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Background

Glycolytic metabolic pathway has been confirmed to play a vital role in the proliferation, survival, and migration of malignant tumors, but the relationship between glycolytic pathway-related genes and osteosarcoma (OS) metastasis and prognosis remain unclear.



Methods

We performed Gene set enrichment analysis (GSEA) on the osteosarcoma dataset in the TARGET database to explore differences in glycolysis-related pathway gene sets between primary osteosarcoma (without other organ metastases) and metastatic osteosarcoma patient samples, as well as glycolytic pathway gene set gene difference analysis. Then, we extracted OS data from the TCGA database and used Cox proportional risk regression to identify prognosis-associated glycolytic genes to establish a risk model. Further, the validity of the risk model was confirmed using the GEO database dataset. Finally, we further screened OS metastasis-related genes based on machine learning. We selected the genes with the highest clinical metastasis-related importance as representative genes for in vitro experimental validation.



Results

Using the TARGET osteosarcoma dataset, we identified 5 glycolysis-related pathway gene sets that were significantly different in metastatic and non-metastatic osteosarcoma patient samples and identified 29 prognostically relevant genes. Next, we used multivariate Cox regression to determine the inclusion of 13 genes (ADH5, DCN, G6PD, etc.) to construct a prognostic risk score model to predict 1- (AUC=0.959), 3- (AUC=0.899), and 5-year (AUC=0.895) survival under the curve. Ultimately, the KM curves pooled into the datasets GSE21257 and GSE39055 also confirmed the validity of the prognostic risk model, with a statistically significant difference in overall survival between the low- and high-risk groups (P<0.05). In addition, machine learning identified INSR as the gene with the highest importance for OS metastasis, and the transwell assay verified that INSR significantly promoted OS cell metastasis.



Conclusions

A risk model based on seven glycolytic genes (INSR, FAM162A, GLCE, ADH5, G6PD, SDC3, HS2ST1) can effectively evaluate the prognosis of osteosarcoma, and in vitro experiments also confirmed the important role of INSR in promoting OS migration.





Keywords: Osteosarcoma, glycolysis, prognostic risk model, machine learning, INSR



1 Introduction

Osteosarcoma (OS) is adolescents’ most common primary bone malignant tumor, accounting for about 20-34% of all primary malignant bone tumors (1). Although OS tumors can be improved by complete surgical resection and chemotherapy, their prone to recurrence, and metastasis often lead to a poor prognosis for OS patients (2). Even after long-term standardized chemotherapy, OS still has a 35% recurrence rate (3). Metastasis remains the leading cause of death in OS patients, with the major metastases being in the lungs, other bone tissue, and lymph (4, 5). However, up to 80-90% of OS patients with metastatic cancer are difficult to detect clinically due to the small size of early metastases and the low sensitivity of diagnostic imaging (6). Patients with OS with combined metastases usually have a poor prognosis, with only about 20% 5-year survival rate, so there is an urgent need for more sensitive screening methods to identify early metastases in OS (7).

More and more studies have shown that glycolysis-related genes are closely related to tumor occurrence, metastasis and prognosis (8). Glycolysis is the main pathway of glucose metabolism in cancer cells. Cancer cells can undergo glycolysis to metabolize glucose to lactic acid instead of oxidative phosphorylation (OXPHOS), which is the Warburg effect (9). The metabolic shift from OXPHOS to glycolysis is often considered a sign of OS (10). Especially under hypoxic conditions, the invasive potential of OS cells is increased; the angiogenesis, poor chemotherapy response and overall survival rate of OS animals are also significantly reduced (9). The characteristics of the unlimited proliferation of tumor cells make the cells often in a state of hypoxia. The glycolysis pathway can improve the tolerance of tissue cells to hypoxia to avoid apoptosis induced by OXPHOS. At the same time, excessive lactic acid produced by the glycolysis pathway can also decompose and destroy the cell matrix around tumor cells, thus promoting the migration of tumor cells to other tissues and organs.

At present, the prognosis of OS still lacks effective prediction methods, and the relationship with genes related to the glycolysis pathway is still unclear. We hope to use bioinformatics methods to explore the relationship between glycolytic pathway-related genes and the metastasis and prognosis of patients with OS and construct a prognostic risk model for OS, to provide a reference for the survival assessment of OS patients.



2 Materials and methods

The processing flow of this study is shown in Figure 1.




Figure 1 | Schematic workflow of a risk model for osteosarcoma prognosis constructed based on glycolysis-related genes. GSEA, Gene set enrichment analysis.




2.1 OS patient data set to download and standardized processing

The clinical information and mRNA sequencing data of OS patients were downloaded through the TARGET database (https://ocg.cancer.gov/programs/target), and 1. Patients with missing survival information were eliminated, and 87 patients were included. At the same time, the data sets GSE21257 and GSE39055 were obtained from Gene Expression Omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo/). Finally, we use the R 4.0.2 limma software to perform log2 standardization on the mRNA data of the OS samples and take the average value of genes with multiple probes. The specific information of the included data set is shown in Table 1. See Supplementary Material for all data sets.


Table 1 | Basic characteristics of the gene expression profile data.





2.2 Gene set enrichment analysis (GSEA)

First, we use GSEA (http://software.broadinstitute.org/gsea/index.jsp) to determine the glycolysis-related pathway gene set from the Molecular Signatures Database (MSigDB, https://www.gsea-msigdb.org/gsea/msigdb/). Then GSEA was also performed on the osteosarcoma data set of the TARGET database to explore the differences between the glycolysis-related pathway gene sets in the samples of patients with metastatic and non-metastatic osteosarcoma. P<0.05 is set as the critical value.



2.3 Screening of OS prognostic genes and construction of risk models

We obtained 326 human glycolysis-related genes through the glycolysis-related pathway gene set provided by the MSigDB database and extracted human glycolysis-related genes from the osteosarcoma dataset in the TARGET database. Next, we use the survival package of R language to perform a univariate Cox regression analysis and screen out glycolytic genes that are significantly related to the overall survival of patients with OS (P<0.05). Then, through multivariate Cox regression analysis, we screened for independent prognostic genes, constructed a patient prognostic risk model, and drawn a nomogram.

The Risk Score=expmRNA1×β1+expmRNA2×β2+……+expmRNAn×βn (exp:The expression level;β is the regression coefficient of multivariate Cox regression analysis).



2.4 Analysis of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways

The R language cluster profile package for survival-related genes is used for GO and KEGG pathway enrichment analysis. Upload survival-related genes to the STRING database (https://string-db.org/) to construct protein-protein interactions (PPI).



2.5 OS risk model predictive value evaluation and verification

Then, the risk score of OS patients was calculated through the constructed prognostic risk model. The OS patients from the TARGET database were divided into high-risk and low-risk groups based on the median value; the R software survival and survminer packages were used to draw Kaplan-Meier (K-M) curves and receiver operating characteristic (ROC) curves to evaluate the predictive value of the prognostic model; for the data set GSE21257 and GSE39055 also draw the K-M curve based on the prognostic risk model.



2.6 Further screening for OS metastasis-related genes based on machine learning

Beside, machine learning is also an important prognostic gene screening method, referring to previous research (4, 5, 11). Next, a support vector machine (SVM) and random forest (RF) were used to construct a specimen classification model to screen the most closely related prognostic genes for OS metastasis. Hierarchical clustering analysis and unsupervised clustering methods were performed for the TARGET dataset based on the expression values of prognostic genes. In addition, the performance of different types of samples is evaluated by iterating combinations of random features until the optimal variety of features is obtained. Ultimately, representative genes are screened that can be used as representative genes for clinical metastasis relevance.



2.7 In vitro experimental validation

The INSR gene with the highest importance in tumor metastasis-related aspects obtained by the RF classifier algorithm was selected as a representative gene for in vitro experimental validation.


2.7.1 Cell culture

MG-63 osteosarcoma cell line (ATCC, CAS cell bank) and hFOB1.19 osteoblast cell line (ATCC, CAS cell bank) were selected for in vitro validation. The cells were cultured in a DMEM medium (10% FBS and 1% penicillin/streptomycin) at 37°C and 5% CO2 in an incubator according to previous culture methods (12).



2.7.2 Western blotting (WB)

First, total protein was extracted from MG-63 cells and hFOB1.19 cells using RIPA buffer. Next, complete proteins were separated by 10% SDS-PAGE and transferred to polyvinylidene fluoride (PVDF) membranes. The membranes were next closed with 5% skim milk powder in TBST at 37°C for 1h and incubated with primary antibodies at 4°C overnight. The antibodies were anti-INSR antibody (#38126, Signalway Antibody LLC, SAB, USA), anti-GAPDH antibody (#23001, Signalway Antibody LLC, SAB, USA) antibody as an internal reference. Then TBST was washed for 20 minutes and incubated with anti-rabbit horseradish peroxidase-conjugated secondary antibody for 1 hour at 37°C. Finally, the protein bands were observed with an enhanced chemiluminescence kit.



2.7.3 RNA interference and cell transfection

SiRNA-INSR and siRNA-control were designed and synthesized by GenePharma Biologicals (Shanghai, China). The sequences are as follows: 5’- GGAUCACGACUGUUCUUUATT-3’ (siRNA-INSR); 5’- AAUUCUCCGAACGUGUCACTT-3’ (siRNA-control). Then, according to the instructions, MG-63 cells were transfected with Lipofectamine 3000 reagent (Invitrogen, Carlsbad, CA, USA), and siRNA-con transfection was used as a control. After 72h, the expression of INSR in MG-63 cells was detected by WB.



2.7.4 Cell transwell assay

As described previously (13), simply add 500 uL of complete medium to the lower chamber of the Transwell pre-coated with Matrigel matrix and 150 uL of MG-63 cell suspension to the upper room and incubate in the incubator. 12 h later, remove the chambers, wash once with PBS (gently), then place the sections in a 24-well plate (600 μL of 4% paraformaldehyde) and fix for 20-30 min and wash twice with PBS. Next, the chambers were stained in crystalline violet staining solution (600 μL 0.1%) for 10-20 min and washed twice with PBS. Finally, the cells inside the chambers were wiped with cotton swabs and air-dried, microscopically observed the chambers’ membranes.




2.8 Statistical analysis

All the data in our study were analyzed by R version4.0.2 (http://www.R-project.org). Univariate Cox regression analysis was used to assess the correlation between gene expression and patient prognosis. Multivariate Cox regression analysis was used to establish risk profiles based on genes associated with prognosis in patients with OS and analysis of differences in survival between high- and low-risk groups generated by log-ranking tests defined by K-M analysis. All cell experiments were repeated three times, and the differences between data were analyzed for significance by Student`s t-test. P<0.05 was considered significant in all statistical tests.




3 Results


3.1 Acquisition of glycolysis pathway gene set and screening of differential genes

We obtained 5 glycolysis-related pathway gene sets from MSigDB, namely BIOCARTA GLYCOLYSIS PATHWAY, GO GLYCOLYTIC PROCES, HALLMARK GLYCOLYSIS, KEGG GLYCOLYSIS GLUCONEOGENESIS, REACTOME GLYCOLYSIS. The GSEA results of the OS dataset from the TARGET database show that five glycolysis-related pathway gene sets are significantly different in patients with metastatic and non-metastatic OS (P<0.05, Figures 2A–E).




Figure 2 | GSEA identified that five glycolysis gene sets were significantly enriched. (A) BIOCARTA GLYCOLYSIS PATHWAY. (B) GO GLYCOLYTIC PROCES. (C) HALLMARK GLYCOLYSIS. (D) KEGG GLYCOLYSIS GLUCONEOGENESIS. (E) REACTOME GLYCOLYSIS. (F) GO-BP analysis of 29 survival-related genes. (G) GO-MF analysis of 29 survival-related genes. (H) KEGG analysis of 29 survival-related genes. (I) PPI network diagram of 29 survival-related genes.





3.2 Screening of genes related to OS prognosis

We extracted 326 genes from the 5 glycolysis-related pathway gene sets. Next, use R language to sort out the gene sequencing data of OS patients from the TARGET database and extract a total of 326 human glycolysis-related gene expression profiles. The results of univariate Cox regression analysis showed that 29 glycolytic pathway-related genes were significantly associated with the overall survival of OS patients (P<0.05, Supplementary Table 1).



3.3 GO and KEGG pathway analysis

For 29 prognostic-related genes, the results of GO analysis show that these glycolytic genes can be enriched in some basic biological processes. It includes ADP metabolism, pyruvate metabolism, purine nucleoside diphosphate metabolism and nucleoside diphosphate metabolism (Figure 2F). Some of them are enriched in molecular functions, which affect carbohydrate phosphatase activity, sugar phosphatase activity, phosphatase activity, oxidoreductase activity and so on (Figure 2G). Meanwhile, KEGG analysis showed that these 29 prognostic genes were mainly related to carbon metabolism, glycolysis/gluconeogenesis, pyruvate metabolism, glycosaminoglycan biosynthesis, heparan sulfate/heparin (Figure 2H). These genes are linked to form a PPI network (Figure 2I).



3.4 Construction of risk model for OS prognosis

For these 29 prognosis-related genes, we finally included 13 genes (ADH5、DCN、G6PD、PGAM1, ZNF292, CDK1, PFKFB2, FAM162A, GNPDA2, SDC3, INSR, GLC, HS2ST1) through multivariate Cox regression analysis to construct the prognosis risk model (Table 2) and draw the nomogram (Figure 3A). The risk score of the constructed prognostic risk model=(ADH5×-0.795)+(DCN×-0.470)+(G6PD×-1.020)+(PGAM1×1.114)+(ZNF292×1.157)+(CDK1×0.812)+(PFKFB2×2.043)+(FAM162A×1.456)+(GNPDA2×-1.047)+(SDC3×-0.748)+(INSR×1.278)+(GLCE×0.671)+(HS2ST1×-1.841). See Supplementary Table 2 for the results of multivariate Cox regression analysis.


Table 2 | Characteristics of genes in the prognostic model.






Figure 3 | (A) Nomogram of prediction model for OS patients. (B) Risk score distribution of low-risk (green) and high-risk (red) in TARGET patients with OS. (C) Risk score distribution of low-risk (green) and high-risk (red) in GSE21257 patients. (D) Scatter plot of survival status of TARGET patients with OS. Red dots (dead); green dots (alive). (E) Scatter plot of survival status of GSE21257 patients in. Red dots (dead); green dots (alive). (F) Expression of risk genes in the high-risk (blue) and low-risk (pink) of TARGET patients with OS. (G) Expression of risk genes in the high-risk (blue) and low-risk (pink) of GSE21257 patients with OS.





3.5 Evaluation and validation of prognostic risk models

As shown in Figures 3B, C, we sorted the risk scores of all OS patients to get the distribution of the survival rate. From the scatter plot, we found that with the increase in risk score, the mortality of patients increased gradually (Figures 3D, E). After calculation, the genes with Hazard Ratio (HR) > 1 (ZNF292, CDK1, FAM162A, INSR, GLCE) were classified as risk genes, while the genes with HR < 1 (ADH5, DCN, G6PD, PGAM1, PFKFB2, GNPDA2, SDC3, HS2ST1) were protective genes. Patients in the high-risk group are more likely to express risk genes, while patients in the low-risk group tend to express protective genes (Figures 3F, G).

Next, the area under the curve (AUC) of 1-year, 3-years and 5-years survival rates of OS patients were 0.959, 0.899 and 0.895, respectively, which means that the risk model has a significant prognostic value (Figures 4A–C). Furthermore, according to the K-M curve drawn by the prognosis model, the survival rates of the TARGET osteosarcoma data set, GSE21257 data set and GSEGSE39055 data set in the high-risk group were significantly lower than those in the low-risk group (P<0.05, Figures 4D–F).




Figure 4 | (A) ROC curve analysis of 1 year survival in TARGET patients with OS. (B) ROC curve analysis of 3 years survival in TARGET patients with OS. (C) ROC curve analysis of 5 years survival in TARGET patients with OS. (D) K-M curve of TARGET patients with OS. (E) K-M curve of GSE21257 patients with OS. (F) K-M curve of GSE39055 patients with OS.





3.6 Further screening for metastasis-associated prognostic genes

Sample classification models were constructed using SVM and RF based on optimal feature prognosis gene combinations to construct SVM and RF classifiers based on OS differential expression values of metastasis and non-metastasis groups and unsupervised clustering methods for error analysis in the TARGET dataset (Figures 5A, B). The results showed that the best prognostic gene combination had the highest accuracy in categorical metastasis when the prognostic number was set to 5. As shown in Figure 5C, the RF constructed sample classification model has higher accuracy (AUC is close to 1) compared to SVM (AUC = 0.985).




Figure 5 | Box plots (A) and error analysis (B) of two unsupervised clustering methods for OS-based differential expression of metastasis and non-metastasis genes, and comparison of the accuracy (C) of the two operational models, with the RF model (D) classifier iteration process. (E) The order of importance of the correlation between prognostic genes and tumor metastasis. (F) Seven prognostic genes with the highest correlation with OS metastasis constructed a metastasis related disease model.



The RF classifier’s iterative calculation process was shown in Figure 5D. The RF classifier algorithm obtained the specific importance ranking of prognostic genes in terms of tumor metastasis correlation (Figure 5E) and finally screened the seven prognostic genes with the highest correlation with tumor metastasis (INSR, FAM162A, GLCE, ADH5, G6PD, SDC3, HS2ST1), and constructed metastasis-related disease models based on the seven genes (Figure 5F).



3.7 In vitro experimental validation

The INSR gene, which has the highest importance with OS metastasis, was finally selected for validation. The WB results showed that INSR protein expression was higher in human MG-63 osteosarcoma cells than in human hFOB1.19 osteoblasts (P<0.01, Figures 6A, B). Also, Transwell assays confirmed that MG-63 cells migrated more significantly than hFOB1.19 cells (P<0.01, Figure 6C). To further verify the function of the INSR gene in OS invasion, we designed and synthesized siRNA-INSR targeting the INSR gene and transfected it into MG-63 cells with Lipo3000, using siRNA-control as control. Subsequent WB results showed that siRNA-INSR effectively reduced INSR protein expression (P<0.01, Figures 6D, E). Transwell assays also showed a significant decrease in invasion of MG-63 cells after siRNA-INSR transfection compared to the control group (P<0.01, Figure 6F). These results further confirmed the important regulatory role of INSR on OS metastasis.




Figure 6 | In vitro validation of INSR gene. (A) Expression of INSR protein by western blotting in MG-63 cells and hFOB 1.19 cells. (B) Relative density of INSR protein expression in MG-63 cells and hFOB 1.19 cells. n = 3, data are represented as mean ± SD, **P < 0.01 vs. MG-63 cells. (C) Transwell invasion of MG-63 cells and hFOB 1.19 cells. (D) Expression of INSR protein by western blotting in MG-63 cells after transfection of siRNA-control and siRNA-INSR. (E) Relative density of INSR protein expression in MG-63 cells after transfection of siRNA-control and siRNA-INSR. n = 3, data are represented as mean ± SD, **P < 0.01 vs. siRNA-control. (F) Transwell invasion of MG-63 cells after transfection of siRNA-control and siRNA-INSR.






4 Discussions

Osteosarcoma is highly invasive and metastatic, often leading to a poor prognosis (14, 15). Therefore, it is urgent to find effective biomarkers for OS-specific forecasts to improve the management of OS patients. Considering the importance of the glycolysis pathway in the occurrence and progression of cancer (16, 17), it is necessary to search for glycolysis pathway-related biomarkers for the prognosis of OS patients.

In this study, we constructed a prognostic risk model of OS based on 13 key genes in glycolysis pathways and improved the prognostic ability of OS patients at the gene level. The results show that the risk model can successfully divide OS patients into high-risk and low-risk groups, significantly affecting overall survival.

Alcohol dehydrogenase5 (ADH5) is an important formaldehyde catabolism enzyme, and malignant tumor cells often produce a large amount of by-products-endogenous formaldehyde during their physiological processes (18). Therefore, the activity of adh5 is considered an excellent prognostic marker by oncologists. Studies have shown that ADH5 and ADH7 may play an anti-tumor role in the carcinogenesis of Non-small cell lung cancer (NSCLC) and can be used as biomarkers to predict NSCLC patients (19). At the same time, ADH5 is also considered an important tumor suppressor factor for gastric cancer (18). Our research has also confirmed that the level of ADH5 can indeed affect the survival time of OS patients. Decorin (DCN) is a multi-functional molecule of the extracellular matrix. It is considered a natural tumor suppressor, inhibiting the growth and metastasis of various cancer cells in vitro (16). DCN can not only inhibit osteosarcoma cell-mediated angiogenesis (20), but also the lung metastasis of osteosarcoma in mice (21).

Glucose 6-phosphate dehydrogenase (G6PD) is an important enzyme that assists glucose metabolism. Studies have confirmed that LncRNA OR3A4 can regulate the growth of osteosarcoma cells by regulating miR-1207-5p/G6PD signaling, and inhibition of OR3A4 can increase the expression of miR-1207-5p, thereby inhibiting the level of G6PD in OS cells (22). The low level of G6PD inhibits the levels of NADPH and glucose in osteosarcoma cells. Consumption and lactic acid production, thereby preventing the progression of OS. Phosphoglycerate mutant enzyme-1 (PGAM1) is a glycolytic gene that can promote the conversion of 3-phosphoglycerate to 2-phosphoglycerate to glycolysis, which can promote cancer cell proliferation and survival (23). Therefore, the level of PGAM1 seems to predict the prognosis of various tumors, such as lung cancer, breast cancer, lymphoma and so on (24–26).

ZNF292 is considered to be a potential suppressor gene (TSG) of gastrointestinal cancer (gastric cancer, liver cancer and colorectal cancer) (27). Studies have confirmed that Circular RNA ZNF292 can affect the proliferation and apoptosis of liver cancer cells by regulating the Wnt/β-catenin pathway, so knocking down circRNA ZNF292 can cause cancer cell cycle to arrest in the G1 phase, thereby inhibiting cell proliferation and promoting the cell apoptosis (28). Similarly, Cyclclindependent kinase 1 (CDK1) belongs to the serine/threonine protein kinase family and is closely related to cell cycle and growth (29). Studies have confirmed that reducing CDKI activity can induce cycle arrest and apoptosis of osteosarcoma cells, thereby reducing the survival of osteosarcoma cells (30).

Tumor cells generally increase glucose metabolism through glycolysis and pentose phosphate pathways to meet rapid cell proliferation’s bioenergy and biosynthesis requirements, and 6-phosphofructo-2-kinase (PFKFB2) is a key enzyme for glycolysis (31). Studies have confirmed that miR-1297 can inhibit osteosarcoma’s proliferation and aerobic glycolysis by regulating PFKFB2 (32). Studies have also found that the SLIT2/ROBO1 axis promotes the Warburg effect of osteosarcoma by activating the SRC/ERK/c-MYC/PFKFB2 pathway (33). Therefore, PFKFB2 is a key factor in the development of osteosarcoma and is closely related to the prognosis of osteosarcoma.

The syndecan (SDC) family consists of four cell surface molecular members (SDC-1 to 4) with different biological functions. Among them, SDC-3 is mainly expressed in brain and nerve tissues and plays a key role in cell development, adhesion and migration (34). Studies have shown that hypoxia can promote the expression of Syndecan-3 so that patients with melanoma tumors have a better overall survival rate (35). Heparan sulfate 2-O-sulfotransferase 1 (HS2ST1) is one of several special enzymes required for synthesizing heparan sulfate, which can catalyze the metastasis of sulfate radical to the sugar moiety of heparan sulfate (36). HS2ST1 plays an essential role in the migration and differentiation of malignant tumors (37). Previous studies have confirmed that the HS2ST1-dependent signal transduction pathway determines the cell viability, matrix interaction and invasive behavior of breast cancer. The increase of HS2ST1 expression significantly promotes the invasiveness of breast cancer cells, leading to a poor prognosis (38).

Insulin receptor (INSR) and IGF1R are both tyrosine kinase receptors (RTKs) and belong to the insulin-like growth factor system (IGFs). The IGFs family mainly consists of IGF1R, IGF2R, INSR, INSR/IGF1R, INSR-related Receptor (IRR) and IGFBP-1~7, which have the function of regulating cell growth and energy metabolism, and have the function of promoting cell proliferation, migration and differentiation (39, 40). The INSR gene encodes a transmembrane tetrameric receptor protein, the insulin receptor. INSR is mainly expressed in tissue targets of insulin metabolic effects: liver, adipose tissue and skeletal muscle, and mainly receives signals from extracellular insulin, thus ensuring insulin metabolic levels in adult individuals (41). In addition, ISNR is also overexpressed in many tumors, colon, breast, lung, and thyroid cancers, among others (42, 43). Our study also found high expression of INSR in MG-63 osteosarcoma cells, which correlates with high levels of glycolysis in tumor cells.

Studies have also shown that the expression of SDC-3 protein has an excellent predictive value for the prognosis of breast cancer (44). INSR can bind to ligands such as insulin and insulin-like growth factor (IGF-1 or IGF-2) to change the structure and conformation, activate intracellular tyrosine kinase, and initiate intracellular signal transduction. Play important physiological functions in the organism (45). INSR is closely related to the metastasis of osteosarcoma. Early studies have shown that blocking the IGF/IGF-1R signal axis with soluble IGF-1R mutants can inhibit the cell proliferation and tumor growth of human osteosarcoma (46). At the same time, MiRNA-466 can also inhibit cell proliferation and invasion in osteosarcoma by directly targeting insulin receptor substrate 1 (47).

Although the clinical significance of glycolysis-related gene signatures in predicting metastasis and prognosis in patients with osteosarcoma has been well established, genome-wide analyses to identify the specific underlying molecular mechanisms of glycolysis-related gene signatures in osteosarcoma are currently lacking, especially with the advent of liquid biopsies and next-generation sequencing. Combined analysis of DNA/RNA and metabolic biomarkers in osteosarcoma or other bone tumors may further elucidate the key steps of glycolysis in regulating the metabolism of tumor cells.



5 Conclusions

We developed a new prognostic risk model for osteosarcoma based on 7 glycolytic genes (INSR, FAM162A, GLCE, ADH5, G6PD, SDC3, HS2ST1) by bioinformatics. We screened INSR as the gene with the highest importance with OS metastasis by machine learning, and in vitro experiments also confirmed the effect of INSR on OS migration with a vital facilitation role. These glycolytic metabolic pathway genes also open new possibilities for targeted therapy in osteosarcoma.
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Simple summary

Studies have shown that about 30% of kidney cancer patients will have metastasis, and lymph node metastasis (LNM) may be related to a poor prognosis. Our retrospective study aims to provide a reliable machine learning-based model to predict the occurrence of LNM in kidney cancer. We screened the pathological grade, liver metastasis, M staging, primary site, T staging, and tumor size from the training group (n=39016) formed by the SEER database and the validation group (n=771) formed by the medical center. Independent predictors of LNM in cancer patients. Using six different algorithms to build a prediction model, it is found that the prediction performance of the XGB model in the training group and the validation group is significantly better than any other machine learning model. The results show that prediction tools based on machine learning can accurately predict the probability of LNM in patients with kidney cancer and have satisfactory clinical application prospects.



Background

Lymph node metastasis (LNM) is associated with the prognosis of patients with kidney cancer. This study aimed to provide reliable machine learning-based (ML-based) models to predict the probability of LNM in kidney cancer.



Methods

Data on patients diagnosed with kidney cancer were extracted from the Surveillance, Epidemiology and Outcomes (SEER) database from 2010 to 2017, and variables were filtered by least absolute shrinkage and selection operator (LASSO), univariate and multivariate logistic regression analyses. Statistically significant risk factors were used to build predictive models. We used 10-fold cross-validation in the validation of the model. The area under the receiver operating characteristic curve (AUC) was used to assess the performance of the model. Correlation heat maps were used to investigate the correlation of features using permutation analysis to assess the importance of predictors. Probability density functions (PDFs) and clinical utility curves (CUCs) were used to determine clinical utility thresholds.



Results

The training cohort of this study included 39,016 patients, and the validation cohort included 771 patients. In the two cohorts, 2544 (6.5%) and 66 (8.1%) patients had LNM, respectively. Pathological grade, liver metastasis, M stage, primary site, T stage, and tumor size were independent predictive factors of LNM. In both model validation, the XGB model significantly outperformed any of the machine learning models with an AUC value of 0.916.A web calculator (https://share.streamlit.io/liuwencai4/renal_lnm/main/renal_lnm.py) were built based on the XGB model. Based on the PDF and CUC, we suggested 54.6% as a threshold probability for guiding the diagnosis of LNM, which could distinguish about 89% of LNM patients.



Conclusions

The predictive tool based on machine learning can precisely indicate the probability of LNM in kidney cancer patients and has a satisfying application prospect in clinical practice.





Keywords: kidney cancer, renal cell cancer, lymph node metastasis, machine learning, predictive model, web calculator



Introduction

Kidney cancer is among the 10 most commonly diagnosed malignant tumors in the United States (1). As a serious public health problem, kidney cancer annually contributes to more than 400,000 diagnosed new cases and 175,000 victims worldwide (2). Renal cell carcinoma (RCC) composed 90% of primary malignant kidney tumor cases (1, 3). About 30% of RCC patients present with metastases (1), and 15% have relapses in distant sites (4, 5) since various mutated genes and histology. The lymph node is one of the most frequent metastatic sites of RCC (4, 6)and may associate with a poor prognosis (7–11). The 5-year survival rate of localized RCC is near 93%. But for those with distant metastatic, the survival rate decreases to 12% (12, 13).

Although great progress had been made in treatments for RCC metastatic, such as immunosuppressants and targeted drugs, these could not stop RCC from relapsing, and relapse is still a big challenge for mankind (14). Early detection could greatly ameliorate the survival rate (15). Predicting lymph node status in RCC patients needs immediate attention by the development of new diagnostic tools.

Great efforts had been paid in developing predictive methods to identify LNM risk factors (16–21). As a novel and popular artificial intelligence tool, ML plays a vital role in improving predictive accuracy in diagnosis and prognosis (22, 23) and has been widely used in medical data analysis (24–26). Compared with other statistical methods, ML algorithms can allow interactions between variables, recognize potentially important predictor variables, find optimized algorithms between the outcome of interest and potential predictor variables by learning from dataset patterns, and have demonstrated greater accuracy in clinical settings (23, 27). Unfortunately, there are still no reports evaluating the LNM risk in RCC patients with ML algorithms.

Hence, we developed a brand-new predictive model with ML algorithms. This will help clinicians with individualized clinical decisions. To establish models, we extracted patient data from the Surveillance, Epidemiology, and End Results (SEER) databases and verified it with an independent external validation dataset.



Materials and methods


Data source and processing

The current study used SEER * Stat software (8.3.5) to extract patients diagnosed with kidney cancer cases from January 1, 2010, to December 31, 2017, as the training cohort.

Patients were enrolled as the following inclusion criteria: (1) The participants were identified with primary kidney cancer identified by using universal morphology codes (8120/3, 8130/3, 8260/3, 8310/3, 8312/3, 8317/3) according to the International Classification of Diseases for Oncology codes (3rd edition); (2) Complete demographic and clinical data including demographic characteristics (marital, age, gender, race, survival times, alive or dead), tumor information (primary site, tumor size, laterality, TNM stage, liver metastasis, and pulmonary metastasis), and pathology (histological type, pathological grade).

Exclusion criteria were listed below: (1) Age at the time of diagnosis younger than 18 years old; (2) Multiple primary tumors; (3) Incomplete data (missing demographic characteristics, tumor information, or survival data); (5) Autopsy cases; (6) Negative pathology report; (7) Incomplete information on lymph node metastasis.

International Classification of Diseases for Oncology code was employed for the histological subtype. The 7th TNM classification of the AJCC Cancer Staging Manual was used to determine oncology staging. The grade of pathological was defined as well-differentiated, moderately differentiated, poorly differentiated, undifferentiated, or unknown.



Model construction and statistical analysis

The t-test and chi-square tests were used in this study. Screening variables to reduce overfitting of the multifactor models, the least absolute shrinkage and selection operator (Lasso) regression analysis was performed in the training cohort (28), then univariate analysis was applied to the variables with non-zero coefficients to further reduce irrelevant variables. Finally, we take variables that indicated statistical significance in univariate analysis into consideration in multivariate analysis, and the independent variables were identified to generate ML models. The final candidates for the ML models were identified by variables with P-value less than 0.05.

Models evaluated the probability of LNM for patients with RCC, based on six ML algorithms, including Logistic regression (LR). B.Naive Bayes Classifier (NBC).C. Decision tree (DT).D.Random Forest (RF). E.Gradient boosting machine (GBM). F.Extreme gradient boosting (XGB).These models were 10-fold cross-validated in the training cohort and validation cohort. The 10-fold cross-validation is to randomly divide the patients into training and validation sets in the ratio of 9:1, with 9 of them as the training set and 1 as the validation set each time. 10 times of validation are calculated. Each ML classifier was assessed via the receiver operating characteristic curve (ROC), the high area under ROC (AUC) represents high predictive accuracy (8). Assessing the weights of variables, permutation importance, and a heat map were employed to show the importance and correlation between the variables. Furthermore, the predictive performance was assessed by probability density function (PDF) and clinical utility curve (CUC) (29, 30).

Statistical analyses were performed in R software (version 4.0.5, https://www.r-project.org/). Python software (version3.8) was applied for developing an ML predictive model and web calculator. P <0.05 indicated positive statistical significance.




Results


Demographic and clinicopathological features

39016 patients with kidney cancer were enrolled in our study, LNM-related patients were 2544 cases (6.5%) in the this study cohort. M stage, marital,age, Sequence number,sex,primary site, grade,laterality, pathology, T stage and tumor size showed significant differences between N0 group and N1 group. The details was described in Table 1.


Table 1 | Baseline of renal cell carcinoma patients with and without lymphatic metastasis.





Correlation of variable with clinical outcome

LASSO regression was used to screen eight variables from sixteen variables with nonzero coefficients when LNM was the endpoint (Figure 1). Univariate analysis showed that age, grade, liver metastasis, M stage, primary site, pulmonary metastasis, T stage, and tumor size were associated with LNM. According to our multivariate logistic regression analysis findings, grade, liver metastasis, M stage, primary site, tumor size, and T stage were independent LNM risk factors. The age of patients does not show significant differences between LNM and non-LNM. Patients with a primary site in the C64.9-kidney had a higher risk of suffering LNM than patients with a primary site in the C65.9-renal pelvis. The patient will face a greater danger of occurrence of LNM when the pathological level turns bad, except moderately differentiated. Liver metastasis was identified to be an independent risk factor, but pulmonary metastasis could not be a risk factor. Moreover, patients with higher M stage (M1) and T stage (T1, T2, T3, T4) were accompanied by more dangers. The detailed data was demonstrated in Table 2.




Figure 1 | Eight variables were screened with nonzero coefficients when LNM was the endpoint. (A). The results of the least absolute shrinkage and selection operator (LASSO) regression (B).10-fold cross-validation of six machine learning algorithms.




Table 2 | Univariate and multivariate logistic regression analysis of risk factors for lymph node metastasis in patients with renal cell cancer.





Development and validation of predictive models

Subsequently, multivariate analysis results yielded six independent risk factors which constituted the basis for our ML models. According to the results of the 10-fold cross-validation in the training cohort, the average AUC values of six ML-based models were listed in Figure 2. Among all ML-ed models, the XGB model showed the best predictive performance (AUC = 0.916, SD = 0.001), closely followed by RF (AUC = 0.914, SD = 0.002), GBM (AUC = 0.908, SD = 0.002) and NBC (AUC = 0.906, SD = 0.002), while the performance of DT (AUC = 0.892, SD = 0.002) was poor. As for the conventional method, LR also performed well (AUC = 0.905, SD = 0.002) (Figure 2). Consequently, the XGB model was used as the optimal prediction model. Figure 3 showed the relative importance of six variables in each prediction model and common trends among all algorithms: the M stage ranked first in all variables. In the XGB model, M stage, T stage, and pathological grade were the top three important variables. We evaluated the correlation of the variables in Figure 4 with a heat map. There was no significant correlation and no collinearity, and variables were independent of each other.




Figure 2 | .Among all ML-ed models, the XGB model showed the best predictive performance. LR, Logistic regression; NBC, Naive Bayes Classifier; DT, Decision tree; RF, Random Forest; GBM, Gradient boosting machine; XGB, Extreme gradient boosting; Std, Standard Deviation.






Figure 3 | The importance of Variables in each prediction model. Among these factors, the M stage is the most important one. (A) Logistic regression (LR). (B) Naive Bayes Classifier (NBC). (C) Decision tree (DT). (D) Random Forest (RF). (E) Gradient boosting machine (GBM). (F) Extreme gradient boosting (XGB).






Figure 4 | Correlation of variables. These variables were independent of each other with no significant correlation and no collinearity.





Choice of the best threshold probability

Choosing the better threshold and clinical performance of the XGB model, PDF, and CUC results could be the decisive factor. Although a moderate overlap between the two curves in PDF, we can see that non-LNM patients were mostly concentrated in the portion representing 0-54.6% LNM risk, whereas patients with LNM were distributed in the residual section (Figure 5A). The CUC presented the true positive percentage of LNM and non-LNM at any threshold of probabilities (Figure 5B). In clinical practice, correct detection of LNM has the same importance as the diagnosis of no LNM. In our study, 54.6% was chosen as the threshold probability for making a clinical decision. About 81% of non-LNM patients and about 89% of LNM patients could be determined.




Figure 5 | Probability density functions and Clinical utility curves of the predictive model. (A) Non-LNM patients were mostly concentrated in the portion representing 0-54.6% LNM risk, and LNM were distributed in the residual section; (B) The true positive percentage of LNM and non-LNM at any threshold of probabilities.





Risk prediction of lymph node metastasis in patients with renal cell carcinoma

A web calculator were built based on the XGB model with six variables for clinicians to predict patients’ corresponding probability of LNM by the input of variables (The concise tool can be acquired by clicking on the link below: https://share.streamlit.io/liuwencai4/renal_lnm/main/renal_lnm.py). As shown in Figure 6, we calculated the probability online quickly (Probability of LNM = 3.1%).




Figure 6 | The web calculator for predicting lymph node metastasis in patients with RCC.






Discussion

Kidney cancer is the third most frequent cancer in the urological tumor (31). Approximately one-third of patients with kidney cancer will develop metastases, of whom 2.7 to 10% lived with lymph node metastasis (11). Lymph node metastasis harms the prognosis of kidney cancer (11, 12, 32–34). 3-years of OS rates of patients with or without LNM were 86.5% and 61.1% respectively (35). Unfortunately, we still do not have effective systemic treatment for metastatic kidney cancer (1). Implementing early diagnosis can assist clinicians in decision-making in this dilemma situation.

In the present study, we validated six ML models to predict LNM in RCC. There were five significant findings. First, the six independent risk factors of LNM were pathological grade, liver metastasis, M stage, primary site, T stage, and tumor size. Second, the six ML models could predict LNM, most models reached high areas under the ROC curve (AUCs) > 0.9. Third, after comparing the performance of the six ML-based models, XGB had the best prediction performance. Fourth, 54.6% of the threshold probability for clinical decision-making was identified by FDP and CUC. Fifth, we built a web calculator based on the XGB model.

In our study, T stage, M stage, and pathological grade were independent predictors of LNM, Patients with high-level pathological grade, and advanced T and M stages had a higher risk of LNM, probably indicating that tumors were closely related to much more drastic aggressive, which was similar to previous studies (17, 18, 36–38). Meanwhile, Figure 5 also showed that the T stage and M stage were the top two important variables in our five models. Noticeably, the M stage had a powerful impact on LNM, surpassing that of the T stage. T and M stages were correlated with poor survival of RCC patients (7). Therefore, T and M stages play a crucial role in the diagnosis, clinical management, and prognosis. We suggested a whole-body CT scan, even PET/CT is necessary for identifying LNM. Furthermore, we also found a tight correlation between tumor size and the incidence of LNM in RCC, and this correlation has been revealed previously (17, 39, 40). Thompson et al. demonstrated that tumor size was closely associated with poor prognosis and RCC patients with a tumor smaller than 3 cm had a significantly low risk of metastasis (39). Nevertheless, Kates et al. showed that patients with tumors 25 ~ 30 mm in size still had a greater metastatic potential (40). Liver metastasis increased the 1.59-fold risk in LNM patients compared with patients without. Although lung metastasis was a risk factor for LNM based on the result of the univariate analysis(p < 0.001), multivariate analysis didn’t yield a significant difference. According to the origin, RCC could be subdivided into renal pelvic RCC and kidney cancer. In our study, these two subtypes had a distinct difference in LNM possibility. The risk of renal pelvic LNM was 3.33 times higher than kidney cancer. Renal pelvis RCC with an invasion of the inferior vena cava or the renal vein may induce early-onset metastasis (41). Hematogenous spread of tumor cells may increase the occurrence of LNM. However, a study, which enrolled 2485 patients with RCC, demonstrated that the location of primary RCC tumors does not increase the risk of LNM (42).

Multivariate prediction tools were established based on hematological and serum biochemical variables, radiological features, and pathological and molecular parameters (17, 18, 32, 42, 43). We first develop and validate predictive models with ML algorithms. eligible patients from the SEER database were selected for our model development cohort, our sample size was the largest. Six ML algorithms had well performance in predicting LNM. Comparing the performance in internal validation with 10-fold cross-validation, we found that the XGB algorithm was better than those of other algorithms (AUC = 0.916). Furthermore, the XGB still had the best performance by externally validating in a cohort from a Chinese medical institution (AUC=0.915).

ML technology has been widely applied in the healthcare field with powerful computing capacity. This AI technology could predict the possibility of metastatic diseases, aid diagnosis, and evaluate prognosis by analyzing, training, and modeling a bulk of medical data within a short period (44). Predicting lymph node metastasis with ML algorithms has been proven in lung, thyroid, and colorectal cancer (22, 24, 25, 45–47). The XGB method was an ensemble learning method (48). This ML algorithm can minimize errors, maximize models’ performance, and effectively prevents overfitting (44, 49).

Probability density function (PDF) and Clinical utility curve (CUC) were used to compare the net benefit of different thresholds in our study. 54.6% of the threshold probability was chosen as the best cut-off value for clinical decision-making. Patients with a higher metastatic risk than 54.6% were classified as a high-risk group of LNM. In our ML-based model, approximately 89% of metastatic patients can be detected. To improve the availability and clinical usefulness, we set up a web calculator of the XGB model with six variables introduced. The web calculator of the RFC model can provide a visual and dynamic assessment. By typing the patient’s personalized information into this web calculator, clinicians and patients from anywhere in the world can easily obtain the probability of LNM and evaluate the LNM risk.This model could easily process the association between the predictors and LNM and it could be a useful method for other patients worldwide.

In addition to the clinical findings, innovations in the present study are listed below. First, this is the first study to develop ML-based models for the prediction of LNM in RCC patients. Furthermore, the accuracy and reliability of the ML-based models have been verified by an external validation cohort. External validation was executed to verify the accuracy and reliability. Additionally, we applied permutation importance to identify the importance of each variable and used a correlation heat map to explore the correlation between variables. Finally, we established an online application of the XGB to calculate the risk for each patient.

Our study still has several limitations. First, the data from external validation and the SEER database were retrospectively selected. This could lead to selection bias, a prospective cohort could be designed to enhance the credibility of the results in the future. Secondly, despite including a large sample size and achieving high accuracy, several candidate variables which have been previously explored were not involved in this study, such as the presence of a sarcomatous component, ECOG-PS, histological tumor necrosis, clinical node status, local symptoms, molecular and gen parameters, the lactate dehydrogenase level, and the Fuhrman classification. These variables could improve the accuracy of the model prediction. Meanwhile, we extracted the patients according to ICD-O codes, not the latest published WHO histological types.



Conclusions

In our study, we innovatively comprehensively assess several ML-based predictive models and reported the XGB algorithm could be the optimal model for predicting LNM in RCC patients. Six independent risk factors of LNM were identified, including grade, liver metastasis, M stage, primary site, T stage, and tumor size. Considering that patients with genotypically or phenotypically different, RCC may correspond to a different association between the predictors and LNM. In addition to the developed cohort origin from the SEER database, this model also has been externally validated in regions of China. The PDF and CUC showed that our tool works well in clinical utility. The web calculator of the RFC model can provide a visual and dynamic assessment. This model could easily process the association between the predictors and LNM in our database and it could be a useful method for other patients worldwide.
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Background

Colorectal cancer (CRC) is still one of the most frequently diagnosed malignancy around the world. The complex etiology and high heterogeneity of CRC necessitates the identification of new reliable signature to identify different tumor prognosis, which may help more precise understanding of the molecular properties of CRC and identify the appropriate treatment for CRC patients. In this study, we aimed to identify a combined immune and metabolism gene signature for prognosis prediction of CRC from large volume of CRC transcriptional data.



Methods

Gene expression profiling and clinical data of HCC samples was retrieved from the from public datasets. IRGs and MRGs were identified from differential expression analysis. Univariate and multivariate Cox regression analysis were applied to establish the prognostic metabolism-immune status-related signature. Kaplan-Meier survival and receiver operating characteristic (ROC) curves were generated for diagnostic efficacy estimation. Real-time polymerase chain reaction (RT-PCR), Western blot and immunohistochemistry (IHC) was conducted to verified the expression of key genes in CRC cells and tissues.



Results

A gene signature comprising four genes (including two IRGs and two MRGs) were identified and verified, with superior predictive performance in discriminating the overall survival (OS) of high-risk and low-risk compared to existing signatures. A prognostic nomogram based on the four-gene signature exhibited a best predictive performance, which enabled the prognosis prediction of CRC patients. The hub gene ESM1 related to CRC were selected via the machine learning and prognostic analysis. RT-PCR, Western blot and IHC indicated that ESM1 was high expressed in tumor than normal with superior predictive performance of CRC survival.



Conclusions

A novel combined MRGs and IRGs-related prognostic signature that could stratify CRC patients into low-and high- risk groups of unfavorable outcomes for survival, was identified and verified. This might help, to some extent, to individualized treatment and prognosis assessment of CRC patients. Similarly, the mining of key genes provides a new perspective to explore the molecular mechanisms and targeted therapies of CRC.





Keywords: colorectal cancer, immune, prognosis, metabolism, gene signature



Introduction

Accounting for 10.9% of all cancers in men and 9.5% of the all cancers in women, colorectal cancer (CRC) is still one of the most frequently diagnosed malignancy around the world (1). Despite remarkable advances in early diagnosis and management within the past decades, the prognosis for CRC patients remains unsatisfactory (2). Even though new therapeutic options such as immunotherapy and targeted therapy have been explored with certain success, the average 5-year survival probability for patients with advanced CRC is still discouraging (3). The complex etiology and high heterogeneity of CRC necessitates the identification of new reliable signature to identify different tumor prognosis, which may help more precise understanding of the molecular properties of CRC and identify the appropriate treatment for CRC patients.

In addition to the classic tumor, node, metastasis (TNM) staging, several molecular features unique to CRC, such as microsatellite instability (MSI), chromosomal instability (CIN) and CpG island methylator phenotype (CIMP), provide indispensable guidance for tailored treatment as well as prognostic assessment (4). For instance, CRC patients with a low proportion of KRAS mutations shall be more likely to benefit from epidermal growth factor receptor (EGFR) antibody therapy (5), while patients with MSI-H molecular profiles do not receive an overall survival advantage from immune checkpoint-blockade administration (6). These findings suggested that immunotherapy is likely to be effective against specific subtypes of CRC. Recent findings revealed that immune alterations, which was used for molecular subtypes of low-grade diffuse glioma, were correlated with different immune subtypes, manifesting as different lymphocyte profiles, tumor mutation load and clinical regression (7). This inspired us that some signatures, especially immune-related signatures, can be utilized for molecular stratifying of CRC to develop personalized treatment strategies and evaluation of clinical survival outcome.

Emerging evidences have suggested an inextricable connection between tumor growth and metabolic pathways (8). The differences in metabolic patterns between tumor cells and normal cells enable tumor cells to exhibit unique metabolic profiles of glucose, fatty acids and amino acids (9). As one of the hallmarks of CRC, metabolism reprogramming due to various causes leads to metabolic interactions between immune cells, cancer stem cells, the tumor microenvironment (TME) and the gut microbiota, ultimately resulting in diverse therapeutic responses and clinical outcomes (10). Such metabolic differences are expected to be a promising anti-cancer strategy, as in-depth exploration of the molecular changes caused by metabolism rewiring could facilitate the advancement of targeted therapies (11).

In this study, we aim to identify a combined immune and metabolism gene signature for prognosis prediction of CRC. A four-gene signature based on immune-related genes (IRGs) and metabolism-related genes (MRGs) from large volume of CRC transcriptional data was identified and validated. This signature will facilitate a deeper understanding of the molecular mechanisms of immunity and metabolism in CRC and provide guidance for more precise personalized immunotherapy.



Materials and methods


Data source

The mRNA expression profiles and corresponding clinical information associated with CRC patients were obtained from TCGA-COAD, including 473 tumor and 41 normal tissue samples) and GSE38832 dataset (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=gse38832, including 118 CRC tissue samples).The RNA-sequencing data (containing clinical and molecular information) in TCGA COAD project were downloaded from the Genomic Data Commons (GDC) Data Portal (https://portal.gdc.cancer.gov/) and gene microarray dataset containing CRC samples were downloaded from Gene Expression Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/geo/). Four datasets containing pair samples (GSE113513, GSE74602, GSE44076, GSE41328) were obtained to identify differentially expressed genes (DEGs) from GEO. GSE113513 included 14 pairs of cancerous and matched non-cancerous tissues. GSE74602 consisted of 30 pairs of normal and tumor tissue samples from patients with CRC. GSE44076 contained 98 pairs of colon tumor and adjacent normal mucosal tissue samples. GSE41328 comprised 10 pairs of CRC and matched normal colon tissue samples. Duplicate samples and samples without key clinical features or survival information were excluded. A total of 2752 MRGs were collected from The Molecular Signature Database (MSigDB) (https://www.gsea-msigdb.org/gsea/msigdb/index.jsp) while 2483 IRGs were downloaded from the ImmPort database (https://immport.niaid.nih.gov).



Construction of an individualized prognostic signature

A Weighted Gene Co-Expression Network Analysis (WGCNA) was conducted to mine the coexpressed genes and modules in CRC according to the gene expression profiles by the R package “WGCNA” (12). Briefly, a gene co-expression network was constructed and then the samples were clustered using hierarchical clustering. In order to identify the modules of interest, the correlation between each coexpression module and CRC samples was further evaluated. Modules with significant correlation with the CRC samples were defined as key modules for the subsequent selection of hub genes.

The DEGs between CRC tumor tissues and normal tissues were performed using the “limma” R package with an adjusted P value< 0.05 and |log2FC| > 1 being set to identify significant DEGs (13).

The univariate Cox regression analysis using the R package “survival” was conducted to identify the prognostic value of these DEGs for overall survival (OS) and genes with P values less than 0.05 were considered statistically significant. To avoid overfitting, a least absolute shrinkage and selection operator (LASSO) Cox regression analysis was conducted. Subsequently, a combined metabolism- and immune-related signature was formulated through the multivariate Cox regression. The risk scores were calculated followed by the formula:  . In order to standardize and normalize riskScore, the risk index was introduced and calculated as follows: riskIndex = (riskScore-min)/(max-min).

CRC patients were divided into high-risk and low-risk groups according to the median riskIndex. Kaplan-Meier survival curves was plotted to evaluate of the prognosis between different groups. The receiver operating characteristic (ROC) curve was constructed using R package “survivalROC” to evaluate the efficacy of the risk model. The R package “stats” and “Rtsne” were applied to conduct principal component analysis (PCA) and t-distributed stochastic neighbor embedding (t-SNE) to assess the clustering of the signature genes.

Univariate and multivariate Cox regression analyses of clinical pathology were conducted to identify potential risk factors for overall survival in the TCGA cohort. A nomogram plot was constructed to predict the 1-, 2-, 3-, 5-, and 10-year OS rate by incorporating riskScores and clinical characteristics with the R package “rms”. The calibration curves were used to estimate the fitting degree of the established nomogram model. The predictive performance of the nomogram was subsequently evaluated using the time-dependent ROC analysis. Decision Curve Analysis (DCA) was employed to evaluate the efficacy of using the complex model as a decision-maker tool.



Tumor microenvironment analysis

The infiltrating score of 17 immune cells and the activity of 13 immune-related pathways were further calculated with single-sample Gene Set Enrichment Analysis (ssGSEA) applying the R package “gsva”. Immune and stromal scores were further estimated to quantify the immune and stromal components by the ESTIMATE algorithm using the R package “ESTIMATE”.


Selection of characteristic genes via machine learning algorithms

After filtration of differentially expressed genes in GSE41328, GSE44076 and TCGA datasets, the candidate hub genes related to CRC were selected via the SVM-RFE (Support Vector Machine-Recursive Feature Elimination) algorithm searching for lambda with the smallest classification error to determine the variable. SVM-RFE was applied for feature selection via ten-fold cross-validation. ROC curves and the area under the ROC curve (AUC) were used for estimating the diagnostic efficacy.




Real-time polymerase chain reaction (RT-PCR)

Normal intestinal epithelial cell line FHC and human colorectal adenocarcinoma cell line (LS-174T, RKO, SW-620, HT-29, and HCT-116) were obtained from the American Type Culture Collection (ATCC). The cells were cultured in DMEM: F­12 medium (FHC) or RPMI-1640 medium (other cell lines) containing with 10% fetal bovine serum (FBS). Total RNA was extracted from the cells with FastPure® Cell/Tissue Total RNA Isolation Kit (#RC112, Vazyme, Nanjing, China) according to the manufacturer’s instruction. Approximate 1000 ng of RNA was used to for cDNA synthesis by PrimeScript RT reagent Kit (#RR037A, Takara Bio, Kyoto, Japan). RT-PCR was performed using SYBR Green Mix (#4309155, Thermo Fisher Scientific, USA). Gene expression was standardized to the expression of GADPH. Primer sequences are as follows: GAPDH-F: G TGG TCT CCT CTG ACT TCA ACA; GAPDH-R: C TCT TCC TCT TGT GCT CTT GCT; ESM1-F: TG TTT CCT ATG CCC CAG AAC; ESM1-R: GC CCT TCC TTG GTA GGT AGC.



Western blot

The cells and tissues were collected and then lysed with radio-immunoprecipitation assay (RIPA, Beyotime, Shanghai, China) buffer containing a protease inhibitor mixture. The supernatant was collected and the protein concentrations were qualified by a BCA Protein Quantitation Kit (Thermo Fisher Scientific, Waltham, USA). Equal amounts of protein were separated by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) on a 10% polyacrylamide gel and transferred onto a PVDF membrane. The membranes were blocked with 5% skim milk and incubated with primary antibody against ESM1 (bs-3615R, Bioss, Beijing, China) or GAPDH (10494-1-AP, Proteintech, Chicago, USA) overnight at 4°C. The next day, after washing thrice with PBST (phosphate buffered saline with Tween 20), the membranes were incubated horseradish peroxidase (HRP)-conjugated secondary antibody (#7074, Cell Signaling Technology, Danvers, USA). The protein bands were eventually visualized using enhanced chemiluminescence (ECL) substrate (Genesion, Guangzhou, China) and imaged by a chemiluminescence system (Bio-Rad, Hercules, USA).



Immunohistochemistry (IHC)

Tumor sections was obtained from post-surgery specimens with an informed consent waiver. Postoperative tumor tissues derived from patients were fixed in 4% paraformaldehyde and embedded in paraffin. The tissues were sectioned into 5-μm slices and deparaffinized with xylene followed by rehydrated with graded alcohols. Antigen retrieval was performed in a boiling pressure cooker with citrate buffer (pH = 6.0) for 10 min. The sections were incubated with anti-ESM1 antibody (bs-3615R, Bioss, Beijing, China) at a dilution of 1:200 overnight at 4°C. After washing with PBST the next day, the sections were incubated with an HRP-conjugated anti-rabbit secondary antibody (MaxVision, Fuzhou, China) for half an hour at room temperature. Finally, the sections were visualized with diaminobenzidine (DAB, ZSGB Bio, Beijing, China) and counterstained with hematoxylin. The IHC images were captured by a slide Scanner System (3DHISTECH, Budapest, Hungary) and Immunohistochemistry scores (H-scores) were quantified by 3DHISTECH QuantCenter software (3DHISTECH, Budapest, Hungary). Since there is no universally accepted standard, we considered a score below 50 as negative expression, 50-100 as weak positive, 100-150 as medium positive, and greater than 150 as strong positive based on previous literature (14).



Statistical analysis

All data analyses were carried out using R software (version 4.1.1, https://www.r-project.org). Student’s t-test or Wilcoxon’s rank-sum test was used for the comparison of continuous variables while Pearson’s χ2 test or Fisher’s exact test was used for the comparison of categorical variables. Experimental data were presented as means ± standard deviation (SD) and statistical analysis was conducted by GraphPad Prism Software (version 9.1, GraphPad, San Diego, USA). A two-tailed P-value less than 0.05 was considered statistically significant.




Results


Identification and enrichment analysis of IRGs and MRGs

In this study, we included a total of 361 CRC patients from TCGA (as a training set) and 118 patients from GSE38832 (as a validation set). A total of 350 genes and 1004 genes were identified by DEGs and WGCNA analysis respectively among CRC patients (Figure S1A, B). Total of 91 intersected MRGs and IRGs were extracted from DEGs and WGCNA analysis (Figure 1A). Among them, 13 significantly differentially expressed genes were significantly associated to the prognosis of CRC, while two genes, STC2 and ESM1, were significantly correlated with a poor prognosis of CRC (Figure 1B). LASSO penalized Cox regression was conducted to reduce overfitting of 13 genes. A stepwise multivariate Cox regression analysis was entered and 4 genes were eventually selected to generate an optimal prognostic signature (Figures 1C–E). Respective coefficient values were extracted to determine risk scores using the following formula: RiskScore = NAT2 × (-0.32727) + UGT2A3 × (-0.16282) + STC2 × (0.34818) + ESM1 × (0.33961). RiskIndex = (riskScore-min)/(max-min).




Figure 1 | Identification and enrichment analysis of metabolism-related genes (MRGs) and immune-related genes (IRGs). (A) Venn diagram of 91 differentially expressed MRGs and IRGs intersections. (B) Univariate Cox regression analysis of the relationship between in different genes and OS. (C) Cross-validation for tuning parameter selection using LASSO Cox regression. (D) Coefficient profiles in the LASSO Cox regression model. (E) Forest plots of univariate Cox regression analysis of different gene expression and the corresponding OS. *P < 0.05, **P < 0.01.





Validation of the prognostic signature

According to the median riskIndex, all of the CRC patients were divided equally into low-risk and high-risk groups. As illustrated in Table 1, members of the different groups were significantly correlated with TNM stage (P< 0.05). Survival analysis indicated that high-risk group exhibited a significantly worse progression-free survival (PFS) and OS than low-risk group, either in the training set or validation set (Figure 2A). To evaluate the predictive value of the constructed signature, the time-dependent ROC curve analysis was performed and the AUC of 1, 2, 3, 5 and 10 (or 8) years were 0.766, 0.752, 0.713, 0.700, 0.661, 0.727 in TCGA cohort and 0.661, 0.655, 0.660, 0.629, 0.727 in GSE38832 cohort, respectively (Figure 2B). As riskIndex distribution curve, survival status, and expression heatmap of the signature shown in Figure 2C, patients with high riskIndex experienced higher mortality and higher expression of the STC and ESM1 and lower expression of the NAT2 and UGT2A3 both in the training set and validation set. PCA (Figure 2D) and t-SNE (Figure 2F) analysis in the training set or validation set confirmed the risk profile differences between low- and high-risk groups. Thus, the combined metabolism- and immune-related signature exhibited superior performance for prediction of the survival and progression of CRC.


Table 1 | Baseline characteristics of the patients in TCGA cohort.






Figure 2 | Survival analysis of CRC patients in the training and validation datasets. (A) Respective Kaplan-Meier OS and PFS curves in the training and validation datasets. (B) Time-dependent ROC curves for CRC patients at the time points of 0.5, 1, 2, 3, 5 and 10 (or 8) years. (C) RiskScore distribution, survival status, and expression heatmap of the selected four genes in the high- or low-risk groups. (D, E) PCA and t-SNE analysis confirmed the clustering of combined metabolism- and immune-related signature.





Prognostic value of the gene signature

Univariate and multivariate Cox regression analyses indicated that riskScore was significantly correlated to a poor prognosis of CRC in TCGA cohort (Figures 3A, B). The ROC curves for CRC patients revealed that the AUC of riskScore to predict OS were 0.755, higher than age, gender, and TNM stage (Figure 3C). Based on riskScore and clinicopathological factors such as age, gender, and TNM stage, a prognostic nomogram was constructed to predict the survival rate of CRC patients (Figure 3D). The calibration curves demonstrated good concordance between predicted and actual 1-, 2-, 3-, 5- and 10- year survival rates, which indicated an excellent performance of the prognostic nomogram (Figure 3E). The ROC curve analysis showed a nomogram AUC of 0.882, which was significantly higher than other parameters, such as riskScore, age, gender, and TNM stage (Figure 3F). A DCA was applied to evaluate the prognostic nomogram, which ranked as the highest in the net benefit accompanied with a broader range of threshold probability among all the parameters (Figure 3G). These results suggested that the prognostic nomogram exhibited a best predictive performance and was more suitable for predicting the prognosis of CRC patients in clinical practice.




Figure 3 | Independent prognostic power of the selected four-gene signature. (A, B) Univariate and multivariate Cox regression analyses of the relationship between different clinical parameters and riskScore with OS. (C) Evaluation of the prognostic utility of the riskScore and clinical parameters using ROC curves. (D) Nomogram comprised the riskIndex and clinical parameters for predicting the prognosis probability in CRC. (E) Calibration curves of the nomogram showed consistency in the predicted and observed 1-, 2-, 3-, 5 and 10-year survival rates. (F) ROC curve analysis of the nomogram for OS. (G) Decision curve analysis (DCA) of the nomogram compared with other parameters.





Construction and validation a nomogram based on riskIndex and TNM stage

According to the previous analysis it can be seen that riskIndex and TNM stage greatly affect the prognosis of CRC patients. Given that the external validation set GSE38832 has only TNM stage as a clinical parameter, a prognostic nomogram based on riskIndex and TNM stage was generated to predict the survival of CRC patients in TCGA cohort and verified in GSE38832 cohort (Figure 4A). The nomogram AUCs of ROC curves were 0.827 and 0.800, which was significantly higher than riskIndex and TNM stage either in the training set or validation set, respectively (Figure 4B). The calibration curves revealed good consistency between predicted and actual 1-, 2-, 3-, 5- and 8- year survival rates, which indicated an excellent performance of the nomogram (Figure 4C). The DCA showed that the nomogram ranked as the highest in the net benefit accompanied with a broader range of threshold probability among other parameters (Figure 4D).




Figure 4 | Nomogram based on riskIndex and TNM stage for external validation. (A) Nomogram comprised the riskIndex and TNM stage for predicting the prognosis probability in CRC. (B) ROC curves for comparison of the nomogram, riskIndex and TNM stage in the training and validation datasets. (C) Calibration curves of the nomogram to predict the 1, 2, 3, 5 and 10-year survival rates. (D) DCA of the integrated nomogram in the training and validation datasets.



To evaluate the performance of the signature against existing signatures, four published risk models for OS in CRC patients were included for comparison (15–18). As shown by Kaplan-Meier curve analysis, our four-gene model, as well as all four other models, showed significant prognostic value of CRC in predicting OS (Figure S2A). The ROC of each signatures revealed that all the models exhibited good predictive performance, with the AUC at 1-, 2-, 3-, and 5- year larger than 0.6 (Figure S2B). Restricted mean survival time (RMST) showed that although our model has a slightly lower C-index (concordance index) than Wang’s model and higher than other models, our four-gene signature held the highest hazard ratio (HR) among all the gene signatures (Figures 5A, B).




Figure 5 | The performance of the constructed four-gene signature compared to previous signatures. (A) The restricted mean survival time (RMST) curves for each signature obtained by integrating signatures. (B) C-index (concordance index) for each signature obtained by integrating signatures.





Immunological features annotation of the signature

Different immunocyte infiltration between the two risk groups based on ssGSEA was exhibited in Figures 6A, B. Noteworthy, regardless in TCGA cohort or GSE38832 cohort, higher percentages of macrophages were observed in high-risk group than low-risk group. ESTIMATE algorithm was applied to compare the differences of immunocyte infiltration between the high- or low-risk groups. The high-risk group showed significantly higher stromal score compared with the low-risk group either in TCGA cohort or GSE38832 cohort (P< 0.05, Figures 6C, D). These results indicated that CRC patients with high-risk scores have more abundant stromal components in the tumor microenvironment, which may lead to a worse prognosis in the high-risk group due to greater susceptibility to metastasis.




Figure 6 | Immunological features annotation of the signature. (A, B) The infiltration levels of immune cell components between the two risk groups in TCGA CRC cohort and GSE38832 cohort. (C, D) Stromal score, immune score and ESTIMATE score calculated by ESTIMATE algorithm in TCGA CRC cohort and GSE38832 cohort. *P < 0.05, **P < 0.01, ***P < 0.001, ns, no significance.





Validation of the role of ESM1 in CRC

As illustrated by Venn diagrams in Figure 7A, the intersection of prognosis-related genes and different gene sets screening characteristic genes via machine learning algorithms in three datasets all pertained to one gene, ESM1, implicating a potentially essential role in CRC. ESM1 gene expression in various cell lines was inspected by qPCR, which showed that the expression of ESM1 was significantly higher in tumor cells than in normal intestinal epithelial cell line FHC (Figure 7B). Consistent with this result, Western blot revealed a significantly higher expression of ESM1 protein in tumor cells than in normal intestinal epithelial cell line FHC as well (Figures 7C, D). Similarly, Western blot derived from patients’ tumors and paracancerous tissues also showed that ESM1 protein was higher in tumor tissue than in normal tissue (Figures 7E, F). We collected postoperative specimens from a total of 43 CRC patients to determine the expression of ESM1 in CRC tumor tissues. As shown in the Figure 7H, ESM1 was expressed variably in CRC. Intriguingly, patients with high ESM1 expression showed shorter disease-free survival (DFS) (median survival 1109 days vs. 1170 days, P = 0.0485, Figure 7G). As illustrated in Table 2, ESM1 expression was not associated with clinicopathological parameters such as age, sex, tumor position, pathological stage or histological differentiation (P > 0.05). This result was also corroborated by different datasets, which showed that high ESM1 was strongly associated with a poor prognosis of CRC (Figure S3A). The specificity and sensitivity of ESM1 to diagnose CRC were determined by the diagnostic ROC curves and the AUCs in GSE41328, GSE44076, GSE113513 and TCGA cohorts were 1.000, 0.993, 0.954, 0.999, respectively (Figure S3B). All these results revealed that ESM1 played an essential role in CRC and may serves as a reliable marker for the diagnosis and prognosis prediction of CRC.




Figure 7 | Validation of the role of ESM1 in CRC. (A) Venn diagram of prognosis-related genes in three datasets and screening characteristic genes in three datasets. (B) Validation of ESM1 gene expression in various cell lines by qPCR. (C, D) Western blot and the quantification of ESM1 protein expression in various cell lines. (E, F) Western blot and the quantification of ESM1 in CRC tumor tissues. *P < 0.05. (G) Kaplan-Meier survival analysis of ESM1 in different groups. (H) Representative images of ESM1 immunohistochemical staining (−: negative staining, +: weak positive, ++: medium positive, +++: strong positive. Scale bars: up, 2000 μm; below, 50 μm).




Table 2 | ESM1 expression characteristics in CRC patients.






Discussion

So far, the American Joint Committee on Cancer (AJCC) TNM staging system has been recognized as a credible tool for prognosis for CRC patients. However, TNM staging based on macroscopic information failed to reflect the tumor heterogeneity caused by molecular biological differences in CRC. Over the past decades, conventional chemotherapy regimens have not been satisfactory in treating patients with recurrent and refractory CRC (19). Even complete surgical treatment was performed, patients with CRC remain at a significant risk of recurrence and death (20). Thus, the development of relevant biomarkers with high prognostic value will facilitate better characterization of the transcriptional subtypes, mesenchymal and immune components of CRC, which is essential to further guide patient stratification for more accurate treatment guidance and prognostic assessment of outcomes. On the other hand, the identification of new molecular targets for immunotherapy holds great promise for the development of new targeted drugs and improved treatment strategies for CRC patients.

Prior studies that have noted the key role of MRGs or IRGs in CRC and several clinical indicators concerning immune or metabolism status have been developed for therapeutic guidance and prognostic assessment of CRC (9, 21–23). Nevertheless, patients with similar clinical characteristics remain highly heterogeneous at the microscopic molecular level, leading to significant differences in clinical outcomes. Integrated predictors that simultaneously respond to metabolic and immune status are more effective in improving prognostic value. Here in our study, we identified a combined immune and metabolism related prognostic signature that comprised 4 relevant genes based on the ranking of gene values. By effectively stratifying CRC patients, this signature served to predict patient prognosis and may be useful as an indicator for assessing response to immunotherapy. The effectiveness of the signature was validated by external validation datasets. In addition, an overexpressed gene, ESM1, was identified and its association with CRC prognosis was also verified. As far as we know, it is the first study to investigate the combined MRGs and IRGs-related prognostic signature in CRC.

As an essential component of immunotherapy, analysis of the tumor immune microenvironment (TIME) contributes to prediction of responsiveness to immunotherapy. Promising clinical results have been achieved in a variety of cancers by reprogramming the immunosuppressed state in tumors to an immune activated state (24). In our study, we explored the relationship between riskScore and immune cells in TIME and found that the high-risk group displayed a more abundant macrophage infiltration. This is consistent with previous studies demonstrating that tumor-associated macrophages were associated with poor prognosis in cancer patients (25). Furthermore, the high-risk group showed significantly higher stromal score compared with the low-risk group, indicated that CRC patients with high-risk scores have more abundant stromal components in TME, which may lead to a worse prognosis in the high-risk group due to greater susceptibility to metastasis. Compared to the traditional view with the classification of tumor immunophenotypes into “cold” and “hot”, our findings compared the differences in immune cell infiltration in high- and low-risk populations, which may provide a more precise model for immunotherapy of CRC.

Among the four genes included in the signature, NAT2 (N-acetyltransferase 2), as an important two-phase metabolic enzyme, exhibits evident genetic polymorphism and is considered to be strongly associated with CRC genetic susceptibility (26, 27). UGT2A3 (UDP glucuronosyltransferase 2 family, polypeptide A3) was found to be one of the molecules participating in the metabolism of xenobiotics by cytochrome P450, which has also been shown to be implicated in the metabolism of various anticancer agents. Associated with a better prognosis of CRC, upregulation of UGT2A3 expression was found to promote the metabolism of anticancer drugs and reduce chemical carcinogenesis (28). As a glycoprotein hormone, STC2 (Stanniocalcin 2) is associated with glutamine or glucose deprivation. Up-regulation of STC2 under hypoxia facilitates the adaptation of tumor cells to hypoxia and thus promotes tumor progression (29, 30). A more in-depth study of the mechanisms of these metabolic and immune-related genes is likely to provide new insights into the immunotherapy of CRC.

Another interesting point pertain to the role of ESM in CRC, as the intersection of different gene sets all converged to ESM1. Known as endocan, endothelial cell-specific molecule 1 (ESM1) is a secretory proteoglycan functioned as an important role in the exacerbation of inflammation and the proliferation, invasion and metastasis of tumors (31). Previous studies have demonstrated that ESM1 was increased in the tissues and serum of CRC patients and suggested that ESM1 could be a potential serum marker for early detection of CRC (32). It has been reported that high levels of serum ESM1 were significantly associated with poor overall survival in CRC and was an independent prognostic parameter for OS (33), which was consistent with our results in the mRNA level. ESM1 gene silencing significantly inhibited cell growth and metastatic process in CRC cells (31). This study was set out with the aim of assessing the importance of ESM1 in CRC. Similarly, our results suggested that ESM1 is highly expressed in both CRC tumor cells lines and tumor tissues, with this high expression indicating a poor prognosis for CRC. Other studies have also suggested an association of ESM1 with tumor angiogenesis and immunological characteristics (34, 35). Despite being in the theoretical and experimental stages, ESM1 will have infinite prospects in the future as a potential tumor marker for CRC and a novel target for cancer therapy.

In spite of these promising findings, several issues need to be addressed in the current study. Due to the long median survival of CRC patients and the fact that most of the patients enrolled for our immunohistochemical validation were hospitalized in 2019, we were unable to assess the OS of patients, which is one of our limitations. Another important point is that our result is based on RNA level rather than protein level, which may reduce the robustness of our conclusions. Next, gene expression characteristics are inevitably affected by sampling bias due to genetic heterogeneity within the tumor (36). In addition, further investigation of the underlying biological mechanisms of the signature is still needed in the forthcoming study.


Conclusion

A novel combined MRGs and IRGs-related prognostic signature that could stratify CRC patients into low-and high- risk groups of unfavorable outcomes for survival, was identified and verified. This might help, to some extent, to individualized treatment and prognosis assessment of CRC patients. Similarly, the mining of the key gene provides a new perspective to explore the molecular mechanisms and targeted therapies of CRC.
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Background

Glycolysis-related genes as prognostic markers in malignant pleural mesothelioma (MPM) is still unclear. We hope to explore the relationship between glycolytic pathway genes and MPM prognosis by constructing prognostic risk models through bioinformatics and machine learning.



Methods

The authors screened the dataset GSE51024 from the GEO database for Gene set enrichment analysis (GSEA), and performed differentially expressed genes (DEGs) of glycolytic pathway gene sets. Then, Cox regression analysis was used to identify prognosis-associated glycolytic genes and establish a risk model. Further, the validity of the risk model was evaluated using the dataset GSE67487 in GEO database, and finally, a specimen classification model was constructed by support vector machine (SVM) and random forest (RF) to further screen prognostic genes.



Results

By DEGs, five glycolysis-related pathway gene sets (17 glycolytic genes) were identified to be highly expressed in MPM tumor tissues. Also 11 genes associated with MPM prognosis were identified in TCGA-MPM patients, and 6 (COL5A1, ALDH2, KIF20A, ADH1B, SDC1, VCAN) of them were included by Multi-factor COX analysis to construct a prognostic risk model for MPM patients, with Area under the ROC curve (AUC) was 0.830. Further, dataset GSE67487 also confirmed the validity of the risk model, with a significant difference in overall survival (OS) between the low-risk and high-risk groups (P < 0.05). The final machine learning screened the five prognostic genes with the highest risk of MPM, in order of importance, were ALDH2, KIF20A, COL5A1, ADH1B and SDC1.



Conclusions

A risk model based on six glycolytic genes (ALDH2, KIF20A, COL5A1, ADH1B, SDC1, VCAN) can effectively predict the prognosis of MPM patients.





Keywords: malignant pleural mesothelioma (MPM), glycolysis, prognostic risk model, gene set enrichment analysis (GSEA), machine learning



Introduction

Malignant pleural mesothelioma (MPM) refers to a primary tumor originating from pleural mesothelial cells. The age of onset tends to be 50-70 years, and most of them are male (1). Existing studies confirmed that exposure to asbestos is the primary and definite cause of MPM. Asbestos can stimulate the body to produce induced inflammatory factors and damage genetic material; oxidative stress is involved in the formation of MPM (2). The U.S. Centers for Disease Control (CDC) identified 45,221 MPM-related deaths from, 1999 to, 2015, and the number of deaths attributed to MPM increased by 4.8% in 16 years. With the development of industry in Southeast Asia, asbestos is used more extensively in production and life, and the incidence of MPM is increasing year by year as well. MPM exhibits an insidious onset, high degree of malignancy, poor prognosis, as well as short survival. The median survival time of only supportive treatment is only 6-8 months, and the median survival time after comprehensive treatment is only 12-16 months (3). Accordingly, early diagnosis and early treatment are the main means to treat the disease, whereas there are few clinical biomarkers capable of effectively predicting the prognosis of MPM cases (4). Therefore, the related biomarkers for the prognosis of MPM should be explored.

Glycolysis refers to an important reaction stage of cellular respiration, i.e., the first step of most carbohydrate catabolism (5). Glycolysis is a special metabolic pathway that mostly occurs in the cytoplasm, so it does not require the participation of oxygen molecules. The increase in glycolysis can produce ATP for cancer cells, which has become the main source of energy for cancer cell growth and metabolism. Moreover, variations in energy metabolism are considered “hallmarks of cancer” (6). Current studies suggested that genes related to the glycolysis pathway are involved in the occurrence, invasion and metastasis of tumors and are significantly associated with the prognosis of cases (7, 8). The immortal proliferation of tumor cells causes the cell interior to be often in a state of hypoxia. The glycolysis pathway is capable of improving the tolerance of tissue cells to hypoxia and avoiding apoptosis induced by oxidative phosphorylation (9). Second, the glycolysis pathway leads to the increased lactic acid, which can also break down and destroy the cell matrix around tumor cells to promote tumor cell migration and spread to distant places (10). In addition, machine learning (ML) integrates medicine, computer science and statistics. ML can handle large, complex and disparate sources of data to assist in customizing personalized medicine and computer-aided diagnosis (11).

The existing prognosis of MPM still lacks effective prediction methods, and the relationship between its prognosis and glycolytic pathway-related genes remains unclear. Hopefully, this study can use bioinformatics methods and ML to study the relationship between glycolytic pathway-related genes and the prognosis of MPM cases, identify prognostic-related genes, and build a MPM prognostic risk model to provide references for patient survival assessment (Figure 1).




Figure 1 | Schematic diagram of the flow of this study.





Materials and methods


Patient clinical dataset download and standardized analysis

The clinical information and mRNA sequencing data of MPM cases were downloaded through The Cancer Genome Atlas (TCGA) database, and 3 cases with missing survival information or sequencing data were eliminated. There was a total of 3 conditions, including 84 MPM cases. The datasets, GSE67487 and GSE51024, were obtained from Gene Expression Omnibus (GEO). Table 1 lists the specific information of the included dataset. The mRNA data of the samples were standardized with log 2 with R 4.0.2 software limma package, and the average value of genes with multiple probes was determined.


Table 1 | Basic characteristics of the gene expression profile data.





Gene set enrichment analysis

Through GSEA (http://software.broadinstitute.org/gsea/index.jsp), it was adopted to determine the gene set of glycolysis related pathways presented by Molecular Signatures Database (MSigDB). GSEA was performed on the dataset GSE51024 to study the expression differences of glycolysis-related pathway gene sets between tumor and normal samples. P < 0.05 was set as the critical value.



Differentially expressed genes

312 human glycolysis-related genes were obtained through the glycolysis-related pathway gene set presented by the MSigDB database. Next, the limma package was used to identify the differentially expressed glycolytic genes between the dataset GSE51024 -MPM tissue and normal tissues. This genes with log2 fold-change (FC) > 1 and regulated P < 0.05 were considered DEGs.



MPM prognostic gene screening and risk model construction

Next, the MPM dataset and dataset GSE51024 were extracted in the TCGA database to screen for differentially expressed genes. In addition, through the R language survival package Single-factor COX regression analysis, glycolytic genes significantly related to the overall survival (OS) of MPM cases (P < 0.05) were screened out. Through Multi-factor COX analysis, independent prognostic genes were screened, and the patient’s prognostic risk model was built simultaneously, and a nomogram was generated. Risk Score=expmRNA1×β1+expmRNA2×β2+……+expmRNAn×βn (Exp: expression level; β is the regression coefficient of Multi-factor COX analysis).



Assessment and verification of predictive significance of MPM prognostic risk model

Lastly, the risk score of MPM cases was determined by using the built prognostic risk model. Cases fell to high-risk and low-risk groups based on the median value. R software survival and survminer packages were adopted to draw Kaplan-Meier (K-M) curve and ROC curve to assess the predictive significance of the prognostic model. For the dataset GSE67487, K-M curve and ROC curve were also plotted by complying with the prognostic model.



Further screening of prognostic genes by machine learning

Next, six independent prognostic risk genes were further screened. A specimen classification model was constructed using support vector machine (SVM) and random forest (RF) to predict the risk of MPM. Briefly, first, a clustering analysis is performed based on the differential expression values of six prognostic genes in normal and tumor tissues based on the GSE51024 dataset. Then, the performance of different types of samples is evaluated by iterating the combination of random features until the optimal combination of features is obtained for constructing the risk model. The RF model was additionally used to determine the feature importance (FE) of the variables (FE was assessed based on the out-of-bag error rate, reflecting the contribution rank of each gene when classifying MPM tumor tissue versus normal control tissue).



Statistical analysis

All data were analyzed using R 4.0.2 (http://www.R-project.org). Single-factor COX regression and Multi-factor COX analyses were used to analyze the prognostic risk of glycolytic genes and tumor patients, and survival differences between high- and low-risk groups were analyzed by log-ranking tests defined by K-M analysis. ROC curves were used to test the diagnosticity of risk models. P < 0.05 was considered a significant difference.




Results


Glycolysis functional pathway acquisition and differential gene screening

A total of 5 glycolysis-related pathway gene sets were obtained from the MSigDB, including BIOCARTA GLYCOLYSIS PATHWAY, GO GLYCOLYTIC PROCES, HALLMARK GLYCOLYSIS, KEGG GLYCOLYSIS GLUCONEOGENESIS, REACTOME GLYCOLYSIS. Next, GSEA was performed on the dataset GSE51024, and it was found that the five glycolysis-related pathway gene sets were significantly different in MPM tissue and normal samples, and were positively correlated with MPM tissue (P < 0.05; Figures 2A–E). There are a total of 312 genes in the 5 glycolysis-related pathway gene sets, and 17 glycolysis genes that are differentially expressed between the dataset GSE51024-MPM tissue and normal tissues were screened out using the limma package (P < 0.05; Figures 3A, B).




Figure 2 | GSEA identified that five glycolysis gene sets were significantly enriched. (A) BIOCARTA GLYCOLYSIS. (B) GO GLYCOLYTIC PROCES. (C) HALLMARK GLYCOLYSIS. (D) KEGG GLYCOLYSIS GLUCONEOGENESIS. (E) REACTOME GLYCOLYSIS.






Figure 3 | Differentially expressed genes between MPM and normal tissues. (A) The volcano plot of 17 differentially expressed genes (The red dots represent the level of high expression and the green dots represent the level of low expression). (B) Heatmap of 17 differently expressed genes (The depth of red represents the level of high expression, and the depth of green represents the level of low expression).





Prognostic gene screening and risk model construction of glycolysis for MPM

The gene sequencing data of TCGA mesothelioma cases were sorted through R language and extracted to obtain the 17 differential gene expression profiles of the dataset GSE51024. Moreover, through Single-factor COX regression analysis, 11 glycolytic pathway-related genes were found to be significantly associated with the overall survival (OS) of the patient (P < 0.05). Lastly, through Multi-factor COX analysis, 6 genes (COL5A1, ALDH2, KIF20A, ADH1B, SDC1 and VCAN) were lastly included to build a patient prognostic risk model, and a nomogram was drawn simultaneously (Figure 4A), To be specific, COL5A1, ALDH2, KIF20A, ADH1B, SDC1 and VCAN are independent risk genes (Table 2). Furthermore, a Single-factor COX regression analysis and a Multi-factor COX analysis combined with TCGA clinical information identified the risk score as an independent prognostic risk factor (P<0.05, Figures 4A, B). Riskscore = (COL5A1×0.487)+(ALDH2×-0.252)+(KIF20A×0.337)+(ADH1B×-0.151)+(SDC1×0.223)+(VCAN×-0.406) (Figures 4B, C).




Figure 4 | (A) Nomogram of prognostic model. (B) Single-factor COX regression analysis. (C) Multi-factor COX analysis.




Table 2 | Characteristics of genes in the prognostic model.





Assessment and verification of predictive significance of MPM risk model

The risk score of each patient in the TCGA dataset was calculated through the built MPM risk model, and the cases fell to high and low risk groups based on the median risk value. The K-M curve showed that the survival rate of the high-risk group was significantly lower than that of the low-risk group (P < 0.05; Figure 5A). The ROC curve shows that Area under curve (AUC)=0.830, which has a significant prognostic significance relative to age, gender, and tumor stage (P < 0.05; Figure 5B).




Figure 5 | Prognosis of high-risk and low-risk MPM cases. (A) K-M analysis of MPM cases is stratified by median risk. High risk scores are associated with general poor survival. (B) Multi-index ROC curve of risk score and other indicators. (C) Risk score distribution of low-risk (green) and high-risk (red) in MPM cases. (D) Scatter plot of survival status of MPM cases in. Red dots (dead); green dots (alive). (E) Expression of risk genes in the high-risk (blue) and low-risk (pink) of the OS model.



Besides, the survival rate distribution was analyzed by ranking the risk scores of all MPM cases (Figure 5C). From the scatter plot, we find that with the increase in the risk score, the patient’s mortality rate gradually rises (Figure 5D). Genes with HR > 1 (COL5A1, KIF20A, SDC1) was defined as dangerous genes, and genes with HR < 1 (ALDH2, ADH1B, VCAN) as protective genes. Cases in high-risk populations are more likely to express risk genes, and those in low-risk populations are inclined to express protective genes (Figure 5E). Furthermore, as suggested by conducting the clinical subgroup analysis, for different age stratifications and tumor stages, the survival rate of the high-risk group based on the prognostic model of the K-M curve was also significantly lower than that of the low-risk group (P < 0.05; Figures 6A–D). In the dataset GSE67487 K-M curve, the survival rate of the low-risk group was significantly higher than that of the high-risk group, ROC curve AUC = 0.782, which verified the reliability of the prognostic model (P < 0.05; Figures 6E, F).




Figure 6 | (A) K-M curve of TCGA MPM patients younger than 65. (B) KM curve of TCGA MPM patients older than 65. (C) K-M curve of TCGA MPM patients with stage I-II. (D) KM curve of TCGA MPM patients with stage III-IV. (E) K-M curve of GSE67487 patients. (F) ROC curve analysis of GSE67487 patients.





Further screening of MPM prognostic genes by SVM and RF

COL5A1, ALDH2, KIF20A, ADH1B, SDC1 and VCAN genes were selected for inclusion in the analysis, and SVM and RF classification models were constructed based on the optimal feature gene combinations (Figures 7A, B). After analysis, the results showed that the best prognostic gene combination had the highest classification transfer accuracy when the number of prognosis was set to 5. In addition, the RF classification model had higher accuracy compared to the SVM (AUC=0.957 vs. AUC=0.776; P < 0.05; Figure 7C). The iterative calculation process of the RF classification model is shown in Figure 7D. The RF classification model algorithm obtained the specific importance ranking of prognostic genes in terms of MPM prevalence correlation (Figure 7E), and finally screened to obtain the five prognostic genes with the highest correlation with MPM prevalence risk The five prognostic genes with the highest risk of MPM (ALDH2, KIF20A, COL5A1, ADH1B and SDC1 in order of importance) were finally screened, and the MPM risk model was constructed based on the above five genes (Figure 7F).




Figure 7 | Box plots (A) and error analysis (B) of two unsupervised clustering methods for MPM-based differential expression of prognostic genes, and comparison of the accuracy (C) of the two classification modes, with the RF classification mode (D) classifier iteration process. (E) Ranking of the importance of prognostic genes in correlation with the risk of MPM prevalence, (F) disease models were constructed for the five prognostic genes with the highest correlation with the risk of MPM prevalence.






Discussions

Over the past few years, some researchers have confirmed that age, gender, smoking history, tumor size, pathological stage, lymph node metastasis and distant organ metastasis and other clinicopathological features are of critical significance for the prognosis of cancer cases. However, the prognosis of tumors at the genetic level exhibits higher accuracy, and it facilitates targeted and immunotherapy and can help clinicians choose the optimal treatment strategy (6). MPM refers to an aggressive disease with unique morphology and distribution. Due to its special growth pattern, clinical staging is difficult. Traditionally, age, sex, contact, tumor size, radiological evidence, pathological staging and others face difficulty in achieving the accurate prognosis of cases (12). As confirmed by existing studies, glycolysis displays a close relationship to the occurrence, migration and metabolism of malignant tumors, and genes related to glycolysis are inseparable from the regulation of tumor metabolism, proliferation and differentiation (13). MPM cells commonly show higher rates of glucose uptake and glycolysis, while the amount of lactic acid infiltrating into the gap is elevated, and the entry and exit of lactic acid into and out of the cell is critical to maintain intracellular PH stability and glycolysis. Earlier studies have confirmed that the expression of monocarboxylate transporters (MCTs) and the chaperone basigin (CD147). Lactate in and out of cells plays a vital role of assessing the progress of MPM and can act as a molecular marker for disease prognosis (14).

In the present study, we lastly identified 6 glycolysis-related genes (COL5A1, ALDH2, KIF20A, ADH1B, SDC1, VCAN), and verified the prognostic significance for the mentioned 6 genes for MPM cases through Single-factor COX regression analysis and Multi-factor COX analysis. The K-M analysis also shows that high-risk scores are related to metastasis and poor prognosis.

The COL5A1 gene is capable of encoding a low-abundance fibrous collagen α chain. Collagen fiber molecules are trimers and can be composed of one or more α chains. COL5A1 is a member of the collagen family, and collagen is the most abundant component in the extracellular matrix (ECM). They provide structural integrity and tensile strength for human tissues and organs (15). In cancer development, collagen constantly affects the physical and biochemical characteristics of the tumor microenvironment, as well as regulating the polarity, migration and signal of cancer cells (16). COL5A1 encodes the α chain of type V collagen, which exists in tissues containing type V collagen and regulates the assembly of heterotypic fibers composed of type I and type V collagen. Cheon et al. found that COL5A1 is regulated by TGF-β1 signaling. This up-regulation of COL5A1 can promote the metastasis and overall survival rate of cases with serous ovarian cancer (17). Shengjun S et al. also identified COL5A1 as a marker for poor prognosis of bladder cancer through Weighted Gene Co-expression Network Analysis (WGCNA) (18). Moreover, existing studies confirmed COL5A1 as a potential core gene to promote metastatic renal cell carcinoma (19). The present study reported that the COL5A1 gene in MPM tissues was significantly up-regulated, undoubtedly demonstrating that COL5A1 can promote the transfer of MPM.

Aldehyde dehydrogenase 2 (ALDH2) refers to a vital mitochondrial enzyme controlling ethanol metabolism. ALDH2 gene polymorphism displays a close relationship to the susceptibility of colorectal cancer, esophageal cancer, liver cancer and other cancers. In particular, the mutation of ALDH2 gene is closely associated with the risk of cancer. As a novel biomarker, ALDH2 has suggested a very attractive prospect in the screening, diagnosis and prognosis assessment of various diseases (20). ALDH2 is a 56 kDa tetrameric protein and highly polymorphic enzyme with the same subunits. Each of the four polymer subunits contains the structure of three main domains: the catalytic domain, the coenzyme or NAD+ binding domain, and the oligomerization domain (21, 22). ALDH2, a vital oxidative stress molecule, is capable of reducing the production of reactive oxygen species (ROS), thereby preventing cell apoptosis and cell damage attributed to hyperoxia or acetaldehyde (23). Specific to the esophagus, gastrointestinal tumors and liver cancer closely related to drinking display a tight association (24, 25). As suggested by Park et al., smokers with ALDH2 genotype are subject to a higher risk of lung cancer. However, no independent risk factor is identified between lung cancer and ALDH2 polymorphism. There is more research to be done on this issue (26). Clinically, ALDH2 has great prospects in tumor diagnosis and can initially detect the human ALDH2 genotype; given whether the patient’s genes are susceptible to cancer, cases are given some reasonable treatment suggestions to achieve individual precision medicine (27). Likewise, alcohol dehydrogenase (ADH) is also critical to ethanol metabolism. ADH is a dehydrogenase superfamily located on chromosome 4q22-q24, covering class I (ADH1A, ADH1B and ADH1C) and class II (ADH4), Class III (ADH5), Class IV (ADH6) and Class V (ADH7) (28). Existing studies have reported that members of the ADH gene family are closely related to the prognosis of various cancers (29), and genetic mutations in ADH affect the risk of cancer in alcohol-dependent individuals as well (30). According to Liu et al., the expression levels of ADH1A, ADH1B, ADH1C, and ADH6 decreased significantly with the aggravation of liver cancer (31). In addition, existing studies indicated that ADH1B has a good prognostic significance for pancreatic cancer as well (32). Existing studies have shown that the expression levels of ALDH, ADH1B and the risk of poor prognosis of cancer were negatively correlated, and the high level of ALDH, ADH1B expression also implied a higher survival rate of MPM patients.

Kinesin Family Member 20A (KIF20A) is considered one of the vital factors of mitosis. As revealed from numerous recently conducted studies, KIF20A is considered a vital gene for considerable tumors (e.g., hepatocellular carcinoma or ovarian cancer) (33, 34). The relationship between KIF20A and MPM is also very close. Xiangxin Z et al. proved through bioinformatics that the survival rate of MPM cases in the KIF20A high expression group was significantly lower than that of the low expression group. In addition, as indicated by the analysis of Cox regression factors, as opposed to MPM cases in the low expression group, the high expression of the mentioned genes is a risk factor for prognosis (35). Furthermore, the present study proved that the survival time of MPM cases with high KIF20A expression was significantly shorter than that of the low expression group, complying with the results of this article.

Syndecan-1 (SDC-1) refers to a proteoglycan, critically impacting the occurrence and development of MPM via its heparan sulfate (HS) chain as a co-receptor (36). It is capable of combining with basic fibroblast growth factor (bFGF) to regulate the formation of new blood vessels. MPM is recognized as one of the most aggressive tumors known, expressing high levels of angiogenic growth factors. As suggested from the existing studies, the high expression of SDC-1 can significantly promote the microvessel density in MPM tumors and promote tumor migration (37). Szatmári T et al. found that in MPM, the expression of SDC-1 is related to epithelioid morphology and the inhibition of growth and migration. Moreover, the overexpression of SDC-1 is involved in the regulation of cell growth, cell cycle progression, adhesion, migration and extracellular matrix. The genes of the tissue have a profound impact, which is an important prognostic indicator of MPM (38). Versican (VCAN) refers to a vital protein in the ECM, capable of accumulating in the tumor stroma; it can significantly regulate the malignant transformation of tumors and the progression of tumors as well (39). Moreover, VCAN has been confirmed to display a close relationship to the survival, development and recurrence of numerous malignant tumors. For instance, VCAN is capable of promoting the migration of breast, gastric and prostate cancer, and its expression level can determine the prognosis of malignant tumors (40). Interestingly, our study found that high expression of VCAN implies better prognostic survival of MPM. Therefore, how VCAN specifically regulates the physiological activities of tumor cells remains to be further explored.

Compared to traditional medical statistics methods, ML typically has higher efficacy for disease diagnosis than traditional methods, is more widely applicable, and can rank the importance of impact, which provides a statistical basis for screening the core variables that have the greatest impact on outcomes. In this study, we also ranked the prognostic importance of six bioinformatically screened glycolytic genes by ML, and finally identified five genes that mainly affect the prognosis of MPM, in descending order of importance: ALDH2, KIF20A, COL5A1, ADH1B and SDC1. Of course, there is a need for more advanced learning methods such as Neural networks, Deep learning and Decision tree learning to further develop accurate prognostic models for diseases, which are all important directions for the future of artificial intelligence in medicine.

The present study has several limitations. First, the databases involved in this study, including TCGA, MSigDB and GEO, among others, were mainly included in the North American population, and the validity of this prediction model outside North America needs further validation. Second, these identified glycolytic genes could serve as prognostic biomarkers and novel therapeutic targets for MPM, but further in vitro functional analysis of MPM cell lines is still needed to better understand the role of these putative genes. On the whole, risk-of-use models constructed based on glycolytic genes are suitable as reference information for clinicians and do not represent an absolutely accurate prognosis. In the future, more effective and convenient tools should be developed to help clinicians analyze the risk of MPM prognosis.



Conclusions

In brief, the present study built a novel prognostic model of six glycolysis-related genes (i.e., COL5A1, ALDH2, KIF20A, ADH1B, SDC1 and VCAN) for the prognosis of MPM cases, which is an important reference for treating MPM cases and developing targeted drugs.
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Colorectal cancer (CRC) is the third most common malignancy and the second most common cause of cancer-related mortality worldwide. A total of 20% of CRC patients present with distant metastasis. The hepatic portal venous system, responsible for collecting most intestinal blood, makes the liver the most common site of CRC metastasis. The formation of liver metastases from colorectal cancer is a long and complex process. It involves the maintenance of primary tumors, vasculature invasion, distant colonization, and metastasis formation. In this review, we serve on how the CRC cells acquire stemness, invade the vascular, and colonize the liver. In addition, we highlight how the resident cells of the liver and immune cells interact with CRC cells. We also discuss the current immunotherapy approaches and challenges we face, and finally, we look forward to finding new therapeutic targets based on novel sequencing technologies.
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Introduction

Colorectal cancer (CRC) is raising more and more attention worldwide because it has become the third most common cancer, with a high incidence of 10%. Meanwhile, CRC accounts for 9.4% of all cancer-related death, the second highest mortality rate among all cancers. China, home to one-fifth of the world’s population, with social development and an aging population, is facing unprecedented cancer prevention and treatment challenges. In China, new cases and deaths of colorectal cancer account for 49.3% and 58.3% of the world’s total, respectively, according to Global Cancer Statistics 2020 (1). The five-year relative survival of colorectal cancer in China is approximately 57%, for metastatic CRC is still low, remaining at around 11% (2). In a retrospective analysis of 780 patients with CRC and liver-only metastases, the median overall survival was 22.8 months. It can be seen that the prognosis of CRC varies widely with or without distant metastasis (3). The hepatic portal venous system, responsible for collecting the majority of intestinal mesenteric drainage, makes the liver the most common site of CRC metastasis. Approximately 15% of patients had already developed liver metastases at the diagnosis, and about 50% of CRC patients will develop liver metastasis during their lifetime (4). However, in many studies on the mechanism of colorectal cancer liver metastasis (CRCLM), the specific mechanism of CRCLM is still unclarified. Clarifying the specific mechanism of CRCLM can provide powerful help for the prevention and treatment of CRCLM.



Cancer stem cells

CRC is widely considered to be caused by mutations in target oncogenes, tumor suppressor genes, and genes associated with DNA repair mechanisms. Typically, it takes more than a decade to complete successive mutations in multiple genes, such as APC, TP53, TGFBR2, SMAD4, PTEN, and RAS (5). When the original tumor is formed, how it proliferates, invades, and metastases have always been a hot topic in medical research. There are two hypothesized models for continued tumor growth: the traditional and CSC models. The former hypothesis is that every cell in the tumor population can proliferate and differentiate, thus contributing to tumor growth. While the other proposes that only a small group of cells have the potential for tumor proliferation (6).

Cancer stem cells (CSCs) are cells with the ability to self-renew, allowing the cells to generate differentiated cells. These cells are also associated with cancer cell growth and metastasis. Cancer metastasis is related to CSCs, which migrate to distant organs and form metastatic foci. Studies have observed that in the early stages of metastasis, cancer cells show similar gene expression patterns to normal stem cells (7). However, the origin of CSCs has not been clearly understood.

So far, most studies have focused on stem cells from the small intestine; paradoxically, stem cells in the colon are much less characterized. The standard physiological structure has many finger-like protrusions in the intestinal lumen. The space between adjacent protrusions is called the crypts of Lieberkühn, which is considered the functional unit of the intestine (8). At the base of each crypt, there is a cell line that can continuously renew epithelial cells called Crypt Base Columnar Cells (expressing high levels of LGR5). Besides, there is another cell line called +4 cells (characterized by prevalent expression of BMI1, HOPX, TERT, and LRIG1). These two populations of cells are thought to be the actual intestinal stem cells that give rise to the epithelial lineages. The two cell populations were initially thought to represent different pools of stem cells with different functional activities, although they can switch between them in both directions. Proliferating LGR5+ cells are thought to be responsible for intestinal homeostasis, which can divide asymmetrically, giving rise to identical daughter cells and transit-amplifying cells that proliferate and differentiate into enterocytes, goblet cells, and endocrine cells during their upward movement through the crypt. In contrast, static BMI1+ cells are considered a reserve pool of stem cells capable of regenerating LGR5+ populations (9). There are differences in crypt structure and cell composition in the colon compared to the small intestine. The colonic crypt does not contain Paneth cells, +4 cells, or BMI1+ cells. Colon stem cells are characterized by LGR5+ (10) or high expression of EphB2 (11). In addition, slow-cycle stem cells were detected in colonic crypts and identified by elevated Notch signaling or LRIG1 expression or DCLK1+ cell subsets (9) (Figure 1).




Figure 1 | The microstructure of colonic crypt.



There are two theories of the origin of CRC stem cells: (a) oncogenic mutations accumulating within normal adult cells or ESCs, leading to their uncontrolled proliferation (12); (b) cellular dedifferentiation into a stem-like state, which in a cancer cell would produce CSCs (13). The results of the current studies show that the origin of CSCs may associate with an abnormality of several signaling pathways, which are responsible for controlling the balance between proliferation, differentiation, migration, and renewal in intestinal hemostasis. Here, we list Wnt, Notch, and Hedgehog signaling pathways, which are famous for contributing to the acquisition of cancer stemness.

In the canonical Wnt signaling pathway, the absence of Wnt ligands leads to the degradation of intracellular β-catenin by a destruction complex consisting of Axin, APC, and kinases GSK3β and casein kinase (CK1α) (14). In this case, β-catenin cannot enter the nucleus to initiate transcription of downstream genes. In the presence of secreted Wnt ligands, the canonical pathway is activated. Wnt binds to its Fzd receptors and LRP co-receptors. LRP receptors recruit Dishevelled (Dvl) proteins. The Dvl polymers blocks the phosphorylation of the destructive complex, thereby disrupting its function. This disruption leads to the accumulation and stabilization of the β-catenin, which then transfers into the nucleus (15). There, β-catenin binds to TEF/LEF proteins to form a complex and initiates downstream gene expression, leading to cellular process changes. One of the hallmarks of stem cells is the ability to maintain long telomeres through the function of the TERT gene. Studies have shown that β-catenin can bind to the TERT gene promoter in the nucleus and directly increase its expression level, which links the Wnt pathway to telomerase activity (16). As mentioned earlier, one type of colon stem cell is characterized by LGR5+. LGR5, encoding an R-spondin (RSPO) receptor, is a target gene of the canonical WNT/β-catenin signaling cascade in quiescent as well as cycling stem cells. Barker et al. found that LGR5+ stem cells with high expression of β-catenin formed stem cell clusters in a few days, microadenomas in 3 weeks, and large adenomas in about one month (17). CD44 and CD133 are representative cell-surface markers of CSCs. CD44 and CD133 are further upregulated by WNT and RSPO signals in LGR5+ cycling stem cells (18). These provides reliable evidence that the Wnt signaling pathway promotes normal stem cells to become cancer stem cells.

Notch receptors are transmembrane proteins containing an intracellular domain (ICN) and an extracellular domain. Once the receptors (Notch-1, Notch-2, Notch-3, and Notch-4) are bound with ligands (Jagged-1, Jagged-2, Delta-like-1, Delta-like-3, and Delta-like-4), the pathway is activated. Notch receptors are cleaved twice, and eventually, the N-intracellular domain forms functional cleavage called NICD (19, 20), which enters the nucleus and collaborates with CSL (CBF-1/Suppressor of hairless/LAG1) to initiate transcription of downstream genes (21). Its downstream products are HES and HEY proteins. HES and HEY dimers are essential in regulating the transcription of key genes related to apoptosis, cell cycle, proliferation, differentiation, and metabolism (22). The HES protein has been shown to possess the ability to suppress the expression of a transcription factor called KLF4 (Kruppel-like factor), which has been proven to inhibit colorectal cancer proliferation when overexpressed (23). In addition, it is proved that Notch expression is 20-30 times higher in CSCs than in normal colorectal cancer cells (24). Sikandar S et al. discovered that Notch is a crucial component of CSCs’ self-renewal. It can also prevent apoptosis by inhibiting cell cycle kinase inhibitor P27 and transcription factor ATOH1. Their research also found that several parts of Notch pathways were upregulated, including downstream protein HES, ligand Jagged-1, and receptor Notch-1. Blocking Notch signaling with shRNAs significantly reduces the level of HES1, and cells are found to differentiate (25). The above evidence indicates that Notch plays a vital role in the formation and maintenance of CSCs, which lead to tumor progression and metastasis.

The Hedgehog (Hh) pathway is a highly conserved signaling system during evolution, which was first discovered in Drosophila melanogaster. Since its discovery, the Hh signaling pathway has been shown to play an essential role in normal embryonic development both in invertebrates and vertebrates (26). In addition, the Hh signaling pathway is also involved in the continuous renewal of intestinal epithelium in adults. The Hh pathway is inactive mainly or active poorly in the adult organism. It will be activated in some specific situations, such as wound healing. Furthermore, the pathway is involved in the maintenance of somatic stem cells and pluripotent cells essential for self-repair and self-renewal in some epithelial tissues. It is suggested that dysregulation of this signaling pathway may be related to the formation of CSCs, thereby promoting the occurrence and development of CRC (27). The specific mechanisms of Hh signaling have been elucidated in previous literature (28). Studies have confirmed that abnormal activation of the Hh pathway is closely related to tumorigenesis in various tissues (29). When Hh pathway is abnormally activated, its downstream genes begin to be transcribed; the downstream products NONAG and OCT4 are important proteins for maintaining the stemness of CRC cells. In the experiment system of Varnat F. et al, the experiment of tracking CD133+ cells allowed them to conclude that human CRC stem cells require active HH-GLI signaling for survival and self-renewal, with increased signaling driving a population expansion in advanced cancers and metastasis (30). Although more than 100 studies on the relationship between Hh and CRC have been conducted, the results are not uniform. Most studies found that the Hh pathway is upregulated in CRC, while about 10% of studies found Hh down-regulated in CRC or unrelated to it (31). Varnat F et al. found that Hh-GLI activity regulates the number of tumorigenic colorectal cancer stem cell populations in vivo. Meanwhile, Hh-GLI promotes the proliferation of colorectal cancer cells and is involved in maintaining their ability for self-renewal (30). (Figure 2)




Figure 2 | Several signaling pathways related to acquisition of cancer cell stemness.





Epithelial-mesenchymal transformation

Growing evidence supports that there is an overlap between EMT stimuli and cancer stem cells, several pathways are shared both in EMT and CSC formation. Song Y, et al. found that Inhibitor Agents whose primary purpose is to inhibit EMT, not only inhibit EMT and metastasis but also suppress the stem cell-like properties (32). Epithelial-mesenchymal transformation (EMT) is the process by which epithelial cells lose their epithelial state and acquire mesenchymal phenotypes. Generally, EMT can occur during embryonic evolution, tissue formation, wound healing, and tissue fibrosis. EMT is associated with tumor initiation, invasion, metastasis, and resistance to therapy in cancer. During EMT, cells lose their epithelial features and, consequently, lose cell-cell and cell-extracellular matrix adhesion. The essential phenotypic change is the loss of epithelial-specific E-cadherin and the acquisition of mesenchymal-specific N-cadherin and vimentin. In this situation, cell polarity is decreased, cell adhesion is weakened, and motility is enhanced, subsequently gaining the ability to invade tissues surrounding the primary tumor, extravasate into lymphatics or blood vessels, travel to distant sites through the circulatory system and lymphatic system, and ultimately colonize a metastatic niche. EMT is a complex process, but it is initiated by a series of EMT-inducing transcriptional factors (EMT-TF) such as Snail, Twist, and ZEB (33, 34).

Snails are a family of transcription factors with zinc finger structure that promotes EMT, mediating invasion and metastasis in many malignant tumors (35). Snail bind specifically to a subset of E-box motifs in target promoters like the E-cadherin promoter, which repress the transcription of E-cadherin, thus inducing the EMT program and promoting tumor metastasis (36). It has been suggested that up-regulation of Snail and transcriptional suppression of E-cadherin may play a crucial role in the progression of CRC (37, 38). Additionally, Snail regulates matrix metalloproteinase (MMP) -2 and -9, proteins that help tumor cells break through the basement membrane and enhance their invasion ability (39). Notably, the Snail-induced EMT effect can make CRC cells exhibit stem cell-like phenotypes. Roy, H. K. et al. found that Snail was overexpressed in 78% of CRC tumor samples than in normal tissues (40). In their experimental system, overexpression of Snail increased the expression of CSC markers CD133 and CD44 (41). Subsequent studies have shown that Snail induces CSC characteristics by regulating the gene encoding interleukin-8 (42).

Slug (also called Snail2) is a member of the Snail family. Snail and Slug are highly homologous in structure (share a similar DNA binding structure of four and five C2H2 zinc finger motifs (ZF), respectively) and involvement of cellular processes (bind to E-cadherin promoter). Evidence showed that the expression of Slug was higher in clinical specimens of colorectal cancer compared to non-cancerous tissues. Overexpression of Slug promoted the EMT progression, downregulating the expression of E-cadherin and upregulating that of vimentin. Specifically, Slug could interact with HDAC6 and then recruited HDAC6 and PRC2 to the promoter of E-cadherin and thus inhibited the expression of E-cadherin, promoting EMT and inducing invasion and metastasis of CRC (43). It is worth mentioning that as the product of the Wnt pathway mentioned above, β-catenin can directly activate Slug (44). In colorectal cancer, the number of isolated tumor cells expressing high levels of nuclear β-catenin at the tumor boundary is strongly associated with metastasis and a low survival rate (45, 46). More interestingly, the characteristic morphologic changes of EMT, which are usually detected at the tumor boundary, are thought to be important in allowing cells to detach, disseminate and eventually metastasize (47, 48). These phenomena suggest a potential relationship between the Wnt pathway and EMT.

The Twist gene, first discovered in drosophila melanogaster, is highly conserved. Twist protein is a basic helix-loop-helix (bHLH) transcription factor. As one of the HLH transcription factors, Twist is mainly expressed in embryos and is involved in differentiating mesenchymal tissue cells such as muscle cells, chondrocytes, and osteoblasts (49). It is also a nuclear transcription factor closely related to tumorigenesis and development, which can induce the EMT process and contribute to the growth, invasion, and metastasis of malignant tumors (50). Twist has the ability to repress epithelial genes like the E‐cadherin encoding gene CDH1 via binding to E‐Box motifs in their cognate promoter regions (51). A study showed that upregulation of Twist gene expression in the CRC cell lines induced high expression of vimentin and low expression of E-cadherin, hence promoting the EMT program. More interestingly, CRC cell lines transfected with Twist plasmid showed stronger ability to form liver metastasis (52). In CRC, Twist expression is usually limited to the tumor stroma. It has been suggested that twist-positive cancer cells exist in the stroma of human CRC and these cancer cells have a high mesenchymal phenotype. At the same time, the study compared Twist mRNA levels in the blood of healthy individuals and CRC patients and found that Twist mRNA levels were higher in patients than in healthy individuals (53). These results suggest that Twist has the ability to induce EMT and may be able to predict prognosis by assessing blood mRNA levels. In addition, Twist was found to be involved in regulating the acquisition of stem cell properties by tumor cells and increasing their migration ability (54).

The zinc finger E-box binding homeobox (ZEB)family belongs to the zinc finger protein family and consists of two members: ZEB1 and ZEB2. ZEB proteins simultaneously bind the bilateral zinc finger structure to the E-box sequence to repress the transcription of downstream genes, subsequently decreasing the expression level of E-cadherin (55). High expression of ZEB2 in E-cadherin-positive MDCK cells resulted in significant down-regulation of E-cadherin, loss of cell adhesion, and induction of invasion (56). ZEB performs its subsequent action through a complex formed by binding to CTBP (C-terminal binding protein). The formation of the ZEB/CTBP complex can promote the transcriptional inhibition function of ZEB (57, 58). Experiments have confirmed that ZEB1 can be negatively correlated with E-Cadherin in human colon cancer only when the CTBP expression level is maintained. This result further revealed the possible way ZEB regulates E-cadherin (59). In addition, ZEB can interact with TGF-β (60), Snail (61), and some mi-RNAs (62, 63) to promote the EMT process.

As mentioned above, Snail can upregulate CSC markers and promote EMT simultaneously. Activation of the Wnt pathway and high expression of β-catenin not only enable colon epithelial cells to acquire stem cell properties but also promote the initiation of EMT. Meanwhile, Twist also can induce an EMT program and tumor cells to acquire stem-like phenotypes. The evidence above suggests that EMT is orchestrated by a complex network involving regulators of different signaling pathways. Meanwhile, several common pathways may be shared for the induction of EMT and the formation of CSCs. However, there is still a long way to go to elucidate the specific mechanisms (Figure 3).




Figure 3 | EMT helps the formation of distant metastasis. (A) Cancer cells undergone EMT programs acquire the ability to invade into vascular and colonize to distant organ. (B) Transcription factors involved in the EMT programes.





Circulating tumor cells

When cells undergo the EMT process, the cell-cell adhesion is significantly reduced, and invasion and migration become easier than cells do not. Under this condition, tumor cells can invade surrounding tissues, intravasate into the blood or lymphatic vessels to reach distant tissues, and complete the process of seeding, proliferating, and forming new colonies. Since most tumor cells disseminate through the blood, these cells traveling in the circulatory system are called circulating tumor cells (CTCs). Some CTCs are shed into the bloodstream from the primary tumor, but they rarely make it to distant organs and form metastases, and are usually killed by immune cells in the bloodstream. Compared with CTCs that have undergone EMT, ordinary CTCs have less ability of invasion, migration, and tumor immune evasion. Only those CTCs that maintain their mesenchymal phenotypes and possess stem cell properties can form new colonies in a suitable metastatic environment. Based on the existing literature, it is generally believed that CTCs exist in the circulatory system as single cells and clusters. The number of clusters was much smaller than that of single cells, but their ability to form metastases was more substantial than that of the latter (64, 65). The high metastasis characteristics of CTC clusters are related to various reasons.On the one hand, the tumor cells within them will undergo phenotypic changes. Studies have found that the DNA methylation level of cancer cells in CTC clusters is significantly lower than that of CTC single cells, especially genes related to stem cell characteristics and cell proliferation (66). Hou et al. found that EMT in CTC clusters was more evident than in single cells (67). A high proportion of mesenchymal cell phenotype was associated with more vital metastasis ability and chemotherapy resistance (68). On the other hand, non-tumor components in clusters also play an essential role: CTC clusters not only contain tumor cells, but also matrix and cell components in the tumor microenvironment, such as platelets, immune cells, and fibroblasts (69). Duda et al. found that CTC clusters contained activated fibroblasts, which could promote the formation of metastatic foci in the mouse lung metastasis model (70). Barbara et al. found that neutrophils contained in CTC clusters could regulate the cell cycle progression of tumor cells, thereby promoting tumor metastasis (71). CD163+ tumor-associated macrophages can secrete IL-6 to activate tumor cells JAK2/STAT3, promoting EMT and CTC-mediated metastasis, which is closely related to poor prognosis of patients (72). The platelets in CTC clusters can secrete TGFβ to activate the TGFβ/Smad and NF-κB pathways to promote the EMT of cancer cells. Meanwhile, they can also cover the surface of tumor cells and form a cloak to resist blood flow shear force and evade immune surveillance (68). CTC is important for two reasons: on the one hand, it can study how tumor cells change during the process between the primary and metastatic organs. On the other hand, it can be applied in clinical practice. Currently, studies have discussed whether CTC can become a necessary standard to judge the prognosis of CRC and guide chemotherapy (Figure 4). With technical advancements in the past two decades, methods have become available to investigate the CTCs. Many studies have shown that CTCs are highly valuable for the assessment of the prognosis of both non-metastatic and metastatic CRC. In non-metastatic CRC (nmCRC), the presence of CTCs in blood biopsies can predict liver metastasis (73). Correlation studies have demonstrated that patients with CRC harboring >5 CTC/7.5 ml blood have a worse prognosis with 8-times higher risk of developing metastasis within a year (74).




Figure 4 | Crosstalk between CTCs and other blood components in the circulation. (A, B) CTC single cell and CTC clusters interact with blood cells and stromal cells.





Pre-metastatic environment in liver

Metastasis of various malignancies in the liver is influenced by several factors, such as blood flow pattern, tumor stage, and histopathological subtypes. The liver is rich in blood supply, receiving the double supply of the hepatic artery and portal vein. Therefore, gastrointestinal malignancies often metastasize to the liver via portal vein circulation. The liver has a unique microenvironment composed of highly specialized resident cells, mainly including hepatic sinusoidal endothelial cells (LSECs), Kupffer cells (KCs), hepatic stellate cells (HSCs), dendritic cells, and resident natural killer cells (75). As circulating tumor cells enter the sinusoidal capillary network through the portal vein system, complex interactions occur between CTCs and these resident cells. According to the existing literature, circulating tumor cells must undergo four overlapping steps to complete seeding and proliferation in the liver: Microvascular phase, pre-angiogenic phase, Angiogenic phase, and Growth phase (76–78).

In the microvascular phase, cells first encountered by CTCs are Kupffer cells and LSECs. Kupffer cells are specialized macrophages in the liver which play a vital part in removing pathogens and induction of local immunity (79). Although Kupffer cells can clear CRC cells in hepatic sinuses by direct phagocytosis and dectin-2 mediated phagocytosis in the early stage of metastasis (80, 81), tumor cells lucky enough to escape immune attack may benefit from it in subsequent colonization and proliferation. In recent years, tumor-derived exosomes have also been shown to promote the formation of liver premetastatic niches for CRCLM by interacting with Kupffer cells. Angiopoietin-like protein-1(ANGPTL-1) can reprogram the secretion pattern of Kupffer cells and enormously reduce the expression of MMP9, thereby preventing leakage of sinusoidal vessels. However, ANGPTL-1 in human CRC exosomes is significantly down-regulated, indicating that down-regulation of ANGPTL1 can affect the liver microenvironment and lead to higher vascular permeability, contributing to the formation of pre-metastatic niche (82). The study of Sun H et al. found that the hypoxia microenvironment in colon cancer tissue can significantly upregulate exosomes containing miR-135a-5p. These exosomes enter the liver with blood circulation. KC phagocytoses them, suppresses immunity, and enhances cell adhesion by affecting LATS2 and CD30, thus promoting liver metastasis of colorectal cancer (83). A recent study demonstrated that Kupffer cells could be recruited by the TCF4-CCL2-CCR2 signaling pathway, which is overexpressed in colorectal cancer and be polarized into M2, which can secrete pro-tumor cytokines such as IL-4, IL-13, VEGF and EGF to promote liver metastasis of colon cancer (84). In addition to those pro-tumor cytokines, TGF-beta1 is quite a remarkable one that contributes to forming a pre-metastatic niche. Kupffer cells can be induced to secret TGF-beta1 through AT1a signaling, thus promoting CRC liver metastasis (85). Yuan N et al. used different antibiotics to control the proportion of intestinal flora in mice to regulate the number of KC in the liver, proving KC’s inhibitory effect on CRC liver metastasis. However, most current studies have demonstrated that KC plays a role in promoting the occurrence of CRC liver metastasis. This contrary conclusion may be caused by different immune components being activated in different experimental systems, or the interaction of other cell populations with KC is ignored (86). LSECs line the sinusoidal vessels with characteristic holes that allow liver cells and HSCs residing in the Disse space to have complete contact with the blood (87). Kupffer cells and LSECs can kill tumor cells by expressing TNF, nitric oxide, and reactive oxygen species (88). The death of tumor cells, tissue damage and inflammatory responses are inevitable, leading to the release of various cytokines, including IL-1, IL-6, IL-8, IL-12, and IL-18, as well as chemokines such as CCL5 (89). These cytokines can recruit more immune cells to enhance local tumor immunity. However, it is worth noting that this local inflammatory response can increase the expression of LSECs adhesion receptors such as E-selectin to enhance the adhesion of cancer cells to endothelial cells, thus increasing the chances of tumor cells entering the Disse space (90). Ou.J. et al. reported that endothelial cells induce EMT of CRC cells by secreting fibronectin extra domain A (EDA), thereby promoting their invasion and metastasis, and revealed that ERK signaling pathway might be A critical pathway mediating this effect (91).

Once tumor cells extravasate from sinusoidal microvasculature into the Disse space, hepatic stellate cells (HSCs) are activated by pro-inflammatory substances in the microvascular phase mentioned above. Hepatic stellate cells are the most abundant non-parenchymal resident cells in the liver, accounting for up to 10% of all resident cells in the liver (92), and their activation can influence the formation of CRC liver metastasis by remodeling the extracellular matrix (ECM) (93). In a recent study, Zhao et al. found that CRC cell‐derived EV miR‐181a‐5p activates HSCs by targeting SOCS3 and activating the IL6/STAT3 signaling pathway in HSCs. In turn, activated HSCs promote liver metastasis by remodeling the liver micro-environment via activating the CCL20/CCR6 axis in CRC cells. In this condition, the CRC cells secret more α- SMA and fibronectin (94). Tan et al. demonstrated that interaction between CRC and HSCs could promote the differentiation of HSCs into cancer-associated fibroblasts via the CXC4/TGF-β1 axis (95). CAF is a cell population considered to preserve the capability of promoting tumor growth, angiogenesis, and metastasis (96). As a fibroblast, the activated HSC can secrete type I and IV collagen, leading to ECM deposition. It also produces chemokines and cytokines such as CCL2, CCL5, and CCL21 to recruit more inflammatory cells (97).

In each of the above steps, many cytokines and chemokines are produced, which can recruit more inflammatory cells, including peripheral monocytes and macrophages. Studies have shown that macrophages are plastic and can polarize into M1 or M2 with different functions. Generally, M1 macrophages have pro-inflammatory and anti-tumor effects, while M2 macrophages promote tumor growth. M2-mediated tumor growth occurs through the production of growth factors such as VEGF, EGF, FGF2, and TGFβ (98). Zhao S. et al. found that tumor-derived exosomal miR-934 can induce M2 polarization of macrophages via the downregulation of PTEN expression and activation of the PI3K/AKT signaling pathway to promote CRLM. This phenomenon reveals a tumor and TAM interaction in the metastatic microenvironment mediated by tumor-derived exosomes that affect CRLM (99). Recruitment, secretion, and re-recruitment formed positive feedback, causing more and more immune cells to accumulate in the local liver parenchyma, resulting in TAM infiltration. TAM secretes matrix metalloproteinases, which degrade extracellular matrix and promote the migration and invasion of tumor cells (98). In addition to macrophages, neutrophils are a group of cells recruited to the liver in the early steps of metastasis. Similarly, recent studies have confirmed that neutrophils can polarize into anti-tumor and pro-tumor types – N1 and N2 (100). Neutrophils can form sticky web-like structures known as neutrophils extracellular traps (NETs) in blood vessels which appear to enhance tumor cell adhesion to sinusoidal vessels. NETs are not cytotoxic to CTCs stuck in hepatic sinuses but enhance their metastatic capacity by enriching tumor interleukin (IL-8), thereby initiating more NET formation and creating positive feedback for liver metastasis (101). Neutrophils cooperate with monocyte macrophages to promote tumor angiogenesis by expressing FGF2, VEGF, and TGFβ (102–104). Angiogenesis is an essential step in tumor growth. For years, the FDA has approved Anti-VEGF and its receptor therapies for treating liver metastases from colorectal cancer. According to Hurwitz, H’s phase III trials, adding Bevacizumab (anti-VEGF agent) to standard chemotherapy improved median survival in patients with metastatic CRC; however, most patients do not respond significantly to this therapy (105). This result may be due to the adverse effects of anti-VEGF drugs on the regular vascular system of the liver, resulting in more fragile and permeable hepatic sinusoidal vessels (106, 107). From the available literature, immune cells (including Kupffer cells, peripheral monocytes, macrophages, and neutrophils) seem to have different or opposite roles at different stages of metastasis formation. This condition involves extremely complex tumor-immune cell or immune cell-immune cell interactions. It has been difficult to precisely control the population of cells that promotes metastasis at any given time.

In addition to the effector immune cells mentioned above, regulatory T cells have gradually become the focus of tumor microenvironment research in recent years. Regulatory T cells, featured by CD25 and Foxp3 expression, are immunosuppressive cell populations. Under physiological conditions, Tregs can prevent autoimmunity and regulate immune responses by down-regulating IL-2, producing adenosine, and secreting immunosuppressive cytokines (108). According to the existing literature, Treg infiltration can predict a higher probability of metastasis and poor prognosis in various malignant tumors (109–111). Huang X et al. found that the number of CD4+Foxp3+Treg in the spleen and liver was significantly higher than that in the control group in the murine model of colorectal cancer liver metastasis (112). According to the study of Gu J. et al., in the lactate-rich tumor micro-environment, lactate modulates Treg cell generation and enhances Treg cell function. In vivo, the immunomodulatory function of Treg cells decreased after lactate dehydrogenase was used to reduce the concentration of lactate, leading to the enhancement of anti-tumor immunity (113). These studies have directly or indirectly demonstrated the role of Treg in tumor immunity suppression and provided exploration experience for regulating Treg-related tumor immune microenvironments (Figures 5, 6).




Figure 5 | CRC cells interact with resident cells of liver and recruited immune cells in liver sinus, space of Disse and liver parenchymal.






Figure 6 | Effects of cells in liver microenvironments on metastatic tumor.



Dendritic cells (DCs) are professional antigen-presenting cells that are crucial for the initiation of the immune response to specific antigens through internalization of foreign antigens and subsequent presentation to T cells. The role of liver-derived DCs may be immunosuppressive due to secretion of IL-10 which impedes T cell-mediated cytotoxicity (114). So far, there are few reports on the interaction between dendritic cells and CTC in liver microenvironment, which may be one of the key points to be studied in the future.

Natural killer cell (NK) is an essential component of the liver immune system. Natural killer cells are abundant in the liver and have an important role in resistance to infection and in the clearance of cancer cells. A recent study revealed an interesting mechanism by which tumor cells evade the surveillance of NK cells. Harmon C et al. showed that CRCLM tumors induce NK cells to apoptosis by producing lactate to decrease the intracellular pH of NK cells, resulting in mitochondrial dysfunction (115).

The formation of microenvironment before liver metastasis involves a series of complex interactions and steps. Liver resident cells interact with CRC cells or their exosomes to alter the normal liver microenvironment, including the accumulation of inflammatory mediators, extracellular matrix remodeling, and tumor immunosuppression. These processes overlap with each other, providing a suitable “soil” for the colonization and proliferation of CRC cells in the liver.



Summary

Colorectal cancer is still the third most common malignant tumor in the world. Liver metastasis is one of the essential factors affecting the mortality of colorectal cancer. According to the “seed-soil” theory, the three critical steps in forming distant metastasis are “cancer stem cells”, “epithelial-mesenchymal transition”, and “tumor microenvironment”. After decades of research, the origin and formation of cancer stem cells have been partially understood, and some critical signaling pathways have been identified to regulate the stemness of cancer cells. Over last decades, people have made efforts to study the origin of cancer stem cells. The hallmarks of CSC in various malignant tumors are identified, which provides us a new method to detect the CSCs and a new tumor therapeutic target.

EMT has been a research hotspot in recent years. Tumor cells undergoing EMT can obtain more vital invasion ability and promote their metastasis to distant areas. Research advances have provided solid evidence for the connection between the activation of the EMT program and the development by carcinoma cells of resistance to therapeutics, not only in the experimental models, but also in clinical settings. Although many EMT-related pathways or star molecules have been identified, much remains obscure about the maintenance of EMT in tumor cells. Many biological properties of cancer cells are determined by non-genetic mechanisms, revealing the limitations of cancer genome sequencing in providing insight into many aspects of cancer cell biology and the need for a combination of complementary approaches such as epigenomics and transcriptomics.

The formation of the microenvironment before tumor metastasis is of great help for tumor colonization and proliferation. In the process of liver metastasis formation of colorectal cancer, these three changes do not occur in sequence but overlap. The liver, which receives blood from the gastrointestinal veins, has the highest rate of colorectal cancer metastasis. The liver has a variety of resident cells, which play various roles in forming the pre-metastasis microenvironment. Some promote tumor adhesion and colonization, some promote tumor proliferation, some regulate the immune microenvironment, and some promote tumor angiogenesis. The tumor immune microenvironment has increasingly become the focus of research. After long-term efforts, people have developed various immunotherapy strategies targeting different cellular or molecular components of the tumor immune microenvironment. For example, anti-PD-1 anti-CTLA-4 therapies target TAMs, TANs, CAFs, and other immune cells. These cells often have both pro-tumor and anti-tumor effects, but the underlying mechanisms are still poorly understood. In the different stages of tumor metastasis, the cell components in the microenvironment often differ significantly in differentiation, function, and cytokine exposure. This change poses a significant challenge for treatment. Although the development of DNA and RNA sequencing technology that pairs tumors and adjacent tissues provides us with new strategies to discover personalized therapeutic targets, it is still necessary to further study the metastatic microenvironment of tumors, and efforts should be made to find more general therapeutic targets.
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Urogenital malignancy accounts for one of the major causes of cancer-related deaths globally. Numerous studies have investigated novel molecular markers in the blood circulation, tumor tissue, or urine in order to assist in the clinical identification of tumors at early stages, predict the response of therapeutic strategies, and give accurate prognosis assessment. As an endogenous inhibitor of lysosomal cysteine proteinases, cystatin C plays an integral role in diverse processes. A substantial number of studies have indicated that it may be such a potential promising biomarker. Therefore, this review was intended to provide a detailed overview of the role of cystatin C in urogenital malignancy.
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Introduction

Urogenital malignancies are a spectrum of fatal cancers that affect the urinary and/or reproductive organs (1, 2). Prostate cancer, as the most prevalent cancer in men, accounts for approximately 27% of all new cancer cases and is also the second most common cause of cancer-related deaths. Renal cell carcinoma (RCC) and bladder cancer are both extremely common malignant tumors of the urinary system in both genders (1). Early detection of tumors may lead to better treatment response and a more favorable survival prognosis. Meanwhile, prompt and accurate diagnosis may reduce hospitalization costs and make treatment less difficult (3, 4). Therefore, the search for novel biomarkers to assist clinical decision making in urogenital malignancies has become a hot research topic.

Cystatin C is stably expressed in all nucleated cells and is involved in various physiological or pathological conditions (5). It is often used clinically to assess renal function because of its relatively small molecular weight and ease of detection, rendering it an ideal marker of the glomerular filtration rate (GFR) (6). Whereas, there is growing evidence that cystatin C is involved in a variety of immune responses. Under pathological conditions, if not properly controlled, it may eventually lead to the development and progression of malignant tumors (5, 7, 8).



Structure and function

Cystatin is a natural cysteine protease inhibitor that is widely present in the human body (9). The cystatin superfamily is divided into three subtypes based on their amino acid sequence and three-dimensional molecular structure. Type I cystatins, including stefins A and B, are non-glycosylated proteins that do not have disulfide bonds and are found primarily in cells, but can also be detected in body fluids. Type II cystatins include cystatin C, D, E/M, F, G, S, SN, and SA (5). Type III cystatins are kininogenes that can be detected in plasma and other body fluids (5, 10, 11).

Cystatin C, as the most potent known inhibitor of cysteine peptidases (5), strongly suppresses the activity of papain-like cysteine proteases and legumain (9) (Figure 1). It is a small (13-kDa) alkaline secreted protein encoded by the CST3 housekeeping gene located on chromosome 20 (20pl1.21). The human mature, active cystatin C, a single non-glycosylated polypeptide chain (molecular weight 13.4 kDa), consists of 120 amino acid residues with two intracellular disulfide bonds at the C-terminus (Figure 1) (5, 9, 12–14). Cystatin C can be detected in most tissues and organs of the human body (9, 12, 13), but varies greatly in different body fluids, with the highest levels in semen, while it is almost undetectable in urine (9, 12, 15). Cystatin C concentrations in serum are about 0.6-1.2 mg/L in healthy adults, with a half-life of approximately two hours (9, 12). Under physiological conditions, cystatin C levels remain stable. Gender, age, altered hormone levels, alcohol intake, etc. do not cause pronounced fluctuations in their levels (6, 13, 16, 17). Kidney is the main catabolic site. Cystatin C is almost completely freely filtered by the glomerulus and is then enzymatically degraded after complete reabsorption in the proximal tubule. These properties make it meet most of the criteria for ideal markers of GFR (14, 18, 19). Therefore, it has long been considered as an indicator to evaluate renal function (6, 16). Even more importantly, accumulated evidence indicates that cystatin C may be more accurate than traditional serum creatinine in renal function evaluation (20–28).




Figure 1 | Crystal structures of cystatins C (PDB:3GAX). The papain-binding epitope is formed by the N-terminus, loop L1, and loop L2. The AS is an irregular appending structure at a ‘back side’ loop system harboring a potential legumain-binding site (blue). Disulfide bonds in cystatin C are shown in orange.



In addition to the aforementioned regulation of intracellular and extracellular lysosomal cysteine proteins, cystatin C also exerts a variety of important functions (5, 14), including cell proliferation (29, 30), cell differentiation (30–34), cell migration (35, 36), immune regulation (31, 37), neuroprotection (38), resistance to microbial and viral infections (33), etc. Non-physiological fluctuations of cystatin C levels can be found in tumor tissues and body fluid of patients, including RCC (39–42), bladder cancer (43, 44), prostate cancer (45, 46), etc. Though the exact role of cystatin C in cancer still needs to be well characterized, some possible mechanisms are reported in previous studies (5, 14) (Figure 2).




Figure 2 | Supposed mechanisms underlying the dual opposing effects of Cystatin C (Cyst C) on urogenital malignancy progression. (A) Tumor-suppressing mechanisms 1) Cathepsin inhibition-dependent: Cyst C may thwart urogenital malignancy progression by inhibiting extracellular cysteine cathepsin activity and, consequently, their contribution to tumor cell migration, invasion, angiogenesis, and metastasis. 2) TGF-β interaction: Cyst C inhibited TGF-β binding to its type II cell surface receptor as well as TGF-β stimulation of initiating metastatic events such as epithelial-to-mesenchymal transition (EMT). 3)Cyst C may also mediate tumor cell invasion by regulating the MAPK/ERK cascade. (B) Cyst C may promote the malignant progression of urogenital malignancy by 1) inhibiting Lysosomal Cathepsins-mediated apoptosis. 2)Regulation of p38 MAPK signaling. 3)Modulation of 14-3-3 (ζ.B) adaptor proteins expression. 4) Damage to the endothelial glycocalyx and increased exposure of shielded adhesion molecules. 5) Impaired antitumor immune response mediated by T cells. 6) Increased expression of tumor-promoting proteinases (for example, cathelipsin B, K, L, S, and legumain).





Cystatin C and renal cell carcinoma


Circulating cystatin C expression in renal cell carcinoma

Preoperative and postoperative serum cystatin C levels may offer potential predictive value for postoperative renal function impairment in RCC patients (40, 47, 48). Studies by Duan et al. (47) and Zheng et al. (48) both concluded that serum cystatin C level was correlated with early postoperative renal impairment but was of insufficient value when predicting renal function. In the study by Wenzel et al. (40), using logistic regression and linear regression to analyse 195 patients who had undergone nephrectomy, they found that elevated preoperative cystatin C (odds ratio: 18.3, P < 0.01) and partial operation (odds ratio: 13.5, P < 0.01) were independent predictors of lower estimated GFR (eGFR) < 60 ml/min/1.73m2 at follow-up, whereas serum creatinine was not. They found that when postoperative cystatin C levels were elevated in the range of 0.9-1.0 mg/l, postoperative creatinine levels remained stable at around 1.3 mg/dl, while cystatin C and creatinine levels remained highly correlated when postoperative cystatin C levels were below 0.9 mg/l or above 1.0 mg/l. The authors referred to the postoperative plateau period of 1.2-1.3 mg/dl of creatinine as the “creatinine blind area” during which fluctuations in cystatin C levels might better predict renal impairment. Within the “creatinine blind area”, postoperative renal impairment is undetectable in up to one-third of patients, yet within this range, significant changes in serum cystatin C levels can be observed in these patients. The finding may change the traditional definition of creatinine-based acute kidney injury (AKI).

Three studies evaluated the predictive value of serum cystatin C level on RCC patients’ prognosis (39, 41, 49). As shown in Table 2, serum cystatin C levels did not change significantly in metastatic patients compared to patients with localized RCC. The cut-off values of serum cystatin C in three papers were all in the range of around 1.1 mg/l, which was broadly consistent with the levels of patients with other cancer types (8, 14). All three studies suggested that there is a significant correlation between elevated serum cystatin C levels and poorer prognosis. Guo et al. (49) and Zhao et al. (41) focused their studies on nephrectomy patients. Both studies had similar sample sizes of more than 300 cases, and by multivariate Cox regression analysis, both studies showed that serum cystatin C levels were an independent predictor of prognosis. In the study by Guo et al. (49), when predicting overall survival (OS), the hazard ratio (HR) for high levels of cystatin C was 1.59 (P = 0.012). When disease-free survival was predicted, the HR for high levels of cystatin C was 3.50 (P = 0.013). And in the study by Zhao et al. (41), when predicting OS, the HR for high levels of cystatin C was 10.51 (P = 0.001). When cancer-specific survival (CSS) was predicted, the HR for high levels of cystatin C was 4.944 (P = 0.048). In a phase II clinical study in patients with metastatic renal cell carcinoma (mRCC), Bodnar et al. (39) evaluated the impact of serum cystatin C levels relative to other GFR markers on treatment outcomes during everolimus treatment. They found a significant connection between cystatin C level and GFR indicators in 56 subjects who underwent analysis (R Spearman from 0.69 to 1.00; P = 0.0001). The result showed that elevated cystatin C level [HR = 2.85, 95% confidence interval (CI) 1.34-6.05, P=0.0065] was an independent predictor of worse treatment outcome with everolimus. Multivariate analysis showed that patients with elevated pre-treatment cystatin C levels had poorer OS (HR = 2.60, 95% CI 1.03-2.60, P = 0.0428). The results suggest that, compared to other GFR markers (such as the Modification of Diet in Renal Disease equation, the Cockcroft-Gault equation, etc.), elevated serum cystatin C levels are better predictors of mRCC patients and had better predictive significance.



Cystatin C expression in renal cell carcinoma tissue

In 1995, Jacobsson et al. (50) investigated the presence of transthyretin mRNA and cystatin C mRNA in 10 normal kidney specimens and 32 renal cell carcinoma lesions using Northern blot analysis, and immunohistochemistry was performed on some of these specimens. They found very low amounts of CST3 mRNA in the samples and ruled out the possibility of using cystatin C as the specific tumor marker for RCC. Guo et al. (42) used immunohistochemistry and Western blotting to determine the degree of cystatin C expression in 253 clear cell renal cell carcinoma (ccRCC) tissues. The researchers looked at the correlation between cystatin C expression levels and the clinicopathological features of ccRCC tumors. Their findings revealed that cystatin C expression levels in ccRCC tissues were lower than in surrounding non-tumor tissues (P < 0.001). Patients with low cystatin C expression in tumor tissues had a longer OS than those with elevated cystatin C expression. Furthermore, in the 786-O RCC cell line, knocking down cystatin C hindered cell proliferation, caused G0/G1 arrest, repressed cell invasion, decreased phosphorylation of ERK1/2 and STAT3, and increased phosphorylated JNK expression. These findings showed that cystatin C in tissues might be an excellent prognostic indicator in ccRCC.



Urine cystatin C expression in renal cell carcinoma

Lane et al. (51) attempted to identify valid markers that could predict early AKI after partial nephrectomy by measuring fluctuations in the levels of multiple urinary biomarkers after partial nephrectomy. However, the results showed that multiple urinary biomarkers, including cystatin C, showed only slight and transient fluctuations after partial nephrectomy. Urinary cystatin C levels did not correlate significantly with long-term renal function changes. There was no significant correlation between cystatin C and parameters such as time to surgery and time to ischemia. Therefore, cystatin C is not a meaningful factor for the early prediction of AKI after partial nephrectomy.




Cystatin C in prostate cancer


Circulating cystatin C expression in prostate cancer

Südfeld et al. (23) analyzed the effect of hydroxyethyl starch on cystatin C-derived eGFR by including 179 prostate cancer patients who underwent radical prostatectomy under general anesthesia and were administered hydroxyethyl starch during the perioperative period. The results showed that perioperative application of 1000 ml of 6% hydroxyethyl starch did not impair renal function in the early postoperative period when the patient’s baseline renal function was not significantly abnormal. Yordanova et al. (45) evaluated renal function by measuring creatinine, GFR, and cystatin C in 55 CRPC patients treated with at least three cycles of [177Lu] Lu-PSMA-617 radioligand and showed that cystatin C was one of the most reliable predictive markers of nephrotoxicity. At baseline, serum cystatin C was elevated in only 14 patients. However, cystatin C was elevated in 32 patients (58%) after treatment. Yang et al. (24), by comparing the preoperative cystatin C levels in three patient groups (benign prostatic hyperplasia, intraepithelial neoplasia, and confirmed prostate cancer), did not find any statistical difference between the three groups (P > 0.05). They also found that age and serum creatinine influenced the changes in serum cystatin C levels in PCa patients to some extent (both P < 0.001). Therefore, they concluded that preoperative cystatin C levels cannot be used for the early diagnosis of prostate cancer but can assist in predicting renal function in patients with prostate cancer.

Tumminello et al. (52) attempted to assess the clinical significance of serum cystatin C in prostate cancer patients without distant metastases or with bone metastases only. Circulating cystatin C levels were higher in prostate cancer patients than in healthy blood donors (P = 0.0001) and in patients with BPH (P = 0.0078). Therefore, serum cystatin C may be an effective tumor marker for differentiating prostate cancer from benign prostate lesions. However, several indicators, including the number of bone metastases and cystatin C levels, did not reveal any further relationship with the progression of cancer. It is worth noting that they also found significantly elevated cystatin C levels in prostate cancer patients treated with zoledronic acid, implying that cystatin C may be a potential marker for monitoring treatment response after receiving bisphosphonate-type drugs in prostate cancer patients who develop bone destruction. To find novel prostate cancer biomarkers, Larkin et al. (53) applied enhanced proteomic profiling of cancer progression using iTRAQ 3D LC mass spectrometry on high-quality serum samples to identify biomarkers of prostate cancer. Cystatin C was not found to be associated with prostate cancer progression in the study. A large-scale study initiated by Li et al. (54) explored the correlation between total prostate-specific antigen (PSA) and renal indicators such as cystatin C and creatinine in a Chinese ethnic minority, and showed a significant positive correlation between cystatin C levels and total PSA in the Mongolian population (p<0.0001). Thus, cystatin C may be used in combination with PSA to assist in the identification of prostate cancer in this ethnic group. A study by Zhao  et al. (55) concluded that serum cystatin C could be a valid marker for the differential diagnosis of prostate cancer. Their model based on PSA, cystatin C, and neutrophil/lymphocyte ratio had excellent discriminatory performance (AUC = 0.913, sensitivity = 83%, specificity = 82%).

Perez-Cornago et al. (56) attempted to mine the UK Biobank (included more than 200,000 prostate cancer cases) for biomarkers associated with prostate cancer incidence and mortality. After limiting the follow-up duration, they found that cystatin C was the only biomarker that was negatively associated with the risk of prostate cancer. The authors suggested that this may be due to the fact that men with kidney disease have lower circulating testosterone concentrations, which indirectly reduces the risk of prostate cancer, an opinion that was consistent with Carrero et al. (57). Meanwhile, the authors did not find any biomarkers that were significantly associated with patient mortality. Fan et al. (46) evaluated data from 48 patients with castrate-resistant prostate cancer (CRPC) and found that when subjects receiving docetaxel-based chemotherapy had elevated pre-treatment serum cystatin C, their mortality was significantly higher. The high cystatin C group (>1.61 mg/l) had a median OS of 15.6 months, while the low cystatin C group had a median OS of 25.3 months (P < 0.001). The finding implied that serum cystatin C can be an independent indicator for feedback following docetaxel treatment and that it may be utilized to predict CRPC prognosis. Srour et al. (58) defined Growth Differentiation Factor-15, N-terminal pro-brain natriuretic peptide, glycated hemoglobin A1c, C-Reactive Protein, and cystatin C as aging-related markers. They attempted to find their relationship with the risk of cancer/cardiovascular disease development. One of these studies involved cystatin C and prostate cancer, but no statistical significance was found.



Cystatin C expression in prostate cancer tissue

Jiborn et al. (59) analysed cystatin C level in radical prostatectomy specimens homogenated by Western blotting and enzyme-linked immunosorbent assay. The results showed that cystatin C levels were significantly higher in tumor tissues than in normal tissues, but the immunohistochemical expression of cystatin C in non-neuroendocrine prostate cancer cells gradually decreased with increasing Gleason grade. Meanwhile, cystatin C-positive neuroendocrine-like cells were stronger in prostate cancer than in benign tissues, suggesting a link between cystatin C and neuroendocrine differentiation in prostate cancer progression. Wegiel et al. (60) collected 448 specimens of benign and tumor tissues from prostate cancer patients who underwent radical prostatectomy, and determined the expression of cystatin C and its association with matrix metalloproteinases and androgen receptor using immunohistochemistry and tissue-microarray techniques. Almost all benign specimens showed significantly higher cytoplasmic protein expression of cystatin C, whereas cancerous tissues could barely be immunostained. The differences were statistically significant (P < 0.001), suggesting that cystatin C protein expression levels were generally downregulated in cancer tissues compared with the benign fraction of pathological specimens. Meanwhile, although not statistically significant, when assessing OS at 100 months, the authors still found that patients with low cystatin C expression in cancer tissue had a poorer prognosis than those with high levels (p = 0.307). In this study, it is proposed that targeted inhibition of cystatin C using specific siRNA resulted in an increased invasiveness of PC3 cells, whereas induction of cystatin C overexpression greatly reduced the invasion rate of PC3 in vitro. The effect of cystatin C on modulating the PC3 cell invasion was provoked by an ERK2 inhibitor that specifically inhibited MAPK/ERK2 activity.



Urine cystatin C expression in prostate cancer

Guo et al. (61) identified 14 promising biomarkers linked to prostate cancer risk stratification and developed the 14-Gene Panel, a non-invasive tool. In two separate prospective and retrospective urine research cohorts, the scientists examined the biomarkers’ performance on tissue specimens and pre-biopsy urinary sediment. A quantitative real-time polymerase chain reaction was used to quantify the mRNA expression data of each biomarker in the urine sediment RNA samples of 202 patients. According to the 14 biomarkers studied, CST3 mRNA expression was considerably elevated in urine samples from higher-risk prostate cancer patients compared to those from the lower-risk group (P <0.0001).




Cystatin C in bladder cancer

Fewer studies have examined the association between cystatin C and bladder cancer. The three articles we retrieved all focused on studying the link between serum cystatin C levels and the aggressiveness of bladder tumors. Because of the opposite conclusions in the only studies, there is still great research potential to study the association between cystatin C and bladder cancer.

Tokyol et al. (43) investigated the expression of cathepsin D in primary bladder cancer and attempted to establish its link with conventional pathological characteristics and serum cystatin C levels. The findings revealed that cathepsin D expression in tumor or stromal cells had no effect on serum cystatin C levels, and that their levels did not directly correlate with disease progression in primary bladder cancer. Between controls and patients, there were no significant differences in serum cystatin C levels (P > 0.05). Tokarzewicz et al. (44) employed a novel imaging technology named surface plasmon resonance imaging to detect 90 patients with bladder cancer and 27 healthy people. This method was used to measure the concentration of cystatin C in serum and urine. Serum levels of cystatin C from the patients were significantly lower than those in the controls (P < 0.001), whereas the cystatin C concentrations in urine were not significantly different from those of the controls. The findings suggest that serum cystatin C may be used as a potential biomarker for bladder cancer. We believe that the main limitation of this study is the difficulty in general clinical application of the new technique. Wang et al. (62) gathered clinical data from 425 bladder cancer patients’ records. Each group’s pre-treatment serum cystatin C levels were compared. Tumor parameters (tumor size, number of tumors, pathological features, all P>0.05) had no statistically significant changes in serum cystatin C levels. The authors found that circulating cystatin C is neither a reliable predictor of bladder cancer clinicopathologic characteristics nor a possible predictor of bladder cancer carcinogenesis. The result was consistent with Tokyol et al.



Cystatin C and other urogenital malignancy

Mok et al. (63) quantified the association of eGFR (based on creatinine and cystatin C) and urinary albumin-to-creatinine ratio with the risk of cancer incidence using Cox regression models adjusted for potential confounders. Due to changes in prostate cancer guidelines during follow-up, the investigators excluded prostate cancer from parital analysis to reduce interference during cancer analysis. The study did not find any valuable links between eGFR based on cystatin C and the incidence risk of urologic neoplasms.

Stefanowicz et al. (64) examined single kidneys in 26 Wilms tumor patients (mean age, 11.17 years) clinically, biochemically, and sonographically. Single kidney function was assessed using cystatin C levels and compared with serum creatinine concentration and eGFR. Children with higher serum cystatin C concentrations had lower eGFR (P = 0.02) and lower parenchymal thickness/kidney length ratio (P = 0.0065), which might be because parenchymal thickness encompasses the portion of the kidney where the majority of the glomeruli are found. Renal hypertrophy was observed in 23 children and was associated with cystatin C level (P < 0.05). In addition, cystatin C levels may increase in subjects with normal GFR. As a result, cystatin C may aid in the early detection of children who need a more thorough evaluation of their renal function.

Since chronic kidney disease is a common complication resulting from chemotherapy (cisplatin-based) in patients with testicular cancer, Ichioka et al. (65) attempted to select markers more suitable for the assessment of renal function in patients with testicular cancer by comparing the ability of creatinine-based assessment of eGFR and cystatin C-based assessment of eGFR in the diagnosis of chronic kidney disease. The authors compared eGFR based on serum creatinine and cystatin C levels in 53 patients with testicular cancer and showed that creatinine-based eGFR was significantly lower than cystatin C-based eGFR (p<0.05). Thus, cystatin C-based assessment of GFR may overestimate renal function in TC survivors cured by cisplatin-based chemotherapy. Cameron et al. (66) found that patients with testicular cancer showed early signs of nephrotoxicity, such as elevated serum cystatin C, after 3 to 4 rounds of BEP (bleomycin, etoposide, cisplatin). However, the signs returned to baseline levels after three months with no significant impairment of long-term renal function.

Tan et al. (67) investigated the values of serum cystatin C in 538 patients with upper tract urothelial carcinoma following radical nephroureterectomy. For high and low cystatin C levels, the cut-off value was 1.4 mg/L. The findings revealed that individuals with preoperative higher cystatin C were older and had lower renal function than those with lower cystatin C (both P < 0.001). The group with elevated cystatin C had notably low survival outcomes (including OS, CSS, and recurrence-free survival). Elevated serum cystatin C was shown to be an independent risk predictor of OS (HR: 1.989, 95% CI: 1.366-2.896), CSS (HR: 1.997, 95% CI: 1.351-2.996), and recurrence-free survival (HR: 1.429, 95% CI: 1.009-2.023) in multivariate Cox analysis. In conclusion, patients with upper tract urothelial carcinoma who had an increased preoperative serum cystatin level had a considerably worse survival outcome. In 2021, Nishimura et al. (68) recruited 18 patients with advanced or metastatic urothelial carcinoma who were treated with a combination of gemcitabine and cisplatin. They used serum creatinine or serum cystatin C to compute eGFR and serum creatinine to estimate creatinine clearance. Based on urine and serum creatinine, the correlation, bias, accuracy, and creatinine height index between eGFR, or estimated creatinine clearance, and measured GFR based on creatinine clearance (mGFR) were computed. The serum cystatin C-based eGFR had the strongest correlation with mGFR, according to the findings. Furthermore, serum cystatin C-based eGFRs had considerably lower bias, mean error, mean absolute error, and root mean square error than serum creatinine and estimated creatinine clearance-based eGFRs. The relationship between serum cystatin C/mGFR-based eGFR and creatinine height index was less than the relationship between serum creatinine/mGFR-based eGFR and creatinine height index, suggesting that serum cystatin C is less affected by muscle mass. The authors conclude that serum cystatin C-based eGFR better represents renal function in uremic patients than serum creatinine-based eGFR, suggesting that serum cystatin C might be helpful in evaluating renal function of patients with advanced or metastatic urothelial carcinoma in clinical settings.



Conclusion and perspectives

Cystatin C is a biomarker widely present in human serum, tissues, and urine. Numerous studies have shown its promising clinical application as a predictor of renal function and tumor prognosis. A large number of previous studies, including in the field of urogenital malignancy (Table 1), have shown that cystatin C is a valuable predictor of renal function, allowing better early prediction of renal impairment in patients with different cancers and may be more sensitive and accurate than creatinine (69–73). Multiple lines of evidence suggest that cystatin C is a promising biomarker in predicting early renal impairment after nephrectomy in patients with RCC. It can also assist renal function in patients with prostate cancer after radical prostatectomy. We also reviewed the prognostic correlation between cystatin C and urogenital malignancy. Although some studies have suggested that cystatin C levels in patients’ serum and tumor tissues, especially in RCC and prostate cancer, can be used as a potential marker of effectiveness evaluation after relevant treatment (Table 2) these findings are controversial due to small sample size. Some studies suggest that because serum cystatin C levels are significantly elevated in prostate cancer patients and highly expressed in prostate tumor tissues, its application could be valuable as an early discriminator between prostate cancer and benign prostate disease, but it is difficult to pry or even replace PSA in the early identification. Meanwhile, the pathogenesis of cystatin C in rare urogenital malignancies remains unclear. Considering the current situation, such as insufficient sample size and some conflicting conclusions, we believe that there is still room for progress in the research related to cystatin C in urogenital malignancy.


Table 1 | Overview of studies in the relationship between pretreatment serum cystatin C level and renal function in patients with urogenital malignancy.




Table 2 | Overview of studies in pretreatment cystatin C levels and survival prognosis in patients with urogenital malignancy.
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Background

Hepatocellular carcinoma (HCC) is the fifth most common cancer and the third leading cause of cancer deaths worldwide, seriously affecting human community health and care. Emerging evidence has shown that aberrant glycosylation is associated with tumor progression and metastasis. However, the role of glycosylation-related genes in HCC has notbeen reported.



Methods

Weighted gene coexpression network analysis and non-negative matrix factorization analysis were applied to identify functional modules and molecularm subtypes in HCC. The least absolute shrinkage and selection operator Cox regression was used to construct the glycosylation-related signature. The independent prognostic value of the risk model was confirmed and validated by systematic techniques, including principal component analysis, T-distributed random neighbor embedding analysis, Kaplan–Meier survival analysis, the ROC curve, multivariate Cox regression, the nomogram, and the calibration curve. The single-sample gene set enrichment analysis, gene set variation analysis, Gene Ontology, and Kyoto Encyclopedia of Genes and Genomes analyses were evaluated by the immune microenvironment and potential biological processes. The quantitative real-time polymerase chain reaction and immunohistochemistry analysis were used to verify the expression of five genes.



Results

We identified the glycosylation-related genes with bioinformatics analysis to construct and validate a five-gene signature for the prognosis of HCC patients. Patients with HCC in the high-risk group had a worse prognosis. The risk score could be an independent factor and was associated with clinical features, such as the grade and stage. The nomogram exhibited an accurate score that included the risk score and clinical parameters. The infiltration levels of antitumor cells were upregulated in the low-risk group, including B_cells, Mast_cells, neutrophils, NK_cells, and T_helper_cells. Moreover, glycosylation was more sensitive to immunotherapy, and may play a critical role in the metabolic processes of HCC, such as bile acid metabolism and fatty acid metabolism. In addition, the five-gene messenger RNA (mRNA) and protein expression were overexpressed in HCC cells and tissues.



Conclusions

The glycosylation-related signature is effective for prognostic recognition, immune efficacy evaluation, and substance metabolism in HCC, providing a novel insight for therapeutic target prediction and clinical decision-making.





Keywords: glycosylation, metabolism, hepatocellular carcinoma, molecular subtype, immunotherapy, drug sensitivity, decision-making, consensus clustering



Introduction

Hepatocellular carcinoma (HCC) is the fifth most common cancer and the third leading cause of cancer deaths worldwide, seriously affecting human community health and care (1, 2). People with a history of chronic liver diseases, such as hepatitis B virus and alcoholic steatohepatitis, are more likely to progress to HCC. However, non-alcoholic fatty liver disease is rapidly becoming a dominant cause of HCC (3). Although there are many treatments for HCC, including surgery, chemotherapy, radiofrequency ablation, and liver transplantation, their efficacy is not always satisfactory (4). Due to the high heterogeneity of tumors, patients with HCC have a poor prognosis and high mortality, with the 5-year survival rate of 18% (5). It is necessary to excavate more effective prognostic biomarkers for therapeutic targets and clinical decisions.

Glycosylation is a complex form of protein modification in the biological process that inserts sugar chains into macromolecules such as proteins, DNA, and lipids, which directly lead to the mutation or inactivation of biological macromolecules (6, 7). Aberrant glycosylation, a hallmark of cancer, is a consequence and a driver of malignant phenotypes, directly impacting key processes supporting tumor progression and metastasis, including cell adhesion, motility, invasion, and immune evasion (8, 9). Sustained high glucose can promote abnormal glycosylation, activate specific signaling pathways, and produce irreversible toxic products, thereby accelerating HCC proliferation and metastasis (10, 11). Moreover, evidence suggested that the glycosylation-related genes were associated with Programmed cell death-Ligand 1 (PD-L1) expression and immune infiltration, which was helpful to investigate the diagnosis and targeted therapy in head and neck squamous cell carcinoma (12). However, the role of glycosylation-related genes in HCC has not been reported.

Herein, we identified a novel prognostic glycosylation-related signature using non-negative matrix factorization (NMF) and weighted gene coexpression network analysis (WGCNA) analysis followed by least absolute shrinkage and selection operator (LASSO) regression construction in HCC. Importantly, we verified the expression of five-signature genes by experiments in HCC. A systematic analysis of the model results, including the risk score, independent factors, immune microenvironment, functional enrichment, and drug sensitivity, may reference the association between glycosylation and HCC for further study.



Methods


Data acquisition

The overall outline of the study is presented in Figure 1. The RNA-sequencing data (365 HCC and 50 adjacent normal samples) and clinical information were downloaded from The Cancer Genome Atlas (TCGA, https://portal.gdc.com) (13). The expression profiles were normalized by log2 fragments per kilobase. The totals of glycosylation-related genes were obtained from gene set enrichment analysis (GSEA) (Supplementary Table 1).




Figure 1 | The flow chart of the study.





Identification of functional module and molecular subtype

Based on glycosylation-related genes, we extracted the expression profiles in the TCGA database and analyzed the differentially expressed genes (DEGs) by the R package “limma” with the values of FDRP< 0.05, |log2FC| > 1 in HCC. The WGCNA was applied to identify the strongest correlation module of glycosylation (14). Outlier samples were removed by hierarchical clustering analysis. By analyzing the appropriate soft threshold power, a scale-free network is established. The clustering of coexpression modules is based on the dynamic tree-cutting method. The glycosylation-related DEGs were detected in HCC-related modules, and their correlation with module membership was analyzed. Finally, we selected the most robust correlation module as candidate genes for further study. Moreover, the candidate genes were used for NMF analysis with the “brunet” standard and 50 iterations. Moreover, the value of k defined as 2–10. The optimal k was dependent on the indexes of cophenetic, dispersion, and silhouette (15). The Kaplan–Meier (K-M) curves were used to show overall survival (OS) and progression-free survival (PFS) in two clusters.



Construction and estimation of glycosylation-related signature

LASSO Cox regression analysis was used to construct prognostic signature by R package “glmnet.” To avoid overfitting, we also introduced a penalty parameter (λ) to risk model by 10-fold cross-validations (16). The formula of risk score was as follows: . The five glycosylation-related genes and corresponding coefficients were identified in the prognostic model. Then, patients were divided into training and testing cohorts. According to the median cutoff value, each cohort was classified into low- and high-risk groups. The PCA and t-SNE analysis aimed to evaluate the ability to distinguish classification of two risk groups (17). Moreover, the R packages “plot,” “pheatmap,” “survival,” and “timeROC” were applied to evaluate the status, survival, and ROC in the training, testing, and total cohorts.



Independent prognostic signature validation

Univariate and multivariate Cox regression analyses were conducted to determine the relationship between the risk score and clinical features, and the specificity and sensitivity of risk score were investigated for 1, 3, and 5 years by the ROC curve. To forecast survival probability, we established the nomogram containing the risk score and clinical features by the R package “rms” (18). Then, the calibration curve and ROC curves verified the consistency between actual survival time and probability OS in 1, 3, and 5 years. To further identify independent prognostic factors, the R package “heatmap” and K-M curve analysis were used to detect critical features among age, gender, grade, T stage, N stage, and M stage in low- and high-risk groups.



Evaluation of tumor infiltration and immune response

The single-sample GSEA was conducted to perform the association between risk groups and immune cells, and immune functions, with parameters as follows: kcdf= ‘Gaussian’, method=ssgsea, and ranking=TRUE (19). The correlation coefficients between risk scores and immune infiltration cells and immune checkpoints were presented in a heatmap. Then, the composition of 22 infiltrating immune cells was established by R package “CIBERSORT” in different risk groups (20). The Wilcoxon rank-sum test analyzed the expression of immune checkpoints in risk groups.



Functional enrichment analysis

The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway functional enrichment were used to explore potential biological functions between low- and high-risk groups through R package “cluster Profiler.” The hallmarks and KEGG of gene set variation analysis (GSVA) were also selected (21), with the threshold value as follows: Permutations: 1000 times, and P<0.05.



Prediction of drug response

The genomics of drug sensitivity in the cancer database was used to predict the responses to some chemotherapy drugs between low- and high-risk groups through R package “pRRophetic,” with the threshold of half-maximal inhibitory concentration (IC50) (22).



Cell culture

The normal hepatic cell (LO2) and HCC cell line (HepG2 and 7721), were donated from the First Hospital Affiliated to Anhui Medical University. Furthermore, the DMEM with high-glucose (HyClone) and 10% fetal bovine serum (VivaCell, Shanghai, China) were treated to these cells in 5% CO2, 37°C.



Quantitative real-time polymerase chain reaction

Total RNA was extracted from different cells through the TRIzol reagent. The complementary DNA (cDNA) was obtained from reverse transcription using PrimeScript™ kit. Then, as a quantitative reagent, the SYBR Green qPCR Mix was applied to test the gene expression of the prognostic signature. The results were calculated as the 2−ΔΔCt method. All primer sequences are illustrated in Supplementary Table 2.



Analysis of immunohistochemistry

The expression of protein was detected by immunohistochemistry in normal and HCC tissues. In the HPA database, we explored the image of 5-glycosylation-related genes protein expression in “tissue” and “pathology” of modules (23). Patients and the images of serial numbers are included in this research. All images were rejudged by two pathologists. Regents are as follows: B3GAT3: Atlas Antibodies Cat#HPA051328, RRID : AB_2681444, dilution: 1:130; CAD: Atlas Antibodies Cat#HPA069341, RRID : AB_2686125, dilution: 1:500; Atlas Antibodies Cat#HPA012820, RRID : AB_1848478, dilution: 1:25; Atlas Antibodies Cat#HPA003162, RRID : AB_1078937, dilution: 1:15.



Statistical analysis

The R software (version 4.1.2) was used for statistical analyses and visualization in this research. Qualitative data are expressed as percentages. The t test or ANOVA analysis was used for normally distributed data of two or more groups, and the chi-square test or Fisher’s test was used for other data. The differences in survival between risk groups were conducted by K-M analysis with a log-rank test. The ROC curve was used to evaluate the efficiency of the signature. P< 0.05 was defined as statistically significant.




Results


Identification of glycosylation-related genes, functional modules, and molecular subtypes

A total of 365 patients with HCC who had follow-up data were included in the study. Combined with glycosylation-related genes, we identified DEGs in the TCGA cohort, including 152 upregulated genes and 7 downregulated genes. The volcano map and heatmap visualize the differences between HCC tissues and adjacent non-tumor tissues (Figure 2A, Supplementary Figure 1A). To investigate the functional modules of glycosylation-related genes in HCC, we first conducted clustering dendrograms to detect the outliers of 365 HCC and 50 normal tissues by WGCNA. There were no outliers among these tissues (Supplementary Figure 1B). The weighted value β was scheduled as 9, which emerged as a good consistency in a scale-free network (Figure 2B, Supplementary Figure 1C). We identified seven functional modules, including the blue module (27 genes), yellow module (8 genes), green module (8 genes), brown module (10 genes), red module (6 genes), turquoise module (31 genes), and gray module (101 genes) (Figure 2C, Supplementary Figure 1D). Among them, it was found that the gray module had the strongest correlation between normal and HCC tumors (r = 0.61, p = 1e-42) (Figure 2D). Therefore, the 101 genes were used as candidate genes for further analysis (Supplementary Table 3).




Figure 2 | Identification of glycosylation-related differentially expressed genes (DEGs), functional modules, and molecular subtypes. (A) Volcano plot of 201 glycosylation-related DEGs in hepatocellular carcinoma (HCC). (B) The distribution of the scale-free topology model fit and the trends of mean connectivity. (C) The hierarchical clustering analysis presented similar characteristics with the same color by a dendrogram. (D) The correlation between the trait and each module in HCC and normal tissues. (E) Non-negative matrix factorization (NMF) survey analyzed the factorization rank, including cophenetic, dispersion, evar, residuals, rss, silhouette, and sparseness coefficients. (F) Heatmap of two clusters of HCC. Kaplan–Meier (K-M) curves of overall survival (OS) (G) and progression-free survival (PFS) (H) in two clusters of patients with HCC. (I) The association between clusters and immune C1, C2, C3, and C4.



NMF analysis was applied to determine the optimal molecular subtype of 101 glycosylation-related genes in HCC. According to the results of the NMF rank survey, the optimal k value was identified as 2 (Figure 2E). The corresponding heatmap suggested a definite boundary than others (Figure 2F, Supplementary Figure 1E). Moreover, cluster 1 had a good OS (P=0.017) (Figure 2G) and PFS (P=0.002) (Figure 2H) than cluster 2 in patients with HCC. In Figure 2I, cluster 1 was associated with immune C3, but cluster 2 was associated with immune C4.



Analysis of independent prognostic value and construction of prognostic nomogram

To investigate the independent prognostic factors, we first analyzed the clinical features by univariate and multivariate Cox regression. The results suggested that the stage and risk score of HCC patients had a higher hazard ratio with 95% confidence interval (P<0.001) (Figures 3A, B). Then, combined with the clinical features, we further explored the ROC curves of the stage and risk score. In 1, 3, and 5 years, the area under the curve (AUC) values of HCC patients were 0.777, 0.703, and 0.695 of the risk score and 0.671, 0.679, and 0.661 of the stage (Figures 3C–E).




Figure 3 | Independent prognostic value validation. (A) The relationship between the risk score and clinicopathological features by univariate Cox analysis. (B) The relationship between the risk score and clinicopathological features by multivariate Cox analysis. The AUC values of the ROC curve of 1 (C), 3 (D), and 5 years (E) for the risk score and clinicopathological features. (F) Nomogram for 1-, 3-, and 5-year OS prediction. (G) Calibration curves for 1-, 3-, and 5-year OS prediction. (H-J) The AUC values of the ROC curve of 1, 3, and 5 years for the nomogram.



In order to better predict the survival probability of HCC patients, we made an attempt to develop a clinical application tool. The OS probability of the nomogram in 1, 3, and 5 years was 0.918, 0.806, and 0.702, respectively (Figure 3F). The calibration curve indicated that the nomogram had remarkable prediction performance and stability (Figure 3G). Afterward, The ROC curves of nomogram identified the AUC for 1-, 3-, and 5-year HCC patients as 0.778, 0.759, and 0.779, respectively (Figures 3H–J). Therefore, the risk score and stage were independent factors, and the nomogram could be a reliable nomogram for survival prediction.

In addition, we investigated the relationship between the risk score and clinical features, and the results suggested no significant difference in the age, gender, grade, M stage, and N stage except for the stage and T stage (Supplementary Figures 2A–F). The heatmap manifested the association between risk groups and clinical features, including the grade, stage, and T stage (Figure 4A). Furthermore, the proportion of different clinical features in low- and high-risk groups is presented in Figures 4B–G. Interestingly, the K-M curve demonstrated that patients in the low-risk group had a longer survival probability than those in low-risk group under the conditions of female, man, age > 65, age ≤ 65, G1–G2, G3–G4, M0, N0, Nx, stage I–II, stage III–IV, T1–T2, and T3–T4 (Figures 4H-O, Supplementary Figures 2G–L).




Figure 4 | The correlation of clinicopathological features with the prognostic signature. (A) The heatmap analysis between clinicopathological characteristics and low- and high-risk groups. The proportion of different clinicopathological characteristics in low- and high-risk groups: (B) Gender. (C) Grade. (D) M stage. (E) N stage. (F) T stage. (G) stage. The K-M survival analysis of clinicopathological factors between low- and high-risk groups: (H) Age ≥ 65. (I) Age = 65. (J) Female. (K) Male. (L) Grade 1–2. (M) M0 stage. (N) Stage I-II. (O) T1–2 stage.





Identification and validation of glycosylation-related signature in patients with HCC

To quantify the prognosis of each patient, the 101 of candidate genes were used for the glycosylation-related signature by LASSO regression with the optimal regression coefficient and 10-fold cross-validation (Figures 5A, B). The risk score for the signature was as follows: risk score= 0.546 × expression of B3GAT3 + 0.412 × expression of CAD + 0.704 × expression of FKTN + 0.202 × expression of LGALS3 + 0.349 × expression of SLC7A11. Then, a total of 365 patients with HCC were randomly classified into training and testing cohorts. After excluding patients with unknown clinical information, we presented the differences in clinicopathological characteristics between training and testing cohorts (Table 1). According to the median score, the patients with HCC were divided into low- and high-risk groups. Subsequently, the scatterplot, risk curve, and risk heatmap were applied to show risk score distribution, the survival status, and the expression between low- and high-risk groups in the training, testing, and total cohorts (Figures 5C–H). It was founded that the patients in the high-risk group had higher risk coefficients and mortality. PCA and t-SNE analysis further verified that the risk score model had good discrimination performance in training, testing, and total cohorts (Figures 5I–K). To assess the predictive quality and accuracy of the signature, the K-M survival curve was used to the predictive ability of signature, and the results revealed that patients in the high-risk group had a poorer OS than those in the low-risk group in the training cohort (P< 0.001) (Figure 5L). This result was consistent with the testing cohort (P<0.05) (Figure 5M) and total cohort (P< 0.001) (Figure 5N). Moreover, in the 1-, 3-, and 5-year follow-ups, the AUC values of ROC curves were 0.794, 0.704, and 0.708 of the training cohort (Figure 5O); 0.728, 0.694, and 0.655 of the testing cohort (Figure 5P); and 0.777, 0.703, and 0.695 of the total cohort (Figure 5Q), respectively.




Figure 5 | Construction and estimation of the glycosylation-related signature. (A) LASSO coefficient distribution of the glycosylation-related signature. (B) The optimal parameter (λ) selection by the cross-validation curve. The distribution and survival status of the risk score in the training cohort (C), testing cohort (D), and total cohort (E). Heatmap of five-gene expression between low- and high-risk groups in the training cohort (F), testing cohort (G), and total cohort (H). The PCA and t-SNE analysis in the training cohort (I), testing cohort (J), and total cohort (K). (L–N) The K-M survival analysis between low- and high-risk groups in the training cohort (L), testing cohort (M), and total cohort (N). The AUC values of ROC curves for 1, 3, and 5 years in the model in the training cohort (O), testing cohort (P), and total cohort (Q).




Table 1 | The Clinicopathological Characteristics in Training and Testing Cohort.





Correlation of immune infiltration and immunotherapy response with prognostic signature

In Figures 6A, B, we compared the differences in immune cells and immune functions between the low- and high-risk groups. The score of B_cells, Mast_cells, neutrophils, NK_cells, T_helper_cells, cytolytic_activity, and Type_II_IFN_Response in the low-risk group were significantly higher than those in the high-risk group. In addition, the activity of aDCs, Macrophages, Treg, APC_co_stimulation, MHC_Class_I, and Parainflammation markedly increased in the high-risk group. The CIBERSORT algorithm demonstrated a strong correlation between the risk score and immune infiltration cells (Figure 6C). Then, the bar plot exhibited the percentage of 22 types of immune infiltrating cells in the low- and high-risk groups (Supplementary Figure 3A). As shown in Figure 6D, we further explored the correlation between the risk score and immune genes. Moreover, it was found that the expression of immune checkpoints was significant between low- and high-risk groups (Figure 6E). In addition, we investigated in detail the expression of immune checkpoint inhibitors in low- and high-risk groups and the correlation between the risk score and immune checkpoints (CTLA4, GPC3, HAVCR2, PDCD1, PDCD1LG2, and PDL1). The expression of CTLA4, HAVCR2, PDCD1, and PDL1 in the high-risk group was higher than those in the low-risk group (Figures 6F–Q). There was also a significant correlation between the risk score and immune checkpoints.




Figure 6 | The association of immune infiltration and immunotherapy response with the prognostic signature. (A) The infiltrating levels of 16 subtypes of immune cells in low- and high-risk groups. (B) The expression of 13 immune functions in low- and high-risk groups. (C) The correlation between the risk score and immune infiltration cells. (D) The expression of the immune checkpoints of low- and high-risk groups. (E) The correlation between the risk score and immune checkpoint genes. The expression and correlation between the risk score and immune checkpoint inhibitors: (F) CTLA4. (G) GPC3. (H) HAVCR2. (I) PDCD1LG2. (J) PDCD1. (K) PD-L1.





Analysis of functional enrichment

We explored the biological functions and enriched pathways between low- and high-risk groups. The two risk groups may be involved in cellular division and glycosaminoglycan binding by GO analysis (Figure 7A, Supplementary Figure 3B). KEGG analysis indicated that the top three pathways were human papillomavirus infection, the PI3k-Akt signaling pathway, and the cell cycle (Figure 7B, Supplementary Figure 3C). To further determine the biological behaviors, GSVA was conducted to identify the hallmark process and KEGG pathway based on the risk score. Through GSVA, the signature genes were mainly enriched in xenobiotic metabolism, unfolded protein response, PI3k Akt MTOR signaling, KRAS signaling, hedgehog signaling, G2M checkpoint, E2F target, and bile acid metabolism (Figures 7C, D). The KEGG of GSVA suggested that the risk score was positively correlated with the Wnt signaling pathway, VEGF signaling pathway, MAPK signaling pathway, and node-like receptor signaling pathway, while the risk score was negatively correlated with the PPAR signaling pathway.




Figure 7 | Analysis of functional enrichment and application of the signature in drug sensitivity. (A) The GO analysis by a chordal graph. (B) The KEGG analysis between low- and high-risk groups by a chordal graph. (C) The hallmark processes by GSVA analysis in five genes by GSVA analysis. (D) The KEGG signaling pathway by GSVA analysis. The association between drug sensitivity and low- and high-risk groups: (E) Doxorubicin. (F) Bleomycin. (G) Gemcitabine. (H) Bortezomib. (I) Imatinib. (J) Paclitaxel. (K) Methotrexate. (L) Rapamycin. (M) Sorafenib. (N) Vorinostat. (O) AKT.inhibitor VIII. (P) Axitinib.





Application of the signature in drug sensitivity

In order to investigate the relationship between the risk score and clinical chemotherapy, drug sensitivity analysis was used to determine the clinical benefits of the signature for HCC. The IC50 values of drugs in the low-risk group were higher than those in the high-risk group, including doxorubicin, bleomycin, gemcitabine, bortezomib, imatinib, and paclitaxel. However, methotrexate, rapamycin, sorafenib, vorinostat, AKT.inhibitor.VIII, and axitinib were more sensitive to patients in the high-risk group (Figures 7E–P). These results could be a project for chemotherapy in patients with different risk groups.



Verification of signature gene by quantitative real-time polymerase chain reaction and immunohistochemistry

Based on the five-gene signature, we first detected the mRNA protein expression of five genes in HCC cell lines by quantitative real-time polymerase chain reaction (qRT-PCR) and immunohistochemistry analysis. Compared to normal tissues, the protein expression of B3GAT3, CAD, FKTN, and LGALS3 was positive in HCC tissues, mainly located in cytoplasmic/membranous (Figures 8A–D). However, the protein expression of SLC7A11 was not retrieved, and further studies are needed. Furthermore, we identified that the mRNA expression of B3GAT3, CAD, FKTN, LGALS3, and SLC7A11 were upregulated in HepG2 and 7721 cell lines (Figures 8E–I).




Figure 8 | Verified protein and mRNA expression of the five-gene signature. Protein expression in HCC and normal tissues validated by the immunohistochemistry analysis of the HPA database: (A) B3GAT3. (B) CAD. (C) FKTN. (D) LGALS3. The expression of five-gene mRNA in hepatic and HCC cell lines experimented by quantitative real-time polymerase chain reaction analysis: (E) B3GAT3. (F) CAD. (G) FKTN. (H) LGALS3. (I) SLC7A11.






Discussion

In this study, we screened 101 candidate genes and identified two subtypes of glycosylation in HCC patients. Based on these genes, we constructed a glycosylation-related signature and aimed to provide an individualized clinical diagnosis and treatment strategy for HCC patients. The prognostic value of the risk model was confirmed and validated by systematic techniques including PCA, t-SNE, K-M survival analysis, the ROC curve, and multivariate Cox regression. Our findings suggested that the risk score could be an independent factor and associated with clinical features, hence performing stability and predictability in the prognosis of patients with HCC. Moreover, the nomogram exhibited an accurate score that included the risk score and clinical parameters. The nomogram presents a score that includes risk scores and clinical parameters to guide clinicians in making individualized decisions.

The signature consisted of five glycosylation-related genes: B3GAT3, CAD, FKTN, LGALS3, and SLC7A11. B3GAT3 is a glycosyltransferase that plays a decisive role in proteoglycan synthesis (24). The abnormal expression of B3GAT3 accelerated the glycolytic pathway and promoted the proliferation of colorectal cancer cells, thereby affecting the prognosis of patients (25). The knockdown of B3GAT3 reversed the levels of epithelial–mesenchymal transition markers in HCC cells, which could be a novel prognostic biomarker for HCC (26). CAD is a multifunctional enzyme complex whose overactivation was associated with tumors primarily through metabolic programming and chemotherapy resistance (27, 28). CAD-induced pyrimidine synthesis and ribosome production promote the rapid recall reaction of memory T cells (29). FKTN expression was correlated with carcinogenesis and may be a key regulator of intestinal gastric cancer progression (30). A study in HCC indicated that LGALS3 expression was related to metastasis-related processes (31). Zhang et al. demonstrated that LGALS3 overexpression may involve recurrence and microenvironments in HCC (32). Moreover, SLC7A11 is a suppressor of ferroptosis, and its overexpression is associated with a poor prognosis in various cancers (33). SLC7A11-induced ferroptosis can be inhibited by SHP-1/STAT3-mediated MCL1 downregulation and BECN1 binding increase in HCC (34). These genes in our model were correlated with occurrence, recurrence, progression, and prognoses in HCC. In addition, our experimental results verified that the expression of five genes was upregulated in HCC cell lines by qRT-PCR analysis. Immunohistochemical analysis showed that these proteins expressions were positive in HCC tissues compared to adjacent normal tissues. Therefore, these results further demonstrated that the signature shows a superior predictive performance in HCC.

The phenotype and function of tumor cells can be disrupted by effective immune responses in the tumor microenvironment. The glycosylation process has been correlated with the tumor microenvironment further to determine the association between immune infiltration and risk groups. We acquired many differences between low- and high-risk groups in immune cell infiltration by the glycosylation-related gene signature. We found that the infiltration levels of antitumor cells were upregulated in the low-risk group, including B_cells, Mast_cells, neutrophils, NK_cells, and T_helper_cells. An important result of our study is that the expression of macrophages and Tregs was more abundant in the high-risk group. Accumulating evidence reported that increased levels of Tregs and macrophages had a worse prognosis for patients with HCC (35, 36). Moreover, the expression of Type_II_IFN_Response in the high-risk group was significantly higher than those in the low-risk group, which was identified as a key factor in coordinating the interaction between tumors and the immune system (37). Previous studies also demonstrated that the level of NK cells is positively correlated with the survival of patients with HCC (38, 39). Consistently our GSEA analysis suggested the infiltrating level of NK cells was increased in the low-risk group. Immune checkpoint inhibitors show new promise in antitumor therapy, mainly by blocking CTLA-4, GPC3, PDCD1, and PDL1 to enhance T-cell activity (40). Our study found that the expression of CTLA4, HAVCR2, PDCD1, and PDL1 was positively correlated with high-risk groups. This suggested that patients with high immune checkpoint inhibitor expression may be effective for immunotherapy. It was reported that CTLA-4 played a key role in maintaining self-tolerance and Treg suppression in HCC immunity (41). Moreover, PD-L1 could be not only an important mediator but also a critical target for antitumor therapy in HCC (42). These results confirmed that patients in the low-risk group were more sensitive to immunotherapy, which was consistent with the active tumor immune microenvironment and the high expression of immune checkpoints. Thus, the signature could accurately evaluate the tumor immune microenvironment and predict immune checkpoint inhibitor efficacy.

Additional analysis of functional enrichment suggested that the five-signature genes may be involved in the glucose metabolic process and cell cycle regulation, such as cellular division, glycosaminoglycan binding, and steroid hydroxylase activity. These pathways are in line with the glycosylation process, in which proteins or lipids are added to sugars. Through GSEA analysis, we identified that the five-signature genes were negatively correlated with xenobiotic metabolism, bile acid metabolism, fatty acid metabolism, and the PPAR signaling pathway but positively correlated with the unfolded protein response, G2M checkpoint, E2F target, PI3k Akt MTOR signaling, and P53 pathway. The metabolism of HCC could be altered by the inherent glycosylation characteristics (9). In addition, by performing drug sensitivity analysis, our study found that sorafenib was more sensitive to patients in the high-risk group, while doxorubicin was more sensitive in the low-risk group. The results confirmed the efficacy of sorafenib and lenvatinib in patients with unresectable HCC (43). Therefore, glycosylation may be involved in developing resistance, and more studies are needed to explain the underlying metabolic processes.

There are several limitations being addressed in this study. Firstly, although we identified prognostic genes through NMF and WGCNA models, the data of HCC were taken only from the TCGA database. Secondly, this is a retrospective study, and more multicenter, prospective studies are needed to verify the stability and accuracy of the signature in the future. Thirdly, the molecular mechanism of glycosylation-related genes needs to be further explored in HCC.



Conclusion

We integrated glycosylation-related genes with bioinformatics analysis to construct and validate a five-gene signature for the prognosis of HCC patients. Our study demonstrated that the signature is effective for HCC prognostic recognition, immunotherapy response, and substance metabolism in HCC. Future studies should further elucidate the underlying mechanisms by which the five-gene signature regulates the immune microenvironment and provides a basis for immunotherapeutic strategies in HCC.
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   Background

Renal cell carcinoma (RCC) is a highly metastatic urological cancer. RCC with liver metastasis (LM) carries a dismal prognosis. The objective of this study is to develop a machine learning (ML) model that predicts the risk of RCC with LM, which is used to assist clinical treatment.


 Methods

The retrospective study data of 42,547 patients with RCC were extracted from the Surveillance, Epidemiology, and End Results (SEER) database. ML includes algorithmic methods and is a fast-rising field that has been widely used in the biomedical field. Logistic regression (LR), Gradient Boosting Machine (GBM), Extreme Gradient Boosting (XGB), random forest (RF), decision tree (DT), and naive Bayesian model [Naive Bayes Classifier (NBC)] were applied to develop prediction models to predict the risk of RCC with LM. The six models were 10-fold cross-validated, and the best-performing model was selected based on the area under the curve (AUC) value. A web online calculator was constructed based on the best ML model.


 Results

Bone metastasis, lung metastasis, grade, T stage, N stage, and tumor size were independent risk factors for the development of RCC with LM by multivariate regression analysis. In addition, the correlation of the relative proportions of the six clinical variables was shown by a heat map. In the prediction models of RCC with LM, the mean AUC of the XGB model among the six ML algorithms was 0.947. Based on the XGB model, the web calculator (https://share.streamlit.io/liuwencai4/renal_liver/main/renal_liver.py) was developed to evaluate the risk of RCC with LM.


 Conclusions

This XGB model has the best predictive effect on RCC with LM. The web calculator constructed based on the XGB model has great potential for clinicians to make clinical decisions and improve the prognosis of RCC patients with LM.




 Keywords: renal cell carcinoma, liver metastasis, machine learning, prognostic factors, web calculator 

  1. Introduction.

Renal cell carcinoma (RCC) accounts for approximately 2% of global cancer diagnoses and deaths (1). RCC incidence rates are increasing, particularly in developed countries. The reason partially may be because of imaging, typically with a magnetic resonance imaging (MRI), computed tomography (CT) scan, or ultrasound (2, 3). RCC is the deadliest urological neoplasm and has a dismal late-stage 5-year survival rate of 12% (4, 5). Although most incidentally detected lesions are small low-grade tumors, 25%–30% of RCC patients present with distant metastasis at initial diagnosis (6, 7).

The liver is one of the common metastatic sites of RCC, with estimates of involvement in 20% of patients with metastatic RCC (8). Unfortunately, the development of liver metastasis (LM) is generally considered a poor prognostic factor and is often associated with more widespread disease (9, 10). The duration of median progression-free survival and overall survival in patients with LM was significantly shorter than that of patients without LM (11). The median overall survival of RCC patients with LM is<12 months and shorter than that in patients with metastases from other sites (e.g., lung, brain, lymph nodes, etc.) (12, 13). Moreover, metastatic tumors render patients ineligible for surgery, especially when critical organs are involved. Systemic immunotherapy has been the standard therapy for metastatic RCC (mRCC) over the past few decades (11). However, LM responds poorly to systemic therapy, with a 15% objective response rate to immunochemotherapy (14). Thus, early detection and early intervention are crucial for RCC treatment. The risk of RCC patients with LM is an urgent issue. The treatment of RCC with LM remains to be explored. New approaches and early detection are crucial for RCC treatment.

Linear regression as an important machine learning (ML) method can build a linear connection between dependent and independent variable sets to predict uncertainties. The researchers focused on predicting whether this patient is healthy or not, but that is not effective (15). A model was needed to illustrate that one person is moving toward this disease during the early detection of the disease. Artificial intelligence (AI) was implemented in the medical and health fields in recent years (15). ML is one intelligent branch of the AI field and a discipline in computer science wherein computers are programmed to process the input data. It focuses on how computers learn and improve from data. The learning algorithms create models that can make predictions or decisions without being explicitly programmed to perform the task. The function of disease diagnosis is important for its application in cancer-related diagnosis and treatment for the performance of appropriate retrospective analysis (16, 17). ML methods were used to establish a predictive model, which were tested and trained to acquire a suitable algorithmic model to quickly and accurately diagnose, predict, and monitor disease. And ML methods were helpful for the design of the treatment plan by doctors (18).

Although similar ML prediction methods were reported for RCC, there was still less research in RCC with LM (19, 20). In our study, data of 852 RCC patients from the Surveillance, Epidemiology, and End Results (SEER) database were used, and six ML models [namely, logistic regression (LR), Gradient Boosting Machine (GBM), Extreme Gradient Boosting (XGB), random forest (RF), decision tree (DT), and Naive Bayes Classifier (NBC)] were carried out. The XGB prediction model showed the best performance in predicting the risk of RCC with LM. A predictive web calculator was constructed for clinicians managing predicted risks and establishing personalized treatment strategies of RCC patients with LM.


 2. Materials and methods.

 2.1. Patient cohorts.

 2.1.1. The SEER cohort (training group).

The training RCC patient group’s information was extracted from the SEER database of the National Cancer Institute. SEER is one of the most representative large oncology registry databases in North America, in which patient demographics (age, gender, stage, and so on), site of the primary tumor, pathological type, method of diagnosis, treatment, time to death, and survival time were included (21, 22). Detailed information about SEER can be found on the official website (http://seer.cancer.gov/about/). The SEER database has public datasets and does not contain any sensitive content or identifying information of patients; these data can be used without ethics committee approval.


 2.1.2. Patient cohort (validation group).

The information data of RCC patients were obtained from the Second Affiliated Hospital of Dalian Medical University. All data collection was performed following the guidelines approved by the Second Affiliated Hospital of Dalian Medical University. The clinical information of patients in this study included marital status, gender, age, race, survival status, survival time, sequence number, primary site, laterality, grade, pathological staging, T stage, N stage, tumor size, bone metastasis, brain metastasis, LM, and lung metastasis. All cancer samples were classified in accordance with TNM staging [American Joint Committee on Cancer (AJCC)]. Pathological staging was diagnosed by at least two dedicated genitourinary pathologists.



 2.2. Clinical data screening.

SEER*stat (8.3.6) software was employed to extract the available data of the training group from a retrospective cohort study. In our study, the SEER database’s tumor nomenclature and coding manual (23) and the International Classification of Diseases tumor morphology code ICD-O-3 (24) were employed to extract the available data of 2010–2017 kidney cancer patients for the training group (25). The inclusion/exclusion criteria were as follows: 1) distinct diagnosis with pathology (validation group was diagnosed by at least two dedicated genitourinary pathologists); 2) RCC was the primary tumor; 3) integral follow-up information; 4) complete clinical characteristic factors of patients; 5) clear stage and grade; 6) survival time more than 0 month. Finally, 42,547 patients of the training group and 852 patients of the validation group were screened according to the inclusion/exclusion criteria. Information on all variables was complete for these patients.


 2.3. Statistical analysis.

The numerical variables were expressed as mean ± standard deviation (SD), and the count data were expressed as frequencies and percentages. Shapiro–Wilk test, t-test, chi-square test, univariate and multivariate LR analysis, Least absolute shrinkage and selection operator (LASSO) regression analysis, correlation heat map, 10-fold cross-validation plot, and AUC plot were performed using SPSS 26.0 software (SPSS Inc., Chicago, USA), R language (version 4.0.5), and Python (version 3.8). p< 0.05 was considered statistically significant. ML models were designed based on the scikit-learn (version 0.24) library.


 2.4. Feature engineering and selection.

Numerical variables such as tumor size were processed using data standardization methods. Category variables such as T stage were processed using label-encoding methods. The LASSO regression method was used to screen for meaningful combinations of features for predicting the risk of RCC patients with LM. Correlation analysis was used to analyze the correlation among the selected features. Feature importance analysis was performed on the variables based on the Permutation Importance principle.


 2.5. Predictive model building and validation.

Six ML models of LR, GBM, XGB, RF, DT, and NBC were used to predict the risk of RCC patients with LM (26–31). Random oversampling methods were used to deal with the imbalance in the distribution of the data. Ten-fold cross-validation was used to compare the performance of the models. Random search method was used to adjust the hyperparameters of the model. Prediction results of the model were binary output and probabilistic output. XGB is an integration algorithm based on boost. It is typical of the integration of cart tree, which is an improvement of the gradient tree boosting.

 

Here, l is a differentiable convex loss function that measures the difference between the prediction  and the target yi . The second term Ω penalizes the complexity of the model. The probabilistic output results are evaluated using the receiver operating characteristic curve (ROC). The ROC is an intuitive method for evaluating the sensitivity and specificity. The testing effect is dependent on the value of the area under the ROC (AUC); the higher the value of the AUC, the better is the effect of the ML model. A colormap was used to show the comparison between the predicted results of the models and the actual situation in the test set. The highest AUC value of one of the ML models was selected as the best prediction model. A web-based online calculator based on the prediction model was also constructed. The code for each step of the article data analysis can be found in Github; see https://github.com/chengliangyin/chengliangyin1.



 3. Results.

 3.1. Demographic characteristics and parameter screening.

In our study, 42,547 RCC patients were included in the training group and 852 RCC patients were in the validation group. The median age of the training and validation groups was 63.49 years (SD = 13.07) and 63.87 years (SD = 13.08), respectively. The median survival time of the training group was 39.12 months (SD = 30.69), and it was 37.17 months (SD = 30.82) in the validation group. The median tumor size was 51.59 mm (SD = 41.13) in the training group and 52.07 mm (SD = 7.18) in the validation group. The p-values of age, sequence number, survival time, survival status, gender, tumor size, and lung metastasis were 0.403, 0.129, 0.066, 0.643, 0.646, 0.734, and 0.392 by comparing the training and validation groups. There were no statistically significant differences (all p > 0.05,  Table 1 ). While marital status, ethnic primary site, laterality, grade, pathological staging, T stage, N stage, bone metastases, brain metastases, and LM showed statistically significant differences between the training and validation groups (all p< 0.05,  Table 1 ). In the training group, there were 1,030 (2.4%) RCC patients LM, and there were 32 (3.8%) in the validation group ( Table 1 ). The LASSO regression method was used to screen for meaningful combinations of risk factors for predicting the risk of RCC patients with LM. Six interesting parameters, namely, bone metastasis, lung metastasis, grade, T stage, N stage, and tumor size, were highly correlated with the risk of RCC patients with LM ( Figures 1A, B ). The correlation heat map demonstrated that six features were used to predict the risk of RCC patients with LM. Thus, these six features were used as predictors in the correlation heat map ( Figure 2 ).

 Table 1 | Baseline patient data from the training and validation groups. 



 

Figure 1 | (A) Optimal parameter (λ) selection in the LASSO model, with the optimal tuning parameter log(λ) in the horizontal coordinate and the regression coefficients in the vertical coordinate. (B) Distribution of LASSO coefficients for the clinical factors, with the optimal tuning parameter log(λ) in the horizontal coordinate and the binomial deviation in the vertical coordinate. 



 

Figure 2 | The correlation heat map of six features. 




 3.2. Univariate and multivariate logistic regression analysis.

Univariate and multivariate LR analyses were used to analyze the relative risk of RCC patients with LM. Univariate LR analysis showed that bone metastasis, lung metastasis, grade, T stage, N stage, and tumor size were significant risk factors of RCC patients with LM (all p< 0.05,  Table 2 ).

 Table 2 | Univariate and multivariate logistic regression of the risk of liver metastasis in patients with renal cancer. 



Multivariate LR analysis has further shown that bone metastases [odds ratio (OR) = 2.72, 95% CI 2.31–3.19, p< 0.001], lung metastases (OR = 4.88, 95% CI 4.17–5.71, p< 0.001), grade (poorly differentiated OR = 2.73, 95% CI 1.26–5.9, p< 0.05; undifferentiated OR = 2.74, 95% CI 1.25–5.99, p< 0.05; unknown OR = 7.31, 95% CI 3.43–15.55, p< 0.001), T stage (T2 OR = 2.12, 95% CI 1.66–2.71, p< 0.001; T3 OR = 2.69, 95% CI 2.17–3.34, p< 0.001; T4 OR = 6.1, 95% CI 4.71–7.89, p< 0.001; Tx OR = 3.73, 95% CI 2.84–4.9, p< 0.001), N stage (OR = 2.9, 95% CI 2.46–3.42, p< 0.001; N2 OR = 2.23, 95% CI 1.28–3.89, p< 0.01; Nx OR = 2.05, 95% CI 1.61–2.61, p< 0.001), and tumor size (OR = 1.00, 95% CI 1.00–1.00, p< 0.0.001) were significant risk factors of RCC patients with LM.

The above results suggested that bone metastases, lung metastases, grade, T stage, N stage, and tumor size were independent risk factors of RCC patients with LM (all p< 0.05,  Table 2 ).


 3.3. Optimal prediction model selection.

Six relevant models (LR, GBM, XGB, RF, DT, NBC) were applied to analyze the data and to select an optimal prediction model. Ten-fold cross-validation was used to compare the prediction performance of these six different ML algorithm models ( Figure 3 ). As shown in  Figure 3 , all prediction models were better performed by comparing the AUC values, which were >0.9. The average AUC of XGB was 0.947, which was the highest AUC value of all predictive ML models ( Figure 3 ). Therefore, the XGB model performed best and was finally selected as the preferred prediction model.

 

Figure 3 | The plot of 10-fold cross-validation. LR, logistic regression; GBM, Gradient Boosting Machine; XGB, Extreme Gradient Boosting; RF, random forest; DT, decision tree; NBC, naive Bayesian model (Naive Bayes Classifier); AUC, area under the curve. 



The relative importance of variables in the six ML algorithms varied for the features. Lung metastasis was the most important variable in all six models, except in the DT model, while tumor size was the least important variable in the other five models. In the XGB model, the features were ranked according to their importance in the following order: lung metastasis, bone metastasis, N stage, grading, T stage, and tumor size ( Figure 4 ).

 

Figure 4 | Feature importance distribution map of the six models. 




 3.4. Validation of the ML models.

The validation group data were employed for validation of the training group results of the six ML models. This design increased the accuracy by comparing to univariate prediction of diagnosed RCC patients with LM. The AUC value of the XGB model was the highest (AUC = 0.889). Thus, the XGB model was the most accurate of the six models ( Figure 5A ). The XGB prediction results of the validation group showed higher accuracy compared to the actual situation than the other models ( Figure 5B ). The XGB prediction model can better distinguish RCC patients with or without LM with high efficacy ( Figures 5C, D ).

 

Figure 5 | (A) The receiver operating characteristic curve (ROC) of the validation group (1-Specificity: false positive rate, Sensitivity: true positive rate). (B) The prediction of results for the validation group. (C) The risk density map of the model for LM (The red curve represents group 0, which means the group without LM. The blue curve represents group 1, which means the group with LM.). (D) The clinical utility map of the model for LM. 




 3.5. Construction of the web calculator.

In this study, a web-based online calculator was developed based on the results of the XGB model ( Figure 6 ). Clinicians were able to predict the risk of developing LM in their patients by entering relevant variables and clinical features of patients with impending RCC. The operation interface was shown in  Figure 6 . The website was as follows: https://share.streamlit.io/liuwencai4/renal_liver/main/renal_liver.py ( Figure 6 ).

 

Figure 6 | The web calculator for predicting the risk of RCC patients with LM. 





 4. Discussion.

In 2020, new cases of RCC globally increased to approximately 430,000 and deaths to approximately 180,000 (1). RCC is a highly vascularized tumor and prone to distant metastasis (32). About 30% of new cases were metastatic at diagnosis (33). The liver is one of the most common metastatic sites of RCC, including 23.6% of newly diagnosed metastatic RCC cases (34). RCC with LM usually resulted in a poor overall survival (34). Although therapy strategies for metastatic RCC have improved significantly over the past decade, there is no consensus yet about the optimal clinical strategy for treating RCC with LM (35–37). A predictive model for RCC with LM is helpful for treatment in the clinic (38).

Regression is a statistical method for illustrating the connections between a dependent variable and two or more independent factors (38). Although statistics facilitate the understanding and interpretation of data, in recent years, ML includes algorithmic methods that enable machines to solve problems without specific computer programming, leading the way in predictive modeling tasks. It is a fast-rising field that has been widely used in the biomedical field (39). The advent of ML tools enables mining of new morphometric phenotypes and could improve patient management across a range of cancer types in the field of digital pathology (39). The International mRCC Database Consortium (IMDC) model was developed to analyze the prognosis of kidney cancer (40, 41). The Memorial Sloan Kettering Cancer Center (MSKCC) model (42), the Mayo Clinic stage, size, grade, necrosis (SSIGN) score system (43), and the modified Leibovich model (44) were reported and considered as efficient models for predicting the prognosis of RCC patients. Although more and more prediction models were used to predict the prognosis of renal cancer (45, 46), limitations were also obvious such as a lack of a comprehensive prognostic analysis of patients, and scoring methods and nomogram models were mainly statistical methods (15). ML models of RCC are mainly focused on the differentiation of molecular markers between benign and malignant renal masses (23). ML models of RCC with LM were absent (24).

In our study, multiple ML models were first employed to predict RCC with LM, and a relative network calculator was developed. In this study, 42,547 RCC patients were used to train the ML-predicted model and 852 RCC patients were used for validation. The accuracy and sensitivity of LR, GBM, XGB, RF, DT, and NBC ML models were trained and validated to predict the risk of RCC with LM. Pulmonary metastasis, bone metastasis, N stage, T stage, grade, and tumor size were found important factors in predicting LM in RCC through the LASSO regression method. Lung metastasis and bone metastasis were closely related to the occurrence of RCC with LM. Lung metastasis was the greatest effect factor on RCC with LM in this study (41, 47). These results corresponded to the prescience reported studies (48, 49). The above results suggested that the ML models for predicting the risk of RCC with LM were useful and promising.

The XGB algorithm was the most efficient model and was then used to develop an online calculator for predicting the risk of RCC with LM. The online calculator was fast and accurate in predicting the risk outcome of RCC with multiple variables. The ML model has accuracy and plausibility and clarified by 10-fold cross-validation and relevant external validations. This AI-based strategy was helpful for clinicians to choose rational treatment options. The retrospective study that excluded individual cases with incomplete data is a limitation of this study. It may cause selectivity bias, which required further validation. The online predictive calculator was helpful for clinicians to obtain predictive risks and select personalized therapeutic strategies for RCC patients with LM.

In conclusion, a predictive model for RCC with LM was constructed through ML, and a corresponding web calculator was built to assist clinicians in determining the risk of RCC with LM. By assessing the individual risk, clinicians can make appropriate interventions in advance using the ML-predicted model to prolong the survival of patients.


 5. Conclusion.

The meaningful risk factors bone metastasis, lung metastasis, grading, T stage, N stage, and tumor size were selected by LASSO regression. The LR, GBM, XGB, RF, DT, and NBC ML models were used to analyze large numbers of training group data. The XGB model was selected as the optimal prediction model with the results of 10-fold cross-validation. In the validation group, the XGB model also showed the most efficacy in predicting the risk of RCC patients with LM based on discriminant analysis. A web calculator was constructed to predict the risk factors of RCC patients with LM easily and quickly.
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Introduction

Glioma is the most common primary tumor in the brain.Integrin beta 2(ITGB2) is a member of the leukocyte integrin family (leukocyte integrin), participating in lymphocyte recycling and homing, cell adhesion, and cell surface-mediated signal transduction. However, few studies on ITGB2 in gliomas have been reported yet.This study first discussed the relationship between ITGB2 expression and clinical characterization of glioma and the prognostic significance of its methylation in low-grade glioma.



Methods

We collected Clinical data and transcription of glioma patients from TCGA, CGGA, and Rembrant datasets to analyze the differential expression of ITGB2 mRNA in glioma tissues and normal tissues. The box polts to evaluated the expression patterns of ITGB2 in different molecular subtypes. Receiver operating characteristic curve (ROC) were used to evaluate and verify the reliability of the model. Kaplan-Meier survival curves to evaluated the relationship between the level of ITGB2 mRNA expression and overall survival (OS). Using cox regression analysis to verify the ability of ITGB2 as an independent predictor of OS in glioma patients. We use TIMER to analyze and visualize the association between immune infiltration levels and a range of variables. The methylation of GBMLGG patients were obtained from the TCGA database through the biological portal.



Results

ITGB2 can be a potential marker for mesenchymal molecular subtype gliomas. COX regression analysis shows that ITGB2 is an independent predictive marker of OS in malignant glioma patients. Biological processes show that ITGB2 has involved glioma immune-related activities, especially closely related to B cells, CD4+Tcells, macrophages, neutrophils, and dendritic cells. ITGB2 is negatively regulated by ITGB2 methylation, resulting in low expression in LGG tissues. Low expression of ITGB2 and high methylation indicate good OS in patients with LGG. The ITGB2 methylation risk score (ITMRS) obtained from the ITGB2 methylation CpG site can better predict the OS of LGG patients. We used univariate and multivariate cox regression analysis of methylationsites, used the R language predict function to obtain the risk score of these ITGB2 methylation sites(ITMRS).



Discussion

ITGB2 can be used as a potential marker of mesenchymal molecular subtypes of gliomas and as an independent predictive marker of OS in patients with malignant gliomas. The ITMRS we established can be used as an independent prognostic factor for LGG and provide a new idea for the diagnosis and treatment of LGG.





Keywords: ITGB2, low-grade glioma, immune cell, methylation, survival



Introduction

Although glioma accounts for only 2% of adult cancer and 46% of all intracranial tumors, it is still the most common primary tumor in the brain (1). The World Health Organization (2016, Revised edition) classifies diffuse gliomas as WHO II-IV (2). There are significant differences in the Pathological morphology of the tumor(such as collagen fiber content and morphological diversity), tumor development, and patient prognosis. Among them, glioblastoma (GBM, WHO IV) is the most aggressive glioma with the worst prognosis (3), and the 5-year survival rate is only 9% (4). The five-year survival rate of grade WHO III gliomas are only 30%. Clinically, Grade WHO III and IV are collectively referred to as malignant gliomas because of their strong invasiveness and short survival time (5). Although low-grade gliomas (LGG, WHOII) have comprehensive treatments such as neurosurgical resection, chemotherapy, and radiotherapy, the 5-year survival rate is 50% (6). Due to its inevitable drug resistance, tumor recurrence, and the risk of rapid development of GBM (7). There is an urgent need to find a new and highly accurate biomarker to provide new ideas for the treatment and prognosis prediction of patients with GBM or LGG.

Integrin beta 2(ITGB2), also known as CD18/LFA-1, is a member of the leukocyte integrin family (leukocyte integrin). It binds to various α chains to form different integrin heterodimers. Integrin is an essential protein on the cell surface, participating in lymphocyte recycling and homing (8), cell adhesion, and cell surface-mediated signal transduction (9, 10). ITGB2 plays a crucial role in the immune response, and the gene defect can lead to leukocyte adhesion deficiency. It has been reported that the lack of ITGB2 plays a positive role in preventing autoimmune diabetes (11), and the high expression of ITGB2 promotes the migration and invasion of breast cancer (12). In nasopharyngeal carcinoma, the high expression of ITGB2 is related to the low overall survival rate and progression-free survival rate (13). ITGB2 is involved in binding lymphocytes to brain tumor tissue and subsequent migration (14). ITGB2 is vital in various diseases and cancers, especially tumor immunotherapy and migration. However, few studies on ITGB2 in gliomas have been reported yet, remaining clinical and prognostic significance unclear, especially in LGG.

This study first discussed the relationship between ITGB2 expression and different grades and types of gliomas. We verified the predictive function of ITGB2 to mesenchymal subtypes and the prognostic role of ITGB2 by using the Chinese Glioma Genome Atlas (CGGA), Rembrandt, and The Cancer Genome Atlas (TCGA) database analysis. Univariate and multivariate cox regression analysis explored the potential value of ITGB2 in the clinic. In addition, as the critical role of the immune microenvironment in the progression of LGG has attracted widespread attention (15–18), we have also mined the TIMER(Tumor Immune Estimation Resource) database of tumor immune estimation resources to evaluate the potential correlation between ITGB2 and LGG immune infiltration levels. The biological process ITGB2 involved was detected by gene enrichment analysis to study the mechanism of ITGB2 in LGG. Finally, through the analysis of TCGALGG methylation data, we obtained ITGB2 methylation risk score (ITMRS) using nine selected key ITGB2 methylation CpG sites. We evaluated the significance of ITMRS in the prognosis of LGG patients.



Materials and methods


Patients and data collection

First of all, we are on the Gene Expression Profiling Interactive Analysis (GEPIA) (19) website (http://gepia.Cancer-pku.cn/index.html) to analyze the differential expression of ITGB2mRNA in GBM and LGG tissues and normal tissues, and the relationship between the expression of ITGB mRNA and Overall Survival in patients with GBM and LGG. Then, we download the clinical and RNA-seq expression data from the mRNAseq_325 dataset in the CGGA database (http://www.cgga.org.cn/) for follow-up analysis. Download clinical and RNA-seq expression data from the Rembrandt database on the gliovis online website (http://gliovis.Bioinfo.cnio.es/). Clinical data, transcription, and methylation of GBMLGG patients were obtained from the TCGA database through the biological portal (20) (https://www.cbioportal.org/). The inclusion criteria were (1) patients with WHO grade II-IV and (2) patients with complete clinical and transcriptional data (CGGA:324, TCGA:607, Rembrandt: 139) were included in this analysis.



Correlation analysis of immune infiltration

We use TIMER, a comprehensive website (https://cistrome.shiny-apps.io/timer/) (21), to automatically analyze and visualize the association between immune infiltration levels and a range of variables. The correlation of ITGB2 expression in six kinds of immune cells (CD4+T cells, CD8+T cells, B cells, neutrophils, dendritic cells, and macrophages) in GBM and LGG was analyzed. Using TISIDB (an integrated repository portal for tumor-immune system interactions), a database of tumor immunity database included 4176 records from 2530 publications and recorded 988 genes involved in anti-tumor immunity. The spearman correlation between ITGB2 and lymphocyte Immunostimulator and Immunoinhibitor related molecules in GBM and LGG was analyzed.



Gene ontology enrichment analysis

The genes significantly related to ITGB2 expression were retrieved by using Pearson correlation analysis. The associated gene set was analyzed by using the GenecoDis website (22) (https://genecodis.genyo.es/). Besides, the hot map package of R Language is used to list genes related to ITGB2 expression positive height.



Immunohistochemistry staining

Formalin-fixed samples were embedded in paraffin and sectioned at a thickness of 3 μm. The slides were deparaffinized and rehydrated, then incubated with a ITGB2 antibody (Sigma-Aldrich, HPA008877, 1:200). The mean density(integrated optical density(IOD) SUM/area) was calculated in five randomly selected fields using Image-Pro Plus 6.0 software.



Statistical analysis

According to the median of ITGB2 mRNA expression in different data sets, the high expression and low expression groups of ITGB2 were established. Similarly, based on the median of ITGB2DNA methylation in TCGA-GBMLGG data sets, two ITGB2 hypomethylation and hypermethylation groups are established. Kaplan-Meier curve was used to evaluate the prognostic value of ITGB2 expression and ITGB2DNA methylation. The correlation between ITGB2 expression and ITGB2DNA methylation level was analyzed by Pearson correlation coefficient. In addition, we used univariate and multivariate Cox regression models to explore whether ITGB2 expression is an independent prognostic indicator for patients with LGG. The prediction performance of ITGB2 in the mesenchymal molecular subtype was evaluated by ROC curve analysis. Student t-test was conducted to explore the distribution of expression in different groups. Pearson correlation analysis was used to identify genes related to ITGB2 expression. R language packs (dplyr, stringr, survival, survminer, plyr, pheatmap, proc, and corcrac) are used for other statistical calculations and drawing data. All the differences were statistically significant at the level of P < 0.05.




Results


ITGB2 mRNA expression is upregulated in high-grade gliomas and downregulated in IDH1 mutation gliomas

First of all, the clinical and RNA-seq expression profile data with DataSet ID as mRNAseq_325 were downloaded from the CGGA database. The phenotypic data were downloaded from the gliovis (http://gliovis.bioinfo.cnio.es/) database. Figure 1A showed that the expression of ITGB2 mRNA was positively correlated with tumor grade. In addition, the expression of ITGB2 in the isocitrate dehydrogenase 1 wild type (IDH1 Wt) group was higher than that in the IDH1 mutant (IDH1 Mut) group. Figure 1B). These findings were subsequently validated in TCGA GBMLGG’s RNA-seq dataset and Rembrant’s Microarray dataset (Figures 1C–E). The results showed that ITGB2 mRNA expression has a high correlation with tumor grade and IDH1 mutation in the CGGA database (p < 0.05). Subsequently, we randomly selected five patients with different grades of glioma to perform immunohistochemical experiments, and all patients voluntarily signed the informed consent. The results of immunohistochemistry (IHC) showed that the expression of ITGB2 protein (mean density, IOD SUM/area) was higher in high-grade gliomas (P<0.05), and there were statistically significant differences among different grades of gliomas (Figures 2A, B).




Figure 1 | ITGB2 mRNA expression pattern in CGGA RNA-seq, TCGA-GBMLGG RNA-seq, and Rembrandt microarray datasets. (A) ITGB2 is enriched in high-grade gliomas in CGGA RNA-seq sets. (B) ITGB2 is enriched in IDH1 wt gliomas in CGGA RNA-seq sets. (C, E) ITGB2 is enriched in high-grade gliomas in TCGA-GBMLGG RNA-seq and Rembrandt microarray datasets. (D) ITGB2 is enriched in IDH1 wt gliomas in TCGA-GBMLGG RNA-seq and Rembrandt microarray datasets. ns, no significant differences; **p < 0.01, ***p < 0.001, and ****p < 0.0001.






Figure 2 | IHC staining of ITGB2. (A) IHC staining of ITGB2 in different grade, ×20. (B) Protein expression of ITGB2 in different grades of glioma(mean density,IOD SUM/area). *p < 0.05, ****p < 0.0001.





ITGB2 is a potential marker for mesenchymal molecular subtype gliomas

In 2010, Verhaak’s team (23) divided glioblastoma into four subtypes using TCGA data sets. Through genomic mutation, copy number variation, and expression profile data, it was proved that epidermal growth factor receptor (EGFR), neurofibromin 1(NF1), and platelet-derived growth factor receptor alpha (PDGFRA)/isocitrate dehydrogenase 1 (IDH1) could be used as markers of classical, interstitial and proneuronal types, respectively. It provides a basis for targeted therapy of gliomas. So we evaluated the expression patterns of ITGB2 in different molecular subtypes. Results showed that the ITGB2 expression of mesenchymal subtypes was significantly higher than other subtypes in the RNA-seq set of CGGA and TCGA-GBMLGG and the Microarray data set Rembrandt (Figures 3A, C, E). We performed ITGB2 expression and receiver operating characteristic curve (ROC) analysis of mesenchymal subtypes in all grades of gliomas to verify this finding further. What is exciting is that in these three datasets, the area under the curves (AUC) are 0.948, 0.862, and 0.848, respectively (Figures 3B, D, F).




Figure 3 | ITGB2 expression in different molecular subtypes of the TCGA transcriptional classification scheme in CGGA (A) and Rembrandt (C) and TCGA-GBMLGG (E) datasets.ROC curves of ITGB2 expression to predict mesenchymal subtype in CGGA (B) and Rembrandt (D) and TCGA-GBMLGG (F) datasets. ns, no significant differences; *p < 0.05, **p < 0.01, ****p < 0.0001.





ITGB2 is an independent predictive marker of OS in patients with gliomas

We used the GEPIA database to analyze the RNA sequencing data of 681 cases of TCGA tissues (518 LGG tissues and 163 GBM tissues) and 207 normal tissues of the GTEx plan. It was found that ITGB2 mRNA was highly expressed in both GBM and LGG tissues, while low expression was found in normal tissues (Figure 4A). Then, We used the median expression level of ITGB2 mRNA as the cutoff point to evaluate the relationship between the level of ITGB2 mRNA expression and survival time in different data sets. It was found that the patients with high expression of ITGB2 in CGGA RNA-seq had lower OS in all grades of gliomas (Figure 4B P < 0.0001). Similar results were also obtained in TCGA-GBMLGG RNA-seq set and Rembrandt Microarray data set (Figures 4C, D; for all grades of gliomas, p < 0.0001). Then, univariate and multivariate Cox regression analysis was performed in CGGA RNA-seq to verify whether the expression of ITGB2 was an independent prognostic factor (Table 1). Univariate regression analysis showed that ITGB2 (p < 0.001), grade (p < 0.0001), age (p < 0.0001), and IDH1 status (p < 0.0001) were each associated with OS. In multivariate regression, ITGB2(p < 0.0001)and grade(p < 0.0001)showed significant results. These results suggest that ITGB2 plays an important role in the occurrence and development of gliomas. Subsequently, biological function analysis should be carried out to verify our findings further.




Figure 4 | ITGB2 mRNA expression was related to clinical outcomes in gliomas. (A) ITGB2 mRNA is lowly expressed in LGG and GBM in TCGA dataset. (B–D) Kaplan-Meier estimates of survival for all grade patients in the CGGA RNA-seq (A) and TCGA-GBMLGG RNA-seq(B) and Rembrandt microarray set (C). ITGB2 expression was negatively associated with OS of all grade gliomas (p< 0.05). *p < 0.05.




Table 1 | Univariate and multivariate Cox analysis in CGGA RNA-seq set.





ITGB2 is associated with immune functions in gliomas

In order to study the relationship between ITGB2 and other ITGB molecular families, we carried out Pearson correlation analysis on the CGGA RNA-seq set. It can be seen from Figure 4A that the expression of ITGB2 was significantly correlated with ITGB1, ITGB3BP, ITGB4, ITGB7, and ITGB8. To explore the biological process related to the expression of ITGB2 in gliomas, we conducted Pearson related analysis between ITGB2 expression and other genes in whole-genome gene profiling of 325 patients in the CGGA RNA-seq set. The results showed that 658 genes (R > 0. 6) were positively correlated with ITGB2 expression. Among them, 140 genes (R > 0. 8) were highly positively correlated with the expression of ITGB2 (Figure 5A). The Biological Process (BP) and KEGG analysis of the biological process of these 140 genes was carried out by using the GeneCodis website (https://genecodis.genyo.es). Results have been shown: The five most enriched biological process annotations were (1) Immune system process (p = 2.615e-52); (2) Neutrophil degranulation (p = 2.774e-36); (3) Innate immune response (p = 5.923e-34); (4) Inflammatory response (p = 7.096e-23); (5) Signal transduction (p = 1.743e-22), containing 44、33、32、23 and 35 genes from the query set, respectively. KEGG analysis includes Osteoclast differentiation, Staphylococcus aureus infection, Tuberculosis, Phagosome, and Neutrophil extracellular trap formation. In summary, all above results suggest that ITGB2 can affect glioma-related immune activity.




Figure 5 | Analysis of biological processes related to ITGB2. (A) Correlation of ITGB2 with ITGB molecular in the CGGA RNA-seq set. (B) One hundred fourty genes positively related (R> 0.8) with ITGB2 expression. (C) The BP and KEGG analysis results show that ITGB2 expression is related to immune function of gliomas. Counts represents the number of genes enrichment.





Association of ITGB2 expression with tumor-infiltrating lymphocytes

The TIMER algorithm (https://cistrome.shinyapps.io/timer/) (21) was used to determine the relationship between the expression of ITGB2 and immune cell infiltration. According to the LGG and GBM cohort of TCGA, the expression of ITGB2 in LGG was negatively correlated with tumor purity (r = 0.369, P < 0.05). The expression of ITGB2 was positively correlated with B cells (r = 0.700, P < 0.05), CD4+T cells (r = 0.921, P < 0.05), macrophages (r = 0.820, P < 0.05), neutrophils (r = 0.836, P < 0.05) and dendritic cells (r = 0.925, P < 0.05). The expression of ITGB2 was weakly positively correlated with that of CD8+T cells (r = 0.137, P < 0.05). The expression of ITGB2 in GBM was negatively correlated with tumor purity (r = 0.559, P < 0.05) and CD8+T cells (r = 0.414, P < 0.05). The expression of ITGB2 was positively correlated with CD4+T cells (r = 0.435, P < 0.05), neutrophils (r = 0.390, P < 0.05) and dendritic cells (r = 0.562, P < 0.05). It was weakly positively correlated with B cells (r = 0.234, P < 0.05) and macrophages (r = 0.215, P < 0.05) (Figure 6). It is suggested that ITGB2 is closely related to immune cell infiltration in both LGG and GBM.




Figure 6 | The expression of ITGB2 was related to a panel of gene markers of immune cells, including B cell, CD8+ T cell, CD4+ T cell, Macrophage, Neutrophil, Dendritic Cell.





The clinical and prognostic value of ITGB2 methylation CpG sites

In order to further explore whether the methylation CpG site of ITGB2 also has clinical prognostic value. Using cBioPortal online database (http://www.cbioportal.org/), We found that there were significant differences in ITGB2 methylation in IDH WT and mutation gliomas (P < 0.0001, Figure S1A), The mRNA expression of ITGB2 was also significantly different in MGMT methylated and unmethylated gliomas(P < 0.0001, Figure S1B). Then, We evaluated whether ITGB2 methylation has clinical and prognostic value. We found 45 CpG sites of ITGB2 methylation, and there was a significant negative correlation between the expression of ITGB2 mRNA and ITGB2 methylation (r = 0.66, P < 0.0001, Figures 7A, B). Through univariate and multivariate cox regression analysis of 45 ITGB2 methylation sites, nine methylation sites may be independent risk prognostic factors were selected (Figure S2). Then we analyzed the prognostic value of these nine ITGB2 methylation CpG sites in patients with TCGA LGG. The Kaplan-Meier diagram shows that the high methylation level at the selected CpG site is associated with a more favorable OS in LGG patients. In order to better predict the prognosis of LGG patients, we used the R language predict function to obtain the risk score of these nine ITGB2 methylation sites(ITMRS). According to the median, we divided the ITMRS into two groups: high and low. Figure 4C shows that ITMRS low can be used as an independent risk prognostic factor. Then we analyzed the prognostic value of ITMRS in patients with TCGA LGG. Excitedly, ITMRS has a better prognosis in LGG patients than a single ITGB2 methylation CpG site predicts OS in LGG patients (Figure 7D). At the same time, we obtain the analysis of receiver operating characteristic curve(ROC) of the three-year, five-year, and ten-year survival predicted by ITMRS, and the area under the curve (AUC) was 0.884, 0.767 and 0.704, respectively(Figure 7E). The Kaplan-Meier diagram and ROC curves show that the low level of ITMRS is associated with a more favorable OS in LGG patients.




Figure 7 | The relationship between ITGB2 expression and methylation in LGG tissues revealed by bioinformatic analysis. (A)The distribution of 45 ITGB2 DNA promoter CpG sites. (B) The expression of ITGB2 was negatively regulated by ITGB2 DNA methylation. (C) Forest plot of low ITMRS can be used as an independent risk factor in LGG patients from the TCGA-LGG dataset (P < 0.001). (D) survival analysis of LGG patients with a high ITMRS (ITMRS High) versus low ITMRS (ITMRS Low) in the TCGA LGG datasets. The P value was determined by the chi-square test between the two groups. (E) ROC curves of the prediction of 3-year survival、5-year survival、10-year survival with ITMRS in the TCGA LGG datasets.Risk level high and low represent ITMRS high and low. ***p < 0.001.






Discussion

Glioma is a primary malignant tumor with high mortality rate (24). However, surgery and postoperative radiotherapy plus chemotherapy have improved the survival rate of glioma patients. However, the prognosis of most patients with gliomas is still poor (25). Therefore, there is an urgent need to find new and effective treatments that can increase the survival of glioma patients (26). Immunotherapy for gliomas is considered to have a bright future. Anti-glioma immunotherapy is a generic term that includes strategies designed to stimulate patients’ innate and acquired immune systems against gliomas and promote immune-mediated anti-glioma responses (27).

At present, the oncogenes related to the pathogenesis of gliomas have been identified and recorded (28, 29). There is few research on ITGB2 in gliomas. Only three articles related to gliomas have mentioned ITGB2 (30–32), but there is no in-depth study on the clinical and prognostic role of the ITGB2 gene. In our study, according to the molecular classification of glioma based on gene expression described by the TCGA network, the RNA-seq data set of CGGA, the RNA-seq set of TCGA-GBMLGG, and the Microarray data set of Rembrandt were divided into proneural type, neural type, classical type and mesenchymal type (23). It was found that the malignant degree of gliomas in the mesenchymal group was higher than that in other groups. ROC curve analysis showed that the expression of ITGB2 could highly predict mesenchymal subtypes, suggesting that ITGB2 could be used as a biomarker of mesenchymal subtypes. ITGB2 can significantly predict OS in all grades of gliomas(Since Rembrant’s Microarray dataset does not have IDH mutation status information, we cannot verify it in Rembrant’s Microarray dataset). Also, there were significant differences in mRNA expression levels among different grades and IDH1 status groups. Univariate and multivariate Cox regression analysis confirmed the crucial role of low expression of ITGB2 in the excellent prognosis of patients with LGG. In addition, we also verified the prognostic role of ITGB2 expression in two other data sets, and these results emphasized the promising prognostic value of ITGB2 expression in patients with LGG.

At the same time, our analysis showed that the expression of ITGB2 in LGG was significantly correlated with the level of immune infiltration. It was significantly positively correlated with B cells, CD4+T cells, macrophages, neutrophils, and dendritic cells. As far as we know, the ITGB2 gene encodes the integrin β chain, which binds to various α chains to form different integrin heterodimers. Integrin is an indispensable protein on the cell surface, which participates in cell adhesion and cell surface-mediated signal transduction. It encodes proteins that play an essential role in the immune response, which is also consistent with our analysis that ITGB2 is involved in biological processes such as the immune system process, neutrophil degranulation, and innate immune response, inflammatory response, signal transduction, and so on. These pieces of evidence suggest that ITGB2 participates in the regulation of tumor immune microenvironment mainly by regulating B cells, CD4+T cells, macrophages, neutrophils, and dendritic cells in LGG and plays an active role in immune infiltration and immune response. The potential role of ITGB2 in tumor immunology in LGG provides new insight into the immunotherapy of LGG.

Aberrant DNA methylation plays an essential role in the occurrence and development of LGG (33). Therefore, we used the TCGALGG database to analyze the relationship between ITGB2 methylation and ITGB2mRNA expression and the clinical and prognostic role of ITGB2 methylation in LGG. It was found that there was a significant negative correlation between the expression of ITGB2mRNA and the Pearson coefficient of ITGB2 methylation in LGG tissues (r = -0.66). ITGB2 hypermethylation was positively correlated with good OS in patients with LGG, which is consistent with the excellent prognosis of LGG patients with low expression of ITGB2mRNA. Then, we further identified the CpG site of ITGB2 DNA promoter methylation. Nine ITGB2 DNA promoter methylation CpG sites were screened by univariate multivariate cox regression analysis, of which six CpG hypermethylation sites were positively correlated with a good prognosis of OS in LGG patients (p < 0.05). In order to better predict the survival of LGG patients, we used nine selected CpG loci to obtain the risk score (ITMRS) of ITGB2 methylation CpG loci. What is exciting is that ITMRS can better distinguish the OS (P of patients with LGG (< 0.0001). Moreover, ITMRS can better predict the three-year, five-year, and ten-year survival of patients with LGG (AUC values of 0.884, 0.767, and 0.704, respectively).



Conclusion

To sum up, ITGB2 is negatively regulated by ITGB2 methylation. ITGB2 can be used as a potential marker of mesenchymal molecular subtypes of gliomas and as an independent predictive marker of OS in patients with malignant gliomas and provides new insights into the immunotherapy of LGG. The ITMRS obtained from the ITGB2 methylation CpG site can better predict the three-year, five-year, and ten-year survival of patients with LGG. These effects of ITGB2 are expected to bring the new gospel to patients’ survival, treatment, and prognosis with LGG.
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Osteosarcoma is the most common type of malignant bone tumor, occurring in adolescents and patients over 60. It has a bimodal onset and a poor prognosis, and its development has not yet been fully explained. Osteopontin (OPN) is a high protein consisting of 314 amino acid residues with a negative charge and is involved in many biological activities. OPN is not only an essential part of the regulation of the nervous system and endocrine metabolism of skeletal cells. Still, it is also involved in several other important biological activities, such as the division, transformation, and proliferation of skeletal cells and their associated cells, such as bone tumor cells, including bone marrow mesenchymal stem cells, hematopoietic stem cells, osteoblasts, and osteoclasts. Osteoblasts and osteocytes. Recent studies have shown a strong correlation between OPN and the development and progression of many skeletal diseases, such as osteosarcoma and rheumatoid arthritis. This review aims to understand the mechanisms and advances in the role of OPN as a factor in the development, progression, metastasis, and prognosis of osteosarcoma in an attempt to provide a comprehensive summary of the mechanisms by which OPN regulates osteosarcoma progression and in the hope of contributing to the advancement of osteosarcoma research and clinical treatment.
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Introduction

Osteosarcoma (OS) is the most common primary skeletal-related malignancy in young people. It is the second leading cause of cancer death in children and adolescents (1),always presenting as growth in tubular long bones and giving rise to less differentiated skeletal cells (2, 3). Osteosarcoma is characterized by a bimodal pattern, with the first peak occurring in children and adolescents, and the second peak occurring in patients over 60 years of age (4). About half of these patients have tumors near the knee (5), and osteosarcoma has a high metastasis rate of nearly 20%, with the lungs and lymph nodes being the frequent sites of metastasis (6), and metastasis has a severe impact on the patient’s prognosis.

Osteosarcoma cells share many similarities with primitive bone cells, such as a strong proliferative capacity and resistance to apoptosis. Also, they produce components such as connective tissue growth factor, runt-related transcription factor 2 (RUNX2), alkaline phosphatase (ALP), and osteocalcin. Osteopontin is overexpressed in many tumors and may have a strong correlation with the development, metastasis, and prognosis of many types of tumors. For example, one study found that osteopontin in lung cancer, a rise in osteopontin was associated with the survival and prognosis of lung cancer patients (7–16). Osteopontin predicts poor prognostic performance after neoadjuvant chemotherapy for breast cancer (17–22). In addition, the upregulation of osteopontin concentrations in vivo was associated with tumor metastasis in gastrointestinal cancer, and even with the size and grade of the tumor (23–41). Significant correlation between osteopontin and drug resistance in urological tumors (42–54). Of course, osteopontin is also closely related to osteosarcoma, and we will systematically review and describe osteopontin and its endocrine and metabolic mechanisms in relation to osteosarcoma.

To describe the structural function of OPN and the possible mechanisms by which OPN regulates the development, progression, metastasis, and prognosis of osteosarcoma

In the following sections, we will discuss the structure and function of osteopontin and, in addition, provide as comprehensive an understanding as possible of the possible role of osteopontin in the development, progression, metastasis, and prognosis of osteosarcoma. An attempt is made to summarise the mechanisms by which OPN regulates osteosarcoma and can contribute to the progress of osteosarcoma research and clinical treatment. In addition, Figure 1 details the sequence and content of what we will describe next.




Figure 1 | Guide map.





Function and structure of osteopontin

Osteopontin is an extracellular matrix (ECM)-associated, rich phosphoglycoprotein (55–57). Osteopontin (OPN) is a negatively charged glycophosphoprotein with a high content of aspartic acid, composed of 314 amino acids and with acidic properties (58, 59), which was first identified in bone. There are five isoforms of OPN, and, to our knowledge, high expression of OPN is found in various tissues such as skin, kidney, bone, and teeth, as well as in some cancer cells, including blood. Numerous studies have identified a crucial role of OPN in early life development (60–65). The molecular structure of osteopontin is rough as shown in Figure 2. osteopontin is implicated in various diseases or mechanisms of action, which we have briefly described in Figure 3.




Figure 2 | Concise molecular formula of osteopontin. αvβ1, αvβ3, αvβ5, α8β1, α9β1, α4β7 and α4β1 are all different integrins of osteopontin, which are responsible for interacting with cells.






Figure 3 | Osteopontin may be associated with many of the different types of diseases mentioned above.





Effect of osteopontin on the initial onset of osteosarcoma

Many studies in recent years have demonstrated a clear correlation between osteopontin and the initial development of osteosarcoma. Downregulation of osteopontin levels can prevent mesenchymal stem cells or immature osteoblasts from progressing to mature cells, allowing them to maintain the morphology and characteristics of immature primitive cells, which may ultimately lead to the development of osteosarcoma (66–69).

In addition, the glucose transporter is one of the regulators of osteosarcoma growth (70, 71), upregulating levels through the hypoxia-induced pathway and thereby adapting to hypoxia and increasing tissue oxygenation (72–75).

Hypoxia induces upregulation of osteopontin, which then increases GLUT1 and GLUT3 protein expression mediated by αvβ3 integrins and ultimately activates the protein kinase FAK pathway, leading to the initial development of osteosarcoma step by step (76). In particular, Figure 4 demonstrates the mechanism of action of osteopontin in the development of osteosarcoma.




Figure 4 | Mechanisms of the role of osteopontin in osteosarcoma development GLUT1, glucose transporter 1; GLUT3, glucose transporter 3. Focal Adhesion Kinase (FAK) is a tyrosine kinase that plays an important role in the evolution of osteosarcoma.





The role and impact of osteopontin in the development of metastasis in osteosarcoma

Metastases from osteosarcoma, most commonly in the lungs, are a key determinant of the lethality of osteosarcoma (77–79). It is, therefore, particularly important that we find ways to understand some or even all of the channels or mechanisms of osteosarcoma metastasis so that we can find ways to stop or disrupt the processes and pathways of osteosarcoma metastasis. The mechanism of metastasis and the various factors influencing it have not been well studied, but the role of OPN in the process of tumor metastasis in osteosarcoma can be elaborated and explained graphically. Several studies have demonstrated that S100A4 protein is associated with the metastasis of cancers, including osteosarcoma, that it increases the tumor metastatic capacity of cancers (80–83), and that S100A4 protein can even be a potential marker for predicting cancer metastasis (84, 85). And the effect of the S100A4 protein on tumor metastasis in osteosarcoma is also accomplished through a transition in regulating OPN levels. So, how exactly do S100A4 protein and OPN link and affect osteosarcoma metastasis? The study found that the extracellular S100A4 protein has been shown to activate NF-κB (86). Osteopontin was previously found to have elements that respond to NF-κB (87), so it was later shown that initially, the S100A4 protein regulated osteopontin horizontally, then linked to NF-κB through osteopontin, and finally led to the horizontal regulation of MMP protein (88, 89). This series of changes may eventually lead to the development of metastases in osteosarcoma, with the most likely organs of osteosarcoma being the lungs and lymphatic tissues. The role of Runt-related transcription factor 2 (Runx2) is also important in the metastatic process of many cancers, including osteosarcoma (90–95). Recent studies have shown that Runx2 in combination with osteopontin promotes the adhesion of osteosarcoma cells to the cell surface of the lung, an important step in the distant metastasis of osteosarcoma to the lung (96). In addition, Figure 5 demonstrates the mechanism of action of osteopontin in the metastatic process of osteosarcoma.




Figure 5 | The mechanism of action of OPN in the metastatic process of osteosarcoma. CD44, extracellular matrix receptor III; MMP, matrix metalloproteinase; NF-κB, nuclear factor-κB; JNK, c-JUN N-terminal kinase.





Osteopontin as a prognostic marker for patients with osteosarcoma

Osteosarcoma is a highly malignant tumor, and many patients develop early metastases and have a terrible prognosis. Not only is OPN a marker for the development and metastasis of many different tumors, but even changes in OPN levels can correlate strongly with the prognosis of patients with osteosarcoma (97). In the study by Wong IH et al., mRNA levels of OPN were increased in more than 90% of patients with osteosarcoma, in addition to the healthy population but only a tiny proportion. Their study also suggests that peripheral blood OPN levels can be used as a predictive assessment for patients with osteosarcoma (98). In addition, one study differed from the above results. Firstly, OPN and vascular endothelial growth factor (VEGF) constitute a vascular protein. In their study, the expression of OPN in benign and malignant bone tumors was determined, and the prognostic effect of OPN expression on the outcome of osteosarcoma patients was studied. Express OPN and VEGF, the final results showed that OPN expression had no effect on patients’ overall or disease-free survival. Although the expression of OPN is associated with the expression of VEGF in osteosarcoma, the change of OPN level does not predict the good or bad prognosis of osteosarcoma patients (99).



The role of osteopontin in the immune and metabolic regulation of osteosarcoma

The intracellular osteopontin mRNA synthesizes two types of osteopontin, secreted osteopontin (sOPN) and intracellular osteopontin (iOPN). During immunotherapy of cancer, including osteosarcoma, tumor cells sometimes produce an immune escape, with the end result that cancer cells remain, and consequently, tumor metastasis occurs. The immunomodulatory effects of osteopontin include the development of osteosarcoma and distant metastasis and further cause the development of immunosuppression at the site of metastasis (100). It has been found that interferon regulatory factor 8 associates with osteopontin and causes a downregulation of osteopontin levels, which then activates T cells, meaning that interferon regulatory factor 8 levels are negatively correlated with osteopontin levels and that a decrease in interferon regulatory factor 8 levels leads to an upregulation of osteopontin levels, which can then reduce or even block the activation of T cells, which ultimately leads to immune escape from cancer, including osteosarcoma (101). Some studies have been conducted to discover the mechanism of action of osteopontin in the immunometabolism of certain cancers and their metastasis (102, 103). Detailed information on the mechanisms of endocrine and metabolic action of osteopontin in the development, progression, and metastasis of osteosarcoma and its regulation at the cellular level remains to be explored.



Looking ahead to a more valuable role for osteopontin in the treatment of osteosarcoma

OPN is involved in bone development and metabolism in the development and expansion of skeletal diseases through endocrinology and immunity. At the cellular level, OPN is involved in more refined activities through signaling pathways. Although studies in recent years have also produced many results on the association of OPN with the occurrence, development, metastasis, and prognosis of osteosarcoma, many of the mechanisms are still obscure. The in-depth study of OPN provides new ideas and directions for the interpretation of the pathogenesis of osteosarcoma. It gives a new target for the treating crucial clinical significance and value. We hope that future studies can better understand the mechanism of OPN’s role in the occurrence and development of osteosarcoma, including improving clinical prognosis, etc. We wish to interfere with or intervene in advance of the function of OPN in osteosarcoma and slow or even block the progression of osteosarcoma in the future to alleviate the pain of osteosarcoma patients and improve their disappointing survival rate.



Discussion

Cancer has become a global problem that cannot be ignored— it is one of the most common causes of death among older adults, with a high mortality rate from osteosarcoma. Over 3600 new bone cancer diagnoses and 1720 deaths from bone cancer occur every year in the United States (104). Distant metastases from osteosarcoma occur as a result of hematogenous spread, with the most significant probability occurring firstly in the lungs and secondly in the lymphatic system. These metastases are strongly associated with a poor prognosis. Osteosarcoma cells show a high propensity to spread and a relatively high likelihood of distant metastases. Osteosarcoma can metastasize to almost any organ, so the prognosis for patients with osteosarcoma is always dismal. Metastatic osteosarcoma cells settle and grow in a second organ later on and eventually develop into a metastatic lesion. The cell cycle undergoes differentiation, metabolism, and the formation of a new microenvironment suitable for the growth of metastatic osteosarcoma cells, and also, the metastatic cells are not identical to the original osteosarcoma cells (105, 106). There has also been notable success in the extensive research over the years to discover the underlying mechanisms by which osteosarcoma develops distant metastases. The tireless efforts of medical scientists have led to the discovery of additional markers involved in osteosarcoma metastasis-related metastases, followed by numerous cellular or animal studies that have further validated a number of relevant genes and pathways (107–110). Later, based on the results of these basic experiments, many clinical studies were subsequently conducted to improve treatment modalities. There is a wide variety of genes and proteins involved in the pathways and mechanisms by which osteosarcoma develops distant metastases, and a wide variety of genes and proteins involved in osteosarcoma metastasis, in which OPN must play an important role, We also address in this review only the role of OPN in the development and metastasis of bone tumors.

It has been found that osteopontin regulates cell signaling by binding to receptors that ultimately affect or directly contribute to tumor cell growth and metastasis, of which the main osteopontin receptors include integrins and CD44 (111). The broad metabolic pathways of action of osteopontin are also described in the section of the manuscript above. With the ongoing results of research on osteopontin, it is promising that we seem to be seeing alternative avenues for the pathogenesis and treatment of osteosarcoma. For example, reducing the expression of OPN levels may provide new strategies for the treatment of various types of metastatic cancers (112). In recent studies, Zhang et al. (66) demonstrated that hyperoside regulates OPN by inducing a cell cycle arrest and can hinder the development of osteosarcoma cells and promote further differentiation of osteosarcoma cells into osteoblasts. In addition, it has been suggested that VD3 upregulates OPN by activating cell cycle inhibitors such as p21 (113), thereby promoting osteopontin differentiation into osteoblasts. These may be new strategies for the treatment of OS in the future (114).



Conclusions

OPN can be secreted by many tissues and has many controversial effects on health. It can be argued that there is no clear answer to the metabolic and immunological effects of OPN on inflammation or cancer. In addition, the treatment of osteosarcoma, the most common primary bone malignancy, has been a challenge, and modern developments in molecular medicine have led to the discovery of several potential tumor markers. Recent studies have sought to use OPN as a diagnostic and prognostic marker for osteosarcoma to monitor the developmental status of osteosarcoma and assess its therapeutic efficacy. To better understand the role of OPN in the development and metastasis of osteosarcoma and to provide the basis for new therapeutic approaches to treat this life-threatening disease, more evidence from cellular studies and subsequent clinical trials is needed and will be awaited.
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Background

The significance of nucleotide metabolism and neuroendocrine in cellular immune response and cancer is becoming more well-established. However, the mechanisms underlying nucleotide metabolism and neuroendocrine involvement in stomach adenocarcinoma (STAD) remain unclear.



Methods

First, a pan-cancer overview of nucleotide metabolism and neuroendocrine-related genes (NMNGs) was explored through the integration of expression profiles, prognostic values, mutation information, methylation levels, and pathway-regulation relationships. We next extensively assessed variations in prognosis and tumor microenvironment (TME) features across the various modification patterns, based on an extensive analysis of the NMNG modification patterns of 808 STAD samples based on 46 NMNGs. Utilizing principal component analysis methodologies, the NMNGscore was developed to measure NMNG alteration patterns of individual tumors.



Results

Pan-cancer analysis shows that NMNGs mostly act as risk genes in multiple cancer types, especially in STAD. Based on the NMNGs we detected two different NMNG modification patterns in STAD. Both patterns showed distinct immune cell infiltration features and biological behavior, with NMNGcluster A exhibiting a worse prognosis and a larger amount of immune infiltration. Differentially expressed genes with prognostic relevance were used to classify the STAD samples into three genomic subgroups. Analysis of survival rates revealed that cluster B genes were associated with longer life expectancy than clusters A and C. Individual STAD patients’ NMNG alteration patterns were analyzed by analyzing their NMNGscore signatures. NMNGscore and immune cells showed a statistically significant adverse correlation with each other. Increased longevity, a higher incidence of mutations, and a better response to immunotherapy were associated with patients’ NMNG scores.



Conclusions

Our findings provide a personalized prediction tool for prognosis and immunotherapy sensitivity in patients, as well as a promising knowledge of nucleotide metabolism and neuroendocrine in STAD.





Keywords: stomach adenocarcinoma, nucleotide metabolism, neuroendocrine regulation, molecular features, immunotherapy, tumor microenvironment



Introduction

Stomach adenocarcinoma (STAD) is the most common pathological tissue type of gastric cancer (GC) and the third leading cause of cancer-related death (1). Every year, the number of new cases of GC in China accounts for 47% of all GC cases worldwide. More than 60% of patients are either locally advanced or late when they begin therapy, and fewer than 30% will be alive after 5 years (2, 3). Surgery, chemotherapy, and radiation are inadequate treatments for stomach cancer. Immunotherapy based on immune checkpoint blocking (ICB, PD-1/L1, and CTLA-4) has demonstrated incredible therapeutic results in a small subset of patients with durable responses. However, the majority of individuals have little to no therapeutic improvement (4). Therefore, the development of suitable biomarkers is crucial for predicting the prognosis and treatment success of GC patients.

Metabolic reprogramming is regarded as one of the hallmarks of cancer, contributing to the process of cancer incidence, progression, and metastasis. Nucleotide metabolism constitutes the final and most crucial link in the chain of events that contribute to the spread of cancer (5). To achieve uncontrolled cell proliferation, tumor cells use the nucleotide metabolism pathway to synthesize DNA and RNA (6). It has been reported that UHMK1 is able to promote GC progression by reprogramming nucleotide metabolism (7). Besides speeding up tumor formation, recent research has demonstrated that aberrant nucleotide metabolism also dampens the normal immune response in the tumor microenvironment (TME). For example, disrupting the homeostasis of the pools of nucleotides can produce mutations that influence antigen presentation and, ultimately, the immune response to the tumor (8, 9). Targeting nucleotide metabolism also provides new directions, for the development of novel antitumor-specific drugs (10, 11). Furthermore, the onset and advancement of several cancers are significantly influenced by neuroendocrine pathways (12). Cancers of the gastric, liver, pancreas, colorectal, breast, and uterus are all thought to be linked to neuroendocrine regulation disorders such as diabetes, obesity, and depression. For example, catecholamine-induced neuroendocrine phenotypes of GC cells led to depression-accelerated GC invasion and metastasis (13). In addition, chronic stress has been linked to CNS disorders as well as tumor onset and development, according to several studies (14, 15). The development of tumors caused by stress is significantly influenced by immune regulation (16). According to research, long-term stress causes broad immune cell modification in tissues, resulting in immunological suppression or dysregulation (17, 18). In addition, neuroendocrine could be able to control metabolism through hormones and neurotransmitters (19). Meanwhile, the nucleotide metabolism and neuroendocrine-related genes (NMNGs) have not been discovered to predicate clinical outcomes and treatment strategies in patients with STAD according to our best knowledge. Thus, the development of the STAD prognosis signature using NMNGs is promising.

In this study, we first analyzed the genetic variations and expression patterns of NMNGs in numerous cancer types. Next, we used genomic information from 808 STAD cases to characterize TMEs and analyze the patterns of NMNG alteration. By subsequent analysis, the sample was divided into two categories with significantly different prognoses and TMEs, indicating that NMNG modifications had a significant effect on the development of individual TME characteristics. In addition, a set of scoring methods intended to assess the pattern of NMNG alteration in people was developed, taking into account the variety of NMNG modification among individuals.



Materials and methods


Data collection and processing

The datasets on STAD, which contain 32 normal and 375 tumor samples, were queried in the Cancer Genome Atlas (TCGA) for the purpose of extracting information on gene expression and clinical annotations. The GSE84437 cohort of the Gene Expression Omnibus (GEO) database had 433 tumor samples. Batch normalization was implemented using the R package “sva” (20). We also collected data from the TCGA platform on single nucleotide variation (SNV), transcriptome profiles, copy number variation (CNV), methylation, and clinical characteristics of pan-cancer transcriptomes. In addition, 4594 nucleotide metabolism-related genes and 271 neuroendocrine-related genes (relevance score>2.5) were obtained from the GeneCard Database (https://www.genecards.org/). After taking the intersection of the two groups of genes, 196 NMNGs were obtained and displayed by Venn diagram. The TCGA and GEO cohorts were screened for NMNGs with prognostic values using univariate cox regression for subsequent analysis. The prognostic significance of them was also validated using Kaplan-Meier (KM) analysis based on 808 STAD samples.



Pan-cancer analysis

There has been minimal investigation on the relationship between nucleotide metabolism, neuroendocrine, and cancers yet. Consequently, the distinctions between NMNGs in diverse cancers are inadequately documented. SNV, CNV, methylation, and mRNA expression data were analyzed and visually displayed as heatmaps to offer an overview of NMNGs across all cancer types. A univariate Cox regression analysis between mRNA expression and cumulative survival was carried out to further assess the involvement of NMNGs in the prognosis of various cancers. The potential impact of NMNG on the traditional oncogenic pathway of pan-cancer was then investigated using the single sample gene set enrichment analysis (ssGSEA) (21). All of these analyses were carried out using R as in earlier published studies (22, 23).



Cluster analysis of NMNG

Unsupervised clustering analysis was done to identify distinctive NMNG modification patterns and divided STAD samples into different categories based on the expression of prognostic NMNGs. A consensus clustering procedure was conducted to determine the number and stability of each individual cluster, and the “Consensus Cluster Plus” software package provided additional support (24). The clustering effect indicated that the clustering stability was improved with k=2.



Gene set variation analysis (GSVA) and ssGSEA

The “GSVA” R package was used to conduct GSVA enrichment analysis so as to investigate differences in biological processes across various NMNG modification patterns. We used ssGSEA to evaluate a large number of immune cells (25), such as activated dendritic cells, activated CD4 T cells, activated CD8 T cells, and activated B cells, that have infiltrated the TME of STAD. According to the results of the ssGSEA analysis, the relative abundance of each TME-invading cell for every sample was represented by the enrichment scores.



Analysis of genes with differential expression (DEGs) to identify NMNG modification patterns

We filtered out DEGs using the R package “limma” in accordance with two distinct NMNG modification patterns that we have identified. An adjusted P-value < 0.001 was used for the rank criterion. Additionally, we fundamentally annotated DEGs using the R package “clusterProfiler”. Similar to this, the univariate Cox model chose the survival-related DEGs of the two distinct NMNG modification patterns, and cluster analysis based on the DEGs with prognostic significance was carried out with the aid of the R package “Consensus Cluster Plus.” Furthermore, differences (variations) in NMNG expression and patient survival between clusters were characterized.



Construction of NMNG signature

On the basis of the results, we subsequently created a scoring system for the NMNG. According to relevant research (26), we conducted PCA of the principal components and chose principal components 1 and 2 as feature scores. Then, the NMNG score was computed using the following equation: score = (PCli+PC2i), where ‘i’ stands for the genes related to the NMNG phenotype.



Genomic and clinical information of immune checkpoint genes (ICGs)

We used the Wilcoxon test to compare the differential expression of immunological checkpoints such as PDCD1, PDCD1LG2, CD40, CD80, and CD276 in groups with low and high NMNG scores. From the Cancer Immunome Atlas Database, we concurrently gathered the Immune Checkpoint Inhibitor (ICI) Immunophenoscore (IPS) file. The immunotherapeutic relevance of the NMNG gene signature was evaluated using IPS, a reliable tool for assessing tumor immunogenicity.



Statistical analysis

For all statistical analyses, R was utilized. The one-way ANOVA and Kruskal-Wallis test were used to compare the outcomes across multiple groups. The best cutoff score was divided into groups with low- and high-NMNG scores using the “surv-cutpoint” function. The prognostic survival curve was produced using the KM approach. We evaluated the mutation status of people with low- and high-NMNGscore subtypes using the waterfall function in the maftools package (25). For all analyses, the significance of the correlation is determined by the criterion of p < 0.05.




Results


Data procession

Figure 1 displays a flowchart outlining the steps in the research process. First, we did the intersection of genes related to neuroendocrine function and genes related to nucleotide metabolism to obtain 196 NMNGs (Supplementary Figure 1). The 808 STAD samples were then subjected to a univariate cox regression analysis to yield 46 NMNGs that were prognostically significant for this study (Supplementary Table S1). The prognostic significance of 46 NMNGs was validated by KM analysis based on 808 STAD samples (Supplementary Figure 2).




Figure 1 | The investigation’s flow chart.





Pan-cancer analysis of 46 NMNGs

Data on CNV, SNV, methylation, mRNA expression profiles, and survival information for 46 NMNGs in various malignancies were provided by TCGA for the pan-cancer study. The percentage of CNV was examined in order to investigate the genetic aberrations of NMNGs in cancer. Different CNV profiles of NMNGs were detected in varied cancer types (Figure 2A). For instance, in nearly all tumors, GNAS, IGFBP3, EGFR, STX1A, and KCNB1 were more likely to experience copy number gain than copy number loss, whereas PGR and CDH23 displayed the opposite profile. Moreover, we examined SNV data related to NMNGs to determine the frequency and types of variants in each cancer subtype. Figure 2B demonstrates the remarkable SNV of NMNGs in SKCM, STAD, UCEC, LUSC, and LUAD. In addition, 91.71% of the NMNGs had SNV frequency (5343 of 5826 tumors). Missense mutations were discovered to be the primary SNP type as per the variant-type analysis. According to SNV percentage analysis, the top 4 mutated genes were TP53, BRCA2, CDH23, and EGFR, with respective mutation percentages of 67%, 8%, 7%, and 7%. (Figure 2C). In addition to CNV, promoter methylation can control gene expression, and abnormal promoter DNA methylation is linked to cancer (27). We noted that most NMNG consistently exhibited hypomethylation in 20 cancer types, with the exception of CDH23, ADCYAP1, and UCHL1 (Figure 2D).




Figure 2 | Panoramic view of nucleotide metabolism-related genes (NMNGs) in pan-cancer. (A) Histogram shows the frequency of copy number variation (CNV) for each NMNG in each cancer type. (B) Mutation frequency of NMNGs. The numbers show how many samples of a certain tumor have the matching mutant gene. “0” denotes the absence of any mutation in the gene’s coding region, while no number denotes the absence of any mutation in the gene at all. (C) Single-nucleotide variation (SNV) oncoplot. An oncoplot displaying the distribution of NMNG mutations and a list of SNV kinds. (D) Heatmap displays the differential methylation of NMNGs in cancers; hypermethylated and hypomethylated genes are denoted with red and blue, correspondingly (Wilcoxon rank-sum test). (E) Histogram (upper panel) and heatmap demonstrate the number of significant DEGs and the fold change and FDR of NMNGs, respectively, in each cancer. Substantially upregulated and downregulated genes are denoted with red and green, correspondingly. (F) NMNGs’ survival profiles across cancers. (G) Enrichment analysis for cancer pathway signaling between tumor samples with high- and low-NMNGs scores.



For every cancer type, differential expression analysis was done to look into changes in the gene expression patterns of NMNGs in addition to genetic changes between the tumor and nearby normal tissues. Most of the gene expression levels in cancer tissues were different from those in healthy tissues, we discovered, except in pancreatic cancer tissues. In cancer tissue, most NMNGs are expressed at high levels (Figure 2E). Univariate Cox regression of mRNA expression and OS was then used to identify risky NMNGs with HR > 1 and pValue < 0.05 as well as protective NMNGs with HR < 1 and pValue < 0.05, as shown in Figure 2F. We found that most genes are risk factors for multiple cancer types. Since it is currently unknown how nucleotide metabolism and neuroendocrine regulates pathways connected to cancer, it is imperative to examine any possible connections between these pathways and NMNGs. This will lay the basis for future investigation into how NMNGs control pan-cancer-related pathway regulation. According to our findings, NMNGs in pan-cancer were significantly correlated with a number of signaling pathways, including TNFA signaling via NFKB, KRAS signaling, interferon-gamma response, inflammatory response, and epithelial-mesenchymal transition (EMT) (Figure 2G).



Landscape of the genetic variation of NMNG in STAD

The function of 46 NMNGs in STAD is the subject of our upcoming discussion. In the beginning, 46 NMNGs in STAD were examined for CNV and somatic mutations (Figure 3A). In 278 out of 433 samples (64.2%), NMNG mutations were found. The TP53 gene had the highest rate of mutation (44%), followed by CDH23 (9%). However, CNV deletions are more likely in EZH2, CDKN2B, and GRP, CNV amplification is more common in IGF1R, KCNB1, and GNAS (Figure 3B). The chromosomal positions of NMNG with different copy numbers are shown in Figure 3C. In order to ascertain the links between STAD and the expression of NMNG, we also evaluated the mRNA expression levels of 46 NMNGs in both tumor and normal samples. The results showed that 46 NMNGs had different expression patterns. LEPR, AR, PGR, KIT, and VIP were down-regulated in tumor tissues, whereas TP53, GNAS, UCP3, BRCA2, and BRCA1 were up-regulated in tumor tissues (Figure 3D).




Figure 3 | Landscape of genetic and expression variation of NMNGs in STAD. (A) 278 of 433 samples have genetic alterations of 46 NMNGs. (B) CNV mutation frequency of NMNGs. (C) Position of CNV change of NMNGs on human chromosome. (D) Difference in the expression level of 46 NMNGs between normal and tumor samples. *P<0.05, **P<0.01, ***P<0.001.





Two NMNG patterns of STAD

The NMNG network outlines the co-expressed relationship among NMNGs with prognostic significances in STAD patients. (Figure 4A). The Consensus Cluster Plus R program was utilized to classify patients with various NMNG patterns by quantifying the expression of the 46 NMNGs. Unsupervised clustering was then used to identify two distinct modification patterns (Figure 4B and Supplementary Figure 3). These two gene clusters were obviously divided (Figure 4C). In a subsequent prognostic analysis, it was found that cluster B modification pattern was found to have a better prognosis (Figure 4D). Figure 4E illustrated the clinical characteristics of the two subgroups of patients. Two NMNG modification patterns were examined using a KEGG enrichment assay to determine their biological roles. It was found that cluster A was significantly enriched in pathways that promote carcinogenesis, including the MAPK signaling pathway, the TGF BETA signaling pathway, the calcium signaling pathway, and the interaction between ECM receptors. DNA replication, mismatch repair, spliceosomes, and base excision repair pathways were enriched in cluster B (Figure 4F). We also examined the TME cell invasion of various clusters. According to the analysis, immune cells such as activated B cells, CD8+ T cells, activated dendritic cells, eosinophils, immature B cells, immature dendritic cells, macrophages, mast cells, NK cells, plasmacytoid dendritic cells, regulatory T (Treg) cells, follicular helper T (Tfh) cells, and type 1 helper T (Th1) cells were significantly enriched in cluster A (Figure 4G).




Figure 4 | Patterns of NMNG modification and biological features of each pattern. (A) Mutual effects of NMNGs in STAD. (B) Unsupervised clustering analysis in STAD cohort. (C) Principal component analysis for two NMNG modification patterns. (D) Survival assay for the two NMNG modification patients. (E) Clinical characteristics of two NMNG modification patterns. (F) KEGG enrichment assay displaying the stimulation status of biological pathways of two NMNG modification patterns. (G) Expression of immune-infiltrating cells in two NMNG modification patterns. ** P<0.01, ***P<0.001; ns, not statistically significant.





DEGs between distinct NMNG phenotypes

In order to further analyze the molecular mechanisms behind the two NMNG modification patterns, we used the limma package to find 6922 DEGs related to the NMNG phenotype. Figures 5A, B display the findings of the analysis of DEG-related enriched GO and KEGG pathways. We used univariate Cox regression analysis on 6922 DEGs to identify 2117 DEGs that affected prognosis for the purpose of further verifying the regulatory mechanism of NMNG modification in STAD. Patients were then divided into three gene clusters based on the results of the unsupervised clustering analysis of these genes (Figure 6A and Supplementary Figure 4). This implies that there are different NMNG patterns in STAD. The prognosis for cluster C (141 patients) and cluster B (301 patients) patients among the 803 STAD patients was worse (Figure 6B). In Figure 6C, the various clinicopathological traits of these subgroups are depicted. We found significant variations in NMNG expression across these three clusters (Figure 6D).




Figure 5 | Transcriptome characteristics of NMNG modification patterns in STAD. (A) GO enrichment analysis of NMNG DEGs. (B) KEGG pathways of NMNG DEGs.






Figure 6 | Three genomic subtypes of DEGs with prognostic significance by unsupervised cluster analysis. (A) Consensus matrix. (B) Survival analysis of gene clusters. (C) Different clinicopathological characteristics of these subgroups shown by heatmap. (D) Expression of NMNGs in STAD in three gene clusters. **P<0.01 ***P<0.001.





Generation of NMNG signatures and functional annotation

These procedures are unable to anticipate the NMNG alteration patterns of specific patients because they only consider STAD patient populations. To assess the pattern of NMNG alterations in each STAD patient, we developed a scoring system, the NMNG score. To see the alterations in several patient parameters, alluvial plots were employed (Figure 7A). Then, using the NMNGscore as the parameter, we investigated patient survival results. High NMNGscore patients have greater survival rates (Figure 7B). Activated CD4+ T cells, neutrophilia, and Th17 cells were positively correlated with NMNGscore, whereas activated B cells, Eosinophilia, T cells, immature B and dendritic cells, MDSCs, macrophages, mast cells, NKT cells, NK cells, plasmacytoid dendritic cells, Treg cells, Tfh cells, and Th1 cells were negatively correlated (Figure 7C). The effect of different ICG expression levels on the TME was subsequently examined. In the group with low NMNGscores, we discovered increased expression levels of ICG, which might have been linked to their worse prognosis (Figures 7D–H). Then, we conducted research on the variation in NMNGscore between NMNGclusters and gene clusters. NMNGcluster B and gene cluster B both had significantly higher NMNGscores than NMNFcluster A and gene clusters A and C, accordingly (Figures 7I, J). These findings suggested that the NMNGscore can be used to evaluate the pattern of NMNG alteration as well as the tumor’s TME immune cell infiltration features in a particular patient.




Figure 7 | Construction of NMNG signature and exploration of its clinical significance. (A) Alluvial diagram showing the changes in NMNGclusters, gene clusters, NMNGscore, and survival status. (B) Survival outcomes of patients by NMNGscore. (C) Correlation between NMNGscore and immune cells. Blue represents negative correlations and red represents positive correlations. (D-H) Expression of immune checkpoints (PDCD1, PDCD1LG2, CD40, CD86, and CD276) among low and high NMNG score groups. (I) Variation analysis of NMNGscore between NMNGclusters. (J) Variation analysis of NMNGscore between gene clusters. *P<0.05.





Cancer somatic mutations and patterns of NMNG alteration in TCGA molecular subgroups

Somatic mutations in tumor genomes are related to patients’ response to immunotherapy, according to our studies. As a result, we focused on the distributions of tumor mutation burden (TMB) across distinct NMNGscore categories. The low NMNGscore group had a lower TMB in comparison to the group with a high NMNGscore, and the NMNGscore was positively linked to TMB (Figures 8A, B). Furthermore, there was a markedly higher chance of survival in the group of patients with high mutational loads, and this benefit was much more obvious in those patients who also had high NMNGscores (Figures 8C, D). The distribution landscape of somatic mutations was then compared between the groups with high and low NMNGscores using the R maftools package. The results showed that the group with a high NMNGscore had a greater TMB than the group with a low NMNGscore (Figures 8E, F). Overall, NMNG changes interact with somatic mutations, and NMNGscore categorization may be influenced by chromosomal variance.




Figure 8 | Features of NMNG modification in TCGA molecular subgroups and cancer somatic mutation. (A) The distribution differences of the tumor mutational burden (TMB) between low- and high NMNG-score categories in the TCGA-STAD cohort. (B) The correlation between NMNG score and TMB. (C) Survival assay for low and high TMB groups using KM curves. (D) Survival analyses for patients classified by NMNG score and TMB using KM curves. (E, F) Waterfall plot of cancer somatic mutations constructed from patients with (E) high NMNG score and (F) low NMNG score.





NMNGscore signatures characterized by different immunotherapy landscapes

We assessed whether NMNG alterations could predict patient responses to ICIs in the context of the recent approval of drugs that target PD-1 and CTLA-4 for the treatment of various types of cancers. We observed that patients with a high NMNGscore had significant clinical benefits and considerably improved survival status (Figures 9A, B). In order to anticipate how efficiently ICIs would work, we also investigated the link between STAD patients’ Immunophenoscore (IPS) and NMNGscore signatures. The variations in treatment outcomes between the groups with high and low NMNGscores were displayed in Figures 9C–F. The higher IPS scores in the high NMNGscore group suggest that they are more immunogenic on ICIs. These studies reveal that NMNG scores can be used to estimate how an immunotherapy treatment will affect a patient.




Figure 9 | The role of NNMG-scoring signature in immunotherapy. (A) The proportion of patients surviving between the low and high NMNG score groups, with a higher proportion surviving in the high scoring group. (B) NMNG scores were higher in surviving patients than in patients who died. (C–F) The comparison of the relative distribution of immunophenoscore (IPS) between low and high NMNG score groups.






Discussion

Due to its high morbidity, poor incidence of early diagnosis, and low survival rate, GC poses a severe threat to the health and life of Chinese citizens (28). As of now, early or localized GC should be treated with surgery or endoscopic resection. Nevertheless, 30–40% of GC patients experience recurrence or metastases even after receiving curative resection (29, 30). Several recent studies demonstrate that inhibiting PD-1 is not significantly more effective than chemotherapy (31) and that patients with advanced GC who were administered with PD-1 inhibitors and concurrent chemotherapy have better survival than those who receive chemotherapy alone (32). However, only 15% to 60% of patients receiving anti-PD-1 immunotherapy experience improvement.

During the progression of tumors, abnormal cancer metabolism takes place (33). The metabolism of nucleotides is the last and most important link in the chain of events that contribute to the spread of cancer (5). Recent studies have shown that abnormal nucleotide metabolism suppresses the normal immune response in the tumor microenvironment while accelerating the emergence of tumors (6). Since there are few relevant procedures and studies, the analysis of the relationship between nucleotide metabolism and the development of cancer is growing rapidly. The intervention, alteration, or regulation of molecular pathways linked to aberrant nucleotide metabolism in tumor cells have emerged as novel approaches and concepts for the treatment of malignancies as well as the inhibition of relapse and metastasis (7). The metabolism of tumors is often regulated by the neuroendocrine system, and abnormal neuroendocrine regulation may cause metabolic disorders (19). In addition, numerous studies have demonstrated that nerves’ primary means of modulating tumor cells is through neuroendocrine modulation, which has also been linked to tumor start, development, and a worse prognosis (34–36). Studies show that catecholamine-induced neuroendocrine phenotype of GC cells accelerates GC progression (13). Neuroendocrine regulation also causes corresponding changes in the body’s immune function and thus promotes tumor progression (37). Thus, the NMNG-based prognosis signature of STAD is a promising strategy for prognosis assessment and individual management.

First, we filtered 46 NMNGs to obtain NMNGs that had prognostic significance in STAD. The roles of neuroendocrine and nucleotide metabolism in cancer have been progressively discovered as research into these topics has evolved. As a result, we summarize NMNG variations in a variety of cancers before investigating the role of aberrant nucleotide metabolism and neuroendocrine in STAD. However, partial NMNGs had prognostic values in a variety of cancers and NMNG variations took place more or less often. NMNGs’ genetic abnormalities and variations were also clearly present in a proportion of malignancies. In the majority of tumor types, NMNGs had a positive correlation with TNFA signaling via NFKB, KRAS signaling, interferon-gamma response, inflammatory response, and EMT. By controlling the previously stated pathways, abnormal nucleotide metabolism and neuroendocrine may aid in the progression of cancer.

We then focused our research on STAD. In total, 46 NMNGs were enrolled and analyzed in STAD samples. They had an elevated frequency of somatic mutations and CNV change, which had an influence on the NMNG expression. This indicated that STAD-related tumorigenesis and NMNG alteration might be associated. The imbalance of NMNG expression was clearly linked to the onset and progression of STAD due to substantial genetic heterogeneity and expressional alteration landscape between normal and STAD samples in NMNG. Focusing on the interactions between different NMNGs, cross-talk among NMNGs may play a significant role in the development of different NMNG alteration patterns and TME cell-infiltrating aspects in individual tumors.

Based on the expression of 46 NMNGs, STAD samples were divided into two modification pattern clusters with extremely different biological behavior and TME characteristics. NMNG cluster A had a poor prognosis and exhibited significant enrichment in oncogenic activation pathways and TME immune cell infiltration. These findings suggest that NMNG modification patterns have a strong influence on the biological behavior and TME characteristics of individual tumors.

A total of 6922 DEGs were identified between NMNGcluster A and NMNGcluster B by NMNG transcriptional pattern analysis, of which 2117 DEGs of prognostic significance were designated as NMNG-associated signature genes.

Based on 2117 NMNG signature genes we classified STAD samples into three genomic subtypes. Survival analysis showed that gene cluster B had a better survival rate than gene clusters A and C. Therefore, we suggest that NMMNG modifications may help to classify STAD types and to develop appropriate treatment strategies for patients. Then, given the individual heterogeneity of NMNG modifications, we developed a scoring system to assess the pattern of NMNG modifications in individual SATD patients based on NMNG characteristics. We found that patients with high NMNG scores had a higher survival rate.

The difference in the immune state between the high- and low-NMNGscore STAD groups was explored in the following section because the tumor immune milieu may have an impact on tumor therapy. The results showed that NMNGscore was negatively related to activated B cells, Eosinophilna, γδT cells, immature B cells, immature dendritic cells, MDSCs, macrophages, mast cells, NKT cells, NK cells, plasmacytoid dendritic cells, Treg cells, Tfh cells, and Th1 cells. Meanwhile, ICG expression was upregulated in the low NMNGscore group. It is well known that cancer cells are mistakenly considered a normal part of the body and can protect themselves through the immune checkpoint pathway. A worse prognosis was seen in the low-NMNGscore category with a higher proportion of immunological components, indicating the engagement of immune checkpoint mechanisms. The upregulation of PDCD1, PDCD1LG2, CD40, CD86, and CD276 might become promising targets in STAD.

Due to a lack of comprehensive understanding of the immunological milieu in STAD and the inability to determine the immune status of specific individuals, the effectiveness of immunotherapy in STAD has been uneven. It is reported that TMB can be used as an index to predict ICI efficacy and has become a biomarker in certain cancer types to identify patients who will benefit from immunotherapy (38, 39), which may be related to the fact that high TMB may produce more neoantigens recognized by the immune system and trigger a broader anti-tumor immune response (40). We found that the proportion of TMB in the high-NMNGscore subgroup is higher, which also shows that patients in the high-NMNGscore subgroup may benefit more from immunotherapy. In addition, we investigated the relationship between NMNG score and the outcome of CTLA-4/PD-1 inhibitor therapy. We found that the high NMNG score group had a better response to immunotherapy. In conclusion, NMNG modification may be a crucial modulator of the clinical response to immunotherapy, and we indirectly validated the utility of the NMNGscore in predicting immunotherapy responses.

However, we noted some drawbacks related to our research. The construction of our signature was based on retrospective data from the TCGA and GEO. To develop the predictive significance of our prognostic signature, substantial prospective clinical research is needed. Lastly, the signature was developed using bioinformatics research, suggesting that additional basic research is needed to verify our findings.



Conclusion

In conclusion, this study highlighted the considerable involvement of NMNG modification in characterizing TME infiltration. Our NMNGscore can offer novel insights into clinical decision-making and provide personalized treatment for STAD patients, representing an efficient indicator to anticipate the prognosis of STAD patients.



Data availability statement

The original contributions presented in the study are included in the article/Supplementary Material. Further inquiries can be directed to the corresponding author.



Author contributions

All authors are solely responsible for the content and writing of the manuscript. YZ and LZ contributed equally to this work. The study’s design, data collection and analysis, article preparation, and manuscript revision all benefited greatly from the efforts of all authors. All authors read and approved the final manuscript.



Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.



Supplementary material

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fendo.2022.1076521/full#supplementary-material



References

1. Bray, F, Ferlay, J, Soerjomataram, I, Siegel, RL, Torre, LA, and Jemal, A. Global cancer statistics 2018: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin (2018) 68(6):394–424. doi: 10.3322/caac.21492

2. Chen, W, Zheng, R, Baade, PD, Zhang, S, Zeng, H, Bray, F, et al. Cancer statistics in china, 2015. CA Cancer J Clin (2016) 66(2):115–32. doi: 10.3322/caac.21338

3. Chugunov, VV. [Influence of antidepressants on the convulsive action of corazole and strychnine]. Farmakol Toksikol (1976) 39(6):658–62.

4. Topalian, SL, Hodi, FS, Brahmer, JR, Gettinger, SN, Smith, DC, McDermott, DF, et al. Safety, activity, and immune correlates of anti-Pd-1 antibody in cancer. N Engl J Med (2012) 366(26):2443–54. doi: 10.1056/NEJMoa1200690

5. Vander Heiden, MG, and DeBerardinis, RJ. Understanding the intersections between metabolism and cancer biology. Cell (2017) 168(4):657–69. doi: 10.1016/j.cell.2016.12.039

6. Pavlova, NN, and Thompson, CB. The emerging hallmarks of cancer metabolism. Cell Metab (2016) 23(1):27–47. doi: 10.1016/j.cmet.2015.12.006

7. Feng, X, Ma, D, Zhao, J, Song, Y, Zhu, Y, Zhou, Q, et al. Uhmk1 promotes gastric cancer progression through reprogramming nucleotide metabolism. EMBO J (2020) 39(5):e102541. doi: 10.15252/embj.2019102541

8. Lee, JS, Adler, L, Karathia, H, Carmel, N, Rabinovich, S, Auslander, N, et al. Urea cycle dysregulation generates clinically relevant genomic and biochemical signatures. Cell (2018) 174(6):1559–70 e22. doi: 10.1016/j.cell.2018.07.019

9. Keshet, R, Lee, JS, Adler, L, Iraqi, M, Ariav, Y, Lim, LQJ, et al. Targeting purine synthesis in Ass1-expressing tumors enhances the response to immune checkpoint inhibitors. Nat Cancer (2020) 1(9):894–908. doi: 10.1038/s43018-020-0106-7

10. Kepp, O, Loos, F, Liu, P, and Kroemer, G. Extracellular nucleosides and nucleotides as immunomodulators. Immunol Rev (2017) 280(1):83–92. doi: 10.1111/imr.12571

11. Kumar, V. Adenosine as an endogenous immunoregulator in cancer pathogenesis: Where to go? Purinergic Signal (2013) 9(2):145–65. doi: 10.1007/s11302-012-9349-9

12. Lutgendorf, SK, and Andersen, BL. Biobehavioral approaches to cancer progression and survival: Mechanisms and interventions. Am Psychol (2015) 70(2):186–97. doi: 10.1037/a0035730

13. Pan, C, Wu, J, Zheng, S, Sun, H, Fang, Y, Huang, Z, et al. Depression accelerates gastric cancer invasion and metastasis by inducing a neuroendocrine phenotype Via the Catecholamine/Beta(2) -Ar/Macc1 axis. Cancer Commun (Lond) (2021) 41(10):1049–70. doi: 10.1002/cac2.12198

14. Magnon, C, Hall, SJ, Lin, J, Xue, X, Gerber, L, Freedland, SJ, et al. Autonomic nerve development contributes to prostate cancer progression. Science (2013) 341(6142):1236361. doi: 10.1126/science.1236361

15. Kappos, EA, Engels, PE, Tremp, M, Sieber, PK, von Felten, S, Madduri, S, et al. Denervation leads to volume regression in breast cancer. J Plast Reconstr Aesthet Surg (2018) 71(6):833–9. doi: 10.1016/j.bjps.2018.03.012

16. Dhabhar, FS. Enhancing versus suppressive effects of stress on immune function: Implications for immunoprotection and immunopathology. Neuroimmunomodulation (2009) 16(5):300–17. doi: 10.1159/000216188

17. Dhabhar, FS, Malarkey, WB, Neri, E, and McEwen, BS. Stress-induced redistribution of immune cells–from barracks to boulevards to battlefields: A tale of three hormones–curt richter award winner. Psychoneuroendocrinology (2012) 37(9):1345–68. doi: 10.1016/j.psyneuen.2012.05.008

18. Dhabhar, FS. Effects of stress on immune function: The good, the bad, and the beautiful. Immunol Res (2014) 58(2-3):193–210. doi: 10.1007/s12026-014-8517-0

19. Yoo, ES, Yu, J, and Sohn, JW. Neuroendocrine control of appetite and metabolism. Exp Mol Med (2021) 53(4):505–16. doi: 10.1038/s12276-021-00597-9

20. Ren, J, Yuan, Q, Liu, J, Zhong, L, Li, H, Wu, G, et al. Identifying the role of transient receptor potential channels (Trps) in kidney renal clear cell carcinoma and their potential therapeutic significances using genomic and transcriptome analyses. BMC Med Genomics (2022) 15(1):156. doi: 10.1186/s12920-022-01312-x

21. Miao, Y, Liu, J, Liu, X, Yuan, Q, Li, H, Zhang, Y, et al. Machine learning identification of cuproptosis and necroptosis-associated molecular subtypes to aid in prognosis assessment and immunotherapy response prediction in low-grade glioma. Front Genet (2022) 13:951239. doi: 10.3389/fgene.2022.951239

22. Yuan, Q, Deng, D, Pan, C, Ren, J, Wei, T, Wu, Z, et al. Integration of transcriptomics, proteomics, and metabolomics data to reveal Her2-associated metabolic heterogeneity in gastric cancer with response to immunotherapy and neoadjuvant chemotherapy. Front Immunol (2022) 13:951137. doi: 10.3389/fimmu.2022.951137

23. Yuan, Q, Ren, J, Chen, X, Dong, Y, and Shang, D. Contributions and prognostic performances of M7g rna regulators in pancreatic adenocarcinoma. Chin (Engl) (2022) 135(17):2101–3. doi: 10.1097/CM9.0000000000002179

24. Chi, H, Xie, X, Yan, Y, Peng, G, Strohmer, DF, Lai, G, et al. Natural killer cell-related prognosis signature characterizes immune landscape and predicts prognosis of hnscc. Front Immunol (2022) 13:1018685. doi: 10.3389/fimmu.2022.1018685

25. Jin, W, Yang, Q, Chi, H, Wei, K, Zhang, P, Zhao, G, et al. Ensemble deep learning enhanced with self-attention for predicting immunotherapeutic responses to cancers. Front Immunol (2022) 13:1025330. doi: 10.3389/fimmu.2022.1025330

26. Liu, Z, Zhong, J, Zeng, J, Duan, X, Lu, J, Sun, X, et al. Characterization of the M6a-associated tumor immune microenvironment in prostate cancer to aid immunotherapy. Front Immunol (2021) 12:735170. doi: 10.3389/fimmu.2021.735170

27. Shen, H, and Laird, PW. Interplay between the cancer genome and epigenome. Cell (2013) 153(1):38–55. doi: 10.1016/j.cell.2013.03.008

28. Ferlay, J, Soerjomataram, I, Dikshit, R, Eser, S, Mathers, C, Rebelo, M, et al. Cancer incidence and mortality worldwide: Sources, methods and major patterns in globocan 2012. Int J Cancer (2015) 136(5):E359–86. doi: 10.1002/ijc.29210

29. Sasako, M, Sakuramoto, S, Katai, H, Kinoshita, T, Furukawa, H, Yamaguchi, T, et al. Five-year outcomes of a randomized phase iii trial comparing adjuvant chemotherapy with s-1 versus surgery alone in stage ii or iii gastric cancer. J Clin Oncol (2011) 29(33):4387–93. doi: 10.1200/JCO.2011.36.5908

30. Noh, SH, Park, SR, Yang, HK, Chung, HC, Chung, IJ, Kim, SW, et al. Adjuvant capecitabine plus oxaliplatin for gastric cancer after D2 gastrectomy (Classic): 5-year follow-up of an open-label, randomised phase 3 trial. Lancet Oncol (2014) 15(12):1389–96. doi: 10.1016/S1470-2045(14)70473-5

31. Shitara, K, Van Cutsem, E, Bang, YJ, Fuchs, C, Wyrwicz, L, Lee, KW, et al. Efficacy and safety of pembrolizumab or pembrolizumab plus chemotherapy vs chemotherapy alone for patients with first-line, advanced gastric cancer: The keynote-062 phase 3 randomized clinical trial. JAMA Oncol (2020) 6(10):1571–80. doi: 10.1001/jamaoncol.2020.3370

32. Janjigian, YY, Shitara, K, Moehler, M, Garrido, M, Salman, P, Shen, L, et al. First-line nivolumab plus chemotherapy versus chemotherapy alone for advanced gastric, gastro-oesophageal junction, and oesophageal adenocarcinoma (Checkmate 649): A randomised, open-label, phase 3 trial. Lancet (2021) 398(10294):27–40. doi: 10.1016/S0140-6736(21)00797-2

33. Hanahan, D, and Weinberg, RA. Hallmarks of cancer: The next generation. Cell (2011) 144(5):646–74. doi: 10.1016/j.cell.2011.02.013

34. Peng, G, Chi, H, Gao, X, Zhang, J, Song, G, Xie, X, et al. Identification and validation of neurotrophic factor-related genes signature in hnscc to predict survival and immune landscapes. Front Genet (2022) 13:1010044. doi: 10.3389/fgene.2022.1010044

35. Liu, SQ, Li, B, Li, JJ, Sun, S, Sun, SR, and Wu, Q. Neuroendocrine regulations in tissue-specific immunity: From mechanism to applications in tumor. Front Cell Dev Biol (2022) 10:896147. doi: 10.3389/fcell.2022.896147

36. Tsunokake, J, Fujishima, F, Watanabe, H, Sato, I, Miura, K, Sakamoto, K, et al. Tumor microenvironment in mixed neuroendocrine non-neuroendocrine neoplasms: Interaction between tumors and immune cells, and potential effects of neuroendocrine differentiation on the tumor microenvironment. Cancers (Basel) (2022) 14(9). doi: 10.3390/cancers14092152

37. Dai, S, Mo, Y, Wang, Y, Xiang, B, Liao, Q, Zhou, M, et al. Chronic stress promotes cancer development. Front Oncol (2020) 10:1492. doi: 10.3389/fonc.2020.01492

38. Asaoka, Y, Ijichi, H, and Koike, K. Pd-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med (2015) 373(20):1979. doi: 10.1056/NEJMc1510353

39. Chan, TA, Yarchoan, M, Jaffee, E, Swanton, C, Quezada, SA, Stenzinger, A, et al. Development of tumor mutation burden as an immunotherapy biomarker: Utility for the oncology clinic. Ann Oncol (2019) 30(1):44–56. doi: 10.1093/annonc/mdy495

40. McGranahan, N, Furness, AJ, Rosenthal, R, Ramskov, S, Lyngaa, R, Saini, SK, et al. Clonal neoantigens elicit t cell immunoreactivity and sensitivity to immune checkpoint blockade. Science (2016) 351(6280):1463–9. doi: 10.1126/science.aaf1490


Publisher’s note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2023 Zhang, Zeng, Lin, Chang, Zeng and Xia. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.




ORIGINAL RESEARCH

published: 20 January 2023

doi: 10.3389/fendo.2023.1126862

[image: image2]


Shared sex hormone metabolism-related gene prognostic index between breast and endometrial cancers


Junyi Duan 1†, Chenan Liu 2,3†, Jiahong Yi 4 and Yun Wang 5*


1 First Clinical Medical College, Shanxi Medical University, Taiyuan, China, 2 Department of Gastrointestinal Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China, 3 Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, China, 4 Sun Yat-Sen University Cancer Center, Sun Yat-Sen University, Guangzhou, China, 5 Department of Obstetrics and Gynecology, The 985th Hospital of The People’s Liberation Army Joint Logistic Support Force, Taiyuan, China




Edited by: 

Ruiqin Han, Chinese Academy of Medical Sciences, China

Reviewed by: 

Xinghao Wang, Shengjing Hospital of China Medical University, China

Lingying Wu, Chinese Academy of Medical Sciences and Peking Union Medical College, China

*Correspondence: 

Yun Wang
 wydzs@aliyun.com











†These authors have contributed equally to this work and share first authorship


Specialty section: 
 This article was submitted to Cancer Endocrinology, a section of the journal Frontiers in Endocrinology


Received: 18 December 2022

Accepted: 09 January 2023

Published: 20 January 2023

Citation:
Duan J, Liu C, Yi J and Wang Y (2023) Shared sex hormone metabolism-related gene prognostic index between breast and endometrial cancers. Front. Endocrinol. 14:1126862. doi: 10.3389/fendo.2023.1126862




Aims

As sex hormone-dependent tumors, it remains to be clarified whether there is a common genetic signature and its value between breast and endometrial cancers. The aim of this study was to establish the shared sex hormone metabolism-related gene prognostic index (SHMRGPI) between breast and endometrial cancers and to analyze its potential role in the therapeutic and prognostic assessment of endometrial cancers.



Methods

Using transcriptome data from TCGA, tumor-associated gene modules were identified by weighted gene co-expression network analysis, and the intersection of module genes with female sex hormone synthesis and metabolism genes was defined as sex hormone metabolism-related gene. SHMRGPI was established by the least absolute shrinkage and selection operator and Cox regression. Its prognostic value of patients with endometrial cancer was validated, and a nomogram was constructed. We further investigated the relationship between SHMRGPI groups and clinicopathological features, immune infiltration, tumor mutation burden, and drug sensitivity.



Results

A total of 8 sex hormone metabolism-related gene were identified as key genes for the construction of prognostic models. Based on SHMRGPI, endometrial cancer patients were divided into high and low SHMRGPI groups. Patients in the low SHMRGPI group had longer overall survival (OS) compared with the high group (P< 0.05). Furthermore, we revealed significant differences between SHMRGPI groups as regards tumor immune cell infiltration, somatic mutation, microsatellite instability and drug sensitivity. Patients with low SHMRGPI may be the beneficiaries of immunotherapy and targeted therapy.



Conclusions

The SHMRGPI established in this study has prognostic power and may be used to screen patients with endometrial cancer who may benefit from immunotherapy or targeted therapy.





Keywords: endometrioid endometrial cancer, breast cancer, sex hormone metabolism-related gene, prognostic index, weighted gene co-expression network analysis, immunotherapy



1 Introduction

Breast and endometrial cancers are the first and fourth most common tumors in women and pose a serious threat to women’s health (1). As tumors originating from sex hormone-dependent organs, there is accumulating evidence that sex hormones and dysregulated hormonal signaling influence disease origin, treatment response, and clinical outcomes in breast and endometrial cancers (2–6). Based on clinicopathological characteristics and immunohistochemical tests, breast cancer has been classified into different pathological subtypes, in which patients who are estrogen receptor (ER) and progesterone receptor (PR) positive show an ideal response to endocrine therapy and a good prognosis (7). Similarly, endometrioid endometrial cancer (EEC), as a tumor affected by sex hormones and sensitive to endocrine therapy (8, 9). Investigating the molecular markers and potential mechanisms it shares with breast cancer can help deepen our understanding of EEC.

The morbidity and mortality of endometrial cancer have increased annually in recent years, which is probably due to the combined effects of an aging population, the decline in benign hysterectomies, and the obesity epidemic (10). Despite significant advances in various aspects of endometrial cancer management, the cumulative threat to women’s health from endometrial cancer has not abated. Molecular classification based on genomic features has improved our understanding of endometrial cancer and clinical practice has changed as a result (11). Further analysis of The Cancer Genome Atlas (TCGA) data to advance our knowledge of the tumor and address the rising burden of disease is critical.

In this study, we performed a weighted gene co-expression network analysis (WGCNA) using transcriptome data from the TCGA database for breast and endometrial cancers to identify the sex hormone metabolism-related gene (SHMRG) associated with the synthesis and metabolism of female sex hormone, and subsequently established the SHMRG prognostic index (SHMRGPI) in patients with endometrial cancer and analyzed the value of SHMRGPI in survival assessment and therapeutic modality selection. With this study, we hope to identify novel biomarkers that can be used for screening and treatment and provide a basis for the search for potential beneficiaries of immunotherapy and targeted therapy.



2 Methods


2.1 Data download and selection

The transcriptome data for the breast cancer samples were downloaded from TCGA. Samples from ER and PR positive female patients were selected for subsequent analysis. Transcriptome, somatic variation and clinical data for endometrial cancer samples were downloaded from TCGA, and EEC samples were selected. Transcriptome data for normal breast and uterine tissues were downloaded from the Genotype-Tissue Expression (GTEx) dataset from XENA (12). Gene sets associated with the synthesis and metabolism of female sex hormones were downloaded from the Molecular Signatures Database (MSigDB) for subsequent analysis (13).



2.2 Identification of SHMRG

Weighted gene co-expression network analysis (WGCNA) was established to explore the relationship between expression and phenotype data based on correlation coefficients (14). In this study, WGCNA was used to identify gene modules associated with ER/PR positive breast cancer and EEC. First, the sample clustering was performed and abnormal samples were removed. After correlations between genes were calculated, a matrix was built for gene stratification and module clustering to determine the correlation between gene modules and tumors based on the eigenvalues of gene modules of tumor samples and normal samples. In the WGCNA of this study, the soft threshold beta was 2, minModuleSize was 30, mergeCutHeight was 0.25 and deepSplit was 2. Subsequently, we took the intersection of EEC-related modules, ER/PR positive breast cancer-related modules and gene sets downloaded from MSigDB as shared SHMRG.



2.3 Training and testing of the SHMRGPI

The EEC sample was randomly divided into training and testing cohorts in a ratio of 7:3. SHMRG associated with the prognosis of EEC patients was screened in the training cohort using univariate Cox regression. Subsequently, the SHMRGPI was established using the least absolute shrinkage and selection operator (LASSO) and stepwise multivariate Cox regression. The SHMRGPI was calculated according to the following equation:

	

The distributions of SHMRGPI and survival status were plotted as scatter plots. The correlation between SHMRG and SHMRGPI was shown as heat maps. Patients with EEC were divided into two groups based on the median SHMRGPI (Supplementary Table 1). The principal component analysis (PCA) showed the distribution of the two SHMRGPI groups. Overall survival (OS) was compared between the two groups using the log-rank test. We plotted time-dependent receiver operating characteristic (tdROC) curves and calculated the area under the curve (AUC) for assessing the predictive power of SHMRGPI. The above analysis was validated in the test and entire cohorts. The SHMRGPI was established and validated using survminer, survival, glmnet, ggplot2 R packages.



2.4 Clinical correlation of the prognostic model

We performed a multifactor ROC analysis to demonstrate the advantages of SHMRGPI over other relatively complete clinicopathological characteristics (age, tumor stage and grade) in prognostic prediction. We then use the regplot R packages to develop a nomogram. The accuracy of the nomogram was assessed using calibration curves. Furthermore, we performed a stratified analysis to examine the predictive power of SHMRGPI in different clinical subgroups.



2.5 Immune correlation analysis

To assess immune cell infiltration in the different SHMRGPI groups, we performed single sample gene set enrichment analysis (ssGSEA). Then we investigated the differential expression of immune checkpoint genes between the SHMRGPI groups. Tumor immune dysfunction and exclusion (TIDE) scores predict the response of immunotherapy by model primary mechanisms of tumor immune evasion (15). We calculated TIDE scores for each sample using an online tool to analyze the differences in TIDE scores between SHMRGPI groups.



2.6 Tumor somatic mutation analysis

We used the maftools R package to collate and analyze the somatic mutation data from patients with EEC. Fifteen genes with the highest tumor mutation frequency in each SHMRGPI group were visually analyzed. The tumor mutation burden (TMB) was subsequently calculated for each sample to analyze the discrepancy in TMB levels between SHMRGPI groups. After establishing subgroups based on the median TMB, we analyzed the prognostic value of SHMRGPI in the TMB subgroups. The microsatellite instability (MSI) status of EEC patients is downloaded by invoking the cBioPortalData R package. Thereafter, differences of MSI status in the SHMRGPI group and differences of SHMRGPI in the MSI subgroup were analyzed.



2.7 Drug sensitive analysis

The half-maximal inhibitory concentrations (IC50) of common antitumor drugs were predicted for both SHMRGPI groups based on data from Cancer Drug Sensitivity Genomics (16). The differences in IC50 between the two groups were analyzed and visualized by the oncopredict and ggplot2 R packages (17).



2.8 Statistical analysis

The WGCNA was analyzed and visualized using the WGCNA and limma R packages. Cox regression and survival analysis was performed by the survivor and survminer R packages. Differences in survival between groups were visualized using Kaplan-Meier survival curves. The Wilcoxon signed-rank test was used to test the differences between quantitative data. The entire analysis was conducted in R (version 4.0.3). P< 0.05 was considered statistically significant.




3 Results


3.1 The tumor-related gene modules in ER/PR positive breast cancer and EEC

802 ER/PR positive tumor tissue samples and 79 normal samples were selected from the TCGA-BRCA dataset, and 179 normal samples from the GTEx database were combined for WGCNA after batch effects were removed. The gene clustering dendrogram was shown in Figure 1A. The expression matrix was divided into 19 gene modules, and four modules “blue”, “cyan”, “turquoise” and “yellow” were highly associated with ER/PR positive breast cancer and identified as ER/PR positive breast cancer-related modules (Figure 1B). Similarly, 408 EEC tissue samples and 19 normal samples were selected from the TCGA-UCEC dataset, and 78 normal samples from the GTEx database were combined. The results of the WGCNA after removing batch effects were showen as in Figures 1C, D. The expression matrix was divided into 16 gene modules, “grey”, “purple”, “turquoise”, “tan”, “cyan”, “blue”, “green”, “pink”, “red”, “black”, “brown” were highly associated with EEC and were identified as EEC-related modules.




Figure 1 | WGCNA of ER/PR-positive breast cancer and EEC. (A) The cluster dendrogram of ER/PR-positive breast cancer. (B) Correlation of WGCNA modules and ER/PR-positive breast cancer. (C) The cluster dendrogram of ER/PR-positive breast cancer. (D) Correlation of WGCNA modules and EEC. WGCNA, weighted gene co-expression network analysis. ER, estrogen receptor; PR, progesterone receptor.





3.2 Identification of shared SHMRG

The female sex hormone synthesis and metabolism related-gene sets downloaded from MSigDB were shown in Supplementary Table 2. The intersection of ER/PR positive breast cancer-related modules, EEC-related modules, and gene sets from MSigDB was taken. As a result, 126 genes were identified as shared SHMRG (Supplementary Table 3).



3.3 Training and testing of SHMRGPI

Total 399 samples from the TCGA database were included in this study and were randomly divided into training and test groups in a 7:3 ratio. The univariate regression analysis of SHMRG combined with expression and clinical data revealed a total of 19 SHMRG were potentially associated with prognosis in patients with EEC (P< 0.1, Figure 2A). We then performed LASSO and stepwise multivariate Cox regression, and finally identified 8 SHMRG for the construction of the SHMRGPI (Figures 2B, C). The SHMRGPI was calculated according to the following formula, and the training cohort was divided into high and low groups based on the median SHMRGPI:




Figure 2 | Establishment of the SHMRGPI in the train cohort. (A) Univariate Cox regression analysis for screening prognostic SHMRG. (B, C) LASSO regression analysis for variable selection. (D) PCA plot for different SHMRGPI groups. (E) Scatter diagram for the SHMRGPI and survival status of EEC patients. (F) Heat map for the expression of SHMRG and SHMRGPI groups. (G) Kaplan–Meier curves of survival difference between SHMRGPI groups. (H) ROC for predicting the sensitivity and specificity of survival according to the SHMRGPI. SHMRGPI, sex hormone metabolism-related gene prognostic index; LASSO, least absolute shrinkage and selection operator; PCA, principal component analysis; EEC, endometrioid endometrial cancer. ROC, receiver operating characteristic curve.



SHMRGPI = ESRRB × 1.42469 – KDM1A × 3.68341 + HSD3B1 × 3.21536 + PGR × 0.52695 + AKR1C3 × 0.38220 – ARSB × 1.10113 + RDH8 × 2.77368 + KDM5B × 2.34959.

PCA analysis showed the difference in distribution between the two SHMRGPI groups (Figure 2D). The survival time and survival status of the SHMRGPI groups in patients with EEC were shown in Figure 2E. As SHMRGPI increased, survival time decreased and the number of deaths increased. The expression of key genes of SHMRGPI and their correlation with SHMRGPI groups were shown in a heat map (Figure 2F). The Kaplan-Meier curves demonstrated a better prognosis in the low SHMRGPI group (P = 0.041, Figure 2G). The tdROC illustrated the predictive power of SHMRGPI (AUC 0.854 at one year, 0.744 at three years, and 0.754 at five years, Figure 2H).

The same distribution between groups and differential survival results as in the training cohort were also observed in the test and entire cohorts, validating the strong and robust prognostic power of SHMRGPI (Figures 3A-H).




Figure 3 | Validation of the SHMRGPI in the test and entire cohorts. PCA plot (A), scatter plot (B), heat map (C) and Kaplan–Meier curves (D) for the test cohort. PCA plot (E), scatter plot (F), heat map (G), and Kaplan–Meier curves (H) for the entire cohort.





3.4 Correlation analysis of clinical features

The Multifactor ROC analysis demonstrated the strong predictive power of SHMRGPI compared to other clinicopathological (Figure 4A). Combining SHMRGPI, age, tumor stage, and grade, we constructed a nomogram to predict survival at one, three, and five years after diagnosis in EEC patients. (Figure 4B). The agreement between the predictions of the nomogram and actual observations was confirmed using calibration curves (Figure 4C). To further assess the prognostic value of SHMRGPI, we performed a stratified analysis in the entire cohort. The results showed that SHMRGPI was associated with prognosis in white, FIGO stage I-II, tumor grade 3 and obese EEC patients (P< 0.05; Figures 5A-D).




Figure 4 | Construction and examination of nomogram. (A) The multifactor ROC of SHMRGPI, age, FIGO stage, and tumor grade. (B) The nomogram for predicting prognosis of EEC patients. **: p value < 0.01. (C) The calibration curves of the nomogram. ROC, receiver operating characteristic curve.






Figure 5 | Stratified analysis of EEC patients. Kaplan-Meier curves of patients with white race (A), FIGO stage I-II (B), tumor grade 3 (C), BMI ≥ 30 (D). FIGO, the international federation of gynecology and obstetrics. BMI, body mass index.





3.5 Immune correlation analysis

To investigate the relationship between SHMRGPI grouping and immune status, ssGSEA analysis was performed for each immune cell subset. Activated CD4+ T cells, effector memory CD4+ T cells, gamma delta T cells, and type 2 T helper cells were more infiltrated in the low SHMRGPI group, whereas CD56dim natural killer cells, eosinophil Immature dendritic cells, and plasmacytoid dendritic cells were more infiltrated in the high SHMRGPI group (Figure 6A). To explore the potential value of SHMRGPI in immunotherapy, we further analyzed the expression of immune checkpoint genes between the two groups and found that the immune checkpoint genes CD276, CD40, ICOSLG, LAG3, PD-1, TNFRSF8, TNFSF4, TNFSF9, and TNFSF18 were more highly expressed in the low SHMRGPI group (Figure 6B). In addition, we predicted the response of each SHMRGPI group to immunotherapy based on the TIDE scores, and the results showed that the low SHMRGPI group was more likely to benefit from immunotherapy (Figure 6C).




Figure 6 | Immune correlation analysis. (A) Comparison of the discrepancy in immune cell infiltration between two groups based on ssGSEA. (B) Differences in the expression of immune checkpoint genes between the two groups. (C) Differences in the TIDE scores between the two groups. ssGSEA, single-sample gene set enrichment analysis; TIDE, tumor immune dysfunction and exclusion. ns, not significant. *: p value < 0.05, **: p value < 0.01, and ***: p value < 0.001.





3.6 Gene mutation analysis

Somatic mutations in different SHMRGPI groups were demonstrated by waterfall plots (Figure 7A). PTEN, ARID1A, PIK3CA, and TTN were mutated frequently in the EEC and more frequently in the low SHMRGPI group, and CTNNB1 was mutated more frequently in the high SHMRGPI group. After that, we calculated the tumor mutation burden in each group and observed difference close to the statistical threshold in TMB levels between SHMRG groups, with relatively higher TMB in the low SHMRGPI group (Figure 7B). Grouped by median TMB, SHMRGPI maintained its prognostic value in the low TMB subgroup (Figure 7C). We further analyzed the correlation between MSI and SHMRGPI. Figure 7D shows the difference in the distribution of microsatellite instability status in SHMRGPI groups, with a higher proportion of MSI-high (MSI-H) in patients in the low SHMRGPI group. Patients with MSI-H patients had a lower SHMRGPI, compared to patients with microsatellite stable (MSS, Figure 7E).




Figure 7 | Analysis of mutation data. (A) Waterfall plot for somatic mutations in different SHMRGPI groups. (B) Differential analysis of TMB in different SHMRGPI groups. (C) Kaplan–Meier curves of survival differences between the SHMRGPI groups in patients with low TMB. (D) Distribution of MSI status in the different SHMRGPI groups. (E) Differential analysis of the SHMRGPI in patients with different MSI status. TMB, tumor mutation burden; MSI, microsatellite instability.





3.7 Drug sensitive analysis

Drug sensitivity analysis based on the oncopredict R package revealed significant differences between the SHMRGPI groups in olaparib, niraparib, and talazoparib (Figures 8A–C). The low SHMRGPI group was more sensitive (P< 0.05).




Figure 8 | Drug sensitivity analysis. Comparison of drug sensitivity differences between SHMRGPI groups in olaparib (A), niraparib (B), and talazoparib (C).






4 Discussions

Sex hormones play an important role in the oncogenesis, diagnosis, and treatment of breast cancer, and similarly, sex hormones influence the management of patients with endometrial cancer as important disease-related risk factors (7, 9, 10). However, few studies have addressed the transcriptomic commonalities between breast and endometrial cancers. Our study used WGCNA to identify shared SHMRG between ER/PR-positive breast cancer and EEC. On this basis, we explore the potential benefits of SHMRG in the management of patients with EEC.

By Cox and LASSO regression we established a prognostic gene formula called SHMRGPI, which includes ESRRB, KDM1A, HSD3B1, PGR, AKR1C3, ARSB, RDH8, and KDM5B. KDM1A, also called LSD1, has been found to be aberrantly expressed in a variety of cancers and is closely associated with cellular effects such as epithelial-mesenchymal transition (EMT), proliferation, and malignant transformation (18). Drugs targeting KDM1A have entered clinical studies in small cell lung cancer and acute myelocytic leukemia (19). In the treatment of endometrial cancer, combined with mTOR inhibitors, KDM1A inhibitors were found to inhibit tumor growth in ex vivo and in vivo experiments (20). The protein encoded by PGR, a member of the steroid receptor superfamily, regulates the biological effects of progesterone, and it has been studied as an important marker associated with prognosis and disease progression in endometrial cancer (21). KDM5B, ARSB, AKR1C3, HSD3B1, ESRRB are involved in steroid hormone metabolism and have been found to be associated with other hormone-dependent tumors, such as prostate and breast cancers (22–26). However, evidence of their association with endometrial cancer is limited. The enzyme encoded by RDH8 involved in the rhodopsin regeneration pathway, but it’s relationship with tumors has not been mentioned.

Based on SHMRGPI, EEC patients were divided into two distinct groups. The prognostic value of SHMRGPI for patients with EEC was demonstrated from different points of view. Combining age, FIGO stage, tumor grade, and SHMRGPI, we developed a nomogram to stratify the prognosis of patients with EEC, which may have clinical significance.

Considering the complex relationship between host immune function and tumor, and the prospect of immunotherapy in the treatment of patients with EEC, we analyzed the discrepancy in immune cell infiltration in each SHMRGPI group. The results revealed that CD4+ T cells, Gamma delta T cells, and Type 2 T helper cells were more abundant in the low SHMRGPI group. CD4+ T cells and TH cells played an important supportive role in the anti-tumor immune effect, and Gamma delta T cells killed tumor cells through a non-MHC-restricted manner (27, 28). Their infiltration reflects the active anti-tumor immune effect in the low SHMRGPI group. Subsequently, we analyzed the expression of immune checkpoint genes in different SHMRGPI groups and found that a variety of immune checkpoint genes, including PD-1, were more expressed in the low SHMRGPI group. Based on the TIDE scores to predict the potential clinical efficacy of immunotherapy in different SHMRGPI groups, it was found that the high SHMRGPI group was more likely to exhibit T cell dysfunction and exclusion and might have poor response when receiving immunotherapy (15). Therefore, we speculate that SHMRGPI can be used as a potential tool to screen patients with EEC who are suitable for immunotherapy.

We found differences in mutation frequency between SHMRGPI groups by analyzing somatic mutation data. Calculation of TMB revealed differences close to the statistical threshold in TMB levels between SHMRGPI groups. Subsequent analysis of data based on microsatellite instability status revealed a higher proportion of MSI-H in the low SHMRGPI group and a lower SHMRGPI in patients with MSI-H than in patients with MSS. Data from Keynote 028 and Keynote 158 supported the view that patients with TMB-H, MSI-H, and PD-1/PD-L1 positive relapsed or metastatic endometrial cancer can benefit from immunotherapy (29–31). In our study, the low SHMRGPI group with high TMB levels and a high proportion of MSI-H was more likely to benefit from immunotherapy. This result is consistent with the aforementioned results of SHMRGPI and immune correlation analysis.

Whether the encouraging results of poly (ADP-ribose) polymerase inhibitors (PARPi) in maintenance therapy for ovarian cancer can be replicated in the management of patients with endometrial cancer is a common concern among gynecologic oncologists (10, 32, 33). The results of the drug sensitivity analysis of gynecologic antineoplastic agents showed that PARPi (including olaparib, niraparib and talazoparib) differed in drug sensitivity between the SHMRGPI groups. In breast cancer, estrogen was found to enhance the cytotoxicity of PARP inhibitors on ER-positive tumor cells, resulting in inhibition of cell growth (34). In EEC, the ability of SHMRGPI to screen potential PARPi beneficiaries and the mechanism of correlation between SHMRG and PARPi remain to be further confirmed.

A limitation of this study is that the data used to build the model were obtained from a retrospective database and the findings are potentially susceptible to bias. Inferences based on the results of immune and drug sensitivity analysis need to be supported by additional experimental evidence.



5 Conclusions

In this study, we developed a prognostic model and analyzed it with respect to clinical, somatic mutation, immune and drug sensitivity. Focusing on biomarkers shared by endometrial cancer and breast cancer, it provides a new idea for the precise treatment of patients with EEC.
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Background

Anlotinib may boost the efficacy of pancreatic cancer (PC) treatment if timely added to the GS regimen (Gemcitabine, Tegafur-gimeracil-oteracil potassium); however, no data has been published. This study evaluated the safety and efficacy of anlotinib in combination with the GS regimen(hereafter referred to as the A+GS regimen) in the first-line treatment of patients with unresectable or metastatic PC.



Methods

Patients with unresectable or metastatic PC treated at Yueyang Central Hospital and Yueyang People’s Hospital between October 2018 and June 2022 were enrolled in this retrospective real-world investigation. Treatment efficacy was evaluated based on the overall survival (OS), progression-free survival (PFS), disease control rate (DCR), and objective response rate (ORR), while the treatment safety was assessed by the frequency of major adverse events (AEs).



Results

Seventy-one patients were included in this study, 41 in the GS group and 30 in the A+GS group. The A+GS group had a longer mPFS than the GS group (12.0 months (95% CI, 6.0–18.0) and 6.0 months (95% CI, 3.0–8.1)), respectively (P = 0.005). mOS was longer in the GS+A group) when compared with the GS group (17.0 months (95%CI, 14.0–20.0) and 10.0 months (95% CI, 7.5–12.5)), respectively (P = 0.018). The GS+A group had higher ORR (50.0% vs 26.8%, P = 0.045) and DCR (83.3% vs 58.5%, P = 0.026). Furthermore, there were no grade 4-5 AEs and no treatment-related deaths, and no discernible increase in AEs in the GS+A group when compared with the GS group.



Conclusion

The A+GS regimen therapy holds great promise in managing treatment-naive advanced PC, except that future prospective studies with larger sample sizes and multiple centers are required to determine its efficacy and safety.





Keywords: pancreatic cancer, anlotinib, GS regimen, efficacy, safety, overall survival, progression-free survival



Introduction

Pancreatic cancer(PC) is one of the most prevalent diseases of the digestive system across the globe, with late diagnosis, rapid progression, and a poor prognosis (1, 2). With a five-year survival rate of 10%, PC is currently the fourth leading cause of cancer-related deaths (3, 4). A majority of PC patients show middle or advanced stage when they first consult a doctor owing to its insidious onset, rapid progression, and lack of typical clinical symptoms in the early stage; less than 20% of this patient group have a chance of receiving radical resection (5). Patients with inoperable metastatic PC have a 6-month median overall survival (mOS) (6). Although systemic chemotherapy remains the principal treatment for advanced PC patients to improve the quality of life and lengthen survival time (7), its overall effectiveness remains inadequate. At present, systemic chemotherapy has been found to improve median survival by 2–4 months, and it is associated with considerable toxicity (8).

Radiotherapy and immunotherapy have only made a modest improvement over the past few years in treating advanced PC patients (9, 10). Nonetheless, chemotherapy remains the first option for most advanced PC patients. Adjuvant chemotherapy with Gemcitabine (GEM) has been shown to considerably prolong disease-free survival and overall survival (OS) of PC patients (11). A novel generation of oral compound preparation from the 5-FU family, Tegafur-gimeracil-oteracil potassium (S-1) has proved in clinical tests to be effective as GEM in treating metastatic or locally advanced PC (12, 13). The 2018 edition of the guidelines of the Chinese Society of Clinical Oncology (CSCO) for Pancreatic Cancer indicates that GEM combined with an S-1 chemotherapy regimen (GS regimen) is one of the first-line treatments for advanced PC (14).

Anlotinib, as a novel oral small-molecule multi-target tyrosine kinase inhibitor, has been demonstrated to inhibit tumor growth and exert anti-tumor angiogenesis effects, effectively inhibiting PDGFR, C-KIT, FGFR, VEGFR, and other kinases that are critical to cancer progression (15, 16). In recent years, the Chinese National Medical Products Administration (NMPA) approved anlotinib for the treatment of small cell lung cancer(SCLC) (17), advanced non-small cell lung cancer (NSCLC) (16, 18), thyroid cancer (19), soft tissue sarcoma (20), and esophageal cancer (21). Many clinical trials in liver cancer, gastric cancer, colorectal cancer, kidney cancer, breast cancer, endometrial cancer, ovarian cancer, NK/T cell lymphoma, Ewing’s sarcoma, diffuse large B cell lymphoma, and other cancers are currently underway.

Considering these factors, we hypothesized that adding anlotinib to the GS regimen may improve treatment efficacy for PC, which has not previously been documented. In this view, the present work evaluated the safety and efficacy of anlotinib combined with the GS regimen (hence referred to as the A+GS regimen) in the first-line treatment of patients with metastatic or unresectable PC to better understand the therapy choices for advanced PC.



Materials and methods


Patient selection

This retrospective real-world study used data from patients with unresectable or metastatic PC who received GS regimen alone or in combination with anlotinib at Yueyang Central Hospital and Yueyang People’s Hospital between October 2018 and June 2022. The inclusion criteria were as follows: (1) PC diagnosis was made based on pathological examination; (2) Eastern Cooperative Oncology Group (ECOG) performance status score ≤2; (3) age ≥18 years; (4) tumor lesions are unresectable or patients are unwilling to undergo surgery for various reasons, including a small number of postoperative recurrence; (5) no other systemic therapy received before first-line chemotherapy, or neoadjuvant or adjuvant chemotherapy received with one regimen but relapsed more than 6 months after the end of last chemotherapy; (6) no obvious contraindication in using chemotherapy and antiangiogenic drugs before treatment; (7) at least one measurable lesion according to the Response Evaluation Criteria in Solid Tumors version 1.1 (RECIST 1.1); (8) projected survival time ≥3 months. The exclusion criteria were as follows: (1) Patients who received systemic treatment the last within 6 months.

Patients who received the A+GS regimen were classified in the A+GS group, whereas those who received the GS regimen were classified in the GS group. The treatment approaches were chosen with consent from patients. The study followed the Declaration of Helsinki, and because a retrospective study does not require ethics committee approval, formal informed consent from patients was waived.



Treatment

(1) GS group: Patients received sequential chemotherapy with GEM + S-1, with GEM doses of 800-1000mg/m2 ivdrip d1, d8, Q3W + S-1 40-60mg po bid, d1-d14, Q3W, lasting 4 to 6 cycles, followed by S-1 monotherapy maintenance therapy. (2) A+GS group: Patients received a three-drug combination of GEM + S-1+ anlotinib, the dosage of GEM + S-1 was similar to the GS group, the anlotinib(Chia Tai Tianqing Company) dose was 8-12mg po qd, d1-d14, Q3W, administered orally before breakfast.

The dosage of oral S-1 for PC patients was calculated based on their body mass index (BMI), as follows (BMI<1.25 kg/m2: 40mg po bid d1-14 Q3W,1.25kg/m2<BMI<1.5 kg/m2: 50mg po bid d1-14 Q3W, BMI>1.5 kg/m2: 60mg po bid d1-14 Q3W), and the initial dose of anlotinib was 12mg po qd, d1-d14, Q3W. Patients were closely monitored for adverse events (AEs), and drug dose during treatment was adjusted if major AEs occurred. The dosage of anlotinib or chemotherapeutic drug was decreased appropriately if grade 3 AEs occurred, for the AEs of anlotinib, the first adjustment dosage was 10mg po qd, d1-d14, Q3W, and the second adjustment dosage was 8mg po qd, d1-d14, Q3W. Treatment was discontinued completely if 8mg was not tolerable, for the AEs of S-1 or GEM, the dose was reduced by 25% until the AEs improved to grade 0-1. Meanwhile, the current treatment was discontinued or replaced if grade 4-5 AEs occurred. In our investigation, we only recorded the incidence of grade ≥2 AEs because of the low incidence of grade 4-5 AEs. In addition, patients were allowed to receive local radiotherapy or interventional therapy. Follow-up information and clinical data were obtained using telephone or hospital records.



Follow-up and response evaluation

Patients were regularly monitored and evaluated every 1-2 months till death or the censoring date. The size of primary tumors was measured using magnetic resonance imaging (MRI), and/or computed tomography (CT) at baseline, and then every 2-3 months during the treatment. Treatment responses were classified as complete response (CR), partial response(PR), stable disease (SD), and progressive disease (PD) using the Response Evaluation Criteria in Solid Tumors version 1.1 (RECIST 1.1) standards. The toxicity was assessed using the Common Terminology Criteria for Adverse Events version 5.0 (CTCAE5.0).

Primary outcomes were overall survival (OS) and progression-free survival(PFS). Secondary outcomes were disease control rate(DCR=CR+PR+SD), objective response rate (ORR=CR+PR), and toxic side effects. OS was defined as the time interval from the start of treatment to the date of the last follow-up or death. PFS was defined as the period between the commencement of treatment and disease progression or follow-up termination if there was no relapse or death.



Statistical analysis

All statistical analyses were performed with SPSS 23.0 software. The Chi-square test was used to compare the clinical parameters of the two groups. The median PFS(mPFS) and mOS were estimated with the Kaplan-Meier method. Survival curves were generated using GraphPad Prism 8.0. and Cox proportional hazards regression analyses were used to identify prognostic factors influencing PFS and OS.




Result


Patient characteristics

Seventy-one patients (48 males and 23 females) were enrolled in this study between October 2018 and June 2022; 41 subjects were classified in the GS group, while 30 subjects were classified in the GS+A group (Table 1). The primary lesion developed in the head of the pancreas in 52 of these patients, and in the body or tail of the pancreas in 19 patients. Twenty-three (32.4%) patients had distant metastases, and 3 patients had tumor recurrence following previous radical resection. Simple liver metastasis occurred in 3 patients, simple lung metastasis in 2 patients, simple retroperitoneal lymph node metastasis in 1 patient, simple peritoneal metastasis in 1 patient, and simultaneous multiple metastases in 16 patients. Among them, 41 patients could not undergo surgical treatment because the tumor encircled the abdominal trunk and superior mesenteric artery or locally invaded the duodenum or liver, and 7 patients with resectable tumors were not considered for surgical treatment for various reasons. Moreover, 4 patients received local radiotherapy following first-line systemic therapy. The two groups did not differ significantly in terms of age, gender, primary tumor site, and distant metastasis state.


Table 1 | Clinical parameters of the patients.





Survival outcomes

There were no treatment-related deaths in either group during the follow-up and treatment period. At the last follow-up, 10(33.33%) and 18 (43.90%) patients in the A+GS group and the GS group, respectively, died. Figure 1 depicts the Kaplan–Meier curves for the two groups. The A+GS group showed a longer mPFS than the GS group (12.0 months (95% confidence interval (CI), 6.0-18.0) and 6.0 months (95% CI, 3.9-8.1)), respectively (P = 0.005; Figure 1A). Similarly, the A+GS group had a longer mOS compared with the GS group (17.0 months (95%CI, 14.0-20.0) and 10.0 months (95% CI, 7.5-12.5)), respectively (P = 0.018; Figure 1B). Furthermore, the A+GS group had a longer time for disease progression and better prognosis compared with the GS group.




Figure 1 | Kaplan-Meier plots: The GS+A group exhibited longer median progression‐free survival (mPFS; (A) and median overall survival (mOS; (B) than the GS.



The A+GS group had a longer mOS (P=0.012) and mPFS(P=0.006) than the GS group in the subgroup of PC patients with head tumors. However, there was no significant difference (P>0.05) in PFS and OS between the two groups in the subgroup analysis of PC patients with tumors in the tail or body, and different distant metastasis states. Supplementary Figure 1 depicts the comparison results and Kaplan–Meier curves for different subgroups.



Tumor response

The GS+A group had 15 PR and 10 SD cases, while the GS group had 11 PR and 13 SD cases. The DCR and ORR of the A+GS group(83.3% and 50.0% respectively) were significantly higher than those of the GS group (58.5% and 26.8%, respectively) (Table 2). In addition, we selected a PC patient with multiple liver metastases who received the A+GS regimen as first-line treatment. Figure 2 depicts continuous changes in CT images before and after treatment.


Table 2 | Treatment response of the patients.






Figure 2 | A 52-year-old female patient with advanced PC with multiple liver metastases achieved partial response after receiving A+GS regimen therapy. (A, B) show the pre-treatment baseline images, (C, D) show the images after 3 cycles of treatment, and (E, F) show the images after 6 cycles of treatment.





Adverse effects

Analysis of the adverse effects in the two groups revealed that the addition of anlotinib did not increase the incidence of adverse effects(AEs) compared with the GS regimen alone (P>0.05 for all) (Table 3). The chemotherapy drug dosage was adjusted for four patients due to hematological toxicity. Anlotinib dosage was adjusted for 2 patients due to hepatotoxicity; notably, the AEs resolved after dose adjustment or symptomatic supportive treatment. No grade 4-5 AEs or treatment-related deaths were recorded.


Table 3 | Treatment-related adverse events of in patients.





Factors associated with OS and PFS

Prognostic indicators influencing PFS and OS were revealed with univariate and multivariate Cox regression analyses. Multivariate analysis demonstrated that distant metastasis states, tumor location, and treatment regimen were independent prognostic factors for PFS (Table 4), whereas tumor location and treatment regimen were independent prognostic factors for OS (Table 5).


Table 4 | Univariate and Multivariate analysis of PFS.




Table 5 | Univariate and Multivariate analysis of OS.






Discussion

The NCCN and CSCO guidelines for pancreatic adenocarcinoma (14, 22), for unresectable locally advanced PC or patients with distant metastasis, recommend GS regimen, GA regimen (GEM, albumin-bound paclitaxel), GX regimen (GEM, Capecitabine), FOLFRINOX (oxaliplatin, fluorouracil, irinotecan, and leucovorin), among others, as the first-line treatment options. However, the overall treatment efficacy remains unsatisfactory. In this view, more relevant therapeutic modalities that can improve the prognosis of patients with advanced PC are urgently needed. To the best of our knowledge, this was the first study comparing A+GS regimen vs GS regimen alone in managing advanced PC.

The preliminary findings of this retrospective real-world investigation demonstrated that the A+GS group had better ORR and DCR, longer mOS, and mPFS than the GS group in the treatment of patients with advanced PC. Additionally, there was no discernible increase in AEs between the A+GS group and the GS group, indicating a satisfactory safety profile. These data demonstrate a novel therapeutic approach that may benefit patients with treatment-naive advanced PC in terms of survival and efficacy.

According to recent evidence, neither immunotherapy nor targeted therapy, two recent revolutions in cancer treatment, have produced statistically significant positive results in PC treatment (23). Immunotherapeutic interventions and targeted therapies are not currently the primary treatment options for PC (9, 24, 25), and the benefit of radiotherapy is also insufficient (26). Of note, GEM has been the first-line chemotherapy regimen for PC patients with the locally advanced or metastatic disease since 1997, but the mOS of PC patients treated with single-agent GEM was only 5.7 months (27). Several combinations of GEM with biological agents and cytotoxic agents have been investigated, but a majority have not significantly improved prognosis as compared with GEM alone (28–31). Although GEM is widely accepted as the first-line treatment option for advanced PC, overcoming GEM resistance remains a significant challenge for pancreatic cancer patients.

S-1 is an oral chemotherapeutic drug that is well-tolerated and simple to administer in clinical practice. S-1 outperformed GEM in terms of OS in the GEST Phase III clinical trial research, with an mOS of 8.8 months for GEM and 9.7 months for S-1 in the treatment of patients with locally advanced or metastatic PC (12). S-1 monotherapy and GS regimen have been listed as first-line chemotherapy options for unresectable locally advanced or metastatic PC in the 2018 CSCO guidelines (14).

EGFR overexpression was reported in approximately 30% to 89% of PC patients (32). GEM combined with erlotinib, an EGFR tyrosine kinase inhibitor, was found to be more effective than GEM alone in both mPFS and mOS in metastatic or locally advanced PC in phase III randomized controlled clinical study. However, the mOS was only extended by 0.33 months (6.24 months vs 5.91 months) and the mPFS was only extended by 0.20 months (3.75 months vs 3.55 months) (33). Furthermore, because the combination of GEM and erlotinib has limitations in prolonging PFS and OS in patients with metastatic or locally advanced PC compared to GEM monotherapy, it is necessary to investigate a novel small molecule tyrosine-kinase inhibitor drug in combination with chemotherapy for PC.

Anlotinib is a novel oral small-molecule tyrosine kinase inhibitor with multi-targets. Anlotinib, unlike other tyrosine kinase inhibitors such as sunitinib and sorafenib, can effectively inhibit multiple targets, among them FGFR, PDGFR, VEGFR, C-Kit, and other kinases (34). Since its introduction as a broad-spectrum anti-tumor-targeted drug, anlotinib has made significant progress in the treatment of cancers and has played a role in a wide range of malignancies (34–37). Zhang et al. discovered that anlotinib inhibited PC cell proliferation while inducing apoptosis (38). Yang et al. demonstrated that anlotinib killed PC cells both in vitro and in vivo (39). Moreover, several case reports show that anlotinib improved the prognosis of patients with advanced PC (40–42). A retrospective study of 33 patients with advanced PC (17 patients received anlotinib combined with GA regimen (GEM, albumin-bound paclitaxel) and 16 patients received GA regimen alone revealed that the anlotinib combination GA regimen group had significantly improved mOS (9.0months vs 6.0 months, P = 0.006) and mPFS(5.0months vs 2.7months, P = 0.022) when compared with the GA regimen group alone (43). In this view, anlotinib is expected to achieve a therapeutic advantage in treating metastatic and locally advanced PC.

The present investigation revealed that the A+GS group had a longer mOS and mPFS than the GS group in the subgroup of PC patients with tumors in the head. However, in the other subgroups, no significant difference in PFS and OS was reported between the two groups, which could be attributed to the smaller sample size. Furthermore, our multivariate analysis revealed that distant metastasis and tumor location are both independent risk factors for PFS and OS, respectively. Similarly, previous research found a link between distant metastasis and prognosis (5). Although there is controversy regarding whether cancer location is a prognostic factor in PC (44), we could not extensively explore this phenomenon due to the small sample size. Previous studies revealed that the adverse reactions of anlotinib are relatively mild, and the proportion of patients whose dose was reduced or discontinued due to adverse reactions was low than in group GS (45). In our investigation, the most common AEs in the two groups were in most cases mild and manageable, including hematological toxicity, hepatotoxicity, and gastrointestinal reactions. Furthermore, the incidence of AEs was not significantly different between the two groups, demonstrating that A+GS regimen therapy is clinically safe and feasible. Our findings strongly demonstrate that anlotinib improves the efficacy of the GS regimen. Although individual differences may influence patient prognosis, the short-term efficacy, based on PFS and tumor response rate, that the present work fully evaluated was not affected by subsequent treatment. These data could accurately represent the clinical efficacy of A+GS regimen therapy. As such, we will provide more data on efficacy and safety in the future.

While the present investigation is the first to report preliminary clinical results of anlotinib combined with GS regimen for advanced PC, providing evidence for future prospective clinical trials, a few limitations cannot be ignored. First, this was a retrospective real-world study conducted in China with small sample size and inevitable potential bias. Second, although this is the largest study reported so far, the number of PC patients in the A+GS regimen therapy group remained small. Future prospective multicenter randomized clinical trials are warranted to validate these findings.



Conclusions

The A+GS regimen therapy is of great promise in managing treatment-naive advanced PC. Our data provide a theoretical foundation for further investigation of the A+GS regimen therapy for advanced PC. The efficacy of the A+GS regimen therapy warrants further validation with more prospective studies with larger sample sizes and multiple centers.
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The worldwide prevalence of pancreatic cancer has been rising in recent decades, and its prognosis has not improved much. The imbalance of substance and energy metabolism in tumour cells is among the primary causes of tumour formation and occurrence, which is often controlled by the neuroendocrine system. We applied Cox and LASSO regression analysis to develop a neuroendocrine regulation- and metabolism-related prognostic risk score model with three genes (GSK3B, IL18 and VEGFA) for pancreatic cancer. TCGA dataset served as the training and internal validation sets, and GSE28735, GSE62452 and GSE57495 were designated as external validation sets. Patients classified as the low-risk population (category, group) exhibited considerably improved survival duration in contrast with those classified as the high-risk population, as determined by the Kaplan-Meier curve. Then, we combined all the samples, and divided them into three clusters using unsupervised clustering analysis. Unsupervised clustering, t-distributed stochastic neighbor embedding (t-SNE), and principal component analysis (PCA) were further utilized to demonstrate the reliability of the prognostic model. Moreover, the risk score was shown to independently function as a predictor of pancreatic cancer in both univariate and multivariate Cox regression analyses. The results of gene set enrichment analysis (GSEA) illustrated that the low-risk population was predominantly enriched in immune-associated pathways. “ESTIMATE” algorithm, single-sample GSEA (ssGSEA) and the Tumor Immune Estimation Resource (TIMER) database showed immune infiltration ratings were enhanced in the low-risk category in contrast with the high-risk group. Tumour immune dysfunction and exclusion (TIDE) database predicted that immunotherapy for pancreatic cancer may be more successful in the high-risk than in the low-risk population. Mutation analysis illustrated a positive link between the tumour mutation burden and risk score. Drug sensitivity analysis identified 44 sensitive drugs in the high- and low-risk population. GSK3B expression was negatively correlated with Oxaliplatin, and IL18 expression was negatively correlated with Paclitaxel. Lastly, we analyzed and verified gene expression at RNA and protein levels based on GENPIA platform, HPA database and quantitative real-time PCR. In short, we developed a neuroendocrine regulation- and metabolism-associated prognostic model for pancreatic cancer that takes into account the immunological microenvironment and drug sensitivity.




Keywords: pancreatic cancer, neuroendocrine regulation, metabolism, prognosis, immune, mutation, drug sensitivity



Introduction

Pancreatic cancer is becoming an increasingly major health problem throughout the world, with the age-standardized incidence rates rising from 5.0/100,000 persons in 1990 to 5.7/100,000 in 2017 (1). Pancreatic cancer is projected to overtake lung cancer as the major cancer killer in the United States by 2030, moving up from its current position as the third leading contributor to cancer-associated deaths (2–4). Surgery is the only current hope for curing pancreatic cancer, which is exceedingly aggressive and has a very dismal prognosis. However, about 80-85% of patients with pancreatic cancer are diagnosed as unresectable or metastatic due to the occult onset and lack of early screening methods. Even when diagnosed to be resectable, pancreatic cancer prognosis is dismal, with just a 20% 5-year survival probability after surgery (5). Surgery and chemotherapy are common treatment options for pancreatic cancer, however, they have limited effectiveness. Researchers discovered that the median survival periods for individuals with metastatic pancreatic cancer treated with FOLFIRINOX (leucovorin, irinotecan, oxaliplatin, and fluorouracil) or gemcitabine were 11.1 months and 6.8 months, respectively, while those with resected pancreatic cancer treated with modified FOLFIRINOX or gemcitabine had median survivals of 54.4 months and 35.0 months, respectively (6, 7). Although the survival benefit of FOLFIRINOX is superior to gemcitabine, there are also more toxic side effects. Targeted therapy and immunotherapy have made enormous strides in recent years, bringing revolutionary advances to the treatment of cancer, but their effectiveness is not optimal for pancreatic cancer. A study by Hong et al. (8) illustrated that the overall response rate (complete or partial response) of ibrutinib plus durvalumab (a PD-L1-targeting antibody) in the treatment of pancreatic cancer was only 2%. Therefore, it is still extremely vital and urgent to investigate the mechanism of occurrence and development and to identify an effective therapy for pancreatic cancer.

Metabolic alteration is an important topic in cancer biology research, and metabolic reprogramming is considered to be one of the hallmarks of cancer, participating in the process of cancer occurrence, development and metastasis (9). To adapt to the microenvironment of hypoxia and nutrient deficiency, establish survival advantages and achieve rapid growth, tumour cells change their material and energy metabolism patterns, which is called metabolic reprogramming (10). The research found that tumour cells significantly increase the demand and uptake of glucose, rapidly produce ATP through the glycolysis pathway, and aerobic glycolysis is performed even in the presence of oxygen, also referred to as the “Warburg effect”. Lactic acid produced by glycolysis will accumulate in the tumour microenvironment (TME), boost tumour cells invasiveness and reduce the anti-tumour immunity (11). Glutamine is an important source of nitrogen and carbon in biosynthetic reactions. Normal cells can synthesize glutamine by themselves, while tumour cells can obtain glutamine from the microenvironment by solute carrier group in addition to their own synthesis to meet the proliferation needs (12). Lipids, mainly including fatty acids, cholesterol, phospholipids and acrylamide, are not only the basic structure of cell membranes, but also a source of signalling molecules and energy, and the lipid metabolism reprogramming of tumour cells can promote their proliferation, invasion and metastasis (13, 14). Ringel et al. (15) showed that obesity can cause the metabolic changes for fatty acid, impair the function and infiltration for CD8+T cells, and thus inhibit anti-tumour immunity. Hypoxia and nutrient deprivation in TME will lead to metabolic competition between immune and tumour cells, and the high metabolism and strong adaptability of tumour cells will further change the metabolic characteristics of the TME, causing metabolic pressure on immune cells, while continuously accumulating toxic metabolites, negatively affecting the immunity, thereby promoting immune suppression and escape (16, 17). Besides, metabolic alteration in tumour cells is also intimately linked to the sensitivity of chemotherapy, targeted therapy, immunotherapy, and radiotherapy (18–22). Obesity has been shown to increase tumour cells’ resistance to chemotherapy, radiation, and biological and endocrine-targeted treatments by altering the way fatty acids are metabolized in TME (23).

The imbalance of material and energy metabolism of tumour cells is often regulated by the neuroendocrine system. Therefore, tumorigenesis and progression are aided by neuroendocrine control. Cancers of the liver, pancreas, colorectal, breast, and uterus are all thought to be linked to neuroendocrine regulation disorders such as diabetes, obesity, and depression (24–28). An analysis of data from a large-scale cohort study in the US involving 112,818 women and 46,207 men found that those with new-onset diabetes exhibited a 2.97-fold (95% CI, 2.31-3.82) greater risk of developing pancreatic cancer than those without diabetes, while those with long-term diabetes recorded a 2.16-fold (95% CI, 1.78-2.60) higher risk (29). As a digestive organ, the pancreas has both endocrine and exocrine functions, and its lesions are often accompanied by abnormal regulation of blood glucose. Therefore, diabetes is not only a risk factor for pancreatic cancer but also one of its secondary diseases. The mechanism for diabetes causing pancreatic cancer is complex, including hyperglycemia, hyperinsulinemia, insulin resistance, chronic inflammation, and so on (30). Persons with a body mass index (BMI) of 25 to 29.9 were found to have an odds ratio (OR) for pancreatic cancer that was 1.19 (95% CI, 1.02-1.40), whereas those with a BMI of 30 to 34.9 were found to have an OR of 1.62 (95% CI, 1.19-2.21) compared with normal-weight individuals (31). A study by Rebours et al. (32) found that pancreatic fatty infiltration was related to the formation of pancreatic intraepithelial neoplasia.

Based on the above evidence, our study was the first to develop a neuroendocrine regulation- and metabolism-related prognostic model of pancreatic cancer utilizing The Cancer Genome Atlas (TCGA) database, then verified the model through Gene Expression Omnibus (GEO) database. Unsupervised clustering, t-distributed stochastic neighbor embedding (t-SNE), and principal component analysis (PCA) were further conducted to demonstrate the consistency and reliability for the prognostic model. In addition, the association between prognostic models and clinicopathological characteristics, the tumour immune microenvironment, the tumour mutation load, and treatment sensitivity was investigated. Finally, we explored and verified gene expression at RNA and protein levels based on GENPIA platform, the Human Protein Atlas (HPA) database and quantitative real-time PCR, and explored gene expression distribution in different subcellular structures and cell types via HPA database.



Materials and methods


Data acquisition and processing

The transcriptome profiles (including 178 pancreatic tumour tissues and 4 normal pancreatic tissues), somatic mutation status, copy number variation (CNV), and matching clinical data (including 185 pancreatic cancer samples) were extracted in the TCGA database (https://portal.gdc.cancer.gov/). To get the validation set, GSE28735 (including 45 pancreatic cancer samples), GSE62452 (including 69 pancreatic cancer samples) and GSE57495 (including 63 pancreatic cancer samples) were derived in the GEO database (https://www.ncbi.nlm.nih.gov/geo/). The “SVA” R package was utilized to eliminate any batch effects that existed across various data sets (33). To elucidate the differences between pancreatic tumors and normal samples more precisely, the TCGA dataset (containing 178 pancreatic tumour tissues and 4 normal tissues) and the Genotype-Tissue Expression Project (GTEx) project dataset (containing 167 normal pancreatic tissues) were extracted in the UCSC Xena database (https://xenabrowser.ucsc.edu/datapages/) and the gene expression data were normalized using the log2(x+1) transformation.



Identification of differentially-expressed neuroendocrine regulation- and metabolism-related genes

Based on the “limma” R packages, with the filter condition: |log2FC| > 1, and adjusted p-values < 0.05, we detected differentially expressed genes (DEGs) between tumour and normal samples. The screened differential genes were visualized by the “ggplot2” R package. Neuroendocrine regulation-related and metabolism-related genes were retrieved in the GeneCards database (https://www.genecards.org/) (33), setting filter parameters: relevance score > 5. We identified differentially expressed neuroendocrine regulation- and metabolism-related genes (NMRGs) by merging DEGs and NMRGs.



Development and analysis of protein-protein interaction network

We explored the possible interactions for differentially expressed NMRGs using the STRING database (https://cn.string-db.org/) at a minimum interaction score of 0.4 (medium confidence) (34). The PPI network was created and shown utilizing Cytoscape (version 3.9.1). The PPI network’s critical modules and hub genes were then isolated utilizing the MCODE plugin, with screening conditions established as below: Max depth = 100, k-score = 2, node score cutoff = 0.2, and degree cutoff = 2.



Genetic alteration and enrichment analysis

Mutation landscape of hub genes in pancreatic cancer was analyzed and visualized utilizing the “maftools” R package. The “RCircos” R programme was applied to evaluate and illustrate the CNV of hub genes. “org.Hs.eg.db”, “clusterProfiler”, “enrichplot” and “ggplot2” R packages were applied to perform Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses for the above differentially expressed NMRGs, based on the filter condition: q value < 0.05. GO enrichment analysis involves molecular function (MF), cellular component (CC), and biological process (BP).



Construction and verification of the prognostic model

Patients from TCGA were randomized at a ratio of 7:3 into the training and internal validation sets by utilizing the “caret” R package. The external validation set included patients from GSE28735, GSE62452, and GSE57495. Firstly, we conducted univariate Cox regression analysis to preliminarily filter the genes linked to prognosis. Next, the least absolute shrinkage and selection operator (LASSO) regression analysis was utilized to overcome overfitting with the “glmnet” R package. Lastly, a predictive model was developed utilizing multivariate Cox regression analysis. Below is the risk score equation for the prognostic model:

	

Patients were assigned a risk score using the approach and then categorized into high- and low-risk groups as per how their score compares to the training set’s median risk score. To contrast the prognosis between the high- and low-risk groups, survival curves were generated utilizing Kaplan-Meier method. The prognostic model was evaluated utilizing a time-dependent Receiver Operating Characteristic (ROC) curve and area under the curve (AUC).



Cluster analysis

For identifying the prognostic model’s consistency and dependability, we pooled patients from TCGA, GSE28735, GSE62452, and GSE57495 and performed an unsupervised cluster analysis using the “ConsensusClusterPlus” R package. The cumulative distribution function (CDF) curve and consensus matrix were applied to get the best possible clustering parameter values. The Kaplan-Meier technique was utilized to compare survival times across the categories. Additional verification of the clusters and prognostic model was achieved via the use of PCA and t-SNE.



Clinicopathologic correlation, independent prognostic analysis, and nomogram model construction

We integrated patients’ clinical data and risk scores categorized them as per the clinicopathological criteria, followed by performing the Wilcoxon and Kruskal-Wallis rank sum test to assess risk scores across groups. For identifying whether the risk score independently acted as a predictor of pancreatic cancer, univariate and multivariate Cox regression analyses were conducted. Clinicopathological parameters (age, stage, pathological grade, and gender) and risk scores were considered in the development of the nomogram model for predicting the prognosis of pancreatic cancer utilizing the “rms” R package. The predictive performance of the nomogram model was tested using the calibration curve (35).



Gene set enrichment analyses

To compare the variations in biological processes and metabolic pathways between low- and high-risk groups, gene set enrichment analyses (GSEA) based on gene sets “c5.go.v7.5.1.symbols.gmt” and “c2.cp.kegg.v7.5.1.symbols.gmt” was executed utilizing R package “limma”, “org.hs.eg.db”, “ClusterProfiler” and “enrichplot”, the filter criteria was set as follows: |normalized enrichment score (NES)| > 1 and q value < 0.05.



Immune analysis

To evaluate the variations in TME between low- and high-risk groups, the “ESTIMATE” algorithm was utilized to compute each patient’s stromal, immune, and ESTIMATE scores (36). Single-sample GSEA (ssGSEA) was carried out to determine the infiltration scores of 16 distinct immune cells and the activity score of 13 immune-associated pathways for each patient utilizing the “GSVA” and “GSEABase” R packages. Immunocyte infiltration scores of all TCGA tumors were retrieved from the Tumour Immune Estimation Resource database (TIMER, http://timer.cistrome.org/) to further evaluate their association with risk scores. These scores were calculated using a variety of algorithms, notably, MCPCOUNTER, EPIC, QUANTISEQ, XCELL, CIBERSORTABS, TIMER, and CIBERSORT (37). Tumour immune dysfunction and exclusion (TIDE) can measure the sensitivity of immune checkpoint blockade by simulating tumour immune evasion mechanism (38). The online TIDE platform (http://tide.dfci.harvard.edu/) was utilized to determine the TIDE score, as well as T-cell dysfunction and exclusion scores for each patient.



Mutation analysis

To compare and contrast the mutation profiles of individuals at high and low risk, we utilized the “maftools” in R package. Somatic, insertion, base substitution, coding, and deletion mutations were all included in the definition of tumour mutation burden (TMB) (39). TMB estimates are calculated as overall mutation frequency divided by 38 Mb since this value is commonly retrieved based on the length of human exons (40). The association between risk scores and TMB was analyzed with the use of the Spearman correlation test. The ideal cut-off value of TMB was also determined, and the affect of TMB on the prognosis of pancreatic cancer was assessed, with the use of the “survminer” and “survival” R packages.



Drug sensitivity analysis

To analyze the disparity in medication responsiveness between high- and low-risk groups, we used the “pRRophetic” package in R (41). Using the CellMiner database (https://discover.nci.nih.gov/cellminer/), we retrieved pertinent gene expression data and Food and Drug Administration (FDA) authorized drug sensitivity data to further assess the link between drug sensitivity and the genes in the predictive model (42). The connection between gene expression and drug responsiveness was analyzed using the Pearson test.



Gene expression and distribution exploration

Differences in the expression of GSK3B, IL18 and VEGFA at the RNA level between normal and tumor pancreatic tissues were analyzed via the GEPIA platform (http://gepia2.cancer-pku.cn/#analysis). Protein expression patterns in normal cells, tissues, as well as cancer tissues may be generated using the public HPA platform (https://www.proteinatlas.org/) (43). For protein-level confirmation of gene expression, we used immunohistochemistry pictures of normal and pancreatic cancer tissue obtained from the HPA database. We also obtained relevant data and photos to examine the distribution of gene expression in diverse subcellular structures and cell types. In contrast to traditional bulk RNA-seq that generates mixed gene expression data from tissues, single cell RNA-seq can provide a transcriptional data of individual cells (44). Tumor Immune Single-cell Hub (TISCH, http://tisch.comp-genomics.org) is a single cell RNA-seq database focusing on TME (45). The distribution of model genes in different cells in the TME of pancreatic cancer was further explored through the TISCH database.



Cell lines and culture

Cell lines of HPDE6-C7, CF-PAC1, Panc-1 and BxPC-3 were from our laboratory, which were consistent with our previous research. And the HPDE6-C7 was a human pancreatic ductal epithelium, the others were pancreatic cancer cell lines. We used the with DMEM mixed with 10% FBS (Gibco, USA) to culture HPDE6-C7, BxPC-3, and Panc-1 cell lines. And CF-PAC1 were cultured with IMDM mixed with 10% (FBS) (Procell, China). All the cell lines were incubated at Cell Incubator.



The validation of the hub RNA expression with quantitative real-time PCR

The total RNAs was isolated from HPDE6-C7 cell lines and CF-PAC1, Panc-1and BxPC-3 cell lines by extraction tool named TRIzol (Accurate Biotechnology). We utilized the Reverse Transcription Reagent to prepare the cDNAs. RT-PCR was carried out by using qPCR Kit (Accurate Biotechnology). The experiment reagents were from our laboratory. And the GAPDH was served as the control standard. The analysis and quantification of RNA expression level adopted the ΔΔCt method. All the primer sequences obtained from GenePharma (Suzhou, China) were for human, which were as follows: IL18, 5’- TCTTCATTGACCAAGGAAATCGG-3’ (Forward), 5’- TCCGGGGTGCATTATCTCTAC-3’ (Reverse); GSK3B, 5’- GCCCAGAACCACCTCCTTTGC-3’ (Forward), 5’- CACCTTGCTGCCGTCCTTGTC-3’ (Reverse); VEGFA, 5’- GCCTTGCCTTGCTGCTCTACC-3’ (Forward), 5’- CTTCGTGATGATTCTGCCCTCCTC-3’ (Reverse).



Statistical analysis

For this project, we utilized R (version 4.1.2) and GraphPad Prism 9 to conduct statistical analysis and visual representation of data. The Wilcoxon rank sum test was conducted to examine the disparities between the two groups. More than two groups were compared using the Kruskal-Wallis rank sum test. Parametric and nonparametric variables were compared using Pearson or Spearman correlations, respectively. Kaplan-Meier with log-rank test was utilized to analyze survival data. p-value < 0.05 denotes a remarkably outcome.




Results


Detection and analysis of differentially-expressed NMRGs

The whole study process is depicted in Figure 1. We identified 5552 DEGs between pancreatic tumors and normal samples by combining TCGA and GTEx databases (Figure 2A), 1173 neuroendocrine regulation-related genes and 1131 metabolism-related genes from GeneCards database (Table S1). In total, 85 differentially-expressed NMRGs were detected by taking intersection (Figures 2B, C). We constructed PPI using 85 differentially expressed NMRGs, and further identified three core modules with 45 hub genes using the MCODE plug-in (Figures 2D, E). 45 hub genes were preserved for subsequent analysis.




Figure 1 | Flowchart in this study.






Figure 2 | Identification and analysis of differentially-expressed neuroendocrine regulation- and metabolism-related genes (NMRGs). (A) A volcano map of differentially expressed genes. (B) A venn diagram of intersection of differentially expressed, neuroendocrine regulation-related and metabolism-related genes. (C) A heat map of differentially-expressed NMRGs. (D) PPI of differentially-expressed NMRGs. (E) Three core modules in PPI. (F) Genetic mutation of hub genes. (G) Frequencies of CNV gain and loss. (H) Location of the CNV on the chromosomes. (I) GO enrichment analysis. (J) KEGG enrichment analysis.





Genetic landscape and enrichment analysis

We analyzed 45 hub genes for mutation landscape and CNV in pancreatic cancer. The results showed that 15 (9.49%) of 158 samples had gene mutations, and the three most common mutated genes were ATM (4%), CTNNB1 (3%) and SKT11 (2%), missense mutation was the most common type, C>T accounted for the highest proportion in single nucleotide variants (SNV) (Figure 2F). CNV was present in all 45 hub genes, and the three most frequent genes are AKT2, TNFRSF11B and VEGFA (Figure 2G). Figure 2H depicted the chromosomal position of the CNV for each of the 45 hub genes.

We conducted GO and KEGG enrichment analyses on these 45 hub genes to delve into their biological roles and mechanisms. GO enrichment analysis illustrated that “regulation of small molecule metabolic process”, “epithelial cell proliferation”, “Positive regulation of kinase activity” and “regulation of polysaccharide process” were the most remarkably enriched pathways in BP, “secretory granule lumen”, “cytoplasmic vesicle lumen”, “vesicle lumen” and “platelet alpha granule lumen” were the most significantly enriched pathway in CC, “signalling receptor activator activity”, “receptor ligand activity”, “cytokine activity” and “insulin receptor binding” were the most remarkably enriched pathway in MF (Figure 2I). KEGG enrichment analysis illustrated that “PI3K−Akt signalling pathway”, “Alzheimer’s disease”, “HIF−1 signalling pathway”, “proteoglycans in cancer”, “non−alcoholic fatty liver disease”, and “thyroid hormone signalling pathway” were the most significantly enriched pathway (Figure 2J). We could find that the enriched pathways are mainly related to metabolism, neuroendocrine system diseases and tumors.



Establishment and validation of the NMRGs-related prognostic model

Patients from the TCGA cohort were randomised at a 7:3 ratio into the training and internal validation sets. Cox and LASSO regression analyses were used to establish a prognostic model with three NMRGs-related genes (Figures 3A-C). Below is the equation of the prognostic model: risk score = (1.69076150270978 * GSK3B expression) + (0.755709134258276 * IL18 expression) + (0.453448880701734 * VEGFA expression). The patient’s survival time in the low-risk group was considerably elevated as opposed to that of patients in the high-risk group, as shown by a survival analysis conducted on the training set, the internal validation set, and the whole TCGA dataset (Figures 3D-F). In comparison to the low-risk category, patients classified as the high-risk category fared worse in terms of overall survival (OS) (Figures 3G-I). The AUC value for 1, 3 and 5 years were 0.726, 0.669 and 0.787 in the training cohort (Figure 3J), 0.652, 0.735 and 0.869 in the internal validation cohort (Figure 3K), and 0.698, 0.700 and 0.840 in the whole TCGA cohort (Figure 3L), respectively. All of these pointed to the high predictive power of our prognostic model. We used GSE62452, GSE57495 and GSE28735 datasets as external validation sets to additionally illustrate the predictive significance of our prognostic model. Longer survival rates were recorded for patients classified in the low-risk category (Figures 3M-O).




Figure 3 | Construction and verification of the NMRGs-related prognostic model. (A) LASSO regression analysis with coefficient path diagram. (B) LASSO regression analysis with cross-validation curve. (C) Coefficient of three genes in the prognostic model. Kaplan-Meier curve of the training set (D), internal validation set (E) and the whole TCGA dataset (F). Risk score and survival status distribution of training set (G), internal validation set (H) and the whole TCGA dataset (I). ROC curve of the training set (J), internal validation set (K) and the whole TCGA dataset (L). Kaplan-Meier survival curve of GSE62452 (M), GSE57495 (N) and GSE28735 dataset (O).





NMRG-based consensus clustering

To additionally illustrate the reliability of our prognostic model, we combined all the samples from TCGA, GSE62452, GSE57495 and GSE28735, and then divided them into three clusters using unsupervised clustering analysis (Figures 4A-C). Survival analysis showed that the survival time of Cluster 3 was remarkably higher than Cluster 1 and Cluster 2 (Figure 4D). In all the pooled datasets, the patients having a low risk had a remarkably more favorable prognosis in contrast with those identified as having a high risk (Figure 4E). The alluvial diagram displayed the patients’ distribution in the three NMRG-related clusters and two NMRG-related risk score groups, and all cluster 3 patients were mapped to the low-risk subgroup, and all high-risk patients were mapped to cluster 1 and cluster 3, which indicated that our clusters and groups were reasonable and reliable (Figure 4F). PCA and t-SNE results showed that our clusters and groups could clearly distinguish different patients, and this further demonstrates the good consistency and reliability of our prognostic model (Figures 4G-J).




Figure 4 | Consensus clustering. (A) Cumulative distribution function (CDF) curve. (B) Relative change of the area under the CDF curve when cluster number k = 2–9, and the optimal k = 3. (C) Heat map of consensus matrix when k = 3. (D) Kaplan-Meier curve of three clusters. (E) Kaplan-Meier curve of the high- and low-risk score groups. (F) Alluvial diagram of changes in three clusters and two risk score groups. (G) PCA analysis of three clusters. (H) PCA analysis of the high- and low-risk score groups. (I) t-SNE analysis of three clusters. (J) t-SNE analysis of the high- and low-risk score groups.





Clinicopathologic correlation, independent prognostic analysis, and nomogram model construction

The results showed that there was no difference in risk scores between different age and gender groups (Figures 5A, B). Risk scores were higher in higher pathological grade and the difference was statistically significant (Figure 5C). Risk scores increased gradually in the higher TNM stage, and the differences were close to statistical significance (Figure 5D). The expression of IL18 was associated with higher pathological grade and TNM stage (Figure S1). Univariate and multivariate Cox regression analyses confirmed that age and risk score independently acted as prognostic markers for pancreatic cancer (Figures 5E, F). Subsequently, utilizing clinicopathological parameters and risk score, we designed a nomogram model to predict the survival of patients with pancreatic cancer (Figure 5G). The calibration curve illustrated that the 1-, 3-, and 5- years survival rate predicted by the nomogram was close to the real survival, which signified that our nomogram model has outstanding predictive significance (Figure 5H).




Figure 5 | Clinicopathologic correlation, independent prognostic analysis, and nomogram model construction. Differences in risk score in age groups (A), gender groups (B), grade groups (C) and stage groups (D). (E) The forest map of univariable Cox regression. (F) The forest map of multivariable Cox regression. (G) The nomogram prediction model based on risk score and clinicopathological characteristics. (H) Calibration curve of nomogram model of predicting 1, 3, 5 years survival rate.





Gene set enrichment analyses

The GSEA was executed to investigate the variations between the high- and low-risk groups in terms of biological processes and metabolic pathways. In total, 274 pathways were considerably enriched in the gene set “c5.go.v7.5.1.symbols.gmt” (Table S2). In the high-risk group, the top 5 pathways with considerable enrichment were “epidermis development”, “keratinization”, “keratinocyte differentiation”, “skin development” and “cadherin binding” (Figure 6A). Additionally, the top 5 enriched pathways in the low-risk group were “B cell receptor signalling pathway”, “regulation of ion transport”, “signal release”, “presynapse” and “T cell receptor complex” (Figure 6B). In total, 6 pathways were considerably enriched in the gene set “c2.cp.kegg.v7.5.1.symbols.gmt”. The pathways with remarkable enrichment in the high-risk group were “cell cycle”, “pathways in cancer”, “small cell lung cancer” and “steroid hormone biosynthesis” (Figure 6C). Furthermore, the substantially enriched pathways in the low-risk were “neuroactive ligand-receptor interaction” and “primary immunodeficiency” (Figure 6D). According to the GSEA results, a remarkable enrichment in the high-risk group was mainly enriched in some pathways related to cancer, whereas the low-risk group was predominantly enriched in pathways linked to immune response.




Figure 6 | Gene set enrichment analyses. The top 5 significantly enriched pathways in gene set “c5.go.v7.5.1.symbols.gmt” of the high- (A) and low- (B) risk score groups. The significantly enriched pathways in gene set “c2.cp.kegg.v7.5.1.symbols.gmt” of the high- (C) and low- (D) risk score groups.





Immune analysis

To analyze the link between immune infiltration and risk scores, we used several algorithms to contrast high- and low-risk groups. The “ESTIMATE” algorithm proved that stromal score had no significantly difference between high- and lowrisk groups (Figures 7A). The low-risk category has elevated immune and ESTIMATE scores in contrast with the high-risk population (Figures 7B, C). ssGSEA findings demonstrated that the low-risk category exhibited superior performance in immune cell infiltration and immune-related pathway in contrast with the high-risk subgroup, including NK cells, mast cells, CD8+ T cells, pDCs (Plasmacytoid dendritic cells), TIL (tumour Infiltrating lymphocyte), cytolytic activity, Type II IFN response, and T cell co-stimulation (Figures 7D, E). Immune cell infiltration analysis indicated that the risk score was significantly and inversely linked to naive CD4+ T cells, CD8+ T cells, macrophage M2, NK T cells, B cells, and T cell regulatory (Tregs) infiltration, significantly positively correlated with neutrophil and endothelial cell infiltration (Figure 7F). The expression of GSK3B was significantly inversely linked to the naive CD4+ T cells, memory B cells, NK T cells, and Tregs infiltration, and significantly positively linked to macrophage, neutrophil, cancer-associated fibroblast (CAFs), B cell plasma and activated mast cell infiltration (Figure 7G). The expression of IL18 was strongly and inversely linked to macrophage M2, mast cell and endothelial cell infiltration, and significantly positively correlated with neutrophil, macrophage M1, B cells, and CD8+ T cell infiltration (Figure 7H). The expression of VEGFA was significantly inversely linked to CD8+ T cell, B cell naïve, macrophage M2, endothelial cell infiltration, and significantly positively correlated with eosinophil and macrophage M0 infiltration (Figure 7I). Based on the calculated TIDE score, as well as T cell dysfunction and exclusion scores for each sample, we discovered that the high-risk population exhibited remarkably elevated T cell exclusion score (Figure 7J), whereas the low-risk population had significantly elevated T cell dysfunction score and TIDE score (Figures 7K, L). In addition, further analysis showed that the expression of GSK3B, IL18 and VEGFA were significantly associated with lower TIDE score (Figure S2). This illustrated that pancreatic cancer in the high-risk population had a greater likelihood of responding to immunotherapy as opposed to the low-risk population.




Figure 7 | Immune analysis. Stromal (A), immune (B) and ESTIMATE (C) score in the high- and low-risk score groups. 16 immune cell infiltration scores (D) and the activity score of 13 immune-related pathways (E) in the high- and low-risk score groups. Relationship between immune cell infiltration and risk score (F), GSK3B (G), IL18 (H) and VEGFA (I) expression level. T cell exclusion (J), T cell dysfunction (K) and TIDE score (L) in the high- and low-risk score groups. *p<0.05;**p<0.01.





Tumor mutation burden

The “maftools” R package was utilized to analyze the mutation landscape in the high- and low-risk groups. A greater mutation frequency was seen in the high-risk group for the five most frequently mutated genes (TTN, CDKN2A, SMAD4, TP53, and KRAS) (Figures 8A, B). Previous studies indicated that activation mutations of the proto-oncogene KRAS and inactivation mutations of the tumour suppressor gene TP53, SMAD4 and CDKN2A were intimately linked to the occurrence, progression and dismal prognosis of pancreatic cancer (46, 47). TMB was depicted to be substantially enhanced in the high-risk group as per the Wilcoxon test (Figure 8C). Spearman test indicated a positive link between TMB and risk score (Figure 8D). We further analyzed the relationship between model genes and TMB, and the results showed that the expressions of GSK3B and VEGFA were significantly positively correlated with TMB (Figure S3). Survival analysis confirmed that TMB was linked to a worse outcome for patients with pancreatic cancer (Figure 8E). Accordingly, low risk and low TME were correlated with the best prognoses, whereas high risk and high TMB were linked to the worst prognoses (Figure 8F).




Figure 8 | Mutation analysis. Genetic mutation landscape in the high- (A) and low- (B) risk score groups. (C) Tumour mutation burden (TMB) of the high- and low-risk score groups. (D) Correlation between TMB and risk score. (E) Kaplan-Meier curve of the high- and low-TMB categories. (F) Kaplan-Meier curve of the different TMB and risk score categories.





Drug sensitivity

Drug therapy is an important treatment for pancreatic cancer, especially for advanced pancreatic cancer. However, different patients have different sensitivity to different drugs. Therefore, it may be more effective and scientific to make individualized treatment plans for different patients. By applying the “pRRophetic” package in R software to predict drug sensitivity, we discovered that in high-risk group patients, 18 drugs (including BIBW2992, Bicalutamide, Gefitinib, Lapatinib, etc.) had significantly lower IC50 values, and in the low-risk group, 26 drugs (including Axitinib, Metformin, Roscovitine, Sunitinib, Vinblastine, etc.) had significantly lower IC50 values (Table 1). We selected 14 drugs shown in Figure 9A. Based on the relevant data from CellMiner database, we found that three genes in the model were associated with the sensitivity of 78 drugs (Supplementary Table 3), and the top 25 drugs with the most significant sensitivity were shown in Figure 9B. VEGFA expression was positively linked to the sensitivity of Abiraterone and Zoledronate, and inversely linked to Fludarabine, Cytarabine and Cladribine. GSK3B expression was inversely linked to Oxaliplatin and brigatinib. IL18 expression was negatively linked to Paclitaxel, VINORELBINE, Vinblastine and Sulfatinib.


Table 1 | The sensitive drugs in the high- and low-risk score groups.






Figure 9 | Drug sensitivity analysis. (A) Drug sensitivity in the high- and low-risk score groups. (B) Correlation between drug sensitivity and GSK3B, IL18 and VEGFA expression level.





Gene expression verification and distribution analysis

We used the GEPIA platform and discovered that GSK3B, IL18 and VEGFA RNA expression levels were elevated in tumors than in normal tissues (Figures 10A-C). qRT-PCR suggested that GSK3B, IL18 and VEGFA RNA expression level in tumor cells was remarkably higher in contrast with that in normal cells, in line with findings based on GEPIA platform (Figures 10M-O). Immunohistochemistry images derived from the HPA database showed that GSK3B and IL18 expression at protein level in tumour tissues was elevated in contrast with that in normal tissues, in line with findings of RNA expression levels (Figures 10D, E). However, there was no remarkably variations in the protein expression level of VEGFA in tumour tissues in contrast with normal tissues (Figure 10F). Subsequently, we additionally examined the distribution of the three genes’ expression in various subcellular structures and cell types by HPA database. GSK3B was detected in the nucleoplasm and mainly expressed in pancreatic endocrine, ductal and exocrine glandular cells (Figures 10G, J). IL18 was detected in the nucleoplasm, Golgi apparatus, and cytosol, and was also predicted to be secreted extracellular and mainly expressed in mixed cell types (Figures 10H, K). VEGFA was predicted to be secreted extracellular and predominantly expressed in pancreatic endocrine and ductal cells (Figures 10I, L). In addition, the single-cell dataset CAR001160 from the TISCH platform was utilized for further exploring the distribution of model genes in different cells in the TME of pancreatic cancer. Results showed that in the tumor microenvironment of pancreatic cancer, GSK3B was mainly distributed in endothelial cells, malignant cells and B cells, IL18 was mainly distributed in dendritic cells, monocytes/macrophages and malignant cells, and VEGFA was mainly distributed in malignant cells, monocytes/macrophages and ductal cells (Figure S4).




Figure 10 | Gene expression verification and distribution analysis. Differences in the expression of GSK3B (A), IL18 (B) and VEGFA (C) at RNA level between pancreatic normal tissues and tumor tissues based on GEPIA platform. Immunohistochemical images of GSK3B (D), IL18 (E) and VEGFA (F) in pancreatic normal and tumor tissues. Distribution of GSK3B (G), IL18 (H) and VEGFA (I) expression in different subcellular structures. Distribution of GSK3B (J), IL18 (K) and VEGFA (L) expression in different cell types. Differences in the RNA expression of GSK3B (M), IL18 (N) and VEGFA (O) between pancreatic normal cells and tumor cells based on RT-PCR. ns, no statistical significance; *p<0.05;**p<0.01;***p<0.001.






Discussion

Pancreatic cancer is a very challenging malignant tumour with insidious onset, rapid progression and poor prognosis (48). The only current hope for curing pancreatic cancer is via major surgery. Unfortunately, by the time most patients are diagnosed, their chances of undergoing radical surgery have already been missed, and the effect of adjuvant therapy such as chemotherapy and radiotherapy on pancreatic cancer is not obvious (49). Finding effective new treatments for pancreatic cancer is crucial. In addition to antiangiogenic therapies and immunotherapies already in clinical practice, metabolic regulation is considered another promising approach for cancer treatment (50). Cancer is characterised in part by the metabolic reprogramming of its tissues. Compared with normal cells, pancreatic cancer cells undergo a series of metabolic alterations: (1) reprogramming the metabolism of intracellular nutrients, such as lipids, amino acids, and glucose; (2) enhancing nutrient supply through scavenging and recycling; (3) microenvironmental interactions involving metabolic processes and other components (51). These metabolic changes are conducive to the survival and division of pancreatic cancer cells in an environment of hypoxia and nutrient deprivation. The metabolism of tumors is often regulated by the neuroendocrine system, and abnormal neuroendocrine regulation may cause metabolic disorders. Studies showed that obesity could lead to abnormal adipose metabolism, chronic inflammation, insulin resistance, and hyperglycemia, and further affect the secretion of different hormones, growth factors, inflammatory cytokines, adipokines, and free fatty acids, which were considered to be the risk biomarkers for cancer morbidity and mortality (25, 52). Besides obesity, neuroendocrine diseases such as diabetes, depression, and anxiety can also enhance the risk of many malignancies and are linked to dismal prognoses (53, 54).

We developed an NMRGs-related prognostic model for pancreatic cancer using data in the TCGA database and by performing Cox and LASSO regression analyses, and the prognostic model was verified by GSE62452, GSE57495 and GSE28735 datasets. Unsupervised clustering, PCA and t-SNE analysis additionally proved the prognostic model’s reliability and consistency. The prognostic model included three genes: GSK3B, IL18 and VEGFA. GSK3B is a multifunctional serine/threonine kinase, which is implicated in various biological activities such as metabolism, cell cycle, DNA damage repair, cell proliferation, and apoptosis, and is associated with diabetes, tumors, psychiatric and neurodegenerative diseases (55–59). Darrington et al. (60) discovered that GSK3B expression level was elevated in prostate cancer (PCa) tissue in contrast with that in normal prostate tissue, and GSK3B inhibitors could reduce the growth of PCa cells. Mamaghani et al. (61) and Ougolkov et al. (62) illustrated that GSK3B expression was elevated in pancreatic cancer samples in contrast to normal pancreatic samples, which was congruent with our findings. Furthermore, the GSK3B inhibitor could suppress the survival and proliferation of pancreatic cancer cells by attenuating the activity of nuclear factor-kappaB (NF-κB). Studies indicated that GSK3B may play two roles in tumors: (1) promoting cancer through induced activation of NF-κB; (2) anti-cancer effect by preventing epithelial to mesenchymal transition (EMT) and metastasis (59, 63). Histone deacetylases (HDACs) could down-regulate the expression of E-cadherin in pancreatic cancer to promote EMT and metastasis, and HDACs inhibitors could suppress the proliferative and migratory capacities of pancreatic cancer cells (64). Edderkaoui et al. (63) found that metavert, a molecule that inhibits both GSK3B and HDACs activity, could significantly reduce tumour size, prevent metastasis, increase the killing of paclitaxel- and gemcitabine-resistant pancreatic cancer cells. IL-18 is a pro-inflammatory and immunomodulatory cytokine of the IL-1 family that is converted from an inactive precursor protein (pro-IL18) by caspase-1-induced cleavage of an N-terminal fragment and may have anti-cancer and oncogenic effects depending on the tissue and cellular environment (65, 66). Liu et al. (67) found that tongue squamous cell carcinoma may be prevented from advancing if IL18 is overexpressed since it may cause apoptosis and decrease the activity of the cells. However, Li et al. (68) illustrated that individuals with colorectal cancer who had an elevated blood IL-18 level had a worse prognosis. Kim et al. (69) found that IL18 could directly enhance the migratory ability of gastric cancer cells by filamentous-actin polymerization and tensin down-regulation. Guo et al. (70) illustrated that the expression level of IL18 was remarkably elevated in pancreatic cancer patient plasma in contrast with pancreatic benign tumors, pancreatitis, and healthy human plasma, elevated in pancreatic cancer tissues in contrast with normal tissues and was linked to a dismal prognosis of pancreatic cancer. This was consistent with our study results. VEGFA is a member of the vascular endothelial growth factor family, which participates in tumour angiogenesis and is intimately linked to tumour development and metastasis, and may be employed as a possible target for tumour therapy (71–73). Our study discovered that high expression of VEGFA was linked to the poor prognosis for pancreatic cancer.

TME is an intricate and comprehensive system in which tumour cells originate and live, which consists of tumour cells, stromal cells, immune cells, and extracellular matrix. TME is intimately linked to tumorigenesis, progression, and patient prognosis (74). GSEA results illustrated that pancreatic cancer in the low-risk group was predominantly enriched in immune-associated pathways. Furthermore, the “ESTIMATE” algorithm confirmed that patients in the low-risk subgroup had an elevated immune score. ssGSEA analysis further confirmed that immunocyte infiltration scores and immune-associated functional pathway scores were elevated in the low-risk group. Immune cell infiltration analysis confirmed that the infiltration degree of CD8+ T cells and NK cells was elevated in the low-risk group, whereas the infiltration degree of CAFs and neutrophil cells was elevated in the high-risk. CD8+ cytotoxic T cells perform an instrumental function in anti-tumour immunity by killing tumour cells, and can also inhibit angiogenesis by secreting interferon-gamma (IFN-γ), which is widely believed to be linked to improved prognosis of tumour patients (75, 76). Similar to CD8+ cytotoxic T cells, NK cells also perform an integral function in anti-tumour immunity, which can produce cytotoxic effects through effector cytokines, cytotoxic molecules and Fas pathway, and then kill tumour cells (74, 77). CAFs constitute the majority of stromal cells in the TME, including antigen-presenting CAFs (apCAFs), inflammatory CAFs (iCAFs), and Myofibrotic CAFs (myCAFs) and can reshape the extracellular matrix to enhance interstitial sclerosis, promote tumour invasion, induce chemotherapy resistance, inhibit antitumor T-cell response, and promote tumour growth (78). Tumour-associated neutrophils have been recognized as key players in malignant transformation, tumour progression, anti-tumour immunity and angiogenesis, and were associated with poor prognosis for advanced cancers and poor outcomes of immune checkpoint inhibitors therapy (79–81). CXCR2, the CXC receptor expressed by neutrophils, can bind with its ligand chemokine family (CXCL1, CXCL2, CXCL3, CXCL5, CXCL7, and CXCL8) to recruit neutrophils to the TME and participate in the mobilization of tumour-associated neutrophils (81, 82). Steele et al. (46) showed that inhibition of CXCR2 could slow tumour formation, prevent metastasis, and enhance the response to chemotherapy and immunotherapy in pancreatic cancer.

Immunotherapy is a promising treatment that has revealed considerable efficacy in numerous tumors, including melanoma, non-small cell lung cancer, renal cell carcinoma, hepatocellular carcinoma, and Hodgkin’s lymphoma (83–85). However, pancreatic cancer does not appear to be sensitive to immunotherapy, with a low overall response rate. The TIDE score was utilized to predict the link between immunotherapy and risk score, and the findings revealed that patients in the high-risk group exhibited a high likelihood of responding to immunotherapy. A greater TMB is often related to a greater rate of immunotherapy response, as evidenced by a series of studies (86, 87). TMB was considerably enhanced in the high-risk, as shown by our research, suggesting a positive link between risk score and TMB. Therefore, patients with pancreatic cancer in the high-risk group may have a greater sensitivity to immunotherapy, which is consistent with the result of TIDE score prediction. Besides surgery, chemotherapy is the main treatment for pancreatic cancer, especially for advanced pancreatic cancer. Our research revealed that the high- and low-risk groups differ remarkably in their susceptibility to certain small molecular drugs and chemotherapeutic medications. The level of IL18 expression is inversely linked to Paclitaxel sensitivity. GSK3B expression was inversely linked to the sensitivity of Oxaliplatin. Paclitaxel is often used together with gemcitabine to enhance the prognosis of patients with pancreatic cancer (88). Oxaliplatin is one of the chemotherapeutic drugs in FOLFIRINOX regimen (first-line treatment for pancreatic cancer) (89). Therefore, our risk score model is helpful to develop individualized treatment plans for patients with pancreatic cancer.

To our knowledge, this is the first study to use bioinformatics to comprehensively analyze the prognostic role of NMRGs in pancreatic cancer. Nonetheless, this investigation is not without its drawbacks. First, our data are from online databases TCGA and GEO, and the real prospective clinical cohorts are needed for further validation. Secondly, basic investigations still need to be conducted to better comprehend the function of NMRGs in the etiology and progression of pancreatic cancer.



Conclusion

In summary, we established an NMRGs-related prognostic risk score model through the TCGA database, and the model was validated using GSE62452, GSE57495 and GSE28735 datasets. Unsupervised clustering analysis, PCA and t-SNE analysis further illustrated that the prognostic model has very good reliability. The prognostic risk score model contained three genes: GSK3B, IL18 and VEGFA, all of which were highly expressed in pancreatic cancer tissue and were associated with poor prognosis. In addition, our prognostic risk score model and model genes were closely linked to the immune infiltration microenvironment, TMB, and drug sensitivity, and can provide evidence for the treatment strategy of pancreatic cancer patients.
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Background

Gastric cancer (GC) is a highly heterogeneous disease, which makes treatment and prognosis prediction difficult. Pyroptosis plays a vital role in the development of GC and influence the prognosis of GC. Long non-coding RNAs (lncRNAs), as regulators of gene expressions, are among putative biomarkers and therapeutic targets. However, the importance of pyroptosis-associated lncRNAs is still unclear in predicting prognosis in gastric cancer.



Methods

In this study, the mRNA expression profiles and clinical data of GC patients were obtained from The Cancer Genome Atlas (TCGA) database and the Gene Expression Omnibus (GEO) database. A pyroptosis-related lncRNA signature was constructed based on TCGA databases by using the Least Absolute Shrinkage and Selection Operator (LASSO) method Cox regression model. GC patients from the GSE62254 database cohort were used for validation. Univariate and multivariate Cox analyses were used to determine the independent predictors for OS. Gene set enrichment analyses were performed to explore the potential regulatory pathways. The immune cell infiltration level was analyzed via CIBERSORT.



Results

A four-pyroptosis-related lncRNA (ACVR2B-AS1, PRSS30P, ATP2B1-AS1, RMRP) signature was constructed using LASSO Cox regression analysis. GC patients were stratified into high- and low-risk groups, and patients in the high-risk group showed significant worse prognosis in TNM stage, gender, and age. The risk score was an independent predictor for OS by multivariate Cox analysis. Functional analysis indicated that the immune cell infiltrate was different between high- and low-risk groups.



Conclusion

The pyroptosis-related lncRNA prognostic signature can be used for predicting prognosis in GC. Moreover, the novel signature might provide clinical therapeutic intervention for GC patients.





Keywords: gastric cancer, prognostic prediction, signature, pyroptosis, biomarker, LncRNA content



Introduction

Gastric cancer (GC) is the fourth-largest cause of cancer mortality, with a worldwide incidence of one million new cases and over 700,000 fatalities every year (1, 2). Surgery, chemotherapy, and targeted molecular therapies are now used to treat GC (3). However, the 5-year survival rate of GC patients is less than 30%, lacking identifiable early gastric cancer symptoms (4). Thus, it is critical to find novel prognostic biomarkers of GC patients that may even be used as realistic targets.

Pyroptosis is a sort of programmed cell death that occurs in response to inflammation. Certain inflammasomes could activate it, resulting in the cleavage of gasdermin D and the activation of inactive cytokines such as IL-18 and IL-1 (5). Pyroptosis is a double-edged sword that plays a vital role in carcinogenesis as well as antitumor response at all stages of tumor formation (6). For example, research found that pyroptosis can aid the development of colitis-associated colorectal cancer by releasing HMGB1, which increases tumor cell proliferation through the ERK1/2 pathway (7). During the alternation of the immune microenvironment, pyroptosis presents tumor-promoting effects through activating inflammasome and the release of cytokines (8). Inhibition of GSDMD expression delays pyroptosis and accelerates tumor cell proliferation in gastric cancer through promoting the transition from the S to G2 phase (9). Therefore, pyroptosis is a potential therapeutic target for inhibiting tumor cell growth through promoting pyroptosis. The acute activation of pyroptosis, on the other hand, reduced tumor progression by boosting the immune cell infiltration (10, 11). However, the impact of pyroptosis on the prognosis of GC patients is still unclear.

Long non-coding RNAs (lncRNAs) are a kind of transcript with a total length of more than 200 nucleotides. They influence gene expression by chromatin remodeling as well as transcriptional and posttranscriptional changes (12). Aberrant expression of lncRNAs in various cancers has suggested a role in cancer etiology, and this is no exception in GC (13). For example, one research found that MEG3 inhibited gastric cancer growth and metastasis through the p53 signaling pathway (14). Another study discovered that MALAT1 was employed as a competitive endogenous RNA for miR-23b-3p, which contributed to chemo-induced autophagy and chemoresistance in GC cells (15). It was also shown that the levels of lncRNA GASL1 and PTCSC3 expression are connected to tumor size, TNM stage, and GC distant metastases (16). However, the relevance of pyroptosis-related lncRNAs in gastric cancer formation remains unknown and little research has focused on the link between pyroptosis and GC advancement. Understanding the link between pyroptosis-related lncRNAs and GC development may help to find novel biomarkers that may be used as therapeutic targets.

In this study, we constructed a pyroptosis-related lncRNA prognostic signature as an independent prognostic factor with high accuracy in predicting overall survival (OS). Our results showed that this signature was instrumental in the GC tumorigenesis-related pathway and was highly connected with the tumor microenvironment. We believe that the powerful prognostic signature could give a constructive tip for helping to improve risk stratification of gastric cancer patients and provide a more effective assessment for clinical management.



Results


Patient public data

A cohort consisting of a total of 250 gastric cancer patients with available expression data and clinical information were obtained from The Cancer Genome Atlas (TCGA) database as the training set. There were 300 patients from the Gene Expression Omnibus (GEO) database GSE62254 cohort enrolled as the validation set. The clinical characteristics of patients in both training and validation cohorts are summarized in Table 1. Among the training cohort, the TNM stage was stage I in 14.1%, stage II in 31.3%, stage III in 33.7%, and stage IV in 4.3% of cases. The detailed flowchart of this study is presented in Figure S1.


Table 1 | Baseline clinical characteristics of gastric cancer patients.





Identification of prognostic pyroptosis-related lncRNAs and construction of a prognostic signature in the training cohort

A total of 123 pyroptosis-related lncRNAs were matched with the training gene set (TCGA), 28 of which were correlated with OS in the univariate Cox regression analysis in the training set (Table S1). The heatmap of 28 pyroptosis-related lncRNAs is shown in Figure 1A. Using deviance as the selection criteria, the LASSO Cox method was used for modeling the process of gene selection. Partial likely deviant distribution of each log (λ) was set out, as shown in Figure 1B. The coefficient results in distribution when using different variables are presented in Figure 1C. The signature that had the best results included ACVR2B-AS, PRSS30P, ATP2B1-AS1, and RMRP. We further used the four lncRNAs to build a Cox regression model. A four-lncRNA signature of OS was identified based on the optimal value of λ (Figure 1B). The risk score was calculated as follows:




Figure 1 | Identification of prognostic pyroptosis-related genes in gastric cancer. (A) The heatmap of 28 pyroptosis-related lncRNAs. (B) LASSO coefficient profiles of the most useful prognostic genes. (C) Cross-validation for tuning parameter selection in the LASSO model. (D, E) Gene set enrichment analysis of the lncRNA signature. (D): GO annotation; (E) KEGG pathway).



Risk score = 0.019344382* ACVR2B-AS1 + 0.000043085 * PRSS30P + 0.006481851* ATP2B1-AS1- 0.001247169 * RMRP

To explore the functional implication of signature, the expression correlation between mRNAs and each of the four lncRNAs in the signature was carried out, and the co-expressed mRNAs were selected. GO term analyses were performed to explore the potential biological functions of the co-expressed mRNAs. As shown in Figures 1C–E, terms with more genes tended to have higher p-values, and the GO (http://geneontology.org) (17) annotation and KEGG (http://www.kegg.jp/ or http://www.genome.jp/kegg/) (18) pathway revealed top categories that were positively correlated with, such as extracellular matrix organization, signal transduction, ECM–receptor interaction, and focal adhesion. These results indicated that GO enrichment was critically important in gastric cancer patients.



Independent prognostic role of the prognostic lncRNA signature

Survival analyses based on the optimal cutoff expression value of each lncRNA indicated the relationship between high expression of four lncRNAs and their prognosis. The result of the best cutoff value that can separate the people into high-risk and low-risk groups was -0.2, according to the risk score distribution plot in Figure 2A. The patients were stratified into high-risk group (n = 43) and low-risk group (n = 200) according to the cutoff value (Figure 2A). The high-risk group turned out to be significantly different from the low-risk group in clinical features (TNM stage I+II, stage II, stage III, male, female, young patients, older patients, and total population) in the training cohort (Figure 2). As shown in Figures 2C–F patients with a high risk had a high probability of death than those with a low risk in the TNM stage (all stages, stage I+II, stage III). The predictive performance of the risk score for OS was evaluated by time-dependent ROC curves, and the area under the curve (AUC) was 0.81 at 5 years (Figure 2B). The consistent results of clinical features were seen in the validation (GSE62254) (Figure 3).




Figure 2 | Prognostic OS analysis of the four-gene signature model in the training cohort. (A) The distribution and cutoff value of the risk scores in the training cohort. (B) AUC of time-dependent ROC curves verified the prognostic performance of the risk score in the training cohort. (C–F) Kaplan–Meier curves for the OS of patients in the high-risk group and low-risk group in the TNM stage (total, I+II, III, IV). (G, H) Kaplan–Meier curves for the OS of patients in the high-risk group and low-risk group for age (age<60, age ≥60) in the training cohort. (I, J) Kaplan–Meier curves for the OS of patients in the high-risk group and low-risk group for gender (female, male) in the training cohort.






Figure 3 | Prognostic OS analysis of the four-gene signature model in the validation cohort in GSE62254. (A–E) Kaplan–Meier curves for the OS of patients in the high-risk group and low-risk group in the TNM stage (total, I, II, I+II). (E, F) Kaplan–Meier curves for the OS of patients in the high-risk group and low-risk group for age (age<60, age ≥60) in the training cohort. (G, H) Kaplan–Meier curves for the OS of patients in the high-risk group and low-risk group for gender (female, male) in the training cohort.





Independent prognostic factor role of the four-lncRNA signature

To ensure the completeness of clinical information, we dropped the patients with a null value in stage, clinically distinct subtypes, age, and risk score, and got 238 patients after this step. The age was separated by 60 as young and old patients. Among the 238 OS patients included in the training dataset, univariate Cox regression analysis indicated that age group, gender, stage, and our prognostic model were significant. Among these factors, TNM stage and risk score were the hazardous variables (p-value<0.05). Also, multivariate Cox regression showed that risk score was an independent prognostic factor for OS of GC (Figure 4A).




Figure 4 | Multivariate Cox proportional hazard models of known clinical risk factors. (A) Forest plot of the multivariate Cox regression analysis in gastric cancer training set. (B) Establishment of the nomogram predicting OS for gastric cancer patients in the training cohort. The nomogram plot was built based on four prognostic factors in gastric cancer. *P<0.05; **P<0.01; and ***P<0.001.



We then used multivariate analysis to construct a nomogram. It was built by including age, clinically distinct subtypes, stage, and risk score (Figure 4B). As shown in Figure 4B, the risk signature was the most important factor affecting the patients’ survival, followed by stage and age. In the nomogram, the probability of 1, 3, and 5 years was vertically paralleled with the total points calculated by the sum of points of every single variable.



External validation using the online database

PRSS30P expression in gastric tumor was higher than normal tissue (Figure 5A). The PRSS30P expression patient group displayed remarkable longer OS in the Kaplan–Meier plotter (Figure 5C). However, ACVR2B-AS1, ATP2B1-AS1, and RMRP were insignificant differences in OS (Figure 5B, D, E). Taken together, PRSS30P was an aberrant expression gene and a low PRSS30P expression predicted adverse outcomes as a potential prognosticator. In cBioPortal (17) for the Cancer Genomics website, RMRP among four genes of the risk score model possessed the most frequent genetic alterations (2.6%), and missense mutation was the most common alteration (Figure 5F).




Figure 5 | Expression and genetic alterations of the four predictive genes. (A) The expression level of PRSS30P in tumor tissue and normal tissue in TIMER (https://cistrome.shinyapps.io/timer/). (B–E) Prognostic values of ACVR2B-AS1, PRSS30P, ATP2B1-AS1, and RMRP expression in overall survival. (F) Genetic alterations of the four genes. Data were from the cBioPortal for Cancer Genomics (http://www.cbioportal.org/). *P<0.05; **P<0.01; and ***P<0.001.





Immune infiltration using the CIBERSORT database

As shown in Figure 6A, the abundance ratio of 22 immune cells in the 250 GC samples was analyzed by CIBESORT (18). It can be seen from the figure that M2 macrophages and resting CD4 memory T cells were the most abundant compared with other immune cells. The results of the correlational analysis of immune cells are presented in Figure S2. Neutrophils and activated dendritic cells were significantly correlated, whereas resting CD4 memory T cells were negatively correlated with CD8 T cells. Additionally, using the CIBERSORT algorithm, we focused on the difference between high-risk score tissue and matched low-risk score tissue. Memory activated CD4 T cells, M1 macrophages, memory B cells, follicular helper T cells, and activated NK cells were found in higher numbers in high-risk score GC tissue than in matched low-risk score tissue. However, naïve B cells and resting CD4 memory T cells were all lower (Figure 6B). We also analyzed the difference between PRSS30P high-expression tumor tissue and paired PRSS30P low-expression tissue using the CIBERSORT algorithm. We found that there were significant differences in follicular helper T cells and resting mast cells between high- and low-risk groups and high- and low-PRSS30P groups.




Figure 6 | Immune infiltration using the CIBERSORT database. (A) The RNA-Seq of TCGA-STAD database was analyzed to obtain the abundance ratio matrix of 22 immune cells via CIBERSORT. (B) The differential abundance of immune infiltrates was obtained by comparing the distribution of immune cells in low- and high-score groups using R software. (C) The differential abundance of immune infiltrates was obtained by comparing the distribution of immune cells in low- and high-PRSS30P groups using R software.






Discussion

Pyroptosis is a type of programmed cell death that happens in pathogen-infected cells, triggering the body’s inflammatory response. Pyroptosis has played a dual role in a wide range of malignancies in recent years (19). On the one hand, normal cells are stimulated by a large number of inflammatory factors released by pyroptosis, leading to their transformation into tumor cells (20). On the other hand, the promotion of tumor cell pyroptosis could be a new therapeutic target (21). However, the role of pyroptosis-related lncRNAs in gastric cancer remains unknown. Given the significantly disparate prognosis outcomes of gastric cancer, it is necessary to develop a strong classifier to stratify patients with variable risks and prognoses, which is crucial to maximizing the advantages of customized therapy and early follow-up.

In this study, we systematically investigated the involvement of pyroptosis-related lncRNAs in gastric cancer to help address this important clinical issue. A novel prognostic signature that involved four pyroptosis-related lncRNAs was constructed and validated in an external cohort. Functional analysis revealed that pyroptosis-related pathways were enriched in gastric cancer. These results provide a new insight into the discussions about patient prognosis and stratification by considering pyroptosis and microenvironmental features.

In our work, 28 pyroptosis-related lncRNAs were found to be correlated with OS in the univariate Cox regression analysis. Our prognostic signature was composed of four pyroptosis-related lncRNAs (ACVR2B-AS1, PRSS30P, ATP2B1-AS1, RMRP). In the TNM stage, patients in the high-risk group had a shorter OS than patients in the low-risk group (p< 0.001 in both the training and validation cohorts). Our prognostic signature was shown to be an independent prognostic factor for OS (HR >1, p< 0.010) in multivariate Cox regression analysis. The signature’s predictive ability was proven by ROC curve analysis. Pyroptosis-related pathways were found to be overrepresented in functional analysis. We also created a nomogram that included age, gender, stage, and the signature. Validation cohorts were used to test the nomogram’s performance. Our nomogram may be able to predict the prognosis of stomach cancer simply and reliably.

The signature lncRNAs revealed in this research have previously been linked to important functions in a variety of malignancies. ACVR2B-AS1 (ACVR2B-antisense RNA1) is a newly discovered long non-coding RNA. It is found on 3p22.2 and is transcribed from ACVR2B’s opposing strand. A higher ACVR2B-AS1 expression in liver cancer patients was shown to be an independent unfavorable prognostic factor for overall survival (OS) in a study (22). PRSS30P (serine protease 30, pseudogene) is located on 16.10. A study showed that PRSS30P was shown to improve efficiency in distinguishing sepsis-induced ARDS from sepsis (23). ATPase plasma membrane Ca2+ transporting 1 antisense RNA 1 (ATP2B1-AS1), also known as long intergenic non-protein-coding RNA 936 (LINC00936), has been shown to be a crucial regulator in chronic renal failure-induced renal interstitial fibrosis and oxidative stress (24). It was discovered that upregulated ATP2B1-AS1 or silenced miR-425-3p prevents gastric cancer cells from escaping the immune system by increasing ZC3H12A levels (25). In cartilage-hair hypoplasia (CHH), an autosomal recessive hereditary condition, the RNA component of mitochondrial RNA processing endoribonuclease (RMRP), an lncRNA, was first found (26). It was found that RMRP accelerated tumorigenesis by serving as a miR-206 sponge and that it may be exploited as a new gastric cancer biomarker (27). The four signature lncRNAs, however, have received little attention in the context of combination pyroptosis and immunity. As a result, the signature lncRNAs discovered in this work might offer a key target for laboratory experimental design to unravel the biochemical mechanisms of gastric cancer.

In this research, patients with a low PRSS30P expression had significantly longer OS in the Kaplan–Meier plot (Figure 6C). Meanwhile, PRSS30P was discovered to be comparable with OS results in GSE66254. Additionally, in the external validation data, we found that the expression of PRSS30P was higher in gastric cancer tissue than in normal gastric tissue. Therefore, PRSS30P could be a prognostic biomarker for gastric cancer.

Finally, we looked at the relationships between four lncRNAs in the risk score model and 22 different kinds of invading immune cells and discovered that follicular helper T cells and resting mast cells were strongly linked to gastric cancer. Although little is known about the roles of follicular helper T cells and resting mast cells in tumor immune response in gastric cancer, we explored and discovered some. According to one research, dysregulation of follicular helper T subsets in gastric cancer patients, as seen by increased Th1-follicular helper T cells, led to inflammation and tumor formation (28). Another research discovered that circulating follicular helper T (cTfh) cells and their related factors (IL-21/CXCL13) may have a role in the development and progression of gastric cancer (29). Mast cells are tissue-resident, innate immune cells that play an important role in inflammation and tissue homeostasis. Mast cells develop in the stroma of several human cancers, and higher mast cell density has been linked to either a favorable or a bad prognosis, depending on the tumor type and stage (30). According to one study, increased intratumoral mast cells promoted immune suppression and gastric cancer growth through the TNF-PD-L1 pathway (31).

This research has some limitations. Firstly, despite the fact that several independent external validations (TCGA, GEO) were carried out in this investigation, it was impossible to cover all variances among patients from various geographical locations when tissues and information were gathered from publicly accessible databases. Therefore, this pyroptosis prognostic signature needs to be further verified in prospective, multicenter, real-world studies. Second, our analysis only indicated a preliminary link between related lncRNAs and prognosis of gastric cancer. Experiment research is needed to better investigate the fundamental processes.



Conclusions

In conclusion, we developed a new pyroptosis-related predictive signature in patients with gastric cancer. Pyroptosis-related signature may play a role in antitumor formation and may act as therapeutic targets for gastric cancer.



Materials and methods


Patient publicly available data acquisition and pyroptosis gene sets

The training cohort contained 250 gastric cancer patients which were obtained from The Cancer Genome Atlas (TCGA; https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga). External validation was downloaded from the Gene Expression Omnibus (GEO; http://www.ncbi.nlm.nih.gov/geo/) database (GSE62254; n = 300). Only patients with sufficient expression profiles, clinicopathologic data, and survival data were included in the analysis. TCGA database, consisting of a total 250 of gastric cancer patients, was used as the training set. Meanwhile, 300 gastric patients from the GSE62254 cohort as the validation set were completely enrolled. The list included 16,887 lncRNAs from the lncRNA annotation file of Genome Reference Consortium Human Build 38 (GRCh38), which was acquired from the GENCODE website. The list of 33 pyroptosis-related genes was gathered from prior reviews (20, 21, 32, 33), which is provided in Table S1.



Data cleaning

Firstly, we matched the TCGA gastric cancer dataset with the clinical dataset. There were 243 people remaining after we removed the population whose OS months were 0 and the survival status of OS months was null. There were 29 intersection genes obtained after pyroptosis-related genes were crossed with the training population genes profile. A total of 372 intersection lncRNAs were obtained after the dataset containing 16,887 lncRNAs were crossed with the training population gene profile. By correlation analysis, 123 pyroptosis-related lncRNAs were screened out. To screen pyroptosis-related lncRNAs with prognostic values, we performed univariate Cox analysis of overall survival (OS). Log-rank tests were used to adjust the significance of the analysis with a p-value less than 0.05. These selected genes were used as candidates for the Lasso Cox regression model. The 28 lncRNAs were used as candidates for the Lasso Cox regression model.



Construction and validation of a prognostic pyroptosis-related gene signature

Lasso-penalized Cox regression analysis was utilized to select the best variables set and minimize the risk of overfitting. The “glmnet” R package was used to conduct the Least Absolute Shrinkage and Selection Operator (LASSO) algorithm. The normalized expression matrix of candidate prognostic-related genes was regarded as the independent variable and the overall. The survival and status of gastric cancer patients in the training datasets were regarded as the response variables.

Cross-validation following the 1 standard error criteria was used to determine the penalty parameter (λ) for the model. The partial likely deviant distribution of each parameter (λ) and the coefficient result distribution when using different variables were shown as the principle of how the final variables set were selected. The stepwise method was utilized to optimize the variable combination with the lowest AIC value. The risk score of the patients was calculated according to the sum or product of the normalized expression level of each lncRNA in the final set and its corresponding regression coefficients. The formula was established, as follows:

	

After we used the formula to calculate the risk score and the “surviminer” R package to find the best cutoff result, a scatter plot was applied to show the distribution of the follow-up month distribution comparison between the high- and low-risk groups. Meanwhile, the cutoff position which separates the high and low in the risk score result was presented in a scatter plot. For the survival analysis of the established model, the optimal cutoff expression value was determined by the “surv_cutpoint” function of the “survminer” R package. The “survivalROC” R package was utilized to conduct time-dependent ROC curve analyses to evaluate the predictive power of the gene signature. To show the function of the established risk score model, we utilized a similar method to show the survival curve difference in TNM stage (stage II, stage III, TNM stage I+II, TNM stage III+IV), age, and gender.

To show the results of the established risk score model correlated with clinical information, we added some analysis by combining the established risk score model with clinical information. To ensure the completeness of data, we deleted the individuals with a null value in engaged variables. The process of analyzing included three steps. First, after removing the single variable with the log-rank value of Cox regression ≤0.05, we built a multivariate model with all statistically significant variables with the obtained risk score and the nomogram of the model. Second, the ROC curve was used to show the time-dependent calibration situation of every single clinical information-based model and the multivariate model with all statistically significant variables with the obtained risk score. In addition, the results of each univariate Cox regression model and the multivariate Cox regression model were shown in a forest plot. We also fit a nomogram plot with the full model to help clinical doctors to understand and apply the model.



Estimation of risk score signature, construction, and assessment of the nomogram combining signature and clinical information

The Kaplan–Meier method and log-rank test were utilized to estimate the association between risk score and OS. The proportional hazard assumption was confirmed for each variable before fitting Cox models. Multivariate Cox proportional hazard models were utilized to learn the association between risk score levels and OS in the presence of known clinical risk factors. The forest plot was used to show the p-value, HR, and 95% CI of each variable and multivariate model through the “forestplot” R package. We performed the nomogram and evaluated the performance of the 1-, 3-, and 5-year OS predictions. Then, ROC analysis was used to calculate AUC and check the prediction accuracy for the multivariate model.



Functional enrichment analysis

The expression correlation between mRNAs and each of the four lncRNAs in the model was performed, and the co-expressed mRNAs were selected. Metascape was utilized to conduct Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses based on the co-expressed mRNAs.



Immune infiltration analysis

CIBERSORT is a powerful analysis tool that employs 547 gene expression signatures. Using a deconvolution technique, it defines each immune cell subtype and precisely measures unique immune cell compositions. The calculated p-value represents the statistical significance of the deconvolution findings and may be used to filter out samples with less significant accuracy. The original TCGA gene expression data were obtained and uploaded to the CIBERSORT web interface (http://cibersort.stanford.edu). For each sample, the relative proportions of 22 invading immune cells, as well as the CIBERSORT metrics of CIBERSORT p-value, Pearson correlation coefficient, and root mean squared error (RMSE), were analyzed concurrently.



External validation using the online database

Hub lncRNAs in LASSO Cox were surveyed from several online databases as follows: (1) lncRNA expression analysis in TIMER (34). The online database Gene Expression Profiling Interactive. (2) Kaplan–Meier Plotter Database Analysis. The correlation between lncRNA expression and survival in variable cancer was analyzed by the Kaplan–Meier Plotter (http://kmplot.com/analysis/). Kaplan–Meier Plotter searches for relationships between expression and patient prognoses, such as overall survival (OS), across a large collection of publicly available cancer microarray datasets. The threshold was adjusted to a Cox p-value< 0.05. (3) InCAR (https://lncar.renlab.org/) is a comprehensive dataset devoted to displaying differential expression profiles and the prognostic landscape in human malignancies by the reannotation of microarray probes. To investigate the function of relevant lncRNAs, differential expression analysis, survival analysis, co-expression analysis, KEGG pathway enrichment analysis, ceRNA analysis, and meta-analysis were provided by InCAR. (4) cBioPortal analysis. The cBioPortal for Cancer Genomics (http://cbioportal.org) was specifically designed to lower the barriers of access to the complex data sets and thereby accelerate the translation of genomic data into new biological insights, therapies, and clinical trials (35). The portal facilitates the exploration of multidimensional cancer genomics data by allowing visualization and analysis across genes, samples, and data types. Users can visualize patterns of gene alterations across samples in a cancer study, compare gene alteration frequencies across multiple cancer studies, or summarize all relevant genomic alterations in an individual tumor sample. Genomic data types integrated by cBioPortal include somatic mutations, DNA copy-number alteration, mRNA and microRNA expression, DNA methylation, protein abundance, and phosphoprotein abundance.



Statistical analysis

The Student’s t-test was used to compare gene expression between tumor tissues and adjacent non-tumorous tissues. The OS between different groups was compared by Kaplan–Meier analysis with the log-rank test. Univariate and multivariate Cox regression analyses were implemented to identify independent predictors of OS. All statistical analyses were performed with R software (Version 3.5.3). A p-value less than 0.05 was considered statistically significant.
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Background

External beam radiation therapy (EBRT) for hepatocellular carcinoma (HCC) is rarely used in clinical practice. This study aims to develop and validate a prognostic nomogram model to predict overall survival (OS) in HCC patients treated with EBRT.



Method

We extracted eligible data of HCC patients between 2004 and 2015 from the Surveillance, Epidemiology, and End Results (SEER) database. Those patients were randomly divided into a training cohort (n=1004) and an internal validation cohort (n=429), and an external validation cohort composed of a Chinese cohort (n=95). A nomogram was established based on the independent prognostic variables identified from univariate and multivariate Cox regression analyses. The effective performance of the nomogram was evaluated using the concordance index (C-index), receiver operating characteristic curve (ROC), and calibration curves. The clinical practicability was evaluated using decision curve analysis (DCA).



Results

T stage, N stage, M stage, AFP, tumor size, surgery, and chemotherapy were independent prognostic risk factors that were all included in the nomogram to predict OS in HCC patients with EBRT. In the training cohort, internal validation cohort, and external validation cohort, the C-index of the prediction model was 0.728 (95% confidence interval (CI): 0.716-0.740), 0.725 (95% CI:0.701-0.750), and 0.696 (95% CI:0.629-0.763), respectively. The 6-, 12-,18- and 24- month areas under the curves (AUC) of ROC in the training cohort were 0.835 、0.823 、0.810, and 0.801, respectively; and 0.821 、0.809 、0.813 and 0.804 in the internal validation cohort, respectively; and 0.749 、0.754 、0.791 and 0.798 in the external validation cohort, respectively. The calibration curves indicated that the predicted value of the prediction model performed well. The DCA curves showed better clinical practicability. In addition, based on the nomogram, we established a web-based nomogram to predict the OS of these patients visually.



Conclusion

Based on the SEER database and an independent external cohort from China, we established and validated a nomogram to predict OS in HCC patients treated with EBRT. In addition, for the first time, a web-based nomogram model can help clinicians judge the prognoses of these patients and make better clinical decisions.
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Introduction

Primary liver cancer (PLC) is the 6th most common cancer worldwide in 2020 and the 3rd leading cause of cancer-related death worldwide; hepatocellular carcinoma (HCC) is the most common type of PLC, which accounts for more than 80% of all PLC (1, 2). For HCC, treatment of early patients includes surgical resection, transplantation, radiofrequency ablation, etc. (3–5). Although surgical resection and/or liver transplantation remain the treatment of the first choice for HCC patients, most patients with HCC do not develop symptoms until intermediate and advanced stages, and only 20% of patients have a chance of surgical resection at the time of diagnosis (6).

Like surgery, external beam radiation therapy (EBRT) is one of the most common methods of treating tumors. HCC has moderate to high radiosensitivity to radiation therapy, just inferior to normal organs or tissues that are very sensitive to radiation, such as kidneys, bone marrow, lymphoid tissue, etc. Before the 1990s, due to technical limitations, large-volume liver irradiation often led to hepatotoxicity and even radiation-induced liver disease (RILD), limiting the role of EBRT in HCC patients (7). EBRT technology has undergone a series of advances in recent decades, with the application of three-dimensional conformal radiotherapy (3-DCRT), intensity-modulated radiation therapy (IMRT), and stereotactic body radiotherapy (SBRT), the accuracy of tumor lesion targeting was greatly improved while the radiation dose on the surrounding normal tissues can be substantially reduced, this significantly reduces the incidence of hepatotoxicity, so that EBRT may be one of the promising treatments for HCC patients (8–10).

In recent years, nomogram has been widely used as a prediction method in oncology, which is convenient for clinicians to use for prognosis prediction and has played an important role in promoting personalized medicine (11). As far as we know so far, there are few studies that have developed nomograms to predict prognosis in HCC patients with EBRT, and these were small studies due to the small number of HCC patients treated with EBRT (12–14). For the first time, based on the SEER database and a Chinese cohort, we established and validated such a nomogram to predict OS in HCC patients treated with EBRT. In addition, to provide patients with better medical care, we also established a web-based nomogram model that could help clinicians make better clinical decisions by judging the prognosis of these patients.



Methods


Data source and data extraction

Data for related patients (from 20-84 years old) diagnosed with HCC between 2004 and 2015 were extracted from the SEER 18 registry database by SEER*Stat 8.4.0 software. The information included as following: sex, age, race, T stage, N stage, M stage, histological grade, tumor size, AFP, surgery information, radiotherapy information, chemotherapy information, survival time and vital status. Inclusion criteria included: (a) patients with HCC. Exclusion criteria included: (a) no external beam radiation therapy; (b) unknown TNM stage; (c) unknown tumor size. The flowchart for selecting HCC patients is shown in Figure 1.




Figure 1 | The flowchart of patient inclusion among the SEER database.



Data of patients diagnosed with HCC between 2014 and 2021 were collected from the Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, China. Inclusion criteria included: (a) HCC patients with complete clinical and pathological information; (b) Child-Pugh score liver function classifications A and B; (c) no organ function defects; (d) patients who signed the informed consent for radiotherapy and were able to comply with the treatment plan, post-treatment visits, and laboratory tests. Exclusion criteria included: (a) failure to adhere to the completion of external beam radiation therapy; (b) those with incomplete follow-up outcomes. Finally, 95 patients were included in an external validation cohort and further analysis. The study has been approved by the ethics committee of the Third Xiangya Hospital, and Individual consent was waived as a retrospective analysis.



Statistical analysis

For the nomogram construction and validation, univariate and multivariate Cox proportional hazards regression analyses were used to identify independent prognostic factors (P<0.05) that significantly affected OS in the training cohort. We applied the Kaplan-Meier curves and log-rank test to compare patient survival between different prognostic factor groups. Using these identified prognostic factors, we constructed a nomogram for predicting 6-,12-,18- and 24- months OS rates in HCC patients with EBRT. The effective performance, predictive capacity, and discrimination of the nomogram were evaluated using the concordance index (C-index), receiver operating characteristic curve (ROC), the area under the ROC curve (AUC), and calibration curves. A decision analysis curve (DCA) is a method for evaluating the practical value of a model based on calculating the net benefit under different thresholds, and the nomogram’s clinical utility was assessed using the DCA curve. All statistical analyses were performed using SPSS (version 25.0) and R software (version 4.2.1).




Results


Patient characteristics

A total of 66241 patients diagnosed with HCC from 2004 to 2015 were screened from the SEER database. After eliminating 64808 patients based on the exclusion criteria, a cohort of 1433 HCC patients with EBRT were included for further analysis. These patients were randomized 7:3 into a training cohort (n=1004) and an internal validation cohort (n=429). A total of 95 HCC patients with EBRT from the Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, China, were included in an external validation cohort. The median OS for the whole SEER dataset and the external validation cohort was 10.0 and 14.1 months, respectively. The cumulative 1- and 2- year OS rates for the entire SEER dataset were 46.0% and 26.0%, respectively. In comparison, the cumulative 1- and 2- year OS rates for the external validation cohort were 64.2% and 25.3%, respectively. The baseline clinical, pathological, and other features of the training cohort, internal validation cohort, and external validation cohort are summarized in Table 1.


Table 1 | The baseline clinical characteristics of the HCC in training cohort, internal validation cohort, and external validation cohort.





Univariate and multivariate analyses

Univariate and multivariate Cox regression analyses were performed on the training cohort to evaluate each prognostic factor (Table 2), T stage, N stage, M stage, AFP, race, grade, tumor size, surgery, and chemotherapy were significantly (P<0.05) identified in univariate analysis in the training cohort. the further multivariate regression analysis showed that T stage (P<0.001), N stage (P<0.01), M stage (P<0.001), AFP (P<0.01), tumor size (P<0.01), surgery (P<0.001), and chemotherapy (P<0.001) were independent prognostic factors for OS (Figure 2), which were included in the nomogram.


Table 2 | Univariate and multivariate analyses of the clinicopathological parameters using the SEER training cohort.






Figure 2 | The Kaplan-Meier survival analysis curves for OS rates according to various independent risk factors: T stage (A), N stage (B), M stage (C), AFP (D), tumor size (E), surgery (F), and chemotherapy (G).





Development and validation of prognostic nomogram for OS

A nomogram based on the selected prognostic factors from the training cohort was developed for predicting 6-, 12-,18- and 24- months OS in HCC patients undergoing EBRT (Figure 3). The nomogram demonstrated that the M stage contributed the most to prognosis, followed by surgery, chemotherapy, tumor size, N stage, AFP level, and T stage. Each level of every variable was assigned a score on the points scale; the total score was obtained by adding the scores for each selected variable, and predictions corresponding to this total score helped estimate 6-, 12-,18- and 24-months OS for HCC patients with EBRT.




Figure 3 | The nomogram predicts the 6-,12-,18-, and 24- month OS rates in HCC patients with EBRT. Give each factor a point based on the nomogram, the total points were obtained by adding the given points of all factors, the estimated 6-,12-,18-, and 24-months probabilities of OS of the individual patient can be easily obtained from the nomogram based on the total points.



We compared the AUC of each cohort (Figure 4). For the SEER training cohort, the AUC of predicting the 6-, 12-,18- and 24- months OS were 0.835 、0.823 、0.810 and 0.801, respectively. For the SEER internal validation cohort, the AUC for 6-, 12-,18- and 24- months OS were 0.821 、0.809 、0.813 and 0.804, respectively. For the external validation cohort, the AUC for 6-, 12-,18- and 24- months OS were 0.749 、0.754 、0.791 and 0.798 respectively. The C-index of the training cohort, internal validation cohort, and external validation cohort were 0.728 (95% confidence interval (CI): 0.716-0.740), 0.725 (95 CI%:0.701-0.750), and 0.696 (95 CI%:0.629-0.763), respectively; indicating a satisfactory discriminatory ability. Furthermore, calibration curves of each cohort were created for 6-, 12-,18- and 24-months OS and showed good consistency between nomogram prediction and actual observation (Figure 5).Finally, the DCA curves of the three cohorts show that this nomogram has good clinical utility (Figure 6). So our nomogram exhibited excellent predictive ability for HCC patients with EBRT.




Figure 4 | The ROC curves of the nomogram to predict 6-, 12-,18- and 24- months OS using the training cohort (A), the internal validation cohort (B), and the external cohort (C), respectively.






Figure 5 | The calibration curves of the nomograms using three cohorts show how survival predictions from the model compare to the actual observed survival; the calibration curve of 6-, 12-,18- and 24- months OS for the training cohort (A), internal validation cohort (B), external validation cohort (C).






Figure 6 | The DCA curves of the nomogram; the DCA curve of 6-, 12-,18- and 24- months OS for the training cohort (A), internal validation cohort (B), external validation cohort (C).





A web-based nomogram

As seen in Figure 7, we designed a web-based nomogram for predicting overall survival in those patients, allowing clinicians and HCC patients to select clinical variables to visualize and personalize the prediction of survival probability after receiving EBRT. For example, we included an inoperable HCC patient with a tumor size of 140mm, a positive serum AFP value, and an AJCC stage of T3N0M0. After undergoing EBRT and chemotherapy, the estimated probability of survival for this patient at 6-, 12-, 18-, and 24- months was 68.0% (61.0-74.0%), 47.0% (39.0-56.0%), 33.0% (25.6-43.0%) and 24.6% (17.7-34.0%), respectively.




Figure 7 | A web-based nomogram for predicting overall survival after EBRT with HCC patients. (A)The curve of estimated survival probability for those patients over time. (B) The 95% CI of the 6-, 12-, 18-, and 24- month survival probabilities for those patients. (C)The numerical summary of the 6-, 12-, 18-, and 24- month survival probabilities for those patients.



(https://zhangouling.shinyapps.io/HCC-with-EBRT-DynNomapp/ )




Discussion

Global HCC incidence and mortality continue to rise (15). Due to the insidious onset and rapid progress of HCC, most of them are already advanced at the time of diagnosis; therefore, early local treatment methods such as liver resection, transplantation, and radiofrequency ablation have limited benefits (3–6, 16). With the continuous improvement of EBRT technology, its role has gradually changed from simple palliative treatment to multidisciplinary comprehensive treatment or even radical treatment (8–10, 17–21).

There is currently few complete and valid nomogram model to predict the prognosis of HCC patients treated with EBRT (12–14). Based on the sample data obtained from the SEER database, through univariate and multivariate analysis, a total of seven independent risk factors associated with prognosis were included: T stage, N stage, M stage, AFP status, tumor size, surgery, and chemotherapy; an intuitive prognostic prediction model was constructed, internal and external validation cohorts verified its accuracy. In addition, we designed a web-based nomogram to predict overall survival in those patients, which is expected to provide more evidence for individualized treatment.

It is well known that AJCC (TNM) staging is an important factor affecting the OS of HCC patients and has significant guiding value for its treatment (22). T stage has always been regarded as an important prognostic factor affecting HCC; it has been widely used in traditional HCC staging systems to provide treatment guidance, such as Okuda and BCLC stage (22–24). An Austrian study confirms that tumor cells in lymph nodes can spread into the vascular circulation and metastasize to distant organs (25); meanwhile, the National Comprehensive Cancer Network (NCCN) guidelines and the AJCC (TNM) staging system consider regional lymph node metastases as advanced HCC (26). The 5-year survival rate of patients with early-stage HCC after liver resection exceeds 70%, but once distant metastasis occurs, the median survival time is only 1-1.5 years even after multidisciplinary diagnosis and treatment (27, 28). Similar to previous studies, the T stage, N stage, and M stage in this study were all poor prognostic factors; it can be seen from the nomogram that the occurrence of distant metastasis is the most important factor affecting prognosis.

The serum AFP levels have been the most common laboratory value of HCC for decades. Liu et al. demonstrated that AFP levels are closely related to the degree of differentiation and vascular invasion of HCC (29, 30). In this study, HCC patients with negative AFP levels had lower scores and better prognoses, whereas HCC patients with unknown AFP levels had higher scores and poorer prognoses, probably because this part mainly consisted of patients with positive AFP levels. Tumor size is closely related to the prognosis of HCC, and many guidelines regard tumor size as an important reference for HCC staging and treatment (31). A multicenter study of surgical resection HCC demonstrated that tumors larger than 5cm had a worse prognosis than patients less than or equal to 5cm (32, 33). It is not difficult to see from the nomogram that as the tumor size increases, the higher the score and the worse the prognosis.

Surgery and chemotherapy were independent protective factors in this study. Surgical resection remains the preferred treatment for HCC; however, most HCC patients are asymptomatic in the early stage and are diagnosed in the advanced stage without the opportunity for surgery (6). Our current guidelines do not recommend surgery for advanced HCC (34). However, a retrospective study by Mao et al. showed that even with distant metastases, patients who underwent surgery when disease permitted had better outcomes than those who did not (35). Studies have shown that the combination of surgery and chemotherapy is beneficial for HCC patients (36, 37). Meanwhile, systemic chemotherapy with gemcitabine, doxorubicin or combined regimens also improved HCC patients survival (38). Similar to previous studies, less than 15% of patients in this study were operable. Still, it played a crucial role in the prognosis of HCC patients who received external beam radiation therapy. Likewise, the scores on the nomogram showed that patients who received chemotherapy had a better prognosis than those who did not.

The differences in the prognosis of HCC treated with EBRT among different ethnic groups may be related to the complex socioeconomic factors among ethnic groups and the differences in medical level in residential areas (39). A less differentiated tumor usually indicates a higher degree of malignancy, greater invasiveness, and a worse prognosis (40). There were differences in race and degree of differentiation in univariate analysis in this study, but no difference in multivariate analysis, which may be related to the small number of cases and the unknown degree of differentiation of most HCC patients, which needs further verification.

This study provides sufficient samples and clinical data based on the SEER database; a prognostic prediction nomogram was built and internal validation using eligible patients from the SEER database. Meanwhile, the external validation cohort from China was used for external verification, so the results have high reliability. The overall baseline characteristics of patients in the SEER database and Chinese patients were compared, all the Chinese patients were of the yellow race and the years of diagnosis were after 2014, and there were some differences in the treatment methods. However, The C-index, AUC values, calibration curves of the three cohorts all showed satisfactory results. The DCA curves suggested that the nomogram has good clinical utility. In addition, for the first time, we established a web-based, user-friendly nomogram model that clinicians and patients accessible from any electronic device.

Although the nomogram has good clinical utility, the present study had several limitations. First, data regarding several potential crucial prognosis-related serum markers such as HBsAg, AST, and CEA were unavailable in the SEER database; these will be the main part of our future research. Second, given the international and retrospective nature of the study, we cannot rule out that some clinicopathological characteristics might not have been evaluated uniformly in different institutions. In addition, there might be some selection bias in diagnosis, therapeutic strategies, and follow-up of patients across the institutions; variations in follow-up HCC patient condition changes and treatment plans might result in discrepancies in EBRT outcomes. Finally, compared with the American population-based cohort, the sample size of the external validation cohort from China was small; the validity of our nomogram in Eastern countries needs to be further evaluated.



Conclusion

In conclusion, for the first time, we developed and validated a nomogram to predict overall survival in HCC patients with EBRT; both internal and external validation demonstrated remarkable calibration and discrimination of our nomogram. In addition, our established a web-based nomogram model can help clinicians judge prognosis, make better clinical decisions, and improve individualized survival probability.
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Background

Although breast cancer (BC) treatment has entered the era of precision therapy, the prognosis is good in the case of comprehensive multimodal treatment such as neoadjuvant, endocrine, and targeted therapy. However, due to its high heterogeneity, some patients still cannot benefit from conventional treatment and have poor survival prognoses. Amino acids and their metabolites affect tumor development, alter the tumor microenvironment, play an increasingly obvious role in immune response and regulation of immune cell function, and are involved in acquired and innate immune regulation; therefore, amino acid metabolism is receiving increasing attention.



Methods

Based on public datasets, we carried out a comprehensive transcriptome and single-cell sequencing investigation. Then we used 2.5 Weighted Co-Expression Network Analysis (WGCNA) and Cox to evaluate glutamine metabolism-related genes (GRGs) in BC and constructed a prognostic model for BC patients. Finally, the expression and function of the signature key gene SNX3 were examined by in vitro experiments.



Results

In this study, we constituted a risk signature to predict overall survival (OS) in BC patients by glutamine-related genes. According to our risk signature, BC patients can obtain a Prognostic Risk Signature (PRS), and the response to immunotherapy can be further stratified according to PRS. Compared with traditional clinicopathological features, PRS demonstrated robust prognostic power and accurate survival prediction. In addition, altered pathways and mutational patterns were analyzed in PRS subgroups. Our study sheds some light on the immune status of BC. In in vitro experiments, the knockdown of SNX3, an essential gene in the signature, resulted in a dramatic reduction in proliferation, invasion, and migration of MDA-MB-231 and MCF-7 cell lines.



Conclusion

We established a brand-new PRS consisting of genes associated with glutamine metabolism. It expands unique ideas for the diagnosis, treatment, and prognosis of BC.
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1 Introduction

The incidence of BC among women worldwide is exceptionally high, and it ranks first, according to recent reports (1). In the past few decades, the treatment strategy of BC has changed from the traditional radical mastectomy combined with radiotherapy and chemotherapy to a comprehensive multimodal treatment such as neoadjuvant chemotherapy, endocrine therapy, and targeted therapy combined with surgery (2). However, due to the high heterogeneity of BC, some patients still cannot benefit from endocrine therapy and targeted molecular therapy (3). Currently, breakthroughs in immune checkpoint antagonist therapy in other cancers have renewed interest in treating and preventing BC in the same way (4). However, only two drugs, palivizumab, and atezolizumab have received Food and Drug Administration (FDA) approval for immunotherapy in BC (5). Therefore, better prognostic tools and biomarkers that accurately predict and treat BC are urgently needed.

Metabolic reprogramming is a major feature of tumor cells (6–8). Glutamine and glutamate are non-essential amino acids, which are the main sources of nitrogen and carbon for the synthesis of amino acids, lipids, and nucleic acids, but are important for the metabolic processes of tumor cells (9). The conversion of glutamine to glutamate by glutaminase in the mitochondria is a key step (10). The most prevalent amino acid in plasma, glutamine is crucial for protein, nucleotide, and energy metabolism in mitochondria. Glutamine catabolism can provide large NADPH requirements for proliferating cells (11). Some tumor cells rely on glutamine for cell growth and activation of signaling molecules, such as mTOR kinase (12). Aggressive cancers such as triple-negative breast cancer (TNBC) avidly metabolize glutamine as a feature of their malignant phenotype (13). Targeting glutamine metabolism enhances responses to platinum-based chemotherapy in TNBC (14). Therefore, the development of glutamine-dependent cell growth or “glutamine addiction” is considered as a new target for tumor therapy. The use of genes related to glutamine metabolism to predict treatment efficacy and clinical prognosis warrants further investigation.

Single-cell RNA-seq (scRNA-seq) is a novel tool that allows for the genomic examination of individual cells in a population, allowing for the identification of uncommon cells linked with cancer and metastasis (15, 16). In the fields of lung cancer, breast cancer, liver cancer, and gastric cancer research, scRNA-seq studies have discovered different populations that may correlate with poor prognosis and medication resistance (17–20). Furthermore, this approach may be utilized to demonstrate the heterogeneity of the tumor microenvironment, with these subpopulations potentially serving as immunotherapeutic targets. Because of its capacity to distinguish cell subsets and biomarkers with possible treatments, scRNA-seq is also a promising technology that might assist in tailored therapy. In common complex diseases such as autoimmune diseases, neurodegenerative diseases, and respiratory diseases, single-cell maps reveal the presence of disease genes at relevant sites of specific cell subsets of the disease (21). In cancer research, risk signatures are frequently utilized to forecast prognostic outcomes. Li W et al. developed an osteosarcoma lung metastasis prediction model (22, 23), and these features were shown to be superior to conventional methods in predicting clinical prognosis. In the field of breast cancer research, the role of molecular regulation related to glutamine metabolism has not been fully revealed. Therefore, we included genes associated with glutamine metabolism in the construction of risk profiles to estimate novel strategies for predicting outcomes in BC patients.

In this study, we downloaded BC public data from the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. Single-cell sequencing analysis was performed to find differential glutamine metabolism-related genes among individual BC cells. Using the Cox risk model and LASSO regression, new risk profiles were constructed based on the expression levels of genes related to glutamine metabolism in the TCGA-BC dataset (24). In addition, in breast cancer, glutamine metabolic profiles can be used to identify changes in immune infiltration and immune checkpoints. Our findings might offer fresh perspectives on the investigation of BC diagnosis and therapy.



2 Materials and methods


2.1 Transcriptome data acquired and processing

Breast cancer RNA expression profiles, gene mutation, and corresponding clinical data were retrieved from the TCGA database (n=1095) and divided into a training group and validation group by 6:4, in which the training group was used to construct the model, and the validation group was used to check the stability and accuracy of the model. Simultaneously, the GEO expression profiles of GSE20685 (n= 327) were downloaded for use as an external independent validation cohort. All data were in TPM format and log2 was transformed for subsequent analysis. Adjustments for the batch effect between TCGA-BC and GSE20685 were made with the “sva” package.



2.2 Single-cell sequencing data and glutamine-related genes acquired and processing

From the GEO database, the single-cell data set GSE161529 of BC was retrieved. There are ten samples in all in the dataset. We performed the quality control of scRNA-seq data by the “seurat” R package. We kept cells with less than 10% mitochondrial genes, cells with more than 200 genes overall, and genes whose expression spanned from 200 to 7000 and were expressed in at least three cells to keep high-quality scRNA-seq data. A total of 50,917 eligible cells were selected for further exploration. The remaining cells were further scaled and normalized using a linear regression model with the “Log-normalization” technique. After data normalization, the top 3,000 hypervariable genes were distinguished according to the “FindVariableFeatures” function. As these data were obtained from several samples, we utilized the “FindlntegrationAnchors” function of the canonical correlation analysis (CCA) method to eliminate the batch effects disrupting downstream analysis. Subsequently, we used the “IntegrateData” and “ScaleData” functions to properly integrate and scale the data, respectively. Cell type was annotated and then manually checked according to previous studies (25, 26). The GeneCards database served as a source for GRGs, and a total of 141 GRGs with a relevance score greater than 15.0 were selected for subsequent investigation.



2.3 AUCell

scRNA-seq data were used to obtain the most relevant genes affecting Glutamine metabolism (GM) activity. The “AUCell R” package, which determines the active status of gene sets in scRNA-seq data, was employed to assign GM activity scores to each cell lineage. The percentage of highly expressed gene sets in each cell was estimated using the gene expression rankings of each cell based on the area under the curve (AUC) value of the selected GRGs. AUC values were larger for cells that expressed more genes. Cells actively involved in GM gene sets were determined using the “AUCell explore Thresholds” function. The cells were then divided into high- and low-GM-AUC groups based on the median AUC score and visualized using the “ggplot2” R package.



2.4 Single sample gene set enrichment analysis

To calculate the precise score of a gene set enriched in a sample, ssGSEA analysis is frequently utilized (27). This study used ssGSEA analysis to determine the GM scores for each TCGA-BC patient.



2.5 Weighted co-expression network analysis

The “WGCNA” package in R implements WGCNA, a systems biology technique for creating the TCGA-BC gene co-expression network. WGCNA can be used to locate highly covarying gene sets and to pinpoint potential biomarker genes or therapeutic targets based on the connectivity of each gene set and the link between the gene set and the phenotype. In this work, WGCNA was used to identify the gene modules associated with GM score in BC and to identify the associated genes. Finally, module genes with the most remarkable correlation to glutamine score were selected for further analysis.



2.6 Establishment of a risk signature associated with glutamine

First, a univariate Cox analysis was used to extract the glutamine-related genes having prognostic value. Lasso regression was used to further screen prognostic GRGs and multivariate regression analysis was performed to further identify the model genes and risk coefficients. Each breast cancer can therefore be given a risk score using the algorithm in this manner. Patients in the TCGA-BC cohort can be split into high- and low-risk groups based on the median value. Then, we investigated how the two groups’ prognoses varied from one another and evaluated the model’s precision.



2.7 Independence and validity assessment of the prognostic model

To calculate the probabilities of OS at 1, 3, and 5 years, we developed a nomogram combining the risk score, age, gender, pathological stage, and other clinical parameters as independent prognostic factors. In the meantime, survival curves were plotted using the Kaplan-Meier method for prognostic reasons, and log-rank tests were run to assess the statistical significance. The receiver operating characteristic (ROC) curves, calibration curves, and concordance index curves were also used to assess the nomogram’s prediction accuracy.



2.8 Tumor immunity and immunotherapy

We next determined the degree of immune infiltration for BC patients in the TCGA database from the TIMER 2.0 database, which contains the results of 7 evaluation methods. These data were applied to quantify the relative fractions of immune cell infiltration in the TME in the form of heatmaps. We were able to deduce tumor purity and the presence of stromal and immune cells in malignant tumor tissues from the expression profiles. The “estimate” R package allows users to determine the relative abundance of stromal cells, immune cells, and tumor cells (28) and then compare these values across different risk categories. A higher score indicates a larger proportion of components in the TME. Additionally, immune checkpoints are comprised of various molecules that are expressed on immune cells and can regulate the level of immune activation. They play a crucial function in preventing excessive immunological activation. We compared the levels of expression in both groups of well-known immune checkpoint genes (ICGs) that were extracted from the literature. Correlations between ICGs expression and model genes and risk scores were further explored. The Cancer Immunome Atlas (TCIA) database was used to retrieve the Immunophenoscores (IPS) for BC. The online Tumor Immune Dysfunction and Exclusion (TIDE) algorithm was used to assess the potential responsiveness to ICI treatment (http://tide.dfci.harvard.edu/) (29, 30).



2.9 Tissue sample collection and cell lines culture

The tissue samples collected from the First Affiliated Hospital of Nanjing Medical University were approved by the Medical Ethics Committee of the hospital (2010-SR-091) and were kept at -80°C. The clinical sample information of 20 pairs of patient tissues were presented in 
Supplementary Table S1
. All samples were taken with the patient’s consent. A total of ten pairs of samples were collected from BC patients undergoing tumor resection between February 2021 and March 2021 (tumor tissue (T) and precancerous tissue (N)). Human BC cell lines (MDA-MB-231, MCF-7) were purchased from the Cell Resource Center of Shanghai Life Sciences Institute, and these cells were cultured in DMEM (Gibco BRL, USA). Cells were cultured in a 10% fetal bovine serum (Gibco BRL, USA), 100U/mL penicillin, and 100μg/mL streptomycin in 95% humidity and 5% CO2 at 37°C.



2.10 RT-qPCR

Total RNA was extracted from tissues or cell lines using TRIzol as directed by the manufacturer (15596018, Thermo). cDNA was then synthesized using the PrimeScript™RT kit (R232-01, Vazyme). The Real-time polymerase chain reaction (RT-PCR) was performed by SYBR Green Master Mix (Q111-02, Vazyme), and the expression levels were counted with the 2−ΔΔCt method. The expression of each mRNA was standardized by the expression level of mRNA GAPDH. All primers were supplied by Tsingke Biotech (Beijing, China), and detailed primer sequences were in 
Supplementary Table 2
.



2.11 RNA interference

A small interfering RNA (siRNA) probe against SNX3 was developed and synthesized by Ribobio (Guangzhou, China). All transfections were carried out with Lipofectamine 3000 (Invitrogen, USA). The siRNA sequences for SNX3 are provided in 
Supplementary Table 2
.



2.12 EdU

5-Ethynyl-2’-deoxyuridine (EdU) assay was then performed under the manufacturer’s instruction (Ribobio, China). After incubating in a cell incubator for 2 hours, we rinsed the cells with PBS and then immersed them in 4% paraformaldehyde at room temperature for 10 min with 0.5% Triton-X-100. Apollo® fluorescent dye was used for staining. The number of proliferating cells was analyzed under an inverted microscope.



2.13 Healing assay

Transfected cells were seeded into 6-well plates and incubated in a cell incubator until 95% confluent. After serum starvation, one straight line was scraped with a sterile 20 μl plastic pipette tip and gently washed away unattached cells and debris twice with PBS in each cultured well. Eventually, we took photographs of the scratch wounds after 0h and 48h, and the ImageJ software measured the width of the scratches.



2.14 Colony formation

In a 6-well plate, we transfected 2×103 cells per well. All cells were maintained for 2 weeks until the formation of visible colonies. The cells were rinsed twice with PBS and fixed for 15 minutes in 4% paraformaldehyde before Crystal violet (Solarbio, China) staining. The colonies were counted per well.



2.15 Transwell assay

Transwell experiments included cell migration and invasion experiments. In the upper chamber, 2×104 cells per well were incubated in a serum-free medium. The lower chamber maintains 600μl of complete medium. The upper portion of the plate was either pre-coated or uncoated with Matrigel solution (BD Biosciences, USA) to evaluate the invasive and migratory capabilities of the cells. Cells were fixed with 4% PFA, stained with 0.1% crystal violet (Solarbio, China), and counted under a light microscope.



2.16 Statistical analysis

Software called GraphPad Prism (version 8.0) was used to analyze experimental data. Three independent experiments recorded the data as mean ± standard deviation (SD). We tested the comparisons among the groups with Student’s t-tests (*P<0.05, **P<0.01, ***P<0.001).




3 Results


3.1 Single-cell sequencing data of BC analysis

The flow chart of this study was shown in 
Figure 1
. On the single-cell data set, we conducted quality control. To confirm the validity of the cell samples, as seen in 
Supplementary Figure S1A
, we removed some cells and restricted the percentage of mitochondrial genes, ribosomal genes, and red blood cell genes. Sequencing depth and total intracellular sequences exhibit significantly substantial positive associations (R=0.92, 
Supplementary Figure S1B
). 
Supplementary Figure S1C
 shows that TCGA and GEO cohorts independently, with significant batch effect. After removing the batch effect, better results were obtained (
Supplementary Figure S1D
). The study contained 10 samples, and each sample’s cell distribution was largely constant. This suggests that there was no noticeable batch impact on the samples, which might be used for further analysis (
Figure 2A
). Subsequently, all cells were classified by the dimensionality reduction algorithms, namely, t-SNE into 18 clusters (
Figure 2B
). The expression of cell-type marker genes is shown in 
Figure 2C
. 
Figure 2D
 illustrated the distribution of each cell population with a t-SNE plot. A total of eight cell types can be found, such as Endothelial cells, Mast cells, Fibroblasts, and Tumor cells. Using the “AUCell” R package, the GRGs activity of each cell line was discovered to explore the GRGs expression characteristics (
Figure 2E
). Higher AUC values were seen in cells that expressed more genes, and these cells were primarily orange-colored Macrophage cells (
Figure 2F
). All cells were assigned an AUC score for the corresponding GRGs and divided into two groups (high-and low-Glutamine-AUC groups) by AUC score median values.




Figure 1 | 
The flowchart of this study.







Figure 2 | 
Annotation of cell subsets from single-cell sequencing data and identification of differentially expressed genes. (A) The cell distribution of the samples showed no significant batch effect. (B) The dimension reduction cluster analysis results are shown in the tSNE diagram. (C) The expression of cell type marker genes. (D) The tSNE map indicates that BC samples can be annotated as 8 cell types in the TME (different colors represent different cell types). (E, F) All cells were scored according to glutamine-associated genes (GRG) and were divided into high and low groups.





3.2 Weighted co-expression network analysis and construction

WGCNA was used to look for gene sets that were covarying with glutamine in more detail. As seen in 
Figure 3A
, the data is more consistent with the power-law distribution and the mean connectivity tends to be stable when the soft domain value is 6; this makes the data suitable for further study. As seen in 
Figure 3B
, 12 non-gray modules were generated after merging the modules with a similarity lower than 0.25 and setting the minimum number of modules to 100 and deepSplit to 2. According to 
Figure 3C
, a total of 12 non-gray modules were obtained. We discovered that the green and purple modules, which each contained 2,783 genes, were most closely related to GM (COR = 0.61, P <0.001). To further explore how GRGs relate to the prognosis of BC patients, we intersected the most relevant genes affecting glutamine metabolic activity obtained in single-cell and Bulk-RNA analysis and finally, 219 genes were used for subsequent analysis (
Figure 3D
). We used the training set in TCGA-BC for model construction, and prognostic genes were obtained by univariate analysis (P<0.01). Next, LASSO Cox regression and multivariate regression analysis were employed to develop the prognostic model (
Figure 3E
). A total of twenty-one model genes (EI24, MMADHC, SNX3, KDELR2, UQCRFS1, NDUFB9, LIMCH1, MMP7, IGKC, RBP1, KPTCAP3, FABP7, GLUL, PKIB, CYSTM1, ERRFI1, BTG1, STK17A, JAK1, TMEM14B) were finally screened out under optimal regularization parameters. The prognostic model was calculated as follows:




Figure 3 | 
Weighted Co-Expression Network Analysis and construction Glutamine-Related Prognostic Model. (A–C) Weighted Co-Expression Network Analysis. The green and purple modules were most associated with glutamine, of which 2,783 genes were extracted. (D) The intersection of genes obtained in single-cell analysis and bulk-RNA analysis. (E) LASSO Cox regression analysis to develop the prognostic model. (F) The role of twenty-one model genes.




	

Coefi and Expi represented the coefficient and expression of each model gene, respectively, and the risk score for each sample was calculated by the above formula. By using the aforementioned formula, the risk score for each sample was determined. Based on median values, patients were split into high-risk and low-risk categories. Of the twenty-one genes used to construct the model, eight were risk factors and thirteen were protective factors (
Figure 3F
).



3.3 Validation of glutamine-related prognostic model and construction of a nomogram

To testify to the credibility of the glutamine-related prognostic model, we performed a survival analysis. For patients in the training, testing, and all cohort, the overall survival rate of high-risk group patients decreased more dramatically compared with the low-risk group (
Figures 4A–C
). We also obtained the same result in the external validation GEO cohort (
Figure 4D
). We performed ROC curve analysis in both the training cohort and the test cohort to further investigate the precision of glutamine in the assessment of the prognosis of BC patients. The areas under the 1, 3, and 5-year ROC curve (AUC) were: training cohort 0.868, 0.848, and 0.798, testing cohort 0.612, 0.705, 0.725, and all cohort 0.799, 0.800, 0.770 respectively (
Figures 4E–G
). The AUC of the external validation GEO cohort was 0.668, 0.716, and 0.704 in 1, 3, and 5 years, which further confirmed our PRS’s predictive ability (
Figure 4H
).




Figure 4 | 
Validation of Glutamine-Related Prognostic Model. (A–C) Survival analysis in the TCGA train, test, and entire cohort (P <0.001). (D) Survival analysis in the GEO test cohort. (E–G)The area under the curve (AUC) values for the TCGA train, test, and full cohort. (H) the areas under the curve at 1, 3, and 5 years for the GEO test group. (I) Nomogram to assess the risk of BC patients. (J) Calibration curves for the nomogram. (K) Decision curve. (L) Concordance index study. The *** represents P<0.001.




Using clinical information and a risk score, a nomogram was created to more accurately quantify the risk of BC patients (
Figure 4I
). The nomogram can help determine patient risk more accurately and direct future treatment decisions. The calibration plot is used to testify that the nomogram is consistent with our prediction, which showed good agreement with the actual outcome (
Figure 4J
). We also carried out the decision curve and concordance index study, which determines the area of each clinical feature and None’s horizontal axis to assess the clinical decision value. Results indicated that this nomogram’s efficacy was superior to that of other clinical indicators, indicating that it is effective in forecasting patients’ prognoses and can serve as a clinical decision-making tool (
Figure 4K, L
). Prognostic ROC analysis was carried out to thoroughly assess the accuracy of this nomogram. According to the findings, the area under the curve (AUC) was 0.797, 0.803, and 0.771 in 1, 2, and 3 years, respectively (
Figures 5A–C
).




Figure 5 | 
Clinical correlation analysis and gene mutation analysis. (A–C)Prognostic ROC analysis in 1, 3, and 5 years, respectively. (D) The representative gene variants in the groups at high and low-risk groups. (E) The two risk groups have differences in tumor mutation burden (TMB) levels. (F) The correlation between TMB and risk score. (G, H) Correlation analysis between TMB and prognosis.





3.4 Mutation landscape analysis

We examined representative gene variants in the groups at high- and low risk (
Figure 5D
). Genes such as TP53, KMT2C, HMCN1, USH2A, and DMD had the top five mutation frequencies in the high-risk group. The top five genes with the highest mutation frequencies in the low-risk group were PIK3CA, CDH1, MAP3K1, PTEN, and GATA3 respectively. Tumor mutation load (TMB) was significantly different between the two groups, and the mutation load in the high-risk group was higher than that in the low-risk group (
Figure 5E
). Further analysis showed that with the increase of risk score, tumor mutation load also increased correspondingly, and the two showed a positive correlation (
Figure 5F
). High TMB is closely associated with poor survival outcomes. After dividing patients into subgroups, the high-risk/high-TMB group showed a poorer survival outcome (
Figures 5G, H
).



3.5 Biological function and pathway analyses

To explore the underlying mechanism that could lead BC patients in the high-risk group to a poor prognosis. Analysis of hallmark pathway gene signatures highlighted that the high-and low-risk groups showed some differences. A direct comparison of Risk-High versus Risk-Low revealed the enriched signatures in the high-risk group included Glycolysis, Myc Targets V1, G2M checkpoint, and E2F targets. Characteristics of enrichment in the low-risk group included Tnfa signaling Via NF-κB, inflammatory response, IL6 jak stat3 signaling, and interferon-gamma response (
Figure 6A
). Glycolysis is an essential condition for the occurrence and development of tumors (7, 31). High-risk samples may present a worse prognosis for BC patients by upregulating the glycolytic pathway. High MYC targets v1 and v2 scores were related to both increased pro- and anti-cancerous immune cell infiltration in ER-positive BC (32). Extremely crucial nuclear transcription factors involved in controlling the cell cycle are encoded by the E2F family (33, 34). Triple-negative breast cancer tumorigenicity is aided by transcriptional regulation of CCNA2 expression by E2F1 (35). To control cell proliferation, the G2M checkpoint also functions as a cell cycle regulatory route. As a result, these pathways, which were more prevalent in the high-risk group, may play a crucial role in controlling tumor development in BC. To explore the TME of high-and low-risk group samples, we used ssGSEA to evaluate the composition of immune cells between two risk groups. 
Figures 6B, C
 show that in the tumor microenvironment of patients in the high-risk group, immune cell infiltration is generally lower than that in the low-risk group.




Figure 6 | 
Enrichment analysis and functional annotation. (A) GSVA shows the enrichment of hallmark gene sets in different risk subgroups. (B, C) The ssGSEA algorithm was used to evaluate the differences in immune cells and immune-related functions between high- and low-risk subgroups. The *** represents P<0.001.





3.6 Immune landscape and immunotherapy

To further understand the distribution and correlation of the relative content of 22 tumor-infiltrating immune cells (TICs) in the TCGA-BC cohort, we measured the level of immune cell infiltration in each sample using the CIBERSORT method. We found that immune cell infiltration was overall higher in the low-risk group than in the high-risk group. NK cells and T cell CD4+ infiltrated more in the high-risk group. (
Figure 7A
). The low-risk group then had higher stromal scores, immunological scores, and ESTIMATE scores (P<0.001), indicating a higher overall immune level and immunogenicity of the TME in that group. We also looked at tumor purity, and the results showed a positive correlation between the two (
Figures 7B, C
).




Figure 7 | 
Analysis of immune microenvironment. (A) The distribution and association of the 22 tumor-infiltrating immune cells (TICs) in the TCGA-BC cohort. (B, C) Correlation analysis of immune score and risk score, ESTIMATE score and risk score, Stromal score and risk score, tumor purity and risk score.





3.7 Immune checkpoint analysis and immunotherapy response assessment

We also examined the differences in immune checkpoint expression between the two groups because immunological checkpoints are crucial for the efficacy of immunotherapy in malignancies. The bubble map revealed the correlation between the model genes and 46 immune checkpoint genes (
Figure 8A
). IGKC, STK17A, FABP7, MMP7, JAK1, BTG1, and SNX3 were significantly correlated with immune checkpoint genes. 37 immune checkpoint genes were significantly upregulated in low-risk people. The expression of only one immune checkpoint gene ICOSLG was observed in the high-risk group and was called high in the low-risk group (
Figure 8B
). Patients with this subtype of tumor might benefit from targeted therapy against immunological checkpoints that have increased expression. Furthermore, IPS can contribute to screening patients who are susceptible to immunotherapy. In our research, the low-risk subtype has higher IPS and blocker scores than the high-risk subtype, highlighting that low-risk patients may be more susceptible to immune checkpoint inhibitors (ICIs) treatment and derive more significant benefits (
Figure 8C
). Regarding how TMB and immunotherapy interact, to determine if patients with various risk patterns respond to immunotherapy differently, a tumor immune dysfunction and exclusion (TIDE) analysis was performed. According to the findings, the high-risk group responded to immunotherapy better since they had a lower TIDE score and risk score was negatively correlated with TIDE (
Figure 8D
).




Figure 8 | 
Correlation analysis of immune-checkpoint and treatment response. (A) Correlation between model gene and immune checkpoint. (B) Differences in the abundance of immune-checkpoint-related genes between high and low-risk groups. (C) Differences in IPS reactivity between high and low-risk groups. (D)The difference in TIDE scores between high and low-risk groups. (*P<0.05, **P<0.01, ***P<0.001). The ns indicates No significance.





3.8 Expression of SNX3 in BC samples

Analysis of the survival prognosis of SNX3 in the TCGA showed that BC patients with high expression of SNX3 had a poor prognosis (
Figure 9A
). At the same time, we found that compared with normal tissues, SNX3 has a higher expression level in BC tissues (
Figure 9B
). As is shown in the bar plot of the GO enrichment analysis of SNX3 (
Figure 9C
). We did the same validation with ten pairs of BC tissue samples from our hospital. In clinical samples, we observed similar expression trends (
Figure 9D
). 
Figure 9E
 indicated that the expression of SNX3 was significantly decreased in transfected MDA-MB-231 and MCF-7 cells.




Figure 9 | 
Expression analysis and experimental validation of SNX3. (A) Expression of SNX3 in normal and tumor tissues of BC. (B) The overall survival (OS) analysis of SNX3 in the TCGA cohort. (C) GO enrichment analysis of SNX3. (D) PCR assay of clinical samples. SNX3 was highly expressed in BC. (E) SNX3 was knocked down in MCF-7 and MDA-MB-231. (*P<0.05, **P<0.01, ***P<0.001).





3.9 Experimental validation of SNX3

After the knockdown of SNX3, MDA-MB-231 and MCF-7 cell lines significantly reduced their ability to form colonies (
Figure 10A
). In the 5-ethynyl-2 deoxyuridine (EdU) assay, after the knockdown of SNX3, the proliferation of MDA-MB-231 and MCF-7 cell lines were greatly reduced, suggesting that the SNX3 may progress proliferation (
Figure 10B
). Healing and transwell assay in 
Figures 10C, D
 showed that after SNX3 knockdown, cells migrate and invade more slowly than disordered siRNA, indicating that SNX3 knockdown may weaken the migration and invasion of MDA-MB-231 and MCF-7 cell lines. The difference was statistically significant.




Figure 10 | 

In vitro experiment after SNX3 knockdown. (A) After SNX3 knockdown, the cloning ability of MDA-MB-231 and MCF-7 cell lines decreased significantly. (B) EdU test. After SNX3 knockdown, the proliferation ability of MDA-MB-231 and MCF-7 cell lines decreased significantly. (C) Healing test. After SNX3 knockdown, the migration ability of MDA-MB-231 and MCF-7 cell lines decreased significantly. (D) Transwell assay. After SNX3 knockdown, the migration and invasion abilities of MDA-MB-231 and MCF-7 cell lines were significantly decreased. (*P < 0.05, **P < 0.01, ***P < 0.001).






4 Discussion

Breast cancer has become cancer with the highest incidence in the world, and its heterogeneity makes the classification and treatment of BC enter the era of precision treatment (1). With the success of immunotherapy, BC, which was previously considered “weakly immunogenic”, has also entered the stage of immunotherapy. Immunotherapy of BC has proved to be a challenge in the era of personalized treatment. The interaction between cancer cells and the immune system is a complex, dynamic, and constantly changing process (36). Unlike targeted therapy and endocrine therapy, which effectively guide attacks by identifying targets with biological markers, there are no therapeutic markers for immunotherapy. Up to now, predictors of BC immunotherapy response have included PD-L1 status, TMB, immunogenomic features, and TILs; however, none of them has sufficient evidence to be used as a stratification factor (37). Therefore, further exploration of biological mechanisms and prognostic biomarkers for BC may provide an opportunity to identify BC subtypes and thus improve precision-focused treatment of BC in the future.

The metabolism of amino acids plays a significant role in controlling the immune response in the tumor microenvironment (38). Unlike conventional cancer treatment modalities, immunotherapy reverses the immune balance in the tumor microenvironment by restoring the proliferation and effector functions of immune cells and ultimately assists the autoimmune system in killing tumor cells (39). Clinical studies have demonstrated that the complexity of etiology, individual variances, and the variety of tumors are all strongly correlated with the success of immunotherapy. Therefore, it is important to further investigate the role of metabolic reprogramming in TME formation and maintenance to improve tumor immunotherapy. Metabolic phenotypes evolve with cancer and new dependencies emerge in the context of treatment resistance and metastasis, and drugs that target the reprogramming of amino acid metabolism within the tumor microenvironment in concert with cancer immunotherapy have far-reaching implications in clinical treatment (40). Initially, the goal of tumor immunotherapy was to increase the signaling pathways that T cells activate. Immune checkpoint blockade therapy also improves tumor infiltration and T cell effector functions by reprogramming amino acid metabolism in addition to tumor immunotherapy’s targeting of glucose and lipid metabolism (41). For example, increased uptake of glutamine during T-cell activation and PD-1 signaling resulted in reduced expression of the corresponding transporter proteins SLC38A1 and SLC38A2 by T cells and concomitantly reduced catabolism of branched-chain amino acids (including valine and leucine) (42). Therefore, inhibiting the immune checkpoint receptor releases the restriction on T cell differentiation by reprogramming glutamine metabolism, and tissues from patients who received immune checkpoint blocker showed increased T cell infiltration as well as upregulation of interferon regulatory gene expression (ICB) (43). Interferon IFN-y can down-regulate the expression of transporter proteins SLC7A11 and SLC3A2 in tumor cells, inhibit the input of cysteine required for glutathione synthesis, cause intracellular glutathione depletion, and thus indirectly lead to glutathione peroxidase-4 (GPX4) inactivation and ultimately induce iron death in tumor cells (44). Thus, the close link between amino acid metabolism and T-cell immunity has led to the progressive emergence of amino acid metabolic reprogramming as an important target for cancer immunotherapy.

We constructed a novel survival risk signature by Glutamine metabolism-related genes, which performed well in both TCGA internal and GEO external validation cohorts. The AUC values exceeded 0.8 at 1, 3, and 10 years, while a maximum AUC value of 0.868 was detected at 1 year. In addition, a nomogram combining prognostic models and clinicopathological factors was established. Compared with other traditional features such as TNM, the PRS showed the best accuracy and discriminative power in predicting OS.

T cells and macrophages are the main representatives of the lymphoid and myeloid lineages of the immune system, respectively. While glutamine stimulates the polarization of M2 macrophages via the Gln-UDP-GlcNAc pathway and a-ketoglutarate generated by glutamine degradation, amino acid metabolism can also drive the activation and proliferation of T cells (45). The data confirm that M2 macrophages have tumor-promoting effects in vitro, and our study found more M1 macrophage infiltration in the bottom-risk group and more M2 macrophages in the high-risk group, suggesting a rationale for developing cancer therapies that target TAMs (46). Tumor cells must upregulate extracellular absorption in addition to glutathione synthesis to preserve tumor cell viability because they can regulate ROS levels through glutathione and NADPH created by glutamine metabolism to prevent chromosomal instability brought on by high levels of ROS (11). Our results suggest that low PRS patients respond better to immunotherapy. Therefore, glutamine metabolism and immunotherapy may have an exceedingly close relationship. Studies have shown that patients with high TMB have significantly higher rates of both progression-free survival and overall survival. Regardless of tumor type and detection modality, TMB is a reliable biomarker for predicting the effect of immunotherapy (47). In our study, we found that TMB levels were positively correlated with risk scores, suggesting that patients in the high-risk group may be more suitable for immunotherapy. TIDE stands for tumor immune dysfunction and rejection. It is a computational framework for assessing the likelihood of tumor immune escape in the gene expression profile of tumor samples (48). A higher TIDE score implies a higher likelihood of immunosurveillance escape and a lower success rate of immunotherapy. In our study, the TIDE score was found to be negatively correlated with the risk score, again suggesting that patients in the high-risk group may be more suitable for immunotherapy. Next, we evaluated the correlation between the genes used to construct the models and immune checkpoints. We found that IGKC, STK17A, FABP7, MMP7, JAK1, BTG1, and SNX3 have a strong correlation with immune checkpoints, and these model genes may become the targets of immunotherapy for BC patients.

Immune Checkpoint is a class of immunosuppressive molecules that are expressed on immune cells and can regulate the degree of immune activation. Tumor cells express substances that activate immune checkpoints, which, once activated, prevent antigen presentation to T cells, blocking antigen presentation in tumor immunity and inhibiting T cell immune function. Sorting linker protein 3 (SNX3) is a high-risk gene with a strong correlation with immune checkpoints in our construct signature. Therefore, we decided to perform in vitro experiments on this gene to explore its effect on BC. We found that SNX3 was highly expressed in BC tissues through TCGA database analysis; meanwhile, BC patients with high SNX3 expression had poorer survival. Our in vitro experiments showed that the knockdown of SNX3 expression significantly reduced the activity, invasion, and migration ability of BC cells. This adds to the evidence that SNX3 plays a role in BC. Many previous studies have shown that SNX3 has a function in malignant tumors. Through the miR-520a-3p/SNX3 axis, LINC01614 accelerates the progression of osteosarcoma (49). Through the β-linked protein pathway, SNX3 prevents the migration and invasion of colorectal cancer cells by reversing the epithelial-to-mesenchymal transition (50). In our study, SNX3 was also found to be a potential target for BC.



5 Conclusions

In conclusion, our results suggest that the model constructed with GRGs can well predict the prognosis of BC patients. In addition, we have validated the function of SNX3 in BC through cellular experiments and screened candidate Immune checkpoint inhibitors for BC. These findings may provide insights for the development of new treatment strategies for BC.
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   Background

The most aggressive subtype of breast cancer, triple-negative breast cancer (TNBC), has a worse prognosis and a higher probability of relapse since there is a narrow range of treatment options. Identifying and testing potential therapeutic targets for the treatment of TNBC is of high priority.


 Methods

Using a transcriptional signature of triple-negative breast cancer collected from Gene Expression Omnibus (GEO), CMap was utilized to reposition compounds for the treatment of TNBC. CCK8 and colony formation experiments were performed to detect the effect of the candidate drug on the proliferation of TNBC cells. Meanwhile, transwell and wound healing assay were implemented to detect cell metastasis change caused by the candidate drug. Moreover, the proteomic approach was presently ongoing to evaluate the underlying mechanism of the candidate drug in TNBC. Furthermore, drug affinity responsive target stability (DARTS) coupled with LC-MS/MS was carried out to explore the potential drug target candidate in TNBC cells.


 Results

We found that the most widely used medication, eugenol, reduced the growth and metastasis of TNBC cells. According to the underlying mechanism revealed by proteomics, eugenol could inhibit TNBC cell proliferation and metastasis via the NOD1-NF-κB signaling pathway. DARTS experiment further revealed that eugenol may bind to NF-κB in TNBC cells.


 Concludes

Our findings pointed out that eugenol was a potential candidate drug for the treatment of TNBC.




 Keywords: eugenol, triple-negative breast cancer, CMAP, proteomics, DARTS, target protein 

  Highlights

 	 Eugenol inhibits the proliferation and metastasis of triple-negative breast cancer cells; 

	 Eugenol plays an anti-tumor role by inhibiting the NOD1-NF-κB signal pathway; 

	 Target protein of eugenol in triple-negative breast cancer cells is NF-κB. 




 1. Introduction.

Triple-negative breast cancer (TNBC) is a subtype of breast tumor that makes up between 15% and 20% of all breast malignancies and is identified immunohistochemically by the absence of the estrogen receptor, progesterone receptor, and human epidermal growth factor receptor-2 (1, 2). Compared with other types, TNBC has a strong metastatic capacity, rapid proliferation, and poor prognosis (3). Due to these aggressive features and lack of specific molecular therapeutic targets, traditional chemotherapies remain the standard of care for TNBC patients (4). However, it has been reported that responses to chemotherapies are usually short and followed by rapid relapse, and common lung, and brain metastases (5), and TNBC patients who develop metastatic disease only have 13-18 months of median OS (6). Therefore, it is urgent to find new drugs to treat triple-negative breast cancer.

Connectivity Map (CMap, http://www.broad.mit.edu/CMap/) is a database, which contains 7000 microarray expression profiles from different cancer cells treated by 1309 molecular drugs (7). Researchers can quickly use gene expression profile data to compare drugs highly related to diseases and summarize the possible mechanism of action of drug molecules. Some outdated molecules have been successfully repositioned by comparing the transcriptome treated by compound, through publicly available resources like Gene Expression Omnibus, which is freely accessible (8). For example, Li et al. performed CMap analysis of the transcriptional signature obtained from GEO and identified aspirin has potential for combination therapy in cancers (7). In addition, Yin et al. also reported several candidate drugs for sclerosis treatment through drug repositioning by CMap. Based on this idea, we found that eugenol can change the expression of associated genes in TNBC cells via CMap.

Eugenol is a natural compound in clove oil and other spices such as basil, cinnamon, and bay leaves (9). Many works of literatures reported that eugenol has several physiological functions, such as antiseptic (10), analgesic, and anti-bacterial (11). Besides, eugenol also has some effects on the proliferation and metastasis of many tumors. For example, Eugenol’s ability to inhibit the growth of malignant melanoma cells and promote apoptosis was described by Marina Pisano (9). Li discovered that eugenol had tumor-suppressive properties in lung cancer (12). According to Cui, eugenol may eventually contribute to its anti-tumor activity by suppressing NF-κB expression in the NSCLC (13). Many studies have reported that eugenol inhibits breast cancer (14), cervical carcinoma (15), prostate cancer (16) and so on. However, the detailed mechanism of eugenol in TNBC, especially its target protein, has not been studied yet.

MS-based proteomics have progressed from simple protein sequencing to a powerful approach for identifying disease patterns and signatures, revealing molecular mechanisms of preventive drugs (12). Label-free quantitative proteomics can determine the abundance of the proteins across diverse samples, it has also been a promising method to explore the mechanism of action of drugs (17). Besides, target identification using drug affinity responsive target stability (DARTS) is consistently used to determine the molecular targets of small-molecule compounds (18). It is primarily based on the observation that proteins are less likely to undergo proteolysis in the presence of compound than they are in the absence of one, making it potentially useful for identifying any small-molecule target.

Our study aimed to find natural compounds to treat TNBC through CMap analysis. We used CMap to analyze the genomic changes of TNBC cells obtained by GEO, and carried out anti-cancer research on the top candidate natural compound—eugenol. The effect of eugenol on the proliferation and metastasis of TNBC was studied by CCK8, colony formation, wound healing and transwell experiments. Using label-free proteomics to reveal the mechanism of eugenol in TNBC. Importantly, DARTS experiment combined with MS detection revealed the possible target of eugenol in TNBC cells. The results showed that eugenol, as a natural compound, has significant anti-tumor effects on TNBC proliferation and metastasis, and probably played an anti-tumor role by influencing NOD1- NF-κB signal pathway. It was vital that we found that NF-κB may be the target protein of eugenol in TNBC cells.


 2. Materials and methods.

 2.1. Cell culture and reagents.

MDA-MB-231 and MDA-MB-453 cells were cultivated in 1640 medium (11875119, Gibco, Grand Island, USA) and Leibovitz’s L-15 medium, respectively (11415064, Gibco, Grand Island, USA). At 37°C in a humidified incubator with 5% CO2, all culture mediums were supplemented with 10% fetal bovine serum (04-001-1ACS, Biological Industries, Kibbutz Beit Haemek, Israel), 100 U/ml penicillin G (15070063, Thermo Fisher Scientific, Waltham, USA). The following sources provided the specific primary antibodies: anti-NOD1 (ab215726, Abcam, Cambridge, USA), anti-NF-κB (66535-1-Ig, Proteintech, Wuhan, China), anti-NF-κB (phospho S536) (ab76302, Abcam, Cambridge, USA), anti-IKB alpha (10268-1-AP, Proteintech, Wuhan, China), anti-phospho-IKB alpha (SAB5700432, Sigma, St. Louis, USA), and anti-GAPDH (60004-1-Ig, Proteintech, Wuhan, China).


 2.2. Drug screening .via the CMap

In this study, four GEO datasets (GSE38959, GSE45827, GSE65194, GSE61724) were used, and the cut-off criterion for up and down probe sets, which were used to query CMap, was a two-fold change (7).


 2.3. Cell viability assay.

Cells were seeded in 96-well plates at a density of 2000 cells per well, eugenol group was added after 24 h of culture, three replicate wells were set for each concentration and cultured separately. 10 μL of a CCK8 solution containing 5 mg/mL were added to each well and incubated for 1 h after the indicated times of 24 h, 48 h, and 72 h. After 1 h, discard the supernatant, use a microplate reader to detect the absorbance at 450 nm.


 2.4. Colony formation assay.

Six-well plates were used for 1 × 103 cell seeding. The cells were combined, and they were then cultivated for 14 days in 10% FBS culture media. A single colony was defined as a cluster of 30 cells. Eugenol group was mixed in complete culture medium with different concentration eugenol. Then the cells were fixed, stained with crystal violet and counted.


 2.5. Assays for cell migration and invasion .in vitro 

The migration & invasion was measured by transwell chambers coated with fibronectin (for migration) & Matrigel (for invasion) on polycarbonate filters, respectively. The cells (1×105) were plated on the upper surface of a filter with eugenol plus medium without serum. The medium was added into the lower chamber whether there is or there is not 10% of FBS. Cells that migrated (7 h later) or invaded (20 h later) through the filter were stained with crystal violet and then counted after taking photo under microscope (Nikon, Japan).


 2.6. Wound healing assay.

The published method was used to evaluate the wound healing assay for cell migration. In a 6-well plate with finished media, cells proliferated until confluent. Using a 100 μL pipette tip, the wounds were scraped. Following a 24-hour treatment with varied Eugenol concentrations, the cell debris was washed with serum-free media. With the same field of view and a light microscope, the wounds were photographed at 0 and 48 hours, respectively (Nikon, Tokyo, Japan). A microscope was used to assess the relative distance between the scratches, and ImageJ was used to assess it.


 2.7. Label-free proteomics.

Collect the cells according to the routine operation. After ultrasonic crushing, centrifuge to extract the total protein of the cells. After protein quantification with BCA, 50 μg protein was taken from each group for DTT and IAA treatment, and was digested by trypsin overnight. After concentrating the sample, loading 2 μg sample for LC-MS analysis. Orbitrap Fusion (Thermo Fischer Scientific) was used for mass spectrometer (MS) analyses. Raw data is searched by MaxQuant search engines (Thermo Fischer Scientific), and subsequently corrected by Persus software. Foldchange mean eugenol treatment/DMSO treatment. Log2Foldchange ≥ 0.6-fold or ≤-0.6-fold cut-off value was used to identify up-regulated and downregulated proteins with a p value < 0.05.


 2.8. Drug affinity responsive target stability.

The DARTS experiment was conducted as following (18). After cells were washed and then lysed with protein extraction kit (Beyotime, Haimen, China) including a protease inhibitor cocktail (Sigma-Aldrich). After centrifugation (14,500 rpm for 15 min, the lysates were mixed with 10×TNC buffer [0.1M CaCl2, 0.5M NaCl, 0.5M Tris·HCl (pH 8.0). Then, the lysates were incubated with DMSO (0.05%) and eugenol, respectively for 35 min at room temperature after incubated 60 min at 4°C. After the treatment, the samples were proteolyzed respectively in 0 and 0.1% (1:1000) of pronase for 15 min at room temperature. The samples were added to 2 liters of ice-cold buffer containing a 20-protease inhibitor cocktail to halt proteolysis, and they were then put on ice right away. The samples were then boiled for 5 minutes at 100°C while being combined with 5 samples of loading dye. The equal amount of each treated samples was then added into gels of SDS‐PAGE for Coomassie Blue staining or Western blot after running the gels.


 2.9. Transfection of NF-κB p65 short RNA.

Briefly, NF-κB p65 shRNA plasmid (Santa Cruz Technology Inc., Shanghai, China) was transfected into MDA-MB-231 cells using Lipofectamine in accordance with the manufacturer’s instructions. The negative control was ncNF-κB p65 scrambled non-targeting ncRNA. After 48 h, transfected cells were used for the CCK8 assay for the growth and transwell chamber assay for migration, as well as Western blot analysis for protein expressions mentioned-above.


 2.10. Western blot analysis.

Western blot experiment was carried out according to conventional methods (19). Proteins from the entire cell were isolated, separated on SDS-PAGE gels, and then transferred to PVDF membranes. 5% nonfat dried milk was used to block membranes for 1 hour at RT, then incubation with the primary antibodies (1:500) overnight. After washing, using secondary antibodies (1:1000) to incubate the membranes at RT for 1 h. The ECL detection system (Santa Cruz, USA) was utilized to visualize immunoreactive protein bands.


 2.11. Statistical analysis.

The data from more than two times of independent experiments were analyzed using SPSS 16.0 software. Data were expressed as mean ± SD and analyzed using the student’s t-test, and a P value of 0.05 was regarded as statistically significant.



 3. Results.

 3.1. Using CMap to find drugs for triple negative breast cancers using gene signatures.

We searched the GEO database for triple-negative breast cancers vs. respective normal tissue, then we obtained four datasets.  Table 1  included a summary of the data sources. All datasets had previously been published (20–23). Then, CMap was used to search for differentially expressed genes from each dataset.  Figures 1A, B  depict the intersection of normal vs. cancer datasets yielding 33 upregulated different genes and 65 downregulated different genes. We analyzed these 98 differential genes through CMap software, and the top 10 compounds were listed in  Table 2 . Other compound data were supplemented in  Table S1 . Interestingly, eugenol was the first natural product among the top 10 compounds. The chemical structure of eugenol was shown in  Figure 1C . CCK8 experiment was used to detect the proliferation ability of eugenol of different concentrations on TNBC cells. The results showed that eugenol dose-dependently repressed the cell growth, which the IC50 values of growth repression were 16.84 and 15.81 µM for MDA-MB-231 cells and 27.25 and 16.99 µM for MDA-MB-453 cells while treatment for 48 h and 72 h ( Figures 1D, E ), respectively.

 Table 1 | A summary of the four datasets utilized for the CMap study (normal vs. tumor). 



 

Figure 1 | Bioinformatics analysis to explore the anti-tumor potential of eugenol. (A) The Venn diagram displays the information of distinct genes that are increased across four data sets (GSE45827, GSE38959, GSE61724, GSE65194) to query the CMap. (B) The Venn diagram displays the amount of downregulated different genes vis four data sets (GSE45827, GSE38959, GSE61724, GSE65194) to query the CMap. (C) The chemical structure of eugenol. (D, E) CCK8 assay of indicated MDA-MB-231 and MDA-MB-453 cells viability treated with eugenol (0-30 μM). Student’s t-test, n=3. ***P < 0.001. 



 Table 2 | Top 10 list of drugs name after CMap analysis. 




 3.2. Eugenol displayed inhibition proliferation and metastasis in TNBC cells.

The results of colony formation assay also showed that eugenol inhibited the growth of TNBC cells in vitro in a dose-dependent manner ( Figures 2A, B ). Next, we tested and confirmed the suppressive activity of eugenol against the MDA-MB-231 ( Figure 2C ) & MDA-MB-453 ( Figure 2D ) cell migration and invasion. Eugenol dose-dependently suppressed the invasion and the relative ratios of cell invasion were decreased by 75.38% in MDA-MB-231 cells, and by 68.62% in MDA-MB-453 cells, respectively after treatment with eugenol at 15 µM. Corresponding, wound healing assay showed that the relative ratios of cell migration decreased by 64.2% in MDA-MB-231 cells, and by 68.51% in MDA-MB-453 cells, respectively after treatment with eugenol at 15 µM ( Figures 2E, F ). These results elaborated eugenol has shown the identical inhibitory trends of growth, migration in both cell lines.

 

Figure 2 | Eugenol inhibits TNBC cell metastasis and proliferation. (A, B) Colony formation assay for proliferation ability in MDA-MB-231 and MDA-MB-453 cells after eugenol treatment. (C, D) Detecting the ability of cell metastasis after eugenol treatment by transwell assay in MDA-MB-231 and MDA-MB-453 cells. Scale bar:green, 200μm. (E, F) Wound healing analysis of migration of MDA-MB-231 and MDA-MB-453 cells treated with eugenol for 48 h. Scale bar:green, 200μm. The data are presented as the means ± SD. Student’s t-test, n=3. ***P < 0.001. 




 3.3. Proteomics revealed the antitumor mechanism of eugenol.

In order to further study the anti-tumor mechanism of eugenol, we conducted a label free proteomics experiment. First, MDA-MB-231 cells were treated with eugenol for 24h, while cells in the control group were treated with DMSO, then collected the cells and lysed them with NP40 lysate containing protease inhibitor. After BCA quantification, take 100 μg protein for sample loading pretreatment and 12 h digestion by trypsin. Then, take 2 μg of loading samples from eugenol treatment group and DMSO group respectively, and using high-resolution liquid chromatography-mass spectrometry (LC-MS) for detection. The raw data were searched by MaxQuant and corrected by Persus software. We identified 3081 proteins in total, and the LFQ values of these two groups were analyzed. Foldchange (FC= eugenol treatment/DMSO treatment) and P value were used to screen significantly different proteins. We found that the two tested samples shared 3080 proteins in total ( Table S2 ). The proteins with a log2fold change of 0.6 or -0.6 (eugenol vs. ctr) and a p-value of 0.05 were determined to have significantly increased and decreased in eugenol vs. control studies, respectively ( Figure 3A ). This resulted in 53 significantly up-regulated proteins (1.7% of the total) and 135 less up-regulated proteins (4.4% of the total). The expression of these 188 differential proteins is shown in the heatmap ( Figure 3B ). Then, to evaluate our dataset’s quality, we evaluated the correlation between the two groups of samples ( Figure 3C ). The results showed that R >0.9, and the histogram also showed that the sample protein shown normal distribution ( Figure 3D ). PCA analysis results also show that the two groups of data are separated significantly ( Figure S1 ). The network was constructed as shown in  Figure 3E . The most-connected proteins belonged to the family of RPL, including RPL3, RPL4, RPL7, RPL7A, RPL10, RPL10A, RPL15, RPL18A, RPL30 and RPS2.

 

Figure 3 | Lable-free proteomics reveals the anti-tumor mechanism of eugenol. (A) Volcano plot of identified proteins. The blue dot represented the down-regulated protein, the red dot represented the up-regulated protein, and the gray dot represented the protein with no significant difference. Student’s t-test (P value ≤ 0.05); (B) Heatmap of the differentially expressed proteins in two groups; (C) Pearson correlation showed clustering of samples replicate reproducibility; (D) The distribution of peptide length. (E) STRING PPI network analysis of the differentially changed proteins. 




 3.4. Eugenol inhibits the proliferation and metastasis of TNBC cells by modulating NOD1-NF-κB signaling.

In order to explore the action mechanism of eugenol, we used the DAVID website for Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of the above 188 differential proteins. Compared to control group, the different abundant proteins participated in 76 biological processes, which were manually grouped into 51 cellular components and 29 molecular functions. Biological process analysis indicated that these differential proteins were mainly related to cytoplasmic translation, translation, translational initiation, small GTPase mediated signal transduction and multicellular organismal reproductive process. Cellular component analysis revealed that most of the differentially abundant proteins belonged to the cytosolic ribosome, cytosol, cytosolic large ribosomal subunit, membrane and focal adhesion. Molecular function analysis revealed that most differentially abundant proteins were related to RNA binding, structural constituent of ribosome, cadherin binding, protein binding and translation regulator activity ( Figure 4A ). In addition, Eugenol strongly impacted the NOD-like receptor signaling pathway proteins, according to KEGG enrichment data ( Figure 4B ). As shown in  Figure 4C , the proteins that affect the NOD-like receptor signaling pathway including NOD1, TRAF2, VDAC3, cDNA FLJ57740, DNM1L, TRIP9, TAB1, MAD3. To verify this result, we conducted western blot experiment, finding that eugenol can significantly reduce the expression of NOD1 and the phosphorylation expression of IKBα and NF-κB ( Figure 4D ). Moreover, the experimental results of immunofluorescence also showed that the expression of NOD1 protein decreased after eugenol treatment ( Figure 4E ). To sum up, the results demonstrated that eugenol can play an anti-tumor role by inhibiting the activation of NOD1-NF-κB pathway.

 

Figure 4 | Main functional classification with the most significant enrichment of the differentially expressed proteins. (A) GO enrichment analysis of differentially abundant proteins in biological process, cellular component, molecular function. (B, C) KEGG pathway enrichment analysis of differentially abundant proteins. (D) Western blot experiment verified the effect of eugenol on signal pathway. (E) Detection of NOD1 expression after eugenol treatment by immunofluorescence assay. 




 3.5. Drug affinity responsive target stability for eugenol target identification.

Furthermore, a modified DARTS method was used to identify potential binding proteins of eugenol. This method is developed based on the observation of a molecule-protein complex. This complex may lead to their conformational changes, which could decrease in the sensitivity of enzyme digesting. MDA-MB-231 cells treated respectively with vehicle (0.05% of DMSO as the control) and eugenol in the absence or presence of 0.1% of pronase, were used for the DARTS experiment ( Figure 5A ). The protein band at 55-72KD on the SDS-PAGE gel for Coomassie Blue staining displayed the higher protein density in the treatment with eugenol +pronase (lane 2 and lane 4) compared to the treatment with DMSO + pronase (lane 1 and lane3) ( Figure 5B ). We collected protein samples with and without eugenol treatment, with three biological replicates in each group. Through the analysis of data by Pearson and PCA, it was found that the data presented high repeatability and separation ( Figures S2 - S4 ). Label-free proteomics technology was used for detection, and Persus software was used for data correction. The volcanic map displayed that the expression of NF-κB protein was significantly increased in eugenol +pronase compared to the treatment with DMSO + pronase ( Figure 5C ;  Table S3 ). After treating with eugenol, the DARTS assay with immunoblotting revealed higher NF-κB stability against pronase, whereas the treatment with DMSO + pronase had no effect on proteolytic susceptibility ( Figure 5D ). Particularly, eugenol administration improved NF-κB stability depending on the dose, showing that eugenol selectively binds to NF-κB ( Figure 5E ). We have confirmed these results that NF-κB is recognized as a binding protein of eugenol in MDA-MB-231 cells.

 

Figure 5 | The target protein of eugenol in TNBC cells. (A) Work flow of drug affinity responsive target stability experiment; (B) MDA-MB-231 cells were treated with eugenol (20 μM), and lysates were subject to thermolysin digestion and Coomassie Brilliant Blue staining; (C) Enrichment of proteins in the protected band revealed by mass spectrometry analysis; (D) The DARTS assay for target validation. NF-κB protein stability was increased upon eugenol (20 μM) treatment in MDA-MB-231 lysates. Pronase treatment was conducted for 10, 30, and 60 min; (E) The DARTS assay demonstrated the dose-dependent binding of eugenol to NF-κB. Treatment with pronase (5 μg/mL) performed for 30 min “-” represent without the interference of pronase. “+” represent the interference of pronase. 




 3.6. Eugenol inhibits TNBC cell proliferation and metastasis by targeting NF-κB protein.

We next investigated whether the modulation of NOD1-NF-κB signaling by eugenol was initiated by targeting NF-κB. We used shNF-κB plasmid to transfect MDA-MB-231 cells, and obtained 231-KD cells with knockdown NF-κB expression. The transfection efficiency was verified by western blot assay and fluorescence microscope ( Figure 6A ,  Figure S5 ). Meanwhile, 231-KD cells were used for cell function experiment, showing that the addition of eugenol had no significant effect on the proliferation of cells ( Figure 6B ). The findings demonstrated that eugenol had no effect on the growth of NF-κB knockdown cells. Compared with DMSO group, there was no significant change in cell invasion ability after adding eugenol ( Figures 6C, D ). Similarly, the results of wound healing experiment were the same ( Figures S6 - S7 ). Importantly, the eugenol therapy group compared to the control group in MDA-MB-231 NF-κB knockdown cells, western blot revealed that NOD1 expression was not significantly reduced ( Figure 6E ). To sum up, we found that eugenol may play its anti-tumor role by binding to NF-κB protein and inhibiting NOD1-NF-κB signaling pathway.

 

Figure 6 | Verification of NF-κB as the target protein of eugenol in MDA-MB-231 cells. (A) Western blot experiment to verify the efficiency of transfection of shNF-κB. (B) CCK8 experiment to explore the proliferation ability of eugenol on NF-κB knockdown MDA-MB-231 and MDA-MB-453 cells. (C, D) Transwell experiment to explore the metastatic ability of eugenol on NF-κB knockdown MDA-MB-231 and MDA-MB-453 cells. (E) The expression of NOD1 in NF-κB knockdown MDA-MB-231 cells with or without eugenol treatment. Data presented as mean ± SD, n = 3. ***P < 0.001. 





 4. Discussion.

Due to the special case characteristics of TNBC, there is a lack of targeted drugs, leading to chemotherapy becoming a conventional treatment method (24). However, the side effects of chemotherapy drugs which limit their clinical application (25). Therefore, new drugs and new therapies are greatly needed to treat triple-negative breast cancer. Because the development of new drugs is a time-consuming and expensive process, it appears that an approach is being made to reposition or repurpose known drugs to new indications, and some successful examples have been presented in some literature. Our study aims to reposition medications for the treatment of TNBC. We used the GEO database to look for tumor-related gene features (tumor and normal), then we used CMap data mining to look for prospective medications. Among them, we discovered that eugenol exerted an effective anti-tumor effect in TNBC cells, inhibiting the proliferation and metastasis of TNBC cells

CMap was developed to find drugs that caused gene expression patterns similar to or different from the disease of interest (26). As a result, it can be used to find new uses for “old” medications (7). GEO data is one of the greatest databases for gene expression information. We chose the TNBC data sets that included normal and tumor gene expression data. Then, we used the specified gene features derived from each data set to query CMap. There are 98 overlapping differentially expressed genes in 4 normal and malignant data sets. Thus, we discovered candidate pharmaceuticals among these medications that may play a role in the treatment of TNBC. Among the top 10 candidate compounds, we selected to focus on natural compounds. In fact, our study’s findings demonstrated that eugenol was a commonly utilized and secure medication that can be used to treat TNBC. Eugenol, according to our findings, prevented triple-negative breast cancer cells from proliferation and metastasis. This is consistent with the previous report by Abdullah, showing eugenol’s potential mechanism of action and anticancer effect (27). However, the target proteins of eugenol have not been studied in this literature.

Furthermore, the development of proteomics technology based on mass spectrometry can deeply reveal many diseases’ development and occurrence, and the process of drug action. Therefore, we used proteomic methods to explore the protein changes before and after eugenol treatment. This method can be more effective, fast, and accurate to study the mechanism of eugenol from a global perspective. Through this method, we found that eugenol can significantly inhibit the changes of proteins in the NOD1-NF-κB pathway, which is consistent with the previous research results.

An emerging pathogenic component in a variety of human cancers was dysfunctional NF-κB signaling. The anti-tumor potentials of targeting the NF-κB pathway have thus far been the subject of numerous experimental research and therapeutic exploitations (28, 29). According to this theory, our data showed that eugenol administration decreased the expression of the NOD1-NF-κB pathway, which ultimately aided in the drug’s tumor-suppressing effects. Consistent with our results, several studies have reported similar observations in different scenarios. For example, the study performed by Cui et al. (13) compared the relative expressions of NF-κB p65 in response to eugenol treatment and concluded that Eugenol repressed expression of NF-κB in NSCLS. Syed S Islam reported that eugenol enhanced cisplatin’s anti-cancer efficacy through inhibited the activation of NF-κB signaling in TNBC cells (30). All of these studies, including this research, suggested that eugenol may exert potent therapeutic effects against a number of human disorders by directly suppressing the NF-κB pathway.

The previous study conducted by Ibtehaj Al-Sharif et al. (31) for the first time disclosed the tumor suppressive role of eugenol in TNBC cells and attributed the eugenol-treatment had a strong effect on the expression of NF-κB. However, the clinical significance of this study is limited by the fact that it does not conduct a high-throughput full protein search, but focuses on the changes of a certain key protein, and cannot be explored globally. In this regard, here we revisited this important question with the employment of label-free proteomics to explore the possible mechanism of eugenol. Our data demonstrated that compared with the changes in whole protein after eugenol, the NOD1-NF-κB pathway were particularly significant changed. Although it is not the first report on eugenol’s anti-tumor effect on TNBC, this is the first report to reveal the anti-tumor mechanism and potential target proteins of eugenol in TNBC.

Noteworthily, the target protein of eugenol binding in TNBC cells has not been clarified. In this study, a modified “assay for drug affinity responsive target stability “DARTS” method and LC-MS technology were used to identify the potential binding proteins of eugenol (32). According to our knowledge, this was the first study to look into the potential binding protein of eugenol in TNBC cells. This developed approach is based on the observation that a compound interacts with a protein to form a compound-protein complex. Its complex could lead to conformational changes, which could reduce the sensitivity to enzyme digestion. MDA-MB-231 cells treated respectively with vehicle (0.05% of DMSO as the control) and eugenol in the absence or presence of 0.1% of pronase were used for the DARTS experiment. The DARTS assay coupled with the western blot analysis with NF-κB p65 antibody also exhibited a higher protein level in the treatment with eugenol + pronase compared to the treatment with DMSO + pronase. These results together have confirmed that NF-κB p65 is recognized as a binding protein of eugenol in TNBC cells. Finally, functional experiments were conducted after silencing NF-κB. As expected, the anti-tumor effect of eugenol was significantly reduced. This also proves that the potential target of eugenol in TNBC is NF-κB. This result provides detailed evidence for the application of eugenol in the treatment of triple-negative breast cancer, and provides the theoretical basis for eugenol in the treatment of triple-negative breast cancer.


 5. Conclusions.

In summary, we characterized eugenol administration significantly inhibiting the proliferation and metastasis of triple-negative breast cancer cells, mechanistically, our data highlighted eugenol could play an anti-tumor role by inhibiting NOD1-NF-κB signal pathway. Importantly, we identified NF-κB as a target protein of eugenol, which was subjected to the suppressive action of eugenol.
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Background

Colon adenocarcinoma (COAD) is a highly heterogeneous disease, which makes its prognostic prediction challenging. The purpose of this study was to investigate the clinical epidemiological characteristics, prognostic factors, and survival outcomes of patients with COAD in order to establish and validate a predictive clinical model (nomogram) for these patients.



Methods

Using the SEER (Surveillance, Epidemiology, and End Results) database, we identified patients diagnosed with COAD between 1983 and 2015. Disease-specific survival (DSS) and overall survival (OS) were assessed using the log-rank test and Kaplan–Meier approach. Univariate and multivariate analyses were performed using Cox regression, which identified the independent prognostic factors for OS and DSS. The nomograms constructed to predict OS were based on these independent prognostic factors. The predictive ability of the nomograms was assessed using receiver operating characteristic (ROC) curves and calibration plots, while accuracy was assessed using decision curve analysis (DCA). Clinical utility was evaluated with a clinical impact curve (CIC).



Results

A total of 104,933 patients were identified to have COAD, including 31,479 women and 73,454 men. The follow-up study duration ranged from 22 to 88 months, with an average of 46 months. Multivariate Cox regression analysis revealed that age, gender, race, site_recode_ICD, grade, CS_tumor_size, CS_extension, and metastasis were independent prognostic factors. Nomograms were constructed to predict the probability of 1-, 3-, and 5-year OS and DSS. The concordance index (C-index) and calibration plots showed that the established nomograms had robust predictive ability. The clinical decision chart (from the DCA) and the clinical impact chart (from the CIC) showed good predictive accuracy and clinical utility.



Conclusion

In this study, a nomogram model for predicting the individualized survival probability of patients with COAD was constructed and validated. The nomograms of patients with COAD were accurate for predicting the 1-, 3-, and 5-year DSS. This study has great significance for clinical treatments. It also provides guidance for further prospective follow-up studies.
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1 Introduction

Colon adenocarcinoma (COAD) is an aggressive primary intestinal malignancy (1) that ranks fourth (6.1%) and fifth (5.8%) in morbidity and mortality, respectively (2). Furthermore, this disease is genetically heterogeneous. China is ranked first in the world in terms of new cancer cases and deaths (3, 4). In China, more than 380,000 new cancer cases were projected to be discovered in the colon and rectum annually (5). It could be seen that the global burden of cancer, including COAD, is rising, and cancer is on the verge of becoming the leading cause of death in the 21st century (6). Therefore, discovering new therapeutic strategies for COAD is of great significance.

Current knowledge of COAD is from small series and mostly from retrospective studies or individual case reports. Studies on COAD focusing on the survival and treatment of large populations have not been reported yet. The SEER (Surveillance, Epidemiology, and End Results) database offers favorable resources for the study of malignancies such as COAD for those limited to clinical trials or prospective data (7). This database using retrospective analysis represents the latest and largest COAD cohort in the literature.

A nomogram is used to calculate the possibility of clinical events using complex computational formulas. A nomogram is displayed graphically, with each clinical or laboratory indicator being listed separately and can be scored independently. The probability of clinical events can then be determined according to the cumulative scores of all variables (8–10). With the help of a nomogram, clinicians can assess the risks of survival, personalize treatment plans, optimize treatment strategies, and actively conduct follow-ups (11, 12).

In this study, the SEER database was used to depict the survival tendencies and the prognostic risk factors for COAD. We characterized the independent prognostic factors that were related to COAD and constructed a prognostic nomogram that could help oncologists accurately estimate prognosis and guide individualized treatments.



2 Materials and methods


2.1 Patients

The data of patients diagnosed with COAD between January 1, 2004 and December 31, 2015, were extracted from the SEER database through the SEER*Stat tool (7, 13). A total of 347,418 patients with COAD were enrolled in this study. Patients were excluded if their demographic or clinicopathological data, as well as follow-up, were incomplete. The following demographic variables and clinicopathological characteristics were included: age, gender, race, site_recode_ICD (International Classification of Diseases), grade, CS (Collaborative Stage)_tumor_size, CS_extension, and metastasis. To examine survival in COAD, we categorized patients with COAD based on age: <45, 45–59, 60–74, and ≥75 years. Site_recode_ICD is a recode based on primary site and ICD-O-3 histology, which included the large intestine, colon, appendix, cecum, and rectum. Grade consists of four categories: well differentiated, moderately differentiated, poorly differentiated, and anaplastic. CS_tumor_size is information on the tumor size, while CS_extension is information on the extension of the tumor. Metastasis is information on distant metastasis. Overall survival (OS) is defined as the time interval from diagnosis to death regardless of any cause, while disease-specific survival (DSS) is the time interval from diagnosis to death for patients with COAD. The patients weredivided into a training group and a validation group at a ratio of 7:3.



2.2 Univariate and multivariate Cox analyses

The incidence rates of COAD were estimated per 100,000 individuals and age-adjusted to the 2000 US Standard Population using SEER*Stat (version 8.3.2). The annual percentage changes (APCs) were calculated using the National Cancer Institute Joinpoint regression analysis scheme (version 4.5.0.1).

Univariate and multivariate analyses were performed to identify the related-risk factors. Univariate Cox analysis was used to analyze the occurrence relationship and the age, gender, race, site_recode_ICD, grade, CS_tumor_size, CS_extension, and metastasis. Using the results from the univariate analysis, multivariate analysis was conducted to validate the independent risk factors. Estimated DSS and OS were determined using Kaplan–Meier analysis and were compared using the log-rank test. Both univariate and multivariate analyses used a Cox regression model.



2.3 Statistical analyses

DSS was analyzed using the “forestplot” R package to present the p-value, hazard ratio (HR), and 95% confidence interval (95%CI) of each variable. Based on the results of the Cox regression analysis of patients with COAD, the final multivariate Cox regression model was visualized using the nomograms to predict the 1-, 3-, and 5-year DSS and OS. Harrell’s concordance index (C-index) was calculated to assess the performance of the nomogram. This index could expound the discrimination between a patient’s predicted and actual survival (14).

Both clinical prediction model calibration plots and receiver operating characteristic (ROC) curves were plotted, with the ROC curves being used to estimate the prediction performance and the validation set used for external validation (15, 16). The higher the area under the ROC curve (AUC), the better the prognostic accuracy. On the other hand, decision curve analysis (DCA) plotted the net benefit (NB), which was used to assess the clinical utility value (17, 18). Moreover, clinical impact maps were drawn to estimate the number of high-risk patients for each risk threshold (18). Calibration curves were also constructed for quantification. A nomogram was constructed in the training set. All statistical analyses were carried out using R software. The R packages mainly used in the analyses included ggplot2, survival, survminer, rms, and rmda. A t-test was performed to analyze the quantitative variables, while the chi-square test was used for qualitative data. A p-value <0.05 was considered indicative of statistical significance.




3 Results


3.1 Patient baseline characteristics

After applying the inclusion and exclusion criteria, and removing missing values, the study finally identified 104,933 patients with COAD diagnosed from 2004 to 2015. The baseline characteristics were in a ratio of 7:3 and were classified into a training group (n = 73,454) and a validation group (n = 31,479). The training and validation groups showed no statistically significant difference (p > 0.05). The detailed results are shown in Table 1. The total study population included 51,360 women and 53,573 men. The follow-up study duration ranged from 22 to 88 months, with an average of 46 months.


Table 1 | Baseline characteristics of patients with alive and dead.





3.2 Univariate Cox and risk factors for COAD patients

A correlation analysis between the clinical indicators was conducted. Survival_months and status showed the most significant correlation for DSS (Figure 1), and metastasis and Survival_months had the most significant correlation for OS (Supplementary Figure S1). Univariate Cox analysis was performed to identify the related risk factors. The extracted variables in the training set showed that age, gender, race, site_recode_ICD, grade, CS_tumor_size, CS_extension, and metastasis were prognostic factors (p < 0.05) (Table 2).




Figure 1 | Correlations between clinical indicators in DSS.




Table 2 | Univariate Cox regression results in DSS.



Figure 2A presents the survival status of all included patients with COAD. The Kaplan–Meier survival analysis showed that those aged ≥75 years had shorter DSS compared to younger participants (Figure 2B). Male gender was significantly associated with shorter DSS compared to female gender (Figure 2C). Black patients were significantly associated with the shortest DSS compared to patients of other races (Figure 2D). In terms of site_recode_ICD, the large intestine was significantly associated with the shortest DSS, while the appendix was significantly associated with a higher DSS compared to the other sites (Figure 2E). Early stage (stages I and II) was significantly associated with higher DSS compared to other stages in site_recode_ICD (Figure 2F), and the risk increases with grade. With regard to site_recode_ICD, size >50 in CS_tumor_size was significantly associated with shorter DSS, while tumor size <25 was significantly associated with a higher DSS (Figure 2G). M1 metastasis was significantly associated with shorter DSS compared to M0 metastasis (Figure 2H). These results were consistent with the results for DSS in the validation cohort (Supplementary Figure S2). We also performed the Kaplan–Meier survival analysis for OS, which showed the same trends of the prognostic factors (i.e., age, gender, race, site_recode_ICD, grade, CS_tumor_size, CS_extension, and metastasis) (Supplementary Figures S3, S4).




Figure 2 | The Kaplan-Meier survival analysis in total, age, gender, race, site_recode_ICD, grade, CS_tumor_size, CS_extension and metastasis. (A) The survival curves of all DSS patients in the training data set. (B) The survival curves of age in the training data set. (C) The survival curves of gender (Female; Male) in the training data set. (D) The survival curves of race (Black; White; Other: American Indian (AK Native) and Asian (Pacific Islander), et al. ) in the training data set. (E) The survival curves of site_recode_ICD (Large Intestine; Colon; Appendix; Cecum; Rectum) in the training data set. (F) The survival curves of grade (Grade I; Grade II; Grade III; Grade IV) in the training data set. (G) The survival curves of CS_tumor_size (25-50; >50; <25) in the training data set. (H) The survival curves of metastasis (M0; M1) in the training data set.





3.3 Multivariable Cox regression and forest plot

Applying multivariable Cox regression on the results of the variables from the univariate analysis, eight independent prognostic factors were screened out, namely, age, gender, race, site_recode_ICD, grade, CS_tumor_size, CS_extension, and metastasis. All variables showed statistical significance for both DSS and OS (Table 3, Supplementary Table S1). The HRs of age and race were lower than those predicted for DSS (Table 3), which was consistent with the results of OS (Supplementary Table S1). On the other hand, the HRs of gender, site_recode_ICD, grade, CS_tumor_size, CS_extension, and metastasis were higher than 1 as risk factors for both DSS and OS (Table 3, Supplementary Table S1). Furthermore, forest plots were drawn using these eight independent prognostic factors, as shown in Figure 3 for DSS and Supplementary Figure S5 for OS. The forest plots showed that age, gender, race, site_recode_ICD, grade, CS_tumor_size, CS_extension, and metastasis were independent risk factors.


Table 3 | Multivariable analysis of DSS in the training cohort.






Figure 3 | Forest plots of DSS in training data set.





3.4 Nomogram construction and model validation

Based on the univariate and multivariate Cox regression analyses, a nomogram was constructed including all predictors (age, gender, race, site_recode_ICD, grade, CS_tumor_size, CS_extension, and metastasis) (Figure 4A). The calibration plot showed good agreement both in the training and validation datasets (Figures 4B–F). The AUC values of the 1-, 3-, and 5-year survival in the nomograms were 0.818, 0.829, and 0.824, respectively, in the training group (Figures 5A–C), while these values were 0.825, 0.836, and 0.828, respectively, in the validation group (Figures 5D–F). Furthermore, we calculated the C-index to assess the performance of the constructed nomograms. The predicted C-index values for the DSS nomogram were 0.787 and 0.782 in the training and validation datasets, respectively.




Figure 4 | Nomogram for COAD patients. (B-D) and (E-F) were its training data sets and the validation data sets calibration diagrams respectively, which showed good consistency.






Figure 5 | ROC curves for the training and validation data set (A-C training data set and D-F validation data set).





3.5 Clinical applicability of the nomogram

The survival curves of the DSS of the 31,479 patients were plotted using the Kaplan–Meier method (Figure 2A). Our results illustrated that survival significantly decreased in COAD patients with follow-up time (p < 0.001). The DCA plots showed that the threshold probability was within the range from 0.1 to 0.9 with the maximum benefit range of the model (Figures 6A–C), which presented the same trend as the validation data with the Kaplan–Meier survival curves (p < 0.001) (Figures 6D–F) and consistent with the results for OS (Supplementary Figure S6).




Figure 6 | The decision curve (DCA) of DSS in training and validation data set. (A-C) DSS decision curve (DCA) of the training data set. D-F DSS Nomogram decision curve (DCA) of the validation data set.






4 Discussion

The nomogram was made simpler with multivariate regression analysis including many prognostic factors into a simplified estimation model constructed to predict the possibility of events (19, 20). The nomogram allows clinicians to more visually evaluate the individual health of patients and to offer personalized treatments (21, 22). At present, nomograms are commonly applied for prognosis (e.g., OS and DSS of patients with cancer) (23–25). A study found that HOXC8, IRF7, and CXCL13 could be used as potential prognostic signatures for COAD based on the nomogram algorithm (26). Based on patients with COAD, we constructed a new prognosis prediction model.

The correlations between the clinical indicators were calculated. Survival_months and status had the most significant correlation for DSS (Figure 1), while metastasis and Survival_months showed the most significant correlation for OS (Supplementary Figure S1). This showed that metastasis was associated with prognosis. The independent prognostic factors for DSS and OS were confirmed via univariate and multivariate Cox regression analyses. Univariate analysis showed that age, gender, race, site_recode_ICD, grade, CS_tumor_size, CS_extension, and metastasis were associated with DSS (Table 2). These factors were then applied in the multivariate Cox regression. The results of the multivariate analysis showed that age, gender, race, site_recode_ICD, grade, CS_tumor_size, CS_extension, and metastasis were independent prognostic factors for both DSS and OS (Table 3, Supplementary Table S1). The HRs of gender, site_recode_ICD, grade, CS_tumor_size, and metastasis were higher than 1 for both DSS and OS (Table 3, Supplementary Table S1). This clarified that gender, site_recode_ICD, grade, CS_tumor_size, and metastasis were risk factors for COAD.

Kaplan–Meier survival analysis revealed that black race was significantly associated with the shortest DSS compared to other races (Figure 2D), implying that black patients need priority monitoring. The large intestine was significantly associated with the shortest DSS compared to others in site_recode_ICD (Figure 2E), indicating that more attention should be paid to this site. Early stage (stages I and II) was significantly associated with a higher DSS in site_recode_ICD (Figure 2F), and the risk increases with grade, which was in line with reality. CS_tumor_size was significantly associated with DSS (Figure 2G), and M1 metastasis showed a greater risk compared to M0 metastasis. In conclusion, the bigger the tumor_size and the more occurrence of tumor metastasis, clinical measures should be taken. The same results for DSS were found in the validation cohort (Supplementary Figure S2). Similarly, the same trends of the prognostic factors (age, gender, race, site_recode_ICD, grade, CS_tumor_size, CS_extension and metastasis) were also found for OS (Supplementary Figure S3, S4).

All independent prognostic factors in the Cox regression model analysis were used to build the prognostic prediction nomogram. By summing up the scores associated with each indicator variable according to the bottom scale by projecting the total points downward, the probabilities of OS and DSS at 1, 3, and 5 years were estimated for each patient. The C-index values indicated that our newly built nomogram had great potential to accurately predict the prognosis of patients. The DCA plots demonstrated good clinical utility in the training  dataset for prediction of the 1-, 3-, and 5-year survival (Figures 6A–C). The validation set also showed similar trends (Figures 6D–F) and were consistent with the results of OS (Supplementary Figure S6). The DCA results revealed good predictive accuracy and clinical utility. However, the following study limitations remain. Firstly, this study had a retrospective design; therefore, the retrospective nature of this study cannot exclude all potential bias. Secondly, although we randomly split data into the training and validation datasets, more external validation, such as validation of the model in other institutions or other countries, is still necessary in the future.

In conclusion, we constructed and validated a nomogram model for predicting individualized survival probability in patients with COAD. This convenient visual nomogram showed not only excellent clinical utility but also the ability to adequately differentiate patients with COAD, suggesting that it may be a potentially simple and maneuverable tool for clinicians to personalize prognostic assessment and determine treatment strategies.
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Purpose

The aim of this study was to systematically establish a comprehensive tumour microenvironment (TME)-relevant prognostic gene and target miRNA network for breast cancer patients.



Methods

Based on a large-scale screening of TME-relevant prognostic genes (760 genes) for breast cancer patients, the prognostic model was established. The primary TME prognostic genes were selected from the constructing database and verified in the testing database. The internal relationships between the potential TME prognostic genes and the prognosis of breast cancer patients were explored in depth. The associated miRNAs for the TME prognostic genes were generated, and the functions of each primary TME member were investigated in the breast cancer cell line.



Results

Compared with sibling controls, breast cancer patients showed 55 differentially expressed TME prognostic genes, of which 31 were considered as protective genes, while the remaining 24 genes were considered as risk genes. According to the lambda values of the LASSO Cox analysis, the 15 potential TME prognostic genes were as follows: ENPEP, CCDC102B, FEZ1, NOS2, SCG2, RPLP2, RELB, RGS3, EMP1, PDLIM4, EPHA3, PCDH9, VIM, GFI1, and IRF1. Among these, there was a remarkable linear internal relationship for CCDC102B but non-linear relationships for others with breast cancer patient prognosis. Using the siRNA technique, we silenced the expression of each TME prognostic gene. Seven of the 15 TME prognostic genes (NOS2, SCG2, RGS3, EMP1, PDLIM4, PCDH9, and GFI1) were involved in enhancing cell proliferation, destroying cell apoptosis, promoting cell invasion, or migration in breast cancer. Six of them (CCDC102B, RPLP2, RELB, EPHA3, VIM, and IRF1) were favourable for maintaining cell invasion or migration. Only two of them (ENPEP and FEZ1) were favourable for the processes of cell proliferation and apoptosis.



Conclusions

This integrated study hypothesised an innovative TME-associated genetic functional network for breast cancer patients. The external relationships between these TME prognostic genes and the disease were measured. Meanwhile, the internal molecular mechanisms were also investigated.
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Introduction

Breast cancer is a rapidly growing public health problem of global concern (1). In developed countries, breast cancer has become the second most common cause of cancer death in women and is also the leading cause of cancer death in women in low- and middle-income countries (2). Several elements have been shown to be closely associated with breast cancer, such as hormone-related elements, pregnancy-related elements, anthropometric index elements, physical condition, dietary elements, and environmental exposures (1). Clinically, breast cancer patients can be classified into different subtypes. To date, classifications have been based on different expression patterns of progesterone receptor (PR), estrogen receptor (ER), and human epidermal growth factor receptor-2 (HER-2). Traditional classification does not fully reflect the heterogeneity of breast cancer. For this purpose, breast cancer could also be divided into five different subtypes according to genetic profiling, which represent the heterogeneity of breast cancer (3). Clinically, the recommended diagnostic methods for breast cancer patients are MRI, mammography, ultrasonography, and PET (2). Among them, the recommended technique for the diagnosis of breast cancer is mammography, which, to date, represents the gold standard screening method for breast cancer patients (4). However, approximately 20% of breast cancers are missed by mammography (5). When mammography fails to detect breast cancer, ultrasound and magnetic resonance imaging can be used to detect breast cancer (3).

Tumour progression has long been thought to be associated with epigenetic changes in tumour cells (6). There is increasing evidence that the cells and matrix components surrounding tumour cells also play an indispensable role in the tumour process. Together, these components constitute the tumour microenvironment (TME) (7). The TME consists of various TME-related genes localised or secreted by immune cells and stromal cells, which play a critical role in tumour proliferation and metastasis (8). For example, some immune cells in the TME, such as M1 macrophages, have a significant effect on tumour inhibition by activating Th1 responses. At the same time, other cells such as tumour-associated endothelial cells, cancer-associated fibroblasts, and M2 macrophages in the TME can promote tumour growth and proliferation (9) (10). In addition, localised stromal cells, immune cells, and tumour cells in the TME can interact with each other through cytokines, which could effectively accelerate tumour growth and proliferation. For example, integrins and soluble factors (e.g., IL-6, SDF1, and HGF) could mediate the interaction between tumour cells and the stroma. Signalling pathways involving MAPK, PI3K/Akt, ERK1/2, and STAT have been shown to be highly activated in tumour cells. On the other hand, the activities of anti-apoptotic proteins (e.g., Bcl-2 and Bcl-XL) could be enhanced in the TME, which then initiate cancer development (11).

The miRNAs (short for microRNAs) are a super-family of small non-coding RNAs, most of which are approximately 21 nucleotides in length. Although these miRNAs cannot be translated, they can regulate transcription by binding to the 5’ or 3’ non-coding regions of mRNA (12). The miRNAs play an important role in tumour development and are thought to be key factors in TME. The miRNAs can affect tumour progression by regulating the cell cycle, manipulating programmed cell death, controlling cell invasion, and targeting angiogenesis (13).

Since TME has received more and more attention in cancer research, we have thoroughly analysed the expression of 760 TME-relevant prognostic genes and their prognostic values in breast cancer patients. In addition to the broad screening, the internal functions of each primary TME prognostic gene for breast cancer prognosis were also thoroughly investigated in this integrated study.



Materials and methods


Data source

We used two independent data sources in this study. The breast cancer patients from the TCGA-BRCA database were considered as a constructing database. At the same time, the breast cancer patients from the GSE162228 chip were treated as a testing database.

For the constructing database, we downloaded the gene information profile and corresponding clinical information of breast cancer patients from The Cancer Genome Atlas (TCGA, https://tcga-data.nci.nih.gov/tcga/) database, which contains 1,082 breast cancer patients with complete survival information. In addition, for the testing database, we downloaded a dataset from the GEO database (GEO, https://www.ncbi.nlm.nih.gov/geoprofiles/?term=GSE162228), which contains 109 breast cancer patients with complete survival information. The genetic information of the breast cancer patients in the GEO dataset was analysed using the Affymetrix Human Genome U133A Array platform.



TME-relevant prognostic gene identification and selection

In this study, the identification and selection of TME-relevant prognostic genes followed the previously established protocol (14). Essentially, the complete list of genes was obtained from 10 published studies providing transcriptomic signatures for multiple immune and stromal cell populations (15–25).

The final differentially expressed TME-relevant prognostic genes for breast cancer patients were selected and verified in two steps: first, a single-factor Cox regression analysis for breast cancer prognosis was developed to analyse the expression values of each TME-relevant prognostic gene in breast cancer samples, with a threshold of p< 0.05; second, bootstrapping was performed to test the genes that passed the initial filtering for robustness as follows: 70% of patients randomly selected from the cohort were tested for the survival impact of their genes.



LASSO Cox regression analysis

To avoid over-fitting the model, redundant prognosis-related molecules were removed from the dimension using LASSO Cox regression analysis. The model’s penalty parameter (lambda value) was also determined using 10-fold cross-validation, with the smallest lambda value selected to remove redundant prognosis-related molecules.

For this purpose, the glmnet function package of the R language was performed for LASSO Cox regression analysis to further infer the TME prognostic genes related to breast cancer prognosis. The following formula was established to calculate the risk score for each individual breast cancer sample:

	

In this formula, Coefi represents the risk coefficient of each factor estimated by the LASSO-Cox model. Xi indicates the expression activity of each TME prognostic gene. The breast cancer patients of the constructing database and the testing database could be subdivided into a high-risk group and a low-risk group based on the median of the corresponding calculated risk score.



Survival analysis

The survival and survminer packages in the R language were used to analyse the survival of each patient. The package was based on the Kaplan–Meier method (26).



Prediction of miRNA targets

The targets of potential miRNAs were achieved via miRBase (http://www.mirbase.org), TargetScan (http://www.targetscan.org), miRanda (http://www.microrna.org/microrna/home.do), miRWalk (http://www.ma.uni-heidelberg.de/apps/zmf/mirwalk), TarBase (http://diana.cslab.ece.ntua.gr/tarbase), and miRecords (http://mirecords.biolead.org).



Cell culturing

The mda-MB-453 cell line, purchased from ATCC Co., was selected as a breast cancer cell line in this study and cultured in L15 culturing medium with 10% fetal bovine serum plus 1% P/S.



Luciferase reporter assay

The 3’ non-coding region of each TME gene was synthesised and inserted into the XhoI and NotI sites of the pCheck2 reporter luciferase vector downstream of the luciferase gene. The wild type (WT) or mutant plasmid and negative control or miRNA were transfected together into mda-MB-453 cells. Final luciferase analysis was performed using a dual luciferase reporter analysis system (Promega, USA).



Tumour manner analysis of mda-MB-453 cells

The corresponding TME prognostic gene siRNAs (50 nmol/L) (OriGene) and the corresponding negative control transfection were obtained by Lipofectamine-2000 (Sigma-Aldrich, USA).

The siRNA-transfected cells were harvested and the proliferation ability was measured using the CCK-8 method (Fisher, China). At the same time, the apoptosis ability of the cells was examined by the method of flow cytometry after Annexin V FITC/PI double staining. For transwell migration assays, 2.5×104 cells were seeded in the appropriate serum-free medium into the pre-coated upper chamber. The 500-μl complete medium was used as chemoattractant in the lower chambers. The incubation time was set at 48 h, after which cells without migration or invasion were removed. The final number of migrated or invaded cells was examined using Image-Pro Plus version 6.0 software. All experiments were repeated three times independently.



Statistical analysis

The multi-factor Cox regression model was built to analyze whether risk score could predict the survival of patients with breast cancer independently of all other factors. The statistical analysis was established by R software, with version number v4.2.2.




Results


TME prognostic gene selections for breast cancer prognosis

First, the breast cancer patients from the TCGA-BRCA database were used as a constructing database. We focused on TME genetic profiling in breast cancer patients. The selection scope was based on a complete list of 760 TME genes, which are listed in Supplementary Table S1. Differential analysis was performed using single-factor Cox regression analysis. The 760 TME-relevant prognostic gene expression values were treated as continuous variables in the regression analysis. The 55 differentially expressed TME prognostic genes were finally screened out as p-value< 0.05 (Table 1).


Table 1 | The Univariate Cox analysis results for differentially expressed TME prognostic genes.



In the list, the genes with HR value less than 1 were favourable for breast cancer prognosis (protective TME prognostic genes). On the other hand, the genes with HR value greater than 1 were unfavourable for breast cancer prognosis (risk TME prognostic genes). For this purpose, 31 of the 55 genes were considered as protective genes, while the remaining 24 genes were considered as risk genes.

To remove redundant prognosis-related molecules, the 55 differentially expressed TME prognostic genes were then plotted in a LASSO Cox regression analysis. As shown in Figure 1A, the optimal number of differentially expressed TME prognostic genes was determined to be 15 (Figure 1A, with the lowest lambda value). Therefore, the forest plot of the top 15 genes with the smallest p-value among the 55 genes is shown in Figure 1B. The 15 TME prognostic genes were ENPEP, CCDC102B, FEZ1, NOS2, SCG2, RPLP2, RELB, RGS3, EMP1, PDLIM4, EPHA3, PCDH9, VIM, GFI1, and IRF1.




Figure 1 | TME prognostic gene selections for breast cancer prognosis. (A) The plot of the determination of the tuning parameter lambda in the LASSO regression model. The horizontal axis is the log (lambda) and the vertical axis is the partial likelihood deviation value. The lambda value corresponding to the smallest value is the best. (B) Forest plot of the 15 most significant TME prognostic genes associated with breast cancer prognosis. HR is the hazard ratio and 95% CI is the 95% confidence interval. (C) Kaplan–Meier survival curve in the TCGA dataset. The horizontal axis represents time, while the vertical axis represents survival. Different colours represent different groups. The p-value is based on the log-rank test. (D) The time-dependent ROC curve. The horizontal axis is the false-positive rate, while the vertical axis is the true-positive rate. The accuracy of prediction is assessed by the AUC (area under the ROC curve) value. (E) The expression heat map of the 15 TME prognostic genes selected from the TCGA dataset.



The expression values of 15 TME prognostic genes were then weighted with the regression coefficients of the LASSO Cox regression model to generate a risk score for predicting survival in breast cancer patients. Each patient’s risk score was calibrated individually. Using the risk score as a further selection criterion, the 1,082 patients were divided into a high-risk group and a low-risk group based on the median of the risk score. According to the survival analysis, the patients in the high-risk sample showed an overall poor survival rate compared to the low-risk sample (Figure 1C).

In addition, it could be shown that the AUC of the 1-year, 3-year, and 5-year survival period of the breast cancer patients were 0.666, 0.721, and 0.681, respectively, obtained from the time-dependent ROC (Figure 1D). These results indicated that the risk model could accurately predict the prognosis of breast cancer patients. Meanwhile, the 15 TME prognostic genes were remarkably different when comparing the high-risk and low-risk groups (Figure 1E), which further confirmed the specificity of the 15 TME prognostic genes as well as the efficiency of the risk score constructed by them.



Verification of potential TME prognostic genes and risk score using the testing database

Previously, we selected primary TME prognostic genes from the constructing database and obtained the corresponding risk factor using the TME prognostic genes. We then sought to confirm the results using an independent testing database (GSE database). Out of 109 breast cancer patients (stage 0 patients were excluded) with complete clinical information, 102 were processed for the study. The age, TNM stage, and risk score of each individual breast cancer patient were all subjected to multivariate Cox regression analysis to decide whether the risk score was an independent prognostic indicator for breast cancer patients in the test database. As shown in Figure 2A, it could be demonstrated that the risk score was dramatically associated with the overall survival of the testing database, and the samples with a high risk score had a higher risk of death and were unfavourable for prognosis (HR = 3.8, 95% CI: 2.34–6, p< 0.001).




Figure 2 | Verification of potential TME prognostic genes and risk score using testing database. (A) Multivariate Cox regression analysis forest plot. (B, C) The Kaplan–Meier survival curve of breast cancer patients<60 years old and ≥60 years old, respectively.



To investigate the prognostic value of the risk score established by 15 potential TME-relevant prognostic genes, we further regrouped patients from the testing database and performed Kaplan–Meier survival analysis. Patients were divided into group A (Figure 2B, <60 years old) and group B (Figure 2C, ≥60 years old). Patients were defined as high risk or low risk based on the risk score determined by 15 potential TME-relevant prognostic genes. Regardless of age, patients in the high-risk group had a significantly lower overall survival rate than those in the low-risk group (Figures 2B, C). These results concluded that the risk score constructed by primary TME prognostic genes was an independently accurate indicator for predicting the prognosis of breast cancer patients. Furthermore, the risk factor was shown to be independent of TNM stage (Supplementary Figure 1).



Correlation between potential selected TME prognostic genes and prognosis of breast cancer patients

To investigate the relationships between 15 TME prognostic genes and the prognosis of breast cancer patients in depth, the expressions of these TME prognostic genes were re-entered into the regression model with the survival probability of each individual patient from the construction database. As shown in Figure 3, the risk TME prognostic genes were negatively associated with prognosis (Figures 3A–E, ENPEP, CCDC102B, FEZ1, NOS2, and SCG2), while the protective TME prognostic genes were positively associated with prognosis (Figure 3F, RPLP2). The remaining TME prognostic genes are shown in Supplementary Figure 2. Based on the results of forest plot (Figure 1B) and regression model analysis (Figure 3), ENPEP, CCDC102B, FEZ1, NOS2, SCG2, RGS3, EMP1, EPHA3, and PCDH9 were suggested as risk TME prognostic genes. In contrast, RPLP2, RELB, PDLIM4, VIM, GFI1, and IRF1 were suggested as protective TME prognostic genes.




Figure 3 | Correlationship between potential selected TME prognostic genes and prognosis of breast cancer patients. The relationship analysis between prognosis of breast cancer patients and ENPEP (A), CCDC102B (B), FEZ1 (C), NOS2 (D), SCG2 (E), and RPLP2 (F), respectively.



Among them, there was an apparent linear internal relationship for CCDC102B (Figure 3B), but non-linear relationships for others (Figures 3A, C–F).



Prediction of potential miRNAs for TME prognostic gene of breast cancer prognosis

The 15 TME prognostic genes and associated potential target miRNAs were searched using six well-established search tools, namely, miRBase, TargetScan, miRanda, miRWalk, TarBase, and miRecords. The search results were sorted according to TarGetScore (the complete list is shown in Table 2).


Table 2 | The list of TarGetScore for TME-associated miRNAs.



In the list, the higher the score, the higher the confidence. The primary miRNAs with prediction scores above 80 were considered relatively reliable, while those with prediction scores below 60 were considered less reliable. The final network of 15 TME prognostic genes and targeting miRNAs was constructed using all primary miRNAs with prediction scores greater than 80 (Figure 4A). Notably, all miRNAs with high scores interacted with EPHA3, suggesting that the miRNA-manipulated signalling cassette may play a pivotal role in the functions of this TME prognostic gene.




Figure 4 | Prediction of potential miRNAs for TME prognostic gene of breast cancer prognosis. (A) The establishment of a network of 15 TME prognostic genes and targeting miRNAs using the miRNAs with TarGetScore scores greater than 80. (B) The schematic depicting the wild type (WT) and the mutant (MUT)-specific fragments of 3’ UTR of EPHA3. (C) The luciferase reporter assays results for hsa-miR-559 in breast cancer cells. ** as an indication of P < 0.01 compared with internal control.



To further validate our predictive results, the direct interactions between potential miRNAs and targeted TME prognostic genes were supported by the luciferase reporter assay. As shown in Figure 4B, the WT-specific fragments of the 3’ UTR of EPHA3 and mutant (MUT) were cloned into the luciferase reporter. Subsequently, hsa-miR-559 (with the highest predictive score for EPHA3) and non-targeting miRNA control were transfected into mda-MB-453 cells. According to the luciferase reporter assay results, hsa-miR-559 could directly bind to the 3’UTR of EPHA3 and inhibit its function (WT; Figure 4C). On the other hand, the inhibition was significantly reduced when the sequence of the identified interaction site was mutated (mutant; Figure 4C).



Diverse functions of TME prognostic genes for breast cancer development

To date, it has been suggested that promoting cell proliferation, destroying cell apoptosis, promoting cell invasion, and promoting cell migration are the primary causes of cancerogenesis. Based on these hypotheses, we sought to investigate the functions of 15 TME prognostic genes. We used siRNA technology to knock down the expression of each TME prognostic gene. Knockdown of risk TME prognostic genes (ENPEP, CCDC102B, FEZ1, NOS2, SCG2, RGS3, EMP1, EPHA3, and PCDH9) could induce decreased cell proliferation, increased cell apoptosis, and impaired cell invasion or migration. In contrast, deletion of protective TME prognostic genes (RPLP2, RELB, PDLIM4, VIM, GFI1, and IRF1, shown in dark colour in each graph) showed the opposite pattern.

Among the 15 TME prognostic genes, most of them (NOS2, SCG2, RGS3, EMP1, PDLIM4, PCDH9, and GFI1) were involved in all three entries, while 6 of them (CCDC102B, RPLP2, RELB, EPHA3, VIM, and IRF1) were favourable for maintaining cell invasion or migration. Furthermore, only two of them (ENPEP and FEZ1) were favourable for the processes of cell proliferation and apoptosis (Figures 5A–C).




Figure 5 | Diverse functions of TME prognostic genes for breast cancer development. The cell proliferation analysis (A), the cell apoptosis examination (B), and the cell invasion or migration measurement (C) comparing untreated control and 15 TME prognostic gene siRNA-transfected breast cancer cells. * as an indication of P < 0.05 compared with internal control.






Discussion

The TME generally refers to the non-cancerous cells and various components present in the tumour, consisting of immune cells and stromal cells as well as molecules (27). The constant connections between tumour cells and TME components play a pivotal role in tumour initiation, progression, development, and metastasis (28). Functionally, the TME components could harbour tumour cells through direct interaction with surrounding cells via the lymphatic and circulatory systems to ultimately influence cancer development (8). Thus, the TME has served as a potential therapeutic target for cancer treatment and has attracted basic research and clinical interest (29). In breast cancer, various preclinical and clinical studies have provided ample evidence that TME genes are involved not only in breast cancer progression but also in determining therapeutic response (30). Furthermore, some of the TME genes have shown a prominent value for the existing predictive and prognostic marker panels. The significant alterations in the TME genes could be recognised as a critical element in the development of breast cancer.

From the 760 TME-relevant prognostic genes, we narrowed down our selection to 15 potential TME prognostic genes with a notable differential expression pattern in breast cancer patients. Among these, we proposed ENPEP, CCDC102B, FEZ1, NOS2, SCG2, RGS3, EMP1, EPHA3, and PCDH9 as risk TME prognostic genes. RPLP2, RELB, PDLIM4, VIM, GFI1, and IRF1 were identified as protective TME prognostic genes (Figure 2). As every coin has two sides, the protective TME factors from stromal cells or immune cells could abolish cancer cell metastasis or facilitate the immune system defence mechanism. On the other hand, risk TME factors from suppressive immune cells, together with the extracellular matrix (ECM) element, could work together to exhibit anti-tumour immunity and promote breast cancer development. Either enhanced risk TME gene expression or suppressed protective TME prognostic gene expression, caused by dysfunctional or aberrant specific signalling pathways, could contribute to the development of breast cancer. However, there are some limitations to this study. For example, due to the complicated and dynamic status of TME, it is quite difficult to show the exact expression for each individual gene in TME. Our identification of TME-relevant prognostic genes in breast cancer patients was based on previous established literature searches and summaries. At the same time, we did not claim that these genes are only functional in TME, and we only focused on their functional transition from TME to tumour progression. In the future, it may be useful to show where (which cell types) and how (the expression level) the TME-relevant prognostic gene is expressed in the breast cancer environment.

Despite the many breakthroughs in cancer research, there is still a lack of solid evidence for the cancer process due to the extremely complicated molecular mechanisms that underlie the disorders. In breast cancer, we prefer the “seed-and-soil” hypothesis, which suggests that the primary localised breast cancer cells represent “seed” cells (31). The permissive secondary tissues could be considered as “soil” for migrative or invasive cancer cells. The permissive secondary tissues could be considered as “soil” for migrative or invasive cancer cells. Based on this hypothesis, the TME could be considered as a “fertiliser” consisting of ECM, various inflammatory cytokines, and other remodelling enzymes (32). The cancer cells themselves interact with the surrounding functions and components of the TME to initiate or suppress cancer development. Our parallel data demonstrated that CCL, a critical chemokine (C-C) motif ligand of the TME, exerts both anti-cancer properties dependent on the recruitment of anti-cancer tumour-infiltrating lymphocytes (TILs), which destroy cancer cells, and pro-cancer functions correlating with the recruitment of cells functional to stimulate tumour growth, enhance tumour cell migration, and block the activities of tumour suppressors (article in preparation). These were similar to previously published data (33–35).

Using a broad screening approach, we identified 15 attractive TME genes. Furthermore, we testified the functions of each individual TME from three aspects, namely, cell proliferation, cell apoptosis, and cell invasion or migration manipulation. From the results, the enhancement of cell proliferation and the attenuation of cell apoptosis could be closely related, and none of the TME prognostic genes showed a single function for them. Therefore, cell proliferation and cell apoptosis could be combined in this study. As expected, seven of the TME prognostic genes (NOS2, SCG2, RGS3, EMP1, PDLIM4, PCDH9, and GFI1) showed dual functions in breast cancer progression. The rest had only a single function in breast cancer development (Figure 6).




Figure 6 | The mechanism diagram of potential TME prognostic genes and associated miRNAs for breast cancer progression.



Some of the potential members are “old hands” in breast cancer research. For example, ENPEP has been shown to be a key factor involved in breast cancer cell proliferation through the function of inducing G2/M cell cycle arrest and reducing anchorage-independent cell growth of mammary origin (36). Si and colleagues claimed that coiled-coil domain containing 102B (CCDC102B) was apparently increased in metastatic lesions in lymph nodes of breast cancer patients (37). Increased expression of CCDC102B was required for breast cancer metastasis. Here, the functions of CCDC102B may be achieved through the regulation of NF-κB pathway components. The FEZ1 gene was mapped to chromosome 8p22 (a common aberration in human tumours). Mutations in the FEZ1 gene have been found in a variety of cancers (38). EMP1, which stands for epithelial membrane protein gene 1, together with EMP2 and EMP3 belong to the PMP22 (peripheral myelin protein 22-kDa) gene family. There are six members of this gene family, namely, brain cell membrane protein 1, MP20, EMP1, EMP2, EMP3, and PMP22. In lung cancer, EMP1 has been implicated as a biomarker for gefitinib resistance. EMP1, EMP2, and EMP3 have been reported as novel therapeutic targets in human cancer (39). Previously, the PDLIM4 gene was identified as a tumour suppressor. In breast cancer cells, the PDLIM4 gene encodes an adaptor protein that functions as a key regulator of stress fibre assembly, actin cytoskeleton remodelling, and epithelial–mesenchymal transition (40). The IRF1 gene has been shown to have essential functions during the epithelial–mesenchymal transition process. However, IRF1 is also required for the maintenance of epithelial differentiation. This dual role of IRF1 is context-dependent, particularly for the modulation of epithelial–mesenchymal plasticity, which may be of interest for future breast cancer treatment (41).

Overall, we have identified several interesting TME prognostic genes involved in breast cancer progression through a large-scale screening approach. The targeted miRNAs and the molecular mechanisms highlighted were validated both in vivo and in vitro, opening a new window for future studies.
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 Background

It is well known that the occurrence and development of ovarian cancer are closely related to the patient’s weight and various endocrine factors in the body.


 Aim

Mendelian randomization (MR) was used to analyze the bidirectional relationship between insulin related characteristics and ovarian cancer.


 Methods

The data on insulin related characteristics are from up to 5567 diabetes free patients from 10 studies, mainly including fasting insulin level, insulin secretion rate, peak insulin response, etc. For ovarian cancer, UK Biobank data just updated in 2021 was selected, of which the relevant gene data was from 199741 Europeans. Mendelian randomization method was selected, with inverse variance weighting (IVW) as the main estimation, while MR Pleiotropy, MR Egger, weighted median and other methods were used to detect the heterogeneity of data and whether there was multi validity affecting conclusions.


 Results

Among all insulin related indicators (fasting insulin level, insulin secretion rate, peak insulin response), the insulin secretion rate was selected to have a causal relationship with the occurrence of ovarian cancer (IVW, P < 0.05), that is, the risk of ovarian cancer increased with the decrease of insulin secretion rate. At the same time, we tested the heterogeneity and polymorphism of this indicator, and the results were non-existent, which ensured the accuracy of the analysis results. Reverse causal analysis showed that there was no causal effect between the two (P>0.05).


 Conclusion

The impairment of the insulin secretion rate has a causal effect on the risk of ovarian cancer, which was confirmed by Mendel randomization. This suggests that the human glucose metabolism cycle represented by insulin secretion plays an important role in the pathogenesis of ovarian cancer, which provides a new idea for preventing the release of ovarian cancer.




 Keywords: ovarian cancer, Mendelian randomization, insulin, insulin secretion rate, endocrine marker 

  1 Introduction

Ovarian cancer is a kind of cancer that occurs in female ovarian tissue. There are many pathological subtypes, among which high-grade serous ovarian cancer (1) is the most common. In developed countries, ovarian cancer is the main cause of death among all gynecological cancers (2). Due to the lack of specific signs and symptoms at the early stages of the disease, ovarian cancer is usually found in late stage, with extensive peritoneal (Phase III) or extraperitoneal (Phase IV) spread. Tumor reduction surgery and platinum and taxane drug chemotherapy could make 75% of patients achieve clinical remission. At present, the 5-year survival rate of ovarian cancer patients is roughly less than 30% (3–5). There are many risk factors for ovarian cancer, including age, reproductive history, changeable lifestyle factors, family history and gene mutation (6).

Insulin (7) is the main regulator of glucose, lipid and protein metabolism. When oral glucose load or mixed meal is ingested, plasma glucose concentration increases, and islets of β Cells are stimulated to secrete insulin. Insulin can inhibit the production of endogenous glucose (the main target organ is the liver), stimulate the uptake and storage of glucose by muscle, liver and fat cells, and inhibit the decomposition of fat, leading to a decrease in plasma free fatty acids concentration (8), which helps to inhibit the production of glucose in the liver and increase the uptake of glucose in the muscle, and can relax muscle vessels, which helps to enhance muscle glucose disposal.

The incidence rate of various cancers is higher in patients with insulin secretion disorder (especially in patients with type 2 diabetes). Many studies and observations in the field of overseas studies have confirmed this view. It is reported that among patients with type 2 diabetes, the relative risk of endometrial cancer, liver cancer and pancreatic cancer is more than 2 times, while the relative risk of bladder cancer, breast cancer and colorectal cancer is as high as 1.5 times (9–12). In addition to the increase in incidence rate, the overall mortality rate of diabetes patients when diagnosed with cancer is higher (13) than that of the non-disease group. Systematic reviews (14, 15) could suggest that overweight people have a higher risk of ovarian cancer, and the risk of ovarian cancer increases with obesity. The increase and abnormality of obesity or body mass index often could lead to the disorder of endocrine system in the human body, such as insulin resistance, estrogen level change and other characteristics, which are factors that cannot be ignored in the role of obesity factors in weight related cancer.

Therefore, it is important to understand the hormone specific relationship between metabolism and cancer (16). In this paper, bidirectional mendelian randomization analysis was used to confirm the causal relationship between insulin related characteristics and ovarian cancer risk.


 2 Materials and methods

 2.1 GWAS statistics of insulin-related traits

This study included six insulin related indicators from three studies, including Fasting blood insulin, Fasting blood insulin adjusted for BMI, Insulin secret rate, Peak insulin response, Acute insulin response and Insulin disposition index. The specific description of relevant data can be shown in  Table 1 .

 Table 1 | Description of relevant GWAS data. 



 2.1.1 Fasting blood insulin 

The GWAS data (17) came from Genome wide association studies for fast glucose (FG) and fast insulin (FI), which analyzed the exon array data of 33231 non-diabetes patients of European origin. The data and SNP of fasting insulin came from this study.


 2.1.2 Fasting blood insulin adjusted for BMI

The data of this indicator (18) came from a study of “Genome wide method considering body mass index determines genetic variation affecting fasting blood glucose characteristics and insulin resistance”, which includes 96496 non diabetes patients. The fasting insulin data here were adjusted by body mass index.


 2.1.3 Insulin secretion rate

This study explored the genome-wide association study based on IVGTT’s first phase insulin secretion measurement, which refined the potential physiology of type 2 diabetes variation. Insulin secretion rate (ISR) is the estimated insulin secretion rate (ISR) (19) based on the measured serum C-peptide concentration at 0, 2, 4, 6, 8 and 0, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14, 16 and 19 (FAMILY) minutes. ISEC software (20) is used to calculate the secretion rate according to predefined C-peptide kinetic parameters, including each person’s weight, height, age Gender and clinical status (glucose tolerance and obesity status) were determined in a population-based study (21). The ISR provides an estimate of the rate of insulin secretion before hepatic insulin clearance.


 2.1.4 Peak insulin response

Peak insulin response was measured as peak insulin minus baseline insulin. Determine the peak insulin time point of each study according to the time point when the average insulin value of all individuals is the highest.


 2.1.5 Acute insulin response

The acute insulin response (AIR) was measured as the incremental area under the insulin curve in the first 10 minutes. Or if the 10 minutes measurement is not available, the minimum insulin value at 0, 2, 4, 6 and 8 minutes during the IVGTT using the trapezoidal equation during the first 8 minutes. Incremental insulin was calculated by subtracting fasting insulin levels.


 2.1.6 Insulin disposition index

Insulin disposition index was calculated as the product of AIR, and insulin sensitivity index was calculated by the MINMOD (22), which took into account the level of background insulin resistance.



 2.2 GWAS statistics of ovarian cancer

Through IEU Open GWAS (MR Base) (23) public database(https://gwas.mrcieu.ac.uk/)to retrieve and obtain data on ovarian cancer. The data of ovarian cancer patients are from UK Biobank. According to the data, the latest update is 2021, which includes 9822229 SNPs from 199741 Europeans. The classification of data is binary data, that is, whether ovarian cancer has occurred. The website shows that 1218 patients were included, while 198523 patients were included in the control group.


 2.3 Mendelian randomization statistical analysis

Two-sample bidirectional MR was used to test the causal relationship between insulin-related traits and tumors. In order to determine whether insulin-related traits could be a risk factor for various tumors, we first selected closely related SNPs from ovarian cancers’ GWAS results. In this process, insulin-related traits acted as exposure and ovarian cancer occurs as a result. In order to verify whether ovarian tumors cause insulin-related traits, SNPs related to various tumors are selected as the instrumental variable in the reverse MR analysis process, with ovarian tumors as the exposure, and insulin-related traits as the result.

Three different MR methods, including inverse variance weighted random effects (IVW), MR Egger and weighted median, were used to evaluate heterogeneity and test multiple effects. SNPs and outliers of insulin related traits identified by MR-PRESSO were removed. In the face of Mendelian randomization, IVW was used as the main analysis method, which was widely accepted. The threshold for screening exposure variables was 10^-6. MR Egger (24) was often a test that allows all genetic variations to have pleiotropic effects, but requires pleiotropic effects to be independent of the exposure association between variations. For Mendelian randomization pleiotropy test, MR Egger intercept test and retention analysis were used to further evaluate the level pleiotropy. Cochran’s Q test was implemented in each MR analysis to detect data heterogeneity between exposure and outcome, which was an important indicator affecting the reliability of final results. In the final visualization part, the funnel chart was used to evaluate the possible directional pleiotropy, similar to the evaluation of publication bias in meta-analysis, and also to observe the data distribution. The forest map is used to show the results of each SNP and the final MR, which was a convenient and intuitive method for visualizing the results.

All bidirectional mendelian randomization statistical analysis and data visualization used “TwoSampleMR” (https://github.com/MRCIEU/TwoSampleMR) in R software version 4.1.1. RStudio (https://posit.co/products/open-source/rstudio/) was used as a platform tool for opening and analysis, which was an integrated development environment for R and Python. It included a console, syntax highlighting editor that supports direct code execution, and tools for drawing, history, debugging, and workspace management. Bilateral P value less than 0.05 was considered statistically significant.



 3 Results

Six insulin related indicators, including Fasting blood insulin, Fasting blood insulin adjusted for BMI, Insulin secret rate, Peak insulin response, Acute insulin response and Insulin disposition index, went Two-sample bidirectional MR with ovarian cancer. We conducted a total of 12 statistical tests in 6 groups.

As shown in  Table 2 , we summarize all positive MR results into this table. The insulin secretion rate was statistically significant (IVW, p<0.05).

 Table 2 | Description of MR result. 



On the contrary, the other five insulin related indicators (Fasting blood insulin, Fasting blood insulin adjusted for BMI, Peak insulin response, Acute insulin response and Insulin disposition index) did not show any correlation with the risk of ovarian cancer ( Supplementary Figures S1 - S5 ).

When taking insulin secretion rate as the exposure factor, we found that impaired insulin secretion was associated with an increased risk of ovarian cancer (OR 0.9991305 (0.9984108, 0.9998507), p=0.017968,  Figure 1 ), which was confirmed in the positive MR analysis ( Figure 2 ). There were 9 SNPs related to the above results (rs10830963, rs10983538, rs11135317, rs138478706, rs1779638, rs58858201, rs7756992, rs9425530, rs9479886), and the details were shown in  S-Table 1  of  Supplementary Materials . For the pleiotropy test of MR analysis, no obvious pleiotropy was found (p>0.05,  Table 2 ). The retention analysis of the above results shows that all SNPs are generally stable ( Figure 3 ), and the funnel plot did not show significant heterogeneity ( Supplementary Figure S6 ).

 

Figure 1 | Mendelian randomization results of the association of the insulin secretion rate on ovarian cancer (Forward). 



 

Figure 2 | The pleiotropy test of MR analysis (Forward). 



 

Figure 3 | The retention analysis of the SNPs (Forward). 



However, we still got statistically significant results (IVW, p<0.05) when we performed reverse MR analysis on the insulin secret rate. That was to say, with ovarian cancer as the exposure factor and the insulin secret rate as the outcome variable, we still got the causal relationship of the above two parties (OR 3.092427e-13 (3.816945e-23, 2.505434e-03), p=0.013,  Figure 4 ), which was confirmed in the inversive MR analysis ( Figure 5 ). The above results indicate that ovarian cancer had a causal relationship with human insulin secret rate. In order to test the reliability of the above results, we conducted Cochran’s Q test (p=0.4528141) and pleiotropy test (p=0.6568936). However, these test results indicate that the above results do not have the pleiotropy and heterogeneity of imaging conclusions. There were 10 SNPs related to the above results (rs114858887, rs1358253, rs1687403, rs2143612, rs28678815, rs35486093, rs4443540, rs76264086, rs78231145, rs79693379), and the details were shown in  S-Table 2  of  Supplementary Materials . The retention analysis of the above results showed that all SNPs were generally stable ( Figure 6 ), and the funnel plot did not show significant heterogeneity ( Supplementary Figure S7 ).

 

Figure 4 | Mendelian randomization results of the association of ovarian cancer on the insulin secretion rate (Reverse). 



 

Figure 5 | The pleiotropy test of MR analysis (Reverse). 



 

Figure 6 | The retention analysis of the SNPs (Reverse). 




 4 Discussion

This study is a Bidirectional Mendelian Randomization Study, which used MR to analyze the two-way causal relationship between insulin related traits and the risk of ovarian cancer. We found that the insulin secretion rate has a two-way causal relationship with ovarian cancer, which is rarely reported.

Insulin is an important hormone in mammalian homeostasis regulation, which regulates metabolism together with glucagon antagonism. The insulin secretion rate provides an estimate of the insulin secretion rate before hepatic insulin clearance (25). The main physiological stimulation of insulin secretion is the increase of circulating glucose concentration in the postprandial state. Impaired insulin secretion is often associated with high body mass index, and a large number of statistics have proved the association between overweight and ovarian cancer (15, 26). As mentioned in the introduction of this article, impaired insulin status is associated with the risk or survival of many cancers.

By analyzing the MR results in this paper, we could easily find that impaired insulin secretion was associated with an increased incidence of ovarian cancer. We will analyze the influence of insulin secretion on ovarian cancer from the following aspects. First, from the perspective of insulin and tumor cell energetics, compared with healthy cells, ovarian cancer tumor cells have a huge energy demand to support the abnormal proliferation and metastasis of tumors. Compared with normal human cells, tumor cells tend to change their metabolic mode, such as the transformation of primary glucose utilization pathway from oxidative phosphorylation to glycolysis, namely Warburg effect (27). Insulin also controls systemic and intracellular metabolism through substrate (glucose) distribution (28). However, tumors have changes in PI3K mTOR signaling pathway, and mTOR also changes the availability of glucose in tumor cells by regulating glucose uptake and glycogen decomposition (29). At the same time, anti-tumor drugs targeting systemic glucose homeostasis and tumor growth regulation have also entered the clinical trial stage (30). Second, impaired insulin secretion is associated with glucagon. Hyperinsulinemia is associated with the increased risk of breast cancer (31), endometrial cancer (32), ovarian cancer (33) and prostate cancer (34), and is closely related to the increased mortality of pancreatic cancer and breast cancer (35, 36), and some studies indicate that glucagon increases the overall mortality of cancer (37). However, it should be noted that many studies have pointed out that the postmenopausal serum insulin level is not related or is very weak to ovarian cancer after adjustment and correction (33, 38), which is consistent with the negative results of this study. However, we found that the significant results are insulin secretion rather than simple serum levels. At the same time, there is no denying that insulin and glucagon, which are hormones, are closely related to lipid peroxidation and metabolism (39), fibroblast growth factor receptor-1 (40), and inflammatory cytokines (41), and these factors undoubtedly play a key role in the progress of cancer. Third, the repeated mention of obesity or overweight is undoubtedly related to impaired insulin secretion. Ovarian cancer cells use fat cells as a source of energy for growth and migration (42). At the same time, as metabolic disorders, their internal metabolism affects each other. Because of changes in lifestyle factors, the prevalence of metabolic disorders is increasing year by year worldwide, just as obesity, type II diabetes and metabolic syndrome are all associated with ovarian cancer (43–46). A recent meta-analysis (47) showed that the risk of diabetes and OC was weak but still related, and many studies had many bias or confounding factors. It has also been pointed out that despite normal BMI, people with unhealthy metabolism or central obesity have a higher risk of cancer (48). Fourth, insulin is also related to immunity. Insulin (49) is related to regulating different immune phenotypes and responses, and the expression of insulin receptors on T cells, B cells and macrophages proves this view (50).

At the same time, another study showed that the existence of ovarian cancer was related to insulin secretion. The mechanism involved in this is very complex, because the metabolism of tumor variant fish is very complex. We speculate that the anaerobic glycolysis of tumors occupies the main form of metabolism, and pentose phosphate shunt pathway and its nucleotide products (51) play a certain role in the regulation of insulin secretion. Among them, glucose-6-phosphate dehydrogenase (G6PDH) (52) can explain the impairment of insulin secretion by islet cells through the impairment of NADPH production, and the 6-phosphogluconate dehydrogenase (6PGDH) (53) negative impact is attributed to the accumulation of intermediate metabolites of this pathway, leading to the activation of extracellular regulated kinase (ERK). Currently, it is known that ERK (53) can promote insulin transcription in response to acute signals, but its continuous activation may lead to β Cell dysfunction and apoptosis.

These studies have many defects and deficiencies, as follows: (1) Avoiding the pleiotropy of SNPs selected as instrumental variables is an important principle to ensure the accuracy of MR analysis. Usually, MR Egger intercept and MR-PRESSO methods are used to detect horizontal pleiotropy to reduce bias, but the method is not absolute for detection of pleiotropy. The MR analysis results of this study did not find heterogeneity and level pleiotropy, which proved the robustness of the results, but still could not completely rule out the interference of potential pleiotropy. This limitation is due to the existing analysis methods, and there are also some works (54) exploring other multiple validity testing methods. (2) The Insulin related Trains included in this study may lack some indicators. When selecting indicators, we selected open and common indicators. For the selection of databases, we also selected databases based on the same species, recent time and large number of people. However, this may not fully represent the function and release of insulin. We try to avoid these limitations, but it is undeniable that they may still exist. (3) There is also the race problem in the database. In order to control the same race, we try to select European samples, which will undoubtedly affect the conclusion to be extended to other colored people. (4) The sample size of some indicators may not be enough to avoid bias, which is also caused by database restrictions.


 5 Conclusion

Through the Bidirectional Mendelian Randomization analysis, we obtained the two-way causal relationship between the insulin secret rate and ovarian cancer, that is, the reduction of the insulin secret rate is related to the risk of ovarian cancer, and the occurrence of ovarian cancer also has an impact on the insulin secret rate. When this research needs large sample data research in the real world, we hope to have research to further verify this conclusion.
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Background

Complete resection of invasive pituitary adenoma is usually difficult, resulting in a high recurrence rate. Therefore, it is needed to find potential diagnostic markers and therapeutic targets for invasive pituitary adenoma.



Methods

We collected samples from patients with invasive and non-invasive pituitary adenomas from Beijing Tiantan Hospital for protein extraction and quantitative analysis. We identified differential proteins (DEPs) by differential analysis of the two groups. The intersection of differential proteins related to invasion and epithelial-mesenchymal transition (EMT) in the GeneCards database was identified as EMT-DEPs. The protein network of EMT-DEPs was analyzed using the STRING database and Cytoscape software, and the hub EMT-DEPs were obtained by the MCC algorithm of the cytoHubba plugin. Correlation analysis was used to obtain the interpairing proteins among EMT-DEPs, and core EMT-DEPs were identified based on the number of paired proteins. The Venn program was used to identify the intersection of hub EMT-DEPs and core EMT-DEPs as key EMT-DEPs. Finally, a series of analyses plus experiments were used to verify the correlation of the target protein with invasion and EMT in pituitary adenoma.



Results

Quantitative comparison of proteins between invasive and non-invasive pituitary adenomas indicated 833 differential proteins. The overlaps of EMT-related proteins and differential proteins consisted of 46 EMT-DEPs. There were 6 intersections between the hub EMT-DEPs and core EMT-DEPs. Using quantitative protein data and GSE169498 chip, we found that solute carrier family 2 member 1 (SLC2A1) was our target protein. SLC2A1 was significantly correlated with the invasiveness of pituitary adenoma, and the ROC curve was satisfactory. The functions and pathways of SLC2A1 and paired protein enrichment were closely linked to the EMT. Consistently, SLC2A1 expression was significantly and positively correlated with the expression of classical markers of EMT. The final experiment revealed that SLC2A1 was significantly upregulated in invasive pituitary adenoma.



Conclusion

SLC2A1 is significantly upregulated in invasive pituitary adenoma with satisfactory predictive value. It may regulate EMT. It may be a potential diagnostic marker for invasive pituitary adenoma.





Keywords: pituitary adenomas, invasion, EMT, SLC2A1, biomarker




Introduction

Pituitary adenomas originate from endocrine cells in the adenohypophysis. They are mostly benign; however, some types of pituitary adenoma show unpredictable invasiveness known as invasive pituitary adenomas (1–3). Invasive pituitary adenomas are rare, but they can rapidly progress and invade surrounding tissues. They have a high risk of recurrence and may resist the standard therapy. Therefore, they have been classified as “high-risk” pituitary adenoma by the World Health Organization in 2017 (4, 5). Surgical resection of invasive pituitary adenoma is difficult. Whether it is performed through transsphenoidal or transcranial surgery, it requires the surgeon to make reasonable adjustments or even expand the standard protocol according to the tumor condition. Still, complete removal of the tumor cannot be achieved, which poses a higher risk of recurrence. Therefore, surgical treatment can mainly relieve the symptoms of patients and may temporarily control the disease. Patients usually need to receive radiotherapy, medications, and even chemotherapy after surgery. However, the tumor continues to grow even after all of these modalities (6). In recent years, studies on invasive pituitary adenomas have brought some progresses. It has been suggested that histological features such as Ki 67 ≥ 3%, increased mitosis, and increased p53 expression can be used to predict the invasiveness of pituitary adenomas and to find new therapeutic targets, but their predictive value and accuracy are still controversial (1, 7). Epithelial-mesenchymal transition (EMT) can promote invasion and metastasis by inducing mesenchymal properties, including anti-anoikis properties and the ability to migrate and invade the surrounding tissues (8). We, therefore, sought to explore the molecular markers for the invasiveness of pituitary adenoma, which may regulate EMT.



Materials and methods

Figure 1 shows the workflow of this study.




Figure 1 | The flow chart of this study.





Tissue samples

Tissue samples were obtained from 19 patients who attended the Neurosurgery Department of Beijing Tiantan Hospital for resection of pituitary adenoma. The protocol of this study was approved by the Ethics Committee of Beijing Tiantan Hospital, and all patients signed the informed consent form. Postoperative tissue samples were examined at the Department of Pathology, Beijing Tiantan Hospital, and all histological assessments confirmed pituitary adenoma. Invasive and non-invasive adenomas were identified using imaging and pathology reports. Ten invasive samples were silent corticotroph adenomas, and 9 non-invasive samples were follicle-stimulating hormone (FSH)-secreting adenomas. All postoperative samples were immediately frozen in liquid nitrogen and stored at -80° C in the refrigerator.



Protein extraction and digestion

A total of 19 tissue samples from patients with early-stage pituitary adenomas were lysed with UA buffer (8 M urea in 0.1 M Tris-HCl, pH 8.5), and sonicated on ice (180 W, 1 second on and 2 seconds off, for 99 cycles). The lysate was centrifuged at 14,000 × g for 15 min. The supernatant was collected and quantified using the Bradford method. The protein was lysed by filter-aided sample preparation (FASP) following the protocol described in references (9, 10).



Quantitative proteomic analysis

The peptides used for DDA analysis were pre-fractionated by high-pH reversed-phase chromatography (Hp-RP). Two hundred micrograms of peptides were loaded and separated with a 45-min gradient, pH 10.45. Fractions were collected, and 12 fractions were combined, heat-dried, and stored at -80°C after centrifugation. The LC-MS/MS detection system consisted of a nanoflow high-performance liquid chromatography (HPLC) instrument (Easy-nLC 1000 System; Thermo Fisher, Waltham, MA, USA) coupled to a Q-Exactive HF mass spectrometer (Thermo Fisher). A home-packing column (150-μm inner diameter, ReproSil-Pur C18-AQ, 1.9 μm; Dr. Maisch) with a length of 20 cm was used for peptide separation at 60°C. The flow rate was 600 nL/min over a 90-min gradient (0–8 min, 3–8% B; 8–68 min, 8–20% B; 68–83 min, 20–30% B; 83–84min, 30–90% B; 84–90 min, 90% B). The full MS scan range was 400–1200 Da. MS/MS was operated in the top 20 modes. iRT (Biognosys, Schlieren, Switzerland) was added as an internal standard based on the manufacturer’s instructions. Peptides from 293 cell lysis were used in all experiments. The LC-MS/MS system for the DIA analysis consisted of a nanoflow HPLC (Easy-nLC 1000 System; Thermo Fisher) coupled to a Q-Exactive HF mass spectrometer (Thermo Fisher). The flow rate was 600 nL/min over different gradients. The range of the MS1 survey scan was 400–1200 m/z, followed by 29 MS2 scans of overlapping sequential precursor isolation windows (20 m/z isolation width, 40 m/z isolation width, 50 m/z isolation width, and 1 m/z overlap). The accumulation time was set according to the experimental requirements. The chromatograph peak width was 18 s. iRT was added to ensure calibration on difficult matrices, allowing for detailed quality control. All data were obtained on a 20-cm analytical column. DDA raw data files were searched against the human UniProt database (20190617 with sequences of iRT peptides) using MaxQuant (version 1.6.5.0) with its default settings. The false discovery rate (FDR) was set to 0.01 for both peptides and proteins. The DDA data search results were imported into Spectronaut (version 14) with its default settings. The FDR threshold was set to less than 0.01. The DIA raw data files were directly imported into Spectronaut with its default settings, and the results for protein identification and quantitation were exported using protein and peptide FDRs of less than 0.01.



Differential protein acquisition and enrichment analysis

Quantitative difference analysis was performed using the quantitative protein values. For a two-by-two comparison between invasive group B and non-invasive group A, the mean value of the signals in each group was calculated, from which the ratio between groups was calculated. The comparison was done using the student’s t-test. Proteins that met the following conditions were screened as differentially expressed proteins (DEPs) (1): Ratio between groups >=2 or <=0.5; (2) P-value <0.05. The Volcano plot was drawn using DEPs to show the difference between the groups. In the volcano plot, the vertical axis shows -log10(p-value) and the horizontal axis shows log2(Fold change). Upregulated DEPs with significant fold change and p-value are shown by red dots. Downregulated DEPs are shown by green dots, and other proteins are shown by black dots. Unsupervised hierarchical cluster analysis was performed for DEPs to show the expression of DEPs in each sample in the two groups. Finally, we performed GO (Biological Process, Molecular Function, Cellular Component) enrichment analysis and KEGG pathway enrichment analysis on the DEPs. We performed bioinformatic annotation and analysis at two levels to analyze the functional properties of these proteins and the corresponding signaling pathways to select key proteins for further research.



EMT-related DEPs identification

We screened EMT-related proteins using the GeneCards database (http://www.genecards.org/), which integrates genomic, transcriptomic, proteomic, clinical, and other relevant information related to genes. We collected and collated data from over 100 sites. The screening criteria were correlation score ≥ 3. Then, the Venn program (http://bioinformatics.psb.ugent.be/webtools/Venn/) was used to identify the intersection between EMT-related proteins and DEPs, as EMT-DEPs. To explore the interactions between EMT-DEPs, we entered EMT-DEPs into the STRING database (https://string-db.org/) to obtain the protein interaction network. To find the most important pathways, we performed GO functional annotation and KEGG pathway enrichment analysis of EMT-DEPs using R software to obtain their potential protein functions and key pathways.



Hub EMT-related DEPs

To identify hub proteins in EMT-DEPs. We imported the information on EMT-DEPs interaction into Cytoscape software and screened hub proteins using the cytoHubba plugin. The cytoHubba plugin can predict and explore the key nodes and sub-networks in a given network by several topological algorithms. We calculated the rankings using the MCC algorithm and selected the top 20 EMT-DEPs as the hub EMT-DEPs. The protein interaction network of hub EMT-DEPs was visualized by Cytoscape software to show their potential interactions.



Core EMT-related DEPs

To assess the correlation between EMT-DEPs, we performed a correlation analysis between EMT-DEPs to determine the paired proteins of EMT-DEPs (Cor>0.7, P<0.05). The EMT-related DEPs were ranked by the number of paired proteins, and the top 20 were identified as core EMT-related DEPs. We then used the GeneMANIA database to map the protein network of core EMT-related DEPs and their associated proteins. The GeneMANIA database (http://genemania.org/) was used to generate hypotheses about gene function and to find genomic and proteomic data regarding the function of target proteins.



Analysis and validation of Key EMT-related DEPs

We identified the intersection of hub EMT-related DEPs and core EMT-related DEPs through the Venn online program as the key EMT-related DEPs. The R software was used to analyze the correlation between the quantitative and clinical features of key EMT-related DEPs. The ROC curve was used to evaluate the sensitivity and accuracy of key EMT-related DEPs in predicting the invasion of pituitary adenomas. We also used the GSE169498 gene expression profile to measure clinical correlation. ROC curve analysis was used to assess the efficacy of key EMT-related DEPs expression in predicting the invasive behavior of pituitary adenoma. Wilcoxon signed-rank test was used to evaluate the relationship between the groups. P<0.05 was considered statistically significant.



Potential function and EMT relevance of the target proteins

We identified the target proteins using proteomics analysis and GSE169498 chip. Then, the paired proteins of the target protein were screened (Cor>0.7, P<0.05), and the correlation between them was measured by R software. We input the target protein and paired proteins into the GeneMANIA database to explore the potential functions of the target proteins and related key pathways. GO functional annotation and KEGG pathway enrichment of target and paired proteins were performed to identify the role of the target proteins in the invasion and EMT of pituitary adenomas and their related key pathways. To verify the relevance of the target proteins to EMT, we verified the co-expression of target proteins and classical EMT markers (CDH1, CDH2, DSP, FN1, ITGB6, MMP9, TJP1, and VIM) by quantitative proteomic correlation analysis. We found which markers of EMT are related to target proteins.



Experimental validation of target protein

This study was approved by the Institution Review Board of the Beijing Tiantan Hospital. Between December 2020 and November 2021, specimens were obtained from patients who underwent surgery at Beijing Tiantan Hospital, Beijing, China. Informed consent was obtained from all individuals. All patients provided written informed consent. Each sample was allocated to the invasive or non-invasive group based on the Knosp grade. We collected the clinical information of patients. All samples were fixed in 10% formalin for 24 h, paraffin-embedded, and then cut into 5 μm thick sections. Glass slide was inserted, and the samples were dewaxed and rehydrated. After antigen repair and endogenous peroxidase blocking, goat serum was used to seal. Then, diluted antibodies were added and incubated at 4°C overnight. After washing with PBS, enzyme-labeled IgG polymer was added and incubated at room temperature for 20 min. Finally, diaminobenzidine (DAB) color development solution and hematoxylin were used as the double stain to visualize the antibodies. The negative control was stained with PBS buffer instead of antibodies, and the known positive tissue (breast) was used as positive control. Images were taken using a slide scanner (Leica, Germany). Two experienced neuropathologists independently assessed the samples. The percentage of positive cells was calculated under high magnification (×400).




Results



DEPs and enrichment analysis

In total, 5598 proteins were identified in the quantitative analysis of proteomics data, and 833 DEPs were obtained after differential analysis. Among them, 638 were upregulated and 195 were downregulated in invasive pituitary adenomas (Figure 2A). Cluster analysis of DEPs revealed that there were significantly more upregulated proteins in the invasive group and more downregulated proteins in the non-invasive group (Figure 2B). The GO function and KEGG pathway enrichment analysis of DEPs showed that: the BP functions enriched with DEPs included cellular localization, establishment of localization in cell, and CC functions included organelle membrane, vesicle, MF functions included nucleoside phosphate binding, nucleotide binding, and small-molecule binding (Figure 2C). Metabolic pathways, citrate cycle (TCA cycle), and ECM−receptor interaction were the major enrichment pathways of DEPs (Figure 2D). GSEA enrichment analysis showed that the main pathways affected by DEPs were citrate cycle (TCA cycle), Parkinson’s disease, and carbon metabolism (Figure 2E).




Figure 2 | (A) Volcano map of DEPs; (B) Cluster analysis heat map of DEPs; (C) GO enrichment analysis of DEPs; (D) KEGG enrichment analysis of DEPs; (E) GSEA enrichment analysis of DEPs.





EMT-related DEPs

There were 46 intersections between EMT-related proteins and DEPs in the GeneCards database (Figure 3A). The STRING database visualized potential protein interactions between EMT-DEPs (Figure 3B). Potential GO functions of EMT-DEPs at BP level included: cell junction organization, extracellular structure organization, cell junction assembly, and extracellular matrix organization. Potential GO functions of EMT-DEPs at CC level included: cell−cell junction, membrane raft, membrane microdomain, and membrane region. Potential GO functions of EMT-DEPs at MF level included: cell adhesion molecule binding, protease binding, cadherin binding, and scaffold protein binding (Figure 3C). KEGG pathway enrichment analysis showed that EMT-related DEPs were mainly enriched in human papillomavirus infection, PI3K/Akt signaling pathway, hepatitis C infection, human T−cell leukemia virus 1 infection, chemical carcinogenesis−reactive oxygen species, microRNAs in cancer, and insulin signaling pathway (Figure 3D).




Figure 3 | (A) Intersection of DEPs and EMT-related proteins; (B) Protein interaction network of EMT-DEPs; (C) GO enrichment analysis of EMT-DEPs; (D) KEGG enrichment analysis of EMT-DEPs.





Hub EMT-related DEPs and core EMT-related DEPs

The hub EMT-related DEPs were identified in Cytoscape using the cytoHubba plugin. The MCC scores were ranked. The top 20 positions were CDH1, MMP9, STAT3, TIMP1, S100A4, SOD2, HMOX1, ACTA2, ITGB3, IKBKB, DSP, CLDN4, KRT5, CLDN3, SLC2A1, COL4A1, MAP2K1, ITGA3, LAMC2, and IDH1 (Table 1). Their potential protein interactions are shown in Figure 4A. Based on the pairwise correlation analysis of 46 EMT-related DEPs by R software, the top 20 core EMT-DEPs with the highest number of correlated paired proteins, were FLOT1, FLOT2, CD36, PPP2CB, PTPN12, CA2, COL4A1, NRP1, MCM5, CD82, SLC2A1, CLDN4 CXADR, FAM3C, ITGB3, PRKCI, JAK1, LAMC2, S100A4, and CDC16, respectively (Table 2). The GeneMANIA database exhibits their interactions and related genes (Figure 4B).


Table 1 | Top 20 hub EMT-related DEPs ranked by MCC score.






Figure 4 | (A) Protein interaction network of hub EMT-related DEPs; (B) Interaction network of core EMT-related DEPs and related proteins in the GeneMANIA database; (C) Intersection of the hub EMT-related DEPs and core EMT-related DEPs; (D) Correlation analysis of key EMT-related DEPs expression in proteomics.




Table 2 | Top 20 core EMT-related DEPs based on the number of paired proteins.





Validation of key EMT-related DEPs

Six intersecting key EMT-related DEPs, including SLC2A1, CLDN4, LAMC2, S100A4, ITGB3, and COL4A1, were identified from the hub EMT-related DEPs and core EMT-related DEPs using Venn online program (Figure 4C). A significant positive correlation was found between all of them according to the quantitative protein co-expression correlation (Figure 4D, cor>0.3). SLC2A1, CLDN4, LAMC2, S100A4, and ITGB3 were significantly correlated with the invasiveness of pituitary adenoma (P<0.05, Figures 5A–E). COL4A1 was not significantly correlated with the invasiveness of pituitary adenoma (P>0.05, Figure 5F). The areas under the ROC curves of the six intersection proteins for predicting invasion were greater than 0.7 (Figures 5G–L). SLC2A1 was significantly associated with the invasiveness of pituitary adenoma in the GSE169498 microarray. Consistent with the results of protein quantification (P<0.05, Figure 6A), SLC2A1 was significantly upregulated in the invasive group. Contrary to the results of proteomic quantification, COL4A1 was downregulated in invasive pituitary adenomas (P<0.05, Figure 6F). CLDN4, LAMC2, S100A4, and ITGB3 were not significantly associated with the invasiveness of pituitary adenoma (P>0.05, Figures 6B–E). The area under the ROC curve for predicting invasion by SLC2A1 was 0.697 (Figure 6G), and the AUC values for the remaining genes were <0.65 (Figures 6H–L).




Figure 5 | Correlation analysis between key EMT-related DEPs expression and invasiveness in proteomics: (A) SLC2A1; (B) CLDN4; (C) LAMC2; (D) S100A4; (E) ITGB3; (F) COL4A1. ROC curve of key EMT-related DEPs predicting invasiveness in proteomics: (G) SLC2A1; (H) CLDN4; (I) LAMC2; (J) S100A4; (K) ITGB3; (L) COL4A1.






Figure 6 | Correlation analysis of Key EMT-DEPs expression and invasiveness in GSE169498: (A) SLC2A1; (B) CLDN4; (C) LAMC2; (D) S100A4; (E) ITGB3; (F) COL4A1. ROC curve of Key EMT-DEPs predicting invasivity in GSE169498: (G) SLC2A1; (H) CLDN4; (I) LAMC2; (J) S100A4; (K) ITGB3; (L) COL4A1.





Target protein identification

As SLC2A1 was similarly correlated with invasion in proteomics and GSE169498 microarrays, it may be a potential marker for invasion in pituitary adenoma. We demonstrated the co-expression correlation of SLC2A1 with its paired proteins (CA2, MCM5, NRP1, CD82, COL4A1, FLOT1, FLOT2, PTPN12, and CD36) (Figure 7A). Because of their high correlation, we mapped the protein network of SLC2A1 with its paired proteins. SLC2A1 and its paired proteins were related to GRIN2B, GRIN1, KIF9, SLC26A6, PGF, SCARB1, DISP3, GRIN2A, SCARB2, DXO, ARG1, DMTN, ANKRD17, SESN3, SNX27, TEX10, COL16A1, ZFP2, RBM19, and BCAR1 (Figure 7B). GO and KEGG enrichment analysis showed that SLC2A1 and its paired proteins (CA2, MCM5, NRP1, CD82, COL4A1, FLOT1, FLOT2, PTPN12, and CD36) were mainly enriched in positive regulation of cell adhesion, positive regulation of NF−kappa B transcription factor activity, regulation of protein binding (BP function), basolateral plasma membrane, membrane raft, membrane microdomain, membrane region, cell−cell contact zone (CC function), growth factor binding, ionotropic glutamate receptor binding, and glutamate receptor binding (MF function) (Figure 7C). Their main enriched pathways included adipocytokine signaling pathway, ECM−receptor interaction, bile secretion, and insulin resistance (Figure 7D).




Figure 7 | (A) Expression correlation analysis of SLC2A1 and its paired proteins in proteomics; (B) Protein interaction network of SLC2A1 and its paired proteins in the GeneMANIA database; (C) GO enrichment analysis of SLC2A1 and its paired proteins; (D) KEGG enrichment analysis of SLC2A1 and its paired proteins.





Target protein with EMT

We analyzed the key factors affecting the association of SLC2A1 with EMT. We performed co-expression correlation analysis between SLC2A1 and classical EMT markers (CDH1, CDH2, DSP, FN1, ITGB6, MMP9, TJP1, and VIM) using proteomic quantification. We found a significant positive expression correlation of SLC2A1 with CDH2, DSP, FN1, ITGB6, and TJP1 (Cor>0.3, P<0.05, Figures 8B–E, G). In contrast, there was no significant correlation between SLC2A1 and CDH1, MMP9, or VIM (P>0.05, Figures 8A, F, H).




Figure 8 | Correlation between SLC2A1 expression and EMT markers in proteomics: (A) CDH1; (B) CDH2; (C) DSP; (D) FN1; (E) ITGB6; (F) MMP9; (G) TJP1; (H) VIM.





Experimental validation of the target protein

We used immunohistochemical staining to detect SLC2A1 expression in non-invasive and invasive pituitary adenomas. The results showed that SLC2A1 was mainly expressed in the cytoplasm. SLC2A1 expression was significantly higher in invasive pituitary adenomas than in non-invasive pituitary adenomas, the difference was statistically significant (P<0.05) (Figure 9). This was consistent with our quantitative proteomics and GSE169498 analysis, suggesting that SLC2A1 may be a potential biomarker of invasion for pituitary adenoma.




Figure 9 | Immunohistochemical staining of SLC2A1 in non-invasive and invasive pituitary adenomas.






Discussion

Invasive pituitary adenomas usually invade the surrounding normal tissues, which complicates surgical resection and increases the risk of recurrence. Therefore, patients often need hormone therapy, radiotherapy, and chemotherapy after surgery (11, 12). The entire process requires multidisciplinary cooperation between endocrinologists, neurosurgeons, radiation therapists, and oncologists. Exploring the underlying mechanisms involved in the development, invasion, and metastasis of pituitary adenoma can help prevent tumor progression. EMT is crucial for tumor invasion and metastasis. It has been shown that EMT may be associated with the invasiveness of pituitary adenomas; thus, it is necessary to identify the EMT markers associated with invasion in pituitary adenomas. Using quantitative and differential proteomics analysis, we identified proteins associated with the invasion of pituitary adenomas. We combined them with EMT-associated proteins and screened key aggression markers significantly associated with EMT in pituitary adenomas. Finally, we identified SLC2A1 as the target biomarker. Then, the linkage between SLC2A1 and EMT was unveiled by enrichment analysis and EMT marker correlation analysis. In addition, the differential expression of SLC2A1 in invasive pituitary adenomas was experimentally verified.

SLC2A1 (also known as GLUT1, Glucose transporter 1) is a rate-limiting factor for glucose uptake, which contributes to insulin-independent glucose uptake. The unlimited capacity of tumor cells for growth and proliferation requires an adequate amount of energy; therefore, SLC2A1 is upregulated in many tumors (13–15). It has been found that GLUT1 can promote cancer cell proliferation, invasion, and migration. High expression of GLUT1 is associated with poor prognosis in many solid tumors (14). In our study, SLC2A1 was significantly overexpressed in invasive pituitary adenomas, but the exact mechanism by which SLC2A1 promotes the progression of pituitary adenomas remains unknown. This may be due to the presence of a hypoxic and acidic microenvironment in solid tumors, which inhibits oxidative phosphorylation and enhances aerobic glycolysis, thereby reprogramming energy metabolism in tumor cells (16). Glucose is the main source of energy for metabolism. Tumor cells can survive and proliferate by reprogramming their metabolism (17, 18). The main features of this metabolism reprogramming are increased glucose uptake and the conversion of glucose to lactate. Tumor cells increase glucose consumption and convert glucose to lactate even in the presence of a sufficient amount of oxygen. Tumor cells prefer anaerobic glycolysis over mitochondrial oxidative phosphorylation (OXPHOS), a phenomenon known as the Warburg effect or aerobic glycolysis (19, 20). Compared to OXPHOS, glycolysis produces ATP faster but less efficiently. This inefficiency can be compensated by increased glucose uptake through transmembrane glucose transporter protein (GLUT) (21). Therefore, tumor cells usually exhibit elevated glucose metabolism, and increased glucose uptake (22, 23), which can support rapid ATP production and tumor progression.

It has been suggested that GLUTs may promote cancer development by activating NF-κB, PI3K/Akt pathway, and wild-type p53 protein expression (24–28). Fourteen members of the GLUT protein family have been identified in humans, of which GLUT1, GLUT3, and GLUT4 have the highest affinity for glucose (20, 29). GLUT1 overexpression in tumor cells can significantly contribute to tumor growth through the Warburg effect. SLC2A1 inhibits oxidative phosphorylation and enhances cellular glycolysis, helping tumor cells to adapt to their hypoxic microenvironment (18, 30). Increased glycolysis and overproduction of lactic acid in tumor cells decrease pH in the tumor microenvironment. The acidic microenvironment kills the surrounding normal cells, and leads to the release of protein hydrolases and consequent remodeling of extracellular matrix (ECM) (31–33), and a significant depletion of intercellular adhesion proteins (e.g. E-calcine mucin, E-CAD) (34). Our study showed that SLC2A1 may affect the positive regulation of cell adhesion, regulation of protein binding, basolateral plasma membrane, cell-cell contact zone, growth factor binding, ECM-receptor interaction, and other processes. All of these may promote epithelial-to-mesenchymal transition (EMT), thereby promoting cancer cell migration and invasion (35). In addition, lower amounts of reactive oxygen species (ROS) are produced due to reduced OXPHOS and oxygen consumption, which may also promote cancer cell proliferation and prevent apoptosis (36).

In addition, GLUT1 can induce epithelial-mesenchymal transition (EMT) by regulating matrix metalloproteinase (MMP) activity to enhance cell invasion and metastasis (37, 38). Matrix metalloproteinases are critical for invasion and metastasis of malignant tumor cells. Among them, MMP-2 and MMP-9 are associated with the malignant phenotype because of their ability to degrade type IV collagen in the basement membrane (39–41). In our quantitative proteomic correlation analysis, there was a significant positive correlation between SLC2A1 expression and CDH2 (N-cad), DSP, FN1, ITGB6, and TJP1, but there was no significant correlation with CDH1 (E-cad), MMP9, and VIM expression. During EMT, epithelial cells acquire mesenchymal phenotype. After EMT, epithelial cells lose their intercellular adhesion and polarity (42, 43). Thus, EMT enables tumor cells to leave the primary tissue and accelerates distant metastasis. EMT allows tumor cells to invade the surrounding tissues and eventually metastasize to distant sites (44). TWIST family bHLH transcription factor 1 (TWIST1) is one of the basic regulators of EMT. It is a proto-oncogene regulated by AKT signaling (45, 46). TWIST1 enhances glucose uptake by upregulating GLUT1, thereby reprogramming glucose metabolism in tumor cells (46, 47). Li et al. found that GLUT1 overexpression is associated with increased glucose uptake during EMT. Herein, Zhang et al. demonstrated that EMT was accompanied by upregulation of GLUT1 in an osteosarcoma cell line, and EMT was significantly inhibited after GLUT1 knockdown (48). GULT1 was positively correlated with EMT-related proteins, Vim and N-cad, and negatively correlated with E-cad during laryngeal cancer cell invasion and metastasis (49). Similar findings were reported by Mayer et al. (50). In summary, we suggest that GLUT1 overexpression may induce EMT, thereby promoting invasion and metastasis in pituitary adenomas.



Conclusion

We performed a quantitative proteomic comparison between invasive and non-invasive pituitary adenomas, using a series of analytical approaches to identify DEPs most relevant to EMT and pituitary adenomas invasiveness. Ultimately, we identified SLC2A1 as an EMT-related DEP. Proteomics data and experiments verified that SLC2A1 was significantly upregulated in invasive pituitary adenomas. The analysis also showed that SLC2A1 and its paired proteins may affect ECM-receptor interaction. There was a positive co-expression correlation between SLC2A1 and EMT-related markers. In conclusion, SLC2A1 expression is associated with the invasiveness of pituitary adenoma. SLC2A1 may regulate EMT. SLC2A1 is a potential biomarker and therapeutic target for invasion of pituitary adenomas. These findings can guide future studies on invasive pituitary adenomas and provides a theoretical basis for clinical practice. We will continue to explore the mechanisms related to the invasion and progression of pituitary adenoma.
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Background

Osteosarcoma is the most common primary bone tumor, its high incidence of metastasis and poor prognosis have led to a great deal of concern for osteosarcoma. In many cancer types, metabolic processes are important for tumor growth progression, so interfering with the metabolic processes of osteosarcoma may be a therapeutic option to stall osteosarcoma progression. A key mechanism of how metabolic processes contribute to the growth and survival of various cancers, including osteosarcoma, is their ability to support tumor cell metabolism. Research related to this field is a direction of great importance and potential. However, to our knowledge, no bibliometric studies related to this field have been published, and we will fill this research gap.





Methods

Publications were retrieved on January 1, 2023 from the 1990-2022 Science Citation Index of the Web of Science Core Collection. The Bibliometrix package in R software, VOSviewer and CiteSpace software were used to analyze our research directions and to visualize global trends and hotspots in osteosarcoma and metabolism related research.





Results

Based on the search strategy, 833 articles were finally filtered. In this area of research related to osteosarcoma metabolism, we found that China, the United States and Japan are the top 3 countries in terms of number of articles published, and the journals and institutions that have published the most research in this area are Journal of bone and mineral research, Shanghai Jiao Tong University. In addition, Baldini, Nicola, Reddy, Gs and Avnet, Sofia are the top three authors in terms of number of articles published in studies related to this field. The most popular keywords related to the field in the last 30 years are “metabolism” and “expression”, which will guide the possible future directions of the field.





Conclusion

We used Bibliometrix, VOSviewer, and Citespace to visualize and bibliometrically analyze the current status and possible future hotspots of research in the field of osteosarcoma metabolism. Possible future hotspots in this field may focus on the related terms “metabolism”, “expression”, and “migraation”.





Keywords: osteosarcoma, metabolism, bibliometrics, visualized study, trends





Introduction

Abnormal metabolism is the main feature of cancer. Abnormal cancer metabolism, changes in the anabolic pathways of certain substances such as lipid metabolism, glutamine metabolism and glucose metabolism plays a crucial role in tumorigenesis, development and metastasis (1–6).The abnormal metabolism of cancer cells is the result of genetic mutations, and more importantly, it can also directly affect the signaling of tumor cells and the responses made by the final cells (7). In recent years there has been an increasing interest in the field of cancer metabolism in many basic experiments and clinical trials. Researchers are aiming to determine whether cancer development or progression can be halted by curbing the metabolic changes in cancer. Metabolism is also important in the development, progression and metastasis of osteosarcoma.

Osteosarcoma (OS) is the most common malignant bone tumor, occurring in children and adolescents, with an incidence of less than 5 per million (8, 9). Although treatment for OS includes a variety of treatments, including surgical resection and chemotherapy, overall survival remains poor (10). One of the main reasons for the poor prognosis is that the metabolic process of osteosarcoma is not well understood, and the development, progression, or metastasis of osteosarcoma is not well prevented. development or metastasis.

Bibliometrics is an emerging approach in recent years to provide an in-depth scientific qualitative and quantitative analysis and visualization of the published literature in a specific research area, which can provide a better and clearer understanding of the current status and future trends of a research area (11, 12).Unlike previous traditional systematic assessments, bibliometric analyses focus on author collaboration networks and national regions of the literature, and on the interconnectedness of different research institutions and individual journals publishing in the field (13).To the best of our knowledge, there are no bibliometric studies on the metabolism-related aspects of osteosarcoma research to date. Bibliometrics has been used in several disciplines, such as digestive (14), neurological (15), and cancer systems (16). Therefore, the purpose of this study was to provide an in-depth analysis and visualization of research on osteosarcoma metabolism from 1990 to 2022, as well as to assess the current state of research and future trends and hot spots in this area of osteosarcoma metabolism.





Methods and materials




Data collection and retrieval process

We searched the Web of Science (WoS) systematically for the period from January 1, 1990 to December 20, 2022. The WoS contains a huge number of journal categories and is the most frequently read database (17).Compared to other databases, the WoS database is more comprehensive, clearer, and broader (18),and is the most suitable database for bibliometric research (19–21).We also downloaded the data on January 1, 2023. Search terms included: TS = (osteosarcoma) and TS = (metabolism). After careful and multiple screening, only theses and review articles were retained, we removed literature that was not relevant to our study topic and restricted the language type to English only, extracted and saved in txt format, where these files were plain text files with full records and cited references retained for better visualization and bibliometric analysis of our study. Figure 1 can better demonstrate our process of screening the literature.




Figure 1 | Diagram of the process of screening literature.



The study did not require the consent of the Ethical Medical Council.





Presentation of the software and its tools for visualization and bibliometrics to be used in this study

VOSviewer (22)and CiteSpace (23) can display the collaborative network relationships and keywords between different authors, countries, and institutions of the published literature in a certain research area. In the results presented by the CiteSpace software, each point in the graph represents an element, which can be an author, a country, an institution or a keyword. The lines between the points represent the strength of their relevance or the frequency of collaboration and relationships (23, 24). The sets of elements in different kinds of colors indicate different clusters (25).

In addition, R language software (26) is required, of which the Bibliometrix R package provides a quantitative tool for bibliometric analysis studies.






Results




Information on published literature on research in this field of osteosarcoma metabolism

From the results of integrating all the published literature collected in the field of osteosarcoma metabolism research, we found a total of 833 studies, 404 journals, 5,032 authors shooting research in the field of osteosarcoma metabolism over a 30-year period from 1990 to 2022, after screening, and an additional 1,164 institutions and 56 countries were counted. A total of 37,370 articles from 4,232 journals were cited in publications in the field of osteosarcoma metabolism.





Analysis of the number of articles published in the field of osteosarcoma metabolism by country and region

Fifty-six countries have contributed to the study of Ewing sarcoma, including 261 studies from China and 207 from the United States, whose average citation rate is 48.28. The top 3-5 countries publishing literature related to this field are Japan, Italy and Germany. Canada has only 33 published papers, but Canada leads in terms of the average number of citations with 78.94, which may also indicate the higher recognition of Canadian papers. The 10 countries with the highest number of publications in this area of osteosarcoma metabolism are listed in Table 1.


Table 1 | Top 10 countries with the highest number of articles published in the field of osteosarcoma metabolism.



In addition, as can be seen from the line graph in Figure 2, the volume of papers in the field of osteosarcoma metabolism in the cluster with the trend line shows an overall steady upward trend in the volume of papers in the field related to osteosarcoma metabolism.




Figure 2 | Trends in the number of articles published over time in the field of osteosarcoma metabolism.







Number of articles published in different journals in the field of osteosarcoma metabolism

According to the analysis of the field of osteosarcoma metabolism research by VOSViewer software, it was found that “Journal of bone and mineral research” was the most published journal in this field with 23 publications and a total of 1715 citations. In addition, the journal Bone had the highest average number of citations with 93.54, indicating that the average quality of publications in this field in this journal is high. We found that these journals are mostly related to bone, tumor or endocrine and metabolism. With an impact factor of 6.390, the journal “ Journal of bone and mineral research “ is an excellent Journal Citation Reports (JCR) Division 1 journal with a high rating in the industry. Table 2 shows the top 10 journals in terms of the number of articles published on osteosarcoma metabolism-related research content. In addition, Figure 3A shows the H-index of the top 10 journals in the field of osteosarcoma metabolism in terms of the number of published articles between 1990 and 2022, and Figure 3B shows very clearly the trend of the top journals in terms of the number of articles published in the field over the recent years.


Table 2 | Top 10 journals published in the field of osteosarcoma metabolism.






Figure 3 | Trends and H-index of the top 10 journals in terms of number of articles published. (A, B) shows the H-index of the journals in this field, and the trend of the number of articles published in the journals in this field over time, respectively.





Analysis of the authors of published literature in the field of osteosarcoma metabolism

According to Price Law, m=0.749*√nmax=2.247(nmax=9), then authors with more than or equal to 3 publications are defined as core authors in this field, with 101 individuals, and the details of the top 10 authors in terms of number of publications are shown in Table 3. Among them, we found that the studies published by Baldini, Nicola, the number one author in the field of osteosarcoma metabolism, are very well fitted to analyze the role and impact of multiple substances such as stem cells or acidosis in osteosarcoma metabolism (27, 28). He has published a total of nine papers related to the field, with a total of 248 citations and an average citation count of 27.56. In addition, Reddy, Gs, who tied for first place in terms of number of publications, focused on the relationship between osteosarcoma and vitamin metabolism (29).


Table 3 | The top 10 authors in terms of number of publications.





Analysis of the different bodies of published literature in the field of osteosarcoma metabolism

The results presented by VOSviewer software show that Shanghai Jiao Tong University is the first in the world in terms of the number of publications in this field of research, with 28 articles on osteosarcoma metabolism and a total of 764 citations. In addition, University of Bologna and Zhejiang University ranked second and third, respectively, in the number of institutional publications in this field. Table 4 shows information on the top 10 institutions worldwide in terms of the number of articles published in this field.


Table 4 | Top 10 institutions with published articles in the field of osteosarcoma metabolism.





Collaborations between authors in the field of osteosarcoma metabolism from 1990 to 2022 were visualized and analyzed using VOSviewer software

We used VOSviewer software to analyze the published literature on research related to osteosarcoma metabolism and found that a total of 5032 authors were involved in research on osteosarcoma metabolism, and we visualized the collaborative relationship graph of 101 authors who published more than 3 studies in this field, as shown in Figure 4. from Figure 4, it can be seen that in this field of research on osteosarcoma metabolism, the global collaborative This is one of the values of our study. With closer collaboration between researchers in this field on a global scale in the future, it is bound to give the field a better life and future value. Figures 4A-C are the connection network among authors, the graph of authors’ hotness over time, and the graph of authors’ density, respectively.




Figure 4 | Collaboration chart of authors in the field (they have published more than 3 studies in the field). (A-C) are the connection network among authors, the graph of authors’ hotness over time, and the graph of authors’ density, respectively.





A visual analysis of global institutional partnerships in the field of osteosarcoma metabolism from 1990 to 2022 was performed using VOSviewer software

From Table 4 in the previous paper, we have also found that Shanghai Jiao Tong University is the first in the number of articles published in this field, and Figure 5 scientific research clearly shows that this institution has close cooperation with many other institutions. But it is more interesting to note that the top two institutions in this field do not have more obvious collaborative relationships, which is also worthy of our consideration. Figures 5A-C are the network of connections between institutions, the graph of author’s hotness over time, and the graph of author’s density, respectively.




Figure 5 | Global partnerships between institutions in the field of osteosarcoma metabolism. (A-C) are the network of connections between institutions, the graph of author’s hotness over time, and the graph of author’s density, respectively.





A visual analysis of global country and regional collaborations in the field of osteosarcoma metabolism from 1990 to 2022

In the past 30 years, a total of 56 countries or regions worldwide have been involved in this research area of osteosarcoma metabolism, and it is clear from Figure 6 that there is still close national cooperation in this area. A total of 30 countries or regions have published more than 5 relevant studies in this area, and Figure 6 visualizes the national and regional collaborations. From the map of national and regional collaborations of published literature in the field of osteosarcoma metabolism-related research shown in Figure 6, it can be observed that the field is radiating to other countries with China and the United States as the center. Figures 6A-C are the network of connections between countries or regions, the graph of author’s hotness over time, and the graph of author’s density, respectively. In addition, we have used the Bibliometrix package in R to perform another visual and clear geographic visualization of the field of osteosarcoma metabolism, as seen in Figure 7, which differs from Figure 6 in that the patterns of the two diagrams allow for different presentations of the global collaborations in the field.




Figure 6 | National and regional collaborations in the field of osteosarcoma metabolism. (A-C) are the network of connections between countries or regions, the graph of author’s hotness over time, and the graph of author’s density, respectively.






Figure 7 | National and regional collaborations in the field of osteosarcoma metabolism as shown by the Bibliometrix package using R language software.





Analysis of hot spots and possible future directions in the field of osteosarcoma metabolism research

Co-citation is defined as a network relationship in which at least one article appears to be cited for reference at the same time. One of these clusters is formed when a group of articles on similar topics are frequently cited together (30). Analysis of co-cited literature in the field of osteosarcoma metabolism. From the analysis of Table 5 we found that “Osteosarcoma: Current Treatment and a Collaborative Pathway to Success” is the most cited article when it comes to published studies in the field of osteosarcoma metabolism. In addition, the top 10 cited articles in this field are shown in Table 5.


Table 5 | Top 10 most cited references in common.





Analysis of keywords in the field of osteosarcoma metabolism

The number and frequency of keyword occurrences in a given time frame is an important way to assess the current and future trends of a research field. Figures 8A, Figure 8D show the most frequently occurring keywords in the research field of osteosarcoma metabolism for the period 1990 to 2022, where the size can indicate their importance and frequency of use in the field. In addition, Figure 9 shows the visualization of keywords using VOSviewer software, a network diagram that can clearly visualize the heat and trends of keywords. Figure 8B shows the results of the keywords in this field over the past 30 years with the change of years, from which we can find that the terms “metabolism” and “expression” have grown explosively, which also reflects the graph shows the current and possible future directions of the field. Figure 8C shows the top 10 keywords in this field. Figures 8A-D are the keyword percentage, keyword trend graph over time, keyword hotness and intensity, and keyword tree graph, respectively. Figures 9A-C are the connection network among keywords, the graph of keywords’ hotness over time, and the graph of keywords’ density, respectively.




Figure 8 | Analysis of keywords in the field of osteosarcoma metabolism research. (A-D) are the keyword percentage, keyword trend graph over time, keyword hotness and intensity, and keyword tree graph, respectively.






Figure 9 | Collaborative network diagram of keywords in the field of osteosarcoma metabolism research. (A-C) are the connection network among keywords, the graph of keywords’ hotness over time, and the graph of keywords’ density, respectively.





Analysis of the burgeoning word in the field of osteosarcoma metabolism research from 1990 to 2022

A unique feature of CiteSpace is that it can show the sudden explosion of terms in a certain research area at certain time periods to reflect the possible hot spots and trends at each time period. We used this software to analyze the words that broke out in the field of osteosarcoma metabolism, which is shown in Figure 10. The red color in the line following each outbreak term indicates its sudden outbreak during that time period.




Figure 10 | The top 25 highest intensity of keywords in the field of osteosarcoma metabolism research, i.e. outbreak words.






Discussion

We have done considerable research analysis work to deeply analyze and visualize the authors, country regions, and journals of articles published in the field of research related to osteosarcoma metabolism between January 1, 1990 and December 20, 2022. Based on this, we tried to show the current status of research in this field and possible future hotspots and trends, contributing to the development of the field and further value creation. We used Citespace, VOSviewer and other software to make a visual analysis of the last 30 years of research in this field, we found that there are 833 articles in this field, of which 5 of the top 10 published institutions are Chinese universities, but the most cited institution is the University of Bologna. China is the most cited country in the field, while the United States is the most cited overall and Canada is the number one cited on average.

In terms of authors, we found that in addition to the previously described, Baldini, nicola also studied the relationship between osteosarcoma cell secretion and metabolism and nanoparticles (31) and also Hall, ih mainly studied some elements of multiple drugs in the field of osteosarcoma metabolism studies, such as in vitro studies of osteosarcoma cells (32) and anti-tumor studies of compounds (33–35).

From the results of our analysis, China and the United States are the absolute centers of research in the field of osteosarcoma metabolism, with 470 publications from these two countries, accounting for about half of the global number of publications in this field.

The keywords found in the results are “metabolism”, “expression”, “cancer”, “osteosarcoma”, and “growth”. and “growth” are the words that appear very frequently. These words also indicate roughly the hottest research directions in the field between 1990 and 2022.

In addition, we analyzed the outbreak terms that have emerged in the field over the past 30 years, a method unique to Citespace software. It is a term that mainly reflects whether there are significant changes in a research field during a specific period of time, and can indicate hot spots and future trends for researchers. In the field of osteosarcoma metabolism research, we found that the main outbreak words in recent years are “cancer cell”, “mesenchymal stem cell”, “ migration”, “cancer”, and “signaling pathway”, which will mostly emerge and explode in 2017-2022. This can also predict that the research field in osteosarcoma metabolism may revolve around these hot spots in the coming years.

Our study is the first bibliometric analysis and visualization of this research area of osteosarcoma metabolism. Of course, our bibliometric’s have limitations inherent to this type of study. It is difficult to achieve simultaneous use of multiple databases in a bibliometric study, so we used only the WoS database, but considering that the WoS database is the most widely used, recognized, and covered database in bibliometrics (36, 37), the results generated reflect the overall trend.



Conclusion

We conducted a bibliometric study and visualization of research in the field of osteosarcoma metabolism from 1990 to 2022 using several software such as VOSviewer and Citespace. From the results of our presentation, it is clear that metabolic research in the field of osteosarcoma is slowly becoming a hot direction in the field of osteosarcoma research with good prospects. baldini, nicola, Reddy, Gs, and Avnet, Sofia are the three authors with the highest number of publications in this field. China, USA and Japan are the three countries with the highest number of publications in this field. Shanghai Jiao Tong University, University of Bologna and Zhejiang University are the top 3 academic institutions in terms of number of publications. mesenchymal stem cell”, “migration”, “cancer”, and “signaling pathway” are the potential research hotspots in this field in recent years and in the future. This study is the first review of nearly three decades of research on relevant aspects of osteosarcoma metabolism through bibliometric analysis and provides a reference for future research.
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Purpose

The aim of this study was to established a dynamic nomogram for assessing the risk of bone metastasis in patients with thyroid cancer (TC) and assist physicians to make accurate clinical decisions.





Methods

The clinical data of patients with TC admitted to the First Affiliated hospital of Nanchang University from January 2006 to November 2016 were included in this study. Demographic and clinicopathological parameters of all patients at primary diagnosis were analyzed. Univariate and multivariate logistic regression analysis was applied to build a predictive model incorporating parameters. The discrimination, calibration, and clinical usefulness of the nomogram were evaluated using the C-index, ROC curve, calibration plot, and decision curve analysis. Internal validation was evaluated using the bootstrapping method.





Results

A total of 565 patients were enrolled in this study, of whom 25 (4.21%) developed bone metastases. Based on logistic regression analysis, age (OR=1.040, P=0.019), hemoglobin (HB) (OR=0.947, P<0.001) and alkaline phosphatase (ALP) (OR=1.006, P=0.002) levels were used to construct the nomogram. The model exhibited good discrimination, with a C-index of 0.825 and good calibration. A C-index value of 0.815 was achieved on interval validation analysis. Decision curve analysis showed that the nomogram was clinically useful when intervention was decided at a bone metastases possibility threshold of 1%.





Conclusions

This dynamic nomogram, with relatively good accuracy, incorporating age, HB, and ALP, could be conveniently used to facilitate the prediction of bone metastasis risk in patients with TC.
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Introduction

Thyroid cancer (TC) is an uncommon endocrine cancer that accounts for approximately 1% of all new malignancies, roughly 0 - 5% of cancers in men and 1 - 5% of cancers in women (1–3). However, the incidence of thyroid cancer has been increasing for more decades (4). In the United States, the incidence of thyroid cancer tripled from 4.5 per 100,000 population in 1974 to 14.4 in 2013 (5). Differentiated thyroid cancer (DTC) of low malignancy accounted for the highest proportion of thyroid cancer (90%), including papillary carcinoma (70-75%) and follicular carcinoma (15-20%) (6). Undifferentiated carcinomas, which are anaplastic malignancies, accounts for less than 5% (6, 7). Therefore, the prognosis of patients with thyroid cancer is generally good, with a 10-year survival rate of 80-95% (8). Distant metastasis is an important risk factor for patients with thyroid cancer. Compared with simple DTC patients, the 10-year survival rate of patients with distant metastasis is decreased by about 50% (3, 8). Bone is the third most common metastasis site in patients with TC, occurring in 2-13% of DTC patients (9–11) Compared with other distant metastases, bone metastases cause bone pain, pathological fractures and spinal cord compression, which significantly impaired their quality of life (12). Early diagnosis and intervention in such patients was important role for increasing patient survival rates (13, 14).

Bone scintigraphy and other nuclear studies, such as FDG-PET and SPECT, have high sensitivity and specificity for the early detection of bone metastases (15). However, their use is often limited due to high cost and radiation damage to patients (16). Thus, it is of great significance to develop a simple and feasible new method for early prediction of thyroid cancer bone metastasis. Nomograms have proven useful as models for predicting the occurrence of clinical events, and can allow visualization of incidence (17). In this study, we aimed to developed a valid nomogram model for assessing the risk of bone metastases in patients with TC to assist physicians in making accurate clinical decision.





Materials and methods




Patient information

This study was approved by the Ethics Committee of the First Affiliated Hospital of Nanchang University, and all participants signed written informed consent form. From January 2006 to November 2016, patients newly diagnosed with TC in our hospital were included in this study. All diagnoses were confirmed by needle biopsy or open surgical biopsy. The exclusion criteria were as follows: (1) Patients with other primary malignancies; (2) Patients with renal and/or liver insufficiency; (3) Patients with bone metabolic disorders; (4) Patients with significant hematological disease; (5) Missing critical information. The detailed screening process is shown in Figure 1.




Figure 1 | The study flow chart of case screening.



Bone scintigraphy was used to identify possible bone metastases in patients. If necessary, magnetic resonance imaging and local computed tomography were conducted to confirm possible diagnoses of bone metastases.





Data collection

Demographic and clinicopathological parameters of all patients at primary diagnosis (before receiving clinical treatment) were collected, including age, serum concentrations of calcium, hemoglobin (HB), free triiodothyronine, free thyroxine 4, thyroid stimulating hormone, alkaline phosphatase (ALP), and common tumor markers (carcinoembryonic antigen, alpha fetoprotein, cancer antigen-125 (CA125), CA153, and CA199). Correlations between clinicopathological parameters and bone metastases were analyzed in patients with TC.





Statistical analysis

All statistical analyses were performed using SPSS (version 26) and R (version 3.6.3) software. Qualitative variables were analyzed by Chi-square test, and quantitative variables were analyzed by Student’s t-test. Univariate analyses were initially used to identify variables that may affect bone metastases, and correlated variables (P<0.05) were included in multivariate logistic regression analysis to identify independent predictors of bone metastasis of thyroid cancer. Then, the selected independent risk factors were used to construct a dynamic nomogram for predicting bone metastases. C-index, ROC curve, calibration plot, and decision curve analysis were used to evaluate the performance and clinical usefulness of the model. The consistency index, Harrell’s C-index, was used to evaluate the predictive performance of the nomogram. And a ROC curve was established to compare the performance of nomogram model with independent predictors. Further, the nomogram was subjected to bootstrapping validation with 1,000 replications, to calculate an adjusted C-index and a calibration curve was used to judge predictive consistency. Decision curve analysis was conducted to determine the clinical usefulness of the nomogram by quantifying the net benefits at different probability thresholds.






Results




Demographic and pathological characteristics

A total of 565 patients with TC were enrolled in this study, of whom 25 (4.21%) had bone metastases and 540 (95.79%) had no bone metastases at initial diagnosis. Patient clinical characteristics are detailed in Table 1. Age, ALP and HB were significantly different between the bone metastasis group and the non-bone metastasis group (P<0.05). The average age, ALP and HB in the bone metastasis group were 53 years, 119.68U/L and 101.23g/L, respectively. The average age, ALP and HB in the non-bone metastasis group were 43.37 years, 68.83U/L and 123.07g/L, respectively.


Table 1 | Comparison of clinical characteristics between bone metastasis and non-bone metastasis groups.







Parameter selection

Logistic regression analysis was used to screen parameters. Univariate logistic regression analysis showed that age, ALP and HB were significantly correlated with bone metastasis of TC (p<0.05). Then the three related variables were included in the multivariate logistic regression analysis, and the results showed that age, ALP and HB were independent risk factors of bone metastasis of TC (P<0.05), so these three variables were used to construct the nomogram model (Table 2).


Table 2 | Univariate analysis and multivariate analysis for prediction factors of bone metastasis in patients with thyroid cancer.







A dynamic nomogram model for predicting bone metastases

The results of logistic regression analysis including age, ALP, and HB are presented in Table 2. A model that incorporated the above independent predictors was developed and presented as a nomogram (Figure 2). For patients with TC, the total points calculated using the nomogram could be visually converted to the risk of bone metastases. However, the nomogram can become more cumbersome to read and use when there are higher order interaction and smoothers items in the model. To better address this issue, we established a dynamic nomogram based on shiny to simplify the operation of users (Figure 3) (18). The dynamic nomogram can be used to predict the probability of bone metastasis (and corresponding 95% Confidence interval) for any combination of predictor values. The shiny tabs display the predicted values graphically and numerically, and the model summary presents the underlying information of the model. Everyone can simply use the dynamic nomogram by clicking on the hyperlink (https://liuwencai.shinyapps.io/thyroid/).




Figure 2 | Nomogram for prediction of bone metastases. Bone metastases prediction nomogram, developed based on patient age, HB, and ALP levels.






Figure 3 | The dynamic nomogram for prediction of bone metastases. The plot displays probability (with 95% confidence interval) of bone metastases for patients with TC. The actual explanatory values and their corresponding predictions are given in the “Numerical Summary” tab.







Apparent performance of the nomogram

The C-index for the prediction nomogram was 0.825, and bootstrapping validation confirmed a C-index of 0.815, indicating that the model has good discriminatory power. The ROC curve showed that nomogram had good predictive accuracy, which was higher than that of single independent predictor (Figure 4). The calibration curve of the nomogram for predicting of bone metastases in patients with TC demonstrated good agreement (Figure 5). The apparent performance of the nomogram showed good prediction capability.




Figure 4 | The ROC curve of nomogram and predictors.






Figure 5 | Calibration curves for the bone metastasis prediction nomogram. The x-axis represents the predicted bone metastasis risk. The y-axis represents actual diagnoses of bone metastases. The diagonal dotted line represents a perfect prediction by an ideal model. The solid line represents the performance of the nomogram, where a closer fit to the diagonal dotted line represents a better prediction.







Clinical use

Decision curve analysis for the nomogram is presented in Figure 6. It showed that if the threshold probability of a patient or doctor is > 1% and < 67%, respectively, using the nomogram developed in the current study to predict bone metastasis risk added more benefit than either the intervention-all-patients or intervention-none scheme. Within this range, the net benefit based on the nomogram was comparable, with several overlaps.




Figure 6 | Decision curve analysis for the bone metastasis prediction nomogram. The dotted line represents the bone metastasis risk nomogram. The thin solid line represents the assumption that all patients have bone metastases. The thick solid line represents the assumption that no patients have bone metastases. The y-axis measures the net benefit. The net benefit was calculated by subtracting the proportion of all patients who are false positive from the proportion who are true positive, weighting by the relative harm of forgoing treatment compared with the negative consequences of an unnecessary treatment. Here, the relative harm was calculated by pt/(1-pt). “pt” (threshold probability) is where the expected benefit of treatment is equal to the expected benefit of avoiding treatment; at which time a patient will opt for treatment informs us of how a patient weighs the relative harms of false-positive results and false-negative results ([a - c]/[b -d] = [1 - pt]/pt); (a–c) is the harm from a false-negative result; (b–d) is the harm from a false positive result. a, b, c and d give, respectively, the value of true positive, false positive, false negative, and true negative (19). The decision curve showed that if the threshold probability of a patient or doctor is > 1% and < 67%, respectively, using the nomogram in the current study to predict bone metastases adds more benefit than the intervention-all-patients or intervention-none schemes. For example, if the personal threshold probability of a patient is 20% (ie, the patient would opt for treatment if his probability of bone metastasis was 20%), then the net benefit is 0.151 when using the nomogram to make the decision of whether to undergo treatment, with added benefit than the intervention-all-patients or intervention-none schemes. The net benefit was comparable, with several overlaps, on the basis of the nomogram.







Discussion

In previous studies, there were many studies related to bone metastasis of TC. Orita Y et al. observed bone metastases in 52 (3.7%) of 1398 patients with DTC (20). Choksi et al. studied the incidence of bone related events in thyroid cancer and found that the incidence of bone metastasis in TP was 3.9% (21, 22). Here, we found that the probability of bone metastasis in thyroid cancer was 4.21%, which was similar to previous studies. In general, the probability of bone metastasis of TC is not high, but once bone metastasis occurs, its complicated bone pain, spinal cord compression and pathological fracture will seriously affect the quality of life of patients. Bone scintigraphy is usually used to identify possible bone metastases in patients newly diagnosed with TC. However, the American Society of Clinical Oncology has reported the overuse and associated costs of BS in patients with extremely low risk of metastasis (23, 24). In recent years, many scholars have used artificial intelligence and machine learning techniques to predict cancer metastasis (25–27), and although they have better performance, they are slightly lacking in interpretability due to the black box characteristics of complex algorithms. Currently, nomograms are widely used as prognostic devices in oncology and medicine; these instruments employ user-friendly digital interfaces to increase accuracy, and provide easily understood prognoses, which facilitates better clinical decision making (17, 28). Therefore, based on the clinical data of 565 thyroid cancer patients, we identified independent risk factors for bone metastasis and constructed a nomogram model to predict the risk of BM in patients with newly diagnosed TC.

In the present study, we found three independent risk factors associated with BM, including age, ALP and HB. More importantly, based on the three variables, we developed and validated a practical dynamic nomogram for assessing the risk of bone metastases in newly diagnosed TC patients. Incorporating demographic and clinicopathological feature risk factors into an easy-to-use dynamic nomogram could facilitate prediction of bone metastases. Internal validation in the patient cohort demonstrated good discrimination and calibration of the model. The high C-index indicated that the nomogram model has high accuracy and can be widely used (28). Overall, the present study provides an accurate prediction tool for bone metastases in patients with TC.

In previous studies, age has been demonstrated to influence the prognosis of patients with TC (29–32). Further, age has been reported as a risk factor for bone metastases in patients with lung and breast cancer, and younger patients more prone to bone metastasis (33–35). However, few studies have confirmed an association between age and bone metastases in TC. In this study, we found a statistical correlation between age and bone metastases in patients with TC, and the risk of bone metastases increased with age. This may be related to genetic variation in TC cells in patients at different ages (36).

Several studies have reported that a shortage of red blood cells containing HB was a common complication in cancer patients, affecting more than 50% of cancer patients (37). Kawai et al. (38) identified HB levels is related to bone metastases associated with prostate cancer, while Henke et al. (39) reported that HB level is a significant prognostic factor in breast cancer metastases. Moreover, Chen et al. (40, 41) found the HB is an independent risk factor for bone metastases of breast and renal cell cancer. In this study, HB levels were significantly lower in patients with TC who had bone metastases than those without, which could predict the probability of bone metastasis of TC. The reason why patients with low HB levels are more prone to bone metastases may be that low HB concentrations can promote tumor cell adherence to bone marrow, thereby promoting bone metastases (38).

As a bone formation marker, total serum ALP was widely used for assessment of bone metastases in breast and prostate cancers, and can effectively reflect osteogenic activity in human patients (42, 43). Sun et al. (44) reported that bone ALP was a surrogate marker of bone metastasis in patients with gastric cancer, while Chen et al. (40) showed that ALP was a risk factor for bone metastases in breast cancer, and Huang et al. (45) reported that ALP was also a risk factor for bone metastases in bladder cancer. Rao et al. (46) showed that, tumor-derived ALP regulated epithelial plasticity, tumor growth, and disease-free survival in patients with metastatic prostate cancer. In this study, both bone-specific ALP and total ALP levels differed significantly between patients with and without bone metastases, where patients with TC and high levels of ALP were more likely to develop bone metastases.

In the analysis of risk factors, age, HB, and ALP were associated with bone metastases in patients with TC. And our nomogram suggested that advanced age, lower HB, and higher ALP may be the key individual factors that determine risk of bone metastases for patients with TC. In the model, we considered the weight of each predictor according to the statistical coefficient, and finally obtained a visual prediction chart, which could combine age, HB and ALP to help predict the probability of bone metastasis in TC patients. Further, compared with the traditional nomogram, the dynamic nomogram could easily calculate the incidence of bone metastases in patients with TC for any chosen set of values of the explanatory variables when there were higher-order interaction terms and smoother in the model. Therefore, this dynamic nomogram can be used to evaluate the risk of bone metastasis of TC simply, conveniently and quickly, and assist clinicians to make accurate clinical decisions.

However, there are some limitations in this study. Firstly it was based on retrospective data from a single institution, which will inevitably lead to inherent data bias. Thus, prospective and multi-center studies are required to validate our model. Secondly, the consistency of our nomogram was tested robustly using internal validation by bootstrap testing, but external validation is needed. Therefore, we will continue to collect cases to further validate the model, and we hope that other researchers could modify the prediction model with external data. Thirdly, clinical markers that may affect bone metastasis of cancer, including BRAF mutation, calcitonin, TERT mutation, and Ki-67 index, were not included in this study (9, 47, 48), and we will continue to expand our data collection to further improve our model in the future.






Conclusion

In conclusion, here we identified age, ALP, and HB as independent factors of bone metastases in patients with TC. Based on this information, we developed a practical dynamic nomogram, with a relatively good accuracy, to help clinicians predict the risk of bone metastases in patients with TC. The ability to estimate of individual risk provides clinicians and patients with more power to make decisions regarding medical interventions. Nevertheless, the nomogram requires external validation, and further research is needed.
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Background

Ovarian cancer (OC) is one of the most common and most malignant gynecological malignancies in gynecology. On the other hand, dysregulation of copper metabolism (CM) is closely associated with tumourigenesis and progression. Here, we investigated the impact of genes associated with copper metabolism (CMRGs) on the prognosis of OC, discovered various CM clusters, and built a risk model to evaluate patient prognosis, immunological features, and therapy response.





Methods

15 CMRGs affecting the prognosis of OC patients were identified in The Cancer Genome Atlas (TCGA). Consensus Clustering was used to identify two CM clusters. lasso-cox methods were used to establish the copper metabolism-related gene prognostic signature (CMRGPS) based on differentially expressed genes in the two clusters. The GSE63885 cohort was used as an external validation cohort. Expression of CM risk score-associated genes was verified by single-cell sequencing and quantitative real-time PCR (qRT-PCR). Nomograms were used to visually depict the clinical value of CMRGPS. Differences in clinical traits, immune cell infiltration, and tumor mutational load (TMB) between risk groups were also extensively examined. Tumour Immune Dysfunction and Rejection (TIDE) and Immune Phenotype Score (IPS) were used to validate whether CMRGPS could predict response to immunotherapy in OC patients.





Results

In the TCGA and GSE63885 cohorts, we identified two CM clusters that differed significantly in terms of overall survival (OS) and tumor microenvironment. We then created a CMRGPS containing 11 genes to predict overall survival and confirmed its reliable predictive power for OC patients. The expression of CM risk score-related genes was validated by qRT-PCR. Patients with OC were divided into low-risk (LR) and high-risk (HR) groups based on the median CM risk score, with better survival in the LR group. The 5-year AUC value reached 0.74. Enrichment analysis showed that the LR group was associated with tumor immune-related pathways. The results of TIDE and IPS showed a better response to immunotherapy in the LR group.





Conclusion

Our study, therefore, provides a valuable tool to further guide clinical management and tailor the treatment of patients with OC, offering new insights into individualized treatment.





Keywords: copper metabolism, OC, machine learning, Tumor microenvironment, immunotherapy, risk score signature





Introduction

Ovarian cancer (OC) continues to be the primary cause of cancer mortality among the most prevalent gynecological malignancies globally. Because of its extremely high mortality rate, it has become a major threat to women’s reproductive health (1). Ovarian cancer is often diagnosed at a late stage because patients are often asymptomatic in the early stages, losing the best opportunity for treatment (2, 3). The standard treatment for ovarian cancer is surgical resection supplemented by chemotherapy with cisplatin (4). In recent years, although some progress has been made in chemotherapy and biological therapy for ovarian cancer, the five-year survival rate for patients is still around 30% (3).

Copper (Cu) is an indispensable micronutrient for the development and replication of all eukaryotes (5). As a transition element, the valence transition of Cu affects to some extent the redox state of cells and is closely related to oxidative stress, mitochondrial function, and programmed cell death (6). Thus, the link between copper and tumors has attracted the interest of researchers, with tumors requiring higher levels of copper compared to healthy tissue (7, 8). Elevated copper concentrations in tumors or serum have been reported in patients with a variety of cancers, including breast, lung, thyroid, gynecological, and prostate cancers (9–12). Copper metabolism imbalances modify lipid, glycolysis, and insulin resistance in addition to the mitochondrial respiration process (13). Copper can also promote tumor angiogenesis leading to tumor development, growth, and metastasis (14). Recently, it has been demonstrated that copper can control the expression of the immune-evading protein programmed death ligand 1 (PD-L1) on the surface of certain cancer cells (15).

A growing number of observations link imbalances in copper metabolism to tumor growth and metastasis in cancer. Also, more results suggest that copper imbalance leads to a decreased immune response to tumor cells. However, there is a need to establish more biomarkers related to copper metabolism and to further link copper-dependent targets and pathways to tumor susceptibility. A bioinformatics-based analysis has identified CMRGs as potential prognostic biomarkers for lung cancer (16). Therefore, identifying different clustering profiles and establishing CM-related signatures may be an effective means to predict prognosis and immunotherapeutic response in patients with ovarian cancer.

477 ovarian cancer samples and 133 CMRGs were acquired for this investigation from the TCGA, GEO, and MSigDB databases, respectively. We identified 15 CMRGs with prognostic significance for OC, examined the gene expression profiles and mutational patterns of the 15 CMRGs in OC, and divided the ovarian cancer population into two distinct CM clusters. Following the development of a predictive model based on the differentially expressed genes (DEGs) between the CM clusters, patients in the LR group had a better prognosis and were more likely to have better immunotherapy results.





Materials and methods




Data sources

Gene expression profiles (fragments per kilobase million (FPKM) and related clinicopathological data for OC were downloaded from the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases. The GEO cohort (GSE63885, GSE9891) and TCGA-OV cohort were obtained for subsequent analysis. Fpkm was transformed into transcripts per kilobase million (TPM) and TPM was considered identical to transcripts from the GEO microarray (17). The “sva” algorithm combined the two datasets, eliminating the batch effect. 376 cases from the TCGA cohort and 101 OC patients from the GEO cohort were included in the follow-up analysis.

Copper metabolism-related genes (Supplementary Table 1) were downloaded from the MsigDB (18). The merged TCGA-GTEx cohort was downloaded from the UCSC Xena database due to the lack of sequencing data for normal ovarian samples from TCGA. The “limma” package was used to identify CMRGs differentially expressed between OC and normal tissue. thresholds were set to FDR<0.05 and |log2(Fold change)| > 1.





Consensus clustering analysis

We used the “ConsensusClusterPlus” package for cluster analysis by the k-means algorithm (19). Different CM clusters were identified based on the expression of CMRG. After 1000 tests to determine the appropriate number of clusters between k = 2-10 (20). The “limma” program was used to find differentially expressed genes (DEGs) in various CM clusters with FDR < 0.05 and |log2FC| > 0.5. A gene set variation analysis (GSVA) was carried out using “c2.cp.kegg.v7.2.symbols.gmt” extracted from the MSigDB database to look for variations in the biological processes of CM. The amount of immune cell infiltration in various clusters was assessed using the Single Sample Gene Set Enrichment Analysis (ssGSEA) technique (21). In addition, using the Kaplan R package generated by the “ survival “ and “survminer “ R packages generated Kaplan-Meier curves were used to assess the differences in OS between different clusters (22).





Functional enrichment analysis

With the R package “cluster profile”, we performed GO enrichment analysis and KEGG signaling pathway analysis to investigate the possible biological roles and signaling pathways involved in these DEGs (23, 24). To investigate the differences in biological functions between the LR and HR groups, Gene Set Enrichment Analysis (GSEA) and Gene Set Variation Analysis (GSVA) were performed between the two groups. Downloaded from the MSigDB database and “c2.cp.kegg.v7.2.symbols.gmt” with thresholds set at P < 0.05 and FDR < 0.25 (25).





Calculation of risk scores and construction of the CMRGPS

To calculate CM scores to quantify CM patterns in each sample. First, univariate Cox regression analysis was performed on the 544 DEGs associated with CM (p < 0.05) to identify the 40 DEGs associated with OC prognosis. second, a consensus clustering algorithm further classified OC patients based on the expression profiles of the 40 DEGs. The TCGA cohort was then utilized to compute the risk score associated with CM, with GSE63885 and GSE9891 serving as the validation group and TCGA serving as the training group. In short, the “glmnet” R package was utilized based on the prognostic genes connected to the CM clusters, and the Lasso Cox regression algorithm was applied to reduce the danger of overfitting. We examined the change cross-validation. To build a predictive signature for CM risk score-associated genes in the TCGA training set, candidate genes were chosen using multivariate Cox analysis.

The CM risk score was calculated as follows: CM risk score = Σ(Expi * coefi)

where coefi and Expi stand for each gene’s expression and risk factor, respectively (25). Patients in the TCGA training set were split into low and high-risk groups based on the median values, and Kaplan-Meier survival analysis was then performed on each group. Following that, the “ggplot2” R program was used to perform principal component analysis (PCA).





Tumor microenvironment and tumor mutational load (TMB)

The tumor-infiltrating immune cells dataset is available for download at TIMER 2.0 (http://timer.cistrome.org). TIMER, CIBERSORT, quantTIseq, MCP-counter, xCELL, and EPIC algorithms were also compared (26). Single gene set enrichment analysis (ssGSEA) was used to score 28 immune cells from OC patients in the LR and HR groups. To identify somatic mutations in OC patients between the HR and LR groups, mutation annotation formats (MAF) from the TCGA database were generated using the “maftools” R package and we also calculated tumor mutation load (TMB) scores for each OC patient in both groups. Tumor purity and TME scores were estimated for each patient using the “estimate” package. Tumor Immune Single-Cell Hub (TISCH) is an extensive single-cell RNA-seq database dedicated to TME. It enables comprehensive analysis of TME heterogeneity across different datasets and cell types. We used a one-level logistic regression (OCLR) machine learning algorithm to quantify the stemness of tumor samples by calculating the tumor stem cell index (27).





Immunotherapeutic response prediction and drug sensitivity assessment

We calculated the semi-inhibitory concentration (IC50) values of commonly used chemotherapeutic drugs for OC using the “pRRophetic” software package to examine the variations in the efficacy of chemotherapeutic medicines between the two groups of patients (28). TIDE, which stands for Tumour Immune Dysfunction and Rejection, is a computational framework for assessing the potential for tumor immune escape in the gene expression profile of tumor samples. The Immune Phenotype Score (IPS) is a valid predictor of response to immunotherapy targeting CTLA-4 and PD-1 (29). Tide and IPS were used to predict response to immunotherapy in both subgroups. Xu et al. created a website that offers us a collection of genes linked to cancer and immunology (30), as well as a list of genes favorably connected to Mariathasan’s research outcomes and anti-PD-L1 medication response (31).





Immunohistochemical techniques and quantitative real-time polymerase chain reaction PCR (RT-qPCR)

Ovarian epithelial cell IOSE, ovarian cancer SKOV-3, and A2780 cell lines were obtained from the Shanghai Institutes for Life Sciences (Chinese Academy of Sciences, Shanghai, China) and maintained in Roswell Park Memorial Institute 1640 medium supplemented with 10% heat-inactivated fetal bovine serum, penicillin (10 U/mL) and streptomycin (50 µg/mL) at 37°C and 5% CO2 atmosphere. Total cellular RNA was isolated from cells and tissues using Trizol reagent (Invitrogen), and cDNA was obtained by reverse transcription using SuperScript II reverse transcriptase (Invitrogen) according to the manufacturer’s recommended protocol. next, SYBR Premix Ex Taq II (Takara, Dalian. China) to assess the relative mRNA expression levels of P2RY14 and GAPDH (as a normalized control). The primer sequences are as follows.

P2RY14:5”-TCTCACCAACCAGAGTGTTAGG-3”;5”-GCGCTAGATTTCTTTGACCG-3”.GAPDH:5”-GGAGCGAGATCCCTCCAAAAT-3”;

Transcriptomic and proteomic approaches were used to study protein expression at the RNA and protein levels in human tissues and organs, using data found in the Human Protein Atlas (HPA, https://www.proteinatlas.org/).





Statistical analyses

All analyses were performed using R version 4.1.1, 64-bit 6, and its support package. In all statistical investigations, P<0.05 was considered statistically significant.






Results




Differential expression and genetic variation patterns of CMRGs in ovarian cancer

First, all 133 CMRGs were substituted into the String database, and protein-protein interaction network analysis revealed close associations between most CMRGs (Figure 1A). We performed differential expression analysis of 133 CMRGs in ovarian cancer and normal tissues and obtained 56 differentially expressed CMRGs (Figure 1B). Next univariate cox analysis (P<0.2) and Kaplan-Meier survival analysis (P<0.05) were used to select CMRGs that were prognostically significant for OC and 15 CMRGs were obtained (Supplementary Table 2). Next, we explored the level of somatic mutations and frequency of altered CNVs in the 15 CMRGs in ovarian cancer patients. The waterfall plot in Figure 1D shows that 26 of the 462 samples (5.63%) had mutations in the CMRGs. The highest frequency of F8 mutations was found (2%). Overall the frequency of mutations in CMRGs was extremely low. We also examined the frequency of altered CNVs in CMRGs and found that TFRC had the most significant copy number increase, while ATP13A2 had the most significant copy number deletion (Figure 1C). Figure 1E shows the interaction and prognostic impact of CMRGs in OC, suggesting a potential regulatory role of CNVs on the expression of CMRGs. Finally, Figure 1F shows the positioning of these CMRGs on the chromosome.




Figure 1 | Expression and mutation of copper metabolism-related genes (CMRGs) in ovarian cancer. (A) Protein-protein interaction (PPI) network of all 133 copper metabolism-related genes (CMRGs). (B) Heat map of differential expression of CMRGs between tumor and normal tissues. (C) CNV frequencies of CMRGs in the TCGA cohort. (D) Mutation frequencies of 15 CMRGs in 462 OC patients in the TCGA cohort. (E) Network plot showing the correlation of 15 CMRGs in OC and the impact on prognosis. (F) The location of 15 CMRGs on 23 human chromosomes.







Identification of CM clusters in OC

To fully understand the expression patterns of CMRGs involved in tumorigenesis, we integrated samples from the TCGA-OV and GSE63885 cohorts. To identify the different subtypes of OC, we used a consistent clustering algorithm and classified the samples according to the expression of 15 CMRGs (Figure 2A). the results of the CDF (Cumulative Distribution Function) curve showed that K=2 was the optimal number of clusters (Figure 2B). Therefore, the integration cohort was divided into CM clusters of 2 (Supplementary Table 3). Survival analysis showed that CM cluster B had a better OS (Figure 2C). Principal component analysis (PCA) confirmed a significant difference in the distribution of the two CM clusters (Figure 2D). In addition, we compared the expression of CMRGs and clinical information between the two CM clusters (Figure 2E).




Figure 2 | Clinicopathological and biological characteristics of the two CM clusters. (A) All samples from the TCGA-OV cohort and the GSE63885 cohort were divided into two clusters using a consensus clustering algorithm (k = 2). (B) The cumulative distribution function (CDF) from k = 2 to 9. (C) Kaplan-Meier curves show the different overall survival (OS) rates between the two CM clusters. (D) Principal component analysis (PCA) shows significant differences between the two CM clusters. (E) Heat map showing differences in clinical information and expression of CMRGs between the two clusters.



GSVA enrichment analysis showed that immune activation-related pathways were significantly enriched in cluster A, including Leukocyte transendothelial migration, Fc gamma R-mediated phagocytosis, immune cell receptor signaling pathways, cytokine receptor interactions and NOD-like and Toll-like receptor signaling pathways (Figure 3A). To investigate the role of CMRGs in TME, we evaluated the correlation between the two clusters and immune cell subpopulations separately using the ssGSEA algorithm. We observed significant differences in the infiltration of most immune cells between the two clusters. Compared to cluster B, cluster A possessed a higher immune cell infiltration, except for NK cells and T helper 2 cells (Figure 3B).




Figure 3 | Analysis of the immune microenvironment of two CM clusters of tumors. (A) The abundance of 23 infiltrating immune cell species in two CM clusters. (B) GSVA of biological pathways between two clusters. ***p < 0.001; ns, no significance.







Identification of CM gene clusters in OC

To further investigate the potential biological behavior of each CM cluster, we identified 544 DEGs between the two CM clusters using the ‘limma’ package and performed a functional enrichment analysis of these DEGs. These genes were mainly involved in immune and cytokine-related pathways (Figures 4A, B). To determine the prognostic value of these DEGs, a univariate Cox analysis was performed to screen 40 DEGs for prognostic relevance, using a cut-off value of 0.05 as the p-value (Supplementary Table 4). Patients with OC were classified into 2 CM gene clusters using a consensus clustering algorithm (Figure 4C and Supplementary Table 5). Survival analysis showed that CM gene cluster B had a better prognosis (Figure 4D). Heat maps reflect differences in expression levels and clinicopathological factors of prognosis-related DEGs in the 2 CM clusters and the 2 CM gene clusters (Figure 4E).




Figure 4 | Identification of CM gene clusters based on differential genes (DEGs) in CM clusters. (A, B) GO and KEGG enrichment analysis of DEGs in two CM clusters. (C) All samples from the TCGA-OV cohort and the GSE63885 cohort were divided into two CM gene clusters using a consensus clustering algorithm (k = 2). (D) Kaplan-Meier survival analysis between different gene clusters. (E) Heat map of clinicopathological features and expression of DEGs. GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes.







Construction and validation of the risk model

A risk model based on 40 CM risk score-related DEGs was created to estimate the risk for each patient with ovarian cancer. First, in the TCGA training set, suitable risk models were built using LASSO and multivariate Cox regression analysis. Based on the least partial likelihood of deviance, LASSO regression analysis was used to screen 21 potential genes (Figures 5A, B). Multivariate Cox regression was then performed on the 21 prognosis-related genes, yielding 11 genes for use in constructing the risk model, namely RARRES1, ADH1B, LILRA2, TLL1, P2RY8, P2RY14, DHRS9, ZFHX4, CAMK1G, GPR171, and IL12A. We calculated the CM risk score for each patient based on the formula Risk score = (0.11 × RARRES1 expression) + (0.14 × ADH1B expression) + (0.25 × LILRA2 expression) + (0.24 × TLL1 expression) + (0.11 × DHRS9 expression) + (0.21 × ZFHX4 expression) + (0.14 × IL12A expression) - (0.32 × P2RY8 expression) - (0.49× P2RY14 expression) - (0.21× CAMK1G expression) - (0.24× GPR171 expression). Patients were divided into high-risk (HR) and low-risk (LR) groups based on the median value of the CM risk score for the TCGA training cohort. Notably, the LR group in the TCGA cohort had a higher overall survival (OS) rate than the HR group (p < 0.001, Figure 5C). For the GSE63885 and GSE9891 validation cohorts, patients in the LR group also had better OS (Figures 5D, E). risk plots for the TCGA-OV, GSE63885 and GSE9891 cohorts also showed specific survival outcomes for each patient, with patients in the HR group typically having poorer survival outcomes (Figures 5F–H). Strikingly, in the TCGA cohort, our constructed CMRGPS performed very well in predicting OS in these patients, with AUCs of 0.7 at 1, 3, and 5 years (Figure 5I). the predictive power of CMRGPS was also validated in the GEO cohort (Figures 5J, K).




Figure 5 | Construction of CMRGPS and prognostic value of risk scores. (A, B) Linear models (Lasso) were constructed and coefficients were visualized using LASSO Cox regression to identify 19 copper metabolism-related DEGs. (C–E) Kaplan-Meier survival curves showing the risk stratification ability of the TCGA-OV, GSE63885, and GSE9891 cohorts. (F–H) Risk plots were used to illustrate the survival status of each sample in the TCGA-OV, GSE63885, and GSE9891 cohorts. (I–K) AUC values for risk scores at 1, 3, and 5 years in the TCGA-OV, GSE63885, and GSE9891 cohorts.







Validation of prognostic signatures of genes related to copper metabolism and construction of nomograms

In the TCGA training set, CM scores can be an independent prognostic indicator for patients compared to other common clinical characteristics (age, grade, stage) based on the results of univariate and multivariate Cox analyses (Figure 6A). Our constructed CMRGPS was also validated in the GSE63885 and GSE9891 cohorts (Figures 6B, C). In addition to this, the area under the curve (AUC) of the CM score at three years was much higher than other clinicopathological features (Figure 6D). The C-index of the CM risk score was also much greater than that of the other clinical features (Figure 6E).




Figure 6 | Independent prognostic analysis of ovarian cancer risk scores and clinicopathological factors. (A) Univariate and multivariate Cox regression analyses of clinicopathological variables and risk scores in the TCGA training cohort, (B) GSE63885 and (C) GSE9891 validation cohorts. (D) AUC values for risk scores and clinical characteristics of TCGA-OV, GSE63885, and GSE9891 at 3 years. (E) Coherence index (C-index) for the TCGA-OV, GSE63885, and GSE9891 cohorts.



Based on the above correlation between clinicopathological features and CM risk scores, a nomogram was created to predict survival at 1, 3, and 5 years for patients with OC (Figure 7A). The calibration curve showed that the nomogram was able to make accurate predictions (Figure 7B). The Alluvial plot showed that the CM cluster B and CM gene cluster B with better prognosis mostly corresponded to the LR group (Figure 7C). And these two groups also had lower CM scores (Figure 7D). The results of the chi-square test showed that the risk grouping was only related to the survival status and tumor stage of the patients (Figure 7E). Figure 7F shows that stage IV patients had a higher CM score. Based on the results of the above analysis, we are more confident that CMRGPS is a reliable clinical prediction tool.




Figure 7 | Construction and validation of nomograms for predicting OS in ovarian cancer in the TCGA cohort. (A, B) Combined nomograms and calibration curves for age, grade, and stage were used to predict OS at 1, 3, and 5 years in ovarian cancer patients. (C) Alluvial plots show the distribution of patients in 2 CM clusters, 2 CM gene clusters, 2 risk groups, and their survival status. (D) Differences in risk scores for the 2 CM clusters and the 2 CM gene clusters. (E) Heat map of clinical characteristics associated with risk clusters as determined by chi-square test. (F) Comparison of risk scores of patients at different clinical stages. **P < 0.01; ***P < 0.001.







TMB analysis and survival analysis of TMB

Additional evidence suggests that patients with high TMB may benefit from immunotherapy due to higher antigen counts (32). We generated two waterfall plots to explore the detailed gene mutation profiles between the LR and HR group populations (Supplementary Figures 1A, B). We found that TP53 and TTN were the most commonly mutated genes in OC, with no significant differences in mutation profiles between the two groups. Different mutational status and expression patterns may lead to different clinical outcomes of the immune response. TMB analysis showed no significant difference between the two groups (p>0.05), with a higher TMB in the LR group (Supplementary Figure 1C). Survival analysis was performed by dividing the patients into high and low TMB groups based on the median TMB values obtained, and the combined application of CM score and TMB to divide the patients into four subgroups for survival assessment showed that the high TMB and LR groups had the best prognosis (P<0.001), which helped to screen the best prognostic subgroups for clinical use (Supplementary Figure 1D).





Tumor microenvironment (TME) and immune cell infiltration

The tumor microenvironment (TME) influences the clinical outcome of patients and their response to treatment. Among these, tumor-infiltrating immune cells (TIICs) have a significant impact on tumor development and the efficacy of anti-tumor therapy. Although TIICs are an important component of TME, their composition and distribution are closely related to tumourigenesis and progression (33). Therefore, we investigated the correlation between CM scores and tumor immune cells based on various algorithms (Figure 8A), with lower CM scores correlating with the degree of T-cell infiltration. Enrichment scores for various immune cell subpopulations, related activities, or pathways were measured using the ‘ssGSEA’ method to further investigate the relationship between CM scores and immune cells and function. The results of the study showed that the LR group had higher scores for immune-related function and immune cell infiltration (Figures 8B, C). Based on the better prognosis and level of immune infiltration of patients in the LR group, a GSEA analysis was performed to explore the potential biological functions of the LR group. Based on normalized enrichment scores (NES) and P values, we selected the four most important enriched signaling pathways (Figure 8D), with lower CM scores associated with immune-related signaling pathways. The tumor stem cell index is an index to assess the similarity of tumor cells to stem cells and is associated with biological processes active in tumor cells (34). Therefore, we assessed the correlation between the RNA stemness score (RNAss) and the CM risks score. The results showed a significant negative correlation between CM score and RNAss (Figure 8F), indicating that OC cells with lower CM scores had more prominent stem cell characteristics and lower levels of cell differentiation.

Due to the significant impact of abnormal expression and function of immune checkpoint molecules on tumor immunotherapy, we assessed the correlation between CM scores and expression of immune checkpoints (ICs). In particular, almost all immune check genes and our risk score-related genes showed an extremely strong correlation. Overall, our CM scores were negatively correlated with the expression of immune checkpoints such as PD1 (Figure 9A). the GSVA results showed that the risk score-related genes were associated with the hallmark pathway and that HR patients were associated with epithelial-mesenchymal transition (EMT) (Figure 9B). Thereafter, we used ESTIMATE to calculate the proportion of stromal and immune cells in the different risk groups to estimate tumor purity (Figure 8E), with higher stromal scores in the HR group. These findings suggest that patients in the LR group have a better prognosis, are more immune, and may be more sensitive to immunotherapy.




Figure 8 | CM risk score predicts TME and immune cell infiltration. (A) Bubble plots obtained by different algorithms show the correlation between risk scores and immune cell content. (B) Differences in immune cell infiltration between populations in different risk groups. (C) Differences in immune function between populations in different risk groups. (D) CMRGPS-based enrichment analysis of KEGG gene sets in low-risk populations. (E) Differences in TME scores between populations in different risk groups. (F) Correlation of cancer stem cell index (RNAss) with risk scores. *p < 0.05, **p < 0.01, ***p < 0.001; ns, no significance.






Figure 9 | Immune checkpoint correlation analysis and GSVA correlation analysis. (A) Correlation of expression of all immune checkpoints with risk score-related genes and risk scores. (B) GSVA was used to analyze the correlation between the MiSigDB Hallmark pathway and risk scores. *p < 0.05, **p < 0.01, ***p < 0.001.







Prediction of response to immunotherapy based on CMRGPS

To rationalize the selection of which patients are more suitable for immunotherapy, we applied the TIDE score to assess possible abnormalities in the immune function of the tumor and regional lymph nodes. The results showed that patients in the LR group had a higher probability of responding to immunotherapy (Figure 10A). In addition, IPS scores showed that the LR group responded better to treatment with PD1 inhibitors compared to CTLA4 inhibitors (Figures 10B, C). Immune checkpoint blockers (ICB) are the most well-studied class of immunotherapeutic agents that block inhibitory signaling of T-cell activation, enabling tumor-reactive T cells to mount an effective anti-tumor response (35). However, ICB therapy is only effective in a subset of patients. To further explore the role of CM scores in immunotherapy, we explored the correlation between CM scores and signals associated with ICB. The results showed that CM scores were negatively correlated with some signals such as the proteasome, Fanconi anemia pathway, p53 signaling pathway, and Pyrimidine metabolism (Figure 10D). Similarly, we investigated a significant negative correlation between each step in the tumor immune cycle, such as excitation and activation (step 3), and CM score (Figure 10D). The above results suggest that patients in the LR group may respond better to ICB treatment. Subsequently, we introduced four chemotherapeutic agents in the present study. We found that patients in the HR group were more sensitive to Trametinib and Sinularin. In contrast, patients in the LR group were more sensitive to Tozasertib and Staurosporine (Figure 10E).




Figure 10 | Analysis of treatment outcomes between the high-risk and low-risk groups. (A) TIDE analysis between the high-risk and low-risk groups. (B, C) Comparison of the relative distribution of immune scores (IPS) between the high-risk and low-risk groups. (D) Correlation of risk scores with ICB response characteristics and each step of the tumor-immune cycle. (E) Sensitivity to Tozasertib, Staurosporine, Trametinib, and Sinularin in the high-risk and low-risk groups. *p < 0.05.







Validation of CM risk score-related genes

To analyze the expression of 11 genes associated with risk score in TME, we used the ovarian cancer single-cell dataset EMTAB8107 from the TISCH database. The EMTAB8107 dataset contains 8 major cell types and 18 major cell populations. Figure 11A displays the distribution and number of the various cell types. ADH18 and RARRES1 are mainly expressed in fibroblasts, and GPR171 is mainly expressed in CD8 T cells (Figures 11B, C).




Figure 11 | Validation of single-cell RNA sequencing. (A) Annotation of all cell types in EMTAB8107 and percentage of each cell type. (B, C) Expression of RARRES1, ADH1B, LILRA2, TLL1, P2RY8, P2RY14, DHRS9, ZFHX4, CAMK1G, GPR171 and IL12A in each cell type.



Surprisingly, 11 risk score-related genes were differentially expressed in both the normal and tumor groups of the TCGA-GTEx cohort (Figure 12A). To validate the expression pattern of risk score-related genes in OC patients, we explored immunohistochemical data from the HPA database. Comparing ovarian cancer tissues with healthy ovarian tissues, P2RY14 protein expression levels were much higher in normal tissues (Figure 12B). Using qRT-PCR, we also found that P2RY14 was expressed at lower levels in ovarian cancer cell lines relative to normal cells (Figure 12C). Therefore, we hypothesized that aberrant expression of these genes may promote the malignant transformation of ovarian cancer.




Figure 12 | Validation of risk score-related gene expression. (A) Eleven genes show differences in normal and tumor cohorts. (B) Immunohistochemical analysis of P2RY14 in normal ovarian tissue and ovarian cancer. (C) qRT-PCR analysis of P2RY14. *P < 0.05; ***P < 0.001; ****P < 0.001.








Discussion

Copper is an important trace element in the body, and the processes of uptake, transport, storage, and excretion of copper ions together determine the regulation of copper metabolic homeostasis, and both excess and deficiency of copper ions can lead to various diseases (36). The degree of dependence of tumor cells on mitochondrial metabolism determines the sensitivity of the cells to copper ions. The lack of copper metabolism-related proteins leads to the accumulation of copper ions in tumor cells, resulting in tumor resistance to radiotherapy (37). Many studies in recent years have pointed out that disorders of copper metabolism can promote tumor development by activating tumor proliferation-related signaling pathways, regulating tumour micro angiogenesis, and remodeling the stromal and inflammatory microenvironment. Elevated copper levels in cancer cells and serum copper cyanobactin were observed in patients with advanced ovarian cancer (38). In addition, copper transporter protein expression was associated with platinum resistance in ovarian cancer (39). Moreover, the copper-transporting ATPases ATP7A and ATP7B have been shown to regulate drug resistance in ovarian cancer (40). Therefore, this study aimed to reveal the immune profiles of different CM-associated clusters and delve into the prognostic value of CMRG in OC, to find potential targets for immunotherapy and to provide a protocol for precise and personalized treatment of OC patients.

In this work, we first used the TCGA-OV dataset to examine the differential expression levels and genetic mutation features of 133 CMRGs. We discovered two unique CM clusters, CM Cluster A and CM Cluster B, based on an unsupervised clustering technique of the transcriptome expression levels of CMRGs. Despite having less immune infiltration, individuals with OC in CM Cluster B had a better prognosis than those in Cluster A. Then, using the 40 DEGs found between the two distinct CM clusters, we found 2 gene clusters. The OS difference between the two gene categories was statistically significant. This reveals a strong relationship between CM clusters and gene clusters. We then constructed prognostic models of CM risk score-associated DEGs by lasso-cox, including RARRES1, ADH1B, LILRA2, TLL1, P2RY8, P2RY14, DHRS9, ZFHX4, CAMK1G, GPR171, and IL12A.

Together, these genes constitute a stable OC CM score profile. The results of the differential analysis showed that all 11 genes differed in tumor and normal tissues, and we finally selected P2RY14 for experimental study.P2RY14 is thought to be potentially associated with immune invasion in lung cancer and plays an important role in suppressing immune escape of tumor cells within the lung cancer microenvironment (41). In head and neck cancer, P2RY14 is also a potential biomarker for immune regulation of the tumor microenvironment and good prognosis (42). In addition, more meta-analyses have shown that potentially functional polymorphisms of IL12A and IL12B are thought to increase the risk of malignancies such as gastric, lung, and cervical cancers (43–45). TLL1 is significantly upregulated in OC patients and has been suggested as a prognostic marker in OC patients (46, 47), and the same results were obtained in our study. Zou et al. suggested that RARRES1 may induce autophagy in prostate and cervical cancer cells. And RARRES1 contributes to the regulation of dendritic cells and serves as a novel immune-related biomarker for glioblastoma (48). Several other bioinformatic analyses have pointed to the close association of ADH1B with the prognosis of ovarian cancer patients and that ADH1B is a potential source of chemoresistance in ovarian cancer (49, 50). ADH1B was also discovered to dramatically upregulate tumor cell adhesion and cell spreading, suggesting that it could improve the mesothelial clearance of ovarian cancer (50). The majority of the genes in our model have the potential to affect the course and prognosis of OC. In the training and validation sets, we classified OC patients into HR and LR groups based on the CM risk score, and we found that patients in the LR group had a considerably better prognosis than those in the HR group. The CM risk score was demonstrated to be a standalone prognostic predictor for OC by multi-factor cox regression. To extend the value of the CM risk score in clinical practice, a nomogram was constructed by combining common clinical indicators to provide clinicians with a personalized prognostic risk scoring system to personalize treatment for patients.

Ovarian cancer responds poorly to immunotherapy. Nevertheless, determining the sensitivity of specific treatment subgroups based on tumor biomarker stratification may increase the prediction of immunotherapy response. TMB, PD-L1, TIICs, and neoantigens in intra-tumor heterogeneity are some of these indicators. The use of these biomarkers to choose the best candidates for ovarian cancer treatment is one of the future directions (51).

There is a consensus on the important influence of the tumor microenvironment on various tumor phenotypes. One of the primary immunological characteristics of the tumor microenvironment is immune cell infiltration, which is crucial for the immune evasion of tumor cells and the development of an inflammatory environment (52, 53). We investigated the relationship between CMRGPS and the degree of immune cell infiltration as a result. We discovered that T cells had a stronger negative connection with a risk score, indicating higher levels of T cell infiltration in the LR group. Due to the immunological activation of TME, the LR group had a better prognosis and immunotherapeutic response, as was expected. Immune checkpoints serve as immunological system controllers and are crucial for preserving autoimmune tolerance as well as controlling the intensity and duration of immune responses in peripheral tissues (54, 55). We investigated the association between immunological checkpoints and risk scores and found that CTLA4 and PD1 showed a significant negative correlation with risk scores. While the presence of PD-L1 molecules on the membrane surface contributes to the suppression of T-cell activity, the expression of PD-L1 molecules in the cytoplasm of ovarian cancer cells is functional and supports the proliferation and invasion of tumor cells. Both PD-L1 and PD-1 monoclonal antibodies were used to exert anti-tumor effects in ovarian cancer models (56, 57). In addition, PD-1 molecules can further mediate immune escape through tumor-associated cells, and tumor-associated macrophages (TAMs) characterized by the expression of PD-1 molecules are important in the development of the disease (58). Finally, our analysis by TIDE and IPS scoring systems also reinforced the above results that LR patients are more suitable for immunotherapy.

Therefore, we evaluated the correlation between several clinically used drugs and risk scores. We found that LR patients were more sensitive to chemotherapy with Tozasertib, a pan-Aurora inhibitor that exhibited enhanced carboplatin activity in platinum-sensitive and platinum-resistant ovarian cells of different p53 statuses. At low doses, the compound synergized paclitaxel-induced apoptosis and was active against paclitaxel-resistant cells (59). A phase I trial of 24-hour continuous intravenous volasertib in 27 patients determined that the disease was stabilized in almost half of the patients (60). Thus, our study also gives clinicians a protocol to accurately screen patients for characteristics and a new perspective on clinical antineoplastic drug combination strategies.

Although the risk scoring system we have constructed is outstanding in its ability to identify the immune microenvironment of patients and to predict their prognosis. However, several limitations still require us to acknowledge and find appropriate ways to address them in subsequent studies. Firstly, the TCGA-OV dataset we included was predominantly white, and more data from other ethnic groups will subsequently need to be collected for validation. Secondly, more data from OC patients need to be collected to validate the utility of the model and the accuracy of immunotherapy predictions. In addition, more ex vivo experiments are needed to refine the relevant details of this study.





Conclusions

Metabolic disorders are an important feature of malignant tumors. In recent years, the important role of copper metabolism in the evolution of tumors has come to the fore. Bioinformatics studies on copper metabolism will be a popular research direction in the future. As a result, we have shown for the first time that CMRGPS is a distinct predictive biomarker and potential therapeutic target for OC patients. Additionally, CMRGPS can accurately predict the prognosis of OC patients and define the immunological milieu of OC patients, which can assist doctors in identifying specific patient subgroups who may benefit from immunotherapy and chemotherapy for specialized treatment.
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Testing cohort(%)
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<=65 218 (64.69) 151 (63.98) 67 (66.34)
>65 119 (35.31) 85 (36.02) 34 (33.66) o
Gender
FEMALE 107 (31.75) 72 (30.51) 35 (34.65)
MALE 230 (68.25) 164 (69.49) 66 (65.35) o
Grade
Gl 45 (13.35) 32 (13.56) 13 (12.87)
G2 166 (49.26) 109 (46.19) 57 (56.44)
G3 114 (33.83) 84 (35.59) 30 (29.7) o
G4 12 (3.56) 11 (4.66) 1(099)
Stage
Stage I 168 (49.85) 120 (50.85) 48 (47.52)
Stage 11 82 (2433) 61 (25.85) 21 (20.79)
Stage 11 83 (24.63) 54 (22.88) 29 (28.71) o
Stage IV 4 (1.19) 1(0.42) 3 (2.97)
T
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T3 74 (21.96) 19 (20.76) 25 (24.75)
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M
Mo 258 (76.56) 181 (76.69) 77 (76.24)
M1 3(0.89) 0(0) 3(297) 0.03
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NO 247 (73.29) 175 (74.15) 72 (71.29)
N1 4(1.19) 3(1.27) 1(0.99) 0.82
NX 86 (25.52) 58 (24.58) 28 (27.72)
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Characteristics

Marital status (%)

Age [mean (SD)]
Race ethnicity (%)

Sequence number (%)

times [mean (SD)]

status (%)

Sex (%)

Primary site (%)

Grade (%)

Laterality (%)

Pathological (%)*

T (%)

N (%)

Tumor size [mean (SD)]

Bone metastases (%)

Brain metastases (%)

Liver metastasis (%)

Lung metastases (%)

Level

Married
unknown
unmarried
NA
black
Chinese
other
white
more
One primary only
NA
alive
dead
female
male
C64.9-Kidney
C65.9-Renal pelvis
Moderately differentiated
Poorly differentiated
Undifferentiated; anaplastic
unknown
Well differentiated
left
other
right
8120/3
8130/3
8260/3
8310/3
8312/3
8317/3
other(n<1000)
T1
T2
T3
T4
TX
NoO
N1
N2
NX
NA

Training group (N=42,547)

25,009 (58.8)
2,116 (5.0)
15,422 (36.2)
63.49 (13.07)
5,378 (12.6)
511 (12)
3,394 (8.0)
33,264 (78.2)
14,008 (32.9)
28,539 (67.1)
39.12 (30.69)
31,486 (74.0)
11,061 (26.0)
15,032 (35.3)
27,515 (64.7)
40,466 (95.1)
2,081 (4.9)
14,646 (34.4)
8,903 (20.9)
3,329 (7.8)
12,282 (28.9)
3,387 (8.0)
21,021 (49.4)
85(02)
21,441 (50.4)
1,140 (2.7)
1,033 (2.4)
5,274 (12.4)
22,588 (53.1)
7,770 (18.3)
2,230 (5.2)
2,512 (5.9)
27,878 (65.5)
4,239 (10.0)
8,401 (19.7)
1,129 (2.7)
900 (2.1)
38,343 (90.1)
2402 (5.6)
198 (0.5)
1,604 (3.8)
51.59 (41.13)
40,654 (95.6)
1,893 (4.4)
42,016 (98.8)
531 (1.2)
41,517 (97.6)
1,030 (2.4)
39,454 (92.7)
3,093 (7.3)

Validation group (N=852)

560 (65.7)
0 (0.0)
292 (34.3)
63.87 (13.08)
0 (0.0)
852 (100.0)
0(0.0)
0 (0.0)
259 (30.4)
593 (69.6)
37.17 (30.82)
624 (73.2)
228 (26.8)
308 (36.2)
544 (63.8)
762 (89.4)
90 (10.6)
313 (36.7)
254 (29.8)
68 (8.0)
138 (16.2)
79 (9.3)
422 (49.5)
7(0.8)
423 (49.6)
33(39)
30 (3.5)
78 (9.2)
470 (55.2)
149 (17.5)
50 (5.9)
42 (4.9)
513 (60.2)
104 (122)
186 (21.8)
23 (27)
26 (3.1)
753 (88.4)
65 (7.6)
0 (0.0)
34 (40)
52,07 (37.18)
785 (92.1)
67 (7.9)
834 (97.9)
18 (2.1)
820 (96.2)
32(38)
783 (91.9)
69 (8.1)

<0.001

0.403
<0.001

0.129

0.066
0.643

0.646

<0.001

<0.001

<0.001

0.005

0.011

0.017

0.734
<0.001

0.037

0.017

0.392

*Pathological: 8120/3 Transitional cell carcinoma, 8130/3 Papillary transitional cell carcinoma, 8260/3 Papillary (Chromophil), 8310/3 Clear Cell, 8312/3 Renal cell carcinoma, NOS, 8317/3
Chromophobe, Other: other specific renal cell carcinoma types.
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Characteristics

Bone metastases

No

Yes

Grade

Well differentiated
Moderately differentiated
Poorly differentiated
Undifferentiated anaplastic
unknown

Lung metastases

No

Yes

N

NO

Tumor size

OR, odds ratio; CI, confidence interval.

OR

Ref
15.61

Ref
1.39
7.77
17.12
30.34

Ref
2531

Ref
16.93
8.63

723

Ref
6.12
6.39
33.34
29.87
101

Univariate logistic regression

CI

Ref
13.62-17.89

Ref
0.62-3.09
3.64-16.61
7.97-36.77
14.4-63.9

Ref
22.19-28.89

Ref
14.72-19.47
5.33-13.97
5.91-8.84

Ref
4.94-7.58
5.33-7.67
27-41.18

23.75-37.57
1.01-1.01

Ref
<0.001

Ref
0.422
<0.001
<0.001
<0.001

Ref
<0.001

Ref
<0.001
<0.001
<0.001

Ref
<0.001
<0.001
<0.001
<0.001
<0.001

OR

Ref
272

Ref
1.06
273
274
7.31

Ref
4.88

Ref
29

223
2.05

Ref
212
2.69

6.1
373
1.00

Multivariable logistic regression

CI

Ref
2.31-3.19

Ref
0.47-2.38
1.26-5.9
1.25-5.99
3.43-15.55

Ref
4.17-5.71

Ref
2.46-3.42
1.28-3.89
1.61-2.61

Ref
1.66-2.71
2.17-3.34
4.71-7.89
2.84-4.9
1.00-1.00

Ref
<0.001

Ref
0.885
0.011
0.011

<0.001

Ref
<0.001

Ref
<0.001
0.005
<0.001

Ref
<0.001
<0.001
<0.001
<0.001
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Low ABT.263, ABT.888, AMG.706, ATRA, Axitinib, AZ628, AZD8055, BMS.536924, CEP.701, EHT.1864, GDC0941, KU.55933, Metformin, MK.2206,
risk MS.275, Nutlin.3a, NVP.BEZ235, PD.173074, PD.0332991, PF.02341066, Roscovitine, Salubrinal, Sunitinib, TW.37, Vinblastine, Vorinostat.

High 443654, AUY922, BI.2536, BIBW2992, Bicalutamide, Bryostatin.1, Epothilone.B, Erlotinib, FT1.277, Gefitinib, GSK.650394, Lapatinib, LEM.A13,

risk Midostaurin, NSC.87877, PLX4720, RDEA119, Thapsigargin.
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Univariable Cox regression Multivariable Cox regression

Variable
HR 95%Cl HR 95%Cl
Age(£55/>55) 1139 0.533-2432 0737
Gender(Male/Female) 0.832 0.349-1.985 0679
Distant metastasis(Yes/No) 1.436 0.301-1.609 0397 2076 0.856-5.031 0.106
Tumor location(Head/Tail or Body) 3.018 1.125-8.097 0028 3368 1229-9.231 0018

Regimen(GS/GS+A) 2.46 1.120-5.404 0.025 2.556 1.139-5.733 0.023
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Univariable Cox regression Multivariable Cox regression

Variable
HR P
Age(<55/>55) 0616 0.306-1.240 0174
Gender(Male/Female) 0939 0.443-1.990 0.869
Distant metastasis(Yes/No) 2697 1.298-5.603 0.008 3.128 1.457-6715 0.003
o location(Head/Tail or Body) i 2103 0.901-1.4.908 0.086 2715 1.135-6.493 0.025

Regimen(GS/GS+A) 2.64 1.265-5.511 0.01 2.553 1.207-5.401 0.014
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Group (n%)

GS+A group GS group

Gastrointestinal reaction 12 (40.0) 14 (34.2) 0.613
Hematological toxicity 11 (36.7) 10 (24.4) 0.263
Hepatotoxicity 7 (23.3) 5(12.2) 0.216
Hand-foot syndrome 9(30.0) ﬂ 10 (24.4) 0.598
Oral mucositis 4 (13.3) | 6 (14.6) 0.876
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Factors Univariate analysis Multivariate analysis

B OR (95%Cl) P value B OR (95%Cl) P value
Age 0.045 1.046 (1.015-1.078) 0.004* 0.039 1.040 (1.006-1.074) 0.019*
Gender -0.157 0.855 (0.301-2.364) 0.762
HB(g/L) -0.057 0.944 (0.924-0.965) <0.001* -0.06 ‘ 0.947 (0.926-0.968) <0.001*
ALP (U/L) 0.006 1.007 (1.002-1.011) 0.007* 0.006 1.006 (1.002-1.010) 0.002*
FT3 -0.140 0.870 (0.561-1.347) 0.532 |
FT4 -0.959 0.383 (0.120-1.222) 0.105
TSH 0.013 1.013 (0.997-1.030) | 0.120
Ca(mmol/L) -0.412 0.663 (0.168-2.616) 0.557
CA125 (u/ml) 0.001 1.001 (0.997-1.005) 0.663
CA153 (u/ml) -0.023 0.977 (0.907-1.052) 0.542
CA199 (u/ml) -0.003 0.997 (0.980-1.015) 0.766
CEA (ng/ml) 0.007 1.007 (0.999-1.016) 0.089
Cyfra21-f 0.873 2.395 (0.606-9.467) 0.213
NSE -0.009 0.991 (0.918-1.070) 0.822
Histopathology 0.056 1.058 (0.823-1.359) 0.661
Location of primary tumor -0.014 0.986 (0.658-1.477) 0.945

B, coefficient of regression; OR, odds ratio; CI, confidence interval. * means that the P value is less than 0.05 (P<0.05).
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Group(n%)

Best response P value
GS+A group GS group

ORR 15 (50.0) 11 (26.8) 0.045

DCR 25 (83.3) 24 (58.5) 0.026

Best overall response

CR 0 0

PR | 15 (50.0) 11 (26.8)
SD 10 (33.3) 13 (31.7)
PD 5 (16.7) 17 (41.5)

ORR, Objective response rate; ORR, Disease control rate; CR, Complete response; PR, Partial
response; SD, Stable disease; PD, Progressive disease.
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Age(year)

Gender (%)

Male

Female

HB(g/L)

ALP (U/L)

FT3

FT4

TSH

Ca(mmol/L)

CA125 (u/ml)

CA153 (u/ml)

CA199 (u/ml)

CA724 (u/ml)

CEA (ng/ml)

Cyfra2l-f

NSE

Histopathology
Micro papillary carcinoma
Eosinophilic follicular carcinoma
Medullary carcinoma
Undifferentiated carcinoma
Follicular papillary carcinoma
Adenocarcinoma

Location of primary tumor
Left thyroid cancer
Right thyroid cancer
Thyroid cancer of isthmus

Bilateral thyroid cancer

BM, Bone metastasis; NBM, No bone metastasi:

BM

53.00 + 14.12

6(24.0)
19(76.0)
101.23 + 24.75
119.68 + 100.64
2.78+ 1.33
111 £ 045
15.31 + 29.87
219+ 043
65.04 + 13.46
11.67 + 5.33
21.57 + 2348
0.75 £ 0.02
5531+ 1372
7.96 + 4.04

18.60 + 3.20

17(68.0)
1(4.0)
4(16.0)
0

1(4.0)

2(8.0)

8(32.0)
13(52.0)
0

4(16.0)

; HB, hemoglobin; ALP, alkaline phosphate.

NBM

43.37 + 1478

137(25.36)
403(74.63)
123.07 + 17.16
68.83 + 49.30
3.32+£5.63
225+270
7.30 £19.28
222+028
38.66 + 25.09
19.71 +£29.48
30.09 +20.11
272+ 1.14
3243 +21.89
278+ + 1.99

23.13 £9.44

406(75.3)
11(2.0)
17(3.1)
13(2.4)
68(12.6)

25(4.6)

195(36.1)
246(45.6)
5(0.9)

94(17.4)

P value

0.003

0.763

<0.001

0.028

0.691

0.083

0.288

0.558

0.658

0.515

0.803

0.191

0.412

0310

0.839

0.661

0.945
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Group(n%)

Characteristics P value
GS group GS+A group

Age(year) 0.875
<55 24(58.5%) 17(56.7%)

>55 17(41.5%) 13(43.3%)

Gender 0.241
Male 30(73.2%) 18(60.0%)

Female 11(26.8%) 12(40.0%)

Location 0.285
Head * 32(78.1%) 20(66.7%)

Tail/Body " 9(21.9%) 10(33.3%)

Distant metastasis 0.163
No 25(60.1%) 23(76.7%)

Yes 16(39.0%) 7(23.3%)

*The primary tumor is located in the head of the pancreas; ®The primary tumor is located in the

tail or body of the pancreas.
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Characteristics

M (%)

Marital (%)

Age (median [IQR])
Race.ethnicity (%)

Sequence number (%)

times (median [IQR])
status (%)

Sex (%)

Primary.Site (%)

Grade (%)

Laterality (%)

Pathological (%)

T (%)

Tumor Size (median [IQR])

level

Mo

M1

Married
unmarried

NA

black

Chinese

other

white

more

One primary only
NA

alive

dead

female

male
C64.9-Kidney
C65.9-Renal pelvis
Moderately differentiated
Poorly differentiated
Undifferentiated; anaplastic
unknown

Well differentiated
left

other

right

8120/3:

8130/3

8260/3

8310/3

8312/3

8317/3
other(n<1000)

T1

T2

T3

T4

TX

NA

NO (N=36472)

33724 (9247)
2748 (7.53)
22673 (62.17)
13799 (37.83)
64.000 [55.000, 72.000]
4621 (12.67)
445 (1.22)
2877 (7.89)
28529 (78.22)
12318 (33.77)
24154 (66.23)
37.000 [14.000, 66.000]
28338 (77.70)
8134 (22.30)
12953 (35.51)
23519 (64.49)
34925 (95.76)
1547 (4.24)
13350 (36.60)
7711 (21.14)
2530 (6.94)
9810 (26.90)
3071 (8.42)
17892 (49.06)
53 (0.15)
18527 (50.80)
720 (1.97)
877 (2.40)
4665 (12.79)
20031 (54.92)
6270 (17.19)
2035 (5.58)
1874 (5.14)
25302 (69.37)
3532 (9.68)
6634 (18.19)
580 (1.59)
424 (1.16)
40.000 [25.000, 62.000]

(N=2544)

917 (36.05)
1627 (63.95)
1470 (57.78)
1074 (42.22)
66.000 [57.000, 76.000]
294 (11.56)
29 (1.14)
196 (7.70)
2025 (79.60)
607 (23.86)
1937 (76.14)
8.000 [2.750, 19.000]
616 (24.21)
1928 (75.79)
822 (3231)
1722 (67.69)
2166 (85.14)
378 (14.86)
162 (6.37)
573 (22.52)
595 (23.39)
1196 (47.01)
18 (0.71)
1399 (54.99)
14 (0.55)
1131 (44.46)
311 (1222)
86 (3.38)
225 (8.84)
772 (30.35)
717 (28.18)
39 (1.53)
394 (15.49)
417 (16.39)
371 (14.58)
1130 (44.42)
444 (17.45)
182 (7.15)
80.000 (55.000, 111.250]

P

<0.0001

<0.0001

<0.0001
0.3699

<0.0001

<0.0001
<0.0001

0.0012

<0.0001

<0.0001

<0.0001

<0.0001

<0.0001

<0.0001

Pathological:8310/3: Clear cell adenocarcinoma, NOS, 8312/3: Renal cell carcinoma, 8260/3: Papillary adenocarcinoma, NOS,8317/3: Renal cell carcinoma, chromophobe type,8120/3:
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Number Author Type

1 Duanetal. RCC
clear
2 Zheng et al.  cell
RCC
3 Wenzel RCC
etal.
Sii
4 iidfeld rc
etal.
5 Yordanova PC
etal.
6 Yangetal. PC

Stefanowicz ~ Wilms

7
etal. tumor
Ichiok:

s chioka TC
etal.

9 Cameron T
etal.

10 Nishimura C
etal.

Year Cases
2017 98
2020 50
2021 195
2016 179
2017 55
2017 173
2010 26
2017 53
2020 53
2021 18

Stage

Non-
metastatic

TINOMO-
T2NOMO

Non-
metastatic

Metastatic

All stage

Metastatic

Treatment

Partial
Nephrectomy

Nephrectomy

Nephrectomy

Radical
prostatectomy

["7Lu]Lu-

PSMA-617
radioligand
therapy

Unilateral
nephrectomy

Chemotherapy
(cisplatin-
based)
Chemotherapy
(cisplatin-
based)
Chemotherapy
(cisplatin-
based)

Result

The predictive value of CysC level at postoperative 6 hours for acute
kidney injury was better than that of the intraoperative amount of
negative fluid balance and average urine volume.

Estimation of renal function by serum CysC was weakly correlated
with rGER, but the valuation was low.

Preoperative CysC levels can predict renal impairment after RCC
surgery.

In patients with normal preoperative renal function, administration
of a median dose of 1000 ml of hydroxyethyl starch did not result in
deterioration of the postoperative CysC-based-renal function.

CysC is one of the most reliable predictive markers of
nephrotoxicity.

CysC levels can predict renal function in prostate neoplasia patients
but were not a biomarker for the development of prostate neoplasia
and were not correlated with the clinicopathological characteristics
of PC.

CysC levels may be increased in Wilms tumor patients with normal
GFR.

eGFR based on CysC may overestimate the renal function in TC
survivors cured by cisplatin-based chemotherapy.

Elevated serum CysC levels may occur early after chemotherapy;
they return to baseline levels after 3 months and do not affect long-
term renal function.

eGFR based on CysC reflected renal function more accurately than
eGFR based on Scr.

References

(47)

(48)

(40)

(23)

(45)

(24)

(64)

(65)

(66)

(68)

RCC, renal cell carcinoma; PC, prostate cancer; TC, testicular cancer; UC, urothelial carcinoma; CysC, cystatin C; Scr, serum creatinine; eGFR, estimated glomerular filtration rate; tGFR,

radionuclide glomerular filtration rate.
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Number Author Type Year Cases Stage Treatment samplin off CysC  Multivariate Cox analysis References
PINE value group
(%)
Guo 0S HR:1.59 (1.10-2.29), P= 0.012
1 iy RCC 2017 325 Allstage Nephrectomy — Serum 10910964 b hp 0 (129.9.51), P0013 (49)
Zhao 08 HR:10.513 (2.539-43.522),
2 el RCC 2020 354  Allstage  Nephrectomy  Serum 1.105 36 (10) P=0.001 CSS HR:4.944 (1.017- (41)
. 24.043), P=0.048
3 Bodnar  pec 2016 56 Metastatic MMT Serum LS de(y) o060 (102260 B=0.0d28 (39)
etal. (Everolimus) PFS HR:2.85 (1.34-6.05), P=0.0065
G clear
4 l“‘: cll 2018 253 Allstage  Nephrectomy tissues 2065 210 (83)  OS HR:5.98 (0.8-44.33), P=0.079 (42)
e RCC
Chemotherapy
OS HR:2.394 (1.135-3.757), P=
5 Fanetal. PC 2017 54 CRPC (Docetaxel Serum 161 23 (43) ( ) (46)

+Prednisone) o001
o 05 HR:1.989 (1.366-2.896),
P<0.001 RFS HR:1429 (1.009-
6 T: tal. UT! 2019 538 distant RNU 14 162 (30, 67,
aneta e stan seum GO 023), P=0.044 CSS HR:1.997 ©7)

(1.331-2.996), P=0.001

metastasis

RCC, renal cell carcinoma; PC, prostate cancer; UTUC, upper tract urothelial carcinoma; CRPC, castration-resistant prostate cancer; MMT, molecular-targeted therapy; RNU, radical
nephroureterectomy; OS, overall survival; CSS, cancer-specific survival; PES, progression-free survival; RES, progression-free survival, HR, hazard ratio; CI, confidence interval.
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Symbol miRNA Expectation sco

EPHA3 hsa-miR-559 99.59458
EPHA3 hsa-miR-548a-5p 99.36135273
EPHA3 hsa-miR-548ab 99.36135273
EPHA3 hsa-miR-548ad-5p 99.36135273
EPHA3 hsa-miR-548ae-5p 99.36135273
EPHA3 hsa-miR-548ak 99.36135273
EPHA3 hsa-miR-548am-5p 99.36135273
EPHA3 hsa-miR-548ap-5p 99.36135273
EPHA3 hsa-miR-548aq-5p 99.36135273
EPHA3 hsa-miR-548ar-5p 99.36135273
EPHA3 hsa-miR-548as-5p 99.36135273
EPHA3 hsa-miR-548au-5p 99.36135273
EPHA3 hsa-miR-548ay-5p 99.36135273
EPHA3 hsa-miR-548b-5p 99.36135273
EPHA3 hsa-miR-548bb-5p 99.36135273
EPHA3 hsa-miR-548¢c-5p 99.36135273
EPHA3 hsa-miR-548d-5p 99.36135273
EPHA3 hsa-miR-548h-5p 99.36135273
EPHA3 hsa-miR-5481 99.36135273
EPHA3 hsa-miR-548;-5p 99.36135273
EPHA3 hsa-miR-5480-5p 99.36135273
EPHA3 hsa-miR-548w 99.36135273
EPHA3 hsa-miR-548y 99.36135273
PCDH9 hsa-miR-7-1-3p 97.86567
PCDH9 hsa-miR-7-2-3p 97.86567
SCG2 hsa-miR-3143 97.55045
EPHA3 hsa-miR-3163 97.42054
VIM hsa-miR-708-3p 97.16357
PCDH9 hsa-miR-5688 97.03809
PCDH9 hsa-miR-520d-5p 96.82901
PCDH9 hsa-miR-524-5p 96.82901
PCDH9 hsa-miR-3973 96.6787
ENPEP hsa-miR-4427 96.52265
EPHA3 hsa-miR-551b-5p 95.62846
EPHA3 hsa-miR-5692a 95.48851
PCDH9 hsa-miR-495-3p 95.3761
VIM hsa-miR-4328 94.28759
EPHA3 hsa-miR-627-3p 94.25463
EPHA3 hsa-miR-4307 94.19724
EPHA3 hsa-miR-520d-5p 94.1869
EPHA3 hsa-miR-524-5p 94.1869
SCG2 hsa-miR-8485 93.95476
EPHA3 hsa-miR-3059-5p 93.88569
SCG2 hsa-miR-548aj-3p 93.04963
SCG2 hsa-miR-548x-3p 93.04963
SCG2 hsa-miR-4801 92.84489
PCDH9 hsa-miR-4801 92.36807
SCG2 hsa-miR-5692a 92.20465
PDLIM4 hsa-miR-619-3p 91.75736
RELB hsa-miR-3059-5p 91.64647
PCDH9 hsa-miR-4731-3p 91.57227
PCDH9 hsa-miR-153-5p 91.43969
ENPEP hsa-miR-3163 91.25889
FEZ1 hsa-miR-4474-3p 90.7065
EPHA3 hsa-miR-4474-3p 90.55867
VIM hsa-miR-124-3p 90.54101
VIM hsa-miR-506-3p 90.54101
PCDH9 hsa-miR-510-3p 90.54088
SCG2 hsa-miR-4731-3p 90.48228
ENPEP hsa-miR-551b-5p 90.42114
PCDH9 hsa-miR-4427 90.38796
ENPEP hsa-miR-3662 90.21936
SCG2 hsa-miR-95-5p 90.12317
FEZ1 hsa-miR-373-5p 89.94208
FEZ1 hsa-miR-616-5p 89.94208
FEZ1 hsa-miR-371b-5p 89.94208
PCDH9 hsa-miR-4699-3p 89.43566
EPHA3 hsa-miR-510-3p 89.2435
GFI1 hsa-miR-4777-5p 88.6116
EPHA3 hsa-miR-9902 88.42069
PCDH9 hsa-miR-4474-3p 88.3186
PCDH9 hsa-miR-627-3p 88.16555
IRF1 hsa-miR-12136 88.04969
EPHA3 hsa-miR-153-5p 87.93277
ENPEP hsa-miR-4777-5p 87.771
PCDH9 hsa-miR-95-5p 87.66373
EPHA3 hsa-miR-373-5p 86.72648
EPHA3 hsa-miR-616-5p 86.72648
EPHA3 hsa-miR-371b-5p 86.72648
PCDH9 hsa-miR-4778-5p 86.6743
SCG2 hsa-miR-5688 86.6212
RGS3 hsa-miR-6500-3p 86.09
EMP1 hsa-miR-548n 86.03104672
ENPEP hsa-miR-641 85.99173
ENPEP hsa-miR-3617-5p 85.99173
VIM hsa-miR-548n 85.9015
ENPEP hsa-miR-4778-5p 85.8444
CCDC102B hsa-miR-153-5p 85.66093
NOS2 hsa-miR-559 85.5333
GFI1 hsa-miR-5688 85.4781
SCG2 hsa-miR-495-3p 85.3661
SCG2 hsa-miR-7-1-3p 85.3661
SCG2 hsa-miR-7-2-3p 85.3661
PDLIM4 hsa-miR-9902 85.33963
CCDC102B hsa-miR-3163 84.9453
PCDH9 hsa-miR-3617-5p 84.7735
CCDC102B hsa-miR-548aj-3p 84.51465939
CCDC102B hsa-miR-548x-3p 84.51465939
PCDH9 hsa-miR-551b-5p 83.75769
GFI1 hsa-miR-3973 83.6984
PCDH9 hsa-miR-8485 83.6918
PDLIM4 hsa-miR-7111-5p 83.1606
PDLIM4 hsa-miR-4723-5p 82.8831
PDLIM4 hsa-miR-5698 82.8831
PDLIM4 hsa-miR-6870-5p 82.8831
EMP1 hsa-miR-4699-3p 82.7515
EPHA3 hsa-miR-6500-3p 82.61788
SCG2 hsa-miR-9902 82.6176
VIM hsa-miR-12136 82.6027
GFI1 hsa-miR-495-3p 82.5314
NOS2 hsa-miR-548a-5p 82.3559
NOS2 hsa-miR-548ab 82.3559
NOS2 hsa-miR-548ad-5p 82.3559
NOs2 hsa-miR-548ae-5p 82.3559
NOS2 hsa-miR-548ak 82.3559
NOS2 hsa-miR-548am-5p 82.3559
NOS2 hsa-miR-548ap-5p 82.3559
NOS2 hsa-miR-548aq-5p 82.3559
NOS2 hsa-miR-548ar-5p 82.3559
NOS2 hsa-miR-548as-5p 82.3559
NOS2 hsa-miR-548au-5p 82.3559
NOS2 hsa-miR-548ay-5p 82.3559
NOs2 hsa-miR-548b-5p 82.3559
NOS2 hsa-miR-548bb-5p 82.3559
NOS2 hsa-miR-548¢-5p 82.3559
NOS2 hsa-miR-548d-5p 82.3559
NOS2 hsa-miR-548h-5p 82.3559
NOS2 hsa-miR-548i 82.3559
NOS2 hsa-miR-548j-5p 82.3559
NOS2 hsa-miR-5480-5p 82.3559
NOS2 hsa-miR-548w 82.3559
NOS2 hsa-miR-548y 82.3559
EMP1 hsa-miR-708-3p 82.153
PCDH9 hsa-miR-641 82.0849
CCDC102B hsa-miR-4723-5p 82.0752
CCDCl102B hsa-miR-5698 82.0752
CCDC102B hsa-miR-7111-5p 82.0752
CCDC102B hsa-miR-6870-5p 82.0752
GFI1 hsa-miR-4328 81.86927
PCDH9 hsa-miR-3143 81.8312
PCDH9 hsa-miR-619-3p 81.5165
EPHA3 hsa-miR-124-3p 80.9182
EPHA3 hsa-miR-506-3p 80.9182
ENPEP hsa-miR-510-3p 80.66176
EPHA3 hsa-miR-3662 80.33439

PCDH9 hsa-miR-4307 80.0189
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Univariate Cox analysis results

Gene Symbol HR (95% ClI for HR) p-value

ENPEP 1.6 (1.28-2.16) 0.000139074 381
CCDC102B 233 (144-3.75) 0.000522431 347
FEZ1 1.99 (1.33-2.98) 0.000855644 3.33
NOS2 1.94 (1.31-2.88) 0.000958565 33
SCG2 124 (1.09-1.41) 0.00128473 322
RPLP2 0.75 (0.63-0.90) 0.001925764 31
RELB 0.73 (0.59-0.90) 0.003646782 291
RGS3 176 (1.20-2.58) 0.003899135 2.89
EMP1 1.32 (1.09-1.60) ‘ 0.005084147 28
PDLIM4 0.78 (0.65-0.93) 0.005222158 279
EPHA3 1.26 (1.07-1.49) 0.005598623 277
PCDHY 146 (1.11-193) 0.006761393 271
VIM 072 (0.57-0.92) 0.007530978 267
GFI1 0.58 (0.39-0.87) 0.008598062 263
IRF1 0.77 (0.64-0.94) 0.008833897 262
EGR3 0.84 (0.73-0.96) 0.009926168 258
SERPING1 0.78 (0.64-0.94) 0.010483576 256
GPRI57 132 (1.06-1.63) 0.011500637 253
EMP3 0.75 (0.59-0.94) 0.012977354 248
NOVA2 1.87 (1.13-3.09) 0.014175508 245
APOD 0.91 (0.84-0.98) | oo1a71526 244
GZMB 0.84 (0.72-0.97) 0.014940485 243
FBLNS 0.78 (0.64-0.95) 0.015242065 243
LAMB3 0.86 (0.77-0.97) 0.015320158 242
EGR2 081 (0.68-0.97) 0.020596099 232
PLAT 088 (0.79-0.98) 002066215 231
CIR 081 (0.68-0.97) 0.021310129 23
ST3GALL 120 (1.03-1.41) 0.021409383 23
NHSL2 148 (1.06-2.06) 0.021435989 23
RDX 130 (1.04-1.63) 0.021922109 229
PSPCI 0.69 (0.51-0.95) 0.024554127 225
IGFBP6 0.82 (0.69-0.98) 0.028380367 219
BHLHE41 0.84 (0.71-0.98) 0.028445965 219
HSD17B6 134 (1.03-1.74) 0.030702069 216
ZBED2 0.71 (0.52-0.97) 0.030961087 -2.16
PTGER3 0.86 (0.75-0.99) 0.031050691 -2.16
PCDH17 147 (1.03-2.08) 0.032445543 214
RHOC 0.78 (0.62-0.98) | 0032588416 214
HIVEP2 135 (1.02-1.78) 0.032782401 213
GLIPRI 0.70 (0.50-0.97) 0.03279175 213
LAMC2 0.88 (0.79-0.99) 00329582 213
ANXAS 0.71 (0.51-0.98) 0.035117301 211
ACTG2 0.90 (0.82-0.99) 0.035668501 -21
TNFSF4 132 (1.02-1.72) 0.036985692 209
SFPQ 0.71 (0.52-0.98) 0.037613255 2,08
EDIL3 115 (1.01-1.32) 0.037647622 208
PAFAHIBI 139 (1.02-1.89) 0.037714152 208
PLCLL 0.80 (0.65-0.99) 0.039631052 -2.06
TM4SF4 130 (1.01-1.68) 0.041774483 204
NGFR 085 (0.73-1.00) 0.044023122 201
CAPG 083 (0.69-1.00) 0.045120591 2
NID2 125 (1.00-1.55) 0.045980878 bl
PAICS 1.24 (1.00-1.53) 0.047716607 1.98
NCAPD3 1.28 (1.00-1.63) 0.049061581 1.97
CISZ 0.80 (0.63-1.00) 0.049850603 -1.96
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Variables

Median survival time (days)

Survival status

Gender

Age (years)

TNM stage

Group

Alive
Dead
Female
Male
<60

> 60

I

I

it

v

S R T )

TCGA cohort (n = 361)

High risk (n = 180)

677.5
129 (71.67%)
51 (28.33%)
0 (44.44%)
100 (55.56%)
3 (29.44%)
127 (70.56%)
21 (11.67%)
68 (37.78%)
56 (31.11%)
35 (19.44%)
2 (1.11%)
20 (11.11%)
132 (73.34%)
26 (14.44%)
95 (52.78%)
43 (23.89%)
42 (23.33%)
145 (80.56%)
5 (19.44%)

Low risk (n = 181)

735
158 (87.29%)
23 (12.71%)
87 (48.07%)
94 (51.93%)
54 (29.83%)
127 (70.17%)
42 (23.20%)
76 (42.00%)
41 (22.65%)
22 (12.15%)

(3.31%)
42 (2321%)
118 (65.19%)
15 (8.29%)
120 (66.30%)
42 (23.20%)
19 (10.50%)
159 (87.85%)
2 (12.15%)

2
6
2

P value

< 0.001

0.4902

0.9333

0.0052

0.0036

0.0031

0.0575
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Characteristics Classification Cases Mean H-score Standard deviation of H-score P value

Age (year) > 60 26 138.9 57.5 0.64
<60 17 147.5 59.6

Sex Male 31 144.3 55.5 0.72
Female 12 137.2 65.4

Position Colon 6 114.2 55.4 0.76
Rectum 37 145.6 58.2

TNM stage Unknown 12 150.8 65.9 0.30
I 8 103.4 57.2
1 10 141.8 55.3
1 12 159.0 47.9
v 1 156.1 0.0

Differentiation Unknown 31 143.0 57.4 0.90
Poor 10 137.1 67.0

Moderate 2 157.1 14
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95%Cl

Variable

Age (years)
275 Reference
<45 0.475 V 0.449 0.503 <0.001
45-59 0.502 0.485 0.520 <0.001
60-74 0.593 0.575 0.612 <0.001
Gender ‘
Female Reference
Male L115 1.086 1.145 <0.001
Race ‘
Black Reference ‘
‘White 0.780 0.751 0.810 <0.001
Other 0.777 0.741 0.816 <0.001

Site_recode_ICD

Appendix Reference

Cecum 1.693 1516 1.892 <0.001
Colon 1576 1415 1.755 <0.001
Large Intestine 1.877 1.627 2.166 <0.001
Rectum 1.884 1.689 2.102 <0.001

Grade

Grade I Reference

Grade IT 1453 1.365 1.548 <0.001
Grade 11T 2203 2.063 2.354 <0.001
Grade IV 2403 2.184 2.643 <0.001

CS_tumor_size

<25 Reference

>50 1531 1.447 1.620 <0.001

25-50 1.363 1.289 1.441 <0.001
CS_extension 1.002 1.002 1.002 <0.001
Metastasis

Mo Reference

M1 6.028 5.849 6.214 <0.001

“Other” in race denotes American Indian (AK Natives) and Asian (Pacific Islanders).
HR, hazard ratio; CI, confidence interval
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Univariate Cox analysis

95%Cl

Age (years)

275 ‘ Reference

<45 0.755 0.714 0.798 <0.001

45-59 0.728 0.703 0.753 <0.001

60-74 0.742 0.720 0.766 <0.001
Gender

Female Reference

Male 1.088 1.060 1116 <0.001
Race

Black Reference

White 0.783 0.754 0.813 <0.001

Other 0.761 0.725 0.799 <0.001
Site_recode_ICD

Appendix Reference

Cecum 1.409 1.264 1.570 <0.001

Colon 1.235 L111 1.372 <0.001

Intestine 2271 1.971 2617 <0.001

Rectum 1.314 1179 1.463 <0.001
Grade

| Grade 1 Reference
Grade IT 1.862 1.751 1.981 <0.001
Grade IIT 3.326 3.117 3.549 <0.001
| Gradelv 3.540 3.221 3.891 <0.001

CS_tumor_size

<25 Reference

>50 3212 3.042 3.392 <0.001

25-50 2117 2.003 2237 <0.001
CS_extension 1.003 1.003 1.003 <0.001
Metastasis

Mo Reference

Ml 7.506 7.307 7.711 <0.001

“Other” in race denotes American Indian (AK Natives) and Asian (Pacific Islanders).
HR, hazard ratio; CI, confidence interval
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1479) P value

Age, n (%) 0925
<45 6689(6.4) 4661(6.3) 2028(6.4)
45-59 25853(24.6) 18081(24.6) 7772(24.7)
60-74 36527(34.8) 25584(34.8) 10943(34.8)
>75 35864(34.2) 25128(34.2) 10736(34.1)

Gender, n (%) 0.904
Female 51360(48.9) 35943(48.9) 15417(49.0)
Male 53573(51.1) 37511(51.1) 16062(51.0)

Race, n (%) 0.723
Black 12817(12.2) 8955(12.2) 3862(12.3)
White 76473(72.9) 53508(72.8) 22965(73.0)
Other 15643(14.9) 10991(15.0) 4652(14.8)

Site_recode_ICD, n (%) 0.705
Large Intestine 1328(1.3) 942(1.3) 386(1.2)
Colon 62788(59.8) 44018(59.9) 18770(59.6)
Appendix 2093(2.0) 1465(2.0) 628(2.0)
Cecum 17506(16.7) 12252(16.7) 5254(16.7)
Rectum 21218(20.2) 14777(20.1) 6441(20.5)

Grade, n (%) ' 0.885
Grade I 9261(8.8) 6490(8.8) 2771(8.8)
Grade IT 73414(70.0) 51374(69.9) 22040(70.0)
Grade 11T 19839(18.9) 13912(18.9) 5927(18.8)
Grade IV 2419(2.3) 1678(2.3) 741(2.4)

[ CS_tumor_size(mm), n (%) 0.109

25-50 47053(44.8) 33066(45.0) 13987(44.4)
>50 43923(41.9) 30705(41.8) 13218(42.0)
<25 13957(13.3) 9683(13.2) 4274(13.6)

CS_extension, Median (IQR) 400.0 (400.0-455.0) 400.0 (400.0-455.0) 400.0 (400.0-455.0) 0.505

Metastasis, n (%) 0.579
Mo 84856(80.9) 59367(80.8) 25489(81.0) |
M1 20077(19.1) 14087(19.2) 5990(19.0)

DSS, n (%) 1.000
No 72207(68.8) 50545(68.8) 21662(68.8)
Yes 32726(31.2) 22909(31.2) 9817(31.2)

Survival_months,Median (IQR) 46.0 (22.0-88.0) 46.0 (22.0-88.0) 46.0 (22.0-88.0) 0.897

IQR, interquartile range.
“Other” in the Race: American Indian (AK Native) and Asian (Pacific Islander).
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COL5A1
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ADHI1B
SDC1
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HR

1.483
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1811
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1.458
1.290

Univariate analysis

95%CI

1.267-1.743
0.383-0.670
1.442-2.276
0.660-0.836
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1.107-1.502

P-value

<0.001
<0.001
<0.001
<0.001
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0.001

HR

1.627
0.777
1.401
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1.249
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Multivariate analysis

95%CI

1.107-2.393
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P-value

0.013
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Coefficients
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