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Editorial on the Research Topic

Linking cellular metabolism to hematological malignancies, volume II
Cancer cells reprogram their metabolism to survive in hostile environments, which may

reveal potential vulnerabilities to targeted therapies. Metabolic-based therapies can

specifically target cancer metabolism, resulting in substantial antitumor effects, while

sparing normal cells. This Research Topic highlights the importance of understanding

tumor metabolic remodeling and immunometabolism in hematological malignancies.

Rana et al. studied cell metabolism changes in multiple myeloma. Cancer cells use

aerobic glycolysis for energy, unlike healthy cells that use mitochondrial oxidative

phosphorylation. This shift helps cancer cells obtain nucleotides, amino acids, and lipids

for replication. Proteasomes, which regulate protein levels affecting metabolism, survival,

and growth, are crucial in both healthy and cancerous cells. Proteasome inhibitors,

developed over the past two decades, have improved patient survival and quality of life

in multiple myeloma.

Ferroptosis is a recently discovered, iron-dependent cell death process. This leads to

Oxidative stress and cell death occur due to the accumulation of lipid reactive oxygen

species (ROS). Liu et al. revealed that blood tumor cells, such as leukemia and lymphoma

cells, are sensitive to ferroptosis.

Lipid metabolism and hematological malignancies have a complex relationship,

presenting the challenges and opportunities for therapeutic approaches. Lipid

reprogramming is crucial for tumor cell physiology and influences cellular functions are

necessary for cancer growth and survival. Zhang et al. highlighted the complexity arising

from the interconnectedness of glucose, lipid, and amino acid metabolism within cancer

cells, describing how these metabolic pathways affect and regulate each other in intricate

ways, creating challenges in effectively inhibiting cancer growth by targeting a single

metabolic process alone.
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L-Asparagine (L-ASNase) is a hydrolytic enzyme that reduces

circulating asparagine, a crucial amino acid for the survival and

growth of leukemia cells, particularly lymphoblasts in acute

lymphocytic leukemia (ALL). As leukemic cells lack the enzyme

asparagine synthetase, they depend on external asparagine sources.

By starving them of this essential amino acid, L-ASNase selectively

targets and kills leukemia cells, while sparing normal cells that can

synthesize asparagine. It has been widely used to treat leukemia,

including childhood leukemia. Zhou et al. summarized the different

mechanisms of drug resistance to L-ASNase. L-ASNase

immunogenicity can trigger the production of antidrug antibodies

that neutralize L-ASNase activity by binding to this preventing its

action on leukemia cells. As a result, the drug is cleared from the

bloodstream faster, thereby reducing its therapeutic effects.

Addressing L-ASNase immunogenicity is crucial for optimizing

treatment outcomes and minimizing adverse effects in leukemia

patients receiving this therapy.

The interplay between RBPs, mRNA editing, pyroptosis, and

the impact of these factors on AML is an intriguing area of research.

Pyroptosis, a form of programmed cell death, modulates the

immune response in acute myeloid leukemia (AML) cells.

Identifying pyroptosis-related RBP genes and their potential

prognostic value in patients with AML could provide critical

insights into disease progression and therapeutic strategies. Bin

et al. used the Gene expression omnibus (GEO) database to identify

pyroptosis-RBP-related differentially expressed genes (PRBP-

DEGs) and offer a comprehensive understanding of the interplay

between pyroptosis, RNA-binding proteins, and AML prognosis.

The established risk model and nomogram hold promise for

improving the prognostic accuracy and can guide potential

therapeutic strategies for AML.

In the tumor-microenvironment (TME), fatty acid metabolism

(FAM) affects tumor cell behavior, interactions with neighboring

and immune cells, and extracellular matrix. The complexities of

FAM’s influence of FAM on AML in TME is not well understood.

Ye et al.'s investigation of scRNA-Seq and bulk transcriptome data

on AML patients to explore the association between FAM, TME,

and patient outcomes is a key advancement in understanding AML

biology and therapeutic opportunities. Elevated FAM-related genes

in leukemic stem cells suggest metabolic characteristics driving

leukemia progression. PLA2G4A, a highly expressed FAM gene, is

linked to poor prognosis in AML, and its targeting enhances NK

Cell-mediated Immunosurveillance. This study provides insights

into FAM, TME, and immune surveillance in AML, offering

potential targeted therapies and personalized interventions to

improved the patient outcomes.

Examination of the effects of tyrosine kinase inhibitors (TKI) on

cellular metabolism is crucial for improving treatment outcomes in

chronic myeloid leukemia (CML) and Philadelphia chromosome-

positive acute lymphoblastic leukemia (Ph + ALL) and reducing

side effects in pediatric patients. Although TKIs have improved

prognosis, challenges like drug resistance, off-target effects, and

drug tolerance can impede efficacy. Li et al. highlighted the

significance of alterations in glucose, lipid, and amino acid

metabolism in influencing treatment responses and drug

resistance during TKI therapy in children with Ph+ leukemia.
Frontiers in Oncology 025
These metabolic changes can affect drug sensitivity and resistance,

potentially affects TKI efficacy in targeting leukemia cells.

A study by Zhou et al. on aplastic anemia in children used

single-cell RNA sequencing to identify new gene expression

patterns and cell subsets, revealing significant findings related to

metabolic changes, including genes such as NENF, INPP4B,

AKR1C3, and CHST2, which play crucial roles in neurotrophic

support, phosphoinositide signaling, steroid and prostaglandin

metabolism, and glycosaminoglycan biosynthesis.

FLT3 mutations, including ITD and TKD, are common in AML

and affect patient prognosis. FLT3-ITD mutations have been

extensively studied due to their adverse prognostic impact on

AML. A meta-analysis by Li et al. on FLT3-TKD mutations in

AML showed intriguing differences in prognosis between Asian and

Caucasian populations. The presence of FLT3-TKD mutations may

have a favorable prognosis for DFS and OS in Asian AML patients,

whereas in Caucasians, these mutations are linked to an adverse

prognosis for DFS. However, caution is advised when interpreting

DFS results in Caucasians due to observed heterogeneity

among studies.

Transcriptome analysis is crucial for understanding the

molecular mechanisms of leukemia, especially mutations in SHP2

that affect signaling pathways involved in cell growth and survival.

Zhao et al. conducted transcriptome profiling and identified 2443

and 2273 differentially expressed genes in HCD-57 cells expressing

SHP2 mutants compared to parental cells, revealing the impact of

mutant SHP2 gene expression.

Research on metabolic reprogramming in hematological

malignancies has provided valuable insights, deepening our

understanding of cellular metabolic mechanisms and identifying

potential treatment targets. Further validation and exploration of

these targets is necessary to ensure their efficacy and safety.

Continued research is crucial to translate these findings into

clinically relevant treatments that could improve the management

and outcomes of hematological malignancies.
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1School of Engineering Medicine, Beihang University, Beijing, China, 2School of Biological Science
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Hematological malignancies are one of the most lethal illnesses that seriously

threaten human life and health. Lipids are important constituents of various

biological membranes and substances for energy storage and cell signaling.

Furthermore, lipids are critical in the normal physiological activities of cells. In

the process of the lethal transformation of hematological malignancies, lipid

metabolism reprogramming meets the material and energy requirements of

rapidly proliferating and dividing tumor cells. A large number of studies have

shown that dysregulated lipid metabolism, commonly occurs in hematological

malignancies, mediating the proliferation, growth, migration, invasion, apoptosis,

drug resistance and immune escapeof tumor cells. Targeting the lipidmetabolism

pathway of hematological malignancies has become an effective therapeutic

approach. This article reviews the oncogenic mechanisms of lipid metabolism

reprogramming in hematological malignancies, including fatty acid, cholesterol

and phospholipid metabolism, thereby offering an insight into targeting lipid

metabolism in the treatment of hematological malignancies.

KEYWORDS

lipid metabolism reprogramming, cholesterol, fatty acids, phospholipids,
hematological malignancies
Introduction

Hematological malignancies are a collection of malignant tumors that aberrant

hematological cells or immune cells are blocked in differentiation and proliferate

indefinitely, leading to the dysfunction of biological organisms (1). There are three

main types of hematological malignancies: leukemia, multiple myeloma (MM), and
frontiersin.org01
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lymphoma (2). Hematological malignancies are one of the most

lethal illnesses that seriously threaten human life and health with

a high mortality rate. According to the World Cancer Report

2020 released by the World Health Organization, the new

number of non-Hodgkin’s lymphoma, leukemia, MM and

Hodgkin’s lymphoma in 2020 were 544,352, 474,519, 176,404

and 83,087, respectively, accounting for 6.6% of the total number

of patients. The corresponding number of deaths were 259,793,

311,594, 117,077 and 23,376 respectively, accounting for 7.1% of

the total number of patients (3). Due to its particularity,

hematological malignancies cannot be surgically removed like

solid tumors, and its clinical first-line treatment options mainly

include chemotherapy, radiotherapy and hematopoietic stem

cell transplantation (4). Although the traditional first-line

therapies have a certain effect, the overall efficacy is not

optimistic due to the relapse/refractory caused by the

occurrence of primary/secondary drug resistance (5). With the

deepening of research, new cancer therapies have brought dawn

to relapsed/refractory patients, including CAR-T cell therapies,

ADC drugs and immune checkpoint inhibitors (6). The U.S.

Food and Drug Administration approved anti-CD19 CAR-T cell

therapy Tisagenlecleucel for the treatment of B-cell acute

lymphoblastic leukemia (ALL) (7), ADC drug Loncastuximab

Tesirine-Lpyl for the treatment of relapsed/refractory diffuse

large B-cell lymphoma (DLBCL) (8) and PD-1 inhibitor

Pembrolizumab for the treatment of Hodgkin lymphoma (9).

However, even under novel therapies, there are still a large

number of patients with poor clinical prognosis. Therefore, it is

still a work with clinical application value and important

scientific significance to study the oncogenic mechanism and

find new therapeutic targets in order to develop new therapeutic

methods (10).

It has been widely reported that cell metabolism affects

tumor cell proliferation, apoptosis, migration, invasion,

chemical resistance and immune escape (11–14). There is

a close relationship between cellular metabolism and

functional output, once the metabolic pathway is abnormal,

leading to abnormal cell function and disease progression (15).

Compared with normal cells, tumor cells undergo metabolic

reprogramming due to their excessive proliferation, growth,

migration and metastasis requiring faster and more energy,

and tumor cell metabolic reprogramming has been identified

as a new marker of cancer (16). Clinical observations found that

lipid metabolism reprogramming often predicts poorer

prognosis in cancer patients (17). A large number of lipid

droplets that store lipids and cholesterol can be detected in

tumor cells, high lipid droplets and high cholesterol esters are

also considered indicators of cancer aggressiveness in tumor cells

(18). De novo lipid synthesis pathway and uptake of exogenous

lipids are often enhanced in rapidly dividing and energy-

consuming tumor cells, such as malignant plasma cells from

obese myeloma patients with high expression of acetyl-CoA

synthase 2 (19). Acetyl-CoA synthase 2 is a key precursor for the
Frontiers in Oncology 02
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de novo synthesis of fatty acids (FAs). Fatty acid synthase

(FASN) is also upregulated in various hematological

malignancies (20). The fatty acid transporter protein (FATP),

which mediates cellular uptake of FAs, is expressed at high levels

on both the cell surface and the intracellular space of patients

with MM (21). Lipids are not only important components of

organelles and energy substances, but also signaling molecules

that are crucial for maintaining cellular homeostasis (22).

Lymphoma-derived exosomes promote tumorigenesis by

increasing lipid metabolism in recipient cells through surface

phospholipase A2 (23). Lysophosphatidic acid (LPA)-mediated

activation of the MEK1/2-ERK1/2 signaling pathway increases

oxidative phosphorylation in the mitochondria of MM cells,

which in turn produces large amounts of NAD+ and ATP. It

impairs the activity of proteasome inhibitors and enhances

protein folding in the endoplasmic reticulum (ER), thereby

conferring resistance to proteasome inhibitors in MM (24). In

this review, we discuss the lipid metabolism reprogramming and

its oncogenic mechanisms in hematological malignancies,

including FA metabol ism, cholesterol metabolism,

phospholipid metabolism and lipid-related signaling pathways.
FA metabolism in
hematological malignancies

FAs are essential molecules in the entire lipid metabolism,

not only involved in the synthesis of biological membranes and

secondary signaling molecules, but also substrates for

mitochondrial ATP and NADH synthesis, eicosanoid

production and post-translational protein–lipid modifications

of signaling proteins (25, 26). As early as 1924, Warburg

proposed that even under sufficient oxygen conditions, tumor

cells also prefer the low-utilization form of glycolysis for energy

production (27). Even if tumor cells use a large amount of

carbohydrates, it is challenging to meet the needs of energy

substances, so lipid metabolism is also required for energy.

Tumor cells increase lipid metabolism and energy supply

mainly by enhancing the de novo synthesis pathway of

endogenous FAs, exogenous FAs uptake and lipid mobilization

(28). De novo FA synthesis mainly depends on two key rate-

limiting enzymes, acetyl-CoA carboxylase (ACC) carboxylates

acetyl-CoA to malonyl-CoA, and FASN converts acetyl-CoA

and malonyl-CoA Conversion of acyl-CoA to long-chain FAs

(Figure 1) (29). It has been reported that the FA de novo

synthesis pathway is generally up-regulated in tumor cells, and

FASN overexpression has been an independent prognostic

marker for the aggressive clinical course of tumor cells (30).

MYC+ BCL-2+ DLBCL with high expression of FASN has the

characteristics of high invasion and poor prognosis (31). Up-

regulated FASN can promote the growth, metastasis, invasion

and anti-apoptosis of DLBCL through the pERK/BCL-2

signaling pathway, and FASN inhibition can cause cell growth
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arrest and apoptosis (32). Overexpressed FASN can also regulate

the PI3K/Akt signaling pathway in DLBCL, prompting p70-S6

kinase to phosphorylate USP11. The phosphorylated USP11

mediates eIF4B deubiquitination to increase its stability, and

eIF4B promotes key oncogenes biosynthesis, ultimately driving

the development of lymphoma (33). PARK2 can also be

phosphorylated by mTORC1 to lose its ubiquitination activity,

thereby blocking the ubiquitination and degradation of eIF4B

protein (Figure 1) (34). Meanwhile, up-regulation of FASN has

been reported in acute myeloid leukemia (AML) (35), mantle

cell lymphoma (MCL) (36), and MM (37).

There is a lack of reports about ACC1 in hematological

malignancies, only one recent paper mentioned the function of

ACC1 to suppress tumors. The E3 ubiquitin ligase COP1 binds

to ACC1 through Trib1 and causes ACC1 ubiquitination and

degradation to inactivate its biological activity, which leads
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metabolic reprogramming to support the energy requirements

of leukemia progression. A general downregulation of ACC1 can

be observed in AML. However, stabilizing the biological activity

of ACC1 protein can increase intracellular ROS levels and

NADPH consumption, thereby inhibit ing leukemia

progression, which may be caused by the material and energy

competition conflict between ACC1-mediated FA synthesis and

tumor cell proliferation (38). As an effective strategy for the

treatment of patients with AML and endemic Burkitt

lymphoma, the drug combination of bezafibrate and

medroxyprogesterone acetate can effectively reduce the

expression of FASN and stearoyl-CoA desaturase 1. However,

ACC1, which is also a key enzyme in lipid synthesis, did not

show a significant change in expression (39). The role of ACC1

remains unknown in hematological malignancies. Interestingly,

ACC1 promotes tumor cell growth in some solid tumors.
FIGURE 1

FA And Cholesterol Metabolism in Hematological Malignancies. The de novo synthesis of FA is regulated by the PI3K/Akt signaling pathway. De novo
FA synthesis mainly depends on two key rate-limiting enzymes, ACC carboxylates acetyl-CoA to malonyl-CoA, and FASN converts acetyl-CoA and
malonyl-CoA Conversion of acyl-CoA to long-chain FA. ACC and FASN are regulated by mTOR, which is a downstream target of the PI3K/Akt
signaling pathway. Overexpressed FASN can prompt p70-S6 kinase to phosphorylate USP11 and the phosphorylated USP11 mediates eIF4B
deubiquitination to increase its stability. eIF4B mediates the expression of anti-apoptotic and cell survival proteins, ultimately driving the
development of lymphoma. In addition, PARK2 can also be phosphorylated by mTORC1 to lose its ubiquitination activity, thereby blocking the
ubiquitination and degradation of eIF4B protein. The E3 ubiquitin ligase COP1 binds to ACC1 through Trib1 and causes ACC1 ubiquitination and
degradation to inhibit FA synthesis. Cells uptake exogenous FAs mainly through CD36, FATP, FABP and SCL27. Endogenous FAs and exogenous FAs
enter the mitochondria through the transmembrane mechanism, and generate a large amount of ATP through FA b-oxidation, the TCA cycle and
the electron transport chains. Moreover, MIEF2, a key regulator of mitochondrial fission, can stimulate the production of mitochondrial ROS and
activate the AKT/mTOR signaling pathway to further enhance FA synthesis. Cholesterol homeostasis is mainly regulated by SREBPs and LXRs. In
conditions of low cholesterol levels, SCAP-SREBP2 can be smoothly transferred from the ER to the Golgi apparatus to activate the de novo
synthesis pathway of cholesterol. In conditions of high cholesterol levels, INSIG, SCAP and SREBP2 form a stable trimolecular complex to block the
export and activation of SREBP2, and finally inhibiting the de novo cholesterol synthetic route. Moreover, by activating LXR-RXR to express ABCA1
and ABCG1, excessive cholesterol is transported to the liver and excreted in the form of bile acids. Furthermore, excessive cholesterol is rapidly
esterified and exported under the action of ACAT and SR-BI to form vacuoles containing cholesterol ester derivatives. I, II, III and IV represent
complex I, complex II, complex III and complex IV in the electron transport chains, respectively.
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MIEF2, a key regulator of mitochondrial fission, stimulates the

production of mitochondrial ROS and activates the AKT/mTOR

signaling pathway. The result causes the upregulation of ACC1,

FASN, SREBP1/2, SCD1, HMGCS1 and HMGCR to increase

lipid synthesis, ultimately promoting the growth and metastasis

of ovarian cancer cells (40). Overexpression of the long non-

coding RNA (lncRNA, CTD-2245E15) in lung cancer can also

regulate ACC1 and pyruvate carboxylase to promote lung cancer

development (41).

Tumor cells enhance the uptake of exogenous FAs, mainly

through the CD36, FATP, lipid chaperone FA binding protein

(FABP) and solute carrier protein family 27 (SCL27). Up-

regulation of CD36 has been reported in hematological

malignancies such as AML (42), chronic lymphocytic leukemia

(CLL) (43), MM (44), DLBCL (30), and MCL (45). Sudjit

Luanpitpong (45) used Synchrotron-Based Fourier Transform

Infrared Spectroscopy of Single Cells to detect significant

increases in total lipids and lipid esters in MCL resistant to

Bortezomib (BZ). BZ is a protease inhibitor that leads to

accumulation of misfolded and unfolded proteins, mainly by

inhibiting protein degradation, ultimately causing the ER stress

response. Subsequent Oil Red O staining detection revealed

significant lipid droplets accumulation in BZ-resistant MCL

cells. Detection of lipid metabolism-related targets revealed

increased expression of CD36 protein responsible for

exogenous FAs uptake, and CD36 inhibited apoptosis in MCL,

which was associated with BZ-resistance. It has been reported

that BTK inhibitors can inhibit lipid droplet accumulation in

MCL (46). Moreover, CD36 is associated with tumor invasion

and metastasis and is a prognostic biomarker for various types of

cancer (47–49). Apolipoprotein C2, which is highly expressed in

AML, can interact with CD36 to activate LYN-ERK signaling

and enhance the metabolic activity of leukemia cells (42). CD36

was also found to promote FAs uptake by activating STAT3 in

CLL (43). Up-regulation of CD36 is also one of the reasons why

tumor cells develop drug resistance (50). Exogenous interleukin

6 (IL-6) mediates the up-regulation of CD36 by activating

STAT3, promoting the uptake of FAs and causing

chemotherapy resistance (51). CD36 also induces lipid

peroxidation and ferroptosis with concomitant reduction of

cytotoxic cytokines and impaired antitumor capacity (52). In

addition to the drug resistance of tumor cells caused by increased

lipid synthesis, decreased lipid synthesis can also lead to drug

resistance. BZ exerts its anti-tumor effect through ER stress

caused by the protein accumulation (53), because the ER is the

site of lipid synthesis, and BZ also causes lipid accumulation

(45). In BZ-resistant MM, it was found that the expression of

SREBP1 and its downstream target FA elongase ELOVL6 are

reduced, resulting in inhibiting lipid synthesis, thereby reducing

the accumulation on the ER and ultimately causing BZ-

resistance (54). In addition to CD36 mediating cellular uptake

of FAs, FATP also mediates cellular uptake of FAs. FATP is

expressed at high levels on the cell surface and intracellular space
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in MM. Furthermore, MM cells can induce lipolysis of bone

marrow adipocytes, and the decomposed free fatty acids (FFA)

are taken up by adjacent MM cells through FATP (21). FABP

and SCL27 were also observed to be up-regulated in tumor cells,

increasing the uptake of exogenous FAs of tumor cells (55–58).

Glycoprotein prostaglandin D2 synthase (PTGDS) has dual roles

in prostaglandin metabolism and lipid transport. More

interestingly, PTGDS exhibits different functions in different

tumor cells. PTGDS promotes DLBCL progression by regulating

tumor cell viability, proliferation, cell cycle, apoptosis and

invasion through MYH9 stimulated Wnt-b-catenin-STAT3
signaling pathway (59). However, PTGDS showed antitumor

effect in testicular cancer (60), gastric cancer (61) and breast

cancer (62).

Fatty acid oxidation (FAO) provides energy mainly

through FA b-oxidation. In order to successfully carry out

FAO, FAs first need to enter the mitochondria. Firstly, long-

chain FAs need to generate fatty acyl-CoA under the action of

fatty acyl-CoA synthase. Fatty acyl-CoA is converted to fatty

acylcarnitine under the action of CPT1, which is then

transported into the mitochondrial matrix by carnitine/

acylcarnitine translocase (CACT) on the inner mitochondrial

membrane, and fatty acylcarnitine entering the mitochondrial

matrix are reconverted to fatty acyl-CoA by CPT2. The fatty

acyl-CoA that smoothly enters the mitochondria repeats the

cycle of dehydrogenation, water addition, dehydrogenation, and

thiolysis, and finally decomposes the fatty acyl-CoA into acetyl-

CoA, accompanied by the generation of a large amount of

NADH and FADH2. These substances eventually enter the

TCA cycle and the electron transport chains to be oxidized to

generate a large amount of ATP for cellular physiological

activities (Figure 1) (28). FAO is dysregulated in a variety of

malignancies, and it mediates tumor cell proliferation, survival,

drug resistance, metastatic progression, immunosuppression

and tumor-promoting microenvironment (63). As an enzyme

involved in FAO, HADHB is commonly overexpressed in

malignant lymphomas and is a poor prognosis predictor in

DLBCL, and high expression of HADHB promotes the

proliferation and growth of malignant lymphomas (64).

HADHA, which forms a heterodimer together with HADHB,

is also widely up-regulated in malignant lymphomas, and down-

regulation of HADHA can cause G0/G1 cell cycle arrest (65).

Acyl-CoA oxidase 1 (ACOX1), a key rate-limiting enzyme in

FAO, is overexpressed in malignant lymphomas and confers

resistance to the anthracycline antibiotic doxorubicin, mainly

by reducing doxorubicin-induced activation of caspase-9

and caspase-3 and reduction of mitochondrial membrane

potential. Simultaneously, ACOX1 can also destabilize the

tumor suppressor gene family p73 protein and inhibit its

expression (66).

Lipid metabolism can affect the immune system in tumor

cells, causing immune evasion and promoting tumor growth.

Natural killer (NK) cells play an important role in the prevention
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of hematological malignancies. However, FAs, both in lymphoma

cells and in the tumor microenvironment, can reprogram lipid

metabolism in NK cells and inhibit the production of cytokines

such as IFN-g, making NK cells lose their immune function to

tumor cells (67). The prostaglandin PGD 2, a lipid compound of

the eicosanoid family, is abundantly generated under the catalysis

of cyclooxygenase overexpressed in tumor cells. PGD 2 can

stimulate innate lymphocytes ILC2 to overexpress IL-5, which

subsequently promotes the proliferation of Tregs cells. Tregs cells

can be involved in immunosuppression, such as inhibition of T

effector cell proliferation and production restriction inflammatory

response factor IL-10, ultimately promoting the proliferation of

hematological stem and progenitor cells (68). Tumor-associated

macrophages (TAMs) up-regulate CD36 to uptake lipids resulting

in lipid accumulation. Excess lipids provide a large amount of

energy through FAO and lead to activation of STAT6, which is

accompanied by TAMs differentiation and cancer promotion (69).

Since FA biosynthesis, uptake, and oxidation are significantly

enhanced in various types of tumor cells, inhibiting FA

mobilization has become a promising antitumor strategy in

tumor cells. FASN, a key rate-limiting enzyme in the de novo

synthesis pathway of endogenous FAs, is associated with multidrug

resistance in tumor cells (70) and is an effective target for the

treatment of malignant tumors. Clinically, glucocorticoids such as

prednisone and dexamethasone can inhibit the expression of

FASN and thereby inhibit the proliferation and growth of

tumor cells (71). At the same time, the study found that

ginger extract can inhibit the expression of FASN, and combined

use with dexamethasone can enhance the drug sensitivity of

ALL cells to dexamethasone (72). The combination of

bezafibrate and medroxyprogesterone acetate (39), orlistat (73),

N-phenylmaleimide (74) and methyl jasmonate (75) can all

regulate the expression of FASN to inhibit the growth of tumor

cells. In leukemia cells, FABP4 regulates DNMT1 expression

through the IL-6/STAT3 axis and DNMT1 controls FABP4

through VEGF signaling, thereby forming a mutually reinforcing

positive feedback regulation that ultimately promotes AML

aggressiveness. The selective inhibitor BMS309403 can cause

FABP4 dysfunction, which in turn promotes the downregulation

of DNMT1. Subsequent induction of global DNAmethylation and

re-expression of tumor suppressor genes ultimately induce AML

cell differentiation and inhibit AML progression (76).
Cholesterol metabolism in
hematological malignancies

Cholesterol is an important substance for cell function, and

cholesterol homeostasis is essential for the normal physiological

activities of the body (77). Cholesterol homeostasis is mainly

regulated by two transcription factor families, sterol regulator

element binding proteins (SREBPs) and liver X receptors

(LXRs). SREBPs mediate lipid synthesis and LXRs mediate
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cholesterol transport. Andrea Brendolan has made a detailed

summary of cholesterol homeostasis regulation. In brief, in

conditions of low cholesterol levels, SREBP2 is escorted to the

Golgi apparatus by SREBP cleavage activator protein (SCAP),

where a series of biological reactions activate cholesterol

synthesis, and LXRs are in an inhibited state at this time. In

conditions of high cholesterol levels, INSIG, SCAP and SREBP2

form a stable trimolecular complex in the ER, thereby blocking

the export and activation of SREBP2 and finally blocking the de

novo cholesterol synthetic route. Moreover, excess oxysterols or

desmosterol bind and activate the LXR/RXR heterodimer, which

in turn activates specific LXR target genes, such as ATP-binding

cassette transporters A1 and G1 (ABCA1 and ASCG1), allowing

excess cholesterol to be transported to the liver and excreted as

bile acids (Figure 1) (78).

The mechanisms that maintain cholesterol homeostasis are

disrupted in tumor cells due to their addiction to cholesterol. It

has been reported that a large amount of cholesterol is widely

present in malignant tumor cells (79). In human hepatocellular

carcinoma cells, the stability of the INSIG, SCAP, and SREBP2

trimolecular complex is destabilized by cascade phosphorylation

of the AKT-PCK1-INSIG axis. SCAP-SREBP complex is

translated to the Golgi apparatus to activate cholesterol

synthesis and ultimately promotes the proliferation and

growth of tumor cells (80). Up-regulation of LDLR, SREBP2

and nuclear PBR are detected in CLL, which also explains that

hypocholesterolemia in lymphocytic leukemia patients is due to

over-uptake of LDL particles from plasma by high LDLR

expression (81). At the same time, it has also been found that

tumor cells can secrete cytokines through autocrine and

paracrine mechanisms to stimulate cellular uptake of LDL in

AML (82). In T-cell ALL, the Wnt-b-catenin signaling pathway

mediates the oncogenic synergy of Akt and Dlx5 by enhancing

cholesterol synthesis (83). Yajie Shen (84) found that SOX9 was

highly expressed in the GC-DLBCL with IGH-BCL2+ mutation.

Through whole transcriptome analysis and chromatin

immunoprecipitation sequencing, it was found that SOX9

could directly bind and transcriptionally activate DHCR24,

which is a terminal enzyme in cholesterol biosynthesis that

catalyzes the conversion of sterol to cholesterol. Using

simvastatin to inhibit cholesterol synthesis, it can effectively

inhibit the growth of DLBCL and the progression of

lymphoma. Moreover, peroxisome proliferator-activated

receptor (PPARd) is co-expressed with cholesterol synthesis-

related genes. The expression level of the key cholesterol

synthesis enzyme HMGCR increases nearly 4-fold in

malignant B cells with high PPARd gene expression, and a

significant increase in membranous cholesterol was also

observed in malignant B cells, indicating changes in cell signal

pathways (85). In promyelocytic leukemia (APL) driven by the

PML-RAPa oncoprotein, it was found that PML-RAPa can

reduce the expression of PPARg. PML-RAPa and TRIB3

cooperate to destroy the PPARg/RXR heterodimer to inhibit
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PPARg activity, eventually causing abnormal blood lipids in APL

(86). Although cholesterol is necessary for maintaining cell

homeostasis and cancer cell proliferation, excess free

cholesterol is harmful to cells (87). Therefore, cholesterol is

rapidly esterified and exported under the action of acetyl-

coenzyme A:cholesterol acetyltransferase (ACAT) and

scavenger receptor class B member I (SR-BI) to form vacuoles

containing cholesterol ester derivatives (Figure 1). A large

number of vacuoles have been observed in highly aggressive

lymphoma cells, which have been shown to contain lipids by

Sudan black positive staining, and up-regulation of molecules

related to cholesterol metabolism has also been detected (88).

Cholesterol metabolism reprogramming is also one of the

reasons for the drug resistance of tumor cells. HMGCS1, a key

enzyme in the mevalonate pathway for cholesterol synthesis, is

overexpressed by the upstream regulator GATA1 in patients with

relapsed/refractory AML. Activated HMGCS1 protects ER and

mitochondria by upregulating the unfolded protein response

(UPR) signaling pathway to avoid cell damage caused by RE

stress and mitochondrial stress, ultimately endow tumor cells

with drug resistance (89). In the tumor microenvironment of

MM, there is a large number of oxidatively modified low-density

lipoproteins (OxLDLs). These OxLDLs make proteasome

inhibitors such as BZ lose their inhibitory and pro-apoptotic

effects on the proteasome, and finally make MM patients acquire

drug resistance (90). Chemotherapy generally causes drug

resistance in tumor cells. After chemotherapy of AML, cellular

cholesterol biosynthesis is significantly up-regulated and

extracellular vesicles carrying a large number of cholesterol

synthesis-related enzymes are secreted, which can be uptake by

recipient cells to promote cholesterol synthesis and cell signal

transduction, resulting in tumor formation (91).

Because cholesterol affects the occurrence and development

of tumors, inhibition of cholesterol synthesis has become a new

strategy for the treatment of cancer in recent years (92). In

DLBCL, the BCR/SYK/PI3K/AKT signaling pathway regulates

the biosynthesis of cholesterol (93). Metformin, a commonly

used drug for the treatment of diabetes, can reduce the

biosynthesis of cholesterol by blocking the BCR signaling

pathway and inhibiting the expression of HMGCS1, thereby

inhibiting the growth of DLBCL. Furthermore, limiting the

biosynthesis of cholesterol affects the integrity and biological

function of the cell membrane and the lipid rafts, further

blocking the BCR signaling pathway and the cell activity is

severely inhibited (94). Nicotinamide phosphoribosyltransferase

inhibitor (KPT-9274) can selectively kill leukemia stem cells

(LSC) and is an effective treatment for AML. However, due to

the up-regulation of SREBP-regulated genes, LSC developed a

certain resistance to KPT-9274 (95). Inhibiting the SREBP

signaling pathway with dipyridamole can enhance the drug

sensitivity of LSC cells to KPT-9274. In addition, simvastatin,

a common statin that reduces plasma cholesterol levels, has been

reported to promote apoptosis by inhibiting the miR-19a-3p/
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HIF-1a axis (96). Conversely, increasing cholesterol

biosynthesis can also kill tumor cells. Overactivation of ERK/

MAPK signaling pathway using limonoid compounds A1542

and A1543 induces excessive cholesterol biosynthesis in

leukemia cells, leading to cholesterol accumulation and

programmed apoptosis in leukemia cells (97). In addition,

blocking cholesterol efflux by SR-BI inhibitor, resulting in

intracellular cholesterol accumulation, can also stimulate ER

stress response and eventually lead to apoptosis (88).
Phospholipid metabolism in
hematological malignancies

Phospholipids, as a large class of lipids, are the main

components of biological membranes and important signaling

molecules for cell proliferation and growth (98). Sphingosine 1-

phosphate (S1P), which is generated by phosphorylation of

sphingosine by sphingosine kinase 1 (SK1), is an important

lipid metabolite that mediates cellular signal transduction (99).

There have been numerous reports that S1P mediates tumor cell

proliferation, invasion, angiogenesis, and anti-apoptosis

(Figure 2) (100, 101). In addition, overexpression of SK1 also

induces malignant transformation and promotes tumor

proliferation (102). Michael S. Lee (103) found that S1P is up-

regulated in MCL, and S1P can inhibit the activation of NK cells

and allowMCL cells to escape immune immunity. Once targeting

S1P or inhibiting SK1, the killing effect of NK cells can be restored

on MCL cells, and accompanied by the up-regulation of

cardiolipin, phosphatidylcholine, phosphatidylethanolamine

and sphingomyelin, especially the up-regulation of cardiolipin

suggests that cardiolipin induce the activation of NK cells.

Furthermore, S1P has also been reported to interact with

S1PR3 to promote osteosarcoma proliferation, anti-apoptosis

and aerobic glycolysis through the YAP/c-MYC/PGAM1

axis (104).

Phospholipids also play an important role in the occurrence

and development of tumor cells and the generation of drug

resistance. SK1 is overexpressed in DLBCL, and its downstream

product S1P can induce angiogenesis and promote cell

proliferation and growth (105). For the increased expression of

SK2 in large granular lymphocytic leukemia, inhibiting the

expression of SK2 can lead to the degradation of the

downstream pro-survival protein Mcl-1, and ultimately induce

cell apoptosis (106). In addition to S1P, bioactive phospholipids

such as ceramide 1-phosphate (C1P), lysophosphatidylcholine

(LPC) and LPA also promote tumor progression. These

bioactive phospholipids can stimulate the p42/44 MAPK and

AKT signaling pathways. In addition, as substances that can

inhibit the migration of hematological cells, HO-1 and iNOS can

be down-regulated by bioactive phospholipids in a p38 MAPK-

dependent manner, thereby promoting the migration and
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adhesion of human leukemia cells (107). Lysophospholipase D

enzyme converts lysophospholipids into more water-soluble

LPA, which activates GPCR-mediated signaling pathways and

produces important lipid mediators. They are required to

maintain chronic myelogenous leukaemia stem cells function

in vivo (108). In MM patients, acid sphingomyelinase (ASM) is

significantly up-regulated, which can lead to the increase of

ceramide and the decrease of sphingomyelin to cause

phospholipid metabolism disorders. The exosomes secreted by

MM contain a large amount of ASM, which can make recipient

cells resistant to melphalan and BZ (109). Overexpressed Acid

ceramidase (AC) in AML can decompose pro-death

sphingolipid ceramide to generate sphingosine and FFA, which

are converted to S1P by SK1. AC and S1P together stimulate the

activation of the NF-kB pathway, which in turn causes the

expression of the ATP-binding cassette transporter P-gp. P-gp

mediates the excretion of multiple drugs, ultimately conferring

resistance to chemotherapeutics in AML (Figure 2) (110).
Conclusion

The rapid growth and continuous invasion of tumor cells

require a large amount of energy supply, and metabolic

reprogramming is commonly used to meet the material and

energy requirements of tumor cells. As an important component

of various biological membranes, lipids are also important

substances involved in energy storage, production and cell

signaling, and play an important role in cell physiological

activities (111). Therefore, lipid metabolism reprogramming

can be used to meet the material and energy required for rapid

proliferation and growth of tumor cells, and lipid metabolism

reprogramming has become one of the new markers of
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cancer (112). In this review, we summarize the proliferation,

growth, differentiation, migration, invasion, apoptosis, drug

resistance, immune escape and oncogenic mechanisms of

tumor cells due to the lipid metabolism reprogramming in

hematological malignancies, including FAs, cholesterol, and

phospholipids. Tumor cells can increase lipid metabolism by

enhancing endogenous lipid de novo synthesis pathway and

exogenous lipid uptake, including the overexpression of FASN,

ACC1, HMGCR, CD36, FABP and LDLR. Moreover, SREBPs

have specific important roles in regulating lipid homeostasis, and

SREBPs have three subtypes: SREBP-1a, SREBP-1c and SREBP-2.

SREBP-1c mainly regulates the expression of genes required for

FA synthesis, while SREBP-1a can regulate FA and cholesterol

synthesis, as well as cholesterol uptake. SREBP-2 is relatively

specific for the regulation of cholesterol synthesis and uptake

(113). SREBPs need to be escorted by SCAP from the ER to the

Golgi apparatus to perform their biological functions (114).

Lipid metabolism reprogramming plays an important role in

the physiological activities of tumor cells, so targeting the lipid

metabolism pathway of tumor cells has become an effective

therapeutic approach. For example, inhibition of key rate-

limiting enzymes in lipid biosynthesis reduces lipid synthesis,

overstimulation of lipid biosynthesis causes ER stress, disruption

of mitochondrial oxidative homeostasis causes mitochondrial

stress, and blocking lipid-related signaling pathways causes

signal pathway dysregulation. However, targeting lipid

metabolism reprogramming still faces many challenges for the

treatment of hematological malignancies. The main reason is that

the relevant mechanisms of lipid metabolism are not fully revealed

in hematological malignancies. Therefore, lipid synthesis, storage,

utilization and efflux cannot be effectively regulated in

hematological malignancies. Ferroptosis, which is a hot research

topic in recent years, is also closely related to lipid metabolism.
FIGURE 2

Biological Functions of Bioactive Phospholipids. S1P is generated through phosphorylation of sphingosine by SK. S1P mediates tumor cell
proliferation, invasion, angiogenesis, drug resistance and immune escape. Moreover, AC can decompose the pro-death sphingolipid ceramide to
generate sphingosine, which subsequently generates S1P. AC and S1P can activate the NF-kB pathway, and mediating the expression of the drug
efflux pump P-gp. The bioactive phospholipids such as S1P, C1P, LPC and LPA can stimulate the p42/44 MAPK and AKT signaling pathways.
Moreover, as substances that can inhibit the migration of hematological cells, HO-1 and iNOS can be down-regulated by bioactive phospholipids in
a p38 MAPK-dependent manner, thereby promoting the migration and adhesion of human leukemia cells.
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Ferroptosis is a programmed cell death caused by excessive

accumulation of iron-dependent lipid peroxidation and reactive

oxygen species, and various hematological malignancies are

sensitive to ferroptosis. Therefore, ferroptosis is also a promising

therapeutic strategy for hematological malignancies. However,

what we need to pay attention to is that glucose metabolism,

lipid metabolism and amino acid metabolism are interconverted

and affect each other, which is a complex connection. These

results in that single inhibition of a certain metabolism cannot

effectively inhibit the growth of tumor cells because the salvage of

other metabolisms is activated. Tumor cells acquire the function

of MYC through chromosomal translocations, gene

amplifications and single nucleotide polymorphisms, causing a

variety of metabolic dysregulations. For example, transporters and

enzymes of glycolysis, fatty acid synthesis, glutaminolysis, serine

metabolism and mitochondrial metabolism (115). The single

inhibition of a downstream metabolic change is not effective in

inhibiting cancer development. Therefore, combined inhibition of

lipid metabolism, glucose metabolism and amino acid metabolism

needs to be considered in clinical applications. In conclusion,

understanding the oncogenic mechanism of lipid metabolism and

targeting lipid metabolism reprogramming to find new

therapeutic targets has important scientific significance and

clinical application value. This review provides experience and

direction for targeting lipid metabolism reprogramming in the

treatment of hematological malignancies.
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myeloid leukemia patients
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Background: Cell metabolic reprogramming is a hallmark of tumor prognosis,

and fatty acid metabolism (FAM) plays a crucial role in the tumor

microenvironment (TME). However, the relationship between FAM, TME, and

prognosis of acute myeloid leukemia (AML) patients remains elusive.

Methods: We extracted the single-cell RNA sequencing (scRNA-Seq) and bulk

transcriptome data of AML patients from the TCGA and GEO databases and

assessed the relationship between FAM, TME, and AML patient prognosis. We

also performed functional enrichment (FE) assay to evaluate the significance of

FAM in anti-AML immunosurveillance.

Results: Our scRNA-Seq analysis revealed that the leukemic stem cell (LSC)-

enriched population exhibited elevated levels of FAM-related genes. Using

these FAM-related genes, we developed a prognostic model that accurately

estimated AML patient outcome. FE analysis showed that FAM was strongly

related to alterations of TME-based immunosurveillance in AML patients. More

importantly, we demonstrated that FAM inhibition via pharmaceutical targeting

of PLA2G4A, a highly expressed FAM gene in AML patients with poor prognosis,

enhanced the NK cell-mediated immunosurveillance in leukemia cells.

Conclusions: Leukemic stem cell (LSC)-enriched population exhibited

elevated levels of FAM-related genes. We have successfully established the

FAM formula that predicts AML patient prognosis and alterations in the TME-

based immunosurveillance. We also found that PLA2G4A was a highly

expressed FAM gene in AML patients with poor prognoses. Pharmaceutical

targeting of PLA2G4A increased the expression of NKG2DL in leukemia cells in

vitro and thus enhanced the NK cell-mediated immunosurveillance.

KEYWORDS

acute myeloid leukemia, fatty acid metabolism, prognostic model, tumor micro
environment, NK cells
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Introduction

Acute myeloid leukemia (AML) is a widespread hematopoietic

malignancy characterized by uncontrolled clonal expansion of

primitive myeloid precursors (1). The global AML incidence has

progressively increased over the years, with 75% of AML patients

initially diagnosed after 60-year-old age (2). Although a diverse range

of targeted therapy strategies has emerged in recent years, intensive

chemotherapy remains the standard treatment for AML patients.

Despite increasing complete remission (CR) rates, AML prognosis

remains poor due to the high relapse rate and drug resistance (3).

Leukemic stem cell (LSC) is functionally defined by the

ability to initiate and establish diseases upon transplantation (4).

Similar to hematopoietic stem cells, LSCs stand at the top of the

leukemia lineage by self-renewing and differentiating into

proliferative leukemic cells (5). In addition, the quiescent LSCs

are resistant to chemotherapeutic interventions, thus leading to

their survival and disease re-establishment (6). Therefore,

targeting the chemoresistance and self-renewal mechanism to

eliminate LSCs is crucial for effective AML treatment.

Over time, research revealed that fatty acid metabolism (FAM)

plays an essential role in AML cell survival and chemoresistance (7).

Leukemic cells prefer to metabolize fatty acids to meet the

augmented bioenergetic demands as fatty acid oxidation (FAO)

generates more than twice as much ATP as glucose oxidation. LSCs

have relatively low levels of prolyl hydroxylase 3 (PHD3), a crucial

enzyme in glucose oxidation (8). Meanwhile, LSCs highly express

the fatty acid transporter CD36 and the fatty acid-binding protein 4

(FABP4) that promotes fatty acid uptake and transport to fuel fatty

acid lipolysis in bone marrow adipocytes (9–12), Given this

evidence, targeting LSC metabolic vulnerabilities like FAM

dependency may be a possible approach for eradicating

chemoresistant LSCs and improving AML prognosis (13).

However, the prognostic value of FAM-related genes and their

relationship to the tumor microenvironment (TME) in AML are

rarely reported and require further investigations (11).

Here, we identified that AML LSCs have high levels of FAM-

related genes. We constructed a FAM prognostic model for

better predicting AML patient outcomes and alterations in the

TME-based immunosurveil lance. More importantly,

pharmaceutically targeting the FAM gene PLA2G4A enhanced

the NK cell-mediated immunosurveillance by increasing

NKG2D ligand expression in leukemia cells.
Materials and methods

Data acquisition and identification of the
FAM-related genes

We gathered RNA sequencing data and corresponding clinical data

from 553 AML patients on the GEO website (GSE37642, https://www.

ncbi.nlm.nih.gov/geo/) and utilized them as the training cohort (TC) for
Frontiers in Oncology 02
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analysis (Table S1). Similarly, theCancerGenomeAtlas (TCGA) dataset

(n=140) with clinical information from the UCSC Xena (http://xena.

ucsc.edu/) was used as the validation cohort (VC) (Table S2). FAM-

related genes were obtained from the “c2.cp.kegg.v7.0.symbols”. Genes

were selected for further investigation only if they were listed in both the

TC and VC. The genes involved in the FAM formula construction are

presented in Table S3.
scRNA-Seq data processing

Raw data, with accession number GSM5400788, was downloaded

from the Gene Expression Omnibus (GEO) websiteViable primary

human AML cells (CD33+/CD45+/AnnexinV-) from mice bone

marrow of PDX mice before chemotherapy, or accepted

chemotherapy treatment were included in the analysis. The

chemotherapy treatment consists in 5 days of AraC treatment (30

mg/kg for PDXs) by intra-peritoneal injection, or with 7 days of

venetoclax treatment (100 mg/kg) by oral gavage We conducted

normalization, dimensionality reduction, and clustering using the

Seurat 3.2.3 R package. Cell filtration was done such that the system

identified > 500 and < 5,000 genes and < 5% of total UMIs mapped to

the mitochondrial genome. The data was normalized by dividing the

UMI counts per gene into the total UMI counts in the corresponding

cells, followed by log-transformation to achieve results, then scaling and

centering. We next performed dimensionality reduction on the cells

using Stochastic Neighbor Embedding (t-SNE). Pseudotime trajectory

was then assessed via monocle2, depending on the Seurat clustering.

Next, we retrieved the signature genes from each cluster with the Seurat

function FindMarkers with the “wilcox” test. The GeneOntology (GO)

and plots were then employed via cluster Profiler and the ggplot2 R

package. Lastly, gene summaries were pre-stratified by DEG fold

change values via Seurat, and the gene sets were acquired via the

GO database.
Construction and validation of the
FAM formula

To establish an effective prognostic prediction model, we used

the univariate Cox regression analysis of 553 GEO-LAML patients

in the TC to construct the FAM formula. The clinical characteristics

of these patients are presented in Table S1. The FAM formula was

generated with data from the multivariate analysis with the lowest

Akaike Information Criterion (AIC) value. Lastly, we computed the

risk score of individual patients using the FAM formula as follows:

Risk Score = e ^ sum (normalized individual FAM-associated gene

levels multiplied by the corresponding regression coefficiency). The

same FAM formula was used to compute the risk scores of the

training cohort (TC) and validation cohort (VC) patients. Next,

both TC and VC patients were stratified into a high risk (HR) or

low risk (LR) cohort, based on the same threshold value.

Subsequently, the Kaplan-Meier analysis was used to assess
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overall survival (OS) between the HR and LR cohorts in VC. We

next generated the predictive nomogram A hybrid using the “rms”

R package that integrated both the FAM formula and

corresponding clinical patient profile to estimate the AML patient

OS at the 1-, 2-, and 3-year time points. Lastly, the calibration curve

and consistency index (C-index) were employed to evaluate the

predictive ability of the generated nomogram.
Gene set and functional
enrichment analysis

GSEA v4.1.0 (http://software.broadinstitute.org/gsea/login.jsp)

was employed to determine relevant physiological networks

between the HR and LR cohorts, as evidenced by the FAM

formula and c5.go.bp.v7.5.symbols gene sets. The GSEA analysis

was performed in both the TC and VC. A nominal p-value < 0.05

was set as the significance threshold. The GO analysis was

conducted to explore biological processes, while the Kyoto

Encyclopedia of Genes and Genomes (KEGG) network analysis

was conducted to determine signaling pathways.
Analysis of immune cells involved
in leukemia

The XCELL algorithm was utilized to quantify various types of

tumor-invading immune cells in AML patients from the TC and

VC cohorts, and a p-value < 0.05 was considered significant. Next,

we evaluated each category of immune cells to evaluate the

differential tumor microenvironment (TME) profiles between the

HR and LR cohorts.
mRNA isolation and qPCR

Total mRNA was extracted with the MagZolTM Reagent

(R4801-03, Magen) following kit directions, and the transcript

purity and quantification were evaluated via NanoDrop (Thermo

Scientific) prior to qPCR. To conduct RT-qPCR, transcript samples

were converted to cDNA with the TransScript All-in-One First-

Strand cDNA Synthesis SuperMix (AT341, Transgen), and qPCR

was carried out with the SYBR Green I Master Mix reagent

(11203ES03, YEASEN) in the Bio-Rad CFX96 TouchTM Real-

Time PCR Detection system. The primers used for the qPCR are

listed in Table S4. The expression levels of the NKG2DL were

normalized using GADPH as the internal control.
Apoptosis analysis

The three leukemia cell lines, including THP1 (CTCC-001-

0044, Meisen), U937 (CTCC-001-0027, Meisen) and HL60
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(CTCC-001-0025, Meisen), were grown in RPMI 1640

containing 10% FBS. After treatment with AACOCF3

(GC16115, GLPBIO) at 25mM for 48 hours, we evaluated

cellular apoptosis with Annexin-V (640907, Biolegend) by flow

cytometric analysis.
In vitro NK killing assay

NK92(CTCC-001-0016, Meisen) cell lines were grown in

RPMI 1640 containing 10% FBS, 10% horse serum (Solarbio),

and 100 ng/ml IL-2 (Peprotech).Firstly, we labelled the leukemia

cells with CFSE for 30 minutes and washed off CFSE carefully.

Then we treated AML cell lines with 5mMAACOCF3(GC16115,

GLPBIO) for 48 hours, after which we washed off the remaining

AACOCF3 and continued culturing in the presence or absence

of NK92 cells for 60 hours before counting live leukemia cells by

flow cytometric analysis. The killing efficiency of NK92 cells

were calculated as follows: Killing efficiency= (the number of

leukemia cells grown without NK92 cells - number of leukemia

cells grown with the indicated frequency of NK92 cells)/number

of leukemia cells grown without NK92 cells.
Statistical analyses

The Chi-squared test was used to evaluate the correlation

between the FAM formula and the corresponding patient

clinical profile. R (Version 4.1.0) and SPSS (Version 23.0) were

employed for data analyses. Data from cell lines in vitro were

compared with the Student’s t tests, and p < 0.05 was set as the

significance threshold.
Results

FAM-related genes are highly expressed
in chemoresistant LSCs

AML patient-derived xenografted mice were treated with or

without chemotherapy, and leukemia cells were collected and

proceeded for scRNA-Seq (Figure 1A). We used these scRNASeq

data deposited in the GEO website for t-SNE dimensionality

reduction analysis and revealed 14 clusters based on their gene

profile (Figure 1B). We next used the pseudotime ordering analysis

to construct the cell lineage differentiation trajectory. Compared

with other clusters, cluster 1 is located at the root of the trajectory

(Figures 1C–E and Supplementary Figure 1A), and the cell number

of cluster 1 is increased after chemotherapy (Figure 1F), suggesting

that cluster 1 is the leukemic stem cell (LSC)-enriched population.

We further checked whether LSC markers were enriched in cluster

1 before and after chemotherapy. We chose LILRB2 (14), VNN2

(15), and KLF4 (16) as LSC markers since they exhibited higher
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expression levels in AML patients compared with normal

volunteers in TCGA database and the Genotype-Tissue

Expression (GTEx) project (Figure 1G). The number of LILRB2-

high, VNN2-high and KLF-high cells in cluster 1 are 85, 73, and 234

respectively before chemotherapy and increased to 240, 227, and

480 after chemotherapy (Figures 1H–J). These results confirm that

cluster 1 is the LSC population related to AML relapse.

Subsequently, we chose the upregulated genes in cluster 1 to

perform GO analysis and revealed that fatty acid metabolism

(FAM) is highly enriched (Figure 1K). In summary, by analyzing

the scRNA-Seq data we identified that cluster 1 is the AML LSC

population and has upregulated FAM-related genes.
The FAM formula accurately predicts
AML patient prognosis

We established a prognostic prediction model termed the FAM

formula to elucidate the relationship betweenFAMandAMLpatient

prognosis. The clinical features of our training cohorts (TC, GEO

database, N=553) and validation cohorts (VC, TCGA database,

N=140) are summarized in Tables S1, S2. First, we employed 201

FAM-related genes from the c2.all.v7.0.symbols (Table S3) to

perform the univariate Cox regression analysis with the TC

database and identified 27 genes with significant prognostic values

(Figure 2A).Next, these geneswere further analyzedwith the LASSO

Cox algorithm to construct a prognostic model (Figures 2B, C),

which reduced the significant gene number to 18 (highlighted in

Figure 2A). The risk score was calculated as follows: risk score =

ACADS levels*(-0.0385781574616528) + ALDH2 levels*

(0.115943870930126) + ACSL5 levels*(0.116279878492424) +

GCDH levels*(-0.023543074746657) + ACSL3 levels*

(0.0034823102467818) + SCD levels*(0.278308214066157) +

HSD17B12 levels*(0.125378923880509) + SLC27A3 levels*

(-0.247889819557295) + OLAH levels*0.329315900149358 +

ACOT13 levels*(-0.119336558434181) + CYP4B1 levels*

(-0.730901151964483) + ACOT8 levels*(-0.233925370148131) +

MLYCD levels*(-0.29877179590025) + PTGS2 levels*

(0.0130085245854858) + PLA2G4A levels*(0.177305593342932) +

CBR1 levels*(0.273311180808465) + SLC22A5 levels*

(0.00204092301483134) + LTC4S levels*(-0.00758524180721233).

We set the median value of the TC risk score calculated by

the FAM formula as the threshold to distinguish between high

risk (HR) and low risk (LR) cohorts. Data in Figures 2D, E

illustrates the risk score distribution and survival status of the

HR and LR cohorts in the TC and VC database. We Use the

Kaplan-Meier analysis to demonstrate that the HR cohort

experienced considerably worse overall survival (OS) than the

LR cohort (Figures 2F, G, p-value<0.001). We validate the FAM

formula by drawing ROC curve in which the area under ROC

curve (AUC) is positively related with the prognosis accuracy.

The AUC for the 1-year, 3-year, and 5-year survival rates in the

TC were 0.696, 0.783, and 0.782, respectively (Figure 2H). The
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AUC for the 1-year, 3-year, and 5-year survival rates in the VC

were 0.761, 0.795, and 0.810, respectively (Figure 2I). The AUC

values in both the TC and VC are greater than 0.65, indicating

that the FAM formula was highly effective in predicting AML

patient prognosis.
Integrating clinicopathological
characteristics into the FAM formula
optimizes its predictive ability of AML
patient prognosis

To optimize the predictive ability of the FAM formula, we

combined the FAM formula with other clinicopathological

characteristics to construct a prognostic nomogram. First, we

compared the relationship between the FAM formula and the

clinicopathological characteristics listed in Tables S1, S2, such as

runx1 fusion protein, runx1 mutation, FAB subtype, age, platelet

count, leukocyte count, blast cell count, and gender. As shown in

Figures 3A, B, AML patients with younger age andM3 FAB subtype

aremore likely to have a FAM-based low risk score. To compare the

sensitivity and specificity of the FAM formula with other

clinicopathological characteristics in the prognostic model, we

conducted ROC analysis and calculated the AUCs. The FAM

formula risk scores were the highest in both the TC and VC,

suggesting that FAM ismost accurate for predicting AML prognosis

(Figures 3C, D). We next used univariate and multivariate Cox

regression analyses to test the independence of these signatures

(Figures 3E, F). Based on our univariate analysis, the 18-gene FAM

formula was strongly correlated with AML patient prognosis. In

particular, in the TC database hazard ratio (HR) = 3.389, 95%

confidence interval (CI) = 2.733−4.202, P< 0.001,and in the VC

database HR = 3.117, 95% CI = 2.121−4.580. This 18-gene signature

was determined to be an independent stand-alone risk factor by

multivariate analysis for AML patient outcome in the TC: HR =

2.879, 95% CI = 2.291−3.617, P< 0.001, and the VC: HR = 3.142,

95% CI = 1.983−4.982. To optimize the clinical value and

application probability of the FAM formula in predicting AML

patient prognosis, we utilized the “rms” package of the R software to

combine the clinicopathological characteristics with the risk score to

generate a new signature named Combine. We generate a

nomogram to compare these signatures for estimating the 1-, 2-,

and 3-year prognosis of AML patients (Figure 3G). The consistency

index (C-index) and the calibration curve of the nomogram were

performed to evaluate the predictive efficiency and accuracy of the

nomogram. In the Combine group, the C-index = 0.74 and

represents the highest among all groups (Figure 3H), indicating

that it has the best predictive ability. The calibration curve showed

that the curves of 1-, 2-, and 3-year are very close to the diagonal

dotted line, confirming that the Combine signature has a high

predictive ability in the nomogram (Figure 3I). In summary, the

Combine signature that incorporates the FAM formula and

clinicopathological profiles of patients has excellent stability and
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FIGURE 1

Fatty acid metabolism (FAM)-related genes are highly enriched in chemoresistant leukemic stem cells (LSCs). (A) A flow chart depicting the
process of scRNA-Seq data acquisition. (B) Cluster the untreated (n=2 mice) and chemotherapy-treated leukemia cells (n=4 mice) with the
t-SNE dimensionality reduction analysis. (C–E) The pseudotime trajectory analysis of the cells in the chemotherapy group. (F) Cell quantification
of each cluster before and after chemotherapy. (G) Bar plot depicting expressions of KLF4, VNN2, and LILRB2 in AML patients and normal
people. The p-value was calculated by unpaired two-tailed Student t-tests, p < 0.05, p < 0.01, p < 0.001. (H–J) LSC markers (LILRB2, VNN2 and
KLF4) are enriched in the cells of cluster 1. The LILRB-, VNN2-, and KLF4-high cells are highlighted in red, and the n number depicts the red cell
number in cluster 1 before and after chemotherapy. (K) GO enrichment of the upregulated genes in cluster 1. Data are displayed as specific
values or mean ± SD.
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FIGURE 2

The fatty acid metabolism (FAM) formula accurately predicts AML patient prognosis. (A) The overall survival (OS) of 553AML patients in the GEO
database was analyzed by the univariate Cox regression with the 201 FAM-related genes and summarized in Forest plots. (B) The FAM-related
genes were analyzed by the least absolute shrinkage and selection operator (LASSO) regression model based on the minimal criteria. (C) The
FAM-related gene in the LASSO regression analysis was calculated for coefficient. (D, E) The metabolic risk score distribution (D) and the survival
outcome (SO) analysis I of the training cohorts (TC) and validation cohorts (VC). (F, G) The Kaplan-Meier survival curves of the HR and LR
patients in the TC and VC. (H, I) The time-dependent ROC analyses of the FAM prognostic model to estimate the 1-, 3-, and 5-year OS of TC
and VC patients.
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FIGURE 3

Combining the clinicopathological characteristics with the FAM formula optimizes the predictive capacity of the nomogram. (A, B) A strap plot
summarized various clinicopathological features and FAM-related risk score, and the correlation between clinical features and the FAM risk
score was analyzed by chisq.test. *p < 0.05,**p < 0.01, ***p < 0.001. (C, D) Evaluation of the prognostic prediction accuracy via the area under
the time-dependent receiver operating characteristic (ROC) curve (AUC). (E, F) Stand-alone prognostic ability of the FAM formula or clinical
features in the TC and VC. (G) Nomogram plot, based on the risk score and other clinicopathological patient profiles in the VC. (H) The
consistency index (C-index) of the nomogram. (I) The calibration curve of the nomogram.
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accuracy in predicting AML prognosis, suggesting that it has the

potential for application in clinics.
The FAM formula predicts alterations in
the tumor microenvironment (TME)

To determine the underlying mechanism behind the

opposite prognoses in the HR and LR cohorts, we performed

the functional enrichment (FE) analysis. We first compared the

HR and LR cohorts to identify the differentially expressed genes

(DEGs) with the p-value cut off < 0.05. We then conducted Gene

Ontology (GO), Kyoto Encyclopedia of Genes and Genomes

(KEGG), and Gene Set Enrichment Assay (GSEA) to establish

underlying enriched processes. Based on our GO analysis, DEGs

between LR and HR patients in the TC and VC databases were

primarily enriched in immune-related processes (Figure 4A;

Supplementary Figure 2). In addition, KEGG analysis revealed

that immune-regulatory pathways, including IL-17 signaling

and NF-kB signaling, were highly enriched in the HR cohort

(Figure 4B). And GSEA analysis revealed that the immune-

related biological processes were highly enriched in the HR

cohort (Figures 4C–F; Supplementary Figures 2C–F). As tumor

microenvironment (TME) plays an important role in the

development, proliferation, and survival of leukemia blasts

(17), we next analyzed TME of AML patients. Based on the

signaling patterns of the HR and LR patients, the XCELL

algorithms (18) can delineate various immune cell populations

located in the TME. As shown in Figure 4G and Supplementary

Figure 2G, both the VC and TC demonstrated alteration in

immune cell composition, with an evident NKT cell decrease in

the HR cohort. Collectively, TME is altered in HR cohorts, which

may be a critical factor in determining AML patient prognosis

and providing a chance to foster novel AML treatment strategies.
PLA2G4A inhibition enhances the killing
efficiency of NK cells against LSCs

Based on the aforementioned FE analysis, we speculated that

alteration in the immune microenvironment might be a critical

factor in determining AML prognosis. To assess whether FAM

regulates AML immune microenvironment, we performed

overall survival (OS) analysis with the single gene of the FAM

formula and found that 7 out of 18 genes have significant

predictive value on AML patient prognosis with a p-value cut-

off <0.05 in VC (TCGA database). Among them, enrichment of

PLA2G4A most strongly represented the poor prognosis

(Figures 5A, B, S3). Then, we compared the expression of

eighteen FAM formula genes between AML patients and

normal individuals. PLA2G4A, a member of the cytosolic

phospholipase that catalyzes the hydrolysis of membrane

phospholipids to release arachidonic acid, increased by 7.21
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fold, representing one of the most upregulated genes in AML

patients with poor prognosis (Figures 2A, 5A). These results

indicate that PLA2G4A may be a crucial FAM enzyme involved

in AML progress. Thus, we treated leukemia cell lines THP1,

U937, and HL60 with PLA2G4A inhibitor AACOCF3, an analog

of arachidonic acid that inhibits the PLA2G4A phospholipase

activity by competing for the active catalytic site. AACOCF3 is

the trifluoromethyl ketone derivative of arachidonic acid. This

compound is a selective inhibitor of soluble PLA2 and Ca2+

independent PLA2 in human cells. (19, 20). The IC50 values of

THP1, U937, and HL60 are 31.58mM, 42.38mM, and 36.72mM,

respectively, indicating that AACOCF3 had a low cytotoxic effect

on leukemia cells at low dosages but induced cell death at high

dosages (Figures 5C–E). In parallel, Annexin-V+ apoptotic cell

number was highly increased in THP1, U937, and HL60 cells

when exposed to the high concentration of AACOCF3 (25mM)

(Figures 5F–H), suggesting that high dose AACOCF3 directly

induced leukemia cells death. As we identified an evident

decrease of NKT cells in the high-risk TME, we examined the

effect of PLA2G4A inhibition on NK-mediated cytotoxicity

against leukemia cells. We labeled THP1, U937, and HL60

cells with CFSE and treated them with low dose AACOCF3

(5mM), in which leukemia cells should still be viable according to

the survival curve in Figures 5C–E. We then co-cultured

AACOCF3 pretreated leukemia cells with NK cell line NK92

before conducting FACS and quantitative PCR analyses

(Figure 5I). AACOCF3 treatment significantly enhanced the

cytotoxicity of NK92 against leukemia cells (Figures 5J–L).

The NK group 2D (NKG2D) is a cell surface receptor to

activate the NK-mediated cytotoxic effect when binding to

NKG2D ligands such as MICA, MICB, and ULBP family

members. We examined the expression of NKG2D ligands in

leukemia cell lines treated with low concentration AACOCF3

(5mM) and found that expression levels of the MICA, MICB, and

ULBP family were all significantly elevated (Figures 5M–O).

Overall, our results revealed that inhibiting phospholipase

PLA2G4A enhances NK-mediated immunosurveillance toward

leukemia cells.
Discussion

Our findings demonstrated that the leukemic stem cell (LSC)-

enriched population exhibited elevated levels of FAM genes. Using

these FAM genes, we constructed a prognostic model that

accurately evaluates AML patient prognosis. We also observed

that FAM correlates with immunosurveillance alteration in AML

patients. Pharmaceutically inhibiting the FAM enzyme PLA2G4A

increased expressions of NKG2D ligands in leukemia cells, thus

enhancing NK cell-mediated cytotoxicity against leukemia cells.

Although studies on metabolic reprogramming during AML

progression are gradually increasing (21), the effect of metabolic

drugs on life expectancy is generally limited. Fatty acid metabolism
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(FAM) is a well-recognized hallmark of AML prognosis (22), but

the relationship and the underlying molecular mechanisms

between FAM-related genes and AML prognosis are not

elucidated. Herein, we analyzed the scRNA-Seq data of patient-

derived xenografted AML cells and identified that the LSC-
Frontiers in Oncology 09
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enriched population has elevated expression of FAM-related

genes. Based on the hypothesis that FAM is required for AML

progression, we constructed a prognostic model named the FAM

formula composed of eighteen FAM-related genes to predict AML

patient prognosis. We have performed the univariate cox
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A

FIGURE 4

The FAM formula identifies alterations in the immune microenvironment of AML patients in the TC database. (A) GO analysis of the low risk (LR) and
high risk (HR) cohorts in the TC. (B) KEGG network analysis of the LR and HR cohorts in the TC. (C–F) GSEA analysis of LR and HR cohorts in the TC.
(G) Analyze the immune cell populations of the LR and HR patients using the XCELL algorithm in the TC. *p < 0.05,**p < 0.01, ***p < 0.001.
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FIGURE 5

PLA2G4A inhibition enhances NK cell-mediated cytotoxicity against AML cells. (A) Kaplan-Meier analysis of patients in the VC based on
PLA2G4A expression. (B) The Barplot illustrates the expression levels of individual FAM formula genes between leukemia and normal groups
from the TCGA database. (C–E) Three leukemia cell lines (THP1, U937 and HL60) were treated with increasing dosages of PLA2G4A inhibitor
AACOCF3 for recording the cell viability (n=3 independent experiments). (F–H) Apoptotic analysis of THP1, U937 or HL60 cells (n=5
independent experiments). (I) A flow chart depicting leukemia cell lines co-cultured with NK92 cells, followed by FACS analysis. (J–L) THP1,
U937, or HL60 cells was treated with or without AACOCF3 before co-culturing with NK92 cells, and leukemic cell cytotoxicity was calculated
(n=3 independent experiments). (M–O) Realtime PCR results show the expression of NKG2DL genes in leukemia cell lines treated with the
PLA2G4A inhibitor AACOCF3 (n=3 independent experiments). All experiments were analyzed using unpaired two-tailed Student’s t-tests.
*P<0.05, **P<0.01, ***P<0.001. ns, no significance.
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regression analysis and found that some FAM genes like ACADS,

GCDH, SLC27A3, ACOT13, LTC4S were considered the

protective factor with favorable prognosis. In contrast, other

FAM genes like ALDH2, ASCL5, ASCL3, SCD, HSD17B12,

OLAH, CYP4B1, ACOT8, MLYCD, PTGS2, PLA2G4A, CBR1

and SLC22A5 were considered as risk genes with poor prognosis.

Among these genes, high expressions of ALDH2, SCD, and

PLA2G4A were experimentally confirmed as the risk genes with

poor prognosis in vitro or in vivo (20). ALDH2, the aldehyde

dehydrogenase in the mitochondria of leukemia cells that

suppresses formaldehyde accumulation, was closely related to

AML relapse (23). SCD is the enzyme that converts saturated

fatty acids to monounsaturated fatty acids (24). Inhibiting the

activity of SCD induces leukemia cell apoptosis and may be a novel

way to eradicate leukemia stem cells. Interestingly, PLA2G4A is a

biomarker predicting the poor prognosis of AML patients (20),

which is in line with our findings (Figure 5A). Furthermore, we

compared the clinicopathological characteristics with FAM-

predicted risk factors and found that the poor prognosis factors,

such as runx1 mutation and old age, are highly enriched in the

high-risk (HR) cohort (Figures 3A, B), confirming that FAM

indeed plays a role in AML progression. We further integrated

the FAM formula with clinical characteristics to construct the

Combine formula that more accurately predicts AML prognosis

and might have the potential for clinical application in the future.

More importantly, our mechanistic study identified that FAM in

LSCs influences AML progression by suppressing the immune

microenvironment. LSCs require an immunosuppressive

microenvironment for survival during chemotherapy and disease

re-establishment (25). Stromal cells like MSCs secrete TGFb to

reduce NKG2D expression and inactivate NK cells and other T cell

subpopulations (26). Moreover, LSCs themselves downregulate

NKG2D ligand expressions to escape NK-mediated

immunosurveillance (27, 28). Our results in Figure 4B and

Supplementary Figure 2G indicate that the HR AML patients

identified by the FAM formula exhibited markedly reduced NKT

cells and other immune cell populations in both the training cohort

(TC) and validation cohort (VC). These results suggest that immune

microenvironment alteration correlates with AML patient prognosis.

More importantly, we found that FAM suppression by

pharmaceutically targeting PLA2G4A enhanced NK cell

immunosurveillance towards AML cells in vitro. Mechanistically,

PLA2G4A inhibition upregulated NKG2D ligand expressions for

boosting NK-mediated anti-leukemic cytotoxicity. Taken together,

our study revealed that FAM suppression might be a novel strategy

for optimizing AML treatment by enhancing immune surveillance.
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SUPPLEMENTARY FIGURE 1

Pseudotime trajectory analysis of the cells in the chemotherapy group. The

pseudotime trajectory analysis of each cluster in the chemotherapy group.
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SUPPLEMENTARY FIGURE 2

The FAM formula identifies alterations in the immunemicroenvironment of AML
patients in VC database. (A) GO analysis of the low risk (LR) and high risk (HR)

cohorts in theVC. (B)KEGGnetwork analysis of theLRandHRcohorts in theVC.
(C–F)GSEAanalysis of LR andHRcohorts in theVC. (G)Analyze the immunecell

populations of the LR and HR patients in the VC using the XCELL algorithm.

SUPPLEMENTARY FIGURE 3

Kaplan-Meier analysis of AML patients based on the expression level of

individual FAM-related genes. Kaplan-Meier analysis of AML patients in the

VC based on the expression levels of SCD, SLC22A5, ACADS, MLYCD,
ACSL3, and CBR1. Significance: *P<0.05, **P<0.01, ***P<0.001.
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Establishment of a risk model
correlated with metabolism
based on RNA-binding proteins
associated with cell pyroptosis
in acute myeloid leukemia

Ting Bin1†, Chao Lin2†, Fang-Jie Liu1, Ying Wang1,
Xiao-Jun Xu1, Dong-Jun Lin1, Jing Tang1* and Bo Lu1*

1Department of Haematology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China,
2Department of Pediatrics, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
Background: RNA-binding protein (RBP) regulates acute myeloid leukemia

(AML) by participating in mRNA editing and modification. Pyroptosis also plays

an immunomodulatory function in AML. Therefore, this study aimed to identify

pyroptosis-related RBP genes that could predict the prognosis of AML patients.

Methods: AML related expression data were downloaded from the UCSC

website and Gene Expression Omnibus (GEO) database. Pyroptosis-RPB-

related differentially expressed genes (PRBP-DEGs) were conducted with a

protein-protein interactions (PPI) network to screen out the key PRBP-DEGs,

based on which a risk model was constructed by Cox analysis, and evaluated by

plotting Receiver operating characteristic (ROC) curves and survival curves.

Independent prognostic analysis was performed and a nomogram was

constructed. Finally, enrichment analysis was performed for high and low

risk groups.

Reuslts: A total of 71 PRBP-DEGs were obtained and a pyroptosis-RPB-related

risk model was constructed based on IFIT5, MRPL14, MRPL21, MRPL39, MVP,

and PUSL1 acquired from Cox analysis. RiskScore, age, and cytogenetics risk

category were identified as independent prognostic factors, and the

nomogram based on these independent prognostic factors could accurately

predict 1-, 3- and 5-year survival of AML patients. Gene set enrichment analysis

(GSEA) showed that the high-risk and low-risk groups were mainly enriched in

metabolic- and immune-related processes and pathways.
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Conclusion: In this study, a risk score model correlated with metabolism based

on RNA-binding proteins associated with cell pyroptosis in acute myeloid

leukemia was established, which provided a theoretical basis and reference

value for therapeutic studies and prognosis of AML.
KEYWORDS

acute myeloid leukemia, pyroptosis, prognostic model, RNA-binding protein, metabolism
Introduction

Acute myeloid leukemia (AML) is a clonal malignant

proliferative disease of myeloid primitive cells in the

hematopoietic system, and it is highly heterogeneous. AML can

be transformed into malignant changes of hematopoietic

progenitors at different stages of normal myeloid cells (1).

Currently, the treatment of AML mainly includes chemotherapy,

biologics, and hematopoietic stem cell transplantation (HSCT) (2),

but about 70% of patients who achieve remission will eventually

relapse or evolve into refractory leukemia, leading to treatment

failure and death (3). The prognosis and survival rate of AML

prognosis are unsatisfactory, and it has been reported the 5-year

overall survival (OS) ratein young AML patients is less than 50%,

and the 2-year OS rate in older patients after diagnosis is only

20% (4).

Pyroptosis, also known as cell inflammatory necrosis, is a

programmed cell death (5), It is mainly manifested as the cell

membrane rupture, leading to the release of cell contents and

then activation of strong inflammatory response (6). Pyroptosis

plays an important role in the fight against infection, and it is

widely involved in the development of infectious diseases and

nervous system-related diseases (7). Moreover, Johnson et al.

found that small-molecule inhibitors of the serine dipeptidases

DPP8 and DPP9 (DPP8/9) induced-pyroptosis in mouse and

human monocytes and macrophages for treatment of AML, it

also shown that there is a strong correlation between pyroptosis

and antileukemic therapy (8).

RNA-binding proteins (RBPs) are a general term for a group of

proteins that perform their functions by specifically binding to

RNA. To date, the human genome-wide screen has identified 1,542

RBP genes, accounting for 7.5% of all egg and white matter-

encoding genes (9). RBP plays a crucial role in processes such as

RNA maturation, transport, localization and translation, and it is

also vital in gene expression and maintenance of genomic integrity

(10, 11). Currently, Kharas et al. found that RBPs of the musashi-2

regulates normal hematopoiesis and promotes aggressive myeloid

leukemia, it may be as a new prognostic marker and target for

therapy in AML. However, there are still few reports on the

relationship between pyroptosis and RBPs (12).
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Cell pyroptosis is closely related to RBPs. Mast cells can

identify the nucleic acid fragments (DNA or RNA), bacterial cell

wall components (LPS), and flagella of these pathogenic

microorganisms, thus stimulating immune measures, which

can lead to the pathogen elimination by immune cells (13).

However, there was no report on the RBPs associated with cell

pyroptosis in patients with AML in public database. In this

study, the RBP genes related to cell pyroptosis in AML patients

were studied by bioinformatics analysis methods, and they were

constructed and verified by the prognostic feature model,

providing new ideas for clinical treatment.
Materials and methods

Data source

Gene expression data, survival information, and clinical

information of AML patients were obtained from the UCSC

Xena website (http://xena.ucsc.edu/), which has 173 AML

samples and 70 normal samples, of which 161 AML samples

have survival information and clinical information. The

GSE37642 dataset was downloaded from the Gene Expression

Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/), which

comprises 136 AML samples with survival information. In addition,

33 pyroptosis-related genes (14) and 1542 RBP-related genes

(RBPGs) (9) were available in the published literature.
Identification and enrichment analysis of
pyroptosis-RPB-related differentially
expressed genes (PRBP-DEGs)

Differential analysis was performed on 173 AML samples

and 70 normal samples in the UCSC Xena dataset using the

“limma” package (15), and the threshold for DEGs was set at

adj.p< 0.05 and |log2fold change (FC)| > 2. Then, Pearson’s

correlation between pyroptosis-related genes and RBP genes was

calculated. The Benjamini & Hochberg method was used for

multiple test correction, and the RBP genes related to pyroptosis
frontiersin.org
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were screened according to |r| > 0.9 and q value< 0.05, and they

were intersected with the above DEGs to obtain the PRBP DEGs

related to pyroptosis. Finally, the Gene ontology (GO) system

and Kyoto Encyclopedia of Genes and Genomes (KEGG)

pathway enrichment analysis were performed for the PRBP

DEGs using the “cluterProfiler” R package with a significance

threshold of p< 0.05 (16).
Construction of a protein-protein
interactions (PPI) network

To investigate the interactions between PRBP DEGs, a PPI

network was constructed for PRBP DEGs using the STRING

website. The confidence was set to 0.4, and the protein

interaction pairs were obtained by removing discrete proteins,

and the protein network graph was constructed by

Cytoscape software.
Construction of the risk model

The 161 AML patients from the UCSC Xena datasetwere

used as the training set, and a univariate Cox regression

analysis was performed using the PRBP DEGs in the PPI

network. Then the multivariate Cox regression analysis was

performed based on the factors with p< 0.05 in the univariate

Cox analysis to obtain prognostic biomarkers. Risk values were

calculated for each patient using the formula: Riskscore

on
i=1coef � id. Subsequently, 161 AML patients in the

training set were divided into high and low risk groups based

on the median risk values, and risk curves were plotted for the

risk model. In addition, this study used the “pheatmap”

package to plot biomarker expression heat maps in high and

low risk groups. Finally, survival analysis was performed for

the high- and low-risk groups, and ROC curves were plotted

using the “survivalROC” package.
Independent prognostic analysis and
construction of a nomogram

To further investigate the prognosis of clinicopathological

characteristics with the risk model, clinicopathological factors

(RiskScore, cytogenetics risk category, age, platelet result count,

gender, race, prior malignancy diagnoses, and prior treatment

diagnoses) were included in univariate and multivariate Cox

analyses to explore the independent prognosis of the risk model

and clinicopathological factors. Then, the “RMS” R package was

used to construct a nomogram for the risk model and other

clinical factors at 1, 3, and 5 years (17). Finally, the validity of the

nomogram was verified by plotting the calibration curve of the

nomogram with the “survival” package.
Frontiers in Oncology 03
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Functional enrichment analysis

The KEGG Pathway and GO biological process gene sets were

used as enrichment backgrounds, and the high and low risk groups

were used as phenotype files. Enrichment analysis was performed

based on the different multiples of High-risk and Low-risk to obtain

the up- and down-regulated pathways or functions involved in

genes that differed between high- and low- risk groups, and the

significant enrichment threshold was set at NOM P< 0.05. The top

10 enrichment results for each phenotype of GO biological process

and KEGG pathway were selected and presented according to the

ranking of NOM P values. In addition, the “limma” package was

used to identify DEGs between high- and low-risk groups (15). The

threshold of DEGs was set as adj. p< 0.05 and |log2fold change (FC)|

> 1. Then, DAVID was used to analyze the GO and KEGG

pathways in which the DEGs were involved. p< 0.05 and count >

2 were considered as significant enrichment results.
Results

71 PRBP-DEGs were enriched to 107 GO
and 8 KEGG pathway

There were 18045 DEGs between AML and normal samples,

with 12613 up-regulated genes and 5432 down-regulated genes

(Figures 1A, B). Pearson correlation analysis showed that 124

pyroptosis genes were associated with RBP genes. The DEGs

were crossed with RBP genes associated with pyroptosis-RPB to

obtain 71 PRBP-DEGs (Figure 1C), and they were enriched to 74

GO biological processes (GO BPs), 16 GO cell components (GO

CCs), 17 GO molecular fFunctions (GO MFs), and 8 KEGG

pathway, including cellular protein complex disassembly, RNA

catabolic process, RNA transport, RNA destabilization, negative

regulation of protein acetylation, ribonucleoprotein complex

assembly, protein export from nucleus, and other protein-

related pathways (Figure 1D; Supplementary Tables 1-4).
Construction of a PPI network

The PPI network included 58 nodes with 145 protein

interaction pairs. The connectivity degree of MRPL40,

MRPS24, MRPL21, SNRPD2, and SNRPG was high. In

addition, MBNL3 was associated with ZC3H12D, ZC3HAV1L,

and CELF2. MRPS12 interacts with DDX60, MRPL14, MRPL21,

and MRPL39, etc. (Figure 2).
Construction of the risk model

23 PRBP-DEGs with prognostic merit were identified by

univariate Cox analysis (Table 1; Figure 3A). 6 biomarkers
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(IFIT5, MRPL14, MRPL21, MRPL39, MVP, and PUSL1) were

further detected by enrolling the 23 PRBP-DEGs in multivariate

Cox analysis (Tables 1, 2; Figures 3A, B). Among them, MRPL14

was a protective factor (HR< 1) and the rest of the genes were

risk factors (HR > 1). The risk score of each sample was

calculated as follows: Risk score = 0.287637545 × IFIT5 +

(-0.40877001) × MRPL14 + 0.623197758 × MRPL21+

0.697194958× MRPL39 + 0.39822836 × MVP + 0.545513896 ×

PUSL1, and 161 AML patients in the training set were divided

into high and low risk groups by the median risk score (1.037),

including 80 samples in the high-risk group and 81 samples in

the low-risk group. Subsequently, we conducted principal

component analysis (PCA) and t-distributed Stochastic

Neighbor Embedding (tSNE) analysis on two subgroups, the

results showed that the distribution of patients between high and

low risk groups had clear pattern (Supplementary Figure 1). The

risk curve was shown in Figure 3C. The expression of
Frontiers in Oncology 04
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biomarkers in the high- and low-risk groups indicated that

IFIT5, MRPL14, MRPL21, MRPL39, MVP, and PUSL1 were

more expressed in the high-risk group (Figure 3D).

The survival rate of patients in the high-risk group was lower

(Figure 3E). The area under the curve (AUC) values for 1, 3, and

5 years were 0.804, 0.734, and 0.741 in the ROC curves,

respectively, indicating that the constructed risk model could

be effectively used as a prognostic model (Figure 3F). In addition,

the GSE37642 validation set verified the applicability of the risk

model. (Figures 4A-D)
Independent prognostic analysis and
construction of a nomogram

The results of univariate Cox analysis indicated that

RiskScore, age, and cytogenetics risk category were associated
B

C D

A

FIGURE 1

Identification of pyroptosis-RNA-binding protein (RBP)-related differentially expressed genes (PRBP-DEGs). (A) Volcano plot of PRBP-DEGs
between AML and normal samples, the red and blue dots indicate up-regulated and down-regulated genes with adj.p < 0.05 and |log2fold
change (FC)| > 2 setting as criteria. (B) Heatmap of PRBP-DEGs in AML and normal samples. (C) A Venn-gram of DEGs and pyroptosis-related
RPB genes. (D) Bar plot of Gene Ontology (GO) enrichment analysis and Genes and Genome (KEGG) pathway analysis, p < 0.05 were set as
criteria.
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FIGURE 2

Protein-protein interactions (PPI) network constructed with PRBP-DEGs by STRING.
TABLE 1 Univariate Cox analysis to construction of the risk model.

HR lower.95 upper.95 p.val

SARS 3.117488934 1.712043071 5.676689692 0.00020056

PUSL1 1.838609238 1.331883653 2.538122547 0.000213762

MVP 1.461761066 1.183495432 1.80545303 0.000425672

LSM4 2.01752522 1.364048755 2.984063433 0.000440509

MRPL21 2.057589787 1.297256312 3.263561479 0.00217121

EIF3I 2.229857828 1.307191919 3.803776524 0.003249682

IFIT5 1.349731374 1.105013713 1.648644501 0.003299985

MRPS12 1.681045975 1.1839943 2.386764505 0.003680263

MRPS16 2.357846249 1.318203912 4.217434709 0.003838036

PARK7 2.166217062 1.280276367 3.665221416 0.003966997

POLR2L 1.569319071 1.134044602 2.171662686 0.006549722

SRSF12 0.793474996 0.666845724 0.944150267 0.009111989

MRPL14 1.646578327 1.123176021 2.413887171 0.010615133

MRPL40 1.990977661 1.163242997 3.407707638 0.012024053

OAS2 1.202730281 1.041115227 1.389433265 0.012168065

OAS1 1.17945007 1.034102183 1.345227282 0.013904728

MRPL39 1.623422988 1.102192997 2.391144024 0.014188686

RPUSD2 1.647408776 1.099687005 2.467934659 0.015487769

PPIH 1.808519442 1.095300701 2.98615948 0.020572574

ZC3HAV1L 0.806026539 0.65992094 0.984479719 0.034578933

SLIRP 1.555633176 1.018761732 2.375427446 0.040753344

MRPL2 1.501582438 1.016008862 2.219222591 0.041385212

NOC2L 1.532380646 1.010057548 2.324808569 0.044747457
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B

C D

E F

A

FIGURE 3

Establishment of a risk model based on 6 biomarkers. (A) Univariate Cox analysis of PRBP-DEGs which were selected by PPI network. (B)
Multivariate Cox analysis to screen biomarkers. * represents p < 0.05, ** represents p < 0.01. (C) Distributions of risk scores and survival states
between high- and low-risk groups in the training set. (D) Heatmap of 6 biomarkers in high- and low-risk groups. (E) The Kaplan-Meier survival
curve for the high-and low-risk groups in the training set. (F) ROC curves at 1-, 3-, and 5 years in the training set.
TABLE 2 Multivariate Cox analysis to construction of the risk model.

coef HR HR.95L HR.95H p.val

MRPL39 0.697194958 2.008111962 1.293783268 3.116838618 0.001881772

MVP 0.39822836 1.489184061 1.144212347 1.938162242 0.003056813

IFIT5 0.287637545 1.333273965 1.054794808 1.685275138 0.01611802

PUSL1 0.545513896 1.725494879 1.081634196 2.752624305 0.022063051

MRPL21 0.623197758 1.864881958 0.999043984 3.481112718 0.050352116

MRPL14 -0.40877001 0.664467036 0.377842855 1.168518698 0.155827125
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with the overall survival of AML patients (p< 0.05), and the

multivariate Cox analysis showed that RiskScore, age, and

cytogenetics risk category were independent prognostic factors

(Figures 5A, B; Tables 3, 4). A nomogram using these three

independent prognostic factors can predict survival at 1 year, 3

years, and 5 years (Figure 5C). The slope of calibration curve at 1

year was close to 1, indicating that the constructed prediction

model can be used as a valid model (Figure 5D).
Functional enrichment analysis

Gene set enrichment analysis (GSEA) enrichment analysis

showed that the high-risk group was associated with immune

functions such as activation of the innate immune response and

innate immune response activating signal transduction, as well

as metabolism-related processes, such as mitochondrial

transport, ATP metabolic processes, regulation of cellular

amino acid metabolism process, and it was also involved in

antigen processing and presentation, apoptosis, and

metabolism-related processes, such as citrate cycle TCA cycle
Frontiers in Oncology 07
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and pentose phosphate pathway. The low risk group was mainly

enriched in the pathways of cellular glucuronidation, negative

regulation of execution phase of apoptosis, and regulation of

execution phase of apoptosis (Figures 6A-C). Moreover, there

were 997 DEGs between high and low risk groups (Figures 7A,

B), and they were enriched to 87 GO BPs, 28 GO CCs, 23 GO

MFs, and 11 KEGG pathways, mainly including immune

response, immune response-inhibiting cell surface receptor

signaling pathway, adaptive immune response, immune system

processes, positive regulation of T cell activation and other

immune-related pathways (Figure 7C). Thus, metabolic- and

immune-related processes and pathways were closely associated

with the risk model.
Discussion

Acute myeloid leukemia is one of the most common

malignant hematological and systemic diseases in adults,

which is mainly characterized by susceptibility to relapse, poor

prognosis, and low survival rate (1, 3, 4). Pyroptosis is a
B

C D

A

FIGURE 4

Validation of the risk model in GSE37642. (A) Distributions of risk scores and survival states between high- and low-risk groups in GSE37642. (B)
Heatmap of 6 biomarkers in high- and low-risk groups in GSE37642. (C) The Kaplan-Meier survival curve for the high-and low-risk groups in
GSE37642. (D) ROC curves at 1-, 3-, and 5 years in GSE37642.
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TABLE 3 Univariate Cox analysis in independent prognostic analysis.

HR lower.95 upper.95 p.val

RiskScore 1.833126262 1.562553294 2.150551859 0.000000000000103

cytogenetics_risk_category 0.574282951 0.420484124 0.78433617 0.000487834

age 1.041147542 1.025465494 1.05706941 0.000000191

platelet_result_count 0.999728697 0.996454031 1.003014125 0.871232716

gender 0.967616131 0.657072989 1.424926901 0.867601929

race 1.098041572 0.50600686 2.38276472 0.812957083

prior_malignancy.diagnoses 1.123048347 0.545488816 2.312123645 0.752783001

prior_treatment.diagnoses 1.517484175 0.983541135 2.34129325 0.059435784
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TABLE 4 Multivariate Cox analysis in independent prognostic analysis.

HR lower.95 upper.95 p.val

cytogenetics_risk_category 0.663518376 0.470082914 0.936551027 0.019661517

RiskScore 2.0013394 1.648433066 2.429798016 0.00000000000239

age 1.036902937 1.021671191 1.052361769 0.00000159
B

C D

A

FIGURE 5

dentification of independent prognostic factors. (A, B) Outcomes for the univariate and multivariate Cox regression analysis of clinical
parameters in AML patients (p< 0.05). (C) Nomogram of 1-, 3- and 5- year OS for AML patients. (D) Calibration plot of 1-, 3- and 5- year OS
associated nomogram.
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programmed death (5), and RBPs are essential modulators of

transcription. Kebin Huang et al. found that MicroRNA-519

enhances HL60 human acute myeloid leukemia cell line

proliferation and induces cell apoptosis by reducing the

expression level of RBPhuman antigen (18). Additionally, B

Mitton et al. reported that a small molecule inhibitor of CREB

(cAMP Response-Element Binding Protein), XX-650-23,

interaction mostly affects apoptotic, cell-cycle, and survival

pathways, which may represent a novel approach for AML

therapy (19). However, the relationship between pyroptosis-

related RBPgenes and AML remains unclear, so it is important

to predict the relationship between pyroptosis-related RBPgenes

and AML.

In this study, 71 PRBP DEGs were enriched to cellular

protein complex disassembly, RNA catabolic process, RNA
Frontiers in Oncology 09
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transport, RNA destabilization, negative regulation of protein

acetylation, ribonucleoprotein complex assembly, and protein

export from protein-related pathways such as nucleus. In a study

on the expression pattern and clinical value of key m6A RNA

modification regulators in abdominal aortic aneurysm, it found

that the modified genes were primarily enriched in RNA

catabolic process, RNA transport et al. (20). Nelsonet al.

demonstrated that a block to efficient splicing can occur at

multiple steps in the pathway of normal splicing complex

assembly, and plice site selection and ribonucleoprotein

complex assembly during in vitro pre-mRNA splicing (21).

However, the role of the above enriched pathways in AML has

not been reported. Stefan Gattenloehner et al. found that the

CD56 expression on AML cells correlates with an abnormal

expression pattern of runt-related transcription factor 1
B

C

A

FIGURE 6

Gene Set Enrichment Analysis (GSEA) for the high- and low-risk groups. (A, B) GO enrichment analysis. (C) KEGG pathway analysis.
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(RUNX1) isoforms and the potential for new therapy of CD56

(high) AML by suppression of the “overactive” RUNX1/CD56/

NF-kappa B signaling pathway(s) (22). Therefore, we guess that

certain pathways play an important role in the pathogenesis of

AML, and in the future work, we need to further focus our

attention on the significance of the enriched pathways such as

cellualr protein complex disassembly in AML.

We constructed a risk model of the RBP genes associated

with cell pyroptosis in patients with Acute Myeloid Leukaemia.

Yi Zhang et al. constructed a novel prognostic scoring model for

newly diagnosed FLT3-ITD-positive AML (23), but the model

has some limitations such as induction and consolidation

treatment regimens cannot be fully harmonized due to the

retrospective nature of the study. Yun Wang et al. built an

immune risk score to predict survival of patients with AML

receiving chemotherapy (24), however, they lacked data on some

important predictive covariates, such as mutation topography

and results of MRD testing in subjects achieving a complete

remission. Piyanuch Kongtim et al. constructed anovel disease
Frontiers in Oncology 10
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risk model for patients with AML receiving allogeneic

hematopoietic cell transplantation (25), while this is a

retrospective study conducted in a single institution, and the

limited number of patients in some subgroups may not detect

relevant differences between the groups. Compared with the

above models, the risk model we constructed started from the

direction of the RBP genes associated with cell pyroptosis.

Meanwhile, it had the advantage of fewer model genes.

In constructing this prognostic-related risk model, we

obtained a total of six biomarkers. IFIT5, MRPL14, MRPL21,

MRPL39, and PUSL1, and none of these genes have yet been

reported in AML. MVP encodes the major component of the

vault complex. The encoded protein may play a role in multiple

cellular processes by regulating the MAP kinase, JAK/STAT and

phosphoinositide 3-kinase/Akt signaling pathways. The encoded

protein also plays a role in multidrug resistance, and expression

of this gene is a prognostic marker for several types of cancer.

However, H J Broxterman et al. found that it is shown that Pgp

function, but not Mvp/LRP or MRP1 expression correlate with a
B

C D

A

FIGURE 7

Identification of differentially expressed genes (DEGs) between high- and low-risk groups. (A, B) Volcano plot and heatmap of DEGs filtered with
adj.p.< 0.05 and |log2fold change (FC)| > 1. (C, D) Bubble diagrams of GO enrichment analysis and KEGG pathway analysis (p< 0.05).
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low steady-state DNR accumulation in de novo AML. The Pgp

activity does, however, not predict the DNR sensitivity in AML

measured as in vitro DNR LC50 with an MTT-based assay. The

reason for that seems to be that a low DNR accumulation may

not be the most important factor in determining the LC50 (26).

Therefore, the drug resistance effect of MVP in AML still needs

further investigation.

In this study, we performed pathway enrichment analysis

between high and low risk groups using GSEA software, and

finally analyzed differentially expressed genes between high

and low risk groups using the R package limma, and performed

functional enrichment analysis of differential genes using the

enrichment tool DAVID. Our findings found that the high-

and low-risk groups were associated with several immune-

related and metabolic-related biological processes and

pathways. The high-risk group was associated with activation

of the innate immune response and innate immune response

activating signal transduction. Curran et al.’ laboratory has

recently characterized the host innate immune system

generates a T cell tolerant state in an animal AML model

(27). Antigen-specific T cell tolerance is a potent immune

evasion mechanism in hosts with AML that can be reversed

in vivo after CD40 engagement (28). These results indicate that

immune tolerance to AML may be initiated at the level of the

innate immune system (27, 28). Long Zhang et al. discovers

antigen-specific T cell tolerance is a potent immune evasion

mechanism that can be reversed in vivo after CD40

engagement via a murine AML model (28). Our findings are

consistent with those of the above investigators. Marko Skrtic

et al. found that inhibition of mitochondrial translation as a

therapeutic strategy for human AML (29). Marvin M van Luijn

et al. found that the myeloid leukemic blasts with expressing

HLA class II molecules, abnormalities in the processing

pathways of endogenous antigens could also result in

impaired HLA class II-restricted tumor-associated antigen

presentation to CD4(+) T helper cells (30). Hideaki Mizuno

et al. revealed that suppression of Fbp1, as well as pentose

phosphate pathway enzymes by shRNA-mediated knockdown

selectively decreased Evi1-driven leukemogenesis in vitro,

Considering Evi1 upregulates Fbp1, and supports progression

of AML through pentose phosphate pathway activation. Our

findings also found that the high-risk group was associated

with mitochondrial transport, antigen processing and

presentatio and pentose phosphate pathway. Overall, the

functional enrichment results for high- and low-risk groups

suggested the linkages between RBPs associated with cell

pyroptosis and metabolism in AML.

Some limitations of this study also exist, (a) Some functional

experiments were needed to further illustrate the underlying

molecular mechanisms to predict the role of the cellular

pyroptosis-related differential RBP genes in AML; (b) The

prognostic model should be validated by more datasets and
Frontiers in Oncology 11
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clinical samples; (c) This study only used bioinformatics

methods to conduct multiple analyses based on retrospective

data from the public databases, confirmatory experiments in vivo

and in vitro will be required subsequently. Therefore, we will

continuously focus on the role of these genes.

In conclusion, through the above analysis, the differential

RBP genes related to pyroptosis in AML were screened, and

through the regression analysis of these genes, six biomarkers

were obtained, and a risk model associated with metabolism was

constructed, which provided a theoretical basis and reference

value for the future treatment research and prognosis of AML.
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The PCA and tSNE analyses of patients from high and low risk groups.
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Education, Sun Yat-sen University, Shenzhen, Guangdong, China
Incidence rates of chronic myeloid leukemia (CML) and Philadelphia

chromosome-positive (Ph+) acute lymphoblastic leukemia (ALL) are lower

but more aggressive in children than in adults due to different biological and

host factors. After the clinical application of tyrosine kinase inhibitor (TKI)

blocking BCR/ABL kinase activity, the prognosis of children with CML and Ph

+ ALL has improved dramatically. Yet, off-target effects and drug tolerance will

occur during the TKI treatments, contributing to treatment failure. In addition,

compared to adults, children may need a longer course of TKIs therapy,

causing detrimental effects on growth and development. In recent years,

accumulating evidence indicates that drug resistance and side effects during

TKI treatment may result from the cellular metabolism alterations. In this

review, we provide a detailed summary of the current knowledge on

alterations in metabolic pathways including glucose metabolism, lipid

metabolism, amino acid metabolism, and other metabolic processes. In

order to obtain better TKI treatment outcomes and avoid side effects, it is

essential to understand how the TKIs affect cellular metabolism. Hence, we also

discuss the relevance of cellular metabolism in TKIs therapy to provide ideas for

better use of TKIs in clinical practice.
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cellular metabolisms, TKI therapy, Philadelphia chromosome-positive,
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Introduction

Protein kinases (PKs), a class of enzymes, are able to transfer

phosphate groups from ATP to the hydroxyl side chain of

certain amino acid residues (1). PKs can be classified into

tyrosine kinases (TKs) and serine/threonine kinases (STKs)

based on the origin of the phosphorylated hydroxyl groups

(2). TKs are essential cellular signaling enzymes regulating

signal transduction pathways for metabolism, transcription,

differentiation, proliferation, development, migration and

apoptosis (3). TKs may be divided into two major classes:

transmembrane receptors linked receptor tyrosine kinases

(RTKs), like the PDGF receptors, and non-receptor tyrosine

kinases (NRTKs), like c-SRC and BCR-ABL (4). Oncogenic

mutations or overexpression of TK are a hallmark of cell cycle

dysregulation often related to tumorigenesis (5) in hematological

malignancies (6, 7), breast cancer (8), and non-small-cell lung

cancer (9). Hence, TK inhibition (TKI) is regarded as a targeted

treatment for cancer as it can selectively inhibit TK proteins and

halt the proliferation and growth of tumor cells (3). At present, a

variety of structurally different TKIs acting at singular or

multiple targets like BCR-ABL, EGFR, VEGFR, PDGFR, KIT,

and ALK, have been developed with minimal toxicities and good

pharmacokinetics (10, 11).

A myeloproliferative tumor known as chronic myelogenous

leukemia (CML) is characterized by unchecked proliferation of

bone marrow myeloid progenitor cells resulted from the

translocation of t (9:22) producing the hallmark BCR-ABL1, a

constitutively active tyrosine kinase (12). Pediatric CML

accounts for about 9% of leukemia in teenagers between the

ages of 15 and 19 and around 2% of leukemia in children under

the age of 15 (13, 14). However, previous studies showed that

owing to the underlying biology and host characteristics, clinical

presentations in children are often more aggressive than those in

adults (14, 15). Similar to adult, the natural history of pediatric

CML also progresses through three phases (16). The first and

most prevalent stage is the chronic phase (CP), which is

characterized by the absence of any subjective symptoms 3–5

years after diagnosis. The second stage is the accelerated phase

(AP), during which aberrant granulocyte differentiation

increases. The last stage is known as the blast crisis (BC),

which is characterized by an expansion of undifferentiated

blasts. Fortunately, TKIs can be used to treat patients in the

CP effectively, leading to improved survival (17); however, the

majority of AP and BC patients show no response to TKIs (18)

because their growth is no longer influenced by BCR-ABL.

Before the introduction of TKIs, pediatric CML was mainly

treated with hematopoietic stem-cell transplantation (HSCT)

and had an overall survival (OS) of about 64% at a median

follow-up period of 6 years (19). In May 2001, the US Food and

Drug Administration (FDA) approved Imatinib (IM, a small

molecule TKI) for adult CML (20) and this strategy was
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successful in improving disease prognosis. In 2003, the US

FDA authorized IM for pediatric (under 18 years of age) CML

based on its effectiveness in adults (21). Since then, the OS of all

children with CML treated with TKIs has improved to about

90% at the median 3-year follow-up period (19).

Philadelphia chromosome-positive acute lymphoblastic

leukemia (Ph+ ALL) which is characterized by the t(9;22)(q34;

q11) translocation and BCR-ABL1 fusion gene accounts for 3% to

5% of children with ALL (22, 23). Children with Ph+ ALL also

have a more aggressive clinical presentation because of the

secondary cytogenetic abnormalities and cooperative mutations

such as IKZF1 deletions (22, 24). Ph + ALL is an adverse subtype

of ALL with poor prognosis. Historically, less than half of children

with Ph+ ALL survived when treated with chemotherapy with or

without HSCT (25–27), while survival for children with ALL

exceeds 90% in the same period (28). Fortunately, due to the

success of TKI treatment in CML, TKIs was introduced for Ph+

ALL treatment, leading to an improved OS and event-free survival

(EFS) rates in pediatric Ph+ ALL when combined with intensive

chemotherapy (29, 30).

Despite the recent advancement of TKI therapies, drug

resistance remains a problem in clinical anticancer treatment.

In recent years, mechanisms of acquired resistance have been

identified. TKI resistance in the treatment of CML can result

from both BCR-ABL dependent and independent pathways (31).

The majority of the BCR-ABL-dependent resistance (32–36) is

mediated by the T315I “gatekeeper” mutation, BCR-ABL

overexpression, MDR1 upregulation, and ABL kinase domain

mutation, respectively. Currently, it is not so clear about BCR-

ABL-independent resistance. Recent findings indicate that such

TKI resistance may be influenced by the insensitivity of leukemia

stem cells (LSCs) (37) and abnormal activation of the PI3K (38)

and RAS/MAPK (39, 40) signaling pathways. To overcome IM

resistance, second-generation TKIs, such as dasatinib (DAS) and

nilotinib (NIL), were developed and they have activity against

most IM-resistant BCR-ABL1 mutants (41). But, they are not

able to overcome ABL-T315I-induced resistance. Then,

ponatinib, the third-generation TKI, has been developed and is

effective against T315I-mutated Ph+ leukemias (42), but the risk

of life-threatening cardiovascular side effects limits its clinical

application (43). On the other hand, due to the need of growth

and development, the long-term clinical safety of TKIs has to be

considered. In recent years, several long-term side effects have

been reported, including growth deceleration (44), dysregulation

of bone (45, 46), and decreased fertility (47, 48).

To achieve better treatment outcomes while avoiding drug

resistance and side effects, a deeper comprehension of TKIs’

mechanism is necessary. Therefore, this review discusses the

metabolic pathways alterations after TKIs therapy in children,

including the following five aspects: glucose metabolism, lipid

metabolism, amino acid metabolism, nucleotide metabolism,

and immunometabolism.
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Glucose metabolism

Glucose metabolism, which serves as a significant source of

energy for cell development, includes glycolysis pathway,

pentose phosphate pathway (PPP), oxidative phosphorylation

and serine synthesis pathway (SSP) (49). It is known that in

aerobic settings, intracytoplasmic glycolysis provides energy

first, followed by mitochondrial oxidative phosphorylation.

When oxygen is scarce, cells depend on glycolysis instead of

the oxygen-consuming TCA cycle to produce energy (49).

However, Otto Warburg found that even in the presence of

enough oxygen, cancer cells prefer to engage in aerobic

glycolysis, generally referred to as “Warburg effect” or “aerobic

glycolysis”, to produce ATP and metabolic intermediates (50).

Studies showed that although glycolysis produces ATP per

glucose molecule considerably less effectively than oxidative

phosphorylation, the production rate increases significantly

(51). Besides, this reprogramming of glucose metabolism

provides additional macromolecular precursors such as acetyl-

CoA, glycolytic intermediates and ribose which meet the needs

of fast growth and proliferation of cancer cells (52). Like other

malignancies, the aberrant cellular metabolism also occurs in

CML cells. The BCR-ABL oncoprotein can boost glucose uptake

and glycolysis and overexpress glucose transporter-1 (GLUT-1)

to influence metabolism (53). Furthermore, the PI3K/Akt/

mTOR pathway is considered to be responsible (54). Since the

introduction of the first BCR-ABL TKI, IM (Gleevec, previously

STI571), the effects of BCR-ABL TKIs on glucose metabolism in

tumor cells have been explored.

Using [1,2-13C2] glucose as the single tracer with biological

mass spectrometry, J Boren et al. demonstrated that (55) by

lowering hexokinase and glucose-6-phosphate 1-dehydrogenase

activity and changing pathway carbon flux of the pentose cycle

in K562 human myeloid blast cells, IM reduced the use of

glucose carbons for de novo nucleic acid and fatty acid

synthesis. In 2004, Gottschalk S et al. used magnetic resonance

spectroscopy to examine changes in endogenous metabolites,

energy status, and glucose metabolism of human BCR-ABL+

cells (CML-T1 and K562) and BCR-ABL- cells (HC-1) following

IM therapy (56). They found that the “Warburg effect” was

reversed in BCR-ABL+ cells at the appropriate therapeutic doses

of IM (0.1-1.0 mmol/L) by switching glucose metabolism from

anaerobic glycolysis to the mitochondrial Krebs cycle. In this

situation, BCR-ABL+ cells decreased the glucose uptake from

the media but the glucose metabolism in mitochondrial

increased, leading to elevated absolute concentrations of the

high energy phosphate nucleoside triphosphate (NTP).

Subsequently, Barnes K et al. investigated the function of

BCR-ABL-induced glucose transport regulation anomalies in

CML (9). This work showed that by upregulating the GLUT-1

glucose transporter’s expression on the cell surface, BCR-ABL-

expressing cells may accelerate the absorption of hexose.

Interestingly, IM treatment leads to a 90% internalization of
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the cell-surface GLUT-1 transporters, substantially decreasing

hexose uptake in BCR-ABL-expressing cells (57). These findings

suggested that reversing the aerobic glycolysis and inhibiting

glucose transport significantly contributes to IM’s anti-

tumor effects.

Pyruvate-Kinase (PK), as an enzyme, catalyzes the last stage

of glycolysis, converting phosphoenolpyruvate and ADP into

pyruvate and ATP (58). According to previous literature, the

Warburg effect is accomplished by regulating expression of the

embryonic M2 isozyme of PK (PKM2), rather than the M1

isozyme (PKM1) expressed in normal cells, through an

alternative splicing repressor polypyrimidine tract-binding

protein1 (PTBP1) (59, 60). A study suggested that IM inhibits

glycolysis through the inhibition of phosphorylation of BCR-

ABL and the down-regulation of miR-124/PTBP1/PKM2

signaling (61). Through downregulation of PTBP1, IM

changes PK isoforms from PKM2 to PKM1, leading to reversal

of the Warburg effect (61). Apart from this, Damaraju VL et al.

reported how TKIs reduce glucose uptake by evaluating the

interaction of TKIs with GLUT-1 in the human nasopharyngeal

carcinoma cell line (FaDu) and GIST-1 cells. They discovered

that [3H]2-deoxy-d-glucose ([3H]2-DG) and [3H]Fluoro-2-

deoxy-D-glucose (FDG) uptake were competitively suppressed

by IM and NIL, and that IM had reversible [3H] FDG uptake

inhibition whereas NIL did not (62). Additionally, molecular

modeling demonstrated that TKIs impair GLUT-1’s ability to

take up glucose by interacting with the glucose binding site via

hydrogen bonds and van der Waals interactions (62).

Intrinsic metabolic differences between IM sensitive and

resistant cell lines were also previously characterized. A study

showed that IM treatment in sensitive BCR-ABL positive cells

(K562-S, LAMA84-S) leaded to the reduction of glucose

absorption and lactate generation and the enhancement of

oxidative TCA cycling (53). On the other hand, the drug-

induced IM resistant cells (K562-r and LAMA84-r) displayed

a highly glycolytic metabolism with increased glucose absorption

and lactate generation. Additionally, in IM-resistant cells,

oxidative synthesis of RNA ribose from 13 C-glucose using

glucose-6-phosphate dehydrogenase was decreased, while the

non-oxidative transketolase pathway was boosted (53). In line

with the literature mentioned above (57), in IM-treated sensitive

cells, GLUT-1 moved from the plasma membrane to the

intracellular fraction leading to reduced glucose uptake, while

GLUT-1 remained at the plasma membrane in IM-resistant cells

(53). However, different from the finding in the drug-induced

IM resistant cells, Ko BW et al. reported that the KBM5-T315I

cells which acquired drug resistance resulting from the T315I

mutation have metabolically suppressive status compared to

KBM5 cells (IM-sensitive) (63). KBM5-T315I cells showed low

glycolytic activity, decreased fatty acid synthesis and reactive

oxygen species (ROS) generation potentially participating to the

reduced proliferative activity of KBM5-T315I cells. The

researchers came to the conclusion that the decreased
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expression of glycolysis-related genes and ROS levels might be

responsible for reduced growth ability of KBM5-T315I CML

(63). These biological and metabolic characteristics of CML cells

with different resistance mechanisms should be take into

account in future studies overcoming the IM resistance.

As indicated previously, glycolysis was extremely important

for B-ALL cells. T Liu et al. reported that 2-deoxyglucose (2-DG)

suppressed aerobic glycolysis, leading to the inhabitation of B-

ALL cell growth, the increasing of the pro-apoptotic protein Bim

and re-sensitization of B-ALL cells to the tyrosine kinase

inhibitor DAS in vivo (64). Apart from this, deletion of

GLUT-1 partially inhibits glucose uptake (64). Through

metabolic reprogramming, the decreased glucose transport

capacity was sufficient to decrease anabolism and promote

catabolism in B-ALL cells. As a result, GLUT1-deficient B-

ALL cells were unable to accumulate in vivo, and GLUT-1

depletion inhibited leukemia progression. These data suggested

that inhibition of aerobic glycolysis and glucose uptake by

GLUT-1 could be plausible adjuvant approaches for B-ALL

therapies. In another study, researchers found that TKI

treatment creates a new metabolic state in leukemic cells that

is highly sensitive to specific mitochondrial perturbations. As a

result, patients with BCR-ABL+ leukemia may respond better to

TKI when receiving adjuvant therapy with targeting

mitochondrial metabolism (65). Since TKI treatment changed

glucose metabolism in BCR -ABL+ cells from anaerobic

glycolysis to the mitochondrial tricarboxylic acid cycle, they

indicated that oligomycin A, a mitochondrial ATP synthase

inhibitor, greatly promotes TKI sensitivity in leukemia cells at

very low concentrations in vitro. In a mouse model, oligomycin

A enhanced the ability of TKI to eliminate BCR-ABL+ leukemia

cells (65). In spite of strong suppression of glycolysis, Shinohara

H et al . found that by upregulat ing carnit ine O-

palmitoyltransferase 1 (CPT1C), the rate-limiting fatty-acid

oxidation (FAO) enzyme, IM triggers compensatory FAO,

which enabled glucose-independent cell viability. AIC-47

suppresses CPT1C expression and directly inhibits the

metabolism of fatty acids and. Combined with AIC-47, IM

enhanced the attack on cancer energy metabolism, leading to

an increased cytotoxicity (61). Overall, these studies illustrate

that metabolic reprogramming after TKIs treatment could be a

potential therapeutic target.

In addition to BCR-ABL cells, the effects of BCR-ABL TKIs on

other cells were also investigated. Recent studies reported the

influences of IM and DAS on skeletal muscle cell metabolism (66,

67). Damaraju VL et al. showed 2-deoxy-D-glucose absorption

was suppressed by to almost 50% in C2C12 murine skeletal

muscle cells pre-incubated for 15 min with IM. Moreover, in a

skeletal muscle cell model, IM lowered energy generation and

mitochondrial function by inhibiting mitochondrial complex V

activity and nucleoside absorption. This may contribute to

tiredness, one of the most prevalent side effects of TKIs (66). In

addition to inhibiting glucose transport proteins and metabolic
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enzymes, IM also exerts antidiabetic effects by protecting against

b-cell death and ultimately increasing insulin production in a

mouse model (68). In CML patients, Fitter S. et al. found a 3-fold

increase in plasma adiponectin concentrations after three months

of IM treatment; adiponectin elevation enhanced glucolipid

metabolism, which explains why diabetes improved after IM

treatment (69).
Lipid metabolism

There are two mechanisms by which mammals acquire

lipids: de novo synthesis and direct exogenous uptake. The de

novo lipogenesis pathway is restricted to hepatocytes and

adipocytes in normal tissue; however, cancer cells can also

reactivate this pathway even with exogenous lipids (70). An

elevated of lipid uptake, storage and lipogenesis was reported in

a variety of cancers, contributing to rapid tumor growth (71, 72).

Research suggested that lipid metabolism in cancer cells is

regulated by PI3K/Akt/mTOR pathway (24). Sterol regulatory

element-binding protein 1c (SREBP-1c), a transcription factor

that promotes lipid synthesis de novo, is controlled by mTORC1

(70, 73). In spite of lipids being widely used as cancer

biomarkers, little is known about TKIs’ impact on lipid

metabolism and pathways.

Previous studies have suggested that exposure to the first-

generation TKI (IM) may lead to a reduction in cholesterol and

triglycerides in people and animal models, as well as a better

serum lipid profile, while the second-generation TKIs may cause

a worse metabolic profile (74–77). A cohort study researched

how first- and second-generation TKIs affected the patients with

CML’s glucose and lipid metabolism. They discovered that

compared to the IM and DAS groups, the NIL group had

substantially higher fasting plasma glucose, insulin, C-peptide,

insulin resistance, total cholesterol, and low-density lipoprotein

(LDL) cholesterol levels (76). In a translational mouse model,

plasma cholesterol and atherosclerosis areas were reduced by IM

and ponatinib, while they were not affected by NIL. On the other

hand, IM showed a beneficial cardiovascular risk profile

compared to NIL and ponatinib (74).

It is not entirely clear how IM reduces lipid levels. The PDGF

receptor (PDGFR) inhibitory action of IM has been proposed as

a potential reason. The phosphorylation of LDL receptor-related

protein (76) may be facilitated by excessive PDGFR expression,

leading to atherosclerosis brought on by cholesterol. However,

NIL, which also inhibits PDGFR, was found to significantly

increase lipid levels in patients, rendering this explanation

unsatisfactory (76). Ellis M et al. explored the possible

biological mechanisms behind the lipid-lowering effects of IM

in CML. Results indicated that two genes, apobec1 that inhibit

lipid synthesis and LDL-R that promote clearance of circulating

LDL, are significantly induced by IM. In addition, IM induced

HMG-coAR expression, which regulates hepatic cholesterol
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synthesis (78). To elucidate the effects and mechanisms of TKIs

on lipid metabolism, additional studies will be needed.

Studies on BCR-ABL TKIs and lipid metabolism are limited

so far. The aforementioned study by Gottschalk et al. reported

that phosphocholine concentrations, which are known to be

raised in all rapidly proliferating malignant cells, were

significantly reduced in IM-treated BCR-ABL+ cells (56).

Similarly, subsequent study, which assessed a global metabolic

profile including lipid metabolism of human leukemia cell after

incubation with IM, showed that IM-treated K562 cells had a

decreased concentrations of phosphocholine (PC) and

phosphatidylcholine (PtdCho) (79). Following the first week of

IM treatment, this reduction was significant and even increased

after 2 -4 weeks. Polyunsaturated fatty acids (PUFAs) signal

intensity increased after 2 and 4 weeks of treatment with

increasing apoptosis rate. Furthermore, the amount of

methylene/methyl (CH2/CH3) resonances of fatty-acid chains

also enhanced (31). Previous studies have reported the decrease

in PtdCho concentration with advancing apoptosis stages (80).

Additionally, the accumulation of PUFAs as well as increased

CH2 and CH3 resonances of free fatty acids is two other

characteristics associated with cell death (81). Collectively,

these lipid metabolic events following TKI treatment in BCR-

ABL+ cells showed pathways linked to a continuous process of

cell death.
Amino acid metabolism

Amino acids are basic units for protein synthesis in the

organism and can divide into two groups: essential amino acids

and non-essential ones. Essential amino acids cannot be

synthesized by humans and can only be provided by food

sources (82), including phenylalanine, valine, threonine,

tryptophan, methionine, leucine, isoleucine, lysine and histidine

(can be synthesized in adults). Non-essential amino acids include

arginine, cysteine, glycine, glutamine, proline, tyrosine, alanine,

aspartic acid, asparagine, glutamate and serine which can be

synthesized in the body. After malignant transformation, tumor

cells have an increased demand for amino acids, which can be

utilized as intermediates in many metabolic pathways (83).

According to studies in recent years, under genotoxic, oxidative,

and nutritional stress, amino acids can act as metabolic regulators

to promote cancer cell proliferation and survival (84, 85). Among

them, studies on glutamine, serine, glycine and branched-chain

amino acids (BCAAs) have drawn more attention.
Glutamine

As mentioned above, TKIs can efficiently hamper glucose

metabolism in Ph+ leukemia. But, due to compensatory

metabolic pathway activation, glycolysis inhibition alone
Frontiers in Oncology 05
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frequently falls short of eliminating cells (86, 87). Glutamine is

the most prevalent amino acid in human plasma and the second

only to glucose in the metabolism of tumor cells (88). This

metabolic alteration is frequently observed in cancer (89).

Glutamine may provide its nitrogen and carbon to a variety of

mechanisms in cancer cells, including energy production,

macromolecular synthesis, and signal transmission (90).

Through the transporters (e.g., SLC1A5 or ASCT2), glutamine

is brought into the cytoplasm where it is converted to glutamate

by the enzyme glutaminase(GLS) (91). An earlier work shown that

human B cell Burkitt lymphoma cell line P493 cells may use

glutamine to carry out glucose-independent mitochondrial

oxidative phosphorylation in the presence of low oxygen levels

(92). Combined transcriptome and metabolome profiling, Pallavi

Sontakke et al. found that (93), despite the prominent glycolysis,

BCR-ABL positive cells also undertake glutaminolysis, which was

demonstrated by elevated intracellular glutamine levels both in

normoxia and hypoxia. In agreement with these findings, they

also discovered that both protein and RNA levels of the glutamine

importer SLC1A5 increased in BCR-ABL-expressing cells. Given

this circumstance, glutamine may play a significant function as an

additional source of carbon in the replenishment of tricarboxylic

acid cycle (TCA) metabolite. Other researches have demonstrated

that this is indeed the case. Anne Trinh et al. found that, after the

treatment of IM, survived CML cells can continue to consume

glutamine to create alphaKetoGlutarate, a TCA intermediate, that

keeps the state of high mitochondrial oxidative metabolism (94).

After that, they found that the combination of Kidrolase (an FDA-

approved drug of L-asparaginase) and IM can deplete extracellular

glutamine and therefore restrict mitochondrial metabolism.

Finally, they discovered that this combination stimulates the

intrinsic apoptotic pathway, effectively killing CML cells.

Furthermore, TKIs are unable to eradicate the leukemia stem

cells (LSCs) and/or progenitor cells that could cause relapses (95).

In order to kill LSCs, Anne Trinh et al. also provided evidence that

both glycolysis and glutamine-dependent mitochondrial

metabolism required to be impaired (94). To prevent recurrence

and achieve a longer OS of children, it may be an interesting

therapeutic approach to eradicate LSCs by combining TKI and

mitochondrial inhibitors.
Serine and glycine metabolism

Serine is well known as the one-carbon source in the

methionine cycle and folate cycle and contributes to nucleotide

synthesis, methylation reactions, and production of NADPH, an

antioxidant defense mechanism (96, 97). Serine and glycine can be

imported from the extracellular environment produced by the de

novo serine synthesis pathway (SSP) (97). The SSP, starting from

the glycolytic metabolite 3-phosphoglycerate (3-PG), is composed

of three steps. First, phosphoglycerate dehydrogenase (PHGDH)

converts 3-PG into 3-phosphohydroxypyruvate; then,
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phosphoserine-amino transferase (PSAT-1) converts 3-

phosphohydroxypyruvate into phosphoserine ; last ,

phosphoserine phosphatase (PSPH) eventually catalyzing the

dephosphorylation of phosphoserine into serine (98). As

mentioned above, as a key metabolite to support cell

proliferation, increasing serine supply is required to sustain

cancer progression (99). In various cancers, to meet the large

serine demand for survival, the three SSP enzymes (PHGDH,

PSAT, and PSPH) are all highly expressed (100). In addition,

recent work on cancer metabolomics has shown that unexpected

increased reliance on glycine metabolism was discovered in rapid

proliferation cancer cells and this phenotype that was not

observed in rapidly proliferating nontransformed cells (101).

Interestingly, an animal experiment found that restriction of

serine and glycine intake can inhibit tumor growth and extend

the survival time of tumor-bearing mice (102). Hilal Taymaz-

Nikerel et al. reported some new multi-omics findings in yeast on

the mechanism of IM, using the model organism Saccharomyces

cerevisiae (103). They performed the whole-genome analysis of

the transcriptional response of yeast cells via flux-balance analysis

(FBA) and modular analysis of protein/protein interaction

network which consist of proteins encoded by differentially

expressed genes (DEGs). FBA indicated that IM alters multiple

metabolic pathways by decreasing and increasing the fluxes of

reactions and the fluxes related to metabolic pathway of glycine

and serine were increased. However, through proteomics and

metabolomics profiling of IM-resistant CML cells (ImaR), a

previous study showed that serine-glycine-one-carbon

metabolism and proline synthesis were enhanced in KU812

ImaR cells (104). In summary, IM can indeed suppress the

proliferation of CML cells and induce the increasing of

metabolic pathway of glycine and serine in parallel. Based on

these, could we then assume that over-represented glycine and

serine might counteract the inhibitory effect of IM and promote

CML cell survival and chemoresistance? If so, suppressing the

metabolism of glycine and serine could possibly serve as a novel

therapeutic target.
BCAAs

For mammals, the BCAAs are necessary amino acids,

including leucine, isoleucine, and valine. In mammalian

proteins, about 63% of the hydrophobic amino acids are

BCAAs (105) and may only be attained from food intake and

recycled scavenged protein (106). After being catabolized by

enzymes, intracellular BCAAs can provide nitrogen and carbon

groups to take part in the synthesis of biomass, energy

production, nutritional signaling, and epigenetic regulation

(107). In humans, branched-chain amino transferases

(BCATs) comprise two compartment-specific BCAA

transaminases (BCAT1 and BCAT2) and can produce

glutamate and the corresponding branched-chain a-ketoacids
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(BCKAs) (108, 109). When the transamination and transfer of

nitrogen to a-ketoglutarate (a-KG) by BCATs initiate,

catabolism of BCAAs begins. BCAAs and BCKAs often coexist

in a balanced state, however this is not the case with

malignancies. By fluorescent markers unique to each amino

acid, Hattori A et al. measured the amino acid contents in

CML-initiating cells isolated from a BC-CML mouse model.

They discovered that BCAA levels were significantly higher in

these cells (110). They later found that increased BCAT1 (or

cBCAT), which may catalyze the conversion of a BCKA plus

glutamic acid (Glu) into a BCAA and a -KG, may be a factor in

this heightened BCAA metabolism. Additionally, they

discovered that BC-CML-initiating cells had higher levels of

BCAT1 mRNA, and that transduction of shRNA targeting

BCAT1 mRNA reduced intracellular BCAA levels, which

impeded the ability to form colonies in vitro. Through multi-

omic investigations in yeast, Hilal Taymaz-Nikerel et al. found

that (103) after IM treatment, the fluxes of the processes

involved in the production of various amino acids, such as

isoleucine, lysine, histidine, threonine, and valine, were

drastically downregulated. In addition, Miriam G. Contreras

Mostazo et al. indicated that KU812 ImaR cells might consume

more BCAAs than parental cells in normoxia (104). According

to these findings, inhibiting BCAA metabolism may be a

promising therapeutic strategy for reducing ImaR cells.
Others

Methionine and homocysteine, two sulfur-containing amino

acids, are the primary precursors of glutathione, a tripeptide that

lowers reactive oxygen species (ROS) and upholds redox

equilibrium (111). Additionally, Hilal Taymaz-Nikerel et al.

discovered that (103) following IM therapy, the reaction fluxes

through the production of methionine and cysteine, as well as the

absorption of sulfate, were determined to be drastically decreased.
Nucleotide metabolism

In all areas of life, nucleotide metabolism is a critical activity.

In order to enable cell proliferation (112), nucleotides, a type of

biological information macromolecule, are primarily used as the

raw materials for the synthesis of nucleic acids. Nucleotides

comprise of both purine (adenine and guanine) and pyrimidine

(cytidine, uridine and thymidine). Therefore, inhibitors of

purine or pyrimidine synthesis have also been applied in

hematological malignancies (113).

Purines and pyrimidines get synthesized separately but they

have one same thing: 5-phosphoribose-1-pyrophosphate

(PRPP), which is a donor of phosphate and ribose sugar and is

an active form of ribose generated from ribose 5-phosphate

(Figure 1). In purine biosynthesis, the primary source of
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nucleotides in vivo is de novo synthesis, and negative feedback

mostly controls the rate of nucleotide synthesis (114). In the

process of making purines, PRPP is transformed into inosine

monophosphate (IMP), which needs 6 ATP, glutamine, glycine,

and aspartate. Then, IMP can be converted into guanosine

monophosphate (GMP) or adenosine monophosphate (AMP)

through different enzymes. The purine nucleotide salvage

mechanism is easier and uses less energy than the de novo

synthesis method (115, 116). However, since the lack of the

enzyme system which can synthesize purine nucleotides from

scratch, the brain and bone marrow can only conduct the salvage

approach to generate purines (117, 118). In addition, previous

studies have shown that the de novo nucleotide synthesis

pathway is also usually found in proliferating cells, including

immune cells and cancer cells (119, 120). An earlier study (121)
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revealed that a higher level of de novo purine synthesis was

identified in the leukocytes and plasma of newly diagnosed CML

patient due to the enhancement of 5-aminoimidazole-4-

carboxilic acid ribonucleoside (CAIR). They discovered that

the majority of the purine levels had stabilized toward the

control values after IM and NIL therapy. However, adenosine

5’-monophosphate, guanine, guanosine, guanosine 5’-

monophosphate, and inosine 5’-monophosphate did not

change toward the control values in the patients receiving DAS.

Pyrimidine synthesis is also split into de novo synthesis and

salvage pathways, just like purine biosynthesis (122). In addition

to PRPP, pyrimidine biosynthesis also needs aspartate,

glutamine, bicarbonate, and 2 ATP (123). Leukocytes from

newly diagnosed patients had elevated levels of pyrimidine

metabolism, particularly cytosine, cytidine 5’-monophosphate,

cytidine 2’,3’-cyclic phosphate, and uridine 5’-monophosphate

(121). Most of these metabolites returned to control levels after

TKI therapy. But, some pyrimidine metabolites (cytidine,

cytidine 5’-triphosphate, and uridine) were still present at

similar levels in the patients receiving DAS.

By multi-omics, Taymaz-Nikerel et al. revealed that, after IM

treatment, the fluxes of the processes involved in the production

of purine and pyrimidine nucleotides were dramatically

downregulated in yeast (103).
Immunometabolism

Historically, abnormal energy metabolism has been known as

a hallmark of cancer (124). Recent research has revealed that

immune cells undergo metabolic reprogramming during the

activation and differentiation processes, giving rise to the notion

of “immunometabolism” (125). The field of immunometabolism

is about how metabolic processes affect immune cell functions in

physiological and pathological situations (126). In cancer cells,

complex and dynamic metabolic reprogramming can make

themselves to accommodate tumor microenvironment (TME),

which can restrict the biosynthetic and bioenergetic demands for

growth (127). Additionally, cancer cell metabolism not only

aggressively competes for essential resources but also produces

metabolic byproducts that affect immune cell activation, fitness,

and effector function in a direct or indirect ways (128–131).

Instead of inhibiting or killing cancer cells, these defective

immune cells even may become tumor-supporting cells to speed

up the spread and invasion of cancer (125).

In recent years, the way to manage tumor patients has

significantly changed as a result of tumor immunotherapy

(132). During the treatment, TKIs do not only target BCR-

ABL1 but also inhibit additional targets such c-KIT, TEC, SRC,

FLT3, Lck, and mitogen-activated kinases (MAPK) (133). This

“off-target” effect can alter immune responses, both harmful and

beneficial. Lisa Christiansson et al. found that (134) IM and DAS

can both lower immune escape mechanisms by reducing the
FIGURE 1

The de novo pyrimidine and purine synthesis pathways. Yellow
background, the de novo pyrimidine synthesis pathway; green
background, the de novo purine synthesis pathway Purines and
pyrimidines get synthesized separately but they have one same
thing. PRPP Gl. Glutamine, CSP2 Carbamoyl-phosphate
synthetase 2: Glu, Glutamate: CP. Carbamoyl phosphate; ATCase,
Aspartate transcarbamylase; CA, N-carbamoyl-L-aspartate
DHOase. Dihydroorotase. DHOA. Ddihydroorotate, DHODH.
Dihydroorotate dehydrogenase; OMP Orotidine 5'-
monophosphate: UMPS. Undine monophosphate synthetase:
UMP. Uridine monophosphate: Rib-5-p. Ribose-5-phosphate:
PRPS. Phosphoribosylpyrophosphate synthetase; PRPP 5-
phosphonbosyl-1-pyrophosphate: PPAT.
Phosphoribosylpyrophosphate amidotransferase; PRA,
Phosphoribosylamine, Gly. Glysine, GART Glycinamide
ribonucleotide formyltransferase; GAR, Glycinamide
ribonucleotide, THF. Tetrahydrofolate; FGAR, N-
fotuvlelycinamide boucleotide, PEAS,
Phosphoribosylformylglycinamidine synthase; FGAMR, N-
formylglycinamidme ribonucleotide, AIR, Annnoimidazole
ribonucleotide: PAICS, Phosphoribosylaminoimidazole
carboxylase, phosphoribosylaminoimidazole succinocarboxamide
synthetase: CAIR. Carboxyaminoimidazole nbonucleotide; Asp.
Aspartate: SAICAR, Nsuccinocarboxamide-5-aminoimidazole
ribonucleotide, ADSL. Adenylosuccinate lyase: AICAR 5-
aminoimidazole-4-carboxamide ribonuckotide ATIC 5-
aminoimidazole-4-carboxamide rbouucleotide transfonuylase
FAICAR 5-formamido-4-imidazolecarboxamide ribonucleotide,
IMP. Inosine-5-monophosphate: PP. Pyrophosphate: ATP.
Adenosine-S-triphosphate: ADP Adenosine 5'-diphosphate; AMP
Adenosine 5'-monophosphate; Pi. Phosphate, HCO−

3 . Hydrogen
carbonic acid, CO., Carbon dioxide.
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number of myeloid suppressor cells and the inhibitory factors

arginase 1 (Arg1), Myeloperoxidase (MPO), and IL-10.

According to researches, the proportion of Myeloid-derived

suppressor cells (MDSC) and the blood concentrations of

Arg1 and inducible nitric oxide synthase (iNOS) were both

considerably higher in CML patients at diagnosis and

significantly lower after TKI therapy (135). ZIYUAN LU et al.

found that (136) following treatment with a TKI (IM, DAS or

NIL), Total T cells, Tregs (whose decline became more

pronounced over time), CD4+ T cells, and CD8+ T cells all

reduced to varying degrees in CML patients. They also revealed

that IM and DAS may be more effective than NIL on decreasing

the number and function of Tregs. Silke Appel et al. (137) reveals

that IM inhibits dendritic cell (DC) differentiation and function

via Akt and nuclear factor-kB signal transduction. After then,

Daniela Dorfel et al. (138) discovered that both IM and NIL

considerably and similarly hampered monocyte differentiation

into DCs, with only a partial recovery after TKI discontinuation.

Taking into account the long-term side effect and the

cumulative cost of TKI therapy in children, it is clear that it is

important to avoid lifelong treatment with TKIs. As mentioned

above, LSCs have high correlations with tumor recurrence and it

is crucial to eliminate LSCs. One potential solution is to stop

after a certain period of deep molecular remission and restore

normal immune functions, especially the NK cells (139–142).

Previous studies indicated that patients with stable NK cell

counts accompanied by higher cytotoxicity and increased

killing capacity are more inclined to get sustained treatment-

free survival (142, 143). Previous study showed that following

TKI treatment, the proportion of effector NK cells were

increased (135). The results indicate that the number and

killing capacity of NK cells may be utilized to further assess

the risk of TKIs discontinuation. Geoffrey D. Clapp et al.

suggested that (144) carefully timed vaccines may stimulate

the patient’s immune system to drive the residue LSCs to

extinction. In recent trials of Ph+ ALL, Schultz KR et al. (145)

used limited duration, more intensive chemotherapy in

combination with TKIs for children and adolescents and had

an initial observation of substantially good outcomes. It may be

another option to eliminate the CML LSCs.
TKI adverse effects in children

Due to off-target effects, IM can cause substantial growth

abnormalities in children with CML (146–148) by a direct effect

on the growth plate (149), acquired growth hormone deficiency

and disturbing the GH : IGF-1 axis (150). Second- and third-

generation TKIs in children have less clinical data, but DAS

appears to have a similar impact on growth (151).

TKIs’ teratogenic potential makes them potentially harmful

to pregnant women as well (152). Associated studies showed that

(153) female partners of male patients are not at risk for
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pregnancy-related complications and TKI should be

continued. For female patients, contraception should be

planned during TKI, so when in major molecular remission

for more than two years, pregnancy can be planned. In addition,

NIL appears to be the safest (153).

As recommendations for monitoring and supportive care in

children with CML receiving TKI therapy, height, weight,

gonadotropins, sex steroids, thyroid function (TSH, free T4),

echocardiogram and electrocardiogram be examined

routinely (14).
Summary

Overall, TKI is obviously regarded to be the most effective

kinase inhibitor for CML treatment nowadays and the role of

TKI in Ph+ ALL treatment has also attracted increased attention.

Recently, an increasing number of studies have demonstrated

that TKIs can affect the normal metabolism of Ph+ leukemia

cells to achieve therapeutic purposes. But in children, there are

still many difficulties to surmount, such as the off-target effects,

drug tolerance, disease recurrence, adverse effects, cumulative

cost. In this study, we perform a more detailed analysis about

cellular metabolism alterations after TKI therapy, but further

research is needed because so many interested targets can be

combined with TKI therapy to provide great benefits to Ph+

leukemia children.
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Gain-of-function mutations of SHP2, especially D61Y and E76K, lead to the

development of neoplasms in hematopoietic cells. Previously, we found that

SHP2-D61Y and -E76K confer HCD-57 cells cytokine-independent survival and

proliferation via activation of MAPK pathway. Metabolic reprogramming is likely to

be involved in leukemogenesis led bymutant SHP2. However, detailed pathways or

key genes of altered metabolisms are unknown in leukemia cells expressing

mutant SHP2. In this study, we performed transcriptome analysis to identify

dysregulated metabolic pathways and key genes using HCD-57 transformed by

mutant SHP2. A total of 2443 and 2273 significant differentially expressed genes

(DEGs) were identified in HCD-57 expressing SHP2-D61Y and -E76K compared

with parental cells as the control, respectively. Gene ontology (GO) and Reactome

enrichment analysis showed that a large proportion of DEGs were involved in the

metabolism process. Kyoto Encyclopedia of Gene and Genome (KEGG) pathway

enrichment analysis showed that DEGs were the mostly enriched in glutathione

metabolism and biosynthesis of amino acids in metabolic pathways. Gene Set

Enrichment Analysis (GSEA) revealed that the expression of mutant SHP2 led to a

significant activation of biosynthesis of amino acids pathway in HCD-57 expressing

mutant SHP2 compared with the control. Particularly, we found that ASNS,

PHGDH, PSAT1, and SHMT2 involved in the biosynthesis of asparagine, serine,

and glycine were remarkably up-regulated. Together, these transcriptome

profiling data provided new insights into the metabolic mechanisms underlying

mutant SHP2-driven leukemogenesis.
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Introduction

Src Homology 2 domain-containing protein tyrosine

Phosphatase-2 (SHP2), encoded by PTPN11 gene, is a classical non-

receptor protein tyrosine phosphatase (PTP) (1). It is the first PTP

recognized as an oncogene. SHP2 plays key roles in regulating RAS-

ERK, PI3K-AKT, JAK-STAT and other signaling pathways, which are

mainly downstream signals of growth factor, cytokine, and integrin

receptors (2, 3). In general, SHP2 mutations are rare in solid tumors

(3). Germline mutations in SHP2 present in ~50% of Noonan

Syndrome and ~90% of LEOPARD syndrome, both congenital

developmental disorders and mainly characterized by growth

retardation, short stature, facial features, and heart defects (4).

Somatic SHP2 mutations mainly occur in several types of

hematologic malignancies, including ~10% myelodysplastic

syndromes, ~5% juvenile acute myeloid leukemia, ~7% B-cell acute

lymphoblastic leukemia, and particularly ~35% juvenile

myelomonocytic leukemia (JMML) (3, 5–7). However, the

molecular mechanisms of leukemogenesis driven by mutant SHP2

are not fully understood. Previous studies about SHP2 mutants

mainly focus on the activation of tumor proliferation signaling

pathways and the tumor microenvironment (1, 3). However, the

effects of SHP2 mutants on cancer-cell metabolism have not been

investigated. Characterizing the alterations in cellular biosynthesis

can provide insights into the mechanism of mutant SHP2-

driven leukemogenesis.

Various biological hallmarks of tumor cells are closely related to

cell metabolism, including rapid proliferation, immune escape and

drug resistance (8). The use of cellular nutrient generally requires the

binding of growth factors to their receptors to activate a series of

signaling pathways that initiate cell metabolism (9). However, gain-

of-function mutations occur in growth factor receptors or

downstream pathway genes in most tumor cells (10), leading to

constantly activated signals that overcome the growth factor

dependency (11). As the result, cancer cells acquire the ability to

autonomously uptake nutrients, providing a material basis for the

uncontrolled division and proliferation (9). Meanwhile, abnormal

metabolic pathways often induce cancer cell-specific vulnerabilities,

which provided potential therapeutic targets.

Metabolic reprogramming is believed to result from oncogene

activation or metabolic enzymes alterations (12). Previous studies

have shown that some key proteins in cell proliferation-related

signaling pathways are involved in metabolic reprogramming (13).

The serine/threonine kinase AKT, for instance, does not only activate

cell division signals, but also regulates glucose uptake to provide

energy to cancer cells. The activation of AKT has been found to

support the growth factor-independent survival via multi-step

regulation of glucose metabolism, including promotion of glucose

uptake by up-regulation of glucose transporter 1 (GLUT1) and

activation of hexokinase (HK) (14, 15). In most cases, a variety of

oncogenes lead to metabolic reprogramming by inducing broad

changes in gene expressions (16). For instance, MYC enhances

aerobic glycolysis by up-regulating GLUT1, PKM, LDH and MCT1,

which also reprograms the glutathione biosynthesis (13, 17). Besides,

cancer cells with specific oncogenic activation exhibit a defined

metabolic preference (16). For example, EGFR activation promotes
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the serine synthesis pathway whereas FGFR activation enhances

aerobic glycolysis and recycles lactate (16).

Our previous studies have shown that the expression of mutant

SHP2 led to growth factor-independency of HCD-57, an

erythropoietin (EPO)-dependent erythroid leukemia cell line (18),

suggesting the possibility of mutant SHP2-reprogrammed cell

metabolism in HCD-57. For this reason, we investigated altered

metabolism pathways of parental and SHP2-mutant HCD-57 based

on transcriptome analysis. Analysis of Kyoto Encyclopedia of Gene

and Genome (KEGG) metabolism-related pathways revealed that

differentially expressed genes (DEGs) were mainly enriched in

glutathione metabolism and biosynthesis of amino acids pathways.

Gene Set Enrichment Analysis (GSEA) showed the biosynthesis of

amino acids pathway was significantly activated by the expression of

mutant SHP2. In addition, we found that mRNA expression of ASNS

involved in asparagine synthesis, PHGDH and PSAT1 involved in

serine biosynthesis, and SHMT2 involved in glycine synthesis were

significantly increased in HCD-57 expressing mutant SHP2,

compared with parental cells. Taken together, we identified

aberrant metabolic pathways in mutant SHP2-driven leukemia cells,

which may provide potential metabolism-targeted therapies for

leukemia with SHP2 mutations.
Materials and methods

Cell culture

HCD-57 was a kind gift from Dr. Zhizhuang Joe Zhao, the

University of Oklahoma, Health Science Center. HCD-57 was

cultured in IMDM (Gibco, MA, USA) supplemented with 20% FBS

(Hyclone, UT, USA) and 20 ng/mL EPO (Peprotech, NJ, USA).

Parental HCD-57 cells were starved for 8 h without EPO before

total RNA isolation. HCD-57/SHP2-D61Y and HCD-57/SHP2-E76K,

as the mutant SHP2-expressing cells, have acquired EPO-

independent survival and proliferation. They were cultured in

IMDM supplemented with 20% FBS and in absence of EPO. All

cells were cultured in a humidified atmosphere at 37°C with 5% CO2.
Generation of mutant
SHP2-transformed HCD-57

Retroviruses carrying mutant SHP2 were generated by using

pMSCV-IRES-GFP as described previously (19). Briefly, the full-

length SHP2-D61Y and SHP2-E76K were cloned to pMSCV-IRES-

GFP, respectively. Plasmids containing mutant SHP2 were used to

transfect GP2-293 cells together with pVSV-G helper plasmid using

Lipofectamine 3000 reagent (Thermo Fisher Scientific, MA, USA).

Subsequently, the medium was collected and centrifuged at 20, 000 g

for 2 h at 4°C to enrich retroviruses. HCD-57 cells were infected by

retroviruses with 5 mg/mL polybrene (Sigma-Aldrich, MO, USA) with

centrifugation at 1, 800 g for 2 h at room temperature. The infected

cells were cultured in IMDM in absence of EPO. Single colonies were

picked after 8-10 days of culture and further expanded in EPO-free

IMDM supplemented with 20% FBS.
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Total RNA isolation

Total RNA from cells was isolated using Trizol (Invitrogen, CA,

USA) per the manufacturer’s instructions. The isolated total RNA was

qualified and quantified by using a Nano Drop and Agilent 2100

bioanalyzer (Thermo Fisher Scientific, MA, USA).
mRNA library construction

RNA-seq library construction and RNA high-throughput

sequencing were entrusted to Beijing Genomics Institute (Beijing,

China). In brief, mRNA for each sample was purified using Oligo

(dT)-attached magnetic beads and then fragmented into small pieces

with fragment buffer. First-strand cDNA was generated using random

hexamer-primed reverse transcription, followed by a second-strand

cDNA synthesis and end repair using A-Tailing Mix and RNA Index

Adapters. The cDNA fragments were then amplified by PCR, and

purified by Ampure XP Beads. The product was validated on the Agilent

Technologies 2100 bioanalyzer. The double-stranded PCR products

from previous step were heated denatured and circularized by the

splint oligo sequence to get the final library, which was amplified with

phi29 tomakeDNA nanoballs (DNBs) containing more than 300 copies

of one molecular. DNBs were loaded into the patterned nanoarray and

single end 50 bases reads were generated on BGIseq500 platform.
Bioinformatics analysis

Clean reads were filtered by FASTQ (version 0.18.0). Reads

containing sequencing adapters, unknown nucleotides (‘N’ base) and

low-quality bases were removed. Clean reads were obtained and stored in

FASTQ format. The clean reads were mapped to the reference genome

using HISAT2 (v2.2.4). StringTie (V1.3.1) was applied to assemble the

map reads and gotten fragments per kilobase of transcript per million

mapped reads (FPKM) to calculated gene expression. Bioinformatic

analyses were performed using the Omicsmart online platform (http://

www.omicsmart.com). Principal component analysis (PCA) was

performed with R package gmodels (http://www.r-project.org/). DEGs

analysis was performed by edgeR. The parameter of false discovery rate

(FDR) below 0.05 and absolute fold change ≥ 2 were considered DEGs.

Analysis of Gene Ontology (GO), KEGG, and Reactome were based on

database (http://www.geneontology.org/), (https://www.genome.jp/kegg/

), and (https://reactome.org/). Enrichment analysis identified significantly

enriched in DEGs comparing with the whole genome background. The

calculated P value was gone through FDR correction, taking FDR ≤ 0.05

as a threshold. GSEA was performed using software GSEA to identify

whether a set of genes in specific KEGG pathways shows significant

differences in two groups.

Results

Transcriptomic profiling analyses of HCD-57
expressing SHP2-D61Y and -E76K

To investigate the effect of mutant SHP2 on HCD-57 cells, RNA-

seq was performed among HCD-57 cells expression SHP2-D61Y,
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SHP2-E76K, and parental HCD-57 cells. Owing to the expression of

mutant SHP2 led to growth factor-independency of HCD-57, we

cultured parental HCD-57 cells in medium deprived EPO for 8 h to

remove the stimulation of growth factor. PCA analysis clearly

separated the parental HCD-57 cells from HCD-57 expressing

SHP2-D61Y and -E76K based on PC1, with PC1 contributing

69.6% variation, making it the dominant component (Figure 1A).

The number of DEGs was 2443 and 2273 for HCD-57 cells expressing

mutant SHP2-D61Y and -E76K compared to the control (Figure 1B),

respectively. Hierarchical clustering of differential gene expression

patterns was performed, and a heatmap was used to present the

results. The analysis revealed comparable patterns among the HCD-

57 cells expressing SHP2-D61Y and SHP2-E76K, while the

transcriptome profiles of these mutant cells were much different

from parental HCD-57 cells deprived of EPO (Figure 1C). A Venn

diagram was performed and 1436 mutual DEGs were identified

among the two compared groups (Figure 1D).
Mutant SHP2 dysregulated cellular
metabolic biological processes

We performed multiple enrichment analyses to investigate

biological functions and altered pathways related to these DEGs.

We found that a mass of dysregulation genes was related to metabolic

process using GO classification in SHP2-D61Y and SHP2-E76K

transformed cells compared to the control (Figure 2A). In cells

expressing SHP2-D61Y, genes involved in metabolism accounted

for ~60% in the total up-regulated DEGs, and ~58% in down-

regulated DEGs, respectively. Cells transformed by SHP2-E76K

showed ~59% for up-regulated proportion and ~57% for down-

regulated proportion involved in metabolism. In addition, KEGG

analysis in whole pathway maps identified metabolic pathways as the

most significantly enriched pathways in both two comparison groups

(Figure 2B). As expected, Reactome analysis also showed significant

enrichment of metabolism reaction (Figure 2C). These results

indicated that the expression of SHP2 mutants leads to a

remodeling of cellular metabolism.
Altered metabolism pathways in HCD-57
expressing mutant SHP2

We performed KEGG pathway analysis of all DEGs to identify

significantly enriched metabolic pathways. We found that the most

enriched pathways in cells expressing SHP2-D61Y and SHP2-E76K

compared with the control were glutathione metabolism and

biosynthesis of amino acids pathways (Figure 3A). Subsequently, we

found that the expression of mutant SHP2-D61Y and SHP2-E76K

significantly activated the biosynthesis of amino acids pathway based

on GSEA analysis (Figure 3C). The schematic diagrams of alterations

in KEGG pathways regarding biosynthesis of amino acids was

revealed in Supplementary Figures 1 and 2. There was a down-

regulation in the glutathione metabolism pathway whereas the

nominal p-value and FDR q-value (false discovery rate) did not

reach a statistical significance (Figure 3B). The remaining metabolic

pathways that were significantly enriched (P<0.05) both in SHP2-
frontiersin.org

http://www.omicsmart.com
http://www.omicsmart.com
http://www.r-project.org/
http://www.geneontology.org/
https://www.genome.jp/kegg/
https://reactome.org/
https://doi.org/10.3389/fonc.2023.1090542
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zhao et al. 10.3389/fonc.2023.1090542
D61Y and -E76K cells were presented in Table 1. These data suggest

that biosynthesis of amino acids may play an important role in

leukemogenesis induced by mutant SHP2.
Genes associated with serine and glycine
synthesis were significantly up-regulated in
SHP2-mutant HCD-57

To further investigate genes with significantly altered expression

in the biosynthesis of amino acids caused by the expression of SHP2-

D61Y and SHP2-E76K, we obtained 13 mutually dysregulated genes

using the Venn diagram (Figure 4A). The heatmap showed

significantly up-regulated genes in cells expressing mutant SHP2,

including ASNS, PSAT1, PHGDH, SHMT2, and ALDH18A1

(Figure 4B). The FPKM values of 13 mutually dysregulated genes

are shown in Table 2. Phosphoglycerate dehydrogenase (PHGDH)

catalyzes the reversible oxidation of 3-phosphoglycerate to 3-

phosphohydroxypyruvate, the first step of the de novo serine

biosynthesis pathway. Subsequently, 3- phosphohydroxypyruvate is

converted to phosphoserine by phosphoserine aminotransferase 1

(PSAT1) and then to serine by phosphoserine phosphatase. Serine

hydroxymethyltransferase (SHMT2) catalyzes the reversible

transition from serine to glycine and promotes the production of

one-carbon units. Asparagine synthetase (ASNS) converts aspartate

and glutamine to asparagine. ALDH18A1 is a member of the aldehyde

dehydrogenase family, and its encoded protein catalyzes the reduction
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of glutamate to delta1-pyrroline-5-carboxylate, a critical step in the de

novo biosynthesis of proline, ornithine, and arginine. In addition, our

analysis found carbon metabolism, as well as glycine, serine, and

threonine metabolism pathways also dysregulated in SHP2-mutant

cells, and the differentially expressed genes were also mainly PSAT1,

PHGDH, and SHMT2 (Supplementary Figure 3). These data suggest

that the gain-of-function SHP2 mutants could promote serine and

glycine synthesis via up-regulating the mRNA expression of PSAT1,

PHGDH, and SHMT2.
Discussion

In this study, we performed RNA-seq transcriptome sequencing

analysis to identify dysregulated metabolic pathways and key genes

based on HCD-57 cells transformed by SHP2-D61Y or -E76K. We

found that DEGs caused by the expression of mutant SHP2 were

mainly enriched in metabolic pathways, especially glutathione

metabolism and biosynthesis of amino acids pathways. Importantly,

we found that the biosynthesis of amino acids pathway was

significantly activated in HCD-57 cells expressing SHP2-D61Y and

SHP2-E76K. In addition, our data showed that the mRNA expression

of ASNS, PHGDH, PSAT1, and SHMT2 involved in asparagine,

serine, and glycine biosynthesis were significantly increased in cells

expressing mutant SHP2. Furthermore, our analysis found that

PSAT1, PHGDH, and SHMT2 were also key genes leading to the

upregulation of carbon metabolism, as well as glycine, serine, and
A B

DC

FIGURE 1

Basic transcriptomic analysis profile among mutant-SHP2 transfected cells and parental HCD-57 cells deprived EPO. (A) PCA plots of DEGs identified in
HCD-57 cells expressing SHP2-D61Y and -E76K compared to parental HCD-57 cells. (B) The number of DEGs (up-regulated and down-regulated) in
two compared groups. FDR<0.05, |log2FC|>1. (C) Heatmap of hierarchical clustering results for all identified DEGs at SHP2-D61Y, SHP2-E76K and
parental HCD-57 cells (red, up-regulated; blue, down-regulated). (D) Venn diagram of the numbers of DEGs in HCD-57 vs SHP2-D61Y and HCD-57
vs SHP2-E76K.
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threonine metabolism pathways. These findings suggest that gain-of-

function mutants of SHP2 might promote serine synthesis by

activating the expression of PSAT1 and PHGDH, and promote

glycine biosynthesis by activating the expression of SHMT2 for

leukemia initiation and progression.

Reprogramming of metabolic pathways ensures the survival and

proliferation of cancer cells in a nutrient-deficient environment (20).

Besides, immune cell metabolic reprogramming alters immune cell

function by interfering with critical transcriptional and post-

transcriptional activation mechanisms, to keep growing tumors from

being attacked by the immune system (20, 21). Alterations in

carbohydrate metabolism in tumor cells have been reported. Tumor

cells take up and use more glucose than they need, which is known as

the Warburg effect (22). Recently, the amino acid dependence of tumor

cells has received more andmore attention (23). Amino acids have been
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demonstrated to be the dominant nitrogen source for hexosamines,

nucleotides, and other nitrogenous compounds in rapidly proliferating

cells (24, 25). Indeed, like glucose, there are major differences in the

uptake and secretion of several amino acids in tumors relative to

normal tissues. Compared to normal tissues, tumors require a large

number of amino acids for bioenergetic, biosynthetic, and redox

balance support (26, 27). This high demand is not limited to essential

amino acids, but also for nonessential amino acids (NEAA) (24, 27).

NEAA are not only components of proteins but also intermediate

metabolites fueling multiple biosynthetic pathways. For example,

glycine is synthesized from serine, threonine, choline, and

hydroxyproline, and is degraded through the glycine cleavage system,

serine hydroxymethyltransferase, and conversion to glyoxylate (28). In

addition, glycine is utilized for the biosynthesis of glutathione, heme,

creatine, nucleic acids, and uric acid (28).
A

B

C

FIGURE 2

Enrichment analyses of all DEGs in HCD-57 vs SHP2-D61Y and HCD-57 vs SHP2-E76K. (A) Top 10 biological processes based on descending order by
number of DEGs through GO analysis. (B) Top 10 pathways enriched by KEGG enrichment analysis. (C) Top 10 biological pathways and processes
enriched by Reactome analysis.
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The serine synthesis pathway (SSP) has been widely reported as a

critical pathway enabling cancer cell proliferation and metastasis. Serine

is a central precursor of biosynthetic metabolism, including being

charged onto transfer RNAs for protein synthesis, providing head

groups for sphingolipid and phospholipid synthesis, and serving as a

precursor for cellular glycine and one-carbon unit (29). PHGDH is a

rate-limiting enzyme for de novo serine biosynthesis and is mainly up-

regulated to active serine biosynthesis. A high PHGDH expression has

been extensively reported in several tumors, particularly breast and
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melanoma, and its high expression in these tumors is associated with

poor prognosis (27). Importantly, its knockdown and silence exhibit

obvious anti-tumor responses both in vitro and in vivo (30). PSAT1 is

the transaminase for serine. It catalyzed the phosphohydroxypyruvate

oxidized by PHGDH to produce phosphoserine, which is then

dephosphorylated by 1-3-phosphoserine phosphatase (PSPH) to form

serine. PSAT1 expression is elevated in colon cancer and lung

adenocarcinoma, and has been shown to enhance cell proliferation,

metastasis, and chemoresistance (31, 32).
A

B C

FIGURE 3

Pathways for metabolism-specific dysregulation caused by mutant SHP2 expression. (A) Top 10 enriched pathways related to metabolism based on
KEGG enrichment analysis for all DEGs. GSEA plots of (B) Glutathione metabolism and (C) Biosynthesis of amino acids target genes on HCD-57
expressing SHP2-D61Y or -E76K vs parental cells. Normalized enrichment score (NES), nominal P-value and FDR Q-values are indicated.
TABLE 1 List of metabolic pathways significantly enriched both in HCD-57 cells expression SHP2-D61Y and -E76K (P<0.05).

Pathways HCD-57 vs SHP2-D61Y HCD-57 vs SHP2-E76K

Name KEGG-B-Class DEGs P-
value

Q-
value

NES
(GSEA) DEGs P-

value
Q-

value NES

Metabolic pathways Global and overview maps 259 0.0000 0.0000 NA 226 0.0000 0.0004 NA

Glutathione metabolism Metabolism of other amino acids 23 0.0000 0.0005 -1.1912 19 0.0001 0.0090 -1.1279

Biosynthesis of amino acids Global and overview maps 23 0.0000 0.0030 1.6843 19 0.0004 0.0217 1.4097

Carbon metabolism Global and overview maps 26 0.0014 0.0748 1.5362 19 0.0450 0.2511 1.2666

One carbon pool by folate
Metabolism of cofactors and

vitamins
7 0.0041 0.1219 0.8887 7 0.0021 0.0486 -0.7613

Pyrimidine metabolism Nucleotide metabolism 13 0.0124 0.2027 -0.8285 7 0.0093 0.1126 -0.8684

Glycine, serine and threonine
metabolism

Amino acid metabolism 10 0.0200 0.2634 1.2259 12 0.0009 0.0302 1.0145

Sulfur metabolism Energy metabolism 4 0.0309 0.3111 NA 4 0.0213 0.1769 NA

Purine metabolism Nucleotide metabolism 23 0.0451 0.3758 0.8631 24 0.0074 0.1061 -0.9653
fronti
The threshold of significant differentially expressed genes (DEGs) was set as FDR<0.05, |log2FC|>1. P-value and Q-value were calculated from KEGG analysis. Normalized Enrichment Score (NES)
were obtained from Gene Set Enrichment Analysis (GSEA).
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Serine and glycine metabolism are closely linked, as glycine is

directly generated from serine via the serine hydroxymethyltransferase

enzymes SHMT1 and SHMT2 (24). Importantly, the conversion of

serine to glycine provides one-carbon units, which provide the necessary

proteins, nucleic acids, lipids, and other biological macromolecules to

support tumor growth (27). Serine, glycine, and their relation to one-

carbon metabolism are highly relevant aspects of tumor metabolism

(33). The directionality of serine/glycine conversion is a significant factor

for cancer cell metabolism and evidence indicates that mitochondrial

SHMT2 is the main serine-glycine converting enzyme (34). SHMT2 is

upregulated in various cancer cells, and its depletion could trigger ROS-

dependent mitochondria-mediated apoptosis (35).

ASNS converts aspartate and glutamine to asparagine and

glutamate through an ATP-dependent amidotransferase reaction

(36). Asparagine plays a crucial regulatory role in conditions of

glutamine depletion (37). The precise role of asparagine in

modulating tumor growth is unknown (38). ASNS is frequently up-

regulated in tumors and is associated with poor prognosis (37, 39). In

acute lymphoblastic leukemia (ALL), primary cells and many ALL cell

lines exhibit a low expression level of ASNS (40). Su et al. found that

different cells and patients expressed different amounts of ASNS
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mRNA and suggested it should pay attention to the differentiation

of mRNA, protein content, and kinase activity in ASNS (41). Besides,

Hutson et al. demonstrated that ASNS mRNA content increased in

cells deprived of free amino acids (42). Later studies have also shown

that endoplasmic reticulum stress increases ASNS transcription via

the unfolded protein response (43). Ye et al. concluded that activation

of ASNS by ATF4 with amino acid limitation may serve a vital

biological process for tumor initiation and growth (44).

Exploring the metabolic adaptation mechanisms of uncontrolled

tumor proliferation led by driver mutations has become a hot topic in

cancer research. Preclinical research and clinical practice have shown

therapeutic benefits by targeting tumor amino acid metabolism. One

example is asparaginase that depletes both asparagine and glutamine

in serum, which has been widely used to treat childhood acute

lymphoblastic leukemia (45). A detailed understanding of the

metabolic adaptation mechanisms of tumor cells may help the

discovery of novel therapeutic targets, especially for relapsed and

refractory neoplasms including SHP2-mutant JMML. The

identification of specific driver mutation-dependent metabolic

vulnerabilities is the bottleneck for the precise tumor treatment,

which requires further investigation in the further.
A B

FIGURE 4

Differential gene analysis involved in the biosynthesis of amino acids pathway caused by mutant SHP2 expression. (A) Venn diagram indicating the
overlap dysregulated genes in the biosynthesis of amino acids pathway in HCD-57 vs SHP2-D61Y and HCD-57 vs SHP2-E76K. (B) Heatmap of 13 DEGs
shared in both comparisons in the biosynthesis of amino acids metabolites pathway.
TABLE 2 FPKM values of 13 genes commonly dysregulated in biosynthesis of amino acids pathway in HCD-57 cells expression SHP2-D61Y and -E76K.

Symbol ENO11 ALDOA PGAM1 ENO12 CTH PYCR1 SDSL

HCD-57 75.26 122.95 18.87 55.07 0.80 1.86 7.60

SHP2-D61Y 633.94 1349.77 239.24 527.25 15.18 8.98 36.05

SHP2-E76K 195.85 281.77 56.60 136.91 5.30 4.64 20.00

Symbol GPT2 ALDH18A1 SHMT2 PHGDH PSAT1 ASNS

HCD-57 2.72 36.96 65.34 61.91 48.00 104.82

SHP2-D61Y 13.12 88.33 159.39 231.75 192.18 318.86

SHP2-E76K 7.11 100.42 165.38 183.02 169.66 305.13
ENO11, Enolase 1, alpha non-neuron; ENO12, Enolase 1B, retrotransposed.
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L-asparaginase, which hydrolyzes asparagine into aspartic acid and ammonia, is

frequently used to treat acute lymphoblastic leukaemia in children. When

combined with other chemotherapy drugs, the event-free survival rate is 90%.

Due to immunogenicity and drug resistance, however, not all patients benefit from

it, restricting the use of L-asparaginase therapy in other haematological cancers.

To solve the problem of immunogenicity, several L-ASNase variants have emerged,

such as Erwinia-ASNase and PEG-ASNase. However, even when Erwinia-ASNase is

used as a substitute for E. coli-ASNase or PEG-ASNase, allergic reactions occur in

3%-33% of patients. All of these factors contributed to the development of novel L-

ASNases. Additionally, L-ASNase resistance mechanisms, such as the methylation

status of ASNS promoters and activation of autophagy, have further emphasized

the importance of personalized treatment for paediatric haematological

neoplasms. In this review, we discussed the metabolic effects of L-ASNase,

mechanisms of drug resistance, applications in non-ALL leukaemia, and the

development of novel L-ASNase.

KEYWORDS

L-asparaginase, asparagine synthetase, metabolic, drug resistance, childhood leukaemia
Introduction

L-asparaginase (L-ASNase), an enzyme that hydrolyzes asparagine, is one of the most

successful drugs for metabolic targeting to date and one of the most important

chemotherapeutic drugs in standardized regimens for childhood ALL. L-ASNase is

essential for improving the complete remission rate and long-term survival in children

with ALL. In the moderate/low-risk group mainly according to the treatment response of 15-

19 days and the level of minimal residual disease in 29-45days, event-free survival and overall

survival rates can reach 90% when combined with other chemotherapeutic drugs (1–3). L-

ASNase (L-ASNase) has been shown to have anticancer activity that depends on its ability to

hydrolyse asparagine since it was discovered in guinea pig serum in 1953 (4–7). In 1966,

Dolowy et al. first reported complete remission in a case of refractory childhood acute
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lymphoblastic leukaemia (ALL) treated with guinea pig-derived L-

ASNase (8). In 1970, Clarkson et al. first reported the treatment of

ALL with purified E. coli-derived L-ASNase (E. coli-ASNase) and the

induction of remission (9). In the following decades, L-ASNase was

widely used in the treatment of ALL. Currently, the clinically used L-

ASNases include E. coli-ASNase, Erwinia-ASNase, and PEG-ASNase,

among which PEG-ASNase has the longest half-life and lowest

immunogenicity (5, 10). Nevertheless, allergic reactions to L-

ASNase still occur in 30%-70% of patients, which limits its efficacy

(11). To provide new insights into using L-ASNase in treating

paediatric leukaemia, we discussed the metabolic effects of L-

ASNase, mechanisms of drug resistance, applications in non-ALL

leukaemia, and the development of novel L-ASNase in this review.
Metabolic effects of L-ASNase on
leukaemic cells

Tumour cells have different metabolic patterns compared to

normal cells. This metabolic pattern is manifested by increased

glycolysis, glucose uptake, and uptake and catabolism of amino

acids (12–14). Metabolic reprogramming allows tumour cells to

show resilience in hypoxic and nutrient-deficient environments. At

the same time, however, such metabolic alterations also make tumour

cells exhibit specific vulnerabilities, such as an increase in certain

specific metabolic demands (15). The increased metabolic demands

determine the importance of glucose and amino acids in tumour

metabolism. Unlike normal cells, amino acids that are not essential to

normal cells may be essential to tumour cells because tumour cells

usually lose the ability to synthesize these amino acids de novo,

enabling the amino acid deprivation therapy.

Asparagine is a nonessential amino acid involved in protein

synthesis for normal cells, which can be obtained from food or

produced by the combination of aspartate acid with ammonia

catalysed by asparagine synthase (ASNS) (16, 17).Different from

normal cells, due to the lack of ASNS, leukaemia cells frequently fail

to synthesize asparagine and therefore must rely on the host to

supply asparagine for their protein synthesis requirements. By

catabolizing asparagine in serum, L-ASNase can expose leukaemia

cells to an asparagine-deficient environment, and thus affecting

protein synthesis in leukaemic cells and leading to their growth

inhibition or death (5, 16–20). In addition, Hermanova et al. further

demonstrated the molecular mechanism by which L-ASNase inhibits

protein synthesis in leukaemic cells (21). The mammalian target of

rapamycin protein complex 1 (mTORC1) plays a central role in the

amino acid response. RagA/RagB switches from a GDP-bound state to

a GTP-bound state as amino acid levels rise, which activates mTORC1,

and in turn stimulates a series of downstream reactions, including

protein synthesis (22). However, it was recently discovered that RagB-

expressing cells can still activate mTORC1 even in an amino acid-

deficient environment (23). By treating wild-type RagB cells and RagB-

mutant cells (in a permanent GTP-bound state) separately with L-

ASNase and assaying the levels of the mTORC1 downstream molecule

p-S6 protein, Hermanova et al. found that wild-type RagB cells had

significantly lower p-S6 protein levels, while RagB-mutant cells did not

show significant changes in p-S6 protein levels. That is, L-ASNase can

inhibit protein synthesis by inhibiting RagB-mTORC1 (21) (Figure 1).
Frontiers in Oncology 0264
L-ASNase also has glutaminase (GLNase) activity that can

hydrolyze glutamine. In the presence of ASNS, glutamine can act as

an amino donor to facilitate the production of aspartic acid into

asparagine. Therefore, the hydrolysis of glutamine by L-ASNase also

contributes to the reduction of asparagine levels, improving the

efficacy (16, 19, 24) (Figure 1). However, whether the anti-

leukaemic effect of L-ASNase depends on GLNase activity is

controversial (25–32). First, Offman and Parmentier et al.

demonstrated that the killing effect of L-ASNase on leukaemic cells

was reliant on GLNase activity and that the cytotoxicity of L-ASNase

on leukaemic cells increased with increasing GLNase activity (25, 29).

Chan et al. also demonstrated in a recent study that L-ASNase with

GLNase activity was more cytotoxic to leukaemic cells and could

better prolong the survival of mice in an ASNS-negative SUP- B15

xenograft model (32). In contrast, a previous study showed that L-

ASNase without GLNase activity could achieve the same level of

antitumour effects as wild-type L-ASNase in ASNS-negative

leukaemia cell lines (30). Nguyen et al. also demonstrated that L-

ASNase mutants with low GLNase activity had the same level of

antitumour activity as L-ASNase mutants with high GLNase activity

in an ASNS-negative SUP-B15 leukaemia cell xenograft model (31).

However, the L-ASNase in their research is not completely devoid of

GLNase activity. Therefore, we believe that GLNase activity of L-

ASNase is required for the killing effect of L-ASNase in ASNS-

negative tumour cells, but at what level of GLNase activity needs to

be maintained is a question that require confirmation through

more experiments.

In addition to protein synthesis and amino acid metabolism,

Hermanova et al. found that L-ASNase can also affect the energy

metabolism of leukaemic cells, including increased fatty acid

oxidation and inhibition of glycolysis. They suggested that the

inhibition of mTORC1 by L-ASNase was responsible for inducing

fatty acid oxidation. Moreover, they found that fatty acid oxidation

inhibitors and L-ASNase can act synergistically to kill cells (21).

Therefore, the combination regimen of fatty acid oxidation inhibitors

with L-ASNase may provide a brand-new option for the treatment of

ALL. Furthermore, Takahashi et al. demonstrated in their study that

L-ASNase can inhibit glycolysis in leukaemic cells (18), but the precise

molecular mechanism of this is unknown. In general, L-ASNase can

affect the energy metabolism of leukaemia cells, which in turn may

hurt the efficacy of L-ASNase. Clarifying the specific mechanism will

provide new selections to ALL treatment, and more research on

combined treatment regimens targeting energy metabolism such as

fatty acid oxidation will bring new hope to ALL treatment.
Mechanism of drug resistance

Asparagine synthase

Studies on the mechanism of L-ASNase resistance have been

widely conducted. Numerous studies have found elevated expression

of ASNS in L-ASNase-resistant tumour cells. It has been confirmed

that L-ASNase-resistant cells express higher levels of ASNS than L-

ASNase-sensitive cells (33–36). Scherf and Holleman et al. reported

that L-ASNase-sensitive cells express lower levels of ASNS mRNA in

vitro (37, 38). In contrast, however, the results of Fine et al. did not
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find a correlation between the expression level of ASNS mRNA and

sensitivity to L-ASNase (39). In B-lineage lymphocytic leukaemia cells

carrying the TEL-AML 1 translocation, Stams et al. also obtained the

same results as Fine et al. (40). Even in other studies, higher

expression levels of ASNS mRNA were found in L-ASNase-

sensitive TEL-AML1-positive cells compared with TEL-AML1-

negative cells that were resistant to L-ASNase (41), but they did not

further elucidate the relationship between TEL-AML1 fusion genes

and ASNS gene expression. In addition, Su et al. stated that high

ASNS expression did associate with resistance to L-ASNase. But they

suggested that it should be the ASNS protein, rather than the mRNA,

to be tested as indicators of L-ASNase resistance as there was no

significant correlation between the levels of ASNS mRNA and ASNS

protein (42). In any case, these studies illustrate the point that ASNS

expression confers L-ASNase resistance in leukaemic cells.

Other studies have revealed that the methylation status of the

ASNS promoter region can affect the transcription of ASNS and thus

affect the sensitivity of L-ASNase. ASNS is part of the amino acid

response pathway that is activated by amino acid deficiency (43, 44).

When asparagine is deprived, tumour cells can respond via the

GCN2-ATF4 pathway. ATF4 binds to the ASNS promoter in a

hypomethylated state and induces its expression (45). Jiang et al.

found that the hypermethylated state of the ASNS promoter restricted

the binding of the transcription factor ATF4 upon amino acid

depletion, and thereby inhibiting ASNS expression (46). Overall,

amino acid deficiency-induced ASNS expression requires both
Frontiers in Oncology 0365
GCN2 activation and hypomethylation of the ASNS promoter

region, which enable ATF4 binding to drive ASNS expression. A

cohort study by Akahane et al. further confirmed that the

hypomethylation status of the ASNS promoter region is associated

with L-ASNase resistance. Their analysis of 75 Japanese children with

T-ALL revealed an intermediate (33.3% <methylation <66.7%) or low

(<33.3%) methylation status of the ASNS promoter region in 92% of

refractory/relapsed cases (47). In addition, Touzart et al. found ASNS

to be expressed at low levels in TLX1+ T-ALL cells (high ASNS

methylation levels). TLX1+ T-ALL was more sensitive to L-ASNase

than the TLX-CCRF-CEM cell line (low ASNSmethylation level) (48).

Recently, the important role of amino acid stress response genes in L-

ASNase sensitivity was further confirmed by Ferguson et al., who

identified a novel L-ASNase resistance gene, SLC7A11, whose high

expression leads to L-ASNase sensitivity in cancer cells (49). In

conclusion, these studies all suggested that the hypomethylation

status of the ASNS promoter region contributes to the expression of

ASNS induced by L-ASNase treatment, and thus conferring L-

ASNase resistance to leukaemic cells. However, there are limited

cohort studies to refer to at present, therefore, additional larger cohort

studies are needed to further confirm the possibility of ASNS

promoter region methylation as a predictor of treatment response.

Meanwhile, the factors affecting the methylation status of the

ASNS promoter region have been reported. Worton et al. reported

that L-ASNase induces ASNS promoter demethylation, which confers

drug resistance to leukaemic cells (50). However, the mechanism by
FIGURE 1

The mechanism of L-ASNase. L-ASNase depletes Asn, and GLNase coactivity hydrolyzes Gln, which further reduces Asn, leading to apoptosis of
leukaemia cells. L-ASNase can inhibit RagB-mTORC1 and thus inhibit protein synthesis. Asp, aspartic acid; Asn, asparagine; Gln, glutamine; Glu, glutamic
acid; ASNS, asparagine synthetase; L-ASNase, L-asparaginase; GS, glutamine synthetase; GLNase, glutaminase.
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which L-ASNase induces demethylation has not been further

confirmed. The study by Akahane et al. focused on the significance

of SPI1 fusion in the methylation status of ASNS. In their cohort

study, all seven SPI1 fusion cases had an ASNS promoter

hypomethylation status, and the ASNS gene expression levels were

significantly higher than those of SPI1 fusion-negative cases (47). This

suggests that genetic modifications may play an important role in the

methylation status of the ASNS promoter region. Yet, it is critical to

confirm the relationship between poor prognosis-associated fusion

genes and ASNS gene methylation status and the molecular

mechanism of L-ASNase-induced demethylation, providing

information for treatment option and improving the prognosis for

ALL patients.
Energy metabolism and autophagy

Several recent studies showed that L-ASNase resistance is related to

phosphatase and tensin homologue (PTEN) deficiency and

phosphatidylinositol-3 kinase (PI3K)/Akt/mTOR signalling pathway.

PTEN is a major negative regulator of the PI3K/Akt/mTOR signalling

pathway. Deletion of PTEN can occur in 20% of children with T-ALL

and plays an important role in the development and prognosis of T-

ALL in children (51–53). Hlozkova et al. proposed that the metabolic

pattern of leukaemic cells is associated with L-ASNase resistance after

investigating the effect of L-ASNase treatment on the extensive

metabolic reprogramming of leukaemic cells. They found that cells

with a high glycolytic response are resistant to L-ASNase (54). They

subsequently confirmed the relationship between glycolytic levels and

L-ASNase sensitivity by investigating the effects of PTEN deficiency on

the metabolism of leukaemic cells and changes in L-ASNase sensitivity.

Furthermore, a recent study by Hlozkova et al. found that, compared to

PTEN wild-type cells, PTEN-deficient T-ALL cells have a higher

glycolytic function and overactivated Akt, and these changes made T-

ALL cells resistant to L-ASNase. Meanwhile, the resistance of PTEN-

deficient cells to L-ASNase could be improved by inhibiting Akt

signalling (53). These results suggest that Akt inhibitors may

contribute to the treatment of T-ALL patients with PTEN mutations,

but further experiments are still needed for verification.

Amino acid deprivation has been shown to induce the activation

of autophagy, which is considered a self-protective mechanism in

tumour cells (55–57). Hermanova et al. showed that L-ASNase can

induce the activation of protective autophagy in leukaemia cells by

inhibiting mTORC1 (21). As in previous studies (58), they suggested

that autophagy could counteract nutrient imbalance by recycling

amino acids, thus resisting the cytotoxicity of L-ASNase (21).

Takahashi et al. also reported that L-ASNase treatment reduced

glycolysis in leukaemia cells while causing mitochondrial damage

and activating autophagy. However, they concluded that the function

of L-ASNase-induced autophagy was to eliminate mitochondrial

damage and thus reducing ROS production rather than amino acid

recycling. Notably, in this study, they demonstrated that by inhibiting

autophagy, the cytotoxicity of L-ASNase could be enhanced and such

synergistic effect works through the ROS-p53 positive feedback loop

(18). In addition, Takahashi et al. and Polak et al. further confirmed

that autophagy inhibitors and L-ASNase have synergistic anti-

leukaemic effects (59, 60). The activation of autophagy is one of the
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mechanisms leading to L-ASNase resistance, but the role of

autophagy in this mechanism still needs to be further refined. The

abovementioned studies suggest that timely detection of autophagy

activation during L-ASNase treatment would be more helpful in the

selection of treatment regimens, and the combination of L-ASNase

with autophagy inhibitors may provide better clinical outcomes.
Host factor

The role of the bone marrow
haematopoietic microenvironment

The tumour microenvironment affects the cytotoxicity of L-

ASNase (61). A study by Iwamoto et al. revealed the interaction

between leukaemic cells and their surrounding microenvironment.

The expression of ASNS is much higher in normal bone marrow

mesenchymal stem cells (MSCs) than in leukaemic lymphoblastoid

cells. In vitro, leukaemic cells can acquire resistance to L-ASNase by

receiving asparagine from MSCs (62). Glutamine synthetase

expression is increased in bone marrow adipocytes after induction

of chemotherapy with L-ASNase, producing more glutamine and thus

protecting leukaemic cells from L-ASNase (63). Future studies

focusing revealing the molecular mechanism of the interaction

between leukaemia cells and the haematopoietic microenvironment

in the bone marrow will further elucidate the anti-leukaemic effect of

L-ASNase and hence improving the L-ASNase therapy.

Neutralizing antibodies and silent inactivation
Due to its immunogenicity, an L-ASNase treatment can cause an

immune response, which is associated with the production of

neutralizing antibodies. Neutralizing antibodies can inactivate L-

ASNase, and thereby reducing efficacy. The production of

neutralizing antibodies in patients without clinical symptoms is

known as silent inactivation, which is usually not clinically evident

and thus difficult for early detection (11, 64, 65). Although it has been

suggested that patients with allergic reactions to E. coli-ASNase and

PEG-ASNase should be switched to Erwinia-ASNase (66), 3-33% of

patients can develop an immune response against Erwinia-ASNase,

resulting in neutralizing antibodies against L-ASNase and thus

resistance to L-ASNase (67, 68).

Other pathways
It has been shown that leukaemic cells can acquire L-ASNase

resistance through the OPRM1-cAMP-caspase pathway. Kang et al.

identified the opioid receptor m1(OPRM1) as a key factor for L-

ASNase resistance in paediatric ALL using unbiased genome-wide

RNAi. They analysed OPRM1 expression levels in primary leukaemic

cells from five children with ALL in relation to L-ASNase sensitivity

and found that cells with low levels of OPRM1 were more resistant to

L-ASNase (69). In addition, Lee et al. identified the Huntington-

associated protein 1 gene (HAP1) as an L-ASNase resistance gene,

and by examining the relationship between HAP1 levels and L-

ASNase sensitivity in the cells of six ALL patients, they found that

the lower HAP1 level, the more resistant they were. Furthermore, they

found that HAP1 deletion prevented Ca2+ release from the

endoplasmic reticulum and downregulated the Calpain-1-Bid-

caspase-3/12 pathway, conferring L-ASNase resistance in leukaemic
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cells (70). Additionally, a recent study demonstrated that if the Wnt

pathway is blocked, cells may degrade proteins via GSK3-dependent

protein ubiquitination and proteasome degradation pathways to

synthesize asparagine to counteract the cytotoxicity of L-ASNase (71).

In conclusion, ASNS expression remains a pivotal factor in the

resistance of L-ASNase in leukaemic cells, and ASNS expression is

closely related to the methylation status of its promoter region. In

addition, activation of autophagy, high glycolysis levels, or inhibition

of apoptotic signalling pathways can all promote L-ASNase resistance.

The gradual uncovering of L-ASNase resistance mechanisms further

emphasizes the significance of individualized therapy and continues

to provide new ideas for the further development of individualized

combination therapy regimens.
Application of L-ASNase in other
childhood leukaemia

Although L-ASNase is currently used primarily for the treatment

of ALL and some NK/T-cell lymphomas, there is growing evidence

that L-ASNase can play a critical role in the treatment of other

childhood leukaemias (26).

Dübbers et al. found that leukaemic cells from M1, M4, and M5

subtypes had negative ASNS staining among all FAB subtypes of

AML and that AML-M5 had the lowest ASNS activity (72). This is in

agreement with the results of Okada et al., who found L-ASNase to be

effective against specific subtypes of AML (M1, M4, M5) in vitro (73).

Additionally, according to Buaboonnam et al., patients with

refractory/relapsed AML who received treatment with L-ASNase in

combination with MTX had 1- and 2-year survival rates of 35.6% and

17.8%, respectively (74). Whether this regimen can be used as a

treatment for patients with refractory/relapsed AML after intensive

therapy still needs further study. More recently, Chen et al. reported

that the combination of L-ASNase with MIT and Ara-C for AML

could enhance the inhibition of tumour cell proliferation (75). It is the

current belief that the toxic effect of L-ASNase on AML may be

related to GLNase activity. Glutamine is a nutrient that AML cells

require. L-ASNase can remove glutamine and thus inhibit the growth

of AML cells. However, L-ASNase simultaneously promotes the

production of glutamine synthetase, leading to L-ASNase resistance

(76, 77). Thus, further research is still needed to clarify the role of the

GLNase activity of L-ASNase. Furthermore, as in ALL, it has been

shown that the bone marrow haematopoietic microenvironment

protects AML cells. Cells in the bone marrow microenvironment

can either release ASNS to counteract L-ASNase action or release

lysosomal cysteine protease B (CTSB) to inactivate L-ASNase, which

confers L-ASNase resistance (78)

The potential of L-ASNase in CML treatment has been

uncovered. Song et al. found that L-ASNase inhibited growth and

induced apoptosis in the human CML cell Lines K562 and KU812,

among which the apoptosis induction of K562 cells by L-ASNase was

dependent on caspase3 (79). This discovery makes it possible to use L-

ASNase in the treatment of CML. Trinh et al. also demonstrated that

L-ASNase could inhibit the growth of CML cells, and the combination

of L-ASNase and imatinib can significantly induce CML cell death by

downregulating antiapoptotic factors such as Bcl-2 and upregulating
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proapoptotic factors such as Bim, and thereby eradicating CML stem

cells (80). A recent study by Konhauser et al. also demonstrated the

synergistic effect of L-ASNase in combination with etoposide on

killing K562 cells (81).

With the continuous development of studies on the metabolic and

nonmetabolic effects of L-ASNase on paediatric leukaemia, studies on

the therapeutic effects of L-ASNase on other non-ALL leukaemia are

proliferating. These studies suggest that L-ASNase may provide a new

option for the treatment of other paediatric leukaemias. These results

are based on the enzymatic activity of L-ASNase, which depletes

asparagine and glutamine in the blood and inhibits mTOR, which in

turn affects protein synthesis and induces apoptosis. Meanwhile, these

studies found that L-ASNase caused the activation of protective

autophagy in tumour cells, so the combination of L-ASNase and

autophagy inhibitors will benefit both ALL patients and non-

ALL patients.

Novel L-asparaginase

As mentioned above, L-ASNase is a xenogeneic protein agent that

is highly immunogenic. Efficacy is compromised during L-ASNase

treatment because of immunological or nonimmunological side

effects. Erwinia-ASNase is often chosen as an alternative treatment

for patients with E.coli-ASNase allergy (82), and PEG-ASNase has

been introduced into the clinic for its longer half-life and lower

immunogenicity. However, none of these variants can completely

solve the problem. Neutralizing antibodies can still be produced and

therefore inactivating L-ASNases (83, 84). To address these issues,

several approaches have been used to develop novel L-ASNase

preparations, such as reduced GLNase coactivity of L-ASNase,

enzyme engineering modifications, and vector packaging.

Since most of the nonimmunological side effects of L-ASNase are

attributed to GLNase activity, reducing the GLNase coactivity of L-

ASNase may effectively ameliorate the side effects of L-ASNase.

Consequently, L-ASNase variants with or without negligible

GLNase activity were generated. Wolinella succinogenes-derived L-

ASNase (WOA) was the first reported L-ASNase variant with low

GLNase activity that did not suppress immune responses in mice (85–

87). Reinert et al. showed no significant changes in glutamine in the

liver and spleen of mice treated with theWOA variant compared to L-

ASNase (88). Recent studies have also identified a guinea pig-derived

humanized variant of L-ASNase that is completely devoid of GLNase

activity. This variant has reduced immunogenicity while maintaining

anti-leukaemic activity (89, 90).

Enzyme engineering has been widely employed to change the

characteristics of L-ASNase in search of L-ASNase with low

immunogenicity, a longer half-life, and lower GLNase activity.

Since L-ASNase can be cleaved by CTSB and aspartate

endopeptidase (78, 91), Offman et al. used site-directed mutagenesis

to design an L-ASNase variant that is resistant to CTSB cleavage and

has lower immunogenicity. They also designed a variant with low

GLNase activity, N24A/R159S, which reduced the toxicity of L-

ASNase (25). Furthermore, in a recent study, Maggi et al. designed

an N24S mutant with improved protease resistance and

thermostability in response to the instability and brief half-life of E.

coli-ASNase (92).
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In addition to the above methods, carrier packaging can also be

used to reduce the immunogenicity of L-ASNase and make it more

stable in vivo. Common carriers include erythrocytes, liposomes,

nanocapsules, and microcapsules. The performance of these L-

ASNases has also been demonstrated in vivo and in vitro (93–95).

For instance, because it is encapsulated within cells, Eryaspase, a

product that encapsulates E. coli-ASNase into erythrocytes, has a long

half-life similar to that of erythrocytes and has low immunogenicity

(96–98). Last year, Eryaspase was approved by the FDA for the

treatment of ALL patients who are allergic to PEG-ASNase (99).
Discussion

In summary, L-ASNase is still the cornerstone drug for the

treatment of paediatric ALL. In addition to affecting the protein

synthesis and amino acid metabolism of ALL cells, L-ASNase can

affect energy metabolism. Also, changes in energy metabolism and

autophagy in ALL cells may affect the efficacy of L-ASNase. The focus

of current research on the mechanism of L-ASNase resistance is

gradually shifting from the protein level to the gene expression

regulation level. Meanwhile, there are studies that elucidate the

relationship between leukaemia metabolic profiles and autophagy and

L-ASNase resistance. Although the mechanism of L-ASNase resistance

has not been fully elucidated to date, these studies suggested that the

combination of fatty acid oxidation inhibitors or autophagy inhibitors

and L-ASNase can provide better anti-leukaemic effects, which provide

brand-new options for the future treatment of childhood leukaemia.

The immunogenicity of L-ASNase is a reason for its drug

resistance. Using carrier packaging L-ASNase such as erythrocytes

and nanocapsules can effectively reduce its immunogenicity and

therefore L-ASNase can work better. The performance of these L-

ASNases has also been demonstrated in vivo. Moreover, the necessity

of GLNase activity for the anticancer effect of L-ASNase is still highly

controversial. Although the development of L-ASNase variants with

low GLNase activity continues, the necessity of GLNase activity and

the level of GLNase activity that should be maintained for L-ASNase

still needs to be further investigated. Moreover, some glutamine-
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dependent haematological tumours may not benefit from L-ASNase

variants without GLNase activity.

Finally, addressing the above issues will not only help to solve the

problem of ALL resistance to L-ASNase but also help to explain the

potential application of L-ASNase in other tumours.
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Background: Fms-like tyrosine kinase 3 (FLT3) gene mutations occur in

approximately 30% of all patients with acute myeloid leukemia (AML). Internal

tandem duplication (ITD) in the juxtamembrane domain and point mutations

within the tyrosine kinase domain (TKD) are two distinct types of FLT3

mutations. FLT3-ITD has been determined as an independent poor prognostic

factor, but the prognostic impact of potentially metabolically related FLT3-TKD

remains controversial. Hence, we performed a meta-analysis to investigate the

prognostic significance of FLT3-TKD in patients with AML.

Methods: A systematic retrieval of studies on FLT3-TKD in patients with AML was

performed in PubMed, Embase, and Chinese National Knowledge Infrastructure

databases on 30 September 2020. Hazard ratio (HR) and its 95% confidence

intervals (95% CIs) were used to determine the effect size. Meta-regression

model and subgroup analysis were used for heterogeneity analysis. Begg’s and

Egger’s tests were performed to detect potential publication bias. The sensitivity

analysis was performed to evaluate the stability of findings in meta-analysis.

Results: Twenty prospective cohort studies (n = 10,970) on the prognostic effect of

FLT3-TKD in AML were included: 9,744 subjects with FLT3-WT and 1,226 subjects

with FLT3-TKD. We found that FLT3-TKD revealed no significant effect on disease-

free survival (DFS) (HR = 1.12, 95% CI: 0.90–1.41) and overall survival (OS) (HR =

0.98, 95% CI: 0.76–1.27) in general. However, meta-regressions demonstrated that

patient source contributed to the high heterogeneity observed in the prognosis of

FLT3-TKD in AML. To be specific, FLT3-TKD represented a beneficial prognosis of

DFS (HR = 0.56, 95% CI: 0.37–0.85) and OS (HR = 0.63, 95% CI: 0.42–0.95) for

Asians, whereas it represented an adverse prognosis of DFS for Caucasians with

AML (HR = 1.34, 95% CI: 1.07–1.67).

Conclusion: FLT3-TKD revealed no significant effects on DFS and OS of patients

with AML, which is consistent with the controversial status nowadays. Patient

source (Asians or Caucasians) can be partially explained the different effects of

FLT3-TKD in the prognosis of patients with AML.
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Introduction

Acute myeloid leukemia (AML) is the most common acute

leukemia in adults with the features that poorly differentiated cells

from hematopoietic system infiltrate in bone marrow, blood, and

other tissues (1). Nowadays, it tends to be assumed that valuable and

accurate prognostic assessments benefit patients with AML by

providing optimized treatments for their survivals. Hence, more

and more recurrent genetic mutations, such as FLT3-ITD,

Nucleophosmin (NPM1), and CCAAT enhancer-binding protein

alpha (CEBPA), have been used to guide disease management and

refine individual prognosis.

Fms-like tyrosine kinase 3 (FLT3) is a potential prognostic genetic

marker, which encodes a class 3 receptor tyrosine kinase to plays a

crucial role in hematopoiesis. FLT3 gene mutations occur in

approximately 30% of all patients with AML (2). There are two

distinct forms of FLT3 mutations: internal tandem duplication (ITD)

in the juxtamembrane domain and point mutations within the

activation loop of the tyrosine kinase domain (TKD), affecting

D835 in most cases (3). These gain-of-function mutations lead to

ligand-independent activation of FLT3, which contributes to

uncontrolled proliferation of AML blasts (2, 4, 5). Numerous

studies have found that FLT3-ITD is an independent factor for

adverse prognosis (6). However, the prognostic value of FLT3-TKD

remains controversial due to the relatively low incidence and

limitations of single center studies (2). The relationship between

FLT3-TKD and cytoplasmic Src family tyrosine kinases has been

confirmed recently (7) while we have known about the associations

between Src family members and multiple nutrient metabolism,

including glucose (8), lipid (9), and glutamine (10). From our

perspectives, FLT3-TKD is regarded as a potentially metabolically

related mutation in tumorigenesis and progression of AML. For this

reason, we performed a meta-analysis within the published studies

before 30 September 2020 to investigate the prognostic significance of

FLT3-TKD in patients with AML.
Methods

Search strategy

Two independent investigators implemented a systematic

search in PubMed, Embase, and Chinese National Knowledge

Infrastructure (CNKI) databases systematically, with the last

search updated on 30 September 2020. The following terms

“(acute myeloid leukemia) or (acute myeloblastic leukemia) or

(acute myelocytic leukemia) or (acute myelogenous leukemia) or

(acute nonlymphoblastic leukemia) or AML”, “FLT3 or CD135 or

(fms-like tyrosine kinase 3) or (fetal liver kinase-2) or (fetal liver

kinase-3) or (human stem cell tyrosine kinase-1)”, “(tyrosine kinase

domain mutation) or (TKD mutation) or D835 or I836”, and

“prognosis or prognoses or (prognostic factors) or (prognostic

implication) or (prognostic element)” were retrieved in PubMed

entries in the National Institutes of Health and European Embase

databases without any limitation applied. The key words “急性髓系

白血病or急性髓性白血病or急性非淋巴细胞性白血病”, “FLT3”, and

“TKD突变” were retrieved in CNKI. The reference lists in retrieved
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studies and relevant reviews were also manually searched for more

eligible studies.
Selection criteria

All literature studies involved in AML and FLT3-TKD were

electronically retrieved for the next filter. Afterward, prospective

cohort studies were identified according to their titles and abstracts.

The full texts of the literature studies that fulfilled the inclusion

criteria were perused to validate their eligibility. Inclusion criteria

were as follows: (a) the evaluation of association between prognosis of

AML and FLT3-TKD; (b) untreated patients with AML were included

in study; (c) complete original materials with specific explanation of

sample size; (d) they provided data of all enrolled subjects on either or

both of overall survival (OS) and disease-free survival (DFS) after a

period of follow-up in the study; (e) with survival information based

on the FLT3 status: FLT3-TKD and wild type; and (f) prospective

cohort study focusing on human being. Exclusion criteria were as

follows: (a) not conforming to inclusion criteria; (b) abstract, review

article, letter, comment, and editorial; (c) duplicate publication of

previous publications; (d) family-based studies of pedigrees; (e)

without detailed FLT3 status data (FLT3-TKD and wild type); (f)

with incomplete specific explanation or without specific explanation

of sample size; and (g) studies were excluded if they focused

exclusively on acute promyelocytic leukemia (APL) (M3). For

multiple publications from a same population, the largest study was

included only to exclude duplicate studies or overlapping data.

According to the inclusion and exclusion criteria, the two

independent investigators accomplished study selection

independently by screening title, abstract, and full text. Any dissent

was solved by discussion. If agreement could not be reached, then a

third researcher was consulted. Four studies were discussed and

excluded after discussion (11–14).
Data extraction

The data of the eligible studies were extracted in duplicate by two

independent researchers. The data extracted comprised first author’s

name, publication year, diagnostic criteria for AML, the resource of

the subjects, genotyping methods, the number of subjects, the FLT3

status (FLT3-TKD or wild type) of subjects, the number of OS and/or

DFS from all subjects (if any), hazard ratio (HR) with 95% confidence

interval (CI) of OS and/or DFS, and the baseline data of all subjects in

all included prospective cohort studies [age, sex, patient source, other

mutations (if any), the usage of chemotherapeutics (if any), and so on]

(Table S1). HR and its 95% CI were extracted directly or calculated

the observed minus expected (O-E) according to the ratio of event or

were extracted by using Engauge Digitizer according to the Cox curve

(15). Various patient source descents were classified as Caucasian and

Asian. Two investigators would check the extracted data and reach to

consensus on all collected data. If a dispute existed, then original data

of the included studies would be rechecked and be discussed again to

reach consensus. If the dispute still existed, then the third

investigators would be appointed as the decider to adjudicate

the disagreements.
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Quality assessment

The Newcastle-Ottawa (NOS) scale was used to score the strength

of all included studies by the three independent investigators (16).

The scale has nine items classified into three major categories:

selection (four items), comparability (two items), and outcome

(three items) (Supplement 1. Method). In this scoring system,

selection, comparability, and outcome categories could be awarded

a maximum of four, two, and three points, respectively. High quality

was considered as six or more points that each cohort study scored.

Any discrepancies were resolved among authors. The results of

quality assessment are displayed in Table S2.
Publication bias and sensitivity analysis

Potential publication bias was checked by Begg’s funnel plots (17)

and Egger’s test (18). An asymmetric plot with p-value less than 0.05

was considered a significant publication bias. Moreover, sensitivity

analysis was performed on the pooled HRs to evaluate the effect of

each study, in which the results of the meta-analysis were recalculated

after removal of each study in a turn.
Data analysis

Among entire conduction of the meta-analysis, we strictly

abided by the PRISMA checklists as a guideline (19). All statistical

analyses were performed with Stata 16.0 software (StataCorp,

College Station, TX, USA). A two-tailed p < 0.05 was considered

significant except for specified conditions, where a certain p-value

was declared. HR and corresponding 95% CI were applied to assess

the prognostic impact of FLT3-TKD in patients with AML.

Furthermore, HR > 1 was considered as poorer prognosis in

patients with FLT3-TKD than patients with FLT3-WT, whereas

HR < 1 was considered as beneficial prognosis in patients with

FLT3-TKD than patients with FLT3-WT. The heterogeneity of the

studies was assessed by I2 statistic (I2 = 0%–25%, no heterogeneity;

I2 = 25%–50%, moderate heterogeneity; I2 = 50%–75%, large

heterogeneity; and I2 = 75%–100%, extreme heterogeneity) (20).

When the heterogeneity was statistically significant (I2 > 50%), the

random-effects model was used for assessing information;

otherwise, the fixed-effects was conducted (21). Heterogeneity was

analyzed by meta-regression model including age and patient

source, and subgroup analysis was stratified by age and patient

source. In addition, Begg’s and Egger’s tests were performed

to detect potential publication bias. Furthermore, sensitivity

analysis was conducted to determine the stability of findings in

meta-analysis.
Results

Study retrieval

The study selection process for the meta-analysis about the

prognosis of FLT3-TKD in AML is shown in Figure 1. Following
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the initial retrieval of 917 publications through database search (253

from PubMed, 638 from Embase, and 26 from CNKI), 696 relevant

publications were selected after the removal of duplicates. Moreover,

after a careful review of the title and abstract, 152 publications were

rejected because of their irrelevance to this meta-analysis. The

remaining 544 publications were full-text–reviewed; of these, 524

were excluded. The reasons for excluding are shown in Figure 1.

Finally, 20 prospective cohort study studies (22–41) consisting of

10,970 participants (FLT3-WT = 9,744; FLT3-TKD = 1,226) were

included in our meta-analysis. The general characteristics of the 20

studies are shown in Table 1, and additional information is shown in

Table S1.
The DFS and OS between FLT3-WT and
FLT3-TKD in all patients with AML

Before analysis, we determined two outcomes: one of them is

relapse of AML or death from AML relapse as the outcome of DFS

and the other one is death from all causes as the outcome of OS to

represent the prognosis of AML in this meta-analysis. In all the

patients with AML from included studies, we analyzed two outcomes

between the group with FLT3-WT and the group with only FLT3-

TKD in FLT3 gene in random-effects model. The pooled HR of DFS is

1.12 (95% CI: 0.90–1.41; I2 = 70.7%, p = 0.000) (Figure 2A). In same

model, the pooled HR of OS is 0.98 (95% CI: 0.76–1.27; I2 = 79.9%,

p = 0.000) (Figure 2B).
Meta-regression was used for analyzing
heterogeneity

Age and patient source were included in meta-regression model

for heterogeneity analysis. The coefficient of age is −0.005 (p = 0.497)

and 0.008 (p = 0.299) in patients of AML for DFS and OS,

respectively, and the coefficient of patient source is −1.004 (p =

0.015) and −0.358 (p = 0.324) in patients of AML for DFS and OS,

respectively (Table 2, Figure 3).
FIGURE 1

Article search and selection.
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The DFS and OS of patients with AML
between FLT3-WT and FLT3-TKD in the
Asian subgroup and in the Caucasian
subgroup

To further analyze heterogeneity, considering with the

background knowledge of FLT3-TKD, we conducted meta-analysis

in subgroups according to the patient source (ethnicity) of all

participants included (Table S1). The pooled HR of DFS is 1.34

(95% CI: 1.07–1.67; I2 = = 72.9%, p = 0.000) in the Caucasian

subgroup, and the pooled HR of DFS is 0.56 (95% CI: 0.37–0.85; I2

= 0.0%, p = 0.777) in the Asian subgroup (Figure 4A). The pooled HR

of OS is 1.11 (95% CI: 0.85–1.44; I2 = 80.5%, p = 0.000) in the

Caucasian subgroup, and the pooled HR of OS is 0.63 (95% CI: 0.42–

0.95; I2 = 5.1%, p = 0.368) in the Asian subgroup (Figure 4B).
Publication bias and sensitivity analysis

Begg’s and Egger’s tests have been used to detect any publication

bias that indicated that there was no significant bias between studies

of FLT3-TKD in prediction of DFS (p = 0.499 of Begg’s and p = 0.233

of Egger’s) and also of OS (p = 0.488 of Begg’s and p = 0.061 of
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Egger’s). Symmetrical Begg’s funnel plot was obtained (Figure 5). We

also conducted sensitivity analysis to examine the stability of the

meta-analysis to determine the influence of each study on pooled HRs

in patients with AML by deleting a single study in every model. It

showed no individual study affected the pooled HR of DFS

(Figure 6A) and OS (Figure 6B) in all patients with AML.
Discussion

In this meta-analysis, 20 prospective cohort studies (n = 10,970)

on FLT3-TKD in AML were included: 9,744 subjects with FLT3-WT

and 1,226 subjects with FLT3-TKD (22–41). The incidence of FLT3-

TKD in this meta-analysis was 11.2%, which was nearly consistent

with previous studies (approximately 7%–10% of all AML cases) (2).

Our results indicated that, within 20 cohort studies (n = 10,970)

included, the pooled HR of DFS was 1.12 (95% CI: 0.90–1.41; I2 =

70.7%, p = 0.000) and OS was 0.98 (95% CI: 0.76–1.27; I2 = 79.9%, p =

0.000), which revealed no significant effect of FLT3-TKD on DFS and

OS of patients with AML by random effect models. However, meta-

regressions demonstrated that patient source associated with the

prognosis effect of FLT3-TKD in patients with AML. To be specific,

FLT3-TKD represented a beneficial prognosis of DFS (HR = 0.56,
TABLE 1 Characteristics of studies included in the meta-analysis.

Code First Author Country/Region Year
Patient number DFS OS

FLT3-WT FLT3-TKD HR 95% CI p value HR 95% CI p value

1 Jeong Yeal Ahn USA 2013 49 4 1.820 0.64-5.23 0.3 1.430 0.19-10.78 0.727

2 C Allen UK 2013 319 35 NA NA NA 0.480 0.22-1.03 0.06

3 Costa Bachas Netherlands 2014 123 4 0.560 0.08-4.04 0.56 0.670 0.16-2.71 0.57

4 Ulrike Bacher Germany 2008 2935 147 1.380* 1.17-1.64 NA 2.010* 1.66-2.42

5 Claudia Bănescu Romania 2019 214 12 NA NA NA 0.900 0.47-1.70U 0.739

6 Prajwal Boddu USA 2017 117 21 0.245 0.058-0.980 0.048 0.678 0.260-1.768 0.427

7 Hyoung Jin Kang Korea 2005 55 2 0.510# 0.12-2.14 NA NA NA NA

8 D-C Liang Taiwan, China 2003 74 3 0.510# 0.16-1.66 NA NA NA NA

9 Adam J Mead UK 2007 980 127 0.710 0.52-0.97 0.03 0.710 0.52-0.96 0.03

10 Soheil Meshinchi USA 2006 515 38 1.930# 1.17-3.17 NA 0.910# 0.57-1.45 NA

11 Isabel Moreno Spain 2003 156 12 2.580# 0.63-10.52 NA NA NA NA

12 Man Qiao Mainland, China 2011 49 7 NA NA NA 0.429 0.204-0.653 0.779

13 Patricia Rubio Argentina 2016 39 5 NA NA NA 1.410# 0.18-10.92 NA

14 Hirozumi Sano Japan 2013 135 8 0.470 0.06-3.45 0.45 NA NA NA

15 Susanne Schnittger Germany 2012 2676 689 1.280* 1.17-1.4 NA 1.350* 1.23-1.48 NA

16 Akira Shimada Japan 2008 110 11 0.740# 0.38-1.43 NA 0.850# 0.45-1.58 NA

17 Christian Thiede Germany 2002 904 75 1.750* 1.38-2.22 NA 1.690* 1.33-2.14 NA

18 Susan P Whitman the USA 2008 123 16 2.300 1.1-4.7 0.02 NA NA NA

19 Y Yamamoto Japan 2001 17 8 0.380# 0.18-0.8 NA 1.000# 0.31-3.19 NA

20 G Yoshimoto Japan 2005 24 2 1.330# 0.18-10.05 NA 0.670# 0.15-2.9 NA
fron
*: HR and 95% CI was by using Engauge Digitizer according to the cox curve; #: HR and 95% CI was calculated the O-E according to the ratio of event; U, univariable analysis; DFS, disease-free
survival; OS, overall survival; NA, not available.
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95% CI: 0.37–0.85) and OS (HR = 0.63, 95% CI: 0.42–0.95) for Asians

with AML, whereas FLT3-TKD represented an adverse prognosis of

DFS for Caucasians with AML (HR = 1.34, 95% CI: 1.07–1.67).

However, the results of DFS from Caucasians ought to be interpreted

with caution due to the heterogeneity (I2 = 72.9%, p = 0.000).

In general, FLT3-TKD reveals no significant effects on DFS and

OS of patients with AML, which is consistent with the controversial

statue nowadays. The controversies of prognostic impacts on FLT3-

TKD in patients with AML were supported by two-sided laboratory

evidence of FLT3-TKD. On one hand, many studies indicated that

FLT3-TKD associated a beneficial prognosis of AML. In some cases,

patients with FLT3-TKD companying with other mutations, such as

NPM1 mutation, showed a favorable prognosis (27) with the reasons
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that the localization and signaling of FLT3-TKD was changed by

NPM1c in AML (42). On the other hand, other research studies

manifested that FLT3-TKD was considered as a harmful mutation in

prognosis of AML. Since FLT3-ITD was first recognized as a

frequently mutated gene in AML in 1996 (43), growing studies

indicated that a lot of FLT3-ITD–positive patients with AML

relapse with the appearance of FLT3-TKD after initial response to

FLT3 inhibitor treatments. Moreover, several FLT3 inhibitors

including Sorafenib and Quizartinib potently had effects on

inhibiting FLT3-ITD but were not effective toward FLT3-TKD (2,

44, 45). The phenomenon was plausibly interpreted as the coexistence

of two kinds of FLT3 mutations and the presence of FLT3-TKD in a

very low level at initial stage of disease, which subsequently became

prevalent after FLT3-ITD–positive leukemic cells, are eliminated (46).

Our results indicated that FLT3-TKD represented a beneficial

prognosis for Asians with AML, whereas it represented an adverse

prognosis of DFS for Caucasians with AML, but with heterogeneity.

First, in the Caucasian subgroup, the pooled HR of DFS was 1.34 (95%

CI: 1.07–1.67; I2 = 72.9%, p = 0.000), and the pooled HR of OS was

1.11 (95% CI: 0.85–1.44; I2 = 80.5%, p = 0.000) (Figure 4). There were

635 Asians from four different countries and 10,335 Caucasians from

eight different countries in this meta-analysis, which revealed that

Caucasians outnumbered Asians. Hence, we speculated that

confounding factors from large sample capacity of the Caucasian

subgroup accounted for the heterogeneity in Caucasians (I2 = 72.9%,

p = 0.000). In this situation, if related confounding factors were well

controlled, then the conclusion might be more convinced. However, it

was indicated that Caucasians reveals a distinct genetic alteration

profiles of AML than Eastern Asian population (47), but what we

focused on is the ratio of FLT3-TKD in AML, which would not be

influence by population base too much at this meta-analysis. Second,

according to different therapeutic guidelines of AML, the

chemotherapy regimens for patients with AML vary internationally.

On one hand, included studies from Japan accounted for a large

population in the Asian subgroup in this meta-analysis. The

conventional “3 + 7” induction is regarded as basic regimens for

complete remission (CR) with anthracyclines for 3 days and standard

dose of cytarabine for 7 days. We noticed that the dose of cytarabine

and anthracyclines in Japan was less than the dose in Caucasian

countries according to practical guideline for AML (48, 49).

Cytarabine of 100 mg/m2 was recommended for 7 days in Japan,

whereas cytarabine of 100–200 mg/m2 was recommended for 7 days

in Caucasian countries; and daunorubicin of 50 mg/m2 was

recommended for 3 days in Japan, whereas daunorubicin of 60–90

mg/m2 for 3 days was recommended in Caucasian countries (48, 49).

Hence, we speculated prognosis of AML in different countries or

regions might attribute to the dose of cytarabine and daunorubicin,
A

B

FIGURE 2

Forest plots of HRs and 95% CI for DFS (A) and OS (B) in patients with
AML. The size of blocks or diamonds represents the weight in this meta-
analysis, and the length of straight line segment represents the width of
95% CI. HR, hazard ratio; CI, confidence intervals; DFS, disease-free
survival; OS, overall survival; AML, acute myeloid leukemia.
TABLE 2 Multivariate meta-regression analysis for FLT3-TKD in patients of AML.

Outcome
DFS OS

Coefficient p-value Coefficient p-value

Age −0.005 0.497 0.008 0.299

Patient source −1.004 0.015* −0.358 0.324
fron
DFS, disease-free survival; OS, overall survival; *p ＜ 0.05.
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which consist of the conventional “3 + 7” induction. On another

hand, anthracyclines have been used extensively with standard dose of

cytarabine to induce remission of patients with AML worldwide (48,

50). However, clinicians in China tend to attach great importance to

homoharringtonine (HHT) and apply HHT-based induction

regimens to induce the CR of patients with AML (not APL), which

was considered as another discrepancy between Asian countries and

Caucasian countries in the treatments of AML (48, 50). Concretely,

clinical hematologists and oncologists in China are apt to replace
Frontiers in Oncology 0676
anthracyclines with HHT in CR induction of AML or added HHT

upon prime chemotherapy regimens for higher CR rate of AML.

HHT is a kind of alkaloid deriving from genus Cephalotaxus and

exerts selective antileukemia effects on patients with AML, especially

on these carrying FLT3-ITD and elderly patients with AML (51–53).

What is noteworthy is that the FLT3-TKD status associates with

chemotherapy regimens, especially in relapse (2), whereas some

salvage therapies for relapsed AML include HHT as the basic

members of chemotherapy regimens, such as HAA regimen (54).
A B

FIGURE 3

Univariate meta−regression analysis. Log HR of DFS and OS according patient source (ethnicity). A circle represents a study, and the diameter of circle
represents sample capacity. Various ethnicity (patient source) descents were classified as Caucasian and Asian. HR, hazard ratio; DFS, disease-free
survival; OS, overall survival.
A

B

FIGURE 4

Forest plots of HRs and 95% CI for DFS (A) and OS (B) in patients with AML in the Asian subgroup and the Caucasian subgroup. The size of blocks or
diamonds represents the weight in this meta-analysis, and the length of straight line segment represents the width of 95% CI. HR, hazard ratio; CI,
confidence intervals; DFS, disease-free survival; OS, overall survival; AML, acute myeloid leukemia.
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Hence, we speculated that prognosis of AML in different ethnicities

may also due to the clinical usage of HHT partially. Third, race

diversity is the result of different genetic backgrounds, not only the

gene encoding FLT3. Patients with AML usually were with genomic

anomaly or sporadic gene mutations (42). Currently, the contribution

of different genetic backgrounds to the occurrence and progression of

AML remains unclear. In conclusion, FLT3-TKD exerts impacts on

contrasting prognosis of AML in different ethnicities due to multiple

reasons, which deserve further explorations.

FLT3-TKD is considered as a potentially metabolically related

mutation in AML. FLT3-TKD associates with cytoplasmic Src

family tyrosine kinases by increasing the phosphorylation of

activating tyrosines, such as FGR and HCK (7). In addition, Src

family members are involve in multiple nutrients metabolisms,

including glucose (8), lipid (9), and glutamine (10), indicating

that FLT3-TKD is a potentially metabolically related mutation. As

for glucose metabolism, Src is able to regulate cyclin B1, N-

cadherin, and E-cadherin under high glucose as a response to

hyperglycemia in colorectal cancer (8) . For glutamine

metabolism, epidermal growth factor receptor (EGFR)-

promoted tumor progression is considered as being Src

signaling pathway related by influencing glutamine metabolism

in multiple malignancies (10). For lipid metabolism, Src is able to
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being recruited by CDCP1 into lipid rafts, which affect HGF

receptor Met via the activation of STAT3 (9). Overall, FLT3-TKD

is considered as being metabolically related based on the

functions of Src family tyrosine kinases, which can be used to

explain FLT3-TKD status in AML.

Our meta-analysis has several strengths. First, we selected 20

eligible prospective cohort studies, which was considered as an ideal

epidemiological method to predict prognosis of AML. In addition,

selection bias was well controlled by two independent investigator

and an unlimited literature search. Furthermore, most included

studies were of high quality with regard to quality assessment of the

NOS scale (16). Moreover, no evident publication bias was identified

by either Begg’s funnel plot or Egger’s test. Finally, we conducted

sensitivity analysis by deleting a single study in every model, and we

did not find obvious abnormal studies contributing to the pooled HR.

Begg’s funnel plot was used to detect publication bias in this meta-

analysis (Figure 5): As is shown in Figure 5, publication bias is not

evident when DFS was regarded as an evaluated end point

(Figure 5A); however, it indicated a publication bias when OS was

regarded as an evaluated end point (Figure 5B). Indeed, OS reflects

the multiple influences to individuals, not just AML. The OS of AML

is able to attribute to multiple factors, which make the manuscript
A

B

FIGURE 5

Begg’s funnel plot for analyzing publication bias of DFS (A) and OS (B)
in patients with AML. A circle represents a study, and the diameter of
circle represents sample capacity. DFS, disease-free survival; OS,
overall survival; AML, acute myeloid leukemia.
A

B

FIGURE 6

Sensitivity analysis of DFS (A) and OS (B) in patients with AML. DFS,
disease-free survival; OS, overall survival; AML, acute myeloid
leukemia.
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easy to publish. Moreover, OS can be concluded according to the

status of the patients with AML (live/dead), whereas DFS is usually

diagnosed on the basis of medical examination, such as bone marrow

biopsy. The difference contributed to the difficulty of obtaining data

from AML, which also may lead to the publication bias. All in all, DFS

of AML is considered as a better evaluated index in the prognosis

AML, and DFS of AML in this meta-analysis did not indicate a

publication bias.

There are several limitations of this study that should be

acknowledged. First, there was a heterogeneity in Caucasians (I2 =

72.9%, p = 0.000), which may attribute to the fact that Caucasians

outnumbered Asians: 635 Asians from four different countries and

10,335 Caucasians from eight different countries in this meta-analysis.

In our opinion, the heterogeneity from Caucasian group was from

some unknown confounding factors in the united prospective cohorts

of Caucasians. In this situation, if related confounding factors were

well controlled, then the conclusion might be more convinced. In

addition, we failed to get the specific information about

chemotherapy from 10,970 participants including chemotherapy

regimens, chemotherapy dose, and chemotherapy time, because

different types of treatment may exert distinct impacts on the

prognosis of the patients with AML. However, FLT3-TKD does not

result from general chemotherapies, so the FLT3-TKD in AML in this

study is regarded as being from individuals’ genetic backgrounds.

Furthermore, because of the limitation from the extracted data, we

were unable to performmore stratification analysis according to other

confounding factors. Although confounding factors work on the

ending events, it is considered as a common problem in clinical

research studies because we cannot predict everything before the start.

In conclusion, our results showed that FLT3-TKD revealed no

significant effect on DFS and OS of patients with AML. However, meta-

regressions demonstrated that patient source associated with the

prognosis effect of FLT3-TKD in patients with AML. To be specific,

FLT3-TKD represented a beneficial prognosis of DFS and OS for

Asians with AML, whereas FLT3-TKD represented an adverse

prognosis of DFS for Caucasians with AML. However, the results of

DFS from Caucasians ought to be interpreted with caution due to the

heterogeneity. This meta-analysis provided new information about the

distinct prognosis of patients with AML between Asians and

Caucasians. From our perspectives, the Caucasians with FLT3-TKD

at the initial diagnostic stage of AML could be recommended the

Asians dose of cytarabine and daunorubicin (cytarabine of 100 mg/m2

+ daunorubicin of 50 mg/m2) in conventional “3 + 7” induction, so that

they could receive a better prognosis of AML for survivals. An

adequately designed prospective study including a large population

with AML with clear FLT3 gene statue is needed to confirm our results.
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Single-cell RNA sequencing
depicts metabolic changes in
children with aplastic anemia
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Luping Wen, Jing Yang, Jintang Liang*,
Yun Chen* and Chun Chen*
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Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, China
Introduction: Aplastic anemia (AA) is a bone marrow hematopoietic failure

syndrome mediated by immune cells. The mechanism of this immune disorder

is not well understood and therapeutic strategies still need to be improved.

Methods: Studies have found that abnormalities in metabolisms promote the

survival of AA cells. In recent years, an increasing number of studies have

reported the immunosuppressive therapy for the treatment of AA. In this study,

we analyzed the transcriptome of AA from peripheral blood compared with

healthy donors by single-cell sequencing and identified the affected metabolic

pathways including lysine degradation. We demonstrated that the metabolic

abnormalities of T lymphocytes mainly focus on glycolysis/gluconeogenesis. In

addition, the metabolic abnormalities of natural killer cells concentrated in

oxidative phosphorylation.

Results: The key genes involved in abnormal metabolic processes were Neustein

neurotrophic factor (NENF), inositol polyphosphate-4-phosphatase type II B

(INPP4B), aldo-keto reductase family 1, member C3 (AKR1C3), and

carbohydrate (N-acetylglucosamine-6-O) sulfotransferase 2 (CHST2) by

differential gene expression analysis.

Discussion: Molecule interaction analysis showed that tumor necrosis factor

superfamily, member 12 (TNFSF12) in tumor necrosis factor (TNF) signaling was

broadly activated in AA. In conclusion, we suppose that the treatment of the

immune cells’ abnormal metabolic pathway may contribute to the development

of novel strategies to treat AA.
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Introduction

Aplastic anemia (AA) is a bone marrow hematopoietic failure

syndrome caused by various etiologies. It is characterized by a

decreased proliferation of bone marrow hematopoietic cells and

peripheral blood pancytopenia (1). The main clinical manifestations

are anemia, hemorrhage, and infection (2). The pathogenesis of AA

is complicated, including the abnormality of the hematopoietic

microenvironment (3), deficiency of hematopoietic stem cells/

progenitor cells (4), and disorders of the immune system (5). AA

occurs at any age. However, compared with adults, a large

proportion of children with AA have a relatively high incidence

rate of the bone marrow failure syndrome (6). The incidence of AA

varies geographically, which is two-to-three times higher in Asia

than in the western world (7).

Most acquired AA is considered to be the destruction of bone

marrow hematopoietic cells mediated by T cells (8). Early studies

showed that removing lymphocytes from the bone marrow with AA

could increase the number of cell colonies in tissue culture, while

adding the same lymphocytes to a normal bone marrow would inhibit

in vitro hematopoiesis (9). In clinic, human leukocyte antigen (HLA)-

matched sibling bonemarrow transplantation is the first-line treatment

for AA patients under 40 years old (10). The combined

immunosuppressive therapy of eltrombopag, thymoglobulin, and

cyclosporine A is the initial treatment of refractory AA, and patients’

survival rate is approximately 90% (11).

Cell metabolism promotes the absorption of nutrients and

various components required for cell synthesis (12), enabling

organisms to grow and reproduce, maintain their structure, and

react to the external environment (13). In terms of obtaining energy

and biosynthesis, aerobic glycolysis is very important for cell

proliferation (14). The transformation of intracellular metabolic

pathways in immune cells alters the function of immune cells (15).

In immune cells, six metabolic pathways were intensively discussed:

glycolysis, the tricarboxylic acid cycle, the pentose phosphate

pathway, fatty acid oxidation, fatty acid synthesis, and amino acid

metabolism (15). Amino acid metabolism plays an important role

in regulating the function of innate and adaptive immune systems.

Previous investigations indicate that the deletion of the transporter

Alanine/Serine/Cysteine Transporter 2 (ASCT2) (responsible for

glutamine and leucine uptake) gene in T cells will damage the

function of helper T cell 1 (TH1) and helper T cell 17 (TH17) cells

(16). The transition of the metabolic pathway from oxidative

phosphorylation to aerobic glycolysis is a sign of T-cell activation

and a key step to satisfy the metabolic requirements in the process

of cell proliferation (17). Studies have shown that the glucose analog

2-deoxyglucose, an inhibitor of the glycolysis pathway, inhibits T

cells from developing into TH17 cells (18). Therefore, metabolic

reprogramming is critical for T-cell activation and functional

execution (19). In order to promote drug uptake and enhance the

delivery ability to target T-cell populations, we coupled them with

glucose transporters (20). Therefore, regulating the metabolism of T

cells may be a therapeutic means to treat AA.

Single-cell messenger RNA (mRNA) sequencing (scRNA-seq)

is a technology for an unbiased, high-throughput, and high-
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resolution transcriptome analysis of cell heterogeneity in

populations (21). It aggregates cells and identifies new subsets, as

well as gene expression in various tissues (22). We created a

thorough transcriptional map of immune cells from healthy

controls and patients with AA by single-cell RNA sequencing.

Then, we explored the changes of the cellular transcriptome in

patients and identified the key metabolic pathways that may affect

the occurrence of AA.
Materials and methods

Clinical samples

The transcriptomic profile was obtained from peripheral blood

from five children with AA (AA: LJX-AA, LZL-AA, SLT-AA, WJL-

AA, and XF-AA) and three healthy donors (Ctrl: CBC-Ctrl, CRC-

Ctrl, and LJJ-Ctrl) (Figure S1). All samples were recruited via The

Seventh Affiliated Hospital of Sun Yat-sen University. All

participants provided written informed consent before inclusion

in the study.
Single-cell mRNA library preparation
and sequencing

The complementary DNA (cDNA)/DNA/small RNA libraries

were sequenced on the Illumina sequencing platform by

Genedenovo Biotechnology Co., Ltd (Guangzhou, China).

Cellranger was used to remove the reads with low sequencing

quality and then compare them with the reference genome to

annotate as a specific gene. After unique molecular identifiers

(UMI) correction and statistics, the unfiltered feature barcode

matrix was obtained. The cells in the data were identified and

distinguished according to the unfiltered feature barcode array. To

filtrate multicellular samples, Doublet-Finder was applied to

calculate the gel beads in emulsion (GEM) probability [pattern

analysis and neural networks (pANN) value]. In addition, we used

the following indicators to perform cell filtration: the number

of genes identified in a single cell (200.0–3,600.0), the total

number of UMI in a single cell (<17,000.0), and the proportion of

mitochondrial gene expression in a single cell (<25.0%).
Data analysis and visualization

We conducted Harmony for data consolidation and batch effect

correction. Dimension reduction, cell clustering, and differential

gene expression were performed using the Seurat package. Based on

the subset information of cells, we set | log2FC | ≥ 0.36 and the

proportion of cells expressing target genes in each group ≥ 0.1 as the

threshold. Then, we used the modeling and simulation team

(MAST) obstacle model to test the significance of differences. We

screened the pathway with the enrichment degree of top 20 in kyoto
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encylopaedia of genes and genomes (KEGG) A class Metabolism

from the KEGG enrichment of clusters (Ctrl vs. AA). We calculated

the number of differential genes in each term in the Gene Ontology

(GO) database (http://www.geneontology.org/) and applied a

hypergeometric test to find the GO entries that are significantly

enriched. The Kyoto Encyclopedia of Genes and Genomes pathway

was performed by Omicshare tools (http://www.omicshare.com/

tools/). Gene Set Enrichment Analysis (GSEA) was performed by

using the software GSEA and MSigDB (23). Disease Ontology

Analysis was performed by the disease ontology (DO) database

(http://disease-ontology.org/). The CellPhoneDB package was used

to estimate cell–cell communication.
Statistical analysis

Data visualizing and statistical analysis were performed using

GraphPad Prism 8.0 (GraphPad Software Inc, CA, USA).
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Differences between experimental groups were analyzed using

unpaired Student’s t-test. P value < 0.05 was considered significant.
Results

Single-cell analysis and cell type identification

To interrogate the metabolism of immune cells in patients with

AA, clinical peripheral blood specimens were analyzed by 10x

Genomics based on scRNA-seq [single-cell tagged reverse

transcription sequencing (STRT-seq)]. The cells were labeled and

differential genes were analyzed by Seurat to complete the statistics

and distribution mapping. Then, we used the GO database and

KEGG database to analyze the enrichment of divergence genes

(Figure 1A). We distinguished cell subsets by immune cells’ specific

surface markers. Among the 19 subsets in the bubble plot, except for
A B

C

FIGURE 1

Identify cells and classify subsets with single-cell analysis. Schematic representation of the experimental design and single-cell mRNA sequencing
(scRNA-seq) sequencing procedure (A). The surface marker of immune cells was used to identify cells and classify subsets. Dot sizes represent
percent expressed and dot colors represent the average-expressed scale (B). Fraction of cell subsets’ differences between groups. Colors indicate
cell clusters with numbered labels (C).
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clusters 5 and 18, which are NK cells, the rest are T cells, including

CD4 T cells, CD8 T cells, and Treg cells (Figure 1B). The percentage

of different clusters showed that in AA, cluster 1 and cluster 2 are

significantly distinct with the control group (Figure 1C).

The initial dimension reduction and unsupervised clustering of

single-cell transcriptomes classified cells into 19 groups (Figures 2A,

B). Compared with the control group, the difference of cluster 3 and

cluster 5 is rather obvious in AA. At the same time, we conducted

GO enrichment analysis from three aspects (biological process, cell

component, and molecular function). The research found that, in

the biological process part, genes upregulated in the AA group were

significantly more than those downregulated (Figure 2C). Further

study on GO enrichment analysis showed that, compared with the

control group, most of the first 20 GO terms in the AA group were

related to the regulation of cell metabolism (Figure 2D). Therefore,

the abnormal regulation of cell metabolism and abnormal

expression of related genes may be associated with the occurrence

of AA.
Single-cell mRNA sequencing revealed
metabolic differences in aplastic anemia

In order to further understand which metabolic processes are

unusually regulated and metabolism-related genes are abnormally

expressed in patients with AA, we conducted the KEGG pathway

and GSEA. So as to display the distribution characteristics of

metabolic pathways in different cell subsets, we manufactured the

t-distributedstochastic neighbor embedding (t-SNE) map through
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the R package. The soft k-means clustering algorithm is used to

cluster the dimension-reduced data, and cells were clustered into 19

cell types (Figure 3A). In the t-SNE difference distribution map of

metabolism pathways, it was intuitively seen that lysine degradation

was more common in AA (Figure 3B). We manufactured the

homogenized gene expression into a t-SNE map. The results

showed that the expression of the Neustein neurotrophic factor

(NENF) gene in AA was significantly higher than that in the control

group (Figure 3C).

Compared with the healthy donors, analysis found that the

dysregulation of lysine degradation in patients with AA had marked

statistical significance (AA vs. Ctrl, q = 0.0051) (Figure 4A).

Interestingly, in the GSEA, we found that valine, leucine, and

isoleucine degradation–related genes were more abundant in

healthy donors (Figure 4B), which may indicate that valine,

leucine, and isoleucine accumulated multiple times in the AA

patients. To sum up, we concluded that the pathobolism of amino

acids may play a key important role in the occurrence of AA. Next,

we further analyzed from the aspect of metabolizing gene

expression. In the heat map, there are significantly more

abnormal regulated genes in cluster 3 and cluster 5 in AA

compared with the control group (Figure 4C). Seurat software

was performed to analyze the divisions between the subset of

cells. The results were similar to the said GO analysis. The genes

upregulated in AA were significantly more than those

downregulated. At the same time, the metabolized gene

expression in the third and fifth subsets was more obvious than

that in other subsets (Figure 4D). These findings provided clues for

our follow-up research on the mechanism of AA.
A

B D

C

FIGURE 2

Single cell type identification and enrichment analysis. Uniform manifold approximation and project visualization of the control group (A) and aplastic
anemia (AA) (B) based on single-cell transcriptomes (left). Gene Ontology (GO) enrichment classification histogram depicting the number of up- or
downregulated genes in the biological process, cell component, and molecular function ontologies (C). Dot plot representing top 20 enriched GO
terms (ranked by Q values) based on bulk RNA-seq (D).
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T-lymphocyte metabolism analysis

As previously mentioned, compared with the control group,

the number of abnormally expressed genes in the fifth subset of

the AA group is the highest among all subsets. Then, we analyzed

the changes of metabolic pathways in the fifth subgroup through

the KEGG pathway, listed the metabolic pathways of top 20, and

drew dot plots. It was found that the glycolysis/gluconeogenesis

metabolic pathways were the most significant (Figure 5A).

Because most cases of AA are an immune system disorder

disease mediated by T cells, this article mainly studies the

divergences of immune cell metabolism between the AA group

and the control group. Then, we drew a t-SNE map according to

the expressed genes through the R package and found that the

INPP4B gene was specifically expressed in T cells but almost not

in NK cells (Figure 5B). To check out which diseases may be

caused by abnormal metabolic T cells in the process of AA

progression, we conducted Disease Ontology analysis, and the

results showed that AA was most likely to be converted to

leukemia (Figure 5C). The said results provide an important

basis for our follow-up research on the treatment and prevention

of AA.
Natural killer cell metabolism analysis

It was reported that the dysfunction of natural killer (NK) cells

may also be related to the occurrence of AA. Then, we analyzed the

changes of metabolic pathways in NK cells through the KEGG
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pathway and found that the oxidative phosphorylation in NK cells

in AA was abnormal, which had statistical significance (Figure 6A).

We continued to explore which metabolism-related genes are

abnormally expressed in NK cells and drew the t-SNE map.

Interestingly, the expression amount of the AKR1C3 gene and

CHST2 gene in NK cells is significantly higher than that in other

cell subsets (Figures 6B, C). CHST2 (carbohydrate (N-

acetylglucosamine-6-O) sulfotransferase 2) gene encodes a

sulfotransferase protein, which catalyzes the sulfation of non-

reducing n-acetylglucosamine residues and participates in the

metabolism of lymphocytes at the inflammatory sites (24). Similar

to what was mentioned earlier, we also did the Disease Ontology

analysis of NK cells, listed the metabolic pathways of top 20, and

drew bar charts. It was found that the metabolic abnormalities of

NK cells were the most likely to cause AA to revert to cancer and the

disease of cell promotion (Figure 6D). The intercellular interaction

network between 18 subsets showed that cluster 5 had the strongest

correlation among all cell subsets in the AA group (Figure 6F), while

cluster 4 had the strongest correlation among all cell subsets in the

control group (Figure 6E), indicating that the communication

relationship of subgroup 5 in the AA group is enhanced. Among

molecule interactions, the expression of the TNF signaling pathway,

mechanistic target of rapamycin (mTOR) signaling pathway, and

PI3K-Akt signaling pathway in AA (Figure 6H) and control

(Figure 6G) had the most obvious difference. We further observed

that TNFSF12 in TNF signaling was broadly activated in AA, which

might contribute to the high reduction of normal blood cells. The

metabolic correlation analysis of NK cells in AA provides a new

perspective for us to study the mechanism of AA.
A B

C

FIGURE 3

scRNA-seq revealed metabolic differences in AA. t-SNE plot of all cells representing the cell clusters analyzed by scRNA-seq. Each dot represents a
single cell; each color corresponds to one cluster (A). t-SNE plot showing the metabolism differences of lysine degradation between AA patients and
healthy donors. Colors indicate logarithmic-transformed P values (B). t-SNE plot showing the significantly expressed gene NENF in AA patients
compared with those in healthy donors (C).
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A B C

FIGURE 5

T-lymphocyte metabolism analysis. Dot plot depicting the top 20 KEGG pathway in T lymphocytes. Dot sizes represent the gene number, and dot
colors represent Q values (A). t-SNE plot showing the differently expressed gene INPP4B in T lymphocytes. All but clusters 5 and 18 are
lymphocytes. Each dot represents a single cell. Colors indicate logarithmic-transformed P values (B). Dot plot showing top 20 of disease ontology
enrichment in T lymphocytes (C).
A B

DC

FIGURE 4

scRNA-seq revealed metabolic differences in AA. Bar chart showing top 20 of the KEGG pathway enriched in cell metabolism compared to those in
the control group (A). Gene set enrichment analysis (GSEA) plots of valine, leucine, and isoleucine degradation differences in AA patients compared
with those in healthy donors (B). Heat map of differential genetic expression handled with the z-score to normalize gene expression (C). Bar chart
showing the number of up- or downregulated genes in bulk and 19 subsets. Red indicates upregulation, and green indicates downregulation (D).
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Discussion

T cells were divided into cytotoxic T cells, helper T cells,

regulatory T cells, and memory T cells according to their functions

and surface markers. After being activated by antigens in the

peripheral circulation, naive CD4 T cells proliferate and

differentiate into various subsets of T helper cells, including Th1,

Th2, and Th17 cells (25). The metabolic reprogramming of T cells

enables them to shift from oxidative metabolism to biosynthetic

metabolism to support rapid cell growth (26). Activated CD4 T cells

require efficient glucose uptake, glycolysis, glutamate decomposition,

and lipid synthesis to maintain cell proliferation (27). The

enhancement of aerobic glycolysis in cells makes glucose and other

nutrients not oxidized in mitochondria to produce ATP but used for

the biosynthesis of nucleic acids, lipids, and amino acids (28). The

boost of the glycolytic metabolic pathway occurs mostly in activated

NK cells (29), T lymphocytes (30), and B lymphocytes (31). Previous

studies have shown that pyruvate dehydrogenase is a key enzyme in

T-cell glycolysis and oxidative metabolism (32). In our study, we

found that the lysine degradation pathway of immune cells in AA is

significantly higher than that in normal samples through the single-

cell sequencing analysis of peripheral blood clinical samples. Lysine

degradation is caused by ϵ-deamination or a-deamination reaction

and produces two acetyl coenzyme A and several reductants (33). It

has been found that the selective modification of lysine sites in

proteins by aminophiles disrupts the interaction between proteins
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and RNA in the immune response (34). Our results showed that the

disturbance of the immune system in AA was also related to the

degradation of valine, leucine, and isoleucine. Previous studies

indicated that L-amino acid transporters that are composed of

Slc7a5 and CD98 induce leucine uptake, activate the mTOR

pathway, and affect T-cell metabolism (35). During the activation

of T cells and B cells, the transcription of intracellular glutamine

transporters SNAT1 and SNAT2 is enhanced (36). It is covered that

the NK cell count is decreased and the activity is impaired in patients

with Fanconi anemia (37). NK cells mainly rely on oxidative

phosphorylation to generate energy and activate downstream to

produce interferon-g (IFN-g) (38). Oxidative phosphorylation and

glycolysis are two major metabolic pathways for energy production

and cell function maintenance. In immune cells, oxidative

phosphorylation can regulate the formation of memory cells and

related inflammatory reactions (39). Several recent studies in the US

have shown that Cox10 (a gene encoding the composition of

mitochondrial electron transfer chain complex IV) plays an

important role in NK-cell antigen-specific amplification and

murine cytomegalovirus (MCMV) infection (40).

At the transcriptional level, our research found that the NENF

gene was upregulated in the immune cells of AA. Neudesin was

initially identified as a secreted protein with neurotrophic activity. It

has a conservative cytochrome 5-like heme/steroid binding domain

and can activate intracellular signal pathways by binding to G

protein–coupled receptors (41). NENF is essential in a variety of
A B D
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C

FIGURE 6

Natural killer (NK) cell metabolism analysis. Bar chart showing top 20 of the KEGG pathway in NK cells. Column length represents the percentage of
differential genes, and column colors represent Q values (A). t-SNE plot showing differently expressed genes AKR1C3 (B) and CHST2 (C) in NK cells.
Cluster 5 is an NK cell. Each dot represents a single cell; Colors indicate logarithmic transformed P values. Bar chart depicting top 20 of disease
ontology enrichment in NK cells (D). Intercellular interaction network between 18 subsets of control (E) and AA (F). Molecular interaction states of 36
ligand–receptors between clusters 4 and 5 in the control (G) and AA (H) groups. Molecules in red indicate that the Pearson correlation coefficient
target gene prediction ability is higher.
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biological processes, including neural function, fat metabolism, and

tumorigenesis (42). It has been found that neudesin inhibits

adipogenesis in mouse embryonic fibroblasts cells 3T3-L1 (3T3-

L1) cells through mitogen-activated protein kinase (MAPK) cascade

reaction (43). We also detected that INPP48B gene was upregulated

in the T cells of patients with AA, and AKR1C3 and CHST2 were

specifically upregulated in NK cells. INPP4B was initially identified

as an enzyme that preferentially hydrolyzes the 4-phosphate of

phosphatidylinositol-3,4-bisphosphate (PI(3,4)P2), to generate

phosphatidylinositol-3-phosphate (PI(3)P) (44). In recent studies,

the overexpression of INPP4B in AML cells enhancescolony-

forming potential and induces chemotherapy resistance in acute

myelocytic leukemia (AML) patients (45). As a soluble enzyme of

the aldehyde ketone reductase family, AKR1C3 plays an important

role in regulating prostaglandin, the steroid hormone, and retinoic

acid metabolism (46). Chst2 encodes a carbohydrate

sulfotransferase that catalyzes the sulfation of the C6 position of

GlcNAc during keratan sulfate biosynthesis (47).

Through disease ontology enrichment analysis, the abnormal

metabolism of T cells is likely to cause AA to develop into leukemia,

and the metabolic changes of NK cells are likely to lead to abnormal

cell proliferation diseases and tumors. Relevant results have also

confirmed that the secondary myelodysplastic syndrome and acute

leukemia usually develop from severe AA after immunosuppressive

therapy (48). These findings support the broad potential of

targeting functional lysine in the human proteome. It has been

discovered that drugs acting on the surface receptors of the CTLA-4

and PD-1 can limit the uptake of glucose and amino acids, so as to

negatively regulate the activation of T cells (49). Detailed

investigations on specific mechanisms of metabolic abnormalities

in the immune cells of AA are needed in the future.
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Ferroptosis in hematological
malignant tumors
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Jing Zhang2, Yixian Li1, Wenfang Yi1* and Chun Chen1*
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Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, China, 2Department of
Breast and Thyroid Surgery, Guangzhou Women and Children’s Medical Center, Guangzhou,
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Ferroptosis is a kind of iron-dependent programmed cell death discovered in

recent years. Its main feature is the accumulation of lipid reactive oxygen species

in cells, eventually leading to oxidative stress and cell death. It plays a pivotal role

in normal physical conditions and the occurrence and development of various

diseases. Studies have shown that tumor cells of the blood system, such as

leukemia cells and lymphoma cells, are sensitive to the response to ferroptosis.

Regulators that modulate the Ferroptosis pathway can accelerate or inhibit

tumor disease progression. This article reviews the mechanism of ferroptosis

and its research status in hematological malignancies. Understanding the

mechanisms of ferroptosis could provide practical guidance for treating and

preventing these dreaded diseases.

KEYWORDS

ferroptosis, ROS, GPx4, leukemia, lymphomas
Introduction

Ferroptosis is a novel iron-dependent mode of death induced by elastin and Ras

selective lethal 3 (RSL3) (1). Different from apoptosis, classic necrosis, autophagy, and

other forms of cell death. The morphological features of ferroptosis are reduced cell size,

increased mitochondrial membrane density, and decreased cristae. It is characterized by

the induction of lipid peroxides (LPO) accumulation dependent on iron ions and reactive
Abbreviations: RSL3, Ras-selective lethal 3; ROS, reactive oxygen species; GSH, glutathione; GPX4, glutathione

peroxidase 4; RPL8, ribosomal protein L8; IREB2, iron response element binding protein 2; PEBP1,

phosphatidylethanolamine-binding protein 1; Nrf2, nuclear factor E2-related factor 2; PTGS2,

cyclooxygenase-2; Fer-1, ferrostatin-1; DFO, deferoxamine; NCOA4, Nuclear receptor coactivator 4;

ATP5G3, ATP synthase F0 complex subunit C3; NTBI, non-transferrin bound iron; BMDMs, bone marrow-

derived macrophages; FAC, ferric ammonium citrate; HSC, hematopoietic stem cell; NOX, NADPH oxidase;

AML, acute myeloid leukemia; PUFAs, polyunsaturated fatty acids; DHA, dihydroartemisinin; LOX,

lipoxygenase; DLBCLs, diffuse large B lymphomas; TYP, Typhaneoside; AMPK AMP-activated protein

kinase; CLL, chronic lymphocytic leukemia; TBH, tert-butanol; FINO2, 1, 2-dioxolane.
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oxygen species (ROS). Polyunsaturated fatty acid (PUFA) in

phospholipids, REDOX active iron, and repair defects of LPO are

three characteristics of ferroptosis, which determine the sensitivity

of tumor cells to ferroptosis (2, 3). Targeted small molecule

substances reduce the antioxidant glutathione (GSH) levels or

glutathione peroxidase 4 (GPX4) by acting on specific targets in

the cell, which leads to the accumulation of intracellular ROS and

lipids. In the synergistic action of iron, peroxidation induces

ferroptosis (4, 5). Cystine/glutamate antiporter (system Xc-) exists

on the cell surface to maintain REDOX homeostasis, promote the

entry of cystine into the cell, and then reduce it to cysteine, which

removes excess glutamate from the cell and provides the raw

material for intracellular GSH synthesis. Meanwhile, GSH is an

essential substrate for the degradation of LPO by glutathione

peroxidase 4 (GPX4). When the GSH synthesis pathway is

inhibited, LPO accumulates, and ferroptosis occurs (6, 7).

Ferroptosis requires GSH depletion, decreased glutathione

peroxidase 4 (GPX4) activity, and the inability to metabolize lipid

peroxides through GPX4-catalyzed glutathione reductase reaction,

thereby destroying the integrity of the cell membrane (8). Initially,

Dixon et al. suggested that ferroptosis is mainly regulated by

ribosomal protein L8 (RPL8), iron response element binding

protein 2 (IREB2) at the gene level. ATP synthase F0 complex

subunit C3 (ATP5G3), tetratricopeptide repeat domain 35

(TTC35), Regulation of citrate synthase (CS) and acyl-

CoAsynthetase family member 2 (ACSF2) (1). Later, many

studies have shown that many genes/proteins and molecular are

involved in this particular cell death process, such as

cyclooxygenase 2(PTGS2) (9), p53 (10), nuclear factor E2-related

factor 2(Nrf2) (11), phosphatidylethanolamine binding protein 1

(PEBP1) (12) and miRNA (13). In addition to these key regulators,
Frontiers in Oncology 0291
the onset of ferroptosis is associated with excess glutamate, an

increase in the intracellular iron concentration, or the handling of

small-molecule substances such as elastin, RSL3, and others

in Table 1.

In recent years, with the in-depth study of the mechanism of

ferroptosis, ferroptosis has been found in a variety of tumor cells,

including breast cancer (20), lung cancer (1), liver cancer (21),

kidney cancer (22) and brain tumors (23). In 2015, Jiang et al. found

that p53 is essential in regulating ferroptosis, and this study found

that ferroptosis contributes to embryonic development (10).

Leukemia and lymphoma are the most common hematological

malignancies. The main treatment methods are chemotherapy and

stem cell transplantation. Although the treatment level of stem cell

transplantation has been dramatically improved in recent years, its

application has certain limitations (24). At the same time, the

remission rate of chemotherapy is low, and there has been no

substantial progress in recent years. Therefore, exploring treatment

options that will benefit patients is still necessary. As one of the cell

death modes, ferroptosis is a popular research direction in tumor

research and treatment (25, 26). The known ferroptosis inducers

can be divided into the following two categories. The first category

includes Erastin, sulfasalazine, glutamate. Which can act through

system xc-. The second class includes RSL3 and DP17, which can

directly inhibit glutathione peroxidase activity (GPX). Unlike other

ferroptosis inducers that usually mediate a single pathway, Erastin

can mediate multiple molecules with efficient, rapid, and long-

lasting effects (5, 27). In addition, depending on the mechanism of

ferroptosis, many molecules have been identified as ferroptosis

inhibitors, including ferrostatin-1(Fer-1, inhibiting lipid ROS) (1),

deferoxamine (DFO, chelating iron) (1). Examples include

deferoxamine (DFO, chelating iron) (1), zileuton (inhibiting 5-
TABLE 1 Main inducers, inhibitors, and regulators in hematological malignant tumors relevant to ferroptosis.

Target Compound name/
protein

Effect Hematological Malignant Tumors with Relevance to
Ferroptosis

Inducers

VDACs and system x−c Erastin
Piperazine erastin

Induce
ferroptosis

Chronic Myelogenous Leukemia [14]
Acute myeloid leukemia [9]

Diffuse large B cell ymphomas[9]

GPX4 RSL3 Induce
ferroptosis

Acute myeloid leukemia [9]
Diffuse large B cell lymphomas [9]

System x−c Sulfasalazine Induce
ferroptosis

Non-Hodgkin’s lymphoma [15]

Lipid peroxidation FINO2 Induce
ferroptosis

B-lymphoblastic cell leukemia[16]
B-cell lymphoma[16]

GSH depletion Buthioninesulfoximine Induce
ferroptosis

Acute myeloid leukemia [9]
Diffuse large B cell lymphomas [9]

Inhibitors

P38 SB202190 Inhibit
ferroptosis

Acute myeloid leukemia[17]

ROS from lipid
peroxidation

Ferrostatin-1 Inhibit
ferroptosis

Acute lymphoblastic leukemia [18]

Intracellular iron Ciclopirox olamine Inhibit
ferroptosis

Acute lymphocytic leukemia [19]
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lipoxygenase) (28), and the newly discovered FINO2(iron oxide)

(14). This article reviews the research progress of ferroptosis in

hematological malignancies, and the main inducers, regulators, and

inhibitors of ferroptosis in hematological malignancies, as shown

in Table 1.
Iron metabolism and
hematological tumors

Iron is a nutrient that promotes cell metabolism, proliferation,

and growth. Iron ions can gain and lose electrons. They are the

active sites of many iron- and heme-containing enzymes in the

body, such as mitochondrial enzymes related to respiratory

complexes, enzymes related to DNA synthesis and cell cycle, and

enzymes related to detoxification functions (such as peroxidase and

catalase); the ability to freely gain and lose electrons allows iron to

participate in redox reactions and form free radicals (15). Through

the Fenton reaction, hydrogen peroxide reacts under the catalysis of

ferrous iron to generate reactive oxygen species (16) Reactive

oxygen species can causelipid and protein damage and oxidative

DNA damage, including DNA base modification and DNA strand

breaks, inducing mutations and promoting the occurrence and

progression of tumors (17). In recent years, evidence has shown

that ROS are essential for health. Under physiological conditions,

generating low levels of ROS is considered a signaling molecule. On

the other hand, abnormal iron accumulation, ROS overproduction,

and ROS buffer system dysfunction can cause many chronic

diseases. Therefore, the chronic accumulation of ROS is involved

in many diseases. Moreover, excessive ROS production induces

oxidative damage of biomolecules, leading to aging, cancer, and

many other diseases (18). Many studies have shown that iron

metabolism disorders are related to the occurrence of a variety of

diseases, including hereditary hemochromatosis, myocardial

ischemia-reperfusion injury, neurodegenerative diseases, and even

cancer (19, 29, 30). Specifically, excessive intracellular iron levels

can mediate carcinogenesis due to its pro-oxidative properties and

DNA-damaging effects. At the same time, tumor cells acquire large

amounts of iron to maintain rapid growth and proliferation (31).

Under normal homeostasis, transferrin binds to free iron in the

circulation, and metabolic iron in the body is maintained at a steady

state. When iron overload occurs in the body, serum transferrin

binding is close to saturation, and there is non-transferrin-bound

iron (NTBI) in circulation (6, 32, 33). However, excessive iron can

increase intracellular ROS content through the Fenton reaction,

thus promoting ferroptosis (16). In vitro treatment of mouse

primary hepatocytes and bone marrow-derived macrophages

(BMDMs) with ferric ammonium citrate (FAC) significantly

increased lipid peroxidation, decreased NADPH, and decreased

cellular viability. These changes were reversed by ferroptosis

inhibitors and iron chelators (34). In addition, the team also

found that the Slc7a11-/- mouse model did not cause ferroptosis

under basal iron conditions. The high-iron diet caused increased

non-transferrin-bound iron in mice, decreased GSH levels, and

increased ROS levels, indicating that iron-induced ferroptosis
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differs from that induced by erastin. Nuclear receptor coactivator

4 (NCOA4) is a selective receptor for the selective autophagy flip of

ferritin in ferroptosis Hou et al. knocked out NCOA4 in PANC1

cells, which reduced the level of intracellular divalent iron.

Ferroptosis is induced by erastin, and the level of iron is

increased in the cells overexpressing NCOA4 by transfection, and

the level of ferroptosis is increased. Therefore, the increase of

intracellular iron caused by the degradation of ferritin mediated

by NCOA4 participates in ferroptosis (35). The exosomes secreted

by GPX4 inhibitor-treated cells contain a large amount of

ferritin (36).

Compared with normal hematopoietic cells, leukemic cells have

altered iron uptake, storage, and efflux and an altered iron

transporter-hepcidin regulatory axis (Figure 1) (17). Although

iron and the reactive oxygen species generated by its catalysis are

crucial to maintaining the balance of the hematopoietic system, the

accumulation of iron and the subsequent abnormal increase in

reactive oxygen species can disrupt various biological functions of

hematopoietic stem cells (HSCs) (37), including quiescence, self-

renewal, and multilineage differentiation potential. Excessive ROS

promotes cell senescence and apoptosis and impairs self-renewal

ability and tumor formation, similarly, too much iron can lead to

changes in the tumor microenvironment that promote cancer cell

ferroptosis (38, 39). In addition, iron is crucial to the development

of leukemia because iron-dependent ribonucleotide reductase is

required for DNA synthesis to maintain the rapid proliferation of

leukemia cells (40–42). In addition, iron overload induces apoptosis

of neighboring NK cells, CD4+ T cells, and CD8+ T cells while

simultaneously increasing the ratio of regulatory T cells, allowing

leukemia cells to evade immune system attack (43, 44). In addition,

unlike malignant tumors of other systems, patients with

hematological malignancies require repeated blood transfusions

due to normal erythropoiesis and chemotherapy, resulting in

increased iron load in the body. Excessive iron and ROS can

promote the malignant transformation of hematopoietic stem

cells by consuming smoke NADPH oxidase (NOX) and GSH

(39). In myelodysplastic syndromes, ROS-induced DNA damage

may increase patients’ risk of leukemia (38). These results indicate

that excessive iron promotes ferroptosis through the ROS pathway,

and changes in intracellular iron levels mediated by the ferritin

metabolism pathway are also closely related to ferroptosis.

Regulating the homeostasis of iron metabolism alters the

susceptibility of AML cells to ferroptosis, and disease progression

in leukemia also increases iron accumulation in patients.
The mechanism of ferroptosis and its
research in hematological tumors

ROS

Reactive oxygen species (ROS), produced during normal

metabolic processes, play essential roles in cell signaling and

tissue homeostasis. However, ROS overproduced during

metabolic processes are key promoters of the ferroptosis cascade
frontiersin.org
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and can lead to unfavorable modifications of various intracellular

molecules such as lipids, proteins, and DNA damage (45, 46). This

is called “lipid peroxidation.” It is generally believed that lipid

peroxides, especially the peroxidation of lipid hydrogen, can lead to

damage reactions in the lipid bilayer of the cell membrane, which is

a signal of cell death and can induce programmed cell death is an

essential mediator of ferroptosis (47). Besides, lipid peroxides can

produce additional toxicity due to their degradation products by

altering the structure and function of nucleic acids and proteins

such as Michael receptors and aldehydes (48). The high-throughput

screening results showed that ferstatin-1 (fer-1) and lipoxstatin-1

(lip-1) could prevent erastin-induced ROS accumulation,

specifically inhibiting RSL-induced ferroptosis. This also

demonstrates the role of ROS accumulation in ferroptosis (49).
GPX4

GPX4 is one of the 25 human genome proteins containing

selenocysteine and belongs to the GPxs family (24). It uses GSH as a

cofactor to reduce lipid peroxide to lipid alcohol, preventing ROS

synthesis (9, 50). GPX4 is the direct target of RSL3. GPX4 can avoid

the toxicity of lipid peroxides and maintain the stability of the

membrane lipid bilayer through its enzymatic activity (51). RSL3

can specifically inhibit the activity of GPX4, which leads to ROS

accumulation in cells and induce ferroptosis (52). Furthermore,

overexpression of GPX4 can reduce ferroptosis (27). Pedro et al.

Demonstrated that the knockout of the GPX4 gene resulted in

ferroptosis in cells (53). GPX4 ‐ deficient mouse embryonic

fibroblasts showed resistance to erastin-induced cell death,

suggesting that ferroptosis depends on ROS (54). Selenium can

effectively inhibit GPX4-dependent ferroptosis by activating tfap2c
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and Sp1 to enhance genes in this transcription program, such as

GPX4. Selenium deficiency can inactivate GPX4, thus making cells

more sensitive to oxidative damage (55, 56). In addition, fino2 and

fin56 induced ferroptosis by indirectly inhibiting GPX4 levels and

activity without interfering with glutathione metabolism (57, 58).
System Xc−

Glutamate‐cystine antiport system x c – (system x c −) is a

component of cell membrane transporter and is a heterodimer

composed of SLC7A11 and SLC3A2, and responsible for the

exchange of extracellular cystine and intracellular glutamate (58).

Under physiological conditions, extracellular cystine is transported

into the cell through system Xc-, the substrate for synthesizing the

antioxidant glutathione, and glutathione is the main component for

removing reactive oxygen species (59). Blocking system xc - can

inhibit the synthesis of cysteine-dependent glutathione (GSH) and

then damage cells’ antioxidant defense ability, thereby promoting

ROS accumulation and inducing ferroptosis in cells. For example,

sulfasalazine can inhibit system xc - and cause ferroptosis, while b-
mercaptoethanol increases cystine uptake, thus inhibiting elastin-

induced ferroptosis in HT1080 cells (5). Erastin and sulfasalazine

prevented cultured cancer cells from absorbing radiolabeled

cystine (60).

Using traditional biochemical methods and more advanced

metabonomics analysis, erastin treatment can lead to large

consumption of intracellular GSH (61). How erastin or SAS

inhibits SLC7A11-mediated Cys2 import remains unclear. Initial

studies suggested that erastin could bind to the related transporter

SLC7A5 and further inhibit SLC7A11 in trans2. However, recent

findings deny this possibility and suggest that erastin can directly
FIGURE 1

Altered iron metabolism in leukemia includes dysregulation of the ferroportin-hepcidin regulatory axis. (A) Typhaneoside treatment of AML cells
resulted in ferroptosis in AML cells by activating AMPK signaling, accompanied by ferritin degradation and ROS accumulation. (B, C) RSL3 and erastin
treatment of ALL and DLBCLs resulted in ferroptosis, accompanied by increased lipid peroxidation, which was inhibited by antioxidant and DFO.
(D), Expression of SLC7A11 in CLL cells was down-regulated, and the system xc- transporter cystine ability was decreased, leading to the increase of
intracellular ROS and the promotion of cell ferroptosis. (E), p53 inhibits System xc- and promotes ferroptosis in Em-Myc lymphoma cells, while the
deletion of TP53 gene accelerates the formation of Em-Myc lymphoma model. (F), Artesunate can induce ferroptosis in Burkitt lymphoma cells by
activating ATF4-CHOP-CHAC1 pathway and degrading GSH.
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inhibit SLC7A11 (60). Previous studies have revealed more potent

drug analogs of erastin, and these findings are helpful for future

studies on the targets and effects of erastin in vitro and in vivo (62).

Wang et al. found that the source of cystine/cysteine in SLC7A11

knockout mice was decreased, which limited the subsequent GSH

synthesis and increased the sensitivity of cells to ferroptosis induced

by iron overload (34). Similarly, studies have shown that Nrf2 plays

a key role in leukemia cell resistance to DOX and in triptolide

induced iron death, suggesting a potential strategy for using

triptolide and DOX in combination therapy in leukemia

treatment (63). Moreover, Sorafenib induces ferroptosis in

hepatocellular carcinoma through SHP-1/Stat3-mediated MCL1

downregulation and subsequent inhibition of SLC7A11 by

increased BECN1 binding (64).

In summary, the accumulation of ROS and the increase of lipid

peroxidation are associated with ferroptosis. The level and activity

of GPX4 can affect the level of ferroptosis. In addition, system xc -

regulates ROS balance by affecting GSH metabolism, an essential

part of ferroptosis.

Jin et al. found that dihydroartemisinin (DHA) can strongly

inhibit the activity of AML cell lines and can further effectively

induce the death of AML cells, which is often considered ferroptosis

because of its apparent iron dependence and accompanied by

mitochondrial dysfunction. Mechanistically, DHA induces

autophagy by regulating the AMPK/mTOR/p70S6k signaling

pathway, which can accelerate ferritin degradation and increase

the labile iron pool, further promoting the accumulation of ROS in

cells and eventually leading to ferroptosis (65). Probst et al. Used

acute lymphoblastic leukemia (all) cell lines as a cell model.

Increased lipid peroxidation levels accompanied cell death after

rsl3 treatment. The cell death was inhibited by adding a lipid

peroxidation inhibitor fer-1 or lipoxygenase (LOX), and the iron

chelator DFO could reverse RSL3-triggered cell death (66). Data

analysis showed that diffuse large B lymphomas (DLBCLs) were

particularly sensitive. Besides, lipid peroxides are produced in the

DLBCL cell line treated with erastin. Lipophilic antioxidants can

save cell death, indicating that the cell death in this cell line has

ferroptosis characteristics. The sensitivity of DLBCL cell lines and

other hematopoietic cell lines to 203 different lethal compounds was

further analyzed, and it was found that the average resistance of

DLBCL cell lines to all compounds was weak, indicating that the

enhanced sensitivity of DLBCLs to erastin-induced ferroptosis was

not due to Universal sensitivity to all compounds (9).

These results suggest that the susceptibility of leukemia and

lymphoma cells to ferroptosis is consistent with the response to

classical ferroptosis, which is characterized by excessive

accumulation of ROS and increased lipid peroxidation.

Typhaneoside (TYP) is a major flavonoid in the extract of Pollen

Typhae, showing significant biological and pharmacological effects.

Typ activates the AMP-activated protein kinase (AMPK) signaling

pathway, which leads to ferritin degradation, ROS accumulation,

and ferroptosis, and further significantly triggers autophagy in AML

cells (67). Similarly, artesunate can induce an ER stress response

and activate the ATF4-CHOPCHAC1 pathway to degrade

intracellular GSH, thereby inducing ferroptosis in Burkitt

lymphoma cells. The protection of the cells evidences this by Lip-
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1, Fer-1, and DFO (68). These studies provide new ideas for

promoting ferroptosis in treating hematological malignancies.

Human lymphoma and leukemia cells cannot convert methionine

to cystine by their metabolic functions. Therefore, its growth and

proliferation must be mediated by the extracellular uptake of

cysteine. Interestingly, SLC7A11 was down-regulated in chronic

lymphocytic leukemia (CLL) compared with other systemic solid

tumors. The systemic xc transporting cystine capacity was reduced,

which could increase the intracellular ROS level. This suggests that

CLL is strongly associated with ferroptosis (69). Similarly, clinical

studies have also shown that in patients with DLBCLs, GPX4

expression accounted for 35.5%(33/93). The survival time of the

gpx4 positive group was significantly higher than that of the gpx4

negative group (70). GPX4 overexpression is an independent

prognostic indicator of diffuse large B-cell lymphoma and AML

(71, 72). This may be related to the role of GPX4 in reducing

intracellular lipid oxidation and making cells insensitive to

ferroptosis. In conclusion, ROS accumulation and lipid

peroxidation play essential roles in the mechanism of ferroptosis.

Studies on ferroptosis sensitivity show that leukemia and

lymphoma cells can be more sensitive to ferroptosis by increasing

the accumulation of intracellular ROS through multi-channel

regulation. This opens up a new research direction for selecting

drugs for the treating hematological tumors.
P53 and hematological tumors

p53 controls the cell cycle, DNA replication, and uncontrolled

cell division during tumor growth. When p53 is mutated, it leads to

tumor initiation and progression (71). By inhibiting the

transcription of SLC7A11, p53cystine uptake, reduces and

intracellular GSH, increases intracellular ROS accumulation, and

increases the susceptibility to cell ferroptosis. They used an

acetylation-deficient mutant p53 (3KR) that cannot induce other

forms of apoptosis but retains the ability to regulate the expression

of SLC7A11 and found that SLC7A11 is overexpressed in many

types of human cancers. High expression levels of SLC7A11 can

significantly reduce the tumor growth inhibitory activity induced by

p53(3KR), indicating that this inhibitory activity has nothing to do

with the disturbance of cell cycle, cell apoptosis, and cell senescence.

At the same time, high levels of reactive oxygen species can trigger

p53-mediated ferroptosis. The regulation of ROS levels by p53 is a

complex biological process. When ROS levels are at basal or

relatively low levels, p53 can prevent cellular cells from

continuing to accumulate ROS. However, when ROS levels are

abnormally high, p53 may promote cell death through the

ferroptosis pathway. Therefore, ferroptosis can be regulated by

p53 affecting intracellular ROS levels. The Alox12 gene is located

on human chromosome 17p13.1 in a very close position to the TP53

gene. Some scholars have suggested that many human tumors lose

one alox12 allele (73). Chu et al. used p53(3KR) H1299 cells lacking

six lipoxygenase isoforms to test ROS-induced ferroptosis levels

after butyl alcohol (TBH) treatment and found that p53-mediated

ferroptosis could be specifically blocked by loss of ALOX12

function. SLC7A11 specifically binds to alox12, thereby reducing
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its enzymatic activity, confirming that p53 can indirectly activate

ALOX12 lipoxygenase activity by inhibiting SLC7A11

transcriptional repression system Xc, leading to Alox12-

dependent ferroptosis induced by ROS death. The pathway of

ferroptosis is independent of the GPX4 pathway (74).

Thus, p53 regulates ferroptosis levels by regulating SLC7A11

transcript levels and activity. Further studies showed that alox12

deletion inhibited p53-mediated iron mineralization. In the Em-myc

mouse model, the loss of one Trp53 allele significantly accelerated

the formation of the Myc-induced classical em-myc lymphoma

model. In contrast, the loss of an alox12 allele shortened the

median survival of these mice (74). In conclusion, p53 increases

the sensitivity of cell death with iron by regulating ROS level, and

the loss of p53 function plays an essential role in the occurrence and

prognosis of Em-myc lymphoma.
Conclusion

Ferroptosis is a cell death mediated by various small molecules,

such as erastin and RSL3. It is affected by GPX4, GSH metabolism,

iron metabolism, and other pathways. Its occurrence is often

accompanied by the accumulation of ROS and other substances,

which can further lead to the peroxidation of cell membrane lipids.

The specific mechanism of ferroptosis needs further study. The

study of cell death mode is still an essential link in overcoming the

tumor treatment problem. In recent years, ferroptosis has been

more popular in tumor research. Many studies have shown that the

sensitivity of leukemia and lymphoma cells to ferroptosis can be

regulated by changing the concentration of ferroptosis-inducing

molecules, the balance between intracellular ROS level and cell

death, and the level of intracellular iron metabolism, to achieve the

goal of eliminating leukemia and lymphoma cells. Studies have also

found that many compounds are closely related to the ferroptosis of

tumor cells, and the level of ferroptosis inducers is related to the

prognosis of the disease. In addition to the existing iron chelators

and targeted iron metabolism-related proteins, treating redox

imbalance disorders targeting high intracellular iron levels also

has broad application prospects in treating leukemia. The

application of ferroptosis and ferromacrophages as a new

ferroptosis therapy in leukemia has just begun. With the rapid

development of nanotechnology, efforts have been made to exploit

the therapeutic advantages of iron-based nanoparticles. The

Magnetic field can not only concentrate nanoparticles but also
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promote the production of intracellular ROS, thus exerting an anti-

leukemia effect. The progression of blood system tumor diseases

and the changes brought about by treatment will also affect the

ferroptosis process. There will be expected to be more related

studies to provide new ideas for treating leukemia and lymphoma.
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Shutting off the fuel supply to
target metabolic vulnerabilities
in multiple myeloma
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Pathways that govern cellular bioenergetics are deregulated in tumor cells and

represent a hallmark of cancer. Tumor cells have the capacity to reprogram

pathways that control nutrient acquisition, anabolism and catabolism to enhance

their growth and survival. Tumorigenesis requires the autonomous

reprogramming of key metabolic pathways that obtain, generate and produce

metabolites from a nutrient-deprived tumor microenvironment to meet the

increased bioenergetic demands of cancer cells. Intra- and extracellular

factors also have a profound effect on gene expression to drive metabolic

pathway reprogramming in not only cancer cells but also surrounding cell

types that contribute to anti-tumor immunity. Despite a vast amount of

genetic and histologic heterogeneity within and between cancer types, a finite

set of pathways are commonly deregulated to support anabolism, catabolism

and redox balance. Multiple myeloma (MM) is the second most common

hematologic malignancy in adults and remains incurable in the vast majority of

patients. Genetic events and the hypoxic bone marrow milieu deregulate

glycolysis, glutaminolysis and fatty acid synthesis in MM cells to promote their

proliferation, survival , metastasis, drug resistance and evasion of

immunosurveillance. Here, we discuss mechanisms that disrupt metabolic

pathways in MM cells to support the development of therapeutic resistance

and thwart the effects of anti-myeloma immunity. A better understanding of the

events that reprogram metabolism in myeloma and immune cells may reveal

unforeseen vulnerabilities and advance the rational design of drug cocktails that

improve patient survival.

KEYWORDS

metabolism, multiple myeloma, proteasome inhibitor, oxidative phosphorylation,
glycolysis, fatty acid synthesis
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1 Introduction

The hallmarks of cancer constitute an organizing principle to

rationalize the complexities of neoplastic disease (1–4). Six

biological capabilities - sustaining proliferative signaling, evading

growth suppressors, resisting cell death, enabling replicative

immortality, inducing angiogenesis, and activating invasion and

metastasis acquired during the multistep development of human

tumors - were initially identified as the hallmarks of human cancers

(1). Genomic instability underlies these features that promote

genetic diversity and intratumoral heterogeneity. Recently,

reprogramming of energy metabolism and evading immune

destruction have also been recognized as cancer hallmarks (2–4).

Cancer cells sustain prodigious anabolic requirements that exceed

those of neighboring somatic cells. Metabolic pathways in cancer

cells are reprogrammed to achieve the required bioenergetic,

biosynthetic and redox demands. Reprogramming of energy

metabolism is also required to support continuous cell growth

and proliferation, replacing the metabolic program that operates

in most healthy tissues and fuels physiological operations within

cancer cells (4–6). Tumorigenesis stems from the direct and indirect

consequences of oncogenic mutations to reprogram key metabolic

pathways (4, 7–12). Cancer-associated metabolic reprogramming

also alters the level of key intracellular and extracellular metabolites

(2, 11, 12).

Tumors display an added dimension of complexity since they

contain a repertoire of recruited, ostensibly normal cells that

contribute to the acquisition of hallmark traits by creating the

tumor microenvironment (TME) (7–15). The TME is comprised of

heterogeneous and interactive cell types including cancer cells and

cancer stem cells surrounded by a multitude of recruited stromal

cell and immune cell types. Cellular metabolism is reprogrammed

in cancer cells by tumor-intrinsic and extrinsic factors. Cancer cells

proliferate within the tumor permissive bone marrow (BM) and are

surrounded by a complex environment that consists of cellular and

acellular components, e.g., blood and lymph vessels, fibroblasts,

endothelial cells, numerous immune cell types, osteoblasts,

osteoclasts, pericytes, platelets, hematopoietic stem cells and other

cell types. In addition, cancer cells are also influenced by

surrounding cytokines, extracellular vesicles, cartilage, fat, bone

and the extracellular matrix these reside within the BM milieu

(10–15).

Oncometabolites are metabolites that aberrantly accumulate

from distorted metabolism and are considered novel

pathognomonic hallmarks in certain human cancers, e.g., glioma,

leukemia, neuroendocrine tumors, and renal cancer (16–19).

Oncometabolites have been shown to play a pivotal role in

neoplastic transformation, cancer metabolism, and the

development of therapeutic resistance. As a consequence of gain-

of-function mutations and loss of tumor suppressors,

oncometabolites accumulate within cancer cells and within the

TME. For example, mutations in isocitrate dehydrogenase 1 and 2

(IDH1/2) occur in a subset of acute myeloid leukemia (AML)

patients and IDH2 mutant leukemic cells produce elevated levels

of the oncometabolite D-2-hydroxyglutarate (D2-HG) (17, 18). D2-
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HG is a structural homolog and antagonist of the Krebs cycle

intermediate a-ketoglutarate (a-KG) that disrupts the Krebs cycle
leading to metabolic and epigenetic derangements. D2-HG changes

the catalytic activity of a-ketoglutarate–dependent dioxygenases

leading to genome-wide histone and DNA methylation alterations

(16–19).
2 Linking altered cellular metabolism
to multiple myeloma

Multiple myeloma (MM) is a cancer of terminally-differentiated

plasma cells (PCs) that accumulate and proliferate predominantly

within the tumor permissive BM microenvironment (20–25). PCs

are primary effectors of humoral immunity and function as

antibody-producing factories that secrete vast amount of

immunoglobulins. PC proliferation within the BM leads to

increased production and circulation of the monoclonal (M-

spike) protein in serum and/or urine (6, 26). Cardinal clinical

features of MM include anemia, hypercalcemia, renal impairment

and myeloma-related bone lesions (6, 20–22). The clinical course of

nearly all MM patients is characterized by cycles of continuously

shortening periods of remission followed by relapse. The prevalence

of obesity, cardiovascular disease and diabetes increases with age

and elderly patients diagnosed with MM generally present with

these concurrent co-morbidities (6, 27–32). The prognosis of MM

patients has significantly improved over the past two decades,

primarily due to the incorporation of novel agents developed

based upon the biology of disease (20, 22, 33). MM cells

synthesize and secrete vast amounts of protein, especially

immunoglobulins, and have adapted to withstand an enhanced

capacity for unfolded polypeptides. Hence, MM cells are exquisitely

sensitive to drugs that disrupt protein homeostasis, e.g., proteasome

inhibitors (PIs). Although PIs represent a highly effective anti-

myeloma therapy and transformed the management of MM, drug

resistance inevitably emerges through compensatory protein

clearance mechanisms, e.g., the aggresome+autophagy pathway

(34). Genome-wide profiling identified individual microRNAs

(miRs), e.g., miR-29b, that were differentially expressed in

bortezomib-resistant MM cells compared to drug-naive cells. The

highly distinct function and specialized habitat of MM cells shapes

the circuitry of intracellular pathways that contribute to drug

resistance (35).

Genomic, proteomic and metabolic changes in myeloma cells

stimulates their clonal evolution and expansion that eventually

leads to the emergence of drug resistant clones that are

responsible for disease relapse (36–38). Altered cellular

metabolism also reduces the anti-myeloma effect of standard-of-

care agents, e.g., PIs and immunomodulatory drugs (IMiDs).

Metabolic changes within the TME further decreases the

beneficial anti-myeloma effects of PIs and IMiDs, monoclonal

antibodies and cellular immunotherapies (14, 15, 23, 36). Despite

the development of novel anti-myeloma drugs over the past two

decades, disease heterogeneity, high-risk disease, early relapse and

treatment resistance remain challenges (14, 20, 22, 24, 33).
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Moreover, subclonal heterogeneity of PCs evolves alongside disease

progression through the selection of genetically and metabolically

adapted subclones (37, 38). Importantly, the incidence of MM is

associated with metabolic syndrome and inflammatory cytokines,

while the anti-diabetic agent metformin that lowers blood glucose

levels and statins, which lower the level of low-density lipoprotein

(LDL) cholesterol, are positive prognostic factors in patients

diagnosed with MM (39–42).
3 Metabolic pathways altered in
multiple myeloma

MM cells employ specialized metabolic programs that differ

from neighboring, untransformed somatic cells to sustain their

extraordinary anabolic and catabolic needs (6, 42–45). Features of

altered metabolism in MM include deregulated uptake and

metabolism of glucose and amino acids especially glutamine,

capacity to acquire scarce nutrients, enhanced glycolytic and

tricarboxylic acid (TCA) cycle intermediates, elevated

nicotinamide adenine dinucleotide phosphate (NADPH)

production and elevated level of fatty acid (FA) synthesis.
3.1 Glucose metabolism

The glycolytic enzyme hexokinase II (HKII) is overexpressed in

MM cells relative to PCs from healthy donors (46). Ikeda et al.

found that hypoxia-inducible HKII impaired glycolysis and

contributed to autophagy activation as well as the acquisition of

an anti-apoptotic phenotype in myeloma cells. To detect candidate

genes crucial for the acquisition of hypoxia-inducible autophagy, a

comprehensive expression analysis was performed using MM

patient samples incubated under normoxia or hypoxia. Hypoxic

stress upregulated glycolytic genes (PFKFB4, ENO2, ALDOC,

PFKFB3, HK2, PFKP, GPI, PGK1, LDHA, ALDOA, ENO1, PKM,

and GAPDH) including HKII in samples obtained from MM

patients (46). These results suggest that hypoxia-drive event may

permit myeloma cells to metabolize glucose in an energetically

favorable multi-step process. Antisense oligonucleotide (ASO)

directed against HKII (HII-ASO1) suppressed HKII expression in

MM cell cultures and in MM patient tumor cells xenografted into

murine models (47). HKII-ASO1 shows selective HKII inhibition to

support the clinical development of this approach. Aerobic

glycolysis also activates the TCA cycle to produce NADPH and

glutathione (GSH) which reduces oxidative stress. Since oxidative

damage is essential for bortezomib-mediated cytotoxicity, drug

resistance may be accompanied by increased tolerance towards

oxidative insults. Soriano et al. showed that PI-adapted myeloma

cells tolerate subtotal proteasome inhibition owing to metabolic

adaptations that favor the generation of NADPH reducing

equivalents, supported by oxidative glycolysis (48).

Lactate dehydrogenase A (LDHA) expression is increased in

relapsed MM patients to suggest that glucose metabolism is

enhanced (49). Proliferator-activator receptor-g coactivator-1b
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(PGC-1b) and LDHA are highly expressed in MM cells and

LDHA is upregulated by PGC-1b through the PGC-1b/RXRb axis

by acting on the LDHA promoter. Overexpression of PGC-1b or

LDHA potentiated glycolysis metabolism and increased cell

proliferation and tumor growth. Conversely, knockdown of either

PGC-1b or LDHA suppressed glycolysis, increased reactive oxygen

species (ROS) formation and apoptosis, suppressed tumor growth

and enhanced mouse survival. Liu et al. investigated whether excess

glucose induced hypoxia-inducible factor-1a (HIF-1a) and

stimulated glucose metabolism and cell migration in pancreatic

cancer cells (50). The authors studied wild-type (WT) MiaPaCa2

pancreatic cancer cells and a MiaPaCa2 subline transfected with an

HIF-1a-specific small interfering (siRNA). Excess glucose

stimulated the migration of WT and siRNA-treated MiaPaCa2

cells grown under normoxia and hypoxia, while glucose

stimulated cell migration independent of HIF-1a. These studies

indicated that excess glucose increases HIF-1a and ATP in hypoxic

WT-MiaPaCa2 cells. Extracellular glucose levels and hypoxia

regulate glucose metabolism independent of HIF-1a while glucose

stimulates cell migration through HIF-1a-dependent and

independent mechanisms.

The Warburg effect describes an increase in the rate of glucose

uptake and preferential production of lactate, even in the presence

of oxygen (51–53). Further evidence that Warburg’s

experiments on tumor tissue in vitro were valid in vivo was

demonstrated in experiments on surviving tumor tissue and

replicated in tumor-bearing animals (54, 55). The effect is

clinically utilized in 18F-fluorodeoxyglucose (18F-FDG) positron

emission tomography (PET) scans as sensitive diagnostic and

prognostic tools (56, 57). Glucose is transported across the cell

membrane through glucose transporters (GLUTs) through a

facilitated diffusion mechanism (58–61). Owing to its elevated

glycolytic gene profile, MM cells have been shown to be

dependent on glycolysis and, therefore, susceptible to glycolysis

inhibitors, e.g., GLUT inhibitors (58). Of the 14 GLUT subtypes,

GLUT1 overexpression is most associated with poor clinical

outcomes in cancer cell lines and cancer patients (44, 47, 58, 61).

In MM cells, GLUT1 upregulation increases glucose uptake and

enhances susceptible to GLUT1 inhibitors (61). MM cells are also

dependent on GLUT4 for glucose uptake, survival, and elevated

expression of the anti-apoptotic protein Mcl-1, that has been

associated with tumorigenesis, poor prognosis, and drug

resistance (58).

Upregulation of the GLUT membrane transporters, e.g.,

GLUT1 GLUT4, GLUT8 and GLUT11, increases the level of

glycolytic metabolites in MM cells. The Federal Drug

Administration (FDA)-approved HIV protease inhibitor ritonavir

demonstrates an off-target inhibitory effect on GLUT4 as well as a

dose-dependent inhibitory effect on glucose uptake and

proliferation in L363 and KMS11 cells (62). However, a subset of

MM cells survive glucose deprivation or ritonavir treatment,

possibly through mitochondrial oxidative phosphorylation

(OXPHOS). Targeting the mitochondrial complex I using the

FDA-approved anti-diabetes drug metformin combined with

ritonavir induced apoptosis in primary MM cells. The PI3K/AKT

pathway, through mTOR-dependent activity, is linked to increased
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glucose metabolism and may explain the elevated levels of glycolytic

intermediates seen in MM cells (63–66). The combination also

suppressed AKT and mTORC1 phosphorylat ion and

downregulated Mcl-1 expression (62).

LDH, which converts pyruvate and NADH to lactate and

NAD+, is elevated in ~10% of patients with newly-diagnosed,

symptomatic MM (67). HIF-1a is upregulated in drug resistant

MM cells and leads to enhanced lactate production and the

accumulation of glycolytic metabolites (68). HIF-1a upregulation

is associated with metastasis, unfavorable prognosis, and reduced

OS in cancer patients (68, 69). Since bortezomib decreases HKII

activity in MM cells grown under hypoxic conditions and loss of
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HKII decreases LDHA activity, targeting LDHA could enhance

effects of bortezomib (45). Indeed, inhibition of HIF-1a and LDHA

have been shown to restore sensitivity to bortezomib and melphalan

in MM cells (45). FX11 is a selective and potent LDHA inhibitor

which reduces ATP levels by inducing oxidative stress and ROS

production (70) (Table 1). PX-478 selectively inhibits HIF-1a to

suppress cell migration, angiogenesis and drug resistance (71).

Pyruvate kinase M2 (PKM2) regulates glycolysis and promotes

tumor cell survival and proliferation (86). Never in mitosis gene

A (NIMA)-related kinase 2 [NEK2] increases the PKM2/PKM1

ratio by splicing PKM to promote enhanced glycolysis that drives

oncogenesis (54).
TABLE 1 Pharmacologically targeting metabolic vulnerabilities in hematologic malignancies.

Metabolic
Pathway Target Drug Mechanism of Action

Glycolysis

HIF-1a
PX-478 (Phase I,
NCT00522652)

Decreases nuclear HIF-1a protein levels to reduce HIF-1a (71).

LDHA and HK2 FX11 (Preclinical) Inhibits aerobic glycolysis (70).

GLUT4
Ritonavir (Phase I,
NCT02948283)

Cytostatic and/or cytotoxic effects by chemosensitizing tumor cells both in vitro and in vivo (62,
72).

GLUT1

Vincristine (Phase II,
NCT00003493)

Inhibits microtubule formation in mitotic spindle, resulting in an arrest of dividing cells at the
metaphase stage (73).

Bortezomib (Phase IV,
NCT00257114)

Binds reversibly to the chymotrypsin-like subunit of the 26S proteasome, resulting in its
inhibition and preventing the degradation of various pro-apoptotic factors (48).

WZb117 (Preclinical)
Inhibits passive sugar transport in human erythrocytes and cancer cell lines and, by limiting
glycolysis (74).

Phloretin (Preclinical)
Blocks cyclins and cyclin-dependent kinases and activates mitochondria-mediated cell death to
promote cell death (61, 75).

Hexokinase
Vincristine See above.

Bortezomib See above.

OXPHOS
Glycerophosphate
dehydrogenase

Metformin (Phase II,
NCT04850846)

Inhibits MM proliferation by inducing cell cycle arrest and apoptosis (39, 40, 76).

Amino acid
metabolism

Glutaminase

Benzophenanthridinone
968 (Preclinical)

Promotes apoptosis in both human MMCL and patient primary cells (77, 78).

CB-839 (Telaglenastat)
(Phase I, NCT03798678)

Allosteric, noncompetitive inhibitor of both splice variants of the broadly expressed glutaminase-
1. Enhanced CFZ-induced ER stress and apoptosis, characterized by a robust induction of ATF4
and CHOP and the activation of caspases (79).

Guanine and
Guanosine
GSH

Melphalan (Phase II,
NCT02669615)

Alkylates guanine and causes linkages between strands of DNA leading to cytotoxicity in dividing
and non-dividing cells (80).

SNAT1
a-Methylamino-isobutyric
acid (Preclinical)

Competitive inhibitor of the neutral amino acid transport A system which
decreases glutamine uptake and reduces cell growth (81, 82).

ASCT2 V-9302 (Preclinical)
Blocks ASCT2 to attenuate cancer cell growth and proliferation, increase cell death, increase
oxidative stress, to contribute to anti-tumor responses in vitro and in murine models in vivo (83).

LAT1
Nanvuranlat (JPH203)
(Phase I, in solid tumors,
PMID: 32198649)

Inhibits essential amino acids uptake in tumor cells to activate apoptosis (84).

Fatty acid
metabolism

Carnitine
palmitoyltransferase-
1 (CPT1)

Etomoxir Inhibits b-oxidation and de novo fatty acid synthesis in MM cells (43, 85).

Fatty acid synthase
(FASN)

Orlistat Inhibits lipases and induces apoptosis in myeloma cells (43, 85).
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The HK isoform HKII is the rate-limiting step in aerobic

glycolysis and is overexpressed in many cancers including MM

(87, 88). Vincristine and bortezomib suppressed GLUT-1 and HK

expression to induce apoptosis in MM cells (73), while WZb117 and

phloretin inhibited GLUT-1 activity to decrease glucose uptake with

synergistic anti-tumor effects in leukemia, lung, colon and breast

cancers (74, 89, 90). Under hypoxic conditions, phloretin enhanced

the effects of daunorubicin and overcame hypoxia-conferred drug

resistance (91). Targeting glucose consumption through enzymatic

regulators and transporters could serve as an effective anti-

myeloma therapy.
3.2 Amino acid metabolism

Glutamine is an abundant amino acid crucial for cell

proliferation, differentiation, apoptosis, and cytokine production

(92). Glutamine is needed in MM cells for nucleic acid biosynthesis,

to generate energy in the TCA cycle and to support increased amino

acid and FA synthesis. MM cells are particularly dependent on

extracellular glutamine since they exhibit high glutaminase levels

and low glutamine synthetase expression. Glutamine depletion

prevents MM growth and enhances sensitivity to anti-myeloma

agents (77, 79, 84, 93–95). The histidine/large neutral amino acid

transporter LAT1 (SLC7A5) glutamine transporter is overexpressed

in MM cells and is associated with reduced overall survival (OS)

(84). MM cells primarily rely upon the alanine, serine, cysteine

transporter 2 (ASCT2/SLC1A5) and glutamine transporters for

glutamine uptake. Targeting glutamine transporters, specifically

ASCT2 inhibitors combined with the PI carfilzomib induced

proteotoxic stress and ROS generation (81, 83). The need for

extracellular glutamine makes glutamine transporters interesting

targets for MM therapy.

Glutamine serves as an important energy source for cancer cells

and glutamine deficiency or the glutaminase inhibitor

benzophenanthridinone 968 induces apoptosis in MM cells (13,

78, 82). Benzophenanthridinone 968 effectively inhibits glutaminase

and this inhibition induces apoptosis in MM cell lines (MMCLs)

and patient primary tumor cells. Elevated expression of the

glutamine transporters SNAT1, ASCT2 and LAT1, makes these

an attractive target for anti-myeloma therapy (6). The

prognostic significance of LAT1 in MM was investigated by

immunohistochemistry to monitor the expression of LAT1 and

its functional subunit, 4Fc heavy chain (CD98), on tumor cells in

100 newly diagnosed MM (NDMM) patients (84). LAT1

overexpression was associated with high proliferation and poor

prognosis in NDMM patients. LAT1 may be a promising

pathological marker to identify high-risk MM.
3.3 Fatty acid metabolism

A lipid profiling study uncovered large differences in lipid

composition as well as amino acid and energy profiles from

NDMM, relapsed and/or refractory (RRMM), monoclonal

gammopathy of unknown significance (MGUS) and healthy
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controls (96). The metabolomic profile was quite different

between that observed with samples from healthy controls

compared to that of samples from patients with either MGUS,

NDMM or RRMM. Significant alterations in amino acid, lipid, and

energy metabolism were observed between the different patient

groups. Eight metabolites, i.e., free carnitine, acetylcarnitine,

glutamate, asymmetric dimethylarginine and phosphatidylcholine

species, differed between MGUS and NDMM patients, supporting

the notion that metabolic changes occur during myelomagenesis. A

second lipidomics study revealed upregulation of ceramides and

phosphatidylethanolamines (PEs) and downregulation of

phosphatidylcholines, sphingomyelin and one species of PE in

MM patients (97). Increased sphingomyelinase expression in

primary patient samples was found and inhibition of

sphingomyelinase by GW4869 further increased bortezomib and

melphalan-mediated cell death (80). Treatment of MM cells with

ixazomib led to the accumulation of lipids. Pre-treatment of MM

cells with docosahexaenoic acid (DHA) or eicosapentaenoic acid

(EHA) also increased the sensitivity to bortezomib by altering the

GSH metabolic pathway (98). Tirado-Velez et al. tested the

hypothesis that inhibition of b-oxidation and de novo FA

synthesis would reduce cell proliferation in myeloma cells (85).

The authors found that the RPMI-8226, NCI-H929 and U-266B1

cells displayed increased FA oxidation (FAO) and elevated

expression of FA synthase (FAS). Inhibition of FAO by etomoxir

and FAS by orlistat inhibited b-oxidation and de novo FA synthesis

without significantly altering glucose metabolism. These effects

were associated with cell cycle arrest in G0/G1 and reduced cell

proliferation (43, 85). Etomoxir-mediated inhibition of FAO

modestly increased the amount of lactate generated without

altering glucose metabolism, to suggest that the inhibition of FAO

in myeloma cells did not result in an adaptive mechanism to sustain

energy homeostasis. FAS was elevated in ~70% of MM patients

compared to healthy volunteers and inhibition of FAS by cerulenin

promoted apoptosis (99). MMCLs and primary MM cells

overexpress FAS to promote their survival and proliferation. MM

patients have been reported to exhibit greater levels of saturated FAs

and n-6 polyunsaturated FAs (PUFA), compared to healthy

controls. Acetyl-CoA synthetase 2 (ACSS2) is overexpressed in

MM cells derived from obese patients and contributes to

myeloma progression (100). ACSS2 interacts with the

oncoprotein interferon-regulated factor 4 (IRF4), and enhances

IRF4 stability and IRF4-mediated gene transcription through

act ivat ion of acety la t ion. The importance of ACSS2

overexpression in myeloma was confirmed by finding that an

ACSS2 inhibitor reduced myeloma growth in vitro and in a diet-

induced obese mouse model. The findings demonstrated a key

impact for obesity-induced ACSS2 on myeloma progression and

could be important for other obesity-related malignancies. Glioma

cells were incubated with tetradecylthioacetic acid (T11111141),

which cannot be b-oxidized, and the oxidizable FA palmitic acid

(PA), in the presence of L-carnitine and the carnitine

palmitoyltransferase inhibitors etomoxir and aminocarnitine. L-

carnitine partially abolished PA-mediated growth reduction of

glioma cells, whereas etomoxir and aminocarnitine enhanced the

anti-proliferative effect of PA (101). Similarly, Samudio et al.
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demonstrated that inhibition of FAO with etomoxir or ranolazine

reduced the proliferation and sensitized human leukemia cells to

ABT-737-induced apoptosis (102). The conventional view has been

that cancer cells predominately produce ATP by glycolysis, rather

than by oxidation of energy-providing substrates. Mitochondrial

uncoupling, i.e., continued reduction of oxygen without ATP

synthesis, may obviate the ability of oxygen to inhibit glycolysis

and promote the preference for glycolysis by shifting from pyruvate

oxidation to FAO.
4 Oncogenic MYC and
myeloma metabolism

Transcription factors of the MYC family are deregulated in up

to 70% of all human cancers and MYC deregulation is a

determinant of myeloma progression (103–105). Oncogenic levels

of MYC regulate almost every aspect of cellular metabolism. MYC

plays a key role in the regulation of aerobic glycolysis and activates

glycolytic genes not only by transcription, but also through

alternative splicing. In addition, enhanced MYC expression

upregulates the level of glutamine transporters and suppresses

inhibition of glutaminolysis (77, 94, 106). Glutamine depletion

led to the rapid loss of the MYC protein, independent of MYC

transcription and post-translational modifications. However, MYC

loss was dependent on proteasomal activity and this loss was

paralleled by an equally rapid induction of apoptosis (106). MYC

transcription is upregulated in certain MM cells, especially during

later stages of disease. The estimated 24-month progression-free

survival was found to be significantly shorter in patients with

intermediate to high MYC expression compared with patients

with low MYC expression (107). However, this did not translate

into a significant difference in OS. Somewhat different results were

presented by Chng et al. which indicated that patients with MYC-

expressing tumors had a significantly shorter OS (105). Chng et al.

further reported that nearly all tumors with RAS mutations

expressed a MYC activation signature. MYC activation, assessed

by gene expression signature or immunohistochemistry was

associated with hyperdiploid MM, and shorter survival even in

tumors non-proliferative.
5 Impact of the hypoxic
microenvironment on metabolism in
myeloma cells

MM cells are exposed to different levels of oxygen and nutrients

leading to metabolically heterogeneous phenotypes that

differentially respond to therapeutic intervention (108–112).

Hypoxia-inducible factors (HIFs), e.g., HIF-1a, are stabilized

(108, 111, 113) within the TME and HIF-1a activation intensifies

conversion of pyruvate into lactate instead of the oxidation of

pyruvate in mitochondria. HIF-1a is also essential in regulating

vascular endothelial growth factor (VEGF) which is associated with

a poor prognosis in MM (114). HIF-1a was reported to be increased
Frontiers in Oncology 06103
in MM as compared to controls (115, 116). The expression of HIF-

1a was also correlated with serum levels of VEGF, basic fibroblast

growth factor (bFGF) and angiopoietin-2 (Ang-2) (117–125). Gene

expression datasets indicated that HIF-1a and HIF-2a were

enriched in cells from NDMM patients compared to those from

healthy donors (45, 126, 127). IMiDs treatment has been shown to

decrease HIF-1a expression within the BM indicating that HIF-1a
could also serve as a target in MM (128).

The TME consumes vast amounts of oxygen that is required for

aerobic glycolysis within tumor cells (129) (Figure 1). Hypoxia

increases anaerobic glycolysis by activating HIF (130) and hypoxia-

induced LDHA andHKII promote PI-resistance in MM cells (45). It

was also shown that activation of miR-210 due to hypoxia

significantly reduced tumor susceptibility to CD8+ cytotoxic T-

lymphocytes (CTLs) by downregulating PTPN1, HOXA1, and

TP53I11 in melanoma and lung cancer cells (131). Hypoxia

inducible miR-210 significantly downregulated PTPN1 and

TP53I11 in MMCLs (132). Moreover, the HIF-inducible factor

adrenomedullin is released from MM cells and stimulates vascular

endothelial cells to express the angiogenic receptors CRLR and

RAMP2 to promote angiogenesis (133). HIF-1a regulates

interleukin (IL)-32 release from myeloma cells that is taken up by

osteoclasts (134). The hypoxia-inducible p38-cyclic adenosine

monophosphate (AMP) response element-binding protein

(CREB)-Dickkopf-related protein 1 (DKK1) axis and upregulation

of the HIF-1a-inducible MM SET domain-containing histone

methyltransferase (MMSET) suppress osteoblastic bone formation

(135). Taken together, hypoxic stress creates a favorable

environment for myeloma survival by regulating chemotaxis,

stimulating osteoclasts and endothelial cells, and inhibiting

osteoblasts (Figure 1).

Bortezomib inhibits HIF-1a at the transcriptional level which in

turn impairs recruitment of the coactivator CBP/p300 (136). The

effects of PIs are attenuated within the hypoxic TME possibly due to

reduced endoplasmic reticulum (ER) stress. In addition, the

degradation of unfolded proteins normally mediated by

proteasomes may be alternatively removed by autophagy.

HIF-inducible HKII activates autophagy by inhibiting

mammalian target of rapamycin (mTOR) signaling (137). HKII is

a promising therapeutic target and HKII inhibitors may increase the

efficacy of anti-myeloma agents.
6 Metabolic alterations that alter anti-
myeloma immunity

MM cells remodel the BM milieu to reshape the TME and

negatively impact effectors of anti-tumor immunity (138–140).

Deregulated tumor metabolism impairs the functional capacity of

neighboring immune cells and compromises their differentiation

(141–147). Adaptations within the TME create a competition for

nutrients required by myeloma cells with their neighboring non-

tumor cells. MM cells outcompete neighboring cells for nutrients to

enhance tumor growth and impair anti-tumor immunity. Further

dissecting the metabolic requirements of tumor and non-tumor
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cells in the TME may enhance immunotherapeutic responses. In

addition, a disrupted vasculature deprives the TME of adequate

blood supply and enhances competition between tumors and

infiltrating immune cells (148). In MM, CD4+ and CD8+ T-cells

form the primary immune defense, however, tumor-induced

remodeling of the TME is unfavorable to T-cells due to nutrient

deprivation, acidosis, and the accumulation of toxic metabolites

(146) (Figure 1). The hypoxic microenvironment also upregulates

PD-L1 expression on tumor cells through HIF-1a and a hypoxia

response element (HRE) (149, 150). In MM, PD-L1 expression has

been shown to be upregulated on malignant PCs (151, 152). NK

cells from MM patients express PD-1, in contrast to NK cells from

healthy individuals, which suppresses NK cell cytotoxicity (153).

Immune cells take up and utilize amino acids, e.g., L-arginine, a

non-essential amino acid present in macrophages and DCs, and

lipids that are necessary for functional activity (154–157). As a

product of aerobic or anaerobic glycolysis in tumors, lactic acid

induces VEGF expression and M2-like polarization of tumor-
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associated macrophages (158). Tumor secretion of lactate also

promotes overexpression of arginase I isoform in macrophages

and is associated with immunosuppression. Lactate is not only a

secondary product of cancer metabolism, but also promotes

immune evasion through various mechanisms (159–161).

Adenosine, and other products of cancer cell metabolism,

interfere with the antitumor effect of infiltrating T-cells (162,

163). Tryptophan metabolites, especially kynurenine generated

through indoleamine 2,3-dioxygenase (IDO1), have been shown

to modulate T-cell activity (141–144). Kynurenine, produced by

both IDO-1 and tryptophan-2,3-dioxygenase-2 (TDO-2),

upregulated the PD-1 co-inhibitory pathway on activated CD8+

T-cells in vitro compared with vehicle-treated cells (140). Since

tryptophan catabolites suppress immunity, blocking tryptophan

catabolism with IDO inhibitors is a potential anticancer strategy

(164). Targeting the tryptophan catabolic kynurenine pathway

using immune-based approaches has been shown to enhance

antitumor immunity and cytotoxicity in MM (165).
FIGURE 1

Targeting metabolic energy supply chains to enhance anti-myeloma therapy. Multiple myeloma cells use glucose as a primary source of energy
followed by glutamine and fatty acids. Within cytosol, glucose is metabolized via glycolysis into two molecules of pyruvate and adenosine
triphosphate (ATP) each. Next, pyruvate is transported across the mitochondrial matrix and is oxidized via TCA cycle to acetyl-CoA. Glutamine is
transported across the membrane via transporters where it is metabolized into a-ketoglutarate (a-KG) via glutaminolysis. Oxidation of fatty acids
results in breakdown of fatty acids into acetyl-CoA units. Which supplies energy to other tissues when glycogen stores are depleted. Each metabolic
step releases energy in the form of electrons which are accepted by the electron transport chain to generate even more ATP through oxidative
phosphorylation (OXPHOS). Metabolism targeting drugs (green) inhibit the key metabolic steps in glycolysis, TCA cycle, fatty acid synthesis, OXPHOS
and glutaminolysis. Figure 1 is an original image created with Biorender.com, Toronto, Canada.
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7 Conclusions

A century after Warburg discovered that tumor cells switch

from mitochondrial respiration to glycolysis to generate energy,

even under aerobic conditions, cancer metabolism remains

perplexing. Myeloma cells exhibit a metabolic phenotype

characterized by enhanced glycolytic flux for ATP production,

glucose to lactate conversion and reduced mitochondrial

OXPHOS (166–168). In contrast to healthy, differentiated cells,

which rely on mitochondrial OXPHOS to generate energy, cancer

cells rely on aerobic glycolysis. The switch to aerobic glycolysis may

represent an adaptation to facilitate the uptake of nucleotides,

amino acids, and lipids required for replication (169–171).

Reprogramming of the metabolic pathways that contribute to

tumor growth has exposed molecular vulnerabilities and

actionable targets that can be exploited (Table 1). Warburg

described aerobic, not anaerobic, glycolysis and therefore there

must exist factors other than HIF1-a which elicit the Warburg

effect. In addition, HIF1-a is not expressed in MM cells unless

grown under hypoxic conditions. Recent work by Abdollahi et al.

(172, 173) demonstrated a role for PRL-3 in the induction of glucose

uptake and enhanced glycolysis. Importantly, this effect was not

mediated through HIF1-a, c-Myc or AMPK, but rather through

STAT1 and STAT2. In hypoxia there was synergy between HIF1-a
and PRL-3 in promoting glycolysis. Contrary to HIF1-a, PRL-3
does not seem to reduce OXPHOS, and recent research has shown

that many hematological cancers do not downregulate OXPHOS

activity (174).

Proteasomes are central to the protein degradation machinery

of eukaryotes (175, 176). Healthy and transformed cells depend on

proteasomes to control the level of proteins linked to metabolism,

survival and proliferation (177). Based upon these findings, over the

past two decades PIs have emerged as a transformative anti-

myeloma therapy that has improved patient OS and quality-of-

life. Proteasome abundance and catalytic activity is controlled at the

level of assembly and is finely tuned by adaptations in cellular

metabolism (177). Sequencing of PCs from NDMM patients has

shown that MM is frequently dominated by RAS (43% of patients)

and nuclear factor kappa B (NF-kB) pathway (17%) mutations

(178). Malignant PCs undergo extensive metabolic reprogramming

during myelomagenesis that is enhanced by KRAS, NRAS, and

BRAF-activating mutations to elevate proteasomal capacity and

reduce ER stress (179). Ras and related proteins are mutated or

deregulated in many solid tumors, but PIs are ineffective against
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these cancers (180). Future studies are needed to decipher how solid

tumors reprogram cell metabolism to evade the cytotoxic effect of

PIs. Novel agents and drug delivery systems that target cancer

metabolism may broaden the therapeutic impact of PIs in

rationally-designed drug cocktails that improve patient survival.
Author contributions

JD, PR, and KG developed the concept, wrote, edited, made

substantial contributions, and approved the final version of

the manuscript.
Funding

Research was supported by NIH R01 (5R01AI139141 to JJD),

University Hospitals Cleveland Medical Center/Seidman Cancer

Center, the Case Comprehensive Cancer Center and the Vinney

Foundation Award (to JJD).
Acknowledgments

The authors thank Berkha Rani, MBBS, for critical reading of

the manuscript.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
References
1. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell (2000) 100(1):57–70.
doi: 10.1016/s0092-8674(00)81683-9

2. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell (2011)
144(5):646–74. doi: 10.1016/j.cell.2011.02.013

3. Pavlova NN, Thompson CB. The emerging hallmarks of cancer metabolism.
Cell Metab (2016) 23(1):27–47. doi: 10.1016/j.cmet.2015.12.006

4. Hanahan D. Hallmarks of cancer: new dimensions. Cancer Discovery (2022) 12
(1):31–46. doi: 10.1158/2159-8290.CD-21-1059
5 . Zh en g J . E n e r g y me t a b o l i sm o f c a n c e r : g l y c o l y s i s v e r s u s
oxidative phosphorylation (Review). Oncol Lett (2012) 4(6):1151–7. doi: 10.3892/
ol.2012.928

6. Gavriatopoulou M, Paschou SA, Ntanasis-Stathopoulos I, Dimopoulos MA.
Metabolic disorders in multiple myeloma. Int J Mol Sci (2021) 22(21). doi: 10.3390/
ijms222111430

7. Dey P, Kimmelman AC, DePinho RA. Metabolic codependencies in the tumor
microenvironment. Cancer Discovery (2021) 11(5):1067–81. doi: 10.1158/2159-
8290.CD-20-1211
frontiersin.org

https://doi.org/10.1016/s0092-8674(00)81683-9
https://doi.org/10.1016/j.cell.2011.02.013
https://doi.org/10.1016/j.cmet.2015.12.006
https://doi.org/10.1158/2159-8290.CD-21-1059
https://doi.org/10.3892/ol.2012.928
https://doi.org/10.3892/ol.2012.928
https://doi.org/10.3390/ijms222111430
https://doi.org/10.3390/ijms222111430
https://doi.org/10.1158/2159-8290.CD-20-1211
https://doi.org/10.1158/2159-8290.CD-20-1211
https://doi.org/10.3389/fonc.2023.1141851
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Rana et al. 10.3389/fonc.2023.1141851
8. Alfarouk KO, Shayoub ME, Muddathir AK, Elhassan GO, Bashir AH. Evolution
of tumor metabolism might reflect carcinogenesis as a reverse evolution process
(Dismantling of multicellularity). Cancers (Basel) (2011) 3(3):3002–17. doi: 10.3390/
cancers3033002

9. Elia I, Haigis MC. Metabolites and the tumour microenvironment: from cellular
mechanisms to systemic metabolism. Nat Metab (2021) 3(1):21–32. doi: 10.1038/
s42255-020-00317-z

10. Martinez-Reyes I, Chandel NS. Cancer metabolism: looking forward. Nat Rev
Cancer (2021) 21(10):669–80. doi: 10.1038/s41568-021-00378-6

11. Chen C, Wang Z, Qin Y. Connections between metabolism and epigenetics:
mechanisms and novel anti-cancer strategy. Front Pharmacol (2022) 13:935536.
doi: 10.3389/fphar.2022.935536

12. Ge T, Gu X, Jia R, Ge S, Chai P, Zhuang A, et al. Crosstalk between metabolic
reprogramming and epigenetics in cancer: updates on mechanisms and therapeutic
opportunities. Cancer Commun (Lond) (2022) 42(11):1049–82. doi: 10.1002/cac2.12374

13. Altman BJ, Stine ZE, Dang CV. From Krebs to clinic: glutamine metabolism to
cancer therapy. Nat Rev Cancer (2016) 16(10):619–34. doi: 10.1038/nrc.2016.71

14. Rana PS, Murphy EV, Kort J, Driscoll JJ. Road testing new car design strategies
in multiple myeloma. Front Immunol (2022) 13:957157. doi: 10.3389/
fimmu.2022.957157

15. Swamydas M, Murphy EV, Ignatz-Hoover JJ, Malek E, Driscoll JJ. Deciphering
mechanisms of immune escape to inform immunotherapeutic strategies in multiple
myeloma. J Hematol Oncol (2022) 15(1):17. doi: 10.1186/s13045-022-01234-2

16. Liu Y, Yang C. Oncometabolites in cancer: current understanding and
challenges. Cancer Res (2021) 81(11):2820–3. doi: 10.1158/0008-5472.CAN-20-3730

17. Xu W, Yang H, Liu Y, Yang Y, Wang P, Kim SH, et al. Oncometabolite 2-
hydroxyglutarate is a competitive inhibitor of alpha-Ketoglutarate-Dependent
dioxygenases. Cancer Cell (2011) 19(1):17–30. doi: 10.1016/j.ccr.2010.12.014

18. Han S, Liu Y, Cai SJ, Qian M, Ding J, Larion M, et al. Idh mutation in glioma:
molecular mechanisms and potential therapeutic targets. Br J Cancer (2020) 122
(11):1580–9. doi: 10.1038/s41416-020-0814-x

19. Nowicki S, Gottlieb E. Oncometabolites: tailoring our genes. FEBS J (2015) 282
(15):2796–805. doi: 10.1111/febs.13295

20. van de Donk N, Pawlyn C, Yong KL. Multiple myeloma. Lancet (2021) 397
(10272):410–27. doi: 10.1016/S0140-6736(21)00135-5

21. Cowan AJ, Allen C, Barac A, Basaleem H, Bensenor I, Curado MP, et al. Global
burden of multiple myeloma: a systematic analysis for the global burden of disease
study 2016. JAMA Oncol (2018) 4(9):1221–7. doi: 10.1001/jamaoncol.2018.2128

22. Anderson KC. Progress and paradigms in multiple myeloma. Clin Cancer Res
(2016) 22(22):5419–27. doi: 10.1158/1078-0432.CCR-16-0625

23. Ignatz-Hoover JJ, Driscoll JJ. Therapeutics to harness the immune
microenvironment in multiple myeloma. Cancer Drug Resist (2022) 5(3):647–61.
doi: 10.20517/cdr.2022.23

24. Mimura N, Hideshima T, Anderson KC. Novel therapeutic strategies for
multiple myeloma. Exp Hematol (2015) 43(8):732–41. doi : 10.1016/
j.exphem.2015.04.010

25. Ignatz-Hoover JJ, Murphy EV, Driscoll JJ. Targeting proteasomes in cancer and
infectious disease: a parallel strategy to treat malignancies and microbes. Front Cell
Infect Microbiol (2022) 12:925804. doi: 10.3389/fcimb.2022.925804

26. Fairfield H, Falank C, Avery L, Reagan MR. Multiple myeloma in the marrow:
pathogenesis and treatments. Ann N Y Acad Sci (2016) 1364(1):32–51. doi: 10.1111/
nyas.13038

27. Hales CM, Fryar CD, Carroll MD, Freedman DS, Ogden CL. Trends in obesity
and severe obesity prevalence in us youth and adults by sex and age, 2007-2008 to 2015-
2016. JAMA (2018) 319(16):1723–5. doi: 10.1001/jama.2018.3060

28. Felix-Redondo FJ, Grau M, Fernandez-Berges D. Cholesterol and cardiovascular
disease in the elderly. Facts Gaps Aging Dis (2013) 4(3):154–69.

29. Geiss LS, Wang J, Cheng YJ, Thompson TJ, Barker L, Li Y, et al. Prevalence and
incidence trends for diagnosed diabetes among adults aged 20 to 79 years, united states,
1980-2012. JAMA (2014) 312(12):1218–26. doi: 10.1001/jama.2014.11494

30. Fotiou D, Ntanasis-Stathopoulos I, Gavriatopoulou M, Dimopoulos MA.
Multiple myeloma: current and future management in the aging population.
Maturitas (2020) 138:8–13. doi: 10.1016/j.maturitas.2020.04.015

31. Gavriatopoulou M, Fotiou D, Koloventzou U, Roussou M, Migkou M, Ntanasis-
Stathopoulos I, et al. Vulnerability variables among octogenerian myeloma patients:
a single-center analysis of 110 patients. Leuk Lymphoma (2019) 60(3):619–28.
doi: 10.1080/10428194.2018.1509323

32. Gavriatopoulou M, Fotiou D, Ntanasis-Stathopoulos I, Kastritis E, Terpos E,
Dimopoulos MA. How I treat elderly patients with plasma cell dyscrasias.
Aging (Albany NY) (2018) 10(12):4248–68. doi: 10.18632/aging.101707

33. Driscoll JJ, Brailey M. Emerging small molecule approaches to enhance the
antimyeloma benefit of proteasome inhibitors. Cancer Metast Rev (2017) 36(4):585–98.
doi: 10.1007/s10555-017-9698-5

34. Jagannathan S, Vad N, Vallabhapurapu S, Vallabhapurapu S, Anderson KC,
Driscoll JJ. Mir-29b replacement inhibits proteasomes and disrupts Aggresome
+Autophagosome formation to enhance the antimyeloma benefit of bortezomib.
Leukemia (2015) 29(3):727–38. doi: 10.1038/leu.2014.279
Frontiers in Oncology 09106
35. Obeng EA, Carlson LM, Gutman DM, Harrington WJJr., Lee KP, Boise LH.
Proteasome inhibitors induce a terminal unfolded protein response in multiple
myeloma cells. Blood (2006) 107(12):4907–16. doi: 10.1182/blood-2005-08-3531

36. Schwestermann J, Besse A, Driessen C, Besse L. Contribution of the tumor
microenvironment to metabolic changes triggering resistance of multiple myeloma to
proteasome inhibitors. Front Oncol (2022) 12:899272. doi: 10.3389/fonc.2022.899272

37. Bolli N, Avet-Loiseau H, Wedge DC, Van Loo P, Alexandrov LB, Martincorena
I, et al. Heterogeneity of genomic evolution and mutational profiles in multiple
myeloma. Nat Commun (2014) 5:2997. doi: 10.1038/ncomms3997

38. Keats JJ, Chesi M, Egan JB, Garbitt VM, Palmer SE, Braggio E, et al. Clonal
competition with alternating dominance in multiple myeloma. Blood (2012) 120
(5):1067–76. doi: 10.1182/blood-2012-01-405985

39. Sanfilippo KM, Keller J, Gage BF, Luo S, Wang TF, Moskowitz G, et al. Statins
are associated with reduced mortality in multiple myeloma. J Clin Oncol (2016) 34
(33):4008–14. doi: 10.1200/JCO.2016.68.3482

40. Song Y, Chen S, Xiang W, Xiao M, Xiao H. The mechanism of treatment of
multiple myeloma with metformin by way of metabolism. Arch Med Sci (2021) 17
(4):1056–63. doi: 10.5114/aoms.2020.101305

41. WuW, Merriman K, Nabaah A, Seval N, Seval D, Lin H, et al. The association of
diabetes and anti-diabetic medications with clinical outcomes in multiple myeloma.
Br J Cancer (2014) 111(3):628–36. doi: 10.1038/bjc.2014.307

42. Roman-Trufero M, Auner HW, Edwards CM.Multiple myeloma metabolism - a
treasure trove of therapeutic targets? Front Immunol (2022) 13:897862. doi: 10.3389/
fimmu.2022.897862

43. Rizzieri D, Paul B, Kang Y. Metabolic alterations and the potential for targeting
metabolic pathways in the treatment of multiple myeloma. J Cancer Metastasis Treat
(2019) 5. doi: 10.20517/2394-4722.2019.05

44. Porporato PE, Dhup S, Dadhich RK, Copetti T, Sonveaux P. Anticancer targets
in the glycolytic metabolism of tumors: a comprehensive review. Front Pharmacol
(2011) 2:49. doi: 10.3389/fphar.2011.00049

45. Maiso P, Huynh D, Moschetta M, Sacco A, Aljawai Y, Mishima Y, et al.
Metabolic signature identifies novel targets for drug resistance in multiple myeloma.
Cancer Res (2015) 75(10):2071–82. doi: 10.1158/0008-5472.CAN-14-3400

46. Ikeda S, Abe F, Matsuda Y, Kitadate A, Takahashi N, Tagawa H. Hypoxia-
inducible hexokinase-2 enhances anti-apoptotic function Via activating autophagy in
multiple myeloma. Cancer Sci (2020) 111(11):4088–101. doi: 10.1111/cas.14614

47. Xu S, Zhou T, Doh HM, Trinh KR, Catapang A, Lee JT, et al. An Hk2 antisense
oligonucleotide induces synthetic lethality in Hk1(-)Hk2(+) multiple myeloma. Cancer
Res (2019) 79(10):2748–60. doi: 10.1158/0008-5472.CAN-18-2799

48. Soriano GP, Besse L, Li N, Kraus M, Besse A, Meeuwenoord N, et al. Proteasome
inhibitor-adapted myeloma cells are largely independent from proteasome activity and
show complex proteomic changes, in particular in redox and energy metabolism.
Leukemia (2016) 30(11):2198–207. doi: 10.1038/leu.2016.102

49. Zhang H, Li L, Chen Q, Li M, Feng J, Sun Y, et al. Pgc1beta regulates multiple
myeloma tumor growth through ldha-mediated glycolytic metabolism. Mol Oncol
(2018) 12(9):1579–95. doi: 10.1002/1878-0261.12363

50. Liu Z, Jia X, Duan Y, Xiao H, Sundqvist KG, Permert J, et al. Excess glucose
induces hypoxia-inducible factor-1alpha in pancreatic cancer cells and stimulates
glucose metabolism and cell migration. Cancer Biol Ther (2013) 14(5):428–35.
doi: 10.4161/cbt.23786

51. Warburg O. On the origin of cancer cells. Science (1956) 123(3191):309–14.
doi: 10.1126/science.123.3191.309

52. Cori CF, Cori GT. The carbohydrate metabolism of tumors ii. changes in the
sugar, lactic acid, and Co2-combining power of blood passing through a tumor. J Biol
Chem (1925) 65:397–405.

53. Vander Heiden MG, Cantley LC, Thompson CB. Understanding the warburg
effect: the metabolic requirements of cell proliferation. Science (2009) 324(5930):1029–
33. doi: 10.1126/science.1160809

54. Gu Z, Xia J, Xu H, Frech I, Tricot G, Zhan F. Nek2 promotes aerobic glycolysis in
multiple myeloma through regulating splicing of pyruvate kinase. J Hematol Oncol
(2017) 10(1):17. doi: 10.1186/s13045-017-0392-4

55. Walters DK, Arendt BK, Jelinek DF. Cd147 regulates the expression of Mct1 and
lactate export in multiple myeloma cells. Cell Cycle (2013) 12(19):3175–83.
doi: 10.4161/cc.26193

56. Cavo M, Terpos E, Nanni C, Moreau P, Lentzsch S, Zweegman S, et al. Role of
(18)F-fdg Pet/Ct in the diagnosis and management of multiple myeloma and other
plasma cell disorders: a consensus statement by the international myeloma working
group. Lancet Oncol (2017) 18(4):e206–e17. doi: 10.1016/S1470-2045(17)30189-4

57. Takahashi MES, Mosci C, Souza EM, Brunetto SQ, Etchebehere E, Santos AO,
et al. Proposal for a quantitative (18)F-fdg Pet/Ct metabolic parameter to assess the
intensity of bone involvement in multiple myeloma. Sci Rep (2019) 9(1):16429.
doi: 10.1038/s41598-019-52740-2

58. McBrayer SK, Cheng JC, Singhal S, Krett NL, Rosen ST, Shanmugam M.
Multiple myeloma exhibits novel dependence on Glut4, Glut8, and Glut11:
implications for glucose transporter-directed therapy. Blood (2012) 119(20):4686–97.
doi: 10.1182/blood-2011-09-377846

59. Mueckler M, Thorens B. The Slc2 (Glut) family of membrane transporters.
Mol Aspects Med (2013) 34(2-3):121–38. doi: 10.1016/j.mam.2012.07.001
frontiersin.org

https://doi.org/10.3390/cancers3033002
https://doi.org/10.3390/cancers3033002
https://doi.org/10.1038/s42255-020-00317-z
https://doi.org/10.1038/s42255-020-00317-z
https://doi.org/10.1038/s41568-021-00378-6
https://doi.org/10.3389/fphar.2022.935536
https://doi.org/10.1002/cac2.12374
https://doi.org/10.1038/nrc.2016.71
https://doi.org/10.3389/fimmu.2022.957157
https://doi.org/10.3389/fimmu.2022.957157
https://doi.org/10.1186/s13045-022-01234-2
https://doi.org/10.1158/0008-5472.CAN-20-3730
https://doi.org/10.1016/j.ccr.2010.12.014
https://doi.org/10.1038/s41416-020-0814-x
https://doi.org/10.1111/febs.13295
https://doi.org/10.1016/S0140-6736(21)00135-5
https://doi.org/10.1001/jamaoncol.2018.2128
https://doi.org/10.1158/1078-0432.CCR-16-0625
https://doi.org/10.20517/cdr.2022.23
https://doi.org/10.1016/j.exphem.2015.04.010
https://doi.org/10.1016/j.exphem.2015.04.010
https://doi.org/10.3389/fcimb.2022.925804
https://doi.org/10.1111/nyas.13038
https://doi.org/10.1111/nyas.13038
https://doi.org/10.1001/jama.2018.3060
https://doi.org/10.1001/jama.2014.11494
https://doi.org/10.1016/j.maturitas.2020.04.015
https://doi.org/10.1080/10428194.2018.1509323
https://doi.org/10.18632/aging.101707
https://doi.org/10.1007/s10555-017-9698-5
https://doi.org/10.1038/leu.2014.279
https://doi.org/10.1182/blood-2005-08-3531
https://doi.org/10.3389/fonc.2022.899272
https://doi.org/10.1038/ncomms3997
https://doi.org/10.1182/blood-2012-01-405985
https://doi.org/10.1200/JCO.2016.68.3482
https://doi.org/10.5114/aoms.2020.101305
https://doi.org/10.1038/bjc.2014.307
https://doi.org/10.3389/fimmu.2022.897862
https://doi.org/10.3389/fimmu.2022.897862
https://doi.org/10.20517/2394-4722.2019.05
https://doi.org/10.3389/fphar.2011.00049
https://doi.org/10.1158/0008-5472.CAN-14-3400
https://doi.org/10.1111/cas.14614
https://doi.org/10.1158/0008-5472.CAN-18-2799
https://doi.org/10.1038/leu.2016.102
https://doi.org/10.1002/1878-0261.12363
https://doi.org/10.4161/cbt.23786
https://doi.org/10.1126/science.123.3191.309
https://doi.org/10.1126/science.1160809
https://doi.org/10.1186/s13045-017-0392-4
https://doi.org/10.4161/cc.26193
https://doi.org/10.1016/S1470-2045(17)30189-4
https://doi.org/10.1038/s41598-019-52740-2
https://doi.org/10.1182/blood-2011-09-377846
https://doi.org/10.1016/j.mam.2012.07.001
https://doi.org/10.3389/fonc.2023.1141851
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Rana et al. 10.3389/fonc.2023.1141851
60. D'Souza L, Bhattacharya D. Plasma cells: you are what you eat. Immunol Rev
(2019) 288(1):161–77. doi: 10.1111/imr.12732

61. Matsumoto T, Jimi S, Migita K, Takamatsu Y, Hara S. Inhibition of glucose
transporter 1 induces apoptosis and sensitizes multiple myeloma cells to conventional
chemotherapeutic agents . Leuk Res (2016) 41:103–10. doi : 10.1016/
j.leukres.2015.12.008

62. Dalva-Aydemir S, Bajpai R, Martinez M, Adekola KU, Kandela I, Wei C, et al.
Targeting the metabolic plasticity of multiple myeloma with fda-approved ritonavir
and metformin. Clin Cancer Res (2015) 21(5):1161–71. doi: 10.1158/1078-0432.CCR-
14-1088

63. Rodon J, Dienstmann R, Serra V, Tabernero J. Development of Pi3k inhibitors:
lessons learned from early clinical trials. Nat Rev Clin Oncol (2013) 10(3):143–53.
doi: 10.1038/nrclinonc.2013.10

64. Hennessy BT, Smith DL, Ram PT, Lu Y, Mills GB. Exploiting the Pi3k/Akt
pathway for cancer drug discovery. Nat Rev Drug Discovery (2005) 4(12):988–1004.
doi: 10.1038/nrd1902

65. Parsons R. Human cancer, pten and the pi-3 kinase pathway. Semin Cell Dev
Biol (2004) 15(2):171–6. doi: 10.1016/j.semcdb.2003.12.021

66. Lee JY, Engelman JA, Cantley LC. Biochemistry. Pi3k Charges Ahead Sci (2007)
317(5835):206–7. doi: 10.1126/science.1146073

67. Dimopoulos MA, Kastritis E, Roussou M, Gkotzamanidou M, Migkou M,
Gavriatopoulou M, et al. Elevated serum lactate dehydrogenase (Ldh) should be
included among the variables which define high risk multiple myeloma. Blood (2010)
116(21):2969–. doi: 10.1182/blood.V116.21.2969.2969

68. Theodoropoulos VE, Lazaris A, Sofras F, Gerzelis I, Tsoukala V, Ghikonti I, et al.
Hypoxia-inducible factor 1 alpha expression correlates with angiogenesis and
unfavorable prognosis in bladder cancer. Eur Urol (2004) 46(2):200–8. doi: 10.1016/
j.eururo.2004.04.008

69. Baba Y, Nosho K, Shima K, Irahara N, Chan AT, Meyerhardt JA, et al. Hif1a
overexpression is associated with poor prognosis in a cohort of 731 colorectal cancers.
Am J Pathol (2010) 176(5):2292–301. doi: 10.2353/ajpath.2010.090972

70. Rellinger EJ, Craig BT, Alvarez AL, Dusek HL, Kim KW, Qiao J, et al. Fx11
inhibits aerobic glycolysis and growth of neuroblastoma cells. Surgery (2017) 161
(3):747–52. doi: 10.1016/j.surg.2016.09.009

71. Muz B, Wasden K, Alhallak K, Jeske A, Azab F, Sun J, et al. Inhibition of hif-1a
by px-478 normalizes blood vessels, improves drug delivery and suppresses progression
and dissemination in multiple myeloma. Blood (2020) 136(Supplement 1):3.
doi: 10.1182/blood-2020-142154

72. Vyas AK, Koster JC, Tzekov A, Hruz PW. Effects of the hiv protease inhibitor
ritonavir on Glut4 knock-out mice. J Biol Chem (2010) 285(47):36395–400.
doi: 10.1074/jbc.M110.176321

73. Demel HR, Feuerecker B, Piontek G, Seidl C, Blechert B, Pickhard A, et al.
Effects of topoisomerase inhibitors that induce DNA damage response on glucose
metabolism and Pi3k/Akt/Mtor signaling in multiple myeloma cells. Am J Cancer Res
(2015) 5(5):1649–64.

74. Ojelabi OA, Lloyd KP, Simon AH, De Zutter JK, Carruthers A. Wzb117
(2-Fluoro-6-(M-Hydroxybenzoyloxy) phenyl m-hydroxybenzoate) inhibits Glut1-
mediated sugar transport by binding reversibly at the exofacial sugar binding site.
J Biol Chem (2016) 291(52):26762–72. doi: 10.1074/jbc.M116.759175

75. Liu Y, Cao Y, Zhang W, Bergmeier S, Qian Y, Akbar H, et al. A small-molecule
inhibitor of glucose transporter 1 downregulates glycolysis, induces cell-cycle arrest,
and inhibits cancer cell growth in vitro and in vivo. Mol Cancer Ther (2012) 11
(8):1672–82. doi: 10.1158/1535-7163.MCT-12-0131

76. Semenza GL. Hif-1 mediates metabolic responses to intratumoral hypoxia and
oncogenic mutations. J Clin Invest (2013) 123(9):3664–71. doi: 10.1172/JCI67230

77. Effenberger M, Bommert KS, Kunz V, Kruk J, Leich E, Rudelius M, et al.
Glutaminase inhibition in multiple myeloma induces apoptosis Via myc degradation.
Oncotarget (2017) 8(49):85858–67. doi: 10.18632/oncotarget.20691

78. Chen L, Cui H. Targeting glutamine induces apoptosis: a cancer therapy
approach. Int J Mol Sci (2015) 16(9):22830–55. doi: 10.3390/ijms160922830

79. Thompson RM, Dytfeld D, Reyes L, Robinson RM, Smith B, Manevich Y, et al.
Glutaminase inhibitor Cb-839 synergizes with carfilzomib in resistant multiple
myeloma cells. Oncotarget (2017) 8(22):35863–76. doi: 10.18632/oncotarget.16262

80. Faict S, Oudaert I, D'Auria L, Dehairs J, Maes K, Vlummens P, et al. The transfer
of sphingomyelinase contributes to drug resistance in multiple myeloma. Cancers
(Basel) (2019) 11(12). doi: 10.3390/cancers11121823

81. Bolzoni M, Chiu M, Accardi F, Vescovini R, Airoldi I, Storti P, et al. Dependence
on glutamine uptake and glutamine addiction characterize myeloma cells: a new
attractive target. Blood (2016) 128(5):667–79. doi: 10.1182/blood-2016-01-690743

82. Pochini L, Scalise M, Galluccio M, Indiveri C. Membrane transporters for the
special amino acid glutamine: Structure/Function relationships and relevance to
human health. Front Chem (2014) 2:61. doi: 10.3389/fchem.2014.00061

83. Prelowska MK, Mehlich D, Ugurlu MT, Kedzierska H, Cwiek A, Kosnik A, et al.
Inhibition of the l-glutamine transporter Asct2 sensitizes plasma cell myeloma cells to
proteasome inhibitors. Cancer Lett (2021) 507:13–25. doi: 10.1016/j.canlet.2021.02.020

84. Isoda A, Kaira K, Iwashina M, Oriuchi N, Tominaga H, Nagamori S, et al.
Expression of l-type amino acid transporter 1 (Lat1) as a prognostic and therapeutic
indicator in multiplemyeloma. Cancer Sci (2014) 105(11):1496–502. doi: 10.1111/cas.12529
Frontiers in Oncology 10107
85. Tirado-Velez JM, Joumady I, Saez-Benito A, Cozar-Castellano I, Perdomo G.
Inhibition of fatty acid metabolism reduces human myeloma cells proliferation.
PloS One (2012) 7(9):e46484. doi: 10.1371/journal.pone.0046484

86. Christofk HR, Vander Heiden MG, Harris MH, Ramanathan A, Gerszten RE,
Wei R, et al. The M2 splice isoform of pyruvate kinase is important for cancer
metabolism and tumour growth. Nature (2008) 452(7184):230–3. doi: 10.1038/
nature06734

87. Liu Y, Wu K, Shi L, Xiang F, Tao K, Wang G. Prognostic significance of the
metabolic marker hexokinase-2 in various solid tumors: a meta-analysis. PloS One
(2016) 11(11):e0166230. doi: 10.1371/journal.pone.0166230

88. Nakano A, Miki H, Nakamura S, Harada T, Oda A, Amou H, et al. Up-regulation
of hexokinaseii in myeloma cells: targeting myeloma cells with 3-bromopyruvate.
J Bioenerg Biomembr (2012) 44(1):31–8. doi: 10.1007/s10863-012-9412-9

89. Nelson JA, Falk RE. The efficacy of phloridzin and phloretin on tumor cell
growth. Anticancer Res (1993) 13(6A):2287–92.

90. Kobori M, Shinmoto H, Tsushida T, Shinohara K. Phloretin-induced apoptosis
in B16 melanoma 4a5 cells by inhibition of glucose transmembrane transport. Cancer
Lett (1997) 119(2):207–12. doi: 10.1016/s0304-3835(97)00271-1

91. Cao X, Fang L, Gibbs S, Huang Y, Dai Z, Wen P, et al. Glucose uptake inhibitor
sensitizes cancer cells to daunorubicin and overcomes drug resistance in hypoxia.
Cancer Chemother Pharmacol (2007) 59(4):495–505. doi: 10.1007/s00280-006-0291-9

92. Yuneva M, Zamboni N, Oefner P, Sachidanandam R, Lazebnik Y. Deficiency in
glutamine but not glucose induces myc-dependent apoptosis in human cells. J Cell Biol
(2007) 178(1):93–105. doi: 10.1083/jcb.200703099

93. Bajpai R, Matulis SM, Wei C, Nooka AK, Von Hollen HE, Lonial S, et al.
Targeting glutamine metabolism in multiple myeloma enhances bim binding to bcl-2
eliciting synthetic lethality to venetoclax. Oncogene (2016) 35(30):3955–64.
doi: 10.1038/onc.2015.464

94. Wise DR, DeBerardinis RJ, Mancuso A, Sayed N, Zhang XY, Pfeiffer HK, et al.
Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis
and leads to glutamine addiction. Proc Natl Acad Sci U.S.A. (2008) 105(48):18782–7.
doi: 10.1073/pnas.0810199105

95. Gonsalves WI, Ramakrishnan V, Hitosugi T, Ghosh T, Jevremovic D, Dutta T,
et al. Glutamine-derived 2-hydroxyglutarate is associated with disease progression in
plasma cell malignancies. JCI Insight (2018) 3(1). doi: 10.1172/jci.insight.94543

96. Steiner N, Muller U, Hajek R, Sevcikova S, Borjan B, Johrer K, et al. The
metabolomic plasma profile of myeloma patients is considerably different from healthy
subjects and reveals potential new therapeutic targets. PloS One (2018) 13(8):e0202045.
doi: 10.1371/journal.pone.0202045

97. Jurczyszyn A, Czepiel J, Gdula-Argasinska J, Pasko P, Czapkiewicz A, Librowski
T, et al. Plasma fatty acid profile in multiple myeloma patients. Leuk Res (2015) 39
(4):400–5. doi: 10.1016/j.leukres.2014.12.010

98. Chen J, Zaal EA, Berkers CR, Ruijtenbeek R, Garssen J, Redegeld FA. Omega-3
fatty acids dha and epa reduce bortezomib resistance in multiple myeloma cells by
promoting glutathione degradation. Cells-Basel (2021) 10(9). doi: 10.3390/
cells10092287

99. Wang WQ, Zhao XY, Wang HY, Liang Y. Increased fatty acid synthase as a
potential therapeutic target in multiple myeloma. J Zhejiang Univ Sci B (2008) 9
(6):441–7. doi: 10.1631/jzus.B0740640

100. Li Z, Liu H, He J, Wang Z, Yin Z, You G, et al. Acetyl-coa synthetase 2: a critical
linkage in obesity-induced tumorigenesis in myeloma. Cell Metab (2021) 33(1):78–93
e7. doi: 10.1016/j.cmet.2020.12.011

101. Berge K, Tronstad KJ, Bohov P, Madsen L, Berge RK. Impact of mitochondrial
beta-oxidation in fatty acid-mediated inhibition of glioma cell proliferation. J Lipid Res
(2003) 44(1):118–27. doi: 10.1194/jlr.m200312-jlr200

102. Samudio I, Harmancey R, Fiegl M, Kantarjian H, Konopleva M, Korchin B,
et al. Pharmacologic inhibition of fatty acid oxidation sensitizes human leukemia cells
to apoptosis induction. J Clin Invest (2010) 120(1):142–56. doi: 10.1172/JCI38942

103. Terunuma A, Putluri N, Mishra P, Mathe EA, Dorsey TH, Yi M, et al. Myc-
driven accumulation of 2-hydroxyglutarate is associated with breast cancer prognosis.
J Clin Invest (2014) 124(1):398–412. doi: 10.1172/JCI71180

104. Xiao R, Cerny J, Devitt K, Dresser K, Nath R, Ramanathan M, et al. Myc
protein expression is detected in plasma cell myeloma but not in monoclonal
gammopathy of undetermined significance (Mgus). Am J Surg Pathol (2014) 38
(6):776–83. doi: 10.1097/PAS.0000000000000213

105. Shi Y, Sun F, Cheng Y, Holmes B, Dhakal B, Gera JF, et al. Critical role for cap-
independent c-myc translation in progression of multiple myeloma. Mol Cancer Ther
(2022) 21(4):502–10. doi: 10.1158/1535-7163.MCT-21-0016

106. Tambay V, Raymond VA, Bilodeau M. Myc rules: leading glutamine
metabolism toward a distinct cancer cell phenotype. Cancers (Basel) (2021) 13(17).
doi: 10.3390/cancers13174484

107. Chng WJ, Huang GF, Chung TH, Ng SB, Gonzalez-Paz N, Troska-Price T,
et al. Clinical and biological implications of myc activation: a common difference
between mgus and newly diagnosed multiple myeloma. Leukemia (2011) 25(6):1026–
35. doi: 10.1038/leu.2011.53

108. Ratcliffe PJ. Oxygen sensing and hypoxia signalling pathways in animals: the
implications of physiology for cancer. J Physiol (2013) 591(8):2027–42. doi: 10.1113/
jphysiol.2013.251470
frontiersin.org

https://doi.org/10.1111/imr.12732
https://doi.org/10.1016/j.leukres.2015.12.008
https://doi.org/10.1016/j.leukres.2015.12.008
https://doi.org/10.1158/1078-0432.CCR-14-1088
https://doi.org/10.1158/1078-0432.CCR-14-1088
https://doi.org/10.1038/nrclinonc.2013.10
https://doi.org/10.1038/nrd1902
https://doi.org/10.1016/j.semcdb.2003.12.021
https://doi.org/10.1126/science.1146073
https://doi.org/10.1182/blood.V116.21.2969.2969
https://doi.org/10.1016/j.eururo.2004.04.008
https://doi.org/10.1016/j.eururo.2004.04.008
https://doi.org/10.2353/ajpath.2010.090972
https://doi.org/10.1016/j.surg.2016.09.009
https://doi.org/10.1182/blood-2020-142154
https://doi.org/10.1074/jbc.M110.176321
https://doi.org/10.1074/jbc.M116.759175
https://doi.org/10.1158/1535-7163.MCT-12-0131
https://doi.org/10.1172/JCI67230
https://doi.org/10.18632/oncotarget.20691
https://doi.org/10.3390/ijms160922830
https://doi.org/10.18632/oncotarget.16262
https://doi.org/10.3390/cancers11121823
https://doi.org/10.1182/blood-2016-01-690743
https://doi.org/10.3389/fchem.2014.00061
https://doi.org/10.1016/j.canlet.2021.02.020
https://doi.org/10.1111/cas.12529
https://doi.org/10.1371/journal.pone.0046484
https://doi.org/10.1038/nature06734
https://doi.org/10.1038/nature06734
https://doi.org/10.1371/journal.pone.0166230
https://doi.org/10.1007/s10863-012-9412-9
https://doi.org/10.1016/s0304-3835(97)00271-1
https://doi.org/10.1007/s00280-006-0291-9
https://doi.org/10.1083/jcb.200703099
https://doi.org/10.1038/onc.2015.464
https://doi.org/10.1073/pnas.0810199105
https://doi.org/10.1172/jci.insight.94543
https://doi.org/10.1371/journal.pone.0202045
https://doi.org/10.1016/j.leukres.2014.12.010
https://doi.org/10.3390/cells10092287
https://doi.org/10.3390/cells10092287
https://doi.org/10.1631/jzus.B0740640
https://doi.org/10.1016/j.cmet.2020.12.011
https://doi.org/10.1194/jlr.m200312-jlr200
https://doi.org/10.1172/JCI38942
https://doi.org/10.1172/JCI71180
https://doi.org/10.1097/PAS.0000000000000213
https://doi.org/10.1158/1535-7163.MCT-21-0016
https://doi.org/10.3390/cancers13174484
https://doi.org/10.1038/leu.2011.53
https://doi.org/10.1113/jphysiol.2013.251470
https://doi.org/10.1113/jphysiol.2013.251470
https://doi.org/10.3389/fonc.2023.1141851
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Rana et al. 10.3389/fonc.2023.1141851
109. Lomas OC, Tahri S, Ghobrial IM. The microenvironment in myeloma.
Curr Opin Oncol (2020) 32(2):170–5. doi: 10.1097/CCO.0000000000000615

110. de Jong MME, Kellermayer Z, Papazian N, Tahri S, Hofste Op Bruinink D,
Hoogenboezem R, et al. The multiple myeloma microenvironment is defined by an
inflammatory stromal cell landscape. Nat Immunol (2021) 22(6):769–80. doi: 10.1038/
s41590-021-00931-3

111. Hayashi Y, Yokota A, Harada H, Huang G. Hypoxia/Pseudohypoxia-mediated
activation of hypoxia-inducible factor-1alpha in cancer. Cancer Sci (2019) 110(5):1510–
7. doi: 10.1111/cas.13990

112. Borsi E, Perrone G, Terragna C, Martello M, Dico AF, Solaini G, et al. Hypoxia
inducible factor-1 alpha as a therapeutic target in multiple myeloma. Oncotarget (2014)
5(7):1779–92. doi: 10.18632/oncotarget.1736

113. Semenza GL. Hypoxia-inducible factors in physiology and medicine. Cell
(2012) 148(3):399–408. doi: 10.1016/j.cell.2012.01.021

114. Kim JW, Gao P, Liu YC, Semenza GL, Dang CV. Hypoxia-inducible factor 1
and dysregulated c-myc cooperatively induce vascular endothelial growth factor and
metabolic switches hexokinase 2 and pyruvate dehydrogenase kinase 1. Mol Cell Biol
(2007) 27(21):7381–93. doi: 10.1128/MCB.00440-07

115. Bhaskar A, Tiwary BN. Hypoxia inducible factor-1 alpha and multiple
myeloma. Int J Adv Res (Indore) (2016) 4(1):706–15.

116. Storti P, Bolzoni M, Donofrio G, Airoldi I, Guasco D, Toscani D, et al.
Hypoxia-inducible factor (Hif)-1alpha suppression in myeloma cells blocks tumoral
growth in vivo inhibiting angiogenesis and bone destruction. Leukemia (2013) 27
(8):1697–706. doi: 10.1038/leu.2013.24

117. Vacca A, Scavelli C, Montefusco V, Di Pietro G, Neri A, Mattioli M, et al.
Thalidomide downregulates angiogenic genes in bone marrow endothelial cells of
patients with active multiple myeloma. J Clin Oncol (2005) 23(23):5334–46.
doi: 10.1200/JCO.2005.03.723

118. Dmoszynska A, Bojarska-Junak A, Domanski D, Rolinski J, Hus M, Soroka-
Wojtaszko M. Production of proangiogenic cytokines during thalidomide treatment of
multiple myeloma. Leuk Lymphoma (2002) 43(2):401–6. doi: 10.1080/
10428190290006224

119. Neben K, Moehler T, Egerer G, Kraemer A, Hillengass J, Benner A, et al. High
plasma basic fibroblast growth factor concentration is associated with response to
thalidomide in progressive multiple myeloma. Clin Cancer Res (2001) 7(9):2675–81.

120. Terpos E, Anargyrou K, Katodritou E, Kastritis E, Papatheodorou A,
Christoulas D, et al. Circulating angiopoietin-1 to angiopoietin-2 ratio is an
independent prognostic factor for survival in newly diagnosed patients with multiple
myeloma who received therapy with novel antimyeloma agents. Int J Cancer (2012) 130
(3):735–42. doi: 10.1002/ijc.26062

121. Zhang J, Sattler M, Tonon G, Grabher C, Lababidi S, Zimmerhackl A, et al.
Targeting angiogenesis via a c-Myc/Hypoxia-Inducible factor-1alpha-Dependent
pathway in multiple myeloma. Cancer Res (2009) 69(12):5082–90. doi: 10.1158/0008-
5472.CAN-08-4603

122. Bhaskar A, Gupta R, Kumar L, Sharma A, Sharma MC, Kalaivani M, et al.
Circulating endothelial progenitor cells as potential prognostic biomarker in multiple
myeloma. Leuk Lymphoma (2012) 53(4):635–40. doi: 10.3109/10428194.2011.628880

123. Zhang H, Vakil V, Braunstein M, Smith EL, Maroney J, Chen L, et al.
Circulating endothelial progenitor cells in multiple myeloma: implications and
significance. Blood (2005) 105(8):3286–94. doi: 10.1182/blood-2004-06-2101

124. Pour L, Svachova H, Adam Z, Almasi M, Buresova L, Buchler T, et al. Levels of
angiogenic factors in patients with multiple myeloma correlate with treatment
response. Ann Hematol (2010) 89(4):385–9. doi: 10.1007/s00277-009-0834-3

125. Colla S, Tagliaferri S, Morandi F, Lunghi P, Donofrio G, Martorana D, et al.
The new tumor-suppressor gene inhibitor of growth family member 4 (Ing4) regulates
the production of proangiogenic molecules by myeloma cells and suppresses hypoxia-
inducible factor-1 alpha (Hif-1alpha) activity: involvement in myeloma-induced
angiogenesis. Blood (2007) 110(13):4464–75. doi: 10.1182/blood-2007-02-074617

126. Mulligan G, Mitsiades C, Bryant B, Zhan F, Chng WJ, Roels S, et al. Gene
expression profiling and correlation with outcome in clinical trials of the proteasome
inhibitor bortezomib. Blood (2007) 109(8):3177–88. doi: 10.1182/blood-2006-09-
044974

127. Chng WJ, Kumar S, Vanwier S, Ahmann G, Price-Troska T, Henderson K,
et al. Molecular dissection of hyperdiploid multiple myeloma by gene expression
profiling. Cancer Res (2007) 67(7):2982–9. doi: 10.1158/0008-5472.CAN-06-4046

128. Storti P, Toscani D, Airoldi I, Marchica V, Maiga S, Bolzoni M, et al. The anti-
tumoral effect of lenalidomide is increased in vivo by hypoxia-inducible factor (Hif)-
1alpha inhibition in myeloma cells. Haematologica (2016) 101(3):e107–10.
doi: 10.3324/haematol.2015.133736

129. Noman MZ, Hasmim M, Lequeux A, Xiao M, Duhem C, Chouaib S, et al.
Improving cancer immunotherapy by targeting the hypoxic tumor microenvironment:
new opportunities and challenges. Cells-Basel (2019) 8(9). doi: 10.3390/cells8091083

130. Chouaib S, Messai Y, Couve S, Escudier B, Hasmim M, Noman MZ. Hypoxia
promotes tumor growth in linking angiogenesis to immune escape. Front Immunol
(2012) 3:21. doi: 10.3389/fimmu.2012.00021

131. Noman MZ, Buart S, Romero P, Ketari S, Janji B, Mari B, et al. Hypoxia-
inducible mir-210 regulates the susceptibility of tumor cells to lysis by cytotoxic T cells.
Cancer Res (2012) 72(18):4629–41. doi: 10.1158/0008-5472.CAN-12-1383
Frontiers in Oncology 11108
132. Ikeda S, Kitadate A, Abe F, Saitoh H, Michishita Y, Hatano Y, et al. Hypoxia-
inducible microrna-210 regulates the Dimt1-Irf4 oncogenic axis in multiple myeloma.
Cancer Sci (2017) 108(4):641–52. doi: 10.1111/cas.13183

133. Kocemba KA, van Andel H, de Haan-Kramer A, Mahtouk K, Versteeg R,
Kersten MJ, et al. The hypoxia target adrenomedullin is aberrantly expressed in
multiple myeloma and promotes angiogenesis. Leukemia (2013) 27(8):1729–37.
doi: 10.1038/leu.2013.76

134. Zahoor M, Westhrin M, Aass KR, Moen SH, Misund K, Psonka-Antonczyk
KM, et al. Hypoxia promotes il-32 expression in myeloma cells, and high expression is
associated with poor survival and bone loss. Blood Adv (2017) 1(27):2656–66.
doi: 10.1182/bloodadvances.2017010801

135. Xu Y, Guo J, Liu J, Xie Y, Li X, Jiang H, et al. Hypoxia-induced creb cooperates
mmset to modify chromatin and promote Dkk1 expression in multiple myeloma.
Oncogene (2021) 40(7):1231–41. doi: 10.1038/s41388-020-01590-8

136. Shin DH, Chun YS, Lee DS, Huang LE, Park JW. Bortezomib inhibits tumor
adaptation to hypoxia by stimulating the fih-mediated repression of hypoxia-inducible
factor-1. Blood (2008) 111(6):3131–6. doi: 10.1182/blood-2007-11-120576

137. Yun Z, Zhichao J, Hao Y, Ou J, Ran Y, Wen D, et al. Targeting autophagy in
multiple myeloma. Leuk Res (2017) 59:97–104. doi: 10.1016/j.leukres.2017.06.002

138. Janker L, Mayer RL, Bileck A, Kreutz D, Mader JC, Utpatel K, et al. Metabolic,
anti-apoptotic and immune evasion strategies of primary human myeloma cells
indicate adaptations to hypoxia. Mol Cell Proteomics (2019) 18(5):936–53.
doi: 10.1074/mcp.RA119.001390

139. Rana PS, Soler DC, Kort J, Driscoll JJ. Targeting tgf-B signaling in the multiple
myeloma microenvironment: steering cars and T cells in the right direction. Front Cell
Dev Biol (2022) 10:1059715. doi: 10.3389/fcell.2022.1059715

140. Leone RD, Powell JD. Metabolism of immune cells in cancer. Nat Rev Cancer
(2020) 20(9):516–31. doi: 10.1038/s41568-020-0273-y

141. Liu Y, Liang X, DongW, Fang Y, Lv J, Zhang T, et al. Tumor-repopulating cells
induce pd-1 expression in Cd8(+) T cells by transferring kynurenine and ahr activation.
Cancer Cell (2018) 33(3):480–94 e7. doi: 10.1016/j.ccell.2018.02.005

142. Labadie BW, Bao R, Luke JJ. Reimagining ido pathway inhibition in cancer
immunotherapy Via downstream focus on the tryptophan-Kynurenine-Aryl
hydrocarbon axis. Clin Cancer Res (2019) 25(5):1462–71. doi: 10.1158/1078-
0432.CCR-18-2882

143. Zhai L, Spranger S, Binder DC, Gritsina G, Lauing KL, Giles FJ, et al. Molecular
pathways: targeting Ido1 and other tryptophan dioxygenases for cancer
immunotherapy. Clin Cancer Res (2015) 21(24):5427–33. doi: 10.1158/1078-
0432.CCR-15-0420

144. Hornyak L, Dobos N, Koncz G, Karanyi Z, Pall D, Szabo Z, et al. The role
of indoleamine-2,3-Dioxygenase in cancer development, diagnostics, and therapy.
Front Immunol (2018) 9:151. doi: 10.3389/fimmu.2018.00151

145. Beckermann KE, Hongo R, Ye X, Young K, Carbonell K, Healey DCC, et al.
Cd28 costimulation drives tumor-infiltrating T cell glycolysis to promote
inflammation. JCI Insight (2020) 5(16). doi: 10.1172/jci.insight.138729

146. El Arfani C, De Veirman K, Maes K, De Bruyne E, Menu E. Metabolic features
of multiple myeloma. Int J Mol Sci (2018) 19(4). doi: 10.3390/ijms19041200

147. Luengo A, Gui DY, Vander Heiden MG. Targeting metabolism for cancer
therapy. Cell Chem Biol (2017) 24(9):1161–80. doi: 10.1016/j.chembiol.2017.08.028

148. Anderson KG, Stromnes IM, Greenberg PD. Obstacles posed by the tumor
microenvironment to T cell activity: a case for synergistic therapies. Cancer Cell (2017)
31(3):311–25. doi: 10.1016/j.ccell.2017.02.008

149. Noman MZ, Desantis G, Janji B, HasmimM, Karray S, Dessen P, et al. Pd-L1 is
a novel direct target of hif-1alpha, and its blockade under hypoxia enhanced mdsc-
mediated T cell activation. J Exp Med (2014) 211(5):781–90. doi: 10.1084/jem.20131916

150. Shurin MR, Umansky V. Cross-talk between hif and pd-1/Pd-L1 pathways in
carcinogenesis and therapy. J Clin Invest (2022) 132(9). doi: 10.1172/JCI159473

151. Paiva B, Azpilikueta A, Puig N, Ocio EM, Sharma R, Oyajobi BO, et al. Pd-L1/
Pd-1 presence in the tumor microenvironment and activity of pd-1 blockade in
multiple myeloma. Leukemia (2015) 29(10):2110–3. doi: 10.1038/leu.2015.79

152. Jelinek T, Paiva B, Hajek R. Update on pd-1/Pd-L1 inhibitors in multiple
myeloma. Front Immunol (2018) 9:2431. doi: 10.3389/fimmu.2018.02431

153. Benson DMJr., Bakan CE, Mishra A, Hofmeister CC, Efebera Y, Becknell B,
et al. The pd-1/Pd-L1 axis modulates the natural killer cell versus multiple myeloma
effect: a therapeutic target for ct-011, a novel monoclonal anti-Pd-1 antibody. Blood
(2010) 116(13):2286–94. doi: 10.1182/blood-2010-02-271874

154. Riera-Domingo C, Audige A, Granja S, Cheng WC, Ho PC, Baltazar F, et al.
Immunity, hypoxia, and metabolism-the menage a trois of cancer: implications for
immunotherapy. Physiol Rev (2020) 100(1):1–102. doi: 10.1152/physrev.00018.2019

155. Li H, van der Leun AM, Yofe I, Lubling Y, Gelbard-Solodkin D, van Akkooi
ACJ, et al. Dysfunctional Cd8 T cells form a proliferative, dynamically regulated
compartment within human melanoma. Cell (2019) 176(4):775–89 e18. doi: 10.1016/
j.cell.2018.11.043

156. van derWindt GJ, O'Sullivan D, Everts B, Huang SC, BuckMD, Curtis JD, et al.
Cd8 memory T cells have a bioenergetic advantage that underlies their rapid recall
ability. Proc Natl Acad Sci USA (2013) 110(35):14336–41. doi: 10.1073/
pnas.1221740110
frontiersin.org

https://doi.org/10.1097/CCO.0000000000000615
https://doi.org/10.1038/s41590-021-00931-3
https://doi.org/10.1038/s41590-021-00931-3
https://doi.org/10.1111/cas.13990
https://doi.org/10.18632/oncotarget.1736
https://doi.org/10.1016/j.cell.2012.01.021
https://doi.org/10.1128/MCB.00440-07
https://doi.org/10.1038/leu.2013.24
https://doi.org/10.1200/JCO.2005.03.723
https://doi.org/10.1080/10428190290006224
https://doi.org/10.1080/10428190290006224
https://doi.org/10.1002/ijc.26062
https://doi.org/10.1158/0008-5472.CAN-08-4603
https://doi.org/10.1158/0008-5472.CAN-08-4603
https://doi.org/10.3109/10428194.2011.628880
https://doi.org/10.1182/blood-2004-06-2101
https://doi.org/10.1007/s00277-009-0834-3
https://doi.org/10.1182/blood-2007-02-074617
https://doi.org/10.1182/blood-2006-09-044974
https://doi.org/10.1182/blood-2006-09-044974
https://doi.org/10.1158/0008-5472.CAN-06-4046
https://doi.org/10.3324/haematol.2015.133736
https://doi.org/10.3390/cells8091083
https://doi.org/10.3389/fimmu.2012.00021
https://doi.org/10.1158/0008-5472.CAN-12-1383
https://doi.org/10.1111/cas.13183
https://doi.org/10.1038/leu.2013.76
https://doi.org/10.1182/bloodadvances.2017010801
https://doi.org/10.1038/s41388-020-01590-8
https://doi.org/10.1182/blood-2007-11-120576
https://doi.org/10.1016/j.leukres.2017.06.002
https://doi.org/10.1074/mcp.RA119.001390
https://doi.org/10.3389/fcell.2022.1059715
https://doi.org/10.1038/s41568-020-0273-y
https://doi.org/10.1016/j.ccell.2018.02.005
https://doi.org/10.1158/1078-0432.CCR-18-2882
https://doi.org/10.1158/1078-0432.CCR-18-2882
https://doi.org/10.1158/1078-0432.CCR-15-0420
https://doi.org/10.1158/1078-0432.CCR-15-0420
https://doi.org/10.3389/fimmu.2018.00151
https://doi.org/10.1172/jci.insight.138729
https://doi.org/10.3390/ijms19041200
https://doi.org/10.1016/j.chembiol.2017.08.028
https://doi.org/10.1016/j.ccell.2017.02.008
https://doi.org/10.1084/jem.20131916
https://doi.org/10.1172/JCI159473
https://doi.org/10.1038/leu.2015.79
https://doi.org/10.3389/fimmu.2018.02431
https://doi.org/10.1182/blood-2010-02-271874
https://doi.org/10.1152/physrev.00018.2019
https://doi.org/10.1016/j.cell.2018.11.043
https://doi.org/10.1016/j.cell.2018.11.043
https://doi.org/10.1073/pnas.1221740110
https://doi.org/10.1073/pnas.1221740110
https://doi.org/10.3389/fonc.2023.1141851
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Rana et al. 10.3389/fonc.2023.1141851
157. Pan Y, Tian T, Park CO, Lofftus SY, Mei S, Liu X, et al. Survival of tissue-
resident memory T cells requires exogenous lipid uptake and metabolism. Nature
(2017) 543(7644):252–6. doi: 10.1038/nature21379

158. Colegio OR, Chu NQ, Szabo AL, Chu T, Rhebergen AM, Jairam V, et al.
Functional polarization of tumour-associated macrophages by tumour-derived lactic
acid. Nature (2014) 513(7519):559–63. doi: 10.1038/nature13490

159. Gajewski TF, Meng Y, Blank C, Brown I, Kacha A, Kline J, et al. Immune
resistance orchestrated by the tumor microenvironment. Immunol Rev (2006) 213:131–
45. doi: 10.1111/j.1600-065X.2006.00442.x

160. de la Cruz-Lopez KG, Castro-Munoz LJ, Reyes-Hernandez DO, Garcia-
Carranca A, Manzo-Merino J. Lactate in the regulation of tumor microenvironment
and therapeutic approaches. Front Oncol (2019) 9:1143. doi: 10.3389/fonc.2019.01143

161. Fischer K, Hoffmann P, Voelkl S, Meidenbauer N, Ammer J, Edinger M, et al.
Inhibitory effect of tumor cell-derived lactic acid on human T cells. Blood (2007) 109
(9):3812–9. doi: 10.1182/blood-2006-07-035972

162. Vigano S, Alatzoglou D, Irving M, Menetrier-Caux C, Caux C, Romero P, et al.
Targeting adenosine in cancer immunotherapy to enhance T-cell function. Front
Immunol (2019) 10:925. doi: 10.3389/fimmu.2019.00925

163. Mastelic-Gavillet B, Navarro Rodrigo B, Decombaz L, Wang H, Ercolano G,
Ahmed R, et al. Adenosine mediates functional and metabolic suppression of
peripheral and tumor-infiltrating Cd8(+) T cells. J Immunother Cancer (2019) 7
(1):257. doi: 10.1186/s40425-019-0719-5

164. Qin R, Zhao C, Wang CJ, Xu W, Zhao JY, Lin Y, et al. Tryptophan
potentiates Cd8(+) T cells against cancer cells by Trip12 tryptophanylation and
surface pd-1 downregulation. J Immunother Cancer (2021) 9(7). doi: 10.1136/jitc-
2021-002840

165. Ray A, Song Y, Du T, Tai YT, Chauhan D, Anderson KC. Targeting
tryptophan catabolic kynurenine pathway enhances antitumor immunity and
cytotoxicity in multiple myeloma. Leukemia (2020) 34(2):567–77. doi: 10.1038/
s41375-019-0558-x

166. Panchabhai S, Schlam I, Sebastian S, Fonseca R. Pkm2 and other key regulators
of warburg effect positively correlate with Cd147 (Emmprin) gene expression and
predict survival in multiple myeloma. Leukemia (2017) 31(4):991–4. doi: 10.1038/
leu.2016.389

167. Kühnel A, Blau O, Nogai K, Blau IW. The warburg effect in multiple myeloma
and its microenvironment. Med Res Arch (2017) 5.
Frontiers in Oncology 12109
168. Evans LA, Anderson EI, Petterson XM, Kumar S, GonsalvesWI. Disrupting the
reverse warburg effect as a therapeutic strategy in multiple myeloma. Blood (2021) 138.
doi: 10.1182/blood-2021-147970

169. Warburg OH. Über den stoffwechsel der carcinomzelle. Klinische
Wochenschrift (1925) 4:534–6.

170. Liberti MV, Locasale JW. The warburg effect: how does it benefit cancer cells?
Trends Biochem Sci (2016) 41(3):211–8. doi: 10.1016/j.tibs.2015.12.001

171. DeBerardinis RJ, Chandel NS. We need to talk about the warburg effect. Nat
Metab (2020) 2(2):127–9. doi: 10.1038/s42255-020-0172-2

172. Abdollahi P, Vandsemb EN, Elsaadi S, Rost LM, Yang R, Hjort MA, et al.
Phosphatase of regenerating liver-3 regulates cancer cell metabolism in multiple
myeloma. FASEB J (2021) 35(3):e21344. doi: 10.1096/fj.202001920RR

173. Vandsemb EN, Rye MB, Steiro IJ, Elsaadi S, Ro TB, Slordahl TS, et al. Prl-3
induces a positive signaling circuit between glycolysis and activation of Stat1/2. FEBS J
(2021) 288(23):6700–15. doi: 10.1111/febs.16058

174. Ashton TM, McKenna WG, Kunz-Schughart LA, Higgins GS. Oxidative
phosphorylation as an emerging target in cancer therapy. Clin Cancer Res (2018) 24
(11):2482–90. doi: 10.1158/1078-0432.CCR-17-3070

175. Driscoll J. The role of the proteasome in cellular protein degradation. Histol
Histopathol (1994) 9(1):197–202.

176. Driscoll JJ, Woodle ES. Targeting the Ubiquitin+Proteasome system in solid
tumors. Semin Hematol (2012) 49(3):277–83. doi: 10.1053/j.seminhematol.2012.04.002

177. Rousseau A, Bertolotti A. Regulation of proteasome assembly and activity in health
and disease. Nat Rev Mol Cell Bio (2018) 19(11):697–712. doi: 10.1038/s41580-018-0040-z

178. Walker BA, Boyle EM, Wardell CP, Murison A, Begum DB, Dahir NM, et al.
Mutational spectrum, copy number changes, and outcome: results of a sequencing
study of patients with newly diagnosed myeloma. J Clin Oncol (2015) 33(33):3911–20.
doi: 10.1200/JCO.2014.59.1503

179. Shirazi F, Jones RJ, Singh RK, Zou J, Kuiatse I, Berkova Z, et al. Activating kras,
nras, and braf mutants enhance proteasome capacity and reduce endoplasmic
reticulum stress in multiple myeloma. Proc Natl Acad Sci USA (2020) 117
(33):20004–14. doi: 10.1073/pnas.2005052117

180. Driscoll JJ, Minter A, Driscoll DA, Burris JK. The Ubiquitin+Proteasome
protein degradation pathway as a therapeutic strategy in the treatment of solid tumor
malignancies. Anticancer Agents Med Chem (2011) 11(2):242–6. doi: 10.2174/
187152011795255948
frontiersin.org

https://doi.org/10.1038/nature21379
https://doi.org/10.1038/nature13490
https://doi.org/10.1111/j.1600-065X.2006.00442.x
https://doi.org/10.3389/fonc.2019.01143
https://doi.org/10.1182/blood-2006-07-035972
https://doi.org/10.3389/fimmu.2019.00925
https://doi.org/10.1186/s40425-019-0719-5
https://doi.org/10.1136/jitc-2021-002840
https://doi.org/10.1136/jitc-2021-002840
https://doi.org/10.1038/s41375-019-0558-x
https://doi.org/10.1038/s41375-019-0558-x
https://doi.org/10.1038/leu.2016.389
https://doi.org/10.1038/leu.2016.389
https://doi.org/10.1182/blood-2021-147970
https://doi.org/10.1016/j.tibs.2015.12.001
https://doi.org/10.1038/s42255-020-0172-2
https://doi.org/10.1096/fj.202001920RR
https://doi.org/10.1111/febs.16058
https://doi.org/10.1158/1078-0432.CCR-17-3070
https://doi.org/10.1053/j.seminhematol.2012.04.002
https://doi.org/10.1038/s41580-018-0040-z
https://doi.org/10.1200/JCO.2014.59.1503
https://doi.org/10.1073/pnas.2005052117
https://doi.org/10.2174/187152011795255948
https://doi.org/10.2174/187152011795255948
https://doi.org/10.3389/fonc.2023.1141851
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Rana et al. 10.3389/fonc.2023.1141851
Glossary

a-KG a-ketoglutarate

ACSS2 Acetyl-CoA synthetase 2

AKT A serine/threonine kinase from the thymoma cell line AKT-8,
derived from the Stock A strain k AKR mouse. Also known as
Protein kinase B (PKB)

AML Acute Myeloid Leukemia

AMP Adenosine monophosphate

Ang2 Angiopoietin-2

ASO Antisense oligonucleotide

ASCT2 Alanine, serine, cysteine transporter 2

ATP Adenosine triphosphate

bFGF Basic fibroblast growth factor

BiTE Bispecific T cell engager

BM Bone marrow

CAR Chimeric antigen receptor

CD Cluster of differentiation

CTL Cytotoxic T-lymphocyte

CREB Cyclic AMP response element-binding protein

D2-HG {{sc}}d{{/sc}}-2-hydroxyglutarate

DKK1 Dickkopf-related protein 1

DLBCL Diffuse large B-cell lymphoma

DNA Deoxyribonucleic acid

DHA Docosahexaenoic acid

EHA Eicosapentaenoic acid

ER Endoplasmic reticulum

FA Fatty acid

FAO Fatty acid oxidation

FAS Fatty acid synthase

FDG Fluorodeoxyglucose

GLUT Glucose transporter protein type

GSH Glutathione

HKII Hexokinase II

HIF Hypoxia-inducible factor

HRE Hypoxia response element

HIV Human immunodeficiency virus

IDO Indoleamine 2,3-dioxygenase

IL Interleukin

IRF4 Interferon-regulated factor 4

LAT1 L-Type Amino Acid Transporter 1
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LDHA Lactate dehydrogenase A

LSC Leukemic stem cell

mTOR Mammalian target of rapamycin

mTORC1 Mammalian target of rapamycin complex 1

miR MicroRNA

M-spike Monoclonal or Myeloma protein spike or paraprotein

MGUS Monoclonal gammopathy of unknown significance

MM Multiple myeloma

MMSET MM SET domain-containing histone methyltransferase

NADPH Nicotinamide adenine dinucleotide phosphate

NDMM Newly diagnosed MM

NEK2 NIMA-related kinase 2

NIMA Never in mitosis gene A

NHL Non-Hodgkin’s lymphoma

NK Natural killer

NF-kB Nuclear factor kappa B

OXPHOS Oxidative phosphorylation

PE Phosphatidylethanolamine

PET Positron emission tomography

coactivator-
1b PFK

Phosphofructokinase

PKM1 Pyruvate kinase M1

PKM2 Pyruvate kinase M2

PI3K Phosphatidylinositol 3-kinase

PI Proteasome inhibitor

PUFA Polyunsaturated fatty acid

R-CHOP Rituximab, cyclophosphamide, hydroxydaunorubicin HCl,
vincristine (Oncovin) and prednisone used to treat both indolent
and aggressive forms of NHL

ROS Reactive oxygen species

RRMM Relapsed and/or refractory MM

siRNA Small interfering RNA

SLC Solute carrier

STAT-3 Signal transducer and activator of transcription 3

SGLT Sodium-dependent glucose transport

TCA Tricarboxylic acid

TCR T-cell receptors

TDO-2 tryptophan-2,3-dioxygenase-2

TP53 Tumor protein 53

UTR Untranslated region

VEGF Vascular endothelial growth factor

WT Wildtype.
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