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Editorial on the Research Topic
Climate change and adaptive capacity building

The impacts of climate change that have been observed in recent years are significant and
multifaceted, and climate change is having far-reaching effects on both natural and socio-
economic systems. Climate change is a present and ongoing concern for humanity, and its adverse
effects are driven by both critical infrastructure systems and increasing human activity, which pose
risks that can be mitigated through appropriate adaptation measures. In order to better address
the various challenges posed by long-term adaptation to climate change and to enhance human
capacity for sustainable survival and development in the face of global climate risks, there is a need
to strengthen regional case studies on climate change adaptation and to increase the assessment
and prediction of climate change impacts on human economic and social activities.

This Research Topic, Climate Change and Adaptive Capacity Building, presents one
review paper and 13 original research papers, from seven different countries (57 authors),
and has papers that span the field of climate change, gives insight into ongoing Research
Topic, and provides a basis for further study on reducing climate risk and strengthening
adaptive capacity building. Here, we summarized some of the highlights derived from the
13 articles published in this Research Topic.

Air temperature is the primary indicator of climate change. Reanalysis temperature products
play an important role in temperature estimates. However, some systematic biases exist between
reanalysis data and observations affecting the accuracy of model prediction (Dyakonov et al.,
2020; Rakhmatova et al., 2021). Therefore, bias correction of the ERA-Interim reanalysis data is
essential, many methods have been constructed to correct bias like GPCP method and
temperature lapse rate method (Szczypta et al., 2011; Gao et al., 2017). Zhao et al. used the
temperature lapse-rate method to correct ERA-Interim reanalysis-temperature data in the Qilian
Mountains of China from 1979 to 2017. The results of these researchers showed that correction
methods based on ΓERA were reliable for bias correction, and will be especially applicable to
mountainous areas with few observation stations. Islam et al. investigated probable temperature
changes across Bangladesh using CMIP5 GCM temperature simulation, and is the first to use all
available CMIP5 models to project temperature over the country. The dynamic assessment of
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urban thermal vulnerability in the southeast coastal metropolis by (Shui
et al., 2022), and reveals the main factors affecting the formation and
spatial differentiation of UHV.

For a long time, there has been significant interest in understanding
how climate change affects vegetation cover across various fields of
study. A substantial amount of literature has been explored, indicating
that the most significant phenomenon of climate change is that climate
change affected the alteration of vegetation growth in the long time
series and large spatial scale (Myneni et al., 1997; Tucker et al., 2001).
The existing literature on vegetation cover change in China is very
extensive, especially on NPP and its influencing mechanism, and there
is little research on Evi (Shui et al., 2018). Feng et al. analysis the
correlation between the vegetation cover change about 20 years and
climate factors in the Guangdong-Hong Kong-Macao Greater Bay
Area, their results indicated that the EVI changing trend in the
future by R/S analysis method is affected by climate and human
factors together and there are no significant factors. Besides, they
found a significant positive correlation between the EVI trend and
two climate factors (relative humidity and wind speed), which could
make sense in the protection and establishment of the ecological
environment in the GBA.

In order to reduce the risks associated with climate change, it is
crucial to prioritize ecological protection and restoration efforts.
Ecological water conveyance is an effective method for restoring the
environment. Jiao et al. quantitatively assessed the impact of
ecological water conveyance on ecological restoration in the
Tarim River basin over the past 20 years, and concluded that
ecological water conveyance has a positive effect on groundwater
recharge and ecological restoration by constructing a basin
ecological environment quality evaluation system. Wang et al.
developed a production–living–ecological space (PLES)
classification system which takes into account the land-use type
and ecological environment in a comprehensive aspect. It serves as a
crucial criterion for determining the appropriate combination of
land-use functions and the current state of the ecological
environment in the basin, preparing for future ecological
restoration and other work.

Lakes can record the effects of climate change and human activities
on regional hydrological processes at different time scales. Additionally,
they play a crucial role in transmitting valuable data about global
climate change and regional responses (Zhang et al., 2011; Tao et al.,
2015). Wang et al. investigated the changes and attributions of typical
lakes in Xinjiang from 1986 to 2020 using remote sensing big data cloud
platform and mathematical and statistical methods. The results show
that human activities and precipitation are themain factors affecting the
changes of lakes.

Looking back at the past is also a crucial part of understanding
climate change. Stable isotope signals in modern precipitation along
with ancient isotope records preserved in natural archives can help
reconstruct past climate and hydrological cycles (Yao et al., 2013). Cai
et al. studied the isotopic variation characteristics of precipitation in
different seasons (non-summer wind and summer wind) and proposed
that the transfer of water vapor sources during water vapor transport

and the intensity of upstream atmospheric convection jointly affect the
seasonal variation of precipitation isotopes.

In recent years, climate change has affected global ecological,
economic and social systems in various ways. As we all know, trees
in urban green spaces have positive effects and cool urban
temperatures. Feng et al. studied the microclimate factors under
the canopy of four evergreen trees in humid and hot regions and the
relationship between microclimate factors and tree physiological
parameters, which can optimize the selection of tree species for
urban planning and improve the living environment of urban
residents. Zhou et al. analyzed the climate and precipitation
changes in Xinjiang in the past 60 years, explored the
relationship between climate change and atmospheric circulation
in Xinjiang at multiple scales. The results of the study can provide a
reference for evaluating and predicting climate change in XJ (Sein
et al.). The fluctuations in precipitation on both annual and seasonal
scales, as well as the correlation between precipitation parameters
and anomalies in sea surface temperatures (SST) in Myanmar from
1970 to 2014. An active response to climate change is necessary from
an economic and social perspective. Ma et al. explores the effects of
farmers’ space-time perception of climate change. The results show
that farmers’ space-time perception of climate change significantly
affects farmers’ adaptive behavior. And Peng et al. points out that
extreme climate has a significant positive effect on crime rates. All of
the above can help the government to make decisions and maintain
economic and social stability. Stavi et al. conducted a review of major
climate change occurrences around the world and analyzed the
efforts made by the international community to combat climate
change from 1992 to 2021. The review suggests the need for
increased policy development aimed at addressing climate and
environmental concerns.
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How do ecological vulnerability
and disaster shocks affect
livelihood resilience building of
farmers and herdsmen: An
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Economics, Chengdu, China

Based on the survey data on animal husbandry from 1,689 households in semi-

agricultural and semi-pastoral counties in InnerMongolia, this paper applied the

“buffer capacity–organizational capacity-learning capacity” framework to

analyze the current livelihood resilience of farmers and herdsmen, as well as

the impact of ecological vulnerability and disaster shocks on this resilience. The

results show that, first, due to the vicious ecological environment and natural

disasters, livelihood resilience among farmers and herdsmen is generally low in

the region, but that of herdsmen is significantly higher than that of farmers.

There are clear differences between the dimensions of livelihood resilience in

different households. Second, natural disasters, of which drought is the most

obvious, have a great impact on livelihood resilience. However, there is a

significant positive correlation between ecological vulnerability and the

livelihood resilience of farmers and herdsmen; thus, we should reflect on

the past development model of the region. Third, In addition to the impact

of ecological vulnerability and disaster shocks, per capita income, human

capital, policy support, social networks, and information access are the main

obstacles to livelihood resilience. Combined with these research findings, this

paper seeks to improve livelihood resilience through the strategies of avoiding

disaster risk, changing the development mode, reducing path dependence, and

identifying obstacles.

KEYWORDS

livelihood resilience, ecological vulnerability, disaster shocks, household type, farmers
and herdsmen
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Introduction

The livelihoods of farmers and herdsmen in the Inner

Mongolia Autonomous Region are quite vulnerable due to the

poor natural conditions and socio-economic environment. Due

to the low annual rainfall (normally under 400 mm), high

elevation (sometimes above 4,000 m), thin topsoil (at times

less than 10 mm), and large area of desertification (accounting

for 23.3% of China’s desertification land area), the region has an

extremely vulnerable ecological environment and low land

productivity (Tan and Tan, 2017). Living conditions are

characterized by the region’s remoteness (it can take more

than 3 h by car to reach the closest city), poor infrastructure

(in some areas, there is no access to public transport and

electricity), and the lack of access to public services (such as

education, healthcare, and credit). This has led to relatively

backward social and economic development in this region.

Farmers and herdsmen are also often affected by natural

disasters or environmental pressures, such as drought, hail,

strong winds, snowstorms, and animal diseases, which pose

great challenges to the livelihoods of local farmers and

herdsmen (Fan et al., 2014).

With the development of sustainable livelihoods, research on

rural livelihood resilience has attracted increasing attention.

Many scholars have focused on the response of farmers’

livelihood resilience to climate change and natural disasters

(Tanner et al., 2014) and taken the ways to improve the

livelihood resilience as the coping strategy (Adger et al., 2011;

Gupta et al., 2020). What are the main factors affecting the

farmers’and herdsmen’livelihood resilience, which have not been

well understood in China. Especially in the farming-pastoral

region just like Inner Mongolia Autonomous Region, research

using comprehensive evaluation indicators to demonstrate how

natural disasters and climate change affect livelihood resilience is

also relatively limited. This study therefore seeks to accomplish

the following: first, to understand the general level of livelihood

resilience in the region and compare the differences between

households and regions; second, to examine how natural

disasters and the ecological environment affect the livelihood

resilience of farmers and herdsmen; and third, to explore effective

ways to improve the response of farmers and herdsmen to shocks

and pressures.

Literature review and analysis
framework

Livelihood resilience: Concept and
measurement

The concept of resilience was first used in physics and

engineering to describe the ability of a system to return to a

normal state (Doorn et al., 2018). It was first introduced in

ecological science by Holling (1973) to measure the ability of a

system to absorb changes and disturbances. In recent years, the

concept of resilience has increasingly been used to explain

dynamic changes in socio-economic status, but more

emphasis has been placed on adaptability, transformability,

social learning, and innovation (Folke, 2006). However, as

livelihoods are increasingly being affected by changes in

ecological, economic, and social systems, the concept of

livelihood resilience is receiving increased attention (Quandt,

2018; Sina et al., 2019). The ability of residents to recover from

external pressure events (Chambers and Conway, 1991), the

adaptive strategies used to cope with the pressure and shocks

(Liu et al., 2019), and the process of re-formulating livelihood

strategies using livelihood capital and local resources (Sadik,

2009) are all regarded as elements of livelihood resilience.

Although different scholars have put forward different

concepts of livelihood resilience, they have reached a

preliminary consensus that it refers to the ability of the

livelihood system of a community or family to cope with

environmental changes and to recover and transform in

response to adverse impacts (Tanner et al., 2014; Li et al., 2019).

Measuring livelihood resilience is an arduous task. Because

resilience is an evolving concept, a set of unified systems and

methods for measuring it has not yet been developed. At present,

the most comprehensive measurement is the household

livelihood resilience model (HLRA) proposed by Quandt,

(2018), which uses sustainable livelihoods and five kinds of

capital to measure resilience. It not only provides a theoretical

framework, measurement methods, and applicable tools for

measuring resilience, but also includes subjective evaluation of

resilience, emphasizing the heterogeneity of households and

individuals. The other most widely used method is the three-

dimensional measurement framework, which, represented by the

work of Speranza et al. (2014), is an empirical

application–oriented analysis and research method applicable

to livelihood resilience. The framework contains buffer, self-

organization, and learning capacities, and emphasizes the

interaction between actors and social structure while laying a

foundation for the empirical analysis of resilience from the

perspective of groups and livelihoods.

Climate change, disaster shocks, and
livelihood resilience

For farmers, when their livelihoods are directly or indirectly

exposed to climate change, especially sudden disasters, it can

have an adverse impact on family capacity, capital, or activities.

Scholars have therefore explored the relationship between

farmers’ livelihood resilience and climate change or natural

disasters (Adger et al., 2005; Forsyth, 2018). The impact of

climate change on livelihoods mainly appears in the long-term

change of climate elements and sudden meteorological disasters,
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and it has a large impact on the resources, livelihood activities,

and capacity of farmers (Wu and Li, 2009). Agriculture and

animal husbandry are directly dependent on natural factors such

as light, temperature, precipitation, and soil; thus, the livelihoods

of farmers and herdsmen are very sensitive to climate change,

which can prolong the growth cycle of crops. Crops have also

been affected by late frosts, resulting in reduced production (Zhu

et al., 2013). Grassland climate warming and drying have reduced

the quantity of grass production, which has an impact on animal

husbandry (Zhang et al., 2007). Climate change has also led to

meteorological disasters such as drought, flood, freezing, and

hail, directly resulting in the decline of production and income

(Zhang et al., 2018).

Numerous studies have assessed the impact of climate change

and disasters on the vulnerability and sustainability of

livelihoods. Hurricanes and storm surges have caused serious

damage to the livelihoods and assets of coastal residents in

Bangladesh, and even the careers of local residents will be

changed due to the disasters (Msua et al., 2021). Long term

drought, sudden rainstorms, high temperatures and frequent

floods have brought long-term damage to agricultural

production in northern Ghana, seriously reducing the

livelihood resilience of local residents (Asante et al., 2021). In

Wenchuan and Lushan earthquake-stricken areas, China,

landslides and mudslides adversely affect on the livelihood of

rural households (Yang et al., 2021). Severe climate change,

including crop pests, disease outbreaks, droughts and floods,

is the main reason for the vulnerability of families in South

African (Mthethwa and Wale, 2022).

To mitigate the adverse impacts of climate change and

disasters, the government and individual households have

adopted different policies or measures to enhance livelihood

resilience. The case of extreme drought events in rural

Vietnam shows that livelihood resilience can be effectively

improved by strengthening social participation, borrowing,

saving, and choosing new economic activities (Arouri et al.,

2015). Based on the research findings of Wenchuan and

Lushan earthquake disaster areas, China, strengthening the

communities’ disaster prevention capacity and improving the

residents’ disaster preparedness capacity are gradually becoming

an effective ways to cope with disaster risks and improve the well-

being of residents (Ma et al., 2021). The vulnerability of climate

change to food insecurity and poverty can be reduced through

non-agricultural diversification, crop diversification, farm

location changes and the application of agrochemicals (Asante

et al., 2021). In addition, farmers can effectively improve their

resilience to agricultural drought by participating in social

networks and cooperatives more often. Diversification in on-

farm enterprises, like livestock units, and off-farm income

sources, play significant roles in increasing smallholder

households’ resilience to climatic risk (Kumar et al., 2020). At

the same time, based on a survey of rural floods in Australia, it

can be seen that livelihood resilience can be effectively improved

by obtaining loans and the help of local partnerships and relief

organizationss (Boon and Helen, 2014). There are also measures

to cope with earthquake disasters, such as relocating settlements,

improving social capital, and keeping away from dangerous

environments (Despotaki et al., 2018). The impact of disasters

such as sandstorms can be dealt with by using windbreak forests

and planting disease-resistant plants (Licht et al., 2016).

Analysis framework

Before proposing the analysis framework, the key concepts of

livelihood resilience, natural disaster risk, and ecological

vulnerability must be clarified. In this study, livelihood

resilience is measured according to the three-dimensional

framework of buffer, organizational, and learning capacities

proposed by Speranza et al. (2014).

Natural disaster risk refers to the probability of natural

disasters occurring in a region. This indicator is a

comprehensive evaluation of the level of risk of natural

disasters, in combination with the various natural disasters

occurring in a specific region (Yu et al., 2012). In the

selection of evaluation indicators, disasters such as

earthquakes, landslides, debris flows, floods, and droughts are

considered, and a multi-index comprehensive evaluation model

is designed (Liu et al., 2014). The specific evaluation method uses

GIS technology and grid data to calculate the index weight and

obtain a comprehensive value with a value ranging from 0 to 1.

Ecological vulnerability refers to the sensitive response and

self-recovery ability of ecosystems relative to external

disturbances at a specific scale of time and space. Related

research looks at exposure, sensitivity, and adaptability (Wu

and Zhang, 2014). Although ecological vulnerability is much

talked about, it is not clearly defined vulnerability; it can,

however, be measured (Jacquleen, 2013). Evaluation of the

current situation is the most widely studied content in the

measurement of ecological vulnerability, and the most

commonly used method is index evaluation (Zhao et al., 2007).

According to the ecological landscape and production mode,

the 54 counties in the Inner Mongolia Autonomous Region are

divided into animal husbandry counties and semi-agricultural

and semi-pastoral counties. Strictly speaking, there are no

agricultural counties, but the actual situation is that in many

semi-agricultural and semi-pastoral counties, farmers do not

have grassland but are fully engaged in planting. Combined

with the actual situation and research needs of the survey

area, three types of households are defined: farmers refer to

families who have no grassland but only cultivated land and are

completely engaged in planting; herdsmen are families that only

have grassland and no arable land and are completely engaged in

animal husbandry; and agro-pastoralists to families that have

both grassland and cultivated land and engage in both planting

and animal husbandry.
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In this study, we first build an index evaluation system to

measure the livelihood resilience of farmers and herdsmen in the

study area. Second, we compare and analyze the livelihood

resilience of farmers, herdsmen, and agro-pastoralists, as well

as the differences in livelihood resilience between different

households. Third, we build a hierarchical linear regression

model and introduce two indicators of natural disaster risk

and ecological vulnerability to study the impact of

environmental differences and disaster shocks on household

livelihood resilience. Finally, based on the research

conclusions, this paper explores ways to improve the

livelihood resilience of farmers in response to climate change

and disasters. The organization of the article is shown in Figure 1.

Materials and methods

Study area

The study area is the Inner Mongolia Autonomous Region of

China, which is located in the north of China, between 37°

24′–53° 23′ N and 97° 12′–126° 04′ E. The area spans more

than 2,400 km from east to west and 1,700 km from north to

south. Topographically, the Mongolian Plateau is the main

feature, which has complex and diverse forms. Except for the

southeast, the plateau accounts for about 50% of the total land

area. The region primarily has a temperate continental monsoon

climate. Precipitation is low and uneven, the wind is strong, and

the variation between cold and heat are severe. From east to west,

the region is composed of semi-humid, semi-arid, and arid areas,

with, again from east to west, a vegetation landscape of forest,

grassland, desert grassland, and desert. Except for the eastern

part of the region, the annual average precipitation in most areas

is less than 400 mm, and the precipitation decreases from east to

west. The overall climatic condition of the whole region is poor,

and the vegetation coverage is low. The region is often affected by

natural disasters or environmental pressure, such as drought,

hail, strong winds, and snowstorms. In terms of industry, the

whole region is dominated by agriculture and animal husbandry,

with agriculture in the plains and hilly areas (e.g., the plains of

Hetao and Tumechuan) and animal husbandry mainly

distributed in the grassland areas of Hulunbuir, the Xing’an

League, and the Xilin Gol League.

Data collection

In the summer of 2018, the Inner Mongolia University

carried out a comprehensive social survey (CNMASS) of

animal husbandry counties and semi-agricultural and semi-

pastoral counties in Inner Mongolia. This survey investigated

the livelihood mode, agricultural and animal husbandry

production, infrastructure, population change, and relation

between nationalities in the region. Specifically, questionnaires

and semi-structured interviews were used to collect data covering

the levels of counties, townships, villages, households, and

individuals. The survey was conducted by multi-stage

stratified sampling. In the first stage, 10 of the 54 counties in

the region were randomly selected, taking into account the

geographical distribution. In the second stage, from the above

10 counties, three townships were randomly selected for

sampling, and from each township, four villages were then

FIGURE 1
Organization of the article.
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selected for investigation based on convenience sampling (to

ensure that there were at least 20 households in each village). In

the third stage, among the selected villages, the respondents were

selected according to indoor random sampling. The three-stage

sampling yielded a total sample of 2,400 households and

120 villages. During the implementation of the project, roads

in many villages were blocked due to heavy rain, and the random

principle was not fully followed. We therefore selected the

neighboring villages for investigation and finally investigated

2,412 households. The sampling distribution in the

investigated area is shown in Figure 2.

Evaluation of ecological vulnerability and
natural disaster risk

In June 2011, China officially released the “National Main

Functional Area Planning.” This document requires the country

to divide the land space into four categories according to the

resource and environment carrying capacity, existing

development density, and development potential: optimized

development, key development1,

Restricted development, and prohibited development.2 The

Inner Mongolia Autonomous Region undertook the planning

task of the “Inner Mongolia Main Functional Area Planning,”

studied the division of the main functional areas, and

comprehensively evaluated the natural disaster risk and

ecological vulnerability of the whole region. Finally, according

to the level of natural disaster risk, all counties in the region are

divided into five levels from low to high;3 all counties in the

region are also divided into five levels from low to high according

to level of ecological vulnerability.4 The results of the two

indicators in the “Inner Mongolia Main Functional Area

Planning” document are used in this paper as the macro

variables reflecting the ecological environment and natural

disaster risk at the county level in the analysis model.

Measurement of livelihood resilience

The selection of indicators to measure the livelihood

resilience of farmers and herdsmen is based on an intensive

review of the relevant literature and the data obtained from the

field surveys. Table 1 shows the three components (buffer,

organization, and learning) and composite indicators

(Speranza et al., 2014).

Buffer capacity is a measure of the disturbance and change

absorbed by a system while maintaining its structure, function,

characteristics, and feedback unchanged. From the perspective of

livelihood, buffer capacity refers to the ability of farmers to use

their own resources and rights to resist livelihood risks (Kelly and

Adger, 1999).

FIGURE 2
Survey area distribution1.

1 Banner is one of the administrative divisions at the same level as the
county in China.

2 http://www.gov.cn/zhengce/content/2011-06/08/content_
1441.htm.

3 The five assessment grades of natural disaster risk are areas of low risk,
slight risk, medium risk, high risk, and extremely high risk.

4 The five assessment grades of ecological vulnerability are areas of low
vulnerability, slight vulnerability, medium vulnerability, severe
vulnerability, and extreme vulnerability.
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The buffer capacity of a system or individual can be improved

by improving the resource endowment, as reflected in livelihood

capital and stability (Chen et al., 2016). The labor force and per

capita education level represent the human capital of farming

and herding families. The higher the population quantity and

quality, the stronger the buffer capacity in the face of risk

interference (Wen et al., 2018). The actual cultivated and

grassland area represent the natural capital. Whether they

have sufficient cultivated land and property is very important

in resisting the shock of natural disasters (Liu et al., 2019).

Housing quality represents the material capital of farming

families. When farmers’ livelihoods are hit, they can realize

the material capital to improve their financial capital (per

capita income) and enhance buffer capacity. The amount of

financial capital directly affects whether farmers canmaintain the

function, structure, and feedback of their original basic livelihood

when encountering shocks and also creates a certain potential

resilience (Zheng et al., 2020). This dimension is represented by

the A1 to A6 indicators.

Organizational capacity reflects how the family’s self-

management, institutional policies, and social connectivity

shape resilience (Fuchs, 2014). Milestad and Darnhofer (2003)

define the self-organization of the agricultural system as the

ability of farmers or agricultural groups to establish flexible

communication and mutual assistance networks, as well as to

integrate into the local social, economic, and institutional

environment. Organizational capacity can be characterized by

policy support, social network, neighborhood trust, and other

indicators. Policy support represents the ability of farmers to

obtain development opportunities and integrate their own

resource advantages (Wen et al., 2018). Policy support is a

powerful external force for families, and it is the main driving

force for the improvement of family’s organizational capacity

when a disaster occurs. A social network indicates the degree of

information sharing and mutual support among individual

farmers. Lack of trust and communication isolates farmers

and reduces their ability to self-organize (Wang et al., 2021).

Social networks are the main source of informal loans and

assistance. Accessibility reflects the ease with which an area in

connected to the outside world, and reflects the efficiency of

obtaining external assistance in an emergency (Wu et al., 2021).

This dimension is represented by the B1 to B4 indicators.

Learning ability is the ability of individuals or organizations

to create, acquire, transmit, and memorize knowledge and is of

great significance to their rapid response and recovery after a

shock (Kim, 1998). Four indicators, namely the education level of

the household head, the ability to obtain information, the

proportion of the population with non-agricultural experience,

and the investment in family education, are selected. The

education level of the household head directly affects a

family’s vision and planning for the future (Wen,2018). The

ability to obtain information reflects the ways and opportunities

TABLE 1 Indicator system to assess livelihood resilience.

Dimension Indicator Definition and description
of indicators

Unit Weight

Buffer capacity 0.540 Family labor (A1) Total number of household labor force Person 0.086

Per capita education
level (A2)

Ratio of total years of education to total population Year/
person

0.245

House quality (A3) Thatched cottage = 0.25, Adobe house = 0.5, Brick-concrete bungalow = 0.75,
Building = 1

4 levels 0.040

Per capita income of
housholds (A4)

#0000FF; Ratio of annual total household income to total household population % 0.385

Cultivated land area (A5) Land area actually cultivated by the family Mu 0.122

Grassland area (A6) Grassland area actually grazed by the family Mu 0.122

Organizational capability
0.297

Policy support (B1) Government aid financially and subsidies obtained Yuan 0.555

Social network (B2) Number of friends and relatives that can help Household 0.235

Trust between neighbors (B3) The level of trust between neighbors 5 levels 0.068

Traffic convenience (B4) Where the main road leads: Townships = 1, Counties = 2, Prefecture level city = 3,
Other prefecture level cities = 4, Other provinces = 5

5 levels 0.143

Learning capability 0.163 Education level of household
head (C1)

Expressed by the length of schooling of the household head Year 0.285

Non-agricultural work
experience (C2)

Ratio of the number of families with non-agricultural work experience to the total
number of people

% 0.084

Information acquisition
capability (C3)

Ways and channels for families to obtain market, disaster, and employment
information

5 levels 0.403

Education investment (C4) Amount of annual family education investment Yuan 0.229

Mu is a measure of land in China. Per mu = 666.67 m2.
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for farmers to obtain information, which can help them grasp

market information and adjust their strategies in a timely way to

cope with the impact of adverse changes (Wu et al., 2021). The

proportion of the population with non-agricultural experience

represents the vision and diverse production experience

ofdifferent members of the family. Households may adopt

diversified agriculture and off-farm employment as adaptive

strategies to combine and transform their livelihood assets to

be resilient to the disturbance (Li et al., 2016). The education level

of household head will directly affect a family’s vision and future

livelihood planning, as well as the education investment of the

whole family and the education of their children (Wen et al.,

2018). It is in line with the concept of resilience that emphasizes

the future and dynamics (Li et al., 2019). This is characterized by

the C1 to C4 indicators.

As mentioned above, family livelihood resilience is measured

by three dimensions: buffer, organization, and learning capacity.

Each dimension is represented by several indicators, and all

indicators are integrated to form a comprehensive index

(Table 1). Because each indicator is measured on a different

scale, we adopt (Eq. 1) to standardize each indicator as an index

(Wang et al., 2021):

indexij � Sij − Sj,min

Sj,max − Sj,min
, (1)

where Sij and indexij are the original value and standardized

value of index j of family i, respectively. Sj, min and Sj, max are the

minimum and maximum values of index j, respectively. We use

(Eq. 1) to adjust all indexes to 0–1. After each indicator is

standardized, the analytic hierarchy process is used to

determine the weights of specific indicators and dimension

layers (Table 1). The livelihood resilience of different

households can be obtained using standardized values for

different indicator and dimension layer weights.

TABLE 2 Variable descriptive statistics.

Variable name Frequency Ratio (%) Maximum Minimum

Livelihood resilience Continuous variable 1689 100 0.016 0.357

Herdsman 834 49.38

Kinds of household (References group) 0 2

Farmer 437 25.87

Agro-pastoralists 418 24.75

Drought Not affected (References group) 392 23.21 0 1

Affected 1297 76.79

Freeze Not affected (References group) 1310 77.56 0 1

Affected 397 22.44

Medium risk area 4 35.29

Natural disaster risk High risk area 3 32.92 3 5

Extremely high risk area 3 31.79

Low vulnerable area (References group) 1 6.45

Ecological vulnerability (References group)

Slightly vulnerable area 1 9.59 1 4

Moderately vulnerable area 4 44.76

Severe vulnerable area 4 39.19

TABLE 3 t-test for mean differences in household livelihood resilience types.

Kinds of household Buffer capacity Organizational
capability

Learning capacity

Mean T Value Mean T Value Mean T Value Mean T Value

Herdsman 0.116 0.091 0.092 0.250

Farmer 0.109 4.028*** 0.075 8.702*** 0.127 −9.345*** 0.191 10.209***

Agro-pastoralists 0.122 −3.451*** 0.090 −0.393 0.126 −9.975*** 0.221 4.817***

*p < 0.05, **p < 0.01, ***p < 0.001.
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Hierarchical linear regression model

A hierarchical linear regression model (HLM) is used to

study the difference level and influencing factors of livelihood

resilience among farmers, herdsmen, and agro-pastoralists.

Different household types are thus taken as the main

explanatory variables of livelihood resilience, and different

types of disasters faced by households are introduced into the

micro level of the model (Level 1) as individual factors affecting

livelihood, similar to the ordinary OLS regression equation (Eq.

1). Natural disaster risk and ecological vulnerability are also

included in the model (Level 2) as macro factors to explore the

impact of ecological vulnerability and natural disasters on

livelihood resilience. This level analyzes the variation of the

intercept of the Level 1 (β0, representing the average

livelihood resilience level of households) in different counties.

The intercept of level 1 (random intercept) is divided into two

parts in level 2, the intercept (γ00) and the random component

(u01), through which the random intercept model is constructed.

At level 2, two indicators of natural disaster risk (N id) and

ecological vulnerability (E v) are introduced to explain the

variation of the random intercept. A random-intercept model

with explanatory variables, is thus formed. It is worth noting that

the slopes in level 1 does not change in level 2.

Level 1 (Eq. 1): ln(yij) � β0 + β1 ·Householdij +
β2 ·Droughtij + β3 · Freezeij + εij

Level 2 (Eq. 2): Adding two explanatory variables nid and ev,

we obtain

β0 � γ00 + γ01 ·Ndij + γ02 · Evj + u0j

In (Eq 1), the β0 represents the intercept, and β1 to β3
represents the regression coefficient related to the three

explanatory variables of level 1. The subscript i represents the

units in level 1—that is, each household—and j represents the

units in level 2—that is, the county. In, β0 is the intercept of level

1 related to the unit of level 2. γ00 is the intercept of level 2 and γ01
and γ02 are the regression coefficient corresponding to each

explanatory variable of level 2. u0j is the error term for level 2.

TABLE 4 Hierarchical linear regression of factors influencing livelihood resilience.

Variables Null model
(model 1)

Random-intercept model
(model
2)

random-intercept model
(including
explanatory variables) (model
3)

coef. (Std. Err.) Coef. (Std. Err.) Coef. (Std. Err.)

Level 1 Fixed effect

Intercept (β0j) 0.116***(0.003) 0.113***(0.003) 0.105***(0.006)

Household (β1j) Farmer −0.006***(0.002) −0.005**(0.002)

Agro-pastoralists 0.001 (0.002) 0.001 (0.001)

Drought (β2j) 0.005**(0.002) 0.005**(0.002)

Freeze (β3j) 0.001 (0.002) 0.002 (0.002)

Level 2: Random-intercept
model

Variance
components

Intercept (γ00) 0.008***(0.002) 0.007***(0.001) 0.004***(0.001)

Level 2: Explanatory variables

Ndi (γ01) High risk −0.015***(0.005)

Extremely high risk −0.008*(0.001)

Ev (γ02) Slight vulnerable 0.018**(0.009)

Moderately
vulnerable

0.015**(0.006)

Highly vulnerable 0.017**(0.007)

Residual 0.029 0.028 0.028

ICC 0.071 0.065 0.027

AIC −7153.195 −7164.528 −7162.495

BIC −7136.899 −7126.505 −7097.312

Log likelihood 3579.5974 3589.264 3593.247

Individual observations 1689 1689 1689

Group observations 10 10 10

*p < 0.05, **p < 0.01, ***p < 0.001; the values in brackets are standard errors.
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Results

Descriptive analysis

Table 2 shows the family livelihood resilience and descriptive

data for the main variables. A total of 1,689 effective samples were

used after selection and processing. The maximum and

minimum values of livelihood resilience are 0.357 and 0.016,

respectively. The difference in livelihood resilience of different

families is obvious. Drought and freezing are the main natural

disasters affecting the agricultural and pastoral production in the

region, and they have a great impact on livelihood resilience.

According to the survey data, 76.79% of residents suffered from

drought and 23.51% from freezing temperatures. For natural

disaster risk, in the 10 counties in this survey, four are medium-

risk areas, three are high-risk areas, and three are extremely high-

risk areas.5 The overall natural disaster risk level of the surveyed

areas is high. In terms of ecological vulnerability, eight of the

10 counties have medium or severe vulnerability.6 The overall

ecological environment of the investigated area is very fragile.

Heterogeneity of livelihood resilience

From the results shown in Table 3, the resilience index of the

surveyed residents’ livelihood is not high as a whole, with an

average of only 0.117. The resilience of farmers is the lowest, with

an average of 0.109, followed by that of herdsmen (0.116) and

then that of agro-pastoralists (0.122). The difference is quite

clear. Although there is no significant difference in buffer

capacity between herdsmen and agro-pastoralists, different

dimensions of livelihood resilience differ significantly between

household types.

The buffer and learning capacities of farmers are the lowest,

with an average of 0.075 and 0.191, respectively, while the

organizational capacity of herdsmen is the lowest, with an

average of 0.092. To a large extent, this is related to the

special geographical location of the region and the tradition of

agriculture and animal husbandry. Since ancient times, the

region has been dominated by nomadism, and agriculture is

limited by natural conditions. Except in a few plain areas (such as

Hetao), the development of agriculture is relatively backward.

The livelihood resilience of herdsmen is thus relatively high, and

the buffer capacity of farmers is relatively low. Agro-pastoralists

have relatively strong resistance to external shocks such as

climate change and disasters due to their diversified

production modes. Their buffer capacity is thus also relatively

higher than that of farmers. Moreover, farmers’ learning ability is

relatively low. Farmers’ income is far below that of herdsmen; so,

their investment in education is relatively low. The organization

capacity of herdsmen is relatively low, which may be related to

their mode of production and living. The residential areas in the

pastoral areas are relatively scattered, not concentrated, and

pastoral areas are also relatively backward in transportation

and other infrastructure. When herdsmen encounter external

shocks, obtaining external assistance is inconvenient and the

ability to organize self-recovery is relatively weak.

Factors influencing livelihood resilience

We use an HLM and consider natural disaster risk and

ecological vulnerability as macro factors, incorporating them

into level 2 of the model to explain the variation of livelihood

resilience across counties (see Table 4).

According to the regression results, the variance (level 2) of

the model1 is 0.008 (p < 0.01), From the variance results, the

household belonging to different counties shows the differences

in livelihood resilience due to different groups (different

counties), indicating that the hierarchical linear model is

applicable. Specifically, the total variance is 0.008 + 0.029 =

0.037. The variance partition coefficient (VPC) is 0.008/0.037 =

0.2162, which indicates that 21.62% of the variance in attainment

can be attributed to differences between counties. the ICC value

of model one is 0.071 and that of model two is 0.065. Compared

with model 1, the decline of model two is not very obvious, but it

still shows that there is indeed a variation in livelihood resilience

at level 2, and the random effect has an impact. After introducing

explanatory variables into level 2, the ICC value of model three is

0.027, which decreased significantly, indicating that the

TABLE 5 Main obstacles of livelihood resilience indicators.

All households Buffer capacity Organizational
capability

Learning ability

Obstacle factor A2 A4 B1 B2 C3 C4

Contribution (%) 8.71 14.71 21.23 8.54 15.40 7.68

5 Medium-risk areas: New Barag Left Banner, Wushen Banner, and Otog
Front Banner, Xilinhot; High-risk areas: Ar Khorchin Banner, Hangjin
Banner, and Horqin Right Front Banner; Extremely high-risk areas:
Dalad Banner, Urad Houqi, and Alxa Left Banner.

6 Medium vulnerability areas: Ar Khorchin Banner, Ulat rear banner, Otog
Front Banner, and Xilinhot; High vulnerability areas: Wushen Banner,
Hangjin Banner, Dalat Banner, and Alxa Left Banner.
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introduction of random effect item is reasonable. The random

effect item has an explanatory force of 0.071–0.027 = 0.044

(4.4%) on the county level (level 2). When the two indicators

of natural disaster risk and ecological vulnerability are

introduced, they can explain 42.85% of the variance in the

average value of livelihood resilience across counties.

From the results of model 3, the fixed effect of the level

1 reflects the individual differences in livelihood resilience in

different household types. Taking herdsmen as the reference

group, the livelihood resilience of farmers is 0.005 units lower

(p < 0.05), which indicates that, for the 10 counties in the survey

area, the livelihood resilience of herdsmen is generally higher

than that of farmers. However, the differences between herdsmen

and agro-pastoralists did not reach the level of significance,

which is in line with previous findings. In the Inner Mongolia

Autonomous Region, herding is traditionally the main industry,

and agriculture is restricted by the natural environment; so, its

development is relatively weak. Drought is the main natural

disaster affecting agriculture and animal husbandry. Compared

with households affected by drought, the livelihood resilience of

households not affected by drought was generally 0.005 units

higher (p < 0.01). Drought not only reduces the yield of crops but

also degrades the quality of grassland and harms animal

husbandry. The impact of a freezing disaster is not obvious,

but this may be related to the season during which we collected

data. Before the period when the grassland is prone to frost in

autumn and winter, the possibility of a frost disaster in the region

is small.

Considering random effects, the intercept of level 1 (the

average value of livelihood resilience of different household

types) is significantly different from that of level 2 (between

counties), and the variance component is 0.004 (p < 0.01). In

terms of macro factors, the impact of natural disaster risk on

livelihood resilience is negative and significant. The higher

the level of natural disaster risk, the lower the overall level of

livelihood resilience. Compared with medium-risk counties,

the average livelihood resilience of farmers and herdsmen in

counties with a high risk and an extremely high risk decreased

by 0.015 (p < 0.001) and 0.008 (p < 0.01) units, respectively.

The higher the level of risk of natural disasters, the greater the

impact of disasters on livelihood resilience. Due to poor

natural conditions, the living conditions of farmers and

herdsmen are unstable, and the ability to cope with the

pressure and shocks from natural disasters is significantly

reduced (Tan and Tan, 2017). At this time, establishing a

long-term risk early warning and risk management and

control mechanism, promoting the diversification of

livelihoods, and implementing active ecological policies

have become effective ways to deal with livelihood

vulnerability and improve livelihood resilience (Zhao,

2022). The government can improve access to land and

water rights, thereby strengthening land governance to

cope with drought (Bahta and Myeki, 2021). Residents and

communities can increase awareness of disaster risks and

reduce the loss of livelihoods from disasters (Ma et al., 2022).

The higher the level of ecological vulnerability, the higher the

livelihood resilience of farmers and herdsmen. This may appear

counterintuitive, but after careful analysis of the study area, it

became apparent that the counties with lower ecological

vulnerability are often nature reserves and restricted

development areas focused on ecological protection. There is

no large-scale development of agriculture and animal husbandry

in these counties. The overall livelihood resilience of the region is

thus poor. For example, the livelihood resilience of New Barag

Left Banner, Ar Khorchin Banner, and Horqin Right Front

Banner is 0.110, 0.111, and 0.113, respectively. The higher the

ecological vulnerability, the higher the livelihood resilience of

farmers and herdsmen. This phenomenon is related to the

development mode of treatment after pollution. For example,

Ordos (0.122), which has the highest average livelihood elasticity,

has suffered irreversible damage to the ecological environment,

such as water resources, air, and grassland, due to extensive coal

mining. Despite rapid economic and social development,

ecological vulnerability is becoming increasingly serious

(Wang and Zhang, 2015). Another example is Xilin Gol

(0.014); from the 1990s to the beginning of the 21st century,

overgrazing led to serious grassland degradation. The disordered

mining of underground coal mines led to the exposure of a large

area of grassland surface, which accelerated degradation and

desertification (Wu et al., 2017). The previous extensive

development led to the destruction of the ecological

environment. With the rapid development of agriculture and

animal husbandry, ecological damage has also become a new

problem for the development of the region. It is thus clear that

there is a significant positive correlation between ecological

vulnerability and livelihood resilience. The best way to

alleviate ecological vulnerability is to develop ecological

agriculture and industrial diversification. How to achieve a

“win-win” between ecological protection and sustainable

livelihood development is the key to solve ecological problems

in the future industrial development process (Qin et al., 2022).

Eco agricultural projects can not only contribute to a significant

increase in livelihood capital, but also increase the diversity of

farmers’ livelihoods (Zhao et al., 2013). Encouraging farmers and

herdsmen to develop characteristic farming, broadening income

channels and reducing dependence on natural resources are

important ways to achieve industrial transformation and

sustainable development (Zhao, 2022).

Barriers to livelihood resilience

We further introduce factor contributionWi (the weight of a

single factor), indicator deviation Vi (the difference between the

standardized value of a single indicator and 1), and obstacle Oi

(indicating the impact of a single indicator on livelihood
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resilience) to build an obstacle diagnosis model to identify the

main obstacles affecting the livelihood resilience of farmers and

herdsmen. Following Wen Tengfei et al. (2018)[33], the formula

is as follows:

Oi � Wi × Vi

∑
n
i�1(Wi × Vi) × 100% (2)

In the identification of obstacles to the overall goal of

livelihood resilience, the top six obstacles (the top two in each

dimension) are selected. The evaluation of the livelihood

resilience of farmers and herdsmen should not only judge the

livelihood status in different research units but should also clarify

the obstacles that affect the final results to put forward targeted

policies and suggestions, which is of great significance to improve

the adaptability and resilience of the study populations (see

Table 5).

Once these barriers are alleviated, the livelihood resilience of

farmers and herdsmen will rapidly improve. Among buffer

capacity indicators, household per capita income (A4) is the

most direct reflection of farmers’ ability to buffer livelihood risks

and adverse changes. During a crisis, this may be the last line of

defense for households. Farmers can sell productive and non-

productive assets to cushion the impact. The per capita education

level (A2) is the main guarantee for the family labor force. The

agricultural and pastoral production requires the input of labor

from the start, and it also requires the labor force to have the

ability and vision to organize future reconstruction. Family size

and education attainment are key factors affecting farmers’

livelihood resilience (Quandt, 2018). Human capital and

financial capital have significant positive effects on livelihood

strategies (Xu et al., 2019). Higher education per capita can

significantly improve farmer livelihood resilience (Zhao et al.,

2022). Among the organizational capacity indicators, policy

support (B1), as the most direct external support system, can

quickly and effectively help farmers and herdsmen improve their

livelihood resilience after a shock. The social network (B2)

represents power based on the relationship between blood and

geography, which can organize a rescue force immediately after a

shock, thus contributing to livelihood restoration. The ability of

households to use their social capital through access to social

networks and information has been shown to lead to better

adaptive outcomes and enhance adaptive capacity (Bahta and

Myeki 2021). At the same time, farmers are encouraged to

become members of social networks and cooperatives to

obtain agricultural credit, which can significantly improve the

resilience and adaptability of families (Kumar et al., 2020).

Among the learning capacity indicators, information

acquisition (C3) reflects the timeliness of a family’s access to

relief information after a disaster, and it predicts future family

development prospects. If families can obtain information about

recovery and production on time, they can effectively restore the

family livelihood. The level of investment in education (C4)

exacerbates the shortage of financial capital in the short term, but

this long-term investment in the future has promising returns.

Discussion

The core of this study is to find methods to improve the

livelihood resilience of farmers and herdsmen. The impact of

natural disasters on livelihood resilience is negative, but there is a

positive correlation between ecological vulnerability and

resilience. Moreover, the variable resilience of different

household types is also very obvious. Through the analysis of

obstacle factors, we find that breaking through the main obstacle

factors plays an important role in improving livelihood resilience;

thus, we can focus on the aspects discussed below.

Avoiding disaster risk and expanding
livelihood modes

From the analysis results of factors influencing livelihood

resilience, natural disasters risk is the main factor restricting

livelihood resilience. To cope with various risk environments,

farmers and herdsmen should adopt a set of strategies, and both

groups should pay attention to prior risk management. The

eastern region can try to actively build a diversified industrial

system on the basis of traditional animal husbandry to form an

industrial chain to deal with the impact of disaster risks. More

specifically, they can build the downstream industrial chain

(including the production, processing, and sales of animal

husbandry products) and create a business model combining

chain operation with leading enterprises and family farms.

Residents in the central and western regions are greatly

affected by drought and freezing; so, the government should

be committed to promoting land remediation, strengthening the

construction of water conservancy projects such as reservoirs and

irrigation canals, and promoting sprinkler and drip irrigation

technologies (Wu et al., 2021). Farmers can reduce the impact of

drought by adjusting the planting period and by building

irrigation channels (Nwafor et al., 2014). Herdsmen can

mitigate the adverse effects of climate change through artificial

grass planting and adjustment of the livestock structure

(Gongbuzeren and Li, 2018).

Farmers and herdsmen also need to deal with shocks

afterward. Ideally, households can use risk-sharing tools, such

as credit, crop and livestock insurance, and agricultural products

options and futures, to transfer risks to the macro economy and

operate more effectively (Zuo et al., 2007). However, tools such as

agricultural insurance need the active support of the government,

and most farmers and herdsmen do not have the specific skills

required to make use of tools such as futures and options.

Currently, saving, clearing assets, and borrowing in the short
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term are the best methods for avoiding risk. The use of private

lending based on social networks also plays a notable role.

Identifying resource advantages and
changing the development mode

In addition to the negative impact of natural disaster risk,

ecological vulnerability has a significant positive effect on the

livelihood resilience. The conclusion reminds us that the

relationship between ecological vulnerability and the

livelihood resilience of farmers and herdsmen reveals that the

development mode of treatment after pollution is not

coordinated with resources and the environment. Identifying

resource advantages and changing the development mode are the

long-term pathways to enhance the future livelihood resilience of

the region. We should seek to take the ecological industry as the

leading factor and promote the combined development of

traditional agriculture and animal husbandry and modern

industrial transformation, as well as the coordination between

industrial development and the existing resources and

environment.

Eco-agriculture can help small-scale producers adapt to and

mitigate climate change. There is growing evidence that this

approach is beneficial to the environment, biodiversity, farmers’

income, climate change adaptation, and resilience to multiple

shocks and pressures (Mottet et al., 2020). Eco-agriculture is

closely related to biological and economic diversity: the more

developed the ecological farm is, the more diverse the crops,

trees, animals, and economic activities are, and the greater the

enhancement of economic and environmental resilience (FAO,

2019). With the increase in biodiversity, the soil is improved,

which in turn helps to improve ecological resilience and

strengthen the ecosystem (FAO, 2018).

Breaking path dependence and
restructuring livelihoods

Restricted by the geographical environment, the livelihood

resilience of farmers and herdsmen in the Inner Mongolia

Autonomous Region has exhibited strong path dependence, which

makes the family production mode too unitary, as the vast majority

are focused on small-scale production and operation. Their ability to

resist disasters and risks is very low. This path dependence must

therefore be broken, which can be done in two ways: first, we should

ensure the diversity of agricultural and animal husbandry

development and break the original unitary production mode

(Ingalls, 2020). For farmers and herdsmen, diversification includes

the choice of agricultural and livestock products. In addition to

traditional local crop varieties and livestock species, residents can try

to grow economic or improved crops and introduce new livestock

varieties.

Second, breaking path dependence can also advocate

cooperation. Taking collective action to strengthen the

network and cooperation between small-scale producers,

producers’ associations, cooperatives, and other participants is

the cornerstone of building livelihood resilience (Li, 2018). In

areas where conditions permit, with the help of cooperation and

the industrial production chain, farmers and herdsmen can

engage in large-scale production and improve their collective

bargaining power and risk resistance.

Identifying obstacle factors and
strengthening policy interventions

Obstacle analysis identifies the main obstacle factors of

livelihood resilience. The conclusion reminds us that once

these obstacles are alleviated, the livelihood elasticity of

farmers and herdsmen will increase rapidly. Therefore,

owning assets is the key to enabling families to recover from

disasters. It is necessary to encourage families to consider their

asset management and protection and to diversify their assets to

avoid risk. Family members with a higher level of education are

more valued in the labor market. When shocks have a negative

impact on the family livelihood, if they can (temporarily or

permanently) rely on another source of (non-agricultural or

pastoral) income, they may be better able to adapt to those

shocks. It is thus necessary for the government, families, and

other different subjects to strengthen investment in education

(including both infrastructure and financing), to expand

educational opportunities, and to improve the overall level of

human capital in the region (Wu et al., 2021).

The development of social protection policies (including

public and private initiatives) can provide a certain degree of

insurance and liquidity for production and help families seize

economic opportunities to provide support and manage risks

(Lowder et al., 2017). In the process of helping families recover

their productivity, social protection policies can be adopted

through social assistance (including cash or in kind subsidies),

social insurance (including an insurance mechanism for

disasters), labor market planning (to solve employment

problems after a disaster), and other methods. Social networks

are critical for the resilience of poor households and can provide

access to opportunities, informal credit, and savings mechanisms

to help cope with emergencies and shocks. We should encourage

the normalization of social networks, and link them with

productive enterprises and financial services to enhance their

resilience.

Conclusion

Due to poor natural conditions and a fragile environment,

the production and lifestyles of farmers and herdsmen in the
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Inner Mongolia Autonomous Region are often affected by

extreme weather and natural disasters, and their livelihood

resilience is generally low. This threatens sustainability and

social stability in the region. Improving the adaptability of

farmers and herdsmen so that they can attain resilience in the

face of external shocks would be the ideal condition for building a

coordinated and sustainable society. For this, it is helpful to

understand the main factors leading to low livelihood resilience

and how these factors work. Among the many factors considered

in this paper, we believe that ecological vulnerability and natural

disaster risk are the most important external drivers affecting the

livelihood resilience of farmers and herdsmen in the Inner

Mongolia Autonomous Region.

Using CNMASS data from the survey conducted by the Inner

Mongolia University in 2018, this paper studied the specific

impact of the ecological environment and natural disasters on

the livelihood resilience of farmers and herdsmen, focusing on

the specific impact of drought and freezing. The main results

show that natural disasters have a great impact on livelihood

resilience. The higher the level of natural disaster risk, the lower

the livelihood resilience of farmers and herdsmen, with drought

being the most obvious disaster type. There is, however, a

significant positive correlation between ecological vulnerability

and the livelihood resilience of farmers and herdsmen, which

indicates that there were great problems in the previous

development mode of treatment after pollution. While various

industries and the social economy are developing rapidly, the

problems of the ecological environment cannot be avoided. It is

thus necessary to adopt policies and measures to improve the

sustainable livelihood of herdsmen. By clarifying the resource

advantages and changing the development model, we can make

development itself resilient. This can maintain and even improve

the livelihood resilience of farmers and herdsmen in both the

short term and long term.

In addition, this paper puts forward exploratory suggestions

to improve the livelihood resilience of farmers and herdsmen, by

identifying the obstacle factors of livelihood resilience.

Strengthening policy support and guarantee, broadening social

networks and improving social cooperation are the core contents

of organizational capacity-building. Paying attention to

education investment, improving the level of human capital,

building an information network platform and enhancing the

ability to obtain information are the long-term strategic choices

for farmers and herdsmen in realizing livelihood restoration and

transformation.
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Ecological water conveyance is an important way to promote the restoration of

degraded ecosystems in arid watersheds. However, there are few previous

research results on how to quantitatively evaluate the effect of ecological water

conveyance on ecological restoration. In this regard, this paper selects the

Tarim River Basin as a typical area, analyzing the changes of desert riparian

vegetation and hydrological elements, constructing a watershed ecological

environment quality evaluation system, and comprehensively evaluating the

ecological water conveyance effect of the damaged desert forest ecosystem.

The conclusion showed that the proportion of the pixel area with an upward

trend of Fractional Vegetation Cover (FVC) from 2000 to 2021 is as high as

84.3%. The plant diversity index in the ecological water conveyance area

showed the characteristics of first obvious increase and then stable. The

main body of groundwater depth showed an upward trend, and the

Temperature Vegetation Dryness Index (TVDI) showed a downward trend of

pixel area accounting for 57.0%, which indicated that ecological water

conveyance had played a positive role in groundwater recharge and

ecological restoration along the Tarim River. The ecological environment

quality of the river basin showed a trend of transition from low-grade to

high-grade, and the area with excellent ecological quality had increased

from 4,635.50 km2 in 2000 to 12,335.0 km2 in 2021. The above research

provides important scientific reference for the protection and restoration of

vegetation degradation in arid watersheds.

KEYWORDS

ecological water conveyance, desert riparian vegetation, ecological environment
quality, ecological restoration, Tarim River Basin

1 Introduction

Desert riparian forests are widely distributed on both sides of inland river basins in

arid areas. It is a forest ecosystem with relatively single species in desert environment.

They play an important role in wind prevention and sand fixation and maintaining the

balance and stability of ecosystems in arid areas (Keyimu et al., 2018; Sun et al., 2022).
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Water is the most important environmental factor to ensure the

structural integrity and functional stability of ecosystem in arid

areas. However, due to the disturbance of global climate change

and human activities, the shortage of water resources has become

an important factor affecting the ecosystem in arid areas, which

directly restricts the development and evolution of the desert

riparian forest ecosystem (Adam et al., 2009; Allen and Ingram,

2012; Deng and Chen, 2017;Wang andQin, 2017; Ni et al., 2022).

In addition, the ability of desert riparian forest ecosystems to

resist external disturbances and self-repair is low, exacerbating

various ecological problems such as land degradation,

desertification, pests and diseases, and biodiversity damage. To

this end, based on the purpose of ecological protection and

restoration, in order to curb the degradation of natural

vegetation, ecological water conveyance work has been carried

out in many regions around the world (Chen et al., 2010; Zeng

et al., 2016; Zhao et al., 2020). Therefore, after ecological water

conveyance, understanding the restoration status of damaged

desert forest ecosystems and the effect of ecological water

conveyance has become a hot topic in the research on

ecosystem restoration and protection in arid areas.

Desert riparian forests are mainly distributed in Central Asia,

the Murray-Darling Basin in Australia, the Colorado River Basin

in the western United States and northwestern China (Ding et al.,

2017; Zhang et al., 2018). A large number of studies have shown

that groundwater and soil moisture are the key factors to

maintain the normal growth and development of desert

riparian forests. The change of groundwater level directly

affects the development of natural vegetation communities in

desert riparian forests, and further affects the stability of desert

ecosystems in arid areas. Drought stress will not only wilt plants,

but also weaken the physiological functions and disease

resistance of plants (Doble et al., 2006; Chui et al., 2011). The

ecological water conveyance project can effectively raise the

groundwater level and increase the soil water content.

Therefore, it is very important to study the temporal and

spatial variation of the groundwater level and soil drought for

the protection and restoration of desert riparian forest vegetation

(Halik et al., 2019; Ling et al., 2020). The species of desert riparian

forest vegetation is relatively poor, the structure is relatively

simple, the main feature is low species diversity, and

ecological water conveyance can form a favorable

environment for their survival. The study of species diversity

in the process of vegetation restoration not only helps to correctly

understand the process of vegetation restoration, but also helps to

understand the dynamic succession process of the ecosystem

(Runyan and D’Odorico, 2010; Kopec et al., 2013). The ecological

water conveyance is mainly carried out along the river course.

The farther away from the river course, the lower the fractional

vegetation cover and the smaller the area of vegetation

restoration. Therefore, the research on the degree of increase

in fractional vegetation cover and the area of vegetation

restoration is also an important indicator for evaluating the

degree of vegetation restoration (Guo et al., 2017; Huang F.

et al., 2020). At present, with the implementation of the

ecological water conveyance project, the ecological

deterioration in the water conveyance area has been curbed.

However, there are few previous research results on how to

quantitatively evaluate the effect of ecological water conveyance.

It is of great practical significance to comprehensively evaluate

the overall ecological environment quality changes in the basin to

promote the vegetation restoration in the arid area.

The Tarim River Basin, located in the Tarim Basin in

northwestern China, is one of the most representative desert

riparian forest distribution areas in China and even the world

(Hao et al., 2010; Ling et al., 2017). In 2001, the Chinese

government implemented an ecological water conveyance

project in the lower reaches of the Tarim River. Therefore,

this study selected the Tarim River Basin as a typical area.

However, there are few long-term studies on the changes of

vegetation belts in the Tarim River Basin, soil drought condition,

and changes in the ecological quality of the whole basin after

ecological water conveyance. Based on remote sensing data and

field survey data, this study focuses on the changes of the desert

riparian forest vegetation belt and hydrological conditions in the

Tarim River Basin in the past 22 years. A quality evaluation

system for the ecological environment of the Tarim River Basin

was constructed to comprehensively evaluate the restoration of

damaged desert forest ecosystems and the effectiveness of

ecological water conveyance, in order to provide decision-

making references for ecological conservation and sustainable

development of inland river basins in arid regions.

2 Overview of the study area

The Tarim River Basin is located in the hinterland of Eurasia,

and is located in the south of Xinjiang Uygur Autonomous

Region (34°55 ′-43°08 ′ N, 73°10 ′-94°05 ′ E). It is the largest

inland river in China. It is connected with Pakistan in South Asia

and India, Afghanistan in West Asia, Tajikistan in Central Asia

and Kyrgyzstan, and the basin area reaches 1.027 million km2.

The study area has a hot, dry climate, and water resources are

scarce. The climate is classified as warm temperate extreme arid.

The annual average precipitation is less than 50 mm and the

annual average evaporation is more than 2,500 mm. The Tarim

River Basin is one of the most fragile regions in China, and even

the world. Among them, the main stream of Tarim River is

composed of Aksu River, Hotan River, Yarkant River and other

rivers, starting from Xiaojiake, and finally into Taitema Lake.

Arbor–shrub–grass vegetation belts mainly comprising Populus

euphratica, Tamarix ramosissima, Lycium ruthenicum,

Phragmites communis, and Apocynum venetum are present on

both sides of the river. After the completion of the Daxihaizi

Reservoir in 1972, the incoming water in the middle and upper

reaches was completely intercepted, resulting in the complete
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disconnection of the lower reaches of the Tarim River and the

drying up of the Taitema Lake. Large areas of natural vegetation

have been degraded and the groundwater level has decreased, and

thus, the ecological environment has been severely damaged. In

2001, the Chinese government invested 10.7 billion yuan to

implement comprehensive management of the Tarim River

Basin with the fundamental aim of restoring the downstream

ecosystems. In order to further improve the effect of

comprehensive management, since 2016, the autonomous

region government launched a special action for ecological

protection of Populus euphratica forest in the Tarim River

Basin, using ecological sluices and water conveyance channels

to introduce water into forest areas (see Figures 1A,B), and

promote the recovery of Populus euphratica forest ecosystem

through overflow interference. At present, the special action for

ecological protection of Populus euphratica has been carried out

for 6 years, and the comprehensive management of the Tarim

River Basin has been carried out for 22 years. The accumulated

ecological water conveyance in the lower reaches of Tarim River

is 8.793 billion m³, and the average annual water conveyance is

400 millionm³. The degradation of the ecological environment in

the Tarim River Basin has been effectively halted. The long-term

disconnection of the downstream river has improved and the

green vegetation in the riparian zone is characterized by positive

physiological and ecological responses. Therefore, the Tarim

River is not only the area with the most serious damage to

the ecological environment caused by artificial interference, but

also the most successful typical case of human intervention in

promoting ecological restoration.

3 Data sources and research methods

3.1 Data sources

Table 1 lists the all the data sets used in our study. Images of

Normalized Difference Vegetation Index (NDVI) were used to

calculate the Fractional Vegetation Cover (FVC) and the

Temperature Vegetation Dryness Index (TVDI). There are

now more 100 vegetation indexes. NDVI, the Ratio

Vegetation Index (RVI), Enhanced Vegetation Index (EVI)

and the Soil Adjusted Vegetation Index (SAVI) are widely

mentioned or used. Yet each vegetation index has strength

and weakness. RVI does not perform well when the FVC

is <50% (Jackson, 1983), which rules RVI out when

quantifying the vegetation in the desert ecosystems. Defect of

NDVI comes from its saturation when measuring dense

vegetation. SAVI and EVI are both modified NDVI with

adjustment from the effects of soil brightness in the

background and improved sensitivity to dense vegetation

(Huete, 1988; Matsushita et al., 2007). Despite the

adjustment and improvement of SAVI and EVI, NDVI is

FIGURE 1
Overviewof the study area.(A) is river course water conveyance, (B) is natural overflow.
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the one that is most widely used. And it is also generally

agreed that NDVI is sensitive in low to moderate dense

vegetation such as semi-arid areas (Tucker, 1986; Diallo

et al., 1991; Xue and Su, 2017). In addition, high-quality

time series NDVI are readily available from data sets of

MODIS NDVI, SPOT NDVI and GIMMS NDVI. That’s

why NDVI was selected in this study. 16-day composited

NDVI images were derived from the MODIS

MOD13Q1 product, Savitzky-Golay filtering was

performed to the NDVI time series to smooth out noise

caused by poor atmospheric conditions (Chen et al., 2004).

And The MVC was applied to produce yearly NDVI, which

would further improve the quality of the NDVI images by

reducing noise caused by poor atmospheric conditions

(Holben, 1986).

16-day composited images of Land Surface Temperature

(LST) of daytime, together with NDVI, were used to calculate

TVDI. The time series LST images were derived from MODIS

MOD11A2 product. LST images were averaged to get

yearly LST.

The groundwater depth data were proved by the Tarim River

Basin Administration bureau. And the date set were collected

from six typical monitoring sections set along the main stream of

Tarim River, namely, Alar, Wusiman, Qiala, Yingsu, Alagan and

Kuergan (see Figure 1).

Quadrat sampling method was used to collect the number of

vegetation species and plants. From 2015 to 2021, sampling was

carried out in the Shaya Populus euphratica Forest Park in the

upper reaches of the main stream of Tarim River and the Luntai

Populus euphratica Forest Park in the middle reaches of the main

stream of Tarim River. Three 25 m × 25 m fixed monitoring

quadrats were set at each sampling point.

3.2 Calculation method

3.2.1 TVDI calculation method
The TVDI was used to characterize the soil moisture, and it

was calculated based on the NDVI and LST with the following

formula:

TVDI � (LST − LST min)/(LST max − LST min) (1)
LST max � a1 + b1 × NDVI (2)

LST min � a2 + b2 × NDVI, (3)

where LST is the surface temperature of any pixel, LSTmin is the

minimum surface temperature corresponding to a certain NDVI

value, which is called the wet edge, (LST max is the maximum

surface temperature corresponding to a certain NDVI value,

which is called the dry edge, and a1, a2, b1, and b2 are the

coefficients in the dry–wet boundary equation. The value of

TVDI ranges among (0, 1). A pixel is more arid when the value is

closer to 1 and more humid when the value is closer to 0.

According to previous drought monitoring studies conducted

in Tarim River Basin (Huang J. et al., 2020), the TVDI values

were classified as follows: TVDI ≤0.46 representing drought free,
0.46 < TVDI ≤0.57 for light drought, 0.57 < TVDI ≤0.76 for

moderate drought, 0.76 < TVDI ≤0.86 for severe drought, and

TVDI >0.86 for extreme drought.

3.2.2 Calculation method of vegetation data
The Fractional Vegetation Cover (FVC) is an important

indicator for measuring the surface fractional vegetation cover

in a region, and it has a strong positive correlation with NDVI.

Based on the pixel dichotomy model and NDVI data, the

fractional vegetation cover was calculated using the inversion

model with the following formula:

FVC � NDVI −NDVI min

NDVI max −NDVI min
, (4)

where FVC is the fractional vegetation cover, andNDVImin and

NDVImaxare the minimum and maximum NDVI values of all

pixels in the area, respectively. NDVImin and NDVI max were

optimized with 5–95% as the confidence interval for the NDVI

values. According to the vegetation distribution characteristics,

the fractional vegetation cover values were classified as follows:

FVC ≤5% for extremely low fractional vegetation cover, 5% <
FVC ≤10% for low fractional vegetation cover, 10% < FVC ≤20%
for medium fractional vegetation cover, and FVC ≥20% for high

fractional vegetation cover.

In order to analyze the changes in the diversity indices for

vegetation after ecological water conveyance, the Simpson and

Shannon–Wiener indices were calculated for vegetation in the

samples as follows.

Simpson Index: D � 1 −∑
s

i�1P
2
i (i � 1, 2, 3, . . . , S) (5)

TABLE 1 Data and sources used by the institute.

Ecological indicators Time period Time resolution Spatial resolution Data source

TVDI 2000–2021 16 days/8 days 250 m/1000 m MOD13Q1/MOD11A2

NDVI 2000–2021 16 days 250 m MOD13Q1

Measured groundwater level 2003–2020 — — Field investigation

RSEI 2000–2021 8 days/8 days/16 days 500 m/1000 m/500 m MOD09A1/MOD11A2/MOD13A1
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Shannon–Wiener Index: H � ∑
S

i�1(Pi ln Pi), (6)

where Pi is the frequency of occurrence for the i-th species,

Pi = Ni/N, N is the total number of individuals in the quadrat, and

Ni is the number of individuals for the i-th species.

3.2.3 Comprehensive effect evaluation of
ecological water conveyance

The Google Earth Engine platform can rapidly screen out the

images with the best quality by directly accessing the data set and

using the cloud mask algorithm, thereby avoiding the inefficiency

of local download, storage, and preprocessing. In this study,

based on the Google Earth Engine platform, MOD09A1,

MOD13A1, and MOD11A2 data were used to calculate the

humidity, greenness, dryness and heat indices for each year.

Principal component analysis was then conducted to construct

the remote sensing ecological index. It should be noted that each

index has different units and numerical ranges, so the four

indices were normalized with the following formula (Chen

et al., 2019; Zhang et al., 2021).:

NIi � Ii − I min

I max − I min
, (7)

where NIi is the index normalization result, Ii is the i-th pixel

value, I min is the minimum value, and I max is the maximum

value.

Principal component analysis was performed with ENVI

software, where the four normalized index bands were

combined into new images to obtain relevant statistical

results. After positive and negative values for principal

component 1 (PC1) were transferred and normalized, the

remote sensing-based ecological index (RSEI) was obtained as:

RSEI0 � 1 − PC1 (8)
RSEI � RSEI0 − RSEI0min

RSEI0max − RSEI0min
, (9)

where RSEI is the remote sensing ecological index value and

the ecological quality is better when the value is closer to 1,

and RSEI0min and RSEI0max denote the minimum and

maximum RSEI0 values, respectively. According to the

ecological environment quality status in the study area and

the ecological environment classification standard in

“Technical Criterion for Ecosystem Status Evaluation”

(HJ192-2015), the RSEI indices were classified into four

habitat conditions as follows: RSEI ≤0.2 for poor, 0.2 <
RSEI ≤0.4 for moderate, 0.4 < RSEI ≤0.6 for good, and

RSEI >0.6 for excellent.

3.2.4 Mann-Kendall trend test
The Mann-Kendall statistical test obtained the trends of

TVDI, FVC and RSEI and test the significance of the changes.

The Mann-Kendall statistical test is a non-parametric test

method. The time series X1, X2, X3. . . Xn are successively

compared, and the results are represented by sgn(θ):

sgn(θ) �
⎧⎪⎨
⎪⎩

1, ..θ > 0
0, ..θ � 0
−1, θ < 0

(10)

The calculated result of the Mann-Kendall statistic is:

S � ∑
n−1

i�1
∑
n

k�i+1
sgn(xk − xi) (11)

where xk and xi are random variables and n is the length of the

selected data series. The test statistic Zc is:

Zc �

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

s − 1
�����
var(s)√ , s> 0

0, ............s � 0

s + 1
�����
var(s)√ , s< 0

(12)

where |Zc|≥1.96 indicates that at the 0.05 significance level, the

sample sequence has a significant trend. Positive Zc indicates an

upward trend, and negative Zc indicates a downward trend.

4 Results

4.1 Temporal and spatial variation of
hydrological factors

The annual average TVDI in the Tarim River Basin mostly

ranges from 0.69 to 0.76, with obvious spatial differences (see

Figure 2A). The areas with relatively high degree of soil drought

were mainly distributed in the lower reaches of the main stream

of Tarim River, and in Moyu County and Luopu County in the

Hotan River Basin. The areas with relatively low soil aridity are

mainly distributed near Alar in the Aksu River Basin, the Hotan

River, and the upper reaches of the Yarkand River. The

proportion of moderate drought in the whole basin is as high

as 31.7%, followed by severe drought, reaching 27.7%. The

proportion of light drought and extreme drought is

equivalent, which are 18.4% and 20.5% respectively, and the

proportion of drought free is the lowest, only 1.6%. From the

results, the Tarim River Basin was still moderate drought.

From 2000 to 2021, the area of pixels with a downward trend

in TVDI in the Tarim River Basin (Zc < 0) accounted for 57.0%,

which was higher than that of TVDI with increasing trend (Zc >
0), indicating that the soil in the Tarim River Basin has a stronger

trend of humidification than that of aridity (see Figure 2B).

Among them, the areas with a downward trend in TVDI (Zc < 0)

are mainly located in most areas of the Aksu River Basin, the

upper reaches of the main stream of Tarim River, and the middle

and lower reaches of the Yarkand River Basin. The areas with an

upward trend in TVDI (Zc > 0) are mainly located in Moyu
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County and Luopu County in the Hotan River Basin. In the

whole basin, TVDI showed a significant decreasing trend (Zc <
-1.96), and the pixel area accounted for 25.4%, mainly distributed

in most areas of Aksu River Basin and the middle reaches of

Yarkand River Basin. The proportion of pixel area of TVDI with

non-significant increasing trend (0 < Zc < 1.96) and non-

significant decreasing trend (-1.96 < Zc < 0) is equivalent,

which is 34.6% and 31.6%, respectively. The proportion of

pixel area with significant increasing trend of TVDI (Zc >
1.96) is the lowest, which is only 8.4%. It shows that the soil

in Tarim River Basin has a tendency of wetting after ecological

water conveyance.

According to Figure 3, From 2003 to 2020, the groundwater

depth of the main stream of the Tarim River showed a trend of

gradual uplift. Among the monitoring sections where the buried

depth of groundwater is showed uplifted, the groundwater

section in the lower reaches of the main stream of Tarim

River has a significant rising trend, with the highest lifting

rate of 0.0348 m/month in Kuergan, 0.0148 m/month in

Yingsu and 0.0142 m/month in Alagan. In addition, the

monthly average uplift values of groundwater depth in Alar

and Qiala are 0.0040 m/month, 0.0007 m/month, and

0.0118 m/month respectively. In recent 20 years, the lower

reaches of the main stream of Tarim River as a key ecological

water conveyance area, groundwater uplift significantly,

indicating that ecological water conveyance along the Tarim

River has played a positive role in groundwater recharge and

ecological restoration, and created good hydrological conditions

for vegetation growth.

4.2 Temporal and spatial variation of
fractional vegetation cover

It can be seen from Figure 4A that the annual average FVC in

the Tarim River Basin is mostly between 20% and 30%, and the

spatial differences are also obvious. The areas with higher

fractional vegetation cover are mainly distributed in the upper

and middle reaches of the Yarkand River Basin, the Aksu River

Basin, the upper reaches of the Hotan River Basin and the upper

reaches of the main stream of Tarim River, and the areas with

lower fractional vegetation cover are mainly distributed in the

FIGURE 2
Spatial distribution (A) of annual average TVDI and spatial distribution (B) of TVDI variation trend in Tarim River Basin from 2000 to 2021.
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middle and lower reaches of the Hotan River Basin and the lower

reaches of the main stream of Tarim River. In the space, high

fractional vegetation cover (FVC>20%) accounted for up to

42.0% in the whole basin, followed by extremely low

fractional vegetation cover (FVC≤5%), reaching 30.9%. The

proportions of low fractional vegetation cover (5% <
FVC≤10%) and medium fractional vegetation cover (10% <
FVC≤20%) were equivalent, which were 13.4% and 13.7%,

respectively.

It can be seen from Figure 4B that the area of pixels with an

upward trend in FVC (Zc > 0) in the Tarim River Basin from

2000 to 2021 accounted for 84.3%, which is much higher than the

area of pixels with a downward trend in FVC (Zc < 0), indicating

that after the ecological water conveyance, the fractional

vegetation cover showed an obvious improvement trend.

Among them, the area with an upward trend of FVC (Zc > 0)

is widely distributed in the whole basin, and the area of pixels

with a downward trend (Zc < 0) only accounts for 15.7%, which

is scattered in the main stream of Tarim River and part of the

Hotan River Basin. The pixel area with a significant upward trend

in FVC (Zc > 1.96) in the whole basin accounted for 63.5%, and

the pixel area with a non-significant upward trend in FVC (0 <
Zc < 1.96) accounted for 20.8%. The proportions of non-

significant decreasing trend (-1.96 < Zc < 0) and significant

decreasing trend (Zc < -1.96) were very small, accounting for

11.3% and 4.4% respectively.

According to the sample plot monitoring results, the average

diversity index values in the vegetation survey plots were used to

measure the species diversity. It can be seen from Figure 5, in the

Shaya Populus euphratica Forest Park, the Simpson index and

Shannon–Wiener index (Shannon index) values were

significantly lower in 2015 than 2017, 2018, and 2021, and

thus the riparian vegetation was gradually restored after

ecological water conveyance. The Simpson index of Luntai

Populus Euphratica Forest Park in the middle reaches of the

Tarim River increased significantly and then decreased slightly.

The Shannon-Wiener index of Luntai Populus Euphratica Forest

Park in 2015 was significantly lower than that in 2017, 2018 and

2021, which indicated that the community species diversity level

increased significantly after the water conveyance was more than

2 years, but with the increase of water conveyance frequency, the

diversity level began to decline and then stabilized. On the whole,

FIGURE 3
The variation process of groundwater depth in each section of the main stream of Tarim River month by month.
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under the current normalized water conveyance mode, the

ecological environment of the study area has been improved,

and the level of species diversity tends to be stable during

changes.

4.3 Temporal and spatial variation of
ecological quality

It can be seen from Figure 6A, the annual average RSEI in the

Tarim River Basin is mostly between 0.33 and 0.39, with

significant spatial differences. The areas with good ecological

quality are mainly distributed in parts of the Aksu River Basin,

the main stream of the Tarim River, the Hotan River Basin and

the upper reaches of the Yarkand River Basin, while the areas

with poor ecological quality are mainly distributed in the middle

and lower reaches of the main stream of the Tarim River and the

lower reaches of the Hotan River Basin. The pixel area with

excellent ecological quality (RSEI>0.6) in the whole basin

accounted for the lowest proportion, only 8.1%, and the pixel

area with good ecological quality (0.4 < RSEI≤0.6) accounted for

31.2%. The pixel area with moderate ecological quality (0.2 <
RSEI≤0.4) accounted for the highest proportion, reaching 37.3%,

and the pixel area with poor ecological quality (RSEI≤0.2)
accounted for 23.4%. From the results, the ecological

environment quality of Tarim River Basin is moderate.

It can be seen from Figure 6B that the area of pixels with an

upward trend in RSEI (Zc > 0) in the Tarim River Basin from

2000 to 2021 accounted for 58.9%, which is higher than the area

of pixels with a downward trend in RSEI (Zc < 0). It indicated

that the ecological quality of the Tarim River Basin showed a

trend of improvement after ecological water conveyance. Among

them, the areas with an upward trend in RSEI (Zc > 0) are mainly

distributed in the Aksu River Basin, the upper and lower reaches

of the main stream of the Tarim River, the upper and middle

reaches of the Yarkand River Basin and the upper reaches of the

Hotan River Basin. The areas with decreasing trend (Zc < 0) are

mainly distributed in the middle and lower reaches of the Hotan

River Basin. The pixel area of RSEI in the whole basin showed a

significant upward trend (Zc > 1.96 ), accounting for up to 34.0%.

FIGURE 4
Spatial distribution (A) of annual average FVC and spatial distribution (B) of FVC variation trend in Tarim River Basin from 2000 to 2021.
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The pixel area of RSEI showed a non-significant upward trend

(0 < Zc < 1.96) and a non-significant downward trend (-1.96 <
Zc < 0), which were 24.9 % and 31.4%, respectively. The pixel

area of RSEI showed a significant downward trend (Zc < -1.96),

which was the smallest, accounting for only 9.7%.

In order to further explore the changes in the ecological

quality level of the Tarim River Basin over the past 22 years, the

RSEI data of the Tarim River Basin in 2000 and 2021 were

analyzed with the help of ArcGIS 10.7 spatial analysis function. It

can be seen from Table 2 that the ecological environment quality

level of the Tarim River Basin shows a trend of transition from

low grade to high grade, and the area with excellent ecological

quality has increased from 4,635.50 km2 in 2000 to 12,335.00 km2

in 2021, mainly concentrated in the upper reaches of the main

stream of the Tarim River, the upper reaches of the Hotan River

Basin, the Aksu River Basin and the Yarkand River Basin, the

area with moderate ecological quality decreased from

41,307.00 km2 in 2000 to 30,075.25 km2 in 2021, while the

area with poor and good ecological quality did not change

much. In general, after more than 20 years of ecological water

conveyance project implementation, the ecological condition of

the study area has been improved, and the effect is relatively

obvious.

It can be seen from Figure 7, during the period of

ecological water conveyance from 2000 to 2021, the

drought degree of the Tarim River basin gradually

decreased, while the fractional vegetation cover increased

year by year, and the ecological quality of the Tarim River

basin gradually improved. The ecological water conveyance

provided a positive role for the ecological restoration of the

Tarim River Basin.

5 Discussion

5.1 Correlation of vegetation with
hydrological factors and ecological
environment quality

It can be seen from Figure 8 that the FVC and TVDI of the

main stream of the Tarim River, Aksu River, Yarkang River and

Hotan River were all significantly negatively correlated at the p =

0.01 level. The correlation coefficients

were −0.725, −0.587, −0.758 and −0.689, respectively. In

general, the higher the degree of soil drought, the more the

vegetation growth would be inhibited, and the smaller the FVC

would be. With the progress of ecological water conveyance, the

soil drought of the main stream of Tarim River, Aksu River,

Yarkand River and Hotan River had been alleviated, creating

favorable conditions for the growth of natural vegetation.

FIGURE 5
Temporal and spatial variation characteristics of species diversity in the upper andmiddle reaches of the main stream of the Tarim River. (Ai, Aii)
is Shaya Populus euphratica Forest Park, (Bi, Bii) is Luntai Populus euphratica Forest Park.
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It can be seen from Figure 9 that the annual average value of

groundwater depth in the Qiala-Yingsu and Yingsu-Taitema

Lake reaches from 2003 to 2020 was significantly positively

correlated with FVC at the p = 0.01 level. The correlation

coefficients were 0.942 and 0.957, respectively. In arid and

semi-arid regions, the groundwater level was a key limiting

factor affecting vegetation growth in the Tarim River Basin

due to the hot and dry climate and scarce precipitation.

Ecological water conveyance greatly raised the groundwater

level and provided good hydrological conditions for vegetation

growth. From the results, the shallower the groundwater depth,

the greater the FVC value, the better the growth of vegetation.

It can be seen from Figure 10 that the FVC of the main

stream of the Tarim River, the Aksu River, the Yarkang River

FIGURE 6
Spatial distribution (A) of annual average RSEI and spatial distribution (B) of RSEI variation trend in Tarim River Basin from 2000 to 2021.

TABLE 2 Area transfer matrix of different ecological quality grades in Tarim River Basin from 2000 to 2021 Unit/km2.

Ecological quality level 2021

Poor Middle Good Excellent Total

2000 Poor 15,195.75 3,041.25 136.75 18,373.75

Middle 6,527.25 25,687.00 7,935.75 1,157.00 41,307.00

Good 1,342.75 18,572.75 7,700.50 27,616.00

Excellent 4.25 1,153.75 3,477.50 4,635.50

Total 21,723.00 30,075.25 27,799.00 12,335.00 91,932.25
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and the Hotan River were significantly positively correlated

with the RSEI at the p = 0.01 level, and the correlation

coefficients were 0.658, 0.877, 0.738 and 0.573,

respectively. After ecological water conveyance, the

groundwater level in the water conveyance area increased

significantly, the soil drought was alleviated, the ecological

quality of the whole basin was improved, and the limiting

factors for vegetation growth were also weakened. Therefore,

in general, the higher the ecological quality of the region, the

better the vegetation growth, FVC would be greater.

This study discussed the correlation between vegetation

factors and soil drought status, annual variation process of

groundwater depth, and overall ecological quality status in

the Tarim River Basin from 2000 to 2021. Compared with

other studies, this study had a longer period, more indexes

were selected, and was more representative and dynamic.

However, there were still many shortcomings. For the change

of vegetation factors after ecological water conveyance, the

influence of climate factors and human activities was not

taken into account. For the change of soil drought, although

the rainfall of Tarim River Basin was less than 50 mm, the

effect of meteorological factors was small, but still could not

be ignored (Deng et al., 2022a).

5.2 Suggestions on expanding the effect of
ecological water conveyance

Ecological water conveyance is an important way to

promote the restoration of degraded ecosystems in arid

areas. From 1972 to 2000, the integrity of the surface

hydrological process was lost due to the cutoff of the lower

reaches of the Tarim River. During this period, the overall

plant community showed extreme decline in growth and lack

of species. After ecological water conveyance, this situation

had changed significantly, and the flooding disturbance had a

FIGURE 7
Variation trends of annual average TVDI, annual average FVC, and annual average RSEI in the Tarim River Basin from 2000 to 2021.
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very significant effect on the increase of biodiversity in the

water conveyance area (Keram et al., 2019; Ling et al., 2019;

Bai et al., 2021; Deng et al., 2022b). In arid and semi-arid

regions, some of the seeds produced by vegetation are

characterized by dormancy and strong resistance to

drought and high temperatures, and thus they could

survive for a long time. Ecological water conveyance can

create conditions for germination and growth of plant seeds

by changing the surface soil water content through the action

of surface water (Casanova and Brock, 2000; Cavin et al.,

FIGURE 8
Correlation analysis of FVC andTVDI.(A) is main stream of Tarim River, (B) is Aksu River, (C) is Yarkand River, (D) is Hotan River.

FIGURE 9
Correlation analysis of FVC and groundwater depth. (A) is Qiala-Yingsu, (B) is Yingsu-Taitema.
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2013). At the same time, some seeds were spread along the

direction of water flow to other areas, where they could

reproduce and grow quickly when they meet the suitable

environmental conditions. The surface runoff formed by

ecological water conveyance could effectively reduce the

groundwater salinity in the water conveyance area. The

groundwater salinity within 1 km along the two sides of

the river decreases from about 4 to 11 g L−1 before water

conveyance to 1–5 g L−1 on average, and the osmotic stress of

vegetation was alleviated. The ecological water conveyance

project had been carried out for 22 years, providing a suitable

ecological water level for the natural vegetation. The desert

riparian forest with Populus euphratica, Tamarix

ramosissima, Alhagi sparsifolia and Phragmites australi as

the main groups had been rejuvenated in the ecological water

conveyance area (Deng et al., 2015; Garssen et al., 2015). The

ecological environment of the whole study area began to

improve, and the low and extremely low fractional

vegetation cover in the study area gradually changed to

medium and high fractional vegetation cover, indicating

that the fractional vegetation cover showed an

improvement trend after the ecological water conveyance.

In the past 20 years, the ecological water conveyance in

the Tarim River Basin had been mainly through four ways:

River course water conveyance, Ecological sluice water

conveyance, Natural overflow and Agricultural sluice

diversion (Chen et al., 2008; Piao et al., 2011). At present,

river course water conveyance is the main way, which can

effectively raise the groundwater level on both sides of the

river, and has a significant effect on the growth and

rejuvenation of the existing natural vegetation near the

river. However, at present, the water conveyance mode

along the natural river only affects the natural vegetation

near the river bank, and the restoration scope is very limited,

making it difficult to restore the herbaceous plants on both

sides of the river bank in a large area (Xu et al., 2008; Sims and

Colloff, 2012). In terms of the groundwater uplift amplitude

on both sides of the river, the groundwater uplift amplitude of

the main stream of the Tarim River has slowed down in recent

years. The groundwater level of the Qiala, Yingsu, Alagan and

Kurgan sections gradually tended to balance. As for how to

expand the effect of ecological restoration, according to the

water requirements of desert riparian forest ecosystem,

through the regulation of ecological water conservancy

projects, we can build a planar water conveyance mode

and expand the scope of the water receiving area of

ecological water conveyance. We need to ensure that the

groundwater level within 2 km away from the river is

FIGURE 10
Correlation analysis of FVC and RSEI.(A) is main stream of Tarim River, (B) is Aksu River, (C) is Yarkand River, (D) is Hotan River.
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maintained at a depth of 4–6 m, which can not only meet the

water requirements for Poplar floating, germination and

growth, but also prevent soil secondary salinization

(Zalewski, 2002). Ecological water conveyance is mainly

carried out from June to September when the water inflow

of the Tarim River is relatively large. The use of planar water

conveyance can greatly improve the vegetation habitat

conditions and improve the stability and sustainability of

the ecological protection and restoration system (Ling et al.,

2015).

6 Conclusion

This study discussed the temporal and spatial changes of soil

drought, the monthly change process of groundwater depth, the

change of fractional vegetation cover and the change of overall

ecological quality in the Tarim River Basin from 2000 to 2021,

and comprehensively evaluated the restoration of damaged

desert forest ecosystem and the effectiveness of ecological

water conveyance. The following conclusions are obtained:

From 2000 to 2021, the pixel area with a downward trend

of TVDI (Zc < 0) in the Tarim River Basin accounted for

57.0%, which was higher than the pixel area with an upward

trend of TVDI (Zc > 0). The soil in the study area showed a

wetting development trend. Among the monitoring sections

with rising groundwater depth, the groundwater section in

the lower reaches of the Tarim River has a significant lifting

trend, and the Kurgan has the largest lifting rate of 0.0348 m/

month. From 2000 to 2021, the pixel area of FVC in Tarim

River Basin with an upward trend (Zc > 0) accounted for

84.3%, which was much higher than the pixel area of FVC

with a downward trend (Zc < 0). Among them, FVC with a no

significant downward trend (-1.96 < Zc < 0) and a significant

downward trend (Zc < −1.96) accounted for a small proportion,

which were 11.3% and 4.4% respectively. From 2000 to 2021, the

pixel area with an upward trend (Zc > 0) of RSEI in the Tarim River

Basin accounted for 58.9%, of which the pixel area with a significant

upward trend (Zc> 1.96) accounted for asmuch as 34.0%, whichwas

mainly distributed in the Aksu River Basin, the upper reaches of the

mainstream of the Tarim River, the upper and middle reaches of the

Yarkand River Basin and the upper reaches of the Hotan River Basin.

In the past 20 years, the ecological quality of the Tarim River Basin

has improved to a certain extent. From 2000 to 2021, the FVC of the

main stream of the Tarim River, the Aksu River, the Yarkand River

and the Hotan River had a significant correlation with TVDI and

RSEI at the p = 0.01 level. From 2003 to 2020, the FVC of the Qiala-

Yingsu and Yingsu-Taitema Lake reaches was significantly positively

correlated with groundwater depth at the p = 0.01 level.
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The identification of land type multi-functionality is a basic tool for the

organization, coordination, and configuration of basin land, and provides a

key criterion for determining the combination of land-use functions and the

status quo of the ecological environment in the basin. However, a feasible

identification method system for this purpose has not yet been established.

Therefore, in this study, we construct a production–living–ecological space

(PLES) classification system from the comprehensive perspective of land-use

type and ecological environment. Based on remote sensing of PLES and

statistical land-use status data for 2000, 2005, 2010, 2015, and 2020, we

analyze the evolutionary characteristics of land-use function using the

transfer matrix and center of gravity transfer methods. These are combined

with the eco-environmental quality index to reveal the driving factors of eco-

environmental quality spatial differentiation using the geographic detector

model. The results indicate that the overall ecological environment quality

index of the Tarim River Basin presents a downward trend, with a spatial

differentiation pattern of high in the northwest and low in the southeast.

Over the past 20 years, the ecological environment quality index has

dropped by 0.852. The structural evolution and regional differentiation of

PLES areas are remarkable, all of which expanded over the study period

(except for the key ecological land). The center of gravity of production land

presented the most obvious migration, with a total migration of 10,601.76 m to

the northeast. Eco-environmental effects are found to be mainly driven by

socio-economic factors, of which population density growth is the most

important. The implementation of some ecological restoration projects has

played a role in slowing down the degradation trend of the ecological

environment quality in the Tarim River Basin; however, due to population

increases and socio-economic development, the ecological environment

degradation has overall been exacerbated.
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1 Introduction

Rapid socio-economic development and human activities

have led to land-use changes globally, which have thus

become a popular research topic (Tesfaw et al., 2018; Jia et al.,

2022). Soil erosion in China is mainly concentrated in

ecologically fragile areas, such as the Tarim River Basin

(Wang et al., 2016a; Li et al., 2021), located in the south of

Xinjiang. With the intensification of human activities (Song et al.,

2018) and the continuous development of the economy, the

changes in land-use in the Tarim River Basin have become more

and more obvious (Zhao et al., 2013), and important natural

resources, such as grassland, forest land, and terrestrial water

reserves, have changed accordingly (Deng and Chen, 2017). Due

to the continuous degradation of the ecological environment and

hydrological environment in the Tarim River Basin, the land

desertification in the basin has directly intensified (Feng et al.,

2001). Land-use change affects nearly one-third of the global land

area (Winkler et al., 2021), and changes in land area will

inevitably have different impacts on different ecological and

environmental indicators. In particular, land-use change may

negatively affect carbon pools (Padbhushan et al., 2022) and soil

erosion (Gong et al., 2022), and it can also cooperate with climate

change to promote net primary productivity (Xiao et al., 2019). It

is worthmentioning that surface runoff (Daneshi et al., 2020), the

spatial pattern of water quality (Zhang et al., 2018), and

landscape complexity (Galpern and Gavin, 2020) have all been

shown to be strongly correlated with land-use change.

Land-use change refers to the evolution process of land-use

structure and function, corresponding to social and economic

development in both temporal and spatial dimensions. As an

important carrier of human survival, land can provide a wide

range of products and services, collectively referred to as land-use

function, which refers to the attributes and states of different

land-use types in directly or indirectly providing various

products and services to human beings (Liu, 2018; Zou et al.,

2021). Land-use change is an important part and driving factor of

global ecological environment change (Eziz et al., 2010), and

ecological protection and restoration work needs to be based on

quantitative ecological monitoring results, in order to provide

targeted and scientific implementation plans. Therefore,

ecological monitoring and evaluation have attracted extensive

research attention (Zhang and Zhang, 2018). Research on

evaluation methods has shown that some scholars evaluate

changes in ecosystem quality based on land-use change

(Lambin and Meyfroidt, 2011), while a large number of

researchers have utilized modeling methods (e.g., sampling) to

evaluate ecological simulations. However, these methods require

a significant amount of statistical data in the ecological

evaluation, are affected by human activities, and it may be

difficult to evaluate an area with sufficient accuracy when only

considering fuzzy evaluation (Chase and Knight, 2013).

The concept of land-use function originated from

agricultural research, mainly referring to agricultural

production functions (Andersen et al., 2013) and paying

attention to the multi-functional uses of land. According to

the Organization for Economic Co-operation and Development

(OECD), the Food and Agriculture Organization (FAO), and

the Common Agricultural Policy (CAP), agricultural functions

can be divided into productive, economic and social, ecological

and environmental, and cultural and recreational functions

(Andersen et al., 2013). Production–living–ecological space

(PLES) is a theory, proposed by the Chinese government in

the ecological civilization construction strategy, with the goal of

achieving sustainable utilization and focusing on the

perspective of multi-functional land use (Fu et al., 2021).

According to the functional attributes of land, China’s land

is divided into production, living, and ecological space, the

consideration of which allows us to more intuitively observe the

evolution of land-use. Determining land-use area is a critical

step in better identifying the land-use functional structure and

dynamic trade-offs (Wiggering et al., 2006). Therefore,

quantification of land-use functions is critical to understand

the complexity of interactions between multiple different land-

use types.

The Tarim River Basin is a fragile ecological environment. In

recent years, many scholars have carried out a series of studies on

the Tarim River Basin. Although there exist many studies on

land-use change in the Tarim River Basin (Wang et al., 2022),

research on the ecological environment quality of the Tarim

River Basin combined with PLES is scarce. Although the driving

factors of the ecological environment have been analyzed, the

selected factors are not yet comprehensive enough. Based on the

perspective of production–living–ecological space (PLES), we

systematically study the evolution of land-use functions and

eco-environmental effects in the Tarim River Basin by using

the transfer matrix, the center of gravity transfer model, and the

eco-environmental quality index in this paper. Combined with

the result regarding the decrease in the eco-environmental

quality index, the current situation of the eco-environmental

decline in the Tarim River Basin is revealed. Through analysis of

the driving factors of the eco-environmental effect in the Tarim

River Basin using the geographic detector, we find that social and

economic factors are the main driving force affecting the eco-

environmental effect of the Tarim River Basin. This study details

a comprehensive evaluation of the eco-environmental state of the

Tarim River Basin, thus providing relevant government agencies

with a scientific basis for eco-environmental protection.
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2 Data and materials

2.1 Description of the study area

The Tarim River Basin is the largest inland river basin in

China. It is located in southern Xinjiang, at the geographical

coordinates of 73°10′–94°05′E, 34°55′–43°08′N. The basin

includes nine major water systems, covering an area of 103 ×

104 km2 and accounting for 61.82% of the total area of Xinjiang.

Situated between Tianshan and the Kunlun Mountains, the

Tarim River Basin is entirely inland and has a continental

arid climate with little monsoon influence. There are

42 counties (cities) and two construction corps in five

prefectures in the basin; namely, Bayangol Mongol

Autonomous Prefecture, Aksu Administrative Offices, Kashgar

Administrative Prefecture, Kizilsu Kirgiz Autonomous

Prefecture, and Hotan Administrative Offices. Therefore, in

order to better study the Tarim River Basin, we divided the

Tarim River Basin according to county-level administrative

boundaries. The boundaries and division of the Tarim River

Basin are shown in Figure 1.

As of 2020, the total population of the basin had reached

11.951718 million, accounting for 46.23% of the total population

of Xinjiang, with a GDP of 41.2712 million yuan. The total value

of the primary industry was 91.131 billion yuan, accounting for

46.00% of the total value of the primary industry in Xinjiang; the

value of the secondary industry was 125.941 billion yuan,

accounting for 26.54% of the total value of the secondary

industry in Xinjiang; and the total value of the tertiary

industry was 195.640 billion yuan, accounting for 27.66% of

the total value of the tertiary industry in Xinjiang. It can be

seen, from these figures, that the primary industries in the Tarim

River Basin occupy a relatively large proportion of the total value

of the primary industry in Xinjiang, while secondary and tertiary

industries are still relatively backward, compared with the areas

north of the Tianshan Mountains, mainly due to the relatively

large area of the basin. The cost of transportation is higher than

that in the north of the Tianshan Mountains and, so, the

FIGURE 1
Location of study area. Note: 1. Hejing County; 2.Wensu (Onsu) County; 3. Baicheng (Bay) County; 4. Kuqa County; 5.Wushi (Uqturpan) County;
6. Akqi County; 7.Wuqia (Ulugqat) County; 8. Luntai (Bugur) County; 9. Artux City; 10. Hoxud County; 11. Xinhe (Toksu) County; 12. Kalpin County; 13.
Aksu City; 14. Akto County; 15. Korla City; 16. Yanji Hui Autonomous County; 17. Xayar County; 18. Bohu (Bagrax) County; 19. Awat County; 20. Shufu
County; 21. Jiashi (Payzawat) County; 22. Bachu (Maralbexi) County; 23.Kashi (Kaxgar) City; 24. Yuli (Lopnur) County; 25. Shule County; 26.
Yopurga County; 27. Yengisar County; 28. Markit County; 29. Taxkorgan Tajik Autonomous County; 30. Shache (Yarkant) County; 31. Moyu (Karakax)
County; 32. Ruoqiang (Qarkilik) County; 33. Qiemo (Qarqan) County; 34. Lop County; 35. Qira County; 36. Pishan (Guma) County; 37. Yecheng
(Kagilik) County; 38. Yutian (Keriya) County; 39. Zepu (Poskan) County; 40. Minfeng (Niya) County; 41. Hotan County; and 42. Hotan City. The study
area does not include territorial country-level cities (a,b).
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development of the processing, manufacturing, and service

industries in this basin has relatively lagged behind.

2.2 Methods

2.2.1 Data collection and processing
Land-use data for the Tarim River Basin in 2000, 2005, 2010,

2015, and 2020 were obtained from the Resources and

Environmental Science and Data Center of the Chinese

Academy of Sciences (http://www.resdc.cn/; accessed on

20 March 2022), comprising TM land-use data with 30 m

spatial resolution. PLES data included production space, living

space, and ecological space. Production space refers to the

territorial space that provides services for production and

business activities, living space refers to the places that people

use in their daily activities, and ecological space refers to the

territorial space that has ecological protection, which is of great

significance for sustainable development. According to the

existing PLES classification basis, and fully considering the

characteristics of the unused land in the Tarim River Basin,

we classified the unused land as ecological accommodation land

separately, and conducted research together with production

land, living land, and key ecological land as first-level land

types. The socio-economic and demographic data for the

study area were obtained from the Xinjiang Statistical

Yearbook and Xinjiang Production and Construction Corps

Statistical Yearbook. The meteorological data (precipitation

and air temperature) were obtained from the China

Meteorological Data website (http://cdc.cma.gov.cn). The

monthly average values of 16 meteorological stations with

complete data were selected, and Inverse Distance Weight

spatial interpolation of the meteorological data was carried

out, according to the longitude and latitude of each

meteorological station.

2.2.2 Classification system of PLES and
calculation of eco-environmental quality index

Land is a multi-functional complex, integrating production,

living, and ecological functions. However, due to differences in

land-use mode and intensity, the leading functions of different

land-use types vary greatly. Therefore, scientific identification of

regional PLES is an important consideration in this study.

We used the land classification system adopted by the

Chinese Academy of Sciences (Liu et al., 2002). By combining

the land-use characteristics of the study area, the PLES

classification system was constructed based on the principle of

combining the dominant and secondary functions of the land.

The eco-environmental quality values of different secondary land

types were formulated referring to the research results of

domestic and foreign experts on the calculation of the values

for land-use functional ecosystem services; especially the eco-

environmental quality values of land-use types formulated by

Zhai et al. (2022). Based on the PLES classification, we used an

ecological environment quality index considering 26 different

land-use types, and calculated the eco-environmental quality

index of production land, key ecological land, living land, and

ecological accommodation land using the area weighting

method. In order to improve the data accuracy and reduce

errors, we calculated the ecological environment quality index

in the basin for every year (Table 1).

2.2.3 Land-use transfer matrix
Land-use function evolution refers to the mutual conversion

and spatial distribution of the three dominant functions of land

use: Production, living, and ecology. The evolution of the land-

use functional structure can be realized through the land-use type

transfer matrix model. The transfer matrix is not an index but,

instead, arranges transfer areas of various land-use changes in the

form of a matrix. Through this matrix, land-use structural and

directional changes can be analyzed, which comprises the basis

for analyzing land-use.

By comparing the area of the land-use transfer matrix in 2000,

2005, 2010, 2015, and 2020, we could intuitively determine the

structural characteristics and land-use types of land-use change in

the Tarim River Basin. For the land-use data in 2000, 2005, 2010,

2015, and 2020, according to the PLES classification standard, the

ArcGIS10.2 reclassification function was used to obtain the PLES

status distribution map. ArcGIS 10.2 was used to re-classify and

process the land-use distribution maps for any two periods, and the

PivotTable function of Excel was used to construct the land-use

function transfer matrix, expressed as:

Sij �

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

S11 S12
S21 S22

/ S1n
/ S2n

..

. ..
.

Sn1 Sn2
1 ..

.

/ Snn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(1)

where S denotes the area, i and j index the land-use types at the

beginning and end of the research period, respectively, and n is

the number of land-use types. Based on the cross-analysis of

land-use type data for different periods, land-use type transfer

matrices for four periods (2000–2005, 2005–2010, 2010–2015,

and 2015–2020) were established.

2.2.4 Shift in the land-use function center of
gravity transfer model

The land-use function center of gravity transfer model was

constructed based on the principle of the population distribution

center of gravity in population geography. The basic method is as

follows: The research area is first divided into k evaluation units, after

which the coordinates of the geometric center of each assessment

unit (latitude and longitude) are determined. The center coordinates

are then multiplied by the evaluation unit types of land area and

divided by the total area of that land-use type in the study area. This

gives the barycentric coordinates of a certain function of land in the

area (Li and Huang, 2022), expressed as:
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Xt � ∑
n

i�1(Ski× Xk)/∑
n

i�1 Ski (2)
Yt � ∑

n

i�1(Ski× Yk)/∑
n

i�1 Ski (3)

where Xt and Yt are the latitude and longitude coordinates of the

center of gravity of a certain land resource distribution in year t,

respectively; Xk and Yk are the latitude and longitude coordinates

of the geometric center of the kth evaluation unit, respectively; Ski
is the area of a certain land type in the kth evaluation unit; and n

is the number of land resource types based on PLES. The

barycenter shift distance refers to the straight-line distance

between the barycenter in a certain year and that in

subsequent years. If t and (t+1) are associated to Pt (Xt,Yt)

and Pt+1 (Xt+1,Yt+1), respectively, then the barycenter shift

distance of adjacent years is calculated as:

L �
����������������������

(Xt+1 − Xt)2 + (Yt+1 − Yt)2
√

(4)

2.2.5 Eco-environmental effects of land-use
function evolution
2.2.5.1 Eco-environmental quality index

The classification of land-use functions can be carried out

from an eco-environmental perspective. Different factors, such as

human activities, will have an impact on the structure and

function of the environment and ecosystems, which we call

eco-environmental effects.

The ecological environmental quality index was used to

quantitatively represent the overall ecological environmental

quality for five different periods in the Tarim River Basin

(Pang et al., 2022). The calculation formula is as follows:

EVk � ∑
n

i�1(
Ski
Sk

× Vi) (5)

where EVk is the ecological environment quality index of

evaluation unit k, Ski is the area of functional land type i in

the kth evaluation unit, and Sk is the total land area of the kth

evaluation unit. Additionally, Vi is the eco-environmental quality

index of functional land class i, and n is the number of land

resource types, based on PLES.

2.2.5.2Ecological contribution rate

The ecological contribution rate of land-use function

evolution refers to the function of land-use conversion in

regional ecological environmental quality of change. This

index quantifies the various functions of regional land-use

conversion and its impact on the ecological environment.

Additionally, it separates the dynamics of the main land-use

types, in order to explore changes in the regional ecological

environment. A positive value means that the transformation

improves the regional ecological environment quality, while a

negative value indicates that the transformation reduces the

quality (Hou et al., 2022; Li and Wu, 2022). It is calculated as

follows:

LEI � (LEj − LEi) × ΔSk/Sk (6)

where LEI is the ecological contribution degree of land-use function

evolution, LEi and LEj are the eco-environmental quality indices of

land-use function change in types reflected in the early and late

stages, respectively, ΔSk is the area of changed land-use type, and Sk
is the total land area of the kth evaluation unit.

TABLE 1 Land use function classification system and eco-environmental quality index of the Tarim River Basin.

Land use function classification of
production-living-ecological space

Corresponding to
land use
type

Eco-environmental quality index
of each year

First class Second class 2000 2005 2010 2015 2020

Production Land Agricultural
production land

Paddy fields, dry land 0.2507 0.2506 0.2507 0.2505 0.2500

Industrial production
land

Other construction land 0.1500 0.1500 0.1500 0.1500 0.1500

Key ecological land Forestry ecological land Woodland, shrub land, sparse woodland, other woodland 0.6598 0.6596 0.6592 0.6595 0.6288

Water ecological land Canals, lakes, reservoirs, permanent glaciers and snow, beaches 0.8404 0.8408 0.8434 0.8435 0.7782

Meadow ecological
land

High coverage grassland, medium coverage grassland, low coverage
grassland

0.3541 0.3537 0.3540 0.3544 0.3734

Living land Urban living land Urban land 0.0161 0.0157 0.0158 0.0156 0.0150

Rural living land Rural settlements 0.2000 0.2000 0.2000 0.2000 0.2000

Ecological accommodation
land

Other ecological land Sandy land, gobi, saline-alkali land, marsh land, bare land, bare rock
and stony land, other

0.2000 0.2000 0.2000 0.2000 0.2000
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2.2.6 Geographic detector model
The geographical detector model is a statistical method

which can be used to detect spatial differentiation and explain

its driving forces without imposing too many constraints. This

approach overcomes the shortcomings of traditional statistical

methods, in terms of dealing with variables (Wang et al., 2016b).

Factor detection is carried out to detect the spatial differentiation

of an attribute Y and the extent to which a factor X explains the

spatial differentiation of Y.

Combined with the characteristics of the study area and the

availability of data, the driving factors of eco-environmental

effects were selected from the aspects of natural environment

and social economy, including the natural environment factors

elevation (X1), slope (X2), aspect (X3), air temperature (X4), and

precipitation (X5), as well as the socio-economic factors distance

to water (X6), distance to roads at the township level and above

(X7), primary industry (X8), secondary industry (X9), tertiary

industry (X10), and population density (X11). The eco-

environmental quality index and the driving factors were

spatially matched, and the dependent and independent

variables at each discrete point were then extracted. The

calculation formula is (Yang et al., 2020; Xiong et al., 2022):

q � 1 − ∑
L
h�1Nhσ2

h

Nσ2
(7)

where q denotes the explanatory power of the driving factors,

which has values in the range of [0, 1]. If q = 0, the ecological

environment quality is randomly distributed. The larger the q

value, the stronger the explanatory power of the driving

factors. In the equation, Nh and N are the number of sub-

level sample units and entire research units, respectively, and

σ2h and σ2 describe the variance of the ecological environment

index at the sub-level and whole research unit level,

respectively.

Interaction detection is mainly carried out to determine

whether each factor has an impact on the dependent variable

independently or post-interaction, and whether the influencing

force is weakened or enhanced. The relationships between the

two factors can be divided into five categories:

1) q(X1 ∩ X2)<Min(q(X1)q(X2)), non-linear weakening;
2) Min(q(X1), q(X2))< q(X1 ∩ X2)<Max(q(X1), q(X2)),

single-factor non-linear attenuation;

3) q(X1 ∩ X2)>Max(q(X1), q(X2)), double factor enhancement;

4) q(X1 ∩ X2) � q(X1) + q(X2), independent;
5) q(X1 ∩ X2)> q(X1) + q(X2), non-linear enhancement.

2.3 Research framework

In order to better study the evolution of land-use function

and the influencing factors of the ecological environment effect in

the Tarim River Basin, we carried out four key steps (Figure 2).

First, the land-use data were processed and classified by PLES.

Then, combined with the transfer matrix, the center of gravity

transfer model was used to analyze the evolution of land-use

functions. Third, we used the ecological environment index and

ecological contribution rate to study the ecological environment

effect in the Tarim River Basin. Finally, we used the five natural

environment factors and six socio-economic factors to explore

the driving force of the ecological environment effect with the

geographic detector model. Through these steps, the land-use

function evolution characteristics in the Tarim River Basin and

the driving factors for the spatial differentiation of ecological

environment effects could be clarified.

3 Results and analysis

3.1 Evolution characteristics of land-use
function

We used ArcGIS 10.2 to re-classify the five-phase land-use

remote sensing data in 2000, 2005, 2010, 2015, and 2020; the

results are shown in Figure 3. As can be seen from the figure, the

production land, living land, and ecological accommodation land

areas in the Tarim River Basin expanded in the period

2000–2020. In particular, the area of production land grew by

16,650.55 km2, representing a 62.16% increase over the 20-year

period. The key ecological land area decreased by 24,716.87 km2

(or 7.3%). Residential land expanded by 718.36 km2, with the

largest increase (348.13 km2) occurring in 2015–2020; this

expansion accounted for 48.46% of the increase during the

study period, while 39.61% occurred between 2010 and 2015.

FIGURE 2
Research framework.
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The ecological accommodation area increased by 6839.63 km2

(or 1.02%).

The land-use pattern in the Tarim River Basin changed

significantly from 2000 to 2020. In order to more intuitively

observe the internal conversion of land-use types in the basin,

the land-use transfer matrix was adopted to define both the

transformation direction and quantity of land function

transformation (Table 2). The analysis results indicated that the

biggest change occurred in production land, which increased by

16,650.55 km2, accounting for 68.49% of the total area transferred.

Of the transferred land, most came from key ecological land

(70.52%) and ecological accommodation land (25.58%). A total

of 6941.59 km2 was transferred to ecological accommodation land

and 718.36 km2 was transferred to living land, accounting for

28.55% and 2.95% of the total transfer area, respectively.

In terms of land-use function transfer area, only key

ecological land was transferred, totaling 24,310.50 km2. Most

of this land was converted to ecological accommodation

(96.96%), with the rest being converted to production land

and living land. The encroachment of ecological

accommodation land on key ecological land reduced its area,

thus having a major impact on the quality of the surrounding

ecological environment.

3.2 Shift in land-use gravity center

The gravity center formula was used to calculate the gravity

center coordinates of PLES in the study area in 2000, 2005, 2010,

2015, and 2020. The formula was also used to determine the

position and shifting direction of the center of gravity. Figure 4

shows the shifting distance of the center between each year.

The production space center of gravity was located in Aksu

Administrative Offices throughout the study period. It can be

seen, from Figure 3, that the production land was mainly

concentrated in the west and northwest of the Tarim River

Basin. Due to its remote geographical location and

inconvenience of transportation in the Tarim River Basin, the

economy is relatively backward. At present, agriculture is still the

mainstay in the basin. Some areas with relatively developed

agriculture, such as Korla City, Aksu City, and Shache

County, rank higher in the basin, from the perspective of

primary industries. Therefore, the center of gravity of

production land mainly fell in the Aksu region, located in the

northwest direction of the Tarim River Basin. The center of

gravity of key ecological land was mainly in the Hotan

Administrative Offices, which is relatively rich in hydropower

resources. The center of living land was situated in the Aksu

FIGURE 3
Spatial distribution of land use status based on PLES.
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Administrative Offices. In 2017, Xinjiang vigorously promoted

the construction of new urban areas, providing Aksu

Administrative Offices with a facilitative platform for

urbanization. During the study period, the center of ecological

accommodation was mainly in northern Hotan Administrative

Offices, the center of the Tarim River Basin. Although Hotan

Administrative Offices possesses some water resource carrying

capacity and vegetation coverage, sandy land is the main land

type there, and it is one of the driest areas in China. Moreover, the

center of the Tarim Basin is a vast desert, such that the center of

ecological accommodation is mainly located in this area.

From the perspective of the transfer direction and distance of

the center of gravity, migration to the northeast was the main

trend regarding the transfer of the center of gravity of production

land. The shift in the center of gravity of production land moved

10,601.76 m in a northeastern direction over the past 20 years,

from Awat County to Aksu City. Due to the remote geographical

location of the Tarim River Basin, transportation is inconvenient

and its economy is relatively backward. At present, agriculture

remains the backbone in the watershed. It can be seen, from

Figure 3, that the production land was mainly concentrated in the

west and northwest of the Tarim River Basin, such as Aksu City

and Shache County. However, some areas with relatively

developed agriculture, such as Korla City located in the

northeast of the basin, experienced rapid expansion of

production land during the study period. Therefore, the center

of gravity of production land in the Tarim River Basin mainly

moved to the northeast. During the same period, the center of

gravity of key ecological land transferred 48,199.56 m to the

southeast. Due to the rapid economic development in the

northwest of the basin and the further expansion of

production land, key ecological land has been occupied.

Coupled with global warming in recent years, the melting of

glaciers has led to an increase in vegetation in the southeast of the

basin, causing the center of gravity of key ecological land to move

to the southeast. The center of gravity of living land moved first

9,211.67 m to the northwest, then 31,658.08 m to the northeast,

and finally 40,809.96 m to the northwest. Overall, the center of

gravity of living land has moved 49,796.42 m to the northwest.

The Tarim River Basin has a wide area and a lot of unused land.

The population is mainly distributed in the northwest area of the

Tarim River Basin, including Aksu City, Korla City, and other

cities. These cities have large populations and a rapid

urbanization process, causing the center of gravity of living

land to mainly move towards the northwest. The center of

gravity migration of ecological accommodation area was the

smallest, migrating only 20,242.04 m to the south. With rapid

economic development in the northwest region of the study area,

problems such as over-exploitation of land have appeared.

Therefore, the center of gravity of ecological accommodation

TABLE 2 Transition matrix of production-living-ecological space (PLES) for different periods in the Tarim River Basin during 2000–2020.

Year Production-living-ecological
space
(PLES)

Production
land

Living
land

Key
ecological
land

Ecological
accommodation
land

Transfer
out

2000–2005 Production Land 26391.27 97.18 239.21 57.72 394.11

Living land 51.27 1401.29 6.12 1.95 1409.36

Key ecological land 3571.60 17.65 330045.85 1337.51 331401.01

Ecological accommodation land 749.56 85 1798.04 666019.89 667832.77

Transfer in 4372.43 1433.80 331850.00 667359.35

2005–2010 Production Land 30289.82 63.88 352.22 57.79 473.89

Living land 50.67 1471.52 6.89 1.90 1480.30

Key ecological land 1084.24 6.53 329657.43 1341.02 331004.98

Ecological accommodation land 511.07 4.38 1343.79 665557.83 666906.00

Transfer in 1645.97 1482.43 331008.11 666900.74

2010–2015 Production Land 31712.58 149.77 70.35 3.13 223.25

Living land 11.52 1534.51 0.28 — 1534.79

Key ecological land 3959.52 68.84 327298.96 45.00 327412.80

Ecological accommodation land 2047.63 77.75 346.66 664498.42 664922.83

Transfer in 6018.67 1681.09 327645.91 664543.42

2015–2020 Production Land 32360.05 1135.03 3514.02 722.16 5371.20

Living land 834.12 804.90 160.32 31.53 996.74

Key ecological land 7807.93 160.53 216275.75 103316.06 319752.34

Ecological accommodation land 2433.86 78.55 90568.02 571248.95 661895.52

Transfer in 11075.91 1043.97 307004.09 674596.55
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moved to the northwest region as a whole from 2000 to 2015.

Later, due to global warming and high evapotranspiration, the

ecological accommodation land encroached on the waters and

grasslands in the southern part of the Tarim River Basin, causing

the center of gravity of the ecological accommodation to move to

the southeast from 2015 to 2020.

3.3 Eco-environmental effects of land-use
function evolution

3.3.1 Evolution of eco-environmental quality
The calculation results for the eco-environmental quality

index of the study area indicated that the index dropped from

0.1568 to 0.1480 between 2000 and 2020 (Table 3), indicating an

annual decrease in quality. This was mainly due to the

intensification of human activities, acceleration of the

urbanization process, and the gradual increase in land

exploitation. Between 2015 and 2020 in particular, the

permanent glacier area was greatly reduced, due to climate

warming (Deng et al., 2019). Melting glaciers caused an

increase in lakes and canals (Deng et al., 2022), but the

environmental quality indices of lakes and canals are lower

than that of permanent glaciers and, so, the overall eco-

environmental quality of the Tarim River Basin presented a

downward trend. The amount of forestland also decreased.

Figure 5 shows that the counties in the north and southwest

of the Tarim River Basin presented higher ecological

environment quality indices. Combined with Figure 3, it can

be seen that these counties and cities had more grassland

ecological land, forest ecological land, and water area at each

FIGURE 4
Location, shifting direction, and distance of gravity center of PLES during 2000–2020.

TABLE 3 Eco-environmental quality index for the study period.

Year 2000 2005 2010 2015 2020

Eco-environmental quality index 0.1568 0.1563 0.1562 0.1563 0.1480
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evaluation time point; such as Hejing County, Kuqa County,

Akto County, and so on.

3.3.2 Differences in ecological contribution rate
There were two opposing effects (i.e., positive and negative

impacts) on eco-environmental quality in the study area. These

can mitigate each other, to some extent, thus maintaining the

index within a stable range.

According to the analysis in Table 4, the conversion of low

ecological quality land (e.g., sandy land) into grassland

(ecological land) was the leading factor for the improvement

of ecological environment quality, accounting for 75.11% of the

positive effects. The conversion of other ecological land types into

water ecological land, such as grassland ecological land into water

ecological land and forest ecological land, also improved the

ecological environment quality of the Tarim River Basin,

accounting for nearly one-fifth of the positive contribution

rate to the ecological environment. In addition, the

conversions of land-use function for ecological environment

improvement in the Tarim River Basin were relatively

concentrated; for example, ecological land was converted into

grassland ecological land and water ecological land, and

grassland ecological land was converted into water and forest

ecological land. These conversions resulted in a higher ecological

environment quality index, accounting for more than 90% of the

positive effects on the ecological environment.

Conversely, the occupation of grassland ecological land and

woodland ecological land by agricultural production land and

other ecological land, as well as the occupation of water ecological

land and woodland ecological land by grassland ecological land,

were important factors leading to the deterioration of ecological

environment quality in the Tarim River Basin. In particular, the

conversion of grassland and forestland into other ecological land

accounted for more than 80% of the negative effects on the

ecological environment.

3.3.3 Characteristics of climate change
The trend changes for precipitation and average annual

temperature in the study area from 2000 to 2020 are

illustrated in Figure 6. As can be seen from the figure, the

average annual precipitation and temperature both showed

gradually increasing trends, which differed slightly. The trend

change rates for precipitation and temperature were 1.257 and

0.022, respectively. Although the increase in air temperature was

FIGURE 5
Spatial distribution of eco-environmental quality in different years.
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only minor, precipitation showed a more significant increasing

trend. Specifically, air temperature showed an obvious decline

from 2009 to 2012, followed by an increasing trend from 2012 to

2020, such that the overall change trend is not obvious. On the

other hand, precipitation decreased up to 2009, then began to

rise. This trend reversal reveals that, under the influence of global

warming, the temperature in the Tarim River Basin is on an

upward trajectory. The study region is an extremely arid area,

TABLE 4 Land type transformation and contribution rate to PLES in the Tarim River Basin in 2000–2020.

Eco-environmental effect Major land use transformation types Transition
area/km2

Ecological
contribution rate

Percentage of
contribution/%

Positive effect of ecological
environment

Other ecological land -Agricultural production
land

4813.0623 0.001092 2.80

Meadow ecological land -Water ecological land 3624.4386 0.001490 3.83

Other ecological land -Water ecological land 5580.3654 0.004122 10.59

Agricultural production land -Forestry ecological
land

1102.5081 0.000404 1.04

Meadow ecological land -Forestry ecological land 6018.1092 0.001602 4.12

Other ecological land -Forestry ecological land 1371.6504 0.000815 2.09

Agricultural production land -Meadow ecological
land

1394.8848 0.000166 0.43

Other ecological land-Meadow ecological land 84403.8639 0.029239 75.11

Subtotal 0.038929 100

Negative effect of ecological
environment

Forestry ecological land - Agricultural production
land

2095.1055 −0.000832 2.28

Meadow ecological land -Agricultural production
land

12204.7812 −0.001232 3.37

Forestry ecological land - Meadow ecological land 5702.4378 −0.001583 4.34

Water ecological land - Meadow ecological land 7282.2114 −0.003296 9.03

Agricultural production land - Urban and rural
residential land

1253.5596 −0.000062 0.17

Forestry ecological land -Other ecological land 1807.7238 −0.001130 3.09

Meadow ecological land -Other ecological land 86305.6134 −0.028373 77.72

Subtotal −0.036507 100

FIGURE 6
Linear trend change.
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thus lacking water, an increase in temperature will accelerate the

melting of glaciers and usually result in increases in evaporation

from the underlying surface. Therefore, the increase in

precipitation in the Tarim River Basin is significant.

Our results revealed that the ecological environment

quality of the Tarim River Basin has changed. The natural

environmental and socio-economic factors appeared to have a

substantial impact on the ecological environment quality of

the basin. In terms of the natural environment, we further

analyzed the impact of climate on eco-environmental quality

through spatial correlation analysis; the results are shown in

Figures 7A,B. The spatial distribution of eco-environmental

quality was positively correlated with precipitation from

2000 to 2020. Figure 5 illustrates that the points of high

regional ecological environmental quality were mainly

concentrated in the northwest and southwest of the Tarim

River Basin; for example, Hejing County, Wuqa County, and

Akto County were representative of high-quality local

precipitation. Accordingly, due to relatively abundant

precipitation, the grassland, forestland, and so on had a

positive impact on the ecological environment quality of

the land area. The proportion of high-coverage grassland

and woodland was also higher there than in other areas.

However, there was a negative correlation between

ecological environment quality and temperature in the

study area, and the increase in evapotranspiration due to

FIGURE 7
(A) Spatial distribution characteristics of precipitation (mm) in the Tarim River Basin from 2000 to 2020. (B) Spatial distribution of air temperature
(°C) in the Tarim River Basin from 2000 to 2020.

FIGURE 8
Contribution rate of impact factors.
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higher temperatures was quite prominent, making the water

area smaller than that in other areas.

3.3.4 Analysis of the formation mechanism of
ecological environmental quality

As shown in Figure 8, the spatial differentiation of the

eco-environmental quality index was the result of multiple

factors. We considered five natural environmental factors and

six socio-economic factors, with the natural environmental

factors including elevation, gradient, slope direction, air

temperature, and precipitation, while the socio-economic

factors included distance to water, distance to roads at the

township level, primary, secondary, and tertiary industries, as

well as population density. Detection of the influence of the

ecological environment quality index in the Tarim River

Basin was carried out by using the geographic detector.

The q value in the factor detection result represents the

explanatory power of a factor, with respect to spatial

differentiation.

Precipitation was found to play a major role among the

natural environmental factors, while population density was

highly influential among the socio-economic factors,

indicating that the ecological environment quality of the study

area was significantly affected by precipitation and population

density. From the point of view of the natural environment and

socio-economic factors, the overall explanatory power of socio-

economic factors was stronger than that of the natural

environment factors. Therefore, while natural environmental

factors are important, socio-economic factors were the main

ones affecting the ecological environmental quality during the

study period.

Different factors have different impacts on ecological

environmental quality. At the same time, there exist complex

interactions between and among factors, which lead to

differences in the magnitude, intensity, and direction of the

impact factors. Furthermore, interactions between the factors

may increase their impact on ecological environmental quality.

Considering the eleven different influencing factors listed above,

FIGURE 9
Interactive detector results.
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interaction detection analysis was conducted. The results

(Figure 9) demonstrated that the interaction modes between

any two factors mainly included non-linear enhancement and

double factor enhancement, and there were no mutual

independent or weakening relationships. The impact strength

of interactions on ecological environment quality was

significantly higher than that of any single factor; in other

words, the spatial evolution of the ecological environmental

quality in the Tarim River Basin is primarily the result of the

joint action of multiple factors. The higher the interaction q

value, the greater the impact of the interaction between the

corresponding two factors on the ecological environmental

quality.

From 2000 to 2020, the factors with the strongest interaction

impact on eco-environmental quality were population density ∩
secondary industry (0.804), tertiary industry ∩ precipitation (0.791),

population density ∩ primary industry (0.666), population density ∩
precipitation (0.633), and secondary industry ∩ primary industry

(0.927). The q values of the interactions between population density

and precipitation and other factors were high (q > 0.5), related to the

high explanatory power of these single factors. Among the natural

environmental factors, the interaction between precipitation and

temperature was the strongest, followed by precipitation and

elevation, which showed significant double-factor enhancement

effects. For socio-economic factors, the strongest interactions

were population density ∩ secondary industry (0.804), population

density ∩ primary industry (0.782), population density ∩ primary

industry (0.666), population density ∩ secondary industry (0.613),

and secondary industry ∩ primary industry (0.927). The interaction

between population density and production value was the strongest,

showing a significant non-linear enhancement effect. The strongest

interactions between socio-economic and natural environmental

factors were population density ∩ elevation (0.662), tertiary industry

∩ precipitation (0.791), population density ∩ precipitation (0.642),

population density ∩ precipitation (0.633), and primary industry ∩
precipitation (0.693).

Although the interaction between population density and

precipitation was the most prominent, interactions within socio-

economic factors were significantly stronger than interactions

between natural environmental factors or between natural

environmental factors and socio-economic factors. The study

area is vast and the climate type is relatively simple, but socio-

economic development and human activities are complex. These

features exerted a significant impact on living space and

production space area, leading to the strong observed

interaction between socio-economic factors.

4 Discussion

Based on analysis of the spatial and temporal distribution

characteristics of PLES and eco-environmental quality, we

determined the driving mechanism of eco-environmental

quality in the Tarim River Basin by considering both natural

environmental and socio-economic factors. The calculation

results of the ecological environment quality index indicated

that the ecological environment of the Tarim River Basin has

gradually declined (Wang et al., 2020), as the ecological

environment index decreased from 0.1568 in 2000 to

0.1480 in 2020. As the future will likely bring increased global

climate warming, along with more frequent human activities in

the Tarim River Basin region, the basin’s ecological environment

quality index is anticipated to continue to decline. This trend

reflects the expansion of production, living, and ecological

accommodation land along with a decrease in key ecological

land; over the study period, the key ecological land decreased by

24,716.8692 km2. Continued and rapid changes in land-use are

thought to lead to the severe ecological degradation of natural

ecosystems, such as forest ecosystems (Endress and Chinea,

2001) and river ecosystems (Yunus et al., 2003). At the

beginning of the 21st century, Xinjiang Uygur Autonomous

Region began to vigorously develop its social economy. With

the expansion of cultivated land and construction land, the

development and utilization of water resources have been

strengthened; consequently, the water volume of the main

stream of the Tarim River has been greatly reduced.

Precipitation has been unable to meet water demand, resulting

in a significant reduction in ecological land water areas (Wang

et al., 2021), comprising a total reduction of 13,665.5622 km2

during the study period. Moreover, industrialization, agricultural

production, and other human activities require extensive water

resources, which means that construction land is mostly

distributed in areas close to roads and water bodies.

Therefore, the more developed the social economy, the more

obvious the changes in PLES will be. These changes will, in turn,

affect the eco-environmental quality index.

Over the past 20 years, the areas of cultivated land,

construction land, and other production land in the Tarim

River Basin have continued to increase, while the area of key

ecological land (e.g., grassland and forest land) has continued to

decline. In order to vigorously develop the economy, the

ecological land area has been continuously encroached upon.

This phenomenon is widespread in developing countries

(Abdullah and Nakagoshi, 2006). During the study period, the

population of the Tarim River Basin continued to grow and the

population density continued to increase, thus increasing the

area of urban and rural land, as well as other living land. In

addition, agriculture is the main economic activity in the Tarim

River Basin. Since 2000, grain and cotton prices have continued

to rise, and a large number of woodlands and grasslands have

been reclaimed into cultivated land, resulting in a sharp increase

in the area of cultivated land. Population growth leads to an

increase in food demand, which indirectly leads to an increase in

the area of cultivated land. The area of unused land in the Tarim

River Basin presented a trend of first decreasing and then

increasing. The decrease in the area of unused land from
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2000 to 2015 was due to the start of the comprehensive treatment

project in the Tarim River Basin, which reduced the area of

unused land, to a certain extent. Then, due to the rapid

population growth in the past 5 years, the forest and grassland

have been over-cultivated, and the forest and grassland have been

degraded into unused land, thus aggravating the degradation of

the ecological environment in the Tarim River Basin.

This paper demonstrates that socio-economic factors have a

greater impact on the quality of the ecological environment than

natural environment factors. The Tarim River Basin is an

ecologically fragile zone in the extremely arid region of

Northwest China (Zhang et al., 2020) and, so, that natural

environment factors (e.g., precipitation) have a significant

impact on the cultivated land, grassland, and forest land in

the region. However, due to the small changes in elevation,

slope, and aspect in a short period of time, the impact on the

ecological environment is limited, and did not play an obvious

leading role in this study. The Tarim River Basin is an important

part of the “One Belt, One Road” initiative, and the regional

development of national engineering construction projects

accelerated the urbanization process of the Tarim River Basin

during the study period. While the government has vigorously

promoted the economic development of the region, this also

makes the ecological environment quality of the study area

vulnerable to the influence of population increase and

economic development. Socio-economic factors have gradually

been identified as key factors affecting ecological environment

changes (Nagendra et al., 2004).

In view of the current situation, regarding the deterioration

of the ecological environment in the Tarim River Basin, we

believe that relevant government departments should

implement a comprehensive planning plan for the Tarim

River Basin as soon as possible, based on the “Water Law of

the People’s Republic of China” and other relevant laws and

regulations, clarifying important ideas for the sustainable

development of the ecological environment of the basin.

This may involve increasing the amount of water flowing

into the Tarim River from various sources through measures

such as the management of the main stream, or protection of

the unified management and dispatch of water resources in the

basin. In addition, in order to reconcile the contradiction

between economic development and ecosystem protection,

government departments should increase supervision, strictly

prohibit the destruction of forests, return farmland to

uncultivated land, and speed up ecological construction

projects. The previous ecological water transfer project in the

Tarim River Basin produced positive ecological, economic, and

social benefits (Ye et al., 2009). At the same time, based on the

advantages of local resources, characteristic pillar ecological

industries should be created, ecological agriculture and key

ecological industries should be vigorously enhanced, tourism

and cultural industries should be deeply developed, sustainable

economic and trade development should be promoted, and

unnecessary reclamation of woodland and grassland should be

reduced.

There is a lot of unused land in the Tarim River Basin, which

we classified as ecological accommodation land separately, and

studied it together with production land, living land, and key

ecological land as first-level land types. Through research on the

evolution of land-use function and the effect on the ecological

environment, we further clarified the status quo regarding the

overall decline of the ecological environment in the Tarim River

Basin. This study provides new ideas and methodological

references for the analysis of land-use change in arid and

semi-arid regions.

In addition, it is worth noting that we only selected factors

affecting ecological environmental quality with respect to the

impact of different natural environment and socio-economic

factors. There was no further research on the intensity of land-

use and human activity, and there remains a lack of research and

discussion on the influencing factors at the micro-level, such as

soil quality and soil type. In the future, the driving mechanisms of

eco-environmental effects should be explored more

comprehensively; for example, through combination with

spatial analysis methods, such as kernel density estimation, in

order to further reveal the spatial pattern of eco-environmental

quality.

5 Conclusion

Based on the perspective of PLES, we analyzed the evolution

characteristics of land-use functions, ecological environment

effects, and driving factors in the Tarim River Basin from

2000 to 2020. Our key conclusions are as follows:

1) The areas of production land, living land, and ecological

accommodation land in the study area increased

continuously over the study period, increasing by

16,650.55 km2, 718.36 km2, and 6839.63 km2, respectively;

notably, they were all expanding outwards. Meanwhile, the

area of key ecological land decreased (by 24,716.87 km2).

These change trends and spatial distributions were

consistent with the ecological environment quality index

results.

2) From 2000 to 2020, the ecological environment of the Tarim

River Basin was degraded as a whole, and there was obvious

spatial heterogeneity. The eco-environmental quality index

dropped from 0.1568 in 2000 to 0.1480 in 2020 overall;

however, the eco-environmental quality index in the

northwest region remained relatively high.

3) There were differences in the factors driving the spatial

differentiation of eco-environmental effects in the Tarim

River Basin. The evolution of the ecological environment

quality in the Tarim River Basin was primarily the result of

the combined effects of multiple influencing factors. The
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explanatory power of socio-economic factors on the

ecological environment effect was generally higher than

that of other factors (i.e., natural environment factors).
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It is of great significance for global environmental governance to guide

farmers to effectively perceive climate change. Based on the survey data of

540 farmers in Sichuan Province, China, this study used binary Logit model

and Multinomial Logistic Regression model to explore the effects of farmers’

space-time perception of climate change and their interaction effects on

farmers’ adaptation behavior to climate change. The results showed that: (1)

88.51% of farmers took adaptation measures to climate change, and 61.11%

of them took both passive and active adaptation measures. Among the 7

measures, the highest rate of “Increase irrigation” is 23%, and the lowest rate of

“Migrant work” is only 5%. (2) The scale difference of farmers’ time perception

of climate change has a significant positive impact on their adaptive behavior

of climate change. In terms of time: climate change perception in the next

5 years > in the next 10 years > in the next 15 years. (3) The scale difference of

farmers’ space perception of climate change has a significant positive impact

on their adaptation behavior to climate change. In other words, spatially,

farmers’ perception of climate change is global > national > local village

(the perception of local province is not significant). (4) Farmers’ space-time

perception of climate change significantly affects farmers’ adaptive behavior.

Among them, “farmers’ perception of climate change in the next 5 years”

and their own “village’s perception of climate change” play an important

role. This study will help deepen the understanding of farmers’ perception of

climate change and their adaptive behavior, and provide reference for national

policy making.
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Introduction

Global climate change has become a human consensus
(Waldman et al., 2017). Since 1850–1900, the global average
surface temperature has risen by about 1◦C, while the average
surface temperature in China has risen by about 1.46◦C in
the past 60 years (Wang et al., 2016). It is predicted by IPCC
that the global temperature will increase by at least 1.5◦C in
the next 20 years (Pielke et al., 2022), and the annual mean
temperature change rate in China will further increase by 2030
(Chao et al., 2020), rising from 0.32◦C/ (10 a) to 0.48◦C/ (10
a). The intensification of climate change has a severe impact
on the global ecological, economic and social systems (Feng
and Xu, 2014; Clayton, 2020; Malhi et al., 2020). For example,
in 2016, Canada was affected by high temperatures and strong
winds, leading to the largest forest fire in history, causing
economic losses of 3 billion US dollars (Sun et al., 2017).
From 2001 to 2020, floods in China caused over 100 million
people to be affected annually, with direct economic losses
up to 167.86 billion Yuan (Li and Zhao, 2022). Increasingly
prominent meteorological problems have attracted extensive
attention of the international community (Dietz et al., 2020). In
this context, the 2016 Paris Agreement sets forth goals such as
“achieving carbon neutrality by the second half of the century
between anthropoid emissions and removal of greenhouse
gases,” marking a new stage in global climate governance
(Li and Chai, 2017).

China has been adhering to the concept of green
development and has attached great importance to climate
change response (Chai et al., 2020). As early as 1990, China
formulated policies to address climate change, calling for
better understanding and management of climate change. In
2020, China proposed its first “dual carbon target,” aiming to
peak carbon dioxide emissions by 2030 and achieve carbon
neutrality by 2060, demonstrating the country’s determination
to tackle climate change (Bo and Zhuang, 2018). However,
China’s total carbon dioxide emissions currently rank first
in the world and its carbon intensity is 130% of the global
average (Zhang et al., 2021). Climate change mitigation is
a great challenge and cannot be separated from the broad
support of subjects at all levels of society (Liu et al.,
2021). As the main unit of agricultural production, farmers’
response to climate change will have an important impact
on national climate governance. On the one hand, the
agricultural production activities of farmers are the main
emission sources of carbon dioxide (Zhang et al., 2021). On the
other hand, due to the limitations of income, education level
and other conditions, farmers have insufficient understanding
of climate change and limited emission reduction ability
(Lv and Chen, 2010). Therefore, how to effectively improve
farmers’ ability to perceive and cope with climate change will
become the only way to achieve the “dual carbon goal” and
mitigate climate change.

Adaptation to climate change refers to the process in which
people attempt to mitigate the hazards of climate change while
taking advantage of the positive benefits of climate change
(Ogunbode et al., 2019; Gao et al., 2021). At present, the
academic circle has conducted extensive studies on farmers’
adaptive behavior to climate change, mainly involving farmers’
perception of climate change (Rayamajhee et al., 2021), adaptive
behavior of climate change (Phuong et al., 2018a,b), willingness
to respond to climate change (Hossain et al., 2022). Among
them, adaptive behavior of climate change has always been the
focus of academic attention. According to the existing research,
the factors affecting farmers’ adaptive behavior decisions on
climate change mainly focus on the following aspects: First,
basic personal characteristics, such as farmer’s gender (Jin et al.,
2015), age (Islam et al., 2013) and education level (Fosu-
Mensah et al., 2012), have been proved to significantly affect
farmer’s adaptation to climate change. Second, basic family
characteristics, for example, Abid et al. (2016), Thinda et al.
(2020) found that household income, arable land area and
agricultural product disaster experience were important factors
affecting farmers’ response to climate change.

To sum up, although many existing literatures focus on the
core factors that affect farmers’ adaptive behavior to climate
change, most of these factors focus on the basic characteristics
of individual farmers and families. From the perspective
of temporal and spatial perception of climate change, few
studies have focused on the impact of temporal and spatial
perception and interaction effects of climate change on farmers’
adaptive behaviors. In the only studies, they either focused
only on the climate change trend at the macro level, adopted
more qualitative analysis methods, or only analyzed farmers’
perception of climate change in time or space (Pahl et al.,
2014; Shi, 2016), lack of multi-dimensional analysis of micro-
subject climate change perception. In the vast rural areas,
limited information channels result in farmers’ perception of
climate change can only be judged by their own experience.
The deviation between climate change perception experience
and reality will have a negative effect on farmers’ response
to climate change. For example, when farmers’ perception
of small regional climate change threat is not obvious, it
may cause farmers’ enthusiasm to deal with it is insufficient.
Poor understanding of long-term climate change risks may
lead farmers to choose short-term measures and ignore long-
term effects and environmental hazards. At present, it has
been confirmed by quantitative methods that differences in
individual climate change risk perception in a certain period
will significantly affect adaptive behaviors (Wheeler et al., 2021).
However, in the context of increasingly obvious climate change,
the impacts of temporal and spatial perception and interaction
effects of climate change on farmers’ adaptive behaviors are still
relatively neglected. So in the process of farmers coping with
climate change, can they perceive climate change in different
time and space? If so, will the temporal and spatial scales of
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climate change perception and their interaction affect farmers’
adaptation to climate change differently? This is the problem to
be solved in this paper.

Theoretical analysis and research
hypotheses

Climate change adaptation refers to people’s attempt to
avoid the damage of climate change to personal life and
property, while taking advantage of the positive effects of
climate change. At present, some scholars believe that farmers’
adaptation measures to climate change can be divided into
engineering and non-engineering, the former including Wells
and channels, etc., and the latter including agricultural
adjustment and agricultural insurance purchase, etc. (Chen
et al., 2014). According to the sequence of drought and coping
behaviors, some scholars divided climate change adaptation into
pre-event and post-event remedial behaviors. Among them,
ex ante remedial actions include mulching film, while ex post
remedial actions include increasing irrigation and fertilizer
application, etc. (Feng et al., 2016). Based on the research
of Lv and Chen (2010) and Chen et al. (2014), this paper
divided farmers’ climate change adaptation measures into active
adaptation and passive adaptation. In the process of farmers’
response to climate change, climate change perception is the key
factor affecting their decision-making. When the perceived risk
of climate change is high, the possibility of adapting to climate
change will increase (Zhao, 2014).

Scale features refer to the temporal and spatial
representation of geographical phenomena and processes.
Since scale features are internal features of things, they often

need observation to identify them, thus forming the observation
scale. That is, the changes revealed by observations at different
time and spatial scales. The change of observation scale will
change the spatial and temporal observation resolution, which
will lead to the change of geographical phenomena and process
information characteristics, and finally show a certain scale
effect (Fu, 2014).

According to the “multi-scale conceptual framework” in
spatial scale theory, spatial scale can be divided into global scale,
regional scale and local scale (Li, 2014). Among them, global
scale refers to the global scope; Regional scale refers to countries,
provinces, towns, economic zones, etc. Local scale refers to
municipalities, villages, etc. (Zhang et al., 2020). Different spatial
scales have significant differences in agricultural production,
regional environment, economic level and other aspects
(Kobayashi et al., 2014; Zorrilla-Miras et al., 2014). In the local,
the impact of population, land and other factors changes will
be transmitted locally to the region and the world. At present,
spatial scale theory is mostly applied in the field of ecosystem
and administrative management, mainly focusing on landscape
layout (Fan et al., 2018), urban planning (Liu and Zhang, 2015),
and regional economy (Guan et al., 2015).

With the deepening of research, scale effect has also been
developed in the field of time. Construal Level Theory holds
that object events and self-time, space, social distance are closely
related to individual psychological distance cognition, which
has an important influence on the psychological construction
of object events. People will adopt high-level construction for
things with a psychological distance, that is, their perception
is more abstract, generalized and context-removed. For things
with close psychological distance, they will adopt low level
construction, that is, the perception is more specific, clear

FIGURE 1

Research framework.
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and contextual. Different levels of construction will affect
individuals’ cognitive and emotional experience and influence
their behavioral choices (Bar-Anan et al., 2006; Trope and
Liberman, 2010). Based on the constructional level theory, some
scholars found that the expansion of psychological distance in
time would reduce people’s concern about climate change and
thus reduce their willingness to take measures against climate
change (Spence et al., 2012). Vivid and accurate cognition of
the future will enhance people’s perception of climate change
risk and thus enhance their willingness to cope with climate
change (D’Argembeau et al., 2011; Lee et al., 2020). Nowadays,
constructively-related theories have been preliminarily applied
in the fields of pro-environmental behavior and climate change
(Lin et al., 2020).

However, space-time scale theory also seems to have more
general applicability. For example, Zhang et al. (2019, 2020)
discussed the impact of land use change on regional ecosystem
services based on spatial and temporal differences. Therefore,
there may also be time and space scale effects in the process
of climate change perception on farmers’ adaptive behaviors.
However, the existing literature often takes climate change
perception as a whole, which covers the difference of the impact
of climate change perception on farmers’ coping behavior
in different time and space. Therefore, farmers’ perception
of climate change can be divided into two categories in
this paper: first, space perception of climate change, that is,
perception of climate change in the global, national, provincial
and village. Time perception of climate change refers to the
degree of perception of climate change in the next 5, 10
and 15 years. Compared with the long time distance, the
short time distance people’s prediction is more specific and
accurate, and has a greater direct impact on farmers’ adaptation
behavior to climate change. Compared with far-space distance,
near-space distance is more difficult to detect climate change
and has less impact on farmers’ response to climate change.
Based on this, the following hypotheses are made in this
study (Figure 1).

H1: Farmers’ space-time perception and interaction
effects of climate change will positively affect their
adaptive behaviors.

H2: Compared with the perception of climate change over a
long time distance, the perception of climate change over
a short time distance has a greater impact on farmers’
adaptation behavior decisions to climate change.

H3: Compared with far-space distance climate change
perception, near-space distance climate change perception
has less impact on farmers’ adaptive behavior decisions
of climate change.

Materials and methods

Sample and data sources

Sichuan is one of China’s major grain-producing areas,
forming subtropical humid monsoon climate, subtropical
monsoon climate and other climates. According to statistics, the
farmland with perennial drought and water shortage in Sichuan
Province accounts for more than 60% of the province’s cultivated
land area (Xu et al., 2019). As a typical climate vulnerable area,
Sichuan Province is also common with meteorological disasters
such as rainstorm, flood and high temperature. The data used in
this study are from the research group’s survey and statistics of
27 villages in 3 districts and counties, 9 towns and 27 villages
in Sichuan Province, China in July 2021. The survey method
is one-to-one interview, and each questionnaire lasts about 1–
1.5 h. The respondents are the family members who know more
about family agricultural production, and 61.30% of them are
household heads. The research content mainly includes the basic
characteristics of individual farmers and families, the perception
of time and space of climate change, and the response measures
to climate change. In order to ensure the representativeness of
samples, stratified equal probability sampling is adopted in this
study, with specific procedures as follows.

First of all, according to the topography (plain, mountain
and hill) and other indicators, the 183 districts and counties
in Sichuan province were divided into three categories: good,
medium and poor, and one district were randomly selected.
Secondly, according to the three districts and counties in the
distance from the county government, the level of economic
development and other indicators, each district and county
randomly selected three sample towns, good, medium and
poor, a total of 9 sample towns. Thirdly, according to the
distance of villages to the town government and the level
of economic development, each sample village was randomly
selected as good, medium and poor villages, totaling 27 sample
villages. Then, 20 farmers were selected from the village
roster according to the preset random number table as the
investigation object. After the village cadres determined the
time with the interviewed farmers in advance, 16 researchers
with strict training went to the farmers’ homes for one-to-one
investigation. Finally, a total of 540 effective peasant household
questionnaires were obtained from 9 townships and 27 villages
in 3 districts and counties, and the questionnaire recovery rate
was 100% (Figures 2, 3).

Definition of variables

The purpose of this paper is to investigate the impact of
space-time perception of climate change on farmers’ adaptive
behavior to climate change. Based on the research of Deressa
et al. (2009), Lv and Chen (2010) and Chen et al. (2014) and

Frontiers in Ecology and Evolution 04 frontiersin.org

59

https://doi.org/10.3389/fevo.2022.998945
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/


fevo-10-998945 September 15, 2022 Time: 15:38 # 5

Ma et al. 10.3389/fevo.2022.998945

FIGURE 2

Location map of sample counties and towns.

FIGURE 3

Survey sampling process.

combined with field research experience, this paper divides
the adaptation measures of farmers to climate change into
active adaptation and passive adaptation. The former includes
adjusting crop type/variety, building infrastructure, learning
about climate change technology, and going out to work
because of climate change. The latter includes increasing
pesticide/fertilizer, increasing irrigation, and adjusting crop
time. If the farmer does not take active and passive adaptation
measures, the value of “are you taking action on climate change”
is 0, otherwise the value is 1. Among the 540 data of farmers, 478
households have adopted measures to cope with climate change,

accounting for 88.51% of the total. According to Wheeler
et al. (2021), farmers’ perception of climate change may differ
at space-time scales. The core variable of this paper is time
perception: “Do you think climate change will intensify in the
next 5 years,” “Do you think climate change will intensify in the
next 10 years,” and “Do you think climate change will intensify
in the next 15 years.” Second, space perception: “How serious
do you think the current global climate change impact is,”
“How serious do you think the current global climate change
impact on China,” “How serious do you think the current global
climate change impact on Sichuan Province,” “How serious do
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you think the current global climate change impact on your
village.”

In addition, considering that farmers’ decision-making on
coping with climate change may be affected by a variety of other
factors, this paper included the individual characteristics of
respondents, family characteristics and meteorological disaster
experience into the model as control variables. Among them,
the personal characteristics of interviewees include gender, age,
education level and other indicators of interviewees, which are
generally considered to be related to farmers’ response to climate
change (Wang et al., 2010; Habtemariam et al., 2016; Harvey
et al., 2018). Household characteristics include household gross
income per capita (Obayelu et al., 2014), arable land per capita
(Abid et al., 2015) and other indicators. In addition, crop disaster
experience may directly affect farmers’ adaptation behavior
decisions to climate change (Rozaki et al., 2021). Therefore,
“Have crops been damaged by the weather” is included in the
model assessment as family experience. Finally, considering that
regional differences may affect farmers’ responses to climate
change, dummy variables of districts and counties are set to
control the regression errors caused by regional differences.
Variable definitions and basic statistics are shown in Table 1.

Model construction

The above descriptive statistical analysis of farmers’ spatio-
temporal perception of climate change and its adaptive behavior
measures is difficult to distinguish the impact of climate change
perception on farmers’ adaptive behavior at different time and
spatial scales. In addition, farmers’ personal characteristics,
family characteristics and regional factors may also influence
their adaptive behaviors (Niles et al., 2013; Wood et al., 2014).
Therefore, in order to better quantify the impact of various
factors on farmers’ adaptation measures, this paper intends to
adopt the following measurement model:

Pij = β0 + β1X1 + ... + βiXi + ε (1)

Qij = γ0 + γ1X1 + ... + γiXi + σ1H1 + σiHi + k (2)

Mij = ∂0 + ∂1X1 + ∂iXi + τ (3)

Equation 1 is a binary Logit model, where Pij is the
probability of household i in village j taking measures to cope
with climate change. If the farmers adopts adaptation measures
(active adaptation or passive adaptation), the value is assigned
to 1; otherwise, it is 0. β0 is a constant term; X1 · · · Xi is the
core independent variable, control variable and regional dummy
variable; β1 · · · βi is the regression coefficient; ε is the residual
term. Among them, there are 7 core independent variables,
namely, farmers’ perception of climate change in the next 5,

10, and 15 years from time perception of climate change;
Farmers’ perception of global, national, Sichuan province
and their own village climate change in their perception of
climate spatial change.

On the basis of Equations 1, 2 adds the product item Hi

of the interaction term between time perception and space
perception of climate change. Thus, the impacts of farmers’
perception of climate change at different time and spatial scales
on their adaptive behaviors can be measured. In the formula,
Qij is the probability of farmers i in village j taking measures
against climate change. γ0 is a constant term; X1 · · · Xi is the
core independent variable, control variable and regional dummy
variable; γ1γi, σ1σi is the regression coefficient; k is the residual
term. In order to avoid possible multicollinearity problems,
Hayes (2013) is referred to in this paper for centralized
processing of Equation 2 to improve the accuracy of the model.

Equation 3 is similar to Equation 1. Mij is the probability
of farmers i in village j taking measures to cope with climate
change, and its values are 1, 2, 3 and 4, respectively, indicating
that household does not take measures to climate change, only
adopts active adaptive measures, only adopts passive measures,
and both measures are adopted. ∂0 is a constant term; X1 ·

· · Xi is the core independent variable, control variable and
regional dummy variable; ∂1∂i is regression coefficient; τ is
the residual term.

Estimation approach

Considering the difference of dependent variables in the
equation, different estimation methods are adopted in this
paper. Since the dependent variable in Equations 1, 2, namely
whether farmers take countermeasures against climate change
is a dichotomous variable, binary Logit model was used for
regression in this study. In Equation 2, V1Vi represents farmers’
perception of global, national, provincial and village climate
change. Time perception of climate change H1Hi is set to
three dummy variables dum1 (farmers think climate change
will intensify in the next 5 years is 1; otherwise, it is 0),
dum2 (farmers think climate change will intensify in the
next 10 years is 1; otherwise, it is 0), and dum3 (farmers
think climate change will intensify in the next 15 years is 1;
otherwise, it is 0). The three dummy variables were, respectively,
multiplied with the four variables of spatial perception of
climate change, and the interaction terms HiVi were included
in Equation 1. In Equation 3, the types of coping measures
of farmers are composed of four discrete values (1, 2, 3 and
4), which are independent of each other. Therefore, the MNL
model (disordered multi-classification Logit model) is used
for analysis in this paper. Firstly, the utility function of the
decision maker is constructed, and it is assumed that the
farmers choose to realize the principle of utility maximization.
Then the maximum likelihood was used to estimate the model
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TABLE 1 Variable definition and descriptive statistic.

Variable Definitions Mean SD

Climate Are you taking action on climate change? (0 = no, 1 = yes) 0.89 0.32

Time perception

Further 5 years Do you think climate change will intensify in the next 5 years? (1–5)b 3.57 1.05

Further 10 years Do you think climate change will intensify in the next 10 years? (1–5)b 3.55 1.05

Further 15 years Do you think climate change will intensify in the next 15 years? (1–5)b 3.54 1.08

Space perception

Earth How serious do you think the current global climate change impact is? (1–5)b 3.96 1.01

China How serious do you think the current global climate change impact on China? (1–5)b 3.79 1.01

Sichuan How serious do you think the current global climate change impact on Sichuan Province? (1–5)b 3.69 1.05

Village How serious do you think the current global climate change impact on your village? (1–5)b 3.46 1.26

Individual features

Gender Gender of head of household (0 = male, 1 = female) 0.40 0.49

Age Age of head of household (year) 58.48 11.84

Education Years of education of household head (year) 6.55 3.44

Family features

Income Annual cash income per capita in 2020 (Yuan/person)a 19,462.51 33,420.40

Land Per capita arable land area in 2020 (land/person) 1.43 4.26

Disaster experience Have crops been damaged by the weather? (0 = no, 1 = yes) 0.70 0.46

Other control variables

County Dummy variable of county (Yuechi = 0)

aDuring the survey period, 1 $ = 6.74 Yuan; b1–5 are indicators measured using the 5-point Likert scale, which means from weakly disagree to strongly agree.

parameters, and the influence of different factors on different
choices of farmers’ adaptive behavior was calculated. In order
to reflect the influence of independent variables on dependent
variables, Tables 2–4, report the marginal coefficients of the
model and the standard errors of cluster at the county level.

Results

Descriptive statistical analysis

Adaptation measures against climate change
by farmers

What adaptation measures will farmers adopt in the
context of climate change? Table 5 shows farmers’ choice of
adaptation measures to climate change. The results showed
that about 88.51% of the 540 peasant households had adopted
measures to cope with climate change. Among them, 61.11%
farmers adopted both passive adaptation and active adaptation
measures. 7.59% of farmers only used active measures and
19.81% only used passive measures. This may be because the
active measures require higher economic and cultural levels of
farmers and are difficult to implement.

Among the farmers taking measures to cope with climate
change (Figure 4), the highest rate of increase irrigation
adoption is 23% in the passive adaptive measures, and the
similar rate of increase fertilizer/pesticide application and

adjusted crop time adoption is 17%. Among the active
adaptation measures, the adoption rate of adjusting crop
type/variety was the highest at 17%, while the number of
people who chose to cope with climate change by out-migrating
for work accounted for only 5%. In general, whether in
active adaptation or passive adaptation, farmers tend to choose
the measures with low economic and time costs. Increasing
irrigation measures are the most frequently used response
measures by farmers. This reflects that in the context of climate
change, how to reduce the behavioral cost of farmers coping
with climate change and improve the stability of irrigation water
are important directions to improve farmers’ ability to cope
with climate change.

Farmers’ perception of climate change in time
and space

In this paper, farmers’ perception of climate change
can be divided into three categories: obvious perception,
uncertain perception and not obvious perception. Specifically,
when farmers’ perception score is 4/5, they are classified
as “obvious perception” (type I), 3 as “uncertain” (type
II), and 1/2 as “not obvious perception” (type III).
Table 6 shows the descriptive statistical table of farmers’
perception of climate change in time and space. The
results show that farmers’ perception of climate change
in space is more obvious than their perception of
climate change in time.
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TABLE 2 Logit regression results of climate change time and space perception of farmers.

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7

Time perception

Further 5 years 0.028***

(0.005)

Further 10 years 0.024***

(0.006)

Further 15 years 0.023***

(0.005)

Space perception

Earth 0.036**

(0.016)

China 0.035**

(0.015)

Sichuan 0.027

(0.017)

Village 0.024***

(0.004)

Individual and family features

Gender 0.015 0.016 0.015 0.019 0.018 0.017 0.014*

(0.013) (0.014) (0.014) (0.016) (0.017) (0.014) (0.008)

Age –0.003** –0.003** –0.003** –0.003** –0.003** –0.003** –0.003**

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

Education 0.001 0.001 0.001 –0.000 0.000 0.000 0.001

(0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

Ln (Person income) 0.029** 0.027** 0.026** 0.030*** 0.031*** 0.032*** 0.031**

(0.012) (0.012) (0.012) (0.010) (0.010) (0.011) (0.013)

Ln (Person land) 0.144*** 0.139*** 0.137*** 0.144*** 0.141*** 0.139*** 0.140***

(0.030) (0.028) (0.029) (0.029) (0.028) (0.027) (0.033)

Climate reduce –0.026 –0.023 –0.020 –0.020 –0.022 –0.021 –0.021

(0.053) (0.050) (0.052) (0.042) (0.045) (0.048) (0.055)

County Yes Yes Yes Yes Yes Yes Yes

N 540 540 540 540 540 540 540

The standard errors of cluster at the county in parentheses; the report result is marginal effect; *p < 0.1, **p < 0.05, ***p < 0.01.

(1) Time perception of climate change: in type I, farmers’
time perception of climate change in the next 5 years is the
most obvious, accounting for 50.19%, which is higher than 47.96
and 46.11% in the next 10 and 15 years. In type II, 42.78%
of farmers are most difficult to determine their perception
of climate change in the next 15 years, which is larger than
40.37 and 38.89% in the next 10 and 5 years. In type III,
farmers’ perception of climate change in the next 5, 10, and
15 years has little difference. Comparatively speaking, farmers’
perception of climate change in the next 10 years is the least
obvious, accounting for 11.67%, which is higher than that of
11.11 and 10.93% in the next 15 and 5 years. In conclusion,
farmers’ perception of the time of short-range climate change
is more obvious, and its perception degree decreases with time
extension. The possible explanation for this is that farmers are
more concerned about the recent situation and have higher
cognitive accuracy than identifying long-term risks.

(2) Spatial perception of climate change: In type I, farmers’
spatial perception of global climate change is most obvious,
accounting for 66.85%, which is higher than 61.85, 56.11, and
50.93% in China, Sichuan province and this village. In type II,
the uncertainty of farmers’ spatial perception of climate change
in Sichuan province accounts for the highest 31.30%, which is
higher than 28.52, 25.56, and 24.07% in China, the world and the
village. In type III, farmers’ perception of climate change varies
greatly, especially their perception of climate change in their
own village accounts for 25.00%, which is larger than 12.59%
in Sichuan Province, 9.63% in China and 7.59% in the world. In
conclusion, farmers’ spatial perception of long-distance climate
change is more obvious, and their perception degree increases
with the expansion of space. The possible explanation is that
the phenomenon of climate change is more obvious in a larger
region, and it is easier for farmers to obtain information related
to this region through the Internet, TV and other channels.
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TABLE 3 Logit regression results of space-time perception and moderating effect of farmers’ climate change.

Model 1 Model 2 Model 3 Model 4

Marginal
coefficient

Standard
error

Marginal
coefficient

Standard
error

Marginal
coefficient

Standard
error

Marginal
coefficient

Standard
error

Time perception

Further 5 years 0.033*** (0.006) 0.028*** (0.010) 0.037** (0.016)
Further 10 years –0.016 (0.027) –0.014 (0.022) –0.023 (0.032)
Further 15 years 0.011 (0.019) 0.002 (0.017) –0.003 (0.024)
Space perception

Earth 0.025 (0.024) 0.024 (0.023) 0.025 (0.022)
China 0.021 (0.026) 0.019 (0.026) 0.006 (0.017)
Sichuan –0.023 (0.024) –0.026 (0.024) –0.015 (0.018)

Village 0.020 (0.016) 0.019 (0.016) 0.018* (0.010)
Individual and family features

Gender 0.015 (0.014) 0.018 (0.015) 0.017 (0.016) 0.024 (0.022)
Age –0.003** (0.001) –0.003** (0.001) –0.003** (0.001) –0.003** (0.001)
Education 0.001 (0.002) 0.001 (0.003) 0.001 (0.003) 0.003 (0.003)
Ln (Person income) 0.029** (0.012) 0.031*** (0.010) 0.032*** (0.010) 0.029** (0.012)
Ln (Person land) 0.144*** (0.031) 0.147*** (0.032) 0.152*** (0.035) 0.148*** (0.033)
Climate reduce –0.025 (0.053) –0.024 (0.048) –0.030 (0.051) –0.025 (0.049)
Earth * F5 –0.038*** (0.006)

Earth * F10 0.023 (0.023)

Earth * F15 0.001 (0.043)

China * F5 –0.072** (0.029)

China * F10 0.066 (0.077)

China * F15 –0.007 (0.072)

Sichuan * F5 0.012 (0.042)

Sichuan * F10 0.040 (0.063)

Sichuan * F15 –0.028 (0.031)

Village * F5 0.029*** (0.008)

Village * F10 –0.046*** (0.014)

Village * F15 0.027*** (0.009)

County Yes Yes Yes Yes Yes Yes Yes Yes

N 540 540 540 540 540 540 540 540

The standard errors of cluster at the county in parentheses; the report result is marginal effect; F5, F10, and F5 represent farmers’ perception of climate change in the next 5, 10, and
15 years; *p < 0.1, **p < 0.05, ***p < 0.01.

Binary logistic model estimation

Table 2 shows the regression results of time and space
perception of climate change on farmers’ climate change
response behaviors. Model 1–7 takes into account the
influence of control variables and regional dummy variables
on the premise that the core variables time perception and
space perception of climate change are included. To better
explain the results, we tested the marginal effect of each
variable in Model 1–7.

In terms of time perception of climate change, the regression
results of Model 1, 2 and 3 show that farmers’ time perception
of climate change has a positive significance on their adaptive
behavior decisions at 1% level, and there is a scale difference,
that is, the next 5 years > the next 10 years > the next 15 years.
When farmers’ perception of climate change increases by 1% in
the next 5, 10, and 15 years, their probability of coping with
climate change increases by 2.8, 2.4, and 2.3%, respectively. This
may be because, influenced by factors such as knowledge level,
personal experience and preference, farmers care more about

immediate interests and neglect long-term situations (Ou, 2003;
Peng, 2012). In terms of space perception of climate change, the
regression results of Model 4, 5, 6 and 7 showed that farmers’
spatial perception of climate change had a positive impact on
their adaptive behavior of climate change, and there was a
scale difference, that is, global > China > local village. Among
them, the climate change perception of global, Chinese and local
villages has a positive impact on farmers’ adaptive behaviors
at the levels of 5, 5, and 1%, respectively. Only the climate
change perception of Sichuan province has no significant impact
on farmers’ adaptive behaviors. When the farmers’ perception
of global, Chinese and local climate change increased by 1%,
the probability of taking response measures increased by 3.6,
3.5, and 2.4%, respectively. The explanation is that farmers are
less sensitive to climate change in smaller regions because they
have lived longer in their own villages and provinces than in
large regions such as China and the world. In addition, farmers’
perception of regional climate change may also be affected by the
difficulty in observing small-scale regional climate change and
obtaining relevant information (Xu et al., 2015; Mei et al., 2019).
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TABLE 4 Impacts of time-space perception of climate change on farmers’ adaptive behavior selection.

I only take passive measures II only take active measures III take both measures

Marginal
coefficient

Standard
error

Marginal
coefficient

Standard
error

Marginal
coefficient

Standard
error

Time perception

Further 5 years –0.011 (0.033) –0.030 (0.022) 0.022 (0.037)

Further 10 years 0.132** (0.060) 0.096*** (0.035) –0.166** (0.070)

Further 15 years –0.135*** (0.050) –0.069** (0.028) 0.174*** (0.058)

Space perception

Earth –0.013 (0.034) –0.055*** (0.021) 0.120*** (0.037)

China –0.035 (0.044) 0.025 (0.026) 0.009 (0.049)

Sichuan 0.003 (0.037) 0.018 (0.020) –0.055 (0.041)

Village 0.059*** (0.021) –0.010 (0.012) –0.033 (0.023)

Individual and family features

Gender 0.017 (0.037) –0.007 (0.024) 0.020 (0.044)

Age 0.002 (0.002) 0.000 (0.001) –0.004* (0.002)

Education –0.013** (0.005) 0.000 (0.004) 0.017*** (0.007)

Ln (person income) –0.002 (0.020) 0.012 (0.014) –0.010 (0.024)

Ln (person land) 0.089*** (0.034) –0.070** (0.033) 0.121*** (0.047)

Climate reduce –0.049 (0.038) –0.060** (0.024) 0.123*** (0.044)

County Yes Yes Yes Yes Yes Yes

N 540 540 540 540 540 540

The report result is marginal effect; the standard errors in parentheses; *p < 0.1, **p < 0.05, ***p < 0.01.

In terms of control variables, gender, household per capita
income, and household per capita arable land area have
positive effects on the adaptation behavior of farmers to climate
change. The possible reason is that the higher the household
income of farmers, the less restrictive effect the economic
cost of coping measures has on farmers (Hisali et al., 2011;
Akter et al., 2016). Age has negative and significant effect on
farmers’ response to climate change at 5% level. This may be
because the older the farmers are, the less able they are to
acquire information and receive information, and the lower
their sensitivity to climate change. Education level and disaster
experience had no significant effect on farmers’ adaptation to
climate change. This may be due to the limitation of sample
characteristics.

TABLE 5 Statistical table of farmers’ adaptation measures
to climate change.

Family number Proportion (%)

The total sample 540 100

No countermeasures were taken 62 11.48

Take countermeasures

(1) Take both measures 330 61.11

(2) Only take active measures 41 7.59

(3) Only take passive measures 107 19.81

Interaction term regression model
estimation

The impact of each core independent variable on farmers’
adaptation to climate change has been verified above. Next,
this paper discusses the impact difference of climate change
perception on farmers’ adaptive behavior of climate change
from three dimensions of climate change temporal perception,
climate change spatial perception, and climate change temporal
and spatial perception (Table 3).

FIGURE 4

Chart of farmers’ response to climate change.
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Model 1 shows the results of only including climate change
time perception and control variables and regional variables.
Compared with Table 2, when the three core variables of climate
change time perception are included in the regression, the
estimation effect of the model is weakened. Only the climate
change perception in the next 5 years has a positive impact on
farmers’ adaptive behavior at 1% level. This may be because the
perception of the time of climate change will significantly affect
farmers’ adaptation to climate change, but farmers’ perception
of future climate change is only a general cognition, and it
is difficult to clearly distinguish the changes in different time
periods. At the same time, because farmers pay more attention
to the recent situation and are easier to identify, their perception
of climate change in the next 5 years is more obvious, and even
their perception may be confused with the perception of longer-
term climate change. Model 2 shows the results of only including
spatial perception and control variables and regional variables
of climate change. Compared with Table 2, when the four core
variables of spatial perception of climate change are included
in the regression, the estimation effect of the model is not
obvious. This may be because the spatial awareness of climate
change will be obvious when farmers adapt to climate change
behavior. However, when the global, China, Sichuan province
and local village spatial perception variables of climate change
are included in the model, they may influence each other and
thus reduce the role of farmers in coping with climate change.
For example, when farmers’ perception of climate change in
their village or province is not obvious, and their information
channels and cognition level are limited, they may think that
changes in China and the world are not obvious either.

Model 3 shows the regression results of integrating temporal
perception of climate change, spatial perception of climate
change, control variables and regional variables. Compared with
Model 1 and 2, when the seven core variables of climate change
perception were included in the regression, the estimated effect
of the Model changed little. Only the temporal perception of
climate change in the next 5 years has a positive significant
effect on farmers’ adaptive behavior decisions at 1% level. This
indicates that farmers are more sensitive to the short-term

risk perception under the temporal and spatial dimensions
of climate change.

Based on Model 3, Model 4 shows the result after the
interaction product and centralization of three time-sensing
variables of climate change and four spatial variables. The results
show that only the time perception of climate change in the
next 5 years and the perception of climate change in the village
have positive significance on the behavior decision of farmers’
adaptation to climate change at 5 and 10% levels. Among the
interaction items, “Earth ∗ F5,” “China ∗ F5,” and “Village
∗ F10” have significant negative impacts on farmers’ climate
change response behaviors at 1, 5, and 1% levels, respectively.
The impacts of “Village ∗ F5” and “Village ∗ F15” on farmers’
climate change response behaviors are significantly positive at
1% level, respectively. This indicates that farmers have a low
perception of climate change in short time distance and short
time distance, and may even have a negative response to climate
change due to their underestimation of risks. However, in the
case of farmers’ perception of near-spatial climate change, the
fuzziness of their perception of far-temporal climate change has
little impact on farmers, and farmers are still actively responding
to climate change.

In terms of control variables, farmers’ age has a significant
negative impact on their adaptation behavior to climate change,
and per capita income and arable land area have a significant
positive impact on farmers’ adaptation to climate change.
Gender, disaster experience and education level have no
significant impact on farmers’ adaptation to climate change.
Therefore, more training should be given to farmers on climate
change to improve their awareness and coping ability. At the
same time, reduce the economic and time costs of farmers to
cope with climate change.

Multinomial logit model estimation

It has been discussed above that farmers’ perception of
time and space of climate change at different scales will affect
their adaptive behaviors. In this context, what is the difference

TABLE 6 Statistical table of farmers’ perception of climate change in time and space.

I obvious perception II uncertain perception III not obvious perception

N Proportion (%) N Proportion (%) N Proportion (%)

Time perception

Further 5 years 271 50.19 210 38.89 59 10.93

Further 10 years 259 47.96 218 40.37 63 11.67

Further 15 years 249 46.11 231 42.78 60 11.11

Space perception

Earth 361 66.85 138 25.56 41 7.59

China 334 61.85 154 28.52 52 9.63

Sichuan 303 56.11 169 31.30 68 12.59

Village 275 50.93 130 24.07 135 25.00
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between farmers’ choice of measures to cope with climate
change? To answer this question, this section uses the MNL
model to take the initiative to adaptive, passive adaptive to the
control group is not used, to discuss climate change awareness
of time and space to I use only passive adaptive measures, II
only with active adaptive measures and type III both measures
adopted three to adapt to the effects of policy decision, Such
as Table 4. The results show that the time perception of
remote climate change has a more significant impact on farmers’
specific adaptation measures, while the national and provincial
climate change perception has no significant impact on farmers.
Specifically:

(1) In terms of climate change time perception, the impact
of climate change perception on farmers’ adaptation measures
in the next 5 years is not obvious. In the next 10 years,
the perception of climate change for farmers to adopt passive
measures and active measures is positively significant at 5 and
1% level, respectively, but the perception of climate change for
farmers to adopt both measures is negatively significant at 5%
level. When farmers’ perception of climate change in the next
10 years increases by 1%, the probability of adopting passive
adaptation measures and active adaptation measures increases
by 13.2 and 9.6%, respectively, and the probability of adopting
both measures decreases by 16.6%. What’s interesting is that the
perception of climate change over the next 10 and 15 years is
the opposite. In the next 15 years, farmers’ perception of climate
change is negatively significant at the level of 1% for passive
measures and 5% for active measures, but positively significant
at the level of 1% for both measures. For each 1% increase
in farmers’ perception of climate change in the next 15 years,
the probability of adopting passive adaptation measures and
active adaptation measures will decrease by 13.5 and 6.9%,
respectively, and the probability of adopting both measures
will increase by 17.4%. This may indicate that when specific
measures are taken to cope with climate change, farmers have
no obvious preference to cope with short-term climate change.
However, when dealing with the risk of medium-term climate
change in the future (the next 10 years), farmers choose to adopt
certain targeted measures because they have a certain level of
awareness of the risk. When dealing with the long-term threat
of climate change (the next 15 years), the difficulty of predicting
the risk leads them to prefer both measures, thus reducing the
potential damage.

(2) In terms of spatial perception of climate change, the
impact of climate change perception in China and Sichuan
province on farmers’ adaptation measures is not obvious. The
perception of global climate change for farmers only adopting
active adaptation measures and adopting both measures is
significantly negative and positive at 1% level, respectively.
When the farmers’ perception of global climate change increased
by 1%, the probability of adopting active adaptation measures
decreased by 5.5%, and the probability of adopting both
measures increased by 12.0%. The climate change perception

of the village is positively significant to the passive adaptation
measures adopted by farmers at 1% level. When farmers’
perception of climate change increased by 1%, the probability
of adopting passive adaptation measures increased by 5.9%.
This may indicate that in response to the large-scale climate
change crisis (global), farmers’ willingness to adopt both active
and passive adaptation measures for personal life and property,
production and operation has been greatly enhanced. However,
when farmers perceive only small scale climate change (their
village), they tend to choose only passive adaptation measures.
This may be because farmers underestimate the threat of small-
scale climate change or the effectiveness of individual coping
behaviors, and tend to choose only passive adaptation measures
with low time and economic cost.

In terms of control variables, age of individual
characteristics was negatively significant to both measures
at the level of 10%. Education level is only passive adaptive
measure, and both measures are negative significant at 5%
level and positive significant at 1% level, respectively. The
per capita arable land area and crop disaster experience of
households were negatively significant at the level of 5% and
positively significant at the level of 1%. In addition, the per
capita arable land has a significant positive impact on the
passive adaptation measures adopted by farmers. This may
indicate that households with larger per capita land area and
disaster experience have higher awareness of climate change risk
prevention and higher willingness to adopt active and passive
adaptation measures.

Discussion

Based on the survey data of 540 farmers in Sichuan
Province, China, this study used binary Logit model and
Multinomial Logistic Regression model (MNL) to explore the
effects of farmers’ space-time perception of climate change
and their interaction effects on their adaptation behavior to
climate change. Compared with previous studies, the marginal
contribution of this paper is as follows: First, from the
perspective of farmers’ space-time perception of climate change,
the impact of climate change on farmers’ response to climate
change is analyzed based on scale effect. Secondly, Logit model
were used to quantify the space-time scale differences of farmers’
perception of climate change. In addition, MNL model was used
to discuss the impact of different spatial and temporal climate
change perceptions on farmers’ adaptive measures. Thirdly,
representative micro-individual data were used to focus on the
behavior of farmers in rural areas of China in response to climate
change, so as to provide reference for the formulation of climate
change policies in China and other developing countries.

Global climate change is an indisputable fact (Hase et al.,
2021), which will have a huge impact on human production
and life. Horowitz (2009) showed that there was a strong
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negative correlation between national per capita GDP and
temperature, and global GDP would decrease by 3.8% for
every 1◦C increase in national temperature. Climate change
also threatens global environmental governance, national food
security, and children’s nutritional health (McMahon and Gray,
2021; Baste and Watson, 2022). In response to the threat of
climate change, 153 countries and the European Community
signed the United Nations Framework Convention on Climate
Change (UNFCCC) in 1992, hoping to control the rate of global
warming by reducing greenhouse gas emissions. Since then,
the international community has held many meetings calling
on countries to actively change climate and discharge carbon
dioxide within the agreed limits. However, the climate change
crisis appears to be more severe than predicted. According to the
latest assessment report from the Intergovernmental Panel on
Climate Change, global surface temperatures in the 21st century
will exceed 1.5 and 2◦C without deep controls on emissions
of greenhouse gases such as carbon dioxide. Climate change
is a matter of human welfare and equity, and the efforts of
governments at all levels, the private sector and the public
are indispensable.

China has always played an important role in promoting
global climate governance. From 1998, when China officially
promulgated the Energy Conservation Law of the People’s
Republic of China, to 2007, when China explicitly proposed to
“strengthen capacity building to cope with climate change and
make contribution to global climate protection,” to 2020, when
China proposed the “dual carbon target,” China’s participation
in the global cause of climate change mitigation has been
on the rise (Hu, 2012). Although all sectors of society attach
great importance to the response to climate change, residents,
especially small farmers, as the main body of adaptation to
climate change, are not optimistic about the perception and
response to climate change. Low awareness of climate change,
high cost of adaptation measures and poor response effect
restrict the implementation of relevant policies at the micro
individual level. Therefore, how to help farmers out of the plight
of climate change will have far-reaching significance for global
climate governance.

In the context of intensified climate change, the academic
community has conducted extensive research on the adaptation
behavior of farmers to climate change. However, in general,
these factors are mostly concentrated in the gender, age,
economic income and other aspects of farmers, and few studies
have explored from the perspective of space-time perception of
climate change. In the only studies, either only focus on the
trend of climate change at the macro level, or mostly adopt
qualitative analysis methods, or only analyze the perception of
farmers’ climate change in single dimension of time or space.
For example, Yu et al. (2011) used descriptive statistics to study
the perception intensity of local precipitation and temperature
changes in the past 50 years by residents of different age groups
in Shaanxi. Wang and Yu (2015) used the perception intensity

formula to show that there were differences in the accuracy of
residents’ climate perception in different small areas in southern
Shaanxi. In Hanzhong, Ankang, and Shangluo, the consistency
rates between the perceived precipitation change and the
measured precipitation change were 100, 44.4 and 66.7%,
respectively. In general, the existing research still lacks the
quantitative analysis of micro-subject climate change perception
in multiple dimensions. Therefore, this paper used binary Logit
model and MNL model to explore the impact of farmers’ spatio-
temporal climate change perception and their interaction effects
on farmers’ climate change adaptive behavior.

There are still some shortcomings in this study, which can
be further expanded in future research. For example, differences
in the impact of spatio-temporal perception of farmers’ climate
change on farmers’ response to climate change under different
climate types and meteorological natural disasters and the
reasons can be discussed. Secondly, the spatial and temporal
perception intensity of climate change and its impact on the
adoption of specific measures can be further studied in different
dimensions. Thirdly, from the perspective of farmers’ perception
of climate change in time and space in the past, it can be
discussed whether it will affect their current climate change
adaptive behavior and the difference in impact. Finally, there
may be a “perception-behavior” cycle affecting the temporal
and spatial perception of climate change among farmers. For
example, farmers have a strong perception of climate change
risks in the past 5 years and may take active measures to
deal with them. The guarantee of corresponding measures
may reduce the current perception of climate change risk and
the enthusiasm of farmers to cope with it. The mechanism
and characteristics of “perception-behavior” in the space-time
perception of climate change of farmers can be further studied.

Conclusion

Based on the survey data of 540 farmers in Sichuan
Province, China, this study used binary Logit model and
MNL model to explore the effects of farmers’ space-time
perception of climate change and their interaction effects on
farmers’ adaptation behavior to climate change. The results
showed that: (1) 88.51% of farmers took adaptation measures
to climate change, and 61.11% of them took both passive
and active adaptation measures. (2) The scale difference of
farmers’ time and space perception of climate change has a
significant positive impact on their adaptive behavior of climate
change. In terms of time: climate change perception in the
next 5 years > in the next 10 years > in the next 15 years.
In terms of space: farmers’ perception of climate change is
global > national > local village (the perception of local
province is not obvious). (3) Farmers’ space-time perception of
climate change significantly affects farmers’ adaptive behavior.
Among them, “farmers’ perception of climate change in the next
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5 years” and their own “village’s perception of climate change”
play an important role.

This paper has important implications for guiding farmers
to effectively adapt to climate change, and its conclusions
are also applicable to other developing countries. (1) The
state should improve policies related to climate change and
issue regulations to support farmers in coping with climate
change. The study shows that farmers may make blind
choices when making decisions on climate change response
measures due to the influence of time and economic cost.
The state should attach importance to the construction
and maintenance of rural infrastructure and strengthen the
funding support for infrastructure construction of grassroots
governments. We will formulate overall reference standards
for rural infrastructure construction, urge local governments
to implement them in light of local conditions, and supervise
them by setting up responsibility mechanisms and supervision
groups. At the same time, the state also should increase
investment in rural infrastructure and provide certain economic
subsidies to farmers responding to climate change, so as
to enhance their willingness to cope with climate change.
(2) Local governments should combine local characteristics
to develop green and low-carbon agricultural products and
reduce greenhouse gas emissions from production, logistics and
packaging of agricultural products while implementing orders
from higher authorities. The study found that the excessive
use of chemical fertilizers in the adaptation process of farmers
to climate change will increase carbon dioxide emissions and
deteriorate soil properties. In addition, at present, farmers
mostly adopt passive adaptive measures such as increasing
irrigation and adjusting farming time. By buying agricultural
insurance and planting subsidies, the local government can
guide them to take measures to deal with climate change. In
addition, the government should give play to the demonstration
and guidance role of community-level agricultural technology
departments and major farmers in villages, strengthen training
and services in agricultural technology for farmers, reduce
their blind application of chemical fertilizers and pesticides,
and improve their ability to adapt to climate change in a
scientific way. (3) Village collectives should actively implement
the instructions of their superiors and expand climate change-
related knowledge training for farmers. In our survey, farmers
paid more attention to the immediate situation and had no
obvious perception of long-term threat of climate change and
surrounding environment. In this regard, the village’s collectives
should use radio, mobile phones, brochures and other media
to strengthen publicity on the long-term potential risks of
climate change and surrounding environmental changes. Keep
a close eye on climate change information. For example, when
disasters such as flood and drought are likely to occur in the
local area, inform households in time and assist farmers to
take preventive measures. (4) Farmers should actively respond
to the call of the government, actively participate in village

collective climate change related training sessions. They are
supposed to close and village cadres, neighbors and other groups
of communication and other ways, effectively expand the family
information channels. Thus, they can strengthen their own
green production awareness and take appropriate measures to
deal with climate change.
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This study reviews the global increase in atmospheric greenhouse gas (GHG)

concentrations, including carbon dioxide (CO2), methane (CH4), and nitrous

oxide (N2O), alongside the accelerated climatic change and its slow onset

effects (or events) between 1992 and 2021. The establishment of the United

Nations Framework Convention on Climate Change (UNFCCC) in 1992, and the

simultaneous UN Earth Summit in Rio de Janeiro, generated the international

efforts to tackle climatic change. Over the years, the UNFCCC-Conference of

the Parties (COP) has led the efforts in climate change mitigation and

adaptation, with many sequential meetings across the world. Three decades

later, at the COP26meeting in Glasgow in 2021, it is evident that climate change

impacts have substantially worsened. Despite some uncertainties, it seems that

over the last three decades, the climate change slow onset events, including 1)

increasing temperatures, 2) glacial retreat, 3) sea level rise, 4) ocean

acidification, 5) soil salinization, 6) land and forest degradation, 7) loss of

biodiversity, and 8) desertification, have substantially exacerbated.

Simultaneously, other (non-GHGs related) anthropogenic impacts, including

habitat fragmentation, land-use and sea-use change and misuse, species

overexploitation, environmental pollution, infrastructure constructions, and

urbanization, have considerably increased. With the aim of achieving the

Shared Socio-Economic Pathways 1.9 (SSP1-1.9) or SSP1-2.6 ultimate

goals—keeping global warming in 2,100 below 1.5°C or 2.0°C, respectively,

compared to preindustrial levels—it may still be possible to avoid climate

change’s irreversible tipping points. To reach this target, policymaking must

become more decisive and proactive, with continuous risks assessment,

frequent monitoring of outcomes and their compatibility to goals,

implementing practical legislation tools, and assigning specific financial

instruments, aimed at effectively tackling climate change slow onset events

and related environmental issues. Substantial efforts should be invested in

boosting climate change mitigation, while simultaneously targeting effective

climatic change adaptation measures and promoting environmental

conservation and restoration. Relying on tools such as the UN Sustainable

Development Goals (SDGs) will sustain provisioning, supporting, regulating, and

cultural ecosystem services, thus improving water-, food-, environmental-,

energy-, economic-, health-, and governance-security, while lessening the
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risks of social unrest, violent conflicts, mass migration, and other humanitarian

catastrophes.

KEYWORDS

climatic change feedbacks, coral bleaching, deforestation, global warming, mountain
glacier, rainstorms and floods, Representative concentration pathway (RCP), Small
island developing states (SIDS)

Introduction

The United Nations Framework Convention on Climate

Change (UNFCCC)—predesigned in the late 1980s, and

officially established in 1992—provided the foundation for

intergovernmental efforts to address the responsibility of

humankind for the increased emission of greenhouse gases

(GHGs) (Climate Change Secretariat, 2002). Specifically, the

Convention was aimed at promoting an international

environmental treaty for combating climate change and its

worldwide adverse impacts on natural and managed

ecosystems, as well as on human health and welfare. The

Convention acknowledged that per capita emissions are

substantially greater in developed countries than in developing

ones, but that the share of emissions from the developing

countries is expected to grow to meet their social, economic,

and developmental needs. Thus, the Convention called for

‘cooperation by all countries and their participation in

effective international response, in accordance with their

common but differentiated responsibilities and respective

capabilities, as well as with their social and economic

conditions’ (UNFCCC, 1992).

The simultaneous establishment of Conference of the Parties

(COP) as the supreme body of the UNFCCC provided the

Convention with administrative instruments for stabilizing

atmospheric GHG concentrations, and with the timeframe for

its implementation (Climate Change Secretariat, 2002). It was

declared that ‘the Parties should protect the climate system for

the benefit of present and future generations, and on the basis of

equity. Accordingly, the developed country Parties should take

the lead in combating climate change and its adverse impacts’.

Further, in terms of adaptation actions, it was declared that

priority should be given to developing country Parties that are

particularly vulnerable to adverse impacts of climate change,

such as small island countries, low-lying coastal countries,

dryland countries, etc. Article seven in the treaty details the

COP’s responsibilities, among which is the periodic examination

of ‘obligations of the Parties and the institutional arrangements

under the Convention . . . review reports submitted by its

subsidiary bodies and provide guidance to them’, and set up

‘ordinary sessions of the COP every year’ (UNFCCC, 1992).

Although the first COP meeting (COP1) was held in 1995 (in

Berlin) (UNFCCC, 1995), it is a direct outcome of the UN Earth

Summit (also known as the UN Conference on Environment and

Development) held in 1992 in Rio de Janeiro, which addressed

climatic change and related challenges, including increasing

temperatures and decreasing precipitations, sea level rise,

ocean acidification, soil salinization, land degradation and

desertification, forest and biodiversity loss, and other

environmental issues (UN, 1993). Since then, and over

three decades, many additional COP meetings were held

(Table 1). Among the earlier meetings, the Kyoto Conference

1997) is particularly remarkable as it led to the publishing of the

Kyoto Protocol, which states specific and measurable actions to

be taken by the Parties. Among these actions, the requirement to

reduce global GHG emissions by at least 5% in the commitment

period between 2008 and 2012, is probably the most ambitious

(UN, 1998). Among the later meetings, the Paris Conference

(2015) is a prominent landmark due to the resulting Paris

Agreement, with the specific call for limiting global warming

to 1.5–2.0°C compared to pre-industrial levels. Four years later, in

2019, a voluntary initiative of the COP26 Universities

Network—a group of over 80 United Kingdom universities

and research centers—was established, aimed at promoting

the goal of ‘net zero emissions’ (also named as ‘carbon

neutrality’) by 2050 (Reid and Wood, 2021).

However, despite these meetings, decisions, and

recommendations, global GHG emissions have continued

to rise over time, continuously breaking records of

atmospheric concentrations of the major GHGs—including

carbon dioxide (CO2: Figure 1A), methane (CH4: Figure 1B),

and nitrous oxide (N2O: Figure 1C). Among the GHGs, CO2 is

the most widespread, and its main anthropogenic sources are

related to land-use change, deforestation, and burning of fossil

fuels (Harper et al., 2018). The main anthropogenic sources of

CH4 are enteric fermentation by ruminant livestock animals,

as well as rice paddies and landfills. The global warming

potential (GWP) of CH4 is 28 times greater than that of

CO2 (Lin et al., 2021). The main anthropogenic source of

N2O is the excess use of nitrogen (N) fertilizer in agricultural

lands. The GWP of N2O is ~300 times greater than that of CO2

(Wang et al., 2021).

Concordant with the soaring atmospheric GHG

concentrations, climate change, expressed by extreme weather

events and abrupt interruptions of climatic patterns, including

severe and consecutive droughts on the one hand, and harsh

rainstorms and devastating floods on the other hand, have

become the new ‘normal’ weather regime (Bowen, 2015). The

biophysical effects of climate change are various, and occur over a

wide range of temporal scales. Among these, eight effects that
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take place over relatively long timeframes have been termed by

the UNFCCC as ‘slow onset effects’ (or ‘slow onset events’).

These events include 1) increasing temperatures, 2) glacial

retreat, 3) sea level rise, 4) ocean acidification, 5) soil

salinization, 6) land and forest degradation, 7) loss of

biodiversity, and 8) desertification (UNFCCC, 2012). The

objective of this synthesis study is to concisely review the

sequential trends caused by the slow onset events over the last

three decades (1992–2021), as well as some of the most

influential consequences for future life on Earth. As shown

throughout this synthesis, failure to halt the accelerating

increase in atmospheric GHG concentrations and the

consequent abrupt climatic change over this timeframe have

exacerbated the slow onset events, risking biophysical quality of

terrestrial and marine ecosystems, and jeopardizing ecosystem

services. However, beyond the climate change related slow onset

events, other (non-GHGs related), direct anthropogenic

impacts—including habitat fragmentation, land- (and sea-)

use change and misuse, environmental pollution, and species

overexploitation, alongside mineral mining and quarrying,

infrastructure construction, and urbanization—have amplified

some of these events throughout the last three decades. Further,

the net effect of some of these direct anthropogenic impacts may

exceed the effects of climate change, substantially modifying the

Earth’s biophysical environment and degrading ecosystem

services. These direct anthropogenic impacts are concisely

discussed, emphasizing their potential consequences for global

sustainability.

Increasing temperatures

Radiative forcing, in which the mix of gases in the

atmosphere retains some of the solar energy from reflection

TABLE 1 The United Nations Framework Convention on Climate Change (UNFCCC) Conference of the Parties (COPs)’ meeting history.

Meeting name/# Year Location Extraordinary outcomes

The Earth Summit 1992 Rio de Janeiro First official addressing of climate change

COP1 1995 Berlin

COP2 1996 Geneva

COP3 1997 Kyoto Kyoto Protocol

COP4 1998 Buenos Aires

COP5 1999 Bonn

COP6 2000 Hague

COP6-2 2001 Bonn

COP7 2001 Marrakesh

COP8 2002 New Delhi

COP9 2003 Milan

COP10 2004 Buenos Aires

COP11 2005 Montreal

COP12 2006 Nairobi

COP13 2007 Bali

COP14 2008 Poznań

COP15 2009 Copenhagen

COP16 2010 Cancún

COP17 2011 Durban

COP18 2012 Doha

COP19 2013 Warsaw

COP20 2014 Lima

COP21 2015 Paris Paris Agreement

COP22 2016 Marrakesh

COP23 2017 Bonn

COP24 2018 Katowice

COP25 2019 Madrid

COP26 2021 Glasgow

COP27a 2022 Sharm El-Sheikh

COP28a 2023 Abu Dhabi

aplanned.
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on Earth, is a natural process that enables life on Earth. However,

elevated GHG concentrations in the atmosphere causes the

energy imbalance (Wigley, 2021). Sequential data obtained by

the National Oceanic and Atmospheric Administration (NOAA)

clearly demonstrate the increased radiative forcing by CO2, CH4,

N2O, as well as their total radiative forcing between 1992 and

2019 (Figure 2A). The term Equilibrium Climate Sensitivity was

coined to assist in estimating the climatic response to radiative

forcing, aimed at avoiding climatic irreversible tipping points,

and particularly negating temperature rise beyond a certain level

(IPCC, 2014; IPCC 2021).

Specifically, compared to preindustrial level (the

1850–1900 baseline), the global surface temperature average

over 2081–2,100 is projected to be higher by 1.0–1.8°C (1.5°C

on average) under the very low GHG emissions scenario (‘Taking

the green road 1st: coded as the Shared Socioeconomic Pathways

(SSP)1–1.9, or as the Representative Concentration Pathway

(RCP)1.9 (where the 1.9 represents the end-of-century

radiative forcing of 1.9 W m−2)). At the same time, the low

GHG emissions scenario (‘Taking the green road 2nd: SSP1-2.6,

or RCP2.6) will cause global warming of up to 2.0°C. Further, the

intermediate GHG emissions scenario (‘Middle of the road’:

SSP2-4.5, or RCP4.5) is anticipated to cause temperature

increase by 2.1–3.5°C, whereas the high GHG emissions

scenario (‘A road divided’: SSP3-7.0, or RCP7.0) is expected

to increase temperature by 2.8–4.6°C, and the very high GHG

emissions scenario (‘Taking the highway’: SSP5-8.5, or RCP8.5)

is forecasted to increase temperature by 3.3–5.7°C (IPCC, 2021).

Regardless, it is acknowledged that global warming highly varies

across the globe. For example, the average temperature of the

FIGURE 1
Changes in atmospheric concentrations of carbon dioxide (CO2: (A), methane (CH4: (B), and nitrous oxide (N2O: (C) between 1992 and
2021. Data source: https://www.statista.com/statistics/1091926/atmospheric-concentration-of-co2-historic/ (A); https://www.eea.
europa.eu/data-and-map/s/daviz/atmospheric-concentration-of-carbon-dioxide-5#tab-chart_5_filters=%7B%22rowFilters%22%3A%
7B%7D%3B%22columnFilters%22%3A%7B%22pre_config_polutant%22%3A%5B%22CH4%20(ppb)%22%5D%7D%7D (B); https://www.
eea.europa.eu/data-and-maps/daviz/atmospheric-concentration-of-carbon-dioxide-5#tab-chart_5_filters=%7B%22rowFilters%22%3A
%7B%7D%3B%22columnFilters%22%3A%7B%22pre_config_polutant%22%3A%5B%22N2O%20(ppb)%22%5D%7D%7D (C).
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coldest days in the Arctic region is projected to increase by about

three times the global average increase (IPCC, 2021), while in the

Mediterranean, mean temperatures in the coming decades are

forecasted to be 20% warmer than the global average (Lionello

and Scarascia, 2018).

Overall, global warming during the last three decades is

evident when addressing temperature anomalies. Data

obtained by NOAA and the National Aeronautics and Space

Administration (NASA) show an increasing trend of global

temperature between 1992 and 2021 relative to baselines of

both 1901–2000 and 1951–1980 (Figure 2B). Further, of the

10 warmest years between 1880 and 2020, eight were in the

second decade of the 21st century. The other two warmest years

were 2005 and 2010 (https://www.ncei.noaa.gov/access/

monitoring/monthly-report/global/202013).

Specifically, increasing global temperatures warm ocean

water and elevate oceanic evaporation, therefore interrupting

the natural water cycle (Collins et al., 2013), and increasing

the frequency and magnitude of extreme climatic events, such

as major (category 3–5) tropical cyclones (IPCC, 2021;

Bloemendaal et al., 2022). At the same time, there is

uncertainty regarding long-term trends of all (including

both ‘normal’ and major) Atlantic hurricanes and tropical

cyclones (IPCC, 2021). To some extent, this concurs with data

obtained by NOAA, demonstrating a slight and non-

significant increase in total number of tropical storms and

FIGURE 2
Changes in radiative forcing imposed by carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O), as well as total radiative forcing,
between 1992 and 2019 (A); global temperature anomalies relative to the 1901–2000 and 1951–1980 base periods (B); the number of tropical storms
and hurricanes per year, at a global scale, between 1992 and 2014 (C). Data source: NOAA (National Oceanic and Atmospheric Administration). 2020.
The NOAA Annual Greenhouse Gas Index. www.esrl.noaa.gov/gmd/aggi (A); Data source for the 1901–2000 base period: https://www.ncdc.
noaa.gov/cag/global/time-series; data source for the 1951–1980 base period: https://climate.nasa.gov/vital-signs/global-temperature/ (B); https://
www.nhc.noaa.gov/climo/images/AtlanticStormTotalsTable.pdf (C).
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hurricanes per year between 1992 and 2014 (Figure 2C). It was

suggested that the long-term trend toward more high-end

rapid intensification (24-h intensification events of ≥50 kt
day−1) of tropical cyclones is somewhat muted by the

simultaneous trend toward La Niña-like climatic

conditions, increasing cyclone activity over the north

Atlantic while decreasing it over the north and south

Pacific (Klotzbach et al., 2022). One way or another, rising

global temperatures have caused monsoon activity to increase

since the 1980s over West Africa (IPCC, 2021).

Increased water-loss from terrestrial water bodies by

evaporation is an additional important direct effect of elevated

temperatures on the biophysical environment (Xia et al., 2022).

Another prominent direct effect is higher soil-water evaporation,

which has resulted in long-term and severe ecological and

agricultural stress, reducing the soil’s capacity to support

primary productivity (Dolschak et al., 2019; IPCC, 2021). The

resulting mass mortality of vegetation, and the consequent

decreased plant cover, is expected to cause the aggravation of

sand- and dust-storms (ESCAP, 2018). Overall, the increased

evaporation losses impact natural biogeochemical cycles and

adversely affect a wide range of ecosystem services and

functions (Mooney et al., 2009). Further, the increasing

temperatures are projected to accelerate permafrost thawing in

high latitudes (IPCC, 2021). Due to the massive stores of organic

carbon locked in permafrost, thawing triggers extensive

microbial breakdown of carbon into CO2 and CH4 that are

released to the atmosphere, generating a positive feedback

FIGURE 3
Change in Arctic sea ice cover (in September) between 1992 and 2021 (A); Greenland ice sheet cumulative mass variation between 2002 and
2021 (B); Antarctica ice sheet cumulative mass variation between 2002 and 2021 (C). Data source: https://climate.nasa.gov/vital-signs/arctic-sea-
ice/ (A); https://climate.nasa.gov/vital-signs/ice-sheets/ (B,C).
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with climate change (Schuur et al., 2015). The combined effect of

the increasing temperatures degrades ecological and

environmental quality, deteriorating water-, food-, economic-,

and health-security for extensive human populations, resulting in

generation and exacerbation of humanitarian catastrophes across

the globe (Stavi et al., 2021a).

Glacial retreat

Net loss of glacier cover has been mostly substantial for the

northern hemisphere. Across the Arctic sea ice region, glacier

cover has substantially decreased. Between 2011 and 2020,

annual average cover of Arctic sea ice reached its lowest level

since at least 1850. Compared to the 1979–1988 timeframe,

glacier cover in 2010–2019 across this region has decreased by

40% in September (when Arctic sea ice reaches its minimum) and

by 10% in March (IPCC, 2021). September Arctic sea ice is

declining at a rate of 13% per decade relative to the

1981–2010 average (Figure 3A). Over the past two decades, a

substantial decrease in ice sheet mass was also observed for

Greenland (Figure 3B). According to a recently published long-

term study, the loss of Greenland’s ice sheet increased from 41 ±

17 Gt yr−1 in 1990–2000 to 187 ± 17 Gt yr−1 in 2000–2010 and to

286 ± 20 Gt yr−1 in 2010–2018. However, due to a series of cold

summers, the acceleration trend in ice sheet loss shifted from

positive in 2000–2010 to negative in 2010–2018 (Mouginot et al.,

2019).

While there is a consensus regarding the tremendous

decline in northern glaciers and ice sheets, it seems that

glacier and ice trends in the southern polar region are

somewhat controversial. In a recent summary for

policymakers by the Intergovernmental Panel on Climate

Change (IPCC), it was stated that due to opposing impacts

and substantial variability across the Antarctic sea ice over the

past decades, the trend in ice sheet and glacier cover is not clear

(IPCC, 2021). At the same time, NASA shows a clear decrease

in Antarctica’s ice sheet mass over the last two decades

(Figure 3C). This trend is consistent with a recent long-term

study, which revealed that Antarctica’s ice sheet mass loss

increased from 50 ± 14 Gt yr−1 in 1989–2000 to 166 ± 18 Gt

yr−1 in 1999–2009 and to 252 ± 26 Gt yr−1 in 2009–2017. To

some extent, this controversy could be attributed to local

variability in surficial conditions and the resulting glacial

processes (Rignot et al., 2019). At a finer resolution, this

controversy is exemplified by Zhang et al. (2020), who

recorded that the ice sheet volume of west Antarctica

declined while it increased in east Antarctica during the

years 2002–2019. For the very same timeframe, Zhang and

others found a net loss of 68.7 ± 8.1 km3 yr−1 of Antarctic ice

sheet volume, and an acceleration loss rate of 5.5 ± 0.9 km3 y−2.

A recent review study showed that between 1994 and 2017,

Earth lost 28 trillion tonnes of ice, including 7.6 trillion tonnes

from the Arctic sea ice, 6.5 trillion tonnes from Antarctic ice

shelves, 6.1 trillion tonnes from mountain glaciers, 3.8 trillion

tonnes from the Greenland ice sheet, 2.5 trillion tonnes from the

Antarctic ice sheet, and 0.9 trillion tonnes from the Southern

Ocean sea ice. Of these, 58% of the ice loss was from the Northern

Hemisphere, and 42% from the Southern Hemisphere.

According to the same study, since the 1990s, the rate of ice

loss has increased by 50%—from 0.8 to 1.2 trillion tonnes per

year (Slater et al., 2021).

Among the mountain glaciers, those in the Central Asian

corridors—such as the Tien Shan, Pamir, Karakoram, and

Himalaya—are of specific interest. Substantial changes in these

glaciers’mass have been reported for the last decades and are also

forecasted for the coming decades. These changes are attributed

to latitudinal, altitudinal, topographic, and geologic conditions,

as well as to glacier type and properties (Chen et al., 2016; Li et al.,

2016; Shahgedanova et al., 2020). Yet, an overall negative mass

balance—both for the past and future—has been reported/

forecasted for most Central Asian glaciers (Chen et al., 2016;

Li et al., 2016; Pohl et al., 2017; Bolch et al., 2022). In

humanitarian terms, the receding Central Asian glaciers

directly impact the living conditions of large rural

populations, which are already vulnerable and often

impoverished, and generally lack the financial or political

capacity to overcome the changing environmental conditions

(USAID, 2018). The most direct forecasted effect is the decrease

in glacier-fed streamflow, reducing the availability of fresh water

for domestic use and agricultural irrigation by local populations,

adversely affecting their water-, food-, and economic-security

(Stavi et al., 2021a). In addition, hydropower generation, which

relies on glacial water flow, is also expected to substantially

decrease, adversely impacting energy security for these

populations (USAID, 2018).

Sea level rise

Global sea level rise is attributed to the simultaneous impacts

of melting glaciers and ice sheets, and the thermal expansion of

the oceans’ water. Globally, thermal expansion was responsible

for 50% of sea level rise between 1971 and 2018, while the

remainder is attributed to melting glaciers and ice sheets

(IPCC, 2021). Oceans’ water thermal expansion is attributed

to the increase in water temperature. Data obtained by NASA

shows an increasing trend in global sea surface temperature

anomaly (between 1992 and 2020: Figure 4A), and a

corresponding sea level rise (between 1993 and 2021:

Figure 4B). Relative to the 1995–2014 baseline, the likely

global mean sea level rise by 2,100 is 0.28–0.55 m under the

very low GHG emissions scenario (SSP1-1.9/RCP1.9),

0.32–0.62 m under the low GHG emissions scenario (SSP1-

2.6/RCP2.6), 0.44–0.76 m under the intermediate GHG

emissions scenario (SSP2-4.5/RCP4.5), and 0.63–1.01 m under
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the very high GHG emissions scenario (SSP5-8.5/RCP8.5)

(IPCC, 2021).

Specifically, sea level rise risks coastal aquifers, increasing the

probability of groundwater salinization and adversely affecting

water security of extensive human populations around the world

(Jasechko et al., 2020; IPCC, 2022a). Also, sea level rise is

expected to increase the frequency and severity of coastal

flooding in low-lying areas, and to intensify shoreline erosion

along sandy coasts (IPCC, 2021). A particular adverse impact is

the projected damages to shoreline infrastructures (IPCC,

2022a), and specifically to coastal cities that have expanded

into areas previously uninhabited due to flood risk. Low-lying

cities exist in some of the most populated countries, such as

China, India, Bangladesh, several Southeastern Asian countries,

as well as in some other parts of the world, and are expected to

experience substantial inundation already in the mid-21st

century (Jevrejeva et al., 2016).

Overall, it seems that flooding risks affect global populations

disproportionally, as the relative contribution of developed

countries to sea level rise is 64–69% greater than that of

developing countries (updated data to 2005: Hardy and Nuse,

2016). Within the latter group of countries, a special focus on

inequality should be put on Small Island Developing States

(SIDS: Thomas et al., 2020), which encompass a total of

58 states across the Caribbean Sea, Atlantic Ocean, Indian

Ocean, South China Sea, and the Pacific Ocean (UN-

OHRLLS, 2015). Altogether, the SIDS inhabit approximately

65 million people (approximately 0.8% of the ~8.0 billion

global human population: Mead, 2021), while contributing less

than 1% of global GHG emissions, and yet, suffer the most from

sea level rise (Thomas et al., 2020). The inherent physical features

of SIDS—small size and remoteness—make them highly

susceptible to the influence of large-scale ocean-atmosphere

interactions, such as trade winds, El Niño, monsoons, tropical

cyclones, and hurricanes. In addition, many SIDS—among which

are nine least developed countries (LDCs)—experience particular

socio-economic hardships, which further aggravate their

vulnerability. This includes small population size, high

dependence on traditional economic sectors such as

agriculture and fishery, and high public debt level (UN-

OHRLLS, 2015), as well as the concentration of large

populations (of which one-third live on land less than 5 m

FIGURE 4
Mean global sea surface temperature anomaly between 1992 and 2020, relative to the 1971–2000 baseline (A); mean change in sea level
between 1993 and 2021 (B). Data source: https://www.epa.gov/sites/default/files/2021-04/sea-surface-temp_fig-1.csv; https://www.epa.gov/
climate-indicators/climate-change-indicators-sea-surface-temperature (A); https://climate.nasa.gov/vital-signs/sea-level/ (B).
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above sea level), agricultural lands, and infrastructures in coastal

zones. Altogether, these conditions exacerbate the susceptibility

of SIDS to climate change, and worsen the water-, food-,

environmental-, and economic-insecurity of their populations

(Mead, 2021). In economic terms, the annual climate change-

related loss of gross domestic product (GDP) in SIDS ranges

between ~1.0 and 6.5%, as opposed to a world average of ~0.5%

(UN-OHRLLS, 2015).

Sea level rise has already displaced people in a number of

SIDS including Kiribati, Solomon Islands, the Marshall

Islands, and the Federated States of Micronesia.

Displacement of people from SIDS is expected to surge

over the 21st century, as extensive lands in these islands

will become inhabitable as a result of sea level rise (UN-

OHRLLS, 2015). Indeed, SIDS are recognized as the most

immediately vulnerable area to mass outmigration (Handmer

and Nalau, 2019). The migrated and resettled SIDS’

populations are likely to experience substantial changes in

their social fabric, traditional culture, and lifestyle, with the

probable significant degradation in their economic security

(UN-OHRLLS, 2015; Handmer and Nalau, 2019).

Ocean acidification

Acidification of oceans is a complex phenomenon in which

several contributing factors together lower the pH of seawater.

This phenomenon is predominated by atmospheric CO2

incorporation in the seawater-pools of dissolved inorganic

carbon, which originate from several oceanic biogeochemical

cycles and sources (Mostofa et al., 2016). It is evident that during

the last three decades ocean acidification has been substantial.

Data obtained from the United States Environmental Protection

Agency (EPA: www.epa.gov/climate-indicators/climate-change-

indicators-ocean-acidity) for Hawaii (1992–2018), Bermuda

(1992–2015), Cariaco (NE Venezuela: 1992–2014), and the

Canary Islands (1995–2009), shows a trend of decreasing

seawater pH for all sites (though not significantly so for the

FIGURE 5
Mean change in ocean pH between 1992 and 2018 (A); mean change in ocean CO2 partial pressure (pCO2) between 1992 and 2018 (B). Data
source: Bates, 2016; González-Dávila, 2012; University of South Florida, 2021; University of Hawaii, 2021; EPA’s Climate Change Indicators in the
United States: www.epa.gov/climate-indicators; https://www.epa.gov/climate-indicators/climate-change-indicators-ocean-acidity
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latter) (Figure 5A). While the increase in acidification of oceans

has been primarily attributed to the continuously rising

atmospheric concentration of CO2, the contribution of natural

factors—including plant litter decomposition, volcanic

eruptions, CO2 emissions from freshwater sources, etc.—is

also acknowledged (Mostofa et al., 2016). Regardless, oceans’

elevated CO2 (alongside higher seawater temperature) may

increase primary productivity (a process known as the ‘CO2

fertilization effect’) of specific marine species, partially offsetting

the atmospheric concentration of this GHG (Holding et al.,

2015). Yet, data obtained from the EPA’s website demonstrate

the increase in ocean CO2 partial pressure (pCO2) for each of the

four sites over time (though not significantly so for the Canary

Islands) (Figure 5B). Assessing the Pearson product-moment

correlation coefficient between the ocean pCO2 level and

seawater pH reveals a negative and very strong correlation for

Hawaii (r = -0.9913), the Canary Islands (r = -0.9991), and

Bermuda (r = -0.9800), whilst a negative but only intermediately-

strong correlation for Cariaco (r = -0.4767) (data for calculation

of r values was obtained from: www.epa.gov/climate-indicators/

climate-change-indicators-ocean-acidity).

In addition, anthropogenic emissions of nitrogen oxides

(NOx) and sulfur dioxide (SO2) by industrial, transportation,

and agricultural sectors, increase the acidity of aerosols that are

then deposited in oceans, further elevating ocean acidity (Baker

et al., 2021). Overall, ocean acidification causes substantial

modifications in the seawater carbonate (CO3
2−) system, with

simultaneous, complex impacts on its components. Calcifying

organisms are specifically impacted, as the lower pH of seawater

decreases calcification and growth rates of corals and other

marine organisms (Mostofa et al., 2016), and dissolves their

calcium carbonate (CaCO3) structure. Specifically, in warm

water, symbiosis between corals and the unicellular microalgae

Symbiodinium genus may be interrupted, resulting in the loss of

the characterizing brown symbionts and a subsequent paling of

the coral host, a process known as bleaching. Coral bleaching at

the scale of colonies or groups of colonies has been documented

since the early 20th century. Yet, regional-scale mass bleaching

was first reported in the early 1980s. It was suggested that oceans’

rising temperature combined with increasing acidification

accelerate coral mass bleaching (Hoegh-Guldberg et al., 2017).

Coral reefs support biodiversity and encompass habitats for

rich wildlife. Once mass bleaching takes place, it degrades the

resilience of reef ecosystems, eventually causing their collapse.

Beyond the adverse effects on this supporting ecosystem service,

mass bleaching is expected to adversely affect other services.

Among the provisioning ecosystem services, fishery is the most

obvious, providing vital nutrition to many coastal communities.

Also, in some communities, such as the Solomon Islands, corals

are harvested and used as a construction material. In terms of

regulating services, the reefs protect shoreline areas from waves

and extreme storms, thus lessen coastal erosion. Simultaneously,

the reefs store carbon and enable the cycling of nutrients and

other elements. The most prominent cultural service is probably

reef tourism, which has grown substantially over recent decades

(UN-OHRLLS, 2015; Woodhead et al., 2019). Obviously, the

most adversely impacted human communities are those who

reside in SIDS, where coral reefs encompass an important source

for subsistence, fisheries, tourism, and shoreline protection. This

risk seems to be particularly relevant for SIDS in the Pacific and

Indian Oceans, where some of the SIDS have already lost 80% of

their corals (UN-OHRLLS, 2015). Under the SSP1-2.6/

RCP2.6 GHG emissions scenario, global SIDS are projected to

lose 70–90% of reef-building corals, while under the SSP2-4.5/

RCP4.5 scenario and beyond, global SIDS may lose up to 99% of

corals (IPCC, 2022b).

Soil salinization

Natural soil salinity is attributed to the prevailing geophysical

conditions, and is known as primary salinization. These

geophysical conditions include the parent material mineralogy,

topography, and the water table properties. One of the major

causes of primary salinization is chemical weathering of parent

material, and the resulted release of cations (such as calcium

(Ca2+), potassium (K+), magnesium (Mg2+), and sodium (Na+))

and anions (such as bicarbonates (HCO3
−), chloride (Cl−), and

sulphate (SO4
2−)) to the soil solution. In saline soils, the salt

content reduces the plants’ water uptake capacity, decreases the

availability of nutrients for vegetation, and imposes plant toxicity

(Litalien and Zeeb, 2020; Stavi et al., 2021b). Salinity, measured in

electrical conductivity (EC) of the soil solution, ranges from 0 to

2 dS m−1 for non-saline, 2–4 dS m−1 for slightly saline,

4–8 dS m−1 for moderately saline, 8–16 dS m−1 for strongly

saline, and >16 dS m−1 for very strongly saline soil (Salt Farm

Foundation, 2018).

In humid regions, the dissolved ions are prone to leaching

and transportation to surface or belowground waterbodies.

However, in drylands, the soluble ions remain in the soil

exchangeable complex, or precipitate as secondary minerals.

This precipitation can occur when the ionic concentration in

the soil solution reaches the saturation of a certain salt. Under

certain conditions, Na+ ions may replace the precipitated less

soluble salts in the exchange complex, a process known as

primary sodification, which imposes high toxicity conditions

for plants. Depending on the salt composition in the soil

solution, primary salinization-sodification processes may also

take place, characterized by EC value > 4 dS m−1 (compared to

EC < 4 in sodic soils) and pH value being usually <8.5 (compared

to pH > 8.5 in sodic soils) (Stavi et al., 2021b). A specific type of

soil salinization, termed as ‘saline seep’, occurs in recharge

alluvial plains laying over shallow, salt-rich underground

waterbodies (SDSU Extension, 2019).

Like in warm dryland regions, where high evaporation rates

increase the salt concentration of the water solution (Stavi et al.,
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2021b), the global rising temperatures elevate evaporation rates,

increasing the extent and severity of soil salinization.

Additionally, the increase in frequency and magnitude of

droughts across extensive parts of the world is further

expected to accelerate the extent and severity of soil salinity

(Bannari and Al-Ali, 2020). An additional primary salinity

mechanism is related to aeolian salt deposition, in which salts

originating in seawater are deposited—either by rainfall (wet

deposition) or without rainfall (dry deposition)—up to several

kilometres inland, causing salinization across extensive areas

(Hassani et al., 2021). A specific primary salinity process in

coastal areas that are prone to tides is caused by the intrusion of

seawater into inland’s surface- or underground-water bodies. For

surface water bodies, this process is specifically prominent in

river deltas. The extent and severity of this process are

exacerbated by the rising sea level (Eslami et al., 2021).

Sometimes, it is not easy to distinguish between the site-

specific share of anthropogenic vs natural causes of salinization.

Yet, soil salinity, sodicity, and salinity-sodicity processes in non-

agricultural lands are usually attributed to droughts and

increasing temperatures, and therefore, are more related to

‘natural’ causes. At the same time, such processes taking place

in agricultural lands, and specifically in irrigated croplands, are

generally attributed to direct anthropogenic impacts, and are

termed secondary salinization, secondary sodification, or

secondary salinization-sodification (Stavi et al., 2021b). Time-

series databanks or exclusive maps for dynamics over time of

naturally-vs anthropogenic-caused saline and sodic soils do not

exist. Nevertheless, a recent study shows that global saline land

area increased from slightly over 9 M km2 in 1986 to over 10.5 M

km2 in 2016 (Ivushkin et al., 2019). Figure 6 demonstrates the

global distribution of saline, sodic, and saline-sodic lands. A

recent modeling study of future soil salinization dynamics until

2,100 identifies the drylands of Southwest United States, Central

and South America, South Africa, and Australia as salinity

hotspots, whilst forecasting a decrease in soil salinity in

Northwest United States, Eastern Europe, western Central

Asia, and the Horn of Africa (Hassani et al., 2021).

Land and forest degradation

Land degradation encompasses several processes that can

take place separately, or in conjunction with others. The main

processes of land (or soil) degradation are structure deformation,

depleted organic carbon pool, biochemical deterioration

(including nutrient depletion and acidification), salinization

(and the related processes of sodification and combined

salinization-sodification), and erosion by wind or water

(Olsson et al., 2019). Climatic change is a major cause of land

and soil degradation, with prominent impacts on each of the

involved processes (Talukder et al., 2021). Further, oxidation of

FIGURE 6
Global distribution of saline, sodic, and saline-sodic soils. Source: Encyclopedia of the Environment (unknown date). https://www.
encyclopedie-environnement.org/en/zoom/land-salinization/
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soil organic carbon emits CO2 to the atmosphere, turning soils

from carbon-sinks to carbon-sources, and exacerbating climatic

change feedbacks (Lal, 2010). Yet, it seems that the complex

nature of land and soil degradation, as well as the difficulty in

monitoring its spatiotemporal dynamics (including the degree of

degradation—ranging between light, moderate, strong, and

extreme), have negated the generation of time-series, globally

inclusive database of this issue. Specifically, distinguishing

between ‘natural’ causes of land and soil degradation

processes vs anthropogenic ones—such as habitat

fragmentation, vegetation clearing, land-use change,

agricultural malpractices, irrational grazing management, the

expansion of infrastructures, urbanization, and environmental

pollution—is often impossible. One way or another, climatic

change aggravates anthropogenic-driven processes of land and

soil degradation (Olsson et al., 2019; Talukder et al., 2021).

Taking these limitations into account, and considering the

substantial uncertainties, no conclusive insights can be

achieved regarding global extents and trends of naturally-

driven land and soil degradation over the period of focus of

this study (1992–2021).

Yet, a global assessment for 1997–2003 estimated that land

degradation processes occur in 15–63% of total land area (Safriel,

2007). According to the United Nations, between 2000 and 2015,

global proportion of degraded land encompassed 20% of the total

land area (https://unstats.un.org/sdgs/report/2019/goal-15/:

Figure 7A). A proxy global assessment of land degradation,

determined according to changes in remotely sensed

Normalized Difference Vegetation Index (NDVI) data for

1981–2003, revealed degradation of a total area of over 35 M

km2 throughout this period, encompassing ~23% of the globe’s

terrestrial area (Bai et al., 2008). A somewhat more recent global

FIGURE 7
Proportion of degraded land between 2000 and 2015 (%) (A); global annual net change in area of naturally regenerating- and planted-forests, by
decade, between 1990 and 2020 (B). Notes: *Including Australia, New Zealand and Papua New Guinea, and excluding the islands of Oceania;
**Excluding Switzerland and the United States; modified from: https://unstats.un.org/sdgs/report/2019/goal-15/ (A); modified from: https://www.
fao.org/forest-resources-assessment/2020/en/ (B)
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assessment of NDVI changes—for 1998–2013—reveals net

declined or stressed productivity in 19% of grasslands and

26% of shrublands and other open lands (European

Environment Agency, 2019). Recently, the United Nations

Convention to Combat Desertification (UNCCD) estimated

the global extent of land degradation to encompass over 18 M

km2 (UNCCD, 2021). The decreased productive capacity of the

degraded lands substantially deteriorates a wide range of

ecosystem services and functions, namely reduced food, feed,

and fiber production, hence risking food- and economic-security

(GEF, 2019).

In terms of forest degradation, one of its main indicators is

tree dehydration, which is attributed to increasing

temperatures and long-term droughts (Earles et al., 2018).

Drought-stressed trees become more susceptible to pest

infestations, resulting in mass tree mortality. Regardless of

drought-stress, increasing temperatures accelerate the spread

of some tree pathogens and diseases throughout the world’s

forests (Anderegg et al., 2015). One way or another, the

stressed or desiccated trees become an available fuel,

elevating the frequency and magnitude of high-severity

wildfires. Forest wildfires turn biomass-assimilated carbon

into CO2, emitting this GHG to the atmosphere and

aggravating climatic change feedbacks (Berenguer et al.,

2021). Regardless, the extent of anthropogenic deforestation

for the logging industry and/or for the establishment of

croplands and grazing lands, as well as for urbanization

and the construction of infrastructures, has been enormous,

accelerating the rates of forest loss. Yet, the global rate of

forest area loss is under debate. For example, according to the

Global Forest Watch, out of ~40 M km2 of global forests,

deforestation for logging, agriculture, and urbanization

between 2001 and 2021 encompassed ~1.17 M km2, 0.88 M

km2, and 31 k km2, respectively (https://www.

globalforestwatch.org/). However, according the World

Bank, total (including both natural- and anthropogenic-

driven) loss of forest area across the globe is considerably

less, encompassing a total of 1.3 M km2 between 1990 and

2016 (https://data.worldbank.org/indicator/AG.LND.FRST.

K2). According to the Food and Agriculture Organization

(FAO) of the United Nations, between 1990 and 2020, the rate

of annual loss of naturally regenerating forests has decreased,

and moreover, faced some mitigation by forest planting

(Figure 7B). Yet, in addition to negating the important

regulating ecosystem service of carbon sequestration, the

combination of natural- and anthropogenic-driven forest

degradation adversely affects many other ecosystem

services. Among the other regulating services, flood and

soil erosion control are probably the most prominent. The

major provisioning services are forest-derived food (such as

fruits, nuts, edible bulbs, and mushrooms) and wood

(including logs, poles, and fuelwood) products. Among the

supporting services, biodiversity is most important. Forests

also fulfil cultural and spiritual services, such as heritage sites

and communal identity (Stavi et al., 2022).

Nevertheless, despite the generally adverse impacts of

climatic change on the world forests, higher atmospheric CO2

concentrations are acknowledged to increase tree photosynthesis

through the CO2 fertilization effect. With this effect, forests’

increasing productivity offsets some of the CO2 emissions,

potentially mitigating climate change to some extent.

However, while this effect seems to be prominent for young

trees, its potential impact on mature trees is still questionable, a

fact that is related to the tree’s carbon-use efficiency, which is

higher in young individuals than in mature ones (Luo and Niu,

2020).

Loss of biodeversity

Biodiversity loss has been widely attributed to the

degradation or extinction of ecosystems and habitats. Climatic

change, specifically rising temperatures, has caused extensive

destruction of terrestrial, marine, and freshwater ecosystems,

with the consequent adverse impact on biodiversity’s supporting

ecosystem service. Specifically, temperatures exceed levels that

species can cope with, causing the mass mortality of plants and

animals. The rising temperatures also accelerate infestation of

diseases and pathogens, further threatening many species in

diverse biomes. If global warming is to exceed 2.1°C in 2,100

(SSP2-4.5/RCP4.5 and beyond), risks of habitat collapse and

ecosystems extinction are to escalate rapidly, with biodiversity

hotspots suffering the most (IPCC, 2022c). According to the

United Nations, over the last decades, the Red List Index of

species survival—which represents the changing state of global

biodiversity—has declined by ~10%, from 0.821 in 1993 to

0.735 in 2019 (https://unstats.un.org/sdgs/report/2019/goal-

15/; Figure 8).

However, a plethora of studies have shown that climate

change impact on biodiversity is not that clear. Regarding

plant diversity, global extinctions have generally not been

directly related to climatic change. At the same time, local

extinctions have taken place in the climatic margins of a

species’ range. Overall, the major threats (in descending

importance) to plant diversity were identified as habitat loss-

fragmentation-degradation > species overexploitation > species

invasion > air pollution > climate change (Corlett, 2016). A

global meta-analysis of local-scale plant biodiversity changes

over time—comprised of information provided in published

studies and of data obtained from reports on vegetation

monitoring plots around the world—revealed no clear adverse

effect on species richness and diversity. The timeframe for these

studies and reports varied highly, and ranged between five and

261 years. While some of the studies and reports showed an

increase in species richness and/or diversity, others showed a

decline in these vegetation parameters. Specifically, despite the
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possible decline in plant diversity at a local scale—for example

due to species outmigration—global-scale plant biodiversity is

not necessarily adversely affected by climatic change (Vellend

et al., 2013).

A recent report by the World Wildlife Fund (WWF, 2020)

assessed the risk imposed on animal (including mammals, birds,

fish, reptiles, and amphibians) biodiversity by climate change

between 1970 and 2016, alongside the threats imposed by four

other main factors, including land- (and sea-) use change and

misuse, species overexploitation, invasive species and diseases,

and environmental pollution. The assessment was separately

conducted for five regions, including North America; Latin

America and Caribbean; Europe and Central Asia; Africa; and

Asia-Pacific. Altogether, these five factors reduced the global

abundance of 20,811 populations—representing 4,392 animal

species—by 68% along this period. However, calculating the

average risk imposed on biodiversity by each of the five

factors revealed that climate change is of least importance.

Namely, the impact imposed by these factors followed the

order of land- (and sea-) use change and misuse (50.1 ±

2.3%) > species overexploitation (24.4 ± 2.8%) > invasive

species and diseases (12.6 ± 0.6%) > environmental pollution

(6.8 ± 1.6%) > climate change (6.1 ± 1.4%) (means and SE

calculation is based on data obtained from WWF, 2020).

Nevertheless, in the context of biodiversity loss, separating

between the impacts of climate change and other dominating

factors is not always straightforward. For example, climatic

changes are expected to stimulate vegetation invasion. A

broadly accepted viewpoint is that climatic changes increase

the capacity of alien plant species to invade new territories,

while simultaneously decreasing the resistance of natural

ecosystems to invasions by interrupting their dynamic

equilibrium (Thuiller et al., 2007). Yet, the impact of climate

change on vegetation invasiveness seems to be rather complex,

and moreover, scale-dependent. A systematic review of many

modeling case studies showed high variability in the effects of

climatic change on vegetation invasion in terrestrial systems.

Specifically, in regional-to global-scale models, a reduction in

species range size was predicted more often than an increase.

Conversely, in local-to small-scale models, an increase in species

range size was forecasted more frequently than a reduction

(Bellard et al., 2018).

Desertification

Desertification is defined as land degradation in dry sub-

humid, semi-arid, and arid regions, whereas land degradation in

hyper-arid regions is excluded from the definition of

desertification (UNCCD, 1994; see Figure 9 for global

desertification vulnerability map (USDA-NRCS, 1998)). This

process causes the deterioration of productive capacity,

ecological integrity, and ecosystem services of the affected

land. Desertification derives from either natural or

anthropogenic causes, with often the two act simultaneously.

Among the ‘natural’ causes, climate change is predominant

(Mirzabaev et al., 2019; Fan et al., 2020). A recent assessment

of climatic trends across the world’s drylands between 1979 and

2018 revealed a general increase in temperatures and decrease in

precipitations, with the most notable changes recorded during

the last decade. During this entire period, the rate of temperature

increase has been 0.032°C yr−1, and the rate of precipitation

decrease has been 0.074 mmmonth−1 yr−1 (Daramola and Xu,

2022). Yet, at the regional scale, variations are more dramatic. For

example, warming of the Saharan Belt and the surrounding

oceans during recent decades has led to substantial

modifications in the nature of the Hadley Cell system, causing

convective rainstorms to become more intense and intermittent

FIGURE 8
Red List Index of species (including >20,000 species of mammals, birds, amphibians, corals, and cycads) survival, between 1993 and 2019.
Source: UN Stats. https://unstats.un.org/sdgs/report/2019/goal-15/
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(Biasutti, 2019). In the China–Mongolia–Russia Economic

Corridor, between 2000 and 2015, the areal cover of slight

desertification has faced ~32% increase (from ~720,000 km2 to

~950,000 km2), while that of severe desertification has faced

~13% decrease (from ~82,000 km2 to ~71,000 km2). Overall,

while the total desertified area along this period increased by

~10%, the degree of desertification showed a decreasing trend

(Fan et al., 2020). At the same time, another study implemented

in Central Asia revealed regional increasing temperatures since

the 1980s, coupled with northward and eastward areal expansion

of the arid-cold (BWk) climatic region into the semi-arid-cold

(BSk) climatic region (Hu and Han, 2022).

One way or another, increasing temperatures and severe

droughts across extensive drylands elevate evaporation loss

and reduce soil-water content, causing the mass mortality of

vegetation (Stavi et al., 2018). The resulted increase in

frequency and severity of dust- and sand-storms further

exaggerate drylands’ environmental degradation. The

simultaneous rarer but stronger rainstorms cause extensive

flooding and large-scale soil erosion processes, alongside

depletion of soil organic carbon pools. The combined effect

of these processes causes the expansion and aggravation of

drylands. However, because different sets of indicators,

approaches, and methodologies are used, the global

assessment of extent and severity of desertification is rather

complicated, and suffers substantial uncertainties. Further,

these uncertainties complicate the quantification of past

desertification, as well as the prediction of future

desertification (Mirzabaev et al., 2019). Yet, a recent study

showed that between 1982 and 2015, climate change has

caused the degradation and desertification of almost

5.5 M km2 (encompassing almost 13%) of the world

drylands (Burrell et al., 2020). A recently developed

index—the Global Desertification Vulnerability Index

(GDVI)—revealed that the present combined impact of

climatic change and direct anthropogenic activities impose

moderate, high, and very high desertification risk in 13, 7, and

9%, respectively, of the global terrestrial area. Compared to

the 2000–2014 baseline, the GDVI projects that in 2,100, the

areal coverage of low desertification risk will decline from

47 to 35% under the SSP2-4.5/RCP4.5, and to 24% under the

SSP5-8.5/RCP8.5 (Huang et al., 2020).

Yet, in addition to modern climatic changes that are

attributed to anthropogenic emissions of GHGs,

FIGURE 9
Global desertification vulnerability map. Source: USDA-NRCS (1998). https://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/use/worldsoils/?
cid=nrcs142p2_054003
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desertification processes can also be generated by natural

meteorological conditions. For example, changes in regional

wind patterns that modify dust deposition, possibly

decreasing the input of mineral material to the system. The

simultaneous increase in extent and severity of soil erosion

processes results in the net loss of mineral materials from the

system (Stavi et al., 2010). Overall, the major anthropogenic

drivers of desertification are land-use change and

unsustainable land management practices, including

intensified agriculture, overgrazing by livestock, and

clearing of woody vegetation, alongside extensive

infrastructure construction, mineral mining and quarrying,

urban expansion, and environmental pollution. These

practices and land-uses increase the pressures imposed on

the already fragile drylands, exacerbating the degradation in

their productivity and functioning (Mirzabaev et al., 2019).

Across the world, desertification adversely affects the

livelihood of over 200 million people, most of whom live in

developing countries (Burrell et al., 2020) in South, Central,

and East Asia, the Middle East, the Saharan Belt, and North

and West Africa (Mirzabaev et al., 2019). The combined effect

of ‘natural’ and anthropogenic driven desertification is

expected to deteriorate the water-, food-, environmental-,

energy-, economic-, health-, and governance-security of

human populations across the world’s drylands. Further,

these impacts are expected to exaggerate the potential for

social unrest, violent conflicts, and mass migration,

aggravating humanitarian disasters across the globe (Stavi

et al., 2021a).

Boosting climate change mitigation and
adaptation, and enhancing environmental
conservation and restoration: A wakeup
call

Despite some uncertainties, it seems that climatic change

slow onset events d have significantly exacerbated during the last

three decades (between 1992 and 2021). Simultaneously, many

other direct anthropogenic-driven causes have further

aggravated the slow onset events and adversely affected

environmental quality (Figure 10). Over time, the combined

impacts of the slow onset events and other anthropogenic

causes have substantially degraded provisioning, supporting,

regulating, and cultural ecosystem services. The global human

population growth—forecasted to reach 9.8 billion in 2050 and

11.2 billion in 2,100 (https://www.un.org/en/desa/world-

population-projected-reach-98-billion-2050-and-112-billion-

2100)—is expected to substantially exaggerate environmental

stressors. This state calls for the implementation of urgent

measures in climate change mitigation and adaptation, as well

as in environmental conservation and restoration.

Fore and foremost, proactive decision making at all

levels—ranging between the local to international scales—should

become more decisive, including continuous risk assessment,

frequent monitoring of outcomes and their compatibility to

goals, implementing practical legislation tools, and assigning

specific financial instruments, aimed at enhancing the mitigation

of climatic change slow onset events and related environmental

aspects (Jones et al., 2014). Shifting to more nature-based solutions

and environmentally-friendly modes of operation should be

encouraged by subsidizing the relevant economic sectors.

Another potential mechanism is by paying for accomplishing

ecosystem services (Capodaglio and Callegari, 2018). Policy

makers may benefit from following the United Nations

Sustainable Developments Goals (UN SDGs: https://sdgs.un.org/),

while allowing flexibility and adjustments of its principles according

to emerging environmental issues. Alongside these measures,

decision makers should promote climate- and environmental-

justice policies, particularly supporting the most vulnerable

communities and countries, which are often deprived of

governance power at the local, national, regional, and

international levels (Thomas et al., 2020).

In the energy sector, fossil fuels should be replaced by renewable

energy sources, such as solar, wind, geothermal, marine energies,

biomass conversion-based energies, and others (Demirbaş, 2006).

Deforestation should be heavily controlled, and offset by extensive

climate-smart afforestation and reforestation projects (Verkerk et al.,

2020). Also, mass tree planting in croplands and grazing lands

should be promoted, by applying agroforestry and silvopastoral

practices (Raskin and Osborn, 2019). In relevant coastal areas,

conservation and restoration of mangrove systems should be

promoted, to control inundation and minimize coastline erosion

(Kumano et al., 2021). Further, tree-planting in densely populated

FIGURE 10
Direct and indirect anthropogenic impact on climatic change
and its effects.
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areas such as towns and municipalities should be maximized, to

reduce the ‘urban heat island’ effect (Schwaab et al., 2021). Overall,

land degradation should be minimized by adopting conservation

practices, coupled with the use of offsetting mechanisms such as the

Zero Net Land Degradation (ZNLD, also known as the Land

Degradation Neutrality (LDN): Tal, 2015). Regardless, promoting

a change in human diet from animal-protein based to alternative

sources of protein—through extensive investments in the food-tech

sector—is expected to substantially cut the stressors imposed on

global agricultural and grazing lands, while simultaneously

conserving water resources, reducing GHG emissions, and

lessening environmental pollution (Mbow et al., 2019).

Regardless, environmental contamination should be minimized

through the control and treatment of pollution sources, alongside the

implementation of environmentally-friendly waste management, and

the recovery of polluted air, water, and soil resources. A promising

strategy in this context is the multiple-R concept, such as the Reduce-

Reuse-Recycle (3R), Reduce-Reuse-Recycle-Recovery (4R), etc. (Yu

et al., 2021). Simultaneously, themass development of alternative eco-

friendly and biodegradable materials, as well as of clean technologies

(green technologies), should be of top priority (Ko, 2020). Altogether,

judicious implementation of thesemeasures is expected to assist in the

reviving of global environmental health.

Conclusion

The rising atmospheric concentrations of GHGs over the

past three decades (1992–2021) has caused the substantial

exacerbation of climatic change. Despite some uncertainties,

it seems that this caused the aggravation of slow onset effects,

including increasing temperatures, glacial retreat, sea level rise,

ocean acidification, soil salinization, land and forest

degradation, loss of biodiversity, and desertification. Yet, as

shown throughout this review study, other (non-GHGs related)

anthropogenic impacts, such as habitat fragmentation, land-

(and sea-) use change and misuse, environmental pollution, and

urbanization, have also intensified along this period,

considerably increasing the stressors imposed on

environmental quality and ecosystem services. Therefore,

proactive policymaking and legislation of climate change

mitigation measures, alongside effective adaptation means

and inclusive environmental conservation and restoration

practices, should be of top priority, potentially alleviating the

damages to environmental health and global sustainability, and

avoiding climatic irreversible tipping points.
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Lakes are important guarantees of regional economic development and

ecological security. Previous studies focused on trends of surface area and

water level of lakes in Xinjiang, but paid less attention to nonlinear change and

driving mechanisms of lake areas at annual and monthly scales. To address this

issue, this study used a remote-sensing Big Data cloud platform and

mathematical statistical methods to investigate the change in typical lakes

and its attribution in Xinjiang during 1986–2020. The results showed that: 1)

there was a significant linear trend in Xinjiang lakes: except for Jili Lake, the

plains lakes showed an insignificant (p > 0.1) expansion trend, while the

mountain lakes showed an significant expansion trend (p < 0.01). 2) There

was a significant nonlinear trend in Xinjiang lakes: most of the plains lakes

showed periodicity at 14 and 21 years, however most of the mountain lakes

showed periodicity at 17 and 21 years. Most of the mutation trends of plains

lakes were not significant, yet the mutation trends of mountain lakes showed

significant expansion. 3) Human activities were the dominant factor leading to

changes in the plains lakes: among the anthropogenic factors, farmland area,

GDP, and population had significant effects on lake area (p < 0.1), and lake

expansion was closely related to population and farmland area. Among climatic

elements, precipitation mainly affected the changes in plains lakes. 4) Climate

change was the dominant factor leading to changes in mountain lakes. The

effects of temperature change on mountain lakes were all significantly positive

(p < 0.05). In the future, it will be necessary to build lake protection schemes that

adapt to climate change and human disturbances. This study can provide an

important scientific basis for the rational development and utilization of lakes in

Xinjiang.
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1 Introduction

Lakes are an important part of the terrestrial hydrosphere

and are particularly sensitive to climate and environmental

change. They can record the impact of climate change and

human activities on regional hydrological processes at

different time scales, especially for inland areas with less

precipitation. They are important information carriers to

reveal global climate change and regional responses (Zhang

et al., 2011; Tao et al., 2015). Lakes are important reservoirs

of water resources in arid areas and an important part of the

water cycle in arid areas (Song et al., 2013; Song et al., 2013;

Kaplan and Avdan, 2017). They are among the most sensitive

geographical units in response to global climate change and are

also affected by human activities (Jing et al., 2018). In recent

decades, inland lakes have undergone drastic changes due to

natural environmental changes and human activities (Feng et al.,

2016; Deng and Chen, 2017; Deng et al., 2022). However, on a

global scale, no consistent trend of lake water level has been

found (Wu et al., 2008). In the mountain regions of Asia,

mountain glaciers have been shrinking due to rising

temperature and increasing precipitation, which has

accelerated the expansion of glacial lakes in recent decades

(Song et al., 2016; Liu et al., 2019; Huang et al., 2021).

Although lakes at high latitudes are expanding, most lakes in

arid subtropical regions are shrinking due to the multiple effects

of climate warming, population increase, irrigation area

expansion and water demand increase caused by economic

development (Chaudhari et al., 2018; Wang et al., 2020).

There is high vulnerability of water resources in Northwest

China. With global warming, increased glacial meltwater have

led to rapid increases in lake area on the Tibetan Plateau and

Xinjiang (Yao et al., 2022). In addition, the role of lake water

resources as a key strategic resource should not be ignored (Qin

et al., 2020; Yu et al., 2020). The natural climate characteristics of

drought, little rainfall, and strong evaporation has made Xinjiang

a restricted water-short environment for a long time. As a natural

reservoir and ecological barrier, lakes play an important role in

coordinating the space-time balance of water resources,

maintaining regional ecological health, and optimizing the

human living environment in Xinjiang. Therefore, monitoring

and analyzing dynamic changes in lakes, exploring the temporal

and spatial evolution of lakes, and implementing lake protection

and restoration are hotspots of current ecological environment

research (Yu et al., 2020).

Xinjiang is an extremely arid region in China, located in the

center of Eurasia and far from the sea (Li et al., 2011). At the same

time, Xinjiang is also one of the important distribution areas of

lakes in China, with diverse types and wide distribution.

However, since the mid-20th Century, due to climate change

and unsustainable human economic activities (Zhang et al.,

2013), lakes in Xinjiang have changed, which has attracted the

attention of many experts and researchers. Remote-sensing

images, such as those from Landsat series satellites (MSS, TM,

ETM+), SPOT, PlanetScope, and hyperspectral data, have

frequently been used to study dynamic changes in lakes

(Riaza and Müller, 2010; Song et al., 2013; Revelles and Van

Geel, 2016; Cooley et al., 2017). Methods of lake water extraction

include the single-band threshold method, the water quality

index method, the spectral classification method (Lira, 2006;

Ouma and Tateishi, 2006; Gautam et al., 2015), and others.

However, most of these studies focused only on linear changes in

water area and water volume. Changes in the number and area of

lakes are a major problem in the field of lake research. In

addition, the interaction between lakes and climate factors

may be uneven in altitude zones, basins, and landscapes. So

far, the dynamic response of lakes to different altitude gradients

and different basin climatic factors has been unclear, which limits

our understanding of the interaction between water resources

and climate and affects the rational utilization of regional water

resources (Zheng et al., 2021). In addition, there are still few

detailed analyses of changes in different lakes and the

quantitative impact of local climate and human activities (Yu

et al., 2020). The lakes in Xinjiang show different change trends at

different altitudes (Jing et al., 2018); with the influence of

complex topographic and geomorphic conditions, the types of

lakes in the region are diverse. Lakes are distributed in different

geomorphic types such as plains (altitude <1,500 m), mountains

(1,500 m <altitude <3,500 m), and plateaus (altitude >3,500 m).

For example, the water supply of plains Lake Ebinur is provided

by seasonal snowmelt water and rainfall, which is affected by

climate change (Jing et al., 2018). Its shrinkage is also related to

rapid land reclamation and ecological environment deterioration

(Zhang et al., 2015a). Therefore, further research is needed to

determine the changes in different types of lakes and their

influencing factors. Water resources are the key to social and

economic development and river basin construction in Xinjiang,

but research on changes in water resources in Xinjiang is limited,

especially in terms of long-term sequences and large spatial scale

(Wufu et al., 2020).

Previous studies only focused on the linear changes of lake

area, and ignored the nonlinear changes. In addition, previous

studies only considered the possible influencing factors of lake

area change, and the impact degree of different influencing

factors was rarely explored. Therefore, using remote-sensing

images, this study investigated three important issues through

discussion of the linear and nonlinear variation of lake area at

annual and monthly scales, construction of structural equation

models, and analysis of the driving mechanism of lake area

changes. The three issues are as follows: 1) to summarize the

linear change rules of the interannual trend of lake area in

Xinjiang based on remote-sensing images; 2) to explore

periodic change rules and abrupt-change event diagnosis of

lakes in Xinjiang and the intra-year non-linear change rules;

and 3) attribution and problems of the evolution of typical lakes

in Xinjiang. The overall research process is shown in Figure 1.
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2 Materials and methods

2.1 Study area

Xinjiang is located in the arid area of northwest China

(73°20’~ 96°25’E, 34°15’~49°10’N) and is one of the most

important places of lake distribution in China. The areas of

110 natural lakes are more than 1 km2, and the water area is

about 6,236.44 km2 (Yang et al., 2019). Some of the lakes are

terminal lakes and legacies of the ancient Mediterranean Sea.

Because Xinjiang is located at a middle latitude in the center of

Eurasia, moist water vapor from the ocean has difficulty

reaching it. Annual precipitation in Xinjiang is less than

200 mm (Wang et al., 2012), and the spatial distribution is

uneven. At the same time, the Tarim Basin, the largest basin in

China, and numerous mountains are distributed in Xinjiang,

including the Altai Mountains in the north, the Kunlun

Mountains in the south, and the Tianshan Mountains that

span the whole province. Xinjiang has complex topographic

and geomorphic conditions and various types of lakes,

including 53 plateau lakes (altitude >3500 m), 23 alpine

lakes (1,500 m < altitude <3,500 m), and 45 plains lakes

(<1,500 m) (Bai et al., 2011). The spatial distribution of

lakes in Xinjiang is extremely uneven, which is an

important reason for spatial differences in regional water

resources. From a quantitative standpoint, about 40% of

the lakes are concentrated in the surrounding Tianshan

Mountains, about 30% in the southern Qiangtang Plateau,

about 21% in the southern foothills of the Altai Mountains,

and relatively few in the Tarim and Junggar Basins.

The total number of lakes in Xinjiang has been increasing at

an average rate of five per year, and the number of large lakes

(over 50 km2) has increased significantly (Zheng et al., 2021).

Therefore, ten large lakes (over 100 km2) in Xinjiang (Li et al.,

2015) were selected in this study and divided into two types:

plains lakes (altitude <1,500 m) and mountain lakes

(altitude >1,500 m) to analyze the evolution of and protection

strategies for major lakes in Xinjiang (Figure 2). Among these,

Lakes Ebinur, Bosten, Ulungur, Jili, and Taitema are plains lakes

(altitude <1,500 m), and Lakes Sayram, Aqqikkol, Ayakkum,

Arkatag, and Aksayquin are mountain lakes

(altitude >1,500 m). The plains Lakes Ebinur, Bosten,

Ulungur, Jili, and Taitema are all located in the basin area

and belong to a temperate continental arid climate with little

precipitation and large evaporation. Rivers within the basin are

the main source of replenishment for lakes. The largest area of

lakes generally occurs in spring, and the smallest area generally

occurs in summer and autumn. The mountain Lake Sayram is

located in the Junggar Basin, and Lakes Aqqikkol, Ayakkum,

Arkatag, and Aksayquin are located in the Kunlun Mountains,

which belong to a continental arid climate, where the lakes are

mainly replenished by precipitation and meltwater ice and snow.

The largest area of lakes generally occurs in autumn, and the

smallest area generally occurs in winter and spring.

2.2 Datasets

To study the influence of climatic factors on the number and

area changes of lakes, this study used a monthly average

FIGURE 1
The overall framework of the study.

Frontiers in Environmental Science frontiersin.org03

Wang et al. 10.3389/fenvs.2022.1015543

94

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.1015543


temperature and precipitation dataset (http://www.geodata.cn/)

for China with a spatial resolution of 1 km from January 1901 to

December 2020. The data are based on global climate data with a

spatial resolution of 0.5° released by CRU (Climatic Research

Unit) and on global high-resolution climate data released by

WorldClim through the Delta spatial downscaling scheme in the

region of China. The temperature unit is 0.1°C, and the

precipitation unit is 0.1 mm. To study the influence of human

factors on lake volume and area changes, this study used the

farmland area (km2), GDP (ten thousand yuan) and population

(ten thousand) of each lake basin from 1988 to 2020 as obtained

from the Xinjiang Statistical Yearbook (xinjiang.gov.cn) from

1988 to 2020.

2.3 Methods

2.3.1 The Big Data cloud platform
To improve the efficiency and accuracy of lake water

extraction, this study was based on the Google Earth Engine

(GEE) (https://code.earthengine.google.com) and the Pixel

Information Expert Engine (PIE-Engine), which are two

remote-sensing Big Data and cloud computing platforms, to

efficiently process massive remote-sensing images.

The JRC Monthly Water History (V1.3) dataset contains

maps of the spatial and temporal distribution of surface water

from 1984 to 2020 and provides statistics on the extent and

variation of water bodies at a spatial resolution of 30 m (Pekel

et al., 2016). This dataset has only one band and three values: 0, 1,

and 2, where 0 means no data; 1 means that there are data, but

not for water; and 2 means that there are data for a water body.

The threshold classification method is a classical image

segmentation algorithm. It uses the difference between the

target object of interest and the non-target object of a certain

image feature of a remote-sensing image to divide the image into

several classes by setting the threshold, which achieves the

separation of target and non-target objects. This study

evaluated each raster point in the image and determined

whether the raster point belonged to the water body based on

the band characteristics of the JRC Monthly Water History

dataset, which can be expressed by a mathematical formula as

follows:

g(x, y) �
⎧⎪⎨
⎪⎩

no data , f(x, y) � 0
non − water , f(x, y) � 1

water , f(x, y) � 2
(1)

where f (x, y) is the original image and g (x, y) is the segmented

image. By counting the number of grid cells within the study area

and multiplying by the area of each grid cell, the water area

within the study region can be obtained.

2.3.2 Mann-Kendall trend test
Based on long-time-series lake area data, linear regression

and nonparametric tests were performed using the Mann-

Kendall trend test (Mann, 1945; Kendall, 1948) to calculate

the rate of change in lake area from 1986 to 2020 and to test

FIGURE 2
Distribution of typical lakes in Xinjiang.
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its significance. The Mann-Whitney mutation test (Odeh, 1972;

Whitney, 1997) obtained the year of abrupt lake area change in

the study region and determined the time period causing the

abrupt change in lake area. The influence of climate change and

human activities on lake area change was clarified by correlation

analysis, and the main research method to clarify the cause of

lake area change was the Mann-Kendall trend test.

The Mann-Kendall statistical test is a non-parametric test

method. The time series X1, X2, X3..., Xn are successively

compared, and the results are represented by sgn(θ):

sgn(θ) �
⎧⎪⎨
⎪⎩

1, θ > 0
0, θ � 0
−1, θ < 0

(2)

The calculated result of the Mann-Kendall statistic is:

s � ∑
n-1

i�1
∑
n

k�i+1
sgn(xk − xi), (3)

where xk and xi are random variables and n is the length of the

selected data series. The test statistic Zc is:

Zc �

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

s − 1
						
Var(s)√ , s> 0

0, s � 0

s + 1
						
Var(s)√ , s< 0

(4)

where |Zc|≥1.96 indicates that at the 0.05 significance level, the

sample sequence has a significant trend, and |Zc|>2.58 indicates

that at the 0.01 significance level, the sample sequence has a

significant trend. Positive Zc indicates an upward trend, and

negative Zc indicates a downward trend.

For the time series Xi (i = 1,2,. . .. . .,n), an order Sk, which

represents the cumulative number of Xi > Xj (1 ≤ j ≤ i) in the ith

sample, is then constructed. The expression is:

Sk � ∑
k

i�1
ri (k � 1, 2, . . . . . . , n) (5)

Under the assumption that the time series are independent

and random,

E(Sk) �
k(k − 1)

4
Var(sk) �

k(k − 1)(2k + 5)
72

(6)

Then the statistic UFk is defined as

UFk � |Sk − E(Sk)|							
Var(Sk)

√ (k � 1, 2, . . . . . . , n) (7)

UF is the standard normal distribution, given the level of

significance. If |UFk|>Ua, this indicates an obvious trend in the

time series. UF greater than zero indicates an upward trend,

whereas UF less than zero indicates a downward trend. The next

step is to plot UF as a curve on the time axis and then inversely

arrange the time series into a series xn, xn-1,. . .. . .,x1 according to

the above method to make a reverse statistic UBk curve. Then the

Uk series is tested, given the significance level a = 0.05. If there is

an intersection of two curves in the confidence interval |U|≤1.96,
the time corresponding to that point is the point in time when the

sequence suddenly changed.

2.3.3 Periodicity analysis
In this study, the Morlet wavelet analysis method was used to

study the periodic changes of temperature and precipitation in

the lake area. For the time series function f(t), the wavelet

variation is defined as

Wf(a, b) � 1
		
a

√ ∫

∞

−∞
f(t)ψp(

t − b

a
)dt, (8)

where Wf(a, b) is the wavelet coefficients; a is the scale factor,

which determines the width of the wavelet; and b is the

translation factor, which is the parameter reflecting the

moving wavelet position. ψ is the conjugate of ψp:

ψ(x) � Ce−
x2
2 cos(5x) (9)

The wavelet squared difference is

Wp(a) � Wf(a, b)2 (10)

Wavelet variance represents the intensity of periodic

fluctuations of time series within this scale (Gao and Li,

1993). The scale of the corresponding peak is the main period

of the sequence. The wavelet coherence spectrum is used to

measure the strength of local correlation between two time series

in time-frequency space. The wavelet coherence spectra of two

time series X and Y are defined as follows:

R2
n(s) �

∣∣∣∣S(s−1WXY
n (s))∣∣∣∣2

S(s−1
∣∣∣∣wX

n (s)
∣∣∣∣
2
) · S(s−1∣∣∣∣wY

n (s)
∣∣∣∣
2
)

(11)

S(W) � Sscale(Stime(Wn(s))) (12)
where Sscale and Stime are smoothed along the scaling and

translation axes of wavelet time respectively:

Stime(W)|s � (Wn(s) p c−t2/2s21 )|s (13)
Sscale(W)|n � (Wn(s) p c2Π(0.6s))|n (14)

where c1 and c2 are normalization constants, Π is a rectangular

function, and the parameter 0.6 is an empirically determined

scale that is decorrelated with the Morlet wavelength.

2.3.4 Structural equation model
A structural equation model (SEM) is a comprehensive data

statistical and analysis method based on the variable covariance

matrix to analyze the relationship between multivariate data

(Garrido et al., 2022). According to the prior knowledge of

researchers, the dependence relationship between factors in

the system is preset. This information can distinguish the
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relationship strength of each factor. The variables selected in this

study include temperature and precipitation at plains and

mountain lakes, basin farmland area, GDP, and population. In

SEM, the “dependence” relationship between variables is used to

replace the “causality” relationship. In the SEM graphical

framework, this “dependence” relationship is usually

represented by a one-way arrow pointing to the response

variable, with the starting point of the arrow indicating the

predictor variable. When the “cause” and “effect” relationship

between variables cannot be accurately judged according to

current cognition, or when the variables are causal to each

other, two-way arrows are used to link related variables.

Green, red, and dashed arrows indicate significant positive,

significant negative, and insignificant path relationships

respectively. The value is the normalized path coefficient, and

the arrow thickness represents the relative magnitude of the

normalized path coefficient. A structural equation model is then

fitted by the Lavaan package in the R language.

3 Results

3.1 Interannual variation of lake area

3.1.1 Plains lakes
Except for Lake Jili, all plains lakes showed an insignificant

(p > 0.1) expansion trend. Lake Jili showed a significant

expansion trend (p < 0.05). The areal expansion of Lake

Taitema was significant (p < 0.01), and the annual growth

rate of Lake Taitema was the highest (8.17 km2), followed by

Lake Ebinur.

From 1986 to 2020, the areas of Lakes Ebinur and Bosten

both showed an “expansion-shrinkage-expansion” trend (as

shown in Figure 3). Before 2,000, the area of Lake Ebinur was

relatively stable, and Lake Bosten showed a steady increasing

trend. From 2002 to 2008 and from 1996 to 2006, the area of

these two lakes both exceeded the multi-year average area

(593.61 km2 and 976.11 km2). The largest areas of Lakes

Ebinur and Bosten appeared at the beginning of the 21st

Century, at 810.38 km2 and 1,071.32 km2 respectively. The

smallest areas appeared after 2010, at 417.30 km2 and

904.93 km2 respectively. The main area where Lake Ebinur

changed was the northwest entrance to the lake; the

expansion area of Lake Bosten in 2002 was mainly in the

north and southeast parts of the lake. In 2013, the lake

contracted inward as a whole, after which the lake began to

expand (as shown in Figure 3). Lake Ulungur was connected with

Lake Jili, but the water storage capacity of Lake Jili was much

smaller than that of Lake Ulungur. Under the inflow conditions

of the same period, the changes in Lake Jili were more complex.

From 1988 to 2020, the multi-year average area of Lake Ulungur

was 849.14 km2, which was 680.08 km2 larger than that of Lake

Jili. Lake Jili showed a significant expansion trend (p < 0.05),

whereas Lake Ulungur showed an insignificant expansion trend

(p > 0.1). From the perspective of spatial distribution, the area of

Lake Ulungur was relatively stable, but the entrance to Lake Jili

and the southeast part changed significantly (as shown in

Figure 3). Due to the great impact of ecological water

conveyance, the area of Lake Taitema changed significantly

from 1988 to 2020. The multi-year average lake area was

84.82 km2, and the annual growth rate was 8.17 km2 a−1. The

expansion trend was significant (p < 0.01). From 1986 to 2020,

the largest area was 402.12 km2 in 2017, whereas the smallest area

was almost zero because the lake dried up. Lake Taitema

expanded from the center of the lake to the surrounding

areas, and the lake area increased as a whole (as shown in

Figure 3).

3.1.2 Mountain lakes
The mountain lakes showed an significant expansion trend

(p < 0.01), among which the growth rate of Lake Sayram was the

lowest, only 0.2 km2 a−1, and the growth rate of Lake Ayakkum

was the highest, at 17.32 km2 a−1.

Before 2000, the annual growth rate of Lake Sayram was

0.20 km2 a−1, and the area was smaller than its multi-year average

area of 461.52 km2, with the smallest area of 459.86 km2

occurring in 1998. After 2000, the areal growth rate was

0.14 km2 a−1, which was less than before 2000, and the area

became larger than the multi-year average area. From 2004 to

2020, the area stably changed between 463 km2 and 465 km2, and

the lake area was 464.77 km2 in 2020. From a spatial point of

view, the changes to this water body happened mainly at the

peripheral boundary (as shown in the figure). The areas of Lakes

Aqqikkol, Ayakkum, and Arkatag increased significantly (p <
0.01), and their areas in 2020 were 1.78, 1.91, and 2.59 times those

before 2000. The multi-year average area of Lake Aqqikkol was

444.91 km2. After 2005, the area was larger than the multi-year

average area. The minimum area was 331.43 km2, and the

maximum was 588.5 km2. From 1986 to 2020, the area of

Lake Ayakkum expanded from 556.82 km2 to 1,062.62 km2.

The expansion rate of its lake area was the fastest among all

mountain lakes, with a growth rate of 17.32 km2 a−1. The multi-

year average area of Lake Arkatag was 218.94 km2. In 1987 and

1988, the area of Lake Arkatag was 228.47 km2 and 252.6 km2

respectively. It then plummeted to 166.05 km2 in 1989 and

continued to decline to 112.46 km2 in 1990, after which it

gradually increased in a fluctuating pattern. From 1989 to

2004, the lake area was smaller than its multi-year average. In

2005 and later, the area of Lake Arkatag showed a significant

upward trend. In 2020, the largest lake area was 290.90 km2.

Before 2005, the area of Lake Aksayquin was 198.10 km2, which

was smaller than its multi-year average, and the smallest area

(160.27 km2) appeared in 2002. Before 2005, the annual growth

rate of Lake Aksayquin was 0.96 km2 a−1, but after 2005, the

annual growth rate became 2.32 km2 a−1. The lake area has

exceeded 200 km2 since 2006 and has been on the rise,
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reaching a maximum in 2020. From the perspective of spatial

changes in the lake, the East and west parts of Lake Aqqikkol, the

entrance to Lake Ayakkum, and the southeast part of Lake

Arkatag increased significantly. The water body of Lake

Aksayquin expanded significantly at the southeast entrance,

and the lake size increased as a whole (as shown in Figure 4).

3.2 The periodic variation of lake area

3.2.1 Plains lakes
The abrupt-change test results showed that (as shown in

Figure 5), except for Lakes Jili and Taitema that had only one

mutation year, there were two mutation years in plains lake

area from 1986 to 2020, and the abrupt-change trends were

mostly insignificant. Lake Ebinur showed abrupt shrinkage in

2008 and 2017; the former was a significant change (p < 0.05),

but the latter was insignificant. The average lake area

increased by 4.2% after the transition year 2017. There was

an significant expansion mutation in 1991 in Lake Bosten (p <
0.01), in which the average area increased by 7.4%. In 2009, an

insignificant shrinkage mutation occurred, and the average

area decreased by 3.5%. The area of Lake Ebinur showed

periodicity at 7, 12, and 21 years, and that of Lake Bosten

showed periodicity at 9, 14, and 21 years (Figure 6). In these

cases, the wavelet variance at 13 and 14 years was the largest

respectively (Figure 6), indicating that the main periodicity of

area change for Lakes Ebinur and Bosten was 13 and 14 years

respectively. The 12-years cyclic oscillation of Lake Ebinur

after 2007 was significantly greater than before 2007, whereas

the 12-years cyclic oscillation of Lake Bosten was relatively

stable. Lake Ulungur had a significant shrinkage mutation in

1995 (p < 0.05) and an insignificant expansion mutation in

2018, in which the average area increased by 3.4%. Lake Jili

had an significant expansion mutation in 2016 (p < 0.01), in

which the average area increased by 3.4%. The area of Lake

Ulungur showed periodicity at 9, 17, and 21 years and that of

Lake Jili at 11, 14 and 21 years (Figure 6), with a main period

of 21 years. For the 21-years cycle, the negative-positive phase

change of Lakes Ulungur and Jili occurred in 2001, indicating

that Lakes Ulungur and Jili showed a shrinking trend before

2001 and an expanding trend after 2001. This was consistent

with the analysis results of the mutation test. After 2000, the

11-years and 14-year periodic oscillations of Lake Ulungur

were significantly smaller than before 2000, whereas the

periodic oscillations of Lake Bosten were relatively stable.

Lake Taitema showed an significant expansion mutation in

2009 (p < 0.01), in which the average area increased by 6.2%.

FIGURE 3
Area changes of typical plains lakes in Xinjiang from 1986 to 2020 (A) Lake Ebinure; (B) Lake Bosten; (C) Lake Ulungur; (D) Lake Jili; (E) Lake
Taitema; (F) the plains lakes.
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The lake area showed periodicity at 8, 17, and 21 years, with a

main period of 21 years.

3.2.2 Mountain lakes
Compared with plains lakes, the periodic change rule of

mountain lakes was relatively simple. The abrupt-change test

results showed that (as shown in Figure 7) significant

mutations had occurred in mountain lakes (p < 0.01), and

the mutation years were mainly concentrated around 2009.

Lakes Sayram, Aqqikkol, Ayakkum, Arkatag, and Aksayquin

had significant expansion mutations in 2009, 2008, 2008,

2011, and 2012 respectively. From 2009 to 2020, the areas

of Lakes Ayakkum and Aqqikkol increased by 46.3% and

35.9% respectively, whereas the area of Lake Sayram

increased by only 0.9% from 2010 to 2020. The main

periodicity of lake area change in mountain lakes was

21 years (Figure 8). The area of Lake Sayram showed

periodicity at 7, 17, and 21 years. Lakes Aqqikkol and

Arkatag showed periodicity at 13, 17, and 21 years. Lakes

Ayakkum and Aksayquin showed periodicity at 17 and

21 years. The 7-years cycle oscillation (Figure 8) of Lake

Sayram showed an increasing trend before 2003 and a

weakening trend after 2003. The decadal changes showed

that the area of mountain lakes showed a downward trend

before 2003–2006 and an upward trend afterwards. This was

consistent with the analysis results of the mutation test.

3.3 Intra-year variation of lake area

3.3.1 Plains lakes
Due to the influence of winter snow cover, this study selected

the change in lake area fromMay to October to analyze changing

lake area at a monthly scale. The change in plains lake area had

obvious seasonality (as shown in Figure 9). The multi-year

average area of Lake Ebinur shrank from May to October,

with a maximum of 493.24 km2 in May and a minimum of

423.41 km2 in October. On the contrary, Lake Bosten showed an

overall expansion trend, with a smaller lake area from May to

August and a larger lake area in September and October. The

variation trend of the monthly-scale standard deviation of the

areas of Lakes Ebinur and Bosten was also opposite: the standard

deviation of the area of Lake Ebinur increased from May to

October (a minimum of 21.86 km2 in May, a maximum of

61.77 km2 in July), whereas the standard deviation of the area

of Lake Bosten showed a decreasing trend (a maximum of

99.10 km2 in May, a minimum of 54.24 km2 in October). This

showed that from May to October, the area of Lake Ebinur

FIGURE 4
Area changes of typical mountain lakes in Xinjiang from 1986 to 2020 (A) Lake Sayram; (B) Lake Aqqikkol; (C) Lake Ayakkum; (D) Lake Arkatag; (E)
Lake Aksayquin; (F) the mountain lakes.

Frontiers in Environmental Science frontiersin.org08

Wang et al. 10.3389/fenvs.2022.1015543

99

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.1015543


shrank and fluctuated greatly, whereas the area of Lake Bosten

expanded and stabilized. The areas of Lakes Ulungur and Jili

reached a maximum in May (860.78 km2 and 167.67 km2

respectively), and the overall lake area decreased sequentially

through spring, summer, and autumn. In addition, the standard

deviation of the area of Lake Ulungur increased from May to

October, showing a trend of first increasing, then decreasing, and

then increasing again. The standard deviation fluctuated between

11.03 km2 and 86.86 km2. The standard deviation was the largest

and the average area was the smallest (821.40 km2) in July.

Abnormally small areas occurred mostly in July. The standard

deviation of Lake Jili’s area was small from May to October, with

a maximum in May (9.40 km2) and a minimum in October, only

3.61 km2. Therefore, the area of Lake Ulungur was larger, and the

monthly-scale variation fluctuated greatly, whereas the area of

Lake Jili was one-fifth that of Lake Ulungur, and the monthly-

scale variation in lake area was stable. The overall area of Lake

Taitema shrank fromMay to June, with aminimum (110.53 km2)

in June, and then expanded month by month, reaching a

maximum (181.47 km2) in October. The multi-year average

monthly area of Lake Taitema was 47.08 km2 smaller than

that of Lake Jili, but the area change in Lake Taitema was

greatly affected by runoff and human disturbances. Therefore,

the average standard deviation of Lake Taitema was 135.94 km2

larger than that of Lake Jili and was the largest among the plains

lakes.

FIGURE 5
Results of the abrupt-change test of typical plains lakes area in Xinjiang from 1986 to 2020 (A) Lake Ebinure; (B) Lake Bosten; (C) Lake Ulungur;
(D) Lake Jili; (E) Lake Taitema.
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3.3.2 Mountain lakes
Compared with plains lakes, mountain lakes had less

obvious seasonality and smaller monthly-scale standard

deviations. The multi-year average area of Lake Sayram

showed a trend of decreasing, increasing, and then

decreasing again: the multi-year annual average area

reached a maximum in September (462.64 km2), and the

standard deviation was the smallest, only 1.72 km2; the

area in June was the smallest (453.02 km2), with the

largest standard deviation (18.92 km2). Excluding factors

such as ice and snow coverage and lake freezing, the

change in Lake Sayram area was relatively stable. The

multi-year average area and standard deviation of Lakes

Aqqikkol and Ayakkum showed a trend of first decreasing,

then increasing, and then decreasing again. In summer, ice

and snow melt water made the lake expand, the area

fluctuated greatly, and the lake area and standard

deviation reached their maximum values (the area was

456.12 km2 and 825.33 km2 respectively; the standard

deviation was 94.42 km2 and 180.80 km2 respectively).

From May to October, the rates of change in the areas of

Lakes Aqqikkol and Ayakkum were 7.60% and −1.20%

respectively. It is clear that the area of Lake Aqqikkol

fluctuated more obviously. The overall area of Lake

FIGURE 6
Results of wavelet analysis of typical plains lakes area in Xinjiang from 1986 to 2020 (A) Lake Ebinure; (B) Lake Bosten; (C) Lake Ulungur; (D) Lake
Jili; (E) Lake Taitema.
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Arkatag increased from spring to autumn, with the smallest

area in May (159.26 km2), the largest area in September

(229.94 km2), and an area rate of change of 24.92%. The

standard deviation of the area of Lake Arkatag reached a

minimum of 30.7994 km2 (May) and a maximum of

36.8794 km2 (September). Among Lakes Aqqikkol,

Ayakkum, and Arkatag, Lake Arkatag had the smallest

area and was most affected by meltwater, and hence the

area fluctuated greatly. The multi-year average area of Lake

Aksayquin increased month by month. The lake area was the

smallest in May (181.04 km2) and the largest in September

(229.94 km2). The rate of change in lake area was 11.54%,

with the standard deviation showing a decreasing trend and

the area fluctuating greatly.

4 Discussion

4.1 Influencing factors of plains lake area
changes

4.1.1 Effects of human activities on lake area
Human activities were frequent in the plains lake basins.

Domestic water and agricultural irrigation affected the changes in

lake water volume and area (Chai et al., 2013; Wufu et al., 2020).

Therefore, this study mainly analyzed the relationship between

lake area change and human activities in the plains area. By

identifying changes in population, farmland area, and GDP in the

plains lake basins, the influence of human activities on changes in

lake area was elucidated.

FIGURE 7
Results of the abrupt-change test of typical mountain lake areas in Xinjiang from 1986 to 2020 (A) Lake Sayram; (B) Lake Aqqikkol; (C) Lake
Ayakkum; (D), Lake Arkatag; (E) Lake Aksayquin.
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From the analysis results of the structural equation model

(Figure 10), among the human activity factors, the farmland area

and population of the Lake Ebinur basin had significant (p < 0.1)

negative and positive effects on lake area respectively (path

coefficients of −4.43 and 2.94 respectively). Compared with

the impact of climatic factors, the main reason for the

reduction in Lake Ebinur area was interception of surface

runoff. Since the early 1950s, the area of Lake Ebinur had

changed with the population and farmland area of the basin

(Zhang et al., 2015b; Zhang et al., 2017; Zhang et al., 2021): from

the early 1970s to the mid-1990s, population and farmland

growth was slow, the lake area changed slightly, and the lake

area was basically maintained at about 600 km2 except for dry

years. At the beginning of the 21st Century, the population and

farmland area increased significantly, resulting in a continuous

degradation trend of the lake area, which reached its lowest value

of 417.29 km2 in 2015. In recent years, the farmland area and

population stabilized, and the lake area began to revert and

remained at about 600 km2. The changes in farmland area, GDP,

and population in the Lake Bosten basin had significant negative,

positive, and positive effects on lake area (p < 0.01) respectively

(path coefficients of −3.44, 2.42, and 0.37 respectively). Since

1993, the farmland area, GDP, and population of Bortala Mongol

Autonomous Prefecture have shown an increasing trend. This

was inconsistent with the overall trend of changes in lake area,

which was mainly due to direct correlation between the inflow

FIGURE 8
Results of the wavelet analysis of typical mountain lake areas in Xinjiang from 1986 to 2020 (A) Lake Sayram; (B) Lake Aqqikkol; (C) Lake
Ayakkum; (D) Lake Arkatag; (E) Lake Aksayquin.
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and outflow of Lake Bosten. For example, from 2000 to 2017, the

water storage capacity of Lake Bosten and the changes in lake

area showed obvious consistency changes. Since 2015, the

slowdown in the growth rates of population and farmland in

this region contributed to lake expansion. Population changes in

the Lake Ulungur basin had a significant (p < 0.1) negative effect

on lake area (path coefficient of -0.75). Population and farmland

in this region had been increasing for a long time. The shrinkage

in lake area after the 1990s was mainly due to increasing

farmland area, extensive agricultural water use, and a

population surge. After 2009, even though the area of

farmland and the population continued to increase, the lake

area gradually reverted under the influence of water-saving

irrigation practices and ecological water diversion in recent

years. Lake Jili is replenished by the Ulungur River, which

belongs to the freshwater lake with water intake and output.

FIGURE 9
Areal changes of typical lakes in Xinjiang in differentmonths from 1986 to 2020 (A) Lake Ebinure; (B) Lake Bosten; (C) Lake Ulungur; (D) Lake Jili;
(E) Lake Taitema; (F) Lake Sayram; (G) Lake Aqqikkol; (H) Lake Ayakkum; (I) Lake Arkatag; (J) Lake Aksayquin.

FIGURE 10
Results of structural equation model analysis of the influencing factors of typical plains lake area changes in Xinjiang.
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Its change pattern was basically the same as that of the Lake

Ulungur area. Human activities amplified the fluctuations in lake

area caused by climate change. We want to emphasize that the

findings that the unbalanced changes might be attributed to

different reasons (i.e., climate change and human activities) are

based on limited evidence and therefore preliminary. Indeed,

human activities such as agricultural irrigation also played a role

in affecting the lakes (Ma et al., 2010). In view of changes in

farmland area, GDP, and population, strengthening research into

the carrying capacity of water resources in plains lake basins,

strictly controlling population, and strengthening

comprehensive management of water resources are the

fundamental components of ecological protection of plains

lakes. The main amount of water in Lake Taitema came from

the discharge of the Daxihaizi Reservoir and the replenishment of

the Cherchen River. In the 1970s, Lake Taitema was once dried

up by human activities. Since 2000, the ecological environment

downstream of the Tarim River and Lake Taitema has been

restored through ecological water conveyance. The area of Lake

Taitema from 2000 to 2020 was affected by the inflow and

outflow of the Tarim River. The cumulative water inflow of

the Tarim River was 2.081 billion cubic meters, with an average

annual water inflow of 94 million cubic meters. The lake area

reached its maximum in 2017 and had been decreasing in recent

years with a decrease in the amount of water discharged. For Lake

Taitema, in the case of a high flow year, the current complete

ecological reservoir (Daxihaizi Reservoir) control system and the

ecological gates of each section had to be manually regulated and

operated to avoid all the ecological water flowing into Lake

Taitema at one time. It is necessary to formulate a further

and more reasonable water resource regulation plan according

to the relationship between the discharge volume and the lake

area and to use the ecological gates of the sections below and at

the Daxihaizi Reservoir to regulate the inflow to the lake during

flood periods. The intent is to avoid large wastage of water under

local high-intensity evaporation conditions.

4.1.2 Effects of climatic factors on lake area
The variation characteristics of temperature and

precipitation of lake basins in Xinjiang were tested by Mann-

Kendall trends. Because Lakes Ulungur and Jili operate as a unit,

this subsection discusses them as the Ulungur River Basin as a

whole.

Rising temperatures must be compensated for by

precipitation to maintain lake area. The temperature and

precipitation of plains lakes were generally increasing during

the study period. If precipitation did not compensate for the loss

of lake area, the temperature rise would lead to a decrease in lake

area. From 1985 to 2020, the annual average temperature of the

plains lake basins showed an significant upward trend (p < 0.01),

with growth rates of 0.03, 0.05, 0.04, and 0.03, respectively, and

mutation years of 1996, 1994, 1994, and 1997, respectively. The

temperature of plains lakes showed periodicity at 9, 17, and

21 years, with the main period being 21 years. For the 21-years

cycle, the negative-positive phase change in temperature

occurred in 1999, 1998, 2001, and 2000, indicating that the

temperature of the plains lakes was declining before 2000 and

rising after 2000. This was consistent with the mutation years

around 2000 and the significant upward mutation trends. The

basins of Lakes Ebinur and Bosten had less precipitation and

FIGURE 11
Results of structural equation model analysis of the influencing factors of typical mountain lake area changes in Xinjiang.
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stronger evaporation, which was mainly supplied from river flow.

Rising temperature caused evaporation and had an impact on

lake area (Jing et al., 2020). The structural equation model results

(Figure 10) showed that the effect of temperature change on the

areas of Lakes Ebinur and Bosten constituted an insignificant (p >
0.1) positive effect (path coefficients of 0.02 and

0.08 respectively), the effect of temperature change on the

area of Lake Ulungur was almost zero, and the effect of

temperature change on the area of Lake Taitema was

insignificant (p > 0.1) (path coefficient of -0.03). These results

showed that the effect of temperature change on the area of plains

lakes was largely insignificant (p > 0.1).

Annual precipitation at plains lakes showed an insignificant

increase (p > 0.1), with rates of change of 0.25, 0.85, 0.11, and 0.48,

respectively. The mutation years were 1998, 1992, 1992, and 2018,

and the mutation trends were insignificant (p > 0.1). The effect of

very low precipitation at Lake Taitema on lake area was negligible.

Therefore, the correlation between climate and the area of Lake

Taitemawas not further analyzed in this section. The precipitation at

plains lakes mostly showed periodicities at 17 and 21 years, with

main periods of 7, 6, 11, and 21 years respectively. The precipitation

at Lake Ebinur decreased before 2002 and increased after 2002.

Before 1998 and before 2010, precipitation at Lakes Bosten and

Ulungur showed an increasing trend, but a decreasing trend after

1998 and after 2010. Precipitation at Lake Taitema showed a

decreasing trend before 2011 and an increasing trend after 2011.

The periodicity of precipitation changes at Lakes Ebinur and

Taitema was relatively consistent with the mutation years and

the significant mutation upward trend, whereas Lakes Bosten and

Ulungur gave the opposite result. The effects of precipitation on the

areas of Lakes Ebinur and Taitema were both insignificant (p > 0.1)

positive effects (path coefficients of 0.21 and 0.18 respectively),

whereas Lake Bosten had an insignificant positive effect (path

coefficient of 0.06), and Lake Ulungur had an significant negative

effect (path coefficient of −0.48). The results of the structural

equation model showed that the precipitation increase for Lakes

Ebinur and Taitema promoted the expansion of the lakes, but that

the precipitation changes for Lakes Bosten and Ulungur had less

impact on lake expansion and even led to shrinkage of the lakes

under the influence of human activities (Jing et al., 2018).

At an intra-year scale, changes in temperature and precipitation

led to a strong seasonality in plains lake areas. The problem of water

resource development and distribution should be solved, and

agricultural water consumption in plains lake basins should be

adjusted in spring and summer to ensure ecological water

utilization (Zheng et al., 2021).

4.2 Influencing factors of mountain lake
area changes

Due to their geographical location, mountain lakes have been

less affected by human activities, and therefore this study analyzed

climate change as the main factor for changes in mountain lake area

(Wufu et al., 2020). The Central Kunlun mountain lakes are

composed of Lakes Arkatag, Ayakkumu, and Aqqikkol, and

hence this study discussed all three as the Middle Kunlun

Mountain Lakes.

From 1985 to 2020, the annual average temperature of

mountain lake basins showed an significant increase (p < 0.001),

with growth rates of 0.04, 0.03 and 0.06, respectively, and the

significant mutation increase years were 1994, 2000, and 1998,

respectively. The temperature of mountain lakes showed

periodicity at 17 and 21 years, with a main period of 21 years.

For the 21-years cycle, negative-positive phase changes in

temperature occurred in 2001, 2001, and 2005, indicating that

plains lakes temperature declined before the early 21st Century

and then rose. This was consistent with the mutation years around

2000 and the significant upward mutation trend. The effects of

temperature changes on mountain lake area were all significantly

positive (p < 0.05) (path coefficients of 0.38, 0.42, and

0.58 respectively), of which the Middle Kunlun Mountain Lakes

and Lake Aksayquin showed significant positive effects (p < 0.001)

(Figure 11). This showed that the increase in temperature was closely

related to increases in lake area inmountain basins (Yang et al., 2020;

Liu et al., 2022). The temperature of mountainous areas increased

significantly around 2000. The increase in lake inflow due tomelting

of ice and snow contributed to an increase in lake area around 2010,

which also indicated that lake area has a certain lag phase for

temperature changes.

From 1985 to 2020, annual precipitation in the mountain lake

basins showed an insignificant increase (p> 0.1) with growth rates of

0.98, 0.05, and 0.05, and the significant mutation increase years were

2001, 2001, and 1988 respectively. The precipitation at Lake Sayram

showed periodicity at 6 and 21 years, the Middle Kunlun Mountain

Lakes at 13 and 21 years, and Lake Aksayquin at 5, 17, and 21 years.

The main periods were 6, 13, and 5 years, respectively. Precipitation

in the Lake Sayram basin and the Middle Kunlun Mountain Lakes

basin showed a decreasing trend before the beginning of the 21st

Century and then an increasing trend; precipitation in the Lake

Aksayquin Basin showed an increasing trend before 1992, decreased

from 1992 to 2008, and has increased since then. The effect of

precipitation changes on mountain lake area was insignificant (p >
0.1), and there was even a negative effect (precipitation at Lake

Sayram had a negative effect on lake area, with a path coefficient

of −0.16), which was mainly caused by rainfall weakening the

positive effect of temperature.

In mountain and plateau areas, which have been less affected by

human activities, lake area changes were more closely related to

climate change. Although both temperature and precipitation

showed an overall upward trend from 1986 to 2020, the increase

in temperature was more significant (p < 0.001), and lake expansion

and contraction trends were more closely related to changes in

temperature. This illustrated the sensitivity of mountain lakes to

climate change.However, the impact of climate change onmountain

lakes was also becoming more and more significant. In recent years,
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rising water level has brought about serious collapse of the lakeshore,

causing harm to roads around the lake. The increase in precipitation

has increased erosion of grasslands and the Earth’s surface, reducing

the erosion resistance of soil, and large amounts of nitrogen,

phosphorus, and organic nutrients have been integrated into the

lake with rainwater, exacerbating lake eutrophication. Therefore,

strengthening local ecological restoration and grassland recovery

and comprehensively controlling sources of lake pollution are

important tasks for ecological environmental protection in

mountain lake basins.

5 Conclusion

Taking the top ten lakes in Xinjiang as examples, this study

analyzed the temporal and spatial dynamics of lakes in Xinjiang

from 1986 to 2020 by using lake area, climatic factors, and

ecological and environmental factors. The main conclusions of

the study are as follows:

1) Except for Lakes Jili and Taitema, the plains lakes showed an

insignificant (p > 0.1) expansion trend. Lake Jili showed a

significant expansion trend (p < 0.05), and Lake Taitema

showed an significant expansion trend (p < 0.01). Most of the

plains lakes showed periodicity at 14 or 21 years. Except for the

area changes in Lakes Jili and Taitema, which had only one

mutation year, the plains lakes had two mutation years of area

change between 1986 and 2020, but the mutation trends were

mostly insignificant.

2) The mountain lakes showed significant expansion trends (p <
0.01) and significant expansion mutations occurring in 2009,

2008, 2008, 2011, and 2012, respectively. Most mountain lakes

showed periodicity at 17 or 21 years. The decadal change pattern

revealed that the area of mountain lakes showed a downward

trend before 2003–2006 and then an upward trend. This was in

line with the results of the abrupt-change test.

3) Human activities were the leading factor influencing lake area

changes in plains lake basins. Changes in temperature and

precipitation did not have a significant effect on area changes

in plains lake basins (p > 0.1). Among anthropogenic factors,

farmland area, GDP, and population change had significant (p <
0.1) effects on lake area, and the slowing growth rates of

population and farmland area contributed to lake expansion.

Therefore, the protection strategy for plains lakesmust adjust the

development and allocation of water resources according to the

dominant influencing factors of different lakes.

4) Due to their geographical location,mountain lakes have been less

affected by human activities. Climate change was the dominant

factor in changes in mountain lakes. The effects of temperature

change on mountain lakes were all significantly positive (p <
0.05). When the temperature increased significantly, melting of

ice and snow led to increasing inflow into the lake and increasing

lake area. Rainfall weakened the positive effect of temperature.

Therefore, for mountain lakes, ecological and environmental

protection measures are needed against damage caused by rising

water level and erosion of shores and soils by precipitation.
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SUPPLEMENTARY FIGURE S1
Spatial distribution of area changes in typical years at typical lakes in
Xinjiang from 1986 to 2020.

SUPPLEMENTARY FIGURE S2
Variation of temperature and precipitation at typical lakes in Xinjiang
from 1985 to 2020 (A) Lake Ebinure; (B) Lake Bosten; (C) Lake Ulungur;
(D) Lake Taitema; (E) Lake Sayram; (F) Lake Arkatag; (J) Lake
Aksayquin.

SUPPLEMENTARY FIGURE S3
Results of wavelet analysis of temperature in typical plains lake basins in
Xinjiang from 1985 to 2020 (A) Lake Ebinure; (B) Lake Bosten; (C) Lake
Ulungur; (D) Lake Taitema.

SUPPLEMENTARY FIGURE S4
Results of wavelet analysis of precipitation in typical plains lake basins in
Xinjiang from 1985 to 2020 (A) Lake Ebinure; (B) Lake Bosten; (C) Lake
Ulungur; (D) Lake Taitema.

SUPPLEMENTARY FIGURE S5
Results of wavelet analysis of temperature in typical mountain lake basins
in Xinjiang from 1985 to 2020 (A) Lake Sayram; (B) Lake Arkatag; (C) Lake
Aksayquin.

SUPPLEMENTARY FIGURE S6
Results of wavelet analysis of precipitation in typical mountain lake basins
in Xinjiang from 1985 to 2020 (A) Lake Sayram; (B) Lake Arkatag; (C) Lake
Aksayquin.
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Extreme climate and crime:
Empirical evidence based on 129
prefecture-level cities in China
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School of Economics, Jiangxi University of Finance and Economics, Nanchang, China

Climate change is having profound effects on natural and socio-economic

systems, especially via extreme climate events. Using panel data from 129

prefectural-level cities in China from 2013 to 2019, this paper explores the

effects of extreme climate on crime rates based on a climate index and

manual collection of crime data. The results showed that extreme climate has

a significant positive effect on crime rates, increasing by 0.035% for every 1%

increase in the extreme climate index. This occurs through two mechanistic

pathways: reduced agricultural output and lower employment income. The

heterogeneity analysis shows that extreme climate has a greater impact on

crime rates in eastern areas which are economically developed and have high

levels of immigration. This study provides new perspectives on the impact

of extreme climate on the economy and society, in which governments can

actively participate in climate governance through environmental protection,

energy conservation and emission reduction, and technological innovation to

reduce crime rates by reducing the occurrence of extreme climate.

KEYWORDS

climate change, global warming, crime rates, quantile regressionmodel, mechanisms
of effect

Introduction

Crime is considered a major factor affecting social stability. At the Third Plenary
Session of the 18th CPC Central Committee, it was stressed that comprehensive
management of social security should be strengthened, and all types of criminal activities
should be prevented and punished strictly following existing laws. In January 2018, the
CPC Central Committee and the State Council issued the Notice on the Special Struggle
against Darkness and Evil, to ensure that people live and work in peace, society is stable
and orderly, and the country enjoys long-term peace and stability. China’s crime rate is
growing at a much faster rate than that of other developed countries (Hu et al., 2005).
The arrest rate increased from 3.64 per 10,000 people in 1998 to 7.78 per 10,000 people in
2017, and the prosecution rate increased from 3.34 per 10,000 people to 12.28 per 10,000
people for the same period. Historically, scholars have studied the causes of crime by
focusing on traditional social factors such as age, gender, race, education, and social and
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economic status (Hindelang, 1981; Devine et al., 1988; Kolvin
et al., 1988). However, as the economy and society continue to
develop, the legal system improves, and the standard of living
increases, the rate of criminal offenses continues to increase.
This suggests that crime rates are no longer influenced by these
social factors alone, but that unknown factors may also influence
the occurrence of crime (Cohn, 1990).

The Sixth Assessment Report (AR6) of the United Nations
Intergovernmental Panel on Climate Change (IPCC) points out
that climate change and the frequency of extreme climate events
pose a growing threat to the economy, health, and security,
and their impact is increasing in magnitude. In particular,
the government may aim to reduce the extremes through
policies such as restructuring industries and strengthening
environmental management. This may have an impact on social
stability, and people’s behavior may become more extreme due
to the stimulus from extreme climate events. According to the
China Blue Book on Climate Change (2021), China is a sensitive
impact area for global climate change, with a warming rate
significantly higher than the global average. With the second
largest economy in the world, the negative ecological, social,
and economic impacts of climate change faced by China should
not be ignored (Duan et al., 2019). In this context, considering
that factors other than social factors indirectly influence crime
rates, climate extremes, which have a profound negative impact
on socioeconomic stability, may be one of the important
reasons for influencing crime. While extreme climates bring
about macroscopic damage, they may also influence people’s
propensity to commit crimes at the microscopic level. So, does
climate extremes affect crime rates? What is the mechanism of
action of extreme climate affecting crime rates? Answering these
questions is the main purpose of this paper.

Literature review and theoretical
analysis

Literature review

The effects of high temperatures on people have been
a long-standing concern in the field of psychology. Several
experimental psychological studies have found a direct positive
relationship between temperature and aggression—high
temperatures enhance aggression and criminal tendencies
(Anderson, 1989; DeWall and Bushman, 2009). Being randomly
assigned to a hot room rather than a suitably warm room
makes subjects more likely to be hostile and to behave more
aggressively toward others (DeWall et al., 2011); presenting
words or pictures associated with high temperatures also makes
subjects more irritable (Wilkowski et al., 2009). In addition to
studies based on experimental paradigms, many scholars have
also studied the relationship between temperature and crime
based on correlational data. Crime has been found to show a

clear seasonal pattern: violent crime (Stevens et al., 2019) and
property crime (Linning et al., 2017) increase significantly in
the summer months.

However, the correlation between temperature and violent
crime can be overestimated, and the correlation between violent
crime and temperature disappears when social variables are
excluded (Rotton, 1986). This suggests that the relationship
between climate and criminal behavior cannot be explained by
a single factor and that seasonal fluctuations in crime rates
are determined by a combination of environmental and social
factors (McDowall et al., 2012). Moreover, because there is
a negative correlation between crime rates in the short term
in region: where crime rates are high in 1 week, they are
lower in subsequent weeks (Jacob et al., 2007), studies using
daily or weekly data cannot accurately estimate the long-term
effects of climate change on crime (Ranson, 2014). Yet, other
studies, using hourly or daily data, have shown a correlation
between temperature and crime rates (Brunsdon et al., 2009;
Mares, 2013a; Baryshnikova et al., 2021). However, when annual
data are used for estimation, studies show that the correlation
between temperature and crime rates is not significant (Lynch
et al., 2020, 2022).

Some scholars have also studied the impact of
meteorological factors, such as sunlight, heat, and rainfall
on crime. The theory of daily activities suggests that the
three elements of criminally motivated offenders, suitable
criminal targets, and lack of effective protection are important
conditions for crime to occur (Miró, 2014). Weather conditions
can influence crime by altering people’s daily activities and
social behavior (Hipp et al., 2004; Miles-Novelo and Anderson,
2019). Specifically, warmer temperatures increase the frequency
of interpersonal interactions, thereby increasing the likelihood
of interpersonal violence or crime (Rotton and Cohn, 2003;
Berman et al., 2020). As people go on holiday more often in
summer, they are more likely to be burgled (Cohn and Rotton,
2000). Frequent rainfall makes it easier for offenders to avoid
surveillance, leading to higher rates of crime on rainy days
(Shen et al., 2020). Reduced daylight also makes it easier for
crimes to be concealed, increasing the frequency of offenders
committing crimes on cloudy days (Doleac and Sanders, 2015).
In addition to weather conditions, recent literature has also
discussed the impact of factors such as air pollution (Burkhardt
et al., 2019; Bondy et al., 2020) and environmental damage
(Mbonane et al., 2019) on crime rates, finding that unsuitable
environments can contribute to crime.

The impact of extreme climate on social stability and
economic development has been documented in many areas,
including agricultural production (Deschênes and Greenstone,
2007), industrial output or economic growth (Dell et al., 2012;
Chen and Yang, 2019), international trade (Jones and Olken,
2010), labor productivity (Zhang et al., 2018; Letta and Tol,
2019), and population mortality (Deschênes and Greenstone,
2011). Extreme weather events often lead to reduced crop yields
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(Rehman et al., 2022), rangeland degradation (Holechek et al.,
2020; Nanzad et al., 2021), and wildfires and floods that cause
property damage (Irish et al., 2010; Rossiello and Szema, 2019).
These lead to widening income disparities, increased individual
discontent, reduced opportunity costs of violence, countries
political conflict, and even war (Burke et al., 2009; Hsiang et al.,
2011; Koubi, 2017; Roche et al., 2020). Particularly for countries
already facing severe economic problems, extreme climate can
further exacerbate stress and induce more violence (Mares,
2013b). Extreme climate shocks can lead to large-scale group
migrations and the cultural and socio-economic pressures of a
migrating population can indirectly increase conflict (Ghimire
et al., 2015; Burrows and Kinney, 2016; Koubi et al., 2018).
Studies have also found a significant contribution to crime rates
from hurricane disasters (Spencer and Strobl, 2019).

In summary, past studies on the impact of climate on crime
rates have focused on the relationship between the mean climate
distribution, such as mean temperature and mean precipitation,
with crime rates, without emphasizing the impact of climate
extremes on crime rates; although some literature has explored
the impact of climate extremes on conflict and violence at
the national level, fewer studies have directly analyzed the
impact of climate extremes on crime rates at the regional level
within a country; finally, most of the existing literature simply
regresses crime rates on climate variables, which lacks precision
in identification strategies and lacks the analysis of causal
mechanisms between the variables. To remedy the shortcomings
of the existing literature, this paper manually collected crime
and climate data from 129 prefectural-level cities in China, and
explored the influence of extreme climate on regional crime
rates and its mechanism of action based on the construction of
an extreme climate index using daily temperature data.

Theoretical analysis

Extreme climate does not directly contribute to regional
crime rates—there must be intermediate mechanisms at work.
From an economic point of view, crime is a risky choice in
which the expected benefits to the individual are higher than
the opportunity costs, and lower incomes are the main way
in which the opportunity costs to the individual are reduced.
The main income of rural and urban residents is derived from
agricultural business income and wage income, respectively.
When the income of rural and urban residents is insufficient to
support their household expenses, individuals may take the risk
of increasing their household income by committing crimes.

First, is the agricultural output reduction effect. Agriculture
in rural China plays a role in social stabilization, yet it is
agricultural production that is most vulnerable to climate
change (Castellano and Moroney, 2018). Traditional agriculture
cannot effectively offset severe weather (Piontek et al., 2014),
and extreme weather events such as high-temperature periods

(Burke et al., 2015), drops or increases in rainfall (Barrios
et al., 2010; Zhang and Huang, 2012), or snow (Boehm et al.,
2016) can severely affect normal agricultural production (Chen
et al., 2016; Yang et al., 2017; Pickson et al., 2022). Specifically,
high temperatures can affect photosynthesis in crops (Shah and
Paulsen, 2003), droughts can affect irrigation (Lesk et al., 2016),
and heavy rainfall can lead to large-scale loss of soil fertility (Li
and Fang, 2016). Natural disasters, such as floods (Qin et al.,
2022), hurricanes (Martinez, 2020), and hail storms (Raihan
et al., 2020), can directly damage crops. As a result, the range
of negative impacts of extreme climate on agricultural output
can reduce farming incomes, forcing some farming populations
into economic hardship, inducing criminal behavior. Extreme
climate may also drive farmers to towns and cities, thereby
increasing urban crime rates.

Second, is the employment income reduction effect.
Agriculture is a component of the regional economy, but
extreme climate can also affect the non-farm sector of
the economy (Hsiang, 2010). Extreme climates generally
reduce employment income for urban dwellers through both
lower labor productivity and higher production costs. High
temperatures can prevent workers from concentrating on their
work (Qiu and Zhao, 2022) and increase worker fatigue, thereby
reducing overall worker productivity (Flouris and Schlader,
2015). Although increased mechanization can offset the negative
effects of high temperatures on industrial labor productivity
to some extent (Day et al., 2019), high temperatures are more
disruptive to brain-intensive complex labor than physically
intensive simple labor (Zander and Mathew, 2019), such that the
negative effects of extreme heat on individual labor productivity
in urban environments are pervasive and persistent (Cai et al.,
2018; Lee et al., 2018). Furthermore, in addition to reducing
labor productivity, extreme heat can also lead to an overall
reduction in working hours (Caldeira and Brown, 2019), which
can increase life stress and lower life expectations, further
reducing the opportunity cost of criminal behavior (White,
2016). Natural disasters caused by extreme climate can lead to
a global surge in energy prices (Lee et al., 2021), pushing up
the cost of raw materials, as well as increasing the cost of labor
for businesses, ultimately leading to a reduction in demand
for labor. This results in increased unemployment and lower
incomes, thereby triggering crime. The theoretical mechanism
by which climate change affects crime rates is shown in Figure 1.
Based on the above theoretical analysis, the following research
hypotheses are proposed:

Hypothesis 1: There may be a significant positive effect of
extreme climate on crime rates.

Hypothesis 2: The extreme climate may affect crime rates in
two ways: by reducing agricultural output and by lowering
employment income.
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FIGURE 1

Mechanisms of climate change increasing crime rates.

Data and methods

Data source

This paper compiles panel data for 129 prefecture-level
cities in China from 2013 to 2019. Among them, the crime
rate data were obtained from the annual work reports of
local procuratorates in each region, the daily temperature data
were obtained from the National Meteorological Science Data
Center, and the control data were obtained from the China
Urban Statistical Yearbook, provincial statistical yearbooks, and
regional statistical bulletins. Since some regions did not publish
crime rates for some years, this paper uses linear interpolation
to fill in the missing values.

Variable definition and descriptive
statistics

Extreme climate
The independent variable in this paper is extreme climate.

Extreme climate is a phenomenon in which the weather and
climate of a place deviate significantly from its average state, and
it can be expressed in terms of anomalous records of climate
elements or the number of days exceeding a specific threshold
value (Ren et al., 2010). The World Meteorological Organization
(WMO) has proposed a set of index systems to measure an
extreme climate index, which consists of 27 variables, including
daily temperature and precipitation. The concept of the index
is to count the number of days in a year that exceed a
defined absolute or relative threshold (Chen et al., 2013). In
this paper, three temperature variables were selected to measure
the extreme climate index: “summer days (the number of days

with daily maximum temperature > 25◦C),” “hot night days
(the number of days with daily minimum temperature> 20◦C),”
“warm day days (days with daily maximum temperature > 90%
quantile).” These three variables are brought into RClimDex
software for the calculation to derive the extreme climate index
values. RClimDex was developed by Zhang and Yang (2004)
of the Canadian Meteorological Research Center and has been
promoted by the World Meteorological Organization’s Climate
Commission (Peterson et al., 2008; Choi et al., 2009; Xu et al.,
2013). The greater the calculated extreme climate index, the
greater the number of days of extreme climate in the year in that
region.

Crime rate
The dependent variable in this paper is the crime rate,

which is measured as the number of criminal arrests per 10,000
people, referring to the definition of crime by Edlund et al.
(2013). The robustness of the model was analyzed using the
criminal prosecution rate per 10,000 people as a second measure
of crime. The criminal arrest rate and criminal prosecution
rate may underestimate the true level of crime, but as long as
they are consistent over time and location, they will provide a
robust relative measure of trends (Li et al., 2019). To exclude the
effect of extreme values on the regression results, the crime rate
variables were winsorized at 1% and 99% percentiles.

Control variables
To control for factors other than extreme climate that affect

crime rates, population density, household registration rate,
per capita GDP, urban–rural income ratio, urban employee
unemployment insurance rate, higher education rate, and
the unemployment rate were added to the regression model,
drawing on previous studies (Cheong and Wu, 2015; Chang
et al., 2019). In addition, climate variables including annual
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TABLE 1 Descriptive statistics of all variables.

Type Variable Abbreviation Definitions Mean SD Min Max

Dependent
variables

The arrest rate Arrest Criminal arrests per 10,000 people 6.24 3.15 1.86 33.85

The prosecution rate Prose Criminal prosecutions per 10,000 people 10.46 4.49 2.37 38.43

Independent
variables

The extreme climate
index

Climdex extreme climate indices 77.43 32.95 4.93 159.41

Warm days tx90p Sum of the number of days with daily maximum
temperature ( 90% quantile (days)

2.21 0.77 0.48 5.11

Tropical nights tr The sum of the number of days in a year when the
daily minimum temperature is ( 20 (C (days)

88.86 55.48 0 229

Summer days su25 Sum of the number of days in a year with a daily
maximum temperature ( 25◦C (days)

141.22 45.8 14 274

Above 35◦C Sum of the number of days in a year with a daily
maximum temperature ( 35◦C (days)

11.19 12 0 64

Control
variables

Population density PD Population density (persons / km2) 519.36 565.72 5.52 4, 250

Household
registration rate

HRR Household population / resident population (%) 1.04 0.21 0.19 1.56

Per capita GDP lnPCG The logarithm of per capita GDP (yuan) 10.82 0.56 9.22 12.58

Unemployment
insurance rate

UIR Number of urban unemployment insurance
participants/number of urban workers (%)

0.87 0.34 0.05 2.3

Urban–rural income
ratio

UER Disposable income of urban residents / disposable
income of rural residents (%)

2.31 0.41 1 3.57

Higher education
rate

HER Number of people with a Bachelor’s Degree or
above per 10,000 people

172.86 188.75 0.74 1, 064.77

Unemployment rate UR Number of urban registered unemployed / number
of urban workers (%)

0.06 0.03 0 0.24

Average annual
temperature

AAT Annual average temperature (◦C) 16.21 4.43 − 0.16 24.41

Relative humidity RH Annual average relative humidity (%) 70.32 10.01 40 88

Precipitation Prec Annual accumulated precipitation (mm) 1, 195.33 1, 774.92 41.8 50, 223.55

Hours of sunshine HS Annual accumulated sunshine hours (h) 1, 862.73 540.72 754.1 3, 376.1

Mechanistic
variables

Percentage of
agriculture output

PAO The ratio of agricultural output to regional GDP
(%)

10.98 0.26 10.26 12.06

Per capita wage
income

lnPWI The logarithm of per capita wage income (yuan) 10.95 6.45 0.3 37.19

Area 1 ( east; 2 ( mid; 3 ( west 10.98 0.26 10.26 12.06

Degree of regional
development

DRD 0 ( developed; 1 ( under-developed 1.91 0.77 1 3

Population flow PF Resident population minus household population
(10,000 persons)

0.5 0.5 0 1

Population flow greater than 0 indicates an inflow of population and less than 0 indicates an outflow of population. Number of observations is 903.

average temperature, precipitation, sunshine duration, and
relative humidity, were controlled (Li et al., 2015; Auffhammer
et al., 2020). The descriptive statistics for all variables as shown
in Table 1.

Model

Based on the above hypotheses, this paper will construct a
panel data of 129 prefecture-level cities in China from 2013–
2019 for further empirical analysis. In order to better identify the

effect of extreme climate on crime rate, this paper will control
the region fixed effect and the time trend term in the panel
model, which can also greatly reduce the risk of omitted variable
bias in the model and further improve the accuracy of the model
estimation by constructing a time-region double fixed panel
model, and the specific regression model is shown in Equation 1.

CRit = β0 + β1Climdexit + β2Xit + µi + vt + εit (1)

where i denotes the region, t denotes the year,CRit indicates the
crime rate, Climdexit indicates extreme climate index, Xit is a
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set of control variables, µi is the region fixed effect, vt is the year
fixed effect, and εit is the random error. β1 is our main coefficient
of interest, and if it is significantly positive, this indicates that
extreme climate increases regional crime rates.

Panel OLS (ordinary least squares) estimation can only
obtain the average effect of extreme climate on crime rates,
and cannot portray the dynamic effect of extreme climate at
different quartiles of the crime rate. To further investigate the
effect of extreme climate at different levels of crime rates, the
panel quantile method is applied to the regression model (2)
to portray the dynamic trajectory of the marginal effect of
extreme climate on the change in crime rates. The basic idea
of panel quantile regression is to treat the independent variable
as a functional distribution, sum the absolute values of the
minimization-weighted residuals, and estimate the effect of the
independent variable at the conditional quantile point of the
independent variable. Since the fixed effects in the traditional
panel quantile model decompose the random perturbation term
into different components, it is difficult to explain the estimation
results for each quantile. Powell (2022) proposed a non-additive
fixed effects panel quantile model (QRPD), which introduces
the panel quantile estimation into the framework of the
instrumental variable approach so that the random perturbation
term contains fixed effects and ensures the inseparability of the
random perturbation term. The estimated coefficients are more
accurate and the estimation results are more robust than the
traditional panel quantile model. In this paper, five quartiles
(5%, 25%, 50%, 75%, and 95%) are selected to construct the
panel quantile function.

QCRit = θ(τ )Climdexit + β(τ)Xit (2)

where τ indicates the corresponding quantile, QCRit indicates the
crime rate at the corresponding quantile, Climdexit indicates the
extreme climate index at the corresponding quantile, and Xit is
a set of control variables, the same as in model (1).

Results and discussion

Baseline regression results of climate
extremes on crime rates

Using model (1), the effect of extreme climate on crime
rates was examined using a fixed panel OLS model. Column (1)
of Table 2 shows the regression results without the inclusion
of control variables, column (2) shows the regression results
with the gradual inclusion of regional characteristic variables
to control for the effects of factors other than climate on
crime rates, and column (3) shows the regression results with
the inclusion of all control variables. It can be seen that
there is a significant positive relationship between extreme
climate and crime rate regardless of the number of control
variables added, and the regression coefficients increase with the

TABLE 2 Baseline regression results of climate extremes
on crime rates.

Variable (1) (2) (3)

Climdex 0.023*** 0.028*** 0.035***

(0.006) (0.005) (0.005)

PD –0.002 –0.002

(0.003) (0.003)

HRR 4.393 4.698

(2.971) (3.015)

lnPCG 0.509** 0.494**

(0.256) (0.246)

UIR –1.063** –1.028**

(0.461) (0.473)

UER –0.318 –0.255

(0.312) (0.278)

HER 0.008* 0.008*

(0.004) (0.004)

UR 2.555 2.584

(2.142) (2.045)

AAT –0.309***

(0.110)

RH –0.015

(0.021)

Prec –0.000***

(0.000)

HS 0.000

(0.001)

Cons 4.387*** –4.800 –0.436

(0.517) (5.186) (5.496)

Year FE Yes Yes Yes

City FE Yes Yes Yes

N 903 903 903

r2 0.119 0.218 0.231

***, **, and * denote significance at the 1, 5, and 10% levels, respectively.

gradual addition of regional characteristics variables and climate
variables, indicating that the accuracy of the model estimation
is improving. The regression coefficient of the extreme climate
index on the crime rate in column (3) is 0.035 and is significant
at the 1% level, indicating that extreme climate significantly
increases the crime rate. Specifically, each 1% increase in the
extreme climate index increases the crime rate by 0.035%, or 3.5
additional arrests per 10,000 persons authorized.

In terms of control variables, per capita GDP is significantly
positively correlated with crime rate, suggesting that areas
with higher economic levels have higher crime rates. The
unemployment insurance rate is significantly negatively
correlated with the crime rate, suggesting that better social
security can reduce crime rates. Educational attainment
is significantly positively correlated with the crime rate,
possibly due to the presence of more new high-tech crimes
with higher education. The significant negative association
between annual mean temperature and crime rate seems to be
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contrary to our expectation, probably because the annual mean
temperature does not reflect the economic and social impact of
temperature extremes, which is around 16◦C in the sample data,
a temperature range that is favorable for economic production.

Moreover, the direct estimation of the effect of annual
mean temperature on crime rates is not complete (Mares,
2013a), and the relationship between the two may be the
result of aggregation bias (Hsiang et al., 2011). Such estimates
are meaningful only if the elevating effect on crime rates
occurs when temperatures exceed a certain threshold or reach
extremes. In addition, the expected regression coefficient of
the unemployment rate, as an important indicator of the
degree of social instability, should be significantly positive,
but the actual regression coefficient is not significant. This
may be because the ratio of the number of urban registered
unemployed to the number of urban workers does not reflect
the real unemployment situation. Some studies show that the
effect of unemployment on crime is not certain, the relationship
between the two depends on the arrest rate (Lee, 2018), and
that unemployment insurance benefits may mitigate the impact
of unemployment on crime (NoghaniBehambari and Maden,
2021).

Endogeneity test results of regression
models

Extreme climate, as an exogenous variable, is not influenced
by crime rates and the existence of reverse causality is not
likely. However, it may still lead to endogeneity due to the
omission of other key variables, so the instrumental variable
approach is applied. In this paper, “Volume of industrial soot
(dust) emission” and “Greenery coverage” are selected as the
instrumental variables of the extreme climate index. Smoke
and dust particles can reduce the amount of solar radiation
reaching the ground by blocking sunlight (Wang et al., 2009),
which in turn reduces the atmospheric temperature; while urban
greening plays an important role in reducing urban temperature
due to photosynthesis and transpiration of plants (Zhu et al.,
2017). Smoke (dust) emission and greening coverage of built-up
areas are related to regional air temperature, but cannot directly
affect crime rate, satisfying the assumption of instrumental
variables. Column (1) in Table 3 shows the regression results
of the first stage of the two-stage least-squares method. There
are significant correlations between soot emissions and green
coverage with an extreme climate, and the F-value of the
first stage is larger than 10, indicating that the instrumental
variables are reasonably chosen. Column (2) shows the IV
estimation results, and the results of the over-identification test
support the original hypothesis that all instrumental variables
are exogenous, indicating that there is no over-identification
problem in the model. The results show that after considering
the endogeneity problem, there is still a significant positive effect

TABLE 3 Endogeneity test results of regression models.

Variable (1) (2)

Climdex Arrest

Climdex 0.095***

(2.630)

lnEmission –2.432***

(0.564)

Green –0.105**

(0.050)

PD –0.004 –0.002

(0.004) (0.002)

HRR –9.884** 5.229***

(4.818) (1.685)

lnPCG –2.819*** 0.670***

(1.038) (0.242)

UIR 2.472 –1.128***

(2.265) (0.360)

UER –4.483*** –0.008

(1.424) (0.281)

HER –0.008 0.009***

(0.008) (0.003)

UR –12.435 3.064*

(10.170) (1.744)

AAT 4.414*** –0.577***

(0.826) (0.185)

RH –0.175 –0.004

(0.123) (0.019)

Prec 0.000*** –0.000**

(0.000) (0.000)

HS –0.002 0.001

(0.002) (0.001)

_Cons 92.789*** –7.488*

(16.736) (–1.906)

Year effect Yes Yes

City effect Yes Yes

F value 440.13

Hansen J statistic 0.484

P value 0.487

N 903 903

r2 0.972 0.889

***, **, and * denote significance at the 1, 5, and 10% levels, respectively.

of the extreme climate index on the crime rate, indicating that
the regression results are robust.

Quantile regression results of extreme
climate on crime rate

To more intuitively examine the marginal effects of extreme
climate at different levels of crime rates, model (2) was applied
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TABLE 4 Quantile regression results of extreme climate on crime rate.

Variable (1) (2) (3) (4) (5)

5% 25% 50% 75% 95%

Climdex 0.005*** 0.008*** 0.013*** 0.024*** 0.026***

(0.001) (0.001) (0.002) (0.007) (0.002)

PD 0.000*** 0.001*** 0.001 –0.000*** –0.000

(0.000) (0.000) (0.001) (0.000) (0.000)

HRR –0.909*** –1.996*** –5.980*** –4.088*** –8.166***

(0.156) (0.086) (0.186) (0.640) (0.173)

lnPCG 1.299*** 0.570*** 0.457*** 1.031*** 1.599***

(0.084) (0.041) (0.097) (0.088) (0.175)

UIR 0.752*** 0.591*** –0.944 1.243*** 1.009***

(0.111) (0.078) (0.915) (0.071) (0.139)

UER 0.634*** –0.186*** –0.016 0.508*** 1.355***

(0.040) (0.053) (0.0590) (0.0530) (0.178)

HER 0.001*** 0.002*** 0.002*** 0.004*** 0.002***

(0.000) (0.000) (0.001) (0.001) (0.000)

UR 1.648* –1.618*** 2.228 –2.356 –14.794***

(0.925) (0.355) (3.703) (1.680) (1.299)

AAT 0.1410*** 0.058*** 0.032 0.006 –0.166***

(0.009) (0.007) (0.040) (0.047) (0.033)

RH –0.0270*** –0.007 0.002 0.068*** 0.035***

(0.002) (0.004) (0.012) (0.010) (0.012)

Prec 0.000*** 0.000*** 0.000*** 0.000*** 0.001***

(0.000) (0.000) (0.000) (0.000) (0.000)

HS –0.000*** 0.000*** 0.001 0.001*** –0.000**

(0.000) (0.000) (0.000) (0.000) (0.000)

Year FE Yes Yes Yes Yes Yes

City FE Yes Yes Yes Yes Yes

N 903 903 903 903 903

***, **, and * denote significance at the 1, 5, and 10% levels, respectively.

using panel quartiles, and the standard errors of the regression
coefficients were obtained using the adaptive Monte Carlo
(MCMC) method with 1,000 samples. From the estimated
results (Table 4), the regression coefficients of the extreme
climate index at each quantile are all positive and significant
at the 1% level, which again verifies the finding that extreme
climate significantly increases the crime rate in the baseline
regression. The trend of the regression coefficients of the
extreme climate index at each quartile shows that as the crime
rate quartile increases, the regression coefficients of the extreme
climate at the corresponding quartile also increase. The effect
of extreme climate on areas with lower crime rates is weaker
and the effect of extreme climate on areas with higher crime
rates is stronger. The possible reason for this result is that areas
with higher crime rates are more vulnerable to negative external
shocks due to social instability. Extreme climate can be more
damaging to these areas, and thus crime rates in high crime
areas are more affected by extreme climate than in low crime
areas.

Robustness test

To ensure the reliability of the previous estimation results,
robustness tests were conducted using substitution variables
and adjusting for standard errors. Since there are multiple
measures of the crime rate and extreme climate, we conducted
regressions after replacing the independent variables. First, the
number of criminal offenses prosecuted per 10,000 people is
used as a proxy for the crime rate. Second, as defined by the
China Meteorological Administration, the sum of the number of
extreme temperature days (> 35◦C) in a year is used as a proxy
indicator of extreme climate. The robust standard errors in the
baseline model have been clustered to the regional level and,
considering that the standard errors of regions within the same
province may still be correlated, the standard errors are further
clustered to province–year interactions as a way to test the
robustness of regression models. Column (1) in Table 5 shows
the regression results after replacing the dependent variables,
column (2) shows the regression results after replacing the
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TABLE 5 Robustness test results of regression models.

Variable (1) (2) (3)

Prose Arrest Arrest

Climdex 0.047*** 0.027***

(0.011) (0.004)

Above 35◦C 0.024***

(0.006)

PD –0.001 –0.002 –0.002

(0.003) (0.003) (0.002)

HRR 7.117* 4.195 1.461

(3.819) (3.068) (2.234)

lnPCG 0.429 0.398 0.341

(0.359) (0.252) (0.329)

UIR –1.135* –0.920** 0.186

(0.636) (0.448) (0.556)

UER –0.936* –0.386 0.000

(0.558) (0.280) (0.226)

HER 0.011** 0.007 0.006

(0.005) (0.005) (0.004)

UR –0.624 1.697 –0.029

(3.936) (2.110) (1.857)

AAT –0.192 –0.184 0.126

(0.1650) (0.126) (0.099)

RH 0.0150 –0.016 0.019

(0.032) (0.023) (0.028)

Prec –0.000*** –0.000*** –0.000***

(0.000) (0.000) (0.000)

HS 0.001 –0.000 0.000

(0.001) (0.001) (0.001)

_Cons –3.396 3.015 –4.410

(8.1280) (5.773) (4.343)

Year FE Yes Yes Yes

City FE Yes Yes Yes

Year× Prov Effect No No Yes

N 903 903 903

r2 0.272 0.213 0.510

***, **, and * denote significance at the 1, 5, and 10% levels, respectively.

independent variables, and column (3) shows the regression
results for clustering to province- and year-level standard errors.
The results show that the robustness tests are significant at the
1% level and the sign of the regression coefficients is positive, as
expected.

Mechanism of the effect of climate
extremes on crime rates

In this paper, agricultural output is the key variable for rural
areas and the per capita wage income is chosen to measure

TABLE 6 Mechanism of the effect of climate extremes on crime rates.

Variable (1) (2) (3)

Arrest PAO PWI

Climdex 0.035*** –0.041*** –0.001*

(0.005) (0.009) (0.000)

PD –0.002 –0.001 0.000***

(0.003) (0.001) (0.000)

HRR 4.698 1.837 0.089

(3.015) (1.610) (0.081)

lnPCG 0.494** –2.058*** 0.036***

(0.246) (0.372) (0.009)

UIR –1.028** 1.0590 0.051**

(0.473) (0.701) (0.022)

UER –0.255 0.664 –0.064***

(0.278) (0.549) (0.016)

HER 0.008* –0.005** –0.000

(0.004) (0.003) (0.000)

UR 2.584 7.841** 0.072

(2.045) (3.457) (0.138)

AAT –0.309*** 0.196 0.001

(0.110) (0.118) (0.006)

RH –0.015 –0.073** 0.001

(0.021) (0.028) (0.001)

Prec –0.000*** 0.000*** 0.000

(0.000) (0.000) (0.000)

HS 0.000 –0.001** –0.000

(0.001) (0.001) (0.000)

_Cons –0.436 36.989*** 10.281***

(5.496) (6.396) (0.205)

Year FE Yes Yes Yes

City FE Yes Yes Yes

N 903 903 903

r2 0.231 0.398 0.921

***, **, and * denote significance at the 1, 5, and 10% levels, respectively.

employment income in urban areas. In Table 6, the dependent
variable in column (1) is the number of arrests per 10,000
people; the dependent variable in column (2) is the agricultural
output, and the dependent variable in column (3) is employment
income. Extreme climate reduces agricultural output, which
weakens the role of agriculture as a “stabilizer.” The results
in column (3) show that the regression coefficient of the
extreme temperature index is significantly negative at the 10%
level, indicating that it reduces the income of non-agricultural
workers. By reducing labor productivity and increasing the
production costs of enterprises, the extreme climate may lead
to a decrease in the demand for labor and an increase in
unemployment in enterprises. This leads to a decrease in the
income of workers and the opportunity cost of crime, thus
inducing more criminal activity.
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TABLE 7 Heterogeneous effects of climate extremes on crime rates.

Variable (1) (2) (3) (4) (5) (6) (7)

Eastern Middle Western Backward Developed Outflow Inflow

Climdex 0.051*** 0.013 0.028*** 0.032*** 0.047*** 0.031*** 0.062***

(0.016) (0.010) (0.007) (0.008) (0.014) (0.008) (0.014)

PD –0.006 0.006*** –0.0077 0.007*** –0.005 0.003 –0.006

(0.004) (0.001) (0.005) (0.002) (0.004) (0.003) (0.005)

HRR 12.404** 8.717*** 2.704 10.790*** 6.482 10.802*** 6.687

(5.402) (1.642) (5.794) (1.979) (4.222) (1.560) (8.253)

lnPCG –0.051 0.736** –0.299 0.423 0.359 0.615** 0.426

(0.518) (0.341) (0.358) (0.328) (0.389) (0.248) (0.529)

UIR –0.800 0.248 0.779 –0.008 –1.915** –0.255 –1.230

(0.908) (0.619) (0.476) (0.369) (0.877) (0.426) (0.928)

UER –0.857 –1.296 0.098 –0.672 0.201 –0.259 0.065

(0.590) (0.802) (0.166) (0.461) (0.317) (0.389) (0.599)

HER 0.013 0.004 –0.001 0.004 0.009 0.004 0.010

(0.011) (0.003) (0.004) (0.003) (0.007) (0.003) (0.010)

UR 8.279 2.759 0.454 2.286 –0.234 0.892 6.551

(7.457) (2.329) (2.355) (2.181) (3.288) (2.042) (7.242)

AAT –0.371** –0.101 0.028 –0.184 –0.457** –0.279** –0.238

(0.184) (0.134) (0.134) (0.116) (0.188) (0.127) (0.187)

RH –0.031 –0.016 –0.008 0.010 –0.015 –0.018 0.070

(0.046) (0.024) (0.025) (0.020) (0.037) (0.020) (0.073)

Prec –0.000** –0.000* 0.000 –0.000* –0.000* –0.000*** –0.000

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.001)

HS 0.001 0.000 0.000 –0.000 0.001 0.000 0.001

(0.002) (0.001) (0.001) (0.000) (0.001) (0.000) (0.002)

_Cons 3.611 –10.569* 3.999 –11.051* 2.741 –11.248** –5.480

(9.135) (6.132) (9.486) (6.325) (7.295) (4.780) (11.325)

Year FE Yes Yes Yes Yes Yes Yes Yes

City FE Yes Yes Yes Yes Yes Yes Yes

N 315 357 231 455 448 609 294

r2 0.274 0.536 0.351 0.438 0.216 0.383 0.216

***, **, and * denote significance at the 1, 5, and 10% levels, respectively.

Heterogeneous effects of climate
extremes on crime rates

Geographic heterogeneity
China is a vast country with distinctly different geographic

conditions and regional climates. To further examine the
geographical heterogeneity of extreme climate on crime rates,
the sample was divided into eastern, middle, and western areas
for regression according to the criteria of the National Bureau
of Statistics, and the regression results are presented in columns
(1) to (3) in Table 7. The regression results show that extreme
climate has a significant positive effect on crime rates in the
eastern and western areas, and the contribution to crime rates
in the eastern area is more pronounced. This is because eastern
China has a long coastline and is often subject to extreme natural
disasters, such as typhoons and tsunamis. Western China has

low levels of economic development and the effects of extreme
climate on agricultural production are severe, both of which lead
to a high crime rate.

Heterogeneity of economic levels
There may be differential effects of extreme climate on crime

rates in regions with different levels of economic development.
Referring to Kumar and Khanna (2019), the sample is
divided into economically under-developed and economically
developed regions according to the median regional GDP, and
estimation results are presented in columns (4) and (5) in
Table 7. Extreme climate contributes more significantly to the
crime rate in economically developed regions, which may be
because the extreme climate is more likely to increase the
cost of energy consumption and pollution emissions (Li et al.,
2015). This leads to an increase in raw material costs and
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labor costs for enterprises, which will reduce labor demand and
employee wages, resulting in increased unemployment. More
unemployed people increase the inequality of development
(Yang and Tang, 2022), and endangers the social stability and
sustainable livelihood of residents, leading to more crime.

Population mobility heterogeneity
The mobile populations generated by urbanization usually

have an impact on regional crime rates (Chen et al., 2017). This
paper divides the sample into population inflow and population
outflow regions based on the difference between the resident
and registered populations (columns 6 and 7 in Table 7). The
estimation results show that extreme climate contributes more
to the crime rate in the inbound areas, which may be because
mobile populations tend to lack stable social relationships and
social security, and have lower risk tolerance than residents
when exposed to extreme climate shocks (Zhong et al., 2017).
This makes them more vulnerable to the negative economic
impact of extreme climate, thus driving higher crime rates in the
inbound areas.

Conclusion and policy insight

Using crime data from 129 prefectural-level cities in China
from 2013–2019, this paper analyzed the impact of extreme
climate on crime rates and its mechanism of action based on
the construction and measurement of the extreme climate index.
It is found that extreme climate has a significant positive effect
on crime rate, with crime rate increasing by 0.035% for every
1% increase in the extreme climate index. The results based
on the panel quantile model showed that the effect of extreme
climate on crime rate increased continuously with the increase
of regional crime rate, which means that extreme climate has
a greater effect on the areas with high quantile crime rate. The
action mechanism test showed that extreme climate can increase
crime rates via the agricultural output path and the employment
income path. From the heterogeneity analysis, it is clear that
the differences in the effects of climate extremes on crime rates
are related to geographic characteristics, economic level and
population movement, and specifically, the climate extremes has
a greater impact on crime rates in eastern regions, economically
developed regions and population inflow regions.

The findings of this paper confirm that climate extremes are
an important factor influencing criminal offending behavior.
This study provides a new perspective for understanding the
impact of climate change on the economy and society, and
has policy implications for promoting climate governance
and social stability. In the context of climate change, to
reduce the impact of climate extremes on social stability, the
government should pay attention to the following aspects:
First, strengthen environmental protection. Atmospheric
environmental pollution from fossil fuel combustion is the

main source of climate change, and the emission of atmospheric
pollutants should be reduced and the quality of atmospheric
environment should be improved to cope with climate change.
In addition to the atmospheric environment, ecological
environmental protection also needs attention. Strengthening
ecological protection and restoration of ecologically fragile
areas can enhance the regional climate coping capacity and
use the cyclic function of the natural ecosystem to achieve
sustainable carbon reduction. Second, adjust the industrial
structure. We should firmly follow the green and low-carbon
development path and actively respond to the negative impact
of global warming on social stability in the medium and
long term. Specifically, we should vigorously develop green
and low-carbon industries and strictly control greenhouse
gas emissions in key industries in key cities to promote and
force a green transformation of the economic structure,
which will mitigate the adverse effects of climate change while
also helping to promote high-quality sustainable economic
development and improve the region’s resilience in the face of
extreme climate shocks. Third, pay attention to technological
innovation. Technological innovation is an important way
to address climate change, and the government should call
on the whole society to attach importance to low-carbon
technological innovation and application, actively support
the R&D and industrialization demonstration and promotion
of various low-carbon technologies, and build a clean, low-
carbon, safe and efficient energy system. Climate change
is a common challenge for all countries in the world, and
countries should increase exchanges and cooperation to enable
the research and development, deployment and large-scale
promotion and application of climate change technologies
on a global scale. China is the largest developing country
in the world, and the conclusion of this paper that climate
extremes significantly contribute to regional crime rates has
important implications for climate governance and social
governance issues in other developing countries. In the
context of global warming, developing countries should pay
attention to the exogenous impact of extreme climate events
on social stability and regional crime and actively participate
in global climate governance. There are some limitations to
this paper. Climate is dynamic and its impact on society and
the economy occurs in the long term. As such, panel data
over longer periods than in this study would be useful for
further analysis. Second, there are many types of crime, and
the impact and mechanisms of extreme climate on different
types of crimes will vary. However, due to the availability of
data, in this paper, a more general rate is used—the types
of crimes should be further subdivided and examined in the
future. Third, this paper uses the analysis concept of “extreme
climate–economy–crime,” but the mechanisms of extreme
temperature influencing crime are more complicated, and
areas such as psychology, society, and ecology should be
studied further.
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Air temperature is the primary indicator of climate change. Reanalysis

temperature products are important datasets for temperature estimates over

high-elevation areas with few meteorological stations. However, they contain

biases in observations, so a bias correction is required to enhance the accuracy

of modeling predictions. In this study, we used the temperature lapse-rate

method to correct ERA-Interim reanalysis-temperature data in the Qilian

Mountains of China from 1979 to 2017. These temperature lapse rates were

based on observations (ΓObs) and on model internal vertical lapse rates derived

from different ERA-Interim pressure levels (ΓERA). The results showed that the

temperature lapse rates in warm periods were larger than those in cold periods.

Both the original and corrected ERA-Interim temperature can significantly

capture the warming trend exhibited by observations. In general, the

temperature lapse rate method was reliable for correcting ERA-interim

reanalysis-temperature data. Although ΓObs performed best in bias

correction, it depends heavily on the density of ground observation stations

and is not appropriate for remote areas with a low data coverage. Correction

methods based on ΓERAwere shown to be reliable for bias correction, andwill be

especially applicable to mountainous areas with few observation stations. Our

results contribute to the improvement of quality of data products and enhance

the accuracy of modeling of climate change effects and risks to the

environment and human health.

KEYWORDS

bias correction, ERA-interim reanalysis, temperature lapse rates, Qilian Mountains,
climate change

1 Introduction

The Qilian Mountains (QLM), located on the northeast margin of the Tibetan Plateau

(TP), serve as an important ecological security barrier for northwestern China and an

important water source for the Heihe River basin (Sun and Liu, 2013; Yang et al., 2020).

However, the ecological environment of the QLM has been impacted by human activities,
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including deforestation, overgrazing, overexploitation of water

and energy resources (Yang et al., 2017; Wang X. et al., 2019;

Zhou et al., 2019). Ground observations are the most widely used

source of data for climate change studies in the QLM. However,

surface meteorological stations are sparse in the QLM, especially

in high-elevation areas (>2500 m) with complex terrain (Lv et al.,

2019), decreasing the prediction value of data (Lin et al., 2017;

Wang et al., 2018; Liu et al., 2020a; Liu et al., 2020b; Cheng et al.,

2020). Moreover, observation data acquired by surface

meteorological stations are inherently limited due to uneven

spatiotemporal distribution, especially in mountain areas, and

such data may not be sufficient to replicate true variability in the

climatic characteristics in the QLM.

Spatial interpolation methods, such as inverse distance

weights (IDW) and Kriging interpolation, are generally

applied to obtain data in areas lacking observational data

(Gao et al., 2018). However, interpolation methods often lead

to large errors resulting from inadequate density and uneven

spatial distribution of observational stations. Reanalysis data

have been widely verified and used because they have higher

temporal resolution and longer time series than observation data,

and they can substitute for observation data (Gao et al., 2016;

Zhang et al., 2019; Zhao et al., 2019; Makama and Lim, 2020;

Demchev et al., 2021; Politi et al., 2021; Rakhmatova et al., 2021;

Xu et al., 2021; Zhao and He, 2022b). However, some systematic

biases exist between reanalysis and observations (Dyakonov et al.,

2020; Rakhmatova et al., 2021), necessitating a bias correction of

reanalysis.

Bias corrections of ERA-Interim reanalysis data have been

studied in previous studies (Di Giuseppe et al., 2013; Kryza et al.,

2016; Jones et al., 2017). For example, Bieniek et al. (2016)

constructed a downscaling method that effectively reduced

biases between reanalysis and observation data, especially for

those errors that were caused by elevation differences. Szczypta

et al. (2011) constructed a GPCP (product of the Global

Precipitation Climatology Project) correction method to

correct ERA-Interim data and showed that this method can

reduce biases between ERA-Interim and observation data. Gao

et al. (2014) constructed a LASSO (least absolute shrinkage and

selection operator) algorithm and found that this method

performed well in predicting the occurrence of a precipitation

event, and reduced biases for some observational stations more

than other downscaling methods. Paredes et al. (2018) used a

regression correction method to correct ERA-Interim data and

showed that it could significantly reduce root-mean-square-error

(RMSE) between ERA-Interim and observations.

Previous studies have shown that this bias can be significantly

corrected and reduced by an elevation correction method.

Temperature lapse rates, representing the empirical

relationship between elevation and temperature, are often

applied to interpolate observations or to scale model results of

near surface air temperature with respect to elevation as well as

for generating the required small-scale information of near

surface air temperature (Gao et al., 2012; Gao et al., 2017).

The most common used value for temperature lapse rate

is −6.0 and −6.5°C to more complex approaches, which use

varied numbers for the month of the year or at least different

values for different seasons. However, a fixed lapse rate can be

problematic because temperature gradients can vary significantly

over short time periods and short distances, especially in complex

terrain. The variability of lapse rate may be affected by many

factors (Jiang et al., 2016; Qing et al., 2018). This lapse rate

variability can just be monitored by dense meteorological station

networks or by using alternative methods that can cover the

temporal and spatial change of air temperature.

A solution is to use reanalysis data for different pressure

levels that can also be used for a characterization of lapse rates

and a subsequent downscaling of modeled temperatures that are

independent with observations (Gao et al., 2012; Gao et al., 2017).

For example, Gao et al. (2017) used the temperature lapse rate

method to correct ERA-Interim reanalysis temperature data and

showed that this method could correct ERA-Interim temperature

data and improve the quality of downscaling. Gao et al. (2012)

constructed a temperature-correction model by using ERA-

Interim temperature and geopotential height at 925 hPa,

850 hPa and 700 hPa levels, independent of meteorological

stations; subsequent tests showed that the model could

successfully correct ERA-Interim. Previous studies about the

correction of reanalysis temperature in the Chinese Qilian

Mountains remained unclear. Our studies can provide a

reference when using and correcting reanalysis temperature in

the Qilian Mountains.

Here, we used ERA-Interim temperature and geopotential

height at 600 hPa, 700 hPa, 850 hPa, and 925 hPa to calculate

temperature lapse rates and combine lapse rates derived from

observations to correct ERA-Interim reanalysis temperature

data, with the purpose of revealing climatic trends based on

optimally corrected ERA-Interim data. The ERA-Interim

reanalysis data, observational temperature data and correction

methods are introduced in Section 2. The correction results were

shown in Section 3. The discussion is analyzed in Section 4.

Finally, the conclusions in this study are summarized in

Section 5.

2 Data and methods

2.1 ERA-Interim data (Te)

ERA-Interim reanalysis data were downloaded from the

European Centre for Medium Range Weather Forecasts

(ECMWF); the data had a time step of 6 h (00.00, 06.00,

12.00, and 18.00 UTC), spatial resolution of 0.25 × 0.25°, and

covered a time period from 1 January 1979 to 31 December 2017.

Geographical locations of the ERA-Interim grid points spanned

35.5–40.75°N and 93.0–104.5°E, sufficient to cover the entire
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QLM (Figure 1). A time difference conversion method was

applied to match the ERA-Interim temperature data in UTC

time zone and observation data in local time. The used output

variables are 2 m temperature, surface geopotential as well as

temperature and geopotential height at 600, 700, 850, and

925 hPa levels. The ERA-Interim surface geopotential height

(HERA) was obtained by dividing geopotential by gravity at

each grid point. Altitudes corresponding to the four

pressure layers (600, 700, 850, and 925 hPa) were

approximately 4,000, 3,000, 1,500, and 500 m, respectively.

It should be noted that the main reason for the selection of

these pressure layers was that the geopotential heights of these

pressure layers can reflect true characteristics of mountain

climate (Gao et al., 2018), and can cover the altitude range of

most stations in the QLM, which is convenient for subsequent

correction and comparison.

2.2 Observations (To)

Observational temperature data and altitude information

recorded by meteorological stations were downloaded from

the China Meteorological Data Sharing Service System of the

National Meteorological Information Center (http://cdc.cma.

gov.cn/index.jsp). The quality of observed temperature data

was strictly controlled and verified by the data provider. The

quality and completeness of observed temperature data are

significantly improved after controlling, so it can be applied

directly in climate change research. Twenty-four

meteorological stations located in the QLM were selected.

Observations from these stations included altitude, latitude,

longitude, daily mean temperature, daily maximum

temperature, and daily minimum temperature. Detailed

information on the 24 meteorological stations can be found

in Table 1. Briefly, these stations are located at different

altitudes ranging from approximately 1,000–3,500 m. The

highest station is Station No.15 with an altitude of 3,460 m,

and the lowest station is Station No.1 with an altitude of

1,100 m. The geographical distribution of the

24 meteorological stations and ERA-Interim grid points are

shown in Figure 1 and Table 1. There are positive elevation

differences at 23 stations, only Station No.11 has a negative

elevation difference between Te and To. ERA-Interim grid

points nearest to each meteorological station were selected for

comparison based on the longitude and latitude coordinates of

24 meteorological stations, which can avoid the error caused

by multigrid spatial interpolation (Zhao et al., 2020). Four

seasons were defined as: spring (March to May), summer

FIGURE 1
Distribution of the ERA-Interim grid points and meteorological stations in the QLM.
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(June to August), autumn (September to November), and

winter (December to February).

2.3 Correction methods

ERA-Interim reanalysis temperature data were corrected

using Equation 1:

Tt � Tref + Γ ×Δh (1)

Γ600−700 � (Τ600 − Τ700)/(H600 −H700) (2)
Γ600−850 � (Τ600 − Τ850)/(H600 −H850) (3)
Γ700−850 � (Τ700 − Τ850)/(H700 −H850) (4)
Γ700−925 � (Τ700 − Τ925)/(H700 −H925) (5)

ΓObs � ΤObs/ΗObs (6)

where Tt is the corrected temperature, and Tref is the temperature

to be corrected. △h is the elevation difference between

meteorological stations and ERA-Interim grid points. Γ
represents temperature lapse rates calculated from

observations and ERA-Interim temperatures as well as

geopotential heights at different pressures. Γ can be calculated

from Equations 2–6. These calculations were repeated to obtain

temperature lapse rates for five different sets of pressures, here

referred to as Methods I–V (Table 2). ERA-Interim internal lapse

rates are fully independent of observations (Gao et al., 2017).

Γ600-700, Γ600-850, Γ700-850, Γ700-925 represent the temperature lapse

rates at four pressure levels. T600, T700, T850 and T925 represent

the temperature at 600, 700, 850 and 925 hPa pressure level,

respectively. H600, H700, H850 and H925 represent the height at

600, 700, 850 and 925 hPa pressure level, respectively. ΓObs is the

TABLE 1 Meteorological stations information.

No Site name Latitude (°) Longitude (°) Elevation (m) HERA (m) HERA-HObs (m)

1 Dun Huang 40.13 94.78 1100 1508 408

2 An Xi 40.50 95.92 1182 1668 486

3 Yu Menzhen 40.27 97.18 1580 1869 289

4 Jin Ta 40.00 98.90 1270 1631 360

5 Jiu Quan 39.67 98.72 1470 1981 511

6 Gao Tai 39.38 99.72 1357 2225 868

7 Zhang Ye 38.92 100.58 1550 2074 524

8 Shan Dan 38.78 101.08 1760 2168 409

9 Yong Chang 38.23 101.97 1987 2277 291

10 Wu Wei 38.08 102.92 1525 1940 415

11 Wu Shaoling 37.20 102.87 3045 2604 -441

12 Jing Tai 37.23 104.18 1620 1761 141

13 Gao Lan 36.55 103.67 2032 2146 114

14 Leng Hu 38.75 93.58 2762 2941 179

15 Tuo Le 38.87 98.37 3460 3936 476

16 Ye Niugou 38.62 99.35 3200 3649 449

17 Qi Lian 38.18 100.30 2800 3346 546

18 Da Chaidan 37.83 95.28 3000 3364 364

19 De Lingha 37.25 97.13 2762 3469 708

20 Gang Cha 37.33 100.17 3100 3556 456

21 Men Yuan 37.45 101.62 2800 3309 509

22 Lin Xia 35.62 103.18 1900 2579 679

23 Xi Ning 36.58 101.92 2231 2916 685

24 Min He 36.23 102.93 1900 2412 512

Note: HERA, is the ERA-Interim grid point height (m).

TABLE 2 Summary of Γ and Tref used in five correction methods for
24 test stations.

Methods Γ Tref

Method Ⅰ Γ600-700 TERA_2m

Method Ⅱ Γ600-850 TERA_2m

Method Ⅲ Γ700-850 TERA_2m

Method Ⅳ Γ700-925 TERA_2m

Method Ⅴ ΓObs TERA_2m

Frontiers in Environmental Science frontiersin.org04

Zhao et al. 10.3389/fenvs.2022.1033202

127

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.1033202


temperature lapse rate calculated from observations. TObs and

HObs are the temperature and elevation of meteorological

stations, respectively.

3 Results

3.1 Variability in temperature lapse rates

Table 3 and Figure 2 show the variability in five

temperature lapse rates over a 12-month period across the

QLM; these lapse rates are Γ600-700, Γ600-850, Γ700-850, Γ700-925,
and ΓObs. The four ERA-Interim temperature lapse rates

(ΓERA) were different from the temperature lapse rate

based on observations (ΓObs) with ΓObs was lower than

ΓERA across the whole period in general. The five

temperature lapse rates initially increased, and then

decreased across the 12-month period, with the largest

values in May and June (Figure 3). The lowest

temperature lapse rates were found in winter.

3.2 Evaluation of correction methods

Table 4 shows the biases between observed and original ERA-

Interim temperature as well as corrected ERA-Interim

temperature for 24 meteorological stations during the period

1979–2017. The bias between observed and original ERA-Interim

temperature at Station No.11 was positive (2.83°C), which

indicated that ERA-Interim data were higher than observation

data at Station No.11. Biases at Station No.11 remained positive

after correction, but biases were smaller than the uncorrected

ERA-Interim; the smallest bias for corrected ERA-Interim was

found using Method Ⅰ (0.08°C). Biases between the original ERA-

Interim temperature and observed temperature at Stations

No.12, 13, and 15 were negative (−1.33, −1.05, and −3.86°C,

respectively), which indicated that ERA-Interim data were lower

than observation data. There were also clear biases for the five

sets of corrected ERA-Interim temperature at these stations, and

these biases were also negative. The largest reductions in bias

were obtained with Method Ⅰ, in which they were reduced

to −0.45, −0.34, and −0.90°C at Stations No.12, 13 and 15,

respectively. Biases between original ERA-Interim and

observed temperatures were also negative at Stations No.8, 20,

21 and 24 (−2.06, −2.54, −2.57 and −3.02°C, respectively), which

again indicated that ERA-Interim data were lower than

TABLE 3 Monthly lapse rates (°C/km) based on observations (ΓObs) and
ERA-Interim (Γ600_700, Γ600_850, Γ700_850, and Γ700_925) during the
period 1979–2017.

Month Γ600_700 Γ600_850 Γ700_850 Γ700_925 ΓObs

January −5.59 −5.19 −4.88 −5.32 −3.13

February −5.66 −5.64 −5.62 −5.88 −3.68

March −6.11 −6.29 −6.42 −6.43 −4.75

April −6.66 −6.76 −6.84 −6.69 −5.77

May −6.88 −6.80 −6.74 −6.53 −6.30

June −6.93 −6.67 −6.46 −6.22 −6.54

July −6.61 −6.31 −6.09 −5.87 −6.22

August −6.32 −6.15 −6.01 −5.83 −5.78

September −6.23 −6.25 −6.27 −6.14 −5.16

October −6.13 −6.23 −6.31 −6.31 −4.64

November −6.02 −5.74 −5.52 −5.79 −4.25

December −5.68 −5.16 −4.76 −5.22 −3.32

Average −6.24 −6.10 −5.99 −6.02 −4.96

FIGURE 2
Box plots of monthly mean ΓObs and ΓERA during the period
1979‒2017.

FIGURE 3
Box plots of seasonal mean ΓObs and ΓERA during the period
1979‒2017.
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observation data. The largest reductions in bias for these four

stations were found by correcting ERA-Interim using Method Ⅴ,
and biases were reduced to −0.03, −0.27, −0.05, and −0.48°C,

respectively. Biases for corrected ERA-Interim at these four

stations using Methods Ⅰ‒Ⅳ were larger and remained

negative. For all other stations, biases for uncorrected ERA-

Interim were negative, but those for corrected ERA-Interim

(using all five methods) were positive. Generally, the corrected

results obtained via Method Ⅴ were better than those obtained

with the other four methods, which was mainly because the

temperature lapse rates of Method Ⅴ were calculated using

observation data, while those of the other four methods were

calculated using ERA-Interim data. Biases for corrected ERA-

Interim using Method Ⅰ were generally smaller than when using

Methods II‒IV; this may be because the temperature lapse rates

of Method Ⅰ were calculated with ERA-Interim height and

temperature in the 600–700 hPa range, and the geopotential

height in this range is higher than that at the other three

TABLE 4 Biases (°C) between daily observed and original ERA-Interim temperature, and between observed and corrected ERA-Interim temperature
(Methods I‒V) for 24 meteorological stations during the period 1979–2017.

No Site name Original ERA-Interim Method Ⅰ Method Ⅱ Method Ⅲ Method Ⅳ Method Ⅴ

1 Dun Huang −0.40 2.14 2.08 2.04 2.05 1.62

2 An Xi −1.16 1.87 1.80 1.75 1.76 1.25

3 Yu Menzhen −0.66 1.15 1.11 1.08 1.08 0.78

4 Jin Ta −0.73 1.52 1.47 1.43 1.44 1.06

5 Jiu Quan −1.83 1.35 1.28 1.23 1.24 0.70

6 Gao Tai −3.50 1.92 1.80 1.71 1.73 0.81

7 Zhang Ye −2.31 0.96 0.89 0.83 0.84 0.29

8 Shan Dan −2.06 0.49 0.43 0.39 0.40 −0.03

9 Yong Chang −1.01 0.81 0.77 0.74 0.75 0.44

10 Wu Wei −1.78 0.81 0.75 0.71 0.72 0.28

11 Wu Shaoling 2.83 0.08 0.14 0.18 0.17 0.64

12 Jing Tai −1.33 −0.45 −0.47 −0.49 −0.48 −0.63

13 Gao Lan −1.05 −0.34 −0.36 −0.37 −0.37 −0.49

14 Leng Hu −1.05 0.07 0.04 0.02 0.03 −0.16

15 Tuo Le −3.86 −0.90 −0.96 −1.01 −1.00 −1.50

16 Ye Niugou −1.51 1.29 1.23 1.18 1.19 0.72

17 Qi Lian −3.32 0.09 0.01 −0.04 −0.03 −0.61

18 Da Chaidan −1.26 1.01 0.96 0.92 0.93 0.54

19 De Lingha −3.37 1.04 0.94 0.87 0.89 0.14

20 Gang Cha −2.54 0.31 0.25 0.20 0.21 −0.27

21 Men Yuan −2.57 0.60 0.53 0.48 0.49 −0.05

22 Lin Xia −2.93 1.30 1.21 1.14 1.15 0.44

23 Xi Ning −3.18 1.10 1.00 0.93 0.95 0.22

24 Min He −3.02 0.17 0.10 0.05 0.06 −0.48

TABLE 5 Mean seasonal bias (°C) of original ERA-Interim temperature and corrected temperature data compared with observed temperature for
24 meteorological stations during the period 1979–2017.

Seasons Original ERA-Interim Method Ⅰ Method Ⅱ Method Ⅲ Method Ⅳ Method V

Spring ‒2.29 0.42 0.45 0.47 0.42 0.03

Summer ‒2.00 0.74 0.64 0.56 0.47 0.55

Autumn ‒1.87 0.67 0.65 0.63 0.65 0.07

Winter ‒1.10 1.23 1.10 1.00 1.16 0.30

Average ‒1.82 0.77 0.71 0.67 0.68 0.24
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pressure levels used. Meteorological stations in the QLM are

mainly at elevations above 2,000 m; therefore, temperature lapse

rates may be not applicable to the correction of ERA-Interim

temperature data for those areas where elevations are below

1,500 m.

Table 5 shows seasonal biases between observed temperature

and original ERA-Interim temperature, and for the corrected

ERA-Interim temperature data for the QLM. In general, all five

correction methods showed significantly reduced biases

compared to those between observed and original ERA-

Interim temperature. Biases for corrected ERA-Interim

temperature data with four methods, and the correction result

obtained using Method Ⅳ were markedly lower. The mean

seasonal biases of the original ERA-Interim and the four

correction methods based on the ΓERA were 0.77, 0.71, 0.67,

0.68, and 0.24°C, respectively. Corrected biases for spring and

autumn were generally smaller than for summer and winter. For

example, with Method Ⅴ, biases in spring, summer, autumn, and

winter were 0.03, 0.55, 0.07, and 0.30°C, respectively. Correlation

coefficients (r) between observations and original ERA-Interim

as well as corrected ERA-Interim were all above 0.9 (Table 6).

RMSE improved (decreased) for the corrected ERA-Interim

temperature data (Table 7). RMSE for corrected ERA-Interim

temperature data decreased for Stations No. 5–24 indicating that

temperature lapse rates effectively corrected ERA-Interim

temperature at these stations. Method Ⅰ performed best at

Station 11, reducing RMSE by 91%. Methods Ⅱ, III, and Ⅳ
performed best at Station No.17, reducing RMSE by 90.3, 90.2,

and 90.3%, respectively. Method Ⅴ performed best at Station

No.19, reducing RMSE by 91.6%. However, RMSE increased for

corrected ERA-Interim temperature data at Stations No. 1-4

compared to those for non-corrected ERA-Interim temperature

data. This may be due to low elevations of these four stations,

which were below 1600 m. Therefore, temperature lapse rates

may be unsuitable for correcting ERA-Interim temperature data

at these stations. The average RMSE for corrected ERA-Interim

temperature data across the 24 meteorological stations using our

correction methods were 0.98, 0.94, 0.91, 0.92, and 0.70,

respectively for Methods I to V, representing reductions in

the mean RMSE of 50.2%, 52.2%, 53.9%, 53.5%, and 65.3%,

respectively, compared to the uncorrected ERA-Interim data. In

general, Method Ⅴ performed best. Correction Methods Ⅰ‒Ⅳ

TABLE 6 Correlation coefficients (r) between daily observed and original ERA-Interim temperature, and between observed temperature and data
obtained from five correction methods for 24 meteorological stations during the period 1979–2017.

No Site name Original ERA-Interim Method Ⅰ Method Ⅱ Method Ⅲ Method Ⅳ Method Ⅴ

1 Dun Huang 0.987 0.986 0.986 0.987 0.987 0.988

2 An Xi 0.979 0.976 0.978 0.978 0.978 0.975

3 Yu Menzhen 0.972 0.974 0.975 0.974 0.974 0.976

4 Jin Ta 0.971 0.967 0.968 0.968 0.969 0.968

5 Jiu Quan 0.949 0.951 0.952 0.953 0.952 0.960

6 Gao Tai 0.917 0.898 0.904 0.907 0.910 0.908

7 Zhang Ye 0.911 0.892 0.895 0.897 0.901 0.897

8 Shan Dan 0.932 0.920 0.925 0.929 0.930 0.926

9 Yong Chang 0.924 0.922 0.922 0.922 0.923 0.921

10 Wu Wei 0.907 0.899 0.902 0.904 0.904 0.902

11 Wu Shaoling 0.933 0.933 0.932 0.931 0.932 0.914

12 Jing Tai 0.910 0.907 0.908 0.908 0.908 0.911

13 Gao Lan 0.960 0.959 0.960 0.960 0.960 0.961

14 Leng Hu 0.944 0.943 0.943 0.943 0.943 0.940

15 Tuo Le 0.947 0.943 0.944 0.943 0.944 0.929

16 Ye Niugou 0.897 0.892 0.894 0.894 0.895 0.870

17 Qi Lian 0.886 0.875 0.879 0.881 0.882 0.874

18 Da Chaidan 0.949 0.947 0.946 0.946 0.947 0.940

19 De Lingha 0.952 0.950 0.952 0.952 0.952 0.932

20 Gang Cha 0.887 0.880 0.881 0.882 0.883 0.876

21 Men Yuan 0.835 0.814 0.819 0.821 0.825 0.806

22 Lin Xia 0.936 0.940 0.937 0.934 0.934 0.948

23 Xi Ning 0.386 0.409 0.390 0.374 0.380 0.373

24 Min He 0.929 0.926 0.928 0.929 0.930 0.934
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TABLE 7 RMSE (°C) between daily observed and original ERA-Interim temperature, and between observed temperature and data obtained from five
correction methods for 24 meteorological stations during the period 1979–2017.

No Site name Original ERA-Interim Method Ⅰ Method Ⅱ Method Ⅲ Method Ⅳ Method Ⅴ

1 Dun Huang 0.42 2.14 2.09 2.04 2.05 1.62

2 An Xi 1.17 1.87 1.81 1.76 1.77 1.26

3 Yu Menzhen 0.67 1.16 1.12 1.09 1.09 0.79

4 Jin Ta 0.75 1.53 1.48 1.44 1.45 1.07

5 Jiu Quan 1.85 1.37 1.30 1.24 1.26 0.73

6 Gao Tai 3.51 1.94 1.83 1.74 1.76 0.87

7 Zhang Ye 2.33 1.01 0.95 0.89 0.90 0.43

8 Shan Dan 2.09 0.60 0.55 0.51 0.52 0.32

9 Yong Chang 1.04 0.85 0.81 0.78 0.79 0.51

10 Wu Wei 1.85 0.96 0.91 0.88 0.89 0.57

11 Wu Shaoling 2.84 0.25 0.28 0.30 0.29 0.69

12 Jing Tai 1.38 0.57 0.59 0.60 0.59 0.72

13 Gao Lan 1.07 0.38 0.40 0.41 0.40 0.51

14 Leng Hu 1.07 0.21 0.21 0.20 0.20 0.26

15 Tuo Le 3.87 0.93 0.99 1.04 1.03 1.53

16 Ye Niugou 1.54 1.32 1.26 1.22 1.23 0.79

17 Qi Lian 3.33 0.34 0.32 0.32 0.32 0.69

18 Da Chaidan 1.29 1.04 0.99 0.96 0.96 0.61

19 De Lingha 3.38 1.06 0.97 0.89 0.91 0.28

20 Gang Cha 2.55 0.42 0.38 0.35 0.36 0.40

21 Men Yuan 2.62 0.78 0.72 0.68 0.69 0.49

22 Lin Xia 2.94 1.32 1.23 1.16 1.17 0.48

23 Xi Ning 3.22 1.22 1.14 1.08 1.09 0.61

24 Min He 3.03 0.34 0.31 0.30 0.30 0.55

FIGURE 4
Inter-annual variability and warming trends in the QLM temperatures: observed, original ERA-Interim temperature, and corrected using five
lapse rates, during the period 1979‒2017.
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performed better than Method Ⅴ at Stations No. 11, 12, 13, 14,

15, 17, 20, and 24. These eight stations were at high elevations;

stations No.11, 15, and 20 were located at altitude above 3,000 m;

13, 14, and 17 were at were located at altitude above 2,000 m, and

12 and 24 were at were located at altitude above 1500 m.

Methods Ⅰ‒Ⅳ may therefore be more suitable for correcting

ERA-Interim temperature data at high-elevation meteorological

stations.

3.3 Plateau-wide temperature climatology
and trends

Figure 4 shows the inter-annual variations and warming

trends over the QLM from 1979 to 2017. The ERA-Interim and

corrected temperature can successfully capture trends in the

observations, including an increasing trend in observed

temperature, original ERA-Interim temperature, and

corrected temperature during the period 1979–2017

(Table 8). The largest increasing rate was found in summer

(0.55°C/decade), and the smallest increasing rate was found in

winter (0.34°C/decade). The increasing trends shown by both

the original ERA-Interim temperature and corrected

temperature data underestimated the warming trend

exhibited by observation data. The internal variability and

increasing trends were similar for Methods Ⅰ‒Ⅳ, while

Method Ⅴ most closely matched the warming trend of the

observed temperatures. In general, Method Ⅴ reflected the best

correction results, showing the smallest biases at a seasonal

scale, and the best reflection of warming rates in the QLM.

4 Discussion

4.1 Analysis of temperature lapse rates

Our results indicated that temperature lapse rates

exhibited bigger values in warm periods and smallest

values in cold periods, which is mainly because the cold

air invasion in winter has a more dramatic effect on the

temperature at low altitudes than at high altitudes. (Jiang

et al., 2016). Qing et al. (2018) also found that temperature

lapse rates during warmer months are bigger than that in

colder months in the QLM, which is consistent with this

study. In this study, the absolute value of ΓObs was lower than

that of ΓERA, and the lowest temperature lapse rates were

detected in winter, which is consistent with previous

research (Jiang et al., 2016).

4.2 Analysis of correction results

The corrected temperatures obtained in this study using

Method Ⅴ were better than those obtained using the other four

correction methods in terms of the increasing trend in

observed temperature, which was similar with previous

studies (Gao et al., 2012; Gao et al., 2017). The temperature

lapse rates in Method Ⅴ were calculated using observed

temperature data, the correction results were tested with

observation data, and the method depends critically on the

density of ground observation stations; therefore, Method Ⅴ
may outperform the other methods. However, although

Method Ⅴ performed well, mountainous areas have few

meteorological stations, therefore this method cannot be

widely promoted. Gao et al. (2012) also found that

temperature lapse rates calculated from observations were

not reliable when observations contained outliers. Methods

Ⅰ‒Ⅳ, which were based on ΓERA, were more flexible and

independent of meteorological stations, may be applicable

to correcting temperature data specifically for high-

elevation stations. Furthermore, this method should be easy

to extend, and will be particularly useful in mountainous areas

with few observation stations. The most important advantage

is that the method based on ΓERA is fully independent from the

observed data. Thus, it provides a tool for correcting ERA-

Interim temperature data for any high mountainous areas

where no observations exist (Gao et al., 2018; Luo et al., 2019;

Fan et al., 2021). Gao et al. (2017) indicates that the correction

TABLE 8 Seasonal warming trends (°C/decade) observed, original ERA-Interim temperature, and temperatures corrected with five methods for the
period 1979-2017 in the QLM.

Temperature Spring Summer Autumn Winter Annual

Observations 0.54 0.55 0.40 0.34 0.46

ERA-Interim 0.46 0.48 0.35 0.24 0.38

Method Ⅰ 0.46 0.46 0.34 0.23 0.37

Method Ⅱ 0.46 0.46 0.34 0.22 0.37

Method Ⅲ 0.46 0.46 0.34 0.22 0.37

Method Ⅳ 0.46 0.46 0.34 0.22 0.37

Method Ⅴ 0.51 0.51 0.36 0.20 0.39
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method using ERA-Interim internal vertical lapse rates can

capture the inter-annual variations for the plateau-wide

climatology very well, which is similar with this study. The

bias reflects the specific difference of temperature before and

after the correction, while the correlation coefficient mainly

reflects the similarity between the site observations and the

ERA-Interim temperature changes. The correction method

based on temperature lapse rate mainly corrects the ERA-

Interim temperature according to the height difference

between meteorological stations and reanalysis grid points.

Therefore, it mainly corrects the systematic errors between

ERA-Interim temperature and observed values, which has

little influence on the temperature trend. This is the reason

why the bias of some sites decreased after correction, but the

correlation coefficient did not change much. The correction

skills are weak in winter except for Method V (Table 5,

Table 8). In addition to the altitude difference, the snow

cover and glaciers may also be the main reasons for the

bias in winter (Zhao and He, 2022a), so the elevation

correction method may not be suitable for the bias

correction in winter. In addition, after comparing biases,

RMSE, and r of Methods Ⅰ‒Ⅳ based on ΓERA, we concluded

that the corrected results using Method Ⅲ were superior to

those using Methods Ⅰ, Ⅱ, and Ⅳ. The seasonal bias, RMSE, r,

and mean station biases of Method Ⅲ were 0.67°C, 0.91°C,

0.905, and 0.67°C, respectively (Table 9). Hence, Method Ⅲ
should be the most suitable for the correction of ERA-Interim

temperature data in the Qilian Mountains. Gao et al. (2012)

found that using (global climate) model showed a convincing

performance when compared to measured data of the twelve

stations, again especially for those in higher elevations, which

is similar with this study.

4.3 Analysis of potential uncertainties

Although the five correction methods can improve the accuracy

of ERA-Interim temperature data, they do not consider the

characteristics of terrain or geographical location. Errors between

the observed and ERA-Interim temperature data were not only

caused by the differences between the station and ERA-Interim grid

cell elevation, but also by other factors, such as the large-scale error

of ERA-Interim, glacier, and errors introduced by the assimilation

system and the interpolation method (Dee, 2005; Dee and Uppala,

2009). Therefore, it may not be sufficient to correct ERA-Interim

temperature using only the temperature lapse rate; additional

influencing factors need to be considered in future research. The

24 meteorological stations considered in this study were situated at

different altitudes and were widely spaced geographically.

Discrepancies exist in direct comparisons of temperature lapse

rates established using observation data and those established

using ERA-Interim data. The 2881 ERA-interim grid points

shown in Figure 1 span a large area, covering not only the QLM,

but also areas adjacent to the QLM. Some of these grid points were

located in the interior of the Tibetan Plateau, which increased terrain

complexity and may lead to different temperature lapse rates.

Moreover, due to the spatial location and altitude of the

24 meteorological stations are different, the calculated

temperature lapse rates cannot represent a single station, but

instead, represent a generalized area. Whether the

representativeness is significant or not is worthy of a further

study. Finally, in the formula Tt=Tref +Γ×△h, the Tref uses the

ERA-Interim 2m temperature values corresponding to the

24 stations, and the system error for Tref is transferred,

contributing to the final correction error. In addition,

temperature lapse rate changes could be more variable from

surface to within boundary layer and in the presence of clouds,

which may affect the overall bias correction.

4.4 Future research

The aims of the error corrections performed in this study

were to verify the reliability of the method and to establish a

foundation for future downscaling research. For example, with

DEM data for the entire QLM, we can correct all 2881 ERA-

Interim grid points using Method III, and obtain temperature

data from all grid points. ERA-Interim temperature data can be

downscaled to higher resolution, contributing to a high-

resolution data set for climate change research in this region

(Gao et al., 2018; Fan et al., 2021). We focused on ERA-Interim

data in this study, which is the third-generation reanalysis

product of the ECMWF. However, future studies can extend

the methods used here to other reanalysis products such as

ERA5 and ERA5-Land (Wang C. et al., 2019; Liu et al., 2021;

Zhao andHe., 2022a). In addition, it would be worth trying to use

TABLE 9 Comparison of four correction methods based on ΓERA.

Evaluation index Method Ⅰ Method Ⅱ Method Ⅲ Method Ⅳ

Seasonal bias (°C) 0.77 0.71 0.67 0.68

Daily RMSE (°C) 0.98 0.94 0.91 0.92

Daily r 0.904 0.905 0.905 0.906

Daily bias (°C) 0.77 0.71 0.67 0.68
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radiosonde vertical profiles to calculate lapse rates and to verify

the same in this study. Moreover, temperature lapse rate may

vary in different atmospheric conditions and slightly from one

geographical location, especially in the boundary layer and in the

presence of cloud.

5 Conclusions

In this study, ERA-Interim temperature data were corrected

using temperature lapse rate methods, with the corrected results

were verified using bias, r, and RMSE. Four ERA-Interim

temperature lapse rates (ΓERA) were different from the

temperature lapse rate based on observations (ΓObs). The ΓERA
and ΓObs in warm periods were larger than those in cold periods.

Biases indicated that the corrected results using Method Ⅴ were

more accurate than those using the other four methods. Among the

four ERA-Interim temperature lapse rates (i.e., Methods I‒IV),

Method III generally performed best. For seasonal biases,

Method Ⅴ performed best. The mean seasonal biases of the

original ERA-Interim and the four correction methods based on

the ΓERA were 0.77, 0.71, 0.67, 0.68, and 0.24°C, respectively, with

significant correlation coefficients (r > 0.9). In general, the corrected

results for spring and autumn were more accurate than those for

summer andwinter. For the correction coefficient (r), the corrected r

was above 0.9 for themajority of meteorological stations. The RMSE

for corrected ERA-Interim improved compared to RMSE for

uncorrected ERA-Interim for 19 stations, indicating that the

temperature lapse rate method was suitable for correcting ERA-

Interim temperature data. The mean RMSE of the five correction

methods used here for data from 24 stations were 0.98°C, 0.94°C,

0.91°C, 0.92°C, and 0.70°C, respectively. The ERA-Interim and five

sets of corrected temperature data successfully captured the trend of

increasing observed temperatures in the QLM for the period

1979–2017. In general, temperature lapse rate method is reliable

for correcting reanalysis temperature data. Although ΓObs performed

best in bias correction, it critically depends on the density of ground

observation stations. Correctionmethods based on ΓERAwere shown
to be reliable for bias correction and are applicable in mountainous

areas with few observation stations.
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The study investigated the precipitation variability over Myanmar at the annual and

seasonal scales by comparing 12 model outputs from the Coupled Model

Intercomparison Project Phase 6 (CMIP6) with gridded observational data

provided by the Global Precipitation Climatology Centre (GPCC) from 1970 to

2014. Using Mann–Kendall and Sen’s slope estimator, the trend analysis was

assessed. Correlation analysis was also used to investigate the relationship of

observational and Ensemble means precipitation with sea surface temperature

(SST) anomalies. Results show a better correlation pattern of ENS with observation

precipitation than that of individual selected models during the May-October

season than that of the annual scale. Meanwhile, UKESM1-0-LL, NESM3, and

HadGEM3-CC31-LL show high correlation with a relatively low root-mean-

square difference. A few models roughly capture the spatiotemporal patterns of

precipitation during MJJASO over Myanmar. The root mean square errors (RMSEs)

of MIROC6, CNRM-ESM2-1, CNRM-CM6, and NESM3 are lower than that of ENS,

whereas the RMSEs of CESM2, GFDL-CM4, HadGEM3-CC31-LL, GFDL-ESM4,

UKESM1-0-LL, MPI-ESM1-2-HR, MRI-ESM2-0, and IPSL-CM6A-LR are higher

than that of ENS, for annual precipitation. Heterogeneous correlation

coefficients and slope changes are evident within the country at both annual

and seasonal periods. Overall, the ENS showed a long-term increasing annual

trend. Most of the model exhibited increasing annual trends while some showed

decreasing annual trends. The correlation between the annual series and SST

anomalies shows stronger correlation coefficient than that of seasonal. Overall, the

correlation analysis of the SST anomalies reveals significant positive and negative

relationships with the ENS precipitation. We recommend considering future

projections of precipitation changes over Myanmar in future work.

OPEN ACCESS

EDITED BY

Wei Shui,
Fuzhou University, China

REVIEWED BY

Jianqi Zhang,
National University of Defense
Technology, China
Haijun Deng,
Fujian Normal University, China

*CORRESPONDENCE

Xiefei Zhi,
zhi@nuist.edu.cn

SPECIALTY SECTION

This article was submitted to
Atmosphere and Climate,
a section of the journal
Frontiers in Environmental Science

RECEIVED 14 July 2022
ACCEPTED 25 October 2022
PUBLISHED 15 November 2022

CITATION

Sein ZMM, Zhi X, Ogou FK, Nooni IK and
Paing KH (2022), Evaluation of coupled
model intercomparison project phase
6 models in simulating precipitation and
its possible relationship with sea surface
temperature over Myanmar.
Front. Environ. Sci. 10:993802.
doi: 10.3389/fenvs.2022.993802

COPYRIGHT

© 2022 Sein, Zhi, Ogou, Nooni and
Paing. This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

Frontiers in Environmental Science frontiersin.org01

TYPE Original Research
PUBLISHED 15 November 2022
DOI 10.3389/fenvs.2022.993802

136

https://www.frontiersin.org/articles/10.3389/fenvs.2022.993802/full
https://www.frontiersin.org/articles/10.3389/fenvs.2022.993802/full
https://www.frontiersin.org/articles/10.3389/fenvs.2022.993802/full
https://www.frontiersin.org/articles/10.3389/fenvs.2022.993802/full
https://www.frontiersin.org/articles/10.3389/fenvs.2022.993802/full
https://www.frontiersin.org/articles/10.3389/fenvs.2022.993802/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fenvs.2022.993802&domain=pdf&date_stamp=2022-11-15
mailto:zhi@nuist.edu.cn
https://doi.org/10.3389/fenvs.2022.993802
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org/journals/environmental-science#editorial-board
https://www.frontiersin.org/journals/environmental-science#editorial-board
https://doi.org/10.3389/fenvs.2022.993802


KEYWORDS

CMIP6, Taylor diagram, correlational analysis, GPCC, climate change, precipitation,
Myanmar

1 Introduction

In many modelling studies, global warming has been linked

to extreme events. These extreme events have intensified across

many regions around the globe (IPCC 2021) and led to several

natural disasters that have resulted in losses of lives and property

(Amato et al., 2019; Iqbal et al., 2019; IPCC 2021). One such

region is Myanmar, where the spatiotemporal variability of the

changes in precipitation means that understanding the

performance of models in simulating precipitation over this

country is an important line of research (Kitoh et al., 2013).

Myanmar is a country in Southeast Asia that experiences harsh

consequences of climate change, mainly in the form of flooding

and drought over whole or part of the country.

To study historical extreme events, observational data and global

climate model (GCM) outputs are used (Taylor et al., 2012; O’Neill

et al., 2016). The CoupledModel Intercomparison Project (CMIP) is

a project framework that compares GCMs in an attempt to help

further our understanding of the reaction of the climate system to

different scenarios of anthropogenic warming. The ability of climate

models to simulate precipitation variations in the globe and some

regions that showed obvious warming and wetting trends result

from different levels of anthropogenic warming (Taylor et al., 2012;

Meehl et al., 2014; Eyring et al., 2016; O’Neill et al., 2016), with past

studies having revealed these findings on the basis of the Coupled

Model Intercomparison Project Phase 5 (CMIP5) and older versions

(Babar et al., 2014; Alexander 2016; Ge et al., 2019; Ge et al., 2021).

Despite these findings from global and regional climate models,

there is no consensus on the historical change in precipitation.

Several reasons have been proposed for this lack of consensus, but

data quality and limitations to the coverage of data are viewed as the

major obstacles (Alexander 2016).

Additionally, there were reports that argued the limitations in

CMIP data are due to their respective configurations,

CMIP5 models and their older versions find it difficult to

detect historical trends at time scales long enough to

overcome the natural variability of the climate. However, in

the latest release of CMIP namely the CMIP6, new radiative

forcings used by authors and the improved quality and resolution

of the models provide a better representation of the responses of

the climate system, which is of great interest for vulnerability

impact assessment studies (Stoufferet al., 2017). In addition,

specific to the present study, this is particularly important in

addressing the variability of precipitation in different climate

regions. For instance, the skill of CMIP6 GCMs in simulating the

variability of precipitation over Asia has been demonstrated

(Wang et al., 2018; Fremme and Sodemann 2019).

Several studies on evaluating CMIP6GCMs over Asia have been

conducted (Jiang et al., 2007; Jiang et al., 2012; Dong et al., 2018; He

and Zhao, 2018; Iqbal et al., 2021). For example, Iqbal et al. (2021)

found that CMIP6 models reproduce the spatial patterns of

precipitation well over mainland Southeast Asia. However, a

study that considers as large a region as this may with the same

approach fail to depict the features of a relatively smaller region that

are needed for the development of appropriate local governance

policies. Horton et al. (2017) assessed the climate risk using NASA

NEX baseline data and the results revealed that the wet season will

become wetter, with precipitation projected to increase in the future.

Changes in extreme precipitation are likely to increase the level of

flooding in many parts of Myanmar during the wet season. Indeed,

in 2021, the monsoon floods during the peak monsoon season

(July–August) in Myanmar affected more than 125,000 people

across the country, resulting in crop losses and food insecurity

(OCHA 2021). Similarly, in early of the year 2020, more than

2000 deaths were observed during the monsoon season in India,

Myanmar, Pakistan, Nepal, Bangladesh, and Afghanistan, with

166 of those deaths resulting from a landslide caused by heavy

rain at a mine in Upper Myanmar in early July of the same year

(WMO 2021). Myanmar is a country located in the monsoonal belt

of Asia with a large dependence on agricultural rain-fed, making the

precipitation variability and its subsequent impacts an issue of

considerable economic significance. Extreme weather is a

perennial occurrence in Myanmar, as demonstrated by (Eckstein

et al., 2020) in their study during 1970–2014. Flooding usually

occurs in June–October (the summer monsoon), with the biggest

threat in August (the mid-monsoon season) (Department of

Disaster Management 2020). Nonetheless, despite numerous

studies having been carried out over the Southeast Asian region,

including Myanmar, our level of understanding at the local scale in

this country remains insufficient. Moreover, precipitation varies

substantially at such a local scale. The interaction between

precipitation variability and its common drivers are certainly

worthy of exploration. The most common factors are the

atmospheric circulation and its indices, decadal and interdecadal

variabilities, periodicities and oscillations, and the sea surface

temperature (SST) anomalies over key regions, including El

Niño. Previous studies have investigated the influence of local

change in SST including the El Nino, the Pacific decadal

Oscillation, India Ocean index and Atlantic Multi-Decadal

Oscillation (Sein et al., 2015; Sein et al., 2022); henceforth the

global SST is considered in the present study.

The overall goal of this study is to provide basic information

of the precipitation variability at the local scale in Myanmar,

which, to the best of our knowledge, is the first of its kind. It also

compares the performance of model at annual and seasonal

scales. In this current era of climate change, erratic patterns

and trends of precipitation often occur. In this work, we use

CMIP6-modeled precipitation, which is evaluated against
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gridded observational precipitation and the SST data, to analyze

the relationship between precipitation and SST over Myanmar.

The outcome of this study is important for policymaking in

different departments of Myanmar’s government involved in

disaster risk management, such as the Department of

Meteorology and Hydrology.

2 Study area, data and methods

2.1 Study area

The latitude-longitude coordinates of Myanmar range from

9°32′ to 28°31′N in latitude and 92°10′ to 101°11′E in longitude.

The country covers 676,578 km2 (Figure 1). The study area is

characterized by tropical to subtropical monsoon climate (NECC

2012). Myanmar is influenced by the Indian monsoon with three

main seasons: summer (March–April), rainy (May–October),

and winter (December–February). For further details, see (Ren

et al., 2017; Oo et al., 2020; Sein et al., 2021a). The country has

large rivers that cross the country (Sein et al., 2022). The rainfall

variability in the region has adverse socioeconomic impacts. For

example, in July 2019, torrential rain, flooding and landslides in

Mon state caused the deaths of 75 people, with 40 remaining

missing under the mud (Department of Disaster Management

2020). In August 2020, widespread flooding occurred in the

Ayeyarwady and Thanlyin river basins, which affected at least

21,500 people. More recently, in 2021, continuous monsoon rains

caused flooding in the west coastal area (Rakhine state) and in

southeastern and southern Myanmar (i.e., the states of Mon and

Kayin and the region of Tanintharyi), impacting 3,000 people

(OCHA 2021).

FIGURE 1
Elevation map of Myanmar (mm).
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2.2. Datasets

2.2.1 Observed precipitation
Monthly precipitation data at a 0.5 grid resolution

(Schneider et al., 2015) from the Global Precipitation

Climatology Centre (GPCC) dataset, version 7 (GPCC

2021), are used in this work. The data are available from

https://psl.noaa.gov/data/gridded/data.gpcc.htm and have

been used and verified with the region’s observed

precipitation (Sein et al., 2015; Sein et al., 2021a).

2.2.2 CMIP6 models
The historical experiments of 12 CMIP6 models (Eyring

et al., 2016) were obtained from https://esgf-node.llnl.gov/

search/cmip6 for the period 1950–2014 (Table 1). All

models were resampled to a common grid of 0.5 × 0.

5 using bilinear interpolation. Prior to computation, the

daily data were aggregated to a monthly basis. The

ensemble mean (ENS) of the 12 CMIP6 models has been

computed. Details of all the CMIP6 models used in the

present work, including the name of the modelling center,

their institution’s identity, and horizontal resolution

(longitude × latitude), are given in Table 1.

2.2.3 SST
This study investigates the relationship of the SST with

each model and the ENS of precipitation at annual and

seasonal scales following (Ashok et al., 2007;

Vinayachandran et al., 2009). The Extended Reconstructed

SST dataset, version 5 [ERSST.v5; Huang et al. (2017)], for the

period from 1854 to the present day, is used for this purpose,

obtained from the National Oceanic and Atmospheric

Administration (NOAA) via https://climatedataguide.ucar.

edu/climate-data/sst-data-noaa-extended-reconstruction-

ssts-version-5-ersstv5. The horizontal resolution of the data is

2 × 2. The atmospheric circulation pattern is shown using the

reanalysis u and v winds that are retrieved from NCEP-NCAR

website.

2.1 Materials and methods

2.3.1 Mann–Kendall test
To analyze the trends, this study uses the Mann–Kendall

(MK) test (Mann 1945), calculated as follows:

S � ∑
n−1
i�1 ∑

n

j�i+1sgn(xi − xj) (1)

where S is the rating score (called the MK sum), x is the data

value, i and j are counters, and n represents the number of data

points. Then,

Var (S) � n(n − 1)(2n + 5)
18

(2)

where Var (S) is the standardized variance, and

Zs �

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

S − 1
						
Var(S)√ , if S> 0

0, if S � 0

S + 1
						
Var(S)√ , if S< 0

(3)

TABLE 1 Details of the CMIP6 GCMs used in this study.

No. Model Institution Approximate grid
spacing

1 CNRM-ESM2-1 National Centre for Meteorological Research and European Centre for Research and Advanced Training in
Scientific Computation, France

1.40625 × 1.40625

2 GFDL-CM4 National Oceanic and Atmospheric Administration Geophysical Fluid Dynamics Laboratory,
United States

1.25 × 1

3 CNRM-CM6-1 National Centre for Meteorological Research and European Centre for Research and Advanced Training in
Scientific Computation, France

1.40625 × 1.40625

4 GFDL-ESM4 National Oceanic and Atmospheric Administration Geophysical Fluid Dynamics Laboratory,
United States

1.25 × 1

5 HadGEM3-GC31-LL Met Office Hadley Centre, United Kingdom 1.875 × 1.25

6 IPSL-CM6A-LR Institute Pierre Simon Laplace, France 2.5 × 1.25874

7 MIROC6 University of Tokyo, National Institute for Environmental Studies and Japan Agency for MarineEarth
Science and Technology, Japan

1.40625 × 1.40625

8 CESM2 National Center for Atmospheric Research 1.25 × 0.94

9 MPI-ESM1-2-HR Max Planck Institute for Meteorology, Germany 0.9375 ×0.9375

10 MRI-ESM2-0 Meteorological Research Institute, Japan 1.125 × 1.125

11 NESM3 Nanjing University of Information Science and Technology, China 1.875 × 1.875

12 UKESM1-0-LL Met Office Hadley Centre, United Kingdom 1.875 × 1.25
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in which⃒Z⃒ >Z∝ /2 represents the time series of the data. The

significance level is shown by ∝ = 0.05, or Z∝ /2 � 1.96, and

⃒Z⃒ > 1.96 means a significant trend.

To compute the linear trend rate, the Theil-Sen’s estimator

was used based on Eq. 4. Here, note that trend rate values

greater than zero (i.e., Δσ >0) denotes a positive value (or

increasing rate) and trend rate values less than zero

(i.e., Δσ <0), denotes a negative value (or means decreasing

rate).

β � median(
xj − xk

j − k
) (4)

where the slope between two points is shown as β; medium

represents a function; xj and xk correspond to data values for time

points j and k (j > k), respectively.

2.3.2 Bilinear interpolation
The bilinear interpolation method uses four 4) known

neighboring image coordinates located diagonally from each

other to compute the final interpolated value based on the

weight of each pixel values from samples. The study followed

the general bilinear procedures explained in Bayen et al. (2015).

This method was implemented in Climate Data

Operators (CDO).

Let assume, the final interpolated value is a function (f) at a

location V(x, y).

(x, y) � U00
(x1 − x)

(x1 − x0)(y1 − y0)
+ U10

(x − x1)(y1 − y)

(x1 − x0)(y1 − y0)

+ U01
(x1 − x)(y − y1)

(x1 − x0)(y1 − y1)
+ U11

(x − x0)(y − y0)

(x1 − x0)(y1 − y0)

(5)
where V(xi, yj) � Uij, i, j � 0, 1. U00(x, t), U0n(x, t), Un0(x, y)
and Umn(x, y) denotes four (4) known neighboring image

coordinates.

2.3.3 Taylor diagram
A Taylor diagram (Taylor et al., 2012) provides a graphical

summary of how closely a pattern or set of patterns resembles

observations. For more details on the nomenclature of the Taylor

diagram, we refer readers to (Taylor et al., 2012). The correlation

(r), root mean square error (RMSE), and relative bias (RBIAS)

were computed as follows:

r � ∑
n
i�1(Xi − �X)(Yi − �Y)

												

∑
n
i�1(Xi − �X)

2
√ 											

∑
n
i�1(Yi − �Y)

2
√ (6)

where n, Xi and Yi represent the number of years and the

CMIP6 and GPCC series, for example, at time i; and �X and �Y

represent the average ofXi and Yi for the study period, respectively.

The RMSD stands for root mean square deviation between

two variables mainly the predicted (simulated models) and

reference (GPCC), which is defined as follows:

RMSD2 � ∑
N

i�1
(xi − x′

i)
2

N
(7)

The RMSE gives themagnitude of the forecast errors The RMSE

is defined as the root mean square error with giving formula:

RMSE �
												

∑
N

i�1
(xi − x′

i)
2

N

√

(8)

Where xi and x′
i represent the predicted and reference values,

respectively. N is the total number of values in xi and x′
i with xi

and x′i having the same size.

The RBIAS is computed as follows:

RBIAS � �Xi − �Yi

�Yi
× 100% (9)

where Xi is the simulated precipitation and Yi is the observed

precipitation; �X and �Y are the long-term means of precipitation,

respectively.

3 Results

3.1 Precipitation variations in GPCP

3.1.1 Annual and seasonal mean climatology
Figure 2 presents the spatial pattern of annual and seasonal

precipitation from observation (GPCP) over the period

1970–2014. Figure 2A presents the spatial variations of annual

precipitation from GPCP observations over the study area. The

annual precipitation results showed a distribution in the range

of <100 to >600 mm (Figure 2A). The study observed highest

precipitation amount of 450 mmyr−1 (range 300–600 mmyr-1)

occurred the southern region of Mon province and western

portions of Rakhine province. In addition, the study observed

that the lowest precipitation amount ranges from <50 mmyr−1 in

the Mandaley province (in the central region) to 100 mmyr−1 in

the Shan province located in the eastern part of the country. We

observed distinct spatial patterns in the north (i.e., Kachin and

Sagaing province) and southmost (Yangon and Ayeryarwady)

part of the study area with values of 150–200 mm year−1.

Figure 2B shows the seasonal (MJJASO) variations in GPCP

precipitation observations. The Rakhine (i.e., western region),

Yangon Ayeryarwady, Mon, Kayin and Tanintharyi (southmost

region), and Kachin (northern region) presented a distinct spatial

variation with mean seasonal values ranges from 400 to 600 mm.

We observed a distinct decreasing amount from <200 mm in

Shan province (eastern region), Naybyitaw, Magwa, Chin

to <100 mm in south of Sagaing and Mandalay region.

3.1.2 Trends in annual and seasonal precipitation
Figure 3 presents the trends of the annual and seasonal

precipitation over Myanmar during 1970–2014 based on the
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MK test at the 90% confidence level for the observation (GPCC).

The central and eastern parts of the country underwent weakly

positive change, whereas the rest of the country shows a negative

variation (Figure 3A). The GPCC results show a significant

decrease in precipitation over the northwest and east but a

significant increase over the Gulf of Martaban. Figure 3B

FIGURE 3
MK trend test of GPCC PRE observation for (A) annual and (B) seasonal precipitation. Hatches indicate significance at the 90% confidence level.

FIGURE 2
Spatial distribution of GPCC precipitation observations for (A) annual (B) seasonal during 1970–2014 (mm).
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show the MK test is also applied to investigate the linear trends in

the seasonal (MJJASO) variation of precipitation. Overall, the

GPCC results show a positive (negative) trend in the west and

Gulf of Martaban (northwest).

3.2 Precipitation variations in
CMIP6 models

Figure 4 presents the annual and seasonal cycle of

precipitation for the 12 CMIP6 models and the ENS over the

region during the period 1970–2014. The ENS exhibits relatively

lower precipitation in the western and southern coastal regions

but relatively higher precipitation in central and northern

regions. The ENS shows higher precipitation over the central

region (i.e., Mandalay, lower Sagaing, and Magway) and lower

precipitation along the coast (i.e., Rakhine and Mon, Kayin and

Tanintharyi). The results of CESM2, CNRM-CM6, MRIESM2-0,

and IPSL-CM6A-LR relative to the ENS produces highest

precipitation values. The study observed that many of the

CMIP6 models are similar—namely, CNRM-ESM2-1, CNRM-

CM6, HadGEM3-GC31-LL, MIROC6, CESM2, MRI-ESM2-0,

and UKESM1-0-LL—but all except MRI-ESM2-0 also show high

precipitation in north and northeast regions. Moreover, similar

spatial patterns are observed in GFDL-CM4 and GFDL-ESM4

but with low precipitation occurring in the northwest. MPI-

ESM1-2-HR yields low precipitation over the entire region except

in the north and deltaic regions.

Figure 5 presents the seasonal cycle of precipitation for

12 CMIP6 models and the ENS during the period 1970–2014.

The ENS reveals low precipitation in the central region but high

precipitation along the western and southern coastlines and over

FIGURE 4
Spatial distribution of annual mean precipitation for the selected 12 CMIP6 models as well as their ensemble mean during 1970–2014 (mm).
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the Gulf of Martaban. The results of some of the CMIP6 models,

such as CNRM-ESM2-1, CNRM-CM6, HadGEM3-GC31-LL

and UKESM1-0-LL, presents low precipitation in the central

region and high precipitation along the west and south coasts and

in the northwest. Meanwhile, GFDL-CM4 and GFDL-ESM4

show low precipitation in the central and northwest regions

but high precipitation in the south and at the northern tip. IPSL-

CM6A-LR produces high precipitation in central and western

regions but low precipitation in the northwest. MIROC6 shows

low precipitation in central and northwestern regions but high

precipitation in the west, deltaic and northern tip areas.

CESM2 presents low (high) precipitation in the central and

northwest (north and south) regions. MPI-ESM1-2-HR

produces low precipitation in central, eastern and southern

areas but high precipitation in the deltaic and northern

regions. MRI-ESM2-0 produces low precipitation in the center

of the country but high precipitation along the western and

southern coasts and in the Andaman Sea. NESM3 shows low

(high) precipitation in the east and northwest (deltaic region).

3.2.1 Trends in annual and seasonal
CMIP6 precipitation

CNRM-ESM2-1 shows a significant positive precipitation

trend over the northwest but a significant negative trend at the

northern tip and in the south. GFDL-CM4 presents a significant

negative trend in the north, northwest and south. CNRM-CM6

shows a significant negative trend in the center of the country, in

the east, in the deltaic region, and in the south. Moreover, GFDL-

ESM4 and IPSL-CM6A-LR show a significant negative trend in

the south. HadGEM3-GC31-LL produces a significant positive

FIGURE 5
Spatial distribution of seasonal mean precipitation for the selected 12 CMIP6 models as well as their ensemble mean during 1970–2014 (mm).
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FIGURE 6
Taylor diagram comparing annual (January-December) PRE observation (GPCC) with models (CMIP6).

FIGURE 7
Taylor diagram comparing seasonal (MJJASO) PRE observation (GPCC) with models (CMIP6).
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trend in the Bay of Bengal and Gulf of Martaban but a negative

trend in the northeast. MIROC6 shows a significant negative

trend in the south and in the deltaic region but a significant

positive trend in the north. CESM2 produces a significant

negative trend in the deltaic region but a significant positive

trend in the central part of the country. MPI-ESM1-2-HR

presents a significant negative trend in central, eastern,

northwestern and southern Myanmar, but a significant

positive trend over the Andaman Sea. MRI-ESM2-0 shows a

significant negative trend over sea areas (i.e., the Andaman Sea

and the eastern and central Bay of Bengal). NESM3 produces a

significant positive trend over the northwest and south.

UKESM1-0-LL shows a significant positive trend over the

west but a negative trend in the north, east and south. And

finally, ENS shows a significant positive trend in the northwest

but a negative trend in the deltaic, eastern and southern regions.

Similarly, the MK test was also applied to investigate the

linear trends in the seasonal (MJJASO) variation of precipitation,

based on both the observational data (from GPCC) and the

12 CMIP6models and their ENS at the 90% confidence level. The

results help us to further understand how the different GCMs

and observational data capture the precipitation seasonality over

this period in Myanmar. The GPCC results show a positive

(negative) trend in the west and Gulf of Martaban (northwest).

CNRM-ESM2-1 produces a significant positive (negative) trend

in the north (south). However, negative trend values can be

observed at the northern tip of the country. GFDL-CM4 presents

a negative trend in the north and south. CNRM-CM6 (GFDL-

ESM4) shows a negative trend over part of the country, mainly in

the central, eastern, deltaic and southern regions (west, northwest

and south). HadGEM3-GC31-LL shows a negative (positive)

trend in the north (east and deltaic area). IPSL-CM6A-LR

generates a significant negative trend in southern areas.

MIROC6 shows a significant negative trend in the deltaic

region and in the south but a significant positive trend in the

north. CESM2 yields a significant negative (positive) trend in the

west and deltaic (central and northern) regions. MPI-ESM1-2-

HR presents a significant negative trend in the eastern,

northeastern, central and southern regions, as does MRI-

ESM2-0 but only in the eastern region. NESM3 produces a

significant positive trend in the north and northwest, and

UKESM1-0-LL presents a significant positive (negative) trend

in the west (north, east and southern tip) regions.

3.3 Evaluation of CMIP6 performance
against observations

Figure 6 is a Taylor diagram of the annual precipitation over

the region simulated by the 12 CMIP6 models relative to the

GPCC observations. The simulated pattern of each model is

marked with symbols (red and blue). GPCC lies on the positive

x-axis, which indicates the reference precipitation data. ENS

presents a better correlation coefficient than the other models,

with a CC (root-mean-square difference, RMSD) of 0.29

(104 mm). MRI-ESM2-0’s correlation (RMSD) is found to be

0.24 (110 mm), and HadGEM3-GC31-LL’s is 0.13 (113 mm).

MPI-ESM1-2-HR shows a CC of 0.26 and RMSD of 106 mm,

while CESM2 produces values of 0.23 with 117 mm, respectively.

UKESM1-0-LL, CNRM-ESM2-1, GFDL-CM4 and GFDL-ESM4

show CCs of 0.19 (113 mm), 0.21 (108 mm), 0.22 (108 mm), and

0.35 (114 mm). In addition, MIROC6, CNRM-CM6 and

TABLE 2 Root mean square error (RMSE, mm) and relative bias (RBIAS, %) for seasonal (May–October, MJJASO) and annual precipitation in Myanmar
during 1970–2014.

Model Seasonal (MJJASO) Annual

RMSE (mm) RBIAS (%) RMSE (mm) RBIAS (%)

CESM2 63.51 −5.09 48.48 −4.32

CNRM-CM6 54.52 −18.06 41.23 −16.24

CNRM-ESM2-1 45.73 −14.36 34.62 −13.36

GFDL-CM4 67.75 −20.62 51.11 −21.98

GFDL-ESM4 72.58 −20.47 54.73 −22.15

HadGEM3-GC31-LL 69.59 −17.57 51.48 −11.87

IPSL-CM6A-LR 137.00 −43.94 98.20 −41.86

MIROC6 36.24 −3.27 26.96 −2.46

MPI-ESM1-2-HR 79.48 −26.74 59.08 −27.94

MRI-ESM2-0 93.01 −29.34 67.59 −28.80

NESM3 57.90 −17.78 41.27 −14.13

UKESM1-0-LL 74.79 −17.97 55.39 −12.92

ENS 63.13 −19.60 46.50 −18.17
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NESM3 present a CC (RMSD) of 0.02 (126 mm), 0.21 (120 mm),

and 0.33 (117 mm), respectively.

To evaluate the models’ performances in terms of

the mean annual cycle (January–December) of

precipitation in Myanmar, as well as that of ENS, we

employed some metrics parameters. From the whole

models, the RMSEs range from 26.96 to 98.2 mm. The

results of the individual models’ RMSE (PCC) are as

follows: MIROC6, 26.96 mm (0.93); CNRM-ESM2-1,

34.62 mm (0.97); CNRM-CM6, 41.23 mm (0.98); NESM3,

41.27 mm (0.97); CESM2, 48.48 mm (0.84); GFDL-CM4,

51.11 mm (0.95); HadGEM3-CC31-LL, 51.48 mm (0.85);

GFDL-ESM4, 54.73 mm (0.89); UKESM1-0-LL, 55.39 mm

(0.80); MPI-ESM1-2-HR, 59.08 mm (0.97); MRI-ESM2-0,

67.59 mm (0.92); IPSL-CM6A-LR, 98.2 mm (0.92).

Meanwhile, ENS produces an RMSE of 46.50 mm.

Figure 7 presents the seasonal (MJJASO) precipitation over

Myanmar simulated by the CMIP6 models relative to GPCC

observations. The ENS shows low RMSD (201 mm) and CC

(0.43), indicating the ENS correlation is among the best models

that are strongly interconnected with GPCC precipitation. In

general, most of the models simulated with good correlation

coefficients. For instance, the correlation coefficient along with

root mean square deviation is 0.33 (220 mm), 0.35 (223 mm),

0.32 (233 mm), 0.35 (210 mm), 0.36 (210 mm), 0.49 (207 mm),

0.38 (209 mm), 0.40 (206 mm) and 047 (211 mm) for CESM2,

FIGURE 8
Spatial distribution of correlation coefficient of annual GPCC PRE with the 12 CMIP6 models. Hatches indicate significance at the 90%
confidence level.)
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CNRM-CM6, CNRM-ESM2-1, GFDL-CM4, GFDL-ESM4,

HadGEM3-GC3, MRI-ESM2-O-L, NESM3, and UKESM-O-

LL, respectively. Meanwhile, three models such as IPSL-CM6,

MIROC6 and MPI-ESM1 presented low correlations along with

relatively high deviations from the reference with the values of

0.29 (215 mm), 0.22 (239 mm) and 0.14 (252 mm), respectively;

in representing the seasonal precipitation over the region of

study. Based on correlation coefficient, the preferred model is

HadGEM3 while the ENS presents the lowest deviation from the

mean of the reference. The model showing the lowest standard

deviation is IPSL-CM followed by the ENS. The low standard

deviation indicates the low variability in the model to simulate

the observation GPCC precipitation.

Overall, MIROC6, CNRM-ESM2-1, CNRM-CM6, and

NESM3 reveal lower RMSEs and higher PCCs. Table 2 lists

the RMSE (mm) and RBIAS (%) values for annual rainfall during

1970–2014.

Further analysis of the spatial distribution of the CCs of

GPCC precipitation and that of the 12 individual CMIP6 models

at the annual scale is shown in Figure 8. The results indicate

significant negative (positive) correlation for CESM2-G in the

east (south) of the region, for GFDL-ESM4-G in the north and

east (deltaic region); for HadGEM3-GC31-LL-G in the west

(central and southern regions); and for MPI-ESM1-2-HR-G in

the north (central, northwestern and eastern regions).

Meanwhile, there is significant positive correlation for CNRM-

FIGURE 9
Spatial distribution of correlation coefficient of seasonal GPCC PRE (MJJASO) with the 12 CMIP6 models. Hatches indicate significance at the
90% confidence level.
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CM6-G in the south; for GFDL-CM4-G in the central part of the

region; for IPSL-CM6A-LR_G in the north, northwest and east;

for MIROC6-G in the north and northwest; and for UKESM1-0-

LL-G in the north. In addition, there is significant negative

correlation for CNRM-ESM2-1-G and MRI-ESM2-0-G in

central areas; for NESM3-G in the north and east; and for

ENS in the eastern, central and western regions.

Figure 9 shows the spatial distribution of the CCs between

the seasonal (MJJASO) observed (GPCC) precipitation and

that of the 12 CMIP6 models. There are negative (positive)

CCs for CESM2-G in the east (south); for GFDL-CM4-G in

the south (central region); for GFDL-ESM4-G in the north

and east (deltaic region); and for MPI-ESM1-2-HR-G in the

north (south). Meanwhile, there are positive CCs for CNRM-

CM6-G in the south and northwest; for IPSL-CM6A-LR-G in

the east and south; and for UKESM1-0-LL-G in the west and

east. Moreover, there are negative CCs for CNRM-ESM2-LG

in central and southern areas; for HadGEM3-GC31-LL-G in

the north, east and west; for MIROC6-G in the northwest

and south; for MRI-ESM2-0-G at the northern tip of the

country and in central and eastern regions; for NESM3-G in

the east; and for ENS in the northeastern, central and western

areas. All the results are significant at the 90% confidence

level.

FIGURE 10
Spatial distributions of (A,C) correlation coefficients of GPCC PRE (i.e., annual and seasonal) and SST during 1970-2014). (A) GPCC-annual (B)
Region GPCC-annual (C) GPCC -seasonal and (D) Region GPCC -seasonal. Hatched area indicates 95% confidence level.
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3.4 Relationship between SST and
precipitation

The correlation was computed to examine the underlying

atmospheric circulation factors (i.e., SST) that influence

precipitation variations over the monsoon corridor of

Southeast Asia. Specifically, we computed the relationship

using simple correlation analysis at the 95% significance level,

and the results in terms of the relationship between

precipitation (GPCC and ENS) and SST anomalies,

globally and in the Myanmar region, are shown in

Figure 10 (for GPCC) and Figure 10 (for ENS) at the

annual and seasonal scales.

Figure 10A shows negative (low) correlation between annual

observed (GPCC) precipitation and SST over the northeastern,

central and southeastern Pacific Ocean but positive (high)

correlation over the northwestern and southwestern Pacific

Ocean. Moreover, the Indian Ocean shows negative (low)

correlation east of Africa extending north and east of

Madagascar. In Myanmar, there is negative (low) correlation

in central, northwestern and eastern areas (Figure 10B). For

seasonal (MJJASO) GPCC precipitation and SST, the annual

spatial pattern of their correlation is similar, but with weaker

negative correlation over the central Pacific Ocean than at the

annual scale (Figure 10C). In addition, negative (low) correlation

over central and northwest Myanmar is shown in Figure 10D.

FIGURE 11
Spatial distribution of the correlation coefficients between ENS PRE (annual and seasonal) and SST during 1970-2014. (A) ENS-annual (B) Region
ENS-annual (C) ENS-seasonal and (D) Region ENS-seasonal. Hatched area indicates 95% confidence level.
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Figure 11A shows negative correlation between annual

simulated (ENS) precipitation and SST over the northeastern and

southeastern Pacific Ocean but positive correlation over the

northwestern, southwest and southeastern Pacific Ocean.

However, the spatial distribution in the Indian Ocean does not

show any significant correlation. In Myanmar, there is significant

negative (positive) correlation in the south (northwest) of the region

(Figure 11B). Seasonally (MJJASO), Figure 11C shows positive

(negative) CCs in the northwest (northeast) Pacific Ocean, but

weaker than at the annual scale. Regionally (i.e., in Myanmar),

positive (negative) CCs are apparent in the northwest (south and at

the northern tip) of the country (Figure 11D).

Overall, the GPCC and ENS results show negative

(positive) correlation in the northeastern, central and

southeastern (northwestern and southwestern) Pacific

Ocean, with ENS showing a similar spatial pattern of CCs

to GPCC, albeit with weaker negative (positive) correlation in

the central (southern) Pacific Ocean in ENS. In addition, ENS

does not perform well in the Indian Ocean. In Myanmar, at the

annual scale, GPCC shows negative correlation over central,

eastern and northwestern parts, while at the seasonal

(MJJASO) scale it is in only in the central and

northwestern areas (Figure 11). Meanwhile, ENS, both at

the annual and seasonal (MJJASO) scale, shows negative

(positive) correlation in the south (northwest), but negative

correlation over the northern tip of the region at the seasonal

scale only (Figure 11).

Circulations of two atmospheric variables over Myanmar for

the period of study are depicted by Figure 12. A low large center

(negative pressure vertical velocity) is developed between

950 hope and 100 hpa within about 5 N–10 N. Meanwhile,

two high centers (positive pressure vertical velocity) are found

at upper and lower atmosphere around 25 N as shown by the red

arrows pointing down (Figure 12A). The negative center

indicates a rising motion (i.e., green arrows pointing up),

which favors the precipitation, whereas the positive center

corresponds with descending motion that involve the dry

period. The climatology of winds circulations over is featured

by southwesterly with a high center found in southern part of the

country (Figure 12B).

4 Discussion

This study uses 12 state-of-the-art GCMs from CMIP6 to

investigate the precipitation patterns across Myanmar at

FIGURE 12
Mean of (A) pressure vertical velocity and (B)winds circulation for the period from 1970 to 2014. Arrows in green and pointing up indicates rising
motion and arrows in red pointing down indicates descending motion while the shaded represents the wind speed.
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different spatial and temporal scales during the period

1970–2014, as well as the trends and potential drivers. The

performances of the 12 individual models and their ENS in

reproducing the historical precipitation is evaluated against

GPCC observations. Overall, at the annual scale, IPSL-CM6A-

LR, MRI-ESM2-0 and HadGEM3-GC31-LL present high

correlation and relatively lower RMSDs (Figure 2). In

contrast, CESM2, UKESM1-0-LL, CNRM-ESM2-1 and GFDL-

CM4 show low to no correlation and relatively higher RMSD.

Meanwhile, MIROC6, CNRM-CM6 and NESM3 perform poorly

over the region, with negative correlation (Figure 2). The PCCs of

the individual models and their ENS range from 0.8 to 0.97, and

the RMSE from 26.96 to 98.2 mm (Figure 3). The seasonal

(MJJASO) results of the CMIP6 models relative to GPCC

observations were also investigated, revealing that IPSL-

CM6A-LR performs better than GFDL-CM4, MPI-ESM1-2-

HR, NESM3, MRI-ESM2-0, CNRM-CM6, and HadGEM3-

GC31-LL. Meanwhile, CESM2 shows no correlation, and

GFDL-ESM4, CNRM-ESM2-1 and MIROC6 show negative

and low correlation values (Figure 4). The seasonal

precipitation analysis showed that IPSL-CM6A-LR produces a

lower RMSE (9.0 mm) and CC (0.3) than the rest of the

individual models (Figure 5).

The performances of the models in terms of the mean

annual cycle of precipitation were also evaluated, using PCCs,

with all models showing high PCC values of >0.80. ENS

outperforms the individual models, except for MIROC6,

CNRM-ESM2-1, and CNRM-CM6. Similar results were

found in the seasonal analysis (Figures 4, 5). The RMSEs of

the CMIP6 models and their ENS (Figures 4, 5) reflect the

FIGURE 13
MK trend test of annual precipitation for the selected 12 CMIP6 models, and ENS. Hatches indicate significance at the 90% confidence level.
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differences between them and the GPCC observations. The

four (“best”) models with RMSEs lower than the ENS value of

46.50 mm/yr were chosen, and these four best models at the

annual scale were MIROC6, CNRM-ESM2-1, CNRM-CM6, and

NESM3. The remaining models—CESM2, GFDL-CM4,

HadGEM3-CC31-LL, GFDL-ESM4, UKESM1-0-LL, MPI-

ESM1-2-HR, MRI-ESM2-0, and IPSL-CM6A-LR—show

slightly higher RMSE. Similarly, the same models were

selected for seasonal values (Figure 5) based on the RMSEs of

individual models being lower than the ENS value of 63.13 mm.

The differences in the results of individual models might be

related to the uncertainty in their simulations, which may stem

from inherent model biases and other sources, as stipulated by

(Taylor et al., 2012; Eyring et al., 2016).

The climatological results in Figure 13 show that the

12 CMIP6 models and their ENS present similar spatial and

temporal patterns of annual precipitation over Myanmar to

those of GPCC. The results show that the western and

southern coastal regions receive the most precipitation,

with central areas receiving the least (Sein et al., 2015;

Sein et al., 2021a; Sein et al., 2022). In terms of the

interannual and seasonal variations in Myanmar, GPCC

and the individual models (except for MRI-ESM2-0) show

similarity insofar as they both present high precipitation in

the north and northeast regions. MPI-ESM1-2-HR reveals

low precipitation in the entire region, except in the north and

deltaic area. IPSL-CM6A-LR shows an opposite pattern to

the precipitation gradient of GPCC, and ENS exhibits

FIGURE 14
MK trend test of seasonal (MJJASO) precipitation for the selected 12 CMIP6 models and ENS. Hatches indicate significance at the 90%
confidence level.
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relatively low (high) precipitation in the central (coastal and

northern) regions.

The annual mean precipitation climatology over Myanmar

was also investigated (Figure 14), revealing a strong temporal

variability over the region. The low precipitation in February and

peak in July, captured by both GPCC and the GCMs, is consistent

with the climatology of the region. The highest (lowest)

precipitation is recorded by CESM2 (IPSL-CM6A-LR)

(Figure 14). Meanwhile, CNRM-CM6, MRIESM2-0, IPSL-

CM6A-LR, GPCC and ENS show a higher precipitation peak

in July (Figure 14) than the rest of the models. The ENS results

reproduce the region’s climatology well, and better than the

individual models. The performance of ENS over individual

models in terms of precipitation simulation is consistent with

a previous study (Xu and Xu 2012).

Using linear trend analysis to assess the

12 CMIP6 models, five models were selected for Myanmar

to show the significant trend in precipitation in northern

Myanmar, including the northeast and northwest

(Figure 15)—namely, CNRM-ESM2-1, GFDL-CM4,

CNRM-CM6, GFDL-ESM4, and IPSL-CM6A-LR. The

west, center and east of Myanmar are shown in

HadGEM3-GC31-LL, MIROC6, CESM2, MPI-ESM1-2-HR,

MRI-ESM2-0, NESM3, and UKESM1-0-LL to have low but

significant trends. These results suggest that these models

capture the precipitation seasonality over the study period in

Myanmar consistently with previous studies in the Southeast

Asian region (Kumar et al., 2013).

The relationship between precipitation and SST investigated

the link between summer monsoon precipitation and global-scale

SST. A simple correlation was performed for the ENS and global

SST, and the annual ENS precipitation and SSTwere analyzed over

the Pacific Ocean. Significant negative correlation was found

across the northeast and southeast parts of the Pacific Ocean,

while positive correlation was found across the northwest,

southwest and southeast parts. Similarly, the seasonal

(MJJASO) ENS precipitation and SST showed positive

(negative) CCs in the northwest (northeast) Pacific Ocean, but

weaker than at the annual scale in the southern Pacific. No

significant correlation was recorded for the Indian Ocean.

Generally, for ENS, the annual and seasonal correlation

between SST and precipitation was found to be negative

(positive) in the south (northwest), but ENS shows negative

seasonal correlation in the northern tip of the region

(Figure 11). The circulation results of the two atmospheric

variables (Figure 12) shown low large center (negative pressure

vertical velocity) is developed between 950 hope and 100hpa

within about 5 N to 10 N. Two high centers (positive pressure

vertical velocity) are found at upper and lower atmosphere around

25 N as shown by the red arrows pointing down (Figure 12A). The

negative center indicates a rising motion (i.e., green arrows

pointing up), which favors the precipitation, whereas the

FIGURE 15
Performance of mean annual cycle PRE (mm) for CMIP6 models and their multimodal ensemble mean (ENS) on PRE climatology (1970-2014).
The abscissa and ordinates are pattern correlation coefficient (PCC) and root mean square error (RMSE), respectively.
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positive center corresponds with descending motion that involve

the dry period. The climatology of winds circulations over is

featured by southwesterly with a high center found in southern

part of the country (Figure 12B). In summary, the use of the latest

GPCC observations and CMIP6 model data shows the ability of

GCMs to reproduce well the patterns of seasonal precipitation in

Myanmar, consistent with previous studies across the region, with

high PCCs and lower RMSE.

5 Conclusion

In the present study, the individual and collective

(i.e., ENS) performances of 12 GCMs from CMIP6 in

capturing the precipitation pattern over Myanmar for the

period 1970–2014 were analyzed. More specifically, the

GCM precipitation was compared with that of

observations from GPCC through displaying the

climatology at annual and seasonal scales and the

interannual variability. In addition, skill scores were used

for statistical evaluation. Moreover, the relationship

between the time series of GPCC and ENS was examined

to uncover how the precipitation is controlled by the

variability of SST over Myanmar through the tele-

connectivity of atmospheric parameters. The main

conclusions can be summarized as follows:

1) Among the 12 CMIP6 models, only MPI-ESM1-2-HR is able

to roughly reproduce the GPCC precipitation pattern over

Myanmar during 1970–2014 at both annual and seasonal

scales. Meanwhile, at the interannual scale, most models

underestimate the monthly precipitation, except CESM2,

which overestimates that of GPCC from July to December.

Furthermore, 3 out of the 12 models fail to capture the peak

precipitation in July.

2) The RMSE of ENS produces an annual value of 46.50 mm and

seasonal value of 63.13 mm. The RBIAS

is −18.17 and −19.60 at the annual and seasonal scale over

Myanmar, respectively.

3) MIROC6, CNRM-ESM2-1, CNRM-CM6, and

NESM3 show lower RMSEs than the ENS value. The

remaining models (CESM2, GFDL-CM4, HadGEM3-

CC31-LL, GFDL-ESM4, UKESM1-0-LL, MPI-ESM1-2-

HR, MRI-ESM2-0, and IPSL-CM6A-LR) show slightly

higher RMSE.

4) Linear trend analysis shows that CNRM-CM6, GFDL-ESM4,

GFDL-CM4, IPSL-CM6A-LR, and CNRM-ESM2-1 produce a

significant positive trend in capturing the precipitation

seasonality over the study period in Myanmar. HadGEM3-

GC31-LL, MIROC6, CESM2, MPI-ESM1-2-HR, MRI-ESM2-

0, NESM3, and UKESM1-0-LL show significant negative trends.

5) The ENS (annual and seasonal) correlation between

precipitation and SST is negative (positive) in the south

(northwest), but the ENS seasonal correlation is negative

over the northern tip of the region.

Based on these results, we recommend further studies

consider simulating the precipitation changes over

Myanmar to provide more information toward a better

understanding and ability to project future precipitation

changes in this region.
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Isotope composition of daily
precipitation from 2019 to
2020 in Sanming, southeastern
China
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Introduction: Many studies in southeastern China (SEC) have used stable

isotope (δD and δ18O) records from natural archives (e.g., stalagmites, tree-

ring cellulose, sediments) to reconstruct past East Asian Summer Monsoon

(EASM) climate. However, the interpretation of the meanings of isotope

variation in these records has not been fully resolved, and the key to solve

this problem is to clarify the referential meaning of modern precipitation

isotopes.

Methods: In this study, we collected daily precipitation from January 2019 to

December 2020 in Sanming to clarify the characteristics of isotope variations

and their controlling factors during different seasonal periods [e.g., non-

summer monsoon (NSM) and summer monsoon (SM)] in SEC.

Results andDiscussion:Our results show that theprecipitation δ18O (δ18Op) andd-

excess values in the SM season (−12.94‰–0.15‰, −4.05‰–21.01‰) were more

light than those in the NSM season (−6.91‰–4.37‰, 0.85‰–30.38‰). Combining

the findings of backward trajectory and averaged outgoing longwave radiation

analyses, the seasonal variation of precipitation isotopes is believed to be

determined by a shift in water vapor sources and the intensity of upstream

atmospheric convection during water vapor transportation. The consistent

variation between the isotope values and convective intensity over the South

China Sea in the dragon boat rainy period highlights that δ18Op has the potential to

respond rapidly to the upstream convective intensity and can serve as a substitute

method for investigating the complicated East Asian summer monsoon system.

Therefore, the results of this study imply that the stable isotopes in precipitation and

related paleoclimate proxies may not reflect the signal of temperature or

precipitation alone but rather reflect changes in moisture sources and upstream

convective intensity.

KEYWORDS

precipitation, stable isotopes, seasonal variation, upstream convective intensity,
southeastern China
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1 Introduction

Stable isotope signals in modern precipitation are valuable

for interpreting paleo-isotope records preserved in natural

archives, such as stalagmites (Wang et al., 2001; Cheng et al.,

2016; Zhang et al., 2021), tree-ring cellulose (Xu et al., 2016;

Liu et al., 2017), and plant cellulose in peat bogs (Xu et al.,

2002; Hong et al., 2009), which are essential for the

reconstruction of past climate and hydrological cycles (Yao

et al., 2013). In southeastern China (SEC), stalagmite oxygen

isotope (δ18Oc) records from the E’mei and Shennong caves

suggest that the regional δ18Oc record is mainly regulated by

precipitation seasonality (the mean percentage of summer

monsoon precipitation to non-summer precipitation)

(Zhang et al., 2018a; Zhang et al., 2018b). This is mainly

controlled by the El Niño–Southern Oscillation (Zhang et al.,

2020). Shi et al. (2020) suggest that tree-ring cellulose δ18O
records in the southeastern region can be referred to as

monsoon precipitation. However, owing to the shortage of

long-term observation records of modern precipitation

isotopes in this region, these studies can only use monthly

precipitation isotope observations from Changsha (Central

China) or Hong Kong (Southern China) for comparison.

Therefore, to determine stable isotope records derived from

natural archives and to complement previous studies, it is

necessary to study regional atmospheric precipitation isotopes

and clarify the control factors.

Sanming lies in SEC and experiences first-hand the

monsoon onset signal, being in the frontal region of the

East Asian summer monsoon (EASM). The beginning of

the EASM season is marked by the outbreak and evolution

of the South China Sea summer monsoon (SCSSM), which

also represents the beginning of the rainy season (Tao and

Chen, 1987; Wang et al., 2004). Bounded by the onset of

SCSSM, Sanming has two rainy seasons: spring persistent rain

(SPR) and the dragon boat rainy (DBR) season (Liang and

Wang, 1997). In spring, owing to the mechanical forcing and

thermal effects of the plateau, there is a continuous

precipitation period in this area (Wan et al., 2008a; Wan

and Wu, 2008b). SPR amounts in this region can reach

348 mm, accounting for 21% of the total annual

precipitation (Li, 2006). Zhang et al. (2020) proposed that

SPR has an important effect on annual precipitation δ18O
(δ18Op). However, due to the absence of long-term

precipitation isotope observation records in SEC, the data

are based on the monthly scale of the Changsha Global

Network of Isotopes in Precipitation (GNIP) site data in

central China with low resolution (Zhang et al., 2020). The

use of such data to study the isotope characteristics and

influencing factors during the SPR period in SEC is limited.

Thus, improved knowledge of the daily δ18Op in this region is

vital for a thorough interpretation of the δ18Oc record of

stalagmites from SEC. With the onset of the SCSSM, this

region enters a period of the SM rainy season called DBR,

where rainfall can reach 527 mm, accounting for 31.8% of the

total annual precipitation (Li, 2006). A better comprehension

of the isotope composition of these periods of high

precipitation ratios will help interpret the long-term

records in this region. Therefore, standardized continuous

multi-year monitoring on a daily scale is essential to gain a

comprehensive understanding of the interannual and seasonal

changes in precipitation stabilization isotopes in this region.

Here, we present a daily scale record of the precipitation

isotope composition from 2019 to 2020 from Sanming, SEC. The

purposes of this study were 1) to clarify the characteristics and

seasonal changes of precipitation isotopes in Sanming, and 2) to

identify the controlling factors in different periods (such as SM,

NSM, SPR, and DBR) for the year. The isotope variation

characteristics of precipitation, monitored here for 2 years, can

aid in a better understanding of the importance of the oxygen

isotope record in the paleoclimate reconstruction in SEC.

2 Material and methods

2.1 Geographical location

Sanming (25°30′–27°07′N, 116°22′–118°39′E) is located in

the mid-west of Fujian Province in coastal SEC in the frontal area

of the EASM region (Figure 1). The study area has a typically

humid subtropical monsoon climate. According to historical

meteorological data from 1980 to 2000, the mean annual air

temperature and precipitation in Sanming are 19.5°C and

1,560 mm, respectively. As shown in Figure 1, the uneven

precipitation in this area is mainly concentrated from March

to June, accounting for more than 57% of the annual

precipitation. Due to the absence of long-term precipitation

observations in Sanming, monthly precipitation data from

1951 to 2012 at the nearest meteorological station at Yong’an,

27 km from Sanming, were used to study the regional

representativeness of the annual variation characteristics of

precipitation at the sampling sites. We analyzed the

correlation between the monthly precipitation data in Yong’an

and in other regions, which suggests that precipitation over

Sanming is highly representative of the southeastern region in

China (Figure 1).

2.2 Sampling and measurement

Precipitation samples were collected from a bare area in the

Sanming Forest Ecosystem and Global Change Observation and

Research Station (26°9′N, 117°28′E, altitude: 134 m a.s.l), from

January 2019 to December 2020. Each precipitation event was

sampled for isotope analysis using a ZJC-V Intelligent rainfall

sampler (Supplementary Figure S1) which senses rainfall and
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opens a lid for collection. Rainwater flows directly into a

refrigerated bottle through a water pipe, effectively preventing

the evaporation of samples. After collection, each sample was

poured into 20 ml and 2 ml polypropylene colorless plastic

bottles with no space. These bottles were sealed with Parafilm

sealing film to prevent evaporation and chilled at 4°C to prevent

isotope fractionation. A total of 209 samples were collected on

rainy days from 2019 to 2020.

Stable isotope composition (δ2H and δ18O) analyses were

performed at the Stable Isotope Laboratory, School of

Geographical Sciences, Fujian Normal University. The samples

were analyzed using Picarro-L2140i cavity ring-down

spectroscopy (CRDS). Three isotope standards and seven

samples were examined as a group in this study. Seven

samples were measured after the three standards, and each of

the samples or standards was measured separately with seven

injections. Taking into account the memory effect and stability of

the instrument, only the final three injections were averaged and

calibrated. The test findings were based on the samples’

calibrated values. Measurement calibration utilized three

internal standards (δ18O: 19.13‰, −8.61‰, and −0.15‰; δ2H:

144‰, −63.4‰, and −1.7‰). The results were presented as δ-

values relative to the standard Vienna Standard Mean Ocean

Water (V-SMOW). The measurement accuracies were typically

better than ±0.1‰ for δ18O and ±0.5‰ for δ2H.

2.3 δ18O data from IsoGSM simulations

IsoGSM is a general circulation model based on water isotope

(Yoshimura et al., 2008), which is used to fill in missing data

(June to July 2020) and explore the control of atmospheric

processes on δ18O variability (Supplementary Table S1).

IsoGSM has a time resolution of 6 h, and a horizontal

resolution of 200 km, 28 vertical levels. Detailed descriptions

of the model setup are available in previous studies (Yoshimura

et al., 2008; Yoshimura et al., 2014; Yang et al., 2016). The

monthly variations in precipitation and water vapor isotope

compositions linked to synoptic weather cycles may be

reasonably replicated by the IsoGSM. We first cross-compared

the data from IsoGSM with observed data from Sanming station

from 2019 to 2020 to confirm the reliability of the data from

IsoGSM (Supplementary Figure S2). Result showed that the

observed δ18Op data are consistent with the simulated δ18Op

data from IsoGSM, which is a sign of good replication.

2.4 Hybrid single-particle lagrangian
integrated trajectory (HYSPLIT) model

HYSPLIT was applied to locate and distinguish potential air

mass source regions during the sampled rain episodes (Draxler

FIGURE 1
Study area and sampling stations in the SEC region. The upper left is the averagemonthly precipitation at Yong’an station from 1951 to 2012; the
black star represents the sampling site in Sanming; background colors represent the whole year spatial correlations between the precipitation in
Yong’an station and CRU TS4.05 precipitation (from 1951 to 2012, p < 0.1).
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and Hess, 1998). The model is obtained from the National

Oceanic and Atmospheric Administration (NOAA) at the Air

Resources Laboratory (https://ready.arl.noaa.gov/HYSPLIT.

php). We set the end height for the backward trajectory

model at 1500 m a.g.l. At the sampling site. The height is

generally considered to be the largest water vapor transport

volume and the precipitation is most likely to start (Aggarwal

et al., 2004; Breitenbach et al., 2010; Wei et al., 2018). In addition,

we computed the trajectories for 120 h back in time to

reconstruct the original transport trajectory because it is

sufficient to identify the air mass backward trajectories at the

regional scale (Tao et al., 2021).

2.5 Meteorological and reanalysis data

The associated meteorological data (precipitation amount,

air temperature, and relative humidity) were monitored using an

automatic HOBO rain gauge and a wireless temperature and

humidity data logger next to the rainfall sampler, from January

2019 to December 2020. The National Climate Center provided

monthly instrumental data for the Yong’an meteorological

station from 1951 to 2010 (https://ncc-cma.net/cn/). To

calculate the water vapor flux and analyze the relationships

between regional integrated convective activity and daily

precipitation stable isotope composition during the

observation period, we obtained 850 hPa zonal and meridional

wind components, specific humidity, and outgoing longwave

radiation (OLR) data from the NOAA Physical Sciences

Laboratory (https://psl.noaa.gov). KNMI Climate Explorer

(https://www.knmi.nl), a web-based tool for high-resolution

paleoclimatology, was used to conduct a spatial correlation

test for the regional representation of the Sanming area

(Trouet and Oldenborgh, 2013).

3 Results

3.1 Local meteoric water line (LMWL)

Craig (1961) first reported the regression line δ2H = 8 * δ18O
+ 10 as the global meteoric water line (GMWL) based on the

positive connection between δ2H and δ18O found in natural

meteoric waters throughout the world. With the increased

FIGURE 2
δ2H and δ18Op relationships during the daily precipitation from 2019 to 2020, (A) in different years, (B) in different seasons.

FIGURE 3
Seasonal variations of the precipitation amount, air
temperature, relative humidity, δ18O, and d-excess from January
2019 to December 2020. The data for Jun-July 2020 are from
IsoGSM simulations data.
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establishment of GNIP program stations, numerous LMWLs

have been built (Merlivat and Jouzel, 1979; Araguás-Araguás

et al., 1998; Zhang et al., 2016; Wu et al., 2022). Although there

are considerable geographical differences in climatic

characteristics and sources of water vapor, the slope of the

LMWL and GMWL are still in agreement. The correlation

between daily stable precipitation isotope data at the Sanming

station is defined here as the LMWL: δ2H = 8.29 * δ18O + 13.93

(R2 = 0.95, p < 0.0001, n = 209). Compared to the GMWL and the

meteoric water line of China (CMWL) (δ2H = 7.9 * δ18O + 8.2,

R2 = 0.98) (Zheng et al., 1983), the slope and intercept of Sanming

LMWL were both higher. This is because GMWL and CMWL

combine data from global or national studies that include several

places with radically differing climates. The Sanming station, on

the other hand, is located in a monsoon region and has a humid

environment that results in a large slope and intercept. The

correlation for the yearly precipitation isotopes in 2019 and

2020 was defined as δ2H = 8.44 * δ18O + 13.93 (R2 = 0.95,

p < 0.0001, n = 117) and δ2H = 8.14 * δ18O + 13.94 (R2 = 0.95, p <
0.0001, n = 92), respectively (Figure 2A). The intercepts of the

LMWL in 2019 and 2020 were almost consistent; however, the

slope in 2020 was lower than that in 2019 which may have been

due to the relative dryness and high evaporation in 2019.

The δ18Op and δ2H data for the SM and NSM periods are

shown in Figure 2B to demonstrate how the EASM affected the

LMWL. The scatters are located above or near the GMWL in the

SM (May-September). The NSM (October to April of the

following year) scatters distribute below the GMWL. The

slopes in both periods were smaller than those of the GMWL

and LMWL. The slope of the LMWL in the NSM period was

lower than the slope of 7.70 in the SM period, but its intercept of

14.98 was considerably higher than the intercept of 7.53 in the

SM period, showing seasonal differences in the precipitation

water vapor sources in this regional. Typically, the intercept and

slope of the meteoric water line are positively related (Yao et al.,

2018). However, in the monsoon region, because the average

stable isotope value of the NSM period is more positive than that

of the SM period, the scatter in the NSM waterline chart deviates

from the upper right relative to the SM, resulting in a larger

intercept of the LMWL during the NSM period than that during

the SM period.

3.2 Meteorological and isotope temporal
characteristics

Figure 3 shows the temporal characteristics of daily δ18Op

and d-excess (d = δ2H − 8 × δ18O, a parameter associated with the

meteorological conditions of the source region (Dansgaard, 1964;

Breitenbach et al., 2010) and corresponding meteorological

factors, i.e., surface air temperature, relative humidity, local

precipitation amount) in Sanming from 2019 to 2020. As

shown in Figure 3, the daily mean temperature exhibited

cyclical variations ranging from 1.3°C to 29.4°C, with an

average air temperature of 19.5°C and the maximum

temperature occurring in July. Relative humidity in Sanming

ranged from 52.6% to 94.5%, with an average relative humidity of

75%. The daily precipitation in Sanming ranged from 0 to

157.4 mm, with the maximum and minimum monthly

precipitation occurring in May or June, and November,

respectively. Notably, the region receives the most abundant

precipitation from March to May, accounting for 25%–50% of

the annual precipitation. During the observation period, δ2H,

δ18Op, and d-excess values ranged from −99.07‰ to

47.39‰, −12.94‰–4.37‰, and −4.05‰–30.38‰, with

quantity-weighted means of −33.96‰, −5.72‰ (δ18Ow), and

11.77‰ (dw), respectively. We performed a correlation

analysis between environmental parameters and δ18Op to

explore the impact of environmental factors on precipitation

isotopes. Poor correlations were found between the daily scale

FIGURE 4
Seasonal variations of precipitation (A) δ18O, and (B) d-excess in different periods. Boxes represent the 25%–75% percentiles, and whiskers
indicate the 10th and 90th percentiles. The squares stand in to represent the arithmeticmean, while the line through the box reflects themedian. The
distribution curves and individual data points are plotted as well.
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precipitation δ18Op and precipitation (R2 = 0.085, p < 0.0001, n =

209), temperature (R2 = 0.09, p < 0.0001, n = 209), and relative

humidity (R2 = 0.02, p = 0.07, n = 209) (Supplementary Figure

S3). The findings showed that on a daily scale, local

environmental parameters had less impact on the seasonal

variations in precipitation isotopes.

The Sanming stable precipitation isotope data showed a clear

seasonal variation (Figure 4A), similar to other reports globally

(e.g., Xie et al., 2011; Zhou et al., 2019; Bedaso andWu, 2020). To

determine the seasonal variations in δ18Op, the year was

subdivided into SM and NSM periods. The SPR period was

also included in the comparison owing to its high precipitation.

Specifically, the δ18Op values ranged from −12.94‰ to −0.15‰

with an average value of −7.41‰ in the SM period. In the NSM

period, δ18Op values ranged from −6.91‰ to 4.37‰ with an

average value of −3.50‰. In the SPR period, δ18Op values ranged

from −5.72‰ to 4.37‰ with an average value of −2.08‰. In

general, the δ18Op values in the SM period were lower than those

in the NSM period and fluctuated widely. For both the SM and

NSM periods, the δ18Op values in 2020 were lower than those in

2019, and the degree of fluctuation was relatively consistent

(Figure 4A). The data distribution for the SPR period was

similar to that of the NSM period, but the average value was

slightly higher. Although the SPR period had higher

precipitation, its δ18Op average value was still higher than that

of the SM and NSM periods, which is different from the “amount

effect” (Dansgaard, 1964).

The d-excess of precipitation had also been used to explore

the seasonal variations in precipitation caused by the shift of

water vapor sources in different seasons. For the d-excess value,

the variation ranged from −4.05‰ to 21.01‰ with a dw value of

9.70‰ in the SM and from 0.85‰ to 30.38‰ with a dw value of

14.47‰ in the NSM. The d-excess values in the SM season were

more negative than those in the NSM season, which can be

FIGURE 5
HYSPLIT4 moisture back-trajectory at Sanming from 2019 to 2020, (A) in NSM and (B) in SM. The number in parentheses represents the cluster
number and the percentage of this trajectory. The red dots represent the sampling points.

FIGURE 6
Vertically integrated mean water vapor transport from 2019 to 2020, (A) in NSM and (B) in SM. The red dots represent the sampling points.
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attributed to the regional climatic feature. During the SM period,

it is dominated by the EASM, resulting in light precipitation and

negative d-excess values. While in NSM, the regional climate is

controlled by westerlies and inshore air mass, the d-excess values

are more positive. This finding is consistent with the results of

Zhang et al. (2009), who observed that in southwest China, the

water vapor generating precipitation from low-latitude oceans

with high humidity has small d-excess values, whereas that from

westerly or inland recirculation with low humidity has large d-

values. During the SPR period, the d-excess values varied from

0.85‰ to 26.99‰ with a dw value of 8.41‰ (Figure 4B), similar

to the NSM period. This similarity suggests that the source of

water vapor that caused more precipitation during the SPR

period was similar to the source of water vapor during the

NSM period.

4 Discussion

4.1 Seasonal variation of precipitation
isotopes

Sanming has a typical subtropical monsoon climate, with

obvious seasonal variation in precipitation. The precipitation

isotope results also showed marked seasonal variation (Figure 4).

We calculated the d-excess values based on isotope data which

reflected meteorological indicators in the moisture source area

are less influenced by the local environment and can be used to

identify the precipitation moisture sources (Dansgaard, 1964;

Breitenbach et al., 2010). The consistent interannual fluctuation

of the δ18Op and d-excess values during the 2-year monitoring

period reveals that they are likely to be governed by transitions in

water vapor sources and atmospheric circulation (Figure 3).

Therefore, we used the HYSPLIT backward trajectory model

to track water vapor during the SM and NSM periods. To exclude

the possible influence of moisture transport on the results

obtained on non-precipitation days, we excluded the trajectory

and only selected water vapor on precipitation days during the

study period for the simulation analysis. In addition, we

calculated the water vapor flux during the observation period

to compensate for the fact that HYSPLIT can only reflect the

frequency of water vapor sources.

The cluster analysis results based on all backward trajectories

for the SM/NSM seasons and the vertically integratedmean water

vapor transport during the observation period are presented in

Figures 5, 6. On a seasonal scale, water vapor flux dispersion was

generally low and precipitation amounts were small during the

NSM season. Moisture is usually transported by westerly winds

and most of it is inland water vapor, with positive δ18Op and d-

excess values. During the SM season, the amount of water vapor

transported from the ocean increased, and the overall water

vapor flux dispersion was more marked than that during the

NSM season. The SM brings a large amount of low-latitude

tropical oceanic water vapor (73.38% in total) to the Sanming

region, mainly transported by the southwest water vapor

channel, the SCS channel, and the northwest Pacific channel

(Figure 5B). Consistent with the results in Figure 3, moisture

derived from oceanic sources is relatively depleted, while the

moisture associated with continental or local sources is more

enriched. The δ18Ow (−3.50‰) and dw (14.47‰) values for NSM

were positive, reflecting relatively short transport pathways and

possible sub-cloud evaporation effects during the precipitation

process (local sources) or long-distance transport associated with

less pronounced rainout process (continental sources) (Figures

5A, 6A). SM has negative δ18Ow (−7.41‰) and dw (14.47‰)

values, indicating that progressive rainout along long-distance

transport pathways of air masses should be considered (Figures

5B, 6B). Previous studies have also found that the negative d-

excess values during the summer season are associated with weak

kinetic isotope fractionation over the oceanic source with warm

and humid conditions, whereas the cold and dry air masses from

both continental and local sources cause high d-excess values in

autumn and winter (Liu et al., 2008; Li et al., 2020). Our results

(Figures 3, 5, 6) are consistent with these findings and suggest

FIGURE 7
HYSPLIT4 moisture back-trajectory (A), vertically integrated mean water vapor transport (B), and averaged OLR (C) in SPR during 2019-2020.
The red dots represent the sampling points.
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that moisture sources play a significant role in explaining the

observed seasonal variation in δ18Op. Notably, there is no single

source of water vapor on a seasonal scale, with various water

vapor mixing and dominating by turns occurring at different

periods (Li et al., 2020; Guo et al., 2021). Therefore, due to the

seasonal variation in precipitation isotopes in the region, the

paleoclimate δ18O records of this region may be able to reflect the

strength of EASM in the region.

4.2 Characteristics and influencing factors
of δ18O in SPR

SPR is the “early summer rainy season” that occurs from

SEC (south of 30 N and east of 110 E) to southern Japan from

13 to 27 pentad (early March to mid-May) (Ding, 1992; Tian

and Yasunari, 1998; Wan and Wu, 2008b). To further

investigate the main controlling factors of precipitation

stable isotopes during the SPR period, we show the

backward trajectory analysis, water vapor flux field, and

average OLR during the SPR period in Figure 7. In terms

of backward trajectory analysis, water vapor sources are

mainly divided into two categories: inland and offshore

water vapor (Figures 7A, B). Although the precipitation

amount was large during the SPR period, the δ18Op value

was still relatively positive and different from that in the SM

season (Figure 4). Evidently, the shift in moisture sources is

not the dominant factor in the precipitation isotope

composition change during the SPR period. As shown in

Figure 7C, the relatively high average OLR values in the

surrounding ocean indicate weaker convection activity and

shorter water vapor transport pathways during this period.

Suppressed convective activity at the water vapor source and

transport trajectory weaken the rain rainout effect of water

vapor (Cai and Tian, 2016), which leads to positive δ18Op

values at the sampling site. Whether the SPR period represents

the onset of the EASM has long been debated. Previous studies

have found that SPR is a portion of the summer monsoon

rainfall, which is a signal of the establishment of the East Asian

subtropical monsoon (i.e., a part of the EASM) (Ding et al.,

1994; He et al., 2008). Other studies have argued that SPR is an

extension of winter atmospheric circulation caused by

increased southwest wind speed on the southern side of the

Tibetan Plateau (Tian and Yasunari, 1998; Wan et al., 2008a).

Combined with the previous results, we suggest that SPR

should be considered as part of the NSM season based on

the positive value of δ18Op.

4.3 Monsoon onset process revealed from
daily δ18Op

As shown in Figure 3, there is a dramatic and sustained

depletion of δ18Op from May to June, which coincides with the

dates of DBR precipitation (i.e., a time that occurs during the

dragon boat race from late May to mid-June). DBR is associated

with the alternation of winter and summer monsoons (Wu et al.,

FIGURE 8
(A) Latitude-time cross-section of OLR along 115°E. The
vertically blue rectangles indicate the relatively low OLR value. (B)
Time series of pentad averaged δ18Op of precipitation events. The
blue circles represent the relative negative δ18Op value.

FIGURE 9
Regional averaged OLR in SM during 2019-2020. Red dots
donate the location of Sanming.
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2017) and is usually considered the beginning of the SCSSM,

which always accompanies the end of the SPR period. Therefore,

to explore the possible relationship between the SCSSM and

δ18Op in DBR precipitation in Sanming, a comparative analysis of

the OLR [suggestive of strong convection (Yang et al., 2017)] was

conducted in the SCS from mid-April to early June (Figure 8).

As shown in Figure 8, the bias of δ18Op was not steep and had

many fluctuations, and the OLR had multiple variations during

the DBR period. According to Yang et al. (2017) observed that

the summer monsoon is featured by intermittent activity on the

synoptic scale. In addition, previous studies have reported a

negative correlation between δ18Op and monsoon intensity

(Tian et al., 2001; Vuille et al., 2005). It is worth noting that

the small decreases in each fluctuation correspond roughly to the

occurrence of low OLR values, whereas the timing of the slight

decrease does not coincide with the timing of the OLR lows

(Figure 8). More specifically, there are four decreases in δ18Op in

the 26th, 30th, 33rd, and 38th pentads, while the OLR lows

occurred on May 7 (26th pentad), 26 (30th pentad), June 8 (32nd

pentad), and June 29 (36th pentad). This consistent lag further

indicated that the δ18Op values in the Sanming region reflect the

convection situation in the SCS promptly and can provide a good

indication of the timing and process of SM onset. This result also

highlights the potential of the precipitation isotope composition

to capture atmospheric circulation signals.

4.4 Characteristics and influencing factors
of δ18O in SM

With the gradual onset of the SCSSM, the isotope values

gradually become negative and maintain this level with an

average δ18Ow value of −7.41‰ (Figure 3). During the SM

period, water vapor from the ocean is the primary source of

SM precipitation in the Sanming area, which causes negative

precipitation δ18Op values. Recently, many studies have

emphasized the critical role of large-scale deep convective

activity in the upstream regions. More specifically, the

upstream rainout and convection activities along air mass

trajectories can deplete the heavy isotopes in water vapor,

which explains the isotope seasonal variability at downstream

sites (Risi et al., 2008; Crawford et al., 2013; Aggarwal et al.,

2016; Zwart et al., 2016; Ansari et al., 2020). Therefore, we

analyzed the large-scale atmospheric convection intensity, as

measured by the average OLR in the SM (Figure 9). The

relatively low average OLR values around the water vapor

source during the SM period indicated that the atmospheric

convective intensity along the water vapor transport path was

frequent and intense (Figure 9). Therefore, the strong

convective activity of water vapor increases the depleting

effect in the moisture source and along the transport

pathway, resulting in negative δ18Op values in the Sanming

area (Lee and Fung, 2008; Risi et al., 2008; Cai et al., 2017;

Ruan et al., 2019; Zhou et al., 2019), which is similar to the

results shown in Figure 3. These observations further verify

that, although the transfer of moisture sources has a non-

negligible effect on the precipitation isotope composition in

the SM and NSM seasons, the convective processes on the

water vapor sources and transport pathways also play an

essential role in the changes in precipitation isotope

composition.

5 Conclusion

In this study, we exhibit a 2-year detailed description of

the precipitation isotope characteristics from 2019 to 2020 in

Sanming, SEC. The HYSPLIT backward trajectory model and

OLR analysis were used to clarify the basic features and

seasonal variability in precipitation isotopes in Sanming.

The LMWL was developed as δ2H = 8.29 * δ18O + 13.93

(R2 = 0.95, p < 0.0001, n = 209), and seasonal changes in δ18Op

and d-excess in this study area were observed. The δ18Op and

d-excess values in the SM season (−12.94‰–

0.15‰, −4.05‰–21.01‰) were more negative than those

in the NSM season (−6.91‰–4.37‰, 0.85‰–30.38‰). The

backward trajectory and OLR analyses also show seasonal

variations, with moisture during the SM period mainly

coming from remote seas with high convective activity,

while westerly and inland local water vapor with weak

convective activity contributes to the NSM period. The

above results suggest that the seasonal variation in

precipitation isotopes is related to the conversion of water

vapor sources and the intensity of convective activity in the

process of water vapor transportation. SPR is a particular

period of the NSM season with higher precipitation, and the

primary water vapor sources are the western and offshore

oceans. More importantly, owing to the high percentage of

precipitation throughout the year, the SPR influence should

be considered more in the annual isotope composition. The

isotope values showed a sharp decreasing pattern during the

DBR period and corresponded well to the convective

intensity over the SCS, highlighting the potential of δ18Op

as a substitute method for investigating the complicated

Asian monsoon system. Our results highlight that the

stable isotopes in precipitation and related paleoclimate

proxies are primarily influenced by moisture sources and

large-scale upstream convective activities, rather than local

environmental factors.
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As one of the most vulnerable types of global ecosystems and water resource

systems, arid regions are most sensitive to climate change. The Xinjiang (XJ)

region is an important part of the arid region in Central Asia and is representative

of global arid regions. The complex topography and underlying surface result in

distinct climate change characteristics in XJ. In this study, XJ was divided into

five sub-regions: the Irtysh River Basin (IRB), the economic belt on the northern

slope of the Tianshan Mountains (NSTM), the Ili River Basin (ILRB), the Turpan-

Hami Basin (THB), and the Tarim River Basin (TRB). The change in temperature

and precipitation over XJ and its sub-regions were investigated from 1960 to

2019 using the Mann-Kendall method and cross-wavelet analysis. Moreover,

the multi-timescale correlations between the variations in temperature and

precipitation and the atmospheric circulation indices were explored. The results

show significant warming and wetting trends in XJ from 1960 to 2019. The

warming rate was 0.32°C/10 a (p < 0.01), with an abrupt change during the mid-

1990s. The increasing rate of precipitation was 9.24 mm/10 a (p < 0.01), with an

abrupt change during the middle to late 1990s. In terms of seasonal variation,

the greatest warming rate was during winter (0.37°C/10 a), whereas the

precipitation increase was concentrated in summer (3.48 mm/10 a). In terms

of spatial variation, a significant warming trend was observed in THB, IRB, ILRB,

and NSTM, and precipitation increased significantly in ILRB, NSTM, and the

western TRB in southern XJ. TheHurst index analysis indicated that thewarming

andwetting trends in XJ will slow in the future. Climate change in XJ was closely

related to atmospheric circulation at multiple timescales. The subtropical high,

Northern-Hemisphere polar vortex activities and the Tibetan Plateau have a

significant impact on climate change in XJ. The annual mean temperature in XJ

was positively correlated with the area and intensity index of the subtropical

high over North Africa, Atlantic, and North America, and negatively correlated

with the area and intensity index of the Asia polar vortex. The XJ annual

precipitation was positively correlated with the index of the Tibet Plateau

Region one and negatively correlated with the intensity index of the Atlantic
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and European polar vortex, and the area and intensity index of the Northern

Hemisphere polar vortex. The results of this study can provide some references

for the scientific assessment and accurate prediction of climate change in XJ.

KEYWORDS

temperature, Xinjiang, atmospheric circulation indices, cross-wavelet analysis,
precipitation

Introduction

The sixth assessment report of the Intergovernmental Panel

on Climate Change (IPCC) suggested that the global average

surface temperature during 2011–2020 had increased by 1.09°C

from that in 1850–1900 (IPCC, 2022). Various hazards

associated with global warming are increasing. Only when

global warming is maintained within 1.5°C can the losses and

damages to natural and human systems caused by the climate

change can be reduced (Jiang et al., 2022). As the area with the

most vulnerable ecosystem and water resource system, the arid

region is the most sensitive area to global climate change.

The Xinjiang Uyghur Autonomous Region is located in the

western arid region of Northwest China and the hinterland of the

Eurasian continent. It is an essential part of the Central Asian arid

region with little precipitation and a fragile ecological environment

(Yao et al., 2020; Yao et al., 2022a). Its sensitivity to climate change

increases with global warming (Chen et al., 2014; Yao et al., 2021),

and it is a remarkable representative of the global arid region

(Chen et al., 2015). Numerous studies have demonstrated

“warming and wetting” trends during the past decades in

Xinjiang (XJ) region (Yao et al., 2022b). A previous study

found that both daytime and nocturnal precipitation increased

in western China from 1990 to 2019 (Deng et al., 2022). Some

studies have found a slightly decreasing trend in warming and

wetting rates in XJ after 1997 (Yao et al., 2018). In combination

with analysis of the standardized precipitation evapotranspiration

index (SPEI), the transition from “warming and wetting” to

“aridification” has been observed since 1997 (Yao et al., 2021).

The interannual temperature and humidity configuration in XJ

was mainly “warm-wet” and “warm-dry” during 1961–2019, but

the “warm-dry” configuration will be more prominent in the

future (Yao et al., 2022b). The climate in Central Asia tends to

be wetter during the wet season and drier during the dry season

(Ren et al., 2022). The trend of “warming and wetting” in XJ is

projected to become more obvious in the future, but its arid and

semi-arid characteristics will be maintained, and the frequency of

hydrological droughts will relatively increase (Wang et al., 2021).

Subtropical highs are also known as subtropical anticyclones (Li

et al., 2012). The Northern Hemisphere subtropical high is usually

divided into five parts: the Indian, Western Pacific, Eastern Pacific,

and North African Atlantic Subtropical highs (Zhang et al., 2008).

A polar vortex is a large vortex system located in the middle and

upper polar troposphere and above the stratosphere. It can extend

horizontally over middle and high latitudes (Liu L. et al., 2020).

The high-latitude circulation system and atmospheric circulation

in the Northern Hemisphere are strongly affected by changes in

the polar vortex intensity and area (Li et al., 2017). The Tibetan

Plateau is a large highland in the mid-latitude region of the

Northern Hemisphere, which influences regional and global

circulation and climate through mechanical and thermal effects

(Duan et al., 2012; Liu Y. J. et al., 2020). The above studies mainly

focused on the changes in temperature and precipitation over XJ,

whereas information regarding atmospheric circulation indices

affecting climate change remains scarce.

Based on the temperature and precipitation datasets of XJ

from 1960 to 2019 and the atmospheric circulation indices, this

study investigated the latest changes in temperature and

precipitation in five sub-regions of XJ based on the expedition

zones of the Third XJ Scientific Expedition and Research

Program. The multi-timescale correlations between the

temperature and precipitation, and the atmospheric

circulation indices were also explored in this study. This study

can provide some references for the construction of an ecological

civilization in XJ and to improve its ability to deal with various

climate hazards caused by future climate change.

The remainder of this paper is organized as follows: Section 2

introduces the data and methods. Section 3 shows the variation

trends in temperature and precipitation in XJ over the past

60 years and predicts future trends. In addition, the

correlations between climate change in XJ and atmospheric

circulation factors are also analyzed in Section 3. Discussions

are presented in Section 4, and the conclusions are presented in

Section 5.

Data and methods

Study area

XJ is located in the arid region of Northwest China. The

basins and mountains are distributed alternately in XJ, forming a

unique and complex topographic structure. XJ has an arid

climate with an average annual temperature of 10°C–15°C and

an average annual precipitation of less than 150 mm (Li et al.,

2011). It is highly sensitive to global warming and the ecological

environment in this region is very fragile.

According to topography, XJ is divided by the Tianshan

Mountains into northern and southern XJ, resulting in three major

sub-regions: northern XJ, Tianshan Mountains, and southern XJ
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(Reziwanguli et al., 2016; Kang et al., 2018; Wu et al., 2020). Several

studies have divided XJ into mountainous, oasis, and desert areas

(Chen et al., 2005; Zhang et al., 2021), and obtained some beneficial

conclusions about the climate of XJ. For extremely arid XJ, water is a

fundamental natural and strategic economic resource, and it is also the

lifeblood of XJ’s high-quality social and economic development. The

watershed, as the main carrier of water resources in XJ, connects the

natural elements in the watershed into a whole river. Human activities

are primarily performed in watersheds. However, few studies have

considered the watershed as a unit for conducting research on climate

change in XJ. Based on the distribution ofmajorwatersheds andwater

systems in XJ, and also in terms of the expedition zones of the Third

XJ Scientific Expedition and Research Program, we divided XJ into

five sub-regions: the IrtyshRiver Basin (IRB), the economic belt on the

northern slope of the Tianshan Mountains (NSTM), the Ili River

Basin (ILRB), the Turpan-Hami Basin (THB), and the Tarim River

Basin (TRB) (Figure 1). Within the IRB, the Irtysh River is the only

river in China that flows into the Arctic Ocean. It originates from the

southwestern slope of the Altai Mountains in China, and its water

volume ranks second in XJ following the Ili River (Liu et al., 2017;

Wang et al., 2022). The NSTM consists of small- and medium-sized

rivers and is the most economically developed area in XJ, with the

sharpest contradiction between the supply and demand of water

resources (Sun et al., 2022). In the ILRB, the Ili River originates in the

Tianshan Mountains and eventually joins Balkhash Lake, and is the

river with the largest water volume in XJ (Liu et al., 2022). The THB is

among themost arid basins in XJ and is rich in wind and solar energy

but extremely limited in water resources (Fang et al., 2010). The TRB

is located in southern XJ, between the Tianshan and Kunlun

Mountains, and is the largest inland river basin in China (Xue

et al., 2022).

Data sources

The daily average temperature and precipitation data in XJ

from 1960 to 2019 were provided by the China Meteorological

Administration (CMA, http://data.cma.cn/en). To ensure the

continuity of data, some meteorological stations with missing

data on temperature and precipitation were excluded, and

80 meteorological stations were finally selected for the analysis

in this study (Figure 1). Seventy-four atmospheric circulation

indices were obtained from the National Climate Center of China

Meteorological Administration (https://cmdp.ncc-cma.net/cn),

with seven indices excluded from practical use due to missing

data from June to September.

Methodology

In this study, the variation trends in temperature and

precipitation in XJ and its subregions over the past 60 years were

analyzed using the linear regression method. The Mann-Kendall

method was used to detect abrupt change years and tendencies of

climate sequences, and R/S analysis was applied to predict future

variations in temperature and precipitation (Ding et al., 2018; Fang

FIGURE 1
Study area and the distribution of meteorological stations. (The Irtysh River Basin, the economic belt on the northern slope of the Tianshan
Mountains, the Ili River Basin, the Turpan-Hami Basin, and the Tarim River Basin are marked as IRB, NSTM, ILRB, THB, and TRB, respectively).
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et al., 2022). The Pearson correlation analysis method was used to

analyze the correlation between the atmospheric circulation index and

climate factors in XJ, and the atmospheric circulation index with

strong positive and negative correlations was selected. Cross-wavelet

analysis was used to analyze the periodic characteristics of the climate

factors and atmospheric circulation indices.

The cross wavelet transform (XWT) highlights the

interrelationship among temperature, precipitation, and

atmospheric circulation indices in high-energy regions (Grinsted

et al., 2004; Hu et al., 2021). Wavelet transform coherence (WTC)

shows this interrelationship in the low-energy region. The thin black

arcs in XWT andWTC indicate the cone of influence of the wavelet

boundary effect, and the thick black solid line indicates a significant

correlation between the two, which passed the red noise test with a

confidence level of 95%. The symbol “←” (“→”) indicates that the

climate and atmospheric circulation factors are negatively

(positively) correlated. The symbol “↓” (“↑”) denotes that the

climate factor is 90° ahead of (behind) the variations in the

atmospheric circulation factor (Liu et al., 2021).

Results

Trends of temperature and precipitation
in XJ

The annual mean temperature in XJ during

1960–2019 showed a significant increasing trend with a

warming rate of 0.32°C/10 a (p < 0.01), which is higher than

the average in China (Zhao et al., 2020) (Figure 2A). The results

of the Mann-Kendall test showed that the temperature changed

abruptly in 1994 (Figure 2C). After the abrupt change, the multi-

year average temperature increased by 1.08°C. The cumulative

anomaly analysis showed that the annual mean temperature

experienced a decreasing trend from 1960 to 1996 and an

increasing trend from 1997 to 2019, with 1996 being the

turning point (Figure 2E). Considering the results of the two

methods, the annual mean temperature in XJ was concluded to

have changed abruptly in the mid-1990s.

The annual precipitation in XJ shows a significant increasing

trend from 1960 to 2019 with a wetting rate of 9.24 mm/10 a (p <
0.01), which is slightly lower than the average in China (Zhao

et al., 2020) (Figure 2B). The results of Mann-Kendall showed

that an abrupt change in precipitation occurred in 1991

(Figure 2D). After the sudden change, the multi-year average

annual precipitation increased by 29.48 mm. The cumulative

anomaly analysis showed that the annual precipitation in XJ

experienced a decreasing trend from 1960 to 1986 and an

increasing trend from 1987 to 2019, with 1986 being the

turning point (Figure 2F). Considering the results of the two

methods, the annual precipitation was concluded to have

changed abruptly in the mid-late 1980s.

Temperature and precipitation in XJ showed significant

increasing trends in all seasons. The warming rates for the

four seasons were 0.36°C/10 a, 0.24°C/10 a, 0.32°C/10 a and

0.37°C/10 a, respectively, all of which have passed the

significance test at the 99% significance level (Table 1). The

most significant warming trend in XJ occurred in winter.

FIGURE 2
Variation trends in (A) annual mean temperature and (B) annual precipitation in XJ. The Mann-Kendall mutation detection on (C) annual mean
temperature and (D) annual precipitation. The cumulative anomaly analysis of (E) annual mean temperature and (F) annual precipitation.
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Among the subregions, the most significant warming trend

was observed in the THB. In spring, the most significant

warming occurred in the IRB; in summer, it was in the

ILRB and THB; in autumn, it was in the THB; and in

winter, it was in the IRB. The wetting rates in XJ in the

four seasons were 1.82, 3.48, 2.11, and 1.84 mm/10 a,

TABLE 1 Variation trends of annual and seasonal temperature in XJ and its sub-regions (°C/10 a), and the results of significance tests.

Name Annual Spring Summer Autumn Winter

a r a r a r a r a r

XJ 0.32 0.74pp 0.36 0.53pp 0.24 0.70pp 0.32 0.57pp 0.37 0.41pp

IRB 0.41 0.64pp 0.45 0.43pp 0.31 0.61pp 0.39 0.46pp 0.51 0.39pp

NSTM 0.33 0.66pp 0.38 0.44pp 0.26 0.64pp 0.35 0.50pp 0.32 0.31*

ILRB 0.41 0.73pp 0.43 0.53pp 0.35 0.74pp 0.34 0.53pp 0.50 0.43pp

THB 0.42 0.81pp 0.43 0.59pp 0.35 0.68pp 0.43 0.65pp 0.47 0.54pp

TRB 0.24 0.71pp 0.29 0.56pp 0.14 0.42pp 0.24 0.58pp 0.31 0.41pp

*Significant at p < 0.05; ppsignificant at p < 0.01.

TABLE 2 Variation trends of annual and seasonal precipitation in XJ and its sub-regions (mm/10 a), and the results of significance tests.

Name Annual Spring Summer Autumn Winter

a r a r a r a r a r

XJ 9.24 0.53pp 1.82 0.28p 3.48 0.41pp 2.11 0.41pp 1.84 0.51pp

IRB 10.51 0.44pp 2.25 0.28p 2.53 0.20 2.68 0.35pp 3.05 0.35pp

NSTM 10.81 0.46pp 3.03 0.31p 2.96 0.26p 2.40 0.34pp 2.50 0.50pp

ILRB 14.03 0.34pp 1.94 0.11 3.78 0.21 3.44 0.25 4.45 0.45pp

THB 1.11 0.20 0.49 0.22 0.29 0.08 0.15 0.07 0.18 0.18

TRB 8.00 0.53pp 0.90 0.17 4.76 0.48pp 1.77 0.34pp 0.57 0.24

*Significant at p < 0.05; ppsignificant at p < 0.01.

FIGURE 3
Spatial distributions of the variation trends in annual mean temperature (A) and precipitation (B) in XJ and its subregions.

Frontiers in Environmental Science frontiersin.org05

Zhou et al. 10.3389/fenvs.2022.1082713

171

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.1082713


respectively. The wetting trends of all seasons passed the

significance test at the 99% significance level (Table 2). The

maximum increase in precipitation in XJ occurred in the

summer. The subregion with the most significant increasing

trend in annual precipitation was IRB. The increasing trend of

precipitation was remarkable in the NSTM during spring,

TRB during summer, and IRB during autumn and winter.

Spatial distributions of the variation trends
in temperature and precipitation in XJ

More than 98% of the stations in XJ showed warming and

wetting trends from 1960 to 2019. The subregions with

significant warming were concentrated in IRB, NSTM, ILRB,

and THB (Figure 3A). The warming trend was most pronounced

at the Shisanjianfang station of the THB, with a warming rate of

0.82°C/10 a. The Kuqa and Aketao stations in the TRB showed a

decreasing trend in temperature with variation rates of −0.09°C/

10 a and −0.03°C/10 a, respectively. The increase in precipitation

was more pronounced in the IRB, NSTM, ILRB, and western

regions of the TRB (Figure 3B). The most significant

precipitation increase was observed in Urumqi on the NSTM,

with a wetting rate of 24.95 mm/10 a. The precipitation in

Shisanjianfang and Turpan stations in THB showed a

decreasing trend, with variation rates of −2.86 and −0.31 mm/

10 a, respectively.

Obvious regional differences were observed in seasonal

warming in the sub-regions of XJ. In spring, summer, and

autumn, the warming rate was the highest in the IRB. In

winter, the greatest warming occurred mainly in the ILRB and

THB. In terms of spatial differences, the most significantly

warmed areas were mainly in the THB. The greatest warming

rates were recorded at Shisanjianfang station in the THB (0.84°C/

10 a and 0.90°C/10 a, respectively) in spring and autumn (Figure

4A,C); Hami (2.26°C/10 a) in summer (Figure 4B); and Fuyun

station in the IRB (1.11°C/10 a) in winter (Figure 4D).

Regional differences in precipitation were also noted among

the sub-regions of XJ. In summer, autumn, and winter, the largest

wetting rates were observed in the ILRB. In summer, the sub-

regions with the greatest precipitation increase were mainly in

the ILRB and western TRB. In terms of stations, the most

FIGURE 4
Variation trends in temperature during different seasons (A–D) in XJ and its subregions.
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significant precipitation increase was mainly in the NSTM. In

summer (Figure 5B), the largest wetting rate was observed at

Daxigou station (12.89 mm/10 a); in spring (Figure 5A), at

Tianchi station (10.75 mm/10 a); in autumn (Figure 5C), at

Aheqi station (7.16 mm/10 a) in the TRB; and in winter

(Figure 5D), at Yining (6.84 mm/10 a) in the ILRB.

Trend prediction of potential climate
change in XJ

The aforementioned analysis shows significant increasing trends

of both annual mean temperature and annual precipitation in XJ and

its subregions over the last 60 years. The results of the R/S analysis

indicate that the Hurst indices of the annual mean temperature and

precipitation in XJ and the subregions are both <0.5, presenting a

decreasing trend in the future (Table 3). In the five subregions of XJ,

themost significant decrease in annual mean temperature is predicted

in theTRB, and themost significant decrease in annual precipitation is

predicted in the THB. Analysis of the Hurst index indicates that

warming and wetting in XJ will slow down in the future.

Cross-wavelet analysis of the climate
change and atmospheric circulation
indices

The key atmospheric circulation indices affecting climate

change in XJ were selected by analyzing the correlations of

temperature and precipitation with the atmospheric

circulation indices (Table 4). The results showed that the

subtropical high, polar vortex, Tibetan Plateau index, and

other related circulation indices had significant effects on

climate change in XJ. The indices with the most significant

correlation and physical significance were selected.

Temperature showed a significant and positive correlation

with the area index of the subtropical high over North Africa,

Atlantic, and North America (AISHNA) and its intensity index

(IISHNA) (Figure 6A), whereas it was significantly and

negatively correlated with the area index of the Asia polar

vortex (AIAPV) and its intensity index (IIAPV) (Figure 6B).

The annual precipitation showed a significant and positive

correlation with the index of the Tibetan Plateau Region 1

(ITPR 1) (Figure 6C), and a significant and negative

FIGURE 5
Variation trends in precipitation during different seasons (A–D) in XJ and its subregions.
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correlation with the intensity index of the Atlantic-European

Polar Vortex (IIAEPV), the area index of the Northern

Hemisphere Polar Vortex (AINHPV) and its intensity index

(IINHPV) (Figure 6D).

Cross-wavelet analysis was performed to reveal the

relationships between temperature/precipitation variations and

key atmospheric circulation indices, such as subtropical high,

polar vortex, and Tibet Plateau. Moreover, multi-timescale

correlations between climate change and contemporaneous

atmospheric circulation are discussed. The XWTs of

temperature to AISHNA and IISHNA were consistent, both

showing a significant resonance period at 1.5–4 a, which

passed the significance test in 1980–1999 (Figures 7A, C). The

WTC revealed that the significance of the two is greater in the

FIGURE 6
Time series of the key atmospheric circulation indices and annual mean temperature (A,B) and precipitation (C,D) in XJ.

TABLE 3 Hurst indexes of climate change in XJ.

Name Annual average temperature Annual precipitation

Hurst index Anti-persistence Future trends Hurst index Anti-persistence Future trends

XJ 0.36 weak decrease 0.30 weak decrease

IRB 0.33 weak decrease 0.29 strong decrease

NSTM 0.36 weak decrease 0.28 strong decrease

ILRB 0.34 weak decrease 0.28 strong decrease

THB 0.41 weak decrease 0.15 strong decrease

TRB 0.29 strong decrease 0.30 weak decrease
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low-energy region than in the high-energy region, and the

coherence in 1981–2002 was extremely strong at the quasi-4a

scale (Figures 7B, D). The XWT of temperature to IIPVA

showed that they have a significant resonance period at the

quasi-2a scale and have passed the significance test in

1964–1969 and 1981–1985 (Figure 7E). The XWT of

temperature to AIPVA demonstrated a significant

resonance period at 8–10 a scale, and they have a

significant negative correlation. The WCT of the two

showed extremely strong correlations at the 3–5 a scale for

1978–1988 and 1990–2001, and at the 6.5–14 a scale for

1978–2003 (Figures 7G, H).

A positive-phase quasi-2a resonance period existed in

the high-energy region of the XWT between the

precipitation variations in the XJ and ITPR 1

(Figure 8A). The XWT of the precipitation variation in

XJ to AINHPV had resonance periods of 2–3 and 1–2.5 a in

the high-energy region (Figure 8C) and 1–3 and 6–7 a in the

low-energy region (Figure 8D). In addition, the XWT of the

precipitation variation in XJ to IIPVNH had negative-phase

resonance periods at 2.5–4 and 1–3 a in the high-energy

region (Figure 8E) and at 1–3 a resonance period in the low-

energy region (Figure 8F). The XWT of the precipitation

variation in XJ to IIAEPV had negative-phase resonance

periods at 2–4 and 1–3 a (Figure 8G). The above analysis

further confirmed that the variations in temperature and

precipitation in XJ were closely related to the anomalies of

key circulation indices such as the subtropical high, polar

vortex, and Tibet Plateau. These results could provide an

important reference for the prediction of climate change

in XJ.

Discussions

This study further confirms the warming and wetting

trends in XJ (Reziwanguli et al., 2016; Kang et al., 2018; Wu

et al., 2020) and its subregions according to the watersheds.

These subregions are consistent with the expedition zones

of the Third XJ Scientific Expedition and Research Program

implemented by the Ministry of Science and Technology of

China in 2021. The climate change characteristics of each

subregion are presented in detail in this study. The results

revealed significant warming trends in the THB, IRB, ILRB,

and NSTM, whereas the precipitation increased

significantly in the ILRB, NSTM, and western TRB in

southern XJ. The Hurst index analysis indicated that

both temperature and precipitation will decrease in XJ in

the future, and the decreasing rate of precipitation would be

more pronounced. A warm-dry trend is speculated to

appear in XJ in the future. It is consistent with the

“wet–dry transition” of XJ proposed by Yao et al. (2018);

Yao et al. (2022a), but not completely consistent with theTA
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FIGURE 7
XWT and WCT of the annual mean temperature (A–H) in XJ to the area index of the subtropical high over North Africa, Atlantic, and North
America (AISHNA), the intensity index of the subtropical high over North Africa, Atlantic, and North America (IISHNA), the intensity index of the polar
vortex in Asia (IIPVA), and the index area of Asia polar vortex (AIPVA).
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FIGURE 8
XWT and WCT of the annual precipitation (A–H) in XJ to the index of the Tibet Plateau Region 1 (ITPR 1), the area index of the Northern
Hemisphere Polar Vortex (AINHPV), the intensity index of the Northern Hemisphere Polar Vortex (IINHPV), and the intensity index of the Atlantic-
European PolarVortex (IIAEPV).

Frontiers in Environmental Science frontiersin.org11

Zhou et al. 10.3389/fenvs.2022.1082713

177

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.1082713


results reported by Guan et al. (2022), which were projected

using CMIP6. Their results suggested that the extreme climate

change in the 21st century will continue the change trend from

1961 to 2014, that is, both extreme warm and precipitation

events will increase (Guan et al., 2022). The uncertainty of

future climate change remains owing to anomalous changes in

future atmospheric circulation indices.

XJ is in the mid-latitude region of the Northern

Hemisphere and is mainly influenced by changes in mid-

high latitude atmospheric circulation systems (Yao et al.,

2022a). The polar vortex is the main atmospheric

circulation system that dominates the Northern

Hemisphere in winter. In last 60 years, the interdecadal

variation in the polar vortex has been evident, and it has

significantly decreased in size and intensity since the 1980s.

The area and intensity index of the Asia polar vortex are

closely related to the temperature in Central Asia, and the

weakening of the Asian polar vortex and the reduction in its

area are among the reasons for the changes in temperature in

Central Asia (Yao et al., 2014). The polar vortex in the

Northern Hemisphere also has a strong correlation with

winter temperature in XJ. The winter temperature is high

when the polar vortex index is low (Shen et al., 2012; Zhang

et al., 2020). The strong westerly winds in the Northern

Hemisphere are accompanied by a decrease in the

meridional degree of mid- and high-latitude circulations,

which may lead to high average winter temperatures in XJ

(Chen et al., 2019). The increase in winter temperature

contributes to warming in XJ. The IRB is in a high-latitude

area and is close to the influence area of polar vortex activity,

which leads to fast winter warming in the IRB. The findings of

this study further confirm the periodic correlation between

the polar vortex and temperature in XJ at multiple timescales,

which can provide a reference for temperature forecasting and

prediction in XJ.

The atmospheric circulation indices affecting the

precipitation change in XJ and the physical mechanisms

involved are complex. The precipitation change in XJ is not

only influenced by the polar vortex activities at high latitudes but

is also related to the low latitude circulation and the

thermal–dynamical effects of the Tibetan Plateau (Zhao et al.,

2018). A significant negative correlation was found between the

Atlantic–European polar vortex area and summer precipitation

in the TRB. When the polar vortex is small, the westerly jet

weakens in central and western Asia, and the TRB experiences

more summer precipitation (Li et al., 2017). The West Asia

westerly jet connects the high-, mid-, and low-latitude circulation

systems. summer precipitation in XJ is influenced by the North

Atlantic oscillation and Indian monsoons. When the West Asia

westerly jet weakens, summer precipitation in XJ tends to

increase (Yang et al., 2018). The TPI is large in May, and the

low-latitude circulation configuration and water vapor transport

favor precipitation in northern XJ (Zhou et al., 2018).

Based on an analysis of climate change characteristics and

future trends in XJ, this study investigated the correlation

between atmospheric circulation indices and climate factors.

However, the multi-model ensembles in CMIP6 should be

used in future studies to predict future climate change under

the scenarios of human socio-economic changes and to analyze

the hazard risks arising from future climate change. Atmospheric

circulation indices have complex effects on climate change.

Therefore, future climate change in XJ will have different

responses to global warming. The formation and evolution

mechanisms and degree of impact of extreme climate events

caused by atmospheric circulation anomalies need to be further

studied.

Conclusion

Based on the observation data from 80 meteorological

stations in XJ, this study analyzed the climate change in XJ

and its five subregions and explored the relationships between

climate change in XJ and atmospheric circulation indices. The

main results are as follows: The annual mean temperature in XJ

showed an increasing trend from 1960 to 2019, with a warming

rate of 0.32°C/10 a, and an abrupt change occurring in

1994–1996. The temperature also increased during all seasons,

with the greatest warming occurring in winter. Significant

warming trends were recorded in the THB, IRB, ILRB, and

NSTM. The Hurst Index indicated that the annual mean

temperature in XJ will show a weak decreasing trend in the

future.

The precipitation in XJ showed an increasing trend from

1960 to 2019, with a wetting rate of 9.24 mm/10 a, and an abrupt

change occurring in 1986–1991. The precipitation in XJ also

showed an increasing trend in all four seasons, with the greatest

increase in summer. Precipitation increased significantly in the

ILRB, NSTM, and the western side of the TRB in southern

XJ. Analysis of the Hurst Index indicated a strong decreasing

trend in annual precipitation, with the greatest decrease in

the THB.

The subtropical high, Northern Hemisphere polar vortex

activities, and the Tibetan Plateau have a significant impact on

climate change in XJ. The annual mean temperature in XJ was

positively correlated with AISHNA and IISHNA, and negatively

correlated with AIPVA and IIPVA. Moreover, their resonance

periods were 1.5–4, 1.5–4, 1–2.5, and 8–10 a, respectively. The XJ

annual precipitation was positively correlated with the ITPR 1,

and negatively correlated with the IIAEPV, IINHPV, and

AINHPV, with the resonance periods at 1–3.5, 1–2.5, 2.5–4,

and 2–4 a, respectively.
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Temperature rise is a concern for future agriculture in different regions of the globe.
This study aimed to reveal the future changes and variabilities in minimum
temperature (Tmin) and maximum temperature (Tmax) in the monthly, seasonal,
and annual scale over Bangladesh using 40 General Circulation Models (GCMs) of
Coupled Model Intercomparison Project Phase 5 (CMIP5) for two radiative
concentration pathways (RCPs, RCP4.5 and RCP8.5). The statistical downscaling
climate model (SimCLIM) was used for downscaling and to ensemble temperature
projections (Tmax and Tmin) for the near (2021–2060) and far (2071–2100) periods
compared to the base period (1986–2005). Multi-model ensemble (MME) exhibited
increasing Tmax and Tmin for all the timescales for all future periods and RCPs. Sen’s
slope (SS) analysis showed the highest increase in Tmax and Tmin in February and
relatively less increase in July and August. The mean annual Tmax over Bangladesh
would increase by 0.61°C and 1.75°C in the near future and 0.91°C and 3.85°C in the
far future, while the mean annual Tmin would rise by 0.65°C and 1.85°C in the near
future and 0.96°C and 4.07°C in the far future, for RCP4.5 and RCP8.5, respectively.
The northern and northwestern parts of the country would experience the highest
rise in Tmax and Tmin, which have traditionally been exposed to temperature
extremes. In contrast, the southeastern coastal region would experience the least
rise in temperature. A higher increase in Tmin than Tmax was detected for all
timescales, signifying a future decrease in the diurnal temperature range (DTR).
The highest increase in Tmax and Tmin will be in winter compared to other seasons
for both the periods and RCPs. The spatial variability of Tmax and Tmin changes can
be useful for the long-term planning of the country.
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temperature projection, minimum and maximum temperature, Bangladesh, statistical
downscaling, SimCLIM
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1 Introduction

Temperature is an important factor in determining the effects of
climate change (CC) on the globe or on the region of interest
(Almazroui et al., 2020b). Since 1850, the earth’s temperature has
risen significantly (Ozturk et al., 2018; Wang et al., 2021). This has
altered the frequency, severity, duration, timing, and spatial variability
of temperature extremes (Islam A. R. M. T. et al., 2021; Pérez et al.,
2021; Mallick et al., 2022a), and significantly impacted ecological
instability, public health, agricultural production, water supplies, and
socioeconomic progress (Allen et al., 2010; Islam H. M. T. et al., 2021;
Mallick et al., 2022b). Even if all countries reduce greenhouse gas
(GHG) emissions committed in the Paris Agreement, the earth’s
average temperature will increase by 2.6°C–4.8°C in 2100 (Wang
et al., 2021). Hence, it is of absolute necessity to examine future
temperature projections to reduce global warming consequences and
for strategic planning of CC adaptations.

GCMs are used to project temperature globally. Different Coupled
Model Intercomparison Projects (CMIPs) introduced many GCMs to
examine future climate patterns. The CC assessment models have been
updated significantly since CMIP3 (Song et al., 2021). The RCPs have
lately been developed in CMIP5 to provide projections for different
radiative forcings (Rahman and Rob, 2019). CMIP5 models have
thoroughly outlined the earth system with high geospatial resolution
and integrated physics (Almazroui et al., 2020a) and, therefore, shown
better skill in climate projections than CMIP3 models (Song et al.,
2021; Islam et al., 2022). GCMs have been extensively used for climate
modeling (IPCC, 2014). However, they still cannot fully describe many
regional climate dynamics because of their coarser resolution (Ali
et al., 2021; Wang et al., 2021). Downscaling strategies, which can
retrieve higher resolution data from coarse resolution datasets, are
crucial for addressing this difficulty for regional or local scale climate
modeling (Kamruzzaman et al., 2019b; Kamruzzaman et al., 2021a;
Kamruzzaman et al., 2021b; Das et al., 2022a; Das et al., 2022b).
Statistical Downscaling (SD) and Dynamic Downscaling (DD) are the
two main approaches used for climate downscaling. The SD is
frequently preferred because of its simplicity, cost, quick
computations, and lower computational requirements (Rashid
et al., 2015).

GCM projections are inherently coupled with uncertainty due to
the modeling approach, initial condition, and future scenarios
(Katzenberger et al., 2021). Moreover, an individual GCM cannot
model all atmospheric processes and identify every climatic variation
at a smaller scale with greater accuracy (Almazroui et al., 2020b; Ali
et al., 2021). Therefore, multi-model ensembles (MME) of GCMs are
usually suggested for climate modeling to address uncertainty and
improve projection performance (Xu and Xu, 2012;Wang et al., 2021).
A large number of studies have projected temperature based on MME
of CMIP5 models at various scales (Almazroui et al., 2016; 2020a;
Pattnayak et al., 2017; Amin et al., 2018a; Kumar and Sarthi, 2019; Ali
et al., 2021). They found that the future temperature will increase,
which might be attributed mostly to climatic diversity, geographical
factors, and societal context (King et al., 2018). Hence, further
research, particularly at the regional or national level, is required to
assess the suitability of GCMs in temperature projection and provide
ample and precise supplementation for the sensitivity of local or
regional temperature variability to climatic changes.

Bangladesh is extremely vulnerable to CC due to its unique
geographical location, poor infrastructure, low-lying topography,

and high population density (Huq, 2001). Understanding potential
climatic change is essential for creating adaptation strategies and
increasing resilience to CC. However, a few studies used
CMIP5 models to assess future changes in temperature in
Bangladesh for various CC scenarios (Alamgir et al., 2015; Hasan
et al., 2018; Rahman and Rob, 2019; Bosu et al., 2021). Alamgir et al.
(2019) projected Tmax and Tmin over Bangladesh using MME of
eight CMIP5 GCMs. They projected an increase in Tmax by
1.3°C–4.3°C and Tmin by 1.8°C–5.1°C for different RCPs. They also
projected the highest rise in Tmax and Tmin in the northern region
and the lowest in the southeastern coastal region of Bangladesh. Hasan
et al. (2018) utilized MME of five bias-correction CMIP5 regional
climate models to project the climate extremes. They reported a higher
increase in Tmax and Tmin in the southwest region than in other parts
of Bangladesh. Earlier research was mostly concentrated on a limited
number of GCMs or RCMs for monthly or annual Tmax and Tmin
projections at the regional or national scale. Unfortunately,
understanding the spatiotemporal trends and variations of future
temperature changes at monthly, seasonal, and annual timescales is
limited. Moreover, no extensive study has been conducted for
temperature projections employing all existing CMIP5 GCMs at
various time scales over Bangladesh. This study is expected to fill
this gap.

This study used CMIP5 GCM temperature simulation to
investigate probable temperature changes across Bangladesh. The
main objectives of this research are i) to investigate the monthly,
seasonal, and annual future Tmax and Tmin trends across Bangladesh
for the near (2021–2060) and the far (2061–2100) periods based on the
MME of 40 CMIP5 GCMs; ii) to examine the spatiotemporal
variability and changes in future Tmax and Tmin over the country.
The novelty of this study is that this is the first study using all available
CMIP5 models to project temperature over Bangladesh. Furthermore,
a pattern-scaling bias-correction technique based on the SimCLIM
climate model has been adopted for the first time for temperature
downscaling and projection in Bangladesh. The findings of this study
will help design and develop targeted CC adaptation or mitigation
strategies in Bangladesh.

2 Methods

2.1 Study area

Bangladesh is a flat topographical country in Southeast Asia,
consisting of low-lying alluvial plains in the deltas of Asia’s three
largest rivers known as the Ganges-Brahmaputra-Meghna. It has a
tropical monsoon climate distinguished by considerable seasonal
rainfall variation, moderate hot temperature, and high humidity
(Islam H. M. T. et al., 2021). The four main seasons of Bangladesh
can be categorized as pre-monsoon (March to May), monsoon (June
to September), post-monsoon (October to November), and winter
(December to February) (Kamruzzaman et al., 2019a; Jerin et al.,
2021). The country’s mean temperature varies from 26.9°C to 31.1°C in
pre-monsoon, while in winter, it ranges from 17.0°C to 20.6°C. January
is the coldest month, with a mean temperature of 20.6°C in the coastal
zone and 17°C in the northwestern and northeastern regions. May is
the warmest month when the average temperature varies from 27°C in
the eastern and southern parts to 31°C in the western-central region.
The northwestern region of Bangladesh has the highest temperature

Frontiers in Environmental Science frontiersin.org02

Islam et al. 10.3389/fenvs.2022.1074974

182

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.1074974


extremes. In some pre-monsoon summer months, the temperature
can rise over 42°C, while in winter, the nighttime temperature can fall
below 5°C (Shahid et al., 2012; Alamgir et al., 2019).

2.2 Data sources

In this study, downscaled data for two time slices, i.e. near
(2021–2060) and far (2061–2100), was used to assess the future
changes of Tmax and Tmin for two different periods based on the
reference period (1986–2005). SimCLIM 4.0 was employed to
anticipate future Tmax and Tmin using the MME of 40 GCMs,
presented in Table 1. The earth System Grid (ESG) was used to
collect CMIP5 GCMs temperature projection data (Taylor et al., 2012;
Islam et al., 2022). CMIP5 models included multiple emission
scenarios, namely RCP2.6, 4.5, 6.0, and 8.5 (IPCC, 2014).
RCP4.5 represents moderate greenhouse gas (GHG) emissions and,
thus, provides a median projection of global climate. In contrast,
RCP8.5 represents high GHG emissions in the future like the present
and, therefore, provides a higher range of projections. This study used
the GCM simulations for RCP4.5 and RCP8.5.

For downscaling and projection of GCM temperature, monthly
Tmax and Tmin data of 30 meteorological stations (Figure 1) were
used as reference (1986–2005) datasets. The data were collected from
the Bangladesh Metrological Department (BMD). The recommended
method by World Meteorological Organization (WMO) was used for

the homogeneity test of the collected data at all meteorological
stations. In Bangladesh, BMD now runs 39 weather stations to
monitor the country’s weather (BMD, 2020). Some stations were
set up after 1990, so no long-term data are available at those sites.
The meteorological stations were selected based on their location, data
availability (less than 3% of data is missing) and homogeneity,
allowing these data to cover all over Bangladesh. Inverse Distance
Weighting (IDW) Interpolation of the neighboring stations’
temperatures was used to fill up the missing data of the chosen
stations. The IDW was also used for visualizing the spatial changes
in future Tmax and Tmin. Despite some limitations, such as the bull’s-
eye effect around data points, consider only distance effect, and the
inability to measure prediction errors (Tobin et al., 2011; Daly, 2006),
it is one of the most popular interpolation techniques in the world,
including Bangladesh. The land of Bangladesh is very flat, as
mentioned in the study area description. The influence of each
station in such topography predominantly varies with distance, as
assumed in the IDW method.

2.2.1 SimCLIM 4.0
SimCLIM 4.0 (https://www.climsystems.com/simclim) is a user-

friendly application for climate data processing that facilitates access
to critical climatic information for determining climate risk and
response. SimCLIM 4.0 for Desktop can handle both spatial and
site data. It includes several tools, such as spatial scenario
generation and impact models, to provide meaningful and

TABLE 1 The CMIP5 40 GCMs used in SimCLIM4.0 (Yin et al., 2013).

No Model Developed No Model Developed

1 ACCESS1.3 Australia 21 GISS-E2-H-CC United States

2 ACCESS1.0 Australia 22 GISS-E2-R United States

3 BCC-CSM1-1 China 23 GISS-E2-R- CC United States

4 BCC-CSM1-1-m China 24 HADCM3 United Kingdom

5 BNU-ESM China 25 HadGEM2-AO United Kingdom

6 CanESM2 Canada 26 HadGEM2-CC United Kingdom

7 CCSM4 United States 27 HadGEM2-ES United Kingdom

8 CESM1-BGC United States 28 INMCM4 Russia

9 CESM1-CAM5 United States 29 IPSL- CM5A-LR France

10 CMCC-CM Italy 30 IPSL-CM5A-MR France

11 CMCC-CMS Italy 31 IPSL- CM5B-LR France

12 CNRM-CM5 France 32 MIROC4H Japan

13 CSIRO-Mk3-6-0 Australia 33 MIROC5 Japan

14 EC-EARTH Netherlands 34 MIROC- ESM Japan

15 FGOALS-g2 China 35 MIROC-ESMCHEM Japan

16 FGOALS-s2 China 36 MPI-ESM-LR Germany

17 GFDL-CM3 United States 37 MPI-ESM- MR Norway

18 GFDL-ESM2G United States 38 MRI- CGCM3 Japan

19 GFDL-ESM2M United States 39 NorESM1- M Norway

20 GISS-E2-H United States 40 NorESM1- ME Norway
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comfortable information retrieval on historical, present, and future
climate extremes (Warrick et al., 2012; Islam et al., 2022). SimCLIM,
first utilized in New Zealand, was primarily inspired by CLIMPACTS
(Warrick, 2009). It now covers many other countries and regions
worldwide, including Bangladesh, to create climate datasets (Amin
et al., 2018a; b; Rahman and Rob, 2019; Zheng et al., 2020; Islam et al.,
2022). This study used SimCLIM 4.0 to generate climate projections
for RCP4.5 and RCP8.5.

SimCLIM downscales and projects climatic parameters using a
pattern scaling bias correction technique. Local differences between
two specified periods are estimated first and then adjusted using global
mean Tmin and Tmax variations (Rogelj et al., 2012; Yin et al., 2013).
This enables downscaling GCMs considering the geographical,

temporal, and multivariable climatic structure. V* can be defined
as the anomaly of a climatic variable V) like maximum or minimum
temperatures, in a certain i (grid cell), j (month) and y (period) for an
RCP can be calculated using the yearly global average temperature, T
following subsequent formula:

ΔVyij
* � ΔTy . ΔVij (1)

Then the local variation (ΔVij) is computed employing linear
regression of GCM simulated anomaly (Vyij). The regression line
slope can be calculated as,

ΔVij �
∑

m
y�1 ΔTy . ΔVij

∑
m
y�1 ΔTy( )

2 (2)

FIGURE 1
Geographical position of the study area and the sites of the meteorological stations.
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where m is the future sample periods number in any 5-year average
between 2021 and 2100.

Pattern-scaling downscaling enables SimCLIM 4.0 to anticipate
multiple climatic parameters at fine accuracy and resolution for
diverse spatiotemporal scales (Amin et al., 2018a; Amin et al.,
2018b; Islam et al., 2022). It has easily configurable downscaling
capabilities for downscaling GCMs to the geographic resolution
necessary for the CC impact evaluation (Yin et al., 2013).

Some climate processes are not fully understood or cannot be
resolved due to computational constraints, leading to uncertainty in
initial conditions, boundary conditions (such as a radiative forcing
scenario), parameterization, and, eventually, climate simulations.
Multi-model ensemble (MME) approaches, in which the results of
selected GCMs are combined for climate projections, are frequently
employed to reduce the uncertainties associated with GCMs.
Moreover, the MME performs well in comparison with the
performance of individual models, as the MME GCMs compensate
for each other’s computational errors.

SimCLIM can also produce an “ensemble” model from the user-
selected GCM outputs with lower, upper, and median projections
(Amin et al., 2018b). This study used the MME median of the
40 GCMs to reduce the influence of individual GCMs.

2.3 Statistical analyses

2.3.1 Mann-kendall test (MK)
The non-parametric Mann-Kendall (MK) test, suggested by the

World Meteorological Organization (WMO) to examine the trends in
hydro-meteorological time series, was employed for identifying
projected temperature trends (Mann, 1945; Kendall, 1975). The
MK test null hypothesis (H0) implies the existence of no
monotonic trend in the time series, whereas the alternative
hypothesis (Ha) states the existence of a monotonic trend. The MK
test statistic S) can be expressed as:

S � ∑
n−1

k�1
∑
n

j�k+1
sign xj−xk( ) (3)

where j > k and n indicates data point. xj and xk signify the data
point at j and K time, respectively.

sign xj−xk( ) �
1 if xj−xk( )> 0

0 if xj−xk( ) � 0

−1 if xj−xk( ) < 0

⎧⎪⎪⎨
⎪⎪⎩

(4)

The S value is assumed to be identical to the normal distribution
with an average of zero, and the statistical discrepancy of S can be
estimated by Eq. (5):

VAR S( ) � n n − 1( ) 2n + 5( ) − ∑
x
y�1ty ty − 1( ) 2ty + 5( )

18
⎡⎣ ⎤⎦ (5)

The Z value is used to determine whether or not a significant trend
exists in the time-series data. The normalized Z value can be calculated
by Eq. (6):

Z �

S − 1
�������
VAR S( )√ if S> 0

0 if S � 0

S − 1
�������
VAS S( )√ if S< 0

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(6)

In a Z statistic, the positive value represents increasing and the
negative value represents a decreasing trend. The null hypothesis (H0)
of no trend is rejected at the 99%, 95%, and 90% significance levels if Z
value is greater than or equal to 2.58, 1.96, and 1.65, respectively. This
study used a 95% confidence level for recognizing a positive or
negative significant trend.

2.3.2 Sen’s slope estimator
Sen’s slope (SS) estimator, a non-parametric method

introduced by Sen (1968), was used to analyze the trend
magnitude in projected temperature. The main advantage of this
strategy over other techniques is that the outlier has less impact on
the computed slope (Novotny and Stefan, 2007). It is computed as
follows;

β � Median
xj − xi

j − i
[ ] all j> i (7)

where xj and xi denote the jth and ith values, respectively, in the time
series. A positive or negative value of β suggests an increasing or
decreasing rate of changes, respectively.

3 Results

3.1 Reproducibility of climate models

The simulated Tmax and Tmin of MME of 40 CMIP5 GCMs are
compared with the observed Tmax and Tmin and presented using the
line graph of average (Figures 2A, C) and standard deviations (STD)
for the period 1986–2005 (Figures 2B, D). The line graph of monthly
mean Tmax and Tmin provides an overall view of the models’
reliability, whereas STD shows variability in temperature. The
simulated historical MME Tmax and Tmin showed good
performance, with R2 => 0.80, thus regarded to be in accordance
with the observed temperature.

The MME temperature reproduced the observed temperature
with a little underestimation or overestimation in different months.
The MME underestimated observed Tmax by about 1.81°C–3.73°C
during winter months (Dec–Feb), while it overestimated Tmin by
0.14–3.03°C. Similar underestimation and overestimation of Tmax
and Tmin were also observed in pre-monsoon months in a range of
1.16°C–2.89°C and 1.36°C–2.89°C, respectively. The
underestimation and overestimation of Tmax were also noticed
in monsoon and post-monsoon months. In contrast, Tmin was
underestimated in monsoon and post-monsoon months at a range
of 0.04–2.09°C and 0.31–1.29°C, respectively. The results showed
the ability of the downscaling method to reproduce the observed
temperature at the stations reliably.
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3.2 Spatiotemporal Tmax trends for the future
periods

The monthly Tmax trends (SS) for future periods considering
RCP4.5 and RCP8.5 are exhibited in Figures 3, 4, respectively. The
figures show the spatial distribution of Tmax trends for the near
(2021–2060) and far (2061–2100) futures over Bangladesh, providing a
glimpse into the future Tmax. The SS analysis revealed that the greatest
Tmax increases were in January, February and December at a rate of
0.03–0.16°C/decade for RCP4.5 and 0.35–0.81°C/decade for RCP8.5
(Figures 3, 4). The highest increase in these months was projected at
Rangpur, Mymensingh, and Sylhet stations in northern Bangladesh. A
similar spatial trend was observed in March and April, where the highest
increase was observed in Rangpur. The greatest increases in August,
October, and November Tmax were also noticed at this station. For May-
July, the greater Tmax increase was in thewestern region (the greatest is in
Rajshahi) and the lower in the northeastern region (the lowest was in
Sylhet). The results indicate a higher Tmax rise in the near and lower in
the far period for RCP4.5. In contrast, a higher Tmax trend was observed
in the far future than near future for RCP8.5.

Figure 5 presents the annual and seasonal change (SS) in Tmax for
the near and far future periods at 30 stations across Bangladesh for
RCP4.5 and RCP8.5. The highest annual Tmax increase was by 0.13°C/
decade in near and 0.03°C/decade in far futures for RCP4.5. The

projected increases for RCP8.5 were 0.51°C/decade in the near and
0.66°C/decade in the far period. Among the seasons, winter exhibited
the highest increase at a rate of 0.16°C/decade in near and 0.04°C/
decade in far futures for RCP4.5. For RCP8.5, increases were 0.62°C/
decade in the near and 0.80°C/decade in the far periods. SS analysis of
annual and seasonal Tmax indicated the highest trend in Rangpur,
Rajshahi, Bogura, Sylhet, and Mymensingh in northern and
northwestern Bangladesh (Figure 5).

Table 2 presents the areal average Tmax trends of Bangladesh in
monthly, seasonal and annual scales for both RCPs. Like Figures 3, 4,
the greatest Tmax increases were also found in December-January,
similar to the results presented in Table 2. The mean annual Tmax was
projected to increase by 0.12°C/decade in the near and 0.03°C/decade
in the far future for RCP4.5. The changes would be 0.46°C/decade and
0.59°C/decade for RCP8.5 in the near and far future, respectively. The
highest increase in Tmax in Bangladesh will be in winter than in other
seasons.

3.3 Spatiotemporal Tmin trends for the future
periods

The spatial distribution of Tmin trends (SS) for the near
(2021–2060) and far (2061–2100) futures for RCP4.5 and

FIGURE 2
Comparison of observed and historical GCM of maximum temperature (Tmax) and minimum temperature (Tmin) for the period 1986–2005. (A,C)
Monthly average, (B,D) Standard deviation.
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RCP8.5 are presented in Figure 6, 7, respectively. The MK test revealed
a significant trend in Tmin at all 30 stations in both future periods and
RCPs. SS revealed the highest Tmin rise in February at a rate of
0.03–0.17°C/decade for RCP4.5 and 0.48–0.85°C/decade for RCP8.5 in

both futures. The lowest Tmin rise was projected in July and August
for both RCPs. The highest rise was for January-April at Srimangal,
Sylhet, and Mymensingh, in the northern or northeastern region, and
for May-June at Ishwardi and Rajshahi stations, in the western region,

FIGURE 3
Spatial distribution of monthly (Jan-Dec) Tmax (oC) trends (SS) for near (2021–2060) and far (2061–2100) futures periods over Bangladesh considering
30 meteorological stations for RCP4.5.
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for both RCPs. Moreover, a higher rise in Tmin was observed in the
northern region in September-December, like January–April
(Figures 6, 7).

Figure 8 depicts the annual and seasonal changes (SS) in Tmin for
the near and far future periods at 30 sites across Bangladesh for

RCP4.5 and RCP8.5. For RCP4.5, the projected highest annual Tmin
rise was 0.13°C/decade in near futures and 0.03°C/decade in far
futures. The increases for RCP8.5 were 0.53°C/decade in the near
and 0.68°C/decade in the far future. winter would experience the
greatest increase among the seasons, by 0.16°C/decade in near and

FIGURE 4
Same as Figure 3 but for the RCP8.5.
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0.04°C/decade in far futures for RCP4.5. However, RCP8.5 showed to
rise of 0.64°C/decade in the near period and 0.83°C/decade in the far
period. The SS revealed the highest increase in annual Tmin in the
eastern, central, northern, and western regions. The highest increase in
Tmin during pre-monsoon, post-monsoon, and winter was found in
central to eastern, northeastern, and northwestern Bangladesh
(Figure 8).

Table 2 shows the Tmin trends at monthly, yearly, and seasonal
timeframes for both RCPs over the whole of Bangladesh. The mean
annual Tmin for RCP4.5 showed an increase of 0.12°C/decade and
0.03°C/decade in the near and far future, respectively. In comparison,
the trends for RCP8.5 were 0.49°C/decade and 0.62°C/decade in the
near and far future, respectively. Nevertheless, the seasonal Tmin
trend analysis showed the highest increase in winter for both the
periods and RCPs (Table 2).

3.4 Future projected Tmax variability and
change

Figure 9 illustrates the monthly and seasonal MME Tmax
variability over Bangladesh for the near and far periods for
RCP4.5 and RCP8.5. The Tmax variability for RCP4.5 and
RCP8.5 is shown using black and red lines, respectively. Figures
9A, B, L shows that Tmax in January, February, and December

would differ from 22°C to 27°C for RCP4.5 and 22.5°C–31.5°C for
RCP8.5 in the near and far periods. This projected Tmax range
would reach 31.5°C–34.5°C for RCP4.5 while 32°C–38°C for
RCP8.5 in May-September (Figures 9E–I). Tmax would range
from 29°C to 33.5°C for RCP4.5 and 29.5°C–37.5°C for
RCP8.5 throughout the transitional months of March–April and
October–November (Figures 9C, D, J, K).

The projected annual Tmax was in the range of 30.05°C–30.62°C
for RCP4.5, while between 30.57°C and 34.71°C for RCP8.5 in both
periods (Figure 9M). The projected Tmax variability was very much
identical during pre-monsoon and post-monsoon seasons, extending
from 30.5°C to 32°C for RCP4.5 and 31°C–36°C for RCP8.5 for both
periods (Figures 9N, P). However, a higher Tmax variability was
projected during monsoon, 33°C–37°C for RCP4.5 and RCP8.5
(Figure 9O), and the lower variability in the winter, 24°C–25°C for
RCP4.5 and 24.5°C–30°C for RCP8.5 (Figure 9Q). The results revealed
a higher deviation in the warming signal for different months and
seasons for both RCPs. Higher future warming is likely for
RCP8.5 than RCP4.5 because of the higher radiative forcing for
RCP8.5.

The projected change in mean monthly Tmax for near and far
futures for RCP4.5 and RCP8.5 is illustrated in Figures 10A,B,
respectively. The results showed an increase in Tmax in all months
for both futures and scenarios. The greatest increase in Tmax would be
in February by 0.64–0.83°C (1.84–2.39°C) in the near and 0.96–1.24°C

FIGURE 5
Sen’s slope estimator for annual and seasonal Tmax (oC) trend (SS) analysis for near (2021–2060) and far (2061–2100) periods over Bangladesh
considering 30 meteorological stations under (A) RCP4.5 and (B) RCP8.5.
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TABLE 2 Monthly and seasonal mean Tmax (°C) and Tmin (°C) and its changes in overall Bangladesh during near and far future periods for RCP4.5 and RCP8.5.

Tmax Hist. Period Mean (RCP4.5) Mean (RCP8.5) Trend (RCP4.5) Trend (RCP8.5) Change
(RCP4.5)

Change
(RCP8.5)

Near Far Near Far Near Far Near Far Near Far Near Far

Jan 21.87 22.59 22.95 23.94 26.42 0.14 0.03 0.54 0.69 0.72 1.08 2.07 4.55

Feb 24.49 25.22 25.58 26.59 29.11 0.14 0.03 0.55 0.70 0.73 1.09 2.10 4.62

Mar 28.65 29.34 29.67 30.62 32.98 0.13 0.03 0.52 0.66 0.69 1.02 1.97 4.34

Apr 31.18 31.80 32.11 32.97 35.11 0.12 0.03 0.47 0.60 0.62 0.93 1.79 3.93

May 31.76 32.33 32.60 33.38 35.33 0.11 0.02 0.43 0.54 0.57 0.84 1.62 3.57

Jun 31.56 32.10 32.36 33.10 34.94 0.10 0.02 0.40 0.52 0.54 0.80 1.54 3.38

Jul 33.29 33.79 34.03 34.71 36.40 0.09 0.02 0.37 0.47 0.49 0.73 1.41 3.11

Aug 33.41 33.89 34.13 34.80 36.48 0.09 0.02 0.37 0.47 0.49 0.73 1.40 3.07

Sep 33.40 33.93 34.19 34.92 36.76 0.10 0.02 0.40 0.51 0.53 0.79 1.53 3.36

Oct 32.40 32.98 33.26 34.06 36.05 0.11 0.02 0.43 0.56 0.58 0.86 1.66 3.65

Nov 29.03 29.68 30.00 30.89 33.12 0.12 0.03 0.49 0.62 0.65 0.97 1.86 4.09

Dec 25.10 25.82 26.18 27.18 29.67 0.14 0.03 0.54 0.70 0.72 1.08 2.08 4.57

Annual 29.68 30.29 30.59 31.43 33.53 0.12 0.03 0.46 0.59 0.61 0.91 1.75 3.85

Pre-monsoon 30.53 31.16 31.46 32.32 34.47 0.12 0.03 0.47 0.60 0.63 0.93 1.79 3.95

Monsoon 32.92 33.43 33.68 34.38 36.14 0.10 0.02 0.38 0.49 0.51 0.76 1.47 3.23

Post-monsoon 30.72 31.33 31.63 32.47 34.59 0.12 0.03 0.46 0.59 0.61 0.91 1.76 3.87

winter 23.82 24.55 24.90 25.90 28.40 0.14 0.03 0.55 0.70 0.73 1.08 2.08 4.58

Tmin

Jan 15.88 16.63 16.99 18.02 20.59 0.14 0.03 0.56 0.72 0.75 1.11 2.14 4.71

Feb 18.50 19.28 19.66 20.73 23.42 0.15 0.03 0.59 0.75 0.78 1.16 2.24 4.92

Mar 22.64 23.36 23.72 24.71 27.19 0.14 0.03 0.54 0.69 0.72 1.07 2.07 4.55

Apr 25.15 25.81 26.13 27.04 29.30 0.12 0.03 0.49 0.63 0.66 0.98 1.89 4.15

May 25.73 26.32 26.62 27.44 29.49 0.11 0.03 0.45 0.57 0.60 0.89 1.71 3.76

Jun 25.52 26.08 26.36 27.14 29.08 0.11 0.02 0.42 0.54 0.57 0.84 1.62 3.56

Jul 23.13 23.65 23.91 24.62 26.41 0.10 0.02 0.39 0.50 0.52 0.77 1.49 3.28

Aug 23.24 23.76 24.01 24.72 26.50 0.10 0.02 0.39 0.50 0.52 0.77 1.48 3.26

Sep 23.23 23.80 24.08 24.86 26.82 0.11 0.02 0.43 0.55 0.57 0.85 1.63 3.59

Oct 22.27 22.90 23.21 24.08 26.25 0.12 0.03 0.47 0.61 0.63 0.94 1.81 3.98

Nov 18.93 19.61 19.95 20.88 23.23 0.13 0.03 0.51 0.65 0.68 1.01 1.95 4.29

Dec 14.99 15.75 16.13 17.17 19.79 0.14 0.03 0.57 0.73 0.76 1.13 2.18 4.80

Annual 21.60 22.25 22.56 23.45 25.67 0.12 0.03 0.49 0.62 0.65 0.96 1.85 4.07

Pre-monsoon 24.51 25.17 25.49 26.39 28.66 0.12 0.03 0.49 0.63 0.66 0.98 1.89 4.15

Monsoon 23.78 24.32 24.59 25.34 27.20 0.10 0.02 0.41 0.52 0.54 0.81 1.56 3.42

Post-monsoon 20.60 21.26 21.58 22.48 24.74 0.12 0.03 0.49 0.63 0.66 0.98 1.88 4.14

winter 16.46 17.22 17.59 18.64 21.27 0.14 0.03 0.57 0.73 0.76 1.14 2.19 4.81
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(4.05–5.26°C) in the far future for RCP4.5 (RCP8.5), while relatively
less increase in the June–August (Figures 10A,B). However, a higher
increase in Tmax will be in the far period than in the near for
both RCPs.

The annual Tmax over Bangladesh was predicted to rise under
RCP4.5 by 0.55–0.68°C (1.58–1.98°C) in the near future with an
average of 0.61°C (1.75°C) and 0.81–1.02°C (3.47–4.31°C) in the far
future with an average of 0.91°C (3.85°C) (RCP8.5) (Figures 11A,B;

FIGURE 6
Spatial distribution of monthly (Jan-Dec) Tmin (oC) trends (SS) for near (2021–2060) and far (2061–2100) futures over Bangladesh considering
30 meteorological stations for RCP4.5.
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Table 2). However, on a seasonal timescale, winter displayed the
greatest rise in projected Tmax andmonsoon showed the least for both
periods and RCPs. The highest increase in Tmax was projected in
winter, 0.62–0.83°C (1.78–2.37°C) with an average of 0.73°C (2.08°C)
in the near period and 0.92°C–1.23°C (3.90°C–5.21°C) with an average

of 1.08°C (4.58°C) in far future for RCP4.5 (RCP8.5). In contrast, the
least increase in Tmax was projected in monsoon, 0.49–0.55°C
(1.40°C–1.57°C) in the near future with a mean of 0.51°C (1.47°C)
and 0.73–0.82°C (3.07–3.45°C) with a mean of 0.76°C (3.23°C) in far
future for RCP4.5 (RCP8.5) (Figures 11A,B; Table 2).

FIGURE 7
Same as Figure 6 but for the RCP8.5.
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The spatial distribution of projected annual and seasonal Tmax
changes is exhibited in Figure 12. It shows the degree of the Tmax
change varies greatly across Bangladesh for both futures and RCPs.
A noticeable increase in annual Tmax was detected at the Rangpur,
in the north, for RCP4.5. In contrast, the rising Tmax area was
extended from the central, northern, and western regions except for
Dinajpur (extreme northwestern part) for RCP8.5. An analogous to
the annual spatial pattern was observed for the monsoon season for
both periods and RCPs. The pre-monsoon season showed a higher
increase at the Rajshahi, Rangpur, Bogura, Ishwardi, and Jessore
stations in northwestern and western regions. Overall, the winter
exhibited the highest Tmax increase for both periods and RCPs. A
higher increase in winter Tmax was also observed over the whole of
Bangladesh, except in the extreme northwest and some parts of the
south and southeast. The projected changes in annual and seasonal
Tmax were higher in the central, northern, and western regions and
lesser in the extreme northwest (Dinajpur) and some parts in the
south and southeast.

3.5 Future projected Tmin variability and
change

Figure 13 exhibits the average monthly and seasonal Tmin
variability across Bangladesh for the near and far futures for

RCP4.5 (black) and RCP8.5 (red). The figure shows that the
projected Tmin in January, February, and December vary from
15°C to 20°C for RCP4.5 while 16°C–25°C for RCP8.5 in both
periods (Figures 13A, B, L). The projected Tmin would be
higher during May-September and reach 23°C–27°C for
RCP4.5 while 24°C–31°C for RCP8.5 (Figures 13E–I). During the
seasonal transitional months of March-April and October-
November, the Tmin would fluctuate from 19°C to 24.5°C for
RCP4.5, while it will remain between 20°C and 31°C for RCP8.5
(Figures 13C,D,J,K).

The projected mean annual Tmin ranges from 22°C to 22.60°C for
RCP4.5, while between 22.5°C and 27°C for RCP8.5 for both periods
(Figure 13M). The variability of Tmin showed a gradual decrease from
the pre-monsoon to the winter season (Figures 13N–Q). The projected
Tmin in the pre-monsoon was 24.5°C–30°C. It would decrease to
24°C–28.5°C and 21°C–26°C in monsoon and post-monsoon,
respectively, for both periods and RCPs. The projected Tmin in
winter was between 16.5°C and 23°C for both periods and RCPs.
The results revealed higher deviation in monthly, annual, and seasonal
Tmin than Tmax between RCPs.

The projected changes in average monthly Tmin for the near and
far future for RCP4.5 and RCP8.5 are demonstrated in Figures 10C,D,
respectively. The projected monthly Tmin showed a rise in all months
for both periods and RCPs. The highest rise in Tmin was projected for
February by 0.64–0.89°C (1.84°C–2.55°C) in the near future, with a

FIGURE 8
Sen’s slope estimator for annual and seasonal Tmin (oC) trend (SS) analysis for near (2021–2060) and far (2061–2100) periods over Bangladesh at
30 meteorological stations under (A) RCP4.5 and (B) RCP8.5.
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mean of 0.78°C (2.24°C) and 0.96°C–1.32°C (4.05°C–5.60°C) in far
future, with a mean of 1.16°C (4.92°C) for RCP4.5 (RCP8.5). In
contrast, a relatively less increase in Tmin was projected for
June–August (Figures 10C,D; Table 2). Nevertheless, Tmin was
projected to rise higher in the far future than near future for
both RCPs.

RCP4.5 projected an increase in annual Tmin over Bangladesh
by 0.57–0.71°C (1.63°C–2.03°C), with an average of 0.65°C (1.85°C),
in the near future, and by 0.85–1.06°C (3.59°C–4.46°C), with an
average of 0.96°C (4.07°C), in the far future (RCP8.5) (Figures
11C,D; Table 2). Nevertheless, on a seasonal timescale, winter
exhibited the highest increase in Tmin and monsoon revealed
the lowest for both periods and RCPs. The projected incrase in
winter Tmin was 0.64–0.86°C (1.83°C–2.46°C) with an average of
0.76°C (2.19°C) in the near period, and 0.95°C–1.28°C
(4.02°C–5.41°C) with an average of 1.14°C (4.781°C) in the far

future for RCP4.5 (RCP8.5). Conversely, the monsoon Tmin was
projected to rise the least, 0.50–0.56°C (1.44°C–1.62°C) with a mean
of 0.54°C (1.56°C) in the near future and 0.75–0.84°C
(3.17°C–3.56°C) with a mean of 0.81°C (3.42°C) in far future for
RCP4.5 (RCP8.5) (Figures 11C,D; Table 2).

The spatial patterns of projected changes in annual and
seasonal Tmin are presented in Figure 14. For both periods and
scenarios, an increase in Tmin was observed for all annual and
seasonal timescales over Bangladesh. The higher annual Tmin rise
was projected in northeastern, northern, and northwestern parts of
Bangladesh for both periods and RCPs. The higher increase in pre-
monsoon and post-monsoon Tmin was projected in Srimongal,
Sylhet, Mymensingh Bogura, and Rajshahi in northeastern,
northern, and northwestern Bangladesh. The higher rise in
winter Tmin was projected in Dhaka, Faridpur, Madaripur,
Srimongal, Sylhet, Mymensingh, and Rangpur in the central,

FIGURE 9
Monthly, Annual and Seasonal Tmax (oC) variability of multi-model ensemble (MME) of CMIP5 datasets under RCP4.5 and RCP8.5 for the near and far
periods in Bangladesh. (A) January, (B) February, (C) March, (D) April, (E) May, (F) June, (G) July, (H) August, (I) September, (J) October, (K) November, (L)
December, (M) Annual, (N) Pre-monsoon, (O) Monsoon, (P) Post-monsoon, and (Q) Winter.
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northern, and northeastern regions of Bangladesh. Among the
seasons, the winter exhibited the highest increase in Tmin,
particularly in the region extending from the west to north and
northeast. The study also showed a relatively lower increase in
Tmin in the extreme northwest, middle south, and southeast while
higher in the middle, north, and west of Bangladesh.

4 Discussion

4.1 Reproducibility of CMIP5 models

The ability of models to generate the “present climate” is a
critical aspect of GCM projections (Yang et al., 2019). This study
used SimCLIM 4.0 for Tmax and Tmin projection of Bangladesh
for two RCPs using MME of 40 GCMs (4.5 and 8.5). SimCLIM has
been widely used for temperature projection at higher resolution
and better accuracy in various temporal and geographical scales
around the world, including Bangladesh (Amin et al., 2018a; b;
Rahman and Rob, 2019; Zheng et al., 2020; Wang et al., 2021).
Though some underestimations and overestimations of
CMIP5 MME were observed in this study, overall, it showed
satisfactory performance in reproducing observed Tmax and
Tmin. In this study, SimCLIM model projection showed a cold
bias in Tmax, but a warm bias in Tmin. Tmax seems to have a
greater cold bias in the winter and pre-monsoon months than in
monsoon or post-monsoon months, whereas Tmin has a warm
bias in the winter and pre-monsoon months than in monsoon or

post-monsoon months. This finding almost coincided with the
results of Chotamonsak et al. (2011) in Southeast Asia employed a
WRF RCM (regional climate model). They found a higher cold
bias in the cool-dry season (Nov–Feb) than the hot-dry
(Mar–Apr) and rainy seasons (May–Oct), where Tmin showed
a weaker warm bias in the cool-dry season (Nov–Feb) than the
hot-dry (Mar–Apr) and rainy seasons (May–Oct). Some studies
also identified cold bias for Tmax or annual mean temperature in
Bangladesh using CMIP5 MME (Pattnayak et al., 2017;
Kamruzzaman et al., 2021a). Moreover, biases in GCMs are
primarily attributed to the global energy balance amongst
different physical mechanisms or processes used for modeling,
such as radiative mechanisms like cloud and surface albedo effect
as well as non-radiative mechanisms like surface turbulent fluxes
and large-scale atmospheric oscillation (IPCC 2007; Yang and
Rong-Cai, 2015; Pattnayak et al., 2017). However, the origins of
biases are not the goal of this research and, therefore, not
investigated.

4.2 Spatiotemporal trends in temperature
(Tmax and Tmin) projection

The present study showed increasing trends in monthly,
annual and seasonal Tmax and Tmin in both the future periods
and scenarios. The study revealed that Bangladesh’s seasonal
warming is substantially quicker than the global average, nearly
2–3 times higher in hot and humid summer seasons. Even seasonal

FIGURE 10
Projected change in average monthly Tmax (°C) and Tmin (°C) for near (2021–2060) and far (2061–2100) future periods over Bangladesh for RCP4.5 and
RCP8.5. (A) Tmax RCP4.5, (B) Tmax RCP8.5, (C) Tmin RCP4.5, and (D) Tmin RCP8.5.
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warming in Bangladesh is much quicker than in India (Kothawale
et al., 2010; Rahman and Lateh, 2016). The study indicates that the
country may experience higher annual and seasonal temperature
trends in the future. A sharp rise in Tmax and Tmin may
negatively influence irrigation timing and planning,
evapotranspiration, soil moisture availability and
mineralization. As a result, higher irrigation rates will be
needed in future, causing greater groundwater level depletion
in many areas of the country (Mainuddin et al., 2022). Higher
temperatures will cause increased carbon loss from soil (Hossain
et al., 2017) and, thus, depletion of soil organic matter. As soil
organic matter is soil’s bloodline, its depletion will reduce soil
productivity if corrective measures are not taken. Besides, high
temperature is most likely to reduce rice production, the dominant
food crop in Bangladesh, yield by 0%–61% depending on the
country’s seasonal temperature rise and locations (Hossain
et al., 2021). To counter the deleterious effects, integrated
nutrient management (Naher et al., 2020) and the use of
recalcitrant organic material (Hossain et al., 2017) and efficient
water management (Hossain et al., 2021) will be needed. It might
ultimately raise agricultural production costs and impede the
government’s poverty reduction goal.

4.3 Spatiotemporal temperature (Tmax and
Tmin) variability and change

The projected Tmax and Tmin temperature variability is a useful
indicator of providing information on howmuch temperature will rise
in future. The mean annual Tmax and Tmin range estimated in this
study are similar to other studies (Hasan et al., 2013; 2018; Alamgir
et al., 2019). Hasan et al. (2018) reported an increase in average annual
Tmax from 31.5°C to 32°C for RCP4.5 and 32.5°C–34°C for
RCP8.5 over Bangladesh, which is slightly higher or lower than
that found in this study. They also reported a rise in mean Tmin
above 23°C in 2100 for RCP4.5 and 24.5°C–26.5°C during the 2080s for
RCP8.5 using five bias-corrected CMIP5models. It is nearly analogous
to the finding of the present study.

This study projected an increase in mean annual Tmax in
Bangladesh by 0.61°C (1.75°C) in the near period and 0.91°C
(3.85°C) in the far for RCP4.5 (RCP8.5). The mean annual Tmin is
projected to rise by 0.65°C (1.85°C) in the near period while 0.96°C
(4.07°C) in the far future for RCP4.5 (RCP8.5). A greater increase in
Tmax and Tmin is found in the far future, coinciding with the findings
of Alamgir et al. (2019). They reported the highest temperature
increase (Tmax and Tmin) in northern and the lowest in the

FIGURE 11
Projected change in annual and seasonal temperature for near (2021–2060) and far (2061–2100) future periods in Bangladesh for RCP4.5 and RCP8.5.
(A) Tmax RCP4.5, (B) Tmax RCP8.5, (C) Tmin RCP4.5, and (D) Tmin RCP8.5.
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southeastern coastal part of Bangladesh using MME of eight
CMIP5 models. It differs slightly from this study as this study
found higher increases in the western and central regions. One of
the key findings of this study was that Tmin changes were greater than

Tmax changes, a finding validated by prior research using
CMIP5 models (Hasan et al., 2018; Alamgir et al., 2019; Rahman
and Rob, 2019). Therefore, it indicates that nighttime temperatures
(Tmin) will rise faster than daytime temperatures (Tmax), and

FIGURE 12
Spatial distribution of projected change in annual and seasonal Tmax (°C) for near (2021–2060) and far (2061–2100) future periods in Bangladesh for
RCP4.5.
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eventually, the diurnal temperature range (DTR) will fall. Studies
showed that the worldwide average DTR decreased significantly
between 1950 and 1990 (Karl et al., 1991; Easterling et al., 1997).
DTR decreases have also been documented in Bangladesh (Shahid
et al., 2012; Abdullah et al., 2022) and neighboring India (Roy and
Balling, 2005; Jhajharia and Singh 2011). DTR would decline by the
existence of urban heat islands, land use changes owing to
overpopulation and increased economic activities, and expansion in
agricultural areas because of deforestation (Gallo et al., 1996; Bonan,
2001; Abdullah et al., 2022). Alternations in DTR can affect
agricultural productivity and human health (Lobell, 2007; Shahid
et al., 2012; Peng et al., 2013). Bangladesh might experience
reduced rice yields in future as the investigation found that greater
nighttime temperatures or lower DTR negatively impact rice yield
(Peng et al., 2004). A decline in DTR would also increase human
discomfort as greater summer Tmin will not permit the required

nocturnal cooling to offset the high Tmax throughout a heatwave
period (De et al., 2005; Tam et al., 2009).

The maximum increase in temperature in February and
minimum in July and August are not consistent with the
findings of Alamgir et al. (2019). The present study revealed
that winter will experience the highest increase in Tmax and
Tmin, indicating that crops grown in winter will suffer from
increased respiratory losses, thus, a reduction in yields is
obvious. For example, dry season irrigated rice yield would be
decreased by 13%–23% if the temperature rises by 4°C
(Maniruzzaman et al., 2018). However, the result of this study
agrees with several other studies (Manabe et al., 1991; Chowdhury
and Ndiaye, 2017; Rahman and Rob, 2019). Chowdhury and
Ndiaye (2017) also reported that the winter temperature (Tmax
and Tmin) would increase faster in northern and central regions,
which is mostly similar to our study.

FIGURE 13
Monthly, Annual and Seasonal Tmin (oC) variability of multi-model ensemble (MME) of CMIP5 dataset under RCP4.5 and RCP8.5 for the near and far
periods in Bangladesh. (A) January, (B) February, (C) March, (D) April, (E) May, (F) June, (G) July, (H) August, (I) September, (J) October, (K) November, (L)
December, (M) Annual, (N) Pre-monsoon, (O) Monsoon, (P) Post-monsoon, and (Q) Winter.
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The projected monsoon Tmax and Tmin showed a relatively
lower increase than in other seasons. Similar to annual and winter,
the pre-monsoon and post-monsoon season exhibits greater changes
in Tmax and Tmin. Central and northwestern regions were predicted
to have the most significant annual and seasonal temperature

changes. The northwestern portion of Bangladesh, particularly the
Barind region, is considered a drought-prone zone. The annual
average rainfall over the region is about 1,400 and 1,550 mm
(national average 2,200 mm), with an uneven distribution within
the seasons (Shahid and Khairulmaini 2009). Due to the effects of

FIGURE 14
Spatial distribution of projected change in annual and seasonal Tmin (°C) for near (2021–2060) and far (2061–2100) future periods in Bangladesh for
RCP8.5.
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climate change, the spatial distribution of changes in drought
characteristics shows that drought-vulnerable areas will expand in
the future in the central and southern regions under both
RCP4.5 and RCP8.5 scenarios (Kamruzzaman et al., 2019b; 2022).
The highest increase in Tmax and Tmin in these regions may be
attributable to land use and land cover (LULC) changes, less
evaporative cooling and other factors (Shahid, 2011; Islam H. M.
T. et al., 2021). Available soil moisture can remove surface heat
through evaporation, but if the land is dry, there is no opportunity to
transport it away, which increases the local temperature. However, a
large increase in temperature might lead to an increase in rainfall
through more evaporation. A number of studies also reported
increasing rainfall in these regions (Fahad et al., 2018; Pour et al.,
2018; Kamruzzaman et al., 2019b; Karim et al., 2020; Das et al.,
2022b; Islam et al., 2022). Extreme rainfall events may increase with
the increase in mean rainfall. This might result in higher flood risks,
soil erosion, and crop loss (IPCC, 2014).

The MME projected a sharp temperature increase in all timescales
over Bangladesh. It is very crucial to be aware of anthropogenic impacts
on CC for sustainable development. Population growth, uncontrolled
energy consumption, unplanned industrialization and urbanization,
growing transportation, and LULC changes might increase GHG
emissions in Bangladesh in the future. It eventually may cause a
further rise in temperature. Therefore, it is required to investigate the
variability and change in the driving factors of GHG emissions and
temperature increase in Bangladesh to understand future temperature
rise-induced consequences in Bangladesh. This will contribute to
developing effective financial, environmental, and CC adaptation
planning and mitigation strategies at the local and national levels.

Future studies should consider climatic hot spot areas of
Bangladesh in the near future. Besides, future studies should
consider high-resolution CMIP6 climate methods. The direct
utilization of the climate model outputs is not suggested for
decision-making research at a finer scale. Thus, the scientific
community depends on multi-ensemble downscaling tools (e.g.,
SimCLIM model), which could further include uncertainty under
specific scenarios. With the introduction of CMIP6 GCMs, an
analogous evaluation can be done to obtain a better insight into
the temperature projections of Bangladesh. Higher-resolution
projections of temperature would also help to understand the
complicated atmospheric processes.

5 Conclusion

The spatiotemporal patterns in future temperature (Tmax and
Tmin) variabilities over Bangladesh in monthly, seasonal and
yearlyscales were examined in this study. A single GCM is
insufficient for understanding CC in any region. Hence, multi-
model ensembles (MME) were employed in this study to better
assess temperature changes. In contrast to early studies, the present
study adopted the median of 40-model CMIP5 GCMs to generate an
MME. The key findings can be outlined as.

• Temperature for all timescales exhibited increasing trends in
both future periods and RCPs. The SS estimator revealed a
greater Tmax and Tmin rise in the near future than in the far
future for RCP4.5, while the opposite for RCP8.5.

• The projected Tmax and Tmin revealed a higher increase in
February and a lower increase in July and August.

• winter would experience the highest increase in Tmax and Tmin
among the seasons for both future periods and RCPs.

• A higher increase in Tmin than Tmax for all timescales would cause
a decrease in DTR in future, indicating a faster rise in nighttime
temperature (Tmin) than the daytime temperature (Tmax).

The results of this study can support determining CC
adaptation or mitigation strategies in Bangladesh. The study
can be repeated with recently released CMIP6 GCMs to update
the projections for the new scenarios. Besides, the projected
changes in temperature extremes can be evaluated in a future
study.
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Introduction: The Guangdong-Hong Kong-Macao Greater Bay Area (GBA) 

is located in the south subtropical area along the southeast coast of China, 

which is one of the world-class urban agglomerations and an important 

part for economic development. In order to investigate the change of 

vegetation indexes and its response to climate factors in such circumstance 

of climate change, this study is an important component in the protection and 

establishment of the ecological environment in the GBA.

Methods: The Moderate Resolution Imaging Spectroradiometer-Enhanced 

Vegetation Index (MODIS-EVI) and climate data were recorded from National 

Aeronautics and Space Administration (NASA) and Resource and Environment 

Science Data Center of the Chinese Academy of Sciences. Trend analysis, 

Mann-Kendall (MK) Test and rescaled range analysis (R/S Analysis) offer an 

effective way of analyzing the correlation between the vegetation cover 

change and climate factors.

Results: The results provide important insights into the following aspects: (1) The 

changes of climate factors (temperature, precipitation, wind speed, humidity, 

and sunshine radiation) are fluctuated in GBA, with no obvious increasing or 

decreasing trend. It comprehensively exhibited an extremely slow development 

of humidify and warming. (2) It presents an increasing trend of EVI in GBA, with 

the rate of 0.0045/a. The range of increase is in the middle level (0.4 ≤ EVI<0.6) 

based on the EVI. The vegetation cover in GBA is improved comprehensively, the 

area of vegetation improvement is larger than the area of vegetation degression, 

with the extremely improved vegetation cover area (66.98%) and the extremely 

degraded vegetation cover area (5.70%). There are obvious differences and 

agglomerations in the distribution of the EVI trends. (3) In future, the changing 

trends will be combinedly affected be various factors, and there is no obvious 

factor temporarily. The improved vegetation cover area (over 80%) are predicted. 

(4) There are significant spatiotemporal differences in the annual effects of EVI 

on various climate factors comprehensively. Wind speed and relative humidity 

have the strongest correlations with EVI; the area of significant correlation is more 

than 40% of the pixels. The correlation between temperature and EVI is second, 

with the area of significant correlation over 20% of the pixels. The precipitation 
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and sunshine radiation weakly correlated with EVI, with the area of significant 

correlation is less than 5% of the pixels.

Discussion: The result of this study indicated that the EVI changing trend in the 

future by R/S analysis method is affected by climate and human factors together 

and there are no significant factors. The result indicated precipitation has no 

significant correlation with EVI trends in the Hot and humid area with mean 

precipitation of 1800mm. However, there is a significant positive correlation 

between the EVI trend and two climate factors (relative humidity and wind 

speed). In the terms of spatial distribution, the influence of temperature to EVI 

is complex in GBA, the spatial distribution of correlation is scattered.

KEYWORDS

EVI, spatiotemporal characteristics, climate factors, climate factors change, 
Guangdong-Hong Kong-Macao Greater Bay Area

1. Introduction

Vegetation is the fundamental component of terrestrial 
ecosystems, which plays vital roles in material cycling and energy 
conversion. Furthermore, evidence suggests that vegetation cover is 
among the most irreplaceable factors for water and soil conservation, 
climate mitigation, and global carbon balance (Piao et al., 2011, 2020). 
Fractional vegetation cover (FVC) is an important indicator of 
vegetation cover, which comprehensively indicates the growth of 
vegetation communities, and is monitored as a vital indicator of 
ecosystem (Gitelson et al., 2002; Wang et al., 2003). The existing body 
of research on large-scale remote sensing suggests that it is difficult to 
investigate the change in vegetation cover through ground-based 
observations. Instead, the Vegetation Index (VI) is currently the most 
popular index for investigating vegetation cover by remote sensing. 
The Moderate Resolution Imaging Spectroradiometer was equipped 
on the Terra and Aqua satellites, with 36 bands, collected the 
normalized difference vegetation index (NDVI) and enhanced 
vegetation index (EVI), both of which indicate the change of 
vegetation cover accurately (Xiao and Moody, 2005; Cheng et al., 
2008; Pei et  al., 2015). EVI, an improved version of NDVI can 
elucidate the impact of saturation of vegetation growth (Wang et al., 
2006; Li et al., 2007; Chen et al., 2014; Zhang et al., 2021).

The influence of climate change on vegetation cover has long 
been a question of great interest in a wide range of fields. The 
change of vegetation cover via impacting the characteristics of the 
vegetation growth, and further impact the structure and capability 
of ecosystem. Vegetation cover change, which enlarge the carbon 
pool of terrestrial ecosystems through the plant growth, influence 
the climate by change the bio-geophysical properties of organisms 
on the earth (Xia et al., 2013; Jiang et al., 2017; Liu et al., 2019).

A considerable amount of literature has been investigated that the 
most significant phenomenon of climate change is that changes in 
vegetation growth are impacted by the climate change in the long 
time series and large spatial scale. These studies revealed that 
vegetation cover represents the conditions of ecosystems objectively 
(Myneni et al., 1997; Tucker et al., 2001; Parmesan, 2006; Fensholt 
et al., 2012). Much of the literature since the last 20 years emphasizes 

the vegetation cover change and its influential factors in different 
climate zones by using VI. Because of the differences in various 
climate zones, there are obvious gaps among these results. Collectively, 
these studies outline a critical role for identifying the main factors of 
vegetation cover change that are human activities and climate factors. 
On the contrary, the relationship between vegetation cover change 
and its influential factors in different climate zone is extremely 
complex. There are linear correlations in some sites and non-linear in 
others. Additionally, the range of influence of different climate factors 
is distinct relatively (Gan et al., 2011; Mu et al., 2012; Liu et al., 2013, 
2021; Li et al., 2017; de la Barrera and Henríquez, 2017; Zhang et al., 
2019; He et al., 2020), while the utilization of different VI lead to 
dissimilar results (Li et al., 2007; Ye et al., 2012; Xie et al., 2022).

The Guangdong-Hong Kong-Macao Greater Bay Area (GBA) 
is the largest alluvial plain in subtropical zone of China. There is a 
long coastline and a dense river network around the GBA. In 
terms of climate characteristic, GBA is in the south subtropical 
humid monsoon climate zone, with hot summer and warm winter 
in the Hot and humid area. Furthermore, a major characteristic of 
the climate of GBA is that high temperature throughout the year, 
adequate sunshine radiation, and abundant precipitation. The 
existing literature on the vegetation cover change in GBA is 
extensive and focuses particularly on the NDVI and its influential 
mechanisms (He, 2019; Hu and Xia, 2019; Deng et al., 2021; Feng 
et al., 2022; Zhao et al., 2022). The GBA is in the climate of high 
temperature and relative humidity, with the growth of lush plants. 
Under such circumstance, the NDVI tends to be saturated, since 
it is unsensitive to the lush vegetation. Not only do the EVI 
elucidate the disruption of atmosphere and the saturation, but, in 
the same spatial resolution, also indicate the differences in spatial 
distribution of the high-saturated vegetation cover better.

Together, this study gathered and analyzed the EVI and climate 
data from 2001 to 2020 in GBA. We indicated the characteristics of 
vegetation cover via EVI and its changing trend by using Theil-Sen 
approach, Mann-Kendall (MK) test and Rescaled range analysis (R/S 
analysis). The characteristics of climate change for 20 years were 
analyzed. The correlation between the EVI changing trends and the 
change of climate factors was analyzed, which revealed the 
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spatiotemporal characteristics of the EVI changes and its internal 
mechanism by the influence of climate change (Figure 1).

2. Materials and methods

2.1. Study area

The Greater Bay Area (GBA) is located in the central part of 
Guangdong Province (21。26′N-24。28′ N, 111。14′E-115。24′E), 
covers 5.6 × 104 km2, including the nine municipalities: Guangzhou 
(GZ), Shenzhen (SZ), Zhuhai (ZH), Foshan (FS), Huizhou (HZ), 
Dongguan (DG), Zhongshan (ZS), Jiangmen (JM), Zhaoqing (ZQ) 
and the two Special Administrative Region: Hong Kong (HK) and 
Macao (MC; Figure 2). GBA is a world-class urban agglomeration, an 
important engine of economic growth, and a spatial carrier to 

participate in global competition. GBA in the south-subtropical 
monsoon climate zone, with an annual mean temperature of 21–23°C 
and an annual mean precipitation of 1,300–2,400 mm. It is 
surrounded by mountains and hills on three sides (east, west, and 
north), plains in the middle, and borders the South China Sea. The 
main types of land use in GBA are forest, agricultural, and residential 
and constructional. Forest area is mainly distributed in the 
mountainous areas in the east, west, and north, such as ZQ, JM, HZ, 
and northern GZ, while residential land and construction land is 
mainly distributed in the center of urban agglomeration, such as 
southern GZ, FS, DG, SZ, HK, ZS, ZH, and MC. The vegetation in 
the study area is dominated by evergreen broadleaf forests in south-
subtropical zone, rainforest forests in the subtropics, and mangroves.

2.2. Data sources and pre-processing

The vegetation cover in the study area grew lushly, and to 
eradicate the influence of saturated VI. Therefore, Enhanced 
Vegetation Index (EVI) selected for analyzing the trend of 
vegetation changes.

The MODIS Land Cover Type Product (MOD13Q1) supplies 
global maps of land cover at annual time steps and 250-m spatial 
resolution from 2001 to 2020 (23 images per year). After 
downloaded the data, we used MODIS Reprojection Tools (MRT) 
to reproject the images, with the Projection coordinate system 
named Albers Equal Area, and regard the boundary as mask to 
clip the raster. The annual maximum of EVI in GBA is combined 
from annual images by the method of maximum value composite 
(MVC). Finally, we reconstruct the annual maximum of EVI in 
time series by the Savitzky–Golay filter (S-G filter).

The data of climate factors (temperature, precipitation, wind 
speed, relative humidity, and sunshine duration) was provided by 
Resource and Environment Science Data Center of the Chinese 

FIGURE 1

The framework of study.

FIGURE 2

The study site of the Guangdong-Hong Kong-Macao Greater 
Bay Area.
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Academy of Sciences, with the time span from 2001 to 2020 (Table 1). 
Using linear interpolation, we were able to fill in missing data and 
combine the annual data per station. The climate data were 
interpolated using Thin-plate Splines and Kriging Interpolation, 
which recorded by 96 national climate stations around study area. 
According to the obvious influence of elevation on temperature and 
precipitation, utilizing thin-plate splines to interpolate the temperature 
and precipitation, with the elevation as covariate. While using Kriging 
Interpolation to interpolate other climate data, with the resolution 
of 250-m.

2.3. Methods

2.3.1. Theil-Sen approach and Mann-Kendall test
Theil-Sen median trend analysis and Mann-Kendall trend test 

are both non-parametric estimation methods, and do not assume 
a normal distribution, which also effectively avoid errors and is 
suitable for dealing with the long-time series climate data. To 
estimate every pixel of the EVI changing trends from 2001 to 
2020, we  used the nonparametric Theil-Sen estimator. This 
estimate, known as Theil-Sen Slope, which is not sensitive to 
potential outliers. Mann-Kendall (MK) test were performed for 
EVI time series and each of the climate-impacted EVI’s time series 
for the study period from 2001 to 2020.

The Sen slope’s formula is as follows.
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Where β  is the slope of EVI interannual change, the xi and x j 
are represent annual EVI in years i and j . n is the length of the 
time series. If β > 0, EVI indicates an increasing trend, and if β < 0
, EVI indicate a decreasing trend.e.

In Mann-Kendall (MK) test, the cumulative score of all pairs 
is used to calculate S:
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When n > 8, the S follow an approximately normal 
distribution, and its variance of the S stat (Var S( )) as follows.
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When −> 1 /2Z u α , it indicates that there is a significant 
change at the α level.

Since there no exist of the result that β = 0  in the Theil-Sen 
slope, when − ≤ ≤0 0005 0 0005. .β  is indicated as stable area; when 
β > 0 0005.  is indicated as the vegetation improvement area, and 
when β < −0 0005.  is indicated as the degradation vegetation area. 
The results of the Mann-Kendall test were classified as an obvious 
significant change (|Z| > 2.58), a significant change 
(1.96 < |Z| ≤ 2.58), and a insignificant change (|Z| ≤ 1.96) based on 
the confidence intervals of α = 0.01 and α = 0.05. The β  and Z  
values were combined for classification, thus classifying the EVI 
trend seven types (Table 2).

2.3.2. Continuity analysis
Rescaled range analysis (R/S Analysis) describe the 

autocorrelation of long-term change in time-series data. It has 
been widely applied in Economics, Meteorology, and 
Hydrology. The Hurst exponent is a quantitative method and 
indicated the reliance of long-time series by utilizing R/S 
Analysis (Hurst, 1951; Mandelbrot and Wallis, 1969). The R/S 
Analysis has advantages in investigating the trend of vegetation 
cover, which is affected by climate factors, in future. What 
we know about R/S Analysis is largely based upon empirical 
studies that investigate the trend of vegetation cover in long-
time series in the center of Asia (Jiang et al., 2017), Qinghai–
Tibet Plateau (Peng et  al., 2012), Beijing-Tianjin-Hebei 
metropolitan regions (Li et al., 2017), the middle reaches of the 
Yangtze River (Yi et al., 2021, 2022) and the GBA (Zhao et al., 
2022). The methods contain these following steps:

Define the long-time sequence {ξ  (t)}, t = 1,2, ... for an integer 
τ ≥ 1. Defining the time series mean < >ξ τ :

TABLE 1 Climate data source.

Data source Site level Data type Time series range Number of sites

Resource and Environment 

Science and Data Center, CAS

National Ground-Level Meteorological 

Observation Station

Daily data 2001–2020 95

Hong Kong Observatory Hong Kong Reference Weather Station Annual data 2001–2020 1
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c is a constant.

H is the Hurst exponent. In the R/S analysis of FVC (EVI) 
sequences, the significance of the Hurst exponent is as follows.

If H = 0.5, the changes in the FVC (EVI) time series are 
unrelated and random.

If 0<H<0.5, it indicates that the FVC (EVI) time series changes 
have non-persistence. The closer to 0 the Hurst is, the stronger the 
non-persistence is.

If 0.5<H<1, it indicates that the FVC (EVI) time series of FVC 
(EVI) have persistence. The closer to 1, the stronger the 
persistence is.

2.3.3. Pearson correlation analysis
To study the correlations between the variables, Pearson 

correlation analyses were calculated. The calculation equation is 
as follows.
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X X Y Y
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Where rXY is the correlation between variables X and Y, n is 
the sample size determination, X is the mean of X, and Y is the 
mean of Y. The range of rXY is [−1,1]. When rXY>0, it means that 

the two variables are positively linearly correlated; when rXY<0, it 
means that the two variables are negatively linearly correlated.

Using MATLAB to calculate the Pearson correlation between 
the annual maximum FVC (EVI) and the annual temperature, 
precipitation, wind speed, relative humidity, and sunshine 
duration, respectively.

Then we test for significance using t test. The significance of 
correlation was divided into four grades by combining confidence: 
significant negative correlation (rXY < 0, p < 0.05), insignificant 
negative correlation (rXY < 0, p ≥ 0.05), insignificant positive 
correlation (rXY > 0, p ≥ 0.05) and significant positive correlation 
(rXY > 0, p < 0.05).

3. Results

3.1. Characteristics of the interannual 
change of climate factors in 
Guangdong-Hong Kong-Macao Greater 
Bay Area

The interannual change of climate factors, such as temperature, 
precipitation, wind speed, humidity and sunshine radiation in the 
GBA during 2001–2020, generally indicated a fluctuation, with no 
obvious increase or decrease tendency. Differences in the 
variability of climate factors. The temperature decreased and then 
increased, with a mean of 22.17°C, the highest in 2019 (22.66°C), 
and the lowest in 2011 (21.56°C). The relative humidity has a 
trend of insignificant increasing trend, with the mean of 77.33%, 
the highest in 2016 (81.52%), and the lowest in 2011 (72.39%). 
GBA is predicted to severely slow the warming and humidify. The 
precipitation, sunshine radiation, and wind speed have interannual 
fluctuations; however, the 20-year time series change indicated a 
insignificant trend. Precipitation fluctuated between 1,500-
2,500 mm in the last 20 years, with the mean of 1,913 mm, the 
highest in 2016 (2,466 mm) and the lowest in 2011 (1,426 mm). 
The wind speed fluctuated steadily with a mean of 2.07 m/s, with 
the highest in 2011 (2.16 m/s) and the lowest in 2001 (1.85 m/s). 
Sunshine duration fluctuated steadily, with the mean of 1,696 h, 
the highest in 2003 (1989 h), and the lowest in 2012 (1,494 h) 
(Figure 3).

TABLE 2 The proportion of EVI trend classified as seven levels.

βEVI Z score EVI trend Proportion (%)

S>0.0005 >2.58 Extremely significant improvement 66.98

S>0.0005 1.96<|Z| ≤ 2.58 Significant improvement 6.83

S>0.0005 |Z| ≤ 1.96 Slight improvement 9.91

−0.0005 ≤ S ≤ 0.0005 - Stable 4.14

S<–0.0005 |Z| ≤ 1.96 Slight degradation 4.73

S<–0.0005 1.96<|Z| ≤ 2.58 Significant degradation 1.73

S<–0.0005 |Z|>2.58 Extremely significant degradation 5.70
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FIGURE 3

Interannual change of climate factors. (A) Temperature. (B) Precipitation. (C) Wind speed. (D) Relative humidity. (E) Daily mean sunshine duration.

3.2. Spatiotemporal change 
characteristics of enhanced vegetation 
index in the Guangdong-Hong 
Kong-Macao Greater Bay Area

The mean EVI were calculated based on the annual 
maximum EVI from 2001 to 2020  in GBA. We  divided the 
mean EVI into the five grades according to the condition of 
vegetation cover by the equal intervals: low (EVI < 0.2), 
relatively low (0.2 < EVI < 0.4), medium (0.4 < EVI < 0.6), 
relatively high (0.6 < EVI < 0.8), and high (EVI ≥ 0.8) (Figure 4). 
There are obvious spatial differences in the distribution of EVI 
in GBA. The middle and relatively high EVI are distributed in 
the northern, western and eastern of GBA, with an area of 
78.09%, while the minimum and relatively low EVI are mainly 
distributed in the center of GBA, with the area of 21.89%. 

FIGURE 4

The spatial distribution of mean EVI.
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Based on the maximum annual EVI, we  analysis the 
characteristics of the annual time series change (Figure 5). The 
EVI exhibited an increasing trend (with growth rate of 
0.0045/a) comprehensively in the time series. The range of EVI 
change is from 0.48 to 0.56 and the mean is 0.52. In summary, 
for the informants in this analysis, the vegetation is well-
protected in GBA in past 20 years, along with improving the 
condition of plant growth.

According to the distribution of maximum annual EVI, the 
Theil-Sen trend analysis and Mann-Kendall (MK) test were 
carried out, to indicate the spatial distribution of the EVI changing 
trends in GBA during the past 20 years (Figure 6). In accordance 
with the present results, it has demonstrated that the vegetation 
cover has increased in a comprehensive trend in the past 20 years, 

the area of vegetation improvement is larger than the area of 
vegetation degradation, with the extremely significant vegetation 
improvement area of 66.98% and the extremely significant 
vegetation degradation area of 5.70% (Table 2).

There are obvious differences and agglomerations in the 
distribution of the EVI trends. The significant vegetation 
improvement area exhibited obvious agglomerated, and mainly 
distributed in northern, western, and eastern parts of GBA. The 
significant vegetation degradation area scattered and had obvious 
differences in the distribution, which mainly distributed in 
southern part of GZ, western part of FS, southern parts of ZH, 
northern part of ZS, and central part of DG. In summary, these 
results show that vegetation degradation areas are distributed 
around the peripheral area of urban agglomeration. The extremely 
significant vegetation improvement area mainly distrusted in 
eastern, western, and northern part of GBA, which has a relative 
distance away from the urban agglomeration, therefore, are less 
disrupted by human activities.

The R/S analysis predicted the EVI changing trend in the 
future, according to the persistence in long-term change of 
vegetation cover in GBA in the past 20 years. The analysis was based 
on the classification of the Hurst exponent proposed by Peng et al. 
(2012) and Li et al. (2017), which is showed in Figure 7 and Table 3. 
The pixels of the mean Hurst exponent area of 98.84%, which 
indicated persistence (H ≥ 0.50), while the anti-persistence 
(H < 0.50) pixels are account the area of 1.16%. Both persistence and 
anti-persistence area are distributed scattered. The evolution 
degradation of area is 14.77%, with insignificant agglomerations in 
spatial distribution. The evolution improvement area is of 85.23%.

There are several possible explanations for this result. The 
appearance of significant persistence is mainly impacted by 
natural factors or human activities, such as deforestation, 

FIGURE 5

The interannual change of EVI in the Guangdong-Hong Kong-Macao Greater Bay Area.

FIGURE 6

The EVI spatial changing trend.
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FIGURE 7

The EVI spatial changing trend based on Hurst exponent analysis 
in future.

afforestation, and auto-restoration after disasters. On the other 
hand, the weaken persistence indicated that the vegetation cover 
are influenced combinedly by natural factors and human 
activities, with insignificant differences in the influence degree. 
In this study, the combined influence of various factors in EVI 
trend were predicted by the considering the regular pattern of the 
past 20 years. Combining the result of Theil-Sen slope and Hurst 
exponent, the prediction of the EVI trends is exhibited as 
Figure 7. The EVI tends to improve in the future, since more than 
80% of the area showed improvement, while 13.72% of the area 
showed degradation vegetation, mainly distributed in the central 
and northwestern part of the GBA. Additionally, we investigate 
little area of the non-persistence degradation and 
non-persistence improvement.

3.3. Analysis of the response of enhanced 
vegetation index trends to climatic 
factors

The Pearson correlation coefficient between maximum annual 
EVI and five climate factors (Temperature, precipitation, wind 
speed, relative humidity and sunshine duration) has been 
calculated, and the significances are tested by using t-test. The 
result indicated that there are significant spatiotemporal 
differences in the correlation between annual EVI changing trend 
and climate factors.

There are 49.16% of the area had positive correlation between 
the change of EVI trend and temperature. However, there are 
7.15% of the area had significant positive correlation, and 21.55% 
of the area had significant correlation. In terms of the spatial 
distribution, the EVI, with significant correlation with 
temperature, distributed scattered and mainly indicated around 
the urban agglomeration, which is the southern coastal area of 
GBA (the center of HZ). The 14.40% of significant negative area 
mainly distributed in ZQ, the northern part of GZ, the northern 
and eastern part of HZ (Figure 8).

There are only 3.22% of the area had significant correlation 
between precipitation and EVI trends, and 2.51% of the area had 
significant positive correlation, with a scattered distribution. 
Additionally, 0.71% of the area had significant negative correlation. 
The observed correlation between precipitation and the EVI 
trends could be explained in this way: there are weaken correlation 
between precipitation and the EVI trend, and more than 90% of 
the area had insignificant correlation (Figure 9).

There are 42.19% of the area had significant correlation 
between wind speed and EVI trends, with 32.99% of the significant 
positive correlated area. The distribution of the correlated area 
exhibited agglomerated in the northeastern and northwestern part 
of GBA, which mainly had forest land and far away from urban 
agglomeration. The significantly positive correlated area was 
mainly distributed in the most part of ZQ, the western part of FS, 
the northern part of JM and the northeastern part of HZ. The 
significantly negative correlated area (9.20%) mainly distributed 
in SZ, HK and the northern part of HZ (Figure 10).

Approximately 80.23% of the area had a significant positive 
correlation between relative humidity and the trends of EVI, 
43.51% of the area had a significant correlation and 37.74% had a 
significant positive correlation (r > 0, p < 0.05). the correlated area 
distributed widely and agglomerated in the northern, western, and 
eastern part of the GBA (the western, central, and southern parts 
of ZQ, the northwestern part of FS, the center of GZ, the central 
and eastern part of HZ, DG, the northern part of HK and the 
western part of JM). The significant correlated area (5.77%) is 
distributed in the northern and southeastern part of ZQ, the 
northern part of ZS and the eastern part of JM (Figure 11).

There is weak correlation between EVI trends and sunshine 
radiation and no significant correlation. There are 68.22% of the 
area insignificantly negative correlated (r > 0, p < 0.05) with 
sunshine radiation and 3.53% of the area significant correlated. 
There are 0.44% of the area had significant positive correlation 
between EVI trends and 3.09% of the area had significant negative 

TABLE 3 The proportion of EVI changing trends classified as four levels.

Slope Hurst Type Proportion (%)

<0 <0.5 Anti-persistence degradation 0.11

>0 <0.5 Anti-persistence improvement 1.05

<0 >0.5 Persistence degradation 13.72

>0 >0.5 Persistence Improvement 85.12
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A B

FIGURE 8

The coefficients between the changing trend of EVI and temperature in GBA. (A) Area (%) correlated with the temperature. (B) Correlation of 
changes in vegetation cover changes influenced by the temperature.

A B

FIGURE 9

The coefficients between the changing trend of EVI and precipitation in GBA. (A) Area (%) correlated with precipitation. (B) Correlation of changes 
in vegetation cover changes influenced by precipitation.

A B

FIGURE 10

The coefficients between the changing trend of EVI and wind speed in GBA. (A) Area (%) correlated with wind speed. (B) Correlation of changes in 
vegetation cover changes influenced by wind speed.
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correlation, which mainly distributed in the eastern part of ZQ 
(Figure 12).

4. Discussion

During the past 20 years from 2001 to 2020, according to the 
mean of the EVI trends, the vegetation cover comprehensively 
exhibited a significant improvement in GBA. There are similarities 
between the result expressed by EVI trend in this study and the 
NDVI trends described by Deng et  al. (2021) in Guangdong 
province. However, the rate of EVI trend is lower than the NDVI 
trends in Guangdong province. And from 2000 to 2020, the 
vegetation NPP increased trend about 0.001kgC/m2·a (Zhao et al., 
2022). This study corroborates the conclusions of Chen et al. (2019) 
and Yuan et al. (2018), who suggested that the vegetation changing 

trend of China and the global vegetation changing trend are 
improved similarly. The vegetation improvements are shown in the 
eastern part of China (Zhejiang province) (He et  al., 2020), the 
western part of China (Guizhou province) (Xu et al., 2020), the 
Beijing-Tianjin-Hebei metropolitan regions (Li et  al., 2017), the 
Yellow River Basin (Xie et al., 2022) and the western part of the Jinsha 
River Basin (Zhang et al., 2021). The previous results are different in 
the trend of vegetation change. For example, the rate of EVI trends is 
0.045/10a in the Hot and humid area, as the result indicated in the 
present study. While the rate of EVI trend is 0.038/10a in the arid and 
semi-arid area of China (Yellow River Basin) (Xie et  al., 2022). 
Additionally, conclusion such as that conducted by Zhang et  al. 
(2021) have shown that the rate of EVI trend (0.011/10a) is slower in 
the western part of the Jinsha River Basin.

In terms of the spatial distribution of EVI trend, there are 
comprehensive vegetation improvement in GBA, and the area of 

A B

FIGURE 11

The coefficients between the changing trend of EVI and relative humidity in GBA. (A) Area (%) correlated with relative humidity. (B) Correlation of 
changes in vegetation cover changes influenced by relative humidity.

A B

FIGURE 12

The coefficients between the changing trend of EVI and sunshine duration in GBA. (A) Area (%) correlated with sunshine duration. (B) Correlation 
of changes in vegetation cover changes influenced by sunshine duration.
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vegetation improvement is larger than the area of vegetation 
degradation. The spatial distribution of EVI trend exhibited 
obvious differences and agglomeration. According to spatial 
distribution, it is significant vegetation degradation around urban 
agglomerations, since a few studies considered that human 
activities are the main reason (Qi et al., 2019; Zhao et al., 2022). 
The result of this study indicated that the EVI changing trend in 
the future by R/S analysis method is affected by climate and 
human factors together and there are no significant factors. The 
improvement of vegetation is predicted in the future by 
comprehensive analysis of the Theil-Sen slope and Hurst 
exponent, with the vegetation improvement area of 80% and an 
extremely significant vegetation degradation area of 5.7%. Based 
on this analysis, we can infer that both ecological environment 
protection and economic development can be  simultaneously 
achieved in GBA.

Much of the literature emphasizes the vegetation growth had 
obvious response to climate factors. To date, several studies have 
investigated the precipitation and temperature is the main factors 
of vegetation change in the arid and semi-arid area and the region 
in the climate zone that plants both have growth and deciduous 
seasons (Gan et al., 2011; Mu et al., 2012; He et al., 2020). While 
there are differences in the results by using various VI (Xie et al., 
2022). However, it has been suggested that the influence of 
precipitation is more obvious (Xie et al., 2016; Liu et al., 2021; 
Zhang et al., 2021). This does not appear to be the case in other 
regions. This finding is different from other studies that have 
suggested that temperature had more obvious effects (Hua et al., 
2017; Deng et al., 2021; Zhao et al., 2022). There is mainly south-
subtropical ever-green broad leaf forest and in the GBA, with 
sufficient sunshine radiation and abundant rainfall. And the 
climate change in GBA is stable. However, in this study, 
precipitation and sunshine had no effect on EVI trend.

The correlation between EVI and five climate factors 
(Temperature, precipitation, wind speed, relative humidity and 
sunshine duration) has been calculated, and the significances are 
tested by using t-test. The result indicated precipitation has no 
significant correlation with EVI trends in the Hot and humid area 
with mean precipitation of 1,800 mm. In contrast to the findings 
in arid and semi-arid area, however, significant correlation 
between precipitation and vegetation change was detected. Our 
results corroborate the findings of the previous work in the 
insignificant correlation between precipitation and NDVI trends 
(Zhang et al., 2021). The previous studies demonstrated that the 
vegetation cover is significantly positively correlated with 
temperature both in humid area and GBA by using the NDVI. This 
study seems to be consistent with other research which found 
there are correlation between temperature and vegetation cover, 
but it’s insignificant. In the terms of spatial distribution, the 
influence of temperature to EVI is complex in GBA, the spatial 
distribution of correlation is scattered.

Although extensive research has been conducted on 
vegetation change and climate factors, few studies have identified 
the correlation between vegetation change and two climate factors 

(relative humidity and wind speed). In this study, not only the 
three factors (temperature, precipitation and sunshine duration) 
that have been analyzed, but also relative humidity and wind 
speed. There is a significant positive correlation between the EVI 
trend and two climate factors (relative humidity and wind speed). 
An issue that was not addressed in this study was what is the 
internal mechanisms of these influences. The relevance of EVI and 
climate factors analyzed by annual data is clearly supported by 
current findings. The wind speed and relative humidity correlated 
with EVI significantly. An additional uncontrolled factor is the 
possibility that there are differences in the climate factors of 
various seasons. These differences make these findings less 
generalizable to enhance the correlation of EVI and some climate 
factors in annual scale. More information on month or seasonal 
scale would help us establish a greater degree of accuracy in this 
matter and to analysis the hysteresis of the influences.

5. Conclusion

The MODIS-EVI and climate data were analyzed from the 
National Aeronautics and Space Administration (NASA) and the 
Resource and Environment Science Data Center of the Chinese 
Academy of Sciences. This paper elucidated the characteristics of 
spatiotemporal change of EVI and its trend in the future by using 
Theil-Sen trends analysis, Mann-Kendall Test and R/S Analysis, 
basing on the MODIS-EVI and climate data from 2001 to 2020. 
The paper indicated the correlation between EVI trend and the 
change of climate factors by using Pearson correlation analysis.

The study highlighted the change of climate factors 
(temperature, precipitation, wind speed, relative humidity, and 
sunshine duration) has relatively stable and slightly fluctuated in 
the past 20 years. Temperature, precipitation, and humidity 
exhibited an extremely slow and insignificant increasing trend, 
and the sunshine duration showed an insignificant decreasing 
trend. The temperature fluctuates from 22.1°C to 22.2°C and the 
mean precipitation are fluctuated from 1800 mm-2000 mm. 
Relative humidity increased from 75 to 79%. Taken together, the 
result identified an extremely slowly warming and humidify of 
GBA, and a relatively stable climate change.

In this condition of climate change, the result showed the mean 
EVI increased in GBA, and the rate of increase is 0.045/10a in the 
past 20 years. The area of extremely significant vegetation 
improvement is approximately 70% and the area of significant and 
extremely significant vegetation degradation is 7.43%, which mainly 
distributed in the central of GBA. In the prediction, more than 80% 
of the area showed an increasing trend of EVI. There are obvious 
differences in the spatial distribution of vegetation. The middle and 
relatively high EVI distributed in the northern, western, and eastern 
part of GBA, with an area of 80% approximately. The relatively low 
value mainly distributed in the central of GBA, with the area of 20% 
approximately. The EVI increasing from the 2001 to 2020, while the 
area of extremely vegetation improvement is larger than the area of 
vegetation degradation. The result indicated the positive 
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improvement of vegetation in GBA. Therefore, the trends of EVI that 
we have identified assists in our understanding of the contribution 
of environmental protection in GBA during the past 20 years.

There are spatiotemporal differences in the influence of EVI 
trend to five climate factors (temperature, precipitation, wind speed, 
relative humidity, and sunshine duration). One of the more 
significant findings to emerge from this study is that wind speed, 
relative humidity relatively obviously significant correlated with EVI 
trend, the area of significant correlation is over than 40%. 
Temperature correlated with EVI weaker; the area of significant 
correlation is more than 20%. Precipitation and sunshine duration 
had the least correlation with EVI, and the area of significant 
correlation are less than 5%. Therefore, in the south-subtropical Hot 
and humid area, precipitation and sunshine duration have weak 
influence on the vegetation. On the contrary, relative humidity and 
wind speed have more significant influence on the vegetation.
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Microclimate effects and influential
mechanisms of four urban tree
species underneath the canopy in
hot and humid areas

Xianhui Feng1,2*, Huan Wen1, Mu He1 and Yiqiang Xiao1,2

1School of Architecture, South China University of Technology, Guangzhou, China, 2State Key Laboratory of
Subtropical Building Science, South China University of Technology, Guangzhou, Guangdong, China

Purpose: Urban trees play a key role in ameliorating extreme urban climates in cities.
At the micro-level, it is crucial to investigate the variations in microclimates affected
by the canopies of different tree species. The significance of this research is to
provide scientific evidence for the selection of tree species in urban planning that can
improve the local microclimate. This study examines the factors of microclimate (air
temperature, relative humidity, wind environment, and solar radiation) underneath
the canopy of four different evergreen tree species in hot and humid areas.
Furthermore, the correlation between the physiological characteristics of these
tree species and microclimate was statistically analyzed using data on the
physiological parameters of the trees and microclimate factors.

Methods: In this study, four tree species were selected for field measurements: Ficus
microcarpa L. f., Ficus virens Aiton, Bauhinia x blakeana Dunn, and Cinnamomum
camphora (L.) Presl.We used the HOBE (H21-0024, onset) to measure three climatic
parameters (Temperature, Relative Humidity, and Instantaneous Wind Speed), and
the Li-6400 Portable Photosynthesis System to measure five plant physiological
parameters: Stomatal Conductance (Gs), Leaf Temperature (Tleaf), Leaf Surface
Relative Humidity (RHsfc), Photosynthetically Active Radiation (PAR), and Leaf-
level Vapor Pressure Deficit (Vpdl). The observations were conducted during
winter (January 16 - January 22) and summer (August 7 - August 22). The
investigation periods were 9:00–11:00, 12:00–14:00, and 16:00–18:00, and data
were recorded at 15-min intervals. The observational data obtained were analyzed
using statistical methods, including one-way analysis of variance, Pearson
correlation coefficient, and multiple regression analysis.

Results: The results of this study indicated that the four tree species being measured
had different effects on the microclimate at the sites in both the winter and
summer seasons. During the 7-day observation in the summer, the cooling effect
of the four tree species was significant. The relative humidity underneath the
canopies was 3%–11% higher than that of weather stations. The instantaneous
wind speed in the afternoon was relatively higher than at other times. The solar
radiation intensity was dramatically reduced by 85%–95%. During the 7-day
observation in the winter, the trees had a warming effect in the morning. The
relative humidity underneath the canopies was 10%–20% higher than that of the
weather stations. The areas underneath the canopies were windless in the
afternoon. The solar radiation intensity was reduced by 78%–95%. Ficus
microcarpa was found to be one of the most effective tree species for
increasing the relative humidity and reducing solar radiation intensity in hot
and humid areas. Additionally, the highest instantaneous wind speed was
observed in the areas underneath the canopies of F. virens and C. camphora.
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Statistical tests revealed that the air temperature and the instantaneous wind were
extremely significantly correlated with Tleaf and RHsfc.

Conclusion: The four urban tree species studied had varying degrees of effect on air
temperature, relative humidity, wind speed, and reducing solar radiation intensity in the
areas underneath their canopies. Furthermore, these trees demonstrated varying
abilities to improve microclimate conditions in different seasons. The four trees had
a cooling effect in the summer. The instantaneous wind speed was calm in the
afternoons during the winter in contrast to being relatively high speed in the
afternoons during the summer. This characteristic is beneficial to warmth in winter
and coolness in summer. In terms of the internal influence mechanisms, the results of
the analysis indicated that microclimate factors were significantly correlated with the
physiological parameters of the trees. Tleaf, RHsfc, and Vpdl were significant
physiological parameters and had different contribution rates to microclimate factors.

KEYWORDS

urban tree, microclimate, hot and humid area, Ficus microcarpa, Cinnamomum camphora,
Ficus virens, Bauhinia x blakeana

1 Introduction

Green spaces are one of the major types of urban land
development. Trees in urban green spaces have positive effects and
cool urban temperatures. There is considerable research
demonstrating their cooling effect on temperatures and their effect
on increasing the air humidity, which improves the local urban
microclimate through trees in greenspaces (Bao et al., 2001; Guo
et al., 2008; Li et al., 2011; Zhu et al., 2011).

The influence effect of urban trees on local urban climatic
environments is a complex natural phenomenon. First, recent
studies have shown urban trees have varying degrees of capability
to mitigate high temperatures in cities under different climate
contexts. The cooling efficiency of urban trees under different
climatic conditions was shown to have significant differences in
510 cities, and the influence of mitigating temperature was
particularly notable in arid cities (Cheng et al., 2022). Studies in
two coastal cities with different climatic contexts, Seattle, Washington,
and Baltimore, Maryland, USA, showed that the compactness of
canopy cover was not significant in reducing land surface
temperature (Jung et al., 2021). Secondly, trees have different local
microclimate influence effects compared to shrubs and grasses, and
the ecological effects of various species of trees are different. Using
analysis of high-resolution land surface temperature (LSTs) and land-
cover data from 293 European cities, it was found that the cooling
effect of spaces without trees was approximately 2–4 times higher than
that of green space (Schwaab et al., 2021). It has been shown in Jining
city that the taller the trees, the more effective they are in reducing the
temperature of surrounding areas. (Xia et al., 2013). It has been
confirmed that tree greenbelts have the best cooling and
humidifying effects in Shenzhen, as compared to the microclimate
effects of other landscape types, such as lawns, and waterscapes, as
determined by ENVI-met (Wu et al., 2016). Due to the different
efficiencies of the internal mechanisms of trees, such as photosynthesis
and evapotranspiration, different tree species have varying effects on
microclimate conditions. (Yang et al., 2022). Research has established
that there is a non-linear threshold relationship between the area
underneath the canopy and the decrease in land surface temperature,
and compactness of the canopy cover was found to have no significant
impact on reducing the land surface temperature (Jung et al., 2021). It

is hypothesized that microclimate conditions at a site can be
influenced by different tree species through their photosynthesis or
evapotranspiration processes. A study in northern China has shown
that there are differences in the cooling and humidifying effects of
Pinus densiflora forests and mixed Quercus acutissima/Pinus
massoniana forests (Dong et al., 2017). The arborous layer has a
significant impact on ecosystems, particularly on soil runoff. In forest
tree species, spruce forests had the driest environmental conditions,
which was also confirmed at the Soil Experiment Station of Moscow
State University during 60 years of observations of ecosystems
(Matyshak et al., 2021).

In terms of methodology, recently, software simulation
techniques, such as FLUENT and ENVI-met, have been used
frequently. FLUENT was used to simulate air turbulence in an
ideal urban green space condition in Guangzhou (Feng and Chu,
2017). Previous studies using ENVI-met have found that outdoor
thermal improvements in campus areas are related to the effects of
different levels of tree canopy closure in Nigeria (Abdulkarim et al.,
2021). Liu et al. (2018) set up simulation experiments using ENVI-
met. The simulated experiments are accurately calculated based on the
field-measured physiological parameters data of Ficus microcarpa,
thus proving the physiological and microclimate performance of Ficus
microcarpa in hot and humid areas. But the simulation method is
limited by its algorithms and the lack of perception of complex real
environmental conditions; the selection of representative real sites for
field observation is still the most accurate method of microclimate
research.

Previous studies have established that trees can affect the
microclimate. This study selected four urban tree species, F.
microcarpa, Ficus virens, Bauhinia x blakeana, and Cinnamomum
camphora, all of them growing in Guangzhou city parks. The main
purpose was to research the different impact effects of a variety of tree
species on a site’s microclimate environment. Thus, the research
hypothesis propose to investigate the following questions: 1) What
are the conditions of the temperature, relative humidity, wind speed,
and solar radiation intensity underneath the canopy of these tree
species in a hot and humid area of southern subtropical region? 2)
How different is the influence of these trees on the microclimate
underneath their canopies compared with the observation results from
weather stations? 3)Which physiological parameters of the trees affect

Frontiers in Environmental Science frontiersin.org02

Feng et al. 10.3389/fenvs.2023.1108002

217

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2023.1108002


the temperature, relative humidity, wind environment, and solar
radiation intensity underneath the canopy, and what is the
underlying correlation? The purpose of this study is to investigate
the above assumptions through actual measurements of four tree
species.

2 Materials and methods

2.1 Study area

Guangzhou is a southern, subtropical city characterized by a hot
and humid climate, and is a typically static wind city (Table 1).
According to the 2021 Guangzhou Climate Bulletin, the annual
average temperature is 24.0°C, and has increased at a rate of 0.3°C/
10 years since 1961. The average wind speed is 1.9 m/s. Since 1961, the
annual average wind speed has shown a significant decrease at a rate of
0.07 m/s per 10 years. According to meteorological data from the
National Station in Guangzhou (59287), in the past 10 years
(2009–2018), the annual average relative humidity was 71.1%. The
area experiences its highest annual precipitation from May to June,
with an annual mean precipitation of 1,695.9 mm and a maximum
daily precipitation of 214.7 mm. Guangzhou vegetation consists of
southern subtropical evergreen broad-leaved forests, and the trees are
evergreen during four seasons.

The field of observation was Dongshan Lake Park, covering
31.7 ha, and with one of the four major artificial lakes in
Guangzhou. In addition, Dongshan Lake Park is one of the most
comprehensive city parks in Guangzhou, designated as a protected
cultural heritage site in Guangzhou. Due to the well-protected tree
species growing in the park and the characteristics of the Canton
landscape, it has become a hotspot for nearby residents to rest. The
areas underneath the tree canopies are some of the residents’ favorite
activity spaces in the park.

2.2 Tree selection and observation sites

According to the authoritative green space survey report of
Guangzhou, we planned to select the trees with the largest number
of plantings and the most widely used for research. The report was
compiled by the Guangzhou Institute of Forestry and Landscape
Architecture (GZ-IFLA). From 2011 to 2016, institute staff

investigated all ten districts within the metropolitan area of
Guangzhou, including 313 parks, 12,868 residential green spaces,
88 forest parks and nature reserves, 365 flyover green areas, and
600,000 street trees, in order to gather information about the planted
tree species in urban green spaces. The survey reported that the three
top trees, Bauhinia x blakeana, Ficus microcarpa (F. microcarpa), and
Ficus virens (F. virens) are the most widely used, and the survey also
reported on the planting numbers of these top three trees. The most
widely used non-native tree species is Cinnamomum camphora (C.
camphora). Therefore, in this study, four tree species were selected in
total as research objects: Bauhinia x blakeana, F. microcarpa, F. virens,
and C. camphora.

Site microclimate is influenced by a variety of factors. To the extent
possible, to eliminate other factors affecting the site, all observation
sites were required to have convergent features or a similar
environment in this study. The distribution of the four observation
sites is shown in Figure 1.

The selected observation sites meet the following requirements: 1)
the sites were all located next to Dongshan Lake (distance < 5 m), and
the distance between each site was approximately 500 m to eliminate
the local climate differences caused by significant distance differences;
2) the trees of each observation site were of the same species, and all
the sites had the same kind of pavement; 3) the ages of the trees in the
four observation sites was older than 50 years, with crown base heights
of over 2 m; 4) the observation sites did not have shrubs or grasses, to
eliminate other plants influences; 5) the planting areas of the four
observation sites were the same size; 6) the closure canopy of all trees
was above 70% in summer. Details and real conditions of the
observation sites are shown in Figure 1 and Table 2.

We measured the closure canopy of the trees by using fish-eye
photographs at the observation sites. Both values of Sky View Factor
(SVF) and closure canopy were analyzed by Rayman software
(Matzarakis et al., 2007; Matzarakis et al., 2010), as shown in Table 3.

2.3 Observation instruments and
measurement parameters

This study used Onset HOBO equipment to measure three
climatic parameters, including air temperature (Temp/°C), relative
humidity (RH/%), and wind speed (WS/m/s); an Li-6400 Portable
Photosynthesis System instrument to measure five physiological
parameters, including Gs (molH2O/(m

2·s)), Tleaf (°C), RHsfc (%),

TABLE 1 The range of mean extrema values of climate factors in Guangzhou during the 30-year period (1991–2020).

Climate factor Temperature
(°C)

Precipitation
(mm)

Relative
humidity (%)

Wind speed
(m/s)

Wind direction
frequency

Range

The range of monthly mean extrema values in
winter half-year

11.0−30.7 34.5−101.0 48.7–68.3 0.6–1.8 North and northeast

The range of monthly mean extrema values in
summer half-year

19.6–33.5 193.8–364.9 56.5–84.1 1.1–1.6 South and southwest

The range of daily mean extrema values in
January

10.6–18.7 − 34.6–71.3 0.4–1.9 North and northeast

The range of daily mean extrema values in
August

25.5–33.2 − 53.5–88.3 0.6–1.7 South and southwest

January is the representative month of winter and the month of observation; August is the representative month of summer and the month of observation.
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PAR(KPa), and Vpdl (μmol/(m2·s)). The intensity of solar radiation
(SR, w/m2) wasmeasured by LPPYRA06 albedomeasuring instrument
produced by Delta OHM in Italy.

The instrument properties, parameters, and observational times
are shown in Table 4.

The Vpdl was calculated by the equation:

Vpdl � SVTleaf − Vpkpa � 0.61365 × e
17.502×Tleaf
240.97+Tleaf −H2OS ×

Press

1000

Where: Tleaf = leaf temperature; Vpkpa = vapor pressure chamber air;
SVTleaf = SatVap (The saturation vapor pressure is calculated based
on the temperature of the leaf.); H2OS = concentration of sample cell
H2O; Press = atmospheric pressure.

2.4 Experimental design

According to the Guangzhou weather website, for 30 years
(1991–2020), generally, the weather in Guangzhou has been divided
into two typical seasons: the winter half-year, which is the period from
October to March, and the summer half-year, which is the period from
April to September. The lowest monthly mean temperature occurs in
December, during the winter season. The highest monthly mean
temperature occurs in June, during the summer.

To avoid the impact of extreme temperatures, this study selected
January in the winter half-year and August in the summer half-year as
the representative months for the winter and summer observation.
January is third on the rank of monthly mean temperature from the
lowest to the highest in winter; August is the same for summer. The
general climate data of the weather stations are shown in Table 1.

In the winter season, the observation times were from 16th to
22 January 2021, with continuous observation for a week. The
observation times in the summer were from 7th to 22 August 2021,
excluding rainy days by selecting 7 days of clear and cloudless weather.
The observation periods were 9:00–11:00, 12:00–14:00, and 16:00–18:00,
recorded at 15-min intervals, and themean values of the data were stored.

The data were calculated by Excel 2016, SPSS software, and
illustrated by Origin 2021. In terms of data statistical methods,
one-way analysis of variance, Pearson correlation coefficient
analysis, and multiple regression analysis were used. One-way

analysis of variance was used to compare the significance levels of
air temperature and relative humidity between the different trees and
the weather stations. Pearson correlation analyzed the correlation
between the physiological parameters of the trees and the
microclimatic factors. The multiple regression further analyzed the
contribution rate of physiological parameters to microclimatic factors.

3 Result and analysis

3.1 Effects of different trees on air
temperature and relative humidity

In the winter, the effects on temperature were more complex. Due
to the heat storage and insulation capacity of plants, the air
temperatures of the areas underneath the canopies of the four
species were significantly higher than that of weather stations from
8:00–9:00. Before 12:00, the temperature underneath the canopy of F.
microcarpa was warmer than the weather stations. Among the four
tree species, F. microcarpa had the strongest warming effect. The trees
increased the air temperature in the morning, but the temperature
underneath the canopy was lower than that of the weather stations
after 12:00, except for F. microcarpa, which was close to that of the
weather stations (Figure 2A Above).

The results indicated that during the summer, the four analyzed
species demonstrated significant cooling effects during the daytime.
However, there were notable variations in the cooling effect among the
tree species after 10:00. The minimum temperature was observed
underneath the canopy of C. camphora, and the maximum
temperature was observed underneath the canopy of Bauhinia x
blakeana (Figure 2A Below).

During observation times in January, the diurnal variation of air
temperature underneath the canopies also increased gradually, but the
warming effect was relatively slow, resulting in lower air temperature
after 12:00, and the diurnal variation curve of air temperature
underneath the canopies were gentler than that of the weather
stations. Similarly, during observation time in August, because the
temperatures underneath the canopies rose slowly, the temperatures
were significantly lower than that at the weather stations, and the
diurnal variation curve was smoother, as shown in Figure 2A.

FIGURE 1
Study site (A) distribution map of the four measurement sites (B) sample site plan and field photos.
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Taking the data from the weather stations as the control group, we
analyzed the differences in temperature of the areas underneath the
canopies of the four tree species using a one-way analysis of variance.
During the winter, the results of the analysis of variance for the four
tree species during three periods were as follows: F = 0.058, p = 0.981
(9:00–11:00); F = 0.005, p = 0.999 (12:00–14:00); F = 0.021, p = 0.996
(16:00–18:00), respectively. The values of the analysis of variance for
the four tree species in summer were as follows: F = 5.440, p = 0.005 (9:
00–11:00); F = 5.318, p = 0.006 (12:00–14:00); F = 1.993, p = 0.151 (16:
00–18:00). As the results showed, in winter, the fitting degree of
diurnal air temperature variation underneath the canopies among the
four tree species was low. On the contrary, it was high in summer.
Furthermore, the difference in the diurnal air temperature variation
range was not relatively significant, but the difference in degree was
higher in the summer than that in winter.

During the 7-day observation in the winter, the air temperature
change range of the areas underneath the canopies of F. microcirpa, F.
virens, Bauhinia x blakeana, and C. camphora was 14.86°C–20.26°C,
14.41°C–20.01°C, 14.24°C–21.39°C, and 14.41°C–21.89°C, respectively.
The maximum temperature occurred between 12:00–14:00 or 16:
00–18:00. The maximum temperature of F. virens occurred at noon
(12:00–14:00) and C. camphora in the afternoon (16:00–18:00)
(Figure 3A). The diurnal mean temperatures underneath the
canopies of F. microcarpa, Bauhinia x blakeana, F. virens, and C.
camphora were 17.96°C, 18.17°C, 18.33°C, and 18.20°C, respectively.
During the 7-day observation in the summer, the air temperature
change range of the areas underneath the canopies of F. macrocirpa, F.
virens, Bauhinia x blakeana, and C. camphora was 30.31°C–34.65°C,
30.47°C–36.09°C, 31.02°C–35.50°C, and 31.28°C–34.73°C, respectively
(Figure 3B). The diurnal mean temperature underneath the canopies
of F. microcarpa, Bauhinia x blakeana, F. virens, and C. camphora
were 32.60°C, 33.30°C, 32.96°C and 32.70°C, respectively. F.
microcarpa exhibited the strongest cooling effect among the four
tree species and the cooling effect of Bauhinia x blakeana was the
weakest.

As shown in Figure 2B, the results showed that, compared with
the weather stations, the trees had a significant effect on increasing
humidity both in winter and summer. The relative humidity
underneath the canopies of the four tree species exhibited a
slow decrease from morning to noon, but an increase in the
afternoon both in the winter and summer. However, there were
differences in the humidifying effect of different tree species in
different seasons.

In the winter, the relative humidity of the area underneath the
canopies was significantly higher than that of the weather stations. The
daily mean relative humidity at the weather stations was 40.02%, while
the area underneath of F. microcarpa, Bauhinia x blakeana, F. virens,
and C. camphora, it was 53.55%, 50.60%, 50.72%, and 50.50%,
respectively. Of these, the highest relative humidity was found
underneath the canopy of F. microcarpa, which was 13.53% higher
than that at the weather stations. The diurnal change curve of relative
humidity of these four tree species revealed that the curve of F.
microcarpa was the flattest (Figure 2B Above). During the summer,
the relative humidity underneath the canopy of all tree species was
higher than that at the weather stations (57.12%). Specifically, the
relative humidity beneath F. microcarpa, F. virens, Bauhinia x
blakeana, and C. camphora was 64.85%, 62.76%, 61.31%, and
64.58%, respectively (Figure 2B Below). The average daily humidity
beneath F. microcarpa was the highest among the four trees.TA
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As shown in Figure 4, in general, the relative humidity underneath
the canopies in the summer was higher than that in the winter. At
noon, the relative humidity was the lowest during the daytime.

During the 7 days of observation in the winter, the range of relative
humidity change for F. microcarpa, Bauhinia x blakeana, F. virens, and
C. camphora was 43.40%–66.92%, 39.55%–62.38%, 39.48%–64.77%,
and 43.74%–62.51%, respectively. The differences in change of
magnitude were 23.52%, 22.83%, 25.29%, and 18.77%, respectively

(Figure 4A). During the 7-day observation in the summer, the range of
F. microcarpa, F. virens, Bauhinia x blakeana, and C. camphora was
51.60%–76.02%, 55.36%–72.37%, 56.69%–73.83%, and 53.55%–

72.40%, respectively, and the change of magnitude was 24.42%,
17.01%, 17.14%, and 18.85%, respectively (Figure 4B).

A one-way analysis of variance was used to analyze the differences
in relative humidity of the four tree species. In the summer, the
results of the analysis of variance were as follows: F = 2.469, p = 0.086

TABLE 3 Closure of the canopy of the four tree species.

Observation point No.1 No.2 No.3 No.4

Sky View Factor (SFV) of the Observation point in winter

Visibility (%) 6.65 50.80 10.89 10.65

Closure canopy (%) 93.35 49.20 89.11 89.35

Sky View Factor (SFV) of the Observation point in the summer

Visibility (%) 12.51 7.36 5.27 22.94

Closure canopy (%) 87.49 92.64 94.73 77.06

TABLE 4 The information of observation.

Measurement
parameters

Instrument type Photograph of
instrument

Manufacturer Measurement
range

Observation
time (min)

Temperature (Temp) HOBO Climate monitoring (H21-
0024)

Onset Computer
Corporation

−40°C–70°C 15

Relative Humidity (RH) 0%–100% 15

Instantaneous Wind
Speed (IWS)

0–40 m/s 15

Solar Radiation (SR) LPPYRA06 Spectrally Flat Class C
(Second Class) albedometer

Delta OHM Srl 0–2000 W/m2 5

Stomatal Conductance (Gs) Li-6400 Portable Photosynthesis
System

LI-COR Biosciences
GmbH

0.005–1.2 mol H2Om-
2 s-1

5

Leaf Temperature (Tleaf) −200°C-260°C 5

Leaf Surface Relative
Humidity (RHsfc)

0–100% 5

Photosynthetically Active
Radiation (PAR)

0–1500 μmol m-2s-1 5

Leaf-level Vapor Pressure
Deficit (Vpdl)

0–20 kPa 5
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(9:00–11:00); F = 16.05, p = 0.000 (12:00–14:00); F = 5.289, p = 0.006
(16:00–18:00). In the winter, the values were as follows: F = 0.133, p =
0.939 (9:00–11:00); F = 0.129, p= 0.942 (12:00–14:00); F = 0.187, p= 0.904
(16:00–18:00). As the results showed, in summer, the fitting degree of
diurnal relative humidity variation underneath the canopies among the
four tree species was high. Furthermore, the difference in the diurnal
relative humidity variation range was not relatively significant.

3.2 Effects of different trees on wind
environment

Guangzhou is a city with typically calm wind, characterized by low
wind speeds at the near-ground layer and poor ventilation. Therefore,
the wind environment in Guangzhou is dominated by near-ground
turbulence (Feng and Wei, 2011). As shown in Figure 5, the wind

FIGURE 2
Diurnal change of air temperature and relative humidity of the four tree species in winter and summer community weather stations (A) air temperature (B)
relative humidity.

FIGURE 3
Temperatures underneath the canopy of the four tree species in winter (A) and summer (B).
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speed data observed beneath the tree canopies showed that there
was no continuous or persistent wind flow, and just instantaneous
winds speed were observed. There were differences in the
instantaneous wind speed and frequency underneath the
canopies of different trees.

During the 7-day observation period in the winter, the daily
average instantaneous wind speed of F. microcarpa was 0.21 m/s. A
range of change was observed from 0.00 to 0.77 m/s in the daytime.
Bauhinia x blakeana, F. virens, andC. camphorawere observed to have
daily average instantaneous wind speeds of 0.59 m/s, 0.66 m/s, and

FIGURE 4
Relative humidity underneath the canopy of the four tree species in winter (A) and summer (B).

FIGURE 5
Instantaneous wind speed underneath the canopy of the four tree species in winter (A) and summer (B).
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0.63 m/s, with a range of wind speed change from 0.01 to 2.34 m/s,
0.02–2.32 m/s, and 0.01–2.69 m/s, respectively. The regulation of daily
change showed that the instantaneous wind speed was highest at noon
(12:00–14:00), and that it was almost windless in the afternoon (16:
00–18:00). The daily average instantaneous wind speed underneath
the canopy of F. microcarpa was the lowest and the F. virens was
highest (Figure 5A).

During the 7-day observation in the summer, the daily average
instantaneous wind speeds of F. microcarpa, Bauhinia x blakeana, F.
virens, and C. camphorawere observed to be 0.34 m/s, 0.67 m/s, 0.86 m/s,
and 1.01 m/s, and the range of wind speed change was 0.19–0.49 m/s,
0.43–1.05 m/s, 0.45–1.51 m/s, and 0.48–1.48 m/s, respectively. The result
showed that the daily variation of wind speed was opposite to that in
winter. The instantaneous wind speed was highest in the afternoon (16:
00–18:00), except for Bauhinia x blakeana. The daily average
instantaneous wind speed underneath the canopy of F. microcarpa
was the lowest and the C. camphora was the highest (Figure 5B).

3.3 Effects of different trees on solar radiation

Generally, the canopies of trees reduces solar radiation intensity by
avoiding direct exposure to sunlight. As shown in Figure 6, the trees
greatly reduced solar radiation in winter and summer, especially
at noon.

In the winter, the range of diurnal mean values of solar radiation
intensity for the control observation point (open space) was found to

be 255.21–629.32 w/m2. However, the solar radiation intensity of the
areas underneath the canopies of F. microcarpa, Bauhinia x blakeana,
F. virens, and C. camphora was 24.5–37.64 w/m2, 57.85–88.00 w/m2,
42.64–51.5 w/m2, and 30.07–38.67 w/m2, respectively (Figure 6A). In
the summer, the solar radiation intensity of the control observation
point was 374.25–837.61 w/m2, and for F. microcarpa, Bauhinia x
blakeana, F. virens, and C. camphora it was 34.68–55.07 w/m2,
62.47–119.13 w/m2, 72.38–86.84 w/m2, and 58.35–82.41 w/m2,
respectively (Figure 6B).

The result showed F. microcarpa had the strongest impact on
reducing solar radiation intensity. In the winter, the area underneath
the canopy of Bauhinia x blakeana had the highest solar radiation
intensity. During all the observation periods in winter and summer, it
was found that the solar radiation intensity underneath the canopy of
F. microcarpa had the smallest fluctuations, with a range of fluctuation
of about 30.56 w/m2; F. virens had the most significant fluctuation of
solar radiation, with fluctuations of about 60.49 w/m2.

3.4 Correlation analysis of physiological
characteristics of trees and microclimatic
factors

This study used the Li-6400 Portable Photosynthesis System
instrument to measure five physiological parameters of plants,
including Gs, Tleaf, RHsfc, PAR, and Vpdl. The observation periods
were 9:00–11:00, 12:00–14:00, and 16:00–18:00, and were recorded at 5-

FIGURE 6
Solar radiation underneath the canopy of the four tree species in winter (A) and summer (B).
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min intervals. The Pearson correlation coefficient method was adopted to
calculate the correlation between the physiological parameters and the
data from observational records of microclimate in the same periods.

The results of the analysis, as shown in Table 5, revealed the air
temperature underneath the canopies of the four tree species was
extremely significantly correlated (p < 0.01) with the Tleaf and RHsfc.
The instantaneous wind speed was extremely significantly correlated
(p < 0.01) with the Tleaf of F. microcarpa and the RHsfc of Bauhinia x
blakeana, respectively. The relative humidity correlated significantly
(p < 0.05) with RHsfc and Vpdl of C. camphora but was not found to
be significantly correlated with the physiological parameters of other
trees. The solar radiation intensity was extremely significantly
correlated (p < 0.01) with the PAR of C. camphora and Vpdl of F.
virens, and significantly correlated (p < 0.05) with the PAR of F.
microcarpa and Bauhinia x blakeana.

For F. microcarpa, as a native plant of Canton, there was an extremely
significant correlation (p < 0.01) between Tleaf, RHsfc, and air
temperature, and also Tleaf and instantaneous wind speed. There was
a significant correlation (p < 0.05) between PAR with air temperature,
RHsfc with instantaneous wind speed, and PAR with solar radiation. The
relative humidity was not found to be correlated with any physiological
parameters. However, there was no correlation found between Gs, Vpdl,
and the microclimate data. The Tleaf and RHsf of F. microcarpa were the
major parameters related to the microclimate environment, and mainly
affected temperature and instantaneous wind speed.

For Bauhinia x blakeana, there was an extremely significant
correlation (p < 0.01) between the Tleaf, RHsfc, and air
temperature, and also RHsfc, Vpdl, and instantaneous wind speed.
There were significant correlations (p < 0.05) between Vpdl and air

temperature, Tleaf and instantaneous wind speed, and Tleaf, PAR, and
solar radiation. The change of Vpdl led to significant changes in air
temperature and instantaneous wind speed. A possible explanation for
this may be that Bauhinia x blakeana affected the microclimate by
impacting its transpiration rate. The temperature and instantaneous
wind speed of the area underneath the canopy had correlations with
Tleaf, RHsfc, and Vpdl. The relative humidity was not found to be
correlated with any physiological parameters.

For F. virens, there was an extremely significant correlation (p <
0.01) between Tleaf, RHsfc, and air temperature, and also Vpdl and
solar radiation. Ficus virens had a significant correlation (p < 0.05)
between Vpdl and air temperature, and Tleaf, RHsfc, and instantaneous
wind speed. The air temperature and instantaneous wind speed of the
area underneath the canopy had a correlation with the physiological
parameters of Tleaf, RHsfc, and Vpdl. Vpdl was correlated with solar
radiation and air temperature simultaneously. The relative humidity
was not found to be correlated with any physiological parameters.

For C. camphora, the five physiological parameters all had a
correlation with the four factors of microclimate. There was an
extremely significant correlation (p < 0.01) between Tleaf, RHsfc,
and air temperature, and PAR and solar radiation. The air temperature
had a significant correlation (p < 0.05) with Gs and Vpdl. The
instantaneous wind speed and solar radiation had significant
correlation (p < 0.05) with Tleaf and RHsfc. The relative humidity
had a significant correlation (p < 0.05) with RHsfc and Vpdl. However,
except C. camphora, relative humidity showed no correlation with the
physiological parameters of other tree species.

According to the Pearson correlation analysis, the correlation
between the physiological parameters and the factors of

TABLE 5 Correlation of physiological parameters of trees with microclimatic factors.

Tree species Climate factors Trees physiological parameters

Tleaf RHsfc Gs PAR Vpdl

Ficus microcarpa Temperature (Temp) 0.991** 0.887** 0.58 0.774* 0.663

Relative Humidity (RH) 0.351 0.652 0.123 0.174 0.389

Instantaneous Wind Speed (IWS) 0.833** 0.684* 0.488 0.49 0.511

Solar Radiation Under Forest (RS) 0.583 0.369 0.303 0.720* 0.509

Bauhinia x blakeana Temperature (Temp) 0.984** 0.932** 0.381 0.602 0.734*

Relative Humidity (RH) −0.019 0.166 0.083 0.141 0.167

Instantaneous Wind Speed (IWS) 0.798* 0.845** 0.334 0.673 0.855**

Solar Radiation Under Forest (RS) 0.738* 0.621 0.642 0.783* 0.635

Ficus virens Temperature (Temp) 0.995** 0.969** 0.679 0.633 0.837*

Relative Humidity (RH) 0.069 0.179 0.137 0.134 −0.007

Instantaneous Wind Speed (IWS) 0.768* 0759* 0.14 0.149 0.553

Solar Radiation Under Forest (RS) 0.735 0.681 0.652 0.549 0.894**

Cinnamomum camphora Temperature (Temp) 0.995** 0.965** 0.773* 0.666 0.804*

Relative Humidity (RH) 0.678 0.811* −0.333 0.241 0.771*

Instantaneous Wind Speed (IWS) 0.797* 0.795* 0.682 0.342 0.516

Solar Radiation Under Forest (RS) 0.796* 0.727* 0.263 0.848** 0.303

**= Extremely Significantly correlated at the 0.01 level (bilateral); * = Significantly correlated at the 0.05 level (two-sided).
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microclimate was significant. The physiological parameters of the four
tree species had different degrees of correlation with factors of
microclimate. Overall, the results of this analysis showed that the
physiological parameters of native plants (F. microcarpa, F. virens,
Bauhinia x blakeana) had significant influences on air temperature,
instantaneous speed, and solar radiation, but had no significant
influence on relative humidity.

3.5 Multiple regression analysis between
physiological parameters of trees and
microclimatic parameters

In order to statistically analyze the intrinsic correlation and
valuable relationships between the five physiological parameters
and four factors of microclimate, we established equations between
them using multiple regression analysis and further explored the
internal mechanisms between the trees and the microclimate.
However, there were no mathematical characteristics of
convergence of some data between the parameters and the
microclimate factors, so it was impossible to establish multiple
regression equations. Finally, equations were successfully
established between the following microclimate factors and
physiological parameters: 1) the physiological parameters of F.
microcarpa and air temperature (Temp), instantaneous wind speed
(IWS), and the solar radiation (SR); 2) the physiological parameters of
Bauhinia x blakeana and Temp and SR; 3) the physiological
parameters of F. virens and Temp, IWS, and SR; 4) the
physiological parameters of C. camphora and Temp, relative
humidity (RH), and SR. We established the equation to calculate
the contribution of the physiological parameters of the four tree
species to the microclimate factors.

As shown in Table 6, with regard to Temp, an analysis of the
contributions of the physiological parameters revealed that the
Tleaf of F. microcarpa had the highest contribution (75.10%),
followed by the Tleaf of F. virens, which had a contribution of
62%. The Tleaf of C. camphora had the lowest contribution to
temperature, at 31.4%.

In terms of IWS, the IWS underneath the canopy of F. microcarpa
was found to be affected by various physiological parameters, with
Tleaf, Gs, RHsfc, PAR, and Vpdl contributing 35.5%, 22.5%, 20.9%,
10.6%, and 10.5%, respectively. In the case of F. virens, Tleaf, RHsfc,
PAR, and Vpdl were identified as the main parameters influencing
wind speed, with contributions of 24.7%, 39.6%, 21%, and 14.7%,
respectively. Notably, RHsfc had the highest contribution rate. In
contrast, the physiological parameters of Bauhinia x blakeana and C.
camphora were found to have no statistical correlation with IWS.

The various physiological parameters performed varying levels of
contribution to the reduction of solar radiation intensity underneath
the canopies. Ficus microcarpa showed a contribution rate of 16.1% for
Tleaf, 23.4% for RHsfc, 18.7% for Gs, 1.4% for PAR, and 40.4% for
Vpdl, with the highest contribution coming from Vpdl. On the other
hand, Bauhinia x blakeana had a contribution of 14.9% for Tleaf,
31.6% for RHsfc, 24.7% for Gs, 19.1% for PAR, and 9.7% for Vpdl,
with the highest contribution coming from RHsfc. Similarly, F. virens
had a contribution of 2.4% for Tleaf, 12.3% for RHsfc, 10.7% for Gs,
8.8% for PAR, and 65.8% for Vpdl, with the highest contribution
coming from Vpdl. Lastly, C. camphora had a contribution of 24.1%
for Tleaf, 17.0% for RHsfc, 18.1% for Gs, and 43.5% for PAR, with the
highest contribution coming from PAR.

According to the data, there appeared to be no correlation between
relative humidity and the physiological parameters of the tree species
with the exception of C. camphora. However, as a foreign species, C.
camphora had a contribution rate to relative humidity of 16.9%, 56.0%,

TABLE 6 Regression equation and contribution of physiological parameters of trees.

Tree species Meteorological
factors

Regression equation Contribution of tree physiological
parameters (%)

Tleaf RHsfc Gs PAR Vpdl

Ficus microcarpa Temp YTemp = 0.860XTleaf-0.072XPAR+0.095XCond+0.13XVpdl 75.1 / 8.2 6.2 11.2

IWS YIWS = 0.879XRHleaf-
1.493XTleaf+0.445XPAR+0.949XCond+0.444XVpdl+0.612

35.5 20.9 22.5 10.6 10.5

RS YRS = −0.3XTleaf-0.438XRHleaf+0.349XCond+0.027XPAR+0.755XVpdl 16.1 23.4 18.7 1.4 40.4

Bauhinia x blakeana Temp YTemp = 1.143XTleaf-0.492XRHleaf+0.352XCond-0.035XPAR 56.2 24.2 17.3 1.7 0.6

RS YRS = 0.399XTleaf-
0.847XRHleaf+0.664XCond+0.512XPAR+0.261XVpdl+0.535

14.9 31.6 24.7 19.1 9.7

Ficus virens Temp YTemp = 0.909XTleaf+0.012XRHleaf-0.227XCond+0.075XPAR+0.237XVpdl 62.3 0.8 15.6 5 16.3

IWS YIWS = −2.021XTleaf+3.237XRHleaf-1.717XCond+1.203XVpdl+0.408 24.7 39.6 21 / 14.7

RS YRS = −0.033XTleaf-
0.167XRHleaf+0.145XCond+0.12XPAR+0.894XVpdl+0.913

2.4 12.3 10.7 8.8 65.8

Cinnamomum
camphora

Temp YTemp = 0.343XTleaf+0.398XRHleaf+0.296XCond+0.02XPAR-
0.036XVpdl+0.535

31.4 36.4 27.1 1.8 3.3

RH YRH = −0.571XTleaf+1.89XRHleaf-0.551XCond-
0.235XPAR+0.129XVpdl+0.845

16.9 56 16.3 7 3.8

RS YRS = −0.417XTleaf+0.331XRHleaf+0.354XCond+0.848XPAR 21.4 17 18.1 43.5 /
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16.3%, 7.0%, and 3.8% for Tleaf, RHsfc, Gs, PAR, and Vpdl,
respectively. The results suggested that RHsfc had the most
significant contribution (56%) to relative humidity.

4 Discussion

4.1 Effects of urban trees on microclimatic
conditions

Previous studies have demonstrated the cooling and humidifying
effects of urban trees. Generally, there are notable differences in terms of
affecting the local microclimate between trees and shrubs, with trees being
superior, particularly in their cooling and humidifying effects (Lu et al.,
2006). Trees are able to enhance the local microclimate, including
reducing extreme wind speeds and temperatures (Baker et al., 2021).
A previous study found that the amplitude of air temperature, surface
temperature, humidity, and heat stress indexes were minimized in
woodlands (Fang et al., 2018). Additionally, in the forest, the cooling
effect is consistent across forests of different tree species (Liu et al., 2014).
In comparison to earlier studies, our observation experiment confirmed
that these four tree species could increase the extremely low temperatures
of winter mornings and decrease the extremely high temperatures in
summer; furthermore, they could increase the humidity of the area
underneath the tree canopy and significantly reduce solar radiation
intensity.

Previous research has rarely involved the study of wind conditions
under different trees. This study revealed that the characteristics of wind
speed in the area underneath the canopy were mainly in the form of
instantaneous wind. According to the instantaneous wind speeds
observed, F. microcarpa was found to be the lowest both in winter
and summer, with values of 0.21 m/s and 0.34 m/s, respectively. In
comparison, the instantaneous wind speed of the areas underneath the
canopies of F. virens andC. camphorawere found to be higher, with values
of 0.86 m/s and 101 m/s in summer and 0.66 m/s and 0.63 m/s in winter,
respectively. A previous studymay explain the findings of our study: Ding
et al. (2022) found that a higher crown base height of C. camphora was
associated with stronger wind speed and frequency underneath the
canopy. The difference in wind speed was related to the average
crown base height of the trees. This was further supported by a study
conducted in Fuzhou that investigated that C. camphora had a strong
effect on increasing wind speed by using ENVI-met (Huang et al., 2022).
Specifically, in our experiment, the crown base heights of F. microcarpa
and C. camphora were 4.4 m and 7.2m, respectively.

The effects of urban trees have differences in different seasons.
According to Shao et al. (2015), the canopies of trees could have a
significant impact on humidifying effects, with greater effects observed
during the summer and autumn seasons in comparison to spring and
winter. A recent study conducted by Meili et al. (2021), there are
seasonal differences in four cities (Phoenix, Singapore, Melbourne and
Zurich). The results of our study indicated that the microclimate
regulation ability of trees has seasonal differences in winter and
summer.

There are different effects produced by different types of trees on
the microclimate. A previous study indicated the varying effects of
three tree species on microclimate by examining the changing of sap
flow, with the cooling effect order being Populus simonii > Cedrus
deodara > C. camphora. This was attributed to the differences in the
volume of the canopy transpiration cooling effect (Wang et al., 2018).

Another study found that different trees (Sabina chinensis, Platycladus
orientalis, and Populus) had different effects in mitigating
temperatures and enhancing humidity (Li et al., 2018). Our study
found that the minimum temperature underneath the canopy of F.
microcarpawas in the summer, which was also supported by a study in
Shenzhen. In continuous observations of various tree species in
Shenzhen, F. microcarpa shows the strongest potential for
transpiration and cooling effect compared to other trees (Ding
et al., 2022). Furthermore, F. microcarpa had the most effect on
increasing humidity among the four tree species. It is speculated
that the ability of different trees may also be related to the closure
canopy. The closure canopy of F. microcarpa was 91.92%, and it was
90.42% for F. virens, both greater than 90%. Conversely, Bauhinia x
blakeana had the lowest closure canopy both in winter (49.00%) and
summer (70.92%), resulting in the fastest heat dissipation and the
slowest cooling effect. This is supported by another study conducted in
Shenzhen, which found that the effect of green space in mitigating
temperature mainly occurred via the sheltering effects of canopies (Li
et al., 2011).

The ability of trees to influence the microclimate environment
must be adapted to the varying climatic conditions in different regions.
In severe cold regions, planting shrubs in the gaps between trees can
enhance the wind protection effect. The complex vegetation structure
has a positive impact on increasing human thermal comfort by
reducing wind speed. Therefore, complex plant structures are
beneficial in severe cold regions (Jin et al., 2018). In arid areas, it is
important to select the appropriate plant species. For example,
planting Caragana intermedia and Artemisia ordosica on the dunes
has been shown to significantly reduce the wind speed, soil
temperature, and air temperature, and increase the relative
humidity and water content of soil (Zhu et al., 2014). In semi-arid
areas, due to arid and windy climate characteristics, deciduous trees
are often selected for planting (Wang et al., 2020).

However, in hot and humid areas, decreasing the high
temperatures in summer, improving windless conditions, and
reducing solar radiation can create a comfortable microclimate
environment. In this research, F. microcarpa was the best species
for improving air temperature and increasing the relative humidity in
the winter. Additionally, in terms of improving wind speed, the
diurnal mean wind speed under F. virens and C. camphora was
found to be relatively higher both in the winter and summer.

4.2 The internal correlation mechanisms
between physiological characteristics of trees
and microclimate environment

Urban trees play a crucial role in shaping the local microclimate of
the areas underneath their canopy through various physiological
processes, such as photosynthesis and evapotranspiration. These
processes affect the circulation of thermal energy and water,
thereby impacting the local microclimate environment. Such effects
are not only ecologically significant but also provide valuable insights
into the effects of different tree physiological characteristics on
changing climate environments. For instance, the results of our
research can serve as a valuable reference for selecting appropriate
tree species in urban planning efforts.

Recent studies have examined the correlations between the
characteristics of urban trees and the local microclimate
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underneath the canopy. A major focus of this field has been the
morphological characteristics of trees, such as height, crown width,
and vertical structure, and their impact on the local microclimate
(Wang et al., 2020). Researchers have utilized software such as ENVI-
met to investigate the effects of crown structure and layout on
temperature and humidity (Wei et al., 2019). Previous research
conducted in Beijing Olympic Park has shown that the canopy
structural characteristics (leaf area index and canopy coverage) of
certain plants play a significant role in regulating microclimate factors
(Yan et al., 2012).

Research on the influence of the physiological parameters of trees
on the microclimate underneath the canopy is relatively scarce.
However, previous research has revealed that physiological
parameters have an extremely significant correlation with
microclimate parameters (Shao et al., 2015). Data from one study
suggested that Temp, Tleaf, and RH had a significant effect on the
respiration of five tree species (Acer buergeranum, Platanus acerifolia,
Ligustrum lucidum, C. camphora, andMagnolia grandiflcm). Of these
parameters, Tleaf was found to have the most significant positive
influence (Gao et al., 2006). Our research also confirmed this, showing
that Tleaf had an extremely significant correlation with temperature,
instantaneous wind speed, and solar radiation in the microclimate
underneath the canopy. Furthermore, we found that RHsfc and Vpdl
were extremely significantly correlated with temperature,
instantaneous wind speed, and solar radiation. These results
indicated that Tleaf, RHsfc, and Vpdl were the main parameters
that impacted the microclimate of the area underneath the canopy.

However, except for C. camphora, the physiological parameters of
the other three species did not show any correlation with relative
humidity. As a result, through statistical and mathematical analysis,
only the physiological parameters (Tleaf, RHsfc, Gs, PAR, and Vpdl)
of C. camphora established regression equations with relative
humidity. This finding was consistent with that of Xia et al. (2021),
who investigated the possibility that C. camphora could improve air
humidity and found that C. camphora was sensitive to changes in
water conditions.

Wang et al. (2018) investigated the effect of green spaces on
mitigating temperatures through evapotranspiration during the
night and providing shade during the daytime. The results
showed that the contribution (60%–75%) to reducing
temperatures during the daytime by providing canopy shade was
significantly greater than the contribution (25%–40%) made by
evapotranspiration. Furthermore, our research confirmed this
finding by analyzing physiological parameters. Through the
analysis of multiple regression equations, we found that the Tleaf
of F. microcarpa and C. camphora contributed to mitigating
temperatured by 75.10% and 62.3%, respectively. In the statistical
analysis of Gs and Vpdl, both of which represent evapotranspiration,
F. microcarpa (8.2% and 11.2%) and F. virens (15.6% and 16.3%)
contributed to the cooling effect. We also presumed that temperature
was correlated with the closure canopy, which represented the
parameter of shade. The canopy closure of F. microcarpa and F.
virens was over 90%. This presumption could be confirmed by a
study in Shandong indicating that the degree of canopy closure of
trees (S. chinensis, P. orientalis, and Populus) could significantly
affect the microclimate underneath canopy (Li et al., 2018).

5 Conclusion

The southern subtropical city of Guangzhou is known for its hot
and humid climate, and characterized by the presence of evergreen
trees. Our study aimed to investigate the following questions: How
does the microclimate (Temp, RH, IWS, SR) vary underneath the
canopy of different tree species in this area? What is the correlation
between the physiological parameters of four tree species and the
microclimate underneath their canopy, and what mechanisms are
involved? To address these questions, we focused on the four trees
species that are commonly found in hot and humid areas of
Guangzhou and commonly used: F. microcarpa, F. virens, Bauhinia
x blakeana, and C. camphora. To represent the typical climate
characteristics of these areas, observations were conducted in
January and August. Data were collected using a HOBE (H21-
0024, onset), Li-6400 portable photosynthesis system, and
LPPYRA06 spectrally flat class C (second class) albedometer.
Pearson correlation coefficient was used to analyze the correlation
between physiological and microclimate factors of the four tree
species. Furthermore, through mathematical and statistical analysis,
the effects of internal mechanisms between the four microclimate
factors and five physiological parameters were investigated, and
multiple regression equations were established to indicate the
correlation between them.

1 The characteristics of the microclimate
underneath the canopy

The four tree species studied showed significant cooling effects
during the daytime in the summer. In winter, the Temp of the area
underneath the canopy of the four tree species was found to be higher
than that of the weather stations during 8:00–9:00. The Temp under F.
microcarpa was found to be warmer than the weather stations before
12:00.

Relative humidity underneath the canopies of the four tree species
was significantly higher than that of the weather stations in winter. In
contrast, in summer, while the RH was still higher than that of the
weather stations, the difference between the two was found to be
smaller than that in winter. Furthermore, the humidifying effect of F.
microcarpa was found to be the greatest in comparison to the other
three species studied.

Regarding instantaneous wind speed underneath the canopy, F.
virens had the highest in winter and C. camphora the highest in
summer. Our study found that the instantaneous wind speed of the
four tree species slowed down to almost no wind in the cold winter
afternoons, which reduced the cooling effect in winter; however, it
increased in the summer afternoons, which improved the windless
conditions and heat, making it more favorable for human habitation in
hot summers. The impact of the trees could improve instantaneous
wind speed in summer while decreasing the cold winds in winter,
thereby maintaining a comfortable local microclimate in the area
underneath the canopy.

The study found that in both winter and summer, the
presence of trees significantly reduced solar radiation,
particularly at noon.
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2 The correlation analysis between the
physiological parameters of trees and
microclimate

The results of the Pearson correlation coefficient analysis revealed
that there was an extremely significant positive correlation between
the air temperature underneath the canopy and the Tleaf of the four
tree species, and a significant correlation between the instantaneous
wind speed and the RHsfc of the four tree species. However, no
correlation was found between the physiological parameters of the tree
species with the exception of C. camphora and RH.

The results of the multiple regression analysis revealed that
certain microclimate factors could establish correlation equations
with physiological parameters, while others could not. The Tleaf of F.
microcarpa had the highest contribution (75.10%) to the Temp,
while C. camphora had the smallest contribution (31.4%). Ficus
microcarpa and F. virens improved the wind speed via the combined
impacts of Tleaf, RHsfc, Gs, PAR, and Vpdl. The RHsfc of C.
camphora had a significant contribution (56%) to the relative
humidity. Regarding reducing the solar radiation intensity, the
Vpdl of F. microcarpa and F. virens, RHsfc of Bauhinia x
blakeana, and PAR of C. camphora had higher contributions,
comparatively.
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