ten DEGs were chosen for qRT-PCR to validate the expression pattern observed in transcriptome data. Figure 4 displays the relative expression levels of adipoq, pgm1, aldoa, pgk1, col1a2, col6a1, col10a1, bglap, krt15, cth in both fast- and slow-growth groups. The ratio of DEGs expression levels between the fast and slow-growth groups were calculated for qRT-PCR and RNA-seq data, respectively (Figure 4K). The result indicates the expression pattern observed in qRT-PCR is consistent with that observed in the RNA-seq data (Supplementary Figure S3). Moreover, these expression patterns were consistent with that observed in the bulk RNA-Seq data for preliminary study (Supplementary Figure S4), strongly indicate the reliability of the results in our study. The qRT-PCR primers of these DEGs were provided in Supplementary Table S2.
[image: Figure 4]FIGURE 4 | Validation of gene expression for 10 DEGs by quantitative real-time PCR. The relative mRNA expression levels of adipoq, pgm1, aldoa, pgk1, col1a2, col6a1, col10a1, bglap, krt15, cth generated by qRT-PCR are depicted in A, B, C, D, E, F, G, H, I, respectively. The red and cyan boxes represent the fast- and slow-growth groups, respectively. Each black dot represents the relative mRNA expression level of a sample. The logarithmic scale (log10) for the ratio of DEGs expression levels between fast- and slow-growth groups for qRT-PCR and RNA-seq were depicted in K.
4 DISCUSSION
As a critical economic trait, growth is important for the development of aquaculture. A growing number of transcriptomic studies have identified growth mechanism diversity in species, tissues, and environments (Fu et al., 2019; Prieto et al., 2019; Lu et al., 2020; Wang et al., 2021). In our study, 1,647 DEGs (947 up-regulated and 700 down-regulated DEGs in the fast-growth group) were obtained from muscle tissue between the fast- and slow-growth groups. Most DEGs were significantly enriched in metabolic pathways, such as starch and sucrose metabolism, glycolysis/gluconeogenesis, pyruvate metabolism, glycine, serine and threonine metabolism, arginine and proline metabolism, biosynthesis of amino acids, peroxisome, and PPAR signaling pathway (Figure 2C). These findings are similar to those in previous studies on C. idella (Lu et al., 2020), Eriocheir sinensis (Wang et al., 2021), and Paramisgurnus dabryanus (Zhao et al., 2021), suggesting that metabolism plays a crucial role in growth, and the fast-growth group exhibit higher expression of some metabolic genes than slow-growth group.
Achieving somatic growth requires depletion of available nutrients and energy acquired from the environment, which are converted into cellular and tissue components through metabolic cellular reactions (Sousa et al., 2010; Lukas et al., 2011; Canosa and Bertucci, 2020). Glucose and fatty acids are the most important sources of energy for animal growth (Judge and Dodd, 2020). Animals preferentially use dietary glucose and fatty acids for energy supply. When the body enters a long period of fasting or starvation, stored glycogen, fatty acids, and protein will be successively decomposed and utilized to maintain normal life activities (Judge and Dodd, 2020). In our study, adiponectin (adipoq), 5′-AMP-activated protein kinase subunit gamma-1 (prkag1), and solute carrier family 2, facilitated glucose transporter member 1 (slc2a1) were up-regulated and enriched in the adipocytokine signaling pathway. Studies have shown that adiponectin (encoded by adipoq) can activate AMP-activated protein kinase (AMPK) subunits (encoded by prkag1), thereby directly regulating glucose metabolism and insulin sensitivity (Yamauchi et al., 2002; Schönke et al., 2015). Adiponectin is also an important appetite regulator, modulating energy homeostasis by increasing appetite, boosting substrate storage, and decreasing energy expenditure (Wolf, 2003; Jeon et al., 2021). Glucose transporter 1, a uniporter protein encoded by slc2a1, facilitates glucose diffusion across the cell membrane, regulating the first limiting step (glucose transport into cells) for glucose homeostasis (Yan, 2017; Coudert et al., 2018). Moreover, several genes involved in glycogen degradation and glycolysis were up-regulated in the fast-growth group (Figure 5), including glycogen debranching enzyme (agl), glycogen phosphorylase, muscle form (pygm), phosphoglucomutase-1 (pgm1), ATP-dependent 6-phosphofructokinase, muscle type (pfkm), fructose-bisphosphate aldolase A (aldoa), glyceraldehyde-3-phosphate dehydrogenase (gapdh), phosphoglycerate kinase 1 (pgk1), phosphoglycerate mutase 2 (pgam2), 2,3-bisphosphoglycerate mutase (bpgm), beta-enolase (eno3), pyruvate kinase PKM (pkm), L-lactate dehydrogenase A chain (ldha), and acetyl-coenzyme A synthetase, cytoplasmic (acss2). High expression of these genes indicates that glucose utilization ability is higher in the fast-growth S. grahami fish.
[image: Figure 5]FIGURE 5 | Regulatory networks for vital DEGs. Black represents substrate for biological process. Purple arrow represents direction of reaction. Red represents up-regulated DEGs, green represents down-regulated DEGs in fast-growth group. adipoq: adiponectin; prkag1: 5′-AMP-activated protein kinase subunit gamma-1; slc2a1: solute carrier family 2, facilitated glucose transporter member 1; pygm: glycogen phosphorylase, muscle form; agl: glycogen debranching enzyme; pgm1: phosphoglucomutase-1; fbp1: fructose-1,6-bisphosphatase 1; fbp2: fructose-1,6-bisphosphatase 2; pfkm: ATP-dependent 6-phosphofructokinase, muscle type; pfkp: ATP-dependent 6-phosphofructokinase, platelet type; aldoa: fructose-bisphosphate aldolase A; aldob: aldolase b, fructose-bisphosphate; aldoc: fructose-bisphosphate aldolase C; tpi1: triosephosphate isomerase 1; gapdh: glyceraldehyde-3-phosphate dehydrogenase; pgk1: phosphoglycerate kinase 1; bpgm: 2,3-bisphosphoglycerate mutase; pgam1: phosphoglycerate mutase 1; pgam2: phosphoglycerate mutase 2; eno1: alpha-enolase; eno3: beta-enolase; pkm: pyruvate kinase PKM; pklr: pyruvate kinase L/R; ldha: L-lactate dehydrogenase A chain; ldhbb: lactate dehydrogenase Bb; acyp2: acylphosphatase 2; acss2: acetyl-coenzyme A synthetase, cytoplasmic; acox1: peroxisomal acyl-coenzyme A oxidase 1; acaa1: 3-ketoacyl-CoA thiolase B, peroxisomal; got2: aspartate aminotransferase, mitochondrial; agxt: serine-pyruvate aminotransferase, mitochondrial; alaat2: alanine aminotransferase 2; glula: glutamate-ammonia ligase (glutamine synthase); cbsa: cystathionine beta-synthase a; cth: cystathionine gamma-lyase; shmt1: serine hydroxymethyltransferase 1; gatm: glycine amidinotransferase, mitochondrial; p4ha1: prolyl 4-hydroxylase subunit alpha-1; col1a1: collagen alpha-1(I) chain; col1a2: collagen alpha 2(I) chain; col5a1: collagen alpha-1(V) chain; col6a2: collagen alpha-2(VI) chain; col10a1: collagen alpha-1(X) chain; col26a1: collagen alpha-1 (XXVI) chain; tgfb1: transforming growth factor beta-1; tgfb2: transforming growth factor beta-2; bmp2: bone morphogenetic protein 2; bmp3: bone morphogenetic protein 3; gdf10: growth/differentiation factor 10; myog: myogenin.
In addition, several genes related to glycolysis were down-regulated in fast-growth S. grahami (Figure 5), including ATP-dependent 6-phosphofructokinase, platelet type (pfkp), aldolase b, fructose-bisphosphate (aldob), fructose-bisphosphate aldolase C (aldoc), phosphoglycerate mutase 1 (pgam1), alpha-enolase (eno1), pyruvate kinase L/R (pklr), and lactate dehydrogenase Bb (ldhbb). Despite similar functions as pfkm, aldoa, pgam2, eno3, and pkm, which are mainly expressed in the muscle, pfkp, aldob, aldoc, pgam1, eno1, and pklr are mainly expressed in non-muscle tissues (e.g., brain, liver, blood) (Verma and Dutta, 1994; Zhang et al., 2001; Caspi et al., 2014; Ausina et al., 2018; Tarnopolsky, 2018; Ždralević et al., 2018). Their downregulation in the fast-growth group and upregulation in the slow-growth group may be a sign of energy homeostasis, whereby energy was supplied to the brain and liver to maintain normal vital activities in the slow-growth group, but excess energy was supplied to the muscles for growth in the fast-growth group.
Several down-regulated DEGs in the fast-growth group were also enriched in the peroxisome and PPAR signaling pathways, which mainly regulate fatty acid transport and β oxidation to degradation (Ordovás et al., 2006; Morais et al., 2007; Watkins et al., 2007; Fidaleo et al., 2011; Shinoda et al., 2020), including peroxisomal acyl-coenzyme A oxidase 1 (acox1), 3-ketoacyl-CoA thiolase B, peroxisomal (acaa1), very long-chain acyl-CoA synthetase (slc27a2), fatty acid binding protein 1-B.1 (fabp1b.1), and long-chain fatty acid transport protein 1 (slc27a1) (Figure 5). These results indicate that fatty acid utilization is lower in the faster growing fish. In addition, some DEGs involved in the regulation of cholesterol and polyunsaturated fatty acid synthesis were also down-regulated in the fast-growth group. Cholesterol and polyunsaturated fatty acids are extremely important biological molecules that play essential roles in membrane structure and are precursors for the synthesis of other biological molecules (Simons and Ikonen, 2000; Christie and Harwood, 2020). Endogenous cholesterol and polyunsaturated fatty acid biosynthesis are affected by existing intracellular levels, i.e., higher food intake leads to lower endogenous biosynthesis in the body, while lower food intake has the opposite effect (Simons and Ikonen, 2000; Xu et al., 2020). This suggests that the fast-growth group had a higher dietary intake of cholesterol and polyunsaturated fatty acids, and thus could not mobilize endogenous synthesis to meet body needs.
Amino acids can directly promote muscle growth in fish, both by stimulating rates of protein synthesis and reducing rates of protein degradation (Seiliez et al., 2008; Cleveland and Radler, 2019). In the current study, we identified several DEGs correlated with glycine, serine, arginine, and proline metabolism (Figure 5), e.g., serine-pyruvate aminotransferase, mitochondrial (agxt), serine hydroxymethyltransferase 1 (shmt1), glutamate-ammonia ligase (glutamine synthase) (glula), cystathionine gamma-lyase (cth), and prolyl 4-hydroxylase subunit alpha-1 (p4ha1). In the fast-growth group, agxt, shmt1, cth, and glula were down-regulated. Agxt encodes serine-pyruvate aminotransferase, which catalyzes the conversion of alanine and glyoxylate into pyruvate and glycine, respectively (Cellini et al., 2007; Montioli et al., 2015), shmt1 catalyzes the transfer of serine to glycine (Wang et al., 2013; Pinthong et al., 2014), cth catalyzes the conversion of cystathionine into cysteine (Krück et al., 2009), and glula regulates de novo glutamine production from glutamate (Eelen et al., 2018). P4ha1, which catalyzes the formation of 4-hydroxyproline (Rappu et al., 2019; Tolonen et al., 2022), was up-regulated in the fast-growth group. These results indicate that the fast-growth group may exhibit stronger 4-hydroxyproline synthesis, lower glycine, cysteine, and glutamine synthesis, and somewhat lower amino acid synthesis ability than the slow-growth group.
Based on the expression of genes related to glucose, fatty acid, and amino acid metabolism, the fast-growth group exhibited higher glucose and lower fatty acid utilization and lower amino acid synthesis activity compared to the slow-growth group. These results suggest that the fast-growth group consumed adequate energy (glucose, fatty acid, and amino acid) from fodder, with excess energy substances used for growth after maintenance of normal life activities. Therefore, energy intake and metabolism are crucial for S. grahami growth. Energy intake may be the root cause for the gap in growth between fast- and slow-growing S. grahami fish. Thus, the genes that regulate appetite and food intake (e.g., adipoq) require further analysis.
The synthesis of macromolecular substances (e.g., protein) is the foundation for growth and is based on the uptake and metabolism of energy substances. Here, we identified several collagen synthesis genes with a high degree of node connection (degree ≥ 18) based on WGCNA, which allows exploration of the correlations among large-scale gene expression data and phenotypes (Langfelder and Horvath, 2008). These genes, including col1a1, col1a2, col5a1, col6a2, col10a1, and col26a1, were up-regulated in the fast-growth group and significantly positively correlated with body length/weight. Genes with a high degree of node connection are significantly correlated with proximity to the center of the network (Zhou et al., 2022). Thus, col1a1, col1a2, col5a1, col6a2, col10a1, and col26a1 may be crucial genes for S. grahami growth. The upregulation of these genes implies that collagen synthesis ability is higher in faster growing fish (Tolonen et al., 2022). Collagen accounts for one-third of total protein in postnatal animals. It is the main component of connective tissue and plays an important role in force transmission and tissue structure maintenance, especially tendons, ligaments, bone, and muscle, as well as in growth, development, and health (KJÆR, 2004; Zhang et al., 2005; Li and Wu, 2018). Glycine, proline, and hydroxyproline are major amino acids, accounting for 57% of total amino acids in collagen (Li and Wu, 2018). In our study, p4ha1 was up-regulated in the fast-growth group. This may promote collagen synthesis as p4ha1 catalyzes 4-hydroxyproline formation, which is essential for proper three-dimensional folding of newly synthesized procollagen chains (Rappu et al., 2019; Tolonen et al., 2022). However, some genes related to glycine and proline synthesis were not markedly different or down-regulated in the fast-growth group. These results suggest that the fast-growth group consumes sufficient amino acids for direct utilization, thereby reducing the endogenous synthesis of amino acids, which is energy efficient and will promote body growth. The increased synthesis of 4-hydroxyproline but not glycine and proline may be because 4-hydroxyproline is produced from proline-containing collagen rather than from free amino acids (Gorres and Raines, 2010).
WGCNA also identified bglap and krt15 as crucial genes with the largest expression differences in S. grahami growth (Figure 1E; Figure 3D). Studies have shown that bglap and krt15 play critical roles in bone formation and mineralization and in structural integrity (Lee et al., 2007; Bose et al., 2013; Komori, 2020). We also identified several growth factors and muscle-growth related genes that were up-regulated in the fast-growth group, such as bone morphogenetic protein 2 (bmp2), bone morphogenetic protein 3 (bmp3), transforming growth factor beta-1 (tgfb1), transforming growth factor beta-2 (tgfb2), growth/differentiation factor 10 (gdf10), myogenin (myog), myosin-binding protein C, fast-type (mybpc2), myosin heavy chain, fast skeletal muscle (myh), myosin light chain, skeletal muscle (myl1, myl3), troponin I, fast skeletal muscle (tnni2), troponin T, fast skeletal muscle (tnnt3), and troponin C, skeletal muscle (tnnc2). Growth/differentiation factors (GDFs), BMPs, and TGF-β are multi-functional growth factors belonging to the TGF-β superfamily and play important roles in development and tissue homeostasis via regulation of cell proliferation, migration, and differentiation, ECM production, multiple cellular signal transduction, cardiogenesis, somite formation, neurogenesis, and musculoskeletal development (Cunningham et al., 1995; Macias et al., 1997; Hino et al., 2004; Maatouk et al., 2009; Heldin and Moustakas, 2016; Zhou et al., 2016). Studies have also found that TGF-β stimulates collagen synthesis and mediates metabolic pathways by regulating the expression of glucose transporter 1 (slc2a1) (Johnston and Gillis, 2017; Yu et al., 2019; Zhou et al., 2021). Myog belongs to the Myogenic Regulatory Factors (MRFs) family, plays a crucial role in myogenesis (De-Santis and Jerry, 2007). Myosin heavy chain and myosin light chain are major component for skeletal muscle myosins (Schiaffino and Reggiani, 1996). Troponin is the key calcium-dependent regulator of striated muscles, and composed of troponin C (TnC), troponin I (TnI), and troponin T (TnT) (Rasmussen and Jin, 2021). Myosin, troponin and myosin-binding protein C are crucial components of skeletal muscle, which essential for myogenesis, muscle contraction (Das et al., 2019; Song et al., 2021; Rasmussen and Jin, 2021). The high expression of these genes would strengthen the muscle growth and contraction.
The WGCNA results also indicated that the differences in collagen synthesis may be the direct cause of the growth gap between the fast- and slow-growth groups of S. grahami. Glycine, proline and hydroxyproline are the main amino acids for collagen synthesis. Endogenous amino acid synthesis (e.g., proline and hydroxyproline) consumes a large amount of adenosine triphosphate (ATP) but is inadequate to meet optimal growth and connective tissue repair (Li and Wu, 2018). Hence, adequate amounts of dietary proline and hydroxyproline are essential for maximizing growth performance and feed efficiency in farmed S. grahami.
5 CONCLUSION
Based on transcriptomic analysis of S. grahami muscle, we identified various genes related to glucose, fatty acid, and amino acid uptake and metabolism, and collagen synthesis, which play crucial roles in promoting bone and muscle growth. Energy uptake and collagen synthesis may be the key factors for the growth gap between fast- and slow-growth S. grahami, and energy uptake may be the root cause, while collagen synthesis may be the direct reason. The reasons for differences in uptake and how to improve intake and collagen synthesis require further research. Our findings provide new insights into the mechanism underlying the growth gap between fast- and slow-growth S. grahami and provide an important theoretical basis for guiding S. grahami breeding. Furthermore, these results may provide valuable information for further studying of growth mechanisms and breeding strategies in other species.
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The control of tick-borne haemoparasites in cattle largely relies on the use of acaricide drugs against the tick vectors, with some vaccination also being used against selected pathogens. These interventions can be difficult in Africa, where accessibility and cost of vaccines can be issues, and the increasing resistance of tick vectors to the widely used acaricides is a complication to disease control. A potential complementary control strategy could be the exploitation of any natural host genetic resistance to the pathogens. However, there are currently very few estimates of the extent of host resistance to tick-borne haemoparasites, and a significant contributing factor to this knowledge gap is likely to be the difficulty of collecting appropriate samples and data in the smallholder systems that predominate livestock production in low- and middle-income countries, particularly at scale. In this study, we have estimated the heritability for the presence/absence of several important haemoparasite species (including Anaplasma marginale, Babesia bigemina, Babesia bovis, and Ehrlichia ruminantium), as well as for relevant traits such as body weight and body condition score (BCS), in 1,694 cattle from four African countries (Burkina Faso, Ghana, Nigeria, and Tanzania). Heritability estimates within countries were mostly not significant, ranging from 0.05 to 0.84 across traits and countries, with standard errors between 0.07 and 0.91. However, the weighted mean of heritability estimates was moderate and significant for body weight and BCS (0.40 and 0.49, respectively), with significant heritabilities also observed for the presence of A. marginale (0.16) and E. ruminantium (0.19). In a meta-analysis of genome-wide association studies (GWAS) for these traits, two peaks were identified as reaching the suggestive significance threshold (p < 1.91 × 10−7 and p < 1.89 × 10−7, respectively): one on chromosome 24 for BCS and one on chromosome 8 for the E. ruminantium infection status. These findings indicate that there is likely to be a genetic basis that contributes to pathogen presence/absence for tick-borne haemoparasite species, which could potentially be exploited to improve cattle resistance in Africa to the economically important diseases caused by these pathogens.
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1 INTRODUCTION
In Africa, livestock forms a critical part of the livelihoods of most rural households, with approximately 162 million low-income livestock keepers (Kruska et al., 2003). In most African countries, livestock is managed under small- to large-scale systems, with small-scale production systems predominating and including pastoral, agro-pastoral, and mixed smallholder farming (Ibeagha-Awemu et al., 2019). They represent approximately 70% of livestock productivity and serve as household assets with multiple livelihood functions, providing food, income, and important non-market services (Ruto et al., 2008). These small-scale systems are characterised by small animal population sizes and low inputs and outputs, which make it difficult to set up programmes aiming at increasing livestock productivity for food production and income generation (Ibeagha-Awemu et al., 2019). However, given the importance of livestock to the diets and incomes of poor farming households and the predicted increase in demand for livestock products throughout the low- and middle-income world over the next few decades, understanding how livestock fits into these systems and how these systems may evolve in the future is critical (Kruska et al., 2003).
The main factors limiting cattle performance under extensive range management in tropical environments are feed resource availability and quality (Hernández-Castellano et al., 2019) and health-related issues, with ticks being among the most important vectors of disease pathogens in livestock and companion animals (Ghosh et al., 2006). Direct effects of tick infestation on cattle include the consumption of blood, causing anaemia and damage to the skin or hide, with downstream effects resulting in reductions in fertility, body weight, and milk production, as well as toxicoses, paralysis, and mortality (Jongejan and Uilenberg, 2004). The economic losses due to ticks and tick-borne diseases (TBDs) have been estimated at more than 3 billion dollars per year in Brazil alone (Grisi et al., 2014). No estimates of economic losses were found for the African continent; however, in Tanzania alone, for example, the total annual national loss due to TBDs was estimated to be 364 million dollars, including the estimated mortality of 1.3 million cattle, mainly attributed to the tick-borne disease East Coast fever, caused by Theileria parva (Kivaria, 2006).
The economically most important TBDs of cattle on a global scale are bovine babesiosis, caused by protozoa of the genus Babesia (Babesia bovis and Babesia bigemina), bovine anaplasmosis (Anaplasma marginale), bovine theileriosis, caused by Theileria annulata, East Coast fever, caused by Theileria parva, and ehrlichiosis or heartwater of cattle (Ehrlichia ruminantium) (Uilenberg, 1995). Both babesiosis and anaplasmosis can cause severe anaemia, while heartwater, especially in its acute form, can cause a sudden high fever, loss of appetite, depression, and breathing problems. All these diseases have a significant negative economic impact on livestock in tropical countries, due to the expense of vector control, treatment of the disease, effect on animal productivity, and the death of susceptible animals (Mukhebi et al., 1999; Kocan et al., 2003).
In addition to the relatively limited use of live vaccines against a small number of tick-borne pathogens, the strategy most commonly adopted to control tick-borne parasitic diseases is the application of acaricides. The widespread and large-scale use of these acaricides has increased the incidence of acaricide-resistant ticks and exacerbated the occurrence of environmental and food contamination (Parizi et al., 2009; Abbas et al., 2014; Githaka et al., 2022). This has led to an economic and social demand for alternative approaches to reduce tick infestation and thereby enhance the contribution of cattle to the world economy. Natural immunity to the tick vector, which is observed in cattle in environments where ticks are endemic, shows promise for genetic tick control strategies that can reduce expenditure on acaricides and other chemical control methods (Mapholi et al., 2014). Across Africa, it has been common to crossbreed indicine (Bos taurus indicus) with taurine (Bos taurus taurus) cattle (Jonsson et al., 2008; Cardoso et al., 2021), one reason being that indicine animals are known to be more resistant to ticks as well as TBDs (Silva et al., 2002; Wragg et al., 2022), and this has resulted in generally admixed populations across the continent (Gebrehiwot et al., 2020).
There is precedent for genetic tolerance to vector-borne pathogens proving tractable and potentially applicable as a practical aid in disease control in cattle (Bahbahani and Hanotte, 2015). A very well-defined example is trypanosomiasis, caused by tsetse fly-transmitted protozoan parasites of the Trypanosoma genus, where the tolerance of some African taurine breeds has been long recognised and characterised, and loci underpinning this trait have been identified (Murray et al., 1984; Hanotte et al., 2003; Kim et al., 2020). With respect to TBDs, natural tolerance among certain African cattle populations to the Theileria parva pathogen has been known for some time. T. parva infection is responsible for East Coast fever (ECF), a TBD that causes significant mortality in infected, susceptible cattle in East and Southern Africa. Ndungu et al. (2005) demonstrated that East African Shorthorn Zebu (EASZ) originating from ECF endemic areas showed significantly higher tolerance to T. parva challenges than exotic breeds and EASZ from non-endemic areas. Likewise, a notable recent study by Wragg et al. (2022) highlighted that certain lineages of Boran cattle also show elevated tolerance to T. parva infection and identified a locus associated with tolerance to ECF. The identification of this locus by Wragg et al. (2022) raises the promise of marker-assisted selection for cattle that are less susceptible to infection by T. parva. However, in general, only a few studies have reported naturally occurring loci with large effects that confer resistance to disease in livestock (White et al., 2014; Chen et al., 2015; Matika et al., 2019), and studies of natural tolerance to most African cattle pathogens remain limited.
Resistance to diseases is usually a physiologically complex trait that develops over time, with the mechanisms underlying genetic differences in resistance being poorly understood. Traditionally, the genetic control of complex traits in livestock has been based on estimating breeding values from phenotypic and pedigree information, without identifying the genes or gene variants underlying the observed variation (Goddard and Hayes, 2009), which can be a challenge in most African husbandry systems. However, current molecular tools allow animal geneticists to investigate the nature of genetic variation underlying complex traits, without requiring pedigree information, making selection a possibility.
While several genome-wide association studies (GWAS) have already reported quantitative trait loci for resistance to ticks (see Mapholi et al., 2014 for a review) in cattle, very few studies investigating loci underlying variation in resistance to tick-borne haemoparasites are reported in the literature.
Although a variety of arrays are currently available for genotyping in cattle, they are mostly designed for European breeds and are, therefore, biased toward variants common to these breeds. This can make it difficult to map the genetic loci that underlie important traits in African cattle, which are a mixture of African taurine and indicine backgrounds (Gebrehiwot et al., 2020). A recent study demonstrated that the Illumina HD (https://www.illumina.com/ documents/products/datasheets/datasheet_bovine HD.pdf) and the Axiom Genome-Wide BOS1 (https://www.thermofisher.com/order/catalog/product/901791#/901791) arrays are the best at capturing the diversity across African breeds/populations, even if compared with Bos t. indicus-specific arrays (Riggio et al., 2022). Another limitation to performing GWAS on African cattle is the small size of most herds, which limits the power to detect significant associations. In this case, a meta-analysis, combining results across independent studies, could help boost statistical power (Munafò and Flint, 2004). This study aimed to investigate the potential of breeding for cattle resistant or tolerant to particular TBDs by characterising the heritability of relevant traits and investigating the potential of identifying loci underlying the variation in the presence of tick-borne haemoparasites, as well as important traits such as body weight and body condition score (BCS), in African cattle from four different countries (Burkina Faso, Ghana, Nigeria, and Tanzania).
2 MATERIALS AND METHODS
2.1 Population
The population consisted of 1,694 one- to two-year-old cattle across four African countries (Burkina Faso, n = 300; Ghana, n = 459; Nigeria, n = 454; and Tanzania, n = 481), which is a subset of the 1,740 cattle used in Riggio et al. (2022). Sampling sites within the country consisted of smallholder farmer settlements with herds that were mainly sedentary, within at least two districts per country, chosen taking into consideration high cattle density and an expected or previously recorded high prevalence of ticks and TBDs. These farmers were considered to belong to communities of limited-resource stockbreeders. Up to four visits per sampling site were conducted over a period of 12 months (between August 2016 and August 2017) in order to cover both the rainy and dry seasons (see Heylen et al., 2023a; Heylen et al., 2023b for more details). However, in the current study, only one record per animal was available. Figure 1 shows the major sampling locations across the four African countries. The map was drawn using the maps package in R (https://cran.r-project.org/web/packages/maps/index.html).
[image: Figure 1]FIGURE 1 | Map showing the major sampling locations across the four African countries (Burkina Faso, Ghana, Nigeria, and Tanzania). Sampling locations are represented by circles, with size and colour changing according to the numbers of animals.
2.2 Phenotypic measurements
Body weight was estimated using a Rondo tape according to the manufacturer’s recommendations (Agrihealth Rondo). It is based on the measurement of thoracic girth, which is reported to be highly correlated with body weight in cattle (Heinrichs et al., 2007; Swali et al., 2008). Body condition scoring (BCS) was also conducted for these animals. BCS was based on a subjective classification scale of nine points, from extremely thin (i.e., score 1) to extremely fat (i.e., score 9), as reported by Arango et al. (2002).
Blood samples (approximately 125 μL) were collected from the middle ear vein using a sterile lancet and capillary tube. Samples were then applied onto Whatman® FTA® cards, air-dried, labelled appropriately, and packed in foil pouches with a silica gel, prior to DNA isolation. DNA was isolated from 2 × 5 mm diameter blood-soaked FTA card punches using the MagMAX DNA Multi-Sample Ultra Kit according to the manufacturer’s recommendations. DNA isolation was performed using the KingFisher 96-flex instrument, processing 92 samples per run and including extraction controls for each run. Eluted DNA was collected in a final volume of 75 µL and used for downstream processing. Testing was performed to assess the absence/presence (i.e., 0/1) of anaplasmosis, babesiosis, theileriosis, and ehrlichiosis. The inhibitor tolerant and highly processive SsoAdvanced Universal Probes Supermix DNA polymerase master mix (Bio-Rad) was used in all PCR assay development and final detection assays. Published assay primers and probes (Kim et al., 2007; Decaro et al., 2008; Steyn et al., 2008) were evaluated in a single target and multiplex environment using sequence-verified linear synthetic DNA templates to determine the limit of detection (LOD) for each assay in the presence of 10 ng bovine DNA. Final multiplex PCR assay combinations were based on results that exhibited the same LOD in both single and multiplex PCR setups (data not shown). The Hamilton Nimbus robotic liquid handling system was used for mastermix and template addition to a 384-well PCR plate. All plates contained positive control samples (synthetic DNA representing 100 copies of each target region per reaction), negative control (10 ng bovine DNA from a donor animal to exclude host-related amplification), and extraction control (to exclude extraction kit-related amplification). A measure of 5 µL of template DNA was used in a 15 µL final PCR reaction and was subjected to thermal cycling consisting of initial denaturation at 98°C for 3 min, followed by 45 cycles of 95°C for 15 s and 60°C for 30 s, making use of the QuantStudio6 qPCR system. Data captured during thermal cycling were analysed using QuantStudio Real-Time PCR software v1.2. Samples exhibiting the correct amplification profiles were called as detected (i.e., presence = 1), whereas the rest were called not detected (i.e., absence = 0).
2.3 Genotypic data
Animals were genotyped using the Illumina HD genotyping array. The SNP genotype data were subjected to quality control (QC) measures, as previously described in Riggio et al. (2022). QC was conducted per country, and the SNPs with a minor-allele frequency (MAF) < 0.01 or a call rate <90% were removed. Furthermore, markers on the sex chromosomes were removed from the analysis. After QC, 585,754 SNPs were retained for the Burkina Faso population, 594,060 for Ghana, 586,851 for Nigeria, and 595,683 for Tanzania and used for variance component estimation analyses. The positions of SNP markers were relative to the ARS-UCD1.2 bovine genome assembly (Rosen et al., 2020). Genome-wide association analyses were subsequently performed using 10,282,187 variants previously imputed by Riggio et al. (2022). Only variants with an imputation accuracy r2 (as obtained from Minimac4 software, https://genome.sph.umich.edu/wiki/Minimac4) >0.85 and a MAF >0.05 were considered for the within-population GWAS (i.e., out of the 10,282,187 imputed genotypes, 5,460,147 were retained for Burkina Faso, 5,477,083 for Ghana, 5,474,804 for Nigeria, and 5,464,291 for Tanzania).
2.4 Statistical analyses
Descriptive statistics were calculated for body weight and BCS for each country, whereas prevalence was calculated for the haemoparasites and defined as the percentage of animals that were positive by qPCR at any time during the period considered in this study.
Initial data exploration and model development were conducted in SAS version 9.4, using the PROC GLM (SAS Institute Inc., Cary, NC). Variance components for all traits were estimated within the country using ASReml 4 (Gilmour et al., 2015), fitting an animal model with a logit function for the binary traits (i.e., the haemoparasite traits). The fixed effects were: sex (two levels, male and female), district (two levels), with visit number, and the first five genetic principal components (PCs) as covariates. The PCs were included as a substitute for the effects of breed, to account for population structure. The animal was fitted as a random effect, and the relationship matrix (GRM, G) was calculated using VanRaden’s method 2 (VanRaden, 2008), with all SNPs from the HD array. The rma function in the metafor package (Viechtbauer, 2010) in R was used to obtain the weighted mean of heritability estimates (h2m) across the four African countries. In addition, Q statistics (Cochran, 1954) were used to quantify the degree of heterogeneity among countries for each trait.
The GWAS analyses for each country were performed using GEMMA (Zhou and Stephens, 2012) using the imputed genotypes. The same fixed (i.e., sex, district, visit number, and the first five genetic PCs) and random (i.e., animal) effects used for the variance component analysis were fitted, assuming a model where the vectors of random effects, u, and errors, ϵ, follow multivariate normal (MVN) distributions given by u ∼ MVN (0,VGG) and ϵ ∼ MVN (0,VEI), where VG and VE are the genetic variances associated with G and environmental variance, respectively. GEMMA provides a regression coefficient for each SNP, and their statistical significance was assessed using a Wald test. A Bonferroni correction was used to account for multiple testing and identify the p-values for genome-wide (p < 0.05) and suggestive (i.e., one false positive per genome scan) significance thresholds. The within-country analyses were followed by a meta-analysis using a weighted Z-score model as implemented in the METAL software (Willer et al., 2010). The weighted Z-score model used p-values, directions of effect estimates, and weights in individual GWAS based on the sample size to compute a Z-score. The heterogeneity of the effect sizes across countries was evaluated using Cochran’s Q-test (Cochran, 1954) as implemented in the METAL software (Willer et al., 2010). Only common SNPs across countries were considered.
Genes overlapping the regions of interest were identified using the biomaRt package in R (Durinck et al., 2009). Variants in the regions were those identified in cohorts of 92 African cattle (Dutta et al., 2020), and the linkage disequilibrium (LD) between the target variants and other variants was calculated using PLINK 1.9 (Purcell et al., 2007). The Manhattan plots and tracks were made using the ggplot2 (Wickham, 2016), dplyr (Wickham et al., 2023), and Gviz (Hahne and Ivanek, 2016) packages in R.
3 RESULTS
To estimate the heritability of the presence of tick-borne haemoparasites, body weight, and body condition score in African cattle, we analysed four independent datasets from Burkina Faso, Ghana, Nigeria, and Tanzania, for a total of 1,694 cattle. Heritability estimates were then used to calculate the weighted mean of heritability estimates (h2m) across countries. The same data were also used to carry out GWAS to identify potential loci underlying genetic variation in the traits of interest, with a meta-analysis across countries being conducted.
Means, standard deviations, coefficients of variation, and ranges of the continuous traits considered in this study (i.e., body weight and BCS) are presented per country in Table 1. Body weight values over three standard deviations from the mean were removed. Although there is some variation across countries for body weight, coefficients of variation (CVs) are similar for all countries, ranging between 30 and 39, with Nigeria having the highest value. This is confirmed by the histogram in Supplementary Figure S1, which shows higher variability in the body weight distribution for Nigeria. More variability was observed for the BCS, with CVs ranging between 18 for Ghana and 34 for Burkina Faso (see also Supplementary Figure S2, showing the distribution of BCS categories across the four countries).
TABLE 1 | Descriptive statistics of body weight and body condition score per country.
[image: Table 1]Table 2 shows the prevalence of different haemoparasites as assayed by species-specific qPCR across the four countries. The prevalence of Theileria is not presented as it was not detected in any sample. The highest prevalence was observed for A. marginale across all countries (ranging between 43% and 97%), with Ghana presenting the highest prevalence. In general, prevalence was lower in Burkina Faso than in other countries for all parasites considered. This might have an impact on the estimation of the heritabilities and analyses of GWAS, as there is insufficient information to generate reliable results. Similarly, the analyses for A. marginale in Ghana may be affected by the very high prevalence.
TABLE 2 | Prevalence (%) of haemoparasitic infections per country. The number of individuals with information used to calculate the prevalence is also reported.
[image: Table 2]Table 3 shows the heritability (h2) estimates for body weight and BCS as well as the haemoparasite traits for each country. For most traits, the standard errors of the heritability estimates were large, making the estimated h2 not significant. While these estimates are not significant and there is little consistency across countries, there is evidence of genetic variation. These results are probably a reflection of the challenges of collecting consistent phenotypes in the settings concerned, as well as the limitations associated with issues such as small herd sizes.
TABLE 3 | Heritability (h2) estimates (±s.e.) for body weight, BCS, and haemoparasite traits per country. Significant estimates are also shown (*).
[image: Table 3]Table 4 presents the weighted mean of heritability estimates (h2m) and Q statistics for each trait. The h2m was moderate and significant (p < 0.05) for both body weight and BCS (0.40 and 0.49, respectively), with significant Q statistics for BCS. When looking at the haemoparasite traits, although the h2m estimates are low, ranging between 0.10 for B. bigemina and 0.19 for E. ruminantium, the estimates for A. marginale and E. ruminantium are both significant, suggesting a genetic component to the presence of these parasites in African cattle.
TABLE 4 | Weighted means of heritability estimates (h2m) and their Q statistics (Q) for body weight, BCS, and haemoparasite traits across countries.
[image: Table 4]Within-country GWAS analyses did not generally show any regions associated with the traits of interest, reflecting the low sample numbers. To overcome this limitation, we performed meta-analyses across countries for the two quantitative and four haemoparasite phenotypes. When the prevalence of a phenotype was ≥0.05 or ≤0.95 within a country, the corresponding results were excluded from these meta-analyses. Across these six phenotypes, two peaks reached suggestive significance (p < 1.91 × 10−7 and p < 1.89 × 10−7, respectively). The first peak (lead variant: chr24:24760549:A:G; p = 1.2 × 10−7) was observed for the body condition score on chromosome 24 (Figure 2), with this peak overlapping the GAREM1 gene (Figure 4A) that has previously been linked to body mass in mice and humans (Nishino et al., 2022). The second peak (lead variant: chr8:62534748:T:C; p = 4.5 × 10−8) was identified for the E. ruminantium infection status on chromosome 8 (Figure 3), which overlaps seven genes (Figure 4B). Of these, the Tudor domain-containing protein 7 (TDRD7) gene has previously been associated with immune responses.
[image: Figure 2]FIGURE 2 | Manhattan plot (A) displaying the meta-analysis results (-log10 (p) of the corresponding p-values) and Q–Q plot (B) of observed p-values against the expected p-values for the body condition score. Genome-wide p < 0.05 (red line; p < 9.52 × 10−9 corresponding to -log10 (p) of 8.02) and suggestive (blue line; p < 1.91 × 10−7 corresponding to -log10 (p) of 6.72) significance thresholds are also shown.
[image: Figure 3]FIGURE 3 | Manhattan plot (A) displaying the meta-analysis results (-log10 (p) of the corresponding p-values) and Q–Q plot (B) of observed p-values against the expected p-values for the Ehrlichia ruminantium infection status. Genome-wide p < 0.05 (red line; p < 9.42 × 10−9 corresponding to -log10 (p) of 8.03) and suggestive (blue line; p < 1.89 × 10−7 corresponding to -log10 (p) of 6.73) significance thresholds are also shown.
[image: Figure 4]FIGURE 4 | Manhattan plot of the regions of interest on chromosome 24 for the body condition score (A) and on chromosome 8 for the Ehrlichia ruminantium infection status (B). The purple diamond in the plots represents the variant with the smallest p-value in the areas of interest. Other variants in the area are coloured according to their LD (r2) with the target variant.
4 DISCUSSION
Selection programmes for the improvement of host resistance against ticks and tick-borne diseases could be considered an important strategy for reducing the expenses associated with treatment and prophylaxis management. However, the implementation of genetic improvement programmes has always been difficult in low- and middle-income country settings, due to many factors, including cost, lack of or poor infrastructure, and small herds, which hinder the estimation of population-specific parameters (i.e., heritability and genetic correlations) for traits of economic importance. Moreover, traditionally, the implementation of a breeding programme required an accurate pedigree. In smallholder properties in tropical and subtropical environments, there is often no pedigree recording and no phenotype data recording, rendering conventional breeding practices impossible to implement. Current molecular tools allow for investigating the genetics of complex traits without requiring pedigree information, making selection based on the genome a possibility. One of the key shortcomings of using these technologies in low- and middle-income countries is the cost associated with them. Genotyping arrays are currently the most commonly used tool in GWAS. However, the current commercial genotyping arrays are often biased toward variants common to European breeds, and we have recently shown that they poorly tag variants segregating in indicine breeds, with implications for performing GWAS in African breeds (Riggio et al., 2022). Further limitations associated with performing GWAS in African cattle are the generally small sample size and large variability in farming practices as well as the extensive admixture of these populations (Gebrehiwot et al., 2020). Combining results across independent studies via meta-analysis could help partly overcome these issues, boosting the power to detect significant associations.
To investigate the genetic architecture of the presence of haemoparasites, as well as body weight and BCS, in African cattle, we estimated heritabilities and carried out GWAS using 1,694 cattle from four different countries (Burkina Faso, Ghana, Nigeria, and Tanzania) with genotypes imputed from HD to the whole-genome level, both independently and via meta-analysis. We have shown evidence of genetic variation for most traits, with the weighted mean of heritability estimates being moderate for body weight and BCS and low for haemoparasites, and we have identified two peaks reaching the suggestive significance threshold (i.e., one false positive per genome scan) in the meta-analysis. We could not include Theileria parva in the analysis as we did not detect any infections in our sample set. This was expected for Ghana, Burkina Faso, and Nigeria but was surprising for Tanzania, where both the tick vector and Theileria parva are endemic (Kerario et al., 2017; Allan et al., 2021). The explanation for the lack of detection is either lack of sensitivity based on the substrate (DNA from FTA cards is less effective than DNA purified from blood (Hailemariam et al., 2017)), the assay used (only primers suitable for use in qPCR were considered for this study, which may have compromised sensitivity), or lack of detectable infection in the target animals (it is probable that any infected animals would be carriers, meaning low parasite numbers). However, the lack of detectable infections meant that we were not able to assess heritability for this important pathogen, although numbers and, therefore, power would have been very low in any case given the restriction to one country.
Although heritability estimates for body weight and BCS within the country were mostly not significant, the weighted means of heritability estimates (h2m) were moderate and significant (i.e., 0.40 for body weight and 0.49 for BCS). This estimate of the heritability of body weight is consistent with that previously estimated within European cattle, where values generally fall between 0.4 and 0.7 (Mehtiö et al., 2021). Likewise, heritability estimates for BCS in European cattle breeds have generally fallen within the range of 0.2–0.5 (Bastin and Gengler, 2013). Consequently, our heritability estimates for these traits are consistent with previous findings.
Estimates for haemoparasites were lower, ranging between 0.10 and 0.19. Low heritability estimates for the infection levels of B. bigemina and B. bovis (i.e., 0.09 and 0.1, respectively) were also previously reported by Romero (2021). Although we use a different definition of the trait, as we are only considering the presence/absence of the pathogen, both results seem to be consistent in showing a high environmental influence on such traits. Romero (2021) also reported a heritability estimate of 0.09 for the infection level of A. marginale.
Previous studies have identified a region on chromosome 5 associated with BCS in tropical cattle (Porto-Neto et al., 2014), but there was little evidence of an association with this locus in our analyses. However, the authors in that study visually assessed body condition at an average of 30 months of age and subjectively scored at 1/3rd score increments from 1 to 5 and subsequently converted it to a continuous 15-point scale (Porto-Neto et al., 2014), whereas we used a classification scale of nine points. In this study, we identified a region reaching the suggestive significance level on chromosome 24, which overlaps the GAREM1 gene. In a study on body mass in humans and mice, Nishino et al. (2022) found that GAREM1 is required for normal growth and for maintaining average body size in these species. This gene is consequently a potentially interesting candidate for follow-up work further exploring its potential link to BCS in African cattle.
Considerable work has been carried out to address the genetic control of resistance to ticks [see Mapholi et al. (2014) for a review]. To the best of our knowledge, few studies have been published so far for TBDs (Romero, 2021; Wragg et al., 2022). Comparisons across studies are not easy, given the complexity of the traits and the differences among populations and in tick/pathogen prevalence, as well as the approaches used. Moreover, in contrast to association studies in humans, where in general largely unrelated individuals are used, livestock populations are often characterised by high levels of relatedness (i.e., closely related animals with a complex population structure) and an a priori unbalanced distribution of allele frequencies, which is likely to inflate the rate of false-positive associations between the traits and the markers, making true associations harder to detect. However, our meta-analysis showed evidence of a peak on chromosome 8 for the E. ruminantium infection status. This region overlaps several genes, though TDRD7 is potentially the strongest candidate for being linked to the infection status. Given that E. ruminantium is an intracellular bacterium, this gene could be relevant as it is an important factor involved in cellular responses to viral infection (Thakur et al., 2019; Subramanian et al., 2020; Forst et al., 2022). A previous study from Romero (2021) in a similar number of South American cattle, using predominantly low-density arrays, prioritised several regions across the genome potentially affecting the infection level of B. bigemina (chromosomes 5, 7, 10, 20, and 27) and A. marginale (chromosomes 2, 5, 8, 10, 13, 15, 17, 20, 24, and 29). However, none of these regions were significant in our analyses.
In conclusion, in this study, we aimed at estimating heritabilities and identifying loci underlying genetic variations for important haemoparasites, as well as body weight and body condition score, in African cattle. Despite the relatively modest heritability estimates in the within-country analysis, our meta-analysis results have indicated the possibility of improving these traits. Moreover, our meta-analyses have identified two regions associated with body condition score and presence/absence of E. ruminantium, which should be further explored. These data suggest that future larger-scale studies to explore the genetic basis of resistance/tolerance to tick-borne pathogens have merit, as improving the resolution by increasing animal numbers has the potential to identify genetic traits that may contribute in the future to reducing the disease burdens on smallholder farmers in Africa.
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The Tigray region, where we found around eight per cent of the indigenous cattle population of Ethiopia, is considered as the historic centre of the country, with the ancient pre-Aksumite and Aksumite civilisations in contact with the civilisations of the Fertile Crescent and the Indian subcontinent. Here, we used whole genome sequencing data to characterise the genomic diversity, relatedness, and admixture of five cattle populations (Abergelle, Arado, Begait, Erob, and Raya) indigenous to the Tigray region of Ethiopia. We detected 28 to 29 million SNPs and 2.7 to 2.9 million indels in each population, of which 7% of SNPs and 34% of indels were novel. Functional annotation of the variants showed around 0.01% SNPs and 0.22%–0.27% indels in coding regions. Enrichment analysis of genes overlapping missense private SNPs revealed 20 significant GO terms and KEGG pathways that were shared by or specific to breeds. They included important genes associated with morphology (SCN4A, TAS1R2 and KCNG4), milk yield (GABRG1), meat quality (MMRN2, VWC2), feed efficiency (PCDH8 and SLC26A3), immune response (LAMC1, PCDH18, CELSR1, TLR6 and ITGA5), heat resistance (NPFFR1 and HTR7) and genes belonging to the olfactory gene family, which may be related to adaptation to harsh environments. Tigray indigenous cattle are very diverse. Their genome-wide average nucleotide diversity ranged from 0.0035 to 0.0036. The number of heterozygous SNPs was about 0.6–0.7 times higher than homozygous ones. The within-breed average number of ROHs ranged from 777.82 to 1000.45, with the average sum of the length of ROHs ranging from 122.01 Mbp to 163.88 Mbp. The genomic inbreeding coefficients differed among animals and breeds, reaching up to 10% in some Begait and Raya animals. Tigray indigenous cattle shared a common ancestry with Asian indicine (85.6%–88.7%) and African taurine (11.3%–14.1%) cattle, with very small, if any, European taurine introgression. This study identified high within-breed genetic diversity representing an opportunity for breeding improvement programs and, also, significant novel variants that could increase the number of known cattle variants, an important contribution to the knowledge of domestic cattle genetic diversity.
Keywords: Abergelle, Arado, Begait, Erob, private missense variants, Raya, runs of homozygosity, Tigray cattle
INTRODUCTION
From the main domestication centres, cattle dispersed worldwide through trading and human migration routes (Hanotte et al., 2002; Beja-Pereira et al., 2006; Freeman et al., 2006; Ajmone-Marsan et al., 2010). The long process of their origin, domestication, and natural and artificial selection led to diversified phenotypic attributes related to their history, agro-ecologies and production systems (Ajmone-Marsan et al., 2010; Purfield et al., 2012; FAO, 2015). About 1019 local cattle breeds have been recognised worldwide (FAO, 2015). However, the growing demand for animal-based food products is resulting in the extensive introduction of a few specialised high-yielding milk and beef breeds (Ajmone-Marsan et al., 2010; FAO, 2015; Kukučková et al., 2017) with crossbreeding or replacement of the indigenous genotypes. It may trigger a sharp decline in the population size of local breeds (Medugorac et al., 2009) and erosion of their genetic makeup. It has been estimated that around 50% of the global cattle breeds’ diversity remains unknown (FAO, 2015). Characterising the diversity of indigenous breeds is important for understanding their adaptive traits and for targeted conservation strategies (FAO, 2015; Mwai et al., 2015; Addo et al., 2019; Eusebi et al., 2020).
Ethiopia is a major entry gate for cattle into the African continent (Hanotte et al., 2002; Li et al., 2007; Edea et al., 2015). It is the home of Africa’s largest cattle population and ranks the fifth worldwide (Mwai et al., 2015; CSA, 2018). It has 60.39 million heads of cattle, of which 98.24% are indigenous to the country (CSA, 2018) and managed by smallholder farmers (Rowlands et al., 2006; EBI, 2016). The indigenous cattle of Ethiopia produce, reproduce, and survive with little veterinarian intervention and limited feed resources, including in extreme temperatures (hot or cold) and diverse agro-ecologies ranging from low altitude (<500 m above sea level (m.a.s.l.) to high altitude mountainous areas (>3000 m.a.s.l.) (EBI, 2016; Bekuma and Hirpha, 2018).
The region of Tigray in the North of Ethiopia is an ancient centre of civilisations (e.g., ancient pre-Aksumite Kingdom of Da’amat and Aksumite Kingdom of Axum) which were in trading contacts with the ancient civilisations of the Fertile Crescent and the Indus Valley (Finneran, 2007; Pagani et al., 2012). Accordingly, it had an important role in the introduction of livestock into the Horn of Africa (Woldekiros and D’Andrea, 2017). 
Tigray is the fourth most cattle-populated Ethiopian region, with about 8% of the country’s cattle genetic resource (CSA, 2018). Previous studies have characterised some of these populations using low-density molecular markers such as microsatellites, Y-chromosome markers or SNPs arrays (Li et al., 2007; Zerabruk et al., 2007; Dadi et al., 2008; Zerabruk et al., 2011; Edea et al., 2015). Using five Y chromosome markers, Li et al. (2007) identified indicine but no taurine Y chromosome in the Tigray cattle with the exception of an Arado bull. Dadi et al. (2008) characterised the genetic diversity of Raya (Tigray cattle) and other cattle from different parts of Ethiopia using 30 microsatellite loci. Zerabruk et al. (2007) reported the genetic diversity of the five recognised Tigray cattle populations (Abergelle, Arado, Begait, Erob and Raya) using 20 autosomal microsatellite markers and observed that the Begait cattle had the highest within-population diversity among the examined ones. Using the same set of 20 autosomal microsatellite markers, Zerabruk et al. (2011) characterised the admixture composition of the Tigray cattle and reported a small proportion of European taurine background in some animals. Edea et al. (2015) genotyped three Tigray cattle populations (Arado, Begait and Raya) and four other Ethiopian cattle populations using the GeneSeek Genomic Profiler HD Bead Chip SNP array and found high genetic differentiation and unique admixture patterns in the Begait cattle.
Whole-genome sequence analyses are now the method of choice for genome diversity characterisation (Shendure and Ji, 2008; Stafuzza et al., 2017). At the opposite of microsatellite and SNPs arrays, they provide a complete representation of the diversity of a genome and an entry point to the identification of candidate causative variants associated with Mendelian and quantitative traits (Jiang et al., 2014; Das et al., 2015). Compared to SNPs arrays, often selected for polymorphisms in a reduced number of breeds, they are less prone to ascertainment biases. However, it should be noted that polymorphism detection relies on sequence alignment against a single genome of reference, which will still introduce biases in the identification of SNPs following the genome of reference chosen. Recently, a few studies (Kim et al., 2020; Jang et al., 2022; Terefe et al., 2022; Terefe et al., 2023) have reported the whole-genome characterisation of Ethiopian indigenous cattle, making it the African country with the largest number of cattle genome sequences available. However, they are still several main gaps in our knowledge with cattle populations from some geographic areas and cattle populations living in extreme environments yet to be characterised at the whole genome level (Edea et al., 2013; EBI, 2016). For instance, all the previous whole-genome based characterization studies on Ethiopian cattle populations (Kim et al., 2020; Jang et al., 2022; Terefe et al., 2022) did not include any Tigray cattle, with the exception of one Tigray cattle population (Begait) (Terefe et al., 2023).
We reported previously a multivariate morphological description of the Tigray cattle populations, using 21 qualitative traits and 21 body measurements (Zegeye et al., 2021). For the five Tigray indigenous cattle populations (Arado, Begait, Abergelle, Erob, and Raya cattle), four distinct clusters were identified with the Abergelle and Erob grouped together (Zegeye et al., 2021). Here, we characterised the same five populations using autosomal SNPs and insertion/deletion (indels) variants to assess their genetic diversity, differentiation, relatedness and admixture. We aimed to examine their genetic uniqueness and to pave the way for further analysis to identify genomic regions and, ultimately, the genetic control of their morphological and adaptative traits.
MATERIALS AND METHODS
Sample collection
Fifty-four whole blood samples were collected from five indigenous cattle populations (11 Abergelle, 11 Arado, 11 Begait, 10 Erob, and 11 Raya cattle) in the Tigray region of Northern Ethiopia (Figures 1A–C). The sampling area and morphological descriptions of the populations were reported previously (Zegeye et al., 2021). The whole blood was collected from the jugular vein of each animal by venipuncture with a 10 mL (millilitre) vacutainer blood collection tube containing ethylenediaminetetraacetic acid (EDTA) as an anticoagulant. The blood was gently mixed with the EDTA and placed into an icebox containing ice. It was brought to the International Livestock Research Institute molecular laboratory facility (ILRI - Addis Ababa), where it was stored at −21°C (degree centigrade) until the extraction of the genomic DNA (gDNA).
[image: Figure 1]FIGURE 1 | (A) Physical map of Tigray region based on elevation (meters above sea level, m.a.s.l.) with sampling sites for each population. (B) Physical map of Tigray region based on Major Agroecological Zones of Tigray (MAZT) (MOA, 1998) with sampling sites for each population. (C) Photos of the studied indigenous Tigray cattle populations.
Genomic DNA extraction and quality checking
The gDNA was extracted using the Qiagen DNeasy Blood and Tissue Kit (Qiagen, Hilden, Germany) following the manufacturer’s standard procedure. The extracted gDNA samples were evaluated for their concentration and quality using a Nanodrop spectrophotometer (DeNovix-DS-11+spectrophotometer, USA) and 1% agarose gel electrophoresis. A minimum of 5 µg of high quality gDNA with a concentration >50 nanogram per microliter (ng/µL) (Supplementary Table S1) was used for whole-genome sequencing.
Library construction and sequencing
The gDNA samples were sent to the ILRI-CAAS Joint Laboratory of Livestock and Forage Genetic Resources in Beijing, P.R. China, which supervised the genome sequencing. Following the manufacturer’s specifications, a paired-end DNA library was constructed for each of the 54 samples. The gDNA was sequenced on an Illumina HiSeq X10 platform.
Short read mapping and variant calling
The sequence reads were checked for quality using FastQC version 0.11.5. Following quality checking, paired-end reads (FASTAQ format) were aligned against the cattle reference genome assembly (ARS_UCD1.2, Bos taurus, Hereford breed) using the BWA version 0.7.17 (Li and Durbin, 2009). The mapped reads were sorted using samtools version 1.8 (Li et al., 2009) and converted to BAM formats using PICARD tools version 2.18.2. Duplicated reads were marked and removed using PICARD’s MarkDuplicates command. Moreover, the percentages of reads mapped to the reference genome were computed from dedup_recal.bam file using the Genome Analysis Toolkit’s (GATK, version 3.8-1-0-gf15c1c3ef) DepthOfCoverage “-ct 5 -ct 10 -ct 20 -ct 40”.
The base quality score recalibration (BQSR) was performed using the GATK’s BaseRecalibrator and the uniquely mapped reads for variant calling were selected using the GATK’s HaplotypeCaller (McKenna et al., 2010). The genomic variants (GVCF files) generated from each sample were jointly analysed using the GATK’s GenotypeGVCFtool. Called variants (SNPs and indels) were separately subjected to variant filtration (GATK hard filter) setting MQ > 40, QD > 2.0, ReadPosRankSum > 8.0, MappingQualityRankSum > 12.5 and HaplotypeScore > 13 for SNPs and FS > 200.0, QD < 2.0, ReadPosRankSum < −20.0 and QUAL <20) for indels. Only bi-allelic variants that meet the specified filtering criteria were selected for further analysis.
Variant statistics and annotation
To compute the variant statistics (e.g., total number of SNPs, total number of indels, indel length, and nucleotide substitution), we used the VCF-stats command of VCFtools/0.1.14/Perl. The number of transition and transversion, average ratios of transitions-to-transversions (Ti/Tv), and distribution of SNPs and indels at different allelic frequencies were analysed using stats command and plot-VCF-stats of BCFtools/1.8 (Li et al., 2009). Moreover, SNPs and indels density across chromosomes were computed for each population using VCFtools version 0.1.15 and then averaged using R version 3.6.1 (R Development Core Team, 2019). We searched and compared our SNPs against the dbSNP ver150 (https://genome.ucsc.edu/cgi-bin/hgGateway, last accessed in July 2021). Finally, the variants (SNPs and indels) were classified according to their potential functions using the Ensemble Variant Effect Predictor tool (VEP, (https://www.ensembl.org/info/docs/tools/vep/index.html), and the genes overlapping private missense variants were functionally annotated by DAVID version 6.8 (https://david.ncifcrf.gov/home.jsp). Significant Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were selected based on different criteria including p < 0.05, Bonferroni < 0.05, FDR < 0.05 and fold enrichment > 1.
Genome-wide nucleotide diversity and heterozygosity
The genome-wide nucleotide diversity (π) was analysed for each population using VCFtools version 0.1.15 in 20 kb windows with a 10 kb sliding step (with the--window-pi 20000 --window-pi-step 10000 option) (Danecek et al., 2011). The numbers of non-reference heterozygous and homozygous variants (SNPs and indels) were analysed using the VCF-stats command of VCFtools/0.1.14/Perl. Further, the observed heterozygosity (Ho) was calculated following the command “--het” in PLINK version 1.9 (Purcell et al., 2007).
Runs of homozygosity and genomic inbreeding
The runs of homozygosity (ROH) were detected using PLINK version 1.9 (Purcell et al., 2007) by setting a sliding window of 50 SNPs (--homozyg-window-snp 50), one possible heterozygous genotype (--homozyg-window-het 1), two missing genotypes (--homozyg-window-missing 2), a minimum SNP density of 1 SNP every 50 kb (--homozyg-density 50), a minimum number of 100 SNPs (--homozyg-snp100), a minimum length of 100 kb (--homozyg-kb 100), a maximum gap of 1 Mb between consecutive homozygous SNPs (--homozyg-gap 1000) and the presence of the SNP in at least five homozygous reads (--homozyg-window-threshold 0.05).
We calculated the genomic inbreeding value for each cattle by dividing the sum of ROHs length with the total length of the genome (FROH = LROH/LAUTO), following McQuillan et al. (2008), Zhang et al. (2015a), Addo et al. (2019) and Guo J. et al. (2019). For this analysis, we considered a total genome length of 2,715,853,792 bp (2.72 Gb) (ARS_UCD1.2). An alternate inbreeding coefficient (FHOM) was also calculated for each animal using the “--het” command in PLINK version 1.9 (Purcell et al., 2007) following Addo et al. (2019).
Genetic relationship and differentiation
Publicly available genome sequences of 15 cattle breeds (Supplementary Table S2) from six reference groups were added to the dataset for genetic relationship and differentiation analyses. These included African sanga (Afar and Ankole, crosses between African zebu and longhorn humpless taurine), African zenga (Fogera and Horro, crosses between African zebu and sanga), African zebu (Ethiopian Boran and Kenana), African taurine (Muturu and N’Dama), European taurine (Angus and Holstein), Asian zebu (Bhagnari, Cholistani, Dhanni, Sahiwal and Tharparkar). The VCFs of all the reference populations were generated from their raw sequence reads by applying the same procedures mentioned above, and subsequently merged with the five Tigray cattle populations. The merged dataset included 164 cattle genomes and 42,766,398 raw SNPs. It was pruned using PLINK version 1.9 (Purcell et al., 2007) by setting different filtering and quality control thresholds, such as “--mind 0.25 --geno 0.1 --maf 0.05 --indep-pairwise 50 10 0.5 --set-missing-var-ids C@P”. Where--mind 0.25 = individual sample to be removed following 25% or more missing genotype data, --geno 0.1 = variants to be removed due to 10% of missing genotype data, --maf 0.05 = variants to be removed due to minor allele frequency less than 0.05, --indep-pairwise 50 10 0.5 = SNPs with pairwise r2 values higher than 0.5 in sliding windows of 50 SNPs moving stepwise with ten SNPs at a time across the genome and set-missing-var-ids C@P = missing IDs set. After applying the quality control and filtering thresholds, the pruned final data set including 3,695,054 SNPs and 164 animals was converted to plink. fam, plink. bin, and plink. bed file using the flag “--make-bed” in PLINK version 1.9 (Purcell et al., 2007).
Principal component analysis
The LD-pruned dataset consisting of 3,695,054 SNPs and 164 individuals was used for principal component analysis (PCA). To calculate pca.egenvel and pca.egenvec, we used the flag “plink--pca” with a default parameter, for the first 20 principal components (PCs). Then, the proportions of variances explained by the eigenvector were computed by dividing each egenvel by the total sum of all egenvels (1–20) and expressing it as a per centage. Finally, the two first PCs were plotted against each other using the ggplot2 package in R version 3.6.1 (R Development Core Team, 2019) to illustrate the population clustering.
Genetic admixture analysis
Using the same LD-pruned dataset (3,695,054 SNPs), the ADMIXTURE version 1.3.0 software (Alexander et al., 2009) was used to determine the optimal number of clusters (K) and to describe individual ancestry. A cross-validation procedure was performed using the program’s flag "-cv” for K = 1 to K = 10. The K with the lowest cross-validation error was taken as the recommended number of clusters for the dataset. The cross-validation error value for each K (1–10) and the cluster assignments were plotted using R version 3.6.1 (R Development Core Team, 2019).
Genetic differentiation
The genetic distance (FST) between pairs of populations (Weir and Clark Cockerham, 1984) was analysed using VCFtools version 0.1.15 in 100 kb windows with a 50 kb sliding step (with the--window-pi 100000 --window-pi-step 50000 option) (Purcell et al., 2007). The pairwise weighted FST-based heat map with a dendrogram was plotted in R version 3.6.1 (R Development Core Team, 2019). Next, a Neighbor-Net tree based on pairwise FST values was constructed using the Neighbor-Net algorithm (Bryant and Moulton, 2004) implemented in SplitsTree5 V 5.0.0” (Huson and Bryant, 2006) and plotted in R version 3.6.1 (R Development Core Team, 2019).
RESULTS
Intra-population genetic diversity in the Tigray cattle
Mapping and variant detection
The number of paired-sequence reads for each animal ranged from 200,684,387 to 289,752,799, with a mapping rate of 99.61%–99.79% to the reference genome (ARS_UCD1.2). The average sequencing depth among populations ranged from 10.13 X (Erob cattle) to 10.64 X (Begait cattle). Furthermore, over 88% of the bases were covered with at least five reads, and 39%–42% were covered with at least ten reads (Supplementary Table S3).
Variant calling and filtration combining the five Tigray cattle populations resulted in the detection of around 36 million (M) SNPs (n = 36,003,573) and 3.7 M indels (n = 3,703,659) (Supplementary Table S4B). The number of SNPs detected per individual sample ranged from 12 M to 13 M (Supplementary Table S4A). The number of SNPs at population level ranged from 28 M to 29 M, of which 7% were novel (Table 1). A total of 2,113,093 (7.15%) SNPs were shared among Abergelle cattle, 2,062,642 (6.94%) among Arado cattle, 2,182,704 (7.54%) among Begait cattle, 2724,442 (9.71%) among Erob cattle, and 2,161,735 (7.35%) among Raya cattle (Supplementary Table S4B). Around 674,019 (1.87%) SNPs were shared across the five Tigray cattle populations (Supplementary Table S4B).
TABLE 1 | Variant statistics within cattle populations from Tigray region, Ethiopia.
[image: Table 1]We detected around 1.1 M–1.2 M indels in each individual cattle (Supplementary Table S4A), while the number of indels in each population ranged from 2,755,496 (Erob) to 2,905,857 (Arado). Of these, around 34% were novel (Table 1). Within a population, 177,353 (6.14%), 173,842 (5.98%), 183,302 (6.48%), 228,704 (8.3%) and 181,610 (6.26%) indels were common to all samples in Abergelle, Arado, Begait, Erob, and Raya cattle populations, respectively. Around 1.43% (52,992) of indels were shared across all the five Tigray cattle populations (Supplementary Table S4B).
Except for Erob cattle, the number of private SNPs across individual samples ranged from 32,245 to 81,933, and the number of private indels ranged from 5,276 to 14,182 (Figure 2). Among Erob cattle, four samples (ER06, ER17, ER13 and ER10) had fewer private variants (9,929 to 11,526 SNPs and 2,675 to 2,870 indels) compared to the remaining Tigray cattle samples. At the population level, we detected 571,535, 634,275, 583,831, 433,013 and 569,013 private SNPs for Abergelle, Arado, Begait, Erob and Raya cattle populations, respectively.
[image: Figure 2]FIGURE 2 | The distribution of private SNPs and indels across samples for each population (ABR* for Abergelle, AR* for Arado, BG* for Begait, ER* for Erob and RAY* for Raya cattle).
Density of the variants and their allele frequencies
The density of genome-wide SNPs ranged from 11.27 ± 7.69 to 11.94 ± 7.88 SNPs/kb and of indels from 1.08 ± 1.34 to 1.17 ± 1.41 indels/kb across the five Tigray cattle populations (Supplementary Tables S5, S6). Chromosomes 23, 27 and 28 had the highest density of variants (13–14 SNPs/kb and 1.3 to 1.4 indel/kb), while chromosomes 19, 13, 3 and 11 had the lowest ones (10–11 SNPs/kb and <1.1 indels/kb). The chromosome-wise distributions of variants (SNPs and indels) were proportional to the length of the chromosomes (Supplementary Tables S7, S8). As expected, large chromosomes had more variants than small ones (Supplementary Figures S1A–D). However, the density of variants (SNPs/kb or indel/kb) was higher on small chromosomes than large ones.
Across the five Tigray indigenous cattle populations, the average alternate (non-reference) allele frequencies of SNPs and indels were 0.32 and 0.28 to 0.3, respectively. The proportion of SNPs with mean alternate allele frequency (AAF) < 0.5 ranged from 77% to 79% and the proportion of SNPs with mean AAF > 0.9 was around 4%. The proportion of indels with mean AAF < 0.5 ranged from 78% to 80% (Supplementary Table S9). However, most of the variants (SNPs and indels) had frequencies of 10% or less (Figure 3). Allele frequencies of private SNPs ranged from 0.05 to 0.55, of which 67% (Erob cattle) to 83% (Arado cattle) of these SNPs had an allele frequency of 0.05 (Figure 4).
[image: Figure 3]FIGURE 3 | Distribution of the variants based on allele frequency (blue bars represent SNPs and the green line represents indels).
[image: Figure 4]FIGURE 4 | Allele frequency of private SNPs, where each coloured line represents a cattle population.
Nucleotide substitutions and indel length
The Ti/Tv ratio was around 2.35 (Supplementary Table S10). It supported a high sequencing accuracy for all samples. Across all the samples, the highest number of nucleotide substitutions were recorded for the bases Cytosine to Thymine (C > T) and the bases Guanine to Adenine (G > A) while the least number of nucleotide substitutions for the bases Adenine to Thymine (A > T) and Thymine to Adenine (T > A) (Supplementary Table S10 and Supplementary Figure S2A). The number of insertions was about 0.33–0.35 times higher than deletions. Furthermore, the length of indels ranged from −28 bp (deletion, Abergelle) to +23 bp (insertion, Begait) (Supplementary Table S11). Almost 50% of the indels had a length of 1 bp, while the majority of indels were less than 5 bp (87.12% in Abergelle, 87.08% in Arado, 87.11% in Begait, 87.18% in Erob and 87.11% in Raya cattle). Only around 13% of the total indels had lengths greater than or equal to 6 bp (Supplementary Table S11 and Supplementary Figure S2B).
Functional distribution of variants (SNPs and indels)
The annotation of the SNPs showed that around 59.5% of them were in the intergenic regions. Around 76% of annotated SNPs were in introns, 7% in upstream of genes, 7.2% in downstream of genes, 0.5% in 3′ untranslated region (UTR), 0.2% in 5’ UTR and 0.11% in non-coding transcript exon. The number of SNPs in the coding regions (stop gain, stop lost and stop retained, start lost, missense and synonymous SNPs, and coding sequences) was approximately 0.01% in all populations (380,309 in Abergelle, 383,116 in Arado, 373,578 in Begait, 361,55 in Erob and 380,299 in Raya cattle) (Table 2) (Supplementary Figure S3), of which around 17%–18% had deleterious effects (Supplementary Figure S4).
TABLE 2 | Population level summary of annotation of SNPs in the Tigray cattle.
[image: Table 2]Around 57%, 77%, 7.4%, 8%, 0.6%, 0.2% and 0.1% of the indels were in intergenic regions, introns, upstream of genes, downstream of genes, 3′ UTR, 5’ UTR and non-coding transcript exons, respectively. The total numbers of indels located within the coding regions (stop gain, stop lost, stop retained, start lost, start retained, frameshifts, inframe insertions, inframe deletions, protein-altering variants and coding sequences) ranged from 0.22% (Raya cattle, 6,414) to 0.27% (Erob cattle, 7,462) (Table 3). Among the indels located in the coding regions, 63.20%, 63.39%, 62.65%, 63.48% and 77.6% resulted in codon frameshifts (codon alteration), of which 0.81%, 0.84%, 0.98%, 0.84% and 0.88% may affect protein functions in Abergelle, Arado, Begait, Erob, and Raya cattle populations, respectively (Supplementary Figure S5).
TABLE 3 | Population level summary of annotation of indels in the Tigray cattle.
[image: Table 3]Enrichment analysis of the genes overlapping private SNPs
A separate analysis of the private SNPs for each population showed 1,455, 1,809, 1,470, 1,203, and 1,701 private missense SNPs for Abergelle, Arado, Begait, Erob and Raya cattle populations, respectively; of which 97.9% (Erob) to 98.9% (Raya) were in coding regions while the remaining ones overlapped with splice regions. Of the missense SNPs in the coding regions, 33.1%, 34.4%, 52.7%, 64.8% and 58.1% had deleterious effects in Abergelle, Arado, Begait, Erob and Raya cattle populations, respectively (Figure 5).
[image: Figure 5]FIGURE 5 | Private SNPs with missense effects overlapping coding and splicing regions, where, CR represents the number of missense SNPs overlapping coding regions, SR represents the number of missense SNPs overlapping splice regions, CRD represents the number of missense SNPs overlapping coding regions with deleterious effects, and SRD represents the number of missense SNPs overlapping splice regions with deleterious effects.
Functional enrichment analysis of the genes overlapping private SNPs in coding regions identified 16, 12, 16, 6 and 10 significant (p < 0.05, Bonferroni < 0.05, FDR < 0.05 and fold enrichment > 1) GO terms of biological process (BP), cellular component (CC), molecular function (MF) and KEGG pathways in Abergelle, Arado, Begait, Erob and Raya cattle populations, respectively (Figure 6). Out of the enriched terms, the top three most significant ones (p = 1.6 × 10−5 to 6.8 × 10−67, Bonferroni = 1.65 × 10−2 to 7.5 × 10−64, FDR = 8.3 × 10−3 to 7.5 × 10−64 and fold enrichment = 2.3–4.3) were olfactory receptor activity (GO:0004984), olfactory transduction (bta04740) and odorant binding (GO:0005549). These were common to all five Tigray cattle populations.
[image: Figure 6]FIGURE 6 | Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway terms in the Tigray cattle, where the size of the circles represents how large the number of genes represented in a specific GO or KEGG pathway term and the level of significance, while each coloured circle represents a cattle population.
Within populations, the enrichment analysis further identified many population specific genes associated with the aforementioned three most significant terms. Around 11% (Erob cattle) to 17% (Abergelle cattle) of the genes were associated with olfactory receptor activity, 13% (Erob cattle) to 18% (Abergelle cattle) with olfactory transduction, and 3% (Erob cattle) to 6% (Abergelle cattle) with odorant binding (Additional file, Sheet 1).
Eleven genes, including OR4F73, OR1L21, OR5AN1, OR9S29, OR9M1D, OR2H20, OR4X16, OR5AK29, OR6C4, OR8B1AU and OR9S40, were commonly enriched in the three shared GO terms. Six GO terms (GO:0004871∼signal transducer activity, GO:0004872∼receptor activity, GO:0004888∼transmembrane signaling receptor activity, GO:0038023∼signaling receptor activity, GO:0060089∼molecular transducer activity, GO:0099600∼transmembrane receptor activity) with related molecular functions were enriched in four populations (Abergelle, Arado, Begait and Raya cattle). Interestingly, two significant GO terms of the cellular component associated with an integral component of the plasma membrane (GO:0005887) and the intrinsic component of the plasma membrane (GO:0031226) were only enriched in Begait cattle. Two GO terms of the cellular component (GO:0005578) related with proteinaceous extracellular matrix and extracellular matrix component (GO:0044420) were significantly enriched only in the Erob cattle (Additional file, Sheet 1).
Nucleotide diversity and heterozygosity
The average genome-wide nucleotide diversity (π) ranged from 3.5 ± 1.77 × 10−3 (Raya) to 3.57 ± 1.76 × 10−3 (Arado) (Figure 7 and Supplementary Table S12). Besides, the average non-reference heterozygous variants (SNPs and indels) were around 0.6 to 0.7 times higher than the corresponding homozygous variants (Supplementary Table S12). At the individual level, the ratio of heterozygous to homozygous SNPs ranged from 1.39 to 1.89, and of the indels from 1.39 to 1.84 (Supplementary Figures S6A–E). The mean observed heterozygosity (Ho) was the highest in Arado cattle (0.302 ± 0.010) but the lowest in Raya cattle (0.278 ± 0.016) (Supplementary Table S12).
[image: Figure 7]FIGURE 7 | Box plot for nucleotide diversity, where each coloured box plot represents a cattle population.
Runs of homozygosity and genomic inbreeding
Abundance and length of ROH in the Tigray cattle compared to major reference cattle groups
We calculated ROH for the five Tigray cattle populations and the reference breeds. The average number and length of ROH segments varied considerably within and among breeds (Figure 8; Table 4 and Supplementary Table S13). The within breed average number of ROH for the Tigray cattle ranged from 777.82 (Arado cattle) to 1000.45 (Raya cattle), and the within breed average sum of the length of ROH ranges from 122.01 megabase pairs (Mbp) (Arado cattle) to 163.88 Mbp (Raya cattle). The average number of ROHs and the average sum of the length of ROH in the Tigray cattle were higher than the ones recorded in Asian zebu, African zebu from Sudan (Kenana), African taurine (Muturu and N’Dama) and African sanga from Uganda (Ankole). But they were much lower compared to European taurine cattle (Holstein and Angus). However, in general, all the Tigray cattle had close ROH profiles with the other cattle populations originating from Ethiopia (Afar, Eth. Boran, Fogera and Horro) (Table 4).
[image: Figure 8]FIGURE 8 | ROH profile of each animal across all cattle, including reference populations, where individual colour and circle represent a cattle population and individuals, respectively.
TABLE 4 | Number of animals with and without ROH, breed-wise total and average number of ROH and average sum of the length of ROH for the Tigray cattle populations compared to reference cattle populations.
[image: Table 4]Distribution of ROH based on segment length categories
The number of ROH across length categories (0.1–0.25 Mbp, > 0.25–0.5 Mbp, > 0.5–1 Mbp and > 1 Mbp) varied among breeds. ROH in the length category of 0.1–0.25 Mbp accounted for 90%–92% of the total ROH. For the length categories >0.25–0.5 Mbp and > 0.5–1 Mbp, ROH frequencies were about 7%–10% and 0.2%–0.4%, respectively (Supplementary Tables S14, S15). ROH > 1 Mbp were only found in Begait and Raya cattle (BG15, RAY11, RAY22 and RAY26) (Supplementary Table S13). In the length categories 0.1–0.25 Mbp, the Tigray cattle had more ROH when compared to Holstein and Angus, but they were less than the African sanga from Uganda (Ankole), African taurine (Muturu and N’Dama) and the Asian zebu. Above the 0.25 Mbp length category, the Tigray cattle had more ROH when compared to Ankole, Muturu, N’Dama and Asian zebu, but they were less than Angus and Holstein (Supplementary Tables S14, S15).
Genomic positions under runs of homozygosity and inbreeding across the Tigray cattle
The chromosome-wise distributions of the number and length of ROH and the incidence of SNPs on ROH were different across the five Tigray cattle populations, except for the Abergelle and Erob cattle (Figures 9A–C and Supplementary Tables S16–S18). At the population level, the mean genomic inbreeding coefficient was the smallest in Arado (FROH = 0.047 ± 0.004 and FHOM = 0.043 ± 0.035) but the highest in Raya cattle (FROH = 0.064 ± 0.025 and FHOM = 0.07 ± 0.054) (Supplementary Table S19). One Begait cattle (BG15 with FROH = 0.103 and FHOM = 0.107) and three Raya cattle (RAY11 with FROH = 0.114 and FHOM = 0.12, RAY22 with FROH = 0.099 and FHOM = 0.168, and RAY26 with FROH = 0.088 and FHOM = 0.111) showed strong genomic inbreeding values based on both methods (Figure 9D and Supplementary Table S20).
[image: Figure 9]FIGURE 9 | Genomic positions under runs of homozygosity (ROH). (A) Chromosome-wise mean number of ROH across cattle populations. (B) Chromosome-wise mean sum of ROH lengths across cattle populations. (C) Incidence of SNPs on ROH across each autosome among individual animals of each cattle population (where each circle represents an individual within a population and each colour represents a population). (D) Inbreeding coefficients (FROH and FHOM) among individual animals of each cattle population (where each circle represents an individual within a population and each colour represents a population).
Relationship and inter-population genetic differentiation
Principal component analysis
The PCA showed the presence of six potential clusters of populations (Figure 10). PC1 and PC2 explained 32.27% and 12.33% of the total variation, respectively (Figure 10 and Supplementary Figure S7). PC1 separated Ankole and taurine cattle (African and European) from Asian zebu, Kenana and all the cattle from Ethiopia, including the Tigray cattle (Abergelle, Arado, Begait, Erob and Raya). PC2 divided the European taurine cattle and Asian zebu from the Ankole and African taurine cattle (Figure 10). Combining PC1 and PC2 illustrated that the Tigray cattle populations (Abergelle, Arado, Begait, Erob and Raya) were close to the Asian zebu and the African sanga (Ankole).
[image: Figure 10]FIGURE 10 | Principal component analysis plot (PC1 and PC2) of the five Tigray cattle populations and reference cattle groups. African sanga (Afar and Ankole, crosses between African zebu and longhorn humpless taurine), African zenga (Fogera and Horro, crosses between African zebu and sanga), African zebu (Ethiopian Boran and Kenana), African taurine (Muturu and N’Dama), European taurine (Angus and Holstein) and Asian zebu (Bhagnari, Cholistani, Dhanni, Sahiwal and Tharparkar).
PC1 and PC2 for the five Tigray cattle populations and other Ethiopian cattle representing three cattle groups of African zebu (Ethiopian Boran), African sanga (Afar) and African zenga (Fogera and Horro) jointly accounted for 15.34% of the total variation, of which the Begait and Erob cattle were separated from the other populations (Figure 11A). The PC1 (6.09%) of the five Tigray cattle populations alone separated Begait cattle from the other four Tigray cattle populations, while PC2 (5.23%) divided Raya cattle from the other four Tigray cattle populations (Figure 11B).
[image: Figure 11]FIGURE 11 | (A) Principal component analysis plot (PC1 and PC2) of the five Tigray cattle populations and other Ethiopian cattle representing three cattle groups of African zebu (Ethiopian Boran), African sanga (Afar) and African zenga (Fogera and Horro). (B) Principal component analysis plot (PC1 and PC2) for the five Tigray cattle populations alone (Abergelle, Arado, Begait, Erob and Raya).
Genetic admixture and population genetic differentiation
As indicated by the lowest cross-validation error (0.51) (Supplementary Figure S8), the admixture analysis suggested three ancestral sources. At K = 3, the taurine ancestry for the Tigray cattle was shown to be mainly shared with the African taurine, except for some individuals in Arado (n = 3) and Begait (n = 2) cattle having 0.1%–1.8% of European taurine ancestry (Figure 12). In each population, the African taurine ancestry ranged from 11.3% (Erob cattle) to 14.1% (Begait cattle) and, accordingly, the indicine ancestry from 85.6% (Arado cattle) to 88.7% (Erob cattle) (Supplementary Figure S9). More interestingly, as the number of potential ancestries increased, the Tigray cattle local ancestry appeared. At K = 7 and K = 10, both Erob and Begait cattle showed some unique local ancestries (Supplementary Figure S10).
[image: Figure 12]FIGURE 12 | Admixture at K = 2 to K = 6 (the black lines separate the populations labelled below the figure).
FST for the Tigray cattle populations ranged from 0.07 to 0.08 with Asian Zebu, 0.084 to 0.108 with Ankole (African sanga originating from Uganda), 0.236 to 0.264 with N’Dama (African taurine), 0.328 to 0.36 with Muturu (African taurine) and 0.300 to 0.335 with the European taurine cattle (Angus and Holstein) (Supplementary Table S21). Within Ethiopian cattle, we observed two groups among the Tigray cattle populations for the FST estimates with other Ethiopian cattle populations, with higher genetic differentiation (FST > 0.02) for Begait and Erob cattle from Ethiopian Boran, Fogera and Horro cattle than for Abergelle, Arado and Raya cattle (FST around 0.01) (Figure 13 and Supplementary Table S21).
[image: Figure 13]FIGURE 13 | Heat map and dendrogram based on pairwise weighted FST values. The darker colour indicates higher pairwise population differentiation while lighter colour lower population differentiation.
Overall, the heat map and dendrogram (Figure 13 and Supplementary Table S21) generated from pairwise weighted FST values among the Tigray cattle populations and the Tigray cattle populations against other cattle breeds (African sanga, African zenga, African zebu, Asian zebu, African and European taurine cattle) showed two main genetic clades: One comprising the taurine group with two sub-clusters African and European) and another including the Asian zebu and other non-taurine African origin breeds (including the Tigray cattle populations). This was consistent with the PCA and admixture analysis results. Further, the Neighbor-Net tree based on the pairwise FST values (Figure 14) supported the admixture, the heat map and the dendrogram results.
[image: Figure 14]FIGURE 14 | Neighbor-Net tree based on pairwise FST values.
DISCUSSION
We report the first whole-genome-sequence-based characterisation of the genetic diversity, relatedness and admixture of cattle populations indigenous to the Ethiopia’s Tigray region. We used abundance, distribution and functional description of SNPs and indels, genome-wide nucleotide diversity (π), heterozygosity (Ho), runs of homozygosity (ROH) and genomic inbreeding coefficient to evaluate the intra-population genetic diversity. The pairwise population differentiation (FST) and relationship based on PCA and admixture analysis were employed to assess the inter-population differentiation and relationship among the Tigray cattle and between the Tigray cattle and other reference cattle groups (African sanga, African zenga, African and Asian zebu, and African and European taurine cattle).
We compared our findings with previous studies using the same ARS-UCD1.2 as reference genome (Rosen et al., 2020). For cattle populations as in our study, predominantly of indicine ancestry, this would have likely inflated the number of detected SNPs. Aligning our reads to an indicine reference genome would minimize subspecies ascertainment of SNPs biases (Low et al., 2020).
The alignment rates of the Tigray cattle sequence reads were similar to those of other African (Kim et al., 2020), Chinese (Jiaxian Red, Wenshan, Wannan and Leiqiong) (Zhang et al., 2019; Xia et al., 2021) and European (Angus and Holstein) (Kim et al., 2020) cattle breeds, suggesting the overall similarity in autosomal structures across cattle populations in the world, despite their distinct evolutionary histories.
The high variation in number of genetic variants (SNPs and indels) within and across the Tigray cattle populations illustrated their rich genetic diversity. Also, we found a substantial number of novel variants (SNPs and indels) in the Tigray cattle (Table 1), indicating their importance as a reservoir of genetic diversity previously uncharacterized. Interestingly, we found many new indels (around 34%) compared to novel SNPs. However, it should be emphasized that indels have been given so far less attention in cattle genomic analyses (Stafuzza et al., 2017), despite being part of the important drivers of phenotypic and genetic diversity (Iqbal et al., 2019). Most of the whole genome analyses on African cattle breeds were based on SNPs (Kim et al., 2017; Tijjani et al., 2019; Kim et al., 2020; Jang et al., 2022; Mauki et al., 2022; Terefe et al., 2022; Terefe et al., 2023), while our study is the first to report indels for Ethiopian cattle.
High genetic “functional” variability in the Tigray cattle
We observed private variants in each Tigray cattle population. Though they only represented around 1.5% (Erob cattle) to 2.1% (Arado cattle) of the total variants in respective populations, they might serve as important diagnostic markers. A small proportion of these SNPs (around 0.23%–0.32%) were missense variants, of which the majority were located in coding regions (97.9%–98.9%), while a few (1.1%–2.1%) were in splice regions. Amongst these SNPs, one-third to two-thirds had a predicted deleterious effect.
Further analysis of all private missense variants identified several GO terms and KEGG pathways shared by different populations or to be population specific. The two most significant GO terms of the molecular function (the olfactory receptor activity and odorant binding) and one most significant KEGG pathway (olfactory transduction) present in the five Tigray cattle populations were associated with olfaction or odour recognition. An efficient olfactory reception is an important fitness mechanisms essential for adaptation, including food and water search behaviour and reproduction (Kour et al., 2022). Odour recognition influences food intake identification and preference (Soria-Gómez et al., 2014).
The GO terms of the cellular component related to the integral component of the plasma membrane (GO:0005887) and its subtype intrinsic component of the plasma membrane (GO:0031226) were only found in Begait cattle. In these GO terms, several important genes were found to be associated with morphology, production, reproduction, feed efficiency, immune response and environmental adaptation. For example, SCN4A (Cai et al., 2019) and TAS1R2 (Zhang et al., 2012) were reported to be associated with body height in cattle. KCNG4 was found to be related to morphometric traits like rump height, body length and chest depth in goats (Easa et al., 2022). FLT4 was identified to be relevant to proliferation and growth in cattle (Keogh et al., 2019). GABRG1 was implicated in milk yield (Pedrosa et al., 2021). Other genes in Begait cattle included PCDH8 (Taussat et al., 2020) and SLC26A3 (Kern et al., 2016) associated with feed efficiency in cattle, PCDH18 related to the immune system and adipogenesis (de Lima et al., 2020). DUOX2 is important for thyroid hormones production and in innate immunity (Maruo et al., 2016), Mfsd2b important in S1P transport activity (Kobayashi et al., 2018) essential for various cellular functions (Spiegel and Milstien, 2011; Cyster and Schwab, 2012), ITGA5 involved in different inflammation and immune response functions such as PI3K–Akt signaling pathway, bacterial invasion of epithelial cells, phagosome and human papillomavirus infection (Wang et al., 2021). NPFFR1 (Moulédous et al., 2010) and HTR7 (Hedlund et al., 2003) are important in body temperature regulation. Last but not least, Kcnv2 was reported to be associated with visual adaptation in a changing lighting condition environment (Hölter et al., 2012).
Two significant GO terms of the cellular component (GO:0005578∼proteinaceous extracellular matrix and GO:0044420∼extracellular matrix component) were explicitly enriched in Erob cattle. Genes such as multimerin 2 (MMRN2), von Willebrand factor C domain containing 2 (VWC2) and laminin subunit gamma 1 (LAMC1) were important in these GO terms. The MMRN2 is associated with a meat quality trait called meat juiciness (Leal-Gutiérrez et al., 2019). Similarly, VWC2 was considered as a candidate gene for intramuscular fat content, one of the most important meat quality traits in beef cattle (Halli et al., 2022). VWC2 was also reported to be associated to feed efficiency in pigs (Wang et al., 2015). LAMC1 was involved in different inflammation and immune response pathways, including prion diseases (bovine spongiform encephalopathy), amoebiasis and toxoplasmosis in cattle. Moreover, LAMC1 was also shown to be relevant to temperature range in cattle (Flori et al., 2019).
Six molecular function GO terms relevant to intra- or extra-cellular activity were significantly enriched in several Tigray cattle populations (Abergelle, Arado, Begait and Raya), in which a few genes such as cadherin EGF LAG seven-pass G-type receptor 1 (CELSR1), gamma-aminobutyric acid type A receptor rho3 subunit (GABRR3), plexin A2 (PLXNA2) and toll-like receptor 6 (TLR6) were identified in Abergelle, Arado and Raya cattle, while the gene macrophage stimulating 1 receptor (MST1R) was overrepresented in the six GO terms (in Abergelle, Arado, Begait and Raya). CELSR1 (Guo Y. et al., 2019) was found to be overexpressed following in vitro treatment of lipopolysaccharide, a cause of the endometrium inflammation (Sheldon et al., 2010), supporting its importance in immune response. In significantly enriched GO terms in Abergelle, Arado and Raya cattle, we found TLR6 as an important candidate gene for bovine tuberculosis resistance (Song et al., 2014). Several studies (Zhang et al., 2009; Seabury et al., 2010; Fisher et al., 2011; Elmaghraby et al., 2018; Maurić Maljković et al., 2023) have reported the importance of toll-like receptor genes for immunity, disease resistance and adaptive immune responses, including mastitis, the most economically important disease in dairy cattle (Elmaghraby et al., 2018; Maurić Maljković et al., 2023). Other genes relevant to oxidative stress (MST1) (Xiao et al., 2011), cattle temperament (PLXNA2) (Gutiérrez-Gil et al., 2008) and fertility such as sperm motility (GABRR3) (Hering et al., 2014) were also present in the six GO terms (Abergelle, Arado and Raya cattle).
In our previous morphological study of the same Tigray cattle populations (Zegeye et al., 2021), we showed that four of the five populations may be separated using morphological criteria. The exception was Erob and Abergelle, with a similar morphology. In particular, Begait cattle had the largest body size, a finding in agreement with the missense variants within genes linked to body height and length. Also, the presence of missense variants in genes involved in olfaction may be attributed to the adaptation of the Tigray cattle to the dry agro-ecology in the region, a characteristic of the Sudano-Sahelian ecology with heat and water stress as an issue (Nyssen et al., 2009; Kumasi and Asenso-Okyere, 2011; Abraha, 2013). In addition, the regional landscape is mainly composed of mountains and hills (Kumasi and Asenso-Okyere, 2011) with limited grazing resources. As a result, the Tigray cattle are strongly adapted to feed shortage, as evidenced by the overrepresentation of genes associated with the olfactory and sensory perception of smell to differentiate the edible from non-edible or palatable from non-palatable browse plant species.
High genetic diversity within and across the Tigray cattle populations
There is a high genome-wide nucleotide diversity (π) in all Tigray cattle, comparable with the values observed in Asian indicine cattle but higher than those in taurine cattle (Muturu, N’Dama, Angus and Holstein) (Figure 7) and indicine-taurine admixed (π = 2.9 × 10−3 for Jiaxian Red) cattle (Xia et al., 2021). Similarly, the observed heterozygosity (Ho), an important indicator of genetic variability in domestic animals (Zhang et al., 2018), ranging from 0.278 to 0.302 among the Tigray cattle was similar with other indicine but higher than African and European taurine cattle.
Historic factors associated with the arrival and admixture of cattle in the Horn of Africa, including the Tigray region, likely shaped today’s genome diversity of the Tigray cattle. As an ancient centre of civilisation, the Tigray region probably witnessed the early arrival of taurine cattle, followed by late introductions of indicine cattle in several migration waves, which continuously enriched the genomic landscape of the Tigray cattle. While our results indicated a large proportion of indicine background in Tigray cattle (around 90%), we still found a proportion of African taurine ancestry in their genomes. We may reasonably hypothesise that the rich genetic variation present in modern Tigray cattle is a legacy of multiple introductions, admixture and dispersion of cattle across the Horn of Africa.
We compared the ROH distribution pattern across the Tigray cattle populations and between the Tigray cattle and other reference cattle groups included in this study and found that all the Tigray cattle showed different patterns of ROH as compared to Asian zebu, African taurine (N’Dama and Muturu), African sanga (Ankole), African zebu (Kenana) and European-taurine (Angus and Holstein) cattle. As expected from their high genomic diversity, the number and cumulative length of ROH were smaller in the Tigray cattle compared with previous reports for taurine cattle (Purfield et al., 2012; Xia et al., 2021) and indicine-taurine admixed cattle outside Ethiopia (Xia et al., 2021). However, the number and length of ROH observed in the Tigray cattle were similar to the one reported for other Ethiopian breeds included in our study (Horro, Fogera, Borana, and Afar). It suggests common breeding history among Ethiopian cattle breeds, while PCA and admixture results suggest close genetic relationships among the Ethiopian cattle as recently showed in a genome analysis including 14 Ethiopian indigenous cattle breeds (Terefe et al., 2023).
Inbreeding coefficients were far lower in the Tigray cattle than those reported in other cattle breeds, particularly the Danish dairy cattle breeds (Zhang et al., 2015b), with an inbreeding coefficient five times higher at a population level. An inbreeding coefficient below 5%, as observed for nearly all animals in this study (FROH), is generally considered to have no consequence on an individual’s fitness (Slate et al., 2004). Therefore, the level of inbreeding in the Tigray cattle is within an acceptable range to accommodate within-population improvement of their productivity.
Population genetic structure and relationship
Taurine ancestry was generally low in the Tigray cattle relative to other African humped cattle breeds (Kim et al., 2020). This is particularly expected for cattle populations geographically close to the entry points of Asian indicine cattle into Africa. The unique local ancestries observed in Erob (K = 7) or Begait (K = 10) and their introgression to all non-taurine African breeds (Supplementary Figure S10) could further confirm the probability of the Tigray region of Ethiopia as a gate of cattle to Africa. Moreover, we observed a closer relationship between Begait to Kenana cattle (a Sudanese cattle breed) than with other Tigray cattle populations. Begait cattle are typically found in the western Tigray regions close to the Sudanese border. Therefore, gene flow from Begait cattle to Sudanese cattle is possible or vice versa. Previously, we observed a close morphological relationship between Erob and Abergelle cattle (Zegeye et al., 2021). This result is not supported by our genetic relationship analysis with the two breeds here clearly separated (e.g., FST-based dendrogram, Supplementary Figure S11). The two breeds are found at different altitudes (Figure 1B). Henceforth, the relationship between Erob and Abergelle cattle requires further investigation.
CONCLUSION
Overall, we provided a detailed analysis using whole genome sequencing data of the genetic diversity, relatedness and admixture of five cattle populations indigenous to the Tigray region, the northernmost state of Ethiopia and a major geographic region of ancient civilizations. We found around 36 M SNPs and 3.7 M indels, where around 7% and 34% of them were novel. The contribution of such novel variants increases the number of known cattle genomic variants and prompts our understanding of the genetic diversity of domestic cattle. We found a high within-population diversity based on the incidence, type and distribution of the genomic variants, genome-wide nucleotide diversity, heterozygosity, runs of homozygosity and genomic inbreeding coefficient. Besides, we detected a sign of poor management in a few Begait and Raya cattle having long ROH and strong inbreeding (>10%), possibly resulting from consanguineous mating. So, these two populations may need special attention to maintain their within-population genetic diversity. The admixture analysis confirmed that the Tigray cattle have a common main indicine ancestry, followed by a low African taurine and a rather limited European taurine ancestry. With high within-population genetic diversity, the Tigray cattle represent an important indigenous genetic resource for breeding improvement to enhance their productivity (e.g., milk), while maintaining their environmental adaptability. All the Tigray cattle populations shared highly significant GO and pathway terms associated with sensory perception of smell with overrepresented genes in the olfactory family, which may be relevant to their adaptation to their harsh environments.
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The African Goat Improvement Network (AGIN) is a collaborative group of scientists focused on genetic improvement of goats in small holder communities across the African continent. The group emerged from a series of workshops focused on enhancing goat productivity and sustainability. Discussions began in 2011 at the inaugural workshop held in Nairobi, Kenya. The goals of this diverse group were to: improve indigenous goat production in Africa; characterize existing goat populations and to facilitate germplasm preservation where appropriate; and to genomic approaches to better understand adaptation. The long-term goal was to develop cost-effective strategies to apply genomics to improve productivity of small holder farmers without sacrificing adaptation. Genome-wide information on genetic variation enabled genetic diversity studies, facilitated improved germplasm preservation decisions, and provided information necessary to initiate large scale genetic improvement programs. These improvements were partially implemented through a series of community-based breeding programs that engaged and empowered local small farmers, especially women, to promote sustainability of the production system. As with many international collaborative efforts, the AGIN work serves as a platform for human capacity development. This paper chronicles the evolution of the collaborative approach leading to the current AGIN organization and describes how it builds capacity for sustained research and development long after the initial program funds are gone. It is unique in its effectiveness for simultaneous, multi-level capacity building for researchers, students, farmers and communities, and local and regional government officials. The positive impact of AGIN capacity building has been felt by participants from developing, as well as developed country partners.
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1 INTRODUCTION
1.1 Background
Goats are crucial sources of milk, meat, and income for many smallholders in sub-Saharan Africa (Panin and Mahabile, 1997; Kosgey et al., 2008). Livestock are particularly critical to the poor in marginal areas where crop yields are inadequate and ruminants can convert low-quality feedstuffs into high-quality dietary protein for humans (McDowell, 1988). Goats have been naturally selected as well as selectively bred (Figure 1) to accommodate the highly variable conditions across sub-Saharan Africa resulting in locally adapted populations (Daramola and Adeloye, 2009; Karnuah et al., 2018). Goats have several advantages, particularly over cattle, that allow them to contribute to socio-economic development of Africa. Significantly, goats browse and can consume a wide range of grasses, leaves, and feeds that people find unappealing or are unable to digest. Additionally, goats have the ability to travel great distances in search of feed and have a small body size resulting in reduced feed requirements. Finally, goats have high reproductive rates (i.e., multiple births) and short generation intervals. Geographic isolation and genetic bottlenecks of goats in African populations have yielded a vast resource of phenotypic and genetic variation within and among native breeds.
[image: Figure 1]FIGURE 1 | AGIN scientists and partners consider data recorded on goat growth rates.
1.2 Problem
Despite this tremendous genetic resource, large portions of sub-Saharan Africa remain food insecure (Smith et al., 2006). The simplicity of the explanation of that problem belies the complexity of a solution. The lack of productivity lies at the intersection of basic practices: traditional animal husbandry to manage production systems, pedigree and performance recording, and selective breeding. Much of the deficits seen in these production systems are best met with an outreach program very much like the cooperative extension system that had such a huge impact in transferring improved agricultural practices and technologies in the U.S. over the 20th century (Rasmussen, 1989).
1.3 Community-based breeding programs
To facilitate this knowledge transfer in the absence of a formal cooperative extension service, a system of community-based breeding programs (CBBP; see Abbreviations Table (Supplemental Materials)) could leverage local researchers and technical experts familiar with the traditional animal husbandry production systems of that community. CBBPs have recently grown in popularity (Wurzinger et al., 2021). With a CBBP approach, farmers and local communities actively participate in the decision-making using their priorities and preferences. This strategy is usually built on locally-adapted and indigenous breeds of livestock with a goal of sustainable intensification. Genetic improvement is increased in most CBBP as opposed to farmers selling the best (i.e., heaviest) offspring, which would induce a negative selection (Gizaw et al., 2014; Haile et al., 2018).
1.4 Research goals
The initial goals of our efforts combined science and application. The scientific component of this project involved two distinct efforts. The first was the sampling of African goat breeds and populations followed by genomic characterization to better understand genetic diversity and within and across population variation of the African goats. Once the existing variation was characterized, a framework could be established for migration and admixture between those populations. The second scientific goal was the identification, description, and use of “signatures of selection.” Selection signatures are genomic footprints that provide evidence of historic selection (Kreitman, 2000; de Simoni Gouveia et al., 2014). The failure of non-adapted goats created from advanced backcross or intercross populations to thrive when exposed to extensive natural conditions and the related stressful environments in Africa is compelling evidence of the genetic component to adaptation (Hassen et al., 2002; Tibbo, 2006; Escareño Sánchez, 2010). The practical components of this project involve outreach, capacity building, and technology transfer. We believe that the most important practical component is the application of CBBPs (Mueller et al., 2015), a tool that is key to sustainability.
2 AGIN: THE AFRICAN GOAT IMPROVEMENT NETWORK
2.1 AGIN overview
The first workshop was held in Nairobi, Kenya in 2011 and continued through the re-branded AGIN II meeting in 2013 (Entebbe, Uganda), AGIN III in 2014 (Addis Ababa, Ethiopia), AGIN IV in 2016 (at FAO in Rome, Italy), and AGIN V in 2017 (Pretoria, South Africa). The goals of this diverse group were to: improve indigenous goat production in Africa; characterize existing goat populations and to facilitate germplasm preservation where appropriate; and to combine the use of genomics to understand adaptation. The long-term goal was to develop cost-effective strategies to improve productivity of small holder farmers without sacrificing adaptation.
2.2 The beginning—Events leading up to the first meeting
In the time leading up to the initiation of the project that spawned the AGIN group, the BovineSNP50 genotyping tool (Matukumalli et al., 2009) was beginning to have impact on dairy cattle genetic improvement through the application of genome selection (Meuwissen et al., 2001; VanRaden et al., 2009; Garcia-Ruiz et al., 2016) in the US. The tools being developed at that time were mostly based on single nucleotide polymorphisms (SNP), or single base changes, in the DNA sequence. In addition to the use of SNPs to implement genome selection, these SNPs were being used for verification of parentage or even to discover putative parents for animals with unknown or incorrect parentage (Gibbs et al., 2009). The initial idea of the United States Department of Agriculture (USDA)—Agricultural Research Service (ARS) research group was to simplify the genome selection strategy, but still apply genomics to genetic improvement in goat populations in Africa. This assumption proved to be wildly overly simplistic.
2.2.1 Serendipity strikes
There were several events that were serendipitous despite being quite important in the process of forming the project that eventually led to the AGIN group. One of the first of these events was the invitation of one of the ARS scientists (CPVT) to a livestock genetics expert consultation meeting held in Nairobi, Kenya sponsored by the Bill and Melinda Gates Foundation (BMGF) in February 2009. An afternoon excursion during that visit to several neighborhoods around Nairobi made clear that indigenous goats were thriving in this environment (Figure 2). Understanding the genetics and biology of adaptation has been a high priority of this project since that moment. The importance of goats as a source of high-quality protein and as a repository of assets became apparent during that tour of Nairobi. Several discussions about the importance of goats in small holder production systems during the BMGF meeting confirmed and even enhanced that observation.
[image: Figure 2]FIGURE 2 | Goats roaming the streets of Nairobi.
At the same time another member of the ARS team (JTS) spent 3 months fostering collaboration between USDA and the Bureau of Food Security at the US Agency for International Development (USAID). During that time, the US government’s global hunger and food security initiative, Feed the Future, introduced the Norman Borlaug Commemorative Research Initiative, a collaborative research effort between ARS and USAID. The project, “Improving Livestock Productivity through Enhanced Breeding Programs,” was funded through this initiative and began immediately with the first meeting of the group that would become the AGIN consortium in the fall of 2011 at the International Livestock Research Institute (ILRI) in Nairobi. The project is typically just called “The Goat Improvement Project.”
2.2.2 Initial objectives
The initial project proposal submitted to USAID contained four primary objectives. First, to sequence and build a de novo assembly of the domestic goat genome and to discover a large number of SNP markers to enable construction of a high-density genotyping array. Second, to conduct a workshop to enlist partners and establish a strategy for developing and deploying genomic and genetic tools. Third, to genotype 15 individuals per breed at high density (50K) for 50 breeds for a total of 750 animals. Finally, to genotype 2000 individuals at reduced density, collect phenotypes from those animals, and establish a training and outreach network. There were ongoing efforts led by the International Goat Genome Consortium (IGGC) to build a goat genome assembly (Dong et al., 2013) and to develop a high-density genotyping platform, the GoatSNP50 chip (Tosser-Klopp et al., 2014). The AGIN project took advantage of the international efforts, despite uncertainty that these tools would be well-adapted to African goat studies.
2.3 The formation of AGIN—The African Goat Improvement Network
The central aim of the goat improvement project was to catalyze a regional, perhaps even continental, cooperative effort to apply genomic tools to aid characterization of the structure of caprine genomes in locally-adapted, native breeds throughout sub-Saharan Africa. Using this approach, the intention was to develop genomic tools for animal improvement efforts in Africa. There was also a strong desire to establish regional cooperation so that an individual country breeding program could leverage the efforts and collective expertise of the group members. In other words, to provide a nexus to enhance the cooperative efforts of advanced research institutions, such as ARS, ILRI, and colleges and universities.
This project deployed a unique, three-pronged approach to livestock improvement in the developing world, especially in Africa. First, the project focused on long-term, sustainable solutions by bringing together classical breeding programs and fundamental animal husbandry techniques as prerequisites to implementing genomic-based approaches. Second, the ARS research group has focused attention on development of partnerships with established research and outreach programs in the specific countries that we targeted. The third feature of the AGIN approach, was to integrate opportunities for capacity building throughout the program at all levels of implementation, including farmers, students, researchers, and government and policy-making officials. The AGIN brought together top experts working in African developing communities and directly engaging farmers. Through these efforts the group worked to make state of the art technology more accessible to African small holders, researchers, and government officials concerned with animal genetic improvement and conservation. The AGIN group also recognized the importance of including social scientists and economists in the project to maximize market opportunities for goats and to document the impact of goats on the livelihood of small holders in Africa.
2.4 AGIN I—The beginning
2.4.1 Field visit
From the start, the AGIN meetings have been composed of two distinct elements. The first component has been field visits to interact with producers or other members of the goat value chain. The field visit associated with the first group meeting was a trip to the Mwingi district of Kenya (approximately 150–200 km northeast of Nairobi) on November 28 and 29, 2011. The purpose of the field trip was to view the array of smallholder goat production systems in that area, understanding that this location was but one region of Africa with a subset of farming and agribusiness practices. Participants in the field trip represented a variety of governmental and non-governmental agencies, research groups, and universities. The 2-day field trip was led by personnel from Farm Africa, a non-governmental organization working on livestock improvement in East Africa. The group visited a number of facilities, including a pastoral goat production system, an auction market, community-based production systems (Figure 3), breeding stations, and a purebred dairy goat operation. Each visit provided an opportunity to discuss with the farmers, mostly women and generally small holders, the impact of generating meat, milk, or revenue had in their lives or their families. The group also discussed the challenges and opportunities the small holders had in marketing their products.
[image: Figure 3]FIGURE 3 | Well managed goats observed on the AGIN I field visit.
2.4.2 Workshop
The second phase of each AGIN gathering has been highlighted by a workshop incorporating new observations from the recent field visit, description of production systems and practices in counties represented at the workshop, and presentations from experts across goat research areas. From the beginning, we have emphasized the importance of discussions and fostered diversity of opinions among participants. The model—visit with local goat smallholders and then convene a workshop to discuss the observations of the group and evaluate assumptions—is to observe well managed production systems and then do a reality check on the aims and approaches of the group. The meeting “Workshop I: Defining technical aspects of sequencing the goat genome, outlining project goals” was conducted on November 30 and December 1, 2011 and included 23 participants. This first meeting was dominated by delegates from Kenya and the U.S., with nine and five attendees, respectively. The remaining participants represented Austria (2), Brazil (1), China (1), Syria (1), Tanzania (1), Uganda (2), and the U.K. (1).
There were a number of observations made during that initial workshop. From the field visits, it was apparent that large-scale on-farm data collection or tissue sampling to enable DNA extraction and eventual genotyping was impractical. The application of genomic tools in large scale was also deemed unrealistic. The group also concluded that wholesale replacement of indigenous goats with those selected for production in temperate climates had been largely unsuccessful, as many groups have observed (Kosgey et al., 2006). Furthermore, the workshop attendees felt that the locally-adapted goats were an important resource that should be more comprehensively characterized and the biology of adaptation, in particular, needed to be better understood. The assembled group was very supportive of the training provided by Farm Africa that accompanied the introduction of elite breeding stock. The farming practices learned by these program participants enhanced productivity through improved animal health, nutrition, and reproduction. It was noted, however, that in many cases alternative methods are needed for application of technology by smallholders. Finally, there was nearly universal support for ARS scientists to continue development of a high-quality genome assembly for the goat.
At the close of the meeting, the objectives of the goat improvement project were changed substantially. The first two objectives were largely intact from the original proposal, specifically, first, to conduct workshops that brought together a broad range of people with an interest in sustainable, locally-adapted goat production systems and, second, to develop a true de novo assembly of the caprine genome, as we focused on improving the existing assembly. The third set of goals was to characterize indigenous goats of African smallholders. This set of goals included identifying goat populations to characterize, collecting samples, extracting DNA, generating genotype and sequence data, and conducting analyses to identify signatures of selection.
We eventually concluded that the GoatSNP50 performed well when genotyping African goats, and it became clear that it was unnecessary to designing a new SNP-chip. Instead, the AGIN partnered with the IGGC to contribute design efforts to upcoming versions of the chip. The ultimate objective of this goal was to identify population-based signatures of selection with genotypic data along with data from targeted resequencing of these adapted populations. These signatures could then be traced with data from low-density SNP panels across generations to ensure that those areas previously impacted by selection would be maintained while introgressing loci elsewhere in the genome. The assays would provide an inexpensive test of breeding animals, allowing for enhanced productivity while maintaining adaptation and fitness in the existing production system. The expectation driving this approach is that this strategy would increase productivity while maintaining genetic variation in the indigenous goat population. An additional goal was identified—create a name for the group that was coalescing. Following this meeting the name African Goat Improvement Network—AGIN was agreed on by the group.
In January 2012 the project and one of the PIs (TSS) received the Illumina Agricultural Greater Good Initiative Award, including 400 GoatSNP50 genotyping assays and discount on any additional goat assays supporting this project. This award allowed us to significantly increase the scope of the project. In addition, Egyptian samples were collected and genotyped through support of the Greater Good Initiative.
2.5 AGIN II—Training for phenotype and tissue collection
2.5.1 Workshop
The second workshop was hosted by the Association for Strengthening Agricultural Research in Eastern and Central Africa (ASARECA) in Entebbe, Uganda on March 12 and 13, 2013 and included 34 participants, and was again dominated by delegates from the host country, Uganda, and the U.S., with nine and 11 participants, respectively. The remaining participants represented Austria (2), Italy (2), Kenya (3), Malawi (1), Mozambique (1), Nigeria (1), South Africa (1), Tanzania (1), the U.K. (1), and Zimbabwe (1). At this meeting the workshop was held prior to the field visits. The workshop focused on the development of the AGIN. Additionally, the research group focused on the development of CBBP to create a sustainable environment for genetic improvement and information exchange. The members of the AGIN at that time represented 10 African universities and 3 regional research institutes.
During the AGIN workshop, several committees were developed to establish clear guidelines and expectations and to facilitate candid communications. These committees were intended to address:
1) guidelines for collaboration, including publications and authorship, data access, funding recognition, and access to materials and data;
2) animal sampling prioritization and logistics;
3) phenotype collection;
4) genetic resources and conservation; and
5) outreach education and training.
2.5.2 Field visits
Five farm visits took place from Kampala on 14 March 2013 to Luweero and Wakiso districts and March 15 to Mukono and Jinja (Figure 4). The participants discussed the AGIN project goals with farmers, who represented a broad range of resource constrained production systems. Goat herd sizes ranged from 2 goats to several hundred, and production systems ranged from highly extensive to intensively managed.
[image: Figure 4]FIGURE 4 | Members of AGIN II gathering in Uganda.
A large number of AGIN members were trained to collect phenotypes and tissue sampling using a standardized method named the AGIN image collection protocol (AGIN-ICP). Researchers from Ethiopia, Italy, Kenya, Malawi, Mozambique, Nigeria, Rwanda, South Africa, Tanzania, Uganda, The United States, and Zimbabwe were trained to obtain digital images and to collect body measures. Coordination of sample collection was led by ASARECA and ARS. At that time, phenotypes (digital images and body measurements) and tissue samples were collected from more than 1,800 goats in 10 countries (7 African countries).
2.6 AGIN III—Focus on community-based breeding programs (CBBP)
The International Livestock Research Institute (ILRI) in partnership with ARS co-organized AGIN III, with a workshop entitled “Best Practices for Community-Based Breeding Programs (CBBP) - Genetic Improvement of Goats.” The meetings were held on June 12–13, 2014, in Addis Ababa, Ethiopia. Attendees included individual farmers and CBBP implementers, representatives from universities and research organizations, as well as government ministries (USDA-ARS, USAID, ILRI, International Center for Agricultural Research in the Dry Areas (ICARDA), ASARECA, Food and Agriculture Organization of the United Nations (FAO), and Embrapa) representing 16 countries (11 African countries (Ethiopia, Kenya, Malawi, South Africa, and Uganda) and Australia, Austria, Brazil, Italy, and the US).
2.6.1 Field visits
A group of about 20 AGIN III workshop attendees participated in a 2-day field trip held before the workshop on June 10–11, 2014. The purpose of the tour was to visit sheep CBBP in the villages of Molale and Mehal Meda in Menz, Ethiopia (Figure 5). Visits to the Menz communities provided highly successful examples of CBBP and offered a valuable opportunity to see collaborative efforts in action. These visits also gave AGIN partners an opportunity to interact directly with smallholders and learn their views of the CBBP. Most importantly, these visits to CBBP demonstrated the impact of the projects on the lives of the participants. The two CBBP that were visited were established in 2008. Researchers worked with villagers to determine their breeding goals, and ram selection based on these goals began in 2010. The project included about 60 households participating in each village. The formation of these CBBP was led by Johann Sölkner, an active member of AGIN.
[image: Figure 5]FIGURE 5 | Members of AGIN visited a community-based breeding program in the Mentz region of Ethiopia and observed an annual selection of the best sheep in the collective flock as part of the AGIN III field visit.
Several Ethiopian graduate students earned their doctoral degrees conducting research on these CBBP under the direction of Professor Sölkner. These newly trained researchers joined AGIN and were active participants, sharing their knowledge and experiences with the communities. One of the principal objectives of AGIN is to foster the development of local capacity that will form a nucleus of expertise for African CBBP in the future. These African students also will provide leadership and invaluable guidance to the overall AGIN CBBP efforts across the continent.
Participants in the field trip observed the CBBP in action, as the farmers conducted a selection for the best ram lambs. There was also a competition for the best young rams and ewes. Awards were sponsored by the USAID Feed the Future Initiative, with ribbons provided as recognition for the best animals. At the close of the ceremony, the smallholders addressed the group. They thanked the researchers who had worked with them over the years to develop the CBBP and explained that their animals were now known as a high-quality product and commanded a higher price in the markets. They also expressed intense appreciation for the improvement seen in their flock, as evidenced by their animals’ enhanced ability to cope with current drought conditions that have caused food shortages for animals in other villages in the area. The villagers described their recent achievement in gaining legal status as a cooperative, giving them the ability to apply to aid organizations for veterinary services and other benefits.
2.6.2 Workshop
Based on the observations on the field visits, the workshop discussion focused largely on determining best practices for CBBP implementation for sustainable small holder goat breeding programs. This topic was well aligned with several AGIN project objectives and was timely with AGIN CBBP activities being initiated in Uganda and Malawi in 2014. In addition, there were reports updating AGIN members on current research projects and future directions. Specific updates included the de novo genome assembly of the domestic goat, genetic characterization of indigenous, exotic, and admixed populations, development and analyses of a digital phenotype collection, analysis of body size variation and finally, a report on consideration of the Boer breed that originated in South Africa and has spread across the African continent and the globe. Global comparisons were planned to be done with US (Spanish derived), New Zealand (Boer), Turkey (domestication center), Brazil (climate, parasite resistance) and Italy (dairy breeds) goats to find important adaptive traits present in African goat breeds. These traits were targets for acceleration of genetic improvement.
2.7 Between AGIN III and IV—New goals identified
With an increased focus on CBBP, establishing CBBP was added as an official project goal and efforts were divided into 4 sub-goals. The overarching goal was to establish CBBP for small holder goat producers. The four sub-goals added were:
1. To establish in country scientific partnerships and to identify communities to host CBBP;
2. To select founding stock and initiate breeding programs;
3. To genotype and analyze founder animals developing smallholder DNA tools as needed; and,
4. To benchmark genetic progress of these CBBP.
2.8 AGIN IV—Implementation of community-based breeding programs (CBBP)—“It takes a village…”
The AGIN efforts were designed to bring smallholders located in developing economies into the 21st century as full players and partners. As of 2016, the AGIN community represented nearly 40 research, educational, or international development institutions from 20 countries, 12 of them African. To reduce the travel costs of the combined events, the format of the AGIN IV meeting was altered. The field visits were made to two of the Malawi CBBP just prior to the workshop, which was held in Rome, Italy at the headquarters of the FAO.
2.8.1 Field visit
A relatively small team visited two of four CBBP sites in Lower Shire, Malawi. The CBBP collaboratively developed breeding goals directly with small-holder farmers and designed a program to implement those goals (Figure 6). These efforts were funded by a collaborative research effort between USDA-ARS and USAID and facilitated by AGIN, a group of livestock, genetic, and international development experts. The AGIN model is a novel approach to build sustainable livestock improvement in developing countries by integrating direct input and training of farmers, extension, genetics, livestock and international development experts. The ultimate goal was to build sustainable animal genetic improvement to enhance human, livestock and economic health in the community. Also attending the Malawi site visits were Ugandan, South African, and Austrian project partners, and the regional Program Manager and staff of the Shire Valley Agricultural Development Division of the Malawi Ministry of Agriculture, Irrigation and Water Development.
[image: Figure 6]FIGURE 6 | AGIN member participate with community selection process as part of the AGIN IV field visit.
2.8.2 Workshop
The AGIN IV workshop was hosted at the FAO headquarters in Rome, Italy on February 22–24, 2016. A total of 43 participants from 17 countries, representing government and university researchers, international development experts, post docs, and graduate students attended, including representatives from USAID in Washington, DC and the US mission in Rome (Figure 7). Specific outcomes included a draft strategic plan to implement, test, and evaluate a novel approach to livestock development focused on long-term, sustainable solutions via integration of 1) community-based breeding programs (CBBP), 2) application of modern genomics and genetic tools based on farmer input for use within the CBBP, and 3) multi-level networking and capacity building. Much of the discussion at the workshop focused on the limited time remaining for funding to continue from USAID and USDA-ARS and developing a continuity strategy for the funded projects to establish a plan to ensure sustainability.
[image: Figure 7]FIGURE 7 | Members of AGIN IV workshop at the United Nations Food and Agriculture Organization (UNFAO) in Rome, Italy.
2.9 AGIN V—The last waltz
The South African Agricultural Research Council (ARC) hosted the final AGIN (V) meeting. The meeting was held October 31 to November 2, 2017 at ARC facilities in Pretoria, South Africa. The goat improvement project funded travel and housing for 20 participants to attend this meeting. The Food and Agriculture of the United Nations (FAO) continued to collaboratively support the efforts of the project, and FAO funded 7 additional attendees. The AGIN V meeting was attended by over 40 participants, representing nearly 30 organizations from almost 20 countries (Figure 8).
[image: Figure 8]FIGURE 8 | Members of the African Goat Improvement Network (AGIN) team at the AGIN V workshop.
2.9.1 Site visits
The AGIN V meeting was preceded by a visit to an ARC sponsored CBBP in the village of Pella, North-West Province, South Africa on October 30, 2017. The Pella CBBP site visit coincided with a meeting of the village royal family, the local government board, and representatives of farmer organizations. Representatives of the AGIN group that travelled to Pella met with the local board and the “Kgosi,” or chief of the village, separately, and an informational meeting was led by representatives of ARC. In addition to meeting with these community members, the AGIN group visited two of the community farms and met with these producers.
2.9.2 Workshop
The AGIN V workshop featured research updates from many of the consortia that attended the meeting, including USDA-ARS, USAID, IGGC, Centre for Tropical Livestock Genetics and Health (CTLGH), and others. Progress reports on CBBP in South Africa managed and funded by ARC and the University of KwaZulu-Natal, Malawi coordinated by Lilongwe University of Agriculture and Natural Resources (LUANR), and Uganda overseen by NARO were provided by representatives of those projects. The program also featured breakout sessions and follow-up discussions that focused on: the long-term sustainability of CBBP; capacity building in African membership countries; technical shortcomings; and research needs. Great interest was shown in expanding the CBBP model to additional member countries and much discussion centered on a continuity strategy for CBBP to become sustainable.
3 DE NOVO GOAT GENOME ASSEMBLY
From the very start of the efforts that led to the goat improvement program, constructing a de novo assembly of the goat genome was the highest priority objective under the project funded by the USAID. The highly fragmented nature of short-read assemblies, which were common at the time, fundamentally limited the reliability of genomic analyses. The hundreds of thousand gaps present in these genomes had deleterious effects on gene annotation, regulatory network analysis, association studies, and more. A group of researchers led by Wen Wang at the Beijing Genomics Institute was already building an assembly of the goat genome from short sequencing reads (Dong et al., 2013), so we requested access to their raw data to attempt a re-assembly using a long-read strategy. The leaders of that consortium declined to make that data available, so, our group felt it was necessary to develop an independent assembly of the goat genome.
Brian Sayre at Virginia State University led the effort to select the animal that was to be the donor of tissues used to build the genome assembly. Sequencing commenced with selection of a highly inbred male goat, “Papadum” (Figure 9). Assembling a genome is a complex problem that is further complicated in diploid organisms by the presence of both maternal and paternal chromosomes. Choosing an inbred individual minimized those haplotypic differences and simplified the assembly process. Papadum was an inbred member of an inbred breed, the San Clemente. This breed originated from San Clemente Island off the coast of San Diego, California. Because the San Clemente goats were confined to an individual island, they inter se mated, increasing levels of inbreeding. Tissue and DNA were sent to The US Meat Animal Research Center in Clay Center, Nebraska and the Animal Genomics and Improvement Laboratory (AGIL) at the Beltsville Agricultural Research Center for processing.
[image: Figure 9]FIGURE 9 | Papadum - The genome sequencing goat
Previous work had shown that a mixture of sequencing reads from long- and short-read instruments improved the completeness of genome assemblies (Dalloul et al., 2010). But, sequencing reads from long read platforms resulted in an even more complete coverage of a genome (Pendleton et al., 2015). Eventually, multiple technologies would be combined to generate a genome assembly. These included Pacific Biosciences high error-rate long-read sequencing for assembly, BioNano optical mapping, and Hi-C, a genome-wide chromatin conformation capture protocol using proximity ligation, for scaffolding, and Illumina short-read sequencing for increasing the base accuracy of the assembly. The complementarity of these technologies led to dramatic improvements in genome assemblies (Bickhart et al., 2017; Worley, 2017). Nature published a Milestone collection for the 20th anniversary of the human genome sequence in 2021 with the goat assembly named as one of the 18 papers chosen as “milestones.” Quoting that article (LaFlamme, 2021), “The domestic goat genome ARS1 created a new standard for de novo assemblies of complex genomes.” The detailed description of the improvements made can be found in that publication (Bickhart et al., 2017). The quality of the assembly, ARS1, was described as Golden (Worley, 2017) and Platinum (LaFlamme, 2021).
4 COMMUNITY-BASED BREEDING PROGRAMS (CBBPS)
Community-based breeding programs (CBBPs) can have a positive impact on the local economy by helping farmers improve genetics and productivity that can in turn, lead to increased income for farmers and greater access to markets for their products. Additionally, by developing local capacity and expertise in breeding and management, these programs can help create jobs and support economic development in the community. In addition to working with farmers directly, a successful CBBP also engages the support of local government and community officials by educating them on the CBBP potential economic gains made possible with improved animal genetics. CBBPs are essentially systems that involve local communities to collaboratively and collectively develop breeding objectives that are applied across a combined communal herd (Sölkner et al., 1998; Haile et al., 2011; Wurzinger et al., 2011). The implementation approach for these CBBPs followed similar steps as those demonstrated with sheep in Ethiopia (Haile et al., 2011).
4.1 Negative selection
Farmers in developing countries are often under economic pressures to make short-term choices for economic gain that can negatively impact the overall genetics of their herd. This phenomenon is known as negative selection. For example, negative selection arises from removal of superior (i.e., larger) males from the breeding population through sales at earlier ages of these faster growing bucks to fetch higher market prices rather than retaining them for breeding (Gizaw et al., 2014). The long-term genetic impact of this short-sighted decision on the herd, is to leave slower growing males as the breeding males in the community flocks, perpetuating inferior genetics. CBBP training programs provide information to farmers on basic animal breeding strategies, the impacts of negative selection, and the importance of following breeding objectives. Together, these steps can lead them to select breeding bucks that meet their stated breeding objectives. For increased rate of growth, CBBP farmers find that in just a few generations all of their bucks are of the fast-growing type. AGIN CBBP programs provide farmers with the information and tools they need to identify their breeding objectives and select the very best young breeding bucks in the project, to keep them retained and available to the community.
4.2 Participatory approach
The participatory approach embedded in CBBP fosters the development of community-level capacity, engenders buy-in, and cultivates ownership among local farmers. This approach significantly reduces the likelihood of reverting to familiar, traditional breeding practices, including negative selection, once the programs conclude. By actively involving the farmers in the process of enhancing herd management and establishing dependable record-keeping systems, they acquire a sense of ownership, thus ensuring sustained progress beyond the program’s duration. In a CBBP, using local personnel to collect and manage animal production records is prioritized over relying on centralized support. The involvement of a local technician or enumerator plays an important role by providing a conduit to encourage communication between the farmers and the researchers during early stages of the CBBP. Key to the AGIN effort was training local doctoral students to become CBBP experts in their own countries to ensure sustainability of this little utilized, yet successful approach for livestock genetic enhancement in developing countries.
4.3 Locally adapted
Furthermore, CBBP often involves the use of locally adapted breeds that are better suited to the environmental conditions and farming practices of the area. This focus on local adaptation usually enhances herd resilience and adaptability, thus increasing food and nutrition security for the community. In contrast to historical, centralized breeding programs that introduced non-local or foreign breeds, use of local breeds allows farmers to see the potential, and ultimately the superiority of their locally-adapted animals. This realization can foster a point of pride among farmers.
Overall, CBBPs are an effective and sustainable approach to improving the genetic quality and productivity of livestock in developing countries. By involving local communities and building local capacity, these programs can promote sustainable practices and create lasting benefits for the farmers and their communities.
4.4 Steps to establish a successful CBBP

1. Identify the community: Identify and engage with the community to be involved in the program. This group should include a diverse group of individuals, including the appropriate local or regional officials who will offer support or champion the CBBP, along with the farmers, ranchers, and other community members who have an interest and role in breeding and raising livestock. Inclusion of women among the community members and farmers is critical to supporting and elevating families.
2. Define the breeding objectives: Once the community has been identified, it is critical to assess the breeding priorities. This process may include identifying the breeds or types of animals that are most in demand, as well as the specific breeding goals and objectives identified by the producers.
3. Develop selection strategy: Based on breeding objectives, a selection process is needed. This strategy may include ranking criteria [e.g., mass selection, index selection, or BLUP (Van Vleck, 1993)], mating strategies (e.g., buck management), or inbreeding management.
4. Implement the program: Once the breeding plan has been developed, it is time to implement the program. This may involve training local community members as enumerators, applying ear tags, obtaining tissue samples for DNA extraction, application of best practices for breeding and raising animals, as well as providing necessary resources or equipment.
5. Monitor and evaluate: It is important to continually monitor and evaluate the progress of the CBBP. This may include tracking the number and quality of animals that are produced. Based on the results, adjustments to the breeding plan may be necessary.
6. Create a sustainable system: Finally, it is essential to create a sustainable system for the CBBP. This includes establishing a system of record-keeping and data collection, providing ongoing training and support, establishment of legal breeder cooperatives, and encouraging community members to take ownership of the program.
4.5 Some key features of CBBP

• Involvement of local communities: Communities are actively engaged in the planning, implementation, and management of the program. This helps to ensure that the program is tailored to the specific needs and priorities of the community.
• Focus on genetic improvement: The program may involve the use of a range of breeding strategies, from basic recordkeeping and mass selection to artificial insemination, or genetic testing. This process can lead to increased productivity and better health of the animals.
• Promoting sustainable practices: CBBPs may also focus on promoting sustainability in livestock management, such as reducing the use of inputs like feed and water and reducing the environmental impact of the production system.
• Support for small-scale farmers: CBBPs often target smallholder farmers and pastoralists, often women, who may not have the resources or expertise to improve the genetics of their animals on their own. The program provides them with the necessary support and resources to do so.
• Another feature of CBBPs is that farmers pool their herds with those of other producers in their communities. This creates bigger and more diverse gene pools, enabling them to maintain genetic diversity and enhance selection opportunities.
4.6 Pilot CBBP projects
Uganda and Malawi were chosen to host pilot AGIN CBBP projects. Both countries have a high proportion of households that own and receive substantial portions of income from goats. Two locations were selected in each country with two communities per location chosen (a total of 8 sites). In Uganda, the final locations selected were Nakapiripit and Hoima. In Nakapiripit, two communities raising Small East African goats in a communal grazing system were chosen. In Hoima, Mubende goats are raised in two production systems, crop-livestock (tethering) and communal grazing. One community for each system was selected. In Malawi, communities within the Magoti extension planning area (EPA) and Zombwe EPA were selected. Small East African goats are found in both areas. Farmers in Magoti EPA practice communal grazing while those in Zombwe EPA favor tethering. In total, we monitored CBBPs in 5 communal grazing sites and 3 crop-livestock systems.
4.6.1 Uganda
In Uganda, nearly 40% of households own goats, and all but 1% of those are indigenous. The Ugandan team introduced the CBBP concept and shared experiences with research stakeholders including AGIN partners and determined the best locations to initiate the Ugandan CBBPs - Katakwi and Nakapiripit (Small East African) and Masindi and Hoima (Mubende goat breed). They held meetings with district veterinarians, extension workers, and farmers and conducted field site visits. The characteristics of the sites follow.
4.6.1.1 Katakwi
The principal breed represented in Katakwi is the Small East Africa goat, and there was generally negative attitude to indigenous goat breeds. Tethering is used by most farmers, and as a result there is limited mixing of flocks. The selection objectives include perceived breed purity, body size, and goat color. Castration has not been practiced in the past. There were limited farmer groups active in this region. The selling of the best performing males (i.e., negative selection) was common practice because they earned a better price in the market.
4.6.1.2 Nakapiripit
While the Small East African goat was also the most common breed in Nakapiripit, the goats were tended using shared grazing resources. Households typically stay together using a communal “kraal,” a traditional African village of huts, typically enclosed by a fence. Selection goals include increased body size, twinning/triplet ability, and disease tolerance. Negative selection was practiced in Nakapiripit. The use of male selection through castration was practiced but not common. Improvement of productivity was a high priority here, but introduction of new breeds were not successful in prior experiences, so improvement of indigenous goats was important for local communities.
4.6.1.3 Masindi
Mubende and the Small East African goat are both popular breeds of goats in Masindi. There are both crop-livestock production systems with 3-6 goats in each herd and pastoral-grazing systems with much larger herds (∼60 goats). Neither of these systems mixed herds. This community was characterized by poor breeding and management skills as well as a reluctance to work together in groups. This community has recently recognized the economic importance of goats.
4.6.1.4 Hoima
The Mubende breed of goat dominates in Hoima, and there is a growing interest in goat production. The overall population of goats has grown. As in Masindi, there are both modest sized (∼5–6 goats) crop-livestock production herds and pastoral-grazing systems with much larger herds (∼50–300 goats in each herd). The farmers in Hoima had a good working knowledge and understanding of management practices: castration, disease control, genetics and reproduction. The selection objectives combined twining, increased birth weight, rapid growth, and large size. There was a group of strong active farmers (∼50 members) working with Zonal Agricultural Research Organization. There was active sharing of bucks (free for members; 0.80 USD per breeding for non-members). These farmers had strong attachments to goats for economic importance, however there were some challenges in retaining good bucks for enough time to impact genetic improvement.
The final sites selected were Nakapiripit consisting of two communities that used communal grazing production system falls under communal grazing, and Hoima with one communal grazing and one tethering system. Pre-printed ear tags were used to track the animals, and a full time PhD student was engaged in the project via BOKU, and the AGIN CBBP expert there who has successfully implemented CBBPs with native graduate students in several countries.
4.6.2 Malawi
In Malawi, the percent contribution of livestock to household income ranged from 17% to nearly 60% in the Shire Valley. Additionally, goats contribute more income to households, especially female headed households. Negative selection in a subsistence culture contributed to declines seen in livestock production. The CBBP model offered an opportunity to improve animal productivity and animal genetic resource (AnGR) conservation. Twenty-six stakeholder participants attended the organizational meetings, and the meetings concluded with the value of the CBBP being recognized and supported by key organizations. Three potential CBBP sites were considered by the Malawi team:
4.6.2.1 Magoti
Magoti Extension Planning Area (EPA) in Shire Valley Agricultural Development Division (ADD). These are communities that are dependent on livestock. They are also in regions that will have significant impact from climate change.
4.6.2.2 Zombwe
Zombwe EPA in Mzuzu ADD. These are communities that are dependent on both crops and livestock, although this region has a strong culture and tradition of keeping livestock.
4.6.2.3 Mitundu, Mkwinda and Chilaza
Mitundu, Mkwinda, and Chilaza EPA in Lilongwe ADD. These communities are primarily crop producers with a secondary dependence on livestock. This region provides proximity to research institutions (Lilongwe University of Agriculture and Natural Resources (LUANAR) and Chitedze Agricultural Research Station). Farmers had an existing rapport with livestock outreach programs (e.g., community dairying and indigenous chickens).
Due to the expressed support in the stakeholder meetings by government and non-governmental organizations groups, all three sites were selected. Farmers that met with the team understood the concept of the breeding program. They clearly appreciated the existing problem of negative selection. All three communities expressed a desire to participate. The markets in these areas for goat products are mainly for meat and are used directly within the farmer’s household or for ceremonies. Additionally, products could be marketed at various selling points or trading centers and are now found in some retail shops.
The CBBP model was scaled out to two other districts: Neno (Lisungwi EPA) and Salima (Matenje EPA). Additionally, some non-governmental organizations adopted the model and implemented it in three other districts: Dowa (Mvera EPA), Kasungu (Lisasadzi EPA) and Mzimba North (Bwengu EPA).
4.7 The future looks bright
4.7.1 Ethiopia
Ethiopia CBBP started in 2009 with four populations (Afar, Bonga, Horro, and Menz) representing different production systems and involving 8 communities of about 500 households owning about 8,000 sheep. These pilot CBBPs have since expanded to include more than 150 communities. Though implemented at a pilot scale in Ethiopia, the CBBPs have resulted in quantifiable genetic gains and impacted the livelihoods of rural communities (Haile et al., 2020). CBBPs need to scale up to impact on the lives of larger communities. To this end, a methodological framework for scaling of CBBPs was developed (Mueller et al., 2019). AGIN supported scaling of goat CBBPs in Konso, Ethiopia and more than 2000 households were covered through this scheme. The Ethiopian government has identified CBBP as the strategy of choice and several scaling initiatives are being supported in Ethiopia through various projects.
4.7.2 Burkina Faso
The objectives of this project were to:
1. Establish CBBPs for smallholder goats in two sites in Burkina Faso to genetically improve unselected indigenous goat breeds.
2. Explore the possibility of using unique DNA tools and genotype data to complement phenotype data.
One site of the CBBP implementation was the province of Namentenga located in the transition area between the Sahelian and Sudanian agro-ecological area. The second site was the province of Poni (Zone B) in the southwest of the country belonging to Sudanian agro-ecological area. Breeding systems in these areas are sedentary agropastoral system and transhumant pastoral system. Farmers are largely illiterate, with men slightly outnumbered by women.
The flock size is small (∼15), and bucks are selected based mainly on body size, coat color, and temperament. Does are selected based on body size, twinning ability, mothering ability, coat color, and, kidding frequency.
The project resulted in the implementation of 6 CBBPs at different sites with the involvement of all stakeholders. The participants universally appreciated the project. The results are quite encouraging and constitute assets for the implementation of programs on a larger scale. However, the management of selected breeding bucks and their sharing must be addressed within the communities. The results of the study already show that the management of bucks in a community grazing context is very tricky because they are not easy to control. Bucks are sometimes found in neighboring herds in search of does in heat and in some cases these bucks are not found. This phenomenon would explain the low number of bucks in some locations where owners never find them. Rather than lose their valuable animals, some farmers prefer to sell their goats at an early age.
5 PARTNERSHIPS AND LEVERAGING
Collaboration has been a hallmark of this project. At the first organizational meeting of this group, we invited researchers and outreach professionals from a broad range of countries and organizations from within Africa and abroad. This heterogeneous group of collaborators generated the name African Goat Improvement Network (AGIN).
A highly collaborative effort was embraced for collecting biological samples and for genotyping. At the outset, the Feed the Future project received a “Greater Good Initiative” from Illumina, Inc., that represented the genotyping costs for about 400 animals. In addition, the Food and Agricultural Organization of the U.N. (FAO) solicited proposals to fund sample collection in four African countries, specifically excluding countries already well sampled by AGIN collaborators. The four countries that submitted proposals that were funded were: Egypt, Madagascar, Mali, and Tanzania. In addition, through collaborations, we had genotypes shared by Iowa State University (goats from Egypt), Catholic University in Italy (improved lines of Italian meat and dairy goats), Virginia State University (U.S. meat goat breeds and candidates for genome sequencing goat), University of Sao Paulo and Embrapa in Brazil (tropically adapted Brazilian goats), AgResearch in New Zealand (South African Boer goats), and the Agricultural Research Council (ARC) in South Africa (South African production and local goats). In total, over 4,000 goats have been sampled from 22 countries world-wide.
The first and most critical partnership that enabled these efforts was the one established by the Norman Borlaug Commemorative Research Initiative, a collaborative research effort between USDA-ARS and USAID. The goat improvement project has been well funded by the Feed the Future program in USAID and championed by several USAID (Max Rothschild, Lindsay Parish, Elaine Grings, and Saharah Moon Chapotin) and ARS (Eileen Herrara and Irlene Santos) leaders. Additional support has also been provided through the ARS Office of International Research Programs. At the time, one of their full-time employees, Jennifer Woodward-Greene, obtained her Ph.D. degree in bioinformatics, and her thesis project has contributed the field sampling protocol and phenotype prediction algorithms for characterizing morphometric measures of goats.
Despite the generous financial support, the funds were always tight, in part because genomics research is inherently expensive. Considering this situation, the funding from the Feed the Future program was highly leveraged to maximize the impact of these funds.
Another key partnership established was one with Johann “Hans” Sölkner at the University of Natural Resources and Life Sciences (Universität für Bodenkultur—“BOKU”) in Vienna, Austria. Hans has had a long and successful history of international development, including a true leadership in the development of CBBP in smallholder application. BOKU has played a critical role in our efforts to support graduate training and capacity building.
The first agreement established to support this project was done so as a direct result of the first meeting held on the campus of the International Livestock Research Institute (ILRI) in Nairobi, Kenya to support training and capacity building in bioinformatics. As part of this agreement, an ILRI scientist, Denis Mujibi, spent 6 weeks at the Bovine Functional Genomics Laboratory in Beltsville, Maryland working with USDA-ARS staff. ILRI also hosted the AGIN III meeting at its Addis Ababa, Ethiopia campus.
The engagement of three organizations was essential to establishing the CBBP: In Uganda, CBBP implementation is being facilitated by the National Livestock Resources Research Institute (NaLIRRI) under the umbrella of the National Agricultural Research Organization (NARO) and in Malawi, Lilongwe University of Agriculture and Natural Resources (LUANR). These organizations were the “boots on the ground” partners in the efforts to establish and grow CBBP in Africa.
5.1 International Goat Genome Consortium (IGGC)
The broad goal of the IGGC is to increase the knowledge of the goat genome and use that knowledge to answer important biological questions leading to expanded goat production around the world. The IGGC website is at www.goatgenome.org. The group formed in March 2010 with several initiatives: the generation of the first goat assembly, CHIR_1.0, led by Wen Wang at the Beijing Genomics Institute (Dong et al., 2013) and the design the first goat SNP chip led by Gwenola Tosser-Klopp at INRAE (Tosser-Klopp et al., 2014). The group, led by Gwenola Tosser-Klopp at the Institut National de Recherche pour l’Agriculture, l’alimentation et l’Environnement (INRAE, formerly INRA) in Toulouse, France, holds regularly scheduled communication meetings and coordinates goat workshops held annually at Plant and Animal Genome meetings. The AGIN group has interacted with this group, keeping them informed about genome assembly status and inviting them to AGIN meetings.
5.2 The AdaptMap project
It became clear that the best outcome for small holders was to identify those genomic regions important in stabilizing goat sustainability to parasites and drought. The optimal approach would be to compare for selective sweeps across global goat populations. Therefore, our project has joined forces with the IGGC and two EU consortia: 3SR—Sustainable Solutions for Small Ruminants and NextGen projects to form the AdaptMap project. Leveraging this partnership now aligns three goat genomics projects under one common goal—to understand diversity in goats for increased food production.
The AdaptMap project, led by Alessandra Stella from Istituto di Biologia e Biotecnologia Agaria in Lodi, Italy, is an international effort developed to improve coordination among otherwise independent projects for genotyping, sequencing and phenotyping of goat breeds. The aim is to explore diversity of breeds and populations around the world by using traditional and novel approaches. Since its inception, the centralized collection of genomic and phenotypic data from 15 projects on a total of 33 countries has started. Multiple actions have been undertaken to standardize genotypic and phenotypic data from different sources. These groups cover all aspects of the goat genome: i) the improvement of genome assembly; ii) genome annotation; iii) enhancement to the existing SNP genotyping platform; iv) the selection of a parentage and identity SNP panel; v) comparative genomics (with other ruminants); vi) integration and standardization of phenotypic data; vii) population genetics analyses and population history (domestication reconstruction); viii) landscape genomics; and, ix) breeding and genetic improvement. Working groups coordinated by leading scientists have been identified and several have completed their efforts (Bertolini et al., 2018; Colli et al., 2018; Stella et al., 2018).
An agreement was initiated to formalize a partnership with the AdaptMap Consortium and is intended to facilitate goat data sharing globally and encourage coordination and collaboration in characterizing the extensive variety of represented goat populations. The ultimate objective of AdaptMap is to enhance genetic improvement by understanding the adaptation of goats to diverse constraints. The efforts will result in a wide sampling of existing genetic diversity representing Africa as well as related non-African populations. This increased sampling will potentially increase power to detect signatures of selection, in addition to extending the training on phenotyping goats using the African Goat Improvement Network image collection protocol (AGIN-ICP).
5.3 VarGoats project
The VarGoats project has as a long-term goal to sequence over 1,000 goat genomes. The scientific objective is to identify variants in goat genomes associated with domestication and adaptation. Currently, the project has described a dataset of 1,159 goats, including over 250 individuals collected by AGIN (Denoyelle et al., 2021). The VarGoats website is located at www.goatgenome.org/vargoats.html. The VarGoats project was made possible by a call for large scale DNA sequencing projects by France Genomique. The data has been made available to VarGoats participants and data analysis is being performed in working groups (∼60 international scientific participants), most of them already created in the AdaptMap program.
5.4 The United Nations Food and Agricultural Organization (FAO)
The FAO recognizes animal genetics as one of “the pillars in livestock development,” with characterization, conservation, and genetic improvement representing three critical components of this pillar. In addition, characterization is a critical initial step in proper management of animal genetic resources (AnGR) to inform breeding programs and conservation decisions. FAO serves as the secretariat of the Intergovernmental Technical Working Group on Animal Genetic Resources for Food and Agriculture, which is a representative group of FAO member countries that advises on actions to be undertaken to improve the management of livestock genetic diversity. Paul Boettcher serves as the Secretary of the Working Group and has played a key role as an international coordinator of conservation of AnGR. Consequently, FAO supports the work of groups like AGIN to facilitate phenotypic and genomic characterization activities. The FAO also supports data collection and sharing through the Domestic Animal Diversity Information System (DAD-IS), a global database of AnGR to provide a data repository and a resource for sharing that data online. The FAO objective for this work is to achieve sustainable management of land, water, and genetic resources and improved responses to global environmental challenges affecting food and agriculture. With the assistance from donors, FAO has supported direct funding of AnGR characterization such as AGIN as part of its effort to achieve this outcome. This collaboration is a 3-way partnership, with FAO conducting field sample collection and compiling phenotypic data and pedigrees, USDA-ARS is providing equipment and guidance for sampling as well as DNA extraction and genotyping, and the AdaptMap consortium is providing data analysis and interpretation. Additionally, ASARECA is providing technical advice. A November 2013 call for proposals to implement the AGIN sample collection (genotype and phenotype) method yielded 14 proposals from 12 countries. Four of these were selected: Egypt (Egypt National Research Center), Madagascar (Département de Recherches Zootechniques et Vétérinaires du Centre National de Recherche Appliquée au Développement Rural), Mali (Programme Petits Ruminants, Institut d’Economie Rurale), and Tanzania (Tanzania Veterinary Laboratory Agency - Tanzania Livestock Research Institutes and Districts).
5.5 Additional partnerships
Partnerships were also formed with the Association for Strengthening Agricultural Research in Eastern and Central Africa (ASARECA) in Entebbe, Uganda; the National Biotechnology Development Agency in Abuja, Nigeria; Agricultural Research Council (ARC) of South Africa; and the International Center for Agricultural Research in the Dry Areas (ICARDA) in Ethiopia, the Center for Tropical Livestock Genetics and Health (CTLGH) in Edinburgh, Scotland and Nairobi, Kenya; São Paulo State University in Araçatuba, Brazil; Università Cattolica del S. Cuore in Piacenza, Italy; the Egyptian Ministry of Agriculture; Virginia State University in Petersburg, Virginia, USA; and the Iowa State University Global Food Security Consortium in Ames, Iowa, United States. Many of these partnerships were created to facilitate tissue and data collection and enable the broadest representation of goats for genetic and genomic comparison.
6 TRAINING AND PROFESSIONAL DEVELOPMENT
6.1 Training for AGIN image collection protocol
A system was developed by USDA-ARS scientists within AGIN to enable collection of body measurements and other physical features from digital images and image analysis tools. This protocol was formalized and shared through AGIN’s AdaptMap partnership for international utilization. As part of the development and training component of this project, about a dozen phenotyping kits have been distributed and training has been conducted.
Johann Sölkner, Solomon Abegaz, and Tesfaye Getachew (BOKU), Denis Mujibi and Absolomon Kihara (ILRI), Brian Sayre (Virginia State University), Clet Masiga (ASARECA) were trained to use the data collection protocol with a hands-on training. Farai Muchadeyi (ARC) and Christopher Mukasa (Ahmadu Bello University) were trained remotely using online tools. Sampling kits have been provided to researchers associated with ILRI, ASERECA, BOKU, and ARC. Over time, a large number of AGIN members received training on the AGIN image collection protocol (AGIN-ICP).
Researchers from Ethiopia, Italy, Kenya, Malawi, Mozambique, Nigeria, Rwanda, South Africa, Tanzania, Uganda, The United Sates, and Zimbabwe were trained to obtain digital images and to collect body measures. Coordination of sample collection was led by ASARECA and ARS. At that time, phenotypes (digital images and body measurements) and tissue samples were collected from more than 1,800 goats in 10 countries (7 African countries).
6.2 High-school students
Goat field sampling data and geographic information system information was contributed by Brian Sayre at Virginia State University to share with 14 high school students in the Appomattox Regional Governor’s School of Art and Technology in Petersburg, Virginia, United States. Students used the GIS information to mine data related to natural resources, weather patterns, economic indicators, and cultural practices in each specific region.
6.3 Undergraduate students
In preparation for phylogenetic analyses, Heather Huson, Cornell University, had undergrad research assistants, Mary Beth Hannon and John Nystrom, update maps with sampling sites. They have identified nearest weather data stations to those sites. Processing raw body measurement data from Ethiopia, Kenya, and all ASARECA sites to determine average, maximum, minimum and standard deviation on all phenotyping data was initiated. Measurements were categorized by breed and country as well.
Heather Huson at Cornell University developed an international internship experience for undergraduate students to work with the Agricultural Research Council (ARC) in South Africa to collect field data at CBBP and process samples in the laboratory.
6.4 Graduate students
Jennifer Woodward-Greene completed her dissertation and defense and earned her doctorate in May 2016 from her research activities associated with the AGIN project. She continued this work with AGIN, which involved development and refinement of algorithms to extract phenotypic data from digital photos. One of the phenotypes included animal body measurements (height, length, girth) to predict animal body weight when scales are not available due to cost or convenience. Other phenotypes included FAMACHA anemia score, tooth age/health assessment, and coat color/pattern identification. Her work uses digital images that can be taken with a common cell phone, and development of the software for automated, “born-digital,” on-farm, collection of animal records. This work with AGIN provided a once-in-a-lifetime experience to lead a multi-national effort to develop the AGIN Image Collection Protocol (AGIN-ICP), [see companion paper (Woodward-Greene et al, 2023) describing how the AGIN CBBP model was used as a capacity development platform]. To process the collected images, she developed the PreciseEdge Image Segmentation Algorithm (Woodward-Greene et al., 2022) that isolates and collects (extracts) animal measurement from AGIN-ICP collected images. The manuscript is in process to describe the user-friendly software she developed to deploy the algorithm and related tools for researchers or farmers to collect digital phenotypes in situ.
Visits to USDA by Priscilla Ramadimetja Mohlatlole and Keabetswe Tebogo Ncube to build additional capacity with our South African partners as part of a larger collaborative effort by ARS and ARC. They were South African doctoral students under the mentorship of Farai Muchadeyi (ARC) and Edgar Dzomba (University of KwaZulu-Natal) and were selected in 2016 to conduct research at the USDA, ARS Animal Genomics Improvement Lab (AGIL) at the Beltsville Agricultural Research Center in Beltsville, Maryland (Curt Van Tassell’s lab). Ms. Mohlatlole was in her second year of a PhD in Animal Breeding at the ARC and University of KwaZulu-Natal, and Ms. Ncube had recently completed her MSc at the University of South Africa and was a first-year PhD student with ARC and the University of KwaZulu-Natal. Their planned research while at ARS was directly applicable to the USDA—USAID Feed the Future Livestock Improvement Project with aims to achieve objectives set by ARS, ARC and USAID related to the project. Ms Ncube earned her doctorate degree in April 2020. Her PhD research focused on differential gene expression studies to investigate the genetics of meat and carcass quality traits in South African indigenous goats. The project drew from the principles of AGIN-CBBPs that enabled her to monitor goats on-farm within the CBBP households of Pella village in South Africa and conduct a set of transcriptome experiments using goats from Pella village and the ARC experimental farms. The time spent at AGIL gave her access to computational resources and bioinformatics expertise to help her through the analysis.
Farai Muchadeyi, (AGIN partner) and graduate student Khanyisile Mdladla—Hadebe visited the laboratory of Heather Huson at Cornell University in July 2015 to expand their knowledge in genomic population structure and admixture analysis. This work contributed to Ms. Mdladla’s doctoral research and used local data from goats sampled in South Africa as part of ARC’s collaboration with AGIN and AdaptMap. Ms Khanyi was in her second year as a PhD student at the University of KwaZulu-Natal, South Africa under the mentorship of Farai Muchadeyi (ARC) and Edgar Dzomba (University of KwaZulu-Natal).
The goat improvement project supported the research and training of doctoral student, Wilson Nandolo, who worked in Malawi and Ugandan village breeding programs for sustainable genetic improvement. Mr. Nandolo worked along with researchers at the Lilongwe University of Agriculture and Natural Resources (LUANAR) in Malawi, and the National Agricultural Research Organization (NARO) in Uganda. He was trained and mentored by Hans Sölkner. The existing agreement with BOKU supported the CBBP in Malawi and Uganda, as well as Mr. Nandolo’s visit to the AGIL for training in genomic sequencing and analyses techniques. He worked on copy cumber variation analyses in the goat related to various traits of interest and provided support in the phenotype software development to collect phenotypic data on coat color and pattern from images.
The goat improvement project supported the work of doctoral student Doreen Lamuno. Ms. Lamuno, much like Mr. Nandolo, worked in Malawi and Uganda CBBP along with LUANAR and NARO while mentored by Hans Sölkner, with an emphasis on the systematic evaluation to provide guidance for an assessment of the performance, outputs, and associated impacts of CBBP.
Wilson Kaumbata was the third African PhD student attending BOKU who was added to the CBBP project. Mr. Kaumbata led the follow-on assessment of the CBBPs for the two established breeding communities. This development was timely, as the CBBPs were firmly established and progressing well. This work contributed to national goat breeding strategies, exploring the economic and social impacts of the breeding programs, and developing and testing approaches to ensure the village breeding program models employed in Uganda and Malawi could be scaled up (i.e., assess/develop technology transfer applicability) for application in other communities.
6.5 Sabatical
Denis Mujibi from International Livestock Research Institute was hosted by Curt Van Tassell and Tad Sonstegard for training in population genomics, computational genomics of next-generation sequence data, and genetics and breeding.
Brian Sayre from Virginia State University was hosted by Curt Van Tassell on a Faculty Research Fellowships for Capacity Building at 1890 Land-Grant Universities. The research projects centered on the use of goat genomics and genetics to strengthen smallholder livelihoods and communities in Africa. Additionally, our research had a focus on identifying adaptability traits in goats to improve sustainable food production for the future.
Clet Wandui Masiga from Association for Strengthening Agricultural Research in Eastern and Central Africa (ASARECA) was hosted at Cornell University on a sabbatical visit and worked with Heather Huson to learn about population genetic methods using AGIN samples and data.
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The advent of modern genotyping technologies has revolutionized genomic selection in animal breeding. Large marker datasets have shown several drawbacks for traditional genomic prediction methods in terms of flexibility, accuracy, and computational power. Recently, the application of machine learning models in animal breeding has gained a lot of interest due to their tremendous flexibility and their ability to capture patterns in large noisy datasets. Here, we present a general overview of a handful of machine learning algorithms and their application in genomic prediction to provide a meta-picture of their performance in genomic estimated breeding values estimation, genotype imputation, and feature selection. Finally, we discuss a potential adoption of machine learning models in genomic prediction in developing countries. The results of the reviewed studies showed that machine learning models have indeed performed well in fitting large noisy data sets and modeling minor nonadditive effects in some of the studies. However, sometimes conventional methods outperformed machine learning models, which confirms that there’s no universal method for genomic prediction. In summary, machine learning models have great potential for extracting patterns from single nucleotide polymorphism datasets. Nonetheless, the level of their adoption in animal breeding is still low due to data limitations, complex genetic interactions, a lack of standardization and reproducibility, and the lack of interpretability of machine learning models when trained with biological data. Consequently, there is no remarkable outperformance of machine learning methods compared to traditional methods in genomic prediction. Therefore, more research should be conducted to discover new insights that could enhance livestock breeding programs.
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1 INTRODUCTION
Farmers and animal breeders have long used artificial selection to produce offspring with specific desired traits. Assessing the performance of animals was based solely on phenotypes for centuries; it was not until the 20th century that pedigree records and performance data became the keys to genetic selection programs (Boichard et al., 2016). Several statistical methods were developed to predict the breeding values of individuals, such as selection index and Mixed Model Equations (MME), which allowed, due to advances in computational power, the Best Linear Unbiased Prediction (BLUP) (Henderson, 1984) to become the most sophisticated approach for breeding value estimation and thus enable accurate selection decisions (Meuwissen et al., 2016). Nevertheless, traditional genetic evaluation techniques are generally more reliable in estimating breeding values for phenotypic traits that can be easily measured and have moderate to high heritability (Boichard et al., 2016). Conversely, traits with low heritability necessitate a substantial quantity of pedigree and phenotype data, which increases the generation interval and subsequently diminishes the overall genetic improvement accomplished through the breeding program. The emergence of molecular genetics has prompted researchers to delve into a comprehensive investigation of how traits are determined at the DNA level. Numerous studies have been carried out with the aim of pinpointing particular segments within the genome that play a crucial role in accounting for variations in genetic characteristics known as Quantitative Trait Loci. Later in the 1980s to the 2000s, several methods were proposed for marker-assisted selection (MAS) research that incorporate information about QTL in the MME as fixed effects, and thus breeding value estimation is performed by summing the estimated effects for every QTL (Weigel et al., 2017). Nevertheless, the effectiveness of incorporating Quantitative Trait Loci into estimating breeding values was constrained by the sparse distribution of markers that were in linkage disequilibrium with QTL across the entire population. Furthermore, it was discovered that quantitative traits are influenced by a multitude of QTL with relatively minor individual contributions. Meuwissen et al. (2001) proposed a multiple QTL methodology named genomic selection, that estimates breeding values using a dense marker map. Genomic selection assumes that estimating the effects of a large number of single nucleotide polymorphism (SNP) across the genome will enable breeding value estimation without prior knowledge of the location of specific genes on the genome (Eggen, 2012).
In 2007, progress in molecular technology allowed the first assembly of the bovine genome. The Illumina Company and an international consortium introduced a chip to genotype simultaneously over 54,000 SNPs, which revolutionized dairy cattle breeding (Boichard et al., 2016), and consequently, various methods were developed for whole-genome selection in plants and other domestic animal species. Recently, the availability of high-throughput genotyping and the decrease in genotyping costs have made genomic selection a standard method in animal breeding schemes in many countries (Meuwissen et al., 2016). The underlying concept is based on predicting markers effects using phenotypic information and the genomic relationship between individuals of a reference population previously genotyped and phenotyped to forecast the breeding values of a certain trait for a population of genotyped selection candidates (Goddard et al., 2010). Various statistical methods, such as Genomic Best Linear Unbiased Prediction (GBLUP) or Bayesian methods with different prior assumptions, have been developed to predict markers' effects and thus the genomic breeding values of individuals. Nevertheless, these conventional methods were unable to consider non-additive effects such as epistasis and interactions between genotypes (Bayer et al., 2021) which can have a large effect on phenotypes in animal species. Furthermore, genotyping provides ever-increasing marker datasets, which exacerbates the “curse of dimensionality” also known as the “large P, small N” paradigm (Nayeri et al., 2019). Consequently, traditional linear models became inadequate for capturing patterns and explaining the complex relationships hidden in this mass of large noisy data.
Recently, the development of machine learning (ML) algorithms and the concomitant boost in computational processing power have generated buzz in the scientific community. ML models are known for their tremendous flexibility and their ability to extract hidden patterns in large noisy datasets, such as image-based data (Xiao et al., 2015), massive datasets of heterogeneous records (Li et al., 2018b), or digital data, which is increasing remarkably due to advancements in computer vision, natural language processing (NLP), internet of things (IoT), or computer hardware (David et al., 2019). Genomics, due to the advent of sequencing technologies, became a field where researchers deal with massive, heterogeneous, redundant, and complex omics datasets. Thus, the application of machine learning models in genomics has been investigated in several studies. In this paper, we review the application of ML algorithms to genomic prediction (GP) in livestock breeding. This work is organized as follows: First, we discuss machine learning fundamentals and provide a brief description of common algorithms used in genomic prediction. Second, we outline the different evaluation methods used to assess the performance of ML models. Afterwards, we review some of the published studies concerning the application of ML models in genomic prediction to provide a meta-picture of their potential in terms of prediction accuracy and computational time. Finally, we discuss the potential of applying ML to animal breeding in low- and middle-income countries.
2 MACHINE LEARNING FUNDAMENTALS
Machine learning can be defined as a branch of artificial intelligence that empowers computer systems to learn without being voraciously programmed (Sharma and Kumar, 2017). In other words, a learning computer system can be described as a computer whose performance P on task T improves as its experience E increases (Kang and Jameson, 2018). Based on the learning process, machine learning algorithms can be classified into supervised learning, unsupervised learning and reinforcement learning.
2.1 Supervised learning
In supervised learning, the learning process consists of conceiving a meaning from labeled data. Mainly, supervised learning algorithms tend to estimate or predict a response variable [image: image], based on a set of explicative variables [image: image], through a function called predictor [image: image] where [image: image] is a vector of model parameters. The performance criterion we use to define the best predictor is called a loss function [image: image], we thus define the best predictor as the predictor who minimizes the loss function [image: image] (Crisci et al., 2012; Pereira and Borysov, 2019). Depending on the nature of the response variable [image: image] (continuous or discrete), supervised learning algorithms are applied to either regression or classification problems. If the main task of an algorithm is to predict a numeric value of a continuous target variable, the ML algorithm performs a regression problem. Alternatively, a classification problem consists of training the algorithm using a set of labeled features (discrete variable), to learn how to successfully classify new features accordingly (Kang and Jameson, 2018). Sometimes the training data involves labeled and unlabeled data. This type of learning is called semi-unsupervised learning and it is considered a class of supervised learning tasks. Anomaly detection is a typical application of semi-supervised learning algorithms (Kang and Jameson, 2018).
2.2 Unsupervised learning
Unsupervised learning consists of finding patterns or clusters in the training data where the target variable is not present. Algorithms learn on their way to discovering interesting structures in the training data (Mahesh, 2020). Since the features fed to the algorithms are unlabeled, there is no way of assessing the accuracy of these algorithms, unlike supervised learning and reinforcement learning. These models are mainly used for clustering and feature reduction (Sharma and Kumar, 2017).
2.3 Reinforcement learning
In reinforcement learning, software agents perceive and interpret their environment, perform actions and get rewards or penalties in return. Explicitly, a reinforcement learning algorithm enables an agent connected to its environment, to choose an action [image: image] and generate an output [image: image], given an input [image: image] and an environment [image: image]. The action changes the environment, and a value is attributed to the transition of the environment’s state through a scalar reinforcement signal [image: image]. Consequently, the agent chooses actions that increase the sum of values of the reinforcement signal (Kaelbling et al., 1996). Similar to biological systems, animals living in specific environments face fundamental challenges such as locating sustenance, avoiding harm, and reproducing. These environmental conditions are subject to dynamic changes and sudden variations. Consequently, animals must continuously acquire knowledge from their surroundings and adapt their behaviors accordingly (Neftci and Averbeck, 2019). Similarly, when a robot is assigned the task of navigating a maze in reinforcement learning scenarios, it functions as an agent within this process. In its interactions with the maze environment, the robot seeks to identify optimal paths by taking successive actions (i.e., moving) while simultaneously receiving feedback through rewards for proximity to the exit or penalties for deviating further away or finding no escape route. By integrating these multiple-step feedback signals into its decision-making processes over time, the robot gradually enhances its navigation capabilities.
In the field of genomic prediction, supervised learning stands out as the most widely employed technique. This approach leverages labeled data to develop and assess models, thereby allowing for more direct predictions based on established patterns. In contrast, less prominence is given to unsupervised learning and reinforcement learning in relation to genomic prediction.
3 COMMON ML MODELS USED FOR GENOMIC PREDICTION
In the sections below, we present a short description of some widely used machine learning algorithms for genomic prediction.
3.1 Linear regression
Linear regression is a model usually used to forecast the value of a continuous variable [image: image] also called label or target variable using ML terminology, through a vector of explanatory variables also called independent variables or features [image: image], and a linear function. If the model involves a single independent variable [image: image], simple linear regression defines the relationship between the variables using the model:
[image: image]
where [image: image] is the intercept term and [image: image] is a regression coefficient that represents the variation in the outcome for a 1-unit increase in the value of the independent variable [image: image], and [image: image] represents the error term also called noise. The dependent variable [image: image] can be explained with more than one explanatory variable. In that case, we are talking about Multivariate Linear Regression (MLR). The basic model for MLR is Maulud and Abdulazeez (2020):
[image: image]
Linear regression is considered a supervised learning algorithm because we feed the model with a data set containing features [image: image] and the corresponding values of the target variable [image: image], and we expect an accurate prediction of [image: image] for another set of features [image: image]. In order to reach sufficient accuracy, the model minimizes the value of a chosen loss function (Nasteski, 2017). The most commonly used loss function for linear regression is Least Squared Error (LSE) (Maulud and Abdulazeez, 2020).
3.2 Logistic regression
Logistic regression is a classification model regularly applied for the analysis of dichotomous or binary outcomes (LaValley, 2008). In other words, logistic regression is used to study the effects of predictor variables on binary or categorical outcomes, such as the presence or absence of an event (Nick and Campbell, 2007). Training data is fed to a model that uses a logistic function in order to predict the probability of the event. Unlike linear regression, logistic regression does not require a linear relationship between dependent and independent variables, the model uses a log transformation to the odds ratio defined as the ratio of the probability of the event happening divided by the probability of the event not happening (LaValley, 2008). The logistic regression hypothesis is defined as (Nasteski, 2017):
[image: image]
Where the function [image: image] is a sigmoid function defined as the following:
[image: image]
Logistic regression uses a Maximum Likelihood Estimation (MLE) loss function, which is a conditional probability. The algorithm assigns each observation to class 0 or class 1 based on whether the probability is greater or smaller than a given threshold, 0.5 for example, (Belyadi and Haghighat, 2021).
3.3 Decision trees
Decision Trees (DT), also known as Classification And Regression Trees (CART) is one of the most popular supervised learning algorithms based on recursive partitioning (Jiang et al., 2020). This approach was first introduced by Breiman et al. (1984), and it relies on dividing a heterogeneous large dataset into multiple smaller homogeneous subsets, which leads to a branching structure. This structure (Figure 1) consists of nodes connected through branches. If a node does not represent an incoming edge, it is called a root. Generally, all nodes have one incoming edge and two or more outgoing edges. The nodes with no outgoing edges are called leaves. In decision trees, splitting the training data is performed by answering several questions incrementally from the topmost node to a leaf. A good question can split a heterogeneous dataset into several homogenous subsamples. Decision trees can deal with both classification and regression problems. For continuous variables, the split is performed using a threshold, the rule takes the form [image: image] where [image: image] is a threshold over the variable [image: image]. Contrary, when the variable is discrete, the split has the form [image: image] where [image: image] is a subset of possible levels of x. When the target variable is continuous, which means we are dealing with regression, the predicted value of each subgroup is the average value of [image: image] for all observations in the training set assigned to that subgroup (Crisci et al., 2012). In contrast, when [image: image] is discrete and DT algorithm is dealing with classification problems, the most frequent level of [image: image] over the leaf observation is assigned to the target value. The basic algorithm used to build decision trees for regression matters is the Iterative Dichotomiser 3 (ID3) which uses the standard deviation reduction (SDR) to generate the decision tree. In classification situations, the ID3 algorithm uses entropy, defined as a measure of the homogeneity of subsamples, and information gain (Choudhary and Gianey, 2017). This method is widely used because of its flexibility and ease of interpretability.
[image: Figure 1]FIGURE 1 | Decision trees structure.
3.4 Ensemble learning
3.4.1 Bagging
Bagging, also called Bootstrap aggregating, is an ensemble method used for assembling multiple versions of a predictor to get an aggregated strong predictor (Breiman, 1996). Given a labeled training set [image: image] , bagging algorithm constructs a bootstrap replicate [image: image], by randomly selecting samples n times with replacement from the original dataset, and then using them as new learning sets for the CART model. The final model is obtained by repeating these steps M times during the learning process. When predicting a numerical outcome, the aggregation algorithm averages the outcome of all predictors. If the target variable is a class label, the bagging predictor is then defined as the majority vote over the M models (Bühlmann, 2012). Bagging algorithms outperformed simple CART models, showing substantial gains in accuracy and significant optimization for weak learners who exhibit unstable behavior. However, bagging algorithms are sensitive to changes in training sets and can slightly reduce the performance of stable procedures (Breiman, 1996; Freund and Schapire, 1996; Bühlmann, 2012; Crisci et al., 2012).
3.4.2 Random forest
Random Forest consists of a combination of tree predictors that operates as an ensemble (Breiman, 2001). These decision trees are generated by a randomized tree-building algorithm. The algorithm builds several trees using different random samples of the same size as the original training set by including certain items more than once. Additionally, at each node of the decision trees, the split considers a small random subset of features. As a result, the predictions of these trees can be different. The target value is then assigned to a certain class based on the majority vote over the prediction given by the trees (Kingsford and Salzberg, 2008). Random forests can also be used for regression, in which case the estimated value of the output variable is the average of the predictions of the trees in the forest (Choudhary and Gianey, 2017).
3.4.3 Boosting
Boosting is a strategy used to enhance the accuracy of prediction models. It works by merging multiple simple models, known as weak learners, into one comprehensive and more accurate model. These weak learners, such as basic decision trees, do not have high predictive power on their own. However, when many of them are combined using a boosting algorithm, their collective accuracy significantly improves (Freund and Schapire, 1996).
The Adaboost is one of the most widely used practical boosting algorithms. The learning procedure of this algorithm starts by taking m labeled training examples [image: image], where xi belongs to some space X and it is represented as a vector of input values, and yi∈Y is the labeled output associated with xi. Boosting algorithm runs repeatedly in a series of rounds t = 1, … ,T, and every weak learner who’s given a distribution Dt, which refers to the distribution of weights assigned to the examples in the training set S at each iteration, finds a weak hypothesis ht:X→Y. The overall aim of the weak learning algorithm is to find a hypothesis, called weak hypothesis, that minimizes the weighted error t associated to Dt. The final outcome of the boosting algorithm is a combination of all the weak hypotheses, where each one is assigned a weight (αt) according to its importance. The more accurate a weak hypothesis is, the higher its weight. This final combination is a kind of “majority vote” of all the weak hypotheses, and it is much more accurate than any of the individual weak learners. Mathematically, the final hypothesis H is represented as a weighted majority vote of the weak hypotheses, where every hypothesis ht is multiplied by a weight αt (Freund and Schapire, 1996). Boosting is effective at reducing both random variability (variance) and systematic error (bias) in the predictions. It also has a unique feature where it focuses more on the more challenging examples, based on the performance of the previous weak learners. This makes boosting algorithms perform better than other methods like bagging, and makes them less sensitive to changes in the training data (Freund and Schapire, 1996).
3.5 Kernel-based algorithms
3.5.1 Reproducing kernel Hilbert spaces (RKHS)
Reproducing kernel Hilbert (RKHS) is a semi-parametric regression model applied for the first time on marker genotypes by Gianola et al. (2011). This method has shown great computational potential, especially when p >> n. RKHS is a Hilbert space (H) of functions where every function can be thought of as a point in Euclidean space, and is assumed to be bounded and linear. In other words, if two functions [image: image] and [image: image] have close norms [image: image], they also have close values [image: image]. The learning task of RKHS can be described as follows: Let [image: image] be a vector of marker genotypes (input), [image: image] a vector of genetic values (output), and [image: image] an unknown function of genetic effects.
To infer [image: image], RKHS proceeds by defining a space of functions from which an element [image: image] will be chosen if it minimizes the loss function bellow:
[image: image]
Where [image: image] is a regularization parameter that controls tradeoffs between goodness of fit and model complexity, [image: image] represents a Hilbert space, and [image: image] is the square of the norm of [image: image] on [image: image] The square of the norm measures the model complexity. According to Manton and Amblard (2014), RKHS theory can be used to solve three types of problems:
(i) when the problem is defined over a subspace that happens to be RKHS. This suggests that mapping the problem space into a higher dimensional space makes the problem easier. Genomic selection poses a high-dimensional challenge as the number of genotypes (p) typically exceeds the number of individuals (n). By leveraging an RKHS framework, it becomes possible to mitigate this dimensionality and facilitate solving such problems. Introducing a Gaussian kernel allows for transforming the genotypic data into an appropriate RKHS representation, whereby subsequent linear regression models can be effectively used for predicting genetic values within this reduced-dimensional space.
(ii) when a problem has a positive semi-definite function: In the field of genomic selection, a critical component is the genetic relationship matrix (also referred to as the kinship matrix), which quantifies the genetic similarity between individuals. This function serves an important purpose in correcting for confounding factors such as population structure and familial relatedness in association studies. Utilizing a reproducing kernel Hilbert space is one solution to the problem that high-dimensional genotypes present. By applying this approach, we can leverage the kernel trick to effectively handle and make more manageable this complex problem.
(iii) When the data points can be embedded into a RKHS with the kernel function capturing the characteristics of the distance function, given all the data points and a function determining the distance between them Nayeri et al. (2019). One common task in genomic selection is to group individuals based on their genotypes. This is typically done for purposes such as identifying subpopulations or accounting for population structure. To achieve this, the genotypes can be embedded into a reproducible Kernel Hilbert Space using an appropriate kernel function, such as a Gaussian or linear kernel. By doing so, we are able to capture the genetic similarity among individuals. The clustering algorithm operates within this RKHS and aims to find clusters that are well-separated in the RKHS even if they may not appear well-separated in the original genotype space.
3.5.2 Support vector machines
Support vector machines (SVM) is a non-parametric algorithm proposed by Cortes and Vapnik (1995). It was first conceived for two-group classification problems; however, it is widely used nowadays for both regression and classification. When dealing with clustering, the aim of SVM algorithm is to identify an optimal hyperplane defined as a boundary that maximally separates classes (Jiang et al., 2020). When data points are linearly separable, the SVM algorithm performs a linear classification and the optimal hyperplane is found using numerical optimization (Crisci et al., 2012). Otherwise, SVM can perform a non-linear classification using the Kernel function. Gaussian kernel function is used to map the data points from a data space to a high-dimensional feature space. In the feature space, small spheres appear to enclose the image of data, these spheres are mapped back to the data space and form cluster boundaries that enclose data points of the same cluster (Ben-Hur et al., 2001). The boundaries should maximize the margin between them and the classes to minimize the classification error (Mahesh, 2020). When the SVM algorithm is applied to regression problems, the loss function should include a distance measure. The possible loss functions are the quadratic, Laplacian loss function, Huber and the insensitive loss function (Gunn, 1998). SVM algorithms can result in highly accurate predictions due to their flexibility. However, they’re described as a black box because no metrics are provided for how predictors optimize the hyperplane, which makes the predictions hard to interpret (Jiang et al., 2020).
3.6 Nearest neighbors
Nearest neighbors model is one of the most simple and intuitive machine learning algorithms. The idea of this approach is to forecast the value of a target variable [image: image] associated with an input variable [image: image] based on the distance between [image: image] and other data points. Generally, Euclidean distance is used, but there are other methods to calculate this distance, such as Manhattan distance (Zhang, 2016). In classification, [image: image] is assigned to the class label of the majority of the nearest data points in the space. Alternatively, when dealing with regression, the predictor is the average of the output over the nearest neighbors (Crisci et al., 2012). The K-nearest neighbors (KNN) is the most popular algorithm in this category. It is based on the same idea that the nearest patterns to a datapoint [image: image] deliver useful label information. The unknown parameter K decides how many neighbors will be considered in the learning process (Kramer, 2013). The number of neighbors K has a significant impact on the performance of the algorithm. An optimal K is the one that strikes a balance between overfitting (low bias but high variance) and underfitting (low variance but high bias). Some authors suggest K to the square root of the number of observations in the training set (Zhang, 2016).
3.7 Deep neural networks
Deep learning is a family of powerful learning methods capable of recognizing complex patterns in raw data (Vieira et al., 2020). The well-known Rosenblatt “perceptron” proposed in the 1950s was the first attempt to conceive a model closely analogous to the perceptual processes of the human brain (Rosenblatt, 1957). Deep neural networks’ (DNN) structure (Figure 2) consists of stacked layers of connected neurons. In other words, the DNN model comprises a certain number of layers, each layer contains several neurons. Each neuron is connected to the neurons in adjacent layers through weights that reflect the strength and direction of the connection (excitatory or inhibitory) (Montesinos-López et al., 2021). DNN models are characterized by their depth, size and width. The number of layers that a DNN contains, excluding the input layer, is called depth. The total number of neurons in the model is referred to as the size. Finally, the width of the DNN is the layer that comprises the largest number of neurons.
[image: Figure 2]FIGURE 2 | A graphical representation of a simple neural network.
When running DNN, a set of observations [image: image] enter the model through the input layer. The observations [image: image] are the input and the output of this layer. In the hidden layers of the DNN, every neuron of a given layer receives from the layer of lower hierarchical level, the weighted sum of its neurons’ output, and then passes it through an activation function to drive it as an output for that neuron. In the hidden layers, the most widely used activation functions are the rectified linear unit, hyperbolic tangent activation and the sigmoid function. In the output layer, the DNN is meant to perform either a classification or a regression based on the nature of the target variable. When dealing with classification, the number of neurons in the output layer is equal to the number of classes. Additionally, different activation functions could be used according to the type of the target variable. Softmax is used for categorical variables, the exponential function for count data and the sigmoid function for binary outcomes (Vieira et al., 2020; Montesinos-López et al., 2021). In regression problems, the output layer represents the estimated values of the target variables and linear activation functions are applied. The most successful activation function when dealing with a continuous variable is the rectified linear unit (ReLU) (Bircanoğlu and Arıca, 2018). The tanh activation function is used in DNN to introduce non-linearity in the model and to allow the model to learn from both positive and negative weights since it is centered around zero (unlike the sigmoid function). It is typically used in the hidden layers.
Like other ML models, training DNN consists of choosing optimal weights that minimize the differences between real and estimated values of the target variable. The gradient descent is used to minimize the loss function. These parameters need to be updated during the learning process. When first training the DNN model, the weights are randomly initialized. Once an observation has entered the model, the information is forward propagated through the network until it predicts a certain output value. The gradients of the loss function are then computed using a hyperparameter called the learning rate [image: image] which indicates how big the steps of gradient descent should be, and then used to update the function parameters (weights and biases). Backpropagation is another efficient method of computing gradients. The concept of this method is based on the fact that the contribution of each neuron to the loss function is proportional to the weight of its connection with the neurons of the following layer. Therefore, these contributions could be calculated starting from the output layer and backpropagated through the network using the weights and the derivative of the activation function (Pereira and Borysov, 2019; Vieira et al., 2020; Montesinos-López et al., 2021).
Deep learning comprises a wide variety of architectures. The most popular ones are the feedforward networks, also called the multilayer perceptron (MLP), recurrent neural networks (RNN) and the convolutional neural networks (CNN).
3.7.1 Multilayer perceptron (MLP)
The multilayer perceptron (MLP) is a layered feedforward network where all layers are fully connected. Every neuron of a given layer is connected to neurons of the adjacent layer, the information flows in a single direction. In other words, there are no intralayer or supralayer connections. MLPs are found to be powerful and simple to train. However, these networks are not suitable to deal with spatial or temporal datasets and they’re prone to overfitting (Montesinos-López et al., 2021).
3.7.2 Recurrent neural networks (RNN)
In Recurrent Neural Networks (RNN), information flows in both directions. Every neuron has three types of connections: incoming connections from the previous layer, ongoing connections toward the subsequent layer, and recurrent connections between neurons of the same layer (Montesinos-López et al., 2021). This recursive structure allows this network to have some notion of memory since the output of a layer depends on both current and previous inputs. RNN are frequently used to model space-temporal structures. It is also used in the fields of natural language processing and speech recognition (Pereira and Borysov, 2019; Zingaretti et al., 2020).
3.7.3 Convolutional neural networks (CNN)
Convolutional Neural Networks (CNN) are designed to accommodate situations where data is represented in the form of multiple arrays. The input variable can have one-dimension such as SNPs, two dimensions such as color images, or three dimensions for videos or volumetric images (LeCun et al., 2015). The architecture of CNNs is made up of convolutional and pooling layers followed by fully connected neural networks (Pereira and Borysov, 2019). When training CNNs, the first two types of layers, namely, convolutional and pooling layers, perform feature extraction. The fully connected neural network is meant to perform the classification or the regression task. In the convolutional layer, a mathematical operation is performed to generate one filtered version of the original matrices of the input data. This convolutional operation is called “kernel” or “filter”. A non-linear activation function, generally ReLU, is applied after every convolution to produce the output, which is organized as feature maps. The pooling operation comes after to smooth out the results, its role is to merge semantically similar features into one. In other words, pooling reduces the number of parameters and makes the network less computationally expensive. Max pooling is a typical pooling operation that proceeds by extracting patches from the feature maps, determining the maximum value in each patch, and then eliminating all the other values. Finally, after turning the input matrices into a one-dimensional vector, the features are mapped by a network of fully connected layers similar to the aforementioned feedforward deep network to obtain the final output, the probabilities of a given feature belonging to a given class for example,. The output of the fully connected neural network is fed to another different activation function to perform classification or regression based on the output variable (Yamashita et al., 2018). CNNs have been successfully applied in visual and speech recognition, natural language processing, and various classification tasks (LeCun et al., 2015; Yamashita et al., 2018; Pereira and Borysov, 2019).
4 PERFORMANCE FITNESS AND ERROR METRICS
Machine learning algorithms need to be rigorously evaluated in order to confirm their validity in understanding complex datasets and hence extend the use of this model in different datasets. Generally, the performance of ML models is assessed using Performance Fitness and Error Metrics (PFEMs), defined as mathematical constructs used to measure how close the predicted and real observed values of a given variable are. Choosing the right metric for assessing the performance of a predictor is very delicate because a limited understanding of the behavior of algorithms can lead to misinterpretations of results and thus false assumptions. In addition, PFEMs are used differently when dealing with regression and classification problems.
In regression, performance metrics are based on calculating the distance between predicted and real values using subtraction or division operations, sometimes supplemented with absoluteness or squareness. Moreover, PFEMs in regression also investigate the distribution of residuals, whether it is random or regular, which indicates that the regression model does not explain all the regularity in the dataset. The most common PFEMs used in regression are (Table 1): mean square error (MSE) or root mean square error (RMSE), normalized mean squared error (NMSE), correlation coefficient (R), r squared (R2), mean absolute error (MAE), and mean absolute percentage error (MAPE). They are easy to interpret, straightforward, and they indicate the magnitude of the difference between measured and predicted values (Naser and Alavi, 2021). The interpretation of these metrics can be found elsewhere (Botchkarev, 2018).
TABLE 1 | Common performance metrics used for the evaluation of regression models.
[image: Table 1]Classification models are meant to categorize data into distinct classes. Therefore, assessing the performance of classifiers relies on a confusion matrix where columns represent the predicted values, while rows represent the actual values as described in Figure 3, where TP refers to true positives, TN denotes true negatives, FP denotes false positives, and FN refers to false negatives. The performance of classifiers is often evaluated using prediction accuracy (PAC), sensitivity or recall, specificity, and precision. Based on the confusion matrix, these metrics are defined as below:
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[image: Figure 3]FIGURE 3 | Interpretation of ROC curves of varying sensitivity and specificity. The sensitivity and the specificity of the test increases as the curve approaches the point a (x = 0, y = 1). The closer the curves are to the diagonal line the less precise they are. From “ROC-ing along: Evaluation and interpretation of receiver operating characteristic curves” by Carter et al. (2016).
Other methods based on the aforementioned metrics have also been broadly used in assessing the performance of classifiers. The F1 score that combines both precision and recall in a harmonic mean in the following formula:
[image: image]
Moreover, Matthews (1975) introduced a coefficient used to measure the performance of binary classifiers, called the Matthews correlation coefficient (MCC). This coefficient combines all four measures in the confusion matrix, and thus it is qualified as the most informative metric especially when a significant imbalance in class sizes is noticed (Nayeri et al., 2019). MCC formula is represented below:
[image: image]
Another criterion widely used to measure the performance of classifiers is the Area Under the Receiver Operating Characteristic (ROC) curve (AUC). The ROC curve visualizes the tradeoff between sensitivity and specificity. In other words, the curve captures the ratio of false to true positive rates under variation of the decision threshold (Hoffmann et al., 2019). Generally, good performance is detected when the curve is high and close to the left in the ROC space. In contrast, an inaccurate method has a curve close to the main diagonal (Figure 4). Thus, when comparing several ML models, the one with the highest AUC value is the most accurate (Metz, 1978).
[image: Figure 4]FIGURE 4 | Confusion matrix.
5 MACHINE LEARNING MODELS APPLIED TO GENOMIC PREDICTION IN ANIMAL BREEDING
Machine learning algorithms have been widely used in various fields. Their ability to discover patterns in large, messy datasets has driven researchers to investigate their performance in dealing with complex models and nonlinearities in large datasets. Animal breeding in the post-genomic era is a domain that deals with high-dimensional marker datasets such as genomics, epigenomics, transcriptomics, proteomics and metabolomics. The most commonly used marker data sets in animal breeding are single nucleotide polymorphism (SNPs) data sets that represent the genetic variation in a genome. SNP markers data sets are very large, for example, the data set resulting from genotyping 2,000 individuals for 10,000 SNP markers, contains 20 million data points. Furthermore, they can be complex and noisy due to genotyping errors, missing data, batch effects, and biological variability. Copy number variation (CNV) is another valuable form of genetic variation that complements SNPs analysis. CNV datasets are used to investigate diversity within populations (Yang et al., 2018). They can serve as informative markers for marker-assisted selection by identifying CNVs associated with desirable traits (Ma et al., 2018), and genomic prediction to enhance the accuracy of predicting breeding values (Hay et al., 2018), etc. In addition, microarray data provide valuable information concerning gene expression, by measuring the mRNA expression levels of tens of thousands of genes. Gene expression datasets are known to be massive (large number of genes) and redundant, and thus, their manipulation requires a lot of pre-processing and dimensionality reduction (Liu and Motoda, 2007). Applying machine learning models is hence becoming attractive in genomics, due to their potential in dealing with large, noisy data and modeling minor nonadditive effects as well as interactions between phenotypes and genotypes.
Machine learning models have several important applications in genomics. Through the introduction of sophisticated algorithms and computational models, ML can be trained using large datasets of genotypes and phenotypes to predict animals’ breeding values for certain traits. This would enable an accurate selection of animals with the highest genetic merit and allow for more informed breeding decisions. ML models have successfully been implemented to predict genomic breeding values across various animal species, including dairy cattle (Beskorovajni et al., 2022), beef cattle (Srivastava et al., 2021), pigs (Zhao et al., 2020), and broilers (González-Recio et al., 2008). The estimated GEBVs provide an accurate prediction of animals’ genetic potential and thus identify animals with high genetic potential that surpass the population average. Therefore, ML models can have a valuable role in allowing breeders to make more precise breeding decisions, leading to faster genetic progress.
In addition, machine learning algorithms can also be deployed to predict disease occurrence based on integrated information of genotypes and health records. For example, Ehret et al. (2015) applied ML to encounter a serious health problem in the intensive dairy industry, which is subclinical ketosis risk. The authors proposed an ANN to investigate the utility of combining metabolic, genomic and milk performance in predicting milk levels of β-hydroxybutyrate. Data comprised SNP markers, and weekly records of the concentrations of glycerophosphocholine, phosphocholine, and milk composition data (milk yield, fat and protein percentage). The deep learning model deployed provided an average correlation between real and predicted values up to 0.643 when incorporating information about metabolite concentration, milk yield, and genomic information.
Moreover, ML models can be coupled with GWAS and population genomics to identify genetic variants and biological pathways linked to specific phenotypic traits. A deep learning framework was proposed by Zeng et al. (2021) to predict quantitative phenotypes of interest and discover genomic markers considering the zygosity of SNP information from plants and animals as input. Furthermore, ML models can be used to impute moderate-density genotypes when genotyping large populations can be expensive and time-consuming. ML models can accurately infer missing genotypes and fill the gaps to create moderate density genotypes. This has already been implemented in the beef cattle genomic dataset (Sun et al., 2012).
Taken together, ML models appear to be a powerful tool for enabling more accurate predictions, targeted selection, and an improved understanding of genetic mechanisms. However, when training ML models on biological data, several challenges can occur. For example, when using markers data, environmental data, and phenotypic records all together to predict a certain variable, the large heterogeneity of the input data can be a hurdle. Therefore, it is indispensable to perform a pre-processing step that includes formatting, cleaning, scaling, and normalizing the data. This step ensures that the data is prepared to optimize the performance and accuracy of the machine learning model. Markers data sets are usually massive and comprise a lot of noise. Using the raw data can lead to a low performance and overfitting. Thus, performing feature selection is vital when manipulating omics data in order to reduce the dimensionality of the data by selecting relevant features while eliminating noise from the model. Multiple methods can be used to perform feature selection including statistical methods, correlations, or hypothesis testing. Recently, ML models were proved to be very powerful in feature selection. The most broadly used machine learning-based methods for feature selection are filters, wrappers, and embedded methods that combine filter and wrapper methods (Tadist et al., 2019). Machine learning-based feature selection is widely used when manipulating animal species marker data sets. Finally, when training ML models on biological data, several steps should be performed to ensure the quality of the data fed to the model. In addition, adjusting the hyperparameters and generalizing the model through regularization techniques are also central to optimizing the performance of the model. There are multiple techniques to optimize ML models, such as gradient descent, stochastic gradient descent, random search, grid search, Bayesian optimization, and genetic algorithms.
Now that we have discussed the overall applications of ML models in genomic prediction and the multiple issues encountered while implementing those models on markers data, we will review, in this section, some of the published studies on the application of different ML models for genomic prediction in animal breeding, feature selection, and genotype imputation separately, to provide a meta-picture of their potential in terms of prediction accuracy and computational time. Data sets and different machine learning models applied to genomic prediction in a handful of the reviewed papers are summarized in Table 2. In Supplementary Materials; Table 1 contains the full summary of the reviewed papers, and Table 2 presents the programming languages and packages used to train the models in the aforementioned studies.
TABLE 2 | Machine learning models applied to genomic prediction in animal breeding.
[image: Table 2]5.1 Genomic prediction
The wide majority of traits of interest in animal breeding are presumed to be influenced by many genomic regions with complex interactions. Kernel-based methods are gaining consideration over conventional regression models due to their capacity to capture non-additive effects. A more succinct description of kernel-based methods applied to GP can be found in Morota and Gianola (2014). González-Recio et al. (2008) used the F-metric model, kernel regression, reproducing kernel Hilbert spaces (RKHS) regression, and Bayesian regression to predict mortality in broilers and see how well they did compared to the standard genetic evaluation (E-BLUP), which is only based on pedigree information. The dataset contained records for mortality rates for 12167 progeny of 200 sires with a total of 5523 SNPs. The authors concluded that kernel regression and RKHS regression had a low residual sum of squares and increased the accuracy from 25% to 150% relative to other methods, and thus the authors recommended their utility in the genomic prediction of early mortality in broilers. An et al. (2021) developed another kernel-based algorithm named Cosine Kernel-based Ridge Regression (KcRR) to perform genomic prediction using simulated and real datasets. The simulated dataset included 4000 individuals and concerned three quantitative traits with various heritabilities (0.36, 0.35, and 0.52). Meanwhile, the real data concerned three species: a Chinese Simmental beef cattle dataset contained 1,301 bulls, with a total of 671990 SNPs and concerned three traits of interest: live weight (LW, kg), cold carcass weight (CW, kg), and eye muscle area (EMA, cm2). The pig dataset included 3,534 animals, and finally, the German Holstein cattle dataset included 5,024 bulls with a total of 42551 SNPs that concerned three phenotype traits, milk yield (MY, kg), milk fat percentage (MFP,%), and somatic cell score (SCS). The designed model consisted of a kernel-based ridge regression, which is a ridge regression built in a higher dimensional feature space that uses a Cosine similarity matrix (CS matrix) instead of the genomic relationship matrix (G matrix). The difference between these two matrices is that the CS matrix measures the cosine of the angle between two projected vectors, and the G matrix in an m-dimensional feature space where m is the number of SNP markers. For comparison purposes, a 20-fold cross-validation approach was used to evaluate the prediction accuracy of KcRR to that of GBLUP, BayesB, and SVR. The authors have also simulated for the quantitative traits different heritabilities, and genetic architectures, including one major gene and a large number of genes with minor effects, a number of genes with moderate effects and many genes with small effects, and finally a large number of genes with small effects, in order to assess the performance and consistency of these methods. Overall, KcRR had the best prediction accuracy among the methods, in addition, it performed stably for all traits and genetic architectures, which confirms its reliability and robustness. Therefore, An et al. (2021) suggested the use of KcRR and the CS matrix as a potential alternative in future GP. Zhao et al. (2020) investigated the performance of SVM in a pig dataset containing 3,534 samples with a different number of SNPs for each trait respectively 45,025, 45,441, 44,190, 44,151, and 44,037 SNPs for T1, T2, T3, T4, and T5. For training the SVM model, a suitable kernel function was selected. The authors tested the prediction ability of four commonly used kernel functions namely, the Radial Basis Function (RBF), the Polynomial Kernel Function, the Linear Kernel Function, and the Sigmoid Kernel Function in previously published pig and maize datasets. The findings demonstrated that SVM-RBF had the best performance, the SVM-sigmoid and the SVM-poly models had similar accuracies, and the SVM-linear had the lowest accuracy. As a result, the authors chose using the SVM-RBF model to adjust the hyperparameters of the final SVM model. Afterwards, the authors evaluated the performance of SVM-RBF, GBLUP and BayesR in fitting the five pig datasets, using a 10-fold cross-validation approach. Overall, the performance of the trained models was similar. However, the SVM model performed better than BayesR but worse than GBLUP in terms of time, and better than GBLUP but worse than BayesR in terms of memory.
Ensemble learning has been broadly used in the genomic prediction of animal breeding values. Naderi et al. (2016) studied the use of RF for genomic prediction of binary disease traits using simulated data from 20,000 cows with different disease incidence scenarios, different heritability (h2 = 0.30 and h2 = 0.10), and different genomic architecture (725 and 290 QTL, populations with high and low levels of linkage disequilibrium). The training set contained 16,000 healthy cows, and the testing data contained the remaining 4,000 sick cows. Afterwards, the number of sick cows was increased progressively by moving 10% of the sick individuals to the training data, ensuring that the size of both the training and testing data remained constant. This study compared the performance of RF and GBLUP using the correlations between estimated genomic breeding values and true breeding values, and the area under the curve (AUROC). The results confirmed that RF had a great advantage in the binary classification for scenarios with a larger marker density. In addition, the best prediction accuracies of RF (0.53) and GBLUP (0.51), and the highest values of AUROC for RF (0.66) and for GBLUP (0.64), were achieved using 50,025 SNPs, a heritability of 0.30, 725 QTL, and a disease incidence similar to the population disease incidence (0.20). The authors also noted that the genetic makeup of the population had an impact on the performance of RF and GBLUP. However, the variability was more pronounced for RF than for GBLUP.
A boosting algorithm called L2-Boosting was suggested by González-Recio et al. (2010) to forecast the progeny test predicted transmitting abilities for the length of productive life (PL) in a dairy cattle dataset, and the average food conversion rate records in a broiler dataset. The dairy cattle data set consisted of 4702 Holstein sires with a total of 32611 SNPs, and the broiler dataset comprised 394 sires of a commercial broiler line with 3,481 SNPs. The L2-Boosting algorithm proceeds by combining two weak learners, namely, ordinary least squares (OLS) and non-parametric (NP) regression. The performance of OLS-Boosting and NP-Boosting was compared to Bayesian LASSO (BL) and Bayes A regression. The results showed that OLS-Boosting had the lowest bias and mean-squared errors (MSEs) in both the dairy cattle (0.08 and 1.08, respectively) and the broiler (0.011 and 0.006, respectively) data sets. The authors concluded that L2-Boosting with a suitable learner represents a good alternative for genomic prediction, providing high accuracy and low bias in a short computational time.
In another study, a bagging approach using GBLUP (BGBLUP) was performed to predict the genomic predicted transmitting ability (GPTA) of young Holstein bulls for three traits: protein yield (PY), somatic cell score (SCS), and daughter pregnancy rate (DPR) (Mikshowsky et al., 2017). The dataset consisted of 17276 Holstein bulls with a total of 57169 SNP markers, and it was split into a reference population set used to train the model and a testing set for the evaluation. The aim of the proposed bagging approach was to create 50 bootstraps containing bulls selected randomly, with replacement, from the reference population, until each bootstrap reaches the same number of individuals as the original reference population. GBLUP was applied to predict the GEBVs of individuals for each trait. According to the results, GBLUP outperformed BGBLUP in the genomic prediction for PY, SCS, and DPR, the correlations between the real and predicted values of each trait for GBLUP were 0.690, 0.609, and 0.557, and 0.665, 0.584, and 0.499 for BGBLUP. In summary, the authors found no advantage to using BGBLUP over GBLUP for genomic prediction.
For comparison purposes, several studies have deployed various machine learning methods to forecast and compare their predictive accuracies when trained using genomic data. For example, Ogutu et al. (2011) compared the performance of three machine learning models, namely RF, stochastic gradient boosting, and SVMs, in estimating genomic breeding values. A simulated dataset of 2326 genotyped and phenotyped individuals and 900 individuals who lacked phenotypic records was used. As a performance metric, Pearson correlations were used between the simulated values and the predicted values from the validation set, as well as between the predicted and real breeding values for non-phenotyped individuals. The results showed that stochastic gradient boosting and SVM had better correlations between the simulated values and predicted values compared to RF. However, RF provided reasonable rankings of the SNPs, which can be useful for identifying markers for further testing. In conclusion, stochastic gradient boosting and SVM are found to be able to accommodate complex relationships and interactions in marker data such as epistasis. They have also outperformed RF in the genomic prediction of the quantitative trait, however, SVM was computationally intensive due to the grid search for tuning the hyper-parameters. In contrast, Srivastava et al. (2021) found different conclusions when evaluating the performance of RF, XGB, and SVM in predicting four traits namely, carcass weight (CWT), marbling score (MS), backfat thickness (BFT) and eye muscle area (EMA) of 7234 Hanwoo cattle. According to this study, XGB yielded higher correlations for CWT, MS, (0.43, 0.44, respectively) compared to GBLUP (0.41, 0.42), and lower (0.23, and 0.31) than GBLUP (0.35, and 0.38) for BFT, and EMA. Meanwhile, GBLUP delivered the lowest MSE for all traits. Among the ML methods, XGB had the lowest MSE for CWT and MS, and SVM provided the lowest MSE for BFT and EMA. Despite the good performance of XGB and SVM, the authors still concluded that there was no advantage to using ML methods over GBLUP.
Liang et al. (2021), compared the performance of Adaboost.RT, SVR, KRR, RF to the conventional GBLUP in predicting breeding values for cattle growth traits in Chinese Simmental cattle (carcass weight, live weight, and eye muscle area), using a dataset of 1,217 young bulls with a total of 671990 SNPs. Contrary to the previous study, the authors recommended using ML methods over GBLUP. Indeed, the predictive accuracies of SVR, KRR, RF, Adaboost.RT and GBLUP were 0.346, 0.349, 0.315, 0.349, and 0.290 respectively. In other words, ML methods improved the predictive accuracy by 12.8%, 14.9%, 5.4%, and 14.4%, respectively, over GBLUP. In summary, Liang et al. (2021) found a great advantage in using ML algorithms for GP in Simmental beef cattle, especially Adaboost.RT due to its reliability. However, the authors pointed out that ML models were sensitive to data, which means that two different datasets may have significant differences in predictive accuracy. Wang et al. (2022) used a pig dataset of 2566 Chinese Yorkshire pigs to compare the same models. The study concentrated on estimating the genomic breeding values of these individuals for two reproductive traits: the total number of piglets born (TNB) and the number of piglets born alive (NBA). The GEBVs were also estimated using classical methods [GBLUP, ssGBLUP, and Bayesian Horseshoe (BayesHE)]. Overall, ML methods outperformed conventional ones, and the degree of improvement over GBLUP, ssGBLUP, and BayesHE was 19.3%, 15.0% and 20.8% respectively. Furthermore, results showed that ML methods had the lowest MSE and MAE in all case scenarios. SVR and KRR provided the most consistent prediction abilities including higher accuracies and lower MSE and MAE. The findings of this study showed that ML methods are more efficient and had better performance in predicting GEBVs for reproductive traits, which can provide new insights for future GP. In another report, Sahebalam et al. (2019) evaluated the predictive ability of RF, SVM, the semiparametric model reproducing kernel Hilbert spaces (RKHS), and two parametric methods, namely, ridge regression and Bayes A. The ability of the above methods to predict was tested by estimating genomic breeding values for traits with different combinations of QTL effects, QTL numbers, three scenarios of heritability, and two training sets with 1,000 and 2,000 individuals. A genome of four chromosomes was simulated, and four generations were considered in the study. In the various simulation scenarios, the parametric methods outperformed semi-parametric (RKHS) and non-parametric ones (RF and SVM). However, the superiority of parametric models compared to semi-parametric ones was not statistically significant. In summary, Bayes A had the best prediction accuracy among all tested models.
Deep learning algorithms are found to be powerful in discovering intricate patterns and nonlinearity in large, messy datasets. Their application in genomic prediction has been investigated, however, the number of reports on DL application in animal breeding is small, and thus their potential should be further investigated. Gianola et al. (2011) evaluated the predictive ability of an artificial neural network to predict three quantitative traits, namely, milk, fat, and protein yield. In Jersey dairy cows. The dataset contained records of the milk yield of 297 Jersey dairy cows with a total of 35,798 SNPS. The authors conceived different Bayesian neural networks (BNN) with various architectures that differed in terms of the number of neurons, the type of activation function, and the source of the input variables, whether they were derived from pedigree or molecular markers. According to the results, BNNs with at least two neurons in the hidden layer had better performance. Moreover, results also showed that Bayesian regularization helped reduce the number of weights, which helped prevent overfitting. However, an overfitting problem still occurred in the Jersey training set, where large correlations between observed and predicted data were observed in the training set (0.90–0.95) and much lower correlations in the testing set. In another study, Beskorovajni et al. (2022) developed a multi-layer perceptron for predicting yield and fertility traits of 92 genotyped Holstein heifers, using several “Key traits” as input variables. These traits consist of Milk Yield, Fat Yield, Protein Yield, Somatic Cell Score (SCS), Productive Life (PL), Daughter Pregnancy Rate (DPR), Daughter Calving Ease (DCE), Final Type (PTA Type) and Genomic Future Inbreeding (GFI). An iterative method called the Broyden-Fletcher-Goldfarb-Shanno algorithm, which proceeds by minimizing the validation error, was used for optimization while training the ANN model. The authors obtained one optimal ANN for each target variable. The obtained ANN contained three layers, 11 neurons in the hidden layer and 276 weights and biases due to the high nonlinearity of the observed system. These hyper-parameters led to the highest values of r2 (0.951, 0.947, 0.989, 0.985, 0.902, 0.887, 0.676, 0.953, 0.590, 0.647, and 0.444) for these traits respectively; fat percentage, protein percentage, cheese merit, fluid merit, cow livability, sire calving ease, sire calving ease, heifer conception rate, cow conception rate, daughter stillbirth, sire stillbirth, and gestation length. In the end, Beskorovajni et al. (2022) found that the ANN (network MLP 9-11-11) based on the Broyden-Fletcher-Goldfarb-Shanno optimization algorithm did a good job of fitting the data and predicting yield and fertility traits. Waldmann et al. (2020) combined a one-dimensional CNN model with [image: image]-norm regularization, Bayesian optimization and ensemble prediction within Genome Wide Prediction framework (CNNGWP) using simulated data with additive and dominance genetic effects and real pig data of 808 Australian Large White and Landrace sows with a total of 50174 SNPs. In comparison to findings achieved with GBLUP and the LASSO, the results demonstrate that CNNGWP does indeed reduce prediction error by more than 25% on simulated data and by about 3% on real pig data. In summary, Waldmann et al. (2020) pointed out that CNNGWP appears to offer a promising approach for GWP, however the degree of improvement depends on the genetic architecture and the heritability. A detailed guide about the implementation of DL for GP may be found in (Zingaretti et al., 2020).
In order to compare the performance of ensemble learning methods and deep learning algorithms, Abdollahi-Arpanahi et al. (2020), compared the performances of RF and GB with MLP and CNN, and two conventional tools, namely, GBLUP and Bayes B, in predicting quantitative traits using both simulated and real Holstein datasets. The simulated dataset was used to assess the performance of ML methods in different scenarios of genetic architectures. A quantitative trait was simulated and two scenarios of QTN number were considered: [small (100) and large (1,000)]. QTNs were located across the genome in two different ways: clustered or randomly, and gene action were either purely additive or a combination of additive, dominance and epistasis effects. On the other hand, real data from 11790 US Holstein bulls with a total of 57749 SNPs were used to test how well ML approaches can predict complex phenotypes like SCR, which is affected by both additive and non-additive effects. Abdollahi-Arpanahi et al. (2020) found that results differed depending on the genetic architecture of the trait. When pure additive actions controlled the trait, classic statistical models had better predictive accuracies compared to ML methods. However, the number of loci controlling the trait of interest appears to be an important factor in how well the models predicted outcomes when non-additive genetic effects occurred. The performance of ML algorithms, and in particular, GB, surpassed that of traditional statistical methods when the traits were controlled by a small number of QTN. The researchers finally came to the conclusion that, since Waldmann (2018) had already shown that loci are clustered, ML approaches work well for predicting traits with complex gene action and a small number of QTN (Abdollahi-Arpanahi et al., 2020).
Genomic prediction in animal breeding usually involves small reference population issues, especially when it concerns a novel trait, which can be costly and labor-intensive to measure. Machine learning models can be deployed to tackle these challenges. For example, Yao et al. (2016) developed a self-training model, which is a semi-supervised algorithm wrapped around SVM to encounter the challenge of genomic prediction of residual feed intake (RFI). The model uses 792 animals with both genotypes and phenotypes to train a base predictor, which is used to estimate the “self-trained phenotype” of 3,000 animals with genotypes only. To train a new predictor that is utilized to generate the final genomic predictions, both of these datasets are integrated. A total of 57491 SNPs were used for the analysis. The results showed that indeed, the self-training algorithm increased the accuracy of genomic prediction, however, this improvement was small when the dataset already contained more individuals with measured phenotypes. Additionally, the correlation between predicted and measured phenotypes increased by adding more self-trained phenotypes, however, it reached a plateau at a certain level. In summary, Yao et al. (2016) concluded that semi-supervised learning is a powerful tool for enhancing the accuracy of genomic prediction for novel traits and for small reference populations. However, choosing an adequate sample size and an adequate ML algorithm are necessary to prevent poor predictions. As an example, the predictive ability of RF models with a set-up similar to this study was assessed, and the authors found no improvement in accuracy from using self-training models (Yao et al., 2016).
5.2 Feature selection
Feature selection techniques are vital in genomic prediction. They allow us to identify the most informative genetic markers, mostly SNPs, that contribute to the traits of interest. In genomics, the massive amount of markers data poses a challenge in terms of computational efficiency and interpretability. By eliminating irrelevant markers, feature selection methods reduce noise and dimensionality, and increase the accuracy and performance of ML models. In addition, feature selection procedures enable the identification of key genetic variants, providing valuable insights into the biological mechanisms underlying traits of interest. Therefore, several studies have investigated the potential of ML models in performing feature selection using SNPs datasets of multiple animal species. Li et al. (2018a) applied three machine learning methods, namely, RF, GBM and XgBoost, for ranking the top 400, 1,000, and 3,000 SNPs directly related to the body weight of Brahman cattle to generate genomic relationship matrices (GRMs) for estimating genomic breeding values (GEBVs). The database used consisted of the body weight records of 2093 animals with a total of 38082 SNP markers. According to the results, RF and GBM outperformed XgBoost in identifying a subset of SNPs related to the growth trait. Furthermore, the top 3,000 SNPs identified by RF and GBM provided similar GEBV values to those of the whole SNP panel. In summary, the authors highly recommend the use of RF and GBM for identifying subsets of potential SNPs related to traits of interest. Besides, this approach could be very useful in animal breeding since the vast majority of research suffers from small reference population issues, whether it is due to genotyping cost constraints or to the nature of the target variable, which could be costly and labor-intensive to measure, such as feed efficiency. In this sense, Chen et al. (2021) compared the performance of two conventional methods, t-test and edgeR and three ensemble learning models, namely, RF, XGBoost, and a combination of both RF and XGBoost (RX) in identifying subsets of potential predictor genes in different tissues related to feed efficiency in Nellore Bulls. The dataset contained RNA sequences of five tissues (adrenal gland, hypothalamus, liver, skeletal muscle, and pituitary) from nine high-feed efficiency (HFE) and nine low-feed efficiency (LFE) bulls. Using the SVM model, the predictor genes that had been found using the above methods were used to divide the animals in the testing set into HFE and LFE. The performance of the classifier was evaluated using four metrics: overall accuracy, precision, recall and F1-score. The results showed that RX provided the best prediction accuracy yet with the smallest subset of genes (117). RF, in contrast, had the worst performance despite the fact that it had identified the largest number of candidate genes, contrary to what has been found in Naderi et al. (2016). The authors emphasize the idea that ML methods demonstrate great potential in identifying biologically relevant genes that can be used in classifying individuals accurately. In another study, Piles et al. (2021) implemented three types of feature selection methods: filter methods (tree-based methods), embedded methods (elastic net and LASSO regression), and a combination of both. Ridge regression, SVM, and GB were used after the pre-selection of relevant SNPs with filter methods. The results showed that using small subsets (50-250 SNPs), the feature selection method had a significant impact on prediction accuracy. In addition, filter methods demonstrated good performance and stability, indicating their potential for designing low density SNP chips for evaluating feed efficiency based on genomic information (Piles et al., 2021).
5.3 Genotype imputation
Genotype imputation plays a crucial role in animal genomics by inferring genotypes at specific positions in a genome by leveraging patterns and correlations within the data. Machine learning can be deployed to perform genotype imputation. For example, Sun et al. (2012) investigated the performance of Adaboost in imputing moderate-density genotypes from low-density panels in order to reduce genotyping costs. The proposed model works, in fact, by combining the imputation results of preexisting software packages. The database included 3059 registered genotyped Angus cattle and 51911 SNPs across the whole genome. The missing genotypes were first imputed by previously available packages, of which three were family-based and the others were population-based. Consequently, the possible combinations of the six packages resulted in 720 unique ensemble systems. The proposed Adaboost-based systems attribute a weight to each imputation method as a weak classifier. During the iterative training, the weights of classifiers that provided good predictions remained constant, whereas the weights of the misclassified samples were increased, which emphasized the focus on difficult samples. Finally, the final imputation of the genotype is the one with the majority of votes from all classifiers in the ensemble system. The results showed that indeed the ensemble method improved the accuracy of imputation in the data, however, the degree of improvement was limited by the fact that the packages used as weak classifiers had already provided highly accurate imputation results. Nevertheless, the authors highlighted the potential of ensemble learning to provide robust systems to address inconsistencies among different imputations of the preexisting methods.
6 POTENTIAL FOR ML APPLICATIONS TO GENOMIC PREDICTION IN ANIMAL BREEDING IN DEVELOPING COUNTRIES
The majority of developing countries are grappling with satisfying the nutritional demands of an increasing human population. Meeting the demand for animal protein in a context of difficult environmental conditions and the predominance of smallholder systems in a sustainable manner is a challenging task. In addition, the introduction of highly productive dairy cows and the use of elite AI bulls’ semen to inseminate national dairy herds resulted in low productivity due to unfavorable genotypes by environment interaction. Moreover, it is delicate for developing countries to implement a consistent conventional genomic selection breeding scheme due to the lack of reliable phenotypes and pedigree data recording (Mrode et al., 2019). Therefore, in order to improve national livestock systems productivity, developing countries should find alternatives to the aforementioned bottlenecks. The development of genomic technologies and the remarkable decrease in genotyping costs can be valuable for low- and middle-income countries, as they can tackle pedigree error problems by using the genomic relationship matrix (G) instead of the relationship matrix (A) or combining both information in a matrix H. However, the size and structure of the reference population is the biggest struggle for adopting GS in developing countries, the number of genotyped animals is limited, usually between 500 and 3,000 animals, predominated by females due to the non-existence of AI bulls (Mrode et al., 2019). Collaborations with developed nations, as Li et al. (2016) describe, could therefore be advantageous for implementing GS in these nations. Also, the use of a mixture of high-density (HD) and low density (LD) chips followed by imputation to the HD could be an alternative for reducing even more the genotyping costs in order to increase the size of the reference population (Lashmar et al., 2019).
Considering indigenous breeds in breeding programs is indispensable in developing countries. First of all, the majority of smallholder systems’ dairy cows are either indigenous dairy cattle or crossbreds. Second, the conservation of genetic resources of local breeds that are adapted to specific agro-ecologies is crucial for the sustainability of the breed and biodiversity (Bulcha et al., 2022). Several countries, such as Kenya, Senegal, East Africa, Ethiopia, etc., have already implemented genomic technologies for indigenous breeds in Africa. Some studies used SNP data to determine the most adequate breed-type for different production environments. Others used genomic technologies to enhance breeding programs by increasing the accuracy of relationships among individuals. In other words, they have adopted genomic procedures to tackle the lack of pedigree recording. Finally, researchers investigated the potential of genomics for creating new breed-types that combine the adaptation and resilience of local breeds with the high productivity of exotic breeds. Genomic procedures and technologies have also been shown to be useful in discovering valuable genes in indigenous breed genomes, with significant effects due to the high levels of genome diversity of local breeds compared to exotic ones (Marshall et al., 2019).
Adopting GS in developing countries could benefit from the implementation of machine learning algorithms. First of all, given that indigenous breeds always have small reference populations, machine learning has shown great advantage in increasing the accuracy of breeding values estimation in small populations, as previously seen in Yao et al. (2016). In addition, ML models increased the accuracy of SNP imputation from low-density (LD) panels to high density (HD) chips, as investigated by Sun et al. (2012). This could result in reducing genotyping costs and increasing the size of genotyped animals (if the reference population is small due to genotyping costs). Overall, the potential of applying machine learning models for animal breeding in low- and medium-income countries is remarkable, as it could provide insightful findings. However, one of the biggest challenges would be the lack of data. Machine learning models typically require a massive amount of data in order to achieve high accuracy, while low- and middle-income countries often struggle with limited access to reliable data. Nonetheless, efforts should be directed toward exploring alternative techniques to enhance genomic prediction accuracy using a small reference population and promoting data sharing through collaborations among institutes and countries. As far as we know, the combination of machine learning models and genomic prediction in developing countries has not been used in any of the published studies, and thus their potential in enhancing breeding programs in low- and middle-income countries should be investigated in future experiments.
7 CONCLUSION
Machine learning algorithms have proven their high flexibility and ability to extract patterns in large, messy datasets in various fields such as natural language processing, robotics, speech recognition, image processing, etc. Genomic prediction is indeed a field of study where the main challenge is dealing with an ever-increasing marker dataset and capturing interactions and non-additive effects between genotypes. Consequently, investigating the potentiality of ML algorithms in GP is gaining a lot of buzz in the animal breeding community. Here, we reviewed studies that applied ML models to GP, whether they concerned estimating the GEBVs for production traits, health traits, or novel traits. In addition, several studies used ML algorithms for feature selection (FS) and moderate-density genotype imputation from low-density panels. It can be observed that ML algorithms outperformed conventional methods in some studies but were less accurate in others, which indicates that there’s no universal method that can be applied to enhance the accuracy of prediction regardless of the domain of application. As a prerequisite, one should pay attention to several factors in order to successfully apply ML algorithms. For instance, the nature of the task, whether it consists of classification, clustering, regression, or dimensionality reduction, the type of the target variable (continuous or discrete), and the quality of the data (redundant, noisy, existence of outliers, missing values). ML models are indeed flexible and powerful, but they also have several drawbacks. One of the most common problems encountered in ML is overfitting. Additionally, finding the optimal hyperparameters can be challenging, and the size of the training data needs to be very large, especially for training deep learning algorithms. It is indeed true that incorporating ML algorithms and biological knowledge provides valuable results. However, marker datasets tend to be very heterogeneous and redundant, which can lower the predictive ability of these models. Moreover, the interpretability of non-parametric ML models is also questionable. Even though the algorithm’s prediction for a particular target variable is accurate, the relationship between the input and output variables is not simple to understand. In fact, DL models are broadly known for their “Black Box” nature, which means that their interpretation cannot extract relevant information about variables in the dataset. In summary, ML algorithms showed great potential for fitting and extracting patterns from large, noisy datasets. However, their adoption in livestock breeding is still in its infancy, and hence more research must be done in order to find new insights for GP. The limited number of applications of ML in animal breeding did not allow researchers to clarify the huge potential for these models to improve the genomic prediction of important traits. Therefore, more iterative experimentation needs to be conducted.
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Introduction: The African Goat Improvement Network Image Collection Protocol (AGIN-ICP) is an accessible, easy to use, low-cost procedure to collect phenotypic data via digital images. The AGIN-ICP collects images to extract several phenotype measures including health status indicators (anemia status, age, and weight), body measurements, shapes, and coat color and pattern, from digital images taken with standard digital cameras or mobile devices. This strategy is to quickly survey, record, assess, analyze, and store these data for use in a wide variety of production and sampling conditions.
Methods: The work was accomplished as part of the multinational African Goat Improvement Network (AGIN) collaborative and is presented here as a case study in the AGIN collaboration model and working directly with community-based breeding programs (CBBP). It was iteratively developed and tested over 3 years, in 12 countries with over 12,000 images taken.
Results and discussion: The AGIN-ICP development is described, and field implementation and the quality of the resulting images for use in image analysis and phenotypic data extraction are iteratively assessed. Digital body measures were validated using the PreciseEdge Image Segmentation Algorithm (PE-ISA) and software showing strong manual to digital body measure Pearson correlation coefficients of height, length, and girth measures (0.931, 0.943, 0.893) respectively. It is critical to note that while none of the very detailed tasks in the AGIN-ICP described here is difficult, every single one of them is even easier to accidentally omit, and the impact of such a mistake could render a sample image, a sampling day’s images, or even an entire sampling trip’s images difficult or unusable for extracting digital phenotypes. Coupled with tissue sampling and genomic testing, it may be useful in the effort to identify and conserve important animal genetic resources and in CBBP genetic improvement programs by providing reliably measured phenotypes with modest cost. Potential users include farmers, animal husbandry officials, veterinarians, regional government or other public health officials, researchers, and others. Based on these results, a final AGIN-ICP is presented, optimizing the costs, ease, and speed of field implementation of the collection method without compromising the quality of the image data collection.
Keywords: image analysis, phenotype, body weight, coat, color, one health, FAMACHA, tooth age
INTRODUCTION
The African Goat Improvement Network Image Collection Protocol (AGIN-ICP) was developed systematically over a 3-year period in conjunction with the AdaptMap project (Stella et al., 2018) and the African Goat Improvement Network (AGIN) (USDA, 2020). These are coordinated, multi-national efforts to characterize, evaluate, and conserve goat population genetic resources globally, and in Africa respectively. This paper describes the development of AGIN-ICP as a case study in the application of the AGIN collaboration model working directly with community-based breeding programs (CBBP) for multi-level (farmers and local students, animal husbandry officials, junior and seasoned researchers) and multi-national capacity development in human, and technological resources in the developing and the developed worlds (Van Tassell et al., 2023). Images collected in the last stage of AGIN-ICP development were used to establish the Precise Edge Image Segmentation Algorithm (PE-ISA) and software which was used to validate that digital phenotypes could be extracted from AGIN-ICP collected images that reflected accurate phenotypic body measures for height (0.931), length (0.943), and girth 0.893) measures (Woodward-Greene et al., 2022).
A major objective of the AGIN collaborative model is that it is led from the community level. Farmers and students, when guided by animal husbandry officials, researchers, and other specialists, are critical to finding original, yet practical solutions. Each AGIN participant, therefore, has a stake and an important role to play in innovation. Individually, that has a rallying effect—that through mutual respect and a sincere need for all perspectives—gives energy and purpose to the work. The development of digital livestock phenotyping provided an opportunity for many AGIN participants to develop, experience, and discover cutting edge technology. Researchers in 12 sampling teams employed the collection method in 11 African countries, in addition to the US, sampling approximately 2,000 goats and collecting over 12,000 images.
The purpose of AGIN-ICP and the testing was to determine if sufficiently high-quality digital images could be collected under field sampling conditions such that accurate phenotype data could be extracted from the images. The first draft, original protocol method, included five poses: 1) rear view, 2) sign view (Figure 1C), 3) front view, 4) teeth close-up, and 5) FAMACHA (eye) close-up. Specialized equipment included three novel calibration signs to include in the image - one to hang from the goat’s back and two smaller ones to hang from the neck of the goat and the animal handler, respectively. In the sign view, the right side of the animal is photographed (animal head facing to the right in the image), so the (often protruding) rumen on the left-side does not interfere with digital measurements. The iterative process with AGIN collaborators focused on the following three areas to optimize collection procedures and image quality for data extraction:
1. The method itself (posing, set-up),
2. Communication with—and training of—sampling teams, and
3. Development and refinement of the photo sampling equipment and sampling kit.
[image: Figure 1]FIGURE 1 | Novel calibration sign and harness (A,C), and sample identifier sign (B) for AGIN-ICP images.
As the protocol and its evolution are described in detail in this paper, one may be struck with the simplicity of the tasks involved and question the level of detail included here. However, the iterative development of the final AGIN-ICP and the constant review of images coming from the field that drove most of the changes, show that these details are easy to overlook. It is also easy to misinterpret how these seemingly obvious steps need to be performed in a precise manner, or why they are critical for ultimate image quality. Sampling teams, and in particular the photographer, must remain focused on the many seemingly minor details as the sampling days wear on and vigilant that all procedures are completed with precision and attention to detail. A lack of attention to these details, as we have seen in the development of AGIN-ICP process, can make rendering the images captured much more difficult and potentially unusable for digital phenotype extraction. Considering the expense in time, equipment, travel, and logistical planning required for sampling trips, it is imperative that sampling teams understand the rationale for each step, the correct manner of performing it, and the ultimate purpose to ensure the highest quality data collection. To that end, we include examples of the images after extraction—which were not available to sampling teams throughout the stages of AGIN-ICP development.
Global food security
An important goal for CBBPs is to breed resilient, productive food animals. This will enhance food security and income of African goat farmers. Two key aspects of this goal are 1) establishing sustainable and efficient production and health management systems, and 2) identifying, conserving, and selecting traits that ensure productivity, disease and parasite resistance, and adaptability to climate change and other stressors. This will allow farmers to provide high-quality nutritious food for their families and generate income. Collection of phenotypic data is considered critically important by the Food and Agriculture Organization (FAO) of the United Nations to further animal genetic resources characterization and conservation (Commission on Genetic Resources for Food and Agriculture, 2007). The FAO specifically notes the critical need for consistent collection methods of phenotypic data across animal populations (FAO, 2011). This consistency in capturing phenotypes is required to inform genomic science in the research and development of state-of-the-art genomics tools for genome to phenome prediction. This digital phenotype collection method may enable even the poorest countries to take advantage of this advancing science. It may ultimately identify and conserve their most important adapted animal genetic resources. The AGIN-ICP includes images to collect phenotypic data on health status predictions for anemia, weight, age, and coat color and pattern. It may also have applications in the One Health (One Health, 2023) approach to public health, which considers the connection between animal and human public health in disease outbreaks. One Health identifies zoonotic disease surveillance in animal populations as an important tool in preventing human disease outbreaks (World Bank, 2012; One Health, 2023). Phenotype and health data may be collected using the AGIN-ICP. It can be accumulated in regional or global data repositories for open data sharing by researchers and health officials. The original user (farmer or veterinarian) may also have access for animal record keeping or real-time decisions on disease status or treatment, production, nutrition, and breeding, etc.
Body weight prediction
Weight prediction from images is not a new concept (Phillips and Dawson, 1936; Schofield et al., 1999; Ozkaya, 2013). Body weight is important for many decisions in livestock health, production, and marketing (Mahieu et al., 2011). The expense and inconvenience of using livestock scales to record weights have fueled decades of research into alternative methods to obtain reasonably accurate values (Muhammad et al., 2006; Mahieu et al., 2011; Takaendengan et al., 2012). Weight gain is dependent on age, stage of lactation or gestation, nutritional or disease status, and breed (World Bank, 2012), and may inform breeding and production decisions. In genomics and genomic tool development, physical measurements such as size, shape, and coat color and pattern, can be associated with productivity or with adaptive genes for traits such as milk production, fertility, disease and parasite resistance, or growth rate. Animals are often priced in the marketplace by weight or age. Using a scale to measure body weight is the most consistent and accurate method. However, many producers, in particular goat or sheep producers or those in developing countries, do not have ready access to scales (Abegaz and Awgichew, 2009; Mahieu et al., 2011). The least expensive scales are hanging or bathroom scales. These devices are cumbersome to use because they require lifting or holding the animal, making those scales useful for smaller animals only. Alternatively, physical measurements of size have long been used to estimate weight cheaply. Several formulas have been developed and tested for accuracy on particular animal types or breeds (Muhammad et al., 2006; Sowande and Sobola, 2008; Abegaz and Awgichew, 2009; Ozkaya et al., 2009; Mahieu et al., 2011; Takaendengan et al., 2012). Weight prediction formulas generally use some combination of chest girth (CG), body length (BL), and/or height at the withers (HW) to predict body weight (BW) (Abegaz et al., 2013; Horner, 2021). Body measurements are taken with calipers (Touchberry and Lush, 1950; Calipers, 2014) or taken with a cloth measuring tape that is either designed for sewing or designed specifically as a goat weigh tape with predicted weights (based on chest girth) printed on the tape. Conversion tables are available online for producers to predict body weights based on chest girth measures (Campbell, 2002; Bar None Meat Goats, 2021; Horner, 2021).
Teeth to determine animal age and health
Tooth age is a long established method used to estimate the live-animal-age or age-at-death of an animal based on permanent tooth eruption (ARC, 1999; Greenfield and Arnold, 2008; Matika et al., 1992; Fias Co Farm, 2023). In livestock operations, the best method to determine an animal’s age is by keeping accurate individual birth records. However, in many operations, especially in limited resource areas, records may be incomplete or altogether unavailable (Timon, 1992; Ephrem, 2013). For animal groups without birth records, age can be estimated by examining the teeth to identify the number of adult teeth erupted (Oltenacu and Stanton, 1999; Soltero-Rivera, 2022; Fias Co Farm, 2023). While not exact, tooth age estimation is a relatively quick and easy method for farmers and veterinarians to approximate the productive stage of an animal, i.e., growth (mostly deciduous or milk teeth present), maintenance and breeding age (mostly or all permanent adult teeth present), or expected remaining productive life (amount of wear on adult teeth) (Oltenacu and Stanton, 1999). At a livestock market, tooth age can be used to assess the carcass market value (younger animals are assumed to have higher quality meat) (Matika et al., 1992), or to comply with export requirements (Canadian Food Inspection Agency, 2014). Archeologists use tooth age to determine the age of death of livestock and to infer the type of production systems the animals were reared in. For example, if mainly young animals were slaughtered, leaving lactating females without offspring, it may be assumed that the economy was based on milk production (Baker and Worley, 2019). This assumption could also be employed to characterize and assess current production systems in resource poor regions where animal birth, growth, health, or sales/market records are lacking. Finally, teeth can be an indicator of current or future health. Goats need their teeth to be able to tear the grass as they graze, and an animal with broken teeth may not thrive. This ‘soundness’ of the mouth has long been an observation to determine the health, and value of grazing livestock (eXtension Goat Community of Practice, 2023).
FAMACHA anemia score
The FAMACHA card is a simple tool developed in South Africa to estimate the level of anemia in sheep and goats by comparing the conjunctiva color of the animal to a series of five color categories associated with a blood anemia values (Malan et al., 2001; Kaplan et al., 2004). It was named after the South African parasitologist, Francois “Fafa” Malan who created it (Comis, 2010). The FAMACHA card is laminated and includes an image of an animal eye to show the proper way to examine the conjunctiva, along with 5 boxes of varying shades of pink to designate the 5 categories of anemia. The FAMACHA method enables producers to identify animals within groups that are most likely infested with worms, as indicated by anemia. Resistance to worming medications is a critical problem in the livestock industry (Leask et al., 2013). By treating only those animals with heavy worm infestation, producers can save time, money, and critically—help to inhibit the development of resistance to anthelmintics (Shoenian, 2023). The FAMACHA method has been validated in numerous studies across many breeds and regions around the world, proving to be effective in sheep and goats in a wide range of climates and production systems (Malan et al., 2001; Vatta et al., 2001; Van Wyk and Bath, 2002; Kaplan et al., 2004; Ejlertsen et al., 2006; Moors and Gauly, 2009; Idika et al., 2012; Sotomaior et al., 2012; Leask et al., 2013).
Coat color and pattern
Coat color and pattern are important to livestock breeders for the value that preferred animal characteristic coat colors may bring in the market. Preferences may be based on the association of desired production traits such as growth rate, milk production, twinning, or heat tolerance with a particular breed that is also known for its coat color and patterns. Preferences for color also can be cultural, and could include risks for negative selection (selecting for traits that lower production) (Getachew et al., 2020). Color preferences are also often associated with compliance with purebred standards, and directly impact the market value of animals. Coat color has long been studied as a visible breeding objective for livestock (Martin et al., 2016).
PreciseEdge Image Segmentation Algorithm and software
The objective of developing AGIN-ICP was to generate images that meet the requirements for successfully producing an image analysis process and software capable of extracting accurate phenotypes from digital images. To provide accurate measurements, digital images require software that can identify the parts of the goat to be measured, or features, in the images. This demands the highest possible precision to isolate these features. This challenge led to the development of the PreciseEdge Image Segmentation Algorithm (PE-ISA), developed using images collected in a highly controlled manner in the final stage of AGIN-ICP development, when the protocol iteration was the most mature. This approach allowed for validation that the images could in fact, be used for the digital extraction of phenotypes directly from the images. The AGIN-ICP has been validated by extracting digital body measures from collected images. The correlation between manual body measures and digital measures were found to be high with Pearson correlation coefficients 0.931 for height, 0.943 for length, and 0.893 for girth (Woodward-Greene et al., 2022). Key aspects of the PE-ISA development included processing of input images using portable network graphics (PNG) compression for increased precision. The PreciseEdge Algorithm also reduces user input for image processing, reducing labor costs on the analysis phase of the phenotype collection with AGIN-ICP (Woodward-Greene et al., 2022). Additionally, software needed to deploy the algorithm and provide output data files with digital phenotype measures, as well as labeled images for further analyses, has been developed (manuscript in process). This software requires no special facilities or advanced skills; and users need only a laptop and mouse to process collected images. Examples of input and output images from the software, using the PreciseEdge Algorithm, are shown for body measurements in Table 1, and for health phenotypes (teeth and FAMACHA score) in Table 2.
TABLE 1 | AGIN-ICP Input Images (left). Body size phenotypes extracted using the PreciseEdge Image Segmentation Algorithm embedded in software to record measurements, and mark them on the images (right).
[image: Table 1]TABLE 2 | AGIN-ICP Input Images (left). Health (teeth, FAMACHA score) phenotypes extracted using the PreciseEdge Image Segmentation Algorithm embedded in software to record measurements, and mark them on the images (right).
[image: Table 2]MATERIALS AND METHODS
The AGIN-ICP was iteratively developed over five stages, 1) Developmental, 2) Filed Test (early), 3) Field Test (late), 4) Field Test (advanced), and 5) Controlled Test. Issues were reviewed while implementing the protocol iterations at each stage. The solutions developed were applied and tested in each subsequent developmental stage or protocol iteration. Images collected at each stage were carefully reviewed for any protocol procedure, instruction, or supporting documentation that could impact the quality of images for subsequent image analysis, and the protocol modified as needed.
Initial testing and refinement of the original protocol, which included tissue collection for DNA analyses, was conducted on goat farms in the US. Early field testing then followed in Ethiopia and Kenya. Multiple African AGIN research teams subsequently tested iterations of the AGIN-ICP, including taking the photos at the time of blood, tissue, or hair collection for DNA extraction, genotyping, and DNA sequencing; manual phenotype measures of body size; global position system (GPS) data; and demographic data including breed and birth date. Sampling teams sponsored by the FAO and Sudan joined the AGIN for the advanced field-testing phase, Stage 4. Ongoing review of field sample images to assess their quality for image analysis, led to iterative changes in the protocol (original, prototype, modified, and final versions) to improve and enhance the collection method for optimal sampling efficiency and quality of images for data extraction. Finally, images without tissue samples were collected under highly controlled conditions in the final developmental stage from US goats. These images were used to develop the PE-ISA (Woodward-Greene et al., 2022) and the software to extract animal measurements directly from the images as a proof of concept.
Original protocol
The original protocol was named the AdaptMap Digital Phenotype Collection Method. It included the design and fabrication of calibration signs and a harness to be included in the images. Three calibration signs with a black outline for easy detection in RGB (red, green, blue) images, and color blocks of “pure” red, green, and blue, were fabricated of sturdy, light weight metal. They were designed for use with dry-erase pens to easily record sample data for each animal and capture that information directly in the images. Sample ID was recorded on all signs. Additional information recorded on the large sign only, included sex, birth date, owner, breed, sample date, location, country, camera distance from goat, and camera height. The larger sign was affixed to a harness and placed on the back of the animal for the third photograph in the series (sign view). The sign view (right side view) employs the large sign harness placed on the back of the animal. The large sign must be positioned above the underline of the belly, below the topline of the goat, and it must not obscure the joints of the front or rear legs. Finally, it must be placed perpendicular to the ground on the right side to avoid being skewed by a potentially protruding rumen. The large sign will thus be in the same plane as the goat, providing a higher quality calibration than the small sign alone. For small goats, it may be too large to place correctly, so the handler can hold it in the plane of the goat’s right side. Initially, two smaller signs were made for the goat and the handler to wear around their necks as sample identifiers in each image with the large sign only visible in the sign view. Each of these signs, and how they are meant to be used in the AGIN-ICP are shown in Figure 1.
Demographic data collected on the large sign for the prototype method was also recorded on paper, and direct physical body measures were recorded for validation of the photo measures. Physical measures included chest (heart) girth (CG), which is the circumference of the body measured just behind the elbows and at the point of the withers (shoulder bones, scapulae, at the top of the animal) (Siddiqui et al., 2008), height at the withers (HW), which is the distance perpendicular from the ground to the top of the withers (Abegaz and Awgichew, 2009), body length (BL), which is measured from the point of shoulder in the front of the animal to the point of the pin bone (tuber ischii, point of bone next to the anus) (Hopkins et al., 1970), width of the pin bones (PB) as an indicator of potential birthing difficulty, and the width between points of shoulder bones (SB) in the front as another measure of body width. A description and illustration of the body length, height at the withers, and chest girth body measures are shown in Figure 2. Body weights were recorded as references for US samples by caged pallet (walk on) scales and, wherever possible in African countries, using small portable hanging scales and slings.
[image: Figure 2]FIGURE 2 | Manual (traditional) body measures taken during AGIN-ICP development.
The poses for the image sequence were designed to minimize stress on the animal. The goat walks directly into the photo set and only makes two right one-quarter turns to achieve the body measures photos. The final two photos are for the health indicators, and are close-ups taken with the animal remaining in the final body pose (front view) position. The position of the camera and photographer is important to ensure the images have the proper perspective. This can be achieved with proper camera distance and height. The camera must be perpendicular to the goat and not closer than 3 m (10 feet). The camera height must be at the level of the goat’s eye as shown in Figure 3. A simple 3-m (10-foot) calibration rope to place on the ground between the goat and the photographer serves as a visual reminder for the photographer to identify the correct distance, and ensures the distance is maintained throughout sampling. To achieve goat eye level, the photographer must crouch or bend down (Figure 4). Alternatively they may use a tripod or sit on a small camp or milking stool. If a stool is desired, the milking stool is recommended as it can be fastened to the photographer’s body for maximum mobility, and both hands can be on the camera during sampling.
[image: Figure 3]FIGURE 3 | Distance and height of the camera from the goat to ensure proper perspective.
[image: Figure 4]FIGURE 4 | AGIN-ICP in action (Ethiopia). Note the photographer position and distance from the goat.
Cameras may vary, but the production of RGB images with 1,600 × 2000 resolution is preferred if possible. Higher resolution will provide greater quality images for analysis, but will require more space for storage and transfer, which can become important when working across the globe. The camera should have global position system (GPS) or global information system (GIS) capability to capture longitude, latitude, and altitude. This will enable geographic analysis, which would be valuable in assessing impacts of adaption, politico-/socioeconomics, or climate in sample populations. Cameras incorporated into mobile devices, such as smart phones or tablets would likely be adequate. Cameras used to develop the AGIN-ICP included Android based cell phones and RGB digital cameras from manufacturers such as Canon, Sony, and Ricoh. Other comparable manufacturers and systems would also work. The device or camera model and settings should be recorded. However, this data is often automatically included in the metadata of each digital image, along with GPS/GIS data, and day and time stamps.
RESULTS
Results for each of 5 AGIN-ICP developmental stages (Stage 1: developmental, Stage 2: early field test, Stage 3: late field test, Stage 4: advanced field test, and Stage 5: controlled test) are summarized in Table 3. The summary includes the leader and test locations for each stage, and the changes and reasons for the changes resulting from testing in each stage. Field Testing sampling teams for Stage 3 were given a demo of AGIN-ICP at the AGIN II Meeting in Uganda as part of the field visit activities for all participants (Figure 5). Training and one-on-one discussions were also done with Stage 4 field sampling teams at the AGIN III Meeting in Ethiopia in advance of Stage 4. In Stage 3, communications were done through CWM, while in Stage 4, with leader PB coordinating, direct communications with sampling teams in the form of training and documentation, and ongoing emails and phone calls were predominant. The final AGIN-ICP is included as a supplement, as well as the Quick Start Guide developed out of Stage 3. This guide was provided to sampling teams in English and French in Stage 4. The AGIN-ICP sampling kit is pictured in Figure 6.
TABLE 3 | Complete results summary for the African Goat Improvement Network Image Collection Protocol (AGIN-ICP) developmental stages.
[image: Table 3][image: Figure 5]FIGURE 5 | AGIN-ICP demo at AGIN II in Uganda.
[image: Figure 6]FIGURE 6 | AGIN-ICP equipment kit with newly designed stationary small sign (lower right).
DISCUSSION
AGIN-ICP is fit for purpose—Simple to perform, and digital extractions validated as accurate
The main objective of the AGIN-ICP sample collection is to enable reliable isolation of goats in the images collected for analysis using digital image software. The image analysis strategy involves isolating the region of interest (ROI) containing the goat or the sign in the image, creating an image mask, and calibrating the pixel values for size and color using image feature detection techniques. Stage 5 was designed to collect images under precise conditions using the most mature iteration of the protocol. These images were used to validate that the AGIN-ICP could meet this objective.
Regarding the overall importance of the many detailed procedures in the final AGIN-ICP, they meet the stated objective of being simple to implement. However, this simplicity may belie their critical importance. It is crucial to follow these steps precisely to obtain the highest quality images for digital phenotype extraction. Stage 3 revealed many subtle variations in interpretation of the protocol tasks by different sampling teams, and the negative impact these variations had on image quality. This made it more difficult, and in some cases impossible to obtain digital measurements. The lack of full understanding of the purpose of each step led to poor site selection, and the failure to understand the need to keep the tarps clean, and thus blue in color, led to reduced contrast of the blue background, and reduced image quality for data extraction.
Considering the time, expense, and materials devoted to field sample collections, combined with the importance of this type of data collection, sampling teams must have a solid understanding of the protocol steps and their purpose for image data extraction. Ultimately, while performing the AGIN-ICP correctly under field conditions is not difficult, it is also very easy to get it wrong if attention to detail is lacking. To address this issue, explanatory images were added to the AGIN-ICP to demonstrate problematic images and how to correct them in the field. Additionally, the Quick Start Guide clearly explained the purpose for each pose. Moving forward, examples of output images may prove extremely helpful, but these were not available during the AGIN-ICP development as the software was created using the images taken in Stage 5.
Companion software to process and extract digital phenotypes from AGIN-ICP images was created for this critical step in the development of AGIN-ICP process and for practical application (manuscript in process) of AGIN-ICP. The PE-ISA was developed and embedded in the software to find and then isolate the ROI (i.e., remove all background from image) and produce an intermediate labeled image of the ROI. The supporting software was designed to take the intermediate labeled image from the PE-ISA as input. The software automatically measures and calibrates the ROI in AGIN-ICP images, and seamlessly returns digital data to users in Excel (xlsx), comma separated (csv), or extensible markup language (xml) formats, as well as providing the intermediate, and final labeled images for review or presentation (see the final labeled output images on the right column in Tables 1, 2).
The PE-ISA and the associated software developed, allowed us to validate that the AGIN-ICP does in fact, deliver images that can provide data for precise digital phenotypic measurements from the images; and that the extracted digital measurements are highly correlated with real-world (traditional) livestock measurements. Manual versus digital extracted body measurements Pearson correlation coefficients for height, length, and girth measures were 0.931, 0.943, and 0.893, respectively (Woodward-Greene et al., 2022). These extracted phenotypic values may in turn be further analyzed to return a body weight prediction, coat color, coat pattern, or other values. The output labeled images and data files describing the labels could be used for machine learning training and test sets to develop models for automated prediction, decision, or image processing tools.
The AGIN collaboration platform addresses multi-national collaboration challenges
Challenges encountered in implementing and developing the AGIN-ICP internationally included differences in time, distance, and language. The overall coordination and organization of the AGIN, provided resources, collaborators, visibility, and support from AGIN, as well as support from AGIN organizational members such as the USDA and the FAO. In combination with the AdaptMap project (Stella et al., 2018), resources, and expertise from across a broad spectrum of biological, social, and political domain experts, were readily available to address technical and logistical challenges in Africa, and formed solid and lasting relationships. The AGIN provided opportunities for students, mid and senior level researchers, farmers, and government and local officials from many countries to interact as equals, facilitating a free flow of information and exchange of ideas that became a hallmark of AGIN, and key to many of its successes. In this example of the image collection protocol development, the technical vision for AGIN-ICP was grounded in these broad perspectives, ensuring a protocol that was practical, while also delivering the technical requirements to provide accurate phenotypes from digital images.
Each iteration of the AGIN-ICP process included improved instructions for collecting demographic data, taking manual body measurements, and collection and storage of DNA samples (blood, tissue, or hair). Sampling team leaders communicated predominantly by email to clarify how to implement all aspects of the protocol. Together with these ongoing enhancements to AGIN-ICP and equipment, methods for communication and training on best practices for optimal implementation of the AGIN-ICP were steadily improving as well. These enhancements included the creation of a Quick Start Guide in English and French on a single page, and a graphic of the Digital Analysis Workflow on the reverse of that page. The Quick Start Guide was applied in Stage 4 and included images to demonstrate the poses used in the AGIN-ICP along with brief explanatory captions. The Digital Image Analysis Workflow is a diagram explaining the purpose of each pose, i.e., what digital phenotype(s) are extracted from each image pose. Development and evolution of the sampling kit with everything needed except the camera or cell phone camera, was also an iterative and collaborative process, with a kit provided to each sampling team, shown in Figure 6. A listing of the photo sampling kit contents is found on the next to last page of the AGIN-ICP. The AGIN-ICP, the Quick Start Guides with the Digital Image Analysis Workflow, and the Hair Collection Procedure adapted for AGIN-ICP are included in the Supplementary Material.
Moving the goat
The goat to be sampled requires minimal preparation. Demographic information is collected for each sample as described in the section on calibration signs. Goats are led into the photo shoot area by hand, neck chain, or halter. Animal identification may include ear tags, tattoos, or farmer memory. Generally, sampling teams did not have difficulty working with the animals to apply the AGIN-ICP; however, the FAMACHA and the tooth poses were the most difficult, as they required a higher degree of human—animal interaction compared to the rear, side, and sign, or ‘body measures’ poses. For the body measures photos, the disposition of the goats was judged to be overwhelmingly cooperative in all Stages of AGIN-ICP development, with few exceptions.
Stage 1 developmental in the US—Order of operations and site set-up
Stage 1 developmental testing for the original protocol was led by MJW and conducted in the US. This stage confirmed the efficiency of the method in conjunction with tissue sampling for DNA. Two teams working concurrently, but the tasks were staggered, as the tasks of each team took the same amount of time to complete. One team consisted of the photographer (MJW) and a goat handler. This team was responsible for recording demographics, marking pin bones and shoulders, and taking photos. The second team (HJH) recorded body measures and collected DNA. The timing of the two teams, and the order of operations was determined to minimize animal stress and maximize overall efficiency. The first sampling (photograph) team would record the demographic data, mark the pin bones and shoulders, and take the photo series. Next, that same animal was moved to the second team for body measures recording, with DNA collected last, as it may involve stressful tissue (ear punch) sampling, hair pulling, or needle insertion for a blood draw. While the first animal moved on to the second team, the next goat would begin sampling by the photography team, and thus two goats were sampled simultaneously. The full sample group would start with a single goat recorded by the photography team, and end with another single goat with the DNA and body measuring team. Two goats were being sampled concurrently at all other times (Figure 7). Review of Stage 1 images demonstrated that isolating the goats in the images would be difficult because of the similarity of the goat, background, and handler clothing and skin colors. Thus, a blue backdrop was added to the protocol to aid in image analysis. These issues were further addressed in Stage 2.
[image: Figure 7]FIGURE 7 | Ethiopia, HJH, SA, TG prepare for manual body measurements and DNA collection as the first goat is photographed by MJW, AH, B. Rischkowsky and local farmers assist.
Stage 2 field testing (early) Ethiopia and Kenya—Site set-up, equipment, add the side pose
Stage 2 began with MJW, HJH, JS, AH, BAR, SA, TG, and other AGIN participants working with local farmers and leadership to conduct field sampling in Ethiopia, followed by MJW and HJH sampling with DM, AbK and other AGIN participants and communities in Kenya. Stage 2 focused on method modification and refinement of the equipment needed. The Stage 1 had confirmed the efficacy of the order of operations and procedures discussed above, and included the addition of a blue backdrop, and a blue lab coat for the handler to enhance image analysis isolation of the region containing goat. In general terms, the isolation of the goat in the image at this stage, and thus iterations from this point relied on three main image features integral to the image collection method,
• The goat, surrounded by a blue background, can be more easily isolated in image analysis because the goat does not have any blue regions.
• The goat has a limited range of size, and
• The goat and the tarp are in the center of the image.
A portable, free-standing device was constructed in the US and transported to Ethiopia and Kenya to hang the blue backdrop added in Stage 1. The kit for the stand included tripods, ropes, blue tarps, and weights to keep tarps from blowing away. While portable, at roughly 200 pounds, the portable stand kit was burdensome, and was quickly tossed aside. A photograph of it is included in the AGIN-ICP if anyone would see a need to use such a tool. The AGIN-ICP and kit provides a simple rope for more convenient tying of the blue backdrop to buildings, trees, or fences, etc. Ultimately, it was found in Stage 2 that the vehicle transporting the sampling teams and equipment often proved to be a reliable place to affix the backdrop in a variety of situations, thus the stand was not included in the sampling kit provided to subsequent teams. This simplification enhanced the convenience, and reduced costs, and minimized the size and weight of the overall AGIN-ICP equipment kit.
After testing the backdrop on the first sampling group in Ethiopia, daily review of the images showed that a blue floor drop cloth would also be needed, as the lower portion of the goat would blend in with the soil and dust. Extra tarps were available and employed immediately for the remaining Stage 2 Ethiopian and Kenyan samples. Similarly, it was discovered from the images that the blue lab coat was effective, however, the legs, trousers or skirt of the handlers may still blend in with the goat in some situations, potentially interfering with isolating the goat in image analysis. It was determined while sampling in Ethiopia and Kenya for Stage 2, that blue surgical scrubs (shirt and pants or skirt) would provide more complete coverage. However, these items were not available, and thus the blue scrubs were not employed until subsequent field sampling by collaborators in Stage 3.
The small sign meant to hang from the goat’s neck for calibration did not work well, especially in African goats when comparing to Stage 1 in the US. The African goats were generally smaller than the US goats. The small sign hanging on the goat’s neck obscured most of the front of the goat’s body. The small sign continued to be worn around the handler’s neck, to ensure the sample identification number was in all the photos. Finally, the large calibration sign was fastened into a harness to be laid over the goat’s back, with the sign on the right side. A counterweight on the left side of the harness was added to keep it in place. It lies on the back of the goat, like a saddle, so the sign can be adjusted to the correct position with the top of the sign below the backbone and bottom of the sign above the bottom of the belly, for the sign pose image. Also because of the smaller size of the African goats compared to the US goats originally tested, the inside of the large sign harness, which was black in color, would sometimes be visible hanging down on the opposite (left) side of the goat below the belly, which could interfere with isolating the goat in image analysis. Thus, the harness was modified to have the backside of the harness completely covered in blue tape to eliminate this noise from the image analysis. The signs and their placement are shown in Figure 1.
Finally, it became clear that the sign view pose of the animal with the calibration harness in place, covers up distinctive patterns or colors in the coat which are of interest in phenome and genome research. Thus, a sixth photo of the right side without the large calibration sign, named the ‘naked’ or ‘side’ view, was added to the protocol starting with the Stage 2 Kenyan samples. This addition made a total of four poses to obtain body measures, coat color and coat pattern, plus the two close-up images used for the teeth age and soundness, and the FAMACHA score.
Stage 3 field testing (late) in 5 African countries—Identify communication, training, support needs
Stage 3 involved six sampling teams in Uganda, Malawi, Tanzania, Mozambique, and Zimbabwe implementing the prototype iteration of AGIN-ICP. The blue scrubs were included in the kit for all but the first team. The focus continued to be method modification and equipment refinement, with a strong communications and training development element added. The Stage 3 lead, CWM, was able to meet with MJW and HJH in Kenya before their sampling for a one-on-one review and discussion of the procedures and equipment and to discuss how the field testing was going in Stage 2. CWM picked up the first sampling kit there, and so did not have the blue scrubs as subsequent Stage 3 teams did.
Communication with Stage 3 sampling teams were through the Stage 3 lead, CWM, and done by email with an occasional phone or Skype (video-telecommunication) call. In person training, including DNA sampling occurred when the AGIN-ICP prototype was demonstrated at a Ugandan livestock market as part of the second conference and workshop for AGIN members at AGIN II (Figure 5). This demonstration included the blue back and floor tarps, the blue scrubs, the small sign worn by the handler, and the added naked view for a total of 6 images per goat. Discussions and presentations of the protocol Field Testing progress were also shared at the AGIN III workshop in Ethiopia. Stage 3 offered much in terms of understanding needed improvements in communications, in particular clarity in the protocol instructions and support documentation for field sampling teams. Ongoing assessment of field images being collected revealed gaps in the instructions, and several training handouts were developed.
Stage 3 ongoing images review also revealed the importance of the handler posing with the goat correctly, i.e., standing away from the goat especially if the handler is unable to wear the blue clothing. Figure 8 shows early attempts to isolate the goat using color feature detection. Note that any part of the handler not covered in blue can interfere with the isolation of the goat from the background. The final image analysis software has been improved, and is robust to handle such noise due to varying image quality in terms of goat pose, handler position, lighting, or camera settings. However, an important part of an efficient solution is to communicate clearly that the highest quality images are produced when there is nothing between the goat and the blue background. This problem is solved completely by the handler taking one or two steps away from the goat’s body if possible; and if this can be done, the blue scrubs may not be necessary. Sampling goats can be tiring work, and maintaining precision in collecting the images per the AGIN-ICP a challenge. The steps again are easy to do, but also easy to forget as the sampling day wears on. If the handler would do both, that is to wear all blue, and step away from the body of each goat, this would provide redundancy to ensure nothing except the goat is in the center of all the images.
[image: Figure 8]FIGURE 8 | Early mask generation and implementation showing effectiveness of blue tarp and clothing, and importance of handler standing away from the goat to remove non-goat features (human arms, shoes). Testing of the images revealed any variety of human skin and goat colors are over 90% similar.
Equally important and impacting the image analysis is site selection and set-up. Stage 3 images were sometimes taken in less-than-ideal conditions. For example, the photography site should be free of unnecessary, large, or goat sized objects. The location should be as level as possible. The light source should be behind the photographer. Example images of poor vs. high quality collection site, set-ups, and execution of the photos, including FAMACHA images, were compiled and shared with sampling teams, and added to the AGIN-ICP, as shown in Tables 1, 2 of the protocol (Supplementary Material). This graphical communications approach was helpful, as it was not as dependent on trainer and trainee speaking the same language.
Additionally, photographers were strongly encouraged to take practice photos and return them to MJW for review and comment prior to going out on a sampling tour. This interactive approach was effective; however, it was still difficult to anticipate all the varied questions and situations that would come about under field conditions. Stage 3 sampling teams sometimes had difficulty troubleshooting unexpected sampling site or equipment issues to the extent needed to maintain image quality for analyses. To provide an example, one sampling team set up the blue ground cloth tarp on uneven ground that was littered with large rocks, despite having a nearly level surface available, as was seen in the images taken that day. The uneven site was selected so that the backdrop could be easily hung from a building, rather than giving preference to level ground. The resulting images had the goats correctly positioned with all blue in the background, but they were standing behind the rocks, which obscured their feet and legs, making automated extraction of the goat body height from these images impossible. This challenge in trouble shooting the site selection stemmed from a lack of full understanding of how each image pose would ultimately be analyzed, and it inspired the development of the AdaptMap Quick Start Guide, and the Digital Image Analysis Workflow graphic (Supplementary Material).
Stage 4 field testing (advanced) 6 African countries–communication, training, support needs
The Quick Start Guide was provided to sampling teams in Stage 4. Additionally in Stage 4, a face-to-face update, training, and discussions of the modified protocol iteration, and image analysis was completed as part of the third AGIN workshop in Ethiopia. This direct training and informal discussions, along with the protocol modifications and the Quick Start Guide, proved the most effective training and communication approaches to date to obtain high quality images. Specific protocol and equipment modifications coming out of Stages 2 and 3 and implemented in Stage 4, included the need to increase visibility of the pin bone and shoulder bone markings, and to address issues in using the small sign on the handler’s neck, which was often skewed, not fully visible, or omitted altogether. The visibility of the livestock crayon markings on the pin bones and shoulder bones in the Stage 2 and 3 images was also not adequate. In addition, some sampling teams had the crayons melt in the heat, rendering them useless for any remaining samples.
To address the issues with the livestock crayons, a method was devised during Stage 4, on how to prepare duct tape strips to mark the pin bones and points of shoulder bones instead of crayons. A few field sampling teams in Stage 4 were provided these instructions, and bright pink duct tape. The continual review of the images collected by sampling teams showed that despite communication efforts, many sampling teams were unable to properly locate or mark the pin or shoulder bones with either duct tape or livestock crayons. This problem created inconsistency in the digital measurements like what had been seen in manual body measures. These inconsistencies were precisely what the AGIN-ICP aimed to overcome. The issues addressed in the protocol iterations up to this Stage, i.e., the effects of the addition of blue tarps and clothing, and improving communication on site selection, and proper or optimal use of the equipment and other procedures over the developmental stages are shown in Figure 9.
[image: Figure 9]FIGURE 9 | Modification examples and impact on implementation quality through developmental stages.
Stage 5 controlled testing US final collection of images to develop image phenotype extraction
Stage 5 occurred concurrently with Stage 4, and allowed for careful, highly controlled testing of new or modified procedures and equipment as the final African sampling progressed. The addition of the sixth pose image, the ‘naked’ or ‘side’ view to extract coat color and pattern, was fully implemented in Stage 5. The modifications to the AGIN-ICP tested were a direct result of issues revealed in Field Testing Stages 2, 3, and 4, and included low visibility of pin bone and shoulder bone markings. Additionally, Stage 5 included testing of multiple cameras and light levels. To address the pin bone and shoulder bone marking, blue painter’s tape, and bright pink duct tape were tested as possible alternatives to the livestock crayons. The blue tape was not sticky enough to stay in place through the photo series, and did not work with the approach to eliminate the blue background with the software. The pink duct tape proved to be far superior in visibility compared to the crayons, and it stayed in place on the animals better as compared to the blue painter’s tape (Figure 10).
[image: Figure 10]FIGURE 10 | Kenya Stage 2 bone marking with livestock crayons (A–C), and United States Stage 5 testing of duct (pink) and painter’s (blue) tape (D,E). Both tapes were more visible, but painter’s tape did not stay on the goat. Bone marking was deemed ineffective for properly locating bones, and the markings were also difficult to pick up in image analysis. It was dropped from the AGIN-ICP.
To facilitate using the duct tape, a procedure was added to the prototype protocol, describing how to prepare small strips of tape in advance by scoring deep into the duct tape roll with a razor at 1-cm intervals, and this procedure was shared with some of the Stage 4 sampling teams. This allowed easy and quick access to the strips during sampling. Sampling teams were cautioned that the tape should be removed from the goat’s body when finished sampling, so the goats would not consume it. Despite the clear improvement seeing the markings with duct tape, persistent issues of proper placement of the marks rendered the value of this step negligible, and it was ultimately eliminated in the final AGIN-ICP. The width and volume of the animal’s body is instead determined by isolating and calibrating the rear pose using the PE-ISA developed for AGIN-ICP images. The prototype protocol used in Stage 4 and Stage 5 demonstrated a stringent, yet easily applied method that can collect high enough quality digital images under field sampling conditions, such that the subject ROI can be isolated in image analysis for extraction of phenotypic data. The final AGIN-ICP is presented in the Supplementary Material, and takes into consideration all the issues overcome, lessons learned, with advice and feedback from sampling teams, farmers, and others, especially AGIN members, who were updated at each AGIN gathering of the AGIN-ICP development progress and status.
AGIN-ICP sustainability, future, and the legacy of the AGIN collaboration model
The AGIN-ICP is just one example success story that is a direct product of the AGIN multi-national collaboration platform, and though the USAID funding has ended for AGIN, it has set a precedent for collaboration that is being repeated by other research groups. Further, the relationships and the capacity built both in terms of human resources and technical innovations ensure that the work of AGIN will be sustained, and continue to evolve (Van Tassell et al., 2023). The software development for processing AGIN-ICP images has demonstrated proof of concept for accurate digital animal body measurements of height, length, and chest girth. Software development continues with teeth and FAMACHA measurements extracted (Table 2), and validation studies for these phenotypes are planned. Work is also ongoing to calibrate coat color for a numerical value meaningful across varied samples and settings, and to extract and vectorize coat pattern (Figure 11).
[image: Figure 11]FIGURE 11 | Preliminary software development for coat color calibration (A,B) and coat pattern (C) recognition.
As the AGIN-ICP is used in more and more sampling settings, its history of evolution is likely to continue. Going forward, MJW has redesigned some of the equipment to better address known issues or to simplify the protocol. For example, the small calibration sign that was too big for the goats, and too unstable for wearing by animal handlers, has been redesigned for standalone use, as shown in Figure 12. Extensive work extracting body measures data from AGIN-ICP images shows that only two photos (a rear view and sign view) are needed to extract accurate body measurements. Sampling teams who do not need the other measurements may eliminate the other poses in that case.
[image: Figure 12]FIGURE 12 | Re-fabricated small calibration sign for stand-alone use will minimize its skewing or omission in body measure photos.
Finally, automated extraction of GPS data embedded in the images is a feature planned for a future version of the software. Record keeping and analyses such as growth rate over time, would be a helpful feature for farmers or others selecting animals for breeding, marketing, or to monitor health. These data, combined with the phenotype data could prove valuable for researchers, farmers, and veterinarians who wish to assess their stock in the context of the local climate and production systems, so they can make informed decisions based on accurate and relevant information.
CONCLUSION
The African Goat Improvement Network Image Collection Protocol (AGIN-ICP) has shown that it is an efficient, easily deployable, inexpensive method to collect digital images from livestock without causing the animals, or the handlers undue stress. The resulting images collected with the AGIN-ICP were used to develop the PreciseEdge Image Segmentation Algorithm (PE-ISA), which returns digital phenotypes from AGIN-ICP collected images that are highly correlated to analogous, real-world (traditional) animal phenotype values, with Pearson correlation coefficients for height (0.931), length (0.943), and girth (0.893) (Woodward-Greene et al., 2022). Sampling teams using the AGIN-ICP must understand that despite the simplicity of the protocol, attention to detail and an understanding of the purpose for each step is critical to obtaining images that can be used to extract digital phenotypes as intended.
The phenotypic data from this process is ‘born digital’ and thus can save time, effort, and errors because data entry is not needed. The accompanying user software that embeds the PE-ISA for easy processing of images was developed using images collected by the AGIN-ICP in Stage 5. It will provide users with a variety of data formats for subsequent phenotypic analyses; as well as labeled digital images that could be used in artificial intelligence machine learning test sets, for data modeling to advance decision tool innovations (manuscript in process). The AGIN-ICP is a case study in the AGIN multi-level collaborative model to empower all levels of stakeholders in a CBBP. This work, and all of the authors benefitted significantly from the breadth of expertise and synergy of shared purpose fostered and supported by the AGIN structure, members, partners, and sponsors. Workers engaged in the CBBP, from farmers, to students, to junior and senior researchers, as well as local, regional, and national government officials and sponsors from multiple countries all had a significant role in the success of the AGIN-ICP.
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Several factors, including breed, lead to divergent performance of pigs for production and reproduction traits in different environments. A recent genomics study showed that Modern European (ME) pig breeds contribute to the ancestry of smallholder pigs in the Hoima and Kamuli districts, Uganda. These pigs were also involved in a longitudinal study with several traits recorded, including 540 body weights (WT) of 374 growing pigs, 195 records of total number of piglets born alive (TBA) of 157 sows, and 110 total number weaned (TNW) records of 94 sows. Linear mixed-effects models were used to test for the significance of environmental effects, including housing system, geographic location, and the season when the events occurred as well as animal-specific effects like age, sex, parity, and farrow-to-weaning interval. Stepwise model reduction starting from models with all main effects and pairwise interactions was applied. The final models were then expanded to include proportions of Modern European (ME) ancestry for the subset of animals genotyped, following genomic ancestry analysis based on a Porcine 50K SNP Chip. ME ancestry proportions ranged from 0.02 to 0.50 and were categorized into three classes (low/medium/high ME) based on 33.3% quantiles. The effects of ME classes on WT and TBA were not significant. ME showed a significant effect on TNW. Sows with a high proportion of ME weaned 2.4 piglets more than the low group, the medium ME group being intermediate. This study used genomic data to investigate the effects of genetic ancestry on the performance of smallholder pigs in Uganda. The proportion of Modern European ancestry did not exceed 0.50, therefore not allowing for the comparison of local versus pure “exotic” types of pigs. For the range of ancestries observed, which is the relevant one for current smallholder systems in Uganda, differences were small for the body weight of growing pigs and the number of piglets born alive, while higher proportions of ME ancestry resulted in significantly more piglets weaned. The availability of genotypes of a higher number of growing pigs would have been beneficial for drawing conclusions on the effect of ME ancestry on the growth rates of smallholder pigs in Uganda.
Keywords: pig, growth, litter size, genotype, smallholder, Uganda
1 INTRODUCTION
Pork is an important source of animal protein and represents 30%–40% of the meat consumed globally (FAO, 2014). The top pork-producing countries in Africa include Nigeria, Malawi, and Uganda (FAOSTAT, 2021). The national herd of Uganda is estimated at 4.2 million pigs (UBOS, 2020), and the per capita consumption of pork is 3.4 Kg (FAOSTAT, 2018). Smallholder farmers represent the majority of pig producers and pigs are kept for savings/insurance and income (Babigumira et al., 2019). Small herds of variable size are kept from which piglets, slaughter animals, or both are produced (Ouma et al., 2015; Ouma, 2017). Pig breeding is unstructured, and services like artificial insemination are not commonly used. Most farmers rely on the services of a village boar for a fee to breed their sow (Dione et al., 2014). Performance traits related to reproduction (litter size), growth, and disease resistance are important to smallholder farmers (Babigumira et al., 2019). All these constraints have implications on the performance of pigs in these typically low-input smallholder systems.
Previous studies on the performance of pigs in Africa have been done under differing production conditions and have, to a great extent, relied on pig breed composition as reported by farmers or research stations, that is, local, crossbred, and exotic (Adebambo and Dettmers, 1982; Affentranger et al., 1996; Ajala, 2007; Kagira et al., 2010; Muhanguzi et al., 2012; Okello, 2015; Dotche et al., 2020a). However, there is consensus that local pigs in Africa were introduced and are of European and Asian ancestries (Blench, 2000; Ramirez et al., 2009; Noce et al., 2015; Dotche et al., 2020a; Babigumira et al., 2021). Additionally, it becomes difficult, missing pedigree information withstanding, to account for genetic effects on an animal’s performance, more so in admixed populations. Nevertheless, advances in bioinformatics and sequencing technologies have made it possible to overcome such hurdles. To the best of our knowledge, the study by Babigumira et al. (2021) is the first in Uganda to both decipher and quantify the ancestry of smallholder pigs using SNP Chip data (Babigumira et al., 2021). Babigumira et al. (2021) analyzed the ancestries of pigs kept by smallholder households in Uganda with Old British, Modern European, Iberian, Duroc, and Chinese pigs as potential ancestral populations and found that the pigs were mostly a mix of Old British and Modern European (ME) types. The current study is a follow-up to the study by Babigumira et al. (2021). Both studies were conducted as part of a longitudinal survey of smallholder pig herds in the districts of Hoima and Kamuli, Uganda, under a larger project. Here, we incorporated genomic information and statistically tested the effects of ME ancestry (ranging from 2%–50%) on phenotypes recorded on these smallholder pigs in Kamuli and Hoima districts, Uganda. Our results highlight the role of the environment in the performance of pigs in smallholder herds and imply a holistic approach when intervening in smallholder pig production.
2 MATERIALS AND METHODS
2.1 Study sites and households
The study sites selected were Hoima and Kamuli districts due to the importance of pig-keeping to smallholder’s livelihoods in these districts. Household selection proceeded as follows. For selected sub-counties within Hoima and Kamuli districts, a full list of pig-keeping households was obtained in collaboration with the district extension staff. From here, 300 households were randomly selected and surveyed for key information on their household pig enterprise type, including the main breed type of pig kept (local, cross-bred of local and exotic, and exotic) and type of pig housing (free-range and tethered versus housed). Households’ pig enterprises were then classified based on combinations of main breed-type kept and housing practiced (as local-tethered, cross-breed-tethered, exotic-tethered, cross-bred-housed, and exotic-housed) with the final set of 200 project households purposively selected from these groups, such that each enterprise type had approximately an equal number of households. The 200 households were in 30 villages in 26 parishes across 8 sub-counties in the 2 districts.
2.2 Ethics statement
This research was approved by the Uganda National Council of Science and Technology (UNCST), the Research Ethics Committee of the Vector Division of the Ministry of Health (VCD-REC), Uganda, the Research Ethics Committee (IREC), and the Institute Animal Care and Use Committee (IACUC) of the International Livestock Research Institute (ILRI). Farmers’ participation in the study was voluntary.
2.3 Genotypes
The breed composition (genotypes) of the pigs used in the current study had been inferred by admixture analysis in a related study (Babigumira et al., 2021). Briefly, the genotyping process in Babigumira et al. (2021) proceeded as follows. Hair samples were taken from a random sample of pigs kept by 148 of the 200 smallholder households in the districts of Hoima and Kamuli. Further, pigs phenotypically representative of “local” pigs were also sampled from smallholder households in three other districts, namely, Soroti, Kumi, and Paliisa. Genotyping was done using the Geneseek Genomic Profiler Porcine 50k SNP chip and ancestry proportions were inferred by admixture analysis using ADMIXTURE 1.3 (Alexander et al., 2009). The pigs were found to have a mix of Old British and Modern European (ME) ancestries. Large White and Landrace pig breeds contributed to most of the ME ancestry proportions which were between 0.02 and 0.5 (Babigumira et al., 2021).
2.4 Data collection
Data were collected on all pigs present within the project household at the time of the survey visit. Initially, a pig census survey was performed (October to November 2018) with all pigs within the households tagged and demographic data on each pig obtained (including age, sex, and breed, and for sows their parity, as per farmer recall) using a structured survey. From here the household pig herds were longitudinally monitored (December 2018 to March 2020). During the longitudinal monitoring, the households were visited eight times at intervals between 1 and 3 months depending on the weather and related field activities, and information on their household pig enterprises and pigs was recalled to the previous visit, using a structured survey. Data captured during the longitudinal monitoring included (amongst others) farrowing and weaning events, health, nutrition (feeds and feeding practices), herd dynamics (entries and exits), pig transactions (sales and purchases), housing systems, and morphometric and body weight measurements.
This study focused on an analysis of growth and fertility traits [total number of piglets born alive (TBA) and total number of piglets weaned (TNW)]. Body weight (WT) measurements were taken at birth, when possible; otherwise, the birth date was recalled by the farmer and the weight of the pig was measured during the visit. Pigs were weighed every subsequent visit until the animal exited the farm (through sale or death) or until the end of the survey. The WT was measured using a digital weighing scale (Brand: Crane, range of measurement: 1–200 Kg and accuracy: 0.12 kg). Heart girth (HG) and body length (BL) measurements were taken at the time of weighing each pig. Sow fertility data collected included farrowing and weaning dates and litter sizes at birth (TBA) and weaning (TNW). The data was entered into the Census and Survey Processing System (CSPro) (U.S. Census Bureau, 2019) and reposited in a SQL database on the ILRI data portal (Rutto et al., 2019).
2.5 Data analysis
We analyzed the influence of a range of effects (described below) on variation in growth and litter size of pigs. All effects and their possible pairwise interactions were tested at a significance level of 0.05 by a linear mixed effects model using the lme4 package in the R environment (Bates et al., 2014; R Core Team, 2020). Results from the lme4 package were visualized using the lmerTest R package (Kuznetsova et al., 2017). Further, to account for population structure, we generated a genomic relationship matrix and included it in the mixed model analysis using the R package lme4qtl (Ziyatdinov et al., 2018). Least-squares means (LSM) were estimated and compared pairwise by the Kenward-Roger method and Tukey p-value adjustment method for comparing multiple estimates using the lsmeans R package (Lenth, 2016).
2.5.1 Description of variables
Body weight (WT) and litter size at farrowing (TBA) and weaning (TNW) were continuous dependent variables. The independent variables of interest were the housing system, geographic location of the farm, season, sex (for growers), farrow-to-weaning interval, and parity (for sows). The pigs in each household were managed under one of three housing systems: free-range (only for growers), tethered, and housed. The proportion of Modern European (ME) was inferred in a previous study (Babigumira et al., 2021) and was categorized into low, medium, and high classes based on 33.3% quantiles. The season was defined as dry or wet based on the seasons of Uganda to which the month of farrowing or weaning (for sows) or weighing (for growers) belonged. Uganda majorly has two wet seasons: March to May and September to December (Caffrey et al., 2013; Mubiru et al., 2018). Parity was defined as “1” for a primiparous and “2+” for a multiparous sow. The farrow-to-weaning interval was a continuous variable computed in days and then categorized based on 33.3% quantiles. Age was a continuous variable while sex was a categorical variable (female or male). Genotypes were available on only 11.0% of growing pigs with body weights (43 of 374) due to the inability to hair sample very young pigs and their absence at the next survey visit (e.g., due to sale or death). In contrast, 66% (103 of 157) of the sows were genotyped. The 43 genotyped growing animals with 94 records on WT were assigned to three ME classes on 33.3% quantiles (low ≤ 0.181, 0.181 > medium < 0.28, and high ≥ 0.28). The sows were assigned to three ME classes based on 33.3% quantiles (low ≤ 0.153, 0.153 > medium < 0.289, and high ≥ 0.289). The number of animals in each category of the variables is presented in Table 1.
TABLE 1 | Number of animals in each category of environmental and genetic effects.
[image: Table 1]2.5.2 Statistical models
A range of effects potentially affecting the traits under study, including geographical location, housing system, and season, was included in the linear mixed effects statistical models employed. As only part of the animals with phenotypes were also genotyped for the prediction of levels of ME ancestry, the following strategy of analysis was employed.
First, mixed linear models with fixed environmental effects and all their pairwise interactions as well as the random effect of animals, accounting for repeated measurements, were tested. A stepwise procedure for model reduction was followed, excluding non-significant interaction terms one by one and then excluding non-significant main effects not involved in any of the interactions. The model reduction was based on Pearson’s chi-square (ꭓ2) statistic with a threshold of 0.05.
Second, the resulting model was then employed adding the proportion of Modern European ancestry (ME: low, medium, and high) as well as its pairwise interactions with the other fixed effects in the final environmental effects model. Non-significant pairwise interaction terms of these environmental effects and ME were also excluded in a stepwise manner to arrive at the final model. Therefore, the results for the fixed environmental effects presented here are derived from the initial dataset with more observations while the effects of ME ancestry and its interactions come from the smaller dataset of genotyped animals (Ziyatdinov et al., 2018). We run the final models fitting ME as a categorical variable and a continuous variable.
2.5.2.1 Grower performance
A total of 540 WT records from 374 animals with indicators of age, geographic location, sex, pig housing system, and season were available. The number of animals with one, two, three, and four records was 252, 83, 34, and 5. For the 374 animals, the ranges of WT, HG, BL, and age were 0.7–49.0 Kg, 5.0–73.0 cm, 14.0–91.0 cm, and 7.0–210 days, respectively. The correlations between WT and the two morphometric measurements (HG and BL) ranged from 0.74 to 0.92 (Table 2).
TABLE 2 | Correlation between WT, HG, and BL.
[image: Table 2]The significance of the environmental effects on WT and all pairwise interactions were investigated using model (Eq. 1).
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Where [image: image] is the body weight of the [image: image] animal; [image: image] is the [image: image] age in days (covariate); [image: image] is the [image: image]geographical location; [image: image] is the [image: image] sex; [image: image] is the [image: image] pig housing system; [image: image] is the [image: image] season in which the animal’s body weight was measured; [image: image] is [image: image] grower (random effect); [image: image] random residual effect.
2.5.2.2 Sow performance
The effect of season, geographic location of the farm, pig housing system, and parity as fixed effects and the sow as a random effect on the total number of piglets born (TBA) which is 195 observations from 157 sows, and on the total number of piglets weaned (TNW) which is 110 observations from 94 sows was investigated using model (Eq. 2).
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Where [image: image] is the total number of piglets born alive and [image: image] is the total number of piglets weaned; [image: image] is the [image: image] farrowing or weaning season; [image: image] is the [image: image] geographic location of the farm; [image: image] is the [image: image] housing system; [image: image] is the [image: image] parity; [image: image] is the [image: image] farrow-to-weaning interval; [image: image] is the [image: image] sow (random effect); [image: image] is a random residual effect.
3 RESULTS AND DISCUSSION
3.1 Description of body weight and litter size
Most growing animals (92.5%) weighed less than 10 Kg (for HG, BL, and age, the weights were less than 68 cm, 79 cm, and 200 days, respectively) due to heavier animals being sold from the household prior to the time of visits (Figure 1).
[image: Figure 1]FIGURE 1 | Distribution of body weight (WT).
Note that the WT of eight animals with missing WT measurements but available HG and BL measurements were predicted using a multiple linear regression equation based on (Eq. 3).
[image: image]
HG and BL explained 61% of the variation of WT (R-squared = 0.61)
The relationship between body weight and age is shown in Figure 2. The WT was very variable with age with some animals at either end of the spectrum. Variability in WT of growing pigs has also been reported in the Philippines (More et al., 1999) and Kenya (Mutua et al., 2011), as well as in commercial herds (López-Vergé et al., 2018).
[image: Figure 2]FIGURE 2 | Weight-for-age of growing pigs.
For sows, a total of 195 litters with a mean ± standard deviation of 7.2 ± 2.3 (with a range from 1 to 13) had been farrowed by 157 sows between July 2018 and March 2020. The TBA values are comparable to those reported in India and Nigeria (Kumaresan et al., 2007; Abah et al., 2019) but lower than those reported in commercial herds in Uganda (Okello, 2015). A total of 110 litters of 94 sows had weaning records on the total number of piglets weaned, the season of farrowing, parity, geographic location of the farm, and the pig housing system practiced on the farm. The average size of weaned litters was 6.1 ± 2.2 (with a range from 1 to 11) piglets. The TNW values reported here are lower than those reported by Okello (2015). The litters were weaned between October 2018 and March 2020. The distribution of TBA and TNW is shown in Figure 3.
[image: Figure 3]FIGURE 3 |  Distribution of (A) total number of piglets born alive (TBA) and (B) total number of piglets weaned (TNW).
3.2 Models including environmental effects
3.2.1 Grower performance
The final (reduced) model for growth performance contained the main effects and interaction terms presented in Table 3.
TABLE 3 | Significance of effects and interaction terms retained in the reduced model for WT.
[image: Table 3]The variances of the random effects, namely, animal and residuals were 7.762 and 11.521, respectively, translating to a repeatability of 0.67 of the body weight measurements. The average daily gain (ADG) derived from linear regression of weight on age was 55.2 g/day. The least-square means for WT by housing system are presented in Table 4. Pairwise comparisons showed significant differences between housing systems (free-range vs housed).
TABLE 4 | The least-square means for WT by housing system.
[image: Table 4]The housing system had a significant effect on WT, and this could be attributed to the intensified management of housed pigs. Pigs in Tanzania were found to gain between 68 g/d when left to free-range, and 72 g/day when confined/housed (Lipendele et al., 2015). The ADG reported in our study is close to those reported in Benin (Kouthinhouin et al., 2009) but lower than the 77 g/day that was reported for smallholder pigs elsewhere in Uganda (Lule and Lukuyu, 2017). Furthermore, the ADG found in our study was much lower than those reported for pigs in Kenya (Mutua et al., 2011; Carter et al., 2013), Ghana (Darfour-Oduro et al., 2009), Zimbabwe (Chimonyo et al., 2010), and India (Kumaresan et al., 2007); the latter was mostly derived from feeding trials. Smallholder pigs are fed energy-rich but protein-deficient crop residues comprising root tubers and their vines or leaves, e.g., sweet potato and cassava (Carter et al., 2015). Feed shortages and poor-quality forages in the tropics contribute to slower pig growth (Mutua et al., 2012; Mutua et al., 2012; Levy, 2014; Levy, 2014). Age (Carter et al., 2013) was found to have a significant effect on WT as reported in our study.
3.2.2 Sow performance
3.2.2.1 Total number of piglets born alive
For TBA, the only significant effect retained was parity (χ2 = 5.8916; p = 0.01521). The variance components for the random effects, namely, animal and residual were 0.728 and 4.294, respectively, translating to a repeatability of 0.17. The least-square means for TBA by parity are shown in Table 5. Pairwise comparisons showed significant differences between classes of parity (p = 0.0173).
TABLE 5 | The least-square means of TBA by parity.
[image: Table 5]Multiparous sows farrowed 0.77 piglets more than their primiparous cohort. Litter size increased with each parity till around the fourth (Dotche et al., 2020b).
3.2.2.2 Total number of piglets weaned
The significant fixed effects and interaction terms were retained stepwise (Table 6) from model (Eq. 3). The significant main effects and interaction terms are presented in Table 6.
TABLE 6 | Significance of fixed effects and their pairwise interaction terms on TNW.
[image: Table 6]Sows that farrowed in the wet season weaned 0.54 piglets less. The wet season rather than cold weather is associated with piglet mortality (Chiduwa et al., 2008). Multiparous sows weaned 1.6 piglets (p = 0.0013) more and this is attributed to the improvement in the mothering ability of the sow. The least-square means of TNW by geographic location, housing system, and parity are presented in Table 7. Pairwise comparison showed significant differences between different levels of each variable.
TABLE 7 | The least-square means for TNW by geographic location, housing system, and parity.
[image: Table 7]3.3 Testing effects of the proportion of Modern European (ME) ancestry
We tested the effects of ME on only the genotyped animals with the GRM (using the lme4qtl package) and without the GRM (using the lme4 package). Given that we obtained the same results in either case, here, we report the results obtained using the lme4 R package (Bates, 2010).
3.3.1 Grower performance
A total of 94 WT records from 43 genotyped growing animals were available. The analysis of the effect of ME classes on WT showed that ME did not have a significant effect on WT (χ2 = 0.104, p = 0.949), and none of the pairwise interaction terms of ME with the other main effects was significant (p = 0.083 or higher). Figure 4 shows the least-square means and 95% confidence intervals of ME classes. Pairwise comparisons revealed non-significant (p < 0.05) differences between the ME classes. Further analysis with ME as a regressor also revealed neither it (χ2 = 0.001, p = 0.973) nor its interactions with the other effects (p = 0.489 or higher) in the model had a significant effect on WT.
[image: Figure 4]FIGURE 4 | Effects of ME classes on WT, least square means (standard error), and their 95% confidence intervals.
It is generally accepted that exotic pigs weigh heavier than their indigenous counterparts. However, we found no significant differences in the effects of ME class on WT. It is likely that ME effects are confounded by other effects such as the housing system. Pig sties are usually provided by farmers capable of intensifying production, for example, by using improved breeds and providing better management (Dione et al., 2014; Ouma et al., 2015). This may partly explain the trend in body weight across the ME classes.
3.3.2 Sow performance
3.3.2.1 Total number of piglets born alive (TBA)
As only parity was significant after the reduction of model (Eq. 3) with the full phenotype data, the proportion of Modern European and its interaction term with parity was added for the analysis of data of genotyped animals. A total of 135 farrowing records that belonged to 103 genotyped sows were available for analysis. ME (χ2 = 3.2163; p = 0.20026) nor its interaction with parity (χ2 = 0.64804; p = 0.64804) had significant effects on TBA. The least-square means of ME and their 95% confidence intervals for TBA are presented in Figure 5. Sows in the ME medium and high groups farrowed 0.86 and 0.14 piglets more than those in the low group. Pairwise comparisons were significant between low and medium ME classes. A study in Cameroon that compared primiparous local versus exotic sows, e.g., Large White, reported lower litter size for the local sows though the breed effects were non-significant. However, the breed had a significant effect on the litter size of multiparous sows (Kouamo et al., 2015).
[image: Figure 5]FIGURE 5 | Effects of ME classes on TBA, least square means (standard error), and their 95% confidence intervals.
3.3.2.2 Total number of piglets weaned (TNW)
For TNW, a total of 80 weaning records that belonged to 67 sows were available for analysis. ME had a significant effect (χ2 = 10.3928; p = 0.005537) on TNW as were the interactions between ME and geographic location (χ2 = 6.8424; p = 0.032673). The LSMs for TNW by the interaction between ME and geographic location are shown in Table 8. The least-square means of ME classes and their 95% confidence intervals for TNW are shown in Figure 6. There was a clear ranking, with higher proportions of Modern European ancestry being associated with higher TNW. Pairwise significance testing indicated that medium levels of ME were significantly different from low ME. The findings are similar to a study that compared local versus exotic pigs in Benin and showed the latter weaned more piglets (Dotche et al., 2020b). Further, crossbred pigs weaned around three piglets more than local pigs in a study in India (Nath et al., 2013).
TABLE 8 | The least square means for TNW for the interaction between ME and geographic location and ME.
[image: Table 8][image: Figure 6]FIGURE 6 | Effects of ME classes on TNW, least square means (standard error), and their 95% confidence intervals.
4 CONCLUSION
Genetic and environmental factors influence phenotypes. In this study, we analyzed the effects of the proportion of Modern European ancestry of smallholder pigs in Uganda on growth and litter size traits. The variation in ancestry levels was limited, with none of the animals having more than 50% Modern European (Large White and Landrace) ancestry. The growth rates of pigs were extremely low, being around 55 g per day for an age range from 7 to 210 days. Further, while ME did not have a significant effect on growth, growth was significantly affected by the housing system as reported in this study. These findings underscore the role of appropriate management interventions for improved growth performance. Sow reproductive performance was influenced by parity for both TBA and TNW. Additionally, ME had a significant effect on TNW, such that sows with high ME ancestry weaned close to three piglets more than sows with low ME ancestry. These findings underscore the role of genetics and appropriate management for improved productivity of pigs in smallholder herds in Uganda.
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The poor reproductive performance of most local Chinese chickens limits the economic benefits and output of related enterprises. As an excellent local breed in China, Taihe black-bone silky fowl is in urgent need of our development and utilization. In this study, we performed transcriptomic and metabolomic analyses of the ovaries of Taihe black-bone silky fowls at the peak egg-laying period (PP) and nesting period (NP) to reveal the molecular mechanisms affecting reproductive performance. In the transcriptome, we identified five key differentially expressed genes (DEGs) that may affect the reproductive performance of Taihe black-bone silky fowl: BCHE, CCL5, SMOC1, CYTL1, and SCIN, as well as three important pathways: the extracellular region, Neuroactive ligand-receptor interaction and Cytokine-cytokine receptor interaction. In the metabolome, we predicted three important ovarian significantly differential metabolites (SDMs): LPC 20:4, Bisphenol A, and Cortisol. By integration analysis of transcriptome and metabolome, we identified three important metabolite-gene pairs: “LPC 20:4-BCHE”, “Bisphenol A-SMOC1”, and “Cortisol- SCIN”. In summary, this study contributes to a deeper understanding of the regulatory mechanism of egg production in Taihe black-bone silky fowl and provides a scientific basis for improving the reproductive performance of Chinese local chickens.
Keywords: Taihe black-bone silky fowl, ovary, transcriptome, metabolome, reproductive performance
1 INTRODUCTION
Eggs are an important food resource that contains a large amount of essential nutrients for the human body. Egg production is an important indicator of the reproductive performance of chickens, which affects the profits and productivity of the laying hen industry (Mu et al., 2021). The ovary is a key organ of the reproductive system of poultry and is critical to their reproductive performance. In recent years, most studies have focused on the ovaries of mammals, and relatively few studies have been conducted on the ovaries of poultry (Lin et al., 2021). Therefore, in-depth studies on poultry ovaries further provide a theoretical basis for the egg-laying mechanism of poultry.
Improving the reproductive performance of poultry is an important breeding goal, but traditional breeding methods have progressed slowly and it has been difficult to identify specific genetic improvements (Biscarini et al., 2010). We performed transcriptome sequencing and metabolome sequencing of ovaries from Taihe black-bone silky fowls, and performed integration analysis of the transcriptome and metabolome to reveal the molecular mechanisms involved in egg production performance. Transcriptome sequencing technology is a high-throughput sequencing technology that allows differential gene analysis at the genome-wide level; metabolomics is closely related to phenomics and can reflect the physiological state of an organism more directly and accurately (Li et al., 2022). Lin et al. (2021) performed transcriptome sequencing of Muscovy duck ovaries and predicted six genes that may regulate ovulation: CTNNB1, IGF1, FOXO3, HSPA2, PTEN, and SMC4; and four important pathways: the Adhesion-related pathway, mTOR pathway, TGF-β signaling pathway and FoxO signaling pathway. Yuan et al., 2020) performed a metabolomic analysis of stearoyl-CoA desaturase (SCD) during goose follicle development and identified cholesterol and pantothenic acid as potential biomarker metabolites of goose granulosa cells. Transcriptomic and metabolomic integration analysis can correlate genes and metabolites (Tohge et al., 2005). Therefore, the use of transcriptomic and metabolomic integration analysis can provide a more comprehensive understanding of ovarian performance in the Taihe black-bone silky fowl. Wu et al. (2022) performed a transcriptomic and metabolomic integration analysis to reveal the effect of light supplementation on sternal calcification in ducks. (Ma et al. (2022) performed a transcriptomic and metabolomic integration analysis to reveal the modulation of fructo-oligosaccharide on ileum metabolism of Taiping chickens.
Nesting is an instinct of hens to reproduce, and during nesting, the ovarian function of hens will degenerate, and nesting is common in Chinese local chickens. The Taihe black-bone silky fowl is a Chinese local breed originated from Wangbantu village, Taihe County, Jiangxi Province, with good meat quality and flavor, which is worthy of our in-depth study (Mi et al., 2018). Most Chinese local breeds of chickens have low egg production, and their reproductive performance needs to be improved. In this study, we performed transcriptomic and metabolomic integration analyses on ovaries of Taihe black-bone silky fowls at the peak egg-laying period and nesting period, and identified key differentially expressed genes, significantly differential metabolites and related pathways that may affect the reproductive performance of Taihe black-bone silky fowl, and we also predicted important metabolite-gene pairs. These findings will provide a new perspective on the molecular mechanism of ovarian egg production in the Taihe black-bone silky fowl, as well as a theoretical basis for improving its reproductive performance.
2 MATERIALS AND METHODS
2.1 Animal and sample collection
Twelve Taihe black-bone silky fowls were purchased from the Taihe county in the Jiangxi province from the Taihe Aoxin black-bone silky fowl Development Co. Among them, six each were peak egg-laying period (203-day-old chickens, PP) and nesting period (394-day-old chickens, NP), and all sample chickens were randomly selected. Ovarian tissues from these 12 chickens were collected, rinsed with PBS (phosphate buffer saline), and immediately preserved in liquid nitrogen.
2.2 Ethical statement
All the animals used in this experiment conform to the standards in the Chinese Animal Welfare Guidelines and are approved by the Animal Experimentation Ethics Committee of Zhejiang University (approval number:ZJU20190149).
2.3 Transcriptome sequencing and data analysis
Beijing Novozymes Technology Co., Ltd. was responsible for the transcriptome sequencing and library construction of the collected Taihe black-bone silky fowl ovaries. Subsequently, the illumina NovaSeq 6000 sequencing platform was used to sequence and construct the gene library. The raw data were processed to obtain clean data to ensure the quality and reliability of data analysis. For the clean data, Q20, Q30 and GC content were calculated, and we used HISAT2 v2.0.5 to construct the index of the reference genome, while comparing the clean reads with the reference genome. FeatureCounts (1.5.0-p3) is used to calculate the number of reads mapped to each gene and FPKM. Differential expression analysis was performed using DESeq2 software (1.20.0), and those with p < 0.05 were identified as differentially expressed genes by statistical procedures; p-values were adjusted using Benjamini and Hochberg methods to control the incidence of errors. GO (Gene Ontology) enrichment analysis and KEGG (Kyoto Encyclopedia of Genes and Genomes) enrichment analysis of differentially expressed genes were performed by clusterProfiler (3.8.1) software. GO is a comprehensive database describing gene functions, and KEGG is a comprehensive database integrating genomic, chemical and systematic functional information.
2.4 Metabolome sequencing and data analysis
Beijing Novozymes Technology Co., Ltd. was responsible for the metabolomic analysis of the collected ovaries of Taihe black-bone silky fowls. We used Vanquish UHPLC chromatograph and Q Exactive™ HF mass spectrometer for LC-MS/MS analytical processing. Compound Discoverer 3.1 (CD3.1; Thermo Fisher) was used for data pre-processing and metabolite identification. The identified metabolites were annotated using the KEGG database, HMDB database and LIPIDMaps database. Partial least squares discriminant analysis (PLS-DA) and principal component analysis (PCA) were performed on the processed data using metaX software to calculate VIP values; and based on t-tests to calculate p-values and fold change (FC value). In order to identify the significantly different metabolite (SDM) between the PP and NP, the Variable Importance in the Projection (VIP) of the first principal component of the PLS-DA model, the difference fold change (FC) of each metabolite in the comparison group, and the p-value obtained by t-test were used to identify the significantly different metabolite. The screening criteria for significantly differential metabolites were VIP >1, p-value <0.05 and FC ≥ 2 or FC ≤ 0.5. Cluster heat maps of significantly differential metabolites were drawn using R language and correlation analysis was performed. Enrichment analysis of metabolites was performed using the KEGG database.
2.5 Transcriptome and metabolome integration analysis
Based on Pearson correlation coefficient, correlation analysis was performed on differentially expressed genes and significantly differential metabolites to measure the degree of association between them. When the correlation coefficient is less than 0, it is called negative correlation; when it is greater than 0, it is called positive correlation. We mapped all the differentially expressed genes and significantly differential metabolites obtained simultaneously to the KEGG pathway database to determine their common pathway information.
3 RESULTS
3.1 Transcriptomic analysis of differentially expressed genes
A total of 391 differentially expressed genes (DEGs) were identified by transcriptome analysis of the ovaries of Taihe black-bone silky fowls at the peak egg-laying period (PP) and nesting period (NP). The threshold for screening was p < 0.05. Among them, 136 genes were upregulated and 255 genes were downregulated. The following are the volcano plot of differentially expressed genes and hierarchical cluster analysis (Figures 1A, 1B; Supplementary Table S1). By relative expression levels of differentially expressed genes and pathways related to reproductive performance, we screened five differential expressed genes that may affect the egg-laying performance of Taihe black-bone silky fowl, they are BCHE,CCL5,SMOC1,CYTL1, and SCIN.
[image: Figure 1]FIGURE 1 | Volcano plot of differentially expressed genes (A), horizontal coordinate X-axis indicates the log2FoldChange, vertical coordinate Y-axis indicates the significance level of the difference (-log10 p-value). Red dots: upregulated genes; green dots: downregulated genes; blue dots: non-differential genes. Hierarchical clustering analysis of the DEGs (B).
3.2 Transcriptome GO and KEGG enrichment pathway analysis
In order to gain a deeper understanding of ovarian development, we performed GO and KEGG (pathway enrichment analysis on DEGs in the PP and NP. In the GO pathway enrichment, a total of 314 differentially expressed genes were enriched into 330 pathways, and we listed the top 30 GO-enriched pathways (Figure 2A; Supplementary Table S2). Among them, molecular function regulator, signaling receptor binding and extracellular region are the three most enriched pathways, and extracellular region is the most representative pathway. In KEGG pathway enrichment, a total of 76 differentially expressed genes were enriched into 72 pathways, and we listed the top 20 KEGG-enriched pathways (Figure 2B; Supplementary Table S3). Among them, Neuroactive ligand-receptor interaction and Cytokine-cytokine receptor interaction were the two most enriched and representative pathways.
[image: Figure 2]FIGURE 2 | (A) GO enrichment analysis of DEGs; (B) KEGG enrichment analysis of DEGs.
3.3 Quality control and partial least squares discriminant analysis (PLS-DA) in metabolomics
In this study, we performed metabolomic analyses of ovaries from the PP and NP of the Taihe black-bone silky fowl. By partial least squares discriminant analysis (PLS-DA), there was a significant difference between the PP and NP(Figures 3A, C). At the same time, the parameters R2 and Q2 of the PLS-DA model were replaced with 200 trials, and their regression lines could be obtained based on the R2 and Q2 values after 200 disruptions and modeling, and the PLS-DA model was not overfitted when the R2 value was greater than the Q2 value and the intercept of the Q2 regression line with the Y-axis was less than 0, indicating that our data were reliable (Figures 3B, D).
[image: Figure 3]FIGURE 3 | (A) PLS-DA analysis in the positive model; (B) PLS-DA alignment test in the positive model; (C) PLS-DA analysis in the negative model; (D) PLS-DA alignment test in the negative model.
3.4 Metabolomics differential metabolite analysis
By setting the thresholds VIP >1.0, FC > 1.2 or FC < 0.833 and p < 0.05, a total of 39 SDMs were identified, of which 25 SMDs in the positive model and 14 SDMs in the negative model. We screened three significantly differential metabolites that may affect the egg production performance of Taihe black-bone silky fowl, they are LPC 20:4, Bisphenol A, and Cortisol. The following are the volcano map and hierarchical cluster analysis of SDMs (Figures 4A–D; Supplementary Tables S4, S5).
[image: Figure 4]FIGURE 4 | Volcano plots of differential metabolites in PP and NP, horizontal coordinates indicate log2FoldChange, vertical coordinates indicate -log10p-value, red dots indicate significantly upregulated metabolites, green dots indicate significantly downregulated metabolites, (A) positive model of differential metabolites, (B) negative model of differential metabolites. (C) Heat map of significantly different metabolite clusters in the positive model, and (D) heat map of significantly different metabolite clusters in the negative model, with vertical clusters representing different metabolites and horizontal clusters representing different samples.
3.5 Integrative analysis of transcriptomics and metabolomics
Based on Pearson correlation analysis, the correlation between transcriptomic DEGs and metabolomic SDMs was revealed. When the correlation coefficient is less than 0, it is called negative correlation; when it is greater than 0, it is called positive correlation. We plotted the correlation heat map of all significantly differential metabolites and Top 100 differentially expressed genes (Supplementary Figures S1, S2). The results indicate that the transcriptome and metabolome are strongly correlated. Furthermore, we correlated specific metabolites and genes that may regulate ovarian development and reproductive performance in laying hens, searching for important metabolite-gene pairs to explore further potential roles. We considered metabolite-gene pairs that satisfied both correlation >0.8 and p < 0.05 as strongly correlated metabolite-gene pairs, and plotted the correlation network using Cytoscape_v3.9.1 (Figures 5A–C; Supplementary Tables S6, S7). We identified three metabolite-gene pairs that may affect egg-laying performance in Taihe black-bone silky fowl: “LPC 20:4- BCHE”, “Bisphenol A- SMOC1” and “Cortisol- SCIN”.
[image: Figure 5]FIGURE 5 | (A) Correlation network diagram of LPC 20:4 and differentially expressed genes; (B) Correlation network diagram of Bisphenol A and differentially expressed genes; (C) Correlation network diagram of Cortisol and differentially expressed genes. Circles indicate significantly different metabolites, squares indicate differentially expressed genes, red lines indicate positive correlations (red squares indicate the differentially expressed genes we screened), green lines indicate negative correlations, and the thickness of the lines indicates the strength of the correlation.
Both DEGs in the transcriptome and SDMs in the metabolome were significantly enriched to the Neuroactive ligand-receptor interaction pathway, indicating that Neuroactive ligand-receptor interaction is a very important pathway affecting the egg production performance of Taihe black-bone silky fowl (Figure 6).
[image: Figure 6]FIGURE 6 | Transcriptome and metabolome integration analysis of KEGG pathway enrichment.
4 DISCUSSION
Eggs are an important food resource for humans, and improving egg production is an important goal for the poultry industry. The ovary is an important reproductive organ of poultry, and the health and normal development of the ovary is crucial to the egg production performance of poultry. In-depth studies on ovaries can help to further improve the egg production performance of poultry. In this study, transcriptomic and metabolomic techniques were used to study and analyze the ovaries of Taihe black-bone silky fowls at the PP and NP. We identified five differentially expressed genes, three important pathways and three significant differential metabolites that may affect the egg production performance of Taihe black-bone silky fowl. The differentially expressed genes are BCHE, CCL5, SMOC1, CYTL1, and SCIN; the important pathways are extracellular region, Neuroactive ligand-receptor interaction and Cytokine-cytokine receptor interaction; the significant differential metabolites are LPC 20:4, Bisphenol A and Cortisol. In addition, we identified three metabolite-gene pairs that may affect egg-laying performance in Taihe black-bone silky fowl, namely, “LPC 20:4-BCHE”, “Bisphenol A-SMOC1” and “Cortisol-SCIN”. We believe that our study will provide new insights into the egg-laying mechanism in poultry.
4.1 Transcriptomic analysis
In this study, in order to find out the key genes that affect the egg production performance of Taihe black-bone silky fowls, 391 DEGs were identified in the ovaries of Taihe black-bone silky fowls during the PP and NP. We screened five differentially expressed genes that may affect the egg production performance of Taihe black-bone silky fowls, they are BCHE, CCL5, SMOC1, CYTL1, and SCIN. Butyrylcholinesterase (BCHE) has several physiological functions and is an enzyme that can be involved in the cholinergic system (Glombowsky et al., 2017). The concentration of BCHE increases significantly in sows during parturition, suggesting that BCHE may help sows to complete parturition (Contreras et al., 2021). It has been shown that BCHE can influence embryonic developmental processes (Paraoanu et al., 2006). In addition, BCHE plays an important role in the development of the nervous system in poultry (Layer et al., 1991). In this study, we found that the expression of this gene was significantly higher in the PP than in the NP, it may affect egg formation through the nervous system and we predict that this gene has an important role in the egg production performance of poultry. The C-C chemokine ligand 5 (CCL5) is a member of the chemokine family, and CCL5 has a chemotactic effect on immune cells and induces activation of immune cells to fight infection (Choi et al., 2020). It has been suggested that CCL5 may mediate autocrine and paracrine secretion to regulate ovarian activity during ovulation (Skinner et al., 2008). In addition, CCL5 plays an important role in the luteolysis process (Witek et al., 2020). The expression of this gene is significantly higher in the PP than in the NP and may regulate the immune response during egg production to ensure ovarian health. Secreted modular calcium-binding protein 1 (SMOC1) is an extracellular glycoprotein that is involved in a variety of physiological functions. It has been suggested that SMOC1 may mediate cell type-specific differentiation and intercellular signaling during fetal gonadal and reproductive tract differentiation (Pazin et al., 2009). Bao et al. (2021) found that SMOC1 has an important regulatory role in the egg production performance of muscovy duck. In addition, SMOC1 has an important regulatory role in embryonic development (Gao et al., 2019). SMOC1 is expressed in the zona pellucida of oocytes (Vannahme et al., 2002), and the expression of this gene is significantly higher in the PP than in the NP. We hypothesize that SMOC1 can mediate the maturation of oocytes and has an important role in the egg production performance of poultry. Cytokine-like protein 1 (CYTL1) is a functional secreted protein. In the ovary, elevated concentrations of progesterone or estradiol lead to enhanced CYTL1 expression; in the uterus, CYTL1 expression is significantly enhanced in endometrial cells with increasing concentrations of progesterone and estrogen, suggesting that CYTL1 is a candidate marker of endometrial tolerance and that upregulation of CYTL1 leads to significant proliferation of endometrial cells (Ai et al., 2016). In addition, it has been reported that CYTL1 can mediate the regulation of different stages of folliculogenesis (Moura et al., 2021). The tolerance of the endometrium is important for the reproduction of offspring in females, in the study, we hypothesized that the high expression of this gene during the PP contributes to ovarian maintenance and has an important role in egg production. Scinderin (SCIN)is a Ca2+-dependent protein belonging to the gelsolin superfamily. Sperm capacitation and acrosome reaction are key steps in mammalian fertilization, and SCIN is one of the key binding proteins that control this polymerization (Breitbart et al., 2005). It has been suggested that SCIN may have a regulatory role in the fertility of pigs (Liang et al., 2020). SCIN can produce circSCIN, which can bind to MiR-133 and MiR-148b, MiR-133 can regulate oocyte meiosis and MiR-148b can mediate estrogen secretion (Yao et al., 2010; Song et al., 2014; Wu et al., 2018). We speculate that SCIN has an important regulatory role in oocyte development and estrogen secretion. The expression of this gene was significantly higher in the PP than in the NP and may have an important role in egg production performance. In summary, the expression of these five genes was significantly higher in the PP than in theNP and may have an important role in ovarian and egg production performance. Other differentially expressed genes may also have important effects on egg production performance, and their functions will be further explored in subsequent studies.
In order to further understand the possible functions involved in DEGs, we performed GO annotation (Gene Ontology) and KEGG analysis (Kyoto Encyclopedia of Genes and Genomes) on DEGs. We screened three pathways that may affect egg production performance in Taihe black-bone silky fowls: extracellular region, Neuroactive ligand-receptor interaction and Cytokine-cytokine receptor interaction. It has been suggested that the extracellular region may have an effect on pig pregnancy (Samborski et al., 2013). Ge et al. (2017) ound that the extracellular region can mediate the maturation process of zebrafish oocytes. Sun et al. (2022) found that the extracellular region plays a key role in follicle development in chickens. In the study, the extracellular region was the most enriched and representative pathway of the GO pathway, and we hypothesized that it might have an important role in the egg production performance of the Taihe black-bone silky fowl. We found significant differences in the expression of DEGs in the Neuroactive ligand-receptor interaction between the PP and NP, with the Neuroactive ligand-receptor interaction being the most enriched pathway in the KEGG pathway. Transcriptomic studies in zebrafish (Chen et al., 2019), goats (Su et al., 2018) and pigs (Xu et al., 2015) have shown that Neuroactive ligand-receptor interactions have important effects on reproductive performance. Mu et al. (2021) found that Neuroactive ligand-receptor interactions may be the most important pathway leading to significant differences in egg production rates between high-laying and low-laying hens. In addition, it has been shown that Neuroactive ligand-receptor interactions have important effects on egg production performance in ducks (Tao et al., 2017) and geese (Ouyang et al., 2020). In the study, the Cytokine-cytokine receptor interaction pathway was significantly enriched, coinciding with a related report in the Nandan-Yao domestic chicken (Sun et al., 2021). Quan et al. (2019) found that this pathway has important effects on follicle development and pregnancy establishment in goats. In addition, transcriptome studies in pigs (Yang et al., 2018) and geese (Zhao et al., 2022) showed that Cytokine-cytokine receptor interactions have an important role in ovarian development and ovulation. Briefly, the three pathways of extracellular region, Neuroactive ligand-receptor interaction and Cytokine-cytokine receptor interaction are considered to be closely related to the reproductive performance of Taihe black-bone silky fowl and have important effects on the egg production performance of Taihe black-bone silky fowl. Some pathways that are not significantly enriched may also have important effects on egg production performance, and their functions will be further explored in subsequent studies.
4.2 Metabolomics analysis
Metabolomics is closer to phenomics, which is an extension of transcriptomics and proteomics, and can reflect the physiological state of an organism more directly and accurately. In the study, we identified 39 significantly different metabolites in the ovaries of Taihe black-bone silky fowl during the PP and NP, including 25 significantly different metabolites in the positive model and 14 significantly different metabolites in the negative model. We screened three significantly different metabolites that might affect the egg production performance of Taihe black-bone silky fowl: LPC 20:4, Bisphenol A, and Cortisol. LPC 20:4 is an isoform of lysophosphatidylcholine (LPC), and it has been shown that LPC not only affects the acrosome response of sperm and eggs, but also mediates paracrine actions in oocytes (Gomez-Torres et al., 2015). Yang et al. found that LPC can mediate follicular development and is a predictor of follicular development (Yang et al., 2022a). Lysophosphatidylcholine (LPC) can be converted to lysophosphatidic acid (LPA) by the action of enzymes, and LPA has important effects on the maintenance of ovarian function, embryonic development and pregnancy maintenance, which is sufficient to show the important role of LPC on female reproductive performance (Ye et al., 2008). In addition, it has been shown that LPC has an inhibitory effect on the cell viability of mouse ovarian granulosa cells (Yang et al., 2022b). From this, we inferred that LPC 20:4 may affect ovarian function in Taihe black-bone silky fowl. Bisphenol A is a chemical with endocrine disrupting properties that affects ovarian estrogen and steroid hormone secretion (Bloom et al., 2016). Bisphenol A can bind to estrogen receptor and has estrogen effect, which has certain influence on oocyte maturation (Rochester et al., 2013). Bisphenol A can affect primordial follicle formation by promoting the progression of meiosis in oocytes (Yu et al., 2018). It has been shown that Bisphenol A may adversely affect follicle formation and affect the healthy development of reproductive organs in chickens (Mentor et al., 2020; Eldefrawy et al., 2021). In addition, it has been shown that Bisphenol A may impair the reproductive adaptations of zebrafish ovaries (Biswas et al., 2020). Cortisol is a glucocorticoid with several physiological functions, such as: response to stress, regulation of apoptosis and lipid metabolism. It has been shown that Cortisol can affect folliculogenesis and oocyte maturation in cows, support embryo implantation, and improve pregnancy rates in cows (da et al., 2015; Duong et al., 2012). Lack of cortisol causes infertility in female mice, and high cortisol levels affect granulosa cell function, leading to a decrease in estradiol (Mullins et al., 2009; Prasad et al., 2016). Xiao et al. found that cortisol can protect oogenesis by promoting follicular cell survival (Xiao et al., 2022). In addition, it has been shown that cortisol can affect sexual development and reproductive function in zebrafish (Zhang et al., 2020). In conclusion, the above three significantly different metabolites may be essential metabolites in the egg-laying process of Taihe black-bone silky fowl, they may affect the health of the ovaries, the viability of ovarian granulosa cells and the process of oogenesis in Taihe black-bone silky fowl Some metabolites were not significant differential metabolites, but they may also have important effects on egg production performance, and we will explore these metabolites further in subsequent studies.
4.3 Transcriptome and metabolome integration analysis
We performed integrated transcriptomic and metabolomic analyses of ovaries from the PP and the NP in Taihe black-bone silky fowls. Based on Pearson correlation analysis, specific metabolites and genes that may regulate ovarian development and reproductive performance of laying hens were correlated, and important metabolite-gene pairs were searched for to explore further potential roles. LPC 20:4, Bisphenol A and Cortisol may be significant differential metabolites with important effects on egg production performance, BCHE, SMOC1 and SCIN may be differentially expressed genes with important effects on egg production performance, LPC 20:4 and BCHE, Bisphenol A and SMOC1, Cortisol and SCIN all have strongly correlated. In summary, we identified three important metabolite-gene pairs, which are LPC 20:4-BCHE, Bisphenol A-SMOC1 and Cortisol-SCIN. There is a very important relationship between metabolites and genes, and we will further explore their connection in subsequent studies.
5 CONCLUSION
In the study, we performed transcriptome and metabolome sequencing analysis on the ovaries of Taihe black-bone silky fowl at the PP and NP, and identified a total of 391 differentially expressed genes and 39 significantly differentially metabolites. Through screening and discussion, we identified five key genes that may affect egg production performance in Taihe black-bone silky fowl: BCHE, CCL5, SMOC1, CYTL1, and SCIN; and three important ovarian significantly differentially metabolites: LPC 20:4, Bisphenol A and Cortisol; through integration analysis of transcriptome and metabolome, we identified three important metabolite-gene pairs: LPC 20:4-BCHE, Bisphenol A-SMOC1 and Cortisol-SCIN. In addition, based on GO and KEGG enrichment analysis, we identified three important pathways that affect egg production performance in Taihe black-bone silky fowls: extracellular region, Neuroactive ligand-receptor interaction and Cytokine-cytokine receptor interaction. This study contributes to a deeper understanding of the regulatory mechanism of egg production in the Taihe black-bone silky fowl and provides a theoretical basis for the improvement of the reproductive performance of the Taihe black-bone silky fowl.
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Introduction: Feed efficiency is an important economic trait in rabbit meat production. The identification of molecular mechanisms and candidate genes for feed efficiency may improve the economic and environmental benefits of the rabbit meat industry. As an alternative to the conventional feed conversion ratio, residual feed intake (RFI) can be used as an accurate indicator of feed efficiency.
Methods: RNA sequencing was used to identify the differentially expressed genes (DEGs) in the M. longissimus thoracis et lumborum of eight Wannan Yellow rabbits with excessively high or low RFIs (HRFI or LRFI, respectively). Thereafter, Gene Ontology (GO) analysis, enrichment using the Kyoto Encyclopedia of Genes and Genomes (KEGG) database, gene set enrichment analysis (GSEA), and protein–protein interaction (PPI) network analysis was conducted.
Results: In total, 445 DEGs were identified in the M. longissimus thoracis et lumborum of rabbits with high and low RFIs. The significantly enriched GO terms identified in these two groups were primarily involved in energy and mitochondrial metabolism and oxidation–reduction processes. KEGG analysis identified 11 significantly enriched pathways, including oxidative phosphorylation, PI3K-Akt signaling, and extracellular matrix-receptor interaction pathways. According to GSEA, the expressions of genes and pathways related to mitochondrial function were upregulated in HRFI rabbits, whereas genes with upregulated expressions in LRFI rabbits were related to immune response and energy metabolism. Additionally, PPI network analysis revealed five potential candidate genetic markers.
Conclusion: Comparative analysis of the M. longissimus thoracis et lumborum transcriptomes in HRFI and LRFI rabbits revealed FOS, MYC, PRKACB, ITGA2, and FN1 as potential candidate genes that affect feed efficiency in rabbits. In addition, key signaling pathways involved in oxidative phosphorylation and PI3K-Akt and ECM-receptor interaction signaling impact rabbit feed efficiency. These findings will aid in breeding programs to improve feed efficiency and optimize RFI selection of rabbits for meat production.
Keywords: feed efficiency, residual feed intake, rabbit production, transcriptome, differentially expressed gene, signaling pathway, M. longissimus thoracis et lumborum, meat quality
1 INTRODUCTION
Rabbit meat is considered an excellent nutritional source owing to its high protein and low fat contents, high proportion of unsaturated fatty acids, and low cholesterol and sodium levels (Siddiqui et al., 2023). Feed cost accounts for 60% of total rabbit breeding costs and is therefore an important factor affecting overall rabbit production costs (Molette et al., 2016). Feed efficiency is one of the most economically and environmentally relevant aspects in rabbit meat production (Cesari et al., 2018). First proposed in 1963, residual feed intake (RFI) is defined as the difference between actual and predicted feed intake and expected feed requirements for the maintenance and growth of an animal over a specific period. RFI is generally considered the most suitable parameter for evaluating feed efficiency (Koch et al., 1963) and has been utilized for the artificial selection of feed efficiency in dairy cows (Connor et al., 2013), pigs (Barea et al., 2010), and poultry (Fathi et al., 2021). Previous research has identified RFI as a moderately inherited characteristic, which can improves feed efficiency in modern breeding (Sell-Kubiak et al., 2017). In rabbits, the genetic correlation between feed efficiency and growth rate is lower than that in other species. RFI can substantially increase rabbit growth rate within a few years (Blasco et al., 2018); therefore, identification of effective biomarkers to facilitate RFI selection is needed to shorten the selection process.
Feed efficiency is closely linked to energy metabolism (Patience et al., 2015; Fischer et al., 2018; Lancaster, 2021; Mota et al., 2022). Skeletal muscle is considered to be the main energy metabolic tissue in rabbits and plays an important role in regulating systemic homeostasis (Fan et al., 2021). Rabbit meat quality is dictated by muscle fiber type and characteristics that arise during skeletal muscle development (Du et al., 2022). The M. longissimus thoracis et lumborum is the largest erector spinae muscle and is commonly used for meat quality assessments in rabbits and other animals (Zotte et al., 2022), thus providing an ideal model to study feed efficiency.
Next-generation sequencing facilitates the screening of mechanisms underlying RFI to accelerate the breeding process. RNA sequencing (RNA-seq) is a widely applied and highly effective method used in livestock studies for comparing individuals with extreme trait phenotypes and identifying differentially expressed genes (DEGs) and pathways among groups of domesticated animals (Ramayo-Caldas et al., 2012; Ge et al., 2019; Xiao et al., 2021). However, most transcriptome studies on the molecular mechanisms underlying RFI differences have focused on cows (Salleh et al., 2017), pigs (Hou et al., 2020), and chickens (Xiao et al., 2021), whereas related studies on rabbits are scarce.
The Wannan Yellow rabbit, an indigenous Chinese breed native to the southern region of Anhui Province, China, is popular in the meat industry because of its high daily weight gain performance and feed efficiency in the early growth stage. Currently, indigenous rabbit farming for meat consumption is primarily conducted in rural areas. This provides economic opportunities for farmers and favorably impacts population maintenance in marginal areas (Siddiqui et al., 2023). Strategies to improve feed efficiency are essential for increasing the competitiveness of the rabbit breeding industry. In addition, the selection of feed-efficient rabbits helps maintain meat protein output while decreasing grain consumption and nutrient excretion to address the global food shortage. Thus, improving rabbit feed efficiency traits is an important strategy to increase the economic gain of farmers. Our three primary study objectives were: 1) Identify the divergence of the skeletal muscle transcriptomic profile in rabbits with extreme RFIs, 2) Elucidate the underlying biology of RFI by investigating key genes and pathways implicated in RFI divergence, and 3) Provide new insights into biomarkers for RFI selection in rabbits.
2 MATERIALS AND METHODS
2.1 Ethics statement
All animal experiments and study procedures were conducted in strict accordance with protocols approved by the Animal Care Advisory Committee of the Anhui Academy of Agricultural Sciences (AAAS 2022-17) and the “Guidelines for Experimental Animals” of the Ministry of Science and Technology (Beijing, China).
2.2 Rabbits and RFI calculation
All Wannan Yellow rabbits were bred at the Anhui Academy of Agricultural Sciences Experimental Farm, Jixi, China according to the standard breeding program. A total of 110 rabbits (same male and female) with similar body weight (BW) of approximately 500 g were selected and transferred to three-layered individual metal cages (40 cm × 35 cm × 50 cm) at 35 days of age. The main experiment began 65–95 days after the 30-day pre-experiment (the dietary adaption periods). Rabbits were fed daily with a basal diet for growing rabbits (10.5 MJ metabolizable energy/kg diet, including crude protein 16%, crude fiber 18%, crude ash 12%, calcium 1%, phosphorus 0.4%, lysine 0.6%, and H2O 14%) (The Composition of experimental diets is shown in the Supplementary Table S1) formulated without antibiotics and water was provided ad libitum.
The feed intake (FI) and BW of rabbits were measured at 65–95 days of age. The feed conversion ratio (FCR) was calculated using FI and body weight gain (BWG). Metabolic body weight (MBW0.75), BWG, and average daily body weight gain (ADG) and average daily feed intake (ADFI) per individual were calculated according to rabbit BW at 65 and 95 days. The RFI value was used to measure the feed efficiency using Equation (4):
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where b0, b1, and b2 represent the regression intercept, partial regression coefficient of ADFI on MBW0.75, and the partial regression coefficient of ADFI on ADG, respectively. The RFI values were calculated using the regression procedure in SAS (version 9.4, SAS Inst. Inc., Cary, NC). Outliers were excluded from the data. All experimental groups were ranked by RFI, with the eight most extreme samples from the high (n = 4) and low (n = 4) RFI female rabbits selected as the high residual feed intake (HRFI) and low residual feed intake (LRFI) groups for RNA extraction, respectively. Animal performance data was expressed as the least square means ± standard error of the mean. A Student’s t-test was used to analyze the difference in feed efficiency between the HRFI and LRFI groups. A p-value <0.05 was considered statistically significant.
2.3 RNA extraction and RNA-seq
Rabbits in the HRFI and LRFI groups were humanely euthanized. The M. longissimus thoracis et lumborum were immediately collected, frozen in liquid nitrogen, and stored at −80°C until RNA extraction. Total RNA was extracted using TRIzol™ reagent (Invitrogen, Carlsbad, CA, United States) according to the manufacturer’s instructions. RNA quality was assessed using an Agilent 2100 Bioanalyzer (Agilent Technologies, Palo Alto, CA, United States) and verified using RNase-free agarose gel electrophoresis. Verified total RNA was sent to Gene Denovo Biotechnology Co., Ltd. (Guangzhou, China) for cDNA library construction and sequenced on an Illumina HiSeq 2500 platform; 125 bp paired-end reads were generated. The acquired data were submitted to the Sequence Read Archive (National Institute of Health, Bethesda, MD, United States) under the accession number PRJNA978018.
2.4 RNA-seq data analysis
FastQC software (version 11.5; http://www.bioinformatics. Babraham. ac. uk/projects/fastqc) was used to re-evaluate raw sequence read quality before read alignment. Clean reads were obtained by discarding adaptors, poly N, or low-quality reads. An index of the reference genome was built and paired-end reads were mapped to the Oryctolagus cuniculus genome sequence (OryCun 2.0) in the Ensembl database (http://www.ensembl.org/). Transcripts were quantified in fragments per kilobase million (FPKM), which was used to indicate gene expression patterns. Cufflinks v2.2.1 (Ghosh and Chan, 2016) was used to calculate the expected number of FPKM for each gene.
2.5 Identification of DEGs and bioinformatics analysis
The expression values and DEGs were determined using DESeq2 software (Love et al., 2014). Genes with a |fold-change| ≥ 1.5 and a p-value <0.05 were assigned as differentially expressed. Gene Ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed using the Database for Annotation, Visualization, and Integrated Discovery (https://david.ncifcrf.gov/) for exploration of DEG functions. A corrected p-value of <0.05 was considered statistically significant.
2.6 Gene set enrichment analysis (GSEA)
All expressed genes in both groups were analyzed via GSEA software (http://software.broadinstitute.org/gsea/downloads.jsp), based on C5. CC, C5. BP, C5. MP, and C2. CP KEGG gene set collections (MSigDB v7.1, broad institute, Cambridge, MA, United States) (https://www.gsea-msigdb.org/gsea/msigdb/index.jsp). All expressed genes were ranked according to the fold-change (HRFI/LRFI) between the HRFI and LRFI groups. For each gene set, the enrichment score was calculated with a full ranking that reflected gene set distribution in the list and the normalized enrichment score (NES) was determined using the signal-to-noise normalization method (Ma et al., 2011). Gene sets with an absolute NES values of >1 and false discovery rates (FDR) ≤0.05 were considered significantly enriched.
2.7 Protein–protein interaction (PPI) analysis of DEGs
DEGs were submitted to the Search Tool for Retrieval of Interacting Genes (STRING) database (https://string-db.org/) to predict gene interaction relationships (Szklarczyk et al., 2021); confidence scores >0.7 were defined as significant. The DEG PPI networks were generated using the open-source software Cytoscape v3.7.2 (Shannon et al., 2003). The CytoHubba application in Cytoscape was used to screen hub genes.
2.8 RNA-seq validation
Eight genes were selected at random to quantify their expression levels using real-time quantitative polymerase chain reaction (RT-qPCR) in the HRFI (n = 4) and LRFI (n = 4) groups. Transcript expression pattern reliability obtained via RNA-seq was subsequently validated. Total RNA from the M. longissimus thoracis et lumborum of rabbits was extracted using TRIzol (Invitrogen, Carlsbad, CA, United States) and reverse-transcribed into cDNA using a PrimeScript™ RT-PCR Kit (Takara, Dalian, China) according to the manufacturer’s instructions. The eight primer pairs used in this study are listed in Supplementary Table S2. The synthesized cDNA was used as a template for RT-PCR using the CFX96 Touch™ Real-Time PCR Detection System (Bio-Rad, Hercules, CA, United States). The RT-PCR reaction was performed by heating at 95°C for 3 min, followed by 40 cycles at 95°C for 5 s and 60°C for 30 s. Quantitative variation and relative fold changes were calculated according to the 2−ΔΔCT method normalized with GAPDH (Livak and Schmittgen, 2001). Significant differences were analyzed using Student’s t-test in the SAS software v9.0 (SAS Institute, Inc., Cary, NC, United States); statistical significance was set at a p-value <0.05. All analyses were performed in triplicate.
3 RESULTS
3.1 Animal performance and feed efficiency
Differences in RFI, FCR, ADFI, MBW0.75, and ADG are shown in Table 1. The RFI and FCR of the LRFI group were significantly lower than those of the HRFI group (p-value <0.05). The ADFI and ADG of the LRFI group were significantly higher than those of the HRFI group (p-value <0.05). Moreover, there was no significant difference in MBW0.75 between the two groups (p-value >0.05).
TABLE 1 | Characterization of performance and feed efficiency traits (Least square means and SEM).
[image: Table 1]3.2 Summary of RNA-seq data
The HRFI and LRFI groups had 41,233,136 to 46,620,708 and 43,761,150 to 50,540,362 raw reads, respectively (Table 2). Filtering resulted in the following clean reads: (HRFI: 41,059,578 to 46,420,846; LRFI: 43,572,142 to 50,540,362 (for each library, per group)). The general Q30 (Phred quality score >30 and error rate <0.1%) percentage of the clean data was >94%. The average number of clean reads for each library was mapped using the O. cuniculus (OryCun 2.0) genome assembly, which resulted in a mean mapping efficiency of 68.48%.
TABLE 2 | Characteristics of the reads from eight rabbits with high and low RFI.
[image: Table 2]3.3 Identification of DEGs
The gene expression levels for the eight sequencing libraries are listed in Supplementary Table S2. Genes were detected in all samples (FPKM >1), and 45 DEGs were identified; the expressions of 229 and 216 genes were upregulated and downregulated, respectively, in the HRFI group (Figure 1).
[image: Figure 1]FIGURE 1 | Analysis of differentially expressed genes (DEGs) between the HRFI and LRFI groups. Volcano dots of DEGs. The red dots indicate upregulated DEGs, the orange dots indicate downregulated DEGs, and the blue dots shows genes not significantly altered.
3.4 GO and KEGG analysis
The results of the GO enrichment and KEGG pathway analyses are displayed in Supplementary Tables S4, S5. Forty-nine GO terms related to biological processes were significantly enriched, including metabolic, oxidation–reduction, ribonucleotide, ribose phosphate, and nucleoside triphosphate metabolic processes. Furthermore, number of GO terms related to molecular function and cellular components (such as the mitochondrial envelope, mitochondrion, and oxidoreductase activity) were significantly enriched (Figure 2). KEGG pathway analysis identified 11 significantly enriched pathways, including oxidative phosphorylation and PI3K-Akt signaling pathways, and ECM-receptor interactions that are closely related to energy metabolism (Figure 3).
[image: Figure 2]FIGURE 2 | Enrich gene ontology (GO) terms based on DEGs between the HRFI and LRFI groups. The first lap indicates the top 20 terms, and the number of the genes corresponds to the outer lap. The second lap indicates the number of genes in the genome background and p-value for enrichment of the differentially expressed genes (DEGs) for the specified GO terms. The third lap indicates the DEG number. The fourth lap indicates the rich factor of each GO term.
[image: Figure 3]FIGURE 3 | Significantly enriched KEGG pathways from DEGs between the HRFI and LRFI groups.
3.5 GSEA
GSEA provided insufficient evidence to determine the molecular mechanisms of feed efficiency. Therefore, GSEA was performed to study the functions of all genes using gene sets from GO and KEGG-based lists (Supplementary Table S6). Overall, 445 GO and 39 KEGG-based gene sets were significantly enriched (|NES|>1, FDR<0.05). Positive and negative NES values represent higher expression levels in the HRFI and LRFI groups, respectively. The GO-based list showed that the higher expression gene sets in the HRFI group were primarily related to mitochondria and adenosine triphosphate (ATP) synthesis, whereas those in LRFI group were involved in ECM structural constituents, actin cytoskeleton reorganization, and growth factor binding. The KEGG-based list showed that the high expression gene sets in the HRFI group were primarily related to oxidative phosphorylation and the tricarboxylic acid (TCA) cycle, and those in the LRFI group were related to carbohydrate metabolism, signal transduction, and immune response (Figure 4; Table 3).
[image: Figure 4]FIGURE 4 | Gene set enrichment analysis (GSEA). GSEA was performed in the HRFI and LRFI groups. The GSEA algorithm calculates an enrichment score reflecting the degree of overrepresentation at the top or bottom of the ranked list of the genes included in the gene set in a ranked list of all genes present in the RNA-seq dataset. A positive enrichment score (ES) indicates gene set enrichment at the top of the ranked list; a negative ES indicates gene set enrichment at the bottom of the ranked list. The analysis demonstrates that (A) mitochondrial part, (C) Oxidative phosphorylation, (D) Ribosome are enrich in HRFI groups, while (B) actin cytoskeleton reorganization are enrichment in LRFI groups.
TABLE 3 | Gene set enrichment analysis (GSEA) between HRFI and LRFI.
[image: Table 3]3.6 PPI networks of DEGs
The STRING database (https://string-db.org/) and Cytoscape v3.7.2 (Shannon et al., 2003)were used to integrate a potential network of DEGs in rabbit skeletal muscle that may lead to RFI differences. The PPI network comprised 127 nodes and 183 edges (Figure 5). The CytoHubba plugin was used to identify the top hub genes and the top 10 DEGs evaluated in the PPI were identified using two centrality methods (Degree and EPC). The intersections of these two algorithms were combined and a Venn plot was generated to identify hub genes (jvenn (inra.fr)) (Figure 6). The five hub genes that exhibited the highest degree of biological regulation between LRFI and HRFI rabbits were FOS, MYC, PRKACB, ITGA2, and FN1.
[image: Figure 5]FIGURE 5 | Protein-protein interaction (PPI) networks of DEGs between the HRFI and LRFI groups. The node represents the DEGs. Node size indicates the level of degree of each gene.
[image: Figure 6]FIGURE 6 | Venn plot identify significant hub genes generated by two centrality methods. Two methods—Degree and EPC were applied to identify significant hub genes. Different colors denote divergent algorithrns. The intersections indicate the common DEGs. The elements common to all methods were identified as the 5 core genes: FOS, MYC, PRKACB, ITGA2, and FN1.
3.7 Validation of RNA-seq results
Eight DEGs, NID2, ARID5B, FGL2, MT-ND4L, ATP5MF, GADL1, GATM, and HBB1, were selected at random to validate the RNA-seq expression profiles via RT-qPCR using RNA samples from the HRFI (n = 4) and LRFI (n = 4) groups. The expressions of NID2, ARID5B, and FGL2 were upregulated in the LRFI group, whereas those of MT-ND4L, ATP5MF, GADL1, GATM, and HBB1 were upregulated in the HRFI group (Figure 7). The RT-qPCR expression patterns of these genes were consistent with those observed via RNA-seq.
[image: Figure 7]FIGURE 7 | Validation of the RNA-seq results of eight DEGs via quantitative RT-PCR. (A) Verification of eight randomly selected DEGs via qRT-PCR (data are presented as means ± SEM; * means p-value <0.05, ** means p-value <0.01). (B) Comparison between the qRT-PCR results and sequencing results.
4 DISCUSSION
Our analyses of two groups of rabbits with excessive HRFI and LRFI revealed that rabbits in the LRFI group consumed less feed at the same growth rate, were more feed efficient, and had a lower FCR than the rabbits in the HRFI group. However, there were no differences in initial and final BW, ADG, or MBW between the two groups, consistent with the findings of previous studies on cattle (Nkrumah et al., 2004), lambs (Zhang et al., 2023), chickens (Metzler-Zebeli et al., 2017; Yang et al., 2020a) and ducks (Bai et al., 2022). Our results indicated that RFI selection in rabbits increased feed efficiency by reducing feed consumption without affecting rabbit growth performance. RFI is independent of BW and ADG, therefore can be used as an accurate, sensitive index to assess feed efficiency and improve animal genetic programs by eliminating the effects of different growth stages.
We identified 445 DEGs in the M. longissimus thoracis et lumborum of the two groups (229 with upregulated expressions and 216 with downregulated expressions) from the sequencing data. Several biological terms related to mitochondrial parts, energy metabolism, and immune function were revealed following GO annotation of the DEGs. Arguably, most genes associated with these terms are key influencers of feed efficiency in rabbits. Further, KEGG pathway analyses indicated that oxidative phosphorylation, the PI3K-Akt signaling pathway, and the ECM-receptor interaction signaling pathway were critical for mediating body metabolism. ECM-receptor interactions primarily regulate intracellular signal transduction and mediate interactions with cell adhesion receptors to modulate epithelial cell adhesion, motility, and growth (Levental et al., 2009). The ECM is a crucial component of tissue architecture and plays a key role in adipogenesis and meat quality (Taye et al., 2018; San et al., 2021; Shao et al., 2022). The PI3K-Akt signaling pathway is activated by various cellular stimuli or toxic insults and may regulate fundamental cellular functions, including transcription, translation, proliferation, growth, and survival (Peltier et al., 2007) and is involved in RFI variation in cattle (Yang et al., 2021) and shrimp (Dai et al., 2017). This study identified COL1A, COL2A, FN1, and RELN genes in the focal adhesion parts, which considered to be part of ECM components that mediate certain mechanisms involved in the PI3K-Akt signaling pathway.
The GSEA results of the GO list showed that all genes with high expression in the HRFI group were predominantly related to mitochondria and ATP synthesis. Thus, changes in the expression of genes associated with mitochondrial function are potential main drivers of rabbit feed efficiency. Over 95% of the cellular energy is produced by mitochondria via the TCA cycle and oxidative phosphorylation (Tzameli, 2012). Similarly, oxidative phosphorylation and the TCA cycle were significantly enriched in gene sets with high expression in the HRFI group based on the KEGG-based list. Thus, we propose that HRFI rabbits need more energy than LRFI rabbits to maintain normal life activities, leading to ATP synthesis, and that mitochondria number was potentially higher in the HRFI group than that in the LRFI group. LRFI rabbits may be more efficient than HRFI rabbits owing to the downregulation of mitochondrial function. These results are consistent with those obtained in previous transcriptome sequencing of skeletal muscle tissues from high- and low-RFI pigs (Vigors et al., 2019). Meanwhile, the high expression gene sets in the LRFI group were mostly involved in actin cytoskeleton reorganization, cell proliferation, and differentiation based on the GO-based list. Furthermore, carbohydrate metabolism, signal transduction, and immune response were the most significantly enriched gene sets according to the KEGG-based list, indicating that LRFI rabbits may be more efficient than HRFI rabbits in terms of energy utilization during muscle growth, which is consistent with the findings of previous studies (Horodyska et al., 2019; Yang et al., 2020b; Hou et al., 2020). Recent literature demonstrates that immune response is strongly associated with feed efficiency. For example, pigs with high feed efficiency have been shown to induce a more effective hepatic response to inflammatory stimuli than pigs with low feed efficiency (Horodyska et al., 2019). Cows selected for feed efficiency may have improved stress-coping abilities and immune responsiveness (Aleri et al., 2017). Similarly, LRFI pigs have an increased energy-saving mechanism in the intestinal innate immune response to immune challenges (Vigors et al., 2016). Therefore, our findings demonstrate that LRFI rabbits may be more robust and may better respond to infection than HRFI rabbits, consistent with the reports of previous studies.
The PPI networks constructed with DEGs in the current study identified the RFI candidate markers. The top centrality hub genes were FOS, MYC, PRKACB, ITGA2, and FN1. FOS is a proto-oncogene in mammals that forms the heterodimer complex Activator Protein-1 (AP-1) with c-Jun (Hou et al., 2019). FOS plays a vital role in the regulation of cell growth, division, proliferation, and differentiation and programmed cell death (Milde-Langosch, 2005). FOS/AP-1 is one of the earliest known transcriptional effectors in adult muscle stem cells. FOS accelerates the transition of stem cells from quiescence to activation via an early activated FOS/ART1/mono-ADP-ribosylation pathway, that is, essential for stem cell regenerative responses (Almada et al., 2021). Further, FOS gene phenotypic variation may be considered a marker of skeletal muscle fiber and metabolic traits in pigs (Reiner et al., 2002). MYC transcriptionally regulates many cellular processes and pathways, including cell growth, proliferation, and differentiation (Adhikary and Eilers, 2005). In mouse skeletal muscle, MYC overexpression stimulates skeletal muscle ribosome biogenesis and protein synthesis. In contrast, decreased MYC expression in mice reduces BW and growth rates (Mori et al., 2021). In the present study, we found that FOS and MYC were highly expressed in the LRFI group, thus confirming that LRFI rabbits may have more active proliferation and differentiation of skeletal muscle cells. PRKACB is a key effector of cAMP/PKA-induced signal transduction, which is involved in numerous cellular processes such as cell proliferation, apoptosis, metabolism, and differentiation (Chen et al., 2013). In addition, PRKACB serves as a potential biomarker of adipocyte lipolysis (Ji et al., 2020). ITGA2 is an oncogene that may be important in cell migration, invasion, survival, and angiogenesis (Lian et al., 2018). In T cells, ITGA2 may affect T-cell growth and proinflammatory cytokine expression (He et al., 2021) and it is overexpression may induce the activation of the PI3K/Akt signaling pathway (Liu et al., 2022). Similarly, FN1 is known for its pivotal role in activating the PI3K/Akt signaling pathway. Fibronectin 1 (encoded by FN1) is a macromolecular glycoprotein that plays a vital role in cell adhesion, migration, proliferation, and differentiation (Ma et al., 2023). The FN1 gene is involved in signaling pathways associated with immune processes (Li et al., 2022).
This study had some limitations. First, a larger sample size should be used for RNA-seq. Second, additional functional experiments should be conducted for verification of this study’s findings.
In conclusion, comparative analysis of the transcriptomes of M. longissimus thoracis et lumborum from HRFI and LRFI rabbits revealed FOS, MYC, PRKACB, ITGA2, and FN1 as potential candidate genes that affect feed efficiency in rabbits. Several biological GO terms related to mitochondrial function, energy metabolism, and immune function were significantly enriched. Moreover, oxidative phosphorylation and the PI3K-Akt and ECM-receptor interaction signaling pathways were identified as the key signaling pathways for feed efficiency in rabbits. Additionally, the expressions of genes and pathways related to mitochondrial function were upregulated in HRFI rabbits, whereas those of genes and pathways related to immune response and energy metabolism were upregulated in LRFI rabbits. Our results explain the differences in RFI between the two RFI groups and will help improve feed efficiency in Wannan Yellow rabbits to ultimately enhance meat production.
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Background: The use of breed-informative genetic markers, specifically coding Single Nucleotide Polymorphisms (SNPs), is crucial for breed traceability, authentication of meat and dairy products, and the preservation and improvement of pig breeds. By identifying breed informative markers, we aimed to gain insights into the genetic mechanisms that influence production traits, enabling informed decisions in animal management and promoting sustainable pig production to meet the growing demand for animal products.
Methods: Our dataset consists of 300 coding SNPs genotyped from three Italian commercial pig populations: Landrace, Yorkshire, and Duroc. Firstly, we analyzed the genetic diversity among the populations. Then, we applied a discriminant analysis of principal components to identify the most informative SNPs for discriminating between these populations. Lastly, we conducted a functional enrichment analysis to identify the most enriched pathways related to the genetic variation observed in the pig populations.
Results: The alpha diversity indexes revealed a high genetic diversity within the three breeds. The higher proportion of observed heterozygosity than expected revealed an excess of heterozygotes in the populations that was supported by negative values of the fixation index (FIS) and deviations from the Hardy-Weinberg equilibrium. The Euclidean distance, the pairwise FST, and the pairwise Nei’s GST genetic distances revealed that Yorkshire and Landrace breeds are genetically the closest, with distance values of 2.242, 0.029, and 0.033, respectively. Conversely, Landrace and Duroc breeds showed the highest genetic divergence, with distance values of 2.815, 0.048, and 0.052, respectively. We identified 28 significant SNPs that are related to phenotypic traits and these SNPs were able to differentiate between the pig breeds with high accuracy. The Functional Enrichment Analysis of the informative SNPs highlighted biological functions related to DNA packaging, chromatin integrity, and the preparation of DNA into higher-order structures.
Conclusion: Our study sheds light on the genetic underpinnings of phenotypic variation among three Italian pig breeds, offering potential insights into the mechanisms driving breed differentiation. By prioritizing breed-specific coding SNPs, our approach enables a more focused analysis of specific genomic regions relevant to the research question compared to analyzing the entire genome.
Keywords: single nucleotide polymorphisms, informative markers, discriminant analysis of principal components, pig breeds, genetic diversity, functional enrichment analysis
1 INTRODUCTION
The domestic pig is an important livestock animal that is widely used for red meat, lard, and cured goods. It is a key player in the meat industry, particularly in Europe (OECD, 2022). Previous studies have suggested that the European domestic pig (Sus scrofa domesticus) is primarily descended from European wild boars (Giuffra et al., 2000). However, recent research has challenged this notion by identifying Asian mitochondrial DNA (mtDNA) haplotypes in European Yorkshire, Duroc, and Landrace pigs. This finding suggests that there may have been some interbreeding or genetic exchange between the two populations in the past (Giuffra et al., 2000; Larson et al., 2005). Throughout history, Italy has developed various breeds of pigs, each with unique characteristics and uses, such as Cinta Senese (Tuscany region), Nero Siciliano (Sicily region), and Mora Romagnola (Emilia-Romagna region) (Franci and Pugliese, 2007). The Yorkshire breed is one of the most commonly used commercial pig breeds and was introduced to Italy in the early 20th century due to its fast growth rate and high efficiency in converting feed into meat. The Landrace breed was introduced to Italy in the mid-20th century and has since been utilized in industrial pork production. The Duroc breed originated in the United States in the 19th century and has been exported to many countries, including Italy. This breed is often used in crossbreeding programs to produce hybrid pigs with desirable traits such as meat quality and growth rate (https://www.thepigsite.com/).
Both genetic and environmental factors have an impact on the phenotypic characteristics of commercial pig breeds, such as meat quality and disease resistance (Rosenvold and Andersen, 2003). Therefore, understanding the genetic diversity of these breeds is crucial for enhancing animal production, conserving animal genetic resources, and evaluating breed performance (Bovo et al., 2020; Dadousis et al., 2022). This research can help find breeds with better phenotypic traits and the ability to adapt to difficult conditions (Bovo et al., 2020). It can also support the sustainable growth of animal production in different settings and make it easier to reach evolutionary breeding goals rapidly (Notter, 1999).
The use of genome-wide panels of single nucleotide polymorphisms (SNPs) has transformed the study of pig breeds by allowing for the examination of complex relationships among them (Muñoz et al., 2019). However, processing such vast amounts of data can be challenging, leading to the need for a more efficient approach. One potential solution is to create less dense panels using a smaller set of markers specific to each breed based on a reduced number of SNPs. This approach would require less time and effort for analysis, thus making it more feasible. Breed-specific SNPs are frequently used in conservation biology to manage and protect livestock resources (Ozerov et al., 2013; Huisman, 2017), as well as for breed identification and authentication of meat and dairy products (Russo et al., 2007; Fontanesi et al., 2010).
The use of breed-informative SNPs has shown promising results in improving desired traits in pig breeding programs. A recent study on Italian Yorkshire pigs found that selecting SNPs associated with production traits, such as lean meat content, daily gain, and feed/gain ratio, can increase the frequency of desirable alleles over time, leading to faster improvement of these traits (Fontanesi et al., 2015). Genome-wide association studies (GWAS) have also become a popular way to find genetic variants linked to important production traits like meat and carcass quality, growth, and teat number in European pig breeds (Tang et al., 2019; Fabbri et al., 2020; Bovo et al., 2021). To identify breed-informative SNPs, various analytical tools, such as Random Forests, Principal Component Analysis, Regression, allele frequency differences, and Discriminant Analysis of Principal components, have been developed (Wilkinson et al., 2011; Schiavo et al., 2020; Hayah et al., 2021; Dadousis et al., 2022). These tools can help researchers identify key genetic markers and gain a deeper understanding of the genetic basis of production traits in pig breeds.
The aim of this study is to identify a breed-informative SNPs panel with high power to facilitate breed traceability and preservation efforts while also supporting breeding programs that prioritize desirable traits in these pig breeds. We anticipate that the identified SNPs will provide a useful tool for researchers and breeders alike, enabling them to make more informed decisions in animal management and breeding programs. By focusing on coding SNPs, we hope to identify genetic markers that are potentially functional, allowing for a better understanding of the underlying genetic mechanisms governing desirable production traits in commercial pig breeds. Ultimately, our research may contribute to the long-term sustainability of pig production, ensuring that we are able to meet the growing demand for animal products while preserving animal genetic diversity.
2 MATERIALS AND METHODS
2.1 Description of the dataset
2.1.1 Source of data and SNP
The data utilized in this research is part of the MISAGEN project’s preexisting database (Botti et al., 2006; Biffani et al., 2011). This initiative gathered and archived a comprehensive dataset including pedigree information, clinical symptomatology, and health-related phenotypes from a commercial pig breeding population, which was sampled in Northern Italy. The initial dataset contained records from 2908 weaning piglets representing four distinct breeds: Yorkshire, Landrace, Duroc, and Pietrain. DNA extraction was carried out using nasal swabs as the source material. The subsequently extracted DNA was subjected to genotyping procedures employing the Illumina PorcineSNP60 BeadChip, designed to target a broad spectrum of over 60,000 Single Nucleotide Polymorphisms (SNPs) distributed across the pig genome.
2.1.2 Quality control and SNP extraction
The genotyped data underwent rigorous quality control utilizing the quality control module within the GenABEL package of the R statistical software (Aulchenko et al., 2007). Specific criteria were set to exclude individual single nucleotide polymorphisms (SNPs):
▪ Exclusion of SNPs with a call rate less than 99% (i.e., SNPs not detected in at least 99% of all genotyped individuals).
▪ Removal of SNPs with a Minor Allele Frequency (MAF) in all individuals less than 0.05.
▪ Exclusion of individuals with a call rate less than 99% (i.e., individuals with more than 1% missing genotypes).
▪ Furthermore, individuals were excluded due to excessively high Identity By State (IBS) and sex discrepancies.
After applying these filters, a total of 14,967 SNPs (24.8% of the available 60,123 SNPs) and 77 individuals (0.063% of the total) were excluded from the analysis. In this study, a set of 300 coding SNP were chosen considering their physical proximity to genes linked to pig immunity. Plink software (Purcell et al., 2007) was used to extract those 300 coding SNPs from the three distinct pig populations: Yorkshire (YO), Landrace (LA), and Duroc (DU). Each breed was represented by 100 animals, resulting in a total of 300 animals analyzed in the study.
2.2 Data analysis
2.2.1 Genetic diversity estimates
In this study, we used a range of genetic diversity metrics to analyze our dataset; all of the analyses were conducted in R software (R Core Team, 2020). All of the population genetics estimates reported in this work, including allele frequencies, expected (HE) and observed (HO) heterozygosity, the inbreeding coefficient (FIS), alpha (α) diversity indexes, exact tests for Hardy-Weinberg Equilibrium (HWE), under selection variants, and fixed alleles, were implemented using the “dartR” package (Gruber et al., 2022) and its dependencies from R statistical software. The genetic distances between breeds were implemented using the “dartR” package (Gruber et al., 2022) and its dependencies from R statistical software. The graphics were created using the “ggplot2” and “Graphics” packages (Hadley, 2016; R Core Team, 2020).
HE, HO, and FIS were estimated according to Nei (Nei, 1987). Alpha diversity indexes for allelic richness (q = 0), Shannon information (q = 1), and heterozygosity (q = 2) were estimated according to Sherwin (Sherwin et al., 2017). The exact p-values for the HWE test were calculated using the method described by Wigginton (Wigginton et al., 2005), and the results were visualized using a ternary plot. We used the OutFlank method (Whitlock and Lotterhos, 2015) to find variants that were subject to selection pressures. This method involves figuring out the neutral fixation index (FST) distribution from the actual data and then centering the distribution by fitting it to a chi-square model. Loci with a p-value of less than 0.05 were considered FST outliers and indicative of selection pressure. To estimate the pairwise FST values for genetic distances between pig breeds, we used Weir and Cockerham update of Wright’s approach (Wright, 1951; Weir and Cockerham, 1984), while we used Nei’s approach (Nei, 1987) to estimate the pairwise GST values for genetic distances between populations.
2.2.2 Discriminant analysis of principal components (DAPC)
Our study implemented the Discriminant Analysis of Principal Components method with a three-fold purpose. Our first objective was to assess the discriminatory power of individual SNPs in distinguishing the three breed clusters. We aimed to optimize the separation of individuals into predefined groups using discriminant functions of principal components by maximizing between-group diversity and minimizing within-group diversity. Our second objective was to investigate the genetic structure of the population, considering the existing knowledge about the pig breeds and their genetic variation. Finally, our third objective was to determine the probability of animals joining a particular population based on their genetic background.
After identifying SNPs of significant importance, we utilized the Variant Effect Predictor (VEP) tool from the Ensembl database (McLaren et al., 2016) to compare them with the “Pig Reference (Sus_scrofa)” database. This comparison aimed to uncover the genes and biological pathways associated with these SNPs. Additionally, we conducted a search in the “NCBI database” using the SNP marker names as keywords to investigate their involvement in biological processes.
To analyze the population structure, we employed the “adegenet” package in the R software (Jombart, 2008) to perform Discriminant Analysis of Principal Components. Subsequently, we employed the “pca3d” package (Weiner, 2020) to visualize how the most significant SNPs segregated individuals into different clusters.
2.2.3 Functional enrichment analysis (FEA) of the most discriminating SNPs between the pig breeds
To determine the crucial biological functions that differentiate our three pig breeds, we performed a Functional Enrichment Analysis on a gene list comprising the genes housing the most significant breed informative SNPs. We utilized the “gprofiler2” R package (Kolberg and Raudvere, 2021), which employs various databases such as the Gene Ontology (GO) database, Kyoto Encyclopedia of Genes and Genomes (KEGG), WikiPathways (WP), Human phenotype ontology (HP), and micro-RNA target (MIRNA) databases, among others. The gene list was automatically generated from our informative SNP set identifiers and served as the input for the “gost” function within the “gprofiler2” R package. This function conducts Functional Enrichment Analysis, utilizing the Gene Ontology database. Our analysis included a thorough statistical enrichment assessment using the hypergeometric test, and we applied multiple testing corrections to enhance result reliability. To minimize the potential for false positives, we established a user-defined threshold of 0.05.
3 RESULTS
3.1 Genetic diversity within population and among pig breeds
3.1.1 Genetic diversity within population
The population sample shows a nearly equal proportion of the first and second alleles, with a slight preference towards the second allele (frequencies of 0.48 and 0.52, respectively). The observed proportion of heterozygotes in all three breeds is higher than expected, indicating a possible excess of heterozygotes. Our analysis of alpha diversity indexes reveals variability among different q-values, indicating a deviation from HWE. The average values of allelic richness, Shannon information, and heterozygosity are 2, 1.96, and 1.92, respectively (Figure 1). The negative value of the overall fixation index (FIS = −0.03) supports this deviation from HWE. We conducted statistical tests to identify loci that deviate from HWE, and 46 SNPs showed statistically significant deviations (see Supplementary Table S1). These deviations are primarily concentrated at the vertex that represents heterozygotes (AB). The results of the chi-square test for selection pressure suggest that there is no evidence of selection acting on any of the loci, and the absence of fixed alleles in any of the three breeds supports this conclusion. The exact p-values of the test of HWE deviations are reflected in a ternary plot (Figure 2), with significant deviations indicated by pink dots. The blue parabola represents the expected genotype frequencies under HWE, and the space between the green lines indicates deviations that are not statistically significant.
[image: Figure 1]FIGURE 1 | Alpha diversity q-profiles for the three populations. Allelic richness (q = 0), Shannon information (q = 1), and heterozygosity (q = 2).
[image: Figure 2]FIGURE 2 | Ternary plots illustrating the patterns of Hardy-Weinberg (HW) proportions. Each vertex on the plot represents a different genotype: homozygous for the reference allele (AA), heterozygous (AB), and homozygous for the alternative allele (BB). The plots highlight loci that deviate significantly from Hardy-Weinberg equilibrium, and these loci are indicated in pink. The blue parabola on each plot represents Hardy-Weinberg equilibrium, while the area between the green lines represents the acceptance zone. The plots provide a visual representation of the distribution of the SNPs in relation to the Hardy-Weinberg equilibrium and allow for the identification of loci that may be under selection or experiencing other evolutionary forces.
3.1.2 Genetic diversity/distance among the pig breeds
We used Euclidean distance, pairwise FST, and pairwise Nei’s GST to look at the genetic differences between the three groups of pigs. The heat maps in Figure 3 show the results. The heat maps indicate genetic divergence in red and genetic similarity in blue. Our analysis showed that the LA and DU breeds are the most genetically different from each other. Their estimated Euclidean distances are 2.815, their pairwise FST is 0.048, and Nei’s pairwise GST is 0.052, all of which show that they are very different genetically. Conversely, the YO and LA breeds were found to be the most genetically similar, with estimated Euclidean distances of 2.242, pairwise FST of 0.029, and Nei’s pairwise GST of 0.033, indicating a close genetic relationship between these two breeds.
[image: Figure 3]FIGURE 3 | Distance measures between pig populations. (A) Pairwise FST, (B) Pairwise GST, and (C) Euclidean Distance. The warmer the color, the more the two breeds concerned are genetically distant.
3.2 Discriminant analysis of principal components (DAPC) to explore the pig populations structure
To further explore the population structure, we generated a DAPC plot based on the first and second Principal Components (PCs) (Figure 4A). We used the alpha-score optimization method (Jombart and Collins, 2015) to determine the necessary number of PCs. The clusters in the DAPC plot were defined by prior knowledge of population membership (K = 6). We retained 30 PCs, explaining 40% of the overall genetic variability, as input to the Discriminant Analysis.
[image: Figure 4]FIGURE 4 | Visualization of the distribution of the 300 individuals according to the 300 SNPs (A) considering the first two discriminant functions, and (B) considering the first discriminant function only.
The DAPC plot showed clear clustering of individuals by breed, with the separation between breeds being more distinct in the first discriminant function (Figure 4B). The average assignment probability was 99% for DU and 100% for YO and LA breeds. We identified 28 SNPs that contributed most to breed differentiation based on a threshold of 0.01, and their names are listed in Supplementary Table S2. We performed a PCA on the 300-pig population using these 28 SNPs as variables, and the resulting plot showed clear clustering of individuals by breed (Figure 5). The reduced dataset’s overall assignment probability was 74%, with YO breeds having the highest assignment rates (90%), LA breeds coming in second (73%), and DU breeds coming in third (60%). The assignment rate using the whole dataset was higher compared to using only the most contributing SNPs. However, it is worth noting that the assignment rate achieved using the most informative SNPs remained notably high, standing at no less than 60% (Figure 6).
[image: Figure 5]FIGURE 5 | Two-Dimensional visualization of pig individuals distribution based on the 28 most informative SNPs using the first and second principal components.
[image: Figure 6]FIGURE 6 | Comparison of the overall reassigning probability to actual breed estimated with DAPC using the initial 300 SNPs and the breed-informative selected 28 SNPs.
3.3 Functional enrichment analysis (FEA) of the most discriminating SNPs between the pig breeds
The functional Enrichment Analysis of the genes harboring the most breed informative SNPs revealed three important biological functions: (1) nucleosome, (2) DNA packaging complex, and (3) structural component of chromatin (Figure 7). These functions are crucial for regulating gene expression and maintaining DNA’s structural stability within the nucleus (Alberts et al., 2002). Nucleosomes are integral components of chromatin that organize and compact DNA into a condensed structure. The DNA packaging complex plays a crucial role in assembling and disassembling nucleosomes and regulating chromatin structure and function. The structural constituents of chromatin provide mechanical support to the chromatin fiber, maintaining its integrity. Table 1 presents the short names of these functions and their corresponding p-values, sorted in decreasing order of significance following hypergeometric testing and multiple testing adjustments.
[image: Figure 7]FIGURE 7 | A graphical representation of the adjusted p-values in the negative log10 scale for enriched functions obtained from various databases, including Gene Ontology Molecular Functions (GO:MF), Gene Ontology Cellular Components (GO:CC), Gene Ontology Biological Processes (GO:BP), Kyoto Encyclopedia of Genes and Genomes (KEGG), Reactome Pathway (REAC), micro-RNA target (MIRNA), Human phenotype ontology (HP), and WikiPathways (WP). The enriched functions, namely, (1) nucleosome, (2) DNA packaging complex, and (3) structural component of chromatin, are plotted against their respective databases.
TABLE 1 | Top 3 significantly enriched functions according to their p-values.
[image: Table 1]4 DISCUSSION
Through our study, we have uncovered the genetic diversity present in three commercially important pig breeds, namely, Landrace, Yorkshire, and Duroc. These findings hold significant implications for breeding programs and conservation initiatives focused on preserving the genetic diversity within pig populations.
During our investigation, we observed notable genetic variability in our coding variants across the three breeds. Additionally, the Hardy-Weinberg equilibrium test revealed deviations from the expected population equilibrium. We also noted variations in the diversity q-values and an overall negative FIS value. The presence of an excess of heterozygosity in our dataset likely contributed to the observed HWE imbalance at 46 loci. It is noteworthy that our population does not appear to be subjected to selective pressure, and the deviations may be attributed to random mating among pig individuals, resulting in an isolate-breaking effect (Hamilton, 2021).
The identification of informative SNPs, particularly those located in coding regions, is crucial for developing cost-effective SNP panels to facilitate efficient genotyping and breeding selection. This approach can improve the accuracy and effectiveness of pig breeding programs, leading to the development of more robust and productive pig breeds (Fontanesi et al., 2015). Investigating coding SNPs is important for preventing genetic diseases caused by mutations in specific genes. By identifying these mutations and integrating them into breeding programs, the prevalence of these diseases in pig populations can be reduced, resulting in improved animal welfare and decreased economic losses for farmers (Mellencamp et al., 2008).
Previous research has identified informative SNPs for differentiating among various species, including cattle breeds (Cheong et al., 2013; Zwane et al., 2016; Bertolini et al., 2018) as well as wild boars and domestic pigs (Lorenzini et al., 2020). While previous studies have focused on identifying informative SNPs among commercial pig breeds (YO, DU, and LA) using non-coding SNPs (Schiavo et al., 2020; Hayah et al., 2021), our study aimed to identify informative SNPs using only coding variants.
In our study, we found 28 genetic markers (SNPs) that help distinguish the three pig breeds. Of these, six specific markers did not match what we expected based on the Hardy-Weinberg test.
The presence of these deviating SNPs highlights their importance as potential markers for distinguishing between the various pig breeds. However, it is essential to underscore that further comprehensive research and studies are imperative to validate and elucidate the precise roles and contributions of these SNPs in breed differentiation.
It is important to highlight that previous studies have already provided valuable insights into the implications of specific SNPs that we have identified in our research. For instance, a previous genome-wide association study (Große-Brinkhaus et al., 2015) demonstrated a significant association between the SNP ALGA0039432 and boar taint as well as testes size parameters. This finding underscores the relevance of this particular SNP in relation to these specific traits.
Moreover, our analysis identified two SNPs, namely, ALGA0060925 and DRGA0005996, as key contributors to breed differentiation. ALGA0060925 is positioned downstream on chromosome 11 and is responsible for encoding a long non-coding RNA (lncRNA). In contrast, DRGA0005996 is located on SSC5 and corresponds to the CPNE8 gene, which is responsible for producing the copine-8 protein. Copine-8 is a calcium-dependent phospholipid-binding molecule that plays a crucial role in calcium-mediated intracellular processes. It is worth noting that dysregulation of CPNE8, a member of the Copine family, has been associated with various diseases such as prion disease and gastric cancer in previous studies (Lloyd et al., 2013; Zhang et al., 2022). These findings suggest that CPNE8 may have multifaceted roles beyond breed differentiation and warrants further investigation in relation to its potential involvement in disease pathways.
Furthermore, several other SNPs within our dataset have been previously associated with various phenotypic traits. For example, the intergenic variant ASGA0077916 has demonstrated a significant correlation with the fatty acid composition of the Longissimus dorsi muscle (Sambache Tayupanta, 2016). Another SNP of interest, ASGA0072056, is located on SSC16 within the RETREG1 gene, responsible for encoding the reticulophagy regulator 1. Dysregulation of the RETREG1 gene has been linked to the development of numerous diseases (Islam et al., 2018). In the context of viral diseases, other studies have highlighted the relationship between the absence of the RETREG1 protein and heightened replication of Dengue and Zika viruses (Lennemann and Coyne, 2017). ASGA0008283 is an intergenic variant on SSC1. ASGA0072056 and ASGA0008283 have been shown to be determinant factors in tracing the breeding farm of domesticated pigs (Kwon et al., 2017).
Lastly, ALGA0078229 is situated on SSC14 within the RET gene, which encodes the proto-oncogene tyrosine-protein kinase receptor RET. Dysregulation of RET has been implicated in the development of various tumor types (Zhao et al., 2023). Additionally, a previous study found a significant association between ALGA0078229 and meat quality in German Landrace pigs (Ponsuksili et al., 2014).
Moreover, we conducted a comprehensive investigation to identify the biological processes associated with the SNPs that exhibited deviations from Hardy-Weinberg equilibrium. Notably, one genome-wide association study demonstrated a significant association between ALGA0077162 and immune-relevant traits in the Landrace breed (Dauben et al., 2021). Additionally, ASGA0050304 was identified as a quantitative trait locus strongly linked to intramuscular fat (IMF) in the gluteus medius (GM) and longissimus dorsi (LD) muscles of Duroc pigs (González Prendes, 2017).
Regarding the Functional Enrichment Analysis, our results have revealed three enriched functions that involve three important parts: the nucleosome, the DNA packaging complex, and the structural components of chromatin. These components play crucial roles in DNA packaging, organization, and gene expression, thereby ensuring the efficient functioning of critical nuclear processes such as transcription, replication, and DNA repair (Alberts et al., 2002). Nucleosomes were identified as the most significant function with the lowest p-value. Previous studies have demonstrated a correlation between increased circulating nucleosomes and inflammation as well as autoimmune diseases (Schwarzenbach et al., 2011; Pisetsky, 2012). Therefore, nucleosomes are believed to have the potential to initiate immune responses (Rönnefarth et al., 2006). Moreover, the activation of chromatin is vital for the immune response, with receptor engagement triggering reaction cascades that activate transcription factors and the chromatin template (Paz and Josefowicz, 2021). This synergistic activation of select genes is particularly evident in macrophages during inflammation, where they can rapidly express hundreds of genes (Paz and Josefowicz, 2021), thus highlighting the intricate relationship between chromatin dynamics and immune processes. Investigating these functions and their underlying molecular mechanisms could offer new insights into the regulation of gene expression associated with chromatin abnormalities.
In summary, our study highlights the effectiveness of DAPC in evaluating the genetic structure and admixture levels of pig breeds. The obvious breed-specific separation of individuals seen in the DAPC and PCA plots supports our findings that these three pig breeds have distinct genetic backgrounds. Despite using only coding variants, the SNPs selected by the DAPC approach were able to assign individuals to their respective breeds with a 74% probability of correct assignment. Although this may not match the assignment rate achieved with the full dataset, it is still a significant accomplishment and highlights the importance of carefully selecting impactful genetic markers for analysis. As a result, targeting coding regions associated with traits of interest provides a more straightforward analysis of genome-wide variants and yields more explicit results.
The SNPs discovered in this study have the potential to be used as markers for pig breed identification and conservation initiatives. Further research with larger sample sizes can provide a more comprehensive understanding of the genetic structure of these pig breeds and identify additional coding SNPs that contribute to breed differentiation. By conducting further investigations and experiments, we can gain a deeper understanding of the functional significance and underlying mechanisms of these identified SNPs.
5 CONCLUSION
This study highlights the significant genetic variation present in gene-coding regions among three Italian pig breeds. The Landrace and Duroc breeds were found to be highly divergent, while the Landrace and Yorkshire breeds exhibited closer genetic similarities. Notably, we identified 28 coding SNPs that were particularly informative in differentiating between these breeds, with enough genetic information to form distinct clusters of individuals. Investigating the signaling pathways and functional implications of these SNPs could provide valuable insights into the underlying genetic mechanisms that contribute to breed differentiation. While whole-genome analysis can determine genetic diversity, focusing on breed-specific coding SNPs can streamline the analysis by targeting specific regions relevant to the research question.
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Hybrid de novo and haplotype-resolved genome assembly of Vechur cattle — elucidating genetic variation
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Cattle contribute to the nutritional needs and economy of a place. The performance and fitness of cattle depend on the response and adaptation to local climatic conditions. Genomic and genetic studies are important for advancing cattle breeding, and availability of relevant reference genomes is essential. In the present study, the genome of a Vechur calf was sequenced on both short-read Illumina and long-read Nanopore sequencing platforms. The hybrid de novo assembly approach was deployed to obtain an average contig length of 1.97 Mbp and an N50 of 4.94 Mbp. By using a short-read genome sequence of the corresponding sire and dam, a haplotype-resolved genome was also assembled. In comparison to the taurine reference genome, we found 28,982 autosomal structural variants and 16,926,990 SNVs, with 883,544 SNVs homozygous in the trio samples. Many of these SNPs have been reported to be associated with various QTLs including growth, milk yield, and milk fat content, which are crucial determinants of cattle production. Furthermore, population genotype data analysis indicated that the present sample belongs to an Indian cattle breed forming a unique cluster of Bos indicus. Subsequent FST analysis revealed differentiation of the Vechur cattle genome at multiple loci, especially those regions related to whole body growth and cell division, especially IGF1, HMGA2, RRM2, and CD68 loci, suggesting a possible role of these genes in its small stature and better disease resistance capabilities in comparison with the local crossbreeds. This provides an opportunity to select and engineer cattle breeds optimized for local conditions.
Keywords: indicine, genome, trio binning, Vechur, IGF1, HMGA2, CD68, SrGAP1
INTRODUCTION
Cattle contribute to the nutritional needs and economy of a place. The demand for food from animal sources has been rapidly increasing, especially in developing countries. According to OECD-FAO (Organisation for Economic Co-operation and Development and the Food and Agricultural Organization) of the United Nations Agricultural Outlook 2023–2032, global consumption of milk and dairy products is expected to increase by 0.8% per annum to 15.7 kg milk solid equivalents by 2032. To meet this demand, significant improvement in milk yield is required in developing countries, and improvements in feed, health, and genetics will contribute toward that goal in a sustainable manner. Adopting of new technologies or customization of existing technologies is being carried out in many countries. In general, crossbreeding between a highly adapted but with low-productivity indigenous breed and a poorly adapted but highly productive exotic breed and further selection is conducted to develop a high-yielding well-adapted crossbreed. Cross-breeding under better management has shown a manifold increase in milk yield, thereby leading to substantial increase in household income and reduction of greenhouse gas emission. In recent times, the application of genomics has become increasingly helpful and important for implementation of meticulously planned breeding programs for breed improvement exercises, including breed composition assignment. Genomics-based approaches have been successful in developing economical genotyping panels and/or assays for use during genomic selection, including ancestry proportion determination, which is important during breed selection (Meuwissen et al., 2021; Strandén et al., 2022). Genomic information is used in genomic selection, which helps in more accurate prediction of phenotypes at a young age, utilization of information available for distant breeds, and in reduction of cost, time, and number of crosses as compared to traditional breeding methods (Hayes et al., 2013). Recently, climate change has led to increased incidences of higher-intensity heat waves, which leads to another challenge to the cattle breeding efforts as adaptation to heat stress leads to lower efficiency of production and, thus, is unfavorable to the goal of reducing GHG (Strandén et al., 2022). Indicine breeds are known for their resistance to drought, better tolerance to heat and sunlight (Beatty et al., 2006), and disease resistance (Fernandes Júnior et al., 2020). Thus, crossbreeding using indicine breeds with genomic selection approaches offers a high potential to achieve yield improvement goals. However, the lack of genome sequences of indicine cattle becomes a limiting factor in carrying out genomic-based breeding using indicine breeds. The only available previous reference-based genome assemblies of Bos indicus cattle (Nellore breed) and other indicine breeds were done using a short-read sequencing platform. For B. indicus cattle (Nellore breed), reference-based genome assembly was performed using the SOLiD sequencing platform with very short read lengths of 25 and 50 bases. The recent reference-based genome assembly was carried out using the Illumina platform with read lengths of 150 bases (Canavez et al., 2012; Chakraborty et al., 2023), while there is a high-quality reference genome for taurine cattle breeds (Rosen et al., 2020). Therefore, a quality reference genome of the indicine breed is still lacking.
The biological and economic output efficiency is very important for dairy farmers, and it has been reported that lighter cows provide a comparatively higher economic value based on land (Thompson et al., 2020). It has also been reported that feed efficiency (milk yield per kg feed) was negatively correlated, ranging from −0.18 for wither height to −0.33 for body weight, with body weight and the body measurements ranging from −0.18 for wither height to −0.33 for body weight (Sieber et al., 1988). Thus, an indicine breed with known history in dairy farming and small size would be an important one to study and for crossbreed development. There are around 75 breeds of indicine cattle majorly split between African breeds and Indian breeds. According to the animal genetic resources portal (https://nbagr.icar.gov.in/en/registered-cattle/), there are 53 registered cattle breeds in India. There are phenotypic variations among these breeds. The Vechur breed found in the south-western state of Kerala, where crossbreeding with taurine breeds of cattle has been practiced over the last 6 decades to improve milk production, is a small sized, well-adapted cattle breed with an average weight of about 133.6 ± 3.7 and 173.5 ± 6.8 kg and a height of 89.0 ± 0.7 and 99.8 ± 1.4 cm for cows and bulls, respectively. This was the most popular dairy breed, producing 2–3 L of milk per day in the region before it was replaced by high milk-yielding crossbreeds (Iype, 2013). These cattle are also well-known for their resistance to viral, bacterial, and parasitic diseases compared to the exotic cattle and their crossbreds (Radhika et al., 2018; Shivakumara et al., 2018).
In the present study, we have collected a family trio (sire, dam, and calf) of Vechur cattle. The calf genome was sequenced using both short-read Illumina and long-read nanopore platforms to assemble a genome using a hybrid de novo assembly approach. Using short read sequences of the sire and dam, a haplotype-resolved genome was also assembled. Furthermore, genetic variants were analyzed using the taurine breed reference genome to find an association with various QTLs. FST analysis was carried out using the new genome sequence data and other available genotyping data to find genetic loci that may differentiate Vechur from the rest of the indicine breed and may explain its short stature too.
RESULTS
Samples and sequencing
Blood DNA samples of a family trio consisting of a dam (MT435), a sire (MT436), and its calf (MT434) were collected and sequenced on a short-read Illumina sequencing platform. The calf DNA was also sequenced using the Nanopore long-read sequencing platform. The sequencing details are given in Table 1.
TABLE 1 | Details of sequencing.
[image: Table 1]De novo genome assembly
A hybrid de novo hybrid assembly was performed for the sample MT434 (calf) using CLC Genomics workbench 22.0.5 using both Nanopore and Illumina reads. For this sample, sequencing by both Illumina and Oxford Nanopore NGS platforms generated raw data of 135 GB and 159 GB, respectively, corresponding to 50.3x and 58.89x coverage, respectively. It was performed in two steps, as depicted in Figure 1B: i) de novo assembly of a genome using long, error-prone reads and ii) improve the de novo assembly from long reads by polishing with short, high-quality Illumina reads. The refined assembly results in a genome of 2,693,805,279 bp, and the assembly statistics are given in Table 2. To assess the genome completeness further, the Benchmarking Universal Single-Copy Orthologs (BUSCO) (Simão et al., 2015) was used, which has a predefined and expected set of single-copy marker genes as a proxy for genome-wide completeness. The assembled genome was used, and the genome mode was selected, and for lineage, Eukaryote was selected to run just on eukaryote trees to find optimum lineage. The results have been summarized in Table 2.
[image: Figure 1]FIGURE 1 | (A) A picture of mature Vechur. (B) Schematic diagram showing the hybrid de novo genome assembly pipeline. (C) Schematic diagram of the trio binning haplotype-resolved genome assembly. (D) Pie chart showing the percent of structural variants with each predicted consequences of sample MT434 (calf) obtained using the ensembl variant effect predictor (VEP). (E) Histograms showing chromosome-wise structural variant rate. (F) Pie chart showing percent of single nucleotide variants (SNVs) with VEP predicted consequences. (G) Pie chart showing percent of copy number variants (CNVs) with VEP.
TABLE 2 | Assembly statistics and BUSCO analysis summary.
[image: Table 2]Haplotype-resolved assembly
Haplotype-resolved assemblies were generated using the TrioCanu module of the Canu assembler (Koren et al., 2018). To enable haplotype-resolved assembly of the calf, we performed short-read sequencing of the dam and sire using the Illumina platform with a coverage of 32.58 x and 37.67 x, respectively. These reads were quality-trimmed and filtered. Haplotype binning (trio binning) was conducted which takes the short reads from the parental genomes to partition long reads from the offspring into haplotype-specific sets as depicted in Figure 1C. Details of the binned reads are summarized in Table 3. Using the binned reads, each haplotype was then assembled independently using the Long Read Support (beta) plugin of CLC Genomics workbench 22.0.5. These resulted in a paternal haplotype assembly of 2,556,074,938 bp with an N50 of 1.4 Mbp and a maternal haplotype assembly of 2,618,152,939 bp with an N50 of 2.0 Mbp, as summarized in Table 4.
TABLE 3 | Summary of haplotype binning (trio binning).
[image: Table 3]TABLE 4 | Summary of haplotype-resolved assemblies.
[image: Table 4]Structural and single-nucleotide variant analysis
In comparison to the taurine reference genome ARS-UCD 1.2.15, we detected 30,434 structural variants with 28,982 autosomal structural variants ranging from 50 bp to 9.97 kbp, with an average of one structural variant for every 86,363 bp with the highest and lowest mutation rate on chromosome 19 and 20, respectively (Figure 1E). Most of the variants (∼90%) are in the intergenic and intronic regions, while 529 variants (∼1.2%) are in the coding regions (Figure 1D). In addition, there are 16,926,990 single-nucleotide variants with 1,521,747 novel and 15,405,243 existing variants: 5,634,648 (33.3%) in the coding region, 51,390 missense, 754 nonsense variants, and 11 read-through variants (Figure 1F). When analyzed using CNVnator 4.0 (Abyzov et al., 2011), we also detected 3,395 copy number variations (2,470 deletions and 925 duplications), and the VEP analysis predicts 22% feature truncation, 6% feature elongation and 7% coding sequence variant, as seen in Figure 1G. When the PANTHER database (https://www.pantherdb.org/) was used to functionally annotate the 712 genes found in the inferred CNV regions, the most enriched pathways were the IGF pathway-mitogen-activated protein kinase/MAP kinase cascade, T-cell activation, gonadotropin-releasing hormone receptor pathway, and interleukin signaling pathway.
Furthermore, statistical analysis was carried out using the GALLO R package (Fonseca et al., 2020), which gives enriched QTLs of statistical significance. For this, variants at QTL loci in GALLO R were called, and the variants which are homozygous in both the sire and dam were subject to enrichment analysis. As shown in Figure 2E, QTLs related to milk yield, milk quality, metabolic body weight, dry matter intake, etc., were significantly enriched.
[image: Figure 2]FIGURE 2 | (A) Multidimensional scaling (MDS) analysis of various cattle breeds including indicine breeds to show the clustering of Vechur cattle with the indicine breeds. Breed abbreviation as follows: (i) ET_XXX: European taurine breeds, (ii) Ind_xxx: Indian indicine breeds, (iii) MT434/435/MT436 are the trio Vechur being used in this study, (iv) KEASZ: Kenya Small EASZ, (v) AT: African taurine, (vi) AZ_xx: African zebu breeds, (vii) AO: Sanga (viii) KR: Uganda large EASZ, and (ix) ZS: Uganda small EASZ. (B) Multidimensional scaling (MDS) analysis of various Indian cattle breeds showing the formation of a separate cluster of Vechur cattle. Breed abbreviation as follows: Ind_TP: Tharparkar, Ind_SW: Sahiwal, Ind_GIR: Gir, Ind_OG: Ongole, Ind_VC: Vechur, Ind_Hr: Hariana, and Ind_KG: Kangayam. (C) Admixture analysis of six cattle breeds ranging from K = 2 to K = 5. Breed abbreviation as follows: BRM01, Brahman; NEL01 (Nellore) Indicus; HOL01, Holstein; TAU01, Hereford; JER01, Jersey; MT434 (calf); MT435 (dam); and MT436 (sire) of Vechur breed. (D) Manhattan plot of genome-wide FST values (cut-off value > 0.7) comparing Vechur cattle vs. rest of the Indian breeds. (E) Bubble plot depicting QTL enrichment analysis for variations that are homozygous in both the dam and sire. A darker red shade in the circles indicates more significant enrichment, and the area of the circles is proportional to the number of associated QTLs. The x-axis represents the richness factor, calculated as the ratio of annotated QTLs to the total number of each QTL in the reference database. (F) Bubble plot depicts the enrichment analysis of quantitative trait loci (QTL) for variants identified through FST, showing higher differentiation in Vechur compared to other Indian cattle breeds.
Population analysis
Vechur cattle are well known for its disease resistance, better adaptation for tropical extreme climates, and small stature. Classical multidimensional scaling (MDS) based on pairwise identical-by-state (IBS) distance was performed to understand or validate genetic relatedness and population stratification i) between Vechur and different breeds of cattle worldwide using the data published earlier (Bahbahani et al., 2017) and ii) between Vechur and other Indian indicine breeds using the data published earlier (Dixit et al., 2021) with details of the breeds listed in Table 5. As depicted in Figure 2A, Vechur (Ind_VC) and the present trio (blue squares) cluster together with the other Indian indicine breeds, whereas African zebu (AZs in Figure 2A) breeds and taurine breeds (ETs in Figure 2A) form the other two clusters. Further resolution of the MDS analysis among the Indian indicine breeds, Vechur (ind_VCs, purple circle in Figure 2B) along with the trio (MTxxx, blue squares in Figure 2B), forms a unique subcluster, as depicted in Figure 2B, indicating the presence of a unique selection genetic feature. Admixture analysis also supports the above observation as shown in Figure 2C.
TABLE 5 | List of different breeds for which genotype or genomic sequence data was used in this study.
[image: Table 5]Fixation index (FST) tests were performed to identify SNPs which are highly differentiated in Vechur as compared to other Indian cattle breeds. This analysis would likely reveal SNPs or genomic regions which are involved in controlling body size. As reported earlier, FST analysis results show 35 SNPs (listed in Table 6) with high FST values (>0.7) clustered mainly in certain regions of chromosomes 5, 11, and 18 (Figure 2D), and house protein-coding genes: IGF1, HMGA2, SRGAP1, APOB, ENSBTAG00000020828, RRM2, ZNF276, and CD68 (listed in Table 7).
TABLE 6 | List of SNPs (in the HDbeadchip) with FST values > 0.7.
[image: Table 6]TABLE 7 | Summary of the list of all loci differentiated in the Vechur breed.
[image: Table 7]IGF1 is involved in growth, and dysfunction of HMGA2 results in autosomal dominant growth retardation phenotype (Leszinski et al., 2018). HMGA2 regulates IGF2 which is a paralog of IGF1 and known to regulate growth (Abi Habib et al., 2018). Using the sequence data of the present family trio that has been generated during this study, variants were called for these chromosomal locations listed in Table 7. A total of 2,324 variants were detected, with 520 being homozygous in all the members of the family with 27 missense (22 in APOB and one each in HMGA2, RRM2, IGF1, and SRGAP1 and ENSBTAG00000048587), five splice site variants (two in APOB, one each in RRM2, SRGAP1, and HMGA2), and four 5′UTR and 13 3′UTR (one in IGF1, six in RRM2, and six in ENSBTAG00000048587). We also performed a QTL enrichment analysis on variants with higher FST values, showing greater differentiation in Vechur compared to other Indian cattle breeds (Dixit et al., 2021), using the GALLO R package (Fonseca et al., 2020). Figure 2F shows that QTLs associated with carcass weight, milk quality, and inhibin levels were highly enriched in Vechur.
DISCUSSION
A haplotype-resolved genome of an indicine breed has been assembled in this study. There is a significant improvement of the indicine cattle genome as compared to the presently available reference genome, as reported earlier in Canavez et al. (2012) and recently built short-read sequencing-based genome (Chakraborty et al., 2023). The use of relevant reference genomes is important and could have a large impact on studies, especially on detecting signatures of selection, as has been reported earlier (Lloret-Villas et al., 2021). Among 53 cattle breeds of India listed at https://nbagr.icar.gov.in/en/registered-cattle/, Vechur is one of the smallest indicine breeds in the world with exceptional adaptation to the tropical weather conditions. Thus, this genome would help in unraveling genetic factors involved in such adaptation.
MDS plot and admixture analysis revealed that Vechur is one of the indicine breeds and its haplotype-resolved genome would serve as a better reference genome for the local and pan-Indian indicine breed. Most of the dairy cattle breeds in India are crossbreeds between taurine breeds like Jersey and Indian breeds. The availability of an indicine breed reference genome would help in genetic studies related to milk production and local environment adaptation phenotypes using state-of-the-art genomic selection procedures. Moreover, a better understanding of genetic factors may help in applying targeted genome editing technologies to introduce desirable trait-related genetic variants in the genome.
We also found high genetic differentiation in multiple regions of the Vechur breed genome as compared to the other indicine breeds. These regions host genes including IGF1, HMGA2, SRGAP1, APOB, ENSBTAG00000020828, RRM2, ZNF276, and CD68. IGF1 is a known growth promoting gene and has been reported to contribute 30%–45% of growth in mice (Liu et al., 1993; Stratikopoulos et al., 2008). HMGA2-deficient mice, zebrafish, and horse also show reduced growth (Frischknecht et al., 2015; Lee et al., 2022). The HMGA2 deficiency phenotype for reduced growth may be explained by its regulation of IGF2 (Abi Habib et al., 2018), which is again related to IGF1. There is one missense IGF1 variant (T151M) and HMGA2 (G41C) variant homozygous in all the members of the family. These and other variants in these genes are likely to contribute majorly in the small stature phenotype of this cattle breed. CD68 is a macrophage marker and is reported to be involved in inflammatory reactions (Holness and Simmons, 1993). We believe this Vechur genome assembly will provide genomic resources for evolutionary studies in combination with the other bovine species. Overall, a haplotype-resolved genome of an Indian indicine cattle is reported in this study and will help in genomic selection studies related to improved milk yield, improved efficiency, and better adaptation.
MATERIALS AND METHODS
DNA isolation from blood samples
Two millilitres of blood samples were taken in a 15-mL Falcon tube, and 4 mL of chilled lysis buffer (150 mM NH4Cl, 10 mM 1M KHCO3, and 0.1 mM EDTA) was added. It was kept on ice for 10 min after mixing. It was then centrifuged at 7,000 rpm for 10 min at 4°C. The supernatant was discarded, and the process was repeated until the pellet is clear of RBC (washing two to three times is sufficient). A total of 300 μL of extraction buffer (400 mM NaCl, 2 mM EDTA, 10 mM TrisCl pH 8.0) was added and mixed well. A total of 100 µL of proteinase K (0.2 mg/mL) and 125 µL of 20% SDS was added, mixed, and incubated at 56°C for 6 hours or overnight. Phenol chloroform extraction was performed by adding 500 µL of phenol–chloroform–isoamylalcohol (25:24:1) to the mixture and mixed well by gently inverting the tube up and down for 10 min to get a milky emulsion. Then, the mixture was centrifuged at 10,000 rpm for 6 mins, and the upper aqueous phase was gently extracted again with 500 µL of chloroform–isoamylalcohol (24:1). The DNA was precipitated by adding 1/10th volume of 3M sodium acetate (of an aqueous layer) and 2.5 times volume of chilled absolute alcohol followed by centrifugation first at 10,000 rpm for 5 min and then at 12,000 rpm for next 5 min and finally at 14,000 rpm for 10 min at 4°C. The pelleted DNA was washed two times with 300 µL of 70% ice cold ethanol and dried at room temperature. It was then dissolved in 100 µL nuclease-free water or 1x TE buffer by incubating at 56°C for 10 min. The DNA was then stored at −20°C until further use.
Sequencing
Extracted DNA was sequenced on both the Illumina and Oxford Nanopore platforms. The short reads produced by Illumina technology were used to estimate genome size and correct errors in the assembled genome. Long reads from the Oxford Nanopore device, on the other hand, were used in the actual genome assembly process. For the Illumina platform, the library was prepared using the Illumina DNA Prep kit 20060060 and sequenced on the Illumina Novaseq 6000 sequencer using S4 flowcell and Novaseq 6000 S4 reagent kit v1.5 (300 cycles). In addition, another library with an average length of 20 kilobases was created using the Oxford Nanopore platform in line with the manufacturer’s instructions. The library was prepared using the Nanopore Ligation sequencing kit and sequenced on the PromethION 24 (P24) platform using FLO-PRO002 R9.4.1 as well as FLO-PRO112 R10.4.
Genome assembly
The “De Novo Assemble Long Reads” tool within CLC Genomics Workbench version 22.0.5 was used with a specialized plugin for de novo hybrid assembly. This tool is designed for processing long, error-prone reads, like those from Oxford Nanopore Technologies. It uses open-source components: minimap2, miniasm, raven, and racon. The hybrid assembly involves two main steps: first, the de novo assembly of a genome using long, error-prone reads and second, the refining of the initial de novo assembly produced from long reads using short, high-fidelity reads.
The uncorrected nanopore reads were used directly. The process begins with finding overlap alignments among the input reads using miniasm/minimap2. These overlaps are preprocessed with pile-o-grams, creating an assembly graph, which is then simplified to produce contigs using the raven assembler. The default settings (k = 15, w = 5, minimum contig size = 1000) and two rounds of racon polishing were applied. Contig polishing is performed twice using racon/minimap2, which improves a partial order alignment (POA = 500) of the reads against the contigs and contig quality through rapid consensus calling.
The assembly was further polished with high-quality Illumina short reads using racon and enhancements from minipolish. Racon uses a divide-and-conquer strategy for rapid consensus calling. Trimmomatic 0.39 was used to trim and filter Illumina reads for quality and length. These reads were then mapped to assembled contigs to refine them. Most contigs had roughly 40 x coverage or higher. The binned reads for individual contigs were retrieved and used for polishing. The partial order alignment (POA) window was set to 500 bp, and the minimum sequence length for output was 10,000 bp, as all contigs were longer. The remaining settings remained consistent.
Haplotype-resolved assembly
Haplotype-resolved assemblies were also prepared using the TrioCanu module of the Canu assembler (Koren et al., 2018). Prior to assembly, haplotype binning (trio binning) was conducted, which takes the short reads from the parental genomes to partition long reads from the offspring into haplotype-specific sets. Each haplotype is then assembled independently, resulting in a complete diploid reconstruction. For MT434, the parental reads MT435-dam and MT436-sire were quality-trimmed and filtered and then are used for trio binning using the long reads of their offspring MT434. The trio binning divides the total reads into paternal and maternal groups on the basis of the presence of the haplotype-specific k-mers in those bins. These haplotypes were then assembled using the Long Read Support (beta) plugin of CLC Genomics workbench 22.0.5.
Structural variant analysis
The initial draft assembly was aligned using NUCmer (l = 100, c = 500) against the reference genome Bos taurus (cattle)–Hereford breed (ARS-UCD 1.2; GCF_002263795.1) to obtain a delta file, which was then uploaded to Assemblytics to analyze alignments. The input file (OUT.delta.gz) has been provided for loading on the Assemblytics web server and can be used to view the results dynamically. An Ensembl Variant Effect Predictor (McLaren et al., 2016) was used to predict the consequences of the structural variants.
Alignments and variant identification
Prior to mapping, adapter sequences and low-quality reads were removed using Trimmomatic 0.39, and high-quality reads were aligned to the UMD3.1 bovine reference genome assembly using the BWA-MEM option of Burrows–Wheeler Alignment program (BWA) version 0.7.5a with default parameters (Li, 2013). Following alignment, SAMtools (version 1.9) (Danecek et al., 2021) was used to convert the SAM files to binary format (BAM, Binary Alignment Map) sorting of the mapped reads according to chromosome position. Duplicate reads were filtered from the sorted BAM files using the Picard tool’s MarkDuplicates program (v2.17.11). The single-nucleotide polymorphisms (SNPs) were discovered using the HaplotypeCaller function of the Genome Analysis Toolkit (GATK, version 3.8). All SNPs were filtered using GATK’s “VariantFiltration” with preliminary filter settings of “QUAL <30.0, QualByDepth (QD) < 2.0, Fisher’s exact test (FS) > 60.0, RMS Mapping Quality (MQ) < 40.0, StrandOddsRatio (SOR) > 3.0, MappingQualityRankSumTest (MQRankSum) < −12.5, and ReadPosRankSumTest (ReadPosRankSum) < −8.0>”.
QTL enrichment analysis
To better understand the unique traits of Vechur cattle, we developed an in-house script to identify genetic variations based on homozygosity in both the dam (MT436) and sire (MT435). Additionally, we used the ‘GALLO’ package in R (Fonseca et al., 2020) for QTL enrichment analysis of homozygous altered allele SNPs in both the dam and sire. QTL annotations for these SNPs were obtained using the ‘find_genes_qtls_around_markers’ function with a GFF file from The Animal QTL Database aligned to the ARS_UCD1.2 reference genome. QTL boundaries were set within 100 kB upstream and downstream of each significant SNP. The enrichment analysis involved computing adjusted p-values (Padj values) through a false discovery rate (FDR) with a chromosome-based technique. Traits associated with specific chromosomes and with a Padj value below 0.05 were considered. Visualization of chromosome-enriched traits with significant Padj values was facilitated using the “QTLenrich_plot” function.
Copy number variation (CNV) detection
The read depth-based CNVnator approach (Abyzov et al., 2011) was employed to determine genomic CNVs between the Vechur sample (MT434) and the ARS-UCD 1.2 bovine reference assembly. According to the author’s recommendations, CNVnator was run on sorted BAM files with a bin size of 100 bp. Following calling, raw CNVs were subjected to quality control to retain confident CNVs. The filtering criteria were p-value <0.001 (calculated using t-test statistics) and q0 (fraction of mapped reads with zero quality) < 0.5. The genes found in the inferred CNV regions were retrieved and functionally annotated using PANTHER (https://www.pantherdb.org/) (Nikolsky and Bryant, 2009).
Population structure analysis
To validate genetic relatedness and population stratification, along with our samples, previously reported data comprising 112 individuals of various B. indicus breeds were used as the reference (Dixit et al., 2021). These reference populations include Sahiwal (13), Tharparkar (17), Gir (15), Ongole (17), Hariana (18), Kangayam (16), and Vechur (16). Both the datasets were merged using the “vcf merge” tools of VCFtools (Danecek et al., 2011), and only common SNPs in both datasets were preserved. Then, using the program PLINK (version 1.07) (Purcell et al., 2007), we performed classical MDS based on pairwise IBS distance and rendered the plot using the R package MDS plot.
Linkage pruning was also performed for Admixture analysis using PLINK (Purcell et al., 2007), with parameter: indeppairwise = 50 10 0.1, which performs linkage pruning with a window size of 50 kb, window step size of 10 bp, and r2 threshold of 0.1 (i.e., the linkage acceptable threshold). This stage chose a group of independent variants to reduce redundancy. Admixture v1.3.0 (Alexander et al., 2009) was then used to read the PLINK bed file with the default parameters (cross-validation, cv = 5) and cluster number k) ranging from 2 to 5. The findings are plotted using R script.
Screening of differentially selected regions
We employed FST to detect positive selection signatures in the Vechur genome based on whole-genome SNPs, and other individuals of various B. indicus breeds were used as the reference from previously published data (Dixit et al., 2021). First, the mean FST value according to Weir and Cockerham’s pairwise estimator approach (Weir and Cockerham, 1984) was determined in autosomal chromosomes using VCFtools (v.0.1.13) (Danecek et al., 2011) with default parameters. Genes in the genomic regions with high Z-transformed FST value (>7.5) were used to identify their functions in terms of Gene Ontology. The results of population differentiation were visualized in the form of a Manhattan plot by the qqman R package (Turner, 2018).
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Information on the genetic architecture of the production traits of indigenous African chicken is limited. We performed a genome-wide association study using imputed Affymetrix Axiom® 600K SNP-chip genotypes on 1,113 chickens from three agroecological zones of Ghana. After quality control, a total of 382,240 SNPs remained. Variance components and heritabilities for some growth, carcass and internal organ traits were estimated. The genetic and phenotypic correlations among these traits were also estimated. The estimated heritabilities of body weight at week 22 (BW22), average daily gain (ADG), dressed weight, breast weight, thigh weight, wing weight, drumstick weight, and neck weight were high and ranged from 0.50 to 0.69. Estimates of heritabilities for head weight, shank weight, and gizzard weight were moderate (0.31–0.35) while those of liver weight, back weight, dressing percentage, and heart weight were low (0.13–0.21). The estimated heritabilities of dressed weight, breast weight, wing weight, drumstick weight, neck weight, shank weight, and gizzard weight, corrected for BW22, were moderate (0.29–0.38), while the remaining traits had low heritability estimates (0.13–0.21). A total of 58 1-Mb SNP windows on chromosomes 1, 2, 4, 5, 6, 7, 8, 9, 13, 18, and 33 each explained more than 1% of the genetic variance for at least one of these traits. These genomic regions contained many genes previously reported to have effects on growth, carcass, and internal organ traits of chickens, including EMX2, CALCUL1, ACVR1B, CACNB1, RB1, MLNR, FOXO1, NCARPG, LCORL, LAP3, LDB2, KPNA3, and CAB39L. The moderate to high heritability estimates and high positive genetic correlations suggest that BW22, ADG, dressed weight, breast weight, thigh weight, wing weight, drumstick weight, and neck weight could be improved through selective breeding.
Keywords: GWAS, Ghanaian chicken ecotypes, carcass traits, internal organ traits, growth traits
1 INTRODUCTION
Several indigenous African chicken ecotypes, including the Forest (FO), Interior savanna (IS) and Costal savanna (CS) ecotypes of Ghana have been reported (Walugembe et al., 2020). These chickens are hardy and thrive quite well in severe climates and environments (Pius et al., 2021). They are a major source of protein and play very important roles in sustaining the livelihoods of many households in Africa. Furthermore, there is also a perception that the meat of indigenous chicken ecotypes is very tasty, thus contributing in a large part, to a high demand for the meat of indigenous chickens in Ghana and many other parts of Africa (Asante-Addo and Weible, 2020; Ragasa et al., 2020).
The ability of indigenous chickens to thrive in different agroecological zones of Africa can in part be attributed to the variety of adaptive traits they possess, including thermotolerance, ability of escape predation, resistance to several endemic diseases (Mpenda et al., 2019), and a capacity to thrive under conditions of feed and water scarcity. Notwithstanding these important adaptive traits, indigenous African chicken ecotypes tend to have comparatively lower growth rates and body sizes (Munisi et al., 2015; Birteeb et al., 2016). As a result, many subsistence farmers tend to breed them with other breeds of chicken with the objective of increasing their body weights, a situation that can occasion the loss of their adaptive traits.
Some studies on the production traits of indigenous African chicken are available (Osei-Amponsah et al., 2013; Dekkers et al., 2018) but very few comprehensive genome-wide association studies (GWAS) on their production traits have been carried out. It is therefore imperative to unravel the genetic architecture of the production traits of indigenous chicken populations of Ghana to provide better insights for the genetic improvement of these traits in future. This GWAS therefore sought to examine the genetic architecture of the growth, carcass, and internal organ traits of the Forest, Interior and Coastal Savanna chicken ecotypes of Ghana.
2 MATERIALS AND METHODS
2.1 Experimental design
A total of 1,113 chickens, made up of the CS, the IS, and FO chicken ecotypes were used in this study. These are chickens whose parents have been described in Walugembe et al., 2020. Each ecotype was housed separately in deep litter pens. The dimensions of each pen were 2.54 m × 2.2 m × 2.2 m and housed a maximum of 40 birds. From day 1 to week 8, all birds were fed a standard chick starter mash, while from week 9 to week 22 they were fed a standard chick grower mash. Water was available on an ad libitum basis. Vaccination, feeding, and all other management practices were the same for all the chickens in the study.
At hatch, the body weight of every bird was measured and thereafter measured fortnightly until 22 weeks of age. From this data, average daily gain (ADG) was calculated as the linear regression of body weight on days of age. At week 23, the birds were euthanized and several carcass and internal organ traits including breast, thigh, wing, drumstick, neck, back, shank, head, gizzard, heart, liver and dressed weights were measured. Except for the gizzard, heart, and liver, the rest of the parts contained some skin.
2.2 Genotyping
Blood samples were collected from the wing veins of the chicks at 5 weeks of age using Whatman FTA cards (Sigma-Aldrich, St. Louis, MO, United States). Genomic DNA was isolated from the FTA cards for genotyping by sequencing (GBS) using a 5K GBS panel which was developed specifically for local Ghanaian and Tanzanian chicken ecotypes. A total of 5,238 SNPs were included in the SNP panel. Details on the development of the GBS panel are given in Walugembe et al. (2022). The genome sequences obtained were subjected to a customized SNP-pipeline that resulted in 5K SNP genotypes of each bird. These genotypes were then imputed to 382,240 SNPs that remained after quality control of high-density genotype data of relatives using Affymetrix Axiom® 600K SNP chip [the high-density genotype data are described in Walugembe et al. (2020)]. Imputation was performed using Fimpute (Sargolzaei et al., 2014).
2.3 Population structure
The FO, CS, and IS chicken ecotypes of Ghana that were used in this study are reported to originate from three ancestral populations (Walugembe et al., 2020). To deduce the proportion of ancestral subpopulations in each chicken, we carried out admixture analyses on the imputed genotypes using the Admixture software (Alexander et al., 2009), with the number of sub-populations set to three. These ancestral subpopulation proportions were used as covariates in the downstream genetic analyses.
2.4 Genetic parameters
Variance components and heritabilities were estimated using the following univariate linear model: [image: image] (Model 1), where y is the vector of phenotypes (Body weight at week 22, ADG, breast weight, drumstick weight, thigh weight, wing weight, dressed weight, dressing percentage, head weight, neck weight, shank weight, back weight, gizzard weight, liver weight, and heart weight); b is the vector of the fixed effects (replicate, sex, and pen by replicate), and covariates (three ancestral subpopulation proportions obtained from the admixture analysis); a is the vector for random animal genetic effect; e is the residual effect; X and Za are the incidence matrices for the effects in the b and a vectors respectively.
Body weight at week 22 (BW22) was also fixed as a covariate (Model 2) for some of the traits, i.e., breast, thigh, wing, drumstick, neck, back, shank, head, gizzard, heart, liver and dressed weight. The covariate explains out some of the variation in these traits due to body weight.
The genetic and phenotypic correlations between traits were estimated by fitting pairwise bivariate models with the same effects as in the univariate linear models. All models were implemented in ASReml 4 (Gilmour et al., 2015).
2.5 Genome-wide association and bioinformatics analyses
Genome-wide association analysis was performed using Bayes B (Meuwissen et al., 2001; Cheng et al., 2015), as implemented in the JWAS package (Cheng et al., 2015), to estimate the genetic variance accounted for by each 1-megabase (Mb) SNP window across Gallus gallus 6 genome build. Both Models 1 and 2 were used. 1-Mb SNP regions that explained more than 1% of the genetic variance in a trait were considered significant. To identify genes within significant 1-Mb SNP windows, we resorted to the Genome Data Viewer in NCBI—https://www.ncbi.nlm.nih.gov/genome/gdv/browser/genome/?id=GCF_000002315.6.
3 RESULTS
3.1 Population structure
The admixture analysis based on identity by state as shown in Figure 1, indicates that notwithstanding the evidence of admixture, all the three ecotypes appeared to have come from three distinct ancestral populations. The IS ecotype had a high proportion of subpopulation 1 (0.83) but with lower proportions of subpopulations 2 (0.11) and 3 (0.05). The CS ecotype had a higher proportion of subpopulation 2 (0.74) and lower proportions of subpopulations 1 (0.09) and 3 (0.16), while the FO ecotype had a higher proportion of subpopulation 3 (0.63) and lower proportions of subpopulation 1 (0.22) and subpopulation 2 (0.15).
[image: Figure 1]FIGURE 1 | Admixture plot showing mixed ancestry among birds from the three Ghanaian chicken ecotypes.
3.2 Genetic parameters
The heritabilities and correlations of the growth, carcass, and internal organ traits of the FO, CS, and IS chicken ecotypes of Ghana, i.e., body weight at 22 weeks of age (BW22), average daily gain (ADG), breast weight (BrW), drumstick weight (DW), thigh weight (TW), wing weight (WW), dressed weight (DrW), and dressing percentage (DP) were estimated. These are presented in Tables 1, 2, while the estimated heritabilities and correlations of other body parts and internal organs, i.e., head weight (HW), neck weight (NeW), shank weight (ShW), back weight (BaW), gizzard weight (GzW), liver weight (LiW), and heart weight (HeW), are presented in Tables 3, 4.
TABLE 1 | Estimates of heritabilities (along diagonal) and of genetic (above diagonal) and phenotypic (below diagonal) correlations for growth and carcass traits from Model 1 (without BW22 as a covariate).
[image: Table 1]TABLE 2 | Estimates of heritabilities (along diagonal) and of genetic (above diagonal) and phenotypic (below diagonal) correlations for growth and carcass traits from Model 2 (with BW22 covariate).
[image: Table 2]TABLE 3 | Estimates of heritabilities (along diagonal) and of genetic (above diagonal) and phenotypic (below diagonal) correlations for carcass traits and internal organs from Model 1 (without BW22 as a covariate).
[image: Table 3]TABLE 4 | Estimates of heritabilities (along diagonal) and of genetic (above diagonal) and phenotypic (below diagonal) correlations for carcass traits and internal organs from Model 2 (with BW22 as a covariate).
[image: Table 4]For Model 1 (without BW22 as a covariate), as shown in Tables 1, 3, the estimated heritabilities of DP, LiW, HeW and BaW were low (0.13–0.21), while those for the other traits ranged from medium to high (0.31–0.69). Estimates of the genetic correlation between DP and BW22 and between DP and ADG were low. DP also had low phenotypic correlations with BW22, ADG, and TW. HW had low phenotypic correlations with GzW and LiW, while GzW also had a weak correlation with HeW. The rest of the traits had positive medium to high genetic and phenotypic correlations with each other.
For Model 2 (with BW22 as a covariate), as shown in Tables 2, 4, the estimated heritabilities for TW, LiW, and BaW were low (0.13–0.21), while the estimated heritabilities for some other traits were moderate and ranged from 0.29 for BrW to 0.38 for WW. GzW had negative estimates of genetic correlations with HW and NeW. LiW also had negative genetic correlation estimates with HW, NeW and ShW. The phenotypic correlation between BaW and ShW, and between GzW and LiW was negative. In addition, HW also had negative phenotypic correlations with GzW and LiW. Among the traits, ShW and NeW, BaW and NeW, GzW and LiW, and HeW, and NeW had high genetic correlation estimates, while HW and NeW, and HW, and BaW had high phenotypic correlations. The rest of the traits had low estimates of genetic and phenotypic correlations.
The effects of the ancestral subpopulation proportions as covariates in the downstream genetic analysis were statistically not significant.
3.3 Genome-wide association study
After quality control, a total of 1,113 birds and 382,240 SNPs were used for the GWAS. The percentage of genetic variance explained by 1-Mb genomic regions that are associated with the growth, carcass, and internal organ traits, with and without BW22 as covariate, are shown in Table 5 and the genes that are within significant 1-Mb windows are shown in Tables 6, 7.
TABLE 5 | Percentage of genetic variance explained by 1-Mb genomic regions that are associated with growth, carcass, and internal organ traits (≥1.0% of genetic variance) based on the Bayes-B method, using Model 1 (without BW22 as covariate) and Model 2 (with BW22 as covariate).
[image: Table 5]TABLE 6 | Positions and genes located in 1-Mb windows that explained ≥ 1% of genetic variance for growth, carcass, and internal organ traits (Model 1: without BW22 as a covariate).
[image: Table 6]TABLE 7 | Positions and genes located in 1-Mb windows which explain ≥1% of genetic variance for growth, carcass, and internal organ traits (Model 2, with BW22 as a covariate).
[image: Table 7]Eight 1-Mb windows of SNPs that explained more than 1% of the genetic variance of body weight at week 22 were found. Two of these windows on chromosomes 1 and 4 explained more than 10% of the genetic variance of this trait (see Supplementary Figure S1A). These regions contained several annotated genes including SLIT2, LCORL, NCARPG, LAP3, MED28, INTS6, DLEU7, CKAP2, KPNA3, and CAB39L (Table 6).
Five 1-Mb windows of SNPs explained more than 1% of the genetic variance of ADG (Supplementary Figure S1B). One of these windows located on chromosome 4 explained more than 10% of the genetic variance of ADG. This window contained several genes including SLIT2, LCORL, FAM184B, NCARPG, QDPR, LAP3, MED28, and MIR218-1 (Table 6).
For breast weight, seven 1-Mb SNP windows on chromosomes 1, 4, and 33 reached the level of significance (see Supplementary Figure S2C). These windows together explained about 20.5% of the genetic variance of this trait. Many genes including RNASEH2B, INTS6, SERPINE3, DLEU7, WDFY2, NEK3, NEK5, CKAP2, TPTE 2, SLC25A15, FOXO1, SLIT2, LCORL, NCARPG, LAP3, SCN8A, FIGNL2, ANKRD33, ACVRL1, and ACVR1B were found in these regions (Table 6). With BW22 included as a covariate (Model 2), the number of significant SNP windows decreased from seven to three and explained only about 6.63% of the genetic variance of this trait. Within these SNP windows, several genes, including SCN8A, FIGNL2, ANKRD33, ACVRL1, ACVR1B, MYH10, ELAC2, DNAH9, TRNAM-CAU, PIRT, SHISA A6, RNF222, NDEL1, CCDC42, PIK3R5, PIK3R6 were co-located on chromosome 1, chromosome 18 and chromosome 33 (Table 7).
Two SNP windows on chromosomes 1 and 4 explained 32.5% of the genetic variance of drumstick weight (Supplementary Figure S2D). These windows contained 34 annotated genes including SLIT2, LCORL, NCARPG, LAP3, MED28, CLRN2, MIR218-1, KPNA3, CAB39L, CDADC1, RCBTB1, ARL11, SPRYD7, TRIM13, KCNRG, MIR15-A, SETDB2, LPAR6, and MED4 (Table 6). However, with BW22 as a covariate, the number of significant SNP windows increased from two to three, but they explained only 4.43% of the genetic variance of this trait. Seventy-two genes on chromosomes 1, 7, and 15 were observed. These include MBD5, ACVR2A, ORC4, EPC2, KIF5C, LYPD6, MMADHC, MIR1C, DERL3, SLC2A11, MYO7A and CAPN5 (Table 7).
One SNP window on chromosome 4 and three SNP windows on chromosome 1 explained about 40.9% of the genetic variance of WW (Supplementary Figure S3E). These regions contained many genes some of which are UVRAG, LRRC32, GUCY2F, ENSY, THAP12, TRNAP-AGG, TRNAP-UGG, WNT11, ART1, ART7B, ART7C, MADPRT1, IL18BP, RNF121, RNF169, TRPC2L, NUMA1, LAMTOR1, LRTOMT, ANAPC15, WDR73, ADAM15, SLCO2B1, TPBGL, PGM2L1, KCNE3, LIPT2, POLD3, CHRDL2, and XRRA1 (Table 6). With BW22 as a covariate, four SNP windows on chromosomes 1, 2, 4 and Z were significant, and together they explained 10.21% of the genetic variance of WW (Table 7).
Four SNP windows on chromosomes 1 and 4 explained 31.8% of the genetic variance of thigh weight (Supplementary Figure S3F). Many annotated genes, including LSAMP, EPHAS, CADM2, ROBO1, DSCAM, DMD, GPC5, PCDH9, NBEA, CNTNS, FAT3, DLG2, TENM4, IL1RAPL1, FAM155A, RNASEH2B, INTS6, FAM124A, SERPINE3, DLEU7, WDFY2, DHRS12, TMEM272, ATP7B, ALG11, NEK3, NEK5, CKAP2, VPS36, THSD1, FGL1L, TPTE2, SLC25A15, MRPS31, and FOXO1 were observed within these regions (Table 6). With the inclusion of BW22 as a covariate, only 1 SNP window on chromosome 1 was significant and explained about 1.01% of the genetic variances for thigh weight. This genomic region contained OLFM4 (Table 7).
One SNP window on chromosome 4 explained about 14% of the genetic variance of dressed weight (Supplementary Figure S4G). This region contained SLIT2, LCORL, FAM184B, NCARPG, QDPR, LAP3, MED28, MIR218 (Table 6).
Three SNP windows, two on chromosome 4 and one on chromosome 1, explained about 11% of the genetic variance of back weight (Supplementary Figure S4H). These genomic regions contained many genes as shown in Table 6. With BW22 as a covariate, only 2% of the genetic variance was explained by one SNP window on chromosome 4.
A total of three SNP windows on chromosomes 1, 4, and 8 explained about 5.5% of the genetic variance of head weight (Supplementary Figure S5I). The genes in these genomic regions can be seen in Table 6. The inclusion of BW22 as a covariate had two SNP windows on chromosomes 3 and 10 explaining 4.45% of the genetic variance of this trait and the genes in these genomic regions are shown in Table 7.
About 14.6% of the genetic variance of neck weight was explained by four SNP windows. Two of these SNPs were on chromosome 1 while the rest were on chromosomes 4 and 9 (Supplementary Figure S5J). The inclusion of BW22 as a covariate increased the amount of genetic variance explained by the same SNP windows to 19.45%. The annotated genes located in these genomic regions are shown in Tables 6, 7.
Two SNP windows on chromosome 1 and one SNP window on chromosome 4 explained about 44.5% of the genetic variance of shank weight (Supplementary Figure S6K). The inclusion of BW22 as a covariate increased the amount of genetic variance explained by the same SNP windows to 49.1%. Tables 6, 7 show the annotated genes that are found in these genomic regions.
Two SNP windows on chromosome 4 and one SNP window on chromosome 1 explained about 23.7% of the genetic variance of gizzard weight (Supplementary Figure S6L). The inclusion of BW22 as a covariate decreased the amount of genetic variance explained by the same SNP windows to 20.95%. Tables 6, 7 show the annotated genes that are found in these genomic regions.
One SNP window on chromosome 4 explained 20.5% of the genetic variance of liver weight (Supplementary Figure S7M). The inclusion of BW22 as a covariate increased the amount of genetic variance explained by this SNP windows to 24.43%. This window contained several genes (see Tables 6, 7).
About 12% of the genetic variance of heart weight was explained by seven SNP windows. Two of these were on chromosome 1 while the rest were on chromosomes 4, 6, 7, 13, and 33 (Supplementary Figure S7N). With the inclusion of BW22 as a covariate, the above-mentioned SNP windows, except for the SNP window on chromosome 13, explained 9.44% of the genetic variance of this trait. The annotated genes located in these genomic regions can also be seen in Tables 6, 7.
4 DISCUSSION
4.1 Population structure
The admixture analysis based on identity by state (Figure 1), indicates that notwithstanding the evidence of admixture, all the three chicken ecotypes of Ghana appeared to have come from three distinct ancestral populations. Similar observations have been reported by Osei-Amponsah et al. (2010b). In another study involving the same chicken ecotypes, some of which were related to those used in this study, Walugembe et al. (2020) also arrived at the same conclusion. The IS ecotype appeared distinct from the CS and FO ecotypes, which, on the other hand, appeared to have a somewhat similar ancestry. The admixture of the CS and FO ecotypes could be a result of significant gene flows between the forest and coastal agroecological zones due to their proximity to each other.
4.2 Genetic parameters
Estimates of heritabilities for the growth and carcass traits of the three chicken ecotypes of Ghana, without BW22 as a covariate, as shown in Tables 1, 3 ranged from a low of 0.17 for BaW to a high of 0.69 for ADG. These estimates generally agree with the findings of several authors, including Rance et al. (2002), Venturini et al. (2014), El-Attroun et al. (2017), and El-Attroun et al. (2021). On the other hand, estimates of heritability for the internal organs ranged from a low of 0.13 for LiW to a medium of 0.35 for GzW. Heritability estimates for HeW and GzW are similar to those reported by Gaya et al. (2006), Venturini et al. (2014), and Dou et al. (2019) while the estimate of heritability for LiW was also similar to the findings of Moriera et al. (2019) but different from those of Venturini et al. (2014) and Dou et al. (2019). Growth traits of unselected chicken populations tend to have relatively high heritability. For example, Walugembe et al. (2020) also found a heritability for growth rate even after a challenge with La Sota Newcastle Disease Virus strain of above 0.4, and a pre-challenge heritability of 0.55.
Inclusion of BW22 as a covariate did not significantly affect heritability estimates of any of the internal organ traits (Table 4). However, with BW22 as a covariate, estimates of heritabilities of the carcass traits (Table 2) ranged from 0.21 for TW to 0.38 for WW. Direct selection could therefore be effective in improving some of these traits in Ghanaian local chicken populations.
High positive genetic and phenotypic correlations were found between most of the traits, except between DP and BW22 and between DP and ADG, which had low genetic and phenotypic correlation estimates. HW also had low phenotypic correlations with GzW and LiW. Estimates of the genetic correlation of BW22 with ADG, DrW, BrW, TW, WW, and DW were positive and high, suggesting that these traits could make indirect genetic gains when selection is directed at increasing BW22. Furthermore, the estimate of the genetic correlation between LiW and HeW was also high and similar to the findings of Rance et al. (2002) and Gaya et al. (2006). Inclusion of BW22 as covariate did not change the magnitude and direction of estimates of the phenotypic and genetic correlations for most carcass traits but led to a reduction in correlation estimates between the internal organ traits. Moderate to strong positive genetic and phenotypic correlations of body weight with carcass traits of chicken have also been reported by Venturini et al. (2014), Bungsrisawat et al. (2018), and El-Attrouny et al. (2021) but these conclusions are at variance with those of Osei-Amponsah (2010a), who reported weak to moderate negative phenotypic correlations between live weight and most carcass traits of Forest and Savannah chicken populations of Ghana. The small differences between estimates of the phenotypic versus the genetic correlations suggest that the environmental correlation was of similar magnitude as the genetic correlation. Furthermore, the medium to strong positive genetic correlation estimates between some of the growth, carcass, and internal organ traits of local chicken ecotype populations in Ghana suggests that selection based on body weight could enhance some of the carcass traits.
4.3 Positional candidate genes for growth traits of local chicken
Body weight is a polygenic trait, and chromosomes 1 and 4 of the chicken genome have been widely reported to harbour QTL for growth (Podisi, et al., 2013; Mebratie et al., 2019; Wang et al., 2022). In this study, a 1-Mb SNP window on chromosome 4 explained 19.7% and 11.6% of the genetic variance for BW22 and ADG, respectively, while another SNP window on chromosome 1 also explained 10.4% and 9.6% of the genetic variance of BW22 and ADG. These two chromosomal regions contain many genes, some of which have previously been reported to be associated with growth and carcass traits in chicken and other farm animals (Yang et al., 2021; Wang et al., 2022). The genes in these genomic regions include ligand dependent nuclear receptor corepressor like (LCORL) and non-SMC condensin I complex subunit G (NCAPG), which play an important role in arginine metabolism and are linked with growth in animals (Wu et al., 2009; Tetens et al., 2013; Tiensuu et al., 2019); leucine aminopeptidase 3 (LAP3) and LIM domain binding 2 (LDB2) genes which have an influence on growth traits of chicken (Gu et al., 2011). SNPs in karyopherin subunit alpha 3 (KPNA3) and RCBTB1 genes are also associated with growth in chicken (Wang et al., 2022; Zhu et al., 2023). Calcium binding protein 39 like (CAB39L) which is on chromosome 1 plays an important role in the regulation of food intake by activating AMP-activated protein kinase through the process of phosphorylation (Proszkowiec et al., 2006) and regulates body weight in chicken (Li et al., 2021; Zhang et al., 2021; Zhu et al., 2023). Some SNPs in the deleted lymphocytic leukemia 7 (DLEU7) gene have also been reported by Abdalhag et al. (2015) to be associated with growth traits in Jinghai yellow chickens. Forkhead box O1 (FOXO1) is another gene that has also been widely reported to influence average daily intake and the formation of adipose tissue and skeletal muscle of chickens (Xie et al., 2012). Xie et al. (2012) also observed that some SNPs in INTS6 are significantly associated with body weight of chicken at 90 days of age.
4.4 Positional candidate genes for carcass traits of local chicken
Carcass traits in chickens are also influenced by many genes with small individual effects. Genes associated with breast muscle weight, drumstick weight, thigh weight, wing weight, dressed weight, head weight, back weight, neck weight, and shank weight were mainly located on chromosomes 1 and 4. Some of these genes have been reported in the literature, including FOXO1, which plays an important role in muscle development by mediating PI3K-AKT-MAPK and PI3K-AKT-mTOR pathways (Xie et al., 2012; Jia et al., 2017). LCORL, a gene on chromosome 4, is reported to be expressed at higher levels in the breast muscle of high-muscle-weight chickens than in low-muscle-weight chickens (Liu et al., 2015). SLIT2 plays a regulatory role in the differentiation of osteoblast (Sun et al., 2009) and the inhibition of bone resorption (Park et al., 2019) and KPNA3 influences growth and muscle quality in chicken (Pértille et al., 2015; Li et al., 2022). LAP3 and FAM184B have been associated with organ weight in cattle and sheep (An et al., 2018; La et al., 2019). SERPINE3, one of the serine proteinase inhibitor (serpin) gene family members, and INTS6 are associated with bone quality (Guo et al., 2017) while Mediator Complex Subunit 4 (MED4) regulating vitamin D metabolism also affects development and maintenance of mineral ion homeostasis and skeletal integrity (Sutton and MacDonald, 2003). MLNR gene encodes a motilin receptor that promotes the release of growth hormone. In chicken, motilin receptor is largely involved in gastrointestinal functions including increments in Ca+2 levels and is associated with bone traits (Takahashi et al., 2014; Li et al., 2021). FNDC3A is also associated with bone traits (Li et al., 2021).
4.5 Positional candidate genes for internal organ traits of local chicken
The internal organs of animals are highly nutritious and contain high levels of bioavailable protein, amino acids, vitamins, and micronutrients (Fayemi et al., 2018). They are relatively cheaper than other meats and are easily available. As a result, their consumption among low-income and food insecure households in developing countries is quite high. Selective breeding aimed at improving the internal organ traits of chicken could therefore play a significant role in improving nutritional outcomes amongst children and low income-households in developing countries.
Chromosomes 1 and 4 contained several genes that exhibited a pleiotropic effect in gizzard, liver, and heart weights. These include SLIT2, LCORL, NCARPG, QDPR, LAP3, MED28, KPNA3, CAB39L, SPRYD7, TRIM13, KCNRG, SETDB2, MLNR, CRSLTR2, LPAR6, RB1, ITM2B, FNDC3A, and MED4. Other significant genes that are associated with internal organ traits of chicken include Empty spiracles homeobox 2 (EMX2) which is on chromosome 6 and is associated with heart weight. This gene plays a major role in transcriptional regulation of the slow myosin heavy chain 2 (MyHC2) gene in fast/slow embryonic muscle fibers (Weimer et al., 2013). Other genes that were found to be associated with heart weight include: CDK2 Associated Cullin Domain (CALCUL1) which is on chromosome 6 and is implicated in positive regulation of cell population proliferation and protein kinase activity (Kong et al., 2009; Zhang et al., 2021); Activin A receptor type 1B (ACVR1B) gene which encodes an activin A type IB receptor. Activins are dimeric growth and differentiation factors which belong to the transforming growth factor-beta (TGF-beta). SNPs in (TGF)-β2, 3, and 4 have been reported by Hosnedlova et al. (2020) to be associated with growth, skeletal and body composition traits of chicken; SLAIN motif family member 2 (SLAIN2) is involved in cytoplasmic microtubule organization (van der Vaart et al., 2011); Retinoblastoma 1 (RB1) is associated with body weight and bone traits in chicken (Zhang et al., 2011); Motilin receptor (MLNR) gene which encodes a motilin receptor and is also associated with growth and bone traits in chicken (Takahashi et al., 2014). Some significant positional genes for gizzard weight include the Follistatin like 5 (FSTL5) which is predicted to facilitate calcium ion binding activity and cell differentiation (Zhang et al., 2017); Calcium voltage-gated channel auxiliary subunit beta 1 (CACNB1) which affects skeletal muscle development in mice (Chen et al., 2011); SLAIN2; RB1; MLNR; SAMD9 and FNDC3A. A SNP window on chromosome 4 which explained about 21% of the genetic variance of liver weight contained SLIT2, LCORL, FAM184B, NCARPG, QDPR, LAP3, MED28, MIR218-1 genes.
5 CONCLUSION
We estimated genetic parameters and performed GWAS for several growth, carcass, and internal organ traits in local Ghanaian chicken ecotypes. The results show that heritabilities for growth and carcass traits were moderate to high, while the genetic correlations between these traits were generally positively high. The moderate to high heritabilities of BW22, ADG, dressed weight, drumstick weight, thigh weight, breast weight, wing weight, head weight, neck weight, shank weight, and gizzard weight indicates that these traits could be improved in these populations through selective breeding.
A total of 58 1-Mb SNP windows each of which explained more than 1% of the genetic variance of the growth, carcass, and internal organ traits studied contained many genes including EMX2, CALCUL1, ACVR1B, CACNB1, RB1, MLNR, FOXO1, NCARPG, LCORL, LAP3, LDB2, KPNA3, DLEU7 and CAB39L. These genes, which are reported to be associated with growth, carcass, and internal organ traits of chickens, could play important roles in future genetic improvement efforts targeted at the chicken ecotypes of Ghana.
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Implementing an appropriate breeding program is crucial to control fluctuation in performance, enhance adaptation, and further improve the crossbred population of dairy cattle. Five alternative breeding programs (BPs) were modeled considering available breeding units in the study area, the existing crossbreeding practices, and the future prospects of dairy research and development in Ethiopia. The study targeted 143,576 crossbred cows of 54,822 smallholder households in the Arsi, West Shewa, and North Shewa zones of the Oromia Region, as well as the North Shewa zone of the Amhara Region. The alternative BPs include conventional on-station progeny testing (SPT), conventional on-farm progeny testing (FPT), conventional on-station and on-farm progeny testing (SFPT), genomic selection (GS), and genomic progeny testing (GPT). Input parameters for modeling the BPs were taken from the analysis of long-term data obtained from the Holetta Agricultural Research Center and a survey conducted in the study area. ZPLAN+ software was used to predict estimates of genetic gain (GG) and discounted profit for goal traits. The predicted genetic gains (GGs) for milk yield (MY) per year were 34.52 kg, 49.63 kg, 29.35 kg, 76.16 kg, and 77.51 kg for SPT, FPT, SFPT, GS, and GPT, respectively. The GGs of the other goal traits range from 0.69 to 1.19 days per year for age at first calving, from 1.20 to 2.35 days per year for calving interval, and from 0.06 to 0.12 days per year for herd life. Compared to conventional BPs, genomic systems (GPT and GS) enhanced the GG of MY by 53%–164%, reduced generation interval by up to 21%, and improved the accuracy of test bull selection from 0.33 to 0.43. The discounted profit of the BPs varied from 249.58 Ethiopian Birr (ETB, 1 USD = 39.55696 ETB) per year in SPT to 689.79 ETB per year in GS. Genomic selection outperforms SPT, SFPT, and FPT by 266, 227%, and 138% of discounted profit, respectively. Community-based crossbreeding accompanied by GS and gradual support with progeny testing (GPT) is recommended as the main way forward to attain better genetic progress in dairy farms in Ethiopia and similar scenarios in other tropical countries.
Keywords: accuracy, community-based breeding, discounted profit, generation interval, genetic gain, smallholder
1 INTRODUCTION
Ethiopia has a large cattle population with an estimated 66.26 million head (CSA, 2022). Most (97%) of these cattle are indigenous. This report revealed that the milk yield performance of indigenous cows is generally low (1.45 kg per day). As a result, crossbreeding has been practiced as a novel intervention for the development of dairy cattle in central Ethiopia. The performance and economic contributions of crossbred dairy cattle for smallholder farmers were substantial (Aynalem et al., 2011; Kefena et al., 2013; Direba et al., 2022). They noted that crossbred dairy cows perform better than indigenous cows by 3 to 7 folds of milk yield per lactation. Crossbred cows attain their age at first calving (35–37 months) earlier than indigenous cows (42–60 months) in Ethiopia. Smallholder farmers with crossbred dairy cattle generate significantly higher income (40%) than those who keep only indigenous cattle (Agajie et al., 2016).
The better results of crossbred dairy cattle than indigenous cattle are mainly due to the additive gene contribution of dairy breeds and the heterosis effect (Direba et al., 2022). However, continued up-grading toward exotic dairy breeds resulted in an adaptive problem. Loss of heterosis in the inter-se generations of crossbred cattle led to a decline in performance (Gradiz et al., 2009; Hatungumukama and Detilleux, 2009; Aynalem et al., 2011). For instance, the milk yields of F2 and F3 50% Friesian × Boran cows decreased by 26% and 30%, respectively, compared to F1 cows (Direba et al., 2022). Several countries have practiced breeding programs that resulted in noticeable genetic progress toward the breeding goal traits of dairy cattle (Weller et al., 2017; Van Marle-Köster and Visser, 2018). According to Weller et al. (2017), the mean annual milk production of dairy cows has increased from 7,000 kg to 13,000 kg per cow since the 1970s in Israel. A few crossbreeding programs have been implemented in tropical countries, including Ethiopia at the on-station level (research institutes), to tackle the problems associated with adaptation and decreased performance in the next generations. However, no substantial improvement or sustainable breeding program has been implemented for crossbred dairy cattle at the smallholder level in Ethiopia. Thus, studies and strategic documents have recommended designing and implementing appropriate breeding programs to control fluctuation in performance, enhance adaptation, and further improve the population (FAO, 2010; Philipsson et al., 2010; EIAR, 2017; MOA, 2019). There are large crossbred cattle populations (2 million), sufficient genetic variance, and medium-to-good heritability for breeding goal traits to improve crossbred dairy cattle through selection in Ethiopia (Gebregziabher et al., 2013; CSA, 2017; Direba et al., 2022). The objective of this study was to evaluate alternatives and develop an appropriate breeding program for crossbred dairy cattle of smallholder farmers in central Ethiopia.
2 MATERIALS AND METHODS
2.1 Study area
The study area for simulating alternative breeding programs (BPs) focused on smallholder farmers owning crossbred cattle in specific zones of the Oromia Region (Arsi, West Shewa, and North Shewa) and the North Shewa zone of the Amhara Region, Ethiopia. These areas are home to a significant cattle population, estimated at 7,958,831 head [2,253,959 in West Shewa, 1,676,748 in north shewa zone of oromia region (NSHORO), 2,545,778 in Arsi, and 1,482,346 in north shewa zone of Amhara region (NSHAMA)] according to CSA (2017). Crossbreeding practices have been widely adopted in these areas over the past 4 to 5 decades, resulting in approximately 377,729 crossbred cattle, accounting for 35.2% of the national crossbred cattle population (CSA, 2017). The geographical proximity of the study areas, within a 150 km radius of the capital city, Addis Ababa, facilitates the supply of inputs and outputs. For further details on the study area’s geographic references and climate information, refer to Direba et al. (2020).
2.2 Simulation of alternative breeding programs
The simulation of alternative breeding programs (BPs) involved considering genetic parameters, economic values of breeding goal traits, biological and technical parameters, and cost parameters. The goal traits included lactation milk yield (MY), age at first calving (AFC), calving interval (CI), and herd life (HL). Five different BPs were designed and compared within the study area while taking into account the available breeding unit at Holeta Research Center, existing crossbreeding practices, and future prospects of dairy research and development in Ethiopia. These breeding programs included conventional on-station progeny testing (SPT), conventional on-farm progeny testing (FPT), conventional on-station and on-farm progeny testing (SFPT), genomic selection (GS), and genomic progeny testing (GPT). The first three conventional BPs were simulated without utilizing genomic information. A total of 143,576 crossbred cows were assumed to model the alternative BPs. The data collection and selection were presumed only in the breeding unit (BU), and no data were collected from cattle in production units (PUs) in all BPs.
In the FPT, SFPT, GS, and GPT breeding programs, smallholder farmers are expected to participate by providing cows for progeny testing, allowing selected cows or male calves for genotyping, selling the selected male calves to the breeding program, and maintaining records. An on-farm survey indicated that smallholder farmers own an average of 2.65 cows (Direba et al., 2020); approximately 1,000 farmers would participate in implementing the progeny testing scheme. Additionally, around 25 to 27 data recorders should be employed to gather data from the cows in a breeding unit. Over time, the responsibility of data recording in the BU can be transferred to the cattle owners through training and creating awareness about the potential advantages of the breeding program.
The level of exotic inheritance for sires was set at 75% for all alternative BPs. As a result, crossbred generations will be stabilized at 75% exotic inheritance, and thus, adaptive and productive synthetic breeds will be developed in the long term. The comparison of these BPs considered predicted genetic gain, generation interval, the accuracy of selection, and discounted cost, return, and profit.
The alternative BPs were modeled using ZPLAN+ software (Täubert et al., 2011; Vit Verden, 2011). The program follows the deterministic approach that considers population mean and variance. The evaluation of the BP was based on the gene flow method and selection index procedure. That means the fraction of the genes of bulls and cows in successive generations and its associated contribution of breeding values will be considered. ZPLAN+ predicts the genetic gain for the breeding goal traits. In addition, from an economic perspective, the program calculates the discounted cost, return, and profit of BP during the investment. The program requires phenotypic and genetic parameters of breeding goal traits, economic value of traits, fixed and variable costs of selection groups, and other biological coefficients of the study population as input.
2.2.1 Conventional on-station progeny testing
This BP was designed with a focus on two main populations: the dairy research herd (tier 1) maintained at the Holeta Agricultural Research Center (HARC) and the crossbred population owned by smallholder farmers in central Ethiopia (tier 2). The HARC has been actively evaluating crossbred dairy cattle and developing synthetic dairy cattle breeds for the past 50 years. However, the program faces challenges due to the small population at the on-station level and the lack of a connection with the larger crossbred population of smallholder farmers. Furthermore, crossbreeding practices among smallholder farmers have not been supported by appropriate breeding programs. Therefore, the SPT aims to bridge these two populations and assist smallholder farmers in developing more adaptive and productive crossbred cattle populations.
The SPT selects high-grade bulls (with 75% exotic inheritance) born from on-station cows at the HARC BU and uses these bulls to mate with the crossbred cattle population of smallholder farmers (the PUs) in the study areas. Table 1 presents the gene transmission matrix for the selection groups. Following the gene flow method, gene transfer occurs from the selection group in the column to the selection group in the row. Information regarding growth, production, reproduction, and survival was collected exclusively from the BU. The selection groups consist of exotic dairy breeds, zebu, and their crosses, with nine selection groups (18 paths). Exotic semen is used as the sire, while zebu cows are the dam breed for this breeding program simulation. The F1 crossbred cows are then backcrossed with an exotic sire to generate 75% dairy inheritance test bulls and cows. The sire selection process follows a two-stage selection procedure, utilizing information (performance data) from the progeny, dam, and the dam’s half-siblings (Willam et al., 2008; Vit Verden, 2011).
TABLE 1 | Transmission matrix for the on-station bull selection program.
[image: Table 1]The HGTB is progeny tested within the same herd by mating with HGCF1 cows to produce second-generation cows (HGCF2). Information from the dam and the dam’s half-siblings is used to evaluate the HGTB. The best high-grade bulls (HGSB) are selected from the HGTB using information from the progeny (3–4 daughters per sire), the dam, and the dam’s half-siblings. Finally, semen collected from the HGSB (progeny-tested selected bulls) is used to inseminate the crossbred cattle population owned by smallholder farmer PUs.
The number of cattle in the BU is based on the average fixed herd size at HARC over the past 5 years. Table 2 summarizes the total number of study animals in each selection group, the number of proven animals (animals with information), and the number of cows and bulls selected per year. Imported semen or semen produced by the Ethiopian Livestock Development Institute (LDI) can be used for the practical implementation of the breeding program.
TABLE 2 | Number of bulls and cows proven and selected per year for simulation of the on-station bull selection program.
[image: Table 2]2.2.2 Conventional on-farm progeny testing
This BP represents a traditional breeding scheme (progeny testing scheme based on pedigree records) commonly used in developed countries for the improvement of dairy breeds (Mulder et al., 2005; Hayes et al., 2009; Täubert et al., 2011; Mrode et al., 2019). Although there is currently no recording system in place at the smallholder level in Ethiopia, it is possible to establish a community-based recording system with the help of progressive farmers.
This breeding program has two tiers: the breeding unit (BU) and the production unit (PU). The BU includes selected crossbred cows (CBU) from the smallholder farmers’ crossbred cattle population based on breeding values of desired traits. The remaining crossbred cows in the study areas are the cows in the production unit (CPU) within the PU (Table 3). All necessary performance records and production of sires were undertaken at on-farm BUs. The number of cows in the BU was set at 40 daughters per sire for progeny testing (Taneja, 1999).
TABLE 3 | Transmission matrix for the on-farm progeny testing scheme.
[image: Table 3]Initially, approximately 2,500 CBU were selected from the smallholder farmers’ cattle population based on their own phenotypic records. Over time, pedigree records can be developed to select cows and bulls using estimated breeding values for desired traits. Of the 800 male calves born from the CBU (2,500 cows × 0.5 sex ratio × 0.8 conception rate × 0.8 survival rate), 500 young male calves were recruited each year, considering non-genetic factors, including physical dairy characteristics. Sire selection followed a two-stage procedure. Twenty test bulls were selected from the 500 male calves recruited based on performance data from the dam and half-siblings of the dam. These selected 20 test bulls, with 75% exotic inheritance, were purchased from farmers and raised at the station (HARC) until they reached the age for semen collection. The cows in the BU were then mated with semen collected from the test bulls for progeny testing. Of the 20 test bulls, 10 progeny-tested sires were selected based on information from the progeny, dam, and half-siblings of the dam. The genetic gain in the BU will be transferred to cows in the PU through artificial insemination using semen collected from the selected bulls. The number of cows and sires in each selection group for FPT is provided in Table 4.
TABLE 4 | Number of bulls and cows used for the simulation of the on-farm progeny testing scheme.
[image: Table 4]2.2.3 Conventional on-station and on-farm progeny testing
This breeding program was proposed as an alternative to address the potential gap between SPT and FPT. In SPT, the number of cows available at HARC did not meet the standard required for progeny testing. Taking into account factors such as sex ratio, conception rate, and survival rate, only around 20 male calves were obtained for testing per year. Additionally, the number of available cows (24 per year) for producing sire progeny was very low. This limited number of daughters per sire (approximately 3–4) raised concerns about the accuracy of estimation. To meet the standard for progeny testing and achieve reasonable accuracy (Taneja, 1999; Archer et al., 2004; Mulder et al., 2005; Täubert et al., 2011), it was necessary to explore options to maximize the number of cows for progeny testing. At the same time, there was no established recording system at the farmer level to initiate the breeding program directly from FPT, and it would take a longer time to establish pedigree records. Additionally, determining the level of exotic inheritance of bulls for FPT required pedigree records or admixture analysis. Therefore, this breeding program combines elements of both SPT and FPT.
The simulated SFPT program was structured with three tiers, consisting of two BUs and one PU. The first BU comprised the crossbred cattle population at HARC, which served as the bull dam to produce and select bulls with 75% exotic inheritance. The number of dams at the HARC station was increased to obtain 100 young calves per year. The second tier (sub-nucleus) included 2,500 crossbred cows (CBU) selected from smallholder farmers’ cattle, forming the second BU for progeny testing purposes. Test bull production was conducted exclusively at the HARC station, while the actual progeny testing took place on-farm within the CBU. The gene transmission matrix and the number of cows and sires in each selection group for SFPT are presented in Table 5 and Table 6, respectively. Similar to SPT, this program had nine selection groups. Exotic dairy sire semen was used as the sire, while zebu cows served as the dam line. The F1 crossbred cows were backcrossed with an exotic sire to generate 75% exotic dairy inheritance test bulls. Sire selection involved a two-stage procedure. The 20 test bulls were progeny tested within the CBU, and the top 10 bulls were selected. Each progeny-tested bull was evaluated using information from the dam, half-siblings of the dam, and 40 progenies. Finally, semen collected from the selected bulls was used to inseminate the remaining crossbreds owned by smallholder farmers (CPU) in the study areas (tier 3) to transfer genetic gain. Unlike SPT, there was no on-station progeny testing within the SFPT program.
TABLE 5 | Transmission matrix for on-station bull selection and on-farm progeny testing program.
[image: Table 5]TABLE 6 | Number of bulls and cows used to simulate on-station bull selection and on-farm progeny testing program.
[image: Table 6]2.2.4 Genomic selection
In the past two decades, the implementation of genomic selection has brought significant advancements in dairy genetic gain. Various studies have demonstrated that this system has effectively doubled the rate of genetic improvement in dairy traits compared to traditional progeny testing schemes (Schaeffer, 2006; Hayes et al., 2009; Garcia et al., 2016). Genomic selection involves the selection of bulls based on their genomic breeding values (GEBV), which are estimated using single nucleotide polymorphisms (SNPs). The effect of each SNP is determined through analysis of a reference population, where animals are genotyped, and their phenotype information is collected (Hayes et al., 2009; Al Kalaldeh et al., 2021). The genomic selection program offers three main advantages: 1) it enhances the accuracy of estimation by avoiding errors that can occur in pedigree records for the relationship matrix, 2) it reduces the generation interval as bulls can be selected at a younger age, and 3) it lowers the cost of the breeding program by eliminating expenses associated with progeny testing. Therefore, genomic selection was simulated to harness the potential of genomic technology for dairy development in Ethiopia.
The simulated GS program consists of two tiers with three selection groups (six paths). Tier 1 includes genotyped bulls (BBU) and genotyped cows in the reference population (CBU), while tier 2 comprises the cows in the production unit (CPU), representing the remaining crossbred cow population in the study areas. Approximately 2,500 cows (CBU) were selected from smallholder farmers’ cattle based on their own phenotypic records and then genotyped to establish the reference population (breeding unit). Information from the genotyped population, along with their phenotypic records, was used to estimate the allelic effects of SNPs and select bull dams. Each year, around 500 young male calves born from CBU were recruited, utilizing non-genetic information collected from the dam and half-siblings of the dam. From the pool of 500 genotyped male calves, 20 bulls (BBU) were selected based on their GEBV. These top 20 bulls (BBU) were purchased from farmers and raised at HARC or LDI until they reached the age for semen collection. The semen collected from these bulls (with 75% exotic inheritance) was used to inseminate cows in the breeding and production units. In the GS scheme, there was no progeny testing or on-station cow production. The gene flow matrix and the number of animals in each selection group for GS are indicated in Table 7 and Table 8, respectively.
TABLE 7 | Transmission matrix for the genomic selection program without progeny testing.
[image: Table 7]TABLE 8 | Number of bulls and cows used for simulation of the genomic selection program practiced without progeny testing.
[image: Table 8]2.2.5 Genomic progeny testing
Several studies have indicated that combining GS with progeny testing can significantly improve the accuracy of selection (Hayes et al., 2009; König et al., 2009; Täubert et al., 2011). Building upon this knowledge, the GPT approach was developed as an additional alternative. The GPT combines GS and progeny testing, where bull selection is conducted through a two-stage selection process. The key distinction from GS is the inclusion of progeny testing. The assumptions underlying GPT are as follows: Similar to GS, a reference population (breeding unit) consisting of 2,500 cows (CBU) was formed by selecting cattle from smallholder farmers based on their own phenotypic records. These cows were then genotyped to establish the reference population. Each year, 500 young male calves born from CBU were recruited, incorporating non-genetic information obtained from the dam and half-siblings of the dam. Of the 500 genotyped male calves, 20 test bulls were selected based on their genomic estimated breeding values (GEBV). These 20 test bulls, with 75% exotic inheritance, were purchased from farmers and raised at a station until they reached the age for semen collection.
The cows in the reference population (CBU) were inseminated with semen collected from test bulls for progeny testing. Subsequently, of the 20 test bulls, the 10 best sires were selected based on their progeny performance, as well as information from the dam and half-siblings of the dam. Semen collected from the selected bulls was used to inseminate the cows in the production unit. The transmission matrix and the number of animals in different selection groups align with those of the conventional on-farm progeny testing (FPT) approach (Table 3; Table 4).
2.3 Genetic parameters and economic value of breeding goal traits
The genetic parameters and economic values of breeding goal traits were determined for the study. Estimates for economic value, phenotypic standard deviation, correlations, heritabilities, and repeatability were obtained from survey data collected in the study areas and long-term data on dairy cattle at the HARC (Table 9; Table 10). More detailed genetic parameter information can be found in Direba et al. (2022). For genomic information, input parameters were sourced from relevant literature reports due to the absence of estimates for the target population. The accuracy of polygenic breeding values and the number of animals in the reference population for MY were taken from Erbe et al. (2012). Accuracy estimates for AFC, CI, and HL, along with associated numbers of animals in the reference population, were obtained from the studies of Boison et al. (2017) and Haile-Mariam et al. (2013).
TABLE 9 | Economic value per unit change, phenotypic standard deviation (SDP), genetic parameters of the crossbred cattle, and genomic measures (1 USD = 39.55696 ETB).
[image: Table 9]TABLE 10 | Genetic and phenotypic correlation of production, reproduction, and herd life traits.
[image: Table 10]Productive life, reproductive cycle, age at first reproduction, and survival rate for both zebu and crossbred cows with different levels of exotic inheritance were also derived from long-term data collected at HARC (Direba et al., 2022). Notably, zebu cows exhibited a longer productive life (7.44 years) than crossbred cows, which could be attributed to the adaptive qualities of indigenous breeds and the specific objectives of the farming systems. Differences in reproductive cycles were observed among the selection groups, with the F1 generation displaying a shorter cycle (1.26 years) than other groups. This indicates performance variations within the different selection groups (Table 11). Biological parameters based on 75% exotic inheritance were applied to the CBU and CPU, as admixture analysis revealed a similar level of exotic inheritance (78%–79%) for cows managed by smallholder farmers (Strucken et al., 2017; Netsanet et al., 2021).
TABLE 11 | Biological coefficients used for breeding programs.
[image: Table 11]2.4 Variable and fixed costs
Table 12 provides a detailed breakdown of the annual variable and fixed costs per animal for the simulated alternative BPs. The study assumed a 25-year investment period, with a 9.5% interest rate applied to both costs and returns. It is important to note that all the costs, returns, and profits estimated in this study were specifically related to the additional expenses incurred and profits obtained as a direct consequence of implementing the breeding program (Nitter et al., 1994; Tadele et al., 2011; Kahsa et al., 2012). Fixed costs were defined as constant expenses related to salaries, overhead costs, and computers. These costs encompassed the purchase of computers, overhead expenses (including training and monitoring costs), and salaries for labor, veterinarians, recorders, artificial insemination (AI) technicians, and animal breeders. Variable costs represented the total expenses incurred for selecting, testing, and choosing animals for the breeding program (Täubert et al., 2011; Vit Verden, 2011). Additional costs for items such as feed, genotyping, bull purchases, ear tags, veterinary services, and other administrative expenses that arose due to the BP were considered variable costs.
TABLE 12 | Costs of inputs considered per animal per year in ETB (1 USD = 39.55696 ETB).
[image: Table 12]The costs associated with the BPs varied depending on the specific scenarios. For example, in the case of conventional on-SPT and conventional on-SFPT, the cost of feed for cows was included because these cows were entirely used for the breeding program. However, in other BPs, where cows were part of normal dairy business processes, no additional feed costs were considered. The cost of feed for bulls was included in all BPs because bulls were recruited from the on-station breeding unit or purchased from on-farm breeding units and managed at the station until sufficient semen was collected.
In terms of genotyping, the cost for genotyping cows and bulls was 1,916.35 ETB per animal (1 USD = 39.55696 ETB) for GS and GPT. Human resources required for data collection, animal health management, supervision, and data analysis were also factored into the costs. For BPs with on-farm data gathering components (FPT, GS, and GPT), the cost included 25 data recorders (6,500 ETB per person per month) and three animal breeders (16,437 ETB per person per month). In the simulation of SPT, the cost included 20 daily laborers (1,500 ETB per person per month), two data recorders (1,890 ETB per person per month), and three animal breeders (16,437 ETB per person per month). The cost of veterinary services per animal was 94.04 ETB per year for all BPs. Additionally, the salaries of two veterinarians (16,437 ETB per person per month) and two AI technicians (6,500 ETB per person per month) were assumed for the analysis of SPT and SFPT, as these programs required full-time animal health management and AI services.
Approximately 500,000 ETB per year were assumed for training, monitoring, and other administration costs for SPT. This cost was escalated to 1,000,000 ETB per year for each of the remaining BPs, as more supervision was required to mobilize farmers and provide training for data recorders and farmers participating in on-farm breeding units. However, only the cost of AI service was included for CPU because the genetic transfer was through AI, and all farmers should use AI for the practical implementation of BP.
Costs related to the price of animals, animal health services, and AI services were obtained from the survey conducted with smallholder farmers (Direba et al., 2020). The price to purchase bulls/male calves was enhanced by 25% for non-genotyped and 50% for genotyped bulls/male calves to provide better market value for genetically merited bulls and encourage farmers to sell selected young bull/male calves to the BP. Estimates of daily labor and salaries were taken from the HARC payment standard. Feed requirements and associated costs were derived from the HARC feeding standards and market costs of 2021.
3 RESULTS
3.1 Genetic gain
The results in Table 13 show estimates of genetic gain (GG) of breeding goal traits per year and per generation. The GGs predicted for lactation MY per year were 34.52 kg, 49.63 kg, 29.35 kg, 76.16 kg, and 77.51 kg for SPT, FPT, SFPT, GS, and GPT, respectively. The corresponding GGs per generation were 209.27 kg for SPT, 273.22 kg for FPT, 174.30 kg for SFPT, 362.33 for GS, and 426.71 for GPT. The genomic BPs attain at least 26.53 kg more GG per year than the conventional BPs.
TABLE 13 | Estimated genetic gain per year (per generation in bracket) for breeding programs.
[image: Table 13]The GGs calculated for age at first calving (AFC) were 1.19 and 7.22 days for SPT, 0.97 and 5.37 days for FPT, 0.69 and 4.12 days for SFPT, 1.11 and 5.26 days for GS, and 0.90 and 4.94 days for GPT per year and generation, respectively. A lower GG of calving interval (CI) was recorded in SFPT (1.20 days per year and 7.13 days per generation) than other BPs (varied from 1.57 to 2.35 days per year). The value of GG obtained for CI was almost similar among FPT, GS, and GPT. The estimates of GG for herd life (HL) were very low (0.06–0.12 days per year) and almost similar among all alternative BPs.
3.2 Generation interval and accuracy
Generation interval (GI) refers to the age of parents when their replacement offspring is born. When the GI is low, the transfer of genetic gain from generation to generation becomes rapid. Hence, there will be higher return and genetic progress in breeding goal traits for the target population. The values of predicted GI for conventional BPs were close to each other and ranged from 5.51 years to 6.06 years (Table 14). However, GI was reduced by 21% in GS compared to SPT and reduced by 19% compared to SFPT. Table 14 summarizes the accuracy of selection for test and progeny-tested bull in different BPs. The accuracy of selection calculated for test bulls was 0.33 for SPT, 0.34 for FPT, 0.37 for SFPT, and 0.43 for both genomic BPs. Furthermore, the accuracies of the selection of progeny-tested bull estimated here were 0.85 for SPT and 0.99 for other BPs.
TABLE 14 | Accuracy of selection index and generation interval for the alternative breeding program.
[image: Table 14]3.3 Discounted profit of alternative breeding programs
The ultimate goal of the BP is to ensure the profitability and sustainability of the dairy business for the target population. As indicated in Table 12, the total costs calculated for breeding units varied among simulated BPs. The annual cost for BUs in ETB was approximately 15.15 million for SPT, 5.00 million for FPT, 22.07 million for SFPT, and 6.67 million for each genomic BP. ZLAN+ distributes costs and returns for the entire cow population included in the BP as the genetic gain obtained at the breeding unit is transmitted to the whole population (Täubert et al., 2011; Vit Verden, 2011). Furthermore, the program discounted the cost of BP considering the interest rate, generation interval, and number of animals in different selection groups.
Table 15 contains discounted cost, return, and profit per animal per generation and year. The discounted costs of BPs per animal per generation in ETB were 45.85, 52.71, 71.51, 190.28, and 172.57 for SPT, FPT, SFPT, GS, and GPT, respectively. The corresponding discounted returns were ETB 1,559.07 for SPT, 2,475.83 for FPT, 1,765.54 for SFPT, 5,741.69 for GS, and 3,969.88 for GPT. The discounted profit of the BPs ranged from ETB 1,513.22 in SPT to 5,551.40 in GS per cow per generation.
TABLE 15 | Discounted cost, return, and profit per animal in ETB (1 USD = 39.55696 ETB).
[image: Table 15]4 DISCUSSION
4.1 Genetic gain
Among the trait goals, milk yield had the highest GG in all BPs. This could be attributed to the availability of higher genetic variance of this trait in the study population and better heritability than other traits. Furthermore, the higher GG of MY recorded in this study could create a good opportunity for the future sustainability of BPs as MY accounts for 69% of the relative economic value of the dairy business in the study area. The result revealed that GG was positive for all BPs. However, the positive GG obtained for AFC and CI is undesirable. The overall results indicated that the application of any of the five BP could bring genetic progress in the crossbred population of the study area.
Genetic gain for MY estimated in the present study concurred with the report of other studies on different dairy breeds (Börner and Reinsch, 2012; García et al., 2016; Fedorovych et al., 2021). Opoola et al. (2020) and Tobias et al. (2010) predicted 245 kg–734 kg and 366 kg–410 kg MY GG per generation by modeling different BPs for dairy cattle in South Africa, Zimbabwe, and Kenya, respectively. Kudinov et al. (2018) calculated 56 kg–59 kg MY GG per year for black and white dairy cattle in Russia. However, a higher estimate (512 kg per generation) was reported by Mulder et al. (2005) using genetic evaluation data collected from different breeds.
Further comparison among BPs indicated that genomic systems noticeably increase the GG of MY. A better GG was obtained by GPT and GS than by conventional BPs. The results imply that the genetic progress of MY can be enhanced by 53%–164% by supporting the BP with genomic information. Scott et al. (2021) estimated that the rate of genetic gain increased by about 160% in Holsteins and 100% in Jersey cattle when genomic information was included in the progeny testing scheme in Australia. Consistent with the present study, the substantial contribution of genomic BPs was reported by several authors (Panigrahi and Parida, 2012; Thomasen et al., 2014; Boisonn et al., 2017).
Values calculated for AFC and CI are lower than the report of Opoola et al. (2020), who found 41–65 days for AFC and 20–42 days for CI GG per generation using data from Zimbabwe and South Africa. Similarly, Tobias et al. (2010) noted higher genetic response (90–101 days per generation) for AFC in Kenya than our estimate. Even though it was low, the GG obtained for AFC and CI is undesirable, as the economic value of these traits was negative when their GG became positive. Furthermore, selection only for MY may adversely prolong CI and AFC as the genetic correlation of MY with these two traits is positive. Consistent with our findings, García et al. (2016) calculated a GG of 0.03–0.88 days for HL per year for Holstein cows in the United States. It can be noted that the variation observed among BPs for AFC, CI, and HL looks insignificant. Although the GGs of AFC and CI were low, care should be taken in the selection index to further reduce the GG of these two traits.
4.2 Generation interval and accuracy
Genomic selection (GS) reduces the generation interval (GI) by up to 21% compared to conventional BPs. This is mainly because bulls in GS were selected and transferred genetic merit at an early age. Estimates of GI in the present study were higher than those of other studies in developed countries. Täubert et al. (2011) calculated 5.02, 3.44, and 4.64 years for conventional, genomic, and combined conventional-genomic breeding programs, respectively. Similarly, Garcia et al. (2016) discussed a reduction of GI from 7 years to 2.5 years by implementing genomic selection in dairy cattle in the United States. The difference with the current result might be due to the lack of application of appropriate genetic improvement programs in Ethiopia and farming practices, as the herd life of dairy cows was longer in the Ethiopian condition.
The accuracy of selection calculated for test bulls is comparable to the report of Brown et al. (2016), who found 0.28 to 0.41 prediction accuracy for the selection of crossbred dairy cattle in East Africa. However, Täubert et al. (2011) found better accuracy (0.54) for test bulls in Germany than the present study in conventional BPs. The improvement of accuracy from 0.3 to the 0.43 obtained in the present study is attributed to the increase in number of cows (2500) in the BU or the reference population. The result also indicated that genotyping bulls could enhance the accuracy of the selection of test bulls by 16%–30%. Similar conclusions are reported by other authors (Haile-Mariam et al., 2013; Garcia et al., 2016; Aliloo et al., 2018). The values of accuracy of selection of progeny-tested bulls in this study (0.85–0.99) are close to the 0.89 estimated for Holstein cattle in Germany (Täubert et al., 2011). Hayes et al. (2007) also reported a 0.84 accuracy using marker-assisted (haplotype) selection with phenotype records for cattle in Australia.
4.3 Discounted profit of alternative breeding programs
The discounted cost in genomic BPs looks higher than that of conventional systems, but it was offset by the high return in these systems. Among conventional progeny testing schemes, FPT generated 53% more profit than SPT and 37% more than SFPT. The genomic systems enhanced the profit by at least 63% compared to the conventional counterparts. The GS outperformed the SPT, SFPT, and FPT by 266%, 227%, and 138%, respectively. Similarly, the profit obtained from GPT was better than that of all conventional BPs. On the other hand, the profitability of GS was reduced by 31% when it was supported by progeny testing. The substantial difference in profit observed among BPs is attributed to the BP scenario. The costs of SPT and SFPT were inflated mainly due to the cost of animal feed and salary, as these BP maintained many cows at the station. The other BPs (FPT, GS, and GPT) kept about 20 sires at the station, which significantly reduced the cost required for animal feed and labor. However, considering the contribution of the BPs to the entire population, the calculated cost looks reasonable.
The higher profitability of genomic systems probably resulted from lower feed and labor costs for animal management and a lower generation interval, which leads to rapid genetic gain. The contribution of progeny testing BPs and further enhancement by genomic BPs for better profitability of the dairy business was inferred in several reports (Börner and Reinsch, 2012; Weller et al., 2017; Mrode et al., 2019; Newton and Berry, 2020; Scott et al., 2021). For instance, discounted profits of 18–26 USD per generation in Kenya (Kahi and Nitter, 2002), 29.92 euros per year for Danish Jersey dairy cattle (Thomasen et al., 2014), and 238 to 532 euros per generation for Holstein dairy cattle in Germany (Täubert et al., 2011) were reported for different BPs. The difference in profit and values of other parameters of the present result with other reports could be due to variations in economic values and the number of traits included in BPs, the size of the population included in the BPs, and parameters fitted in the model.
4.4 Comparative advantages and limitations of alternative breeding programs
All suggested BPs showed a positive profit. However, each has its own advantages and limitations. The SPT is highly suitable for record keeping and selection of animals as the BU is maintained at the station. However, the number of cows in the BU was very low to produce and recruit test bulls. This highlighted that sires were evaluated with a very low number of daughters (3–4 daughters per sire). As a result, the selection accuracy of test bulls and selected bulls was lower than other BPs. On the other hand, the annual total cost of SPT was also higher than FPT and genomic BPs.
The result showed that the GG and profit obtained by FPT were better than SPT and SFPT. Likewise, the accuracy of sire selection was better than SPT and comparable with SFPT. This BP was superior to SPT and SFPT by 53% and 37% discounted profit, respectively. Furthermore, farmers practicing FPT participate in a community that can enhance the success of a BP. The practical limitations of this BP are 1) lack of a record-keeping system at the farmer level and establishing pedigree record may take longer; 2) in the absence of a pedigree record, selection based on phenotypic performance may not bring genetic progress; and 3) it was difficult to estimate the level of exotic inheritance for sires as there were no pedigree records at the farmer level.
The combined on-SFPT could solve the shortcomings of SPT and FPT. The on-station part supports the BP by a pedigree record, and the on-farm part avails a sufficient number of cows for progeny testing. Community participation in this BP could also create a smooth environment (enhance cooperation of farmers) for practical implementation of this BP as farmers provide cows for progeny testing and support recording and benefit from the BP. Increasing the number of cows for progeny testing by participating dairy farmers has improved the accuracy of test bull selection from 0.33 to 0.37 and selected bulls from 0.85 to 0.99. The profit was increased by 11% compared to SPT. However, it was decreased by 37% compared to FPT. The GIs of SPT and SFPT were greater than all BPs. In addition, the annual cost of SFPT was also much higher than all other BPs.
As expected, the potential advantages of genomic systems were enormous. This system overtakes the conventional counterpart by at least 63% profit in GPT and 138% when GS was compared. The annual cost of genomic BPs was decreased by about 56%–69% compared to SPT and SFPT. The GI was reduced by up to 21% by using genomic BPs. Furthermore, the accuracy of test bull selection was improved to 0.43 in genomic BPs. The practical challenge of genomic BPs could be the establishment, phenotype data collection, and genotyping of the reference population.
In conclusion, all alternate BPs produced a profit and contributed to MY’s genetic gain. These imply that implementing any of the alternative BPs can bring genetic progress. Genomic BPs overtake the conventional BPs in terms of genetic gain, generation interval, accuracy of sire selection, and discounted profit. Hence, establishing GS and gradually supporting it with progeny testing (GPT) are recommended in that order as the main way forward to attain better genetic progress in dairy farms in Ethiopia and similar scenarios in other tropical countries. However, until compulsory conditions are in place for genome selection, SFPT can be considered more practical. For the success of the breeding program, relevant governmental and non-governmental institutes should be engaged, and their roles and responsibilities in the implementation of the breeding program should be defined. It is also crucial to enhance community participation through training and supervision, as well as build the capacity of a biotechnology laboratory to facilitate the genotyping of the reference population and test bulls.
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TRAIT r 1Mb window Genes
Brw 1 114-115 TSPAN7, MIDITP1, OTP, RPGR, SRPX, SYTLS5, DYNLT3, CYBB, XK, LANCL3, PRRG1, CIHXORF59
18 1.0-2.0 MYH10, ELAC2, DNAHY, TRNAM-CAU, PIRT, SHISA A6, RNF222, NDELI, CCDC42, PIK3RS5, PIK3R6
33 32-33 SCN8A, FIGNL2, ANKRD33, ACVRLI, ACVRIB
DW 3 194-195 USP35, KCTD14, KCTD21, ALG8, NDUFC2, THRSP, THRSPB, INTS4, AAMDC, RSFI1, CLN1A, AQP11
¢ 4 34-35 MBDS5, ACVR2A, ORC4, EPC2, KIF5C, LYPD6, LYPD6B, MMADHC, MIRIC
15 8.0-9.0 BCR, SMARCBI, DERL3, SLC2A11, SLC2A11L1, SLC2A11L2, SLC2A11L3, SLC2A11L4, MIF, DDX51, GSTTIL, DDT, CABIN1,

CRKL, KLHL22, MEDI5, SMPD4, GGT5, GTT1, GGT2, LRRC75B, SNRPD3, GUCDI, UPBI, ADORA2A, SPECCIL, RAB36,
RSPH14, GNAZ, ZNRF3, XBP1, KREMENI, SUSD2, SBSPONL, GSC2, DGCR2, CAI5L, IGLL1, VPS29L, VPREB3, CHCHDI0,

MMP11, TBX6
™ 1 166-167 OLFM4
ww 1 11-112 CBS, U2AF1, CRYAA, SIK1, HSF2BF, RRP1B, PDXK, AGPAT3, TRAPPC10, PWP2, CIH210RF33, VTCNIL, ICOSLG, MIR221,
MIR222
2 129-130 RIMS2, SLC25A32, DCSTAMP, DPYS, LRP12, UBRS, ODF1, KLF10, AZIN1, ATP6VICI, BAALC, FZD6, CTHRCI
4 | 75-76 SLIT2, LCORL, FAM184B, NCARPG, QDPR, LAP3, MED28, MIR218-1
Z 14-15 HCNI, MRPS30, FGF10, EMB, PARPS
BaWw 4 68-69 ATP8AIL, GRXCRI, SLC30A9, BEND4, SHISA3, PHOX2B, TMEM33, APBB2, UCHLI, LIMCHI1, RBM47, NSUN7, CHRNA9
HW 3 17-18 LINY, C3Hlorf95, PARP1, TRMT6, CRLS1, ACBD3, MIXLI, TEM63A, SDE2, ENAH, H3F3C, LEFTY2, SRPY, EPHXI, LBR,
DNAHI4, CNIH3, CNIH4, WDR26, NVL, TP53BP2, FBX028, CAPN2, CAPNS, DEGSI, TLR5, SUSD4
10 30-40 NEILL, ZP3, ZP3L1, ISLR.ISLR2, ISL2, PML, PMLL, CCDC33, COMMD4, PTPNS, STOMLI, CYP11A1, SIN3A, LINGOL, CSPG4,
'MAN2CI, SNX33, SNUPN, HMG20A, PEAK1, TSPAN3, SCAPER, RCN2, PSTPIPI, ETFA, TMEM266, NRG4, FBX022, UBE2Q2
New 1 12-13 MAGI2, TMEM60, PTPN12, PHTF2, RSBNIL, GSAP, LRRC17, CCDCI46, FAMI85A, FGL2
1 147-148 HS6ST3, UGGT2, DZIP1, DNAJC3, TRNAF-GAA, ABCC4, CLDN10, GPRIS0, DCT, TGDS, SOX21
1 170-171 KPNA3, CAB39L, CDADCI, RCBTBI, RCBTB2, ARLI1, SPRYD?, TRIMI3, KCNRG, MIRI6-1, MIR15-A, SETDB2, MLNR,
CRSLTR2, LPARG, RBI, ITM2B, FNDC3A, MED4
4 75-76 SLIT2, LCORL, FAMI84B, NCARPG, QDPR, LAP3, MED28, MIR218-1
9 2-3 ARHGEF4, PLEKHB2, FAMI168B, CLDN15, PARL, AMER3, MAP6D1, YEATS2, DUSP28, GPCI, KLHL6, KLHL24, GPR148
shw 1 164-165 PCDHI7
i 170-171 KPNA3, CAB39L, CDADCI, RCBTBI, RCBTB2, ARLI1, SPRYD7, TRIMI3, KCNRG, MIR16-1, MIR15-A, SETDB2, MLNR,
CRSLTR2, LPARG, RBI, ITM2B, FNDC3A, MED4
4 75-76 SLIT2, LCORL, FAM184B, NCARPG, QDPR, LAP3, MED28, MIR218-1
GzW 1 170-171 KPNA3, CAB39L, CDADCI, RCBTBI, RCBTB2, ARLI1, SPRYD7, TRIM13, KCNRG, MIRI6-1, MIRI5-A, SETDB2, MLNR,

CRSLTR2, LPARG, RBI, ITM2B, FNDC3A, MED4

4 22-23 RAPGEF2, C4H4ORF45, FSTLS
4 75-76 SLIT2, LCORL, FAM184B, NCARPG, QDPR, LAP3, MED28, MIR218-1
Liw 4 75-76 SLIT2, LCORL, FAM184B, NCARPG, QDPR, LAP3, MED28, MIR218-1
HeW 1 170-171 KPNA3, CAB39L, CDADCI, RCBTBI, RCBTB2, ARLI1, SPRYD7, TRIM13, KCNRG, MIR16-1, MIRI5-A, SETDB2, MLNR,

CRSLTR2, LPARG, RBI, ITM2B, FNDC3A, MED4

4 75-76 SLIT2, LCORL, FAM184B, NCARPG, QDPR, LAP3, MED28, MIR218-1

6 30-31 HINI, SLCI8A2, VAX1, KCNKIS, PDZDS, EMX2, RABLIFIP2, FAM204A, CACULI, PRLHR, GRKS5, EIF3A, FAM45A, NANOS,
PRDX3, SEXN4

7 18-19 TLK1, DCAF17, CYBRDI, GADI, GORASP2, SP5, MYO3B, CCDCI73L, METTLS, SSB, UBR3, KLHL23, PHOSPHO2, KLHL41,

FASTKDI, PPIG, BBS5, LRP2, ABCB11, G6PC2, RDH7L, SPC25, MIR1733

33 32-33 SC8A, FIGNL2, ANKRD33, ACVR1B, ACVRL1

BrW, breast weight; DW, drumstick weight; TW, thigh weight; WW, Wing weight; BaW, Back weight; HW, Head weight; NeW, neck weight; ShW, Shank weight; GzW, Gizzard weight; LiW,
Liver weight; HeW, Heart weight; Chr, Chromosome.
Italic represent Names of Genes.
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Mb window Genes

BW2 1 169-170 LSAMP, EPHAS, CADM2, ROBO1, ROBO2, DSCAM, DMD, GPCS, GPC6, PCDH9, NBEA, CNINS, FAT3, DLG2, TENM4,
ILIRAPLL, FAMIS5A
1 170-171 KPNA3, CAB39L, CDADCI, RCBTBI, RCBTB2, ARL11, SPRYD7, TRIMI3, KCNRG, MIRI6-1, MIRI5-A, SETDB2, MLNR,
CRSLTR2, LPARS, RBI, ITM2B, FNDC3A, MED4
| 171-172 RNASEH2B, INTSG, FAMI24A, SERPINE3, DLEU7, WDFY2, DHRS12, TMEM272, ATP7B, ALG11, NEK3, NEKS, CKAP2, VPS36,
THSDI, FGLIL, TPTE2, SLC25A15, MRPS31, FOXO1
2 223 CDK6, CDK14, FZD1, AKAPS, CYP5IAI, KRIT1, NKIBI, GATADI, ACCSL, PEX1, RBM48, EFCABI, FAM133B, MIRI650,
SAMDSL, HEPACAM2, VPS50
2 39-40 RBMS3, TGFBR2, GADLI
2 110-111 XKR4, RGS20, TCEAL, LYPLAI, MRPLIS, SOX17, RP1, RBICCI, NPBWRI, ATPV61H, QPRKI
4 76 SLIT2, LCORL, FAM184B, NCARPG, QDPR, LAP3, MED28, MIR218-1
5 27-28 SMOCI, COX16, SLC8A3, SIPAILI, RGS6, PCNXI, MAP3KY, TTC9, MEDG, SYNJ2BP
ADG 1 133-134 ATPI0A, UBE3A, CNGA3, VWA3B, COAS, UNC50, MGAT4A, KIAAI211L, TSGA10, LIPTL, MITD1, MRPL30, LYGL, LYGL2,

TXNDCY, EIF 5B, REV1, AFF3

1 170-171 KPNA3, CAB39L, CDADCI, RCBTBI, RCBTB2, ARLI1, SPRYD7, TRIM13, KCNRG, MIR16-1, MIRI5-A, SETDB2, MLNR,
CRSLTR2, LPAR6, RBI, ITM2B, FNDC3A, MED4

1 171-172 RNASEH2B, INTS6, FAM124A, SERPINE3, DLEU7, WDFY2, DHRS12, TMEM272, ATP7B, ALG11, NEK3, NEK5, CKAP2, VPS36,
THSDI, FGLIL, TPTE2, SLC25A15, MRPS31, FOXO1

4 75-76 SLIT2, LCORL, FAMI84B, NCARPG, QDPR, LAP3, MED28, MIR218-1
33 32-33 SCN8A, FIGNL2, ANKRD33, ACVRLI, ACVRIB
DrW 1 170-171 KPNA3, CAB39L, CDADCI, RCBTBI, RCBTB2, ARLI1, SPRYD7, TRIM13, KCNRG, MIRI6-1, MIRI5-A, SETDB2, MLNR,

CRSLTR2, LPARG, RBI, ITM2B, FNDC3A, MED4

i 1711172 RNASEH2B, INTS6, FAM124A, SERPINE3, DLEU7, WDFY 2, DHRS12, TMEM272, ATP7B, ALG11, NEK3, NEK5, CKAP2,
VPS36, THSDI, FGLIL, TPTE2, SLC25A15, MRPS31, FOXO1

4 75-76 SLIT2, LCORL, FAM184B, NCARPG, QDPR, LAP3, MED28, MIR218-1
18 7.0-8.0 CEP112, NOL11, PITPNCI, PSMDI2, HELZ, CACNG1, CACNG4, CACNGS, PRKCA, TRNAR-CCG, APOH, AXIN2, RGS9,
GNAI3, ARSG, SLCIGAG, WIPII, PRKARIA, FAM20, ABCAS5, ABCAS, ABCA9, MAP2K6
Brw i 18.0-19.0 BRDI, ZBED4
1 170-171 KPNA3, CAB39L, CDADCI, RCBTBI, RCBTB2, ARLI1, SPRYD7, TRIM13, KCNRG, MIRI6-1, MIRI5-A, SETDB2, MLNR,
CRSLTR2, LPARG, RBI, ITM2B, FNDC3A, MED4
1 171-172 RNASEH2B, INTS6, FAM124A, SERPINE3, DLEU7, WDFY 2, DHRS12, TMEM272, ATP7B, ALG11, NEK3, NEK5, CKAP2,
VPS36, THSDI, FGLIL, TPTE2, SLC25A15, MRPS31, FOXO1
1 180-181 ZMYM2, LATS2, XPO4, EEFIAKMTI, IL17D, IFT88, CRYLL, GJB2, GJA3, PSPCI, MIR6641, MPHOSPHS, PARP4, CENP],
RNFI17, ARHGAP20, FDX1, RDX, ZC3H12C
i 182-183 CWFI9L2, VMOI, GUCYIA2, MIR1709, AASDHPPT, KBTBD3, MSANTD4, GRIA4
4 75-76 SLIT2, LCORL, FAM184B, NCARPG, QDPR, LAP3, MED28, MIR218-1
33 32-33 SCN8A, FIGNL2, ANKRD33, ACVRLI, ACVRIB
DW 1 170-171 KPNA3, CAB39L, CDADCI, RCBTBI, RCBTB2, ARLI1, SPRYD7, TRIM13, KCNRG, MIRI6-1, MIRI5-A, SETDB2, MLNR,

CRSLTR2, LPAR6, RBI, ITM2B, FNDC3A, MED4
4 75-76 SLIT2, LCORL, FAM184B, NCARPG, QDPR, LAP3, MED28, MIR218-1

™ 1 169-170 LSAMP, EPHAS, CADM2, ROBO1, ROBO2, DSCAM, DMD, GPCS, GPC6, PCDH9, NBEA, CNTNS, FAT3, DLG2, TENM4,
ILIRAPLI, FAMISSA

1 170-171 KPNA3, CAB39L, CDADCI, RCBTBI, RCBTB2, ARL11, SPRYD7, TRIM13, KCNRG, MIR16-1, MIR15-A, SETDB2, MLNR,
CRSLTR2, LPARG, RBI, ITM2B, FNDC3A, MED4

1 1714172 RNASEH2B, INTS6, FAM124A, SERPINE3, DLEU7, WDFY 2, DHRS12, TMEM272, ATP7B, ALG11, NEK3, NEK5, CKAP2,
VPS36, THSDI, FGLIL, TPTE2, SLC25A15, MRPS31, FOXO1
4 75-76 SLIT2, LCORL, FAM184B, NCARPG, QDPR, LAP3, MED28, MIR218-1
ww 1 170-171 KPNA3, CAB39L, CDADCI, RCBTBI, RCBTB2, ARL11, SPRYD7, TRIM13, KCNRG, MIRI6-1, MIRI5-A, SETDB2, MLNR,

CRSLTR2, LPAR6, RBI, ITM2B, FNDC3A, MED4

1 171-172 RNASEH2B, INTS6, FAM124A, SERPINE3, DLEU7, WDFY 2, DHRS12, TMEM272, ATP7B, ALG11, NEK3, NEK5, CKAP2,
VPS36, THSDI, FGLIL, TPTE2, SLC25A15, MRPS31, FOXO1

1 195-196 UVRAG, LRRC32, GUCY2F, ENSY, THAPI2, TRNAP-AGG, TRNAP-UGG, WNTI1, ART1, ART7B, ART7C, MADPRT, IL18BP,
RNFI21, RNFI69, TRPC2L, NUMAL, LAMTORI, LRTOMT, ANAPCI5, WDR73, ADAMI5, SLCO2B1, TPBGL, PGM2L1, KCNE3,
LIPT2, POLD3, CHRDL2, XRRA1

4 75-76 SLIT2, LCORL, FAM184B, NCARPG, QDPR, LAP3, MED28, MIR218-1

BaWw g 171-172 RNASEH2B, INTS6, FAM124A, SERPINE3, DLEU7, WDFY 2, DHRS12, TMEM272, ATP7B, ALG11, NEK3, NEK5, CKAP2,
VPS36, THSDI, FGLIL, TPTE2, SLC25A15, MRPS31, FOXO1

4 66-67 SGCB, SPATA1S, OCIADI, LRRC66, DCUN1D4, CWH43, FRYL, CORIN, GABRA4, TEC, SLAIN2, CNGA1, NFXLI, NIPALL,
TXK, ZARI, SLC10A4, ATPI0D, COMMDS

4 75-76 SLIT2, LCORL, FAMI84B, NCARPG, QDPR, LAP3, MED28, MIR218-1
HW 1 170-171 KPNA3, CAB39L, CDADCI, RCBTBI, RCBTB2, ARL11, SPRYD7, TRIM13, KCNRG, MIR16-1, MIRI5-A, SETDB2, MLNR,
CRSLTR2, LPARG, RBI, ITM2B, FNDC3A, MED4
4 75-76 SLIT2, LCORL, FAMI84B, NCARPG, QDPR, LAP3, MED28, MIR218-1
8 27-28 CYP2J 19, CYP2J24P, CYP2J21, CYP2J22, CYP2J23, NFIA, TM2D1, PATJ, USP1, KANK4, ANGPTL3, DOCK7
New 1 12-13 MAGI2, TMEM60, PTPN12, PHTF2, RSBNIL, GSAP, LRRC17, CCDC146, FAMIS5A, FGL2
il 170-171 KPNA3, CAB39L, CDADCI, RCBTBI, RCBTB2, ARL11, SPRYD7, TRIM13, KCNRG, MIRI6-1, MIRI5-A, SETDB2, MLNR,
CRSLTR2, LPARG, RBI, ITM2B, FNDC3A, MED4
4 75-76 SLIT2, LCORL, FAMI84B, NCARPG, QDPR, LAP3, MED28, MIR218-1
9 2-3 ARHGEF4, PLEKHB2, FAMI168B, CLDN15, PARL, AMER3, MAP6DI1, YEATS2, DUSP28, GPCI, KLHL6, KLHL24, GPR148
Shw 1 164-165 PCDH17
i 170-171 KPNA3, CAB39L, CDADCI, RCBTBI, RCBTB2, ARLI1, SPRYD7, TRIM13, KCNRG, MIR16-1, MIRI5-A, SETDB2, MLNR,
CRSLTR2, LPAR6, RBI, ITM2B, FNDC3A, MED4
4 75-76 SLIT2, LCORL, FAM184B, NCARPG, QDPR, LAP3, MED28, MIR218-1
GZIW 1 170-171 KPNA3, CAB39L, CDADCI, RCBTBI, RCBTB2, ARL11, SPRYD7, TRIM13, KCNRG, MIR16-1, MIRI5-A, SETDB2, MLNR,

CRSLTR2, LPARG, RBI, ITM2B, FNDC3A, MED4

4 22-23 RAPGEF2, C4H4ORF45, FSTL5
4 75-76 SLIT2, LCORL, FAM184B, NCARPG, QDPR, LAP3, MED28, MIR218-1
Liw 4 75-76 SLIT2, LCORL, FAM184B, NCARPG, QDPR, LAP3, MED28, MIR218-1
HeW 1 155-156 SLAIN1, EDNRB, SCEL, MYCBP2, FBXL3, ESIMLI, ACOD1, KCTDI2, CLN5
1 170-171 KPNA3, CAB39L, CDADCI, RCBTBI, RCBTB2, ARL11, SPRYD7, TRIM13, KCNRG, MIRI6-1, MIRI5-A, SETDB2, MLNR,
CRSLTR2, LPARG, RBI, ITM2B, FNDC3A, MED4
4 75-76 SLIT2, LCORL, FAM184B, NCARPG, QDPR, LAP3, MED28, MIR218-1
6 30-31 HINI, SLCISA2, VAX1, KCNK18, PDZDS, EMX2, RABIIFIP2, FAM204A, CACUL1, PRLHR, GRKS, EIF3A, FAM45A, NANOSI,

PRDX3, SEXN4

7 18-19 TLK1, DCAF17, CYBRDI, GADI, GORASP2, SP5, MYO3B, CCDC173L, METTLS, SSB, UBR3, KLHL23, PHOSPHO2, KLHL41,
FASTKDI, PPIG, BBS5, LRP2, ABCBI1, G6PC2, RDH7L, SPC25, MIR1733

13 67 TENM2

33 32-33 SC8A, FIGNL2, ANKRD33, ACVRIB, ACVRL1

BW?22, Body weight at week 22; ADG, Average daily gain; DrW, Dressed weight; BrW, Breast weight; DW, Drumstick weight; TW, Thigh weight; WW, Wing weight; BaW, Back weight; HW,
Head weight; NeW, Neck weight; ShW, Shank weight; GzW, Gizzard weight; LiW, Liver weight; HeW, Heart weight; Chr, Chromosome.
Italic represent Names of Genes.
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Trait 1-Mb window No. of markers in window Genetic variance explained by window
Model 1 (without BW22 as covariate)
BW22 1 169-170 383 14
1 170-171 345 104
1 171-172 376 21
2 2-23 305 27
2 39-40 319 13
2 110-111 290 11
4 75-76 263 197
5 27-28 410 12
ADG 1 133-134 357 11
1 170-171 345 96
1 171-172 376 10
4 75-76 263 11.6
33 32-33 17 10
Drw 1 170-171 345 as
1 171-172 376 37
4 75-76 263 140
18 7.0-80 713 | 19
Brw 1 18-19 312 10
1 170-171 345 17
1 171-172 376 14
1 180-181 372 1.0
1 182-183 404 21
4 75-76 263 122
33 32-33 17 11
DW 1 170-171 345 19
4 75-76 263 206
™ 1 169-170 383 10
1 170-171 345 | 98
1 171-172 376 14
4 75-76 263 196
ww 1 170-171 345 128
1 171-172 376 12
1 195-196 404 17
4 75-76 263 252
BaW 1 171-172 376 46
4 66-67 358 10
4 75-76 263 53
HW 1 170-171 345 bE §
4 75-76 263 14
8 27-28 479 22
New 1 12-13 438 11
1 170-171 345 52
4 75-76 263 64
9 20-30 524 19
Shw 1 164-165 346 12
1 170-171 345 94
4 75-76 263 339
Gw 1 170-171 345 74
4 75-76 263 150
4 2-23 288 13
Liw 4 75-76 263 205
HeW 1 155-156 370 11
1 170-171 345 21
4 75-76 263 27
6 30-31 444 12
7 18-19 440 22
13 60-70 an 11
33 32-33 17 14
‘Model 2 (with BW22 as covariate)
Brw 1 114-115 349 154
18 10-20 632 102
33 31-32 17 407
DW 1 194-195 359 1
7 34-35 451 209
15 80-90 608 134
™ 1 166-167 356 108
ww 1 11-112 363 102
2 129-130 254 313
4 75-76 263 492
z 14-15 284 114
BaW 4 68-69 349 2
HW 3 17-18 379 [ 344
10 30-40 579 101
New 1 1213 348 116
1 147-148 418 122
1 170-171 345 775
4 75-76 263 757
9 20-30 524 175
Shw 1 164-165 346 121
1 170-171 345 1127
4 75-76 263 3661
GiW 1 170-171 345 684
4 2-23 288 125
4 75-76 263 1286
Liw 4 75-76 263 2443
HeW 1 170-171 345 252
4 75-76 263 254
6 30-31 444 [ 117
7 18-19 440 192
33 32-33 17 129

BW22, Body weight at week 22; ADG, Average daily gain; DrW, Dressed weight; BEW, Breast weight; DW, Drumstick weight; TW, Thigh weight; WW, Wing weight; BaW, Back weight; HW,

pead skt KOW: Mok waiahits SIW. Shasle waisht; CoW. Cierard Wit LW Tives weiche: MW, Hsare wiichi: Chic. Chainicoti.
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Trait Baw HW eW Shw GzW Liw HeW

Baw 0.17 (0.06) 0,08 (0.03) 0.14 (0.03) 003 (0.03) 0.08 (0.03) 011 (0.03) 024 (0.03) ‘
HW 032 (0.24) 020 (0.06) 047 (0.16) 028 (0.18) -0.20 (0.19) 037 (0.26) o015 021) ‘
New 065 (021)< 043 (0.03) 029 (0.07) 009 (0.17) ~0.10 (0.17) ~0.08 (0.24) 033 (0.18) ‘
Shw -027 (021) 025 (0.03) 030 (0.03) 034 (0.07) 0.33 (0.14) -0.03 (0.22) 007 (0.18)

GW 0.5 (0.21) 005 (0.03) 009 (0.03) 024 (0.03) | 035 (0.07) 047 (0.18) 025 (018)

Liw s oa 005 (0.03) 0.6 (0.03) 012 (0.03) 021 003) 013 009) o1 029)

Hew 0.19 (02) 028 (0.03) 026 (0.03) 0.09 (0.03) 001 (0.03) 0.14 (0.03) 0.21 (0.06)

HW, head weight; NeW, neck weight; ShW, shank weight; GzW, gizzard weight; LiW, liver weight; HeW, heart weight; BaW, Back weight. Standard errors are in parenthesis.
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Trait
BaW
HW
New
Shw
GeW
Liw

Hew

:E\

0.17 (0.06)
072 (0.1)

0389 (0.06)
062 (0.09)

054 (0.1)

058 (0.12)

077 (0.08)

HW

0.35 (0.03)
0.31 (0.07)
0.57 (0.02)

0.4 (0.03)

0.15 (0.03)

0.16 (0.03)

045 (0.03)

New

051 (0.02)

076 (0.08)

0.50 (0.07)

058 (0.02)

034 (0.03)

033 (0.03)

052 (0.02)

Sh
0.45 (0.03)
0.67 (0.09)
0.67 (0.07)
034 (0.07)
0.6 (0.08)
0.36 (0.08)

039 (0.03)

Gzw Liw
036 (0.03) 039 (0.03)
[ 034 (0.13) 035 (0.17)
048 (0.1) 060 (0.12)
047 (0.07) 058 (0.12)
0.35 (0.07) 075 (0.1)
037 (0.03) 0.13 (0.05)
025 (0.03) 0.35 (0.03)

eW

0.53 (002)
0.61 (0.11)

077 (0.07)

0.63 (0.1)
0.6 (0.12)

0.65 (0.09) ‘
0.21 (0.06) ‘

HW, head weight; NeW, neck weight; ShW, shank weight; GzW, gizzard weight; LiW, liver weight; HeW, heart wei

t; BaW, Back weight. Standard errors are in parenthesis.
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Drw 0.30 (0.07) 077 (0.08) 075 (0.1) 071 (0.09) 0.61 (011)

Brw 074 (0.01) 0.29 (0.07) 039 (0.17) 048 (0.13) 0.22 (0.18)
™ [ 058 (0.02) 030 (0.03) 0.21 (0.07) 058 (0.14) 076 (0.12)
ww 067 (0.02) 045 (0.03) 043 (0.03) 0.38 (0.08) 0.75 (0.09)
DW 067 (0.02) 035 (0.03) 042 (0.03) 057 (0.02) 0.29 (0.07)

BW?22, Body weight at 22 weeks of age; BrW, breast weight; DW, drumstick weight; TW, thigh weight, WW, wing weight; and DrW, Dressed weight. Standard errors are in parenthesis.
Bold values represent Estimates of Heritabilities.
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Parameter Mean

Production Performance (N = 85)

1. Pre-weaning growth rate (g/d) 14350 £ 1.22
2. Post-weaning growth rate (g/d) 32033 £ 1.55
3. Feed conversion efficiency () 1:4.30

4. Body weight at 120 days (kg) 2363 + 0.5
5. Body weight at 180 days (kg) 4713 £ 064
6. Body weight at 240 days (kg) 68.11 £ 0.80
7. Body weight at 300 days (kg) | 8648 + 0.92

Reproduction performance (N = 50)

1. Age at puberty (days) 276.66 + 2.23
2. Age at first conception (days) 33113 £ 2,65
3. Age at first farrowing (days) 425.26 + 2.82
4. Inter-farrowing intervals (days) 205.04 £ 1.82
5. Litter size at birth (no.) 9.12 £ 0.55
6. Litter size at weaning (no.) 852+ 0.81
7. Birth weight (kg) 0.92 % 0.06
8. Weaning weight (kg) 9.46 + 0.81
9. Weaning percentage 8932 £ 252

Carcass performance (N = 25)

1. Carcass weight (kg) 6427 £ 0.67
B Dressing percentage (%) 7333 £ 037
3. Carcass length (cm) 7062 % 0.78
4. Back-fat thickness (cm) 230 £ 021

Wiithes o dhassmitton
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ter Mean + SE

1. Total litter size at birth (no.) 5183 + 1.61
2. Average litter size at birth (no.) 917 £0.17
3. Total litter weight at birth (kg) 4407 £129
4. Average litter weight at birth (kg) 775 £0.14
5. Total litter size at weaning (no.) 4717 £ 2.69
6. Average litter size at weaning (no.) 849 £ 0.20
7. Total litter weight at weaning (kg) 44619 £ 3.52
8. Average litter weight at weaning (kg) 7846 + 191

N. number of observations
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Parameter

Average local

Crossbred variety

1. Litter size at birth (no.) 583"+ 035 887" + 024
2. Litter size at weaning (no.) 5.00° £ 0.27 827"+ 037
3. Body weight at 120 days (kg) 1085 + 0.85 24.13" £ 0.56
4. Body weight at 180 days (kg) 18.56" £ 1.05 4481 £ 072
5. Body weight at 240 days (kg) 25.68° +0.96 65.31° £ 0.82
6. Body weight at 300 days (kg) 3417 + 135 82.54" £ 1.12
7. Number of piglets/year/sow 623"+ 023 13.82' £ 0.38
8. Market demand score 3.67" £ 0.18 427° £ 020
9. Consumer preference score 436" + 024 412 £ 0.17

o lnss in the-same-tow Wil diliunt supecaint diller siaikeantly Gi-< U0, ¥leans wilh o same supersciut are- ok sty (p & 0005 dificrent o The sime Towe:
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Parameter iang Megha (50) HN-75 (50)
Pre-weaning growth rate (g/d) 8445 £ 1.21 10645 + 1.29 133457+ 1.34 153.57¢ £ 1.71
Post-weaning growth rate (g/d) 13355 £ 191 240.87" + 0.84 32055° + 134 332174 % 127

Body weight at different ages (kg)

60 days 559"+ 0.03 740 £ 044 9.00° + 0.36 1054° £ 0.47
120 days 1155 + 0.52 16.68" + 037 19.22° £ 0.52 24.63' + 057
180 days 19.97" + 0.42 2935" £ 0.76 4256° £ 079 47.02' + 069
240 days 28.75" £ 0.76 42.53° + 0.83 65.87° + 0.67 68.72' + 075
300 days 37.63" £ 0.86 65.21° £ 0.98 83.92+ 077 89.541 + 097

*® values in the same row with different superscript differ significantly (p < 0.05). Means with different superscripts in respective rows differ significantly (p < 0.05). Figures in parenthesis
indicate the number of observations. NM: Niang Megha; HN-50: 50% H x 50% NI IN-75: 75% H x 25% NM; HN-87.5: 87.5% H x 12.5% NM.
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NM (Tribout et al., HN-50 (Tribout et al., HN-75 (Tribout et al., HN-87.5 (Tribout et al.,

2010) 2010) 2010) 2010)

Age at puberty (days) 213.19" + 2.86 26638" + 119 293.16%+1.19 30631 + 1.45
Age at first conception [ 24035 + 1.92 [ 300.15" + 241 [ 33113141 34632 + 1.35
(days)

Ageat first farrowing (days) 36267 + 295 42425° £ 252 432174152 47850 £ 250
Inter-farrowing interval 21033 + 142 21546' + 1.16 [ 208,04 +2.16 220.50° £ 1.75
(days)

Litter size at birth (no.) 580" +0.42 752" +0.85 872" £0.75 928+ 033
Litter size at weaning (no.) 457 £ 048 7.41° £ 181 | 8.05" +0.52 842 £ 073
Birth weight (kg) i 054" +034 079" £ 0.16 [ 083+ 0.16 094" £ 021
Weaning weight (kg) 525+ 044 678" £ 0.14 832"+ 114 9.54" £ 047
Av. weaning percentage (%) 80.35' + 077 9282 £ 072 8736+ 0.75 8528' £ 076

** values in the same row with different superscript differ significantly (p < 0.05). Means with different superscripts in respective rows differ significantly (p < 0.05). Figures in parenthesis
indicate number of observations. NM: Niang Megha; HN-50: 50% H x 50% NM; HN-75: 75%H x 25% NM; HN-87.5: 87.5% H x 12.5% NM.
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Diseases c NM
Pre-weaning
Stillbirth 023 £ 000 037" £0.00 073" £ 001 0,88 + 0.02
Crushing of piglets 072" £ 000 015" £ 0.00 120° £ 0.03 2674 + 007
Weak piglets 0.07* £ 000 0.03° £ 0.00 007" +0.00 0.12° £ 0.00
Piglet diarrhoea 678" £ 0.1 824" £023 853" £ 031 1023 £0.33
Mortality (%) 676" £ 021 534 £0.15 613"+ 021 843" £ 032
Post-weaning
Piglet diarrhoea 341° £ 007 372" £0.08 423" £0.11 487° £ 0.13
‘Wound/abscess/ear bit/leg-lesion/other body lesions 9.73" +0.03 12.31° £ 0.02 16.72° + 031 21.34° £ 037
Pneumonia 452+ 003 373" £0.02 434" £0.03 457" £0.02
Skin diseases/lesions 572" +0.02 578" £ 0.03 745" +0.04 1245 £ 0.11
Weakness 231° £ 001 3520 £0.02 378" £0.12 53091
Lameness/arthritis/hoof lesions. 122" £ 0.01 1.87* £ 0.02 352" £ 0.1 572012
Metritis 023 £ 000 034 +0.00 078" £ 0.00 0.84° + 0.00
Other minor (uterine prolapse) 123 £ 001 145 £ 0.01 36" %002 487504
Mortality % 201° + 001 213" £0.01 342° £ 002 376" + 0.02
Adult mortality % 044 £0.00 076" +0.00 121° £ 001 176° + 001
Medicine and veterinary costs/year (INR) 387.55" £ 232 427.21° £ 2.50 467.35" £ 371 523.22° + 391

** values in the same row with different superscript differ significantly (p < 0.05). Means with different superscripts in respective rows differ significantly (p < 0.05). NM: Niang Megha; HN-50:

50% H x 50% NM: HN-"

5% H x 25% NM: HN-87.5: 87.5% H x 12.5% NM.
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Parameter First Second Third Fourth Fifth Sixth Overall Average
generation  generation  generation generation generation generation genetic genetic gain/
gain (%)  generation (%)
Litter size at 872+ 075 879 % 087 881+ 104 898 0,17 902 % 121 912055 459 076
birth (no.)
Litter size at 805052 8122087 825£025 827073 837 021 852 £ 0.81 584 097
weaning (no.)
Body weight at (kg)
Birth 0.83 +0.16 085 + 025 087 +026 088 +0.16 089 +0.16 092 £ 0.06 1084 181
Weaning 832034 863 £ 047 887 £ 048 905 = 0.54 921 %087 946 £ 081 1370 228
120 days 1922 £ 0.52 19.98 £ 038 2033 £ 049 2043 +039 2143 %058 | 2363 £055 2294 382
180 days 4256079 | 4354%059 4487 £062 | 4516 £066 4657 £057 | 4713 £ 064 1074 179
240 days 6587 £067 | 6569+ 073 6659058 | 6720 +082 6745078 | 6811 £ 080 340 057
300 days 83.92 £ 0.67 8379 £ 094 8447 £087 | 8521 £059 8536 £ 067 | 8648 £092 305 051

No. of observations is 240 for production traits and 30 for reproduction traits.
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Genetic group
Exotic sire (ES) 8
Exotic dam (ED) 98
Zebu sire (Z5) 8
Zebu dam (2D) 98
First-generation exotic x zebu crossbred cows (FIC1) 100
75% exotic x 25% zebu crossbred test bull (HGTB) 20
75% exotic x 25% zebu crossbred old/selected bull (HGOB) 10
75% exotic x 25% zebu FI crossbred cows in the breeding unit (HGCF1) 75
75% exotic x 25% zebu F2 crossbred cows (progeny of HG bull) in the breeding unit (HGCF2) 56

Cows in production unit (CPU) 143576

mbel

Selected

7

13

%

13

17

10

5

13

11

25456

31

31

33

20

10
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Genetic group zs ZD Fi1C1 HGTB HGSB HGCI
ES ES > ES ED > ES
ED ES > ED ED > ED
zs 78>78  ID>1ZS
ZD 7$>7D 7D > ZD
‘ FICL ES > FIC1 ZD > FIC1
HGB ES > HGB FICI>HGB
HGCF1 ES > HGCF1 FIC1> HGCF1
HGCF2 HGTB > HGCF2 HGCF1> HGCF2
CPU HGSB > CPU CPU > CPU

ES, exotic dairy sire; ED, exotic dairy dam; Z8, zebu sire; ZD, zebu dam; FICI, first-generation crossbred cow of exotic dairy sire and zebu dam; HGTB, high-grade test bull (crosses of ES and
FIC1); HGSB, high-grade selected bull (crosses of ES and FIC1 and progeny tested); HGB, indicate logical selection group as HGSB is selected from HGTB (two-stage selection); HGCF1, high-
e voves {crosesof B8 and FICT: HOCH: sscand-eansmtion high-grade:cows:-CIL, cows it produstion mift:
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African
region

Species

Ranking methods

Characteristics of the ranking system

Coted'Ivoire | Western Cattle (Beef), Sheep and  Based on mass selection Based on the performances data, the best animals are selected
Goat
Niger Western Cattle (Dairy), Cattle (Beef), | Based on mass selection Sclection based on mass selection for growth and milk traits
Sheep, Goat and Chicken
Nigeria Western Cattle (Dairy), Cattle (Beef), | Based on mass selection and based on Ranking system not described by respondents. They believed
Sheep and Goat genetic evaluation that the information is domiciled with National Animal
Production Research Institute (NAPRI), FMARD, Kaduna,
Nigeria
Uganda Eastern Cattle (Dairy), Cattle (Beef), | Based on genetic evaluation, and based on | Performances of individuals animals are recorded over time.
Goat, Pig and Chicken mass selection Samples are taken to determine genetic profiles of the animals
under evaluation. The animals are then ranked either based on
the phenotypic performance or genetic information
Tanzania Eastern Cattle (Dairy) Based on mass selection, based on genetic | Ranking of animals based on the genomic, genetic and
evaluation and based on genomic phenotype data
evaluation and
Zimbabwe | Southern Cattle (Bee) Based on genetic evaluation ‘The animals in the Herdbook database are ranked using
pedigree-based breeding value (EBVs). The national ranking
system is more based on the Tuli Beef breed
Kenya Eastern Cattle (Dairy), Cattle (Beef) | Based on mass selection and based on ‘The Kenya Animal Genetic Resources Centre (KAGRC) does
genetic evaluation regular bull evaluations using performance and pedigree
information
Morocco | Northern Horse Based on genetic evaluation, and based on | Depending on the use of the horse, the best animals are ranked
mass selection by either considering phenotypic performance or by
integrating the pedigree (genetic) information
Tunisia Northern Cattle (Dairy) Based on genetic evaluation Cattle ranking based on pedigree-BLUP
South Africa = Southern Cattle (Dairy), Cattle (Beef), = Based on genetic evaluation, and Based on | Animals are ranked by using quantitative and Molecular

Sheep, Goat and Pig

genomic evaluation

genetics. The methods used include pedigree, genomics and
performance data
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Top 5 sires

Trait (3 PGG  %PGG SA Multi-country PGG %PGG
i og p i 6g p PGG  %PGG i og p
MY305 2 056 | 73986 . ! ¥ % % 58 070
AFC X ‘ 0.49 ‘ 69.02 ‘ ‘ ! . X 6L19 078
cn ¥ 056 ‘ 12096 ! I o 2029 054
Top 10 sires
Trait KE PGG %PGG SA Multi-country PGG  %PGG
i 6g p i og p PGG  %PGG i og P
L0s6 21 y 073 93059 y 528
049 | 5870 y I 076 [778.78 ] y 61.1948
056 ‘ 10287 y . | y 202946
Top 25 sires
Trait KE PGG %PGG SA Multi-country PGG  %PGG
i og p i ag P PGG  %PGG i og p

073 ‘ 79451 | 10022 2. 528 % 79279 100

0.76 ‘ 67.26 65.77 ’ 61.1948 % 10226 100

056 | 2148 91.84 214 | 202946 | 054 | 2339 100

ccuracy of selection (square root of reliability of EBVS). o g Square root of trait genetic variance
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Top 50 sires

Trait 3 PGG  %PGG SA Multi-country PGG 9%PGG
i cg p i og P PGG  %PGG i og [
MY305 528
611948
202946
Top 75 sires
Trait KE PGG %PGG SA Multi-country PGG  %PGG
i og p i og p PGG  %PGG i og P

073 598: . 528

0.76 [50.69 K 611948 078

16.19 K 202946 054

Top 100 sires

Trait 3 PGG  %PGG SA Multi-country PGG  %PGG

p i 6g p PGG %PGG i og o
0.73 540.02 96.76 ‘ 151 ‘ 528

076 | 4610 | 63.96 ‘1.51 ‘61.1948

056 | 1460 | 88.23 ‘ 151 ‘ 202946

Selection intensity. p : Accuracy of selection (square root of reliability of EBVS). o : square root of trait genetic variance
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Parameter

Cost per generation 45.85 5271 7151 190.28 17257
= per year 257.15 44974 297.32 120691 72114
Return per generation | 1559.07 | 247583 1765.54 | 574169 [ 3969.88
Profit per year 249.58 42200 285.28 1166.92 68979
Profit per generation 151322 | 232312 [ 1694.03 [ 555140 [ 3797.30

SPT, conventional on-station progeny testing; FPT, conventional on-farm progeny testings SFPT, conventional on-station and on-farm progeny testing; GS, genomic selection; GPT, genomic
progeny testing,
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Breeding program Accuracy of selection index Generation interval

Test bull Selected bull
SPT 033 085 606
o 034 0.99 551
SFPT | 037 0.99 | 594
: Gs 043 476
0.99 551

GPT 043

SPT, conventional on-station progeny testing; FPT, conventional on-farm progeny testing; SFPT, conventional on-station and on-farm progeny testing; GS, genomic selection; GPT, genomic
progeny testing.
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MY (kg) 3452 (209.27) 149.63 (273.22) 2935 (174.30) 76.16 (362.33) 77.51 (42671)

AFC (day) 119 (7.22) 0.97 (537) 069 (4.12) L11 (5.26) 0.90 (4.94)

CI (day) 157 (9.49) 2,06 (11.34) 120 (7.13) 235 (11.18) 229 (12.63)
HL (day) 007 (0.44) 0.1 (059) 0,06 (0.36) 012 (055) 0.12 (0.65)

MY, milk yield; AFC, age at first calving; CI, calving interval; HL, herd life; SPT, conventional on-station progeny testing; FPT, conventional on-farm progeny testing; SFPT, conventional on-
station and on-farm progeny testing GS, genomic selection; GPT, genomic progeny testing.
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MY ‘ 0.64 £ 0.12 037 £0.13 0.64 £0.18

e} ‘ 023 +002 061 £0.19 078 £ 0.14

AFC ‘ 017 £ 004 0.02 £ 0.04 0.15 £ 021
HL 007 + 000 0.14 £ 0.03 -0.01 £0.04

MY, lactation milk yield; CI, calving interval; AFC, age at first calving; HL, herd lfe; Above diagonal, genetic correlation; below diagonal, phenotypic correlation.
Sourc ireba et al., 2022.
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Economic value in ETB

MY 1338 830.98 030 052 ‘ 1897 058
AFC -16.19 188.27 0.19 ‘ 1582 0475
a -33.58 125.28 0.09 0.19 w 1783 051
HL 79.55 279 028 - ‘ 1883 034

MY, lactation milk yield; AFC, age at first calving; CI, calving intervals HL, herd life; *SDP, phenotypic standard deviation of lactation milk yield in kg; *SDP phenotypic standard deviation of
AFC, CI, and HL, in days; I, heritability; , repeatability; N, number of animals in the reference population; r(TI) = accuracy of the polygenic breeding value. Proportion of genetic variance
exphined by markers (Q) = 0.7666 and number of independently segregating QTLs (K) = 1000, QTLs = quantitative trait loci.

Sourc ireba et al., 2022: Erbe et al. 2012: Boison et al., 2017: Haile-Mariam et al., 2013.






OPS/images/fgene-15-1106709/fgene-15-1106709-t008.jpg
Selection group Selected

Genotyped cows used as reference population (CBU) 2500 2500 3125
Genotyped bull (BBU) 500 2 500

Cows in production unit (CPU) 141,076 25013 45,144
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Genetic group BBU (¢1:]V] CPU

‘ BBU BBU > BBU CBU > BBU
‘ CBU BBU > CBU CBU > CBU
‘ CPU BBU > CPU CPU > CPU

BEU: genotyped hishegrade bull CBUL cowsin bresding unié (hept by Tarmers:and selected For refarerice populition): CPU: cows ih:productlon-unit:
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Selection group Number Selecte

Exotic sire (ES) 8 7

Exotic dam (ED) 98 20 31

Zebu sire (Z5) 8 7 8

Zebu dam (2D) 200 27 64

First-generation exotic x zebu crossbred cows (F1C) 315 55 64
7596 exotc x 25% zebu crossbred test bull (HGTB) 100 20 100

Cows in breeding unit (CBU) 2500 2500 s
759 exotc x 25% zebu crossbred old/seected bull (HGSB) 10 10 20

25013 45,144

Cows in production unit (CPU)

141,076
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ES ED S} F1C HGTB HG! CBU
ES ES > ES ED > ES |
0 ES>ED | ED>ED ‘
s 75> 78 ‘ ZD> 28
) 78 > 7D ‘ wow |
FIC ES > FIC | ZD > FIC
HoB ES > HGB ‘ FIC > HGB
CBU ‘ HGTB > CBU CBU > CBU
o ‘ HGSB > CPU CPU > CPU

ES, exotic dairy sire; ED, exotic dairy dam; ZS, zebu sire; ZD, zebu dam; FIC, first-generation crossbred cow of exotic sire and zebu dam; HGTB, high-grade test bull (crosses of ES and FIC);
HGSB, high-grade selected bull (crosses of ES and F1C and progeny tested); HGB, indicate logical selection group as HGSB s selected from HGTB (two-stage selection); CBU, cows in breeding
uit koot by Exommers: anil sclecied S seneany satingl- CIUL. cows Br produetian-unis:
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Genetic group Selected

Cows in breeding unit (kept by farmers and selected for progeny testing) (CBU) 2500 3125
Test bull used for progeny testing (TBBU) 500 500
Progeny-tested bull (SBBU) 10 20

Cows in production unit (CPU) 141,076 45,144
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Genetic group

BBU TBBU > BBU CBU > BBU ‘
CBU TBBU > CBU CBU > CBU
CPU SBBU > CPU CPU > CPU

BBU, in this alternative breeding program indicate selected bulls (SBBU) were choosen from test bullest (TBBU) which is called logical selection group (two stage selection) by the wombat
scllntaie. TRETT st SEBNT dhould Biave connmon e in s colains (ene feoiivl
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Inp SPT FPT SERTE GS

Cost of feed/cows (to on-station breeding unit) 29,200 * 29,200 s -
Cost of feed/bulls 18,250 18,250 18,250 18,250 18,250
Cost of genotyping/bull - - - 1437.26 1437.26
Cost of genotyping/cow e s 33978 339.78
Cost of purchasing genotyped bull = 27,150 27,150
Cost of purchasing selected bull = 22625 + | . R
Cost of animal health/cow 106.06 # 106.06 # =
Cost of animal health/bull 106.06 106.06 106.06 106.06 106.06
Al cost/cow 410 94.06 *410 + 94.04 94.04 94.04
Cost of ear tag/cow 100 100 100 100 100
Cost of salary/wages/cow 3624.31 1157.99 1123.54 1157.99 1157.99
Overhead cost (training, supervision, and other administration)/animal 1170.96 400 32123 400 400
Variable cost/cow 29,816.11 194.04 *29716.11 + 194.04 533.82 533.82
Variable cost/sire 18,456.11 41,081.06 18,356.11 47,043.32 47,043.32
Fixed cost/animal 4818.69 1575.99 1459.23 1575.99 1575.99
Total annual cost required for BU 15,154,059 5,009,597 22,073,307 6,668,175 6,668,175

SPT, conventional on-station progeny testing; FPT, conventional on-farm progeny testing; SFPT, conventional on-station and on-farm progeny testing; GS, genomic selection; GPT, genomic

Grominy eeting . eos B an-atat i + ons Bix: BT Breading m
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Input parametel Value Input parameter Unit  Value
Productive life of test bull Year 1 Reproductive cycle of F1 cows Year | 126
Productive life of high-grade cows, CBU, and CPU Year | 564 Reproductive cycle of CBU genotyped bulls and CPU Year | 132
Productive life of F1 cows Year | 577 Reproductive cycle of high-grade cows and bulls raised at on-station | Year | 142
Productive life old/selected bull Year 2 Reproductive cycle of Zebu and Friesian sire and dam Year | 144
*broductive life of Friesan cows Yer | 35 Sex ratio % s
Productive life of Zebu cows Year | 744 Conception rate % 08
Age at first reproduction of Friesian and F1 cows Year | 315 Survival rate % 08
Age at first reproduction of high-grade cows, CBU, and CPU | Year 352 Interest rate to calculate discounted cost and return % 0095
Age at first reproduction of Zebu cows Year | 357 Investment duration | var | 2

CBU, cows in breeding unit; CPU, cows in production unit.
Sourc ireba et al., 2022.
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All consequences Abergelle Arado Begal

Erob Raya

No. of samples 11 1 11 10 1
Bi-allelic variants processed | 2s87905 2905857 2829799 2755496 2899844
Transcript ablation 4 5 5 5 5
Splice donor variant 248 240 236 206 27
Splice acceptor variant 232 234 215 208 2
Stop gained 5 61 e 62 la
Frameshift variant 4788 4875 4688 4737 4977
Stop lost 2 2 2 2 2
Start lost 42 39 41 34 38
Inframe inserton 825 834 815 799 853
Inframe deletion 165 1578 1561 1540 s
Protein altering variant 39 41 46 0 4
Splice region variant e 3013 3805 3716 | 39s
Stop retained variant 17 17 21 2 20
Start retained variant 13 1 13 13 n
Coding sequence variant 202 204 206 191 206
Mature miRNA variant T 16 s 16 v
5 prime UTR variant 4855 | 4835 V 4842 4647 4985
3 prime UTR variant 16000 16025 15703 15327 16165
Non-coding transcript exon variant 2439 2440 2409 L 2441
Intron variant 2237586 2246670 2192419 2135981 | 39005
Non-coding transcript variant 47834 48290 47388 45827 48017
Upstream gene variant 214934 216603 211424 205980 | 217097
Downstream gene variant 230871 232624 227186 220614 232751
Intergenic variant 1o 1653813 1607488 1565117 | 1648503
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All consequences Abergelle Arado Beg Raya

No. of samples 11 11 11 10 11
Bi-allelic variants processed 29563964 29713124 28932547 28045045 29393582
Splice donor variant 707 684 693 672 690
Splice acceptor variant 439 452 442 429 435
Stop gaincd 1682 1748 | 1706 1648 1765
Stop lost 25 = = 239 243
Start lost 397 406 382 373 413
Missense variant 149334 o6 g 141733 149448
Splice region variant 40755 41135 39987 38861 40791
Synonymous variant 228481 229776 220200 217399 228249
Stop retained variant 169 183 169 160 180
Coding sequence variant 1 1 1 1 1
Mature miRNA variant 123 125 I 120 125
5_prime UTR variant 49794 49766 48751 46913 50016
3_prime UTR variant 137652 138671 135235 131341 137754
Non-coding transcript exon variant 31400 31309 30515 29622 31084
Intron variant 22387867 22473356 | 21940886 21255569 22194958
' Non-coding transcript variant 502772 505660 5259 476848 500512
Upstream gene variant 2074721 2090121 2042625 1979084 2075740
Downstream gene variant 211713 2121229 2070242 2007161 2104907
Intergenic variant 17584768 17682416 17197428 16677542 17502131
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Variables

Cattle breeds

Abergelle  Arado
No. of 1 11 11 10 1
samples
SNPs.
Novel (%) 2135111 2138760 2091767 1999834 2161976
(7.22) 72) (7.23) (7.13) (7.36)
Known 27428853 27574364 | 26840780 | 26045211 | 27231606
Total 29563964 20713124 | 28932547 | 28045045 | 29393582
Indels
Novel (%) 985169 991807 968237 938479 1003423
(34.11) (34.13) (34.22) (34.06) (34.6)
Known 1902736 1914050 | 1861562 | 1817017 | 1896421
Total 2887905 2905857 | 2829799 | 2755496 2899844

No: o amber: this: sbbrevistion: works S ol Mo i the sables:
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Geographic location LS mean

Low Hoima 7 098
Kamuli b 0.96

Medium Hoima i 1.20
Kamuli ¥ 124

I High Hoima X | 1.55
Kamuli . 0.54

bLS, means with different superscripts

sk M comsory its sesakcantle diffscont:
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Geograpl LS mean SE
Hoima 7.80* 041
Kamuli 657" 031

Housing system

Housed 774 043
Tethered 6.63° 028
Parity

1 639" 029
2+ 7.98" 0.42

SR ranin vl i awat dopmsbits ae eenikceiy ditRiomt
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‘ Season 0011 09166
‘ Geographic location 3486 00619
‘ Housing system 5584 00181
‘ Parity 6742 00094
‘ Season: Geographic location 7255 00071
‘ Season: Parity 5157 00232
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Housing system LS mean

Free-range 6310 052 ‘
Tethered 7.36% 050 ‘
Housed 811 042 ‘

T8 roanis well: diiconit Sanma s an sty ditemnt:
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‘ Age 196.095 <0.0001
‘ Housing system 9.583 000830
‘ Season 2416 0.12011
‘ Geographic location 0629 042771
‘ Age: season 17751 000003
‘ Age: geographic location 5162 002308
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No. No. Avg. no. of Avg. ROH
w/o w/ ROH segment
ROH®>  ROHP® segments lengths in

(min-max)®  Mbp
(min-max)®

Abergelle | 0 i 9131 830.09 13013
(748-907) (112.92-148.83)
Arado 0 1 8556 77782 12201
(706-861) (108.02-135.65)
Begait 0 1 10003 | 90936 1489
(767-1504) (121.14-266.71)
Erob 0 10 8371 837.1 13192
(727-1099) (110.40-177.46)
Raya 0 11 11005 1000.45 163.88
(703-1662) (105.87-297.29)
EthBoran 0 10 8937 8937 14394
(734-1259) (113.6-210.41)
Kenana | 0 10 4624 4624 7379
(150-1657) (20.24-298.06)
Fogera 0 9 7817 868.56 1245
(571-1353) (84.47-234.48)
Horro 0 1 8508 773.45 121.74
(618-1334) (91.91-22827)
Ankole 0 10 2299 209 (6-423) | 3116
(0.78-58.99)
Afar 0 10 7441 744.1 11521
(649-918) (95.06-146.82)
Holstein 0 10 2124 | 22124 43261
(1827-2710) | (325.89-547.33)
Angus 0 10 22999 | 22999 43931
(1374-2670) | (264.38-553.70)
Muturu 0 10 6755 6755 9488
(40-1590) (4.79-232.72)
NDama 0 10 6870 687 (194-969) | 94.49
(23.67-133.10)
Asian 1 9 1292 143.56 (0-704) | 20.39
zebu (11357-103.09)

“Number of animals without ROH.

"Number of animals with ROH.

“Total number of ROH across each population.

"Average number of ROH segments (Minimum to maximum).
¢Average ROH segment length in megabyte (Minimum to maximum).





OPS/images/fgene-14-1123826/fgene-14-1123826-t001.jpg
Growers (N)

Geographic location Kamuli 91 61 319
Hoima 66 34 55
Season Dry 59 32 226
Wet 107 67 254
Housing system Housed 43 | 26 110
Tethered s 69 70
Free-range 0 o 131
Parity 1 9% 58 NA
2+ 77 I NA
Sex Male NA NA 172
Female 157 95 191
ME | Genotyped s 67 43
ME classes Low 37 2 13
Medium 34 2 13
High 32 2 [
Farrow-to-weaning interval Low na 35 NA
' Medium NA 35 NA
High Na 38 NA
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Protocol
iteration

Developmental

Stage®®

1. Developmental Original
Lead: MJW¢, CM*

2. Field Test (early) Prototype
Lead: MJW, DM

3. Field Test (late) Prototype
Lead: CWM*

4. Field Test (advanced)  Modified
Lead: PB*

5. Controlled Test Modified

Lead: MJW

°C. Mukasa led preliminary tests in Uganda, Nigeria.
"DM. led a team in Kenya.

“M.J. Woodward-Greene.

‘CW. Masiga.

G

Test location

United States

Ethiopia, Kenya

Uganda, Malawi,

‘Tanzania, Mozambique,
Zimbabwe

Burundi, Egypt, Mali,
Madagascar, Tanzania,
Sudan

United States

Iterative protocol changes

1. Add blue backdrop and stand

2. Add 10 foot, or 3-m calibration rope

3. Timing sequence of demographic, tissue,
and image collection

1. Add blue drop cloth (ground cloth)

2. Affix blue backdrop to vehicle, fence,
barnetc.

3. Drop small sign on animal’s neck

4. Add the ‘naked’ or ‘side’ pose

5. Change crayon markers for identifying the
pin bones (rear pose) and points of shoulder
(front pose) to bright duct tape

1. Interactions with multiple field sampling
teams showed common questions, confusion,
o field issues

2. Iterative image review saw issues not
apparent to field sampling teams, i.e., site
selection, the need to avoid ‘goat like’ objects
(large rocks, other equipment), cleaning the
drop cloth to maintain the blue coloretc.

3. AGIN-ICP demo at AGIN II meeting in
Uganda (ref AGIN paper)

1. Quick Start Guide produced in English and
French

2. AGIN-ICP update and informal training at
the AGIN III meeting in Ethiopia (ref AGIN

paper)

3. Ongoing support for field sampling teams
was provided by email, or phone call as
needed

1. Drop the marking of pin bones (rear pose)
and points of shoulder (front pose) with
either crayons or tape

2. Drop the front pose

3. Images collected in this stage were collected
in a highly controlled manner, and used to
develop and design the image segmentation
algorithm and software to accompany the
AGIN-ICP for extracting digital phenotypes
from the images

Reasons for |

1. Blue backdrop and stand to increase color
differential of goat to the background

2. Ten-foot rope ensuring proper camera distance

3. Timing to reduce difficulty in sampling, and
inconvenience to farmers, animal handlers

1. Blue drop cloth to increase color differential of
goat legs to the background

2. Back drop stand is heavy, and inconvenient

3. Neck sign only on handler, due to small goats

4. To provide an unobscured side view (without
the sign) to extract coat color and pattern

5. Bright duct tape to increase visibility of the
marks in the images for isolation, and due to
melting of crayons in the heat

1. This stage clarified the need for enhanced
protocol documentation, and on accounting for
field sampling conditions impacting image quality

2. Improving field sampling team’s understanding
of image processing would improve protocol
implementation, leading to the development of
the Quick Start Guide showing a high-quality
example of each pose - connected to the
phenotypic measurement to be extracted from it

3. Visualize method and equipment; and a
question-and-answer opportunity

1. Quick Start Guide was designed to accompany
the protocol, a one-page (front and back)
graphical summary of the full protocol

2,3. Opportunity for field sampling teams in this
stage to ask questions directly, examine sampling
kit equipment. This connection to the lead
protocol developer provided a personal
connection, and a comfort level to contact her for
ongoing support

1,2. Image processing confirmed little value from
the front pose, pin bones, or point of shoulder

3. Highly controlled collection, with resulting
images used to develop the PreciseEdge Image
Segmentation algorithm (PE) to extract digital
body measurements directly from AGIN-ICP
images. This showed AGIN-ICP image measures
are highly correlated to real-world animal
‘measurements (Woodward-Greene et al., 2022).
‘The PE algorithm is integrated into user software
to return AGIN-ICP digital phenotypic measures
in csv, xlsx, and xml, and labeled images for use in
‘machine learning training set data (manuscript in
process) for modeling more sophisticated and
automated digital phenotype extraction tools
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2016

2016

2018

2020

2020

Naderi et al.

Yao etal.

Lietal

Liang et al.

Abdollahi-

Arpanahi et al.

Species

Dairy catlle
(simulated)

Dairy cattle

Beef cattle

Beef cattle

Dairy cattle

Holstein

Brahman

Simmental

Holstein

No. of
individuals

20000 females and
400 males

3000 genotyped
792 genotyped and
phenotyped

2093

1217

1170

No. of
markers

50025 and
10005 SNPs.

57491 SNPs.

40184 SNPs.

671900 SNPs

57749 SNPs

Response ML
variable algorithms

Subclinical Ketosis ANN (MLP)

REL SVM (semi-
supervised
learning)

BW RF, GBM,
XGBoost

CW, LW, EMA Adaboost RT

(integrated SVR),

KRR, RF

SCR MLP, CNN,

Simulated
data

100 and
1000 QTNs

RF, GB
A quantitative trait

Aim of the
study

Building an ANN
for an earlier
prediction of

subclinical Ketosis

in lactation

Describing a SVM-
based semi-
supervised learning
model, and applying
it for genomic
prediction of
residual feed intake

Assessing the
efficiency of three
ML methods in
identifying the top-
ranked SNPs and
using the subsets of
SNPs to construct
genomic
relationship
‘matrices for
estimating genomic
breeding values

Applying ensemble
learning models to
predict genomic
breeding values of
three economic
traits

Comparing the
predictive
performance of two
deep learning
methods, two
ensemble learning
methods, gradient
boosting and two
parametric methods
(GBLUP and
Bayes B)

2021

Chen et al.

Beef cattle

Nellore

18

16,423 genes

FE RE, XGBoost,
RX, SVM

Applying Rf,
XGBoost and RX to
identify small
subsets of
biologically
important genes to
classify animals into
High Feed Efficiency
and Low Feed
Efficiency

2021

2021

2021

2021

Srivastava et al.

Wang et al.

Beskorovajni
etal.

Anetal.

Beef cattle

Pig

Dairy cattle

Beef cattle

Dairy cattle

Hanwoo

Yorkshire

Holstein

Simmental

Holstein

7324

2566

92

1301

5024

53866 SNPs.

44922 SNPs.

671990 SNPs

42551 SNPs.

Pig

Simulated
data

3534

4000

43494, 43407, and
43412 SNPs for
each trait

50 SNPs for each

trait (3 traits)

CWT,MS, BFTEMA | RF, XGB, SVM

TNB, NBA SVR, KRR, RF,

Adaboost.R2

MEP, MPP, CM, EM, MLP
LIV, SCE, HCR,

CCR, DSB, $SB, GL

Cosine Kernel based
KRR (KcRR),SVR

LW, CW, EMA
MY, MEP, SCS

T1, T2, T3

T1, T2,T3

& sy of o bindfol of the: neciswd esirabn 5 the s Bor 1 Sill vecsitiyof e ndbile ol wiase Siiplensabiry Miparals,

Comparing the
predictive ability of
three ML models in
predicting
phenotypes from
genotypes

Exploring and
comparing the
prediction ability of
fourML models to
GBLUP, ssGBLUP
and bayesian
methods in genomic
prediction of
reproductive traits

Predicting yield and
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Source® Term name® Term size?
1 Go:ce GO:0000786 Nucleosome 11 936
2 Go:CcC GO:0044815 ‘ DNA packaging complex 144 206
3 GOMF GO:0030527 ‘ Structural constituent of chromatin 82 18¢

“The abbreviation of the data source for the term (Gene Ontology Molecular Functions (GO:MF), Gene Ontology Cellular Components (GO:CC),
"Unique term identifier,

“The short name of the function,
“Number of genes that are annotated to the term.

The p-values are below 0.01 which it
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Short-read lllumina platform sequencing details

Sample Average read length #Raw reads (forward/ #Total Raw data(bp) %  Coverage
Name (bp)X2 reverse) Reads GC

MT434 (calf) 449742276x2 899,484,552 135,822,167,352

MT435 (dam) 43256940052 865,138,800 130,635,958,800

MT436 (sire) 559344678x2 1,118,689,356 168,922,092,756
Long-read Nanopore platform sequencing details

Sample Mean read length (bp) # Total reads (single end) Raw data (bp) %GC Coverage
Name

MT434 4273

011,500,107
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SSR markel Na Scale Ho Hi PIC

ILSTS11 10 264-282 048 049 044 0.008 0.002 0.006

ILSTS5 4 151192 014 015 014 0093 [ oon 0.083 0010
MAF065 2 118-183 076 081 079 0.068 0.011 0.056 0010
MCM527 6 153-168 069 073 068 0065 0016 0.050 0015
SCRSPY 14 117-147 080 082 080 0032 0.011 0.021 0010
TCRVBS 14 222-255 066 068 065 0034 0.009 Loos 0009
INRAO23 13 195-218 076 080 077 0057 0.031 0.027 0030
OARFCB20 1 i 071 076 om 0069 0017 0.054 0016
OARECBA8 1 151-171 074 078 074 0045 0.006 0.039 0006
BMS8125 10 111-131 074 076 072 0016 0.006 0.010 0006
CSRD247 12 220-249 078 082 080 0056 0.014 0.043 0013
INRAOG3 7 172-184 066 068 063 0042 0.007 0.035 0007
Mean 1125 - 066 069 066 0047 0012 0.035 0012

Na, Number of alleles per marker scale; Ho, observed heterozygosity; He, expected heterozyg

souBeleiit of ens Variation.

1C, polymorphic information content; Fyr, intra-class correlation coefficients of allelc states
for gene copies within individuals relative toall populations; sy, gene copies within populations relative to all populations; Fys, gene copies within individuals relative to a population; Gy, Nef's
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Parameter Assumed rates of genetic 80% of assumed rates of 120% of assumed rates of
improvement genetic improvement genetic improvement

CBBP  Prod. Unit Total CBBP  Prod. Unit  Total CBBP  Prod. Unit  Total

Initial lamb weight kg 200 20.0 200 200 200 200
Initial litter size | lambs/ 1.287 1.287 1.287 1.287 [ 1.287 1.287
lambing |
Final lamb weight | kg | 2177 [ 20.81 | | 2141 20.65 [ | 2212 | 2097
Final litter size lambs/ 1.308 1.296 1.303 1.295 1312 1.298
lambing
Additional lambs no 272 1,676 1,949 218 1,341 1,559 327 2,012 2338
‘ Additional carcass meat [ tons 74 138 146 59 111 116 [ 89 [ 166 175
‘7 Accumulated discounted income | 000'$ 5497 3,340 3,889 T 489 2,670 " 3,159 610 4,009 4,619
Accumulated discounted cost [ 000 [ 222 [ 251 [ 473 222 251 [ 473 1 22 [ 251 473
Accumulated discounted benefit | 000'$ 327 3,088 3,415 267 2,419 2,686 388 3,758 4,146
Return on investment $/$ 25 133 82 22 106 6.7 [ 27 15.9 9.8
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Economic parameter

Accumulated discounted income
Accumulated discounted cost
Accumulated discounted benefit

Return on investment

Unit

Non-integrated

CBBP

Partially integrated

Production unit

278,830
5,280
273,549

52.8

Total

291,505

286,002

530

cl
Total
295250

9,051

286,199

326

Integrated
2 c3
Total Total

299,409 251

12,990 81,999

286,418 | 290252

230 45
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Gene set Higher expression in HRFI or LRFI

GO-based list (C5, CC, C5.8P, C5.MP) (Top 20)

GO:0044455 ‘mitochondrial membra'ne part 24360373 <0.001 HRFI
GO:0022900 electron transport chain 24230578 <0.001 HRFI
GO:0098798 mitochondrial protein complex 2387794 <0.001 HRFI
GO:0098800 inner mitochondrial membrane protein complex 23862855 wm HRFI
GO:0070469 respiratory chain 23428142 <0.001 HRED
GO:0019236 response to pheromone 23026083 <0.001 HRFI
GO:0005743 mitochondrial inner membrane 2296939 <0.001 HRED
GO:0005740 mitochondrial envelope 22783267 <0.001 HRFI
GO:0031966 mitochondrial membrane 22694876 <0.001 HREL
GO:0019866 organelle inner membrane 22621088 <0.001 I HRED
GO:0005746 mitochondrial respiratory chain 22349386 <0.001 HREL
GO:0044429 ‘mitochondrial part 22178912 <0.001 HREL
GO:1990204 oxidoreductase complex 21585555 921E-05 HREL
GO:0098803 respiratory chain complex 2.1450255 171E-04 HREI
GO:0016503 pheromone receptor activity 2109333 200E-04 HREI
GO:0005747 ‘mitochondrial respiratory chain complex I 2.1084182 187E-04 HRFI
GO:0022904 respiratory electron transport chain 2106282 1.76E-04 HREI
GO:0030964 NADH dehydrogenase complex 20895336 233E-04 HRFI
GO:0009055 electron carrier activity 2.0749488 2.52E-04 HRFI
GO:0005201 extracellular matrix structural constituent -222948 <0.001 LRFI

KEGG-based list (C2.CP:KEGG)

KO00190 Oxidative phosphorylation 2423335 <0.001 HRFI

K005012 Parkinson disease 23917017 <0.001 HRFI
KO04714 ‘Thermogenesis 21306872 <0.001 HRFI
K005016 Huntington disease 20541394 <0.001 HRFI
KO05010 Alzheimer disease 1.9485307 4.36E-04 HRFI
KO04932 Non-alcoholic fatty liver disease 18222557 0.006488033 HRFI
KO03010 Ribosome 18059274 0.006924233 HRFI
K000020 Citrate cycle (TCA cycle) 1.7520487 0015041439 HRFI
KO00250 Alanine, aspartate and glutamate metabolism 17237763 0019311652 HRFI
KO00640 Propanoate metabolism 16465011 004506531 HRFI

Note: NES, normalized enrichment score; FDR, false discovery rate.
A positive NES indicates gene set enrichment in the HRFI group; a negative NES,

icates gene set enrichment in the LRFI group.
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Sample id Raw rea Clean reads Clean ratio (%) Clean reads Q30 (%)

HREI 44,548,910 44320546 99.49 94.59 7074
‘ HREL2 45,697,988 45,501,938 057 o 69.49
‘ HREI3 41,233,136 41,059,578 99.58 94.49 69.10
‘ HREI4 46,620,708 46,420,846 05 Louss 68.65
‘ LRFI1 | 43761150 43,572,142 99.57 94.16 6924
LREL | 50540362 | 50307,108 05t s 68.40
‘ LREI3 44,001,962 43,802,348 99.55 94,52 65.50
‘ LREI4 46,836,370 46,586,534 o7 959 6675
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HRFI LRFI p-value

RFL g/d 1499 £ 152 ~1404 £ 124 <0.001
‘ FCR, gg 963 £ 052 772064 oo
" ADFL g/d 21950 £ 298 a7 zam <0.05
‘ MBWO*, g 35922+ 1114 39179 + 12,93 0.093
| ADG, gid 19.79 £ 093 33242263 <0.001

RFI, residual feed intake; FCR, feed conversion ratio; ADFI, average daly feed intake over the assessed feeding period; MBW®7".
San:of mesibialis hadv vl A avemae Sillv-asin-ovve the sl Bading neiiod.
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Ancestral populations Statistics Clusters

a @ a
(n = 208) (n =292) (n = 239)
| Dijallonké goat. Mean (%) 7379 3727 7118 2135
Minimum (%) 700 a0 390 L230
Maximum (%) 98.10 9630 97.70 94.60
 Sahelian goat Mean (%) 2 e s e
Minimum (%) 190 370 230 540

Maximum (%) 93.00 97.80 96.10 97.70
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Clusters

Within clusters

Nae He

Between clusters®

a1 €2

c1 ‘ 343 0.64 0.65 -001 0.10 0.08 0.10
2 ‘ 377 0.68 067 001 005 0.09 0.09
c3 ‘ 351 065 065 0.002 004 0.04 0.14
c4 ‘ 377 0.69 067 003 004 0.04 0.06

Mean ‘ 393 0.69 0.66 0.04

n = number of individuals analyzed, Na = number of alleles, Nae = effective number of alleles, He = expected heterozygosity, Ho = observed heterozygosity, Fis = individual inbreeding

coefficient.

... balow: thie dinganal and: Ne's seiiotic diskancs sbows the-diigonat
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Components of the
community-based
breeding program

Definition of breeding objectives
and selection traits

Breeding structures for different
systems

Data recording and management
system

Dissemination of improved
genetics

Reproductive biotechnology as a
tool for dissemination of
improved genetics

Breeders cooperative
establishment

Existing knowledge

Tools to undertake interviews,
choice experiments, group
ranking experiments

Centralized nucleus breeding
structures

Development of database for
data recording has been a
challenge. Many efforts did
not succeed

Distribution of improved sires
to the base population

Seasonality and rhythms of
reproduction of indigenous
sheep and goat breeds in their
homelands

No formal association

Knowledge we have
generated

Own flock ranking experiment
(Duguma et al,, 2010)

Community-based breeding
structures (Mirkena et al., 2012;
Haile et al, 2018; Jembere et al.,
2019; Getachew et al., 2020)

Direo, data recording and
‘management flatform (https://
dtreo.iof)

Methodological framework for
optimized dissemination of
improved genetics (Mueller et al,,
2019)

Response to potential
synchronization protocols (Rekik
etal, 2016); Validation of a simple,
cost-effective oestrous
synchronization
protocol—Organization and
functioning of low-infrastructure
artificial insemination mobile
laboratories (Besufkad et al,, 2020)

Legal breeders cooperative with

clear by-laws (Gutu et al., 2015)

Knowledge gaps in the
existing interventions

Rapid method to determine
initial selection traits to be
followed by more
comprehensive approach to
breeding objectives

Refining breeding structures for
pastoral production systems
with large flock sizes

Inbuilt system for estimation of
breeding values and ranking of
sires

Field testing of the framework
is going on; to have the
dissemination program
conceptualized and
implemented by the
communities

Easy methods for cooling
semen to reach distant
communities

Synchronizing artificial
insemination data with the core
breeding program data

Certification of breeding sires
based on genetic merit,
reproductive potential and
health status

Build their capacity; access to
rural micro-financing

Who are the potential
institutions/
organizations (national/
subnational) to be
engaged in designing/
implementing the
actions

Lead: Ethiopia Livestock
Development Institute (ELDI);
Tanzania Livestock Research
Institute (TALIRI); Lilongwe
University of Agriculture and
Natural Resources (LUANAR)

Site level: Ethiopia Regional and

Federal Agricultural Research
Institutes (ERFARD); Tanzania

Regional Administration and
Local Government Authorities
(TRALGA); Local and
International NGOs that
promote livestock livelihood
projects

Lead: ELDI; TALIRI; LUANAR

Site level: ERFARL; TRALGA;
NGOs

Lead: ERFARI; TALIRE;
LUANAR

Lead: Ethiopia Ministry of
Agriculture, extension division;
TALIRE; Malawi, Department of
Animal Health and Livestock
Development (DAHLD)

Site level: District level livestock

bureau, local enumerators and
extension staff

ERFARL; TALIRJ; Tanzania
National Artificial Insemination
Center (NAIC)

ELDI; TALIRE; LUANAR

Regional animal production and
animal health divisions

National regulations: Ethiopia
Ministry of Agriculture,
cooperative office; Tanzania
Cooperative Development
Commission (TCDC); Malawi
Ministry of Trade and Industry

Site level: District Office of
cooperatives

Institutionalization of the
breeding program

Markets for breeding and meat
animals

Evaluation of breeding programs

Centralized breeding
programs run by government

Informal markets which are
inefficient

No formal comprehensive
evaluation framework
available in Ethiopia

Breeding programs run by
community through legal breeders
cooperatives, supported by NARS
and the extension division (Haile
etal, 2018, 2020)

Evidence generated on the benefit of
market facilities and market
information system (Kassie et al.,
2020) to marketing of small
ruminants; evidence on policy
induced price distortions (Kassie
etal, 2019)

Framework and evidence on both
biological and socioeconomic
evaluation of CBBPs (Haile et al.,
2018, 2019; 2020; Lamuno et al.,
2018)

Experiences with the pilot
schemes taken to scale;
Strengthening of breeders
cooperatives to make them a
viable commercial enterprise

Marketing models tailored to
different goat and sheep
markets

Incorporation of the evaluation
framework in the national
breeding programs

Lead: ELDI; TALIRI; LUANAR

Site level: ERFARI; TRALGA,
Local enumerators and
extension staff in Ethiopia,
Tanzania and Malawi

Regulations: Ministry of
agriculture/Livestock, marketing
department; Site level:
Stakeholder communities of
practice under development

Lead: ELDI; TALIRI; LUANAR

Site level: Ethiopia regional and
federal agricultural research
institutes; TALIRI zonal centers;
LUANAR CBBP sites
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Degree of Sum of Variance Percentage of Phi- Gene

freedom square component variation value (¢) flow (Nm)

002 315
zones

Between vegetation 2 ‘ 17528 024 ‘ 211

zones

Within vegetation 951 ‘ 10,679.13 1123 ‘ 97.89 ‘ ‘
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Vegetation zones® Within vegetation zones parameters Between vegetation zones

parameters®
n Na Nae He Ho Fis Gez Gsz sz
377 908 365 067 065 Coos - 0015 [ ooar
286 1008 L7 0.69 0.67 oo oo - oo
201 950 398 070 067 0.05 0.021 0.006 -
- 955 387 0.69 0.6 0.04 |

o = number of individuals analyzed, Na = number of allles, Nac = effective number of alleles, He = expected heterozygosity, Ho = observed heterozygosity, Fis = individual inbreeding
coefficient.

*GCZ: Guineo-Congolese zone, GSZ: Guineo-Sudanian zone, SZ: Sudanian zone.

genetic distance above the diagonal.
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Vegetation zones Clusters

C1 (n = 208) (@] Q3 (n = 239) C4 (n = 215)
‘ Gez 139 85 120 33
‘ Gsz 54 89 Lt 7
‘ sz s 18 s s

GCZ, Guineo-Congolese zone; GSZ, Guineo-Sudanian zone; SZ, Sudanian zone.
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Trait BW22 DG W DP Brw ww

BW22 058 (0.07) 096 (0.01) 095 (0.02) 024 (0.17) 086 (0.04) 0.92 (0.03) 0.88 (0.03) 0.88 (0.03)
ADG 0.90 (0.006) 0.69 (0.07) 091 (0.02) 022 (0.16) 079 (0.04) 0.86 (0.04) 0.83 (0.04) 0.82 (0.04)
DiW 0,87 (0.0008) 082 (0.01) 060007) | 053013 0.94 (0.02) s (0.02) 0.93 (0.02) 091 (002)
DP 0,004 (0.03) 0,06 (0.03) 041 (0.03) 0.15 (0.06) 0561 (0.13) 047 (0.16) 0.44 (0.15) 038 (0.16)
BrW 072 (0.02) 067 (0.02) 087 (0.008) 043 (0.03) 052 (0.07) 084 (005) 0.86 (0.04) 079 (0.05)
™ 0.78 (0.01) 073 (0.02) 082 (0.01) 027 (0.03) 065 (0.02) 051 (0.07) 0.89 (0.04) 094 (003)
ww 0.78 (0.01) 073 (0.02) 087 (0.009) 030 (0.03) 073 (0.02) 073 (002) 0.62 (0.07) 094 (003)
DW 0.82 (0.01) 071 (0.02) 085 (0.009) 035 (0.03) 0.68 (0.02) 072 (002) 0.80 (0.01) ‘ 0.5 (0.07)

BW?22, Body weight at 22 weeks of age; ADG, average daily gain; BrW, breast weight; DW, drumstick weight; TW, thigh weight; WW, wing weight; DrW, Dressed weight and DP, Dressing

PoesartaGE. Sndusel mics 56 1o pereathis
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Co-ordinates Gene

5 5:66,532,877-66,604,734 Insulin-like growth factor 1 (IGFI)
5 | 548,053 846-48,199.963 High mobility group AT hook2 (HMGA2)
5 5:49,812,166-49,969,012 SLIT ROBO Rho GTPase activating protein 1 (SRGAPI)
1 1177953 380-78 010,118 Apolipoprotein B (APOB)
1 11:49,390,250-49,396,081 ENSBTAGO0000020828
u | 1187466581-87,473817 Ribonucleotide reductase regulatory subunit M2 (RRM2)
18 | 15:14/635,302-14649,693 Zinc finger protein 276 (ZNF276)
19 | toanga 92727923997 CD68

e i . s T g
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Pos Weir_and_Cockerham_Fst Gene Chr Pos Weir_and_Cockerham
2 86180784 0700374 1 82332335 0753475
3 91,32,647 0798089 1 65570076 0751379
3 4,80,08,400 0.75717 11 8,54,54,517 0.733433
5 66488531 0753664 11 49393563 0725848 ENSBTAG00000020828
5 66499710 0753664 1 493,61395 0723943 ‘
5 66545432 0750791 IGFI 1 8,74,66344 0700458
5 5,76,396 0734675 11| 87472407 0700458 RRM2
5 aeanos 0729853 IGFI 1 857,72933 0700374
5 66552462 0729853 IGFI 1 85782922 0700374
s eean 0729853 IGF1 1 85789132 0700374
5 66562687 0729853 IGF1 17| 25405683 0750791
5 48057883 0729551 HMGA2 | 18 | 147,60377 0773436
§ 540,754 0723949 18 14647288 0725848 ZNE276
5 49954556 0703359 SRGAPI | 18 | 14688492 0702313
o Laes0an 0702501 18 14692912 0702313
1 7,79,88513 0815351 APOB 18 14327200 0701693
1 82338187 080554 19| 27921934 0702313 CD68
185600438 0774
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Parameter

Number of lambs culled for meat
Number of finished lambs

Lamb carcass meat

Finished carcass meat

Total carcass meat

Unit

Non-integrated (CBBP) Partially integrated (CBBP + Integrated (CBBP +
production unit) production unit +
fattening enterprise)

cl 2

CBBP CBBP  Production unit ~ Total  Total  Total

386,126 | 395324 391424 | 381424

3,705 13,205
3415 3,306

51 183

3,466 3,489

3

Total
202,261

183,410
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umber of samples

Reference

ET_HOL European taurine-Holsteir 63 Bahbahani et al,, 2017
ET_JER European taurine-Jersey 36 Bahbahani et al, 2017
Ind_TP Indian-Tharparkar 17 Dixit et al, 2021
Ind_SW Indian-Sahiwal 13 Dixit et al,, 2021
Ind_VC Indian-Vechur 16 Dixit et al., 2021
Ind_GIR Indian-Gir 45 Dixit et al., 2021
Ind_Hr Indian-Hariana 18 Dixit et al., 2021
Ind_KG Indian-Kangayam 16 Dixit et al., 2021
Ind_OG Indian-Ongole 17 Dixit et al., 2021
Ind_NEL Indian-Nelore a5 Dixit et al,, 2021
MT434 Kerala-Vechur ] This study
MT435 Kerala-Vechur 1 This study
MT436 Kerala-Vechur 1 This study
KEASZ Small East African shorthorn zebu 92 Bahbahani et al., 2017
AT_NDM African taurine-N'Dama 24 Bahbahani et al., 2017
AZ_AG African zebu-Adamawa gudali 25 Bahbahani et al,, 2017
AZ_AZ African zebu-Azawak 2 Bahbahani et al., 2017
AZ_B] African zebu-Bunaji 22 Bahbahani et al,, 2017
AZ_OR African zebu-Red bororo 22 Bahbahani et al,, 2017
AZ_SO African zebu-Sokoto gudali 19 Bahbahani et al, 2017
AZ_WD African zebu-Wadara 3 Bahbahani et al., 2017
AZ YK African zebu-Yakanaji 12 Bahbahani et al,, 2017
AT_MT African taurine-Muturu 8 Bahbahani et al,, 2017
AO Sanga-Ankole 25 Bahbahani et al., 2017
KR Karamojong Zebu 16 Bahbahani et al., 2017
7 Serere zebu 13 Bahbahani ct al,, 2017
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MT434_Haplotypel MT434_Haplotype2

Contigs 4217 2,956

Minimum | 10,055 10035

Length

Maximum | 10,270,387 10,894,072

Length

Average 606,136 885,708

Length

N50 1,373,887 2,074,774

N90 300353 438,793
Toul 2,556,074,938 2,618,152939
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Haplotype 1 (paternal)

11,227,111 68,338,934,720

Haplotype 2 (maternal) 12,768,257 77,999,737,705
No haplotype 3,250,033 7,046,060,552
9,966,237 5,626,767,130

Ignored (short)
‘

Unassigned

Fewer than 5% of bases in unassigned reads; not including them in assemblies
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mple: MT434

Contigs 1,367
Minimum length 10,281
Maximum length 27,791,687
Average length 1,970,596
N50 4,946,819
N90 1,163,082
Total 2,693,805,279

BUSCO analysis

BUSCO summary

Complete BUSCOs C

Complete and single-copy BUSCOs §
Complete and duplicated BUSCOs D
Fragmented BUSCOs F

Missing BUSCOs M

“Total BUSCO groups searched

C:90.4% [S: 85.1%, D 5.3%].F: 2.3%, M: 7.3%, n: 303

274

258

16

7

2

303
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CBBPs  Total House- Ewesper Litter  House- Ewes Total Young Lambs
house- hold house- size holds per ewes in  sires in  sires for  culled for
holds flock size  hold CBBP CBBP CBBPs CBBPs CBBPs meat

no no no no no/ no no no no nolyear no/year

lambing

1 7 875 19.71 9.71 151 125 1214 8,500 340 143 7,654
2 9 1,179 9.82 555 128 131 726 6,538 262 110 4974
3 2 200 600 383 110 100 383 767 31 13 499
4 5 600 10.00 657 118 120 789 3,943 158 66 2,760
5 5 379 8.00 533 106 76 404 2,020 81 34 1267
Weighted 1208 673 132 115 777
average
Total 28 3233 21,768 871 367 17,154
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Sire prod. Young Lambs Meat Potential Potential Targeted Gap of Gap of

Capacity in  sires for  culled for lambs in  lambs for finished ewes in ewes CBBPs

CBBPs prod. meat in prod. fattening lambs cluster

Unit CBBP Unit

nolyear nofyear nofyear no nofyear no nolyear no no no
1 3704 ‘ 3561 4094 211407 193929 96,965 92,116 147844 63563 -2
2 | 2415 \ 2,305 2669 136847 1061z 53,206 sosi6 | 1092459 955612 60
3 243 ‘ 230 269 13,682 9,143 w2 4343 155874 142,192 20
4 1343 ‘ 1276 1484 75,772 a7 27,158 25800 260948 185176 12
5 618 ‘ 584 683 34,667 22324 11,162 10,604 490750 456,083 62
Total 8322 ‘ 7956 9,198 472376 ss6126 193,063 183410 | 27875 1,675,499 152
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