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Objectives

Glutamate carboxypeptidase-II (GCP-II), a zinc metalloenzyme that resides in cell membrane, has been reported as overexpressed in the neovasculature of ovarian cancers. The study objective was to determine whether GCP-II targeted imaging with 18F-DCFPyL PET/CT can detect disease sites in women with advanced high-grade serous ovarian cancer (HGSOC).



Materials and methods

Twenty treatment-naïve women with advanced HGSOC were recruited (median age 60 years). Prior to commencing therapy (primary cytoreductive surgery [n=9] or neoadjuvant chemotherapy [n=11]), subjects underwent routine staging with contrast-enhanced abdominopelvic CT (=CT), followed by 18F-DCFPyL PET/CT (=PET). CT and PET were reported independently using a standardized reporting template assessing 25 sites. The performance of PET was compared to CT in all subjects and to surgery and surgical histopathology in 9 patients who underwent primary cytoreductive surgery.



Results

Of the 25 sites assessed in 20 patients, CT detected disease in 292/500 (58.4%) locations and PET detected disease in 171/500 (34.2%). Compared to CT the sensitivity (95% CI) of PET to detect disease in the upper abdomen, the gastrointestinal tract or the peritoneum was 0.29 (0.20,0.40), 0.21 (0.11,0.33) and 0.74 (0.64,0.82), respectively. In the surgical cohort, 220 sites in 9 patients were evaluated. The sensitivity and specificity of CT and PET were 0.85 versus 0.54 (p<0.001) and 0.73 versus 0.93 (p<0.001), respectively.



Conclusion

Although 18F-DCFPyL has higher specificity than CT in detecting advanced HGSOC tumor sites, it detects less disease sites than CT, especially in the upper abdomen and along the gastrointestinal tract, likely limiting its clinical utility.



Clinical trial registration

ClinicalTrials.gov, NCT03811899.
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Introduction

Epithelial ovarian cancer is the fifth most common cancer in women in the United States, and it has the highest fatality-to-case ratio of all the gynecologic malignancies (1). These tumors spread primarily by exfoliation of cells into the peritoneal cavity, but also by lymphatic and hematogenous dissemination. High-grade serous carcinomas (HGSOC) are the most common histologic subtype, with up to 75% of patients presenting with advanced-stage disease, for which surgery alone is not curative. Standard therapy consists of either primary cytoreductive surgery (PCS) followed by platinum-based chemotherapy or neoadjuvant chemotherapy (NACT) followed by interval cytoreductive surgery and further chemotherapy. Achieving complete resection in advanced ovarian cancer is often not feasible due to the multi-focal, disseminated nature of the disease (2). Numerous studies have shown that the degree of cytoreduction (i.e., the amount of residual disease at the completion of surgery) is directly correlated with survival. Patients with absence of gross residual disease after surgery have a much better outcome than those with optimal debulking (defined as residual sites of disease < 1 cm in diameter) or suboptimal debulking (defined as residual sites of disease ≥1 cm), with a 5-year survival estimated at only 15% after suboptimal debulking (2–5).

Accurate mapping of the distribution and volume of metastatic disease is vital for determination of the optimal therapeutic approach (PCS vs. NACT). Currently, most patients are staged with contrast-enhanced CT of the chest, abdomen, and pelvis (=CT); however, this tool has limited sensitivity and specificity, especially for disease in the mesentery or serosal surface of bowel (6–8). FDG PET/CT has been previously assessed with sensitivity and specificity of 78% and 68%, respectively, on a quadrant basis. Given the moderate performance measures, FDG PET has not been universally incorporated into the workup of these patients (9–11). A further non-invasive tool that would accurately map disease extent is needed to better select patients for primary therapy, reduce the rate of aborted surgery and associated morbidity, and hopefully improve patient outcomes.

Glutamate carboxypeptidase II (GCP-II) is a zinc metalloenzyme that resides in cell membranes, mostly on the extracellular side. It has various additional names including folate hydrolase and prostate specific membrane antigen (PSMA). It is expressed by normal tissues such as salivary and lacrimal glands, larynx, kidneys, bowel and prostate, as well as by multiple malignant tumors, often in the neovasculature of these tumors. GCP-II (=PSMA) has been extensively assessed in the setting of prostate cancer, especially in the setting of biochemical recurrence. In prostate cancer, PSMA PET has shown a very high sensitivity and moderately high specificity for the detection of recurrent or metastatic disease even when conventional imaging is negative (12–22). Initial report on the expression of GCP-II in neovasculature of gynecologic cancers including primary and metastatic epithelial ovarian cancer suggested high expression of GCP-II at immunohistochemistry in all 46 cases of ovarian cancer assessed (23). These findings were the impetus for the current study. The main aim of the current study was to determine whether GCP-II targeted imaging with 18F-DCFPyL PET/CT (=PET) can detect sites of disease in women with advanced HGSOC and to compare sites of disease detected on PET to CT and to intra-operative findings and surgical histopathology.



Patients and methods


Study design

This is an institutional ethics review board approved, single arm, prospective pilot study (ClinicalTrials.gov: NCT03811899). Written informed consent was obtained from all participants. The inclusion criteria were: 1. Age ≥18 years; 2. Cytological or histological diagnosis of high grade epithelial ovarian cancer; 3. Clinical stage III or IV, under consideration for PCS or NACT; 4. Contrast-enhanced CT abdomen and pelvis within 6 weeks of PET. Exclusion criteria included: 1. Evidence of epithelial ovarian cancer of the following histological subtypes: mucinous, low grade serous, low grade endometrioid and low-malignant potential tumors or metastases from other primary tumor; 2. Inability to complete study procedures (contraindication for PET as per institutional guidelines such as pregnancy, or participant’s inability to lie still for 30 minutes). Demographic and clinical data include age, FIGO (International Federation of Gynecology and Obstetrics) stage, serum CA-125 at presentation, and surgical outcomes were tabulated.



Study procedures


18F-DCFPyL PET/CT

PET was performed 90-120 minutes (mean ± SD: 100.3 ± 9.7) after injection of 310 ( ± 16.8) MBq of 18F-DCFPyL. During uptake time, water soluble oral contrast was given for bowel opacification on CT. Patients were positioned supine on the imaging couch with arms outside of the region of interest. Images were obtained from the skull base to the upper thighs. PET was performed on a Biograph mCT 40 scanner (Siemens Healthcare, Erlangen, Germany). Low dose CT without intravenous contrast was used for attenuation correction as per standard departmental protocols. Overall, 5-9 bed positions were obtained as per patient height (2-5 min/bed position).



CT protocol

The contrast-enhanced CT scan were performed by using the Aquilion 64 or Aquilion ONE CT (Canon Medical Systems). The scanning parameters were: tube voltage 120 kV and tube determined using automatic exposure control (SUREexposure). For Aquilon ONE scan parameters were as follows: 1–3 mm slice thickness; 2.4 mm slice interval; helical pitch = 65; pitch factor =0.813. For Aquilon 64 scan parameters were as follows: 1-5mm slice thickness, 2.5 mm slice interval; helical pitch: 53; pitch factor= 0.828. Images were obtained after intravenous administration of 100 ml of 300 mg of iodine per milliliter of nonionic contrast material (Ultravist 370; Schering) using a power injector through an 18-gauge at a rate of 3 ml/s. Coronal and sagittal reformats of the dataset were also obtained.



Imaging interpretation & reporting template

CT and PET imaging data sets were interpreted independently. When present, primary tumor, nodal, peritoneal and visceral metastases on CT were recorded by one of 2 readers (TC, SJ; with 21 and 9 years of experience) using standard diagnostic criteria (24). PET was interpreted in consensus by 2 readers (UM, RK with 20 and 5 years of experience). In general, on PET, focal tracer accumulation greater than background activity, which could not be attributed to physiological activity, or a benign entity were recorded. SUVmax at all tumor sites and PSMA score relative to reference tissues, as previously described, were documented (25). All disease sites on either modality were tabulated using a standardized synoptic reporting template evaluating 25 stations in the abdomen and pelvis (Appendix A). These included assessment of: 1. Primary ovarian tumor/s; 2. Nodal metastases (below and/or above the renal veins); 3. Peritoneum (8 stations); 4. Gastrointestinal tract (5 stations); 5. Upper abdomen (9 stations).



Reference standard

A head-to-head comparison of lesion detection on CT and PET was performed for all patients. For the subset of patients who underwent primary cytoreductive surgery findings on CT and PET were compared to intra-operative findings and surgical histopathology using the same synoptic reporting template. The detection rate, sensitivity, specificity, positive predictive value, negative predictive value, and overall accuracy were calculated for each modality according to the standard of reference for all evaluable stations.




Statistical analysis

Sensitivity and specificity of PET were calculated on a per-lesion basis against standard of care contrast-enhanced CT. Calculations were performed across all lesions as well as at the local and regional level with exact confidence intervals as per Collett (26). A per-lesion analysis assumes lesions within patients are independent. To adjust for potential similarities of the assessment of lesions within patients a second analysis of the sensitivity and specificity was undertaken using generalised estimating equations (GEE) and an exchangeable working correlation structure as in Smith and Hadgu (26).

A sub-sample of nine patients underwent PCS with surgical histopathology. Sensitivity and specificity of both CT and PET were evaluated against the surgical standard for this subsample. Exact binomial tests (27, 28) were used to test the null hypothesis that the sensitivity and specificity of the tests was equal across regions, but the subsample was too small to detect differences at the lesion level.




Results

Of the 112 participants approached to participate, 92 were excluded (Figure 1). There were 20 women (median age, 60 years; range: 38-83) with histologically proven high grade epithelial ovarian cancer included of whom 11 had NACT and 9 underwent PCS. Clinical data including stage, serum CA-125 and surgical outcome are summarized in Table 1.




Figure 1 | Patient flowchart.




Table 1 | Summary of clinical parameters.




Detection rate on PET

Of the 500 stations assessed in all 20 patients, CT detected disease in 292/500 (58.4%) and PET detected disease in 171/500 (34.2%). 18F-DCFPyL uptake when visible at disease sites was generally low or low to moderate with a mean SUVmax (± SD) of 4.2 ± 1.9 (range: 1.2-10.9). Of all 171 lesions assessed on PET, PSMA scores were 0, 1, and 2 in 8/171 (4.7%), 130/171 (76%), 33 (19.3%), respectively. No lesion with PSMA score of 3 was recorded.

Primary tumors were detected in 19/20 participants (95%) on both PET and CT. The performance measures of PET compared to CT for detection of disease for all evaluated stations and for metastatic sites grouped by anatomical location are presented in Table 2 including the GEE adjusted measures, correcting for lack of independency of multiple lesions within the same patient.


Table 2 | Performance measures of PET with CT as the reference for all stations assessed, and for the various stations grouped by anatomic location (excluding primary tumors).





Performance of CT and PET with surgery as reference standard

Nine participants underwent PCS with 220 evaluable stations (data were missing for 5 stations in one patient). There were 54 stations that were positive on CT, PET and at surgery; and 76 stations that were negative on CT, PET and at surgery. The overall performance measures of CT, and PET with surgery and surgical histopathology as the reference standard are presented in Table 3. Disease detection on imaging in the various stations evaluated with comparison to surgery as the reference standard is depicted in Figure 2; the sensitivity and specificity of CT and PET in identifying metastatic sites compared to surgery and surgical histopathology are presented in Table 4.


Table 3 | Performance measures of CT, and PET with surgery and surgical histopathology as the reference standard for all evaluated stations (n=220).






Figure 2 | Plot showing lesion detection by site for each of the 9 patients who underwent primary cytoreductive surgery. Blue background and pink background denote negative or positive station according to reference standard, respectively. A circle notes positive on CT and cross notes positive on PET.




Table 4 | Sensitivity and specificity of CT and PET in identifying metastatic sites compared to surgery.






Discussion

In women with advanced HGSOC, 18F-DCFPyL (PSMA) PET/CT detects fewer metastatic sites of disease as compared to standard of care contrast-enhanced CT, but at a higher specificity. Although only a subsample of the study population underwent PCS, in these participants, surgery and surgical histopathology was used as the reference standard to compare the performance of CT and PET. Comparison of the sensitivity and specificity of modalities in this subsample is based on the assumption of independent lesions. The comparison of per lesion and GEE analyses indicates that this assumption is reasonable for most regions, with little difference between the adjusted and per lesion values. The performance of PET was especially poor for lesions in the upper abdomen and along the gastrointestinal tract. This is likely due to limited expression of GCP-II at tumor sites, as depicted with 18F-DCFPyL PET/CT, along with the high background activity in the liver and spleen and in segments of the gastrointestinal tract, limiting detection of subdiaphragmatic or capsular hepatic metastases and serosal deposits (Figures 3A–G). These findings suggest that GCP-II targeted imaging with 18F-DCFPyL PET/CT in women with advanced HGSOC is likely of limited clinical utility.




Figure 3 | 68-year old with stage IIIC high-grade serous ovarian cancer. (A) Maximum Intensity Projection image of 18F-DCFPyL shows mild to moderate radiotracer uptake in omental metastases (solid arrows) and moderate radiotracer uptake in pelvic peritoneal metastases (dotted arrows). (B) Coronal contrast enhanced CT image shows peritoneal deposits in the posterior cul-de-sac (arrow). (C) Coronal PET/CT image (CT - left, fused PET/CT image – middle; PET – right) corresponding to B shows moderately radiotracer uptake in same metastatic deposit (concordant CT and PET). Metastatic disease was confirmed at surgery. (D) Coronal contrast enhanced CT image shows metastatic disease on right diaphragm (dotted arrow) and along capsular surface of liver (solid arrow). (E) Coronal PET/CT image (CT - left, fused PET/CT image – middle; PET – right) corresponding to D show no focal radiotracer uptake visible on right diaphragm or liver capsule. Surgical pathology confirmed CT findings of metastatic disease at these sites. (F) Coronal contrast enhanced CT image shows focal thickening along right lateral wall of ascending colon (short arrows), suspected to represented serosal metastasis. (G) Coronal PET/CT image (CT - left, fused PET/CT image – middle; PET – right) corresponding to F shows no focal radiotracer uptake on the serosal surface of the ascending colon. No serosal disease on surface of the right colon was found at surgery.



Preclinical studies on the expression of GCP-II in ovarian cancer have shown conflicting results. Wernicke et al. examined the expression of PSMA in neovasculature of gynecologic cancers including primary and metastatic ovarian cancer (23). The authors showed a high expression of PSMA at immunohistochemistry in all 46 cases of ovarian cancer assessed, a report which provided the impetus for the current study. A further, more recent study published by Aide et al. assessed 32 patients with 57 samples (including 25 samples obtained after chemotherapy). The authors demonstrated the quasi-absence of PSMA expression within serous epithelial ovarian cancers. Authors showed no correlation with resistance to chemotherapy and non-evolution of PSMA expression during the treatment course (29). Our findings are more in line with the results of Aide et al, with most disease sites in women with HGSOC showing low level 18F-DCFPyL (PSMA) uptake and the majority of lesions assigned a PSMA score of 1 (≥ blood pool activity and lower than liver uptake). Despite the ongoing debate on the optimal management and timing of surgery in women with advanced HGSOC and conflicting results in various trials (3, 30–32), accurate delineation of disease extent along with several other predictive parameters is crucial for personalizing management, with the goal of offering PCS to women in whom it is feasible to achieve cytoreduction to no gross residual disease (33). Although the results of the current study suggest that 18F-DCFPyL (PSMA) PET is not a promising modality for imaging of advanced high-grade ovarian cancers, we believe the study protocol developed including detailed comparison of disease mapped on imaging to findings at surgery and surgical histopathology can be utilized in future trials assessing other potential molecular probes targeting receptors or the tumor microenvironment in HGSOC.

Over 80% of patients with advanced HGSOC will experience recurrence within 59 months from initial treatment, with median progression free survival of ~14-15 months (31, 32). One of the proposed mechanisms for the high recurrence rates, is the development of drug resistance to platinum-based chemotherapy, including in patients who were initially responsive to platinum-based chemotherapy protocols. This disease course encourages exploration of new adjuvant therapies to improve disease control and improves outcomes. One example could be utilization of radionuclide therapy in a theranostic approach, where a specific biomarker is employed to image and to deliver targeted radiotherapy selectively to tumor sites. This approach has been effective in a few malignancies including metastatic prostate cancer where the provision of 177Lu-PSMA-617 in men with advanced PSMA-avid metastatic castration-resistant prostate cancer has been shown to improve progression-free survival and overall survival compared to standard care (34). A prerequisite for success of a theranostic approach is high avidity of the biomarker at tumor sites. In addition to demonstrating limited utility of 18F-DCFPyL PET/CT as a diagnostic tool in the staging of women with HGSOC, our findings also suggest that further exploration of PSMA as a target for a theranostic approach is unlikely to be productive in women with advanced ovarian cancers.

In conclusion, although 18F-DCFPyL has higher specificity than CT in detecting advanced HGSOC tumor sites, it detects less disease sites than CT, especially in the upper abdomen and along the gastrointestinal tract, limiting its clinical utility as a diagnostic tool. Further imaging biomarkers with high target affinity are needed to improve disease detection and for a theranostic approach to be considered in women with advanced high-grade epithelial ovarian cancers.
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This paper presents a computationally simple diagnostic algorithm for breast cancer using a non-invasive Digital Image Elasto Tomography (DIET) system. N=14 women (28 breasts, 13 cancerous) underwent a clinical trial using the DIET system following mammography diagnosis. The screening involves steady state sinusoidal vibrations applied to the free hanging breast with cameras used to capture tissue motion. Image reconstruction methods provide surface displacement data for approximately 14,000 reference points on the breast surface. The breast surface was segmented into four radial and four vertical segments. Frequency decomposition of reference point motion in each segment were compared. Segments on the same vertical band were hypothesised to have similar frequency content in healthy breasts, with significant differences indicating a tumor, based on the stiffness dependence of frequency and tumors being 4~10 times stiffer than healthy tissue. Twelve breast configurations were used to test robustness of the method. Optimal breast configuration for the 26 breasts analysed (13 cancerous, 13 healthy) resulted in 85% sensitivity and 77% specificity. Combining two opposite configurations resulted in correct diagnosis of all cancerous breasts with 100% sensitivity and 69% specificity. Bootstrapping was used to fit a smooth receiver operator characteristic (ROC) curve to compare breast configuration performance with optimal area under the curve (AUC) of 0.85. Diagnostic results show diagnostic accuracy is comparable or better than mammography, with the added benefits of DIET screening, including portability, non-invasive screening, and no breast compression, with potential to increase screening participation and equity, improving outcomes for women.
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Introduction

Breast cancer is the most frequent cancer and leading cause of cancer deaths in women worldwide (1–4). In 2018 over 620,000 breast cancer related deaths were recorded and both incidence and deaths are expected to rise (5). Early detection is associated with increased survival rates due to cancer being found at an earlier, more curable stage (3, 6). Currently, x-ray mammography is the gold standard for breast cancer screening and is estimated to reduce mortality by up to 25% (7). However, mammography remains controversial due to painful breast compression and invasive radiation exposure (1). Reduced success in women with dense breast tissue (almost 50% of women (8)), arises due to fibroglandular tissue masking the presence of tumors in mammographic images (9–11), further contributing to mammography’s radiologist-dependent performance and reducing sensitivity to as low as 27% (12). Because of these drawbacks, mammography is not recommended for younger women (13, 14), where poorer outcomes do not outweigh the risks, creating inequity of breast care for younger women.

Although mammography is accepted as a large scale screening tool, a number of issues have led mammography sensitivity to be significantly overstated (8). Hollingsworth suggests many mammography studies use a cohort inclusive of palpable tumors, which are larger and therefore expectedly easier to diagnose (15, 16). Similarly, sensitivity calculations based on prevalence screens only (the initial screen) result in a disproportionate number of larger tumors and consequently an inflated value for sensitivity (8, 17).

Further, many studies use interval cancers, cancers which occur following a negative mammogram, but before the next round of screening (18), as a measure of false negatives. This methodology is also flawed, as while some cancers may have begun and developed between screens, slower growing tumors may not present in the screening interval, and consequently would be diagnosed as true positives in the following screen, despite being missed previously. This issue results in sensitivity dependent on screening interval and higher sensitivity than studies comparing supplemental imaging modalities. This method of assessment will also impact specificity values, as false negatives in past mammograms would be included as a true negative reading. In other words, studies which exclude the use of a complementary modality assume mammography diagnosis is true until proven false with only future mammograms to compare to. Even then, cancer found in subsequent mammograms are considered true positives and assumed to have began and developed between screens. This process is clearly methodologically over-simplistic and unsound, and accuracy estimates of sensitivity or specificity using these methods should be discounted appropriately.

Digital Image Elasto Tomography (DIET) (19–23) is an alternative breast cancer screening technology. The system is portable with non-invasive testing, and thus able to increase equity for young women and those living rurally. DIET involves a patient lying face down while a mechanical actuator induces steady state sinusoidal vibration in the free-hanging breast. Five digital cameras surrounding the breast capture images of the surface vibration at different stages using synchronized strobe lights. These images are converted into displacement data for over 14,000 reference points using surface volume and optical flow techniques by Tiro Medical (Christchurch, New Zealand). Cancer diagnosis using this surface motion data is based on shear wave transmission differences reflected in the surface motion highlighting the differences in underlying tissue stiffness and damping. A significant contrast in elastic properties (400-1000%) between healthy and cancerous tissue provides a potentially highly distinguishable diagnostic, which is much greater than the 5-10% contrast in radio density used by mammography (24, 25). Thus, the DIET system detects and localises a tumor location based on identification of the higher underlying tissue stiffness, which is very different to typical internal imaging modalities.

Analysis of this data has showed potential for diagnostic success including Zhou et al’s study on hysteresis loop analysis (HLA) (26, 27) and Kashif et al’s study on modal analysis (22). Most diagnostic methods developed were exclusively tested on silicone phantom data, used in early technology development (28). Despite sophisticated silicone phantom design (23, 29), silicone phantom breasts with stiffer inclusions cannot truly imitate the inhomogenous fibrous structure of breast tissue nor the complex interactions between tumors and healthy tissue. Zhou et al’s HLA study underwent limited testing with clinical data (3 subjects) (27), but sensitivity was not high and dependent on selection of actuator input frequency for different subjects, showing inconsistent performance.

This author presented one diagnostic method using DIET displacement data, which was validated on 26 breasts (30). This method involved fitting a viscous damping model (VDM) to viscous damping distribution in different breast segments and comparing model coefficients. One model coefficient, related to stiffness showed diagnostic insight with optimal sensitivity and specificity of 77%, using clinical data.

This paper describes a fully automated, computationally efficient diagnostic algorithm, which uses displacement data from a novel 3D surface motion reconstruction DIET technology. The proposed method is based on the hypothesis stiff tumors will affect response frequencies in the breast compared to other regions containing healthy tissue, thus enabling transformation of dynamic response into a novel diagnostic metric to identify regions of higher stiffness for cancer diagnosis. This diagnostic uses a combination of frequency components analysis, surface segmentation and bootstrapping techniques, while previous diagnostic methods based on DIETs technology mainly identify damping, stiffness and modal distribution (22, 27, 30). In addition, it provides an unbiased diagnostic criteria to ensure each breast to be diagnosed independently, regardless of varying breast properties across the population, which is critical for improving the equity of screening with this technology. Overall, this work offers a novel approach to implement automated unbiased tumor detection in this DIET screening technology.



Method


Clinical data

Fourteen women (P1-P14) were recruited to undergo testing using a prototype DIET system, as part of a clinical trial run at Canterbury Breastcare (Christchurch, New Zealand). Thirteen women had a tumor in one breast and one women had two healthy breasts resulting in a total of 13 cancerous, 15 healthy breasts. Patient P6 also has an additional non-malignant cyst in their right (healthy) breast. Each woman underwent mammography screening prior to testing using the DIET prototype and diagnostic capabilities of the algorithm presented in this paper aim to correctly distinguish between healthy and cancerous breasts in this cohort and match the diagnostic given by mammography. Ethics approval for the experimental tests, data collection, and analysis of this data was granted by the NZ National Health and Disability Ethics Committee, South Island Regional Committee.

Table 1 shows the patient age, tumor size and location from mammography reports for each patient with a cancerous breast, as well as the approximate breast volume of the cancerous breast calculated using the DIET measured displacement data. Tumor sizes ranged from 7 to 48mm and displacement data was available for a range of testing frequencies (20~50 Hz). While clinical data is limited to 28 breasts, the variation in breast properties and tumor sizes is large, providing a varied cohort. Ensuring diagnostic performance is robust to these variations in tumor size and breast properties is a particular focus in this paper. The accuracy of the size and location vary and can be difficult to determine from mammography images. Thus, location and size data were treated as approximate, and algorithm success focused on correct diagnosis, rather than precise tumor localisation.


Table 1 | Patient age, breast volume, tumor size and locations cancerous breasts where 12 o’clock is the top of the breast.



It is important to note patient P14, with two healthy breasts, originally had their right breast, P14R, diagnosed as cancerous, which was later discovered to be healthy tissue. This result shows a false positive in mammography and correct diagnosis of this breast using DIET would further demonstrate its diagnostic potential. Occasionally, difficulties in optical flow or image reconstruction resulted in a lack of data for some subjects or a limited number of available input frequencies. The algorithm presented in this paper uses low actuator input frequencies, resulting in the exclusion of two healthy breasts in P4 and P13. The result is 13 cancerous and 13 healthy breasts used in this analysis and the diagnostic algorithm presented in this paper aims to correctly diagnose these subjects.



Diagnostic criteria

As mentioned, sensitivity and specificity of mammography has been overstated in many studies. To assess approximate true sensitivity and specificity, studies were considered if diagnostic results of mammography were validated using another modality, such as ultrasound or MRI. Values for both dense and non-dense breasts were used when studies distinguished between the two, based on approximately 50% of women having dense breasts (8). Average sensitivity of the ten studies assessed was 60% (40%-78% range) and average specificity was 80% (46%-99% range) (31–40). These accuracy values are more suitable for comparing mammography to other breast screening modalities.

The area under a receiver operator characteristic (ROC) curve (AUC) between 0 and 1 is commonly used to compare diagnostic methods, as a higher AUC indicates a better optimal sensitivity and specificity. AUC greater than 0.7, 0.8 and 0.9 are considered acceptable, excellent and outstanding, respectively (41). The average ROC curve AUC value for mammography across eight studies was 0.73 (0.54-0.84 range), which will also be used to compare diagnostic success of the method presented in this paper (12, 31, 40, 42–46).

Two overall accuracy criteria are suggested to show diagnostic potential for the algorithm presented:

	Diagnostic sensitivity and specificity similar to mammography (60% sensitivity, 80% specificity) Achieving comparable diagnostic accuracy to mammography would allow the DIET technology to realise its many benefits including comfort, portability and safety for all women without compromising on diagnostic success.

	A highly sensitive diagnostic algorithm is achieved (80% sensitivity, 65% specificity) An algorithm capable of providing sensitivity higher than mammography will be considered a success even if specificity is slightly lower. This criteria is due to the ease of DIET testing and its many other benefits making it an attractive solution for breast screening. There is potential for added clinical breast exam (CBE) or other breast screening technologies with higher specificity to optimise diagnosis and reduce false positive biopsies, following a highly sensitive diagnosis using DIET.



To maximise the benefit of the DIET technology, this diagnostic algorithm should meet the criteria in Table 2.


Table 2 | Diagnostic criteria to assess the success of diagnostic algorithms using DIET.





Stiffness dependent vibration

The stiffness dependence of vibration frequency is well documented (47). Stiffer materials vibrate at higher frequencies, based on:



where ω is frequency, k is stiffness and m is mass. Thus, the presence of tumors, known to be 4~10 times stiffer than healthy tissue [24,48,49,50], may result in a visible increase in response frequency, given mass at a local point is similar, yielding:



This equation further suggests higher frequency response in cancerous breasts, or breast segments, of a magnitude 2~3 times the response of healthy tissue. Development of a diagnostic algorithm using DIET concluded variation of breast properties, including stiffness and viscous damping, across the population can exceed variations between cancerous and healthy tissue in an individual (30). Therefore, it is important to understand single diagnostic thresholds for response frequencies may not be suitable for diagnosis across a varied cohort and may cause women with naturally stiff breasts to experience a disproportionate number of false positive diagnoses. The author’s prior work presented a breast segmentation methodology to analyse tissue properties in different regions of a breast (30). Healthy breasts were hypothesised to have similar breast properties in different segments and larger discrepancies were indicative of a tumor. Applying this methodology, it is hypothesised frequency response of different areas in a healthy breast will be similar; in contrast, tumor presence is expected to affect response frequency.



Frequency component of each reference point vibration response

Displacement data for over 14,000 reference points on each breast surface was provided by Tiro Medical (Christchurch, New Zealand) following clinical testing using the DIET system at each input frequency for the 26 breasts from 14 patients in Section 2.1. The Fourier transform of each reference point signal was implemented in Matlab (48) to obtain frequency components of each reference point vibration. Magnitudes of frequency components were ordered, with the dominant frequency expected to be equivalent to the actuator input frequency at the induced steady state response. Based on the knowledge of high mechanical stiffness resulting in higher frequency of response, and cancerous tissue resulting in 400~1000% higher stiffness than healthy tissue, the second dominant frequency has the potential to provide diagnostic information. This latter frequency is hypothesised to be higher, but, more importantly, different in regions of the breast containing a tumor.

The second dominant frequency and its signal magnitude were obtained for each reference point. Reference points with second frequency magnitudes less than 15% of the dominant frequency magnitude were discarded to avoid using reference points where frequency composition was highly varied and the second frequency not considered particularly dominant.

Frequency composition is considered irregular when the dominant frequency is not equivalent to the input frequency. One reason for this irregularity is noise near the actuator or chest wall, the latter potentially due to issues of wave reflection. This issue was removed by removing the top and bottom 5% of points, as these areas tend to result in the most noise in both cancerous and healthy breasts (30). While necessary to remove these irregularities, acknowledging they are likely to be a source of increased false positives, it is important to limit the number of points discarded, to avoid tumors close to the nipple or chest wall being missed. Tumors developing near the chest wall are also an existing challenge in mammography due to difficulties in obtaining sufficient breast compression close to the chest wall to allow x-ray penetration (49).

Furthermore, irregular frequency composition could be the result of irregular vibrations for points centred near breast concavities, which are unable to be consistently removed in the current DIET image processing. Alternatively, and most importantly, it could be a result of highly variable breast tissue properties, such as stiff cancerous lesions, having a significantly large effect on frequency composition, showing high diagnostic potential. For the latter reason, reference points with dominant frequency not equal to input frequency were not excluded, and, in these cases, the dominant frequency, rather than the second dominant frequency is used as the frequency of interest. The result is a frequency of interest for each reference point. Figure 1 shows a flowchart of this selection process.




Figure 1 | Flowchart showing method to obtain frequency of interest for each reference point.



Because reference points with dominant frequency not equal to input frequency could be the result of noise and breast concavities, it was necessary to manage the number used in analysis. At higher input frequencies, average dominant frequencies in segments of the breast differed to the input frequency (>2 Hz difference), suggesting high numbers of irregular points. Thus, displacement data from lower actuation input frequencies was used (20 to 23Hz) in this analysis, as they resulted in less than 10% of segments exhibiting this irregular trend, compared with 11-39% of segments in frequencies above 23 Hz.



Breast segmentation and unbiased diagnostic criteria

Three-dimensional (3D) colour plots of the breast showing frequencies of interest are presented for three subjects at an input frequency of 23 Hz to show more regions of high response frequencies in cancerous breasts, demonstrating how comparison of these values could provide useful diagnostic insight.

To implement an unbiased diagnostic algorithm utilising this frequency of interest, the breast was segmented into four radial segments and four vertical (z) segments, a total of 16 segments (Figure 2). Frequencies of interest were averaged for all reference points in each segment and mean values averaged across available frequencies from 20-23 Hz. Each z-band was analysed separately and one of the four radial segments identified as the control. The mean frequency of interest for this control segment was plotted against the mean frequencies of interest for the three other segments in the same z-band. This process was repeated for each z-band, resulting in a total of 12 data points per breast. Occasionally, all reference points in a segment were excluded, based on insufficient magnitude of the second dominant frequency (Figure 1), resulting in less data points per subject.




Figure 2 | Schematic of breast segmentation including vertical (z) segmentation into four bands for a total of 16 segments (left) and diagram of 12 control segment configurations for left breast used to test robustness (right).



Different percentage tolerances were used to analyse the degree of similarity between these averaged response frequencies in each separate z-band. Healthy breasts are hypothesised to have similar response frequencies remaining within the tolerance. In contrast, the presence of any one segment outside tolerance levels suggests a cancerous diagnosis. This diagnostic criteria is shown in Figure 3. To test robustness to tumor location 12 breast configurations were trialled with different control segments. Figure 2 shows these 12 control segment configurations for the left breast. The right breast segments were the inverse of these configurations to compare outer and inner breast properties, consistently.




Figure 3 | Tumor acceptance criteria showing simple diagnostic method.



This segmentation process provides a method for each breast to be diagnosed independently, removing issues of highly variable breast properties across the population, within breasts of the same women and due to breast changes over time (50–55). Segmentation both radially and vertically is expected to improve diagnostic outcomes for smaller tumors, whose properties may be more easily distinguishable in a smaller segment.



ROC curve and bootstrapping

ROC curves presenting different percentage tolerances were used to test the sensitivity of this method to predefined diagnostic tolerance levels and assess whether the criteria outlined in Table 2 could be met. ROC curves were used to find both optimal breast configuration and tolerances, which result in criteria being met for sensitivity and specificity of this method. The discrete ROC curve for two opposite breast configurations are shown, as well as bootstrapped curves for all configurations.

Bootstrapping is used to up-sample data and involved selecting 50 breasts with replacement from the 26 breast cohort. This selection was repeated 200 times and the varying sensitivity and specificity recorded for a number of percentage tolerance thresholds for each trial. A line of best fit was fit to the compounded points of every trial using y=1-e-ax using total least squares. This equation form is able to capture the linear (50:50 chance) line and, with a very large exponent, the perfect square ROC curve, as well as all likely shapes in between. It thus provides a good approximation of the diagnostic performance of each configuration in an ideally larger cohort of data and can be used to assess the performance of this algorithm against the criteria in Table 2. Optimal accuracy, as well as 80% sensitivity and specificity points used to assess accuracy criteria, are marked on the ROC curves. ROC curve AUC was also assessed to ensure it meets the criteria (AUC>0.73). Figure 4 shows a flowchart of the combined methods used to generate the results presented in this paper.




Figure 4 | Flowchart showing full method to obtain results.



The results in the following section show:

	3D plots showing frequency of interest for three breasts at actuator input frequency of 23 Hz, showing proof of diagnostic theory with larger discrepancies and regions of high response frequency in cancerous breasts

	Unbiased, clinically feasible diagnosis with percentage tolerance used to determine the degree to which more dominant frequencies are different amongst segments in the same breast for both healthy and cancerous breasts for breast configurations 1 and 6

	Identification of breast and tumor characteristics of false negative subjects

	Identification of patient age and breast size for false negative and false positive subjects

	A discrete ROC curve with sensitivity and specificity shown for each percentage tolerance for breast configurations 1 and 6 across all subjects

	Smooth bootstrapped ROC curves for all breast configurations showing optimal sensitivity and specificity and points at 80% specificity and 80% sensitivity (points of interest for assessing diagnostic success against specified criteria)

	Table outlining optimal sensitivity, specificity and assessment of each configuration against diagnostic criteria

	Table assessing this diagnostic method against all criteria outlined in Table 2






Results


Frequency response distribution

Figure 5 shows 3D plots of the distribution of frequencies of interest identified in Section 2.4 for three subjects, showing high frequencies, twice the input frequency and above. The plots clearly show a distinguishable difference in terms of frequency components of healthy and cancerous breasts on the left and right, respectively.




Figure 5 | Three-dimensional (3D) plots showing areas of high frequency of interest for healthy (left) and cancerous (right) breasts at input frequency, fe=23 Hz.



It is important to note, while these images show a significant contrast in frequency, and could potentially provide successful diagnosis based on image observation, direct image observation would result in human assessment of results and a lack of automation. Equally, such observation could be used to reinforce or check any automated diagnostic. Thus, these images show a proof-of-concept justification for using frequency composition to infer diagnosis, but require further development of unbiased, algorithm automation shown in consequent sections of this paper, to be clinically feasible.



Unbiased, clinically feasible diagnosis

Figure 6 shows the diagnostic result of applying optimal percentage tolerance 34% using optimal configuration 6 and optimal percentage tolerance 33% for breast configuration 1 for both cancerous and healthy breasts. This figure shows false negatives may be dependent on configuration orientation, likely due to varying tumor locations and tumors effecting segments on either side. These two configurations, positioned in the upper outer and lower inner portions of the breast, respectively, demonstrate using the result of two separate configurations ensures all cancer is diagnosed.




Figure 6 | Diagnostic criteria for cancerous (top) and healthy (bottom) breasts for configuration 6 with 34% tolerance applied (left) and configuration 1 with 33% tolerance applied (right). Any one point lying outside the percentage tolerance shown results in a cancerous diagnostic.



Figure 7 shows breast and tumor characteristics for the false negative subjects identified in configurations 1 and 6. The figures show tumor size compared to breast volume and depth (normalised by volume), respectively for each configuration. Figure 8 shows patient age and breast size for false negatives and false positives, respectively.




Figure 7 | False negative tumor and breast sizes (left) and tumor depth and diameter normalised by breast volume (right) for configurations 1 and 6.






Figure 8 | False negative (left) and false positive (right) ages and breast volumes for configurations 1 and 6.



Figure 9 shows discrete ROC curves for diagnostic performance at different percentage tolerances for configurations 6 and 1. Figures 10, 11 show the bootstrapped ROC curves for all breast configurations with optimal points shown and Table 3 shows the resulting AUC and assessment against diagnostic criteria.




Figure 9 | Discrete ROC curve showing diagnostic method applied at different percentage tolerances for breast configuration 6.






Figure 10 | Bootstrapped ROC curves for breast configurations 1-6.






Figure 11 | Bootstrapped ROC curves for breast configurations 7-12.




Table 3 | Area under ROC curve (AUC), optimal performance point and assessment of diagnostic accuracy criteria for bootstrapping of each different breast configuration with bold values indicating the criteria is met.





Assessment against diagnostic criteria

The performance of this algorithm was assessed against the diagnostic criteria in Table 2, as shown in Table 4. All criteria were met and each 7 mm tumor was correctly diagnosed in one of the breast configurations analysed. Diagnosis using this algorithm is unbiased and completely automated and diagnostic accuracy exceeds mammography, showing significant diagnostic efficacy across this varied cohort.


Table 4 | Assessing frequency composition method against diagnostic criteria in Table 2.






Discussion


Proof of concept

Figure 5 shows a visual representation of how the frequency of interest is higher and more varied in cancerous breasts. Healthy breasts generally show more areas of purple, suggesting lower frequencies and less sections of high frequency content. In contrast, cancerous breasts are generally seen to exhibit larger areas of high frequency response, which is expected based on stiffer materials vibrating at higher frequencies and cancerous tissue having stiffness 4~10 times greater than healthy tissue (24, 56–58). The examples in Figure 5 were typical for most subjects at low frequencies (<26 Hz). Despite this significant contrast, observationof stiffness plots alone cannot quantify diagnosis, as it would fail the criteria of being automated and unbiased. These results provide proof-of-concept for the governing theory of this algorithm, but require development to prevent reliance on human interpretation, which would increase bias and error.

Furthermore, the notable differences seen here were not consistent throughout all frequencies. In general, higher frequencies (>26 Hz) resulted in much noisier and varied frequency content across all breasts, likely due to a higher incidence of wave reflection causing an increase in vibration in certain areas. As mentioned, higher frequencies tended to result in more atypical vibration with dominant frequency not equal to the input frequency in many cases. Thus, lower frequencies (20-23 Hz) were used for this frequency response analysis. Averaging the frequency of interest across the available frequencies from 20-23 Hz is unbiased and generalisable, although it should be noted, with more subject information, such as breast density, able to be found prior to screening, more optimal breast-specific testing frequencies may possibly be obtained.



Unbiased diagnostic technique

Figure 6 shows how this frequency of interest can be used as an indicator for cancer in an unbiased and clinically feasible way, by using a segmentation methodology and comparing frequencies of interest in different segments of a breast. Figure 6 shows the diagnostic result for two breast configurations (1 and 6 in Figure 2) situated on opposite sides of the breast at their respective optimal tolerances, 33% and 34%. This figure shows considerable variation in frequency composition of segments in cancerous breasts compared to healthy breasts. This clear, observable difference supports the use of this diagnostic segmentation methodology, demonstrating how tissue properties in a healthy breast tend to be more similar, as expected. The large variation in average frequencies of interest for both cancerous and healthy breasts in Figure 6 further demonstrates breast properties are unique, and vary even between breasts of the same women, showing set diagnostic thresholds or comparison between breasts is likely to result in inaccurate diagnosis and poor overall performance.

Of particular interest is the varying performance of configurations 1 and 6 in diagnosing specific subjects. Configuration 6 was the optimal configuration and resulted in two false negatives, P10 and P13 (85% sensitivity), and three false positives, P5, P11 and P12 (77% specificity), already meeting Criteria #2 for a highly sensitive diagnostic algorithm in Table 2. In contrast, configuration 1 resulted in three false negatives, P1, P6 and P11 (77% sensitivity) and three positives, P5, P12 and P14L (77% specificity). Thus, while false positives P5 and P12 were diagnosed incorrectly in both configurations, all false negative diagnoses were diagnosed correctly in one of the two configurations.

Differing diagnostic success for different subjects in each configuration shows tumor location potentially affects the efficacy of diagnosis in certain configurations. Fitzjohn et al. suggests tumor presence can often affect the properties of segments either side (30), and, as such, using these segments as the control may result in less distinguishable properties compared to a segment far from the tumor, where a greater difference will result in a more prominent cancer diagnostic.

Configurations 1 and 6 are situated on opposite sides of the breast and, when combined, result in all cancer being diagnosed in at least one segment. Therefore, there is potential for two opposite segments to be used to ensure diagnosis of all cancers. If diagnosis in either configuration was to result in positive diagnosis, the diagnostic result would be zero false negatives (100% sensitivity) and four false positives (69% specificity), meeting Criteria #2 in Table 2, with perfect sensitivity and still acceptable specificity (>65%). This outcome shows a significant diagnostic using a computationally efficient algorithm. Further metrics could be designed to potentially combine with other DIET diagnostic methods and reduce false positive results.

Combining results may improve sensitivity but increase false positives and unnecessary biopsies, which already impact almost 20% of women (59). Clinical breast examination or other breast screening tools may also be utilised to ensure unnecessary breast biopsies are reduced. In particular, positive DIET results could be immediately followed up with skilled manual palpation or ultrasound to reduce this risk and reduce the time taken to women receiving diagnostic outcomes and consequent treatment.

Figure 7 shows different patient, breast and tumor information for the false negatives in both configurations 1 and 6. It shows all false negatives are less than 20 mm, which is associated with lower stage cancer (60) and expectedly considered more difficult to diagnose. Two of the false negatives are the two smallest tumors in this cohort, at 7mm. Most importantly, all cancers are detected in one of the configurations, showing the capability of detecting both 7mm tumors, depending on breast configuration.

Figure 7 also shows all five false negatives across each configuration are five of the six smallest tumor to volume ratios, expected to be more difficult to diagnose in methods comparing average breast segment properties. Additionally, P10, P11 and P13 have unknown tumor depth, which, if deep, could also cause diagnostic issues (30). Figure 8 shows patient age and breast volume for false negative and false positive cases. False negative results occur at a range of breast sizes and average ages for this cohort. More importantly, the true positives are patients with varied ages and breast sizes, suggesting there is no diagnostic limitation of age or volume related breast properties for this algorithm, showing an equitable diagnostic result.

Figure 8 also shows cancer found in two of the youngest women diagnosed correctly, which is a significant result, given mammography often performs worse in young women, who tend to have higher breast density consisting of more glandular tissue, which can mask the presence of a tumor (52, 61). False positives in Figure 8 tend to occur in smaller breasts, perhaps where differing breast structure has a more magnified effect due to smaller segments overall. Thus, adjusting the number of z-bands or segments used based on breast size could potentially reduce false positives.

False positive results could be the result of some complex internal tissue differences around the breast causing distinguishing properties when using this breast segmentation methodology. However, it is important to note a missed diagnosis in mammography should not be ruled out. Specifically, the false positive patients all have smaller breasts, also associated with potentially increased breast density, and thus, worse outcomes in mammography (62). Furthermore, Patients P5 and P14L are the two youngest patients in this cohort. Generally, breast density decreases with increasing age (52, 61), and, as such, these false positive patients may have dense breasts, causing known issues for diagnosis using mammography, as dense tissue masks the presence of a tumor (63). Unfortunately, no follow up information is available with this data set regarding each patient’s outcomes and consequent screenings. Test information is given as a one-off and, as such, we may never know this outcome.

Important to note is the right breast in patient P14R, which was correctly diagnosed as healthy in both configurations. This subject was originally diagnosed with cancer in mammography, which was later proven to be healthy tissue. Successful identification of this breast using this method shows an instance where DIET diagnostic capabilities were able to out perform mammography. This outcome helps prove implementation of DIET into the breast screening system could potentially improve overall diagnostic accuracy. Patient P6’s right breast was also correctly identified as healthy in both configurations, despite having a non-malignant cyst, again showing the potential for DIET algorithms to distinguish between tumors and non-malignant lesions based on tissue stiffness.

With current limited clinical data, the method is primarily focused on the detection of tumor presence as a binary labelling problem. Detecting the exact location and depth of tumor for surgery and treatment purpose would require a much larger cohort of data to build its non-linear correlation to tissue properties and motion dynamics to avoid over-fitting issues. However, the current result did imply the frequency of interest for cancerous segments presented a notable contrast of response to healthy segments, which could be used to provide a preliminary estimation of location. Therefore, the benefit of the method is the comfort and ease of screening and the automated results, which keeps running costs low, increases breast screening equity and encourages screening participation. While location around the breast segment could be achieved with this algorithm, further clinical breast exam, ultrasound, mammography or MRI would be recommended for confirming the exact location and depth.



Algorithm robustness and configuration selection

Figures 10, 11 show the bootstrapped ROC curves for all breast configurations following bootstrapping with 50 breasts selected with replacement and a repetition of 200 trials. Table 3 shows the AUC, optimal sensitivity and specificity, as well as sensitivity and specificity for criteria in Table 2 for each configuration. Bold values show configurations which meet the accuracy and AUC criteria.

Nine configurations (1, 4–7, 9–12) met the criteria for AUC over 0.73, which shows the algorithm is fairly robust to configuration selection, although some configurations are clearly more optimal. Four configurations (1, 6, 9, 11) met criteria for specificity greater than 65% when a highly sensitive (80%) diagnosis is achieved (Criteria #2). These configurations and an additional configuration 5 also met criteria for sensitivity at least 60% when specificity is similar to mammography (80%) (Criteria #1).

In general, the most optimal breast configurations occurred towards the top and bottom of the breast. The increased diagnostic quality of these segments might be attributed to the natural way the breast hangs. Breast tissue structure is inhomogeneous and its complex structure and fibrous frame continually change with age due to effects, such as gravity (58, 64). The DIET set up may also distort surface motion in the natural hanging position due to pre-tensioning and pre-compression of surface tissue. It is possible using control segments at the top and bottom of the breast result in maximum surface tension, including the presence of suspensory (cooper’s) ligaments (64) and, thus provide the truest steady state response for frequency analysis with minimum non-homogeneous tissue mechanics. Thus, these configurations result in optimal diagnosis for this frequency dependent diagnostic algorithm.

The optimal configuration (6) well exceeded performance criteria in Table 2 with optimal AUC at 0.85, optimal sensitivity and specificity of 81% and 75%. Sensitivity was 74% when specificity was similar to mammography (Criteria #1) and specificity was 76% when a highly sensitive diagnostic was achieved (Criteria #2). As mentioned, AUC of 0.85 is considered excellent (>0.8) (41), and not only well exceeds criteria (0.73), but exceeds all AUC values identified in studies on mammography (0.54-0.84) (12, 31, 40, 42–46).

As shown in Figures 6, 7, a combination of configuration 1 and 6 could result in perfect sensitivity at 100% and specificity of 69% exceeding criteria for a highly sensitive diagnostic (>65% in Criteria #2). This highly successful diagnostic outcome proves diagnostic efficacy using DIET can be achieved, supporting further research and investment in this technology.



Assessment against diagnostic criteria

All diagnostic criteria outlined in Table 2 were met or exceeded by the diagnostic method described in this paper. Table 4 shows optimal AUC well exceeds criteria at 0.85 (>0.73), and both accuracy criteria are well exceeded with Criteria #1 sensitivity at 74% (>60%) and Criteria #2 specificity at 76% (>65%). Furthermore, both 7 mm tumors were able to be correctly diagnosed in one of two configurations analysed, showing diagnosis of tumors, below theaverage tumor size detected by mammography at 10~14 mm (27, 65).




Limitations

The main limitation of this study is the limited clinical data available. This study presents results based 26 breasts analysed from 14 patients from a limited technical trial. Increased funding would enable more clinical trials and thus increased data, greatly improving validation of results and allowing for deep learning techniques to be utilised. However, the data in this cohort includes patients with a range of breast sizes and varying tumor sizes and depths (Table 1), which demonstrate the success and potential of diagnostic algorithm across a varied cohort. Lack of displacement data for some patients at relevant input frequencies resulted in exclusion of one breast from each of Patient P4 and P13 in the analysis presented in this paper. All excluded breasts were healthy, so assessing the ability of this algorithm to diagnose cancerous breasts was not affected.

It should be noted, machine learning methods have been successfully applied for identification, diagnostic and analysis of medical data (66, 67). However, training the models of machine learning and deep neural networks normally require a very large cohort of labelled data in the medical field, which is not available in this case. Moreover, very detailed patient demographics and extra examinations might be needed to construct efficient input features to the training models, which may not necessarily be practical for a quick and equitable screening implementation such as via the DIET system. Therefore, a physics-based method and approach is considered to be more appropriate for this technology and at this time than machine learning methods, given the currently limited data for the DIET screening system. In future, such approaches could provide significant new diagnostic approaches.

Another limitation identified was the fitting of the ROC curve equation y=1-e-ax for some configurations. This equation was chosen at it is able to represent the linear (50:50 chance) and, with a very large exponent, the perfect square ROC curve,as well as all squares in between. However, it is restricted by the use of only one parameter (a), meaning there is a fixed relationship between sensitivity and specificity. Increasing the number of fitting parameters, such as y=1-e-a(x-b)+c, would potentially over fit the data and may result in not meeting the 0 to 1 bounds of the ROC curve.

For instance when comparing configuration 2 in Figure 10 and configuration 8 in Figure 11, both have a similar bootstrapped ROC curve shape. Table 3 show identical AUC, optimal sensitivity and specificity and criteria values. Despite these similarities, the trend of the curve differs. Configuration 2 tends towards higher specificity, whereas configuration 8 appears more sensitive. These subtle differences are not captured by the fitting of equation y=1-e-ax with just one parameter. This issue is a limitation of this fit and development of this ROC curve model may more successfully capture the trade-off of sensitivity and specificity in some configurations. In general, the equation was successful in comparing configurations and most curves captured the general trend of points.



Conclusions

This paper presents a computationally efficient diagnostic algorithm, which meets identified criteria for comparable accuracy to mammography and the ability to provide a highly sensitive diagnostic in breast screening. Three-dimensional plots showing response frequencies demonstrate how cancerous breasts exhibit higher and more varied frequencies of interest. An unbiased diagnostic was developed using a segmentation methodology, comparing second dominant frequencies in various breast segments, with similar frequencies expected in healthy breasts and more distinguishable differences indicating potential tumors. This method allowed for each breast to be diagnosed independently, removing issues of highly variable breast properties on diagnostic success.

Patient data at frequencies analysed was available for a total of 26 breasts (13 healthy and 13 cancerous) from 14 patients. An optimal breast configuration and diagnostic tolerance resulted in 85% sensitivity and 77% specificity. Using two configurations on either side of the breast demonstrated how sensitivity could be increased to 100% with only one additional false positive (specificity 69%), still meeting criteria for a highly sensitive diagnostic with manageable false positives. All diagnostic criteria were well exceeded showing potential for diagnosis using DIET to exceed diagnostic accuracy of mammography, including one breast correctly identified using this method, which was a false positive in mammography. ROC curve AUC exceeded all identified AUC values for mammography at 0.85 (0.54-0.84) and when specificity was similar to mammography (80%) sensitivity far exceeded it at 74% (>60%). This study provides an unbiased, fully automated diagnostic algorithm capable of detecting all tumors in this cohort, with manageable false positives, proving the diagnostic potential of the DIET technology, as a breast screening tool with many benefits.
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Purpose

Full-field digital mammography (FFDM) is widely used in breast cancer screening. However, to improve cancer detection rates, new diagnostic tools have been introduced. Contrast enhanced mammography (CEM) and digital breast tomosynthesis (DBT) are used in the diagnostic setting, however their accuracies need to be compared.

The aim of the study was to evaluate the diagnostic performance of CEM and DBT in women recalled from breast cancer screening program.



Methods

The study included 402 consecutive patients recalled from breast cancer screening program, who were randomized into two groups, to undergo either CEM (202 patients) or DBT (200 patients). All visible lesions were evaluated and each suspicious lesion was histopathologically verified.



Results

CEM detected 230 lesions; 119 were classified as benign and 111 as suspicious or malignant, whereas DBT identified 209 lesions; 105 were classified as benign and 104 as suspicious or malignant. In comparison to histopathology, CEM correctly detected cancer in 43 out of 44 cases, and DBT in all 33 cases, while FFDM identified 15 and 18 neoplastic lesions in two groups, respectively. CEM presented with 97% sensitivity, 63% specificity, 70% accuracy, 38% PPV and 99% NPV, while DBT showed 100% sensitivity, 60% specificity, 32%, PPV, 100% NPV and 66% accuracy. The CEM’s AUC was 0.97 and DBT’s 0.99. The ROC curve analysis proved a significant (p<0.000001) advantage of both CEM and DBT over FFDM, however, there was no significant difference between CEM and DBT diagnostic accuracies (p=0.23).



Conclusions

In this randomized, prospective study CEM and DBT show similar diagnostic accuracy.





Keywords: breast cancer, contrast enhanced mammography, digital breast tomography (DBT), mammography, imaging modalities



Introduction

Mammography (Full Field Digital Mammography, FFDM) is the most common and widely available imaging modality for breast cancer diagnosis. FFDM is used in routine screening, in symptomatic patients, and often in monitoring primary systemic breast cancer therapy, as well as in the follow-up after treatment (1). In 2011, Food and Drug Administration (FDA) approved two new modalities: contrast enhanced mammography (CEM) and digital breast tomosynthesis (DBT) for clinical use as adjuncts to mammography (2, 3).

CEM is a promising diagnostic technique, especially in women with dense parenchymal tissue (4). By administering an intravenous contrast agent, CEM adds new physiological information to the morphological data provided by FFDM and improves the parameters of breast cancer detection (5). In a recent meta-analysis, performed on 60 studies including 11049 examinations, Cozzi et al. reported CEM sensitivity of 95% and specificity of 81% (6). The negative predictive value (NPV) of CEM reaches 100%, and the positive predictive value (PPV) varies from 93 to 97% (7, 8). In contrast, FFDM’s sensitivity remains at the level of 86-89% in low density, fatty breasts and around 62-68% in dense breasts (1).

Digital breast tomosynthesis (DBT) is a subtype of mammography, which uses the same X-ray source and creates multiple 2D images to obtain a 3D breast reconstruction (3, 9). DBT outperforms conventional mammography mostly due to the ability to evaluate overlapping breast tissue and visualize tumors, which are not visible on FFDM. Researchers estimated that the sensitivity of DBT is higher than that of FFDM, around 81.1% vs 60.4% respectively (10).

Both CEM and DBT are relatively recent/new imaging techniques and are constantly being developed. Imaging protocols, radiation dose, or image acquisition are being improved for better sensitivity, specificity, but also patient safety (11). In order to introduce new techniques to routine screening and diagnosis, it is important to assess their diagnostic value.

This paper presents novel data on CEM and DBT diagnostic efficiency. The purpose of the study was to evaluate the diagnostic performance of CEM and DBT in a cohort of women recalled from the national mammography screening program.



Material and methods


Patients

The study is a prospective, randomized trial, approved by the regional Medical Bioethical Committee of Greater Poland Medical Chamber. Patients involved in the study were invited to participate after being recalled from routine breast cancer screening. Patients aged from 50 to 69 years, recalled from screening, were randomized with allocation ratio 1:1 into two groups in which either CEM of both breasts or DBT of suspected breasts were performed. Patients were allocated to each group using computer-assisted randomization. The study was performed at the Cancer Prevention and Epidemiology Center in Poznań between July 2020 and September 2021. The written consent of each patient was obligatory for participation. Exclusion criteria were: signs and symptoms of breast cancer, previous breast surgery including implants, eGFR< 30 ml/min x 1.73 m2, history of allergy to iodinated contrast agents, lack of patient’s consent to participate in the trial.



Full field digital mammography

FFDM was performed in all of the patients in a screening setting. All examinations were performed at the Center of Cancer Prevention and Epidemiology in Poznan, either in mobile (Mammomat Fusion, Siemens Healthcare, Germany) or stationary mammography units (Mammomat Inspiration Prime and Mammomat Revelation, Siemens).

All of the devices placed in mobile units were equipped with a flat panel detector with a cesium iodide scintillator, field size 230x300 mm, a 2790 × 3580 image matrix with a detector elements pitch of 83 µm.



Contrast enhanced mammography

CEM was performed in recalled patients 2-3 weeks after the screening mammograms. All of the contrast enhanced examinations were performed by means of a stationary mammography unit (Mammomat Revelation, Siemens). It consisted of a current FFDM system using a flat panel detector (amorphous selenium (aSe)) with a field size 299×238 mm, a 2800×3518 image matrix with a detector elements pitch of 85 µm and specific software and hardware for rapid acquisition and processing of dual-energy images.

Low energy images were acquired 2 minutes after intravenous iopromide 370 (Ultravist 370, Bayer Healthcare, Berlin, Germany) administration. It was a one-shot injection using a power injector Dual Shot alpha 7 (Nemoto) of 1,5 ml/kg at a rate of 3 ml/s with a 30 ml saline bolus chaser. CEM examinations began with a mediolateral oblique (MLO) view of the breast without suspicious lesion following the breast with the suspicious lesion in order to secure more contrast uptake. The pair of low and high energy images (LE and HE) was performed on each view (MLO and cranio-caudal (CC)). Then recombined images (RC) were generated in order to visualize enhancing lesions and eliminate unenhancing background tissue. Tungsten anode material was used for all acquisitions, with a rhodium filter with kVp ranging from 25 to 32 used for low energy acquisitions similar to those in FFDM. The paired high-energy images were acquired at a 49 kVp titanium (Ti) filter in the X-ray beam to produce an X-ray spectrum above the K-edge of iodine (33.2 KeV), to increase the visibility of low concentrations of iodine (12). The entrance dose varied from 1.26 to 12.07 mGy, depending on the thickness of the breast (10 - 82 mm) and tissue composition.

All of the lesions visible in CEM were histopathologically verified, either by core needle biopsy or vacuum-assisted biopsy under ultrasound or mammography guidance.



Digital breast tomosynthesis

DBT procedures were performed 2-3 weeks after screening mammograms, using a digital mammography Mammomat Inspiration device (Siemens). It consisted of a current FFDM system using a flat panel amorphous selenium (aSe) detector with a field size of 299 x 238 mm, a 2800 ×3518 image matrix with a detector elements pitch of 85 µm, and specific software and hardware for rapid acquisition and processing of tomographic images.

The tube swivel range was 50° (+/-25°) with 25 projections and with a 1mm distance between reconstructed slices. Two views of the breast with the suspicious lesion(s) were performed, mostly mediolateral oblique (MLO) and CC. The entrance dose varied from 2,46 to 14,92 mGy, depending on the thickness of the breast (23 - 86 mm) and tissue composition.

All of the lesions visible on DBT were biopsied and histopathologically proven.



Image evaluation

Vue PACS review workstation (Carestream) was used for image analysis. Two radiologists with 8 and 15 years of experience in breast imaging evaluated the recalled patients either with DBT or CEM. In practice, each CEM and DBT examination was evaluated independently by each radiologist and the results of their assessment were recorded. In case of discordance, the examination was reviewed by both readers and the consensus was recorded as the final result.

The two radiologists were corcordant in 179 cases

All the mammograms of recalled patients were evaluated according to the ACR Breast Imaging Reporting and Data System® (ACR - BIRADS (13, 14)). All the recalled patients’ baseline mammograms were classified as BIRADS 0 - demanding further evaluation to be classified into adequate BIRADS category (1, 2, 3, 4 or 5), BIRADS 4 - suspicious, BIRADS 5 - malignant.

Subsequently, lesions of patients from CEM and DBT groups were reported in concordance with the CEM supplement to ACR BIRADS® Mammography 2013 (14) and categorized into the following BIRADS groups: BIRADS 1 - negative, BIRADS 2 - benign, BIRADS 3 - probably benign, BIRADS 4 - suspicious, BIRADS 5 - highly suggestive of malignancy.

Patients with BIRADS 1 are being followed up with CEM or DBT respectively, performed after 12 and 24 months. All the lesions classified above BIRADS 1 were biopsied. BIRADS classification outcome was compared to histopathology results. Finally, on the basis of radio-pathological concordance, lesions were classified as:

	1) true positive (BIRADS ≧̸ 4 and biopsy-proven cancer),

	2) false positive (BIRADS ≧̸ 4 and biopsy-proven benign lesion),

	3) false negative (BIRADS ≤3 and biopsy-proven cancer),

	4) true negative (BIRADS ≤3 and biopsy-proven benign lesion).



All in all, the results of each patient group were compared (Tables 1, 2).


Table 1 | Distribution of lesions visible in CEM.




Table 2 | Distribution of lesions visible in DBT.





Statistical analysis

The calculations, including the sample size, were made using Statistica 13 by TIBCO and PQStat by PQStat Software. The level of significance was α = 0.05. The result was considered statistically significant when p<α. The normality of the distribution of variables was tested with the Shapiro-Wilk test. In order to compare the variables between the two groups, the Mann-Whitney test was calculated because of non-compliance with the normal distribution. The correlation between categorical variables was calculated using the chi² test of independence or the Fisher-Freeman-Halton test. The compliance of the methods of assessing the occurrence of neoplasms was tested by calculating Cohen’s kappa coefficient of concordance and determining their significance using the Z test. The Fleiss kappa coefficient of concordance was calculated to test the consistency of all 3 methods (mammography, CEM/DBT, and biopsy) simultaneously. Additionally, the sensitivity, specificity, PPV, and NPV were determined with 95% confidence intervals. ROC analysis was performed to calculate the optimal cut-off point for BIRADS. The area under the curves (AUC) with 95% confidence intervals was determined using the non-parametric DeLong method. The optimal cut-off point was established using the Youden Index. Sensitivity and specificity were determined for the selected cut-off. The determined areas under the curve were compared with each other using the Z statistics.




Results

402 consecutive patients recalled from the national breast cancer screening program were included in the study. The sample size was sufficient for analysis according to the sample size power calculation (minimal sample size 151 subjects). One half of the patients (200) underwent FFDM in the screening setting followed by the CEM examination, whereas 202 patients underwent FFDM followed by the DBT examination. The two radiologists, who evaluated the images, were concordant with their diagnosis in 179 CEM cases (89.5%) and the consensus had to be achieved in the remaining 21 discordant results (10.5%). In case of the DBT, the two readers were concordant in 194 patients (96.0%) and discordant in 8 cases (4.0%).


CEM group

As detailed in the study flowchart (Figure 1), CEM indicated 230 lesions; 119 of them (52%) were described as benign (BIRADS 1 or 2) and 111 (48%) as suspicious or malignant (BIRADS ≥ 4). Histopathology examination confirmed cancer in 44 lesions. CEM was true positive in 43 cases, true negative in 118 cases, false positive in 68 cases, and there was 1 false-negative case. 




Figure 1 | Study flowchart presenting distribution of patients and lesions due to the histopathology results estimated by core needle biopsy or vacuum-assisted biopsy under ultrasound or mammography guidance (15).



FFDM, performed in CEM subgroup patients, indicated 205 lesions, where 171 were classified as benign (BIRADS = 1 or 2) and 34 were described as suspicious or malignant (BIRADS ≥ 4). FFDM was true positive in 15 cases and true negative in 148 cases, however, it was false negative in 23 cases and false positive in 19 patients. 

CEM presented sensitivity of 97%, specificity 63%, accuracy of 70%, PPV of 38%, NPV of 99%, whereas FFDM in this subgroup showed sensitivity of 40%, specificity 87%, PPV 44%, NPV 87% and accuracy 80% (Table 3).


Table 3 | Sensitivity, specificity, accuracy, PPV and NPV levels according to BI-RADS assessment. 95% confidence intervals are presented in brackets.



In summary, CEM indicated 43 cancer lesions, whereas FFDM identified cancer in 15 cases.

The Kappa analysis confirmed a fair concordance level (Kappa = 0.29) between FFDM and biopsy, as well as between CEM and biopsy (Kappa= 0.39).

The ROC curves, based on BI-RADS classification, showed significant differences between CEM and FFDM examinations (p<0.000001). CEM presented with AUC 0,97, while FFDM with AUC 0.65 (Figure 2).




Figure 2 | Comparison of ROC curves for CEM (red line) and FFDM (blue line) based on BIRADS scores.





DBT subgroup

DBT indicated 209 lesions, where 105 cases were described as benign (BIRADS = 1 or 2) and 104 lesions as suspicious or malignant (BIRADS ≥4). Histopathology confirmed cancer in 33 tumors. DBT was true positive in 33 cases, true negative in 105 cases, and false-positive in 71 cases. DBT presented sensitivity of 100%, specificity of 60%, PPV 32%, NPV 100% and accuracy 66% (Table 3).

FFDM, performed prior to DBT, indicated 207 lesions, where 173 cases were described as benign (BIRADS = 1), and 34 cases as suspicious or malignant (BIRADS ≥4). FFDM was true positive in 18 cases and true negative in 157 cases, however, it was false negative in 18 cases and false positive in 16 cases. FFDM showed sensitivity of 55%, specificity of 91%, PPV 53%, NPV 91% and accuracy 85%.

In summary, DBT indicated 33 lesions as malignant and all of them were confirmed as cancers in the biopsy, whereas FFDM indicated cancer in 18 of these cases.

The Kappa analysis indicated a fair concordance level (Kappa = 0.32) between DBT and biopsy. However, a moderate concordance level (Kappa = 0.45) was established between FFDM and biopsy.

The ROC curves, based on BI-RADS classification, showed significant differences between DBT and mammography examinations (p<0.000001). DBT presented with an AUC of 0.99, while mammography with AUC of 0.74 (Figure 3).




Figure 3 | Comparison of ROC curves for DBT (red line) and FFDM (blue line) based on BIRADS scores.





The comparison between CEM and DBT groups

The groups did not present any differences in the age of patients (average 59 years) as well as in the size of lesions (average size 12.3 mm in the DBT group and 11.8 mm in the CEM group).

The cancer detection rate was similar in both modalities (p=0.8) and the percentage of diagnosed cancer cases (histopathological confirmation) in DBT and CEM were similar (p=0.35).

The ROC curves based on BI-RADS classifications for DBT and CEM are located similarly, demonstrating their similar diagnostic abilities. There were no significant differences between ROC curve areas (p=0.23) (Figure 4).




Figure 4 | Comparison of ROC curves for DBT (red line) and CEM (blue line) based on BIRADS scores.






Discussion

Breast cancer is the most often diagnosed malignancy and the first cause of cancer death among women. The International Agency for Research on Cancer (IARC) reported 2.26 million cases of breast cancer in 2020 worldwide (16). Early detection continues to be the key to a better prognosis and higher survival rate. FFDM remains the gold standard in breast cancer screening, however novel diagnostic tools, which may improve its accuracy (CEM, DBT, magnetic resonance), have been introduced. To the best of our knowledge, this is the first randomized, prospective study comparing CEM and DBT performance in patients recalled from breast cancer screening.

Studies have reported that both CEM and DBT have shown high sensitivity, especially with dense breasts, as compared to FFDM (17). In our study, the distribution of breast density patterns was similar in both groups. The analysis of our study cohort divided into four density patterns (A, B, C, and D according to ACR) will be performed in the further stage of our project.

The analysis confirmed high sensitivity (97%) and specificity (63%) of CEM, similar to those previously reported in the literature (2, 4, 5, 7, 8). CEM indicated 43 of 44 histopathologically verified cancer cases in our group of patients. FFDM presented with a sensitivity of 40% and specificity of around 87%, indicating 15 of 44 cancer lesions. ROC curves presented significant differences (p<0.000001) in diagnostic performance between CEM and FFDM (Figure 2). Despite the low concordance level of CEM and biopsy, it was slightly higher (0.39), as compared to FFDM and biopsy (0.29). The advantage of CEM over FFDM is obtained by the ability to visualize lesions obscured by dense glandular tissue. Moreover, the contrast enhancement allows to establish more accurately the size and number of lesions (1).

DBT allows viewing breast anatomy in multiple sections, which increases the diagnostic accuracy, as compared to FFDM, even if additional projections are employed (3, 9).

As predicted, the results of the DBT group also indicated an advantage of this technique over FFDM, with 100% sensitivity and specificity of 60%. DBT indicated all 33 cancers, confirmed in biopsy and there were no false-negative cases, whereas FFDM indicated 18 of them. The ROC curves, similarly to the CEM group, presented significant differences between DBT and FFDM (p<0.000001) (Figure 3). Surprisingly, unlike in the CEM group, the kappa test indicated moderate concordance between FFDM and biopsy (0.45), but low concordance between DBT and biopsy (0.32).

Despite the 100% accuracy of DBT and 97% accuracy of CEM, the kappa test indicated a low concordance level of both modalities with biopsy. Potential explanations include a high rate of false-positive cases in DBT (34%) and in CEM (30%). FFDM in the DBT group, despite a worse cancer detection rate, showed false results in 14% of cases, including 7% of false-negative and 7% of false-positive, which caused moderate concordance with biopsy (Figure 5).




Figure 5 | Comparison of the occurrence of true-positive, true-negative, false-positive and falsenegative results in CEM, DBT and FFDM subgroups.



It is interesting to note that the one lesion, which was indicated as a false-negative in CEM was invisible also in MR or PET/CT examinations. The patient was recalled due to enlarged axillary lymph nodes. Histopathological examination confirmed multicentric lobular cancer (EG: 75%, PG: 10%, HER2 negative, Ki67: 10%, NHG2) that might not be visible on imaging modalities such as CEM or MRI, due to its slow growth and low metabolic activity. (Figure 6) (5). It is not clear if the lesion would be visible in DBT. The patient had a multicentric invasive lobular cancer (ILC) which is characterized by slow growth and low metabolic activity. This is why the lesion was not detected by other modalities. DBT is the best imaging tool for the assessment of architectural distortions. Theoretically, large, slow growing ILC could manifest as a non-specific architectural distortion in DBT.




Figure 6 | 65 years old patient, with ACR type B breast density, recalled from screening due to the suspicious mass visible on RMLO in FFDM, classified as BIRADS 0 (A) and CEM (B) revealed no pathological enhancement. However, US was performed and it detected axillary lymph nodes with a typical metastatic appearance. One of them was biopsied and the pathology report revealed lymph node metastases of invasive lobular carcinoma. Breast MRI and PET-CT examinations were performed as well and they showed no signs of the primary tumor. The patient underwent neoadjuvant hormonal therapy and right mastectomy with axillary lymph node dissection. The final pathology report revealed multicentric invasive lobular carcinoma (grade 2) of the right breast with metastases to 23 out of 28 axillary lymph nodes.



We found no significant differences between CEM and DBT (Figure 4). The groups were standardized, the patient’s ages and sizes of lesions were similar. What is more, there were no significant differences in cancer detection rates. These results lead to the conclusion that CEM and DBT are equivalent and may be used alternatively in patients recalled from screening. One might expect that CEM would significantly outperform DBT, due to the administration of a contrast agent and subsequent independence of breast density (4, 5, 7, 8). Moreover, CEM provides data on tumor vasculature including neoangiogenesis (18, 19). In spite of these advantages, CEM cancer detection rate in our cohort did not outperform DBT. The probable explanation for that might be in the reduction of tissue overlap due to the tomographic technique of image acquisition (20). Furthermore, the radiation dose between CEM and DBT examinations in our study was similar.

On the contrary, authors of a recent paper who evaluated 220 women examined with CEM after being recalled from screening, found that CEM-based approach outperforms standard assessment (i.e. DBT or additional mammographic views) (21). However, the cited study was based on one-arm protocol and the age range of qualified patients was different from ours, so the results are not exactly comparable. The age of 50-69 years is concordant with the European Commission Initiative on Breast Cancer guidelines of breast cancer screening. Also Girometti et al. presented a comparison of CEM and DBT+FFDM in 78 preoperative patients with histopathologically confirmed breast cancer and proved the superiority of CEM over DBT. However, it was a retrospective study comparing performance of 4 blinded readers, whereas our study is a prospective trial with a direct comparison of those two imaging tools (22). Moreover, Zuley et al. analyzed 60 lesions in 54 patients retrospectively and found that CEM reduced false-positive rate to 39% in comparison to FFDM/DBT (47%) and ultrasonography (61%) (23).

Due to the contrast injection, CEM examination is associated with a higher risk of complications, such as kidney failure or an allergic reaction. Approximately 2 in 10000 patients will develop anaphylaxis (0,15%) and 0,02-0,04% will develop severe anaphylaxis reaction. Contrast induced nephropathy develops in 1-2% patients. To prevent Post Contrast Acute Kidney Injury (PC-KAI) it is important to check eGFR level within three months before examinations and avoid repeated iodinated contrast examinations. The guidelines indicate that if the patient is under 70 years old, with no history of renal disease, proteinuria, hypertension, hyperuricemia or diabetes, then there is no need to check the eGFR level. During our study to prevent PC-AKI we evaluated creatinine and eGFR level in every patient (11, 24). On the other hand, DBT is more cost-effective and less stressful for patients (no contrast administration). Available literature focuses on the comparison of CEM or DBT with FFDM independently. To the best of our knowledge, this is the first study comparing both modalities.

Our study has certain limitations. The major limitation is the low number of participating readers. There is a limited number of experienced breast radiologists in general, also in our center. This is a single-center study and therefore, despite the extensive experience of our radiologists participating in the evaluation of images, the results should be verified in a multicenter setting. Secondly, both techniques being compared, i.e. CEM and DBT, were used in parallel groups of patients. The reason for that trial design was related to the ethical considerations of avoiding additional risk (excessive radiation). Due to the risk of contrast-induced nephropathy, two patients with abnormal eGFR were excluded from the CEM group and DBT was performed instead.

Most of the studies on CEM in the diagnosis of breast cancer were performed using mammographs produced by GE Healthcare (8, 21). There is little data in literature on the performance of mammographs manufactured by Siemens that were used in our study. It may be attributed to the relatively recent appearance of Siemens CEM technology on the market. Another technological difference is the contrast agent used for CEM. Iopromide 370 (Ultravist 370) was used in our study, whereas other authors used Iohexol 300, Iohexol 350 or Iomeprol 400. All of these agents have slightly different concentrations of iodine (11).

In our opinion, larger multicenter trials should be taken into account to confirm our results in a larger, more heterogeneous population of patients recalled from screening. Such trials should be organized possibly on an international level in order to establish the role of CEM and DBT in the management of this particular patient population independent of the influences of some local factors.



Conclusions

To our knowledge, this is the first report of a randomized comparison of CEM and DBT. Both studied modalities demonstrated high diagnostic performance, and none of them was found to be superior. Therefore, the choice of method should be based on availability, patient’s safety and economic factors.
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Purpose

The most important prognostic factor for survival in ovarian cancer patients is complete cytoreduction. The preoperative prediction of suboptimal cytoreduction, considered as any residual disease at the end of surgery, could prevent futile surgery and morbidity. Here, we aimed to identify markers in the preoperative abdominal CT scans of an unselected cohort of patients with ovarian cancer that are predictive of incomplete cytoreduction.



Methods

This is a single-institution retrospective analysis of 105 epithelial ovarian cancer (EOC) patients treated with surgical cytoreduction between 2010 and 2020. Twenty-two variables on preoperative abdominal CT scans were compared to the intraoperative macroscopic findings by Fisher’s exact test. Parameters with a significant correlation between intraoperative findings and imaging were analyzed by multivariate binary logistic regression analysis regarding the surgical outcome of complete versus incomplete cytoreduction.



Results

Complete cytoreduction (CC), indicated by the absence of macroscopic residual disease, was achieved in 79 (75.2%) of 105 patients and 46 (63.9%) of 72 International Federation of Gynecology and Obstetrics (FIGO) stage III and IV patients. Twenty patients (19%) were incompletely cytoreduced due to miliary carcinomatosis of the small bowel, and six patients (5.7%) had various locations of residual disease. Thirteen variables showed a significant correlation between imaging and surgical findings. Large-volume ascites, absence of numerically increased small lymph nodes at the mesenteric root, and carcinomatosis of the transverse colon in FIGO stage III and IV patients decreased the rate of CC to 26.7% in the multivariate analysis.



Conclusion

Large-volume ascites, the absence of numerically increased small lymph nodes at the mesenteric root, and carcinomatosis of the transverse colon are markers in preoperative CT scans predicting a low chance for complete cytoreduction in unselected ovarian cancer patients in a real-world setting.
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Introduction

Ovarian cancer is still the most frequent cause of death in women suffering from gynecologic malignancies (1). Standard treatment is upfront surgery followed by platinum- and taxane-containing chemotherapy. In the case of the International Federation of Gynecology and Obstetrics (FIGO) stage IIIB to IVB, bevacizumab, an antivascular endothelial growth factor antibody, is added. Additionally, patients with deficient homologous recombination are treated with PARP inhibitors (2–4). Optimal cytoreduction in epithelial ovarian cancer (EOC) patients, considered as no macroscopically visible residual disease at the end of surgery, is the most important factor for survival (2, 5–7). As most patients present in the advanced stages of the disease, optimal cytoreduction will include multivisceral surgery harboring the risk of morbidity and mortality (8). As reported rates of optimal cytoreduction range between 20% and 85%, there will be patients undergoing surgery without survival benefits and patients who might profit from neoadjuvant chemotherapy before debulking surgery (5). While the specificity of contrast-enhanced abdominal computed tomography (CT) scans for the detection of peritoneal carcinomatosis is about 88%, the sensitivity is only 68% (9). By far, the most common reason for suboptimal cytoreduction is extensive small bowel mesentery or serosal carcinomatosis, often underestimated in presurgical CT scans (10–12). Therefore, an optimal preoperative screening would identify the subgroup of patients where complete cytoreduction will not be possible in an upfront situation to avoid futile surgery.

In the case of recurrence, the prospectively validated Arbeitsgemeinschaft Gynäkologische Onkologie (AGO) score identifies 75% of patients with recurrent ovarian cancer where optimal cytoreduction will be achieved again. However, no such tool is available in the primary situation (13). In the primary setting, the therapeutic sequence—upfront surgery followed by adjuvant chemotherapy or neoadjuvant chemotherapy followed by surgery—remains the key issue arising in ovarian cancer patients deemed fit enough for surgery.

Here, we aimed to identify, in a real-life cohort of patients with ovarian cancer, the group of patients least likely to undergo complete cytoreduction despite a radical multivisceral surgical approach by using radiological markers in the preoperative pelvic and abdominal CT scan.



Material and methods


Data collection

This study was conducted in accordance with the standards of the ethics committee of the Faculty of Medicine at the University of Bonn, Germany. The study obtained ethical approval (No 329/21) from the ethics committee of the Faculty of Medicine at the University of Bonn, Germany. Patients gave informed consent for the use of their data. The institutional record database was screened for epithelial ovarian cancer patients with cytoreductive surgery between January 2010 and December 2020. A total of 346 patients were identified. Patients with recurrent disease (n = 63) and patients with CT examinations without oral and intravenous contrast administration (n = 178) were excluded from the analysis. All CT scans were performed within a maximum of 28 days before surgery. In the case of neoadjuvant chemotherapy, two or three cycles of chemotherapy were completed before CT scan acquisition. Gastrografin was used as a radiopaque contrast medium 1 h prior to image acquisition; an intravenous contrast agent (iopamidol) was also administered. The CT scan was performed with the patients in a supine position by using a 64-slice scanner (Brilliance, Philips Healthcare, Amsterdam, the Netherlands); both arterial and portal venous phase images were acquired. Two radiologists with at least 15 years of experience in abdominal imaging blinded to the surgical details and outcome were asked to evaluate all abdominal CT scans for the following 23 items: liver metastasis, ascites, absence/presence of numerous small lymph nodes at the mesenteric root (number > 10, short diameter < 1 cm), paracolic peritoneal carcinomatosis (PC), right and left diaphragm thickening as a sign of PC, general peritoneal thickening, PC of the small and large bowel mesentery, PC of the small bowel mesenteric root, PC of the spleen, extrahepatic PC considered as PC on Glisson’s capsule, PC in the porta hepatis/hepatoduodenal ligament, PC of the gallbladder, wall thickening of the small bowel as suspected correlate of a serosal PC, PC of the rectosigmoid, PC of the transverse colon, PC of the ileocecal region, PC at the omentum minus and majus, PC on the stomach wall, pelvic tumor, and retroperitoneal infrarenal lymph node enlargement.

Surgery reports and pathologic findings were screened for carcinomatosis in all the above-mentioned regions. Ascites were measured by CT scan only, as surgery reports were too vague. The peritoneal carcinomatosis index as the sum of carcinomatosis, quantified by size in 13 regions of the abdomen, was retrospectively calculated based on surgical and pathological reports to provide information on tumor burden (14). The main criterion for optimal debulking was no macroscopically visible residual disease at the end of surgery. In all cases of incomplete resection, the location of tumor residuals was documented.



Statistical analysis

In the first step, all variables were analyzed by Fisher’s exact test to identify significant correlations between imaging and intraoperative finding. Differences were considered to be significant at a threshold of ≤0.05. In a second step considering FIGO stage III and IV patients only, variables with a significant correlation of imaging and intraoperative finding were analyzed by multivariate binary logistic regression regarding the surgical outcome (complete or incomplete cytoreduction). The positive and negative predictive values of the CT scan were calculated for the analysis of serosal, mesenterial, and mesenteric root carcinomatosis. All statistical analyses were performed using Minitab Version 18 (Minitab LLC, State College, PA, USA).




Results


Baseline information

Baseline patient characteristics are shown in Table 1. Presurgical CT scans of 105 non-selected patients with ovarian cancer were evaluated. At surgery, complete cytoreduction (CC) was achieved in 79 (75.2%) of 105 patients and 46 (63.9%) of 72 FIGO stage III and IV patients. Twenty patients (19%) underwent incomplete cytoreduction due to miliary carcinomatosis of the small bowel; in further six patients (5.7%), the reason was tumor involvement of the porta hepatis (n = 2), liver metastases (n = 1), and spread to the retroperitoneum (n = 2) or pancreas (n = 1). Thirteen of 22 variables in total showed significant correlations between imaging and surgical findings as depicted in Table 2. The evaluation of the preoperative CT scans was especially difficult regarding the issue of carcinomatosis of the small and large bowel mesentery with 57 and 43 patients regarded as not evaluable. The 23rd variable “ascites”, was only evaluated on CT scans, as the surgical reports showed low accuracy regarding the three predefined conditions: 1) no ascites, 2) ascites only in the pelvis, and 3) ascites in all four quadrants of the abdomen. No ascites were seen in 51 patients, only in the pelvis in 16 patients, and ascites in all four quadrants of the abdomen were present in 38 patients.


Table 1 | General patient characteristics.




Table 2 | Correlation of tumor location according to CT scan and according to surgery report.



Figures 1–3 are representative examples of evaluated CT findings within our real-world cohort of patients.




Figure 1 | Representative CT findings in the upper abdomen in patients with advanced ovarian carcinoma FIGO stage III–IV. Axial contrast-enhanced CT scans of the upper abdomen (A–F). A, aorta; L, liver; Pa, pancreas; Sp, spleen; St, stomach. (A, B) Tumor implants of the diaphragm (long arrows) and the liver (short arrows). The thickening of the right hemidiaphragm (long arrows) can be distinguished from surrounding perihepatic ascites (arrowheads). The surface tumor deposit at the dome of the liver (short arrows) causes scalloping of the lateral (A) and posterior (B) liver surface. (C) Large amount of ascites (arrowheads) in the upper abdomen. Peritoneal knotty implants (long arrows) are shown. (D) Tumor scalloping (short arrows) of the posterior surface of the spleen and the liver. Small amount of perisplenic ascites (arrowheads). Fat tissue stranding and tumor nodularity (long arrow) are seen in the fat adjacent to the splenic flexure of the colon. (E) Tumor implants (long arrow) along the hepatogastric ligament. Peritoneal thickening and tumor scalloping of the surface of the spleen and the liver (short arrows). Round suprarenal lymph nodes (narrow arrows). (F) Tumor implants (short arrows) in the porta hepatis along the falciform ligament and of the posterior liver surface. Tumor nodule (long arrow) is seen in the fat adjacent to the splenic flexure of the colon. FIGO, International Federation of Gynecology and Obstetrics.






Figure 2 | Representative abdominal CT findings in patients with advanced ovarian carcinoma FIGO stage III–IV. Axial contrast-enhanced CT scans of the middle and lower abdomen (A–D). (A) Irregular soft tissue mass representing large omental plaques called omental cake (short arrows) common site of intraperitoneal seeding of ovarian carcinoma. (B) Peritoneal thickening (short arrow) and small amount of ascites (arrowhead). Peritoneal nodule adjacent to the transverse colon (long arrow). (C) Peritoneal nodules in the left paracolic gutter (long arrow) and the hepatorenal recess (Morison’s pouch) (short arrow). (D) Peritoneal implants/nodules in the right and left paracolic gutter. FIGO, International Federation of Gynecology and Obstetrics.






Figure 3 | Abdominopelvic contrast-enhanced CT scans (A and C, axial images; B, sagittal reformatted image; D, coronal reformatted image) of patients with advanced ovarian carcinoma are shown. Bl, urinary bladder; L, liver; K, kidney; Re, rectum; Si, sigmoid colon; Sp, spleen; Tu, tumor (ovarian carcinoma); U, ureter. (A, B) Extensive tumor (Tu) in the pelvis consisting of large cystic and partly solid nodular parts. Close positional relationship and contact of the mass to the dorsally adjacent rectum (Re) and ventrally adjacent urinary bladder (Bl) with suspected rectal invasion and peritoneal involvement at the urinary bladder roof. Omental caking (short arrow) in the left side of the upper abdomen. (C) Massive tumor (Tu) in the pelvis including cystic and solid nodular parts. Close positional relationship and contact of the mass to the adjacent sigmoid colon (Si); tumor involvement of the latter is conceivable. (D) Large, predominantly cystic tumor mass (Tu) in the pelvis with involvement of the right ureter (U) and consecutive ipsilateral urinary retention and hydronephrosis of the right kidney (K).





Small bowel carcinomatosis

As depicted in Table 2, there was a significant correlation between suspected small mesentery carcinomatosis in the preoperative CT scan and the intraoperative finding of a small bowel mesentery carcinomatosis (p = 0.001). However, 57 patients (54.3%) were deemed to be not evaluable in the preoperative CT scan regarding this issue. The negative predictive value (NPV) was 35%, and the positive predictive value (PPV) was only 7.14%. Surgery reports documented a small bowel mesentery carcinomatosis in 23 of 57 non-evaluable patients. The intraoperatively documented small bowel serosal carcinomatosis showed no significant correlation with the CT scan finding of a wall thickening of the small bowel (p = 0.08). The NPV was 87.67%, and the PPV was 25.59%. Small bowel carcinomatosis of the root was suspected in 48 cases, and in 55 cases, the root was deemed unsuspicious, and two cases were not evaluable. During surgery, 15 of 48 suspected patients showed carcinomatosis of the root of the small mesentery, and 5 of 56 unsuspected patients showed a mesentery root carcinomatosis reaching a significant correlation (p = 0.006). The NPV was 90.91%, but the PPV was only 31.35%.

Looking into the visibility of lymph nodes within the mesenteric root, we found 51 patients in total with numerous (>10) small mesenteric lymph nodes at the mesenteric root (number > 10, short axis diameter < 1 cm, oval configuration) and 53 patients without any visible mesenteric lymph node at the mesenteric root in the preoperative CT scan. One patient was deemed to be not evaluable using the preoperative CT scan.

The absence of multiple (>10) small mesenteric lymph nodes, defined as no visible mesenteric lymph nodes in the mesenteric root, as shown in Figure 4, was significantly more frequently observed in case of miliary carcinomatosis of the small bowel serosa, mesentery, or root, detected during surgery.




Figure 4 | Representative axial intravenous contrast-enhanced CT scans of the middle abdomen. The absence of numerous small mesenteric lymph nodes is shown (A, B); only small vessels in the mesenteric root are visible. (C, D) Other patients show multiple small mesenteric lymph nodes (<1 cm in short dimension) in the mesentery and mesenteric root (arrows).



In detail, 40 of 67 patients without carcinomatosis of the mesentery showed numerous mesenteric root lymph nodes, while 27 of 38 patients with mesenteric carcinomatosis had no detectable mesenteric lymph node in the mesenteric root on the CT scan (p = 0.002), showing a PPV of 21.57% and an NPV of 50% for the detection of peritoneal carcinomatosis of the mesentery in the preoperative CT scan.

Of 21 patients with carcinomatosis of the mesenteric root, 18 showed no visible mesenteric lymph node, while 48 of 84 patients without carcinomatosis of the mesenteric root showed numerous mesenteric lymph nodes (p < 0.001), showing a PPV of 5.9% and an NPV of 66.7% for the detection of peritoneal carcinomatosis of the mesenteric root in the preoperative CT scan.

In 14 of 18 patients with small bowel mesenteric serosal carcinomatosis, detected during surgery, no mesenteric lymph nodes were detectable within the preoperative CT scan, while 47 of 87 patients without serosal carcinomatosis showed numerous mesenteric lymph nodes (p = 0.019), showing a PPV of 7.8% and an NPV of 74.1% for the detection of serosal peritoneal carcinomatosis in the preoperative CT scan.

In total, 40 patients had an intraoperatively documented carcinomatosis in at least one of the three above-mentioned locations (mesenteric root, small bowel mesentery, or small bowel serosa). In 28 of 40 patients, mesenteric lymph nodes were absent in the preoperative CT scan. In 12 patients, lymph nodes were present within the mesenteric root in the preoperative CT scan (p = 0.003), showing a PPV of 52.8% and an NPV of 76.5% for the detection of peritoneal carcinomatosis of the small bowel at the mesenteric root, the mesentery, or the serosa in the preoperative CT scan. Figure 5 shows the intraoperative finding of carcinomatosis of the mesenteric root, the mesentery, and the serosa.




Figure 5 | Intraoperative finding of peritoneal carcinomatosis of the mesenteric root.



Large-volume ascites were found in 38 patients. Of these patients, 27 showed carcinomatosis of the small bowel in at least one of the above-mentioned locations (root, mesentery, or serosa). In 19 of 38 patients with large-volume ascites, complete cytoreduction was achieved.

Pathology reports in the case of large-volume ascites showed 34 high-grade serous, three high-grade endometrioid, and one clear cell histology.

An omental cake was seen in 33 patients. In 9 of 33 patients, the imaging showed no serosal or transmural transverse colon carcinomatosis, and in two cases, imaging was inconclusive regarding a serosal/transmural transverse colon infiltration. In further 10 patients, there was a transmural transverse colon infiltration by large tumor nodules originating from the colic mesentery in absence of an omental cake.

Cytoreduction was incomplete in 26 patients, and 21 of them showed miliary small bowel carcinomatosis (serosa, root, and/or mesentery), but in one patient, the irresectability was mainly due to involvement of the porta hepatis. In 17 of 21 patients, there were no small mesenteric lymph nodes visible. In total, small mesenteric lymph nodes were absent in 53 patients. In 28 of 53 patients, there was a small bowel carcinomatosis (serosa/root and/or mesentery) present.



Regression analysis of all parameters with significant correlation between intraoperative findings and preoperative CT scan

In FIGO stage III and IV patients, the completeness of cytoreduction was compared to 13 variables that achieved significance with respect to imaging and intraoperative finding and the presence of no, little, or large-volume ascites. In the case of ascites in all four quadrants of the abdomen, considered large-volume ascites with the absence of numerous small mesenteric lymph nodes and peritoneal carcinomatosis of the transverse colon, the rate of complete cytoreduction was as low as 26.68%. In the case of a tumor-free transverse colon in the preoperative CT scan but large-volume ascites and absent mesenteric lymph nodes, the rate for complete cytoreduction was as low as 44.51% as seen in Table 3.


Table 3 | Multivariate binary logistic regression analysis of 14 significant variables in FIGO IIIA–IVB patients.



The same group of patients was further distinguished into patients receiving neoadjuvant chemotherapy and interval debulking surgery (IDS) and patients receiving primary debulking surgery (PDS). In the case of IDS large-volume ascites, absent numerous mesenteric lymph nodes and peritoneal carcinomatosis of the transverse colon led to a complete cytoreduction rate of 24.23% and in the case of PDS to a complete cytoreduction rate of 15.66% as depicted in Table 3.

FIGO stage I and II patients were excluded from the multivariate analysis, as complete cytoreduction is always possible in this patient population.




Discussion

In this study, the combination of large-volume ascites, peritoneal carcinomatosis of the transverse colon, and the absence of numerous small lymph nodes in the small bowel mesentery in the preoperative CT scans of the abdomen identified a group of patients where complete cytoreduction was achieved in less than 27% of the patients. Of course, optimal cytoreduction is a matter of tumor burden and surgical skill. When analyzing the optimal cytoreduction rate of ovarian cancer patients at our institution, we found that 75.2% of patients had no macroscopic visible residual tumor at the end of surgery. In the case of advanced disease (FIGO stage III and IV), the rate was 63.9%, consistent with recently published data (2, 10, 11, 15). The most frequent site of failure of optimal cytoreduction in our study was a carcinomatosis of the small bowel (mesentery, root, and serosa) accounting for almost 80% of all cases with residual tumors. Similar findings were previously described, concluding that the success of surgery regarding optimal cytoreduction in ovarian cancer patients depends on the presence or absence of PC in specific regions rather than only on the amount of PC in general (10, 11, 16).

While preoperative staging by computed tomography of the abdomen and thorax is by far the most common approach for presurgical evaluation due to its wide availability, the substantial underestimation of visceral small bowel peritoneal carcinomatosis is its major drawback (16, 17). The general pooled sensitivity and specificity for correct identification of region-based peritoneal carcinomatosis is 68% and 88% in ovarian and gastric cancers, respectively, depending on the size of the lesions and the presence of ascites (9).

As the intraoperatively generated PCI score shows low interobserver variability, several promising attempts were made to describe tumor load by a preoperative CT scan-based PCI score. It was limited by a general underestimation of the tumor burden in the small bowel and hepatoduodenal ligament (regions 2 and 9 to 12), which are the most likely locations for residual disease (10, 11, 14, 18–20).

The CT scan sensitivity decreases substantially in tumor sizes below 5 mm. In our experience, the size of 5 mm or less comprises the size of the single carcinomatosis nodule on the visceral peritoneum seen during surgery in most cases (16, 21). Therefore, the small bowel carcinomatosis itself, the most common location of residual disease, is usually not visible in the presurgical CT scan.

In this context, MRI (contrast-enhanced and diffusion-weighted imaging (DWI) images) is generally considered more accurate and sensitive, especially for the detection of liver metastases, perihepatic and serosal tumor nodules, and tumor implants on the hepatoduodenal and gastrohepatic ligament, diaphragm, and small intestinal wall. In contrast, results of recent studies showed that despite the highest sensitivity of MRI and the highest specificity of FDG-PET/CT, no significant differences were found between the three techniques (MRI, CT, and FDG-PET/CT) (22). Therefore, as the fastest, most economical, and widely available modality in daily practice and real life, CT is the examination of choice in particular when a stand-alone technique is needed. If inconclusive, PET/CT or MRI may offer additional insights. Whole-body FDG-PET/CT may be more accurate for a supradiaphragmatic metastatic extension. Despite advances in imaging techniques, neither DWI-MRI nor CT nor FDG-PET/CT seems to be superior in preoperative assessment of the surgical PCI in patients scheduled for upfront cytoreductive surgery for advanced-stage EOC patients (23).

As there are numerous patients with high tumor load but tumor-free small bowel and tumor-free hepatoduodenal ligaments, patients with the residual disease may represent a subgroup of epithelial ovarian cancer patients with increased tumorigenicity, which allows this unfavorable unresectable tumor spread pattern (24). In our experience, carcinomatosis of the small bowel was always accompanied by a high tumor load (PCI > 15). The absence of multiple mesenteric lymph nodes in the case of peritoneal carcinomatosis of the small bowel may be due to a decreased immune reaction. In this context, it is interesting to note that in triple-negative breast cancer patients, a missing germinal center formation in cancer-free lymph nodes is an indicator of a poorer prognosis. Therefore, this was considered a sign of a decreased systemic immune response (25). Furthermore, MRI in the case of Crohn’s disease remains unspecific regarding the proximal disease extension. However, the evaluation of the inflammation of small bowel mesentery lymph nodes shows the proximal disease extent despite unsuspicious bowel walls. Considering the visible inflammation in the case of an active Crohn’s disease, invisible mesenteric lymph nodes in the case of miliary small bowel carcinomatosis seem a noteworthy feature and a possible example of an immune escape of the tumor, leading to this unfavorable tumor spread (26). In addressing the problem of a diffuse tumor spread on the guts, three different clinical phenotypes of epithelial ovarian cancer patients were recently introduced, defining the diffuse tumor spread pattern within the rectosigmoid mesentery as the most lethal phenotype as compared to two other phenotypes with more localized disease and better survival outcomes (27).

Several studies reported diffuse peritoneal thickening, mesenteric disease, suprarenal lymph nodes, large-volume ascites, and carcinomatosis on the diaphragm or liver as significant markers in their final prediction model for complete cytoreduction (5, 21, 28, 29). The implementation of extensive upper abdominal surgery including diaphragm stripping, splenectomy, distal pancreatectomy, and resection of disease on the hepatoduodenal ligament made some of the above-mentioned markers less predictive for complete cytoreduction (10, 11, 15, 21, 28, 29).

Laparoscopy is an interesting evaluation tool in advanced ovarian cancer patients with positive prediction rates of 62% for cytoreduction to less than 1 cm of tumor rest (10, 30–33). To optimize that rate, different calculation models included the findings of CT scans, laparoscopy, and laparotomy, identifying a marker constellation of a PCI of 20 and more and bowel obstruction as significant for incomplete cytoreduction. As bowel obstruction is rather rare despite high tumor loads and reason for surgical intervention anyhow, this model may not be suitable for all patients in everyday business to prevent futile surgery (34).

Of course, there are limitations to our study. First of all, its retrospective nature always harbors the risk of bias. Second, there is a relatively high rate of patients treated with neoadjuvant chemotherapy due to the prior policy of the clinic to administer neoadjuvant chemotherapy in case of ascites of more than 500 cc.

The strength of our study compared to others is the definition of macroscopically no residual disease as an optimal cytoreductive outcome as residual disease regardless of whether size impacts prognosis more severely than any further available therapeutic tool (2, 12). Furthermore, we analyzed only radiological features, as we believe that incomplete cytoreduction due to a compromised performance status or ASA status as well as age comprises a different group of patients generally undergoing incomplete resection to avoid complications rather than because of an unfavorable tumor spread pattern (35). A third noteworthy feature is that we included only primary ovarian cancer patients, as prior surgery will affect the quality of the CT scan evaluation (16). A final strength of our study is that no further surgical intervention, anesthesia, or a new method of imaging was necessary to identify this unfavorable group of patients, which makes our finding applicable in the clinical day-to-day business (36).

To our knowledge, we are the first to describe the absence of multiple small bowel mesenteric lymph nodes as one of three markers predicting a very low chance for complete cytoreduction. As only one diagnostic tool was necessary for our finding, it is noteworthy for further prospective evaluation in larger cohorts and in combination with additional diagnostic techniques to encircle the group of patients without or with little benefit from surgery even better. Therefore, our finding may add valuable information for the decision between neoadjuvant chemotherapy or upfront debulking in ovarian cancer patients deemed fit enough for surgery. In our department, we implemented laparoscopy as an additional diagnostic tool in case of large-volume ascites, carcinomatosis of the transverse colon, and absent small bowel mesenteric lymph nodes in the preoperative CT scan. Different algorithms as additional preoperative abdominal MRI seem worth studying as well, in order to minimize any surgical intervention.

The key finding of our analysis is that the absence of numerous small mesenteric lymph nodes in the context of large-volume ascites and peritoneal carcinomatosis of the transverse colon in the presurgical CT scan of ovarian cancer patients are highly suspicious for miliary carcinomatosis of the small bowel and an unresectable tumor spread pattern.
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Purpose

PET with L-4-borono-2-[18F] fluoro-phenylalanine (FBPA) was reported to be useful to differentiate malignant tumors and inflammation. Although immunotherapy with immune checkpoint inhibitors (ICIs) has been applied to cancer treatment recently, FDG PET may not be suitable to determine the effect of ICIs because of false-positive findings caused by treatment-related inflammation. In this study, we aimed to demonstrate that FBPA PET allowed detection of the early response of anti-PD-1 immunotherapy in tumor-bearing mice, comparing the results with those of FDG PET.



Materials and methods

Mice with B16F10 melanoma tumor xenografts were prepared. Anti-mouse PD-1 antibody or PBS was administered twice intraperitoneally to the tumor-bearing mice on Day 0 (3 days after inoculation) and Day 5 (treatment or control group <TrG or CoG>). PET/CT imaging was performed twice for each mouse on Day 0 before the anti-PD-1 antibody/PBS administration and on Day 7 using a micro-PET/CT scanner. FBPA and FDG PET/CT studies were conducted separately. SUVmax and the tumor to liver ratio (T/L ratio) were used as parameters exhibiting tumor activity. Tumor uptake volume (TUV) and metabolic tumor volume (MTV) were also calculated for FBPA and FDG, respectively. Changes between pre- and posttreatment SUVmax or T/L ratio were observed using the formula as follows: [(posttreatment parameter values/pretreatment values - 1) × 100] (%).



Results

Tumors in TrG were smaller than those in CoG on Day 7. SUVmax and T/L ratio represented no differences between TrG and CoG in FBPA and FDG PET before treatment. FBPA PET on Day 7 demonstrated that SUVmax, T/L ratio, and TUV in TrG were statistically smaller than those in CoG. %T/L ratio and %SUVmax exhibited the same trend in FBPA PET. However, FDG PET on Day 7 revealed no differences in all parameters between TrG and CoG. T/L ratio and %SUVmax in TrG represented larger values than those in CoG without statistical significances.



Conclusion

This study demonstrated that FBPA PET allowed detection of the early response of anti-PD-1 immunotherapy in B16F10 melanoma-bearing mice. FDG PET did not detect the response. Further studies are required to determine whether FBPA PET is useful in evaluating the treatment effect of ICIs in humans.
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Introduction

Cancer immunotherapy with immune checkpoint inhibitors (ICIs) has increasingly been recognized as a novel effective treatment recently.

However, the treatment response is unsatisfactory for most patients as the response rate is limited to about 20% - 40% (1, 2). Methods to predict or determine the efficacy at an early stage of treatment are highly desired due to its high cost and possible autoimmune-like side effects named as immune-related adverse events (irAEs).

Positron emission tomography (PET), a functional and metabolic imaging technique, is a promising candidate of the assessment method in view of evaluating the disease activity of primary and metastatic malignant lesions. PET using [18F] fluorodeoxyglucose (FDG PET) has widely been used for tumor imaging since glucose metabolism is enhanced in various types of malignancies. However, FDG PET may not be suitable to determine the effect of cancer immunotherapy at an early stage of treatment because of the false-positive findings caused by inflammation. Theoretically, cancer immunotherapy is accompanied by inflammation in the treatment area and glucose metabolism is enhanced by the inflammation in addition to tumor activity, which is visualized as increased FDG uptake. irAEs caused by ICIs include inflammation in various organs as well. Mekki, et al. reported that thoracic sarcoid-like reaction, enterocolitis, thyroiditis, hypophysitis, and pancreatitis were observed as irAEs in FDG PET (3). These inflammatory changes potentially provide false-positive FDG PET findings.

PET with L-4-borono-2-[18F]fluoro-phenylalanine (FBPA), an amino acid-based radiotracer, has been used for pretreatment assessment before boron neutron capture therapy (BNCT) for cancer (4). BNCT is a type of radiotherapy based on the nuclear reaction of [10B] (n, α) [7Li]; a neutron beam from a nuclear reactor or accelerator is irradiated around the 10B containing tumor target and the emitted alpha particles have a higher cytotoxic effect and shorter range than beta rays. L-paraboronophenylalanine (BPA) labeled with 10B is the major carrier compound used to deliver the boron selectively to the tumor cells (5). A recent study demonstrated that BPA was delivered to the cells through transporter-mediated mechanisms and that L-type amino acid transporter 1 (LAT1) was the major amino acid transporter related to these mechanisms (6). Another recent study reported that FBPA accumulated into tumor cells mainly via LAT1 and that FBPA uptake was significantly lower than FDG uptake in inflammatory lesions (7). FBPA is considered as a promising tumor-specific PET tracer.

In the present study, we aimed to demonstrate that FBPA PET was useful for evaluating the early response of anti-PD-1 cancer immunotherapy in B16F10 melanoma-bearing mice, comparing the results with those of FDG PET. An increase in FDG uptake was shown with anti-PD-1 treatment in a previous study using the same experimental model as this study (8).



Materials and methods


Animal model

C57BL/6JJmsSlc mice (6 - 7 weeks old) were purchased from Japan SLC, Inc. (Hamamatsu, Japan). B16F10 melanoma cell line was obtained from ATCC (Manassas, VA, USA). Cells were cultured in Dulbecco’s modified Eagle medium supplemented with 10% fetal bovine serum (FBS), 1% penicillin-streptomycin, and 2 mmol/L L-glutamine.

The mice were inoculated subcutaneously with 3 ×106 B16F10 cells in 100 μL of phosphate-buffered saline (PBS) 3 days before pretreatment PET imaging on Day 0.



Anti-PD-1 treatment

Anti-mouse PD-1 antibody (clone RMP1-14) was purchased from BioXcell (West Lebanon, NH, USA). The antibody (250 μg) in 200 μL PBS was administered twice intraperitoneally to the tumor-bearing mice on Day 0 and Day 5. Mice with anti-PD-1 antibody were defined as the treatment group. In addition to the treatment group, the control group was prepared, which consisted of mice receiving 200 μL PBS without anti-PD-1 antibody twice intraperitoneally on Day 0 and Day 5.

Tumors were measured using calipers, and the tumor volume expressed in mm3 was calculated according to the following formula: 0.5 × (long diameter) × (short diameter)2. Relative tumor volume, the volume ratio of posttreatment to pretreatment tumor, was also calculated in this study.



Synthesis of [18F]FBPA

[18F]FBPA was synthesized according to previous report (9). In short, [18F]FBPA was produced by reacting a precursor solution (30 mg of 4-borono-L-phenylalanine in 4 mL trifluoroacetic acid) with [18F]acetylhypofluorite. After the reaction, [18F]FBPA was separated by using High-Performance Liquid Chromatography (HPLC), and the HPLC solvent was removed before [18F]FBPA was recovered with saline. The radiochemical purity of [18F]FBPA was > 98% and the molar activity was 232 GBq/mmol on average.



PET imaging

PET/computed tomography (PET/CT) imaging was performed twice for each mouse on Day 0 before the anti-PD-1 antibody administration and on Day 7 using a micro-PET/CT scanner (Inveon, Siemens, Munich, Germany).

FBPA or FDG PET/CT studies were conducted separately in 12 tumor-bearing mice (n = 6 each for the treatment and control groups).

FBPA or FDG was injected via the tail vein of each mouse (FBPA: 2.18 ± 0.34 MBq, FDG: 2.17 ± 0.25 MBq). Static PET images were acquired for 10 min starting at 60 min after radiotracer injection under isoflurane anesthesia.

PET images were reconstructed using three-dimensional ordered-subset expectation–maximization algorithm (16 subsets, 2 iterations) with attenuation and scatter correction.



Image analysis

The radioactivity of each tumor was expressed quantitatively as the standardized uptake value (SUV), which was corrected for the injected dose (MBq) and body weight (g). The maximum value of SUV (SUVmax) was calculated from a single voxel exhibiting the maximum SUV in each tumor. The mean of SUV (SUVmean) was obtained in the liver as a background value.

Spherical volumes of interest (VOIs) were placed on the tumor and liver in the PET images using commercially available software (PETSTAT, AdIn Research, Tokyo, Japan) while referring to the CT images.

The tumor to liver ratio (T/L ratio) was also used as a parameter exhibiting tumor activity, which was defined by the ratio of SUVmax in the tumor to SUVmean in the liver. In addition to pre- or posttreatment parameters in the tumor, changes between pre- and posttreatment tumor activity were observed using the formula as follows: [(posttreatment parameter values/pretreatment values - 1) × 100] (%). They were expressed as %SUVmax and %T/L ratio.

Tumor uptake volume (TUV) and metabolic tumor volume (MTV) were also calculated for FBPA and FDG, respectively. TUV or MTV was defined as the volume within a tumor margin, which was delineated with 40% of SUVmax. These quantitative parameters were also obtained from the same software mentioned above.



Immunohistochemistry

After the mice were sacrificed by euthanasia, tumor xenografts were resected and subjected to immunohistochemical staining. Immunohistochemical staining was performed to determine if LAT-1 and GLUT-1 transporters, respectively, for FBPA and FDG uptake changed between the treatment and control groups. CD8 and PD-1 proteins were also evaluated in the two groups to observe their changes after treatment.

The antibodies used in this study were anti-LAT1 antibody (orb96302, Biorbyt, Cambridge, UK) for FBPA, anti-GLUT-1 antibody (ab115730, abcam, Cambridge, UK) for FDG, anti-PD-1 antibody (#84651, CST, Danvers, MA USA) for PD-1 expression, and anti-CD8 antibody (14-0808-80, Invitrogen, Waltham, MA, USA) for CD8 expression in accordance with the manufacturer’s instructions. PD-1 and CD8 expressions were evaluated to recognize the association between these markers and FBPA or FDG uptake.

Serial 4-μm tumor paraffin-embedded sections were used for the immunohistochemical staining as well as hematoxylin-eosin (HE) staining.



Statistical analysis

Unpaired one-tailed t-tests were used to compare the values between the two groups. Statistical significance was set at p < 0.05.




Results


Tumor volume

Tumors on Day 1 represented no statistical difference in volume between the treatment and control groups. Tumor volumes in both groups also showed no statistical differences on Days 3 and 5. However, tumors in the treatment group were statistically smaller than those in the control group on Day 7 (p <0.01, Figure 1A).




Figure 1 | (A) Tumor volume Tumor volume increased gradually even in the treatment group. Tumor volumes in both groups showed no differences on Days 3 and 5. The tumors in the treatment group were statistically smaller than those in the control group on Day 7 (*p <0.01). (B) Relative tumor volume Relative tumor volume to the volume on Day 1 exhibited the same trend from Day 1 to Day 7 as actual tumor volume, although no statistical difference was observed between the treatment and control groups on Day 7.



Relative tumor volume exhibited the same trend from Day 1 to Day 7, although no statistical difference was observed between the treatment and control groups on Day 7 (Figure 1B).



PET visual analysis

Both FBPA and FDG PET exhibited faint uptake in the tumor before treatment on Day 0 (Figures 2A: FBPA, 2B: FDG).




Figure 2 | PET/CT images on Day 0 (2A: FBPA, 2B: FDG) Faint uptake (gray arrow) was observed in all tumors only on transaxial FBPA and FDG PET/CT images before treatment. PET/CT images on Day 7 (2C: FBPA, 2D: FDG) Intense uptake (black and gray arrows) was observed in all tumors on FBPA and FDG PET/CT images. Visual analysis did not discriminate the tumors in the treatment and control groups either on FBPA or FDG PET/CT images. Radioactivities were observed in the kidneys (K) and bladder (B) and in the heart (H) and bladder (B) in addition to the tumor, respectively, as shown in FBPA and FDG PET images on Day 0. (Left: maximum intensity projection image of PET, right upper: fused PET/CT image, Treatment: PET image in the treatment group, Control: PET image in the control group).



FBPA and FDG PET showed intense tumor uptake either in the treatment or control group on Day 7 (Figures 2C: FBPA, 2D: FDG). FBPA or FDG uptake was higher on Day 7 than Day 0 in each tumor.

Visual analysis solely did not allow differentiation of the tumors between the treatment and control groups.



PET quantitative analysis

FBPA and FDG PET before treatment

Both FBPA and FDG PET demonstrated similar SUVmax and T/L ratios of the tumors in the treatment and control groups before treatment on Day 0 without statistical differences. Mean SUVmax and T/L ratio were 0.94 and 0.85 in the treatment group and 0.99 and 0.85 in the control group of FBPA PET, respectively. Mean SUVmax and T/L ratio were 1.0 and 1.7 in the treatment group and 1.1 and 1.4 in the control group of FDG PET, respectively.



FBPA PET after treatment

Posttreatment PET on Day 7 demonstrated that SUVmax, T/L ratio, and TUV in the treatment group were statistically smaller than those in the control group (Table 1, Figures 3A: SUVmax, 3B: T/L ratio 3C: TUV). Mean SUVmax, T/L ratio and TUV were 2.6, 2.3, and 0.18 in the treatment group and 3.2, 3.1, and 0.53 in the control group, respectively. %SUVmax and %T/L ratio in the treatment group tended to be smaller than those in the control group without statistical significances (Table 1). Mean %SUVmax and %T/L ratio were 183 and 178 in the treatment group and 225 and 267 in the control group, respectively.


Table 1 | Comparison of quantitative parameters between the treatment and control groups in PET using FBPA or FDG.






Figure 3 | (3A: SUVmax, 3B: T/L ratio, 3C: TUV and MTV) Box charts of quantitative PET parameters in the treatment and control groups Statistically smaller values of SUVmax, T/L ratio, and TUV were observed in the treatment group than the control group on FBPA PET (*p <0.05, **p < 0.005). A substantial overlap was observed in these parameters on FDG PET.





FDG PET after treatment

Tumors in both groups exhibited no statistical differences in all parameters again after treatment on Day 7 (Table 1 and Figure 3A: SUVmax, 3B: T/L ratio, 3C: MTV). However, T/L ratio and %SUVmax in the treatment group represented larger values than those in the control group in this setting (Table 1). Mean SUVmax, T/L ratio and MTV were 5.1, 7.3, and 0.61 in the treatment group and 5.1, 5.4, and 1.0 in the control group, respectively. Mean %SUVmax and %T/L ratio were 403 and 341 in the treatment group and 331 and 305 in the control group, respectively.



Immunohistochemical analysis

Intense LAT1 and GLUT-1 expression, respectively, for FBPA and FDG uptake was observed in many areas within the tumor, whereas PD-1 and CD8 expression was in the limited areas within the tumor in both the treatment and control groups.

Visual analysis did not discriminate the expression of LAT1, GLUT-1, PD-1, or CD8 between the treatment and control groups (Figure 4).




Figure 4 | Immunohistochemical staining Intense LAT1 and GLUT-1 expression was observed in many areas within the tumor, whereas CD8 and PD-1 expression was in the limited areas within the tumor in both the treatment and control groups. (Positive staining: mainly observed in circled areas) No differences in the expression of LAT1, GLUT-1, CD8, or PD-1 were observed visually between the treatment and control groups. GLUT-1 and CD8 expression in the treatment group appeared slightly higher than that in the control group.



These results were in line with the PET findings that intense FBPA and FDG tumor uptake was observed either in the treatment or control group on Day 7. Treatment-induced inflammation was not prominent in the model used in this study.




Discussion

FBPA and FDG were used as radiotracers of PET imaging in this experimental study and discordant findings were observed between them at an early stage of the anti-PD 1 immunotherapy. Although conducted in the tumor-bearing mice, this study firstly compared an amino acid-based radiotracer and FDG in such an immunotherapy setting. The promising findings of FBPA PET in this study warrant further studies of this imaging technique in evaluating the response of immunotherapy with ICIs in humans.

Tumors in the treatment group were smaller than those in the control group on Day 7 in this study. However, all tumors in the treatment and control groups were on the way of growing, and size reduction of the tumors was not observed even in the treatment group. A similar trend of tumor growth was reported in the previous studies dealing with anti-PD-1 treatment in the same tumor-bearing mouse model (8, 10). The slightly smaller tumor volume in the treatment group compared to the control group was considered a reflection of the early treatment effect with the anti-PD-1 antibody in mice with B16F10 melanoma.

FBPA allowed detection of the anti-PD-1 treatment effect on Day 7. SUVmax, T/L ratio, and TUV in the treatment group represented smaller values than those in the control group with statistical significances. %SUVmax and %T/L ratio exhibited a similar trend although statistical significances were not observed. FBPA has been reported to be a tumor-specific PET tracer and shows low uptake in inflammatory lesions (7). Additionally, this study demonstrated that FBPA was useful in evaluating the early response by the anti-PD-1 therapy, which is known to cause immune and inflammatory reactions in the tumor.

Only a limited number of studies have been reported so far regarding the use of amino acid-based PET radiotracers in evaluating the treatment response to cancer immunotherapy with ICIs. Galldiks, et al. reported the additional value of 18F FET <(O-(2-[18F]fluoroethyl)-L-tyrosine> to contrast-enhanced MRI for treatment monitoring of immunotherapy with ICIs or targeted therapy (TT) alone or in combination with radiotherapy in patients with metastatic brain tumors (11). FET PET seemed to be of great value for the differentiation of treatment-related changes from metastatic brain tumors.

Tomita, et al. reported that anti-PD-1 treatment increased mean FDG uptake values in the tumor in the same tumor-bearing mouse model as this study (8). Maximum FDG uptake values in the tumor represented no statistical difference in their study. In this study, quantitative parameters such as SUVmax, T/L ratio, and MTV in the tumors exhibited no statistical differences between the treatment and control groups. However, T/L ratio and %SUVmax in the treatment group tended to represent larger values than those in the control group. The slight increase in these quantitative parameters appeared to correspond to the increased tumor FDG uptake observed in the study of Tomita, et al. as a reflection of the immune response caused by the anti-PD-1 treatment.

We used SUVmax and T/L ratio to express radiotracer uptake in the tumor in PET quantitative analysis. Although SUVmax or SUVmean has frequently been used as a quantitative parameter in research using PET, it requires the injected dose of radiotracer for calculation. The estimation of actual injected doses is difficult in small animals as the residual radioactivity in tail veins or syringes after injection is relatively large compared to the radioactivity of doses prepared. In this regard, T/L ratio might be more reliable than SUVmax since it is a completely image-derived parameter.

Volumetric FDG PET parameters, MTV and TLG, are known to be better than SUVmax in evaluating or predicting chemotherapeutic responses in clinical situations. Recent studies also demonstrated that volumetric parameters were useful in evaluating the early response by the immunotherapy with ICIs (12, 13). The volumetric parameter, TUV, was also used for FBPA PET in this study. TUV in addition to SUVmax and T/L ratio in the treatment group represented smaller values than those in the control group. However, MTV in FDG PET exhibited no statistical differences between the treatment and control groups. This study successfully demonstrated that volumetric PET parameters were useful in evaluating the early response of anti-PD-1 treatment in the tumor-bearing mice.

IHC analysis demonstrated that intense LAT1 or GLUT-1 expression was observed in many areas within the tumor, whereas CD8 expression was in the limited areas. No obvious differences in these expressions were observed between the treatment and control groups. The clear mechanism of the slight increase in tumor FDG uptake after treatment was not resolved in this study. An experimental study using the same tumor-bearing mouse model as our study demonstrated that anti-PD-1 therapy increased glucose metabolism by cancer cells themselves at an early stage of treatment (8). The subtle inflammatory change caused by anti-PD-1 therapy was not considered to largely affect glucose metabolism in that study.

This study has some limitations. As we would like to demonstrate the advantages of FBPA over FDG in detecting early response of anti-PD-1 immunotherapy, we compared these two radiotracers in the same experimental model as used in the paper dealing with FDG uptake (8). Thus, we used only one treatment protocol with early drug administration, low-dose and short-term regimen. We only used a B16F10 melanoma tumor-bearing mouse model according to the previous studies dealing with anti-PD-1 treatment (8, 10). Thus, the results in this study may not apply to other kinds of tumors in mice or in humans. The observation of tumor growth was limited up to a few days from PET imaging due to an ethical consideration to small animals. An obvious reduction in tumor size was not confirmed in both the treatment and control groups. However, smaller tumor volume in the treatment group compared to the control group was observed and was considered a reflection of the early treatment effect with the anti-PD-1 treatment as stated above. Although discrepant quantitative findings were observed after treatment between FBPA and FDG PET, these findings were obtained from tumors in different mice. Direct comparison of the FBPA and FDG findings in the same tumor would have been ideal, but it was impossible as both FBPA and FDG are 18F labeled radiopharmaceuticals.



Conclusion

This study demonstrated that FBPA PET allowed detection of the early response of anti PD-1 immunotherapy in B16F10 melanoma-bearing mice. FDG PET did not detect the response. Further studies are required to determine whether FBPA PET is useful in evaluating treatment effect of ICIs in humans.
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  Computer-aided detection systems based on deep learning have shown good performance in breast cancer detection. However, high-density breasts show poorer detection performance since dense tissues can mask or even simulate masses. Therefore, the sensitivity of mammography for breast cancer detection can be reduced by more than 20% in dense breasts. Additionally, extremely dense cases reported an increased risk of cancer compared to low-density breasts. This study aims to improve the mass detection performance in high-density breasts using synthetic high-density full-field digital mammograms (FFDM) as data augmentation during breast mass detection model training. To this end, a total of five cycle-consistent GAN (CycleGAN) models using three FFDM datasets were trained for low-to-high-density image translation in high-resolution mammograms. The training images were split by breast density BI-RADS categories, being BI-RADS A almost entirely fatty and BI-RADS D extremely dense breasts. Our results showed that the proposed data augmentation technique improved the sensitivity and precision of mass detection in models trained with small datasets and improved the domain generalization of the models trained with large databases. In addition, the clinical realism of the synthetic images was evaluated in a reader study involving two expert radiologists and one surgical oncologist.



 Keywords: data synthesis, full-field digital mammograms, generative adversarial networks (GANs), data augmentation (DA), mass detection, reader study, breast cancer 

  1. Introduction.

Breast density is divided into four categories in the American College of Radiology Breast Imaging and Data System (ACR BI-RADS) 5 th  edition (1). The categories range from A to D and correspond to fatty, scattered, heterogeneous, and extremely dense breasts. The qualitative classification of breast density in mammography is an accepted method in breast radiology with good inter-observer and intra-observer agreement (2), despite the fact that commercial software can produce a more accurate quantitative measure by calculating the ratio of fibroglandular tissue to the total breast area.

In mammography databases, the distribution of breast densities among women aged 40 years or older is approximately 43% for dense breasts: 36% for BI-RADS C and 7% for BI-RADS D (3). Han et al. (4) found that women with a family history of breast cancer were more likely to have dense breasts than women with no cancer in the family history. In addition, high breast density is associated with an increased risk of interval cancers (5), being those 13–31 times more likely in BI-RADS D breasts than in BI-RADS A (6–8). Consequently, it is recommended to decrease the interval between screening mammograms and consider supplemental screening for women with dense breasts (8, 9).

Dense breast tissue is one of the strongest and most common independent risk factors for breast cancer (5, 6, 10). On mammograms, masses and other suspicious findings can be obscured in normal dense tissue and become imperceptible on mammograms. Therefore, the sensitivity of mammography decreases with increasing breast density and has a range value of 81-93% for fatty breasts, 84-90% for breasts with scattered fibroglandular density, 69-81% for heterogeneously dense breasts, and 57-71% for extremely dense breasts in women 40-74 years of age (5). Although mammography is the gold standard non-invasive method for breast cancer detection in population-based screening, women with dense breasts have shown both a reduced cancer detection and higher mortality rates (11–13).

The goal of this study is two-fold. First, mitigate the differences in computer-aided detection (CADe) systems sensitivity by breast density (14). Second, improve the performance of state-of-the-art deep learning-based breast mass detection models by the means of synthetic data augmentation.

  Figure 1  shows the differences in sensitivity of our deep learning-based mass detection model by density composition. The breast composition distribution of the dataset used to train the model has a big unbalance in categories A (9%) and D (5%) ( Figure 1A ). Nonetheless, the sensitivity between fatty (95% for BI-RADS A) and extremely dense breasts (82% for BI-RADS D) is very different ( Figure 1B ). The decrease in performance is partly caused by the high rate of false positives in extremely dense breasts ( Figure 1C ).

 

Figure 1 | Differences in sensitivity of a deep learning-based mass detection model by breast density composition in full-field digital mammography. (A) Breast composition distribution of the training set. (B) Mass detection sensitivity by breast density. (C) Output of an automated detection model in a high-density (BI-RADS D) image. The red bounding boxes are the AI model outputs and the green box corresponds to the true mass, summing a total of four false positives. 



Data augmentation is commonly used to increase the variability of the training samples, improve the model generalization and avoid overfitting. Among all deep learning-based augmentation techniques, Generative Adversarial Networks (GANs) (15) are frequently used to generate new synthetic samples in an unsupervised manner. GANs have been previously used to synthesize full-field digital mammograms (FFDMs) or lesion patches, normally at low resolutions (16–18). Becker et al. (19) trained a cycle-consistent GAN (CycleGAN) on downscaled mammograms (256×256 and 515×408 pixels) to artificially inject or remove suspicious features. In their reader study, three radiologists could discriminate between original and synthetic images with an area under the curve (AUC) of 0.94, mainly due to the presence of artifacts. Zakka et al. (20) trained a style-based GAN to generate 512×512 mammograms enabling user-controlled global and local attribute-editing. Then, a double-blind study involving four expert radiologists assessed the quality of the resulting images achieving an average AUC of 0.54.

Other studies used the synthetic mammograms as data augmentation to improve the performance in different downstream tasks. Synthetic data augmentation using GANs was evaluated in breast cancer classification by Shrinivas et al. (21). The proposed model, a Deep Convolutional GAN (DCGAN), synthesized FFDM with 256×256 image resolution. The synthetic images were validated using a Visual Turing test with the help of medical experts and were easily spotted by the radiologist because they lacked the sharpness and fine-grained details of original mammograms. In a similar study, Jendele et al. (22) balanced the ratio of benign and malignant lesions in the training set using a CycleGAN trained to translate healthy mammograms to mammograms containing malignant findings. The synthetic mammograms were 256×256 pixels, as higher image resolutions introduced many artifacts. The benefits of using the synthesized mammograms for data augmentation were inconclusive considering that the performance of their detection model did not improve. Muramatsu et al. (23) trained a CycleGAN using masses from unrelated domains – lung CT and mammography – to synthesize 256×256 pixels masses and improve the mass classification in mammography. However, no statistical difference was found between the model trained with synthetic masses and the classifier trained with original mass patches.

In this study, the original resolution of FFDMs, around 5 Megapixels (MP), with image sizes of 3328×4084 or 2560×3328 pixels depending on the manufacturer. Two main challenges have prevented the use of GANs for high-resolution FFDM synthesis. The first one is the high demand for graphics processing unit (GPU) memory, which typically scales with the input and output resolutions. As an example, CycleGAN needs more than 24GB of GPU memory when the input image is larger than 1MP. The second challenge is data scarcity. The training set has to be representative enough to generate realistic samples and overcome the training instabilities and image artifacts of GANs. High intrinsic heterogeneity exists across mammograms due to the huge variability of breast sizes, shapes, and compositions. Moreover, FFDMs contain very fine structural details at high resolution such as the different parenchymal patterns, nipples, and pectoral muscles, the presence of lymph nodules, microcalcifications, or calcifications, among many other associated features.

Korkinof et al. (24) was the first study that managed to synthesize high-resolution FFDM images using a Progressively Growing GAN (PGGAN) (25). Their PGGAN was trained using more than 400,000 FFDMs and was demonstrated to generate mammograms up to a 1280×1024 pixel resolution. All mammograms available were used for training, independently of the clinical findings, and only images with post-operative artifacts and large foreign bodies such as implants were excluded from the training set. In a separate retrospective study, Kornikof et al. (26) evaluated the perceived realism of the synthetic FFDM images in a reader study involving 55 radiologists and 62 non-radiologists. Overall, in the setup of this study, the synthetic images were shown to be indistinguishable from original mammograms. However, it was unclear and was not further investigated whether the synthetic FFDMs have relevant applications for clinical purposes.

This work presents for the first time the use of GAN models to generate high-resolution FFDMs with increased breast density using images from different manufacturers and datasets. Moreover, we evaluated the potential of using the synthesized images as data augmentation to improve the mass detection performance. Only a single prior study had performed similar data augmentation by breast density categories for improved mass detection (27). However, the authors employed mathematical breast phantoms generated using the pipeline in the VICTRE study (28) instead of GANs. The breast phantoms were generated across the four BI-RADS breast density categories for each view, cranio-caudal (CC) and mediolateral oblique (MLO), and were modeled after a single vendor, the Siemens Mammomat Inspiration. The limitation of their study is the lack of diversity within each density type, including the size and shape of the breast. Moreover, the statistical analysis did not show a significant difference between the Free-response Receiver Operating Characteristic (FROC) curves for mass detection.

To summarize, the contributions of our study are as follows:

 	 Synthesize high-resolution high-density FFDMs using GAN-based models from three different datasets and mammography systems (manufacturers). 

	 Tackle the class imbalance by breast density composition by augmenting the training set using high-density synthetic mammograms. 

	 Improve the performance of mass detection in extremely dense breasts, categorized as BI-RADS D. 

	 Investigate the potential of high-density data augmentation for domain adaptation. 

	 Evaluate the anatomical realism of the synthetic mammograms in a reader study involving two expert radiologists and one surgical oncologist. 




 2. Materials and methods.

 2.1. Datasets and breast density.

Four different datasets were used in this study. General details of these datasets are presented in  Table 1 . The OPTIMAM Mammography Image Database (OMI-DB) (29) comprises FFDM from the Breast Screening Programme of the United Kingdom (UK). In this study, we used the subset of mammograms captured with the Hologic Selenia Dimensions scanners (Hologic, Inc., Massachusetts, United States). The proportion of fibroglandular (dense) tissue in the breast was obtained from the commercial Volpara software (version 1.5.4, Volpara Health, Wellington, New Zealand). The Volumetric Breast Density (VBD) percentage of each mammogram was mapped to the corresponding BI-RADS breast density category. Only normal mammograms – without pathologies – were selected to train the synthetic data generation models. The mammograms containing masses were used to train and test the mass detection AI model.

 Table 1 | Digital mammography datasets used in this study. 



The non-hidden case-control dataset of the CSAW dataset (30) was also used in this study. The dataset comprises screening FFDMs from Karolinska University Hospital (Solna, Sweden) acquired with Hologic Inc. devices. A total of 91,484 normal FFDM contained breast density information estimated using the LIBRA automated tool (University of Pennsylvania, United States) (31). The mapping between LIBRA breast density percentage and BI-RADS A and D categories was done by selecting the tails of the percent density distribution of the healthy exams.

The Breast Cancer Digital Repository (BCDR) dataset (32) is a public dataset from 2012 comprising images supplied by the Centro Hospitalar São João, at University of Porto (Portugal) and obtained using a MammoNovation Siemens FFDM scanner. For our purposes, we selected a total of 200 FFDMs without pathologies. The breast density categories were provided in the annotations of the dataset following the American College of Radiology (ACR) statement on reporting breast density (1).

The INbreast dataset (33) was acquired from a single Portuguese center using a FFDM system, the Siemens MammoNovation. INbreast was used in this study as an external validation dataset for the mass detection model trained with OPTIMAM Hologic images. In addition, INbreast was used to train a mass detection model in a low data regime scenario. The dataset contains 107 FFDMs with 116 annotated masses from different breast densities. The percentage of images in each BI-RADS category is 36%, 35%, 22% and 7% for BI-RADS A, B, C and D.

All images have a matrix of 3328×4084 or 2560×3328 pixels, depending on the compression plate used for image acquisition. In a previous work, we confirmed that a resolution of 1332×800 pixels was enough to detect small masses and reach state-of-the-art performance in different AI detection methods (34). All the FFDM images were cropped to the breast region and resized to 1332×800 pixels keeping the aspect ratio. Our target resolution for data synthesis was the same as the one used by our deep learning mass detection model.


 2.2. Synthesis of high-density full-field digital mammograms.

Our goal was to synthesize high-density FFDM from original low density mammograms and then use the synthetic data to improve the performance of our mass detection models. To this end, the training images were split by breast density BI-RADS categories, being BI-RADS A the source domain and BI-RADS D the target domain. Before training, all mammogram images were resized to the target resolution (1332×800 pixels), the input size of the mass detection model.

The CycleGAN (35) was the method selected to perform the low-to-high-density mammogram translation. The choice of CycleGAN was motivated by its widespread use and successes reported in the cancer imaging domain (17). Akey methodological feature of CycleGAN is that its training data can be unpaired without the need for corresponding image pairs in source and target domains. Unpaired training data ensured the applicability of CycleGAN to our datasets, in which image pairs are not available, as the same breast of the same patient cannot be from both the high and the low breast density domains.

As shown in  Figure 2 , the CycleGAN contains two mapping functions: 1) an image x in the source domain is mapped to a synthetic image  in the target domain via a generator G; and 2) an image y is mapped from target to source  via a generator F. This enables translating images from source to target and back to the source domain  . Both generators F and G are paired with corresponding discriminators, which try to classify whether a generated image is real or synthetic in a two-player minmax game with their respective generator (15). Based on the predictions of the discriminator, binary cross entropy is used to compute the adversarial loss as shown below, which is back-propagated to the respective generator network.

 

Figure 2 | Overview of the mapping functions of the CycleGAN framework. (A) shows the mapping of a low-density mammogram (source domain) via generator G to a high-density mammogram (target domain). (B) depicts the mapping of a synthetic high-density mammogram back to the low-density source domain via generator F. 



 

CycleGAN further contains two cycle-consistency losses defined as L1 reconstruction loss between (i) the source image x and the reconstructed source image  and between (ii) the target image y and the reconstructed target image  .

 

As defined by (35), the full loss function of our CycleGAN reads as follows with the λ parameter (λ=10) weighting the relative importance between cycle-consistency and adversarial losses.

 

Only healthy mammograms (Normal) were used to train the different CycleGAN models. The main reason was to avoid feature hallucinations that have been shown to occur in cancer imaging when training on images where tumors were present (17, 36).

A total of five CycleGAN models from the three different datasets –BCDR, CSAW and OPTIMAM– were trained (see  Figure 3 ). For the OPTIMAM and the CSAW dataset, a different model was trained for each view (CC and MLO). That was because the anatomic features of CC and MLO are different and more specialized CycleGAN models – focusing only on one view – should learn better translations. However, the small sample size in BCDR dataset made it unfeasible to split the models by view and, for this dataset, a single model was trained combining both CC and MLO views ( Figure 3A ).

 

Figure 3 | Training setup for the different CycleGAN models. (A) BC-All model for both CC and MLO views trained with 98 normal FFDMs from BCDR dataset. (B) two models for CC (CS-CC) and MLO (CS-MLO) views trained with 463 and 366 normal FFDMs from CSAW dataset. (C) two models for CC (OP-CC) and MLO (OP-MLO) views trained with 894 and 786 normal FFDMs from OPTIMAM Hologic dataset. 



The models were trained using a single GPU (24GB NVIDIA GeForce RTX 3090) for a maximum of 200 epochs, using a batch size of 1 and adjusting the learning rate following the recommendations implemented in the CycleGAN Pytorch framework 1 . The models are available inside the mediGAN library (37).


 2.3. Mass detection using high-density synthetic data augmentation.

 2.3.1. Effectiveness of the data augmentation strategies.

Data scarcity is an important topic in the cancer imaging field and can substantially impact the performance of AI models. In this regard, the effectiveness of the proposed data augmentation technique will depend on the available training images. Ideally, the mass detection models should be trained with large databases with enough representation of the different breast density categories. However, as described in  Table 1 , there is a considerable imbalance among BI-RADS categories in the datasets. To evaluate the effectiveness of the proposed data augmentation under different data availability conditions, we have designed four different training scenarios.

First, we analyzed the impact of the dataset size. Both a large and a small public dataset were selected to train the detection models, respectively, in high- and low-data regime scenarios. The OPTIMAM Hologic database was selected to investigate the first scenario, comprising more than 3000 mammograms with annotated masses. The low-regime scenario was simulated using the INbreast dataset, which contains 107 FFDMs with annotated masses.

Second, we evaluated how well the synthetic images were able to simulate extremely dense breasts (BI-RADS D) during training. To this end, we trained the detection models twice. First, removing the real BI-RADS D images from the training set and keeping only real mammograms from BI-RADS A, B, and C. In this training setup, the model did not see any real BI-RADS D images during training. Second, including the real BI-RADS D mammograms in the training. In this last scenario, the OPTIMAM Hologic detection models used 25% of the real BI-RADS D mammograms available for training while the remaining ones were used for testing and validation purposes. Note that the INbreast dataset has only 8 real BI-RADS D mammograms available for training.


 2.3.2. Training and testing.

Our baseline model for mass detection in FFDM is a Deformable DETR (38) with a ResNet50 (39) feature extraction backbone. The model choice was based on the good performance of Deformable DETR in our previous comparative study (34).

First, the baseline model was trained without synthetic data augmentation. Then, four mass detection models were trained with different data augmentation strategies as follows. Three mass detection models, named BC-Aug, CS-Aug and OP-Aug, used synthetic images from a single CycleGAN model with a proportion of 1:1 per mammogram – 1 real and 1 synthetic. The fourth detection model, named OP-CS-BC-Aug, included a combination of synthetic images from all the CycleGAN models with a proportion of 1:3 per mammogram – 1 real and 3 synthetic. Thus, the combined detection model was trained with a proportion of synthetic data three times higher than the other three models.

The BC-Aug detection model was trained using synthetic data generated from the BC-All CycleGAN ( Figure 3 ). Similarly, the OP-Aug and the CS-Aug detection models were trained with synthetic data from the corresponding CycleGAN models. Note that BC-All generates both the MLO and CC views, whereas the CSAW and OPTIMAM have two independent models for each view: CS-CC, CS-MLO, OP-CC and OP-MLO.

Only random flipping was used as additional data augmentation. All models were trained five times, that is, using five different random seeds, and evaluated by averaging the results across seeds. A single GPU was used (24GB NVIDIA GeForce RTX 3090) to train each model for a maximum of 60 epochs, using a batch size of 1 and adjusting the learning rate following the implementation recommendations of the MMDetection framework  2  .


 2.3.3. Evaluation metrics and statistical significance tests.

The area under the curve (AUC) of the Free-response Receiver Operating Characteristic (FROC) curve (40) was used to compare the baseline with the different data augmentation strategies. The AUC was computed by varying the confidence threshold of each bounding box in a range of FPPI ∈ (0, 1) (False Positives per Image). If the Intersection-over-Union (IoU) of the prediction and the ground truth was greater than 10%, then the bounding box was considered as a True Positive (TP) (41).

To assess statistical differences in AUCs between the baseline and the models trained with different data augmentation strategies, we used the paired version of DeLong’s test for ROC curves (42). To do so, we defined a maximum of 10 False Positives per Image (FPPI) and compared the detection scores of the baseline with the augmented models. The statistical analysis was performed using the code from the fast implementation of DeLong by (43).



 2.4. Reader study.

A reader study involving two breast radiologists and one surgical oncologist specializing in breast disease was conducted to determine whether the synthetic images were distinguishable from the real ones as a proxy for perceptual realism. The readers were two breast radiologists from different hospitals in Spain, with +9 (Reader A) and +7 (Reader B) years of experience and the surgical oncologist from a hospital in Poland with +12 years of experience in image guided breast biopsy and lesion localization techniques (Reader C).

The reader study contained 180 high-density mammograms balanced by view and dataset. A total of 90 images were original BI-RADS D mammograms: 30 from OPTIMAM Hologic, 30 from CSAW and 30 from BCDR dataset. The other 90 images were synthetic mammograms generated with the different CycleGAN models: 30 images from OP-CC and OP-MLO models, 30 from CS-CC and CS-MLO models, and 30 from BC-All model. The original low-density mammograms used to generate the synthetic images were randomly selected from BI-RADS A OPTIMAM Hologic dataset.

The reader study was designed as a stand-alone ImageJ 3  plugin. A single mammogram was displayed at a time ( Figure 4B ) next to a multiple-choice panel ( Figure 4A ) to assign a label based on the certainty of the image being synthetic (Fake) or original (Real). The 6 different choices were converted to equally-distributed probabilities of (0.95, 0.77, 0.59, 0.41, 0.23, 0.05) to compute the ROC curve of each reader as in Alyafi et al. (44). No feedback was given to the readers during the assessment to avoid the identification of artifacts of synthetic images.

 

Figure 4 | Main panels of the ImageJ reader study plugin. (A) multiple choice panel to label the mammograms as synthetic (Fake) or original (Real). (B) Mammogram image to assess. 



The images were resized to a maximum 532 pixels height to avoid the identification of the checkerboard artifacts and the lack of sharpness of synthetic mammograms, which is related to upsampling (45) in GANs. The goal of the reader test was to evaluate the anatomically-plausible realism of the synthetic images rather than the noise and common artifacts of the CycleGAN models. Additionally, we asked radiologists to identify the artifacts and common pitfalls of the synthetic images after performing the reader study (Section 4.3.2.1).



 3. Results.

 3.1. Evaluation for the CycleGAN models.

The Fréchet Inception Distance (FID) (46) is a useful metric to measure the quality of the synthetic mammograms and compare the synthetic models with each other. The FID was calculated between two different sets of images  4 . Since FID is not an absolute measure, we defined lower and upper bounds using real mammograms. First, the lower bound was defined as the FID between two different splits of real BI-RADS D mammograms from the same dataset. Second, the upper bound was given by the FID between real BI-RADS A and BI-RADS D mammograms. The synthetic BI-RADS D images in our evaluation set were generated from real BI-RADS A mammograms using the five different CycleGAN models (BC-All, CS-CC, CS-MLO, OP-CC and OP-MLO). The BI-RADS A mammograms were from the OPTIMAM Hologic and INbreast datasets, the training datasets for the mass detection models. In such manner, we would like to evaluate if the CycleGAN models were able to translate from the source domains – OPTIMAM Hologic and INbreast – to the target domains – OPTIMAM Hologic, CSAW or BCDR – with enough fidelity.

In  Table 2 , the FID between different groups of images is shown. Overall, the FID score was lower for the synthetic CC mammograms than for the MLO view. Ideally, the FID between synthetic and real BI-RADS D mammograms should be as close as possible to the lower bound and do not exceed the upper bound. As an example, the FID scores in CSAW CC view between real and synthetic BI-RADS D for both OPTIMAM Hologic and INbreast input images, were 99.95 and 124.84, which are between the lower bound (42.57) and the upper bound (142.34). For the synthetic BI-RADS D images generated from OPTIMAM Hologic, both in OPTIMAM Hologic and CSAW CycleGANs, the FID between the real and the synthetic BI-RADS D mammograms lies between the FID bounds. Only in BCDR, the FID score was greater than the FID between both original images.

 Table 2 | Fréchet Inception Distance between different sets of images. 



On the contrary, for the synthetic BI-RADS D images generated from INbreast, the FID was lower in BCDR than in OPTIMAM Hologic and CSAW. Both BCDR and INbreast were acquired with Siemens scanners, while OPTIMAM and CSAW were acquired with Hologic Inc. scanners. This indicates a less pronounced domain difference between BCDR and INbreast, which aligns with the correspondingly smaller FID. Lastly, the synthetic images from the OPTIMAM Hologic CycleGAN models lie outside the bounds when the input images came from INbreast. In section 4.2, we will evaluate the impact on mass detection performance when synthetic images with high FID scores are used as data augmentation.

 3.1.1. Qualitative analysis of the synthetic images.

In  Figure 5  there are some sample high-density mammograms generated with the different CycleGAN models. The first row ( Figure 5A ) corresponds to the CC view and the second ( Figure 5B ) to MLO. The first column is the original BI-RADS A FFDMs from OPTIMAM Hologic scanner. The next columns are the synthetic FFDMs from the different CycleGAN models. By visual inspection, one can see that the synthetic images did not remove the masses in the original mammograms, which enabled their usage for data augmentation in the mass detection training. We can also confirm that the synthetic images are able to properly translate from source to target domain. The low-to-high-density image translation was applied for the input BI-RADS A, B, or C. In higher density mammograms, such as BI-RADS C, the changes were more subtle and less density was added to the output image.

 

Figure 5 | Samples of high-density synthetic mammograms generated with the different CycleGAN models. On the left, the input BI-RADS A mammogram from OPTIMAM Hologic dataset. (A) CC view, (B) MLO view. 





 3.2. Mass detection performance.

All models were evaluated in independent sets of 120 mammograms of each BI-RADS category from the OPTIMAM Hologic dataset. As our objective was to improve the detection performance in BI-RADS D mammograms, we focused on the performance gain in BI-RADS D mammograms. The evaluation metrics for the other BI-RADS categories (A, B and C) can be found in the  Supplementary Material .

 3.2.1. Large data availability scenario.

The corresponding FROC curves of the detection models trained with OPTIMAM Hologic are shown in  Figure 6 . All detection models were evaluated on BI-RADS D test set from OPTIMAM Hologic while the INbreast dataset was used as an external validation set.

 

Figure 6 | FROC curves for the mass detection models trained using OPTIMAM Hologic database. The baseline model did not include synthetic data augmentation in the training. The BC-Aug, CS-Aug, OP-Aug and the OP-CS-BC-Aug models used synthetic images from the corresponding CycleGAN models. (A, C) The OPTIMAM Hologic test set contained 120 BI-RADS D mammograms with annotated masses, (B, D) The INbreast test set containing 107 mammograms with annotated masses from different breast densities, used for external validation. (C, D) The models were trained with 41 additional real BI-RADS D mammograms. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.). 



The models trained using only synthetic BI-RADS D mammograms in training obtained more benefit from the high-density data augmentation.  Table 3  summarizes the gains in AUC and the p-values for the best performing data augmentation strategies. When only synthetic BI-RADS D images were present in training, the combined data augmentation strategy (OP-CS-BC-Aug) obtained a gain of +1.24, increasing the AUC from 79.71% to 80.95% with a p-value of 0.0696. The OP-CS-BC-Aug obtained a +2.95 gain in AUC in the external validation dataset – INbreast. This confirmed that the resulting model is more robust in the presence of domain-shifts compared to the baseline. However, the best performing data augmentation strategy for the INbreast test set was the BC-Aug, with a total gain of +4.15 in AUC. The models trained with real and synthetic BI-RADS D mammograms obtained less gain in the OPTIMAM Hologic test set. To this end, the most substantial gain was achieved with the BC-Aug model, with +0.5 in AUC and a p-value of 0.2277, which indicates it is not statistically significant. In the external test set, the model with the highest increase in AUC was the OP-Aug model, with a gain of +1.45 in INbreast. This increase in AUC in the external test set showed that the models benefited from high-density synthetic data augmentation even when the training data is large and contains real BI-RADS D mammograms. The detailed metrics for the other data augmentation strategies can be found in  Supplementary Material (Table D) .

 Table 3 | Performance values and statistical significance test results of the best data augmentation strategies for the models trained with OPTIMAM Hologic database. 




 3.2.2. Low data availability scenario.

The corresponding FROC curves of the detection models trained on the INbreast dataset are shown in  Figure 7 . All mass detection models were evaluated on the BI-RADS D test set from OPTIMAM Hologic.  Table 4  summarizes the gains in AUC and the p-values for the best performing data augmentation strategies in INbreast. The detailed metrics for the other data augmentation strategies can be found in  Supplementary Material (Table E) .

 Table 4 | Performance values and statistical significance of the best data augmentation strategies for the models trained with INbreast dataset. 



 

Figure 7 | FROC curves for the mass detection models trained using INbreast dataset. The baseline model did not include synthetic data augmentation in the training. The BC-Aug, CS-Aug and OP-Aug and the OP-CS-BC-Aug models only used synthetic images from the corresponding CycleGAN models. (A) The OPTIMAM Hologic test set contained 120 BI-RADS D mammograms with annotated masses. (B) The models were trained with 8 additional real BI-RADS D mammograms. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.). 



The models trained using only synthetic BI-RADS D mammograms in training improved their performance in two out of four data augmentation strategies, namely, OP-Aug and OP-CS-BC-Aug. The OP-Aug model increased the AUC from 42.59% to 45.41%, a gain of +2.81 with a p-value smaller than 0.05 with respect to the baseline model. The OP-CS-BC-Aug model increased the baseline AUC by +1.05. When training the models with real and synthetic BI-RADS D mammograms, only the OP-Aug model obtained a gain in performance with respect to the baseline. However, the gain is higher than in other scenarios, increasing the AUC from 44.59% to 48.84%, a gain of +4.25.

The AUC values in the OPTIMAM Hologic BI-RADS D test set are low in comparison with the AUCs in the large availability scenario. A first reason is that the INbreast models were trained with only 116 mammograms with masses. Second, the test set is from a different domain (OPTIMAM Hologic) due to the fact that the entire INbreast dataset was used as training set. The latter was motivated by the fact that the number of BIRADS D mammograms available in the INbreast dataset ( Table 1 ) was deemed insufficient for representative performance evaluation.



 3.3. Reader study outcomes.

 3.3.1. Receiver operating characteristic curves.

The AUC of each reader ROC curve can be found in  Table 5 . On average, the synthetic mammograms of CC view from OPTIMAM CycleGAN were the most difficult to discriminate from original mammograms (0.615 AUC). Overall, the CC view looked more realistic to all readers than the MLO view. The BCDR model was the easiest for recognition of synthetic images, with an AUC of 0.824 in CC view and 0.954 in MLO view.

 Table 5 | Reader test results: Area Under the Curve (AUC) from the Receiver Operating Characteristics (ROC) curve of each CycleGAN model and view (CC, MLO). 




 3.3.2. Qualitative analysis of synthetic FFDM.

After completing the study, the readers evaluated the realism of the synthetic images and identified the common artifacts and failures.

 3.3.2.1. Common artifacts and failures.

The most unrealistic features in order of importance were: 1) big concentrations of glandular tissue adjacent to pectoral muscle ( Figure 8D ); 2) dark small dots or ovals in the image like perforations ( Figure 8A ); 3) linear fragmentation of muscles; 4) distorted nipples ( Figure 8C ); and 5) lack of glandular tissue behind the nipple ( Figure 8B ). Some synthetic images missed to preserve the prepectoral fat or smooth contours at the interface with subcutaneous fat.

 

Figure 8 | Common artifacts of synthetic high-density mammograms, (A) dark dots or ovals, (B) lack of glandular tissue behind the nipple, (C) distorted nipples, (D) big concentrations of glandular tissue adjacent to the pectoral muscle. 




 3.3.2.2. Realistic mammograms.

Some synthetic high-density FFDMs that looked realistic to the radiologist are shown in  Figure 9 . The features that improved realism of synthetic images were 1) the presence of linear microcalcifications or roundish calcifications; 2) lymph nodes in the correct areas; 3) post-biopsy tissue markers; and 4) the correct distribution of dense tissue.

 

Figure 9 | Synthetic high-density mammograms that looked realistic to the radiologist. Samples from the different CycleGAN models: (A) OP-CC and OP-MLO, (B) CS-CC and CS-MLO, (C) BC-All. 







 4. Discussion.

The contributions in this study are two fold. First, synthesize high-resolution high-density FFDMs from different domains. Second, use the synthetic images as data augmentation to improve the mass detection performance in high-density breasts and multi-center datasets.

In our image synthesis experiments, we trained a total of five CycleGAN models using FFDMs from three different datasets to perform low-to-high density translation from real mammograms. Only healthy mammograms were used to train the image-to-image translation models. By training with healthy images, the models learned the healthy data distribution, hence, minimizing any risk of inserting hallucinated lesions into the synthetic images. As our goal was to use the synthetic mammograms to improve the mass detection, we confirmed that the CycleGAN models did not remove the masses from the original mammograms (see  Figure 5 ).

To assess the quality of the synthetic images we calculated the commonly used FID metric between synthetic and real high-density mammograms. Since FID is not an absolute measure, we defined lower and upper bounds using real mammograms. The closer the synthetic images are to the real BI-RADS D images, the closer the FID should be to the lower bound. After evaluating the FID metric of the different CycleGAN models, we observed that the FID for the CC view was better than the one of the MLO view. The difficulty of synthesizing MLO view was previously mentioned in Korkinof et al. (24), most probably because MLO has greater complexity and more anatomical information than the CC view. However, the OP-MLO and CS-MLO models still had an FID score between the lower and upper bounds when the input images were from OPTIMAM Hologic.

The BC-All CycleGAN had the largest FID score when the input images were from OPTIMAM Hologic, and the smallest FID when the input images were from INbreast. This is in line with the scanner manufacturer differences between both datasets. BCDR and INbreast were acquired with Siemens scanners. On the other hand, OPTIMAM and CSAW were acquired with Hologic Inc. scanners. Moreover, BCDR contains old digitized film mammograms while OPTIMAM is a Hologic digital mammography dataset with very specific image characteristics, i.e., it is very sharp, usually shows lymph nodes very well and it does visualize some skin of the breast.

To further evaluate the clinical realism of the synthetic images, we performed a reader study involving two breast radiologists and one surgical oncologist. When the CycleGAN models trained using OPTIMAM Hologic and CSAW datasets (OP-CC, OP-MLO, CS-CC, CS-MLO) were used to insert density onto low density mammograms from OPTIMAM Hologic, it was much more difficult for the readers to differentiate between original and synthetic mammograms. In that case, the readers had to look for anatomical disparities and inadequacies to spot the difference. Both OPTIMAM and CSAW FFDMs were acquired with an Hologic scanner. On the other hand, all the readers could easily identify the synthetic images generated with the BC-All model. As previously mentioned, BCDR contains old digitized film mammograms acquired with a Siemens scanner. Considering that, we can conclude that domain disparities between the acquisition settings of the source and the target domains have a big impact on the perceptual realism of the synthetic images. In addition, the synthetic mammograms from the MLO view were easier to identify than the ones from the CC view and this observation correlates with the higher FID scores of the synthetic images from the MLO CycleGAN models (OP-MLO and CS-MLO).

In our mass detection experiments, different data augmentation strategies were tested to improve the mass detection of the baseline model. First, three mass detection models were trained using synthetic images from the different CycleGANs with a proportion of 1:1 – 1 real and 1 synthetic. Second, a fourth mass detection model was trained with synthetic images from all the CycleGAN models, the OP-CS-BC-Aug, with a proportion of 1:3 – 1 real and 3 synthetic. To evaluate the effect of the different data augmentation strategies under diverse training conditions, we defined four training scenarios for the mass detection models. Two scenarios involving the amount of data available for training, and the other two involving the exclusion or inclusion of the real BI-RADS D mammograms in training. By excluding the real BI-RADS D mammograms, we tested if the synthetic high-density mammograms could replace the real BI-RADS D images, simulating a plausible clinical scenario in which no BI-RADS D images were available for training. In the large availability scenario, the data augmentation strategies did not improve the baseline performance with statistically significant difference. However, the synthetic data helped the models to generalize better and increased the performance in the external dataset (INbreast). When training only with synthetic BI-RADS D images, the BC-Aug model improved the AUC by 4.15% in INbreast. When the real BI-RADS D images were present in training, the OP-Aug model improved the AUC by 1.45%. In the low data availability scenario, the OP-Aug data augmentation strategy improved the AUC significantly for both scenarios in the out-of-domain test set.

As we hypothesized, the CycleGAN models not only learned how to translate from low-to-high density but also preserved the domain characteristics from their respective training datasets during translation. The domain characteristics comprise the differences in image quality, acquisition settings and scanner manufacturers.

Based on our experimental results, we did not observe a consistent association between the FID scores and the success of the corresponding data augmentation in mass detection. For instance, in the low-data availability scenario, the CycleGANs trained on OPTIMAM Hologic had a comparably high FID but the OP-Aug detection model obtained the highest increase in the AUC. Moreover, the OP-Aug detection model yielded a consistent improvement in the four training scenarios. The OP-CC and OP-MLO CycleGANs were trained with a larger number of training images than the CSAW and BCDR CycleGANs. Overall, the number of images used to train the CycleGAN models seemed to have a higher importance for the detection performance gain compared to the FID score.

One of the limitations of our work involves the availability of healthy BI-RADS D mammograms to train the generative models. From the results, the data augmentation that obtained more consistent gains under all four scenarios was the OP-Aug, using CycleGANs trained with the OPTIMAM Hologic dataset. As shown in  Figure 3 , OP-MLO and OP-CC were trained with more images than the other CycleGANs, showing the big impact of data for training more robust CycleGANs. In this regard, fairer comparisons among generative models could be achieved if more images from the CSAW and BCDR datasets would be available.

Data scarcity is one of the most common and general limitations in medical imaging AI research. In tasks where patch-based approaches are sufficient, extracting multiple samples from one scan can aid to overcome the data scarcity issue (47). However, this limitation is further exacerbated in tasks where a single subject scan can only be used as a single sample in the training of deep learning methods. Moreover, the high resolution nature of the breast FFDMs makes it even more challenging. We believe that this study is not only an important step towards mitigating data scarcity and class imbalance, but also demonstrates the importance of fair AI in clinical practice. However, there is still room for improvement to increase the fairness of AI models for women with high-density breasts in mammography screening.

Future research may focus on evaluating the potential of the high-density synthetic mammograms in other downstream tasks. We analyzed the high-density mammogram synthesis via the downstream task of breast mass detection. However, there is a multitude of further applications of our proposed low-to-high breast density translation. For instance, our method can be applied to breast mass segmentation or tumor malignancy classification. Furthermore, our synthetic images can expand the radiologist curricular and professional training programs. For instance, for training purposes radiologist candidates would need to detect and accurately annotate the same lesion in both high and low-density breast, which allows to measure inter- and intra-observer variability per lesion and breast density level. This way our method provides flexibility to personalize and adjust the radiologist training to specific scenarios (e.g. very high density breasts with very small-sized tumor lesions).


 5. Conclusion.

In this study, we evaluated different CycleGAN models for high-density FFDM synthesis from three different datasets and acquisition pipelines, comprising two scanner manufacturers – i.e. Hologic and Siemens. Moreover, we applied different synthetic data augmentation strategies to improve the mass detection performance of a deep-learning based model. Even though the improvements were not always statistically significant for models trained in the large data availability scenario, the results demonstrated that the data augmentation helped to improve the mass detection in out-of-domain datasets, improving the domain generalization of the final model. The models trained in the low data availability scenario obtained more benefit from the data augmentation, with a maximum gain of 4.25% in AUC for the model trained with synthetic images generated with the OPTIMAM Hologic CycleGANs. Finally, a reader study involving three expert radiologists evaluated the perceptual realism of the synthetic mammograms, concluding that the quality of CC view synthetic images is higher than the mammograms from MLO view. Our study is the first one to synthesize high-resolution FFDMs with increased density and showed the potential of including the generated images in the data augmentation pipeline to improve the generalization and performance of downstream tasks using mammography images, such as mass detection.
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 2 https://github.com/open-mmlab/mmdetection 
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Nonmelanoma skin cancer is the most common cancer in the world, and lung cancer is the leading cause of death from cancer. Histologically, squamous cell carcinoma (SCC) is the second most prevalent type of both skin and lung cancers. We report the case of a 38-year-old female with metastatic, poorly differentiated lung SCC detected on chest X-ray after she presented to the hospital with cough and dyspnea. She had had a 7.5 cm moderately differentiated well-circumscribed posterior scalp SCC completely excised eight years earlier. CT scan showed a large right lung mass, nodular filling defect in the left atrium (LA), and metastases to the adrenal glands and the first rib. Her pulmonary tumor extends to the LA via the right superior pulmonary vein, which is rarely reported in the literature. Ultrasound-guided biopsy of the rib mass showed poorly differentiated SCC. The patient received urgent radiotherapy, given superior vena cava and mainstem bronchus compression. Head CT showed no brain metastasis. A biopsy of the left adrenal initially reported an undifferentiated pleomorphic sarcoma; however, a second pathologist reported it as a poorly differentiated carcinoma of lung origin. At least three pathologists verified the specimen, and it had a PD-L1 test with a 1-49% score. An initial echocardiogram confirmed the LA mass. The patient received a Paclitaxel-Carboplatin-Pembrolizumab regimen as the first-line treatment for metastatic SCC. A repeat echocardiogram after cycle 1 showed a decrease in the size of the tumor in the LA. Almost five months after her initial visit, this young woman’s symptoms and performance status have improved post-palliative radiotherapy and chemo-immunotherapy. Follow-up CT showed smaller lung, nodal, adrenal, and costochondral masses, and evidence of necrosis. This case is clinically relevant because it represents a common problem presenting uncommonly. Moreover, it highlights that ultrasound-guided interventions and medical imaging are essential in directing metastatic cancer diagnosis, treatment, and follow-up, especially when pathology cannot confirm but only presume a specific diagnosis.




Keywords: squamous cell carcinoma (SCC), non-small cell lung cancer (NSCLC), cardiac imaging techniques, undifferentiated pleomorphic sarcoma (UPS), cardiac tumors, ultrasound-guided biopsy, computed tomography (CT) scan, echocardiography



1 Introduction

Our report describes the case of a non-smoker 38-year-old woman with metastatic squamous cell carcinoma (SCC) of the lung and previously diagnosed with cutaneous squamous cell carcinoma (cSCC) at age 30. The patient presented to the emergency department (ED) with upper respiratory symptoms, decreased appetite and 25 kg of unintentional weight loss. She was tachycardic with a heart rate of 119 bpm and temperature of 36.3°C; otherwise, her vital signs were within normal limits on room air, and she appeared fatigued and pale. She had primary respiratory acidosis with secondary metabolic alkalosis, leukocytosis with neutrophilia, microcytic anemia, and thrombocytosis, with WBC, hemoglobin, MCV, platelets, INR, and ferritin at 21, 114, 70, 476, 1.3, and 545 µg/L respectively. She also had normal TSH, creatinine, estimated GFR, urinalysis, rheumatoid factor, ANA and anti-ENA antibodies.

Her case is unique for multiple reasons. The pathology work-up was complicated, as mentioned above and detailed in the diagnostic assessment and discussion below. For cSCC, men are most affected, with patients over 60 years old comprising 80% of nonmelanoma skin cancers (1, 2). cSCC is uncommon in patients under 50 years old, and its recurrence or metastases usually occur within five years (not eight years) in 30-50% of patients (3). On the other hand, 85-90% of lung cancer cases can be attributed to smoking (4), with adults older than 65 most affected (5, 6) and men more affected than women (7). In non-small cell lung cancer (NSCLC), only 2-3% of patients have bilateral adrenal metastases at the initial presentation (8). Even if the biopsied adrenal mass represents an undifferentiated pleomorphic sarcoma (UPS), a type of high-grade aggressive soft tissue sarcoma (STS), only 10% of patients have detectable metastases at diagnosis (9). STS primarily affects adults older than 55 years (10). The patient’s cardiac tumor extends from the right superior pulmonary vein (RSPV) into the left atrium (LA), which is rare and scarcely reported. One study examined 215 lung cancer patients with magnetic resonance angiography and found that two patients had a tumor that extended into the LA (11). A retrospective analysis of 4,668 patients who had surgery for lung cancer found evidence of pulmonary vein and LA involvement in 34 (0.7%) and 25 (0.5%) subjects (12, 13). Thus, our patient represents a minority of patients for any of these diseases. To our knowledge, this specific presentation has not been reported in the literature.



2 Case description

A non-smoker 38-year-old woman presented to the ED with upper respiratory symptoms, decreased appetite and 25 kg of unintentional weight loss. Her past medical history was remarkable for cSCC of the posterior scalp, diagnosed in 2015. The tumor had been growing steadily for ten years. On March 2015, a head MRI showed a 7.5 x 4.8 x 7.0 cm posterior occipital midline extracalvarial mass. This moderately differentiated well-circumscribed posterior scalp cSCC was completely excised with no evidence of lymphovascular invasion. Besides previous intermittent asthma, she had no further history of medical conditions and did not use any medications. She had worked clerical jobs and, more recently, as a leather worker, which does not involve using chemicals. Her family history included a grandfather diagnosed with multiple myeloma. She was tachycardic with a heart rate of 119 bpm and temperature of 36.3°C; otherwise, her vital signs were within normal limits on room air, and she appeared fatigued and pale.



3 Clinical approach and timeline

Please refer to Figure 1 for data from the related episodes of care.




Figure 1 | Milestone Timeline with data from the related episodes of care.




3.1 Diagnostic assessment

The first investigation she had on presentation to the ED was, in fact, a chest X-ray. It showed a 5 x 4.5 cm right paratracheal mass, a 14 x 11 cm mass-like opacity obscuring the right cardiac border and right lower lung (RLL), and a 3.5 x 2.8 cm subtle left upper lung (LUL) opacity projected over the first rib. The following day, she had a thoracic CT with contrast which confirmed the 11.7 x 14.1 x 13.7 cm right middle lobe (RML) and RLL mass as highly suspicious for primary lung cancer. Additionally, it showed a nodular (1.7 cm) filling defect in the LA with direct extension through the RSPV and raised the concern of a filling defect in the right atrium extending through the inferior vena cava (IVC). Finally, it also showed mediastinal and hilar lymphadenopathy, including a 4.6 x 6.3 cm right paratracheal node slightly displacing the aorta and moderately compressing the superior vena cava (SVC), thyromegaly with a left-sided nodule and metastatic lesions to the left first rib (4.9 x 3.3 cm) and both adrenal glands. That same day, a neck and abdominopelvic CT confirmed the 3.7 x 3.2 x 5.2 cm left-lower thyroid nodule requiring FNA (but “unrelated to the presentation of lung mass”) and <1 cm right-sided thyroid nodules, as well as osteitis condensans ilii, splenomegaly, a 2 cm hepatic and a 2.9 cm ovarian cyst, a 3.5 cm posterior wall uterine fibroid, and bilateral adrenal metastasis, measuring 8.2 x 6.0 x 3.2 cm (right) and 10.4 x 7.5 x 8.9 cm (left).

On May 13, she had ultrasound-guided biopsies of the left thyroid nodule (whose evaluation was limited by a low number of follicular cells) and the costochondral mass (which showed poorly differentiated SCC). Chest X-rays done on June 16 and June 18 showed that the multiple pulmonary masses were enlarging significantly, up to 16.4 cm (RLL), 6.8 cm (right paratracheal), and 6.2 cm (LUL). Head CT on June 19 showed no brain metastasis. An echocardiogram on June 24 estimated the baseline left ventricular ejection fraction (LVEF) at 70%, global longitudinal strain (GLS) -18%, and showed a 3.6 x 1.8 cm LA mass (from the RSPV) and an echogenic IVC (Eustachian) valve structure. Adrenal ultrasound on June 22 showed that the metastatic lesions in both glands were amenable for biopsy, hypovascular, and enlarging (12.3 x 9.1 x 6.9 cm on the right and 14.5 x 11.7 x 11.2 cm on the left). The biopsy of the left adrenal mass initially reported an UPS; however, a second pathologist reported it as a poorly differentiated carcinoma of lung origin, given the clinical history. Of note, at least three pathologists verified the specimens, including after being referred to a centre with an available pathology laboratory specializing in lung cancer. Diagnostic challenges included the adrenal biopsy being extensively necrotic and having little viable tissue available for examination and special stains. Still, immunohistochemistry was done in the biopsied specimens. The costochondral tumor was positive for P63 and negative for TTF-1 and PAX 8, excluding a primary adenocarcinoma and suggesting an SCC. It had a PD-L1 test with a 1-49% score, which guided management with Pembrolizumab as described below. The adrenal mass biopsy was negative for keratin, TTF-1, S100 protein, SOX10, smooth muscle actin (SMA), desmin, MDM2 and CDK4, and only vimentin was expressed. Occasionally SCCs can dedifferentiate and appear as spindle cell neoplasm. Multiple extrathoracic metastases make NSCLC stage IVB, and distant metastasis makes cSCC stage IV; however, studies in which most patients are like the one reported here and without previous systemic therapy are lacking to quantify her prognosis confidently.



3.2 Therapeutic intervention

On her first presentation, she was prescribed up to two doses of inhaled Salbutamol every 4 hours as needed. On the day of her first CT, she was started on Dexamethasone 4 mg PO to help reduce peritumoral edema. Before being transferred to Thunder Bay, she was started on Ceftriaxone 1 gr IV every 12 hours for a couple of days in case of an underlying infection. However, her leukocytosis was due to the dexamethasone use and extensive tumor burden. The Dexamethasone dose peak was 10 mg PO every 8 hours for three days during the first week of July, and by July 14, it was 4 mg PO twice a day up until discharge on August 2 with a plan to taper it over the next month. During this admission, she was also started on a Histamine-H2-receptor antagonist (Famotidine 20 mg PO twice a day) while on steroids and Dextromethorphan 15 mg PO every 4 hours (antitussive) as needed.

In Thunder Bay, she had her urgent palliative radiotherapy to her mediastinum and right-hemithorax (2000 cGy in 5 fractions from June 20 until June 24), given her SVC and mainstem bronchus compression by the massive lung tumor. After it was completed, a multidisciplinary discussion involving oncology, cardiology and cardiac surgery determined that, based on the patient’s performance status and disease extension, she would not tolerate cardiac surgery or a bronchoscopy, with very low chances of surviving without aggressive systemic therapy. The patient is aware of her limited second-line options if the chemo-immunotherapy fails.

Her systemic treatment was to be repeated every 21 days for four cycles. Each cycle included Pembrolizumab 2 mg/kg IV, a 50% dose-reduction of Paclitaxel (87.5 mg/m2 IV) and kept the dose of Carboplatin down (380-400 mg IV) to minimize possible chemo-related side effects while providing the best possible treatment option to the patient. Due to personal and logistical challenges, her fourth cycle was 29 days instead of 21 days after the previous one. Three weeks after her fourth chemo-immunotherapy cycle, she started maintenance immunotherapy with Pembrolizumab 3.65 mg/kg IV on September 29. It will be repeated every 42 days until disease progression or unacceptable toxicity up to thirteen additional doses, whichever occurs first.



3.3 Follow-up and outcomes

Almost five months after her initial visit, her symptoms have significantly improved post-palliative radiotherapy and chemo-immunotherapy. Her Eastern Cooperative Oncology Group (ECOG) performance status has improved from grade 3 to 1. Follow-up diagnostic imaging includes post-radiotherapy thoracic CT in June and chest-abdominopelvic CT scans (Figure 2) in July and September 18, which show interesting results. Scans in June and July were consistent with continuously enlarging masses, as already mentioned, whose dimensions increased as follows: RML mass, 10 x 15 x 15-16.4 cm (including partial necrosis with vacuum phenomenon); right paratracheal node, 6.3 x 7.9 cm; left first rib, 6.4-7 x 5.7 cm; and bilateral adrenal metastasis (with some interval necrosis), measuring 10.7 x 9.8 x 9 cm (right) and 17.1 x 14.6 x 15.8 cm (left). Fortunately, CT on September 18 showed smaller lung (RML, 10 x 12.7 x 13.4 cm), nodal (right paratracheal, 5.5 x 5.6 cm), costochondral (left rib, 3.9 x 4 cm), and adrenal masses (right, 7.8 x 4.2 x 4 cm, and left, 18 x 12.6 x 12.2 cm), and increased necrosis. This CT scan also questioned a nonocclusive thrombosis in the IVC. A couple of repeat echocardiograms (Figure 3) in July (after chemo-immunotherapy cycles 1 and 2) confirmed the known LVEF, IVC echogenic structure and LA mass (2.9 x 2.3 cm).




Figure 2 | Contrast enhanced CT chest and abdomen dated June 27, 2022; Axial CT image through the chest (A) shows enlarged metastatic pre and paratracheal lymph nodes and a lobulated metastatic mass involving the left first rib (white arrow) at the costochondral junction. Axial CT image through the upper abdomen (B) shows large bilateral adrenal masses (white arrows). Coronal (C) and Axial (D) CT images through the chest shows a large hetereogenously enhancing mass in the right lung directly extending through the right superior pulmonary vein into the right atrium (black arrow) and conglomerate paratracheal lymphadenopathy (C).






Figure 3 | Transthoracic Echocardiogram showing a large echogenic mass in the Left Atrium, in the parasternal long-axis (A) and apical multi-chamber views (B–D), July 26, 2022, with measures estimating a mass size of 2.6-2.9 cm x 2.0-2.4 cm.



Overall, she tolerated the therapeutic interventions above relatively well with an Edmonton Symptom Assessment System (ESAS) score <20, with maximum individual scores of 8 for tiredness and shortness of breath, which all improved concurrently with her ECOG performance status. On June 17, before starting radiotherapy, she developed a paraneoplastic leukemoid reaction with WBC peaking at 67.3 x 109/L. The nadir of her anemia occurred one week after her first cycle of chemotherapy, with no overt hemorrhage or hemolysis and hemoglobin at 67 (for which she was transfused packed red blood cells). Her leukocytosis and anemia were resolved by September 26, with WBC and hemoglobin at 6.7 and 116, respectively. Unanticipatedly, she had developed a pruritic maculopapular rash on July 13 with unclear etiology, covering her face, especially lateral cheeks and forehead, neck, chest, upper arms, and groin. It was severe for at least a week, with thigh excoriations, arms plaques with minimal scaliness, and thoracic erythema; however, it subsided gradually with supportive care only. A dermatologist considered it a possible drug reaction likely secondary to Dextromethorphan more than Famotidine but did not think chemo-immunotherapy played a role in her eruptions.

Finally, her last echocardiogram (done on October 25) showed an LVEF >70%, a mildly reduced GLS at -18.7%, and the IVC content was again characterized as a thrombus. A recent CT scan in November and the abovementioned echocardiogram confirmed that the LA mass had reduced in size (2.5 x 1.9 cm). However, she has had palpitations, cough, and chest pain since this last month, feeling weaker. After discussing the echocardiogram findings with a Cardiologist, the Internal Medicine team prescribed her Rivaroxaban. Her November CT scan showed a large new right-sided pleural effusion and patchy consolidations deemed possibly due to post-radiation changes. Fortunately, it showed overall interval improvement. The stable IVC thrombus and the lung (RML, 9.5 x 11.3 x 12.5 cm), nodal (right paratracheal, 4.7 x 5 cm), and adrenal masses (right, 5.1 x 3 cm, and left, 10.3 x 9 cm) appeared the smallest they have been.




4 Discussion

A strength of this report is that the case represents a frequent problem presenting uncommonly. A multidisciplinary approach, considering clinical presentation, medical imaging, and response to therapy (as assessed clinically and by imaging tests), can overcome diagnostic and therapeutic uncertainties that can occur with challenging pathology. Our approach’s main limitations are those associated with pathology investigations. The patient presented like a textbook lung malignancy, with a sizeable pulmonary mass and metastases to the adrenals and bone. However, upon pathological inspection, this was more complex. Ultrasound-guided biopsy of the rib mass showed poorly differentiated SCC, and the left adrenal one was first considered a UPS, then a poorly differentiated carcinoma of lung origin. The uncertainty of this malignancy might be remedied with a lung biopsy. However, as Cancer Care Ontario suggests, if the patient has stage IV lung cancer, the least invasive and most accessible approach should be followed, which explains why only the rib and adrenal masses were biopsied (14).

One explanation for these differing diagnoses is that this patient has multiple primary malignancies. The first is the SCC which could be skin or lung, and a UPS (Figure 4). The lung tumor was not biopsied, so it is unclear whether there would be a third primary malignancy. The frequency of multiple primaries ranges from 2-17%. Cancer survivors may develop second primary malignancies due to an array of factors, including cancer predisposition syndromes or unique tumor characteristics, environmental exposures, and late effects of therapies (15, 16).




Figure 4 | Comparison of SCC of the lung, cutaneous SCC, and soft tissue sarcoma.



This patient may have a cancer predisposition syndrome, namely Li-Fraumeni syndrome. Li-Fraumeni syndrome is an inherited autosomal dominant disorder manifested by a wide range of malignancies that appear at an unusually early age (17). Li-Fraumeni syndrome is also known as Sarcoma, Breast, Leukemia, and Adrenal Gland cancer syndrome. This cancer predisposition syndrome is inherited as an autosomal dominant disorder and is associated with abnormalities in the tumor protein p53 gene (p53). Almost all types of soft tissue and bone sarcomas are seen in families with Li-Fraumeni syndrome. Patients with an abnormality in p53 who develop cancer are at a significantly increased risk of developing a second malignancy (18). For women, the lifetime risk of cancer approaches 100% and has been estimated to be ~90% by age 60 (19).

These differences in pathology can also be explained by tumor heterogeneity. Tumors can differ within a tumor (intra-tumoral heterogeneity) and between tumors (inter-tumoral heterogeneity). With intra-tumoral heterogeneity, histological examination often shows notable differences in the morphology of cancer cells in different areas of the same lesion, and areas of necrosis may be present. Also, the cells in a tumor may be cycling or non-cycling, quiescent, or reproductively dead (20). The stage of the cell cycle can influence cellular properties such as membrane biochemistry (21) and the ability to metastasize (22). Also, growth patterns, differentiation and keratinization grades between the primary and metastatic tumors can differ (23).

Lastly, it is also essential to consider the neglect of the first malignancy. The patient neglected the first cSCC for ten years and did not share with us why she waited so long to seek medical attention. Denial is a coping mechanism to adapt to stressful situations (24–26). It can become maladaptive when it leads to behaviors that are detrimental to their care, e.g., delaying seeking treatment. Many psychological, physiological, and demographic factors are present in those who show maladaptive denial (27), such as poor medical literacy, socioeconomic stresses, and tumors that grow slowly, as in our patient’s case (28). Neglecting this high-risk malignancy might have had a role in cancer recurrence, categorized as such due to its size and invasion of the aponeurosis. Since no studies have been conducted with similar populations, the prognosis for the patient is unclear, especially if immunotherapy does not succeed. The patient would have limited options beyond a palliative approach in this case.

Clinical presentation and pathology can be quite different. Despite the pathology challenges, the patient responded well to the Paclitaxel-Carboplatin-Pembrolizumab regimen as the first-line treatment for metastatic SCC. The patient was treated accordingly based on clinical presentation and a multidisciplinary decision. Imaging studies confirmed the stabilization and improvement of her disease, already hinted clinically with the resolution of her dyspnea and cough. This treatment resulted in stable disease and lessened symptom burden. Tumors may be heterogenous, and immunohistochemistry markers are not 100% sensitive. Thus, medical imaging is essential in directing metastatic cancer diagnosis, treatment, and follow-up, especially when pathology cannot confirm but only presume a specific diagnosis.
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HIV is still a major public health problem. At present, HIV-associated lymphoma remains the leading cause of deaths among people living with HIV, which should be paid more attention to. 18F-fluorodeoxglucose (FDG) PET/CT has been recommended in the initial staging, restaging, response assessment and prognostic prediction of lymphomas in general population. HIV-associated lymphoma is, however, a different entity from lymphoma in HIV-negative with a poorer prognosis. The ability to accurately risk-stratify HIV-infected patients with lymphoma will help guide treatment strategy and improve the prognosis. In the review, the current clinical applications of 18F-FDG PET/CT in HIV-associated lymphoma will be discussed, such as diagnosis, initial staging, response evaluation, prognostic prediction, PET-guided radiotherapy decision, and surveillance for recurrence. Moreover, future perspectives will also be presented.
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1 Introduction

Acquired immunodeficiency syndrome (AIDS) is a major disease that greatly endangers human health across the world. AIDS is caused by human immunodeficiency virus (HIV), which progressively destroys CD4 + T cells and compromises the function of the immune system leading to severe opportunistic infection or cancer (1). HIV infection is associated with an increased risk of a range of cancers, which are classified into two groups: AIDS-defining cancers(ADCs) and non-AIDS-defining cancers (NADCs) (2). There are three ADCs: Kaposi sarcoma (KS), non-Hodgkin lymphoma (NHL), and cervical cancer. The incidence of NHL exceeded KS in 2018 and became the highest ADC according to the statistics of American National Cancer Institute, which was 1194 and 765 cases/year, respectively (2). With the exception of the three ADCs, all cancers in HIV-infected population are considered as NADCs, including HIV-associated tumors and incidental cancers. The most common types of NADCs found in persons living with HIV include those with a higher rate among HIV-infected population (such as anal cancer, liver cancer, oropharyngeal cancer, Hodgkin lymphoma and lung cancer, which compose about half of all cancers among HIV-infected persons in the United States) and those common in the general population (such as prostate, breast, and colon cancer) (2, 3). In a meta-analysis of 4,797 NADC cases, the most common NADC type was lung cancer (17.6%), followed by Hodgkin lymphoma (13.4%), anal cancer (5.3%) and liver cancer (3.5%) (4). With the advent of the highly active antiretroviral therapy (HAART) era, the standard incidence rate of NHL has dropped dramatically, whereas the standard incidence rate of HL increased (5, 6). At present, HIV-associated lymphoma remains the leading cause of deaths among people living with HIV, which should be paid more attention to (7, 8).

Diffuse large B-cell lymphoma (DLBCL) and Burkitt’s lymphoma (BL) are among the most common subtypes of NHL in ADC in the HAART era (2, 9), with an incidence of 1.20 and 0.32 per 1000 person-years, respectively (9, 10). Other rare forms of NHL, including plasmablastic lymphoma (PBL), primary effusion lymphoma (PEL), and primary central nervous system lymphoma (PCNSL), are also associated with HIV infection (11–13). Furthermore, compared to HIV-negative persons, the risk of HL which is not AIDS-defining is higher among HIV-infected persons (3).

Previous studies have shown that 18F-fluorodeoxglucose (FDG)-positron emission tomography (PET)/computed tomography (CT) plays an important role in management of HIV-negative patients with lymphoma (14, 15). This noninvasive technology provides several quantitative metabolic parameters such as the maximum of standard uptake value (SUVmax), SUV at lean body mass (SUL), metabolic tumor volume (MTV), and total lesion glycolysis (TLG) for the management of lymphoma. Due to high sensitivity to whole-body involved lymph nodes and extranodal lymphoma, 18F-FDG PET/CT has been incorporated into standard assessment for all FDG-avid lymphomas, and is recommended by the 2014 Lugano criteria (16). Meanwhile, several large randomized clinical trials demonstrated that, decisions to reduce or increase the intensity of treatment can be based on the changes in tumor metabolism during lymphoma treatment (17–19).

However, HIV-associated lymphoma is a different entity from lymphoma in the general population. Compared with lymphoma in HIV-negative persons, HIV-associated lymphoma has a worse prognosis, more frequent occurrence of B symptoms (i.e., weight loss, night sweats, and fever) and more advanced Ann Arbor stages, even in the HAART era (20, 21). HIV-related benign lymphadenopathy is a main reason for a false positive of HIV-associated lymphoma on FDG PET. Whether HIV-infected status will increase tumor burden and reduce overall survival is still under discussion. To date, there are relatively few studies on the clinical value of FDG PET in HIV-associated lymphoma.

This article presents an overview of current 18F-FDG PET/CT clinical applications in the management of patients with HIV-associated lymphoma, including initial staging, response evaluation, prognostic prediction, PET-guided radiotherapy decision and differentiated diagnosis. Furthermore, future perspectives will also be discussed.



2 PET to distinguish lymphoma from benign lesions


2.1 HIV-associated lymphoma vs. benign lymphadenopathy

Lymphadenopathy in HIV-infected patients is a diagnostic challenge for nuclear medicine physicians and clinicians. HIV has a strong tropism for lymphoid tissues, and it leads to a progressive alteration in lymph nodes architecture that clinically manifests as persistent lymphadenopathy in three histologic phases: stage I, explosive follicular hyperplasia with large germinal centers; stage II, germinal center involution and lymphocytes depletion; stage III, proliferation of blood vessels inside the lymph nodes (22). In addition to the HIV infection itself, the other main causes of lymphadenopathy include HIV-associated lymphoma, opportunistic infections, and inflammatory conditions (23–25). Immune reconstitution inflammatory syndrome (IRIS) should also be considered as a possible cause of lymphadenopathy in patients who start HAART. The incidence of lymphadenopathy is negatively correlated with CD4 counts (26). Due to the different respective treatments and adverse effects of over treatment, it is vital to distinguish HIV-associated lymphoma from benign lymphadenopathy.

A qualitative analysis assessed the role of PET/CT in differentiating NHL from benign lymphadenopathy in patients with HIV-1. In 16 PET/CT scans, PET/CT accurately depicted the context of lymphoma. 12 patients with concordant PET/CT (+/+) findings had well-suppressed viral loads and low CD4 levels, whereas the 4 PET/CT (+/−) scans had the highest values of both laboratory parameters. In the case of inconsistent PET and CT findings, increased viral loads and CD4 count may imply benign lymphadenopathy (27). Since the advent of HAART, PET/CT (+/−) findings concurrent with a rapid increase of CD4 count may imply benign lymphadenopathy, perhaps due to IRIS (28, 29). In acute phase of HIV, FDG-avid lymph nodes are typically observed in the head and neck. In late phase, involvement of abdominal lymph nodes is more common (30). In addition, Liu et al. showed that concurrent nasopharyngeal lesions and lymphadenopathy on PET/CT had a greater possibility of malignant lymphoma instead of benign lymphoproliferative disease or nasopharyngeal carcinoma (31).

In quantitative analysis of 18F-FDG PET/CT, Chen et al. identified that the SUVmax of only lymph nodes (SUVLN), and the most FDG-avid lesion to liver SUVmax ratio (SURmax) provided a new basis for distinguishing malignant lymphoma from inflammatory lymphadenopathy in patients with HIV. This study retrospectively assessed 59 HIV-infected patients, of which 37 had HIV-associated lymphoma, and 22 had HIV-associated inflammatory lymphadenopathy. Malignant lymphoma invaded more commonly to extra-lymphatic lesions, compared to inflammatory lymphadenopathy (83.8% vs. 54.5%, p=0.000). Especially, the involved lesions of digestive tract and Waldeyer’s ring obviously differed between the two groups (p=0.004 and 0.033, respectively). Furthermore, the SURmax, SUVLN, SUVMarrow and SUVLiver in malignant lymphoma were significantly higher than those in inflammatory lymphadenopathy (p=0.000, 0.000, 0.002 and 0.017, respectively). The cut-off point of 3.1 for SURmax showed the best equilibrium between sensitivity (68.2%) and specificity (91.9%), and the cut-off point of 8.0 for the SUVLN had also high specificity (89.2%) and relatively reasonable sensitivity (63.6%). The cut-off point of 5 for numbers of involved areas and 3.6 centimeter for maximum diameters of lymph node had relatively low sensitivity (62.2%, 64.9%, respectively) and specificity (72.7%, 86.4%, respectively) (32).

Another retrospective study assessed the diagnostic accuracy of the quantitative PET indices for distinguishing HIV-associated lymphoma from reactive lymphadenopathy, including MTV, TLG, maximum and peak of SUL (SULmax and SULpeak). All of the quantitative PET metrics were significantly higher in patients with lymphoma than in those with reactive lymphadenopathy (all p values, <0.001). The cut-off points of 173 for TLG and 53.8 for MTV showed high sensitivity (89%, 84%, respectively) and specificity (100%, 100%, respectively) for differentiating lymphoma from reactive lymphadenopathy. A summed SULpeak cut-off point of 23.8 showed a sensitivity and specificity of 84% and 95% respectively, whereas a summed SULmax cut-off point of 28.4 yielded a sensitivity and specificity of 84% and 82% respectively. In the reactive lymphadenopathy group, PET metrics were positively correlated with viral load. However, in the HIV-associated lymphoma group, none of the PET parameters showed a significant correlation with viral load. In the qualitative MIP symmetry score analysis of the pattern of lymph node involvement, asymmetrical FDG uptake had an accuracy of 90.4% for differentiating lymphoma from reactive adenopathy in HIV-infected patients (33). The diagnostic efficacies of FDG PET/CT PET/CT in differentiating HIV-associated lymphoma from benign lymphadenopathy are summarized in Table 1.


Table 1 | The diagnostic efficacies of FDG PET/CT in differentiating HIV-associated lymphoma from benign lymphadenopathy.





2.2 PCNSL vs. cerebral opportunistic infection

PCNSL and cerebral toxoplasmosis (CTOX) are the two most common diagnoses of intracranial mass in HIV-infected patients. PCNSL is a rare extranodal NHL, with an incidence of 4-5/1000 among patients with HIV (34). The pooled prevalence of CTOX among HIV-infected patients is approximately 35.8% (35). It is still a challenge for conventional imaging to distinguish these two entities because of overlapping and non-specific imaging features (35, 36). Because of the poor prognosis and the fatal outcome of misdiagnosis or delayed treatment (37), accurate and prompt diagnosis is crucial.

In a prospective study of HIV-infected patients, Westwood et al. identified that foci of increased FDG uptake corresponding to the enhanced lesions on MRI was considered suggestive of PCNSL. Conversely, no clinically significant increase in FDG uptake was considered suggestive of CTOX. One patient had progressive multifocal leukoencephalopathy (PML) with equivocal metabolic activity, and the other one with hemorrhagic brain metastasis showed normal metabolic acitivity (38).

Hoffman et al. showed increased FDG uptake of PCNSL compared with benign lesions. For qualitative analysis, a visual scoring system was proposed. For semiquantitative assessment, a count ratio of lesion to contralateral homologous brain was calculated. Both qualitative visual scoring and count ratios (1.8,0.65, 1.3, and 0.7, respectively; p=0.006) suggested higher scores and count ratios in lymphoma than those in nonmalignant lesions (toxoplasmosis, PML, syphilis) (39). These results were supported by another semiquantitative study, in which the SUV ratio of the lesion to the contralateral brain in HIV-infected patients with PCNSL was higher than that in patients with cerebral infections including toxoplasmosis and tuberculoma (range, 1.7-3.1, 0.3-0.7, respectively; p<0.05) (40). A similar semiquantitative analysis suggested that PCNSL showed increased lesional uptake in comparison with the normal brain cortex (mean SUVmax, 18.8; range, 12.4-29.9), while CTOX had lesional uptake less than that of normal brain cortex (mean SUVmax, 3.5; range, 1.9-5.8) (41).

It should be noted that the challenge in applying semiquantitative analyses similar to the above methods arises when the corresponding contralateral brain exhibits physiologically increased FDG uptake. Nevertheless, delayed 18F-FDG PET/CT has been found to be effective in differentiating malignancy from inflammation or infection. Compared to benign lesions or normal tissues, malignant tumors show a progressive increase in metabolic activity, which have improved the background contrast with lesion-based sensitivity as high as 98% (42, 43).




3 PET for initial staging

As described above, HIV-positive patients are at higher risk of lymphoma, making the accurate appreciation of the extent of disease based on reliable initial staging imperative. The role of 18F-FDG PET/CT in initial staging of lymphoma is superior to contrast-enhanced CT, especially for the detection of lesions with no or minor anatomical abnormalities (including bone marrow, spleen and gastrointestinal tract involvement) (44, 45). Due to that PET scans may detect additional disease sites, the clinical stage is modified in 15% to 20% of patients and therapeutic decision is changed in 8% of patients (46).

Just et al. retrospectively studied 13 HIV-infected patients with BL who underwent one or more PET/CT scans (47). In 5 of 5 patients scanned before treatment, PET/CT demonstrated all involved sites detected at conventional imaging and identified additional sites with high SUVmax in 4 of 5 patients, lymph nodes mainly (4/5), and also spleen (1/5), bone (1/5), and peritoneum (2/5). Lymph node involvement was found in 54% of patients, which is known to be unusual in endemic or sporadic BL. Besides, in 3 patients, BL was predominantly located in the parotid lymph nodes, which is also not a common finding.

As mentioned above, it is a challenge to distinguish HIV-associated lymphoma from benign lymphadenopathy. The likelihood of false positives due to benign lymphadenopathy should be fully taken into consideration when clinicians use FDG PET/CT for initial staging of HIV-associated lymphoma. Patients’ clinical presentations, CD4 counts, imaging features and PET metabolic parameters are helpful to identify the possible cause of lymphadenopathy. However, there are very limited studies on 18F-FDG PET/CT for initial staging of HIV-associated lymphoma to date, with small sample sizes. Prospective studies with larger samples are needed in the future.



4 PET for response evaluation and prognostic prediction

18F-FDG PET/CT has been identified as a reliable technique for both initial staging and early response evaluation in lymphoma, making individualized patient management possible. Previous multicenter studies have found that stage- and risk-adapted treatment is effective and feasible (48, 49). Furthermore, as the 5-year survival rates of both HL and NHL improving, the current interest has shifted towards reducing treatment-related complications (e.g. secondary malignant tumor and cardiovascular events) (50). The ability to promptly and accurately risk-stratify HIV-infected patients with lymphoma will improve the prognosis and decrease the adverse effects of overtreatment.


4.1 Baseline PET/CT

The metabolic parameters including SUV, MTV and TLG on baseline PET have been considered as useful predictors of tumor aggressiveness and response to treatment in solid tumors (16, 51). However, the current literatures of HIV-associated lymphoma are somewhat conflicting. Louarn et al. found that all the parameters on baseline PET were associated with progression-free survival (PFS) in univariate analysis, whereas a high total MTV was the only metabolic parameter independently correlated with PFS (Hazard ratio, 3.62) in multivariate analysis. The optimal total MTV cut-off point for prognostic assessment was 527 cm3, with a 2-year PFS of 71% (>527cm3) compared with 91% (≤527 cm3) with p value of 0.004 (52).

On the contrary, Lawal et al. found that the SUVmax, MTV and TLG of lesions were not significantly different between the HIV-positive and HIV-negative groups, whereas presence of HIV infection was related with significantly higher rate of treatment failure following the ABVD (Adriamycin, bleomycin, vinblastine and dacarbazine) regimen compared with the non-infected group (40.4%, 17.7%, respectively, p=0.0034). In univariate analysis, only HIV status of patients was a significant predictor of therapy outcome (p<0.001). SUVmax, MTV and TLG of lesions as well as the Ann Arbor stage were not significant in predicting therapy outcome. Furthermore, a multiple logistic regression showed that HIV status alone was significant in predicting therapy outcome [overall rate (OR)=2.930, 95% confidence interval (CI), 1.197-7.172, p=0.023] among the metabolic parameters and Ann Arbor stage (53).

These findings were supported by another study by the same author. Lawal et al. analyzed 160 patients with HL, including 57 HIV-positive patients. The median values of SUVmax, SUVmean, MTV and TLG were slightly higher among the HIV-positive group compared with the HIV-negative group. However, no significant difference was found between the two groups. In addition, among the seven parameters of International Prognostic Score (IPS) indicating poor prognostic factors, only male sex (HIV-negative group higher, p=0.005) and serum albumin less than 4 g/dl (p=0.009) were found with significant differences between the two groups (54).

In paediatric and adolescent patients with HIV-associated lymphoma, similar results were found in a retrospective study. Reed et al. found that HIV status and treatment response on PET were significantly related to PFS (p=0.036, p<0.001, respectively) in univariate analysis. In contrast, none of the metabolic parameters was significantly predictive of either PFS or overall survival (OS). Unlike in the adult research, the baseline total MTV was considered as a significant predictor of treatment response (p=0.017) (55).



4.2 Interim PET/CT

Interim 18F-FDG PET/CT in both HL and NHL has demonstrated prognostic significance in the general population: residual tumor avidity on PET after 2 to 4 cycles corresponds with lower PFS, while interim PET negative is correlated with higher PFS (56–58). Early identification of patients at high risk of standard treatment failure will affect treatment decisions (more intensive therapy) and ultimately improve patient treatment outcomes and survival.

However, sparse studies exist about the prognostic value of interim 18F-FDG PET/CT in patients with HIV-associated lymphoma. Okosun et al. showed that interim PET negativity was significantly associated with a higher PFS. A total of 23 patients with advanced HIV-associated HL were included in this analysis. Deauville criteria was used to evaluate the metabolic activity of lesions, and a Deauville score of 1-3 was defined as PET-negative. After a median follow-up of 27 months (range, 12-50 months), the 2-year PFS rates for interim PET-positive and PET-negative patients were 50% and 100% respectively (log-rank p=0.0012) (59).

A similar result of relationship between interim PET findings and OS was reported by Minamimoto, R. et al. (60). A total of 24 patients with HIV-related malignant lymphoma (13 DLBCL, 11 BL) were included in this study, who underwent interim PET/CT. In 10 of 24 cases, interim PET findings were evaluated as “positive”, while the rest cases were evaluated as “negative”. Interim PET negativity was associated with significantly longer OS (932 ± 549 days) compared to positive cases (454 ± 442 days, p=0.043). Over all two year survival rate of negative findings on interim PET was 80% (95%CI, 69%-91%), which was higher than 29% (95%CI, 16%-41%) in positive cases. Moreover, Cox regression analysis showed strong prognostic influences of interim PET findings (Hazard ratio 4.57, 95%CI 0.88-23.73, p=0.07) and Eastern Cooperative Oncology Group performance status (Hazard ratio 10.52, 95%CI 1.26-87.82, p=0.03) on OS.

A phase 2 trial implied that response-adapted therapy based on interim PET was feasible in patients with HIV-associated HL (61). All patients underwent interim PET scan after 2 initial cycles of ABVD, and 10 of 12 patients achieved PET-negative status, while 2 of 12 remained PET-positive (Deauville scores 4 or 5) according to Deauville criteria. All the PET-negative and one PET-positive patients continued ABVD regimen. The other PET-positive patient received 6 cycles of BEACOPP (bleomycin, etoposide, doxorubicin, cyclophosphamide, vincristine, procarbazine and prednisone) regimen. Finally, 75% of HIV-HL patients achieved complete response (CR) and 25% partial response (PR). With a median follow-up of 39 months (range, 5-53 months), a 2-year PFS was 83% (95% CI, 46.1%-95.3%), which was similar to that in non-HIV-HL patients in the same phase 2 trial (2-year PFS, 79%) (62). The prognostic predictions of both baseline and interim FDG PET for HIV-associated lymphoma are summarized in Table 2.


Table 2 | The prognostic predictions of both baseline and interim FDG PET for HIV-associated lymphoma.






5 PET-guided radiotherapy decision

The success of an individualized treatment decision depends largely on accurate staging and response assessment. Engert A et al. have suggested that PET done after chemotherapy was helpful to guide the need for additional radiotherapy in patients with HL lymphoma (63). In advanced-stage HL, patients with a persistent mass after chemotherapy measuring 2.5 cm or larger and positive on PET scan should receive additional radiotherapy. For patients with nonbulky stage I/II DLBCL and negative on interim PET scan, chemotherapy alone was comparable to chemotherapy followed by radiotherapy; additional radiotherapy was applied to patients with positive on interim PET scan (64, 65).



6 PET at the end of therapy

FDG-PET plays an important role in the response assessment of both HL and NHL at the end of therapy, especially in the identification of a CT-detected residual mass (16). An FDG-PET/CT scan after completion of the intended treatment can differentiate viable tumor cells from fibrosis or necrosis. Engert A et al. reported that post-treatment PET scans were able to sharply reduce the number of patients with additional radiotherapy for residual mass to 11% from 71% in previous trials (66). The Deauville 5-point scale is used to assess differing degrees of response at the end of treatment (67). A Deauville score of 1 to 3 identifies complete metabolic response, while residual disease is defined by a score of 4 to 5.



7 Surveillance PET scans

Relapses occur in approximately 10-20% of patients with early stage HL, as well as 30-40% in those at advanced stages following first-line therapies (68). There is sparse available published literature of relapsed HIV-associated lymphoma. In general population, the role of FDG PET in post-treatment surveillance remains controversial.

In a prospective study, 5 patients were detected relapsed or refractory disease by FDG PET, while 6 patients were found to have false-positive findings (69). These findings are corroborated by a number of other studies. A multicenter retrospective study of 161 patients with HL showed that the overall positive predictive value (PPV) and negative predictive value (NPV) of PET were 28% and 100% respectively (70). In a retrospective analysis of 75 patients with DLBCL, the PPV of PET was 85%, but usefulness was only for high-risk patients with symptoms indicative of a relapse and those older than 60 years (71).

Thus, there is currently insufficient evidence to recommend PET as a routine surveillance tool for patients with lymphoma. FDG PET should be used only for patients at a high-risk of recurrence to reduce radiation burden and costs.



8 A simple comparison of the role of FDG PET in COVID-19 and HIV pandemic

A systemic review was conducted to evaluated the role of 18F-FDG PET/CT in patients with Coronavirus Disease (COVID-19) (72). In 10 of 11 studies, FDG PET/CT was used to assess the oncological indications and incidental findings suspicious of COVID-19 infection, particularly in suspected COVID-19 interstitial pneumonia. Only in one study, FDG PET/CT was performed to evaluate the inflammatory status at the presumed peak of the inflammatory phase. Evidence-based data has demonstrated an increased incidence of FDG PET/CT abnormalities evocative of a pulmonary infection in asymptomatic patients during the COVID-19 outbreak. However, it should be noted that FDG PET cannot substitute or integrate high-resolution CT to diagnose suspicious COVID-19 or for disease monitoring, which is different from the broader role of FDG PET in patients with HIV-associated lymphoma.



9 Conclusions and future perspectives

Taken together, PET metrics including SUV, SUL, MTV, and TLG were the most frequently observed significant parameters in the studies for differential diagnosis, response evaluation and prognostic prediction of HIV-associated lymphoma. Furthermore, baseline, interim and post-treatment PET imaging findings have been found reliable to guide clinical decision, which ultimately improves treatment outcomes and survival.

Nevertheless, the majority of current studies were single-center, retrospective studies with limited sample sizes. Additionally, the rapid development of radiomics and PET/MR will provide further lesion features and improve the PPV of PET imaging. To better understand the ability of increasingly novel radiotracers of PET imaging in HIV-associated lymphoma, including 68Ga-FAPI and biomarkers of immunoPET, prospective studies with large populations and multicenter are necessary.
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Theranostic approaches with positron emission tomography/computed tomography (PET/CT) or PET/magnetic resonance imaging (PET/MRI) molecular imaging probes are being implemented clinically in prostate cancer (PCa) diagnosis and imaging-guided precision surgery. This review article provides a comprehensive summary of the rapidly expanding list of molecular imaging probes in this field, including their applications in early diagnosis of primary prostate lesions; detection of lymph node, skeletal and visceral metastases in biochemical relapsed patients; and intraoperative guidance for tumor margin detection and nerve preservation. Although each imaging probe shows preferred efficacy in some applications and limitations in others, the exploration and research efforts in this field will eventually lead to improved precision theranostics of PCa.
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1 Introduction

Prostate cancer (PCa) is the most frequently occurring cancer in men worldwide, with a continuously increasing incidence (1). Traditional methods for PCa diagnosis, including the digital rectal examination (DRE) and serum prostate-specific antigen (PSA) evaluation, cannot fully meet the diagnostic needs due to low accuracy and sensitivity (2). Novel methods, such as integrated positron emission tomography/computed tomography (PET/CT) or PET/magnetic resonance imaging (PET/MRI), to image 68Gallium(68Ga)-labeled prostate-specific membrane antigen (PSMA), which is exclusively overexpressed on clinical PCa cells, have brought great precision diagnostic capability. In addition to diagnosis, the major treatment strategy for PCa, prostatectomy, has entered the era of “precision surgery”, which requires a precise marking of the malignant tissue as intraoperative guidance. Identifying the actual position of the tumor, nerve, and lymph node has become more and more important during prostatectomy surgery. Novel intraoperative molecular imaging methods with high sensitivity, specificity, distinguishability, and safety, such as 111In labeled PSMA, have been shown to locate the PCa lesions precisely (3); indocyanine green (ICG), a USA Food and Drug Administration (FDA)-approved near-infrared (NIR) fluorescent agent for highlighting tissue, has been combined with 99mTc to directly and accurately recognize malignant PCa tissue and metastases to assist decision making by surgeons during operations (4). In this article, we focus on providing a comprehensive summary of all novel molecular imaging probes in PCa diagnosis and intraoperative guidance for tumor detection and nerve preservation.



2 Novel Molecular imaging methods for PCa diagnosis


2.1 Prostate-specific membrane antigen

Prostate-specific membrane antigen (PSMA) is a type II transmembrane glycoprotein encoded by the folate hydrolase 1 (FOLH1) gene. Compared with other non-specific PET tracers, PET/CT imaging targeting PSMA has important clinical value in the diagnosis and staging of PCa. PSMA is highly expressed on the surface of PCa cells and is closely correlated with tumor grade, PSA value, and prognosis. So far, two PSMA agents (68Ga-PSMA11 and 18F DCFPyL) have been approved by the FDA for clinical application (5). Other PSMA tracers are also commonly used in preclinical studies and clinical trials, such as 68Ga-PSMA617 and 18F-PSMA-1007. A meta-analysis based on 37 studies with 4,790 patients was conducted by Perera et al. and showed that the overall sensitivity and specificity of 68Ga-PSMA PET/CT for initial staging of advanced PCa were 77% and 97%, respectively (6). According to a meta-analysis by Huang, an overall pooled detection rate of 94% for 18F-PSMA-1007 was demonstrated in PCa patients (7). With a combined median maximum standard uptake value (SUVmax) of 16 (3.7-77.7) for primary prostate lesions, 18F-PSMA-1007 had positive predictive values of 0.90, 0.94, and 0.84 with the identification of lesions, regional lymph node metastases, and localized prostate tumors, respectively. With the comparison of regular CT imaging and bone scanning, the accuracy of PET imaging with PSMA as the target was 27% higher (92% vs 65%), as were sensitivity and specificity (85% vs 38%, 98% vs 91%) (8). Zhou et al. made a critical comparison of 18F-PSMA-1007 PET/CT and 18F-FDG PET/CT, which were both performed on 21 PCa patients (9). The SUVmax, mean standard uptake value (SUVmean), and tumor-to-background ratio (TBR) of 18F-PSMA-1007 PET/CT were higher than those of 18F-FDG PET/CT in the primary lesions and metastases, leading to a superior detection rate in the primary PCa lesions and more significant differentiations between benign lesions and metastases. In addition, the multifocality of primary PCa lesions was presented under the 18F-PSMA-1007 PET/CT rather 18F-FDG PET/CT, suggesting the excellent PCa lession localization the PSMA tracer provides (Figure 1).




Figure 1 | Maximum-intensity projections of PET examinations using 18F-PSMA-1007 (A) and 18F-FDG (B). Axial PET/CT for 18F-PSMA-1007 (C) and 18F-FDG (D). Reprinted with permission from Zhou et al. (9). Copyright © 2021 Zhou, Li, Jiang, Wang, Chen, Shen, You, Lu, Liao, Li and Cheng.



PSMA PET/CT imaging makes a contribution to the diagnosis of PCa metastases. A prospective single-center study demonstrated that PSMA PET/CT imaging has modest sensitivity (71.4%) and exceptional specificity (88.9%) in detecting pelvic lymph node involvement (10). In addition, PSMA PET/CT imaging combined with sentinel lymph node biopsy in primary-identified medium to high-risk PCa resulted in 94% accuracy in original lymph node staging of PCa. This cross-validation could increase the overall sensitivity of lymph node metastasis to 100% (11). To assess the diagnostic efficacy of PSMA imaging for PCa bone metastases, a network meta-analysis that involved 45 studies with a total of 2,843 patients and 4,263 lesions was completed by Liu et al. (12). It evinced that 68Ga-PSMA PET/CT had an incredible ability to visualize bone metastases, with a superiority index of 7.3, which is higher than18F-NaF, 11C-choline, 18F-choline, 18F-fluorodeoxyglucose (FDG), and 18F-fluciclovir PET/CT. Harmon et al. compared the application of 18F-PSMA-PET/CT and 18F-NaF in bone metastases, and 185 bone lesions were recognized by 18F-NaF and/or 18F-PSMA in 26 patients, in which 18F-NaF significantly works better (p<0.001) (13). Van Damme et al. conducted a study on 134 PCa patients, including newly diagnosed and relapsing patients, to make a comparison between PSMA imaging and whole-body magnetic resonance imaging (WB-MRI) for metastases diagnosis (14). PSMA imaging and WB-MRI were found to have no significant difference among identifying PCa patients with metastases when lymph node, skeletal, and visceral metastases were considered as a whole. However, in the subgroup of newly diagnosed PCa patients, PSMA PET/CT was better than WB-MRI for the detection of lymph node metastases, suggesting PSMA PET/CT is superior to WB-MRI for the recognition of lymph node metastasis in early PCa.

Although there are superior advantages of PSMA PET-CT imaging ascribed to the high expression of PSMA in PCa, some limitations exist. High uptake of radionuclide has been found in some benign lesions and other non-PCa malignant tumors in clinical applications (15, 16). In addition, the efficacy of PSMA PET/CT imaging is highly susceptible to the PSA level. The PSA level was positively associated with the SUV value of 18F-PSMA imaging in patients with androgen deprivation therapy (ADT) (13). Combining PSA levels and treatment status, ADT patients (n=11) with a PSA below 2 ng/ml showed more lesions on 18F-NaF than on 18F-PSMA (p=0.02). Among patients with PSA > 2 ng/ml, ADT patients (n=8) showed the same or more lesions on 18F-PSMA than on 18F-NaF. In efficacy monitoring, 18F-PSMA-1007-PET/CT has a good localization function for the biochemical recurrence (BCR) of PCa patients with a detection rate of 75% (17). Even small lymph node metastases less than 8 mm in diameter were imaged clearly. However, the remaining 25% of patients with a low level of PSA were not recognized by 18F-PSMA imaging. Similar to 18F-PSMA PET/CT in the relationship between the detection rate of BCR and PSA level, 68Ga-PSMA PET/CT had this limitation in some studies (18, 19). Rauscher et al. analyzed subgroups of patients with very low (0.2-0.5 ng/ml) and low (0.5-1.0 ng/ml) PSA values and found that the detection rates of lesions in patients with recurred PCa were 55% (74/134) and 74% (102/138), respectively (18). Derlin et al. investigated the imaging efficacy of the 68Ga-PSMA PET/CT with more PSA level stratifications and presented much lower detection rates in patients with low PSA (< 2 ng/ml) (19). However, this limitation could be overlooked in castration-resistant prostate cancer (CRPC), which is characterized by a rising PSA. Fourquet et al. performed PSMA-PET/CT imaging in incomplete CRPC patients, which were defined as non-metastatic PCa patients after ADT treatment (20). Even for patients with PSA serum levels less than 2 ng/ml, the positive rate of PSMA PET/CT imaging could reach 70%, suggesting the high effectiveness of PSMA PET/CT imaging for CRPC-relevant diseases.

In addition, PSMA PET/CT imaging works well with the prognosis of PCa. Liu et al. used 68Ga-PSMA-617 PET/CT imaging semi-quantitative analysis indicators as “imaging markers” to predict risk stratification and metastasis risk of PCa (21). Univariate logistic regression models established by SUVmax, intraprostatic PSMA-derived tumor volume (iPSMA-TV), and intraprostatic total lesion PSMA (iTL-PSMA) could be able to efficiently previse high-risk PCa with the sensitivity and specificity of 87.5% and 50%, 62.5% and 100%, and 87.5% and 100%, respectively. A study performed by Roberts that included 848 patients after radical prostatectomy found that the SUVmax value of PSMA imaging lesions was remarkably negatively correlated with biochemical recurrence-free survival (BRFS) (22). Gleason score (GS) was also negatively correlated with BRF, and SUVmax value was an independent predictor of BRFS in patients. Roberts et al. found that increased 68Ga-PSMA-11 uptake is often associated with poor pathological outcomes and provides prognostic information for progression-free survival (23). Changes in PSMA expression could be a predictive biomarker for overall survival, which may assist in personalizing therapy for PCa patients (24). 68Ga-PSMA-11 PET/CT has a potential impact in guiding local lesion radiotherapy planning, which can improve the survival of castration-resistant PCa patients by adjusting the extent of radiotherapy (25). Under the guidance of PSMA PET, the mean time to PSA progression or last follow-up was 17.9 months with radiation therapy, compared with 2.9 months for patients without PSMA PET-guided local ablation radiation therapy (26). Shagera’s retrospective evaluation of 37 patients with metastatic hormone-sensitive or castration-resistant prostate cancer (mHSPC or mCRPC) by testing the biochemical association between responses and different PET parameters showed that 68Ga-PSMA-11 PET/CT imaging could be an effective tool for evaluating the response of metastatic PCa to taxane chemotherapy (27).



2.2 Neurotensin receptor 1

In addition to the specific molecular markers mentioned above, G protein-coupled neurotensin receptor (NTR) and its ligand neurotensin peptide (NT) have been suggested to play an important role in PCa. Inhibiting the pathway of NTR1 has been suggested as a possible strategy to prevent the pathogenesis of this disease (28). Morgat et al. performed a pilot study of the NTR1 expression in 12 samples of normal prostate, 11 samples of benign prostatic hyperplasia (BPH), 44 samples of PCa, and 15 samples of metastatic lymph nodes (29). Compared with the negative NTR1 staining in normal prostate and BPH samples, 4 of the 44 primary tumors (9.1%) and 5 of 15 metastatic lymph nodes (33.3%) overexpressed NTR1, suggesting that NTR 1 may be a potential biomarker of PCa, especially for metastatic lymph nodes. However, the limited sample series seriously affects the reliability of this conclusion, and a larger sample size is needed in future studies.

Nevertheless, studies have suggested that NTR1 may be another molecular target that could complement PSMA imaging. Ma et al. developed novel heterodimeric probes that targeted both PSMA and NTR1 and showed significant uptake in both NTR1-positive/PSMA-negative PC-3 tumors and PSMA-positive/NTR1-negative LnCap tumors (two androgen-sensitive PCa xenografts) at the animal level (30). Zhang et al. used 68Ga-DOTA-NT-20.3 animal PET imaging to scan the mice that were xenografted with PC-3, an androgen-receptor (AR)-positive, PCa cell line with no PSMA expression, suggesting that NTR1 may be a critical target for diagnosis or treatment of PCa applications with limited PSMA expression levels (31). However, the research of this tracer is still in the preclinical stage, and more preclinical and clinical studies are necessary for the exploration of its potential.



2.3 Fibroblast activation protein

First described as a cell surface antigen F19 in 1986, fibroblast activation protein (FAP) is a 760 amino acid (AA)-glycoprotein and a member of the dipeptidyl peptidase (DPP) family (32, 33). FAP shares a high AA sequence homology with DPP4, leading to its high DPP activity (34). In addition, endopeptidase activity for cleavage of benzyloxycarbonyl-glycine-proline-7-amino-4-methylcoumarin was also found in FAP (33). Just as it initially caught people’s attention for its existence in the mesenchyme of multiple cancers rather than epithelial cells, FAP was found to be overexpressed in most epithelial cancers and participate in the regulation of tumor growth and metastasis, suggesting that FAP is a potential target for tumor theranostic (35, 36). Currently, FAP inhibitors (FAPI) are mainly used for FAP-targeted PET/CT imaging (37). In 2018, Loktev et al. first reported that 68Ga-FAPI-02 was used for the imaging of multiple human malignant tumors and achieved good imaging results (38). Kratochwil et al. tested the 68Ga-FAPI-04 on 80 patients with 28 kinds of tumors, in which PCa patients showed intermediate uptake of 68Ga-FAPI-04 with SUV of 6-12 and TBR of 3-fold (39).

Kesch et al. developed tissue microarrays (TMAs) of prostate tissues from 94 PCa patients at various stages, including primary PCa, PCa receiving ADT, CRPC, and neuroendocrine prostate cancer (NEPC), with anti-FAP antibody staining, and found the positive correlation between FAP expression and disease advancement (40). The tissues with the highest FAP expression were from CRPC patients, suggesting the potential of FAPI imaging in advanced PCa, especially CRPC. A series of case studies for the FAPI PET/CT imaging on PSMA-negative CRPC also confirmed FAPI PET/CT imaging’s ability to visualize the metabolic lesions and complement the PSMA imaging (41–43). However, the issue of low sample size should be improved by large-scale clinical trials in the future.

The other weakness of FAPI PET/CT imaging is its specificity on tumor lesions. Xu et al. reported a case study of 68Ga-DOTA-FAPI-04 on a PCa patient with arthritis. Compared with the prostate lesions, the arthritis site presented higher uptake of FAPI, suggesting that 68Ga-DOTA-FAPI-04 may also be visualized in inflammation, possibly reducing its value in tumor diagnosis (44).




3 Additional PET agents for PCa diagnosis


3.1 18F-fluorodeoxyglucose

For tumor PET imaging, 18F-fluorodeoxyglucose (18F-FDG) is one of the most frequently used radiotracers. Fluorodeoxyglucose (FDG) is a glucose analogue, which is highly absorbed in tumor lesions mainly through glucose transporter-1 (GLUT1) because of its involvement in tumor cell metabolism. It has been broadly applicated in clinical diagnosis, staging analysis, prognosis prediction, and treatment response monitoring of various tumors as a PET imaging agent (45). However, some patients with well-differentiated PCa had false negatives during clinical imaging (46). In addition, some benign lesions, such as inflammation, can also take up 18F-FDG. Since the prostate is close to the bladder and 18F-FDG is mostly egested through the urinary tract, this limits its application in the primary tumor of PCa due to the bladder urinalysis activity (9).

Although 18F-FDG imaging possesses limited accuracy on primary PCa diagnosis and staging, high-grade PCa (GS= 8-10) and more aggressive metastatic PCa showed higher glycolytic activity. In a study of 148 PCa patients with biopsy GS ≥ 8, 18F-FDG PET/CT imaging detected lesions with high intraprostatic FDG uptake in 66% of patients (47). Intraprostatic FDG uptake was positively correlated with higher pathological GS, seminal vesicle invasion, pathological lymph node metastasis, and risk of BCR, suggesting that preoperative intraprostatic FDG uptake is a composite factor for poor pathological prognostic factors. In addition, 18F-FDG has a certain value in the detection of primary lesions of CRPC. Chen et al. studied 56 cases of CRPC with 68Ga-PSMA and 18F-FDG PET/CT examinations (48). Although overall the 68Ga-PSMA is significantly better than 18F-FDG PET/CT with a higher detection rate of 75.0% vs 51.8%, and more positive lesions of 135 vs 95, the incidence of patients with 68Ga-PSMA−, 18F-FDG+ lesions was 23.2% (13/56), which could not be ignored in the clinic. The PSA level and GS of patients with 68Ga-PSMA−, 18F-FDG+ lesions were higher than those of patients without 68Ga-PSMA−, 18F-FDG+ lesions, that 61.5% of patients with GS ≥ 8 and PSA ≥ 7.9 ng/mL carried the special lesions, suggesting that CRPC patients with high GS and PSA may take advantage of 18F-FDG PET/CT imaging. 18F-FDG-PET/CT is also of great value in the diagnosis of bone metastases in high-grade PCa patients (GS≥8). In comparison with the bone scan, 18F-FDG PET/CT is sensitive and accurate in detecting bone metastases (sensitivity:100% vs 78.8%, specificity: 98.7% vs 98.2%) (49).

18F-FDG PET imaging also has the ability to assess prognosis in PCa patients. In the study of 94 patients with primary PCa who underwent 18F-FDG imaging previous to the radical prostatectomy, patients with higher SUVmax had poorer long-term survival (50). Higher intensity tracer uptake is positively associated with GLUT1 expression, stage, pathological grade, and disease progression. 18F-FDG PET whole-body total lesion glycolysis (TLG) is independently associated with overall survival as a quantitative prognostic imaging biomarker in mCRPC patients receiving abiraterone or enzalutamide as first-line therapy (51). Studies have shown that SUV value and the number of lesions are also independently associated with time to hormonal therapy failure (THTF). When the sum of SUVs was divided into quartile ranges, patients in the fourth quartile had significantly lower odds of survival than patients in the first quartile. Both SUV and 18F-FDG PET/CT-derived lesions provide independent prognostic information for THTF in patients with metastatic castration-sensitive PCa (52).



3.2 Choline

FDA approved the application of choline-based radiotracers (11C and 18F- choline) in 2012 for patients with biochemically relapsed PCa. Now both 11C and 18F- choline have been applied to monitor the curative effect in PCa patients. Wang et al. analyzed 46 studies and found that the combined sensitivity and specificity of 18F-choline for the detection of BCR of PCa were 0.93 (95% CI, 0.85-0.98) and 0.91 (95% CI, 0.73-0.97) (53). The combined detection rate was 66%, but when PSA is in the ranges of <0.5, 0.5-0.99, 1.0-1.99, and ≥2 ng/ml, the detection rates were 35%, 41%, 62%, 80%, respectively. Therefore, although the choline tracer is suitable for the detection of BCR of PCa, the detection rate is not ideal when the PSA value is very low.

11C and 18F- choline also have implications in assessing prognosis in PCa. Jimbo et al. showed that 11C-choline PET/CT assessment in mCRPC patients receiving primary docetaxel chemotherapy could predict overall treatment response and progression-free survival with blood pool-corrected SUVmax during treatment (Figure 2) (54). The percent change in SUVmax was a significant predictor of complete response, with a greater than 20% reduction in SUVmax in 57 of 77 patients (74%), who were 3.6 times more likely to have complete remission than those patients with a reduction of SUVmax <20% after 6 cycles of primary docetaxel chemotherapy. Zhang et al. used 11C-choline-PET to identify 89 patients with oligometastatic CRPC, providing a better target for stereotactic ablative radiotherapy (SABR) to improve the outcome with a median overall survival of 29.3 months (55). García Vicente et al. conducted interim and end-of-treatment 18F-Fluorocholine (FCH) PET/CT imaging in 223Ra-treated CRPC and bone metastases patients, and the results were significantly associated with both progression-free survival and overall survival, suggesting that interim and end-of-treatment 18F-FCH PET/CT imaging could be applied as predictors and even guidance during the 223Ra therapy (56).




Figure 2 | 11C‐choline PET/CT imaging during the docetaxel chemotherapy for a good responder. Baseline (A), mid‐course (B), and posttherapy (C) axial fused 11C‐choline PET/CT images demonstrating markedly choline‐avid right posterior iliac bone metastasis at baseline (arrow), while nearly none at mid-course and posttherapy. Reprinted with permission from Jimbo et al. (54). Copyright ©2021 Wiley Periodicals LLC.





3.3 18F- Fluciclovine

18F-fluciclovine (18F-FACBC) was first reported by Shoup in 1999 for brain tumor imaging (57). Based on the encouraging diagnostic presentation and histologically confirmed data in patients with biochemical recurrence PCa, the FDA and European Commission (EC) approved 18F-FACBC for diagnostic imaging in PCa patients with elevated PSA after pre-treatment (58), and until recently, 18F-FACBC imaging has been included in the National Comprehensive Cancer Network (NCCN) guidelines for the management of BCR of PCa. A previous phase II clinical trial found the sensitivity and specificity of the scan to be 92.5% and 90.1%, respectively, for primary PCa lesions (59). Uptake of 18F-FACBC was significantly increased in PCa primary lesions, and lesions with high GS (>3+4) tended to show higher uptake rates compared with low GS lesions and benign prostatic hyperplasia (60). In the diagnosis of lymph node metastases, this study found that only 1 in 7 patients with metastatic lymph nodes showed true positive results on 18F-FACBC PET/CT and PET/MRI. Another multicenter phase II study of 40 regional lymph nodes in 28 patients found that the sensitivity, specificity, diagnostic accuracy, positive predictive value, and negative predictive value of 18F-FACBC imaging in lymph node analysis were 57.1% (4/7), 84.8% (28/33), 80.0% (32/40), 44.4% (4/9) and 90.3% (28/31), respectively (61). 18F-FACBC PET/CT imaging has no advantage in the diagnosis of bone metastases either, possibly due to the low spatial resolution and partial volume effects caused by necrotic and mucinous components in the metastatic foci (62). A meta-analysis included 9 studies and found that the pooled sensitivity and specificity of 18F-FACBC imaging of aged PCa patients (including both primary and recurrent PCa) were 86.3% and 75.9%, respectively, with a combined diagnostic odds ratio of 16.453 and heterogeneity of 30% (63). In the regional analysis, 18F-FACBC-PET/CT owned a higher sensitivity and a lower specificity for the assessment of tumors in the prostate bed than in the extraprostatic region (90.4% vs 76.5%, 89% vs 45%, respectively). Filippi et al. studied the clinical data of 81 patients who underwent 18F-FACBC PET/CT for BCR of PCa (64). The detection rate of 18F-FACBC PET/CT in the entire cohort accounted for 76.9%, and the positive predictive value was 96.7%. This modality played an impact on the clinical management in 33 of 81 patients (40.7%), resulting in a critical amendment in treatment strategy in 30 subjects (90.9%). Like PSMA imaging, the detection rate of FACBC imaging is positively correlated with the PSA levels. When the PSA levels are in the range of 0.2-0.57, 0.58-0.99, 1-1.5 and >1.5 ng/ml, the detection rates of 18F-FACBC PET/CT were 66.7%, 71.4%, 78.9% and 90, respectively. However, even at a low PSA level, 18F-FACBC PET/CT imaging preserves a much higher detection rate than PSMA imaging, which is meaningful for the localization and diagnosis of lesions and has a significant impact on clinical management.




4 Other experimental radiotracers


4.1 Gastrin-releasing peptide receptor

Gastrin-releasing peptide receptor (GRPR) is a G protein-coupled receptor that is overexpressed in a variety of malignancies, such as breast cancer, PCa, and small cell lung cancer (65). GRPR is one of the subtypes of the bombesin (BBN) receptor, also called BB2r. As a bombesin analog, gastrin-releasing peptide (GRP) spreads over the peripheral nervous system and organs and primarily works in the gastrointestinal system through GRPR (66). As mentioned, the critical feature of GRPR is its overexpression in prostate tumor cells and underexpression in normal prostate tissue. Therefore, multiple radionuclides have been used to label bombesin analogs (GRPR agonists and antagonists), which preserve the high affinity for GRPR, to image tumors with high GRPR expressions (67, 68). At present, a variety of GRPR agonists and antagonists have emerged and been tagged with multiple radioisotopes. However, the GRPR agonists induce some gastrointestinal side effects due to the activation of GRPR. Compared with agonists, GRPR antagonists could provide better visualization with high value in the diagnosis and staging of PCa with less undesirable effects (69).

As one of the GRPR antagonists, RM26 was radiolabeled to trace the GRPR in prostate tumor tissues. In Zhang’s study, both NOTA-RM26 and agonist BBN were labeled with 68Ga to image the lesions in 22 PCa patients (70). The results showed that the 68Ga-RM26 tracer visualized much more primary lesions and metastases with significantly higher SUVmax than 68Ga-BBN PET/CT (Figure 3). Bakker et al. performed 68Ga-SB3 PET/CT imaging on 10 PCa patients before radical resection with a sensitivity of 88% and a specificity of 88% in 16 lesions detected by prostatectomy pathology, suggesting that 68Ga-SB3 PET/CT could be used for the detection and localization of primary PCa (71). Duan et al. compared 68Ga-RM2 PET imaging with multiparametric magnetic resonance imaging (mpMRI) and 68Ga-PSMA-11 PET on 41 patients with the initial diagnosis of intermediate and high-risk PCa. 68Ga-RM2 and 68Ga-PSMA11 had similar sensitivity and accuracy of 98%, 89% and 95%, 89%, respectively, which are significantly higher than mpMRI with 77% and 77%, for the detection of intraprostatic lesions (72). The post-prostatectomy histopathology also affirmed the ability of 68Ga-RM2 PET imaging with a detection rate of 93%.




Figure 3 | Comparison of 68Ga-RM26 PET/CT (A), and 68Ga-BBN PET/CT (B) in a 73-y-old man diagnosed as having PCa (white arrow) with lymph node involvement (red arrow) and bone metastasis (yellow arrow) before prostatectomy. 68Ga-RM26 PET/CT detected primary tumors, multiple lymph node involvement, and bone metastasis lesion, whereas those lesions showed much lower uptake on 68Ga-BBN PET/CT. Reprinted with permission from Zhang et al. (70). Copyright © 2018 by the Society of Nuclear Medicine and Molecular Imaging.



Not only for the initial diagnosis of PCa, but GRPR-targeted PET imaging could also take a role in the follow-up with the detection of BCR. Minamimoto et al. conducted a prospective study of 32 patients with BRC of PCa but negative imaging results on multiple conventional imaging modalities (CT, MRI, and 99mTc-MDP bone scan) (73). Among the 32 participants, 23 individuals were recognized through the 68Ga-RM2 PET imaging, suggesting a detection rate of 71.8% in these patients without positive findings on conventional imaging tools. Wieser et al. also collected 16 choline-PET/CT-negative/indeterminate biochemically recurrent PCa patients to evaluate the imaging ability of 68Ga-RM2-PET/CT in detecting metastatic tumors and found that tumors in 10 out of 16 patients (62.5%) could be recognized by the 68Ga-RM2-PET/CT imaging (74). In addition, the expression of GRPR appears to be unassociated with PSMA, suggesting that GRPR and PSMA-targeted PET imaging could be complementary (75). Therefore, GRPR-targeted imaging could complement other conventional modalities. Thus, GRPR tracer imaging is a promising tool for diagnosing and surveillance PCa with its high detection rate. However, the low sample size in these clinical trials critically affects the credibility of the evaluation of GRPR tracer imaging. More clinical trials with larger sample sizes are necessary for the future.

In conclusion, various imaging agents for the precision diagnosis of primary and metastatic PCa are under study, with both advantages and disadvantages (Table 1). Although there is no 100% satisfactory imaging agent for PCa at present, with the in-depth research on current imaging agents and the development of new imaging agents, multi-target combined imaging or individualized imaging may bring better clinical value to PCa patients.


Table 1 | Pros and cons of PET imaging agents for prostate cancer.






5 Novel methods for intraoperative guidance of PCa precision surgery

Compared to diagnostic imaging tracers, there are fewer tracers available for guidance during PCa surgery. Herein, we present some novel intraoperative tracers, which are promising methods for PCa precision surgery in the future.


5.1 Novel methods for intraoperative tumor lesion tracing

Indocyanine green (ICG), one of the most common near-infrared (NIR) fluorophores for fluorescence-guided surgery (FGS), has been approved by the FDA for more than 60 years. It is a 776 Da, amphiphilic tricarbocyanine, water-soluble, and anionic probe. It binds to protein quickly and is confined to the intravascular compartment through intravenous injection (76). The half-life of ICG is 150-180 seconds, and it has low toxicity. Glutathione S-transferase, a transport protein, is able to make ICG through the liver and excrete into bile totally; thus, ICG can be administered repeatedly every 15 minutes during surgery to label the tissue (77). Due to its relatively low cost and widespread availability, ICG is widely used in urologic surgery, including laparoscopic and robotic adrenalectomy procedures (78, 79). In laparoscopic robot-assisted radical prostatectomy (RARP), Mangano et al. used ICG with NIR fluorescence to guide the preservation of the neurovascular bundle (80). Tobis et al. adopted ICG to highlight the renal vasculature and distinguish between normal and malignant tissue (81). Rho et al. used CT to guide the penetration of ICG through fluorescence thoracoscopy, precise location and margin resection of the radiopaque lesions were confirmed via C-arm fluoroscopy, and pulmonary nodules were resected with an endostapler (82). As a result, the ICG imaging guided pulmonary nodule removal was 100% in the 24 patients. However, due to the nature that ICG is a non-targeted probe with suboptimal emission characteristics for NIR-II detection, it cannot distinguish between benign and malignant tumors and can be accumulated by other tissues, which may cause false positives (83). This disadvantage was shown by Tummers et al. in a study on oncologic procedures of fluorescence-guided surgery with a high false-positive rate (62%) for the application of ICG (84).

As mentioned, PSMA is a type II integral membrane glycoprotein that shows elevated expression in the majority of PCa cells (85). It is a marvelous target for image-based intraoperative guidance for accurate tumor identification due to three reasons. First, PSMA is exclusively overexpressed on tumor cells of primary PCa lesions, while its expression is consistently low in healthy prostate tissues. Second, the expression level of PSMA correlates with the Gleason grading of PCa lesions. Last, binding with the extracellular domain of PSMA normally induces internalization of the imaging agents, resulting in substantial retention of the labeling inside the tumor lesions (86). PSMA radio-guided surgery (PSMA-RGS) has been approved to be an efficient method for resecting primary tumors and metastatic lymph nodes (87).

Intravenous injection of 111In-labeled PSMA-I&T to PCa patients during surgery has enabled the visualization of metastatic lymph nodes, which are normally unobtrusive and unrecognizable (88). Clinically, in patients undergoing salvage lymphadenectomy, the 111In-PSMA-RGS allows intraoperative detection of small lymph node metastases with high specificity and sensitivity (89). In addition, the 111In-PSMA-617 tracer also helped surgeons deal with unidentified pelvic lymph node metastases in situ during the surgery and resected ex vivo tissue samples to prove the successful removal (90). Except for 111In-labeled PSMA ligands for detecting metastases of PCa, Robu et al. explored another ligand named 99mTc-mas3-y-nal-k(Sub-KuE) for PCa imaging (91). Clinically, 99mTc is preferable to 111In, as it provides low-energy gamma rays that are more suitable for RGS due to the high sensitivity of gamma probes for collimation, and 99mTc has a much shorter half-life (6 hours) than 111In (2.8 days), resulting in faster pharmacokinetics and lower radiation exposure for both patients and nuclear medical professionals (92).

The hybrid tracer ICG-99mTc-nanocolloid combining fluorescent dye ICG with the radioactive 99mTc-nanocolloid, not only offers preoperative sentinel node (SN) mapping, but also provides better optical surgical guidance (93). The tracer shows no leakage into the surgical field and provides a depth estimation (>0.5–1 cm) of the nodal location, which helps to prevent surgery-related side effects (94). Another study also approved the value of the hybrid tracer in the surgical identification of lymph nodes (95). Overall, one obvious advantage of the ICG-99mTc-nanocolloid tracer is that it can enable visualization of any tumor lesion or SN in their anatomical context during surgery, and its application is independent of the order of resection (primary tumor or metastasis) or the surgical setting (open or laparoscopic) (94).



5.2 Novel methods for nerve protection in PCa surgery

Iatrogenic nerve injuries are common in prostatectomy, 20% of postoperative patients suffer from urinary incontinence, and many patients experience erectile dysfunction, which can only be partially mitigated by existing nerve-sparing surgical techniques. It is challenging to intraoperatively identify the specific location of buried small peripheral nerves (PNs), but the endeavor to find new ways to protect PNs is significant (96, 97). To meet the clinical need, an ideal method for imaging PNs during the intraoperative procedure should possess the following features. First, a high specificity and a good signal-to-noise ratio are essential. Second, real-time and long-term imaging is vital for PNs to be recognized and retained during surgery (98). Third, the imaging probes should have good biosafety. Last, the cost should be low enough for clinical use (97). Neurovascular dyes such as ICG and fluorescein have been used to highlight PNs in clinical settings (96). It has been shown that fluorescein was applied to visualize abnormal peroneal nerves in ganglion cyst excision procedures (99). Recently, ICG has been used to help protect critical functional structures in prostatectomy by enabling the identification of all neurovascular bundles without increasing the operative time or complications (Figure 4) (80). These promising data indicate that iatrogenic injury can be prevented, and the operative time can be shortened with the help of fluorescence-guided imaging. According to the clinical study performed by Jin et al., in patients with ICG injected 24 hours prior to surgery, the pelvic autonomic nerves can be intraoperatively seen clearly under a NIR ray (Figure 5) (100). Due to the ubiquity of such fluorophores, it is foreseeable that surgeons will attempt the fluorescent nerve-targeting agents more frequently in their clinical practice (96). However, the agents can have light penetrance through the tissue of greater than 5-6 mm. Such a deep penetration causes increased light scatter, thus obscuring the specific location of PNs. In addition, ICG is not a targeted dye, and it is not able to distinguish the nerve bundle from other tissues. For example, in the surgery for deep endometriosis, the ischemic lesion, the hypogastric nerve, the pelvic plexus, and the ureter were all dyed by ICG (101).




Figure 4 | Prostate vascularization and neurovascular bundles by ICG. Reprinted with permission from Mangano et al. (80). Copyright © 2017 Wichtig Publishing.






Figure 5 | Autonomic pelvic nerves under the fuorescence (A) and under the white light (B), the sacral plexus of autonomic pelvic nerves are displayed very clearly under NIR ray (white arrows) but not clearly under white light. Reprinted with permission from Jin et al. (100). Copyright ©The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.



Extensive studies have reported that PCa tumor progression is favored by innervation. Magnon et al. reported that the formation of autonomic nerve fibers in the prostate gland regulates the development and dissemination of PCa (102). Therefore, biomarkers for innervation and effective visualization methods are necessary to assess nerve density in PCa. Nerve peptide 41 (NP41) has been found as a marker to highlight peripheral nerve tissue, and fluorescent-labeled NP41 can be visualized through its binding to the motor and sensory nerves in live mice (103, 104). Hingorani et al. reported that NP41 had the best nerve-to-non-nerve contrast compared to other peptides like NP38, 40, and 42, and the average nerve-to-non-nerve signal ratio increases by 17% under fluorescent imaging compared to white light (105). NP41 is considered an excellent agent for in vivo tracking of nerves in rodents. Since NP41 specifically targets nerves in PCa, it has the potential for visualizing nerve density and tumor innervation in PCa. The nanoprobes named propranolol-loaded-superparamagnetic iron oxide (SPIO)-NP41 nanoparticles (PSN NPs) have been used to assess the nerve density of PCa with high sensitivity and high specificity in mice (106). Since PSN NPs had an exclusive accumulation at the tumor site, benefiting the targeted delivery of propranolol, this study showed that PSN NPs inhibited PCa tumor growth by blocking the interaction between tumor cells and sympathetic nerves in the neural tumor microenvironment.

Nevertheless, existing data on applying NP41 to ex vivo human nerve tissue provided little contrast compared to muscle (105). Hence, human NP401 (HNP401), a peptide that binds to and highlights human autonomic and motor/sensory nerves, was identified for improving the labeling of human nerves, especially for the human prostate gland, suggesting its potential guidance role in the prostatectomy for PCa patients.




6 Expectation

Accurate and sensitive imaging using molecular probes is a promising and impactful method for early diagnosis of PCa. In addition, with molecular imaging-based intraoperative guidance, surgeons can achieve precise resection of the malignant PCa tumor as well as the metastatic lymph node, which is the trend in precision medicine. During prostatectomy, including robot-assisted radical prostatectomy (RARP), to maintain the function of the urinary system and erection postoperatively, fluorescent dye or labeled peptide hold great value in enabling visualization and protecting nerve bundles. Although each has disadvantages and limitations, all the novel methods discussed above are essential for developing early diagnosis and effective therapy of PCa. With endless exploration and research, more tracers with higher efficiency will appear to improve the precision theranostic of PCa.
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   Objective

The objective of this study was to evaluate the value of biphasic contrast-enhanced computed tomography (CECT) in the differential diagnosis of metastasis and lipid-poor adenomas (LPAs) in lung cancer patients with unilateral small hyperattenuating adrenal nodule.


 Materials and methods

This retrospective study included 241 lung cancer patients with unilateral small hyperattenuating adrenal nodule (metastases, 123; LPAs, 118). All patients underwent plain chest or abdominal computed tomography (CT) scan and biphasic CECT scan, including arterial and venous phases. Qualitative and quantitative clinical and radiological characteristics of the two groups were compared using univariate analysis. An original diagnostic model was developed using multivariable logistic regression, and then, according to odds ratio (OR) of the risk factors of metastases, a diagnostic scoring model was developed. The areas under the receiver operating characteristic curves (AUCs) of the two diagnostic models were compared by DeLong test.


 Results

Compared with LAPs, metastases were older and showed more frequently irregular in shape and cystic degeneration/necrosis (all p < 0.05). Enhancement ratios on venous (ERV) and arterial (ERA) phase of LAPs were noticeably higher than that of metastases, whereas CT values in unenhanced phase (UP) of LPAs were noticeably lower than that of metastases (all p < 0.05). Compared with LAPs, the proportions of male and III/IV clinical stage and small-cell lung cancer (SCLL) were significantly higher for metastases (all p < 0.05). As for peak enhancement phase, LPAs showed relatively faster wash-in and earlier wash-out enhancement pattern than metastases (p < 0.001). Multivariate analysis revealed age ≥ 59.5 years (OR: 2.269; p = 0.04), male (OR: 3.511; p = 0.002), CT values in UP ≥ 27.5 HU (OR: 6.968; p < 0.001), cystic degeneration/necrosis (OR: 3.076; p = 0.031), ERV ≤ 1.44 (OR: 4.835; p < 0.001), venous phase or equally enhanced (OR: 16.907; p < 0.001 or OR: 14.036; p < 0.001), and clinical stage II or III or IV (OR: 3.550; p = 0.208 or OR: 17.535; p = 0.002 or OR: 20.241; p = 0.001) were risk factors for diagnosis of metastases. AUCs of the original diagnostic model and the diagnostic scoring model for metastases were 0.919 (0.883–0.955) and 0.914 (0.880–0.948), respectively. There was no statistical significance of AUC between the two diagnostic model (p = 0.644).


 Conclusions

Biphasic CECT performed well diagnostic ability in differentiating metastases from LAPs. The diagnostic scoring model is easy to popularize due to simplicity and convenience.




 Keywords: small hyperattenuating adrenal nodules, metastases of lung cancer, lipid-poor adenomas, biphasic contrast enhanced CT, diagnostic scoring model 

  1. Introduction.

Worldwide, the incidence and mortality rates of lung cancer rank first for men and second for women (1). The high mortality rate may be associated with the development of metastasis. A frequent site of metastatic spread is the adrenal glands (2). The most common malignant tumor involving the adrenal gland is metastasis, which is also the second most common adrenal tumor after adenoma. Previous studies have showed that lung cancer is the most common primary cancer of adrenal metastases (3–5); meanwhile, approximately half of adrenal tumors in patients with lung cancer were metastases (6). The qualitative diagnosis of adrenal lesions in patients with lung cancer is therefore critical to stage, direct therapy, and predict prognosis of lung cancer.

Based on endocrine function tests, clinical symptoms, and radiologic characteristics, a specific diagnosis of adrenal nodules can be achieved in many patients with lung cancer. However, when patients have nonfunctioning and indeterminate (unilateral small [long diameter, LD] ≤ 3cm) hyperattenuating [CT values in UP >10 HU]) adrenal nodules based on conventional chest or abdominal biphasic CECT, making a correct diagnosis of metastases immediately without additional diagnostic steps is challenging because the imaging features of metastases overlap with those of LPAs (7–9), especially in patients with lung cancer, and then additional confirmatory steps, such as adrenal washout CT, MRI, PET/CT, and biopsy, may be required (10–14). Although adrenal washout CT used for the characterization of adrenal nodules has relatively high sensitivity and specificity (15), it will add additional radiation and medical costs to patients, and the delay scan time is too long (10). Moreover, previous studies reported that the enhanced washout ratios of some adrenal metastases are similar to that of LPAs, leading to misdiagnosis (16). As the most sensitive examination, chemical-shift MRI still indicates indeterminate findings in approximately 10–20% of LPAs, and not all patients have high-quality MRI images (17). For PET/CT, the (18F)-fluorodeoxyglucose uptake in adenomas and metastases has a certain overlap (18). Additionally, PET/CT is not generally utilized in most institutions, and several days of waiting often occur. To achieve accurate diagnosis of indeterminate adrenal nodules, most doctors will choose invasive diagnostic procedures, such as biopsy or surgical resection, which may result in unnecessary patient anxiety and over-diagnosis and some complications (19).

Advanced image analysis technique such as radiomics has been proved to be able to differentiate adrenal tumors, especially benign and malignant lesions. However, radiomics is not used routinely in clinical practice, because it requires computational expertise and its reliability is still uncertain. Thus, there is a need for the development of simple and non-invasive rule-in or rule-out method for effectively characterizing these indeterminate adrenal nodules in lung cancer patients who await treatment for a potentially fatal disease.

Foti et al. (20) demonstrated that most adrenal metastases had a slower wash-in characteristic from biphasic CECT than adenomas. Lee et al. (21) also proved that wash-in characteristics from unenhanced to portal phase can effectively distinguish hyperattenuating adrenal tumors in lung cancer patients as to wash-out features on adrenal CT. These studies indicate that early biphasic CECT (it is equivalent to the conventional chest or abdominal biphasic CECT) without 15-min delay scan has the ability to differentiate whether adrenal lesions are metastasis or benign. In this way, not only the scanning time can be greatly reduced by omitting the 15-min delay scan but also no specific software or hardware is required to calculate the wash-in parameters based on biphasic CECT. However, previous studies only paid close attention to individual characteristic, and other quantitative and qualitative radiological characteristics were not taken into consideration for characterizing adrenal lesions. In addition, clinical stage and histologic subtypes of lung cancer were not analyzed. Moreover, data on specific “indeterminate adrenal nodules” are still very limit. Comprehensive differential diagnostic criteria may be required for “indeterminate adrenal nodules” in the characterization of lesions as metastases of lung cancer. Therefore, the purpose of the present study was to investigate whether biphasic CECT could distinguish between metastases and LAPs for indeterminate adrenal nodules in lung cancer patients.


 2. Materials and methods.

 2.1. Patients.

This study had been approved by Tangshan People’s Hospital Institutional Ethics Committee. Patients who met the following inclusion criteria from February 2010 to August 2022 were included: (1) patients with a history of histopathologically confirmed lung cancer before or after undergoing chest or abdominal biphasic CECT; (2) indeterminate adrenal nodules: unilateral small (1 cm ≤ LD ≤ 3 cm) hyperattenuating (CT values in UP > 10 HU) adrenal nodules. There were two main reasons for the use of the cutoff of 1 cm for LD of adrenal tumor: (a) to increase confidence in the presence of a truly focal adrenal tumor and (b) to allow sufficient tumor volume for reliable quantitative measurement techniques; (3) complete clinical and imaging information. There were three eligibility criteria for diagnosing metastases: (1) histologically confirmed resection specimen or needle biopsy (n = 3), (2) new occurrence of a lesion in the adrenal gland on follow-up CT (n = 42), and (3) the total sum of the nodule of the same patient grew by 20% within 6 months (22) (n = 78). There were two eligibility criteria for diagnosing LAPs: (1) surgically excised and histopathological assessment (n = 22) and (2) stability in size after at least a 1 year interval (n = 96; mean follow-up time = 813 days ± 301). Finally, this study comprised 123 metastases and 118 LAPs ( Figure 1 ).

 

Figure 1 | Flowchart shows the patient selection process, along with the inclusion and exclusion criteria. 




 2.2. Image protocol.

Owing to retrospective analysis, this study used two CT scanners, Ingenuity core 64 (Philips Healthcare) and GE Discovery CT750 HD (GE Healthcare). All the patients undergone chest or abdominal plain and biphasic CECT scan, including arterial (approximately 30 s) and venous phase (approximately 60 s) after 80–100 ml of non-ionic contrast agent iodopamil (350 mg I/ml) was infused with a high-pressure syringe at a rate of 3.5 ml/s. The scanning parameters and image reconstruction are listed in  Supplementary Table S1 .


 2.3. Imaging analysis.

The short diameter (SD), LD, right or left, shape (regular: round or oval; irregular: unrounded), cystic degeneration/necrosis (low-density region without enhancement), CT values in UP, arterial phase (AP), and venous phase (VP) of adrenal nodules were independently measured and evaluated by two radiologists with 5 and 9 years of abdominal CT diagnosis experience on thin-sliced CT images. They were both blind to pathological results and clinical information. Disagreement was settled by consensus. LD and SD should be measured on the largest cross section of the adrenal nodules. When measuring the CT value, the region of interest (ROI) should include two-thirds of the maximum axial area of the nodules, excluding adjacent fat. In addition, we should measure three times for the attenuation values and record the average value of these values as the final result. The calculation formulas of ERA and ERV were ERA = (CT values in AP – CT values in UP)/CT values in UP and ERV = (CT values in VP –CT values in UP)/CT values in UP, respectively. We defined the phase in which maximum enhancement level was 5 HU greater than another phase as the peak enhancement phase, otherwise, equally enhanced when the difference of enhancement level was less than 5 HU between arterial and venous phase (23, 24).


 2.4. Statistical analysis.

All data were analyzed using SPSS 21, R software (version 4.2.1; http://www.rproject.org), and MedCalc 20.0.22. The χ2 test or Fisher’s exact test was used to compare categorical variables and the results were expressed as proportions; while continuous variables were compared using the Mann–Whitney U test or student’s t test and the results were described in mean ± standard deviation(consistent with the normal distribution) or median with interquartile range (inconsistent with the normal distribution). Every statistically significant variable was analyzed by receiver operating characteristic curve (ROC) and then the best cutoff values of quantitative variables were obtained by Youdex index for maximum specificity and sensitivity. Subsequently, the risk factors for diagnosing metastases were identified by binary logistic regression analysis. The AUC and nomograms of the original diagnostic model based on the risk factors for metastases were used to assess the diagnostic performance. According to the best cutoff values, we dichotomized the quantitative variables and then involved all risk factors into the multivariate analysis. If the risk factor was negative, the point was zero; if the risk factor was positive, the point was rounding of lnOR. At last, a diagnostic scoring model was established according to the approximate value of lnOR of risk factors for metastases. The AUC and scoring table of the diagnostic scoring model were used to show the differential diagnosis ability. DeLong test was used for the comparison between AUCs. A p < 0.05 was treated as significant.



 3. Results.

 3.1. Comparison of clinical and radiological features.

The mean patient age of metastases (60.9 ± 8.4 years) was significantly older than that of LAPs (55.8 ± 11.7 years) (p < 0.001); 75.61% of metastases (93/123) were male, whereas 39.83% of LAPs (47/118) (p < 0.001); 16.26% of metastases (20/123) showed irregular in shape whereas 5.93% of LAPs (7/118) did (p = 0.011). Cystic degeneration/necrosis was found in 25.2% of metastases (31/123) and 11.9% of LAPs (14/118), respectively (p = 0.008). The mean CT values in UP of metastases (37.49 ± 7.63 HU) was significantly higher than that of LAPs (27.38 ± 9.83 HU) (p < 0.001). The average values of ERA and ERV of metastases were 0.77 and 1.05, respectively, which were notably lower than those of LAPs (ERA: 1.60; ERV: 2.03) (all p < 0.001). LD, SD, Lesion location, CT values in AP, and CT values in VP were no significant differences between metastases and LAPs (all p > 0.05). More than half of LAPs (61.02%, 72/118) and metastases (60.98%, 75/123) were in venous phase at peak enhancement level. However, 22.03% (26/118) of LAPs were in arterial phase at peak enhancement level and only 3.25% (4/123) of metastases. While up to 35.77% (44/123) of metastases showed equally enhanced, which higher than that of LAPs. On the whole, the peak enhancement phase had significant difference between metastases and LAPs (p < 0.001). The highest proportion of metastases about clinical stage of lung cancer is stage IV (55.28%, 68/123), and up to 91.87% (36.59% + 55.28%) of metastases showed stages III and IV, which was significant higher than that of LAPs (61.02%, 35.60% + 25.42%); The whole clinical stage of lung cancer between LAPs and metastases was significant difference (p < 0.001). The proportion of small-cell lung cancer in metastases was 34.1% (42/123), which was significant higher than that of LAPs (only 8.5%, 10/118), (p < 0.001) ( Supplementary Table S2 ).

The AUC values for quantitative and categorical variables with statistical significance were obtained by ROC analysis. Of these variables, the AUC of ERV was higher than that of age, CT values in UP, ERA, gender, shape, cystic degeneration, histology of lung cancer, peak enhancement phase, and clinical stage of lung cancer ( Table 1 ;  Figure 2 ). The cutoff values for age, CT values in UP, ERA, and ERV were 59.5year, 27.5 HU, 1.04, and 1.44, respectively ( Table 1 ).

 Table 1 | Individual variables obtained from ROC analysis for differentiation of LAPs from metastases. 



 

Figure 2 | ROC analysis using significant individual variables for differentiation of metastases from LAPs. The AUC of age, CT values in UP, ERA, ERV, gender, shape, cystic degeneration, histology of lung cancer, peak enhancement phase, and clinical stage of lung cancer was 0.630, 0.789, 0.795, 0.805, 0.679, 0.552, 0.567, 0.628, 0.651, and 0.710, respectively. ERV showed a higher AUC than other individual variables. 




 3.2. Multivariate logistic regression analysis.

Ten variables—age, gender, CT values in UP, shape, cystic degeneration, ERA, ERV, peak enhancement phase, clinical stage of lung cancer, and histology of lung cancer based on univariate analysis—were further analyzed using multivariate logistic regression. Seven variables—age, gender, CT values in UP, cystic degeneration, ERV, peak enhancement phase, and clinical stage of lung cancer—were finally supposed to risk factors for differential diagnosis of metastasis and LAPs, and the original diagnostic model had high AUC of 0.919 (0.883–0.955) with ideal sensitivity (83.74%), specificity (88.98%), and accuracy (86.31%) ( Figure 3 ). According to the nomogram, the probability of metastases was determined by mapping “Total Points” obtained by adding the points of each feature to the “Risk of Metastases” in the bottom of  Figure 4A ; the calibration curve for nomogram was showed in  Figure 4B .

 

Figure 3 | The AUCs of the original diagnostic model and the diagnostic scoring model for metastases were 0.919 (0.883–0.955) and 0.914 (0.880–0.948), respectively. There was no statistical significance of AUC between the two diagnostic model (P = 0.644). As for the diagnostic scoring model, a cutoff value of ≥ 9 points yielded a sensitivity of 89.43% and a specificity of 76.27% for diagnosis of metastases. 



 

Figure 4 | The nomogram of the original diagnostic model (A). The calibration curve for nomogram (B). 



  Table 2  showed the OR of all risk factors. Age ≥ 59.5years (OR: 2.269; 95% CI 1.037–4.963; p = 0.04), male (3.511; 95% CI 1. 1.570–7.848; p = 0.002), CT values in UP ≥ 27.5 HU (OR: 6.968; 95% CI 2.580–18.824; p < 0.001), cystic degeneration/necrosis (OR: 3.076; 95% CI 1.110–8.521; p = 0.031), ERV ≤ 1.44, (OR: 4.835; 95% CI 2.006–11.694; p < 0.001), venous phase or equally enhanced (OR: 16.907; 95% CI 4.319–66.182; p < 0.001 or OR: 14.036; 95% CI 3.429–57.455; p < 0.001), and clinical stage II or III or IV (OR: 3.550; 95% CI 0.496–25.433; p = 0.208 or OR: 17.535; 95% CI 2.959–103.905; p = 0.002 or OR: 20.241; 95% CI 3.532–116.007; p = 0.001) were all risk factors for the diagnosis of metastases. According to the OR of all hazard variables, a diagnostic scoring system was established and the specific score assignment was 1 point for age ≥ 59.5 years and male and cystic degeneration/necrosis and stage II, 2 points for CT values in UP ≥ 27.5HU and ERV ≤ 1.44, and 3 points for venous phase or equally enhanced and stage III or stage IV. The diagnostic scoring model also performed relatively high AUC of 0.914 (0.880–0.948) with a sensitivity of 79.67%, a specificity of 87.29%, and an accuracy of 83.40%. There was no statistical significance of AUC between the two diagnostic model (p = 0.644), which indicated that the diagnostic scoring model was simplified but did not affect the discriminative accuracy of metastases ( Figure 3 ).  Table 3  showed the diagnostic performances with the best cutoff values. The sensitivity was 79.67% and the specificity was 87.29% when the best cutoff value ≥ 10 points. In addition, LAPs was highly hinted with the possibility as high as 93.6% when the nodule’s score was less than 8 points; metastases was highly hinted with the possibility as high as 94.7% if the score was equal to or greater than 12 points ( Table 3 ). Meanwhile, the AUC of the diagnostic scoring model was significantly higher than every individual variables for differentiate metastases from LAPs ( Table 4 ). Examples are given in  Figures 5 ,  6 .

 Table 2 | Multivariate regression analysis for identifying metastases. 



 Table 3 | Diagnostic performance of the diagnostic score model with different cutoffs for metastases. 



 Table 4 | Comparison of performance of the diagnostic scoring model and individual variables for differentiate metastases from LAPs. 



 

Figure 5 | Adrenal adenoma in a 72-year-old woman. Pulmonary window of primary nonsmall-cell lung cancer (stage IV) (A) and unenhanced phase (B), arterial phase (C), and venous phase (D) of adrenal nodular showed a 13 mm × 11 mm tumor in left adrenal. Attenuation values on unenhanced, arterial, and venous phase were 39, 127, and 101 HU, respectively. The enhancement ratio on venous phase was 1.59. No cystic degeneration was seen within the nodular. Peak enhancement phase was arterial phase. The nodular got a score of 6 points, indicating diagnosis of adenoma. 



 

Figure 6 | Adrenal metastases in a 66-year-old man. Pulmonary window of primary small-cell lung cancer (stage IV) (A) and unenhanced phase (B), arterial phase (C), and venous phase (D) of adrenal nodular showed a 25 mm × 23 mm tumor in left adrenal. Attenuation values on unenhanced, arterial, and venous phase were 36, 65, and 64 HU, respectively. The enhancement ratio on venous phase was 0.78. No cystic degeneration was seen within the nodular. Peak enhancement phase was equally enhanced. The nodular got a score of 12 points, indicating diagnosis of metastases. 





 Discussion

Globally, lung cancer is the main cause of cancer death (25). Almost half of lung cancer patients are found to have distant metastasis at the time of diagnosis and a frequent site of metastatic spread is the adrenal gland. Meanwhile, adrenal adenomas also have a high frequency (approximately 9%) in general population. No single imaging examination method can be regarded as the gold standard based on current studies to differentiate metastases from adenomas, especially in lung cancer cases (26). Owing to demanding time-consuming and computer expertise for the analysis of high-dimensional features that cannot be recognized by the naked eye, radiomics, as advanced image analysis techniques, has not been widely used in clinical practice. Thus, the examination and follow-up of adrenal nodules still rely mainly on the conventional imaging characteristics by visual evaluation. We evaluated the value of traditional biphasic CECT in differentiation of metastases from LAPs in this study and found that age, gender, cystic degeneration/necrosis, CT values in UP, ERV, peak enhancement phase, and clinical stage of lung cancer were risk factors for distinguishing metastases. The diagnostic scoring model established by using the above risk factors had robust ability to distinguish metastases from LAPs with AUC of 0.914 (0.880–0.948). Furthermore, compared with the original diagnostic model (or nomogram), the diagnostic scoring model (or table) had considerable differential diagnostic ability and great prospects in clinical implication because of its more simple, convenient, and accurate in the use.

We have integrated the conventional clinical and imaging variables to improve the differential diagnostic ability of biphasic CECT. Age, gender and clinical stage of lung cancer, as clinical risk variables, were all independent factors for differentiating metastases of lung cancer from LAPs in our study. Compared with LAPs, patients with metastases were more likely to be male and older. Male and a cutoff value of ≥ 59.5 years showed a higher probability for diagnosing metastases of lung cancer, which may be related to the selection of lung cancer as the primary cancer (27). Among the adrenal metastases of lung cancer, the proportions for clinical stages I and II were only 1.63% and 6.5%, respectively, whereas 36.59% and 55.28% for stages III and IV, respectively. The results were consistent with prior study (28). The later the clinical stage of lung cancer was, the higher probability adrenal nodular was to be diagnosed as metastases.

CT values in UP, the presence of cystic degeneration or necrosis, ERV, and peak enhancement phase, as CT imaging risk variables, were all independent factors for differentiating metastases of lung cancer from LAPs in our study. Compared with LAPs, metastases showed significantly higher CT values in UP and a cutoff of ≥ 28.5 HU with an OR of 1.179 in our study, consistent with the finding of Ho et al. (29), who found that there was no statistical significance of CT values in UP between benign and malignant adrenal lesions. Additionally, cystic degeneration or necrosis, reflecting the biological behavior and structural features of masses to a certain extent, was another key variable for differentiation between metastases and LAPs. The probability of cystic degeneration or necrosis in metastases was higher than LAPs, in line with previous studies (29, 30). Song et al. showed cystic degeneration or necrosis had a sensitivity of 20–55% and a specificity of 86–93% in distinguishing adrenal metastatic nodules from benign lesions (mainly adenomas) (30). The wash-in characteristics of adrenal lesions could be reflected by ERA and ERV. The ERA and ERV of metastases were notably lower than that of LAPs, and ERV was a hazard characteristic for differentiating metastasis proved by multivariate analysis (OR: 4.835; 95% CI: 2.006–11.694) in our study. The results were consistent with Lee et al. (21) who revealed that ERV of lung cancer metastases was notably lower than that of hyperattenuating benign lesions. However, Foti et al. (20) reported that the ERV of adenomas was not significantly different from metastases. The contradiction between studies may be due to differences in study cohort. First, previous studies had relatively small sample size. Second, all lesions were small (LD < 3 cm) and adenomas were all LAPs and metastases were all of lung cancer in our study. 61.02 and 22.03% of LAPs performed peak enhancement level in venous phase and arterial phase in our study, respectively, whereas 60.98% of metastases performed peak enhancement level in venous phase and only 3.25% in arterial phase and up to 35.77% equally enhanced, meaning that LAPs show relatively faster wash-in and earlier wash-out enhancement pattern than metastases, in line with previous studies (20, 31). Foti et al. (20) found that adenomas had significantly faster wash-in enhancement pattern than metastases. An et al. (31) also found up to 68.2% of LAPs had peak enhancement level in venous phase. Further studies are necessary for the difference of peak enhancement phase between LAPs and metastases of lung cancer on biphasic CECT.

Previous studies only paid close attention to individual CT radiological characteristics for differentiating metastases from adenomas. We discovered that the diagnostic accuracy was remarkably improved by combining these clinical and imaging characteristics, although these characteristics have low diagnostic specificity when used alone. The advantage of this research was that we identified independent risk factors based on large sample by multivariate analysis and established a diagnostic scoring model based on the OR by integrating above risk features. The diagnostic scoring mode performed well in differential diagnosis of metastases from LAPs with an AUC of 0.914 (0.880–0.948), which was significantly higher than that of each individual variable (p all < 0.05). In addition, although the performances of the original diagnostic model (nomogram) and the diagnostic scoring model (table) were similar (p > 0.05), we needed to obtain the points of each risk factor by visual comparison when using nomogram to predict the risk of metastases, which was prone to errors, resulting in inaccurate total points and inaccurate final prediction probability. We could directly get the points of each risk factor in the diagnostic scoring table without visual comparison. Therefore, the scoring table is more simple, convenient, and accurate in the use than nomogram, which provides an additional choice for peers.

This study had several limitations. First, our study may have some selection bias because of the retrospective nature. Second, two CT scanners and chest or abdominal CECT were used owing to the retrospective nature of our study. However, it can be considered as the strength of this research, because it conforms to the fact in work practice and provides certain potential generalizability. Third, because of lacking the delay phase, we did not estimated washout features.

In a word, biphasic CECT had well-diagnostic ability in differentiating metastases from LAPs. Age, gender, the presence of cystic degeneration, CT values in UP, ERV, peak enhancement phase, and clinical stage of lung cancer were independent risk factors for distinguishing metastases. A diagnostic scoring model integrating these risk factors with an AUC of 0.914 is easy to popularize due to simplicity and convenience.
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   Background

This study aimed to establish an effective model for preoperative prediction of tumor deposits (TDs) in patients with rectal cancer (RC). 


 Methods

In 500 patients, radiomic features were extracted from magnetic resonance imaging (MRI) using modalities such as high-resolution T2-weighted (HRT2) imaging and diffusion-weighted imaging (DWI). Machine learning (ML)-based and deep learning (DL)-based radiomic models were developed and integrated with clinical characteristics for TD prediction. The performance of the models was assessed using the area under the curve (AUC) over five-fold cross-validation.


 Results

A total of 564 radiomic features that quantified the intensity, shape, orientation, and texture of the tumor were extracted for each patient. The HRT2-ML, DWI-ML, Merged-ML, HRT2-DL, DWI-DL, and Merged-DL models demonstrated AUCs of 0.62 ± 0.02, 0.64 ± 0.08, 0.69 ± 0.04, 0.57 ± 0.06, 0.68 ± 0.03, and 0.59 ± 0.04, respectively. The clinical-ML, clinical-HRT2-ML, clinical-DWI-ML, clinical-Merged-ML, clinical-DL, clinical-HRT2-DL, clinical-DWI-DL, and clinical-Merged-DL models demonstrated AUCs of 0.81 ± 0.06, 0.79 ± 0.02, 0.81 ± 0.02, 0.83 ± 0.01, 0.81 ± 0.04, 0.83 ± 0.04, 0.90 ± 0.04, and 0.83 ± 0.05, respectively. The clinical-DWI-DL model achieved the best predictive performance (accuracy 0.84 ± 0.05, sensitivity 0.94 ± 0. 13, specificity 0.79 ± 0.04).


 Conclusions

A comprehensive model combining MRI radiomic features and clinical characteristics achieved promising performance in TD prediction for RC patients. This approach has the potential to assist clinicians in preoperative stage evaluation and personalized treatment of RC patients.




 Keywords: deep learning, rectal cancer, tumor deposit, magnetic resonance imaging, diffusion-weighted imaging 

  1. Introduction.

Colorectal cancer (CRC) is the third most common malignancy and second leading cause of death worldwide. In particular, rectal cancer (RC) accounts for approximately one-third of CRC (1). A tumor deposit (TD) is defined as a discontinuous cancerous nodule located in the mesenteric fascia without obvious nodal or vascular features. The median incidence of TDs in CRC patients is approximately 21.3% (2). Positive TDs can elevate clinical stages of RC patients. RC patients with positive TDs are classified as N1c and treated as clinical stage III, in the absence of nodal metastases. The efficacy of adjuvant chemotherapy in stage III colon cancer had been widely recognized in previous studies, For the TD patients, with the receipt of chemotherapy had decreased risk of cancer-specific mortality compared with those not (3). However, only 52% of TD-positive and lymph node (LN)-negative patients receive preoperative adjuvant chemotherapy (4). Therefore, early identification of TDs is important and valuable for stage evaluation and treatment planning.

Magnetic resonance imaging (MRI) is considered the most reliable imaging modality for the initial pretreatment evaluation of patients with RC, including the assessment of TN staging, circumferential resection margin (CRM), and extramural vascular invasion (EMVI). Moreover, it can assist in the clinical preoperative management of RC patients, determination of surgical scope, and assessment of treatment response to neoadjuvant therapy (5, 6). However, MRI is limited in determining tumor spread in the mesorectum. Gröne et al. used a small diameter of 5 mm as the statistical threshold to determine N staging. With this value, the sensitivity, specificity, and accuracy of MRI staging were 72%, 45.7%, and 56.7%, respectively (7). Langman et al. showed that mesenteric nodules <3 mm had a 28% probability of malignancy (8). These studies focused on the presence of tumor spread in mesorectal nodules, either LN metastasis or TDs. However, the evaluation of malignant LNs alone is insufficient to reflect the actual spread of RC in the mesentery. According to the current European Society for Medical Oncology (ESMO) preoperative risk assessment criteria, patients with TDs are classified into a high-risk group with a worse prognosis (9). A previous study confirmed that the presence of TDs is an independent risk factor for the prognosis of patients with RC (10). An analysis of two prognostic studies in N0 and N1c stages showed a significant difference in the five-year survival rates (N0, 91.5%; N1c, 37%) (11). Therefore, preoperative determination of tumor deposition status in patients with RC is essential for optimal treatment.

Currently, the presence of TDs is determined by pathological analysis after radical tumor resection. However, this method is invasive and can be performed only postoperatively. According to a previous study, MRI can help preoperatively and identify TDs and LN metastases, as these lesions appear to have distinguishable imaging characteristics on MRI (12). However, TDs are usually less than 5 mm in diameter, and identifying such small nodules and accurately assess the characteristics of the nodule can be challenging for radiologists who are already overburdened in reading MRI in daily practice.

By extracting vast amounts of quantitative features from imaging and providing non-visual information that indicates the biological behavior of tumors, radiomics has gained popularity for the non-invasive prediction of clinical or prognostic features of tumors, such as T staging of RCs, LN status, vascular and nerve invasion, distant metastasis, and pathological complete response to neoadjuvant chemotherapy (13–20). Meanwhile, artificial intelligence including deep neural networks has demonstrated high performance in the analysis of medical images (21–23), providing cancer risk assessment, recurrence, and survival predictions with higher accuracy than human experts. Recently, several radiomic models have been developed based on ultrasound (US), computed tomography (CT), and MRI to preoperatively predict TDs in patients with RC (10, 24, 25). However, the sample sizes in these studies were relatively small. Furthermore, the MRI study carried out by Yang et al. (25) only extracted the radiomic features from high-resolution T2 weighted (HRT2) MRI, whereas functional MRI, such as diffusion-weighted imaging (DWI), carries more information on the heterogeneity of tumors. Currently, there is a lack of functional MRI-based deep-learning (DL) radiomics research in this field.

This study aimed to develop an MR-based DL radiomic model for preoperative TD prediction in a larger cohort with higher prediction accuracy. This model extracts radiomic features from both HRT2 and DWI images and integrates clinical factors into TD prediction.


 2. Methods.

 2.1. Patient characteristics.

The records of 784 consecutive RC patients who underwent preoperative MRI and radical surgery between 2013 and 2020 at Sir Run Run Shaw Hospital affiliated with Zhejiang University School of Medicine were reviewed retrospectively. The local institutional review board approved this study and provided a waiver of consent. The inclusion criteria were: (a) pathologically confirmed primary RC; (b) no neoadjuvant chemotherapy or radiotherapy before surgery; and (c) tumor visible in at least three sequential slices of HRT2 MRI. The exclusion criteria were as follows: (a) inadequate MRI quality due to intractable artifacts, including HRT2 (n = 113) and DWI (n = 78); (b) tumors not visible in HRT2 images (n = 14); (c) carcinoembryonic antigen (CEA) and carbohydrate antigen 19-9 (CA19-9) levels not obtained (n = 44); (d) lack of tissue differentiation grading in pathology reports (n = 5); and (e) co-occurrence of other digestive system malignancies (n = 30). Ultimately, 500 patients were enrolled in this study ( Figure 1 ).

 

Figure 1 | Flowchart of patient selection and TD distribution in the study. TD, tumor deposition; CEA, carcinoembryonic antigen; CA19-9, carbohydrate antigen 19-9. 




 2.2. Clinical characteristics and pathological criteria.

Clinical characteristics, including sex, age, body mass index (BMI), and carbohydrate antigen 19-9 (CA19-9) and carcinoembryonic antigen (CEA) levels, were collected from electronic medical records. Histological grading, pathological tumor node metastasis (pTNM) staging, LNs, TDs, vascular and nerve invasion, and other clinical data were obtained from pathological reports. The eighth edition of the AJCC staging system was used as a reference for the pTNM staging. TDs are defined as discrete tumor foci in the pericolic or perirectal fat, without histological evidence of residual lymph node or identifiable vascular or neural structures.The distance between the tumor and anus, TN staging, CRM, and EMVI based on the MRI were obtained from standardized reports of the picture archiving and communication system (PACS). The criteria for determining LN positivity on MRI were based on the latest recommendations of the 2016 European Society of Gastrointestinal and Abdominal Radiology consensus meeting (26). MRI tumor length was defined as the T2 sagittal tumor length. The distance from the anus was defined as the distance from the most inferior boundary of the tumor to the subcutaneous edge of the anus. The criterion for EMVI positivity was tumor invasion of the extramural vessels, with or without vessel dilatation (27). CRM positivity was defined as a tumor location within 1 mm of the mesorectal fascia, including suspicious LNs, TDs, tumor expansion, and EMVI (28). Unclear or missing information in the MRI reports were labeled and finally confirmed by a radiologist with nine years of working experience.


 2.3. MRI scanning.

MRI acquisitions were performed using the following 3.0-T MRI scanners: Signa HDxt (GE Healthcare, Chicago, IL), Discovery MR750w (GE Healthcare), and MAGNETOM Skyra (Siemens Healthineers, Erlangen, Germany). The MRI protocol consisted of one axial HRT2 MRI sequence and one DWI acquisition obtained using b-values of 0 and 1,000 (or 800) s/mm². No intravenous contrast agents were administered. Details of the MRI acquisition parameters are listed in  Table 1 .

 Table 1 | Image acquisition parameters. 




 2.4. Tumor segmentation and processing.

Before image segmentation, patient-sensitive information was anonymized. The primary tumor region (3D volume) was semi-manually segmented on axial HRT2 and DWI images by a junior radiologist (with more than three years of experience in radiology) using an open-source software tool (ITK-SNAP 3.8; www.itksnap.org) (29). Automatic tumor segmentation using a CE-net-based DL segmentation model (30) was performed on the axial HRT2 images to assist radiologists. All segmentation masks were reviewed by a senior radiologist (with more than five years of experience in radiology) and finally confirmed by another senior radiologist (with more than 10 years of experience in radiology). Disagreements were resolved through discussion.


 2.5. Extraction of features.

International Biomarker Standardization Initiative (IBSI)-compliant radiomic features were extracted separately for the HRT2 images and DWI images using PyRadiomics, an open-source Python package (version 2.1.2, https://pyradiomics.readthedocs.io) (31). Before feature extraction, z-score normalization of the MRI signal intensities for both the HRT2 and DWI images was performed using PyRadiomics. Consequently, 564 features were obtained for each HRT2 and DWI image, including 13 first-order statistics, 35 shape features, 9 orientation features, and 507 texture features, such as the gray-level co-occurrence matrix, gray-level size zone matrix, gray-level run-length matrix, gray-level dependence matrix, neighborhood gray-tone difference matrix, Gabor filter, Laplacian of Gaussian filter, local binary patterns, and local phase and vascularity filters. A variance test was performed on the extracted features to remove features with a low variance (<0.01). A t-test was used to estimate the radiomic features that were significantly correlated with TDs. Features with p < 0.05 were considered significant features for model development. A detailed flowchart of this process is shown in  Figure 2 .

 

Figure 2 | Flowchart describing the methods used in developing the clinical-DL radiomics model for TD prediction in patients with RC. DL, deep learning; TD, tumor deposition; RC, rectal cancer. 




 2.6. Pre-processing of features.

Each radiomic feature was standardized using z-score normalization to improve the robustness of the model. Missing information on the clinical characteristics was replaced with the mean value of the corresponding feature. The number of positive and negative samples was balanced using an up-sampling method within the open-source Python package Imbalanced-learn (version 0.9.0) (32).


 2.7. Development of radiomic models.

Radiomic models based on common machine learning (ML) techniques and DL methods were developed and compared to predict TDs. Three ML models and three DL models were constructed using features from HRT2 images (HRT2-ML and HRT2-DL models), DWI images (DWI-ML and DWI-DL models), and joint HRT2-DWI images (Merged-ML and Merged-DL models).

Integrated models combining radiomic information and clinical characteristics were developed to further improve the predictive performance. Three ML models and three DL models were constructed using clinical characteristics and features from HRT2 images (Clinical-HRT2-ML and Clinical-HRT2-DL models), DWI images (Clinical-DWI-ML and Clinical-DWI-DL models), and joint HRT2-DWI images (Clinical-Merged-ML and Clinical-Merged-DL models). For comparison, a clinical model that analyzed only clinical characteristics was also developed.

ML models used the least absolute shrinkage and selection operator (LASSO) technique (33) to select the optimized subset of features from 221 preprocessed features, followed by a support vector machine (SVM) to construct a prediction model.

DL models used a four-layer multi-layer perceptron (MLP) model, in which 221 preprocessed features were directly input. The feature numbers at each layer were 256, 128, 64, and 2, respectively, and the softmax activation function was used for the final output. The network model was actualized using the open-source deep learning framework PyTorch (34), where the batch size was set to 16, the learning rate was 0.001, and the Adam algorithm was used as the optimizer.

The predictive performance of each model was evaluated using five-fold repeated cross-validation. Each cross-validated split of the data was used to perform feature selection techniques to avoid bias in the estimation of the predictive performance.


 2.8. Statistical analyses.

Statistical analysis was performed with SPSS software (version 26.0; IBM, Armonk, NY) and R (version 3.5.1; R Foundation, Vienna, Austria). Differences in categorical characteristics between RC patients with and without TDs were compared using Pearson’s chi-squared test and Fisher’s exact test. Continuous variables are expressed as means ± standard deviations. Differences in continuous characteristics between the two groups were compared using the Mann-Whitney U test. For all statistical analyses, P < 0.05 (two-sided test) was considered statistically significant. The predictive performance of the models was evaluated using the area under the receiver operating characteristic (ROC) curve (AUC), over five-fold cross-validation.



 3. Results.

 3.1. Clinical characteristics of patients.

The final 500 patients included 315 males and 185 females (mean age, 64.59 ± 10.7 years). According to the pathologically confirmed TD results, the patients were divided into TD+ (n = 133) and TD− (n = 367) subgroups. The baseline characteristics of the patients are summarized in  Table 2 .

 Table 2 | The baseline characteristics of the patients. 




 3.2. Performance of the radiomic models.

In total, six radiomics models were developed, and the Merge-ML and DWI-DL models both demonstrated comparable performance, with AUCs of 0.69 ± 0.04 and 0.68 ± 0.03, respectively (P<0.05). The other models’ AUCs were lower than those of the aforementioned two models. The AUCs of the HRT2-ML, HRT2-DL, DWI-ML, and Merged-DL models were 0.62 ± 0.02, 0.57 ± 0.06, 0.64 ± 0.08 and 0.59 ± 0.04, respectively.


 3.3. Performance of the integrated models combining radiomic information and clinical characteristics.

TN staging, tumor length (measured in the sagittal view), tumor index CEA, CRM, and EMVI as assessed in the MRI report were significantly different between the TD+ and TD− groups. These clinical markers were used to establish a clinical model and were introduced into the integrated models. The performance of all models are listed in  Table 3 . Both the Clinical-ML and Clinical-DL models performed similarly, with AUC values of 0.81 ± 0.04 and 0.81 ± 0.06, respectively. Among the integrated models, the Clinical-DWI-DL model achieved the highest performance, with a diagnostic accuracy of 0.84 ± 0.05, an AUC score of 0.90 ± 0.04, sensitivity of 0.94 ± 0. 03, and specificity of 0.79 ± 0.08 ( Figure 3 ). The Clinical-Merged-ML and Clinical-Merged-DL models achieved similar performances, with AUC scores of 0.83 ± 0.01 and 0.83 ± 0.05, which were both lower than the Clinical-DWI-DL model.

 Table 3 | Comparison of areas under the curve for all models. 



 

Figure 3 | ROC curve of the combined model of DWI and clinical factors. The blue dotted lines represent the ROC curve of five-fold cross-validation (CV), and the red line represents the mean ROC curve of the five-fold CV. ROC, receiver operating characteristic; DWI, diffusion-weighted imaging. 




 3.4. Robustness of the model on different scanners.

We compared the performance of our DWI-DL model on one scanner (GE-Signa HDxt) and all three scanners to assess the robustness of the DL-model on different scanners. We obtained AUC scores of 0.69 ± 0.08 when used with a single scanner and 0.68 ± 0.03 when used with three scanners. We did not detect a statistically significant difference (p = 0.69), even though the model performed better on a single scanner than on three scanners.



 4. Discussion.

In this study, we developed and validated a variety of models for non-invasive preoperative prediction of TDs in patients with RC, based on radiomic features, clinical factors, and a combination of both. Among all the models, the integrated DL-based model using a combination of DWI radiomic features and clinical characteristics was the most effective and achieved promising predictive performance. This approach can serve as a potential preoperative assessment tool to assist clinicians in preoperative stage evaluation and personalized treatment of patients with RC.

Of the 500 included RC patients, 26% presented with TDs, which is slightly higher than the median incidence (21.3%) of TDs in patients with CRC, as previously reported (2). TDs are an important prognostic factor in CRC, as a significantly worse prognosis has been found in patients with TDs, regardless of the sub-staging of the LNs (35). TDs are also an independent risk factor for liver, lung, and peritoneal metastases (36). Moreover, patients with TDs have a higher risk of LN metastasis and lymphovascular and perineural invasion (37). In this study, the proportion of patients with LN metastases and vascular and nerve invasion in the TD+ group (73.7%, 21.8%, and 30.1%, respectively) was also significantly higher than that in the TD− group (25.9%, 5.2%, and 7.6%, respectively), indicating a possible correlation between TDs and LN metastases, neurovascular invasion, and multi-channel tumor metastases, which are also associated with worse prognosis in patients with CRC.

While TDs cannot be reliably assessed preoperatively using traditional imaging techniques that depend on the naked eye, previous studies have shown that they may be predicted using radiomics, which provides implicit information on tumor heterogeneity far beyond the capability of visual inspection. Radiomic models based on US, CT, and MRI have been established for TD prediction. However, functional MRI (e.g., DWI) provides more information on tumor heterogeneity. Therefore, we established radiomic models based on DWI, which demonstrated higher predictive performance than HRT2-only radiomic models.

The Clinical-ML and Clinical-DL models perform similarly in  Table 3 . This is because there are only 7 clinical features, which is a relatively small number, and both DL and ML work well with such low-dimensional data. We can also observe that the Clinical-DWI-DL model improves by roughly 9% over the Clinical-DL model, while the Clinical-DWI-ML model barely improves. This could be because deep learning models outperform ML-based models in high-dimensional data situations.

A study on MRI evaluation demonstrated that a joint-modality (HRT2 and DWI) radiomic model achieved higher diagnostic performance than HRT2-only and DWI-only models (38). However, in our study, the joint-modality model did not outperform single-modality models. This result is similar to the findings of Shin et al. who predicted the complete pathological response in RC, and their joint-modality model using features from T2-weighted and DWI images had a classification performance similar to that of the T2-only model (39). We also developed an integrated model that combined radiomic features and clinical characteristics to improve the predictive performance. Among the integrated DL-based models combined with clinical factors, the model utilizing DWI-only radiomic features achieved the highest performance. This may be due to inconsistent baselines and different spatial resolutions between HRT2 and DWI scans of RC, which cannot be reduced by spatial resampling prior to feature extraction.

In addition to investigating the model’s performance, we investigated its robustness due to the complexity of clinical data collection. We chose the model with the best performance (DWI-DL) for this investigation because clinical information is independent of the scanner, allowing us to test the model’s robustness across a range of scanners. We found no significant differences in the radiomics model across machines (AUCs of the single- and multi-scanner models: 0.69 ± 0.08 and 0.68 ± 0.03, respectively, with P = 0.69), indicating good robustness of our radiomics model.

This study has some limitations. First, to our knowledge, this is the largest study to date on TD radiomics research, but it is still not large enough to avoid selection bias that compromises the generalization ability of our models. Second, this retrospective study excluded patients who had received neoadjuvant chemotherapy or radiotherapy before surgery, which introduced a further selection bias. Third, this was a single-center study, and the difference in sample sizes between the TD+ and TD− groups was large. Therefore, further prospective, multicenter studies with larger cohorts are warranted to improve prediction outcomes and define the potential standardization of our models.


 5. Conclusions.

Our integrated model combining clinical variables (tumor markers and MRI reporting status) and MRI radiomic features in a DL model can non-invasively and preoperatively predict TDs in patients with RC. In particular, the model that used DWI and clinical features showed the highest predictive performance. This model can serve as a potential preoperative assessment tool in clinical practice for more effective tumor staging and risk stratification to provide optimal treatment for patients with RC.
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Background

Unlike young and middle-aged patients, seminoma is not common in patients with primary testicular tumors over the age of 50, so it cannot follow the general ideas and norms for diagnosing and treating testicular tumors, and its characteristics need to be considered separately.



Methods

The conventional ultrasonography and contrast-enhanced ultrasonography (CEUS) findings of primary testicular tumors in patients over 50 years old were retrospectively analyzed and compared with the pathological results to compare the diagnostic value of these two methods.



Results

Of the 13 primary testicular tumors, 8 were primary lymphomas. Conventional ultrasound of 13 cases of testicular tumors showed hypoechoic with rich blood flow, and it was difficult to identify the type accurately. The sensitivity, specificity, positive predictive value, negative predictive value and accuracy of conventional ultrasonography in diagnosing non-germ cell tumors (lymphoma and Leydig cell tumor) were 40.0%, 33.3%, 66.7%, 14.3%, and 38.5%, respectively. CEUS findings: 7 of 8 lymphomas showed uniform hyperenhancement. 2 cases of Leydig cell tumors showed uniform high enhancement. 2 cases of seminoma and 1 case of spermatocytic tumor showed heterogeneous enhancement, with necrosis in the interior. The sensitivity, specificity, positive predictive value, negative predictive value and accuracy rate of non-germ cell tumor diagnosis according to the non-necrotic area of CEUS were 90.0%, 100.0%, 100.0%, 75.0% and 92.3%, respectively. Compared with conventional ultrasound, the difference was statistically significant (P=0.039).



Conclusions

Primary testicular tumors in patients over 50 years old are mainly lymphoma, and CEUS is significantly different between germ cell tumors and non-germ cell tumors. Compared with conventional ultrasound, CEUS can distinguish testicular germ cell tumors from non-germ cell tumors more accurately. Preoperative ultrasonography is significant for accurate diagnosis and can guide clinical treatment.
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Introduction

Testicular tumors account for 1-2% of male malignant tumors (1). The most common malignant tumors in adolescent males are divided into primary tumors and secondary tumors. Due to the existence of primary lesions and systemic manifestations, secondary tumors are Relatively easy to diagnose. Although there are many pathological types of testicular tumors, most of them are germ cell tumors (2, 3). Ultrasound, the first-choice imaging examination for scrotal disease (3, 4), is easy to detect masses, but qualitative diagnosis is more difficult. Since most testicular tumors are malignant, seminoma is the most common (5), and needle biopsy can lead to local recurrence. Therefore, a needle biopsy is generally not recommended for testicular tumors. For testicular tumors smaller than 15 mm, the testicles can be preserved in conjunction with intraoperative frozen sections (6, 7). However, this inevitably leads to a longer surgery time. While for large lesions >4 cm, even if lymphoma is suspected, radical orchiectomy is mandatory in most of cases to relieve symptoms and reduce tumor bulk. However, if lymphoma is diagnosed preoperatively by ultrasound, a puncture biopsy can be taken to make a definitive diagnosis, thus saving time for surgery. However, seminoma is uncommon in elderly patients (2), so it cannot follow the general ideas and norms for diagnosing and treating testicular tumors, and its characteristics need to be considered separately. This study retrospectively analyzed the conventional ultrasonography and contrast-enhanced ultrasonography of primary testicular tumors in patients over 50 years old, in order to make an accurate preoperative diagnosis and guide clinical treatment.



Methods


Subjects

This retrospective study was approved by the Ethics Committee of The First Ningbo Hospital (2021RS105). A retrospective analysis of 14 cases of primary testicular tumors confirmed by pathology in our hospital from January 2013 to December 2021. Inclusion criteria: (1) confirmed by histopathology; (2) with complete routine ultrasound and CEUS data; (3) age > 50 years. Exclusion criteria: (1) incomplete data: lack of histological and pathological results, incomplete ultrasound images; (2) received non-steroidal anti-inflammatory drugs, radiotherapy, chemotherapy and other immunotherapy; (3) Elevated AFP or HCG. The age ranged from 51 to 67 years old, with an average of (59.6 ± 5.3) years old. According to the pathological results, they were divided into non-germ cell tumor group (lymphoma and Leydig cell tumor) and germ cell tumor group (seminoma and spermatogenic tumor).



Equipment and agents

The contrast agent used in CEUS was SonoVue (Bracco SpA, Milan, Italy). The agents were microbubbles of the phospholipids microencapsulated sulfur hexafluoride (SF 6). The microbubbles had an average diameter of 2.5 μm and pH values of 4.5–7.5. After the SonoVue powder was thoroughly dissolved in 5 mL of normal saline, 2.4 mL of the solution was injected into the bolus through the cubital vein.

The ultrasound devices used included the Aplio500 (TOSHIBA CORPORATION, Tokyo, Japan), LOGIQ E9 GE (General Electric Company, Boston, Massachusetts, USA), EPIQ7 (Philips Electronic N.V, Amsterdam, The Netherlands), EUB-8500 (HITACHI, Tokyo, Japan), and Aixplorer (SuperSonic Imagine, Aix-en-Provence, France). The CEUS function was available on all of these devices. A linear array probe was used (frequency 5.0 -12.0 MHz).



Methodology

The conventional ultrasound and CEUS images of the primary testicular tumors were retrospectively analyzed. The parameters of the conventional ultrasound images included the location, number, size, shape, echo, boundary, and blood flow. The peripheral annular blood flow was used as the diagnostic criterion for Leydig cell tumors and the perforating vessel was used as the diagnostic criteria for lymphoma. If the testicular tumor is hypoechoic with abundant blood flow and irregular blood flow distribution, it is diagnosed as germ cell tumor. The findings were interpreted by 2 physicians with 10 years of experience in scrotal ultrasound, and each preliminary diagnosis was made after the physicians reached an agreement. The parameters of CEUS included the enhancement time, enhancement level (high, equal, low, or none), and contrast-agent distribution (uniform or non-uniform). CEUS showing uniform high enhancement was used as the diagnostic criterion for non-germ cell tumor (lymphoma and Leydig cell tumor). CEUS showing heterogeneous enhancement with necrosis in the interior was used as the diagnostic criterion for germ cell tumors of the testis. The findings were interpreted by 2 physicians with 5 years of experience in scrotal ultrasound, and each preliminary diagnosis was made after the physicians reached an agreement. All 4 physicians were blind to the final diagnoses and other imaging information at the time of the interpretation and preliminary diagnoses.

The clinical flow chart for the diagnosis and treatment of testicular tumors is shown in Figure 1.




Figure 1 | Clinical flow chart.





Statistical analysis

The statistical analysis was performed using the SPSS13.0 software package (Chicago, IL, USA). The count data were analyzed using the paired χ2 test, and the diagnostic accuracy of the examinations was assessed in 2-by-2 tables. The measurement data were expressed as the mean ± SD. A P value <0.05 was considered statically significant.




Results


Clinicopathological data

A total of 12 patients (13 masses in total), except for 1 case of bilateral testicular lymphoma, the others were unilateral and single. Among the 13 cases of primary testicular tumors confirmed by pathology, 10 were allocated to the non-germ cell tumor group(including 8 cases of primary lymphoma and 2 cases of Leydig cell tumors) and 3 were allocated to the germ cell tumor group(including 2 cases of seminomas, and 1 case of spermatocytic tumor). The lesions occurred in the left testis in 8 patients and in the right testis in 5 patients.

Except for 2 cases of Leydig cell tumors found by ultrasonography, the others were all due to scrotal enlargement (1 case of bilateral testicular lymphoma with scrotal pain, the rest were painless). 1 case of bilateral lymphoma had elevated follicle-stimulating hormone and luteinizing hormone, and no other related abnormalities were found.



Findings of conventional ultrasound and CEUS

The characteristics of conventional ultrasound and CEUS in testicular germ cell tumors and non-germ cell tumors over 50 years old are shown in Table 1. All 13 showed abundant blood flow, including 3 lymphomas, 1 spermatocytic tumor, and 1 seminoma with perforating vessels (Figures 2, 3), and 1 Leydig cell tumor with peripheral circular blood flow (Figure 4), other blood flow is irregular. The characteristics of conventional ultrasound in 13 cases were similar, and it was difficult to identify their pathological types accurately. The sensitivity, specificity, positive predictive value, negative predictive value and accuracy rate of conventional ultrasound in the diagnosis of non-germ cell tumors were respectively 40.0%, 33.3%, 66.7%, 14.3%, and 38.5%.


Table 1 | Conventional ultrasound and CEUS features of testicular germ cell tumors and non-germ cell tumors over 50 years old.






Figure 2 | Testicular lymphoma. (A) CDFI: hypoechoic mass in the left testis, abundant blood flow, with multiple perforating vessels(arrow); (B) CEUS, CEUS showed uniform and high enhancement, and no obvious necrotic area was found. (C) Macro-section, Mass occupying the entire testicle; CDFI, Color Doppler Flow Imaging; CEUS, contrast-enhanced ultrasonography.






Figure 3 | Testicular spermatocytic tumor. (A) CDFI: hypoechoic mass in the right testis, abundant blood flow and multiple perforating vessels(arrow), consistent with the ultrasound findings of lymphoma. (B) CEUS: The CEUS showed heterogeneous sparse and low enhancement, which was significantly different from that of lymphoma. (C) Macro-section, Mass occupies most of the testicle; CDFI, Color Doppler Flow Imaging; CEUS, contrast-enhanced ultrasonography.






Figure 4 | Leydig cell tumor. (A) CDFI: hypoechoic mass in the left testis, abundant blood flow, with annular blood flow around(arrow). (B) CEUS: uniform and high enhancement, and no obvious necrotic area was found. CDFI, Color Doppler Flow Imaging; CEUS, contrast-enhanced ultrasonography.



CEUS: 8 cases of lymphoma showed fast forward and fast regression, 7 cases showed uniform high enhancement, no obvious necrosis area (Figure 2), 1 case of lymphoma showed obvious necrosis area; 2 cases of seminoma showed high enhancement around the periphery, with necrosis in the interior, showing fast forward and fast regression; 1 case of spermatocytic tumor showed uneven, sparse, low enhancement, fast forward and equal regression (Figure 3); 2 cases of Leydig cell tumors showed uniform high enhancement, no obvious necrotic area, and showed rapid progress and slow regression (Figure 4). Spermatocytic tumor was the only tumor with the low enhancement of all tumors. Lymphoma and Leydig cell tumor showed uniform high enhancement, lymphoma fast forward and fast regression, Leydig cell tumor fast forward and slow regression. The sensitivity, specificity, positive predictive value, negative predictive value and accuracy rate of non-germ cell tumor diagnosis according to the non-necrotic area of CEUS were 90.0%, 100.0%, 100.0%, 75.0% and 92.3%, respectively. Compared with conventional ultrasound, the difference was statistically significant (P=0.039).




Discussion

The most common testicular tumor in adolescents is seminoma (5), so the choice of radical orchiectomy is most feasible. However, seminoma is very rare in patients over 50 years old. From this study, lymphoma is the main one. Since lymphoma is a combination treatment requiring surgery, chemotherapy and radiotherapy, intraoperative frozen sections are more difficult to diagnose, so preoperative puncture biopsy for immunohistochemistry can clarify the diagnosis (8). Since Leydig cell tumors are mostly benign, enucleation is the first choice (9, 10). Pathological diagnosis of Leydig cell tumors by preoperative biopsy can reduce the operation time and protect testicular tissue. Therefore, the correct diagnosis is of great significance to the patient and clinical, which also puts forward higher requirements for ultrasound diagnosis, not just the diagnosis of malignancy.

Relying on the history of the primary tumor and systemic manifestations, secondary testicular tumors are relatively easy to diagnose. Primary testicular tumors are more challenging to diagnose. This study shows that most of the primary testicular tumors are large. This is due to the relatively fast growth rate of lymphoma and embryonal carcinoma. In the early stage of the tumor, the tumor is small and generally has no clinical symptoms. Only when the tumor grows to a certain extent clinical symptoms are detected. Painless enlargement of the scrotum is the most common symptom in most patients (only Leydig cell tumors are occasionally found in the scrotum due to inguinal hernia), but this is also a common feature of testicular tumors and is not specific. This study showed that 61.5% were lymphoma, and there were only 2 cases of seminoma. Therefore, patients over 50 years old with painless scrotal enlargement should first consider lymphoma.

This study showed that primary testicular tumors had very similar gray-scale ultrasonographic appearances (most of them showed clear borders, round-like hypoechoic), and it was difficult to distinguish pathological types. Color Doppler blood flow has a certain value in diagnosing testicular tumors, and perforating vessels have a certain value in diagnosing lymphoma. The reason for the formation of perforating vessels may be: lymphoma is a disease mainly caused by single-cell proliferation, and the lesions originate in the interstitium of the testis, so the original vascular anatomy in the testis may not be affected, which is different from benign tumors on vascular compression, malignant tumors present differently to vascular compression and erosion. This study showed that perforating vessels appeared in 3 lymphoma masses, and the diagnosis was based on this. The remaining 5 lymphomas only showed abundant blood flow without perforating vessels. 1 case of spermatocytic tumor and 1 case of seminoma had perforating vessels, which were misdiagnosed as lymphoma by conventional ultrasonography. These perforating vessels may be elongated feeding vessels of the tumor. 1 case of Leydig cell tumor showed abundant blood flow with annular blood flow around it. This sign is not seen in other testicular tumors, so peripheral annular blood flow can be used as a specific sign of Leydig cell tumors (to be further confirmed in large sample studies).

In this study, CEUS can accurately distinguish germ cell tumors from non-germ cell tumors (lymphoma and stromal cell tumor) based on the presence or absence of necrosis, with an accuracy rate of 92.3%. Seminoma over the age of 50 is relatively rare. This study showed that the 2 cases of seminoma showed fast forward and fast regression, heterogeneous high enhancement, and necrotic areas. Combined with negative tumor markers, a diagnosis can be made. Spermatocytic tumor was the only tumor with low enhancement on CEUS of all tumors in this study, which can be diagnosed in combination with negative tumor markers. In the previous WHO classification, spermatocytic tumor was regarded as a subtype of seminoma, called spermatocytic seminoma (11). The 2016 WHO classification separates spermatocytic tumor from seminoma. Although the cytological appearance of these two tumors are similar (12), the CEUS appearance is significantly different. The CEUS of lymphomas all showed fast forward and fast backward, except for 1 case with necrosis. The others showed uniform hyperenhancement. Therefore, in patients over 50 years old, a painless testicular mass, perforating vessels, uniform high enhancement on CEUS, and negative tumor markers can be diagnosed as lymphoma. Leydig cell tumor of the testis generally has a small mass. The CEUS shows uniform high enhancement, fast forward and slow regression, which is different from lymphoma, and can make a clear diagnosis. Enucleation of the mass was performed to avoid the removal of the testis. Pathological diagnosis of Leydig cell tumors and lymphomas by preoperative biopsy can reduce the operation time and protect testicular tissue.

The present study had some limitations. First, this study is a retrospective analysis. The incidence of testicular tumors is low, the sample size is limited, and further research with large samples and multiple centers is needed. Second, limited by the retrospective design and the difference in match models, we did not perform a CEUS-based quantitative analysis. Third, because of the extremely high accuracy of the diagnosis of testicular tumors by the professional andrology sonographers in our center, they have won the trust of andrologists. Most testicular tumors have not undergone magnetic resonance examination, so there is no other image for comparative analysis.

In conclusion, the primary testicular tumors in patients over 50 years old are mainly lymphoma, and CEUS is significantly different between germ cell tumors and non-germ cell tumors. Compared with conventional ultrasound, CEUS can distinguish testicular germ cell tumors from non-germ cell tumors more accurately. Preoperative ultrasonography is of great significance for a clear diagnosis, which can guide clinical treatment and avoid unnecessary orchiectomy.
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  Breast cancer is the leading cause of cancer in women with a huge medical, social and economic impact. Mammography (MMG) has been the gold standard method until now because it is relatively inexpensive and widely available. However, MMG suffers from certain limitations, such as exposure to X-rays and difficulty of interpretation in dense breasts. Among other imaging methods, MRI has clearly the highest sensitivity and specificity, and breast MRI is the gold standard for the investigation and management of suspicious lesions revealed by MMG. Despite this performance, MRI, which does not rely on X-rays, is not used for screening except for a well-defined category of women at risk, because of its high cost and limited availability. In addition, the standard approach to breast MRI relies on Dynamic Contrast Enhanced (DCE) MRI with the injection of Gadolinium based contrast agents (GBCA), which have their own contraindications and can lead to deposit of gadolinium in tissues, including the brain, when examinations are repeated. On the other hand, diffusion MRI of breast, which provides information on tissue microstructure and tumor perfusion without the use of contrast agents, has been shown to offer higher specificity than DCE MRI with similar sensitivity, superior to MMG. Diffusion MRI thus appears to be a promising alternative approach to breast cancer screening, with the primary goal of eliminating with a very high probability the existence of a life-threatening lesion. To achieve this goal, it is first necessary to standardize the protocols for acquisition and analysis of diffusion MRI data, which have been found to vary largely in the literature. Second, the accessibility and cost-effectiveness of MRI examinations must be significantly improved, which may become possible with the development of dedicated low-field MRI units for breast cancer screening. In this article, we will first review the principles and current status of diffusion MRI, comparing its clinical performance with MMG and DCE MRI. We will then look at how breast diffusion MRI could be implemented and standardized to optimize accuracy of results. Finally, we will discuss how a dedicated, low-cost prototype of breast MRI system could be implemented and introduced to the healthcare market.
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  Highlights

Screening has been shown as an effective method to improve the outcome of breast cancer, the leading cause of cancer in women. Mammography is the preferred method due to its low cost and favorable benefit/risk ratio. However, mammography has some limitations, such as exposure to X-rays, difficulty of interpretation in dense breasts, and overdiagnosis. Among other imaging methods, MRI has clearly the highest sensitivity and specificity. Still, MRI is mainly used to manage suspicious lesions revealed by mammography and not for screening, except for a category of well-defined women at risk, due to a high cost and a limited availability. While the standard breast MRI approach relies on the injection of contrast agents, which have their own contraindications, diffusion MRI which delivers information on tissue microstructure and tumor perfusion without the need for contrast agents, has been shown to provide a similar specificity and sensitivity, emerging as a promising alternative approach to breast cancer screening. To achieve this goal, it is necessary to standardize protocols for acquisition and analysis of diffusion MRI data. Second, the accessibility and cost-effectiveness of MRI examinations need to improve significantly, which may become possible with the development of dedicated breast, low-cost units for breast cancer screening.


 1. Introduction.

With the advent of widespread breast cancer screening by mammography (MMG) in the early to mid-1980s, detection of breast lesions has increased worldwide, and breast cancer is no longer a fatal disease when diagnosed and treated early. Approximately 60% of cancers diagnosed early have a 5-year survival of 99% after treatment and 31% have a 5-year survival of 85% (1). Breast cancer screening has therefore been shown to be an effective method of improving prognosis. In the absence of a reliable blood test, imaging is the primary approach available for screening. MMG has been the reference method until now because it is relatively inexpensive, widely available and has a favorable benefit/risk ratio with good sensitivity and specificity. Nevertheless, MMG suffers from certain limitations, such as exposure to X-rays given the recent discovery that breast tissue is more sensitive to the effects of radiation than most organs. In addition, with MMG, it is often not possible to predict on mammograms whether lesions are malignant, requiring active treatment, or not, so additional investigations must be performed, especially in dense breasts.

Of particular concern is the relatively high rate of overdiagnosis. Recent immunohistochemical studies have revealed that benign proliferative breast disease, most high-grade ductal carcinoma in situ (DCIS), and invasive carcinoma develop along distinct pathways, in contrast to colonic adenoma-carcinoma, which evolves along a single line (2). These findings suggest that different treatment approaches should be offered depending on the nature of the lesion, including therapeutic abstention for benign lesions. For example, while DCIS lesions often do not become invasive, patients diagnosed with DCIS are generally treated as if they were going to have invasive carcinoma. The rate of “overdiagnosis” is estimated to be between 21 and 66% (3). The social, ethical, and economic consequences of such management of DCIS lesions are enormous: more than 40% of women with DCIS undergo mastectomies, at a rate of some 10,000 per year, so much so that DCIS could be called a “mammographic disease” (4). Clearly, new approaches must be sought to better predict the grade and outcome of diagnosed breast lesions and to reduce burdensome, costly, and potentially unnecessary surgical procedures, such as mastectomy or axillary lymph node excision, whose morbidity is not negligible. It would also reduce surgical scars that could lead to pseudo-lesions on subsequent imaging. Conversely, the sensitivity of MMG for early detection of cancer in breast cancer screening is only 33% (40% for ultrasound) in patients with a high familial risk for breast cancer (lifetime risk ≧ 20%), missing some prognostically important diseases (5). Borderline lesions with uncertain malignant potential at biopsy [histologically classified as “B3”, (6)] most often result in a benign end result. However, these lesions are sometimes associated with the simultaneous presence of a malignant tumor with an enhancement rate of between 10 and 35%, and may also act as a risk factor or precursor to malignancy (7, 8). It is therefore necessary to obtain a more accurate classification of lesions at the time of initial diagnosis in order to personalize the therapeutic approach, avoid unnecessary procedures and reduce costs and social burden. With MMG, it is possible to suspect high-grade lesions from the morphology of microcalcifications, but grading is still difficult, with sparse biopsy sampling, because high-grade and low-grade components can coexist in the same patient or even in the same duct. Indeed, MMG may tend to detect slow-growing cancers.

Recently, breast MRI has been successfully introduced in the management of breast cancer. For example, in DCIS, the sensitivity of MRI for accurate assessment of the extent of DCIS is as high as 89%, much higher than MMG, tomosynthesis, or ultrasound (9). Increasing evidence suggests that, overall, breast MRI may be more sensitive, especially for the diagnosis of high-grade DCIS. Breast MRI is often performed by injection of gadolinium-based contrast agents (GBCA), but more recently, diffusion MRI, a completely noninvasive approach that is highly sensitive to changes in tissue microstructure, has been introduced for cancer imaging. Diffusion MRI has both very high sensitivity and specificity for the detection of breast malignancy (10). Diffusion MRI has been successfully used to differentiate between benign and malignant lesions of the breast, as well as tumor extension.

Yet MRI is exceptionally used for breast cancer screening, although supplemental MRI screening in women with extremely dense breast tissue and normal results on MMG has been recommended, as the addition of MRI leads to significantly fewer interval cancers than MMG alone during a 2-year screening period (11). Still, the main problem with breast MRI is that examinations are today performed using expensive general purpose MRI scanners. MRI is therefore performed as a second-line procedure, which adds to the cost of other imaging modalities (MMG and ultrasound), or in specific populations of women. In addition, there are concerns about the side effects of GBCA when performing dynamic contrast-enhanced (DCE) breast MRI (12). Blood tests may become available to screen for certain breast cancers, but they remain largely non-specific today with many false positives or negatives, and imaging will always remain mandatory to localize lesions and personalize treatment. If a dedicated, small-scale, inexpensive breast MRI scanner can be made available, it could be envisaged that one day MRI could be used as a screening imaging modality, instead of MMG, at least for a larger number of women at moderate to high risk based on personal history, genetic predisposition, or positivity to blood screening tests when these tests become reliable. This view was enthusiastically supported by an international (EU, USA, Asia) committee of breast imaging experts appointed by the European Society of Breast Imaging (EUSOBI) under the chairmanship of Profs. Denis Le Bihan and Julia Camps-Herrero (13). Breast cancer screening represents a huge market. In the United States alone, more than 60 million women over the age of 40 are responsible for 40 million mammograms per year, which corresponds to 65% of the population concerned (14). In contrast, MRI (using standard whole-body systems) accounted for only 0.4% of women aged 25-64 years in 2017 (15).

In this article, we will first review the principles and current status of diffusion MRI of the breast, and evaluate its clinical performance compared with MMG and DCE MRI. We will then discuss how diffusion MRI of the breast could be implemented and standardized to optimize accuracy of results. Finally, we will discuss how a dedicated, low-cost prototype breast MRI system could be implemented and introduced to the healthcare market.


 2. Current place of breast MRI in the global management of breast cancer.

Breast MRI has been widely available after the introduction of the use of contrast agents (16). Almost all types of breast cancer show detectable patterns of neovascularization with GBCA, which can readily extravasate into the extravascular and extracellular space (17). Thus, the likelihood of breast cancer can be considered extremely low in the absence of contrast enhancement. In practice, contrast-enhanced T1-weighted MRI is the gold standard. Many malignant breast lesions show maximal contrast enhancement in the early phase after injection, with GBCA being removed from the tissue in the late stage ( Figure 1 ). Conversely, benign lesions and normal fibroglandular tissue usually show maximal enhancement in the late stage and of lower amplitude than in malignant lesions, allowing differentiation of these lesions (19). Given the high sensitivity for detection of breast cancer compared to other modalities such as MMG and ultrasound, breast MRI is also used for preoperative evaluation and tumor staging prior to treatment planning, monitoring tumor response to neoadjuvant therapies, to sort scars from recurrences, or in the presence of implants (20, 21).

 

Figure 1 | DCE-MRI in a 71-year-old Woman with grade 2 invasive ductal carcinoma in the right breast. (A) Axial contrast-enhanced T1w MRI image shows a 15-mm irregular mass (arrows). (B) Color axial maximum-intensity-projection MR image overlaid over the R1 breast mass. A computer-aided detection (CAD) algorithm displays areas in red, yellow, and blue indicating rapid washout-type delayed enhancement, plateau-type delayed enhancement, and persistent-type delayed enhancement patterns, respectively. (C) Graph of the contrast agent uptake shows a rapid initial enhancement and a rapid washout-type curve. The initial peak enhancement value was 119%. With respect to the delayed phase enhancement, 39% of the mass showed washout, 4% of the mass showed a persistent-type curve, and 58% showed a plateau-type curve. Adapted from (18). 



However, despite its good clinical performance, MRI is usually performed in second intention. Breast cancer screening by MRI is therefore reserved for women with a moderate to high risk of breast cancer (personal history, genetic predisposition, follow-up after breast conserving surgery or contralateral breast screening, mediastinal irradiation, as for Hodgkin’s disease, suspicion of specific lesions, such as atypical ductal hyperplasia (ADH), atypical lobular hyperplasia (ALH), and lobular carcinoma in situ (LCIS) (22, 23). A first problem is the cost of MRI scans. Efforts have been made to shorten their duration [shortened DCE protocols, (24)]. However, there are also questions regarding GBCA-related side effects. The primary concern regarding nephrogenic systemic fibrosis (NSF) has almost disappeared, at least for DCE after assessment of renal function (25, 26), as it occurred only in patients with impaired renal dysfunction, and only seven of the 639 cases of patients with biopsy-confirmed NSF to date were discovered after 2008 (with the avoidance of the use of double and triple doses of GBCA that could trigger NSF) (27). The second concern is related to gadolinium retention in tissues, particularly the brain, after repeated exposure to GBCA (28). This risk is particularly important when considering the repeated annual injection of GBCA that would be required for screening (29). Various new approaches are being investigated to mitigate this risk, such as reducing the dose of GBCA. In a recent study, all breast cancers in 41 consecutive women with biopsy-proven breast cancer were detected as small as 0.4 cm with half (0.05 mmol/kg) a dose of gadobutrol on 3T DCE breast MRI (30).

Thus, there is a growing trend toward the use of new approaches based on unenhanced breast MRI for cancer detection (29). Although no consensus has yet been reached, these approaches could open up breast cancer screening to women at intermediate or even low risk for breast cancer. Given its high potential, diffusion MRI would be the obvious candidate for such an approach.


 3. Breast diffusion MRI.

 3.1. Principles.

 3.1.1. Diffusion-weighted imaging, DWI, and the apparent diffusion coefficient.

While the concept of diffusion MRI emerged in the mid-1980s, diffusion MRI has become a mainstay of modern clinical imaging. Diffusion MRI is both a powerful method and concept because diffusing water molecules provide unique information about the microscopic architecture of tissues. Water diffusion is significantly diminished in most malignant tissues, and diffusion MRI, which requires no tracer injection, is rapidly becoming the modality of choice for detecting, characterizing, or even classifying malignant lesions, especially in the breast (31). Diffusion MRI is deeply rooted in the concept that, during their diffusion-induced movements, molecules probe the structure of tissues at a microscopic scale, well beyond the usual millimeter resolution of images. During typical diffusion imaging times of about 50-100 ms, water molecules move through tissues on average over distances of about 1-15 μm, bouncing off, passing through, or interacting with many tissue components, such as cell membranes, fibers, or macromolecules. Due to the tortuous movement of water molecules around these obstacles (“hindered” diffusion), the actual diffusion distance is reduced compared to free water. Therefore, non-invasive observation of water diffusion-induced displacement distributions in vivo provides unique clues to the fine structural features and geometric organization of cells in tissues, as well as to changes in these features as a function of physiological or pathological states.

MRI signals can be sensitized to diffusion by applying a pair of sharp magnetic field gradient pulses, the duration and separation of which can be adjusted to achieve a specific level of diffusion sensitization defined as the “b-value.” By acquiring data with different gradient pulse amplitudes, images with different degrees of diffusion sensitivity are obtained. The overall effect of diffusion in the presence of these gradient pulses is a signal attenuation and the MRI signal becomes “diffusion weighted”, hence the term “Diffusion Weighted Imaging” (DWI). The signal attenuation is more pronounced when large values of b are used and when diffusion is fast (because molecules diffuse over larger distances) ( Figure 2 ). It is important to note that only the displacement (diffusion) component in the direction of the gradient pulses is detectable, but the diffusion can be anisotropic.

 

Figure 2 | Diffusion attenuation versus b value. (A) Signal attenuation as a function of b value (logarithmic scale). With free diffusion we expect a straight line, whose slope is the diffusion coefficient. In tissues, diffusion is not free (non-Gaussian), resulting in a curvature. Therefore, the ADC taken from b=0 and any b values will decrease when b increases. The effects of IVIM, which result in a curvature at very low b values (<200s/mm²), are not shown for clarity. (B) Example of a breast tumor showing that indeed the ADC value decreases when using larger b values (reprinted with permission from 32). 



In DWI, qualitative contrast depends not only on diffusion, but also on other MRI parameters, such as T1 and T2 water relaxation times, which can lead to well-known artifacts, such as the “T2-shine-through” effect, as high T2 signal lesions (e.g., necrosis, cysts) can retain a relatively high signal level at high b values. Therefore, these images are often combined numerically to determine a quantitative estimate of the diffusion process in each image location, through an Apparent Diffusion Coefficient (ADC), “apparent” because diffusion is impeded by many processes (33):

 

where S(b0) and S(b1) are the signals (in a voxel or region of interest, ROI) acquired at the b values b0 and b1, respectively. This simple ADC is an incredibly robust and powerful parameter, which has been widely used in all clinical applications of diffusion MRI since its inception (34). The optimal value of b1 that provides the best contrast-to-noise ratio in breast tissue, i.e., sufficient attenuation of the signal by scattering while maintaining a sufficient signal level is about 800s/mm² (13).


 3.1.2. Perfusion and IntraVoxel incoherent motion.

Beyond molecular diffusion, blood microcirculation in capillary networks (perfusion) also contributes to the diffusion MRI signal. Indeed, the flow of blood water in pseudo-randomly oriented capillaries (at the voxel level) mimics a random walk (“pseudo-diffusion”) which leads to an attenuation of the signal in the presence of diffusion encoding gradient pulses. This effect has been named IntraVoxel Incoherent Motion (IVIM) (35). In the presence of blood microcirculation, the global attenuation of the MRI signal, S(b)/S(0), becomes the sum of two components, one for tissue diffusion and one for the blood compartment:

 

where fIVIM is the fraction of circulating blood, D* is the pseudo-diffusion coefficient attributed to the random microcirculation of blood, D is the diffusion coefficient of water in tissue, and Dblood is the diffusion coefficient of water in blood. The perfusion effect is observed only at low values of b, because the pseudo-diffusion coefficient, D*, associated with blood flow is higher than the water diffusion coefficient and decreases more rapidly with the b-value.

IVIM MRI has become an important modality for perfusion imaging, with applications throughout the body (31, 36), particularly in cancer imaging (detection of neovascularization and treatment efficacy). A key feature of IVIM diffusion MRI is that it does not involve contrast agents, and it may serve as an attractive alternative to perfusion MRI in some patients with contraindications to contrast agents, or in patients with renal insufficiency at risk for NSF (see above).


 3.1.3. Non-Gaussian diffusion.

Another important feature of diffusion MRI, which should be considered, counter-intuitively, as an advantage and not as a limitation, is that the ADC value depends on the acquisition parameters, especially the b-value, because diffusion in tissues is not “free” but “hindered”. With free (or “Gaussian”) diffusion, as in a cyst, the ADC remains the same regardless of the set of b values used to measure it (only the accuracy of ADC estimates changes with b values). However, in most tissues, the ADC value decreases as the diffusion sensitivity is increased by the b value (32) ( Figure 2 ).

The reason is that an increasing number of molecules slowed down by their interaction with microstructural tissue components (fibers, cell membranes) during their diffusion movements become visible in the highly diffusion-sensitized MRI signal. This non-Gaussian diffusion behavior is therefore more pronounced when high b values are used. In short, sticking to the “optimal” b-value (e.g. 800s/mm²) deprives one of the potentially valuable clinical information about tissue microstructure encoded in the “non-Gaussian diffusion” provided by higher b-values. To reveal this hidden information about tissue microstructure, one must rely on models other than the standard ADC. There are essentially two types of such models. Some approaches aim to model the diffusion MRI signal biophysically, based on the different tissue compartments present in the tissue, as with NODDI (Neurite Orientation Dispersion and Density Imaging) used in the brain (37). The other way is simply to model the decay of the scattering signal mathematically, empirically, without any assumptions about the underlying biophysical properties of the tissue. Although several models have been proposed (38), the most popular approach simply quantifies the deviation of the scattering signal behavior from an ideal Gaussian behavior. This is the so-called Kurtosis model (39), also called Diffusion Kurtosis Imaging, DKI (40). With the Kurtosis model, which also includes the IVIM effect, the signal is described as follows:

 

ADC0 is the extrapolated ADC value as b approaches 0 and K is the Kurtosis quantifying the deviation from Gaussian scattering (K=0 for Gaussian diffusion). Kurtosis has shown great potential for characterizing pathological or physiological conditions (41). A major drawback of DKI, however, is that it requires the acquisition of large data sets with multiple values of b to be fitted with equation (3), which significantly increases acquisition times, a premium in clinical practice.


 3.1.4. Abbreviated quantitative diffusion MRI protocols.

However, it is possible to obtain quantitative information about non-Gaussian diffusion with data sets acquired with a limited range of b values. For example, using data acquired for only 2 b values, one can calculate a shifted ADC (sADC). The concept of sADC (31) is based on the use of shifted key b-values (200 and 1500s/mm² for the breast, instead of 0 and 800s/mm²) providing an interesting balance between Gaussian and non-Gaussian diffusion effects. This approach has been evaluated for the breast (42). Another approach, S-index, provides a direct classification of tissue types by calculating a distance between the acquired signals and a library of reference (“signature”) signals from known or simulated tissues (e.g., benign, malignant, etc.) by intrinsically accounting for Gaussian and non-Gaussian diffusion effects, without the need for any mathematical or biophysical modeling (43). This approach has also been shown to provide the immunohistochemical status and molecular subtypes of invasive breast carcinomas (44) ( Figure 3 ).

 

Figure 3 | S-index. (A) Invasive ductal carcinoma of luminal A type in 50-year-old woman. The axial early-phase DCE-MRI image shows a mass with an irregular margin (top, arrow). The three-dimensional rendering voxel-by-voxel S-index image (bottom) shows the entire tumor in reddish color, corresponding to an average signature index (S-index) of this mass was 90.4. (B) Human epidermal growth factor receptor 2 enriched invasive ductal carcinoma in 73-year-old woman. The axial early-phase DCE-MRI image shows non-mass enhancement with a heterogeneous internal pattern in the right breast (top, arrow). The three-dimensional S-index rendering map of the entire tumor exhibits a yellow-green color (mean S-index of 55.8). [Adapted from (44)]. 



It is also possible to estimate the main parameters of the IVIM/Kurtosis model described by equation [3], fIVIM, ADCo and K, without fitting, using a limited set of 4 b values (b0, b1, b2 and b3 in ascending order), providing the signal:noise ratio is not too low. The proposed algorithm assumes that IVIM effects become negligible in signals acquired above b1 and that non-Gaussian diffusion effects appear visible in b2 and b3 signals. According to this 4b algorithm the model parameters estimates can be calculated as:

 

 

 

 

where D1=ln[S(0)/S(b1)]/(b1-b0); D2=ln[S(0)/S(b2)]/(b2-b0); D3=ln(S(0)/S(b3)/(b3-b0); H=(D2-D3)/(b3-b2)+ln(1-F)/(b3.b2); F= 1-exp[-(D1-D2)(b1.b2)/(b2-b1)]; A= (D2-D3)/(b3-b2)+ln(1- fIVIM)/(b3.b2).

In the absence of IVIM and non-Gaussian diffusion effects one obviously has D1=D2=D3=sADC, ADCo=sADC and K=0.

If non-Gaussian diffusion is present without IVIM effects (fIVIM=0) ADCo and K are obtained exactly as:

 

 

A graphical interpretation of this set of equations can be given by plotting the (log) of the (curved) signal attenuation versus the b value and the straight lines corresponding to D1, D2, D3 and sADC ( Figure 4 ). In the absence of IVIM and non-Gaussian diffusion effects the signal attenuation follows a straight line with a slope D1=D2=D3=sADC=ADCo. In the presence of IVIM effects only the curvature at low b values creates an angle between the D1 and D2 lines. From this angle fIVIM can be estimated (Eq. 4) while ADCo remains very close to the sADC (Eq. 6). In the presence of non-Gaussian diffusion only the curvature at high b values forms an angle between the D2 and D3 lines, from which K can be estimated (Eq. 7). However, one can see that fIVIM and non-Gaussian diffusion slightly contribute also to the angle between the D2 and D3 lines, and the angle between the D1 and D2 lines, respectively. Hence, estimated fIVIM and K values must be corrected (variables H and A in Eq. 4, 6). Note that the sADC now includes ADCo, fIVIM and K effects, so that the ADCo values derived from sADC must be corrected (A variable). Also, with this algorithm D* cannot be estimated, however, a review of the literature shows that D* is a parameter difficult to estimate even with the full fitting approach, resulting in extremely variable clinical relevance.

 

Figure 4 | Graphical representation of the 4b-diffusion MRI abbreviated protocol. The plots show the signal attenuation and the straight lines associated to the intermediate calculation parameters (slopes) D1, D2, D3 used to estimate fIVIM, ADCo and K, as well as sADC. In the presence of free diffusion (K=0) and in the absence of IVIM effects (top left) the signal attenuation follows a straight line whose slope is ADCo. D1, D2, D3 and sADC are all equal to ADCo. When IVIM effects appear (top right) the D1 line starts to deviate from the signal attenuation curve with an angle with D2 reflecting fIVIM. With non-Gaussian diffusion effects only, both D1 and D3 deviate from D2 with an angle reflecting K (bottom left). The sADC line depends on ADCo and K. When both IVIM and non-Gaussian diffusion effects are present one can see that the angle between D1 and D2 primarily reflects fIVIM while the D2D3 angle mainly reflects K (bottom right). The sADC now reflects ADCo, K and fIVIM. By combining sADC with D1, D2 and D3 one can get accurate estimates of ADCo, K and fIVIM using equation (4-7). 



It is expected that those abbreviated quantitative DWI protocols will play a major role, in addition to qualitative DWI, such as DWIBS (see below), in the context of breast cancer screening with diffusion MRI.


 3.1.5. Diffusion tensor imaging.

Molecular mobility in biological tissues may not be the same in all directions, which is referred to as diffusion anisotropy. In the breast diffusion anisotropy can arise from the geometric organization of the glandular tissue around ducts. To characterize the effects of anisotropy, diffusion-weighted images must be sensitized to diffusion along multiple directions (at least 6) within the Diffusion Tensor Imaging (DTI) (45) With DTI one gets information on the tissue mean diffusivity, MD, which is equivalent to an orientation invariant ADC, and lambda values (λ1, λ2, and λ3) which give diffusivity along the main diffusivity directions (so-called eigenvectors ϵ1, ϵ2, and ϵ3). The eigenvector ϵ1, associated with the highest λ value, λ1, is aligned along the main orientation of aligned structures (e.g. ducts), allowing to produce maps showing their orientation in space. Some vendors propose to estimate the MD from a set of 3 orthogonal directions, but this is an approximation that should not be used in the presence of strong anisotropy effects. The genuine mean diffusivity is simply the average of the 3 λ values. The other important parameter, called Fractional Anisotropy (FA), quantifies the degree of anisotropy (FA = 0 indicates that diffusion is isotropic). It is calculated from the λ values. Whereas the existence of diffusion anisotropy in fibroglandular breast tissue has been claimed by many groups (46–49), the nature of the anatomical features which might cause this anisotropy remains somewhat controversial. Some studies have shown that breast cancer lesions could be associated with significantly lower FA values relative to normal breast tissue, and that λ1 or (λ1–λ3) could overperform the ADC (or MD) for lesion detection and classification (50, 51). However, one has to keep in mind that λ1 and λ3 (and FA which depends on them) are, by principle, highly sensitive to noise because of the strongly non-linear nature of the DTI calculation algorithm. The mere fact that MD values are lower in malignant lesions than in normal tissue might lead to reduced FA values, which should not necessarily be interpreted as “reduced anisotropy” (32).



 3.2. Clinical performance of breast diffusion MRI.

There is an extensive literature on breast diffusion MRI. We give below a brief summary of the highlights. Many more details can be found in (10). In addition, a survey of the implementation of breast DWI in clinical practice from the EUSOBI has recently been published (52).

 3.2.1. Qualitative lesion detection.

Most often diffusion MRI is used qualitatively for lesion detection. Lesion detection can be achieved from DWI acquired with high b values, which have a higher contrast between breast lesions (which appear bright) and normal parenchyma (dark background). Breast cancer detection using DWI has been shown to be more sensitive than MMG, with the DWI screening approach allowing to detect mammographically occult cancers (53–55) and DWI has been shown to detect significantly more contralateral breast cancers in women with unilateral breast cancer than MMG (56). High b-values are also useful in decreasing false-positive breast cancer cases (57).

A variant of the DWI techniques for qualitative lesion detection is DWIBS (Diffusion-weighted Whole-body Imaging with Background body signal). A previous study in 280 patients has shown that the diagnostic performance using non-contrast technique including DWIBS for breast lesion detection (sensitivity, specificity, diagnostic accuracy, Positive Predictive Value (PPV) and Negative Predictive Value (NPV) values of 94%, 79%, 86%, 79% and 94%, respectively) was comparable to that of DCE-MRI (sensitivity, specificity, diagnostic accuracy, PPV and NPV values of 98%, 83%, 90%, 84% and 98%, respectively) (58). DWIBS performed with Maximum Intensity Projection (MIP) mapping also has a comparable diagnostic performance (sensitivity, specificity, PPV and NPV values of 92%, 94%, 93%, and 92%, respectively) to that of DCE-MRI performed with MIP (sensitivity, specificity, PPV and NPV values of 85%, 90%, 89%, and 87%, respectively). MIP-DWIBS has been shown to rule out previously suggested malignancy on screening MMGs in 50 participants with carcinoma in 24 patients (59).


 3.2.2. Quantitative lesion evaluation.

Nevertheless, a unique feature of breast DWI is its quantitative assessment capability. As the most popular quantitative marker, the ADC can be used as a threshold to sort out benign from malignant lesions (13, 60, 61), but also to build a lexicon to describe and classify lesions, for instance to distinguish breast cancers from benign lesions (13). Many groups have also found significant differences of ADC values between benign and metastatic breast lymph nodes (62–64), however, their diagnostic performance in differentiating these lymph nodes still need further investigation (64) compared to simpler markers such as the lymph node size. Quantitative DWI in addition to DCE‐MRI and other plain MRI such as T1WI and T2WI also leads to improved diagnostic performance, in terms of specificity for BI-RADS (Breast Imaging-Reporting And Data System) 3 and 4 lesions, or evaluating malignancies with BI-RADS 4 lesions (65, 66).

DWI is often used in multiparametric protocols in combination with other MRI modalities, such as DCE-MRI, contributing to improve overall diagnostic specificity and accuracy over DCE-MRI alone (67), especially when examining non-Gaussian diffusion (42) ( Figure 5 ). The combination of DCE-MRI and DWI could increase diagnostic accuracy in characterization of non-mass-like enhancement lesions (68). It has also been reported that DWI combined with T2WI improved the diagnostic specificity of enhancing lesions incidentally detected in breast DCE-MRI (69), and that multiparametric DWI outcome parameters have associations with molecular prognostic factors or subtypes (70, 71).

Advanced diffusion markers (IVIM, Kurtosis, DTI) can further increase diagnostic performance, although there are not yet used in routine clinical practice ( Figures 3 ,  5 ). IVIM parameters have been shown to provide a high diagnostic performance in differentiating benign and malignant breast tumors (sensitivity = 86%, specificity = 86%, AUC = 0.91 for D, sensitivity = 80%, specificity = 76%, AUC = 0.85 for f, and sensitivity = 84%, specificity = 59%, AUC = 0.71 for D*) (72), especially in combination with DCE-MRI (73), and IVIM parameters are known to be correlated with DCE-MRI parameters (74). IVIM histogram parameters have been shown to be associated with molecular prognostic factors (75, 76). Regarding DKI higher K and lower MD values are usually observed in malignant compared to benign lesions (41, 77), DKI was found to be useful in the differentiation of additional suspicious lesions at preoperative breast MRI (78). In 2 recent meta-analyses of DKI studies (79, 80) the sensitivity and specificity of K and MD to differentiate malignant from brewing breast lesions were found to be around 89-90% and 86-88% for K, and 84-86% and 83-88% for MD. The utility of DKI in differentiating molecular prognostic factors (81) or predicting treatment response (82) has also been reported.

 

Figure 5 | Example of non-Gaussian diffusion MRI maps in breast lesions. Images in a 72-year-old woman with invasive ductal carcinoma. (A) Dynamic contrast-enhanced axial MR image, (B) fIVIM map, (C) ADC0 map, and (D) K map. The white rectangle on (A) shows the area covered by the parametric maps. (B) fIVIM distribution is heterogeneous inside the tumor. The peripheral area of the tumor exhibits low ADC0 (C) and high K values (D), suggesting high cellularity diffusion hindrance effect (likely from cellular membranes) corresponding to the viable malignant component (also high fIVIM values), whereas the central part shows high ADC0 and low K, suggesting lower cellularity (possible necrosis with fluid motion at the center resulting in high fIVIM values). [Adapted from (42)]. 



As for DTI parameters, malignant breast lesions have significantly lower MD and λ1 values compared to benign lesions (46). Indeed, λ1 and MD are known to have a high diagnostic performance in differentiating malignant and benign breast lesions (AUC 0.97, sensitivity 93%, specificity 92% for λ1 and AUC 0.92, sensitivity 87%, specificity 83% for D (50), although this trend might not be related to diffusion anisotropy [see above (32)]. Similarly, the use of FA to differentiate between malignant and benign breast tumors remains controversial, suggesting that caution should be exercised in the use of this parameter, although several studies have suggested its usefulness to sort out malignant and benign lesions (14, 50). Yamaguchi et al. (83) also reported higher FA in lesions with more favorable prognostic factors, such as positive estrogen receptor status, lower nuclear grade and cancer intrinsic subtype, and reduced DTI metrics had association with poor prognostic factors of breast cancer (84). A correlation between DTI parameters and molecular prognostic factors (estrogen receptor status or Ki-67) has been shown (49) and DTI has been investigated to differentiate recurrent breast cancer from post operative changes with breast-conserving surgery in patients (85).


 3.2.3. Diffusion MRI as a stand-alone modality.

In reviewing the literature, the overall sensitivity of DWI alone is very high, approaching 90% for detection of breast malignancy (with a specificity of approximately 82%, superior to any other imaging modality, including GBCA MRI) (51).

Many investigators have studied the potential of DWI alone for non-contrast cancer detection. The performance of DWI imaging for cancer detection is variable across studies, with a mean sensitivity of 81% (range 44-97%) and a mean specificity of 88% (range 73-96%) (86). This variation could be due to the diversity of the study population as well as the image acquisition protocols, highlighting the need for standardization (see below). Nonetheless, DWI based primarily on qualitative assessment is less sensitive than DCE MRI (mean sensitivity of 80 vs. 90s % for DWI vs. DCE MRI in studies (54, 58, 59, 67, 87–93). This situation is entertaining the idea that diffusion MRI would be difficult as a stand-alone modality compared to DCE-MRI and multiparametric MRI (67). However, in reviewing the literature, the overall sensitivity of quantitative ADC alone is very high, approaching 90% for detection of breast malignancy (with a specificity of approximately 82%, superior to any other imaging modality, including GBCA-MRI) (51). In any case, with respect to screening, diffusion MRI offers much better clinical performance than MMG or ultrasound (94). This is an important point, considering that repeated use of GBCA would be a problem for screening. Not only does DWI remain more sensitive than MMG across studies (52, 92, 95, 96), but mammography-occluded breast cancers are better represented with DWI than with ultrasound (94).




 4. How breast diffusion MRI could be implemented to give optimal performance in breast cancer screening.

 4.1. Standardization.

Despite this good clinical performance, it may seem surprising that DWI has not yet been recommended to be used as a stand-alone modality for breast cancer evaluation, let alone for breast cancer screening. Diffusion MRI is not even included in the BI-RADS lexicon used to assess breast lesions from GBCA MRI (97), although it is considered useful (52). The main reason is likely the high variability of the results found in the literature, especially with regard to ADC values (13, 98). The EUSOBI international committee on breast DWI has provided guidelines for obtaining optimized and consistent results (13). This report, along with the EUSOBI survey (52) have pointed out to an urgent need for standardization of DWI acquisition and processing protocols to achieve consistent results among breast DWI users.

Technical advances in MRI scanners, particularly for gradient hardware and fast imaging, facilitate the exploration of new features beyond ADC by allowing perfusion-driven IVIM to become more reliable (99), providing access to non-Gaussian diffusion through high b-values, and investigating diffusion time effects. This increasing flexibility of diffusion MRI acquisitions is supporting the expansion of more complex models, allowing for a better understanding of the relationship between diffusion MRI parameters and the microscopic characteristics of the underlying tissue. This is particularly true in the field of breast imaging, where a wide variety of diffusion MRI techniques have great potential for clinical applications in the breast field. However, this flexibility implies that some normalization must be implemented in order to compare quantitative results obtained at multiple sites. Not only are ADC values strongly dependent on b-values (100–102), but they are also influenced by TE, due to differences in T2 values between tissue components. Hidden parameters, such as diffusion time (set by the duration and intervals of the gradient pulses) also have important effects. For example, while high performance gradient hardware can achieve high b-values with shorter TEs, increasing the signal-to-noise ratio, diffusion contrast may be partially lost, as diffusion hindrance decreases with short diffusion time (103). Thus, there is a clear need for standardization of acquisition protocols. Validation of these protocols in different clinical sites would benefit from calibrated phantoms, as suggested by EUSOBI (the European Society of Breast Imaging) (13), QIBA (Quantitative Imaging Biomarkers Alliance) organized by the Radiological Society of North America (RSNA) (104). Clearly, additional efforts are needed in collaboration with vendors if consensus is to be reached on optimal acquisition parameters for diffusion MRI of the breast (10).


 4.2. Technical requirements and improvements.

 4.2.1. Image acquisition.

Single-shot echo-planar imaging (EPI) is currently the method of choice for in vivo diffusion imaging, as it allows efficient and ultrafast acquisition of multiple diffusion-weighted images (different b-values) without in-plane motion artifacts, to which diffusion MRI is notoriously sensitive. Nevertheless, EPI has several limitations related to spatial resolution, artifacts, and signal-to-noise ratio. In particular, small breast lesions (<2 mm) may be undetectable. In addition, EPI requires a very homogeneous magnetic field. For breast imaging, field inhomogeneities may be more pronounced at the air/tissue interface in the anterior part of the breast, resulting in local image distortion or signal loss. Another source of geometric distortion comes from eddy currents induced by the switching of strong diffusion encoding gradient pulses. Therefore, the degree of geometric distortion increases with the b-value. This geometric distortion must be corrected before performing any quantitative analysis involving multiple values of b to avoid artifacts around small lesions, especially at high spatial resolution. Segmented EPI acquisitions (e.g., ‘RESOLVE’ (Readout Segmentation of Long Variable Echo-trains) (105) can overcome these limitations at the cost of longer diffusion times and a sensitivity to motion between acquired segments that must be corrected using ad-hoc approaches during image reconstruction. Parallel acquisition techniques, which allow simultaneous signal collection using an array of multiple RF coils, can also address these limitations. Incorrect fat suppression can also lead to misinterpretation of diffusion MRI, as residual fat present in breast tumors results in low diffusion values, mimicking malignancy, visually and quantitatively (ADC values). The Spectrally Adiabatic Inversion Recovery (SPAIR) method has been recommended for breast imaging (13).


 4.2.2. Image processing.

Efforts are also needed on the image processing side. Diffusion-weighted images are often noisy, especially for high b-values, because the signal is strongly attenuated by the diffusion effect. Noise is a vicious enemy because it is not always visible, while having a profound impact on the values of the parameters estimated with the various models available including ADC. For high b-values, due to the nature of the MRI signal (a “magnitude” signal that cannot be negative), there always remains a background noise signal and the diffusion signal remains above a threshold, the “noise floor”, instead of asymptotically approaching 0, resulting in underestimated ADC values. If one classifies lesions (e.g., benign or malignant) on the basis of ADC threshold values, it is easy to see that this trap of underestimated ADC could lead to a significant bias toward the “malignant” nature of lesions. Therefore, an adequate signal-to-noise ratio must be ensured, e.g., by increasing the voxel size (at the expense of spatial resolution) or by repeating image acquisitions at high b-values for signal averaging before amplitude reconstruction (which unfortunately increases acquisition time). Finally, background noise effects must also be removed from the signals before analysis, especially in images acquired at high b-values (106). Noise effects may partly explain the discrepancies in the literature on the different reported values of diffusion MRI and IVIM parameters. Image preprocessing could also include steps to correct for motion artifacts and geometric distortion before the signals can be processed to calculate ADC values or estimate parameters for advanced DWI models. Another problem with clinical diffusion MRI is that quantitative analysis is often performed remotely on workstations and not on the acquisition console, which is cumbersome. Efforts are underway by vendors to provide dedicated tools for breast DWI [see the final chapters of the book (10)].

DWI data analysis would also benefit from recent developments in artificial intelligence (AI). Various approaches are being investigated for breast MRI, as well as remarkably increasing applications of convolutional neural network models (107) and machine learning (108). For example, a recent study showed that DWI radiomic classifiers for differentiating suspicious lesions in 50 asymptomatic women screened with MMG outperformed the average ADC, with an area under the curve (AUC) of receiver operating characteristics (ROC) of 84.2%/85.1% for unconstrained/constrained radiomic classifiers compared with 77.4% for the average ADC (109). The AI-based multiparametric MRI approach, including DCE, T2WI, and DWI, had better diagnostic performance (AUC ROC area of 0.852) than ultrafast DCE alone (0.811) (110). Machine learning with multiparametric MRI (DCE, DWI, and T2WI) also found that several features, including those of DWI (minimum ADC), were relevant features for predicting residual cancer burden (111). Whole breast segmentation on DWI data from different institutions and scanner types was also found to be effective using deep learning methods, which could facilitate computer-assisted quantitative analyses of DWI images of the breast (112).



 4.3. Toward a low-cost, dedicated MRI system for breast cancer screening.

Given the outstanding clinical performance of breast MRI, which has much higher sensitivity and specificity than MMG and does not rely on x-rays, it should ideally be the screening modality of choice for many women. Unfortunately, breast MRI remains expensive when performed using general-purpose body MRI scanners operating at 1.5T or even 3T. The cost (and limited availability) of these scanners prohibits the use of MRI as a screening modality (the cost today is approximately $1000 for a 40-minute exam). Breast cancer screening with MRI is therefore reserved for women with moderate to high risk of breast cancer, as detailed above. However, if a small-scale, inexpensive, dedicated breast MRI scanner were available, MRI could be used as a screening imaging modality, rather than MMG, for more women, such as women with dense breasts or a family history of breast cancer.

One issue that comes to mind when considering breast cancer screening with MRI is the use of GBCA, as examinations will need to be repeated over many years, knowing that an accumulation of gadolinium deposits in the brain or other organs in patients who have received multiple injections of contrast agents has been demonstrated. For this reason, several groups have considered the possibility of using diffusion MRI as a stand-alone imaging modality for breast cancer screening (55, 59). As detailed above, diffusion MRI, which is completely noninvasive, has been successfully used to differentiate between benign and malignant breast lesions and tumor extension. Diffusion MRI also has the potential to detect many occult mammographic and clinical carcinomas of the breast, making it a preferred modality for cancer screening. Contrast agents could then still be used, but as a second line if necessary.

A major technical implication of using diffusion MRI instead of GBCA MRI is that only one breast can be scanned at a time, as with MMG, making the design of a dedicated breast MRI scanner much easier, smaller, and therefore available at much lower cost. Here we propose some specifications that might be kept in mind when designing such a dedicated imaging system. Ideally, the device should be small to be mobile and affordable. In total, the footprint of the system should also be small compared to the 5-gauss line. Patients could be in a standing position, as a bed structure would increase space and cost ( Figure 6 ). This will also shorten the examination time and therefore reduce imaging costs. The disadvantage is that breast motion (which is already a problem with conventional MRI) will have to be controlled mechanically (motion sensors) and/or using ad hoc post-processing algorithms. Field homogeneity should be < 1ppm/20cm peak-to-peak (0.05 ppm after shimming). This is a very important requirement because breast MRI requires “fat suppression” techniques that rely on the differential frequencies between fast and water resonance frequencies. In addition, thoracic bones and air contained in the lungs are responsible for local magnetic susceptibility effects that distort the magnetic field. As with general MRI, the field stability must be better than 0.05ppm/h (10-4ppm/10 minutes). An open design will also allow image-guided biopsy or therapy (113). The field strength should be low to keep construction and maintenance costs as low as possible, ideally using helium-free magnets. This means that several technical improvements must be implemented to maintain sufficient signal-to-noise ratios, especially when using high diffusion weighting (large b values). Efficient and powerful gradient hardware must be implemented to achieve high b-values while maintaining a short TE. Innovative radio frequency systems will need to be designed for both transmission and reception. For example, receive coil arrays could be tailored to different breast sizes to maximize fill factor, such as “bra coils.” AI algorithms that have been developed for acquisition (sparse sampling) and signal processing (114) will help maintain adequate signal-to-noise levels while achieving spatial resolution greater than 2 mm. To exploit the full content of the diffusion MRI signal, one can even envision that processing will be performed not on the reconstructed images (which are only for the eyes of radiologists and clinicians), but on the denoised raw signals using AI algorithms trained and optimized to detect disease signatures. The images will then be reconstructed by focusing on these anomalies when they are detected. Assuming that no suspicious lesions will be found in the vast majority of cases, radiologists will be able to focus on the remaining cases that the AI system will identify as difficult to classify.

 

Figure 6 | Prototype of a MRI magnet dedicated to breast cancer screening. The superconducting magnet consists in 2 halves. The patient stands between the 2 halves. To reduce size and cost, this magnet can be tailored for scanning one breast at a time (courtesy T. Schild, Irfu/CEA). 



Clearly, designing such a prototype is a team effort. Clinicians must work closely with physicists, engineers and technicians, not only to design the most patient-friendly system, but also with market attention. The price of the overall system should be similar to that of high-end mammography systems, around 400 k€. In addition to the cost of building a proof-of-concept prototype, costs for patenting, multi-center trials and market research, calibration and quality control, FDA (US Food and Drug Administration) and CE (Conformité Européenne) marking, etc., must be considered. We sincerely hope that some vendors will be interested in this challenge, invest and bring such a breast MRI screening device to the market for the benefit of patients worldwide.



 5. Conclusion.

Non-contrast breast diffusion MRI has emerged as a potential alternative for breast cancer screening and lesion characterization. Without GBCA injections and with higher sensitivity and specificity than MMG, breast diffusion MRI is emerging as an ideal imaging modality for cancer screening. Consensus is needed to define the population categories that could benefit from this approach, such as women at moderate to high risk for cancer. Efforts are still needed to standardize acquisition and processing protocols and to decrease the cost of breast MRI examinations. To this end, the development of a low-cost MRI system dedicated to DWI for breast cancer screening is an option that should be seriously considered.
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Background

Algorithm malfunction may occur when there is a performance mismatch between the dataset with which it was developed and the dataset on which it was deployed.





Methods

A baseline segmentation algorithm and a baseline classification algorithm were developed using public dataset of Lung Image Database Consortium to detect benign and malignant nodules, and two additional external datasets (i.e., HB and XZ) including 542 cases and 486 cases were involved for the independent validation of these two algorithms. To explore the impact of localized fine tuning on the individual segmentation and classification process, the baseline algorithms were fine tuned with CT scans of HB and XZ datasets, respectively, and the performance of the fine tuned algorithms was tested to compare with the baseline algorithms.





Results

The proposed baseline algorithms of both segmentation and classification experienced a drop when directly deployed in external HB and XZ datasets. Comparing with the baseline validation results in nodule segmentation, the fine tuned segmentation algorithm obtained better performance in Dice coefficient, Intersection over Union, and Average Surface Distance in HB dataset (0.593 vs. 0.444; 0.450 vs. 0.348; 0.283 vs. 0.304) and XZ dataset (0.601 vs. 0.486; 0.482 vs. 0.378; 0.225 vs. 0.358). Similarly, comparing with the baseline validation results in benign and malignant nodule classification, the fine tuned classification algorithm had improved area under the receiver operating characteristic curve value, accuracy, and F1 score in HB dataset (0.851 vs. 0.812; 0.813 vs. 0.769; 0.852 vs. 0.822) and XZ dataset (0.724 vs. 0.668; 0.696 vs. 0.617; 0.737 vs. 0.668).





Conclusions

The external validation performance of localized fine tuned algorithms outperformed the baseline algorithms in both segmentation process and classification process, which showed that localized fine tuning may be an effective way to enable a baseline algorithm generalize to site-specific use.





Keywords: segmentation, classification, lung nodules, localized fine tuning, site-specific use




1 Introduction

Lung cancer is one of the most common cancers in the world (1), which has no obvious clinical symptoms in the early stage, but is hardly cured after the onset of disease. Therefore, early diagnosis and differentiation of benign and malignant pulmonary nodules has great significance for the long-term survival of patients (2). As one of the most important means to screen lung cancer for high-risk groups (3), low-dose CT scans have been widely used in health examinations, and a large amount of CT data has created heavy workload for radiologists. Deep learning (DL) is considered as a powerful tool that have gained great achievements in the detection of benign and malignant pulmonary nodules in chest CT images (4, 5). However, in most cases, decreased performance is observed when the proposed algorithm is applied in the external tests, even with adopted and balanced validation datasets (6–9).

It has been a public concern that algorithm malfunction occurs when it is applied on external dataset that is inherently different from the training set. It may halt the possible implementation of the general model into routine clinical care if it does not have a consistent accuracy for site-specific use. To obtain a comparable external test performance to the internal tests, reported studies involving training datasets from multicenter to develop the detection algorithm demonstrated that it can either underperform (10–12) or have a comparable performance to the internal test (11, 13) without any unanimous conclusion reached, which may be explained by the differences of the datasets scale and the numbers of dataset origins (14). Using local images for model training seems to be another way to obtain a site-specific used tool for diagnosis. However, a large amount of training images is needed to develop a DL algorithm, which is challenging for those regions with lower prevalence of lung nodules, especially malignant nodules. Therefore, developing a baseline algorithm using only public dataset and then recalibrating it with local images may be an effective way to reduce site-specific bias.

It has been proved that recalibration strategy with local data is able to correct for the anticipated drop in model performance. Various studies related to recalibration method were reported, but in most cases, they are statistical prediction models focusing on updating regression coefficients, or adding new covariates for the model (15–18). To the best of our knowledge, few studies have been conducted with recalibration strategy of localized fine tuning on imaging to separately explore its impact on the segmentation and classification process.

In the study, we conducted localized fine tuning for the baseline DL algorithm of segmentation and classification to segment and classify benign and malignant nodules. The baseline algorithms were first developed using public dataset of Lung Image Database Consortium (LIDC) (19) and then 50% of the public data was replaced with local dataset to develop the fine tuned algorithms. The performance of the fine tuned algorithms and baseline algorithms were tested and compared in multicenter datasets.




2 Methods



2.1 Patient cohorts

The studies involving human participants were reviewed and approved by the Institutional Review Board (IRB) of the Affiliated Hospital of Hebei University. The informed consent from human participants was waived because this is a retrospective study, and the waiver was indicated in the IRB approval document. Three datasets were involved in the study, including a public dataset of LIDC and two collected datasets named HB and XZ, respectively. All identifications of the patient were removed.

LIDC has a total of 1018 cases (the number of patients was unknown) with annotation process performed by four radiologists. Each radiologist independently reviewed the CT images and marked lesions that belonged to one of three categories (“nodule >or = 3 mm”, “nodule < 3 mm” and “non-nodule >or = 3 mm”). The nodules are finally marked with 5 malignancy levels, from 1 to 5 (17). As the detection algorithm was developed for the nodule-level classification, the inclusion criteria for nodules are as follows: (1) Nodule diameter >3mm; (2) Nodules with score greater than 3 were included with malignant label, and nodules with score less than 3 were included with benign label; (3) Nodules with borderline median malignancy (rating =3) were excluded; (4) Nodules with only one score were excluded. Finally, 582 cases comprising of 430 malignant nodules and 671 benign nodules were included, and they were randomly divided into training and testing set at a ratio of 8:2; the training set contained 344 malignant nodules and 536 benign nodules, and the testing set contained 86 malignant nodules and 135 benign nodules.

A total of 541 patients in HB dataset were retrospectively collected from January 2017 to June 2020, and 261 patients in XZ dataset were collected from July 2019 to May 2020. The inclusion criteria for these two datasets were: (1) The patients had typical imaging signs and pathological results of the lesions; (2) There was no surgery in the lung; (3) There was no history of malignant tumor in other part of the lung. Finally, a total of 963 nodules of HB dataset were included, comprising of 537 malignant nodules and 426 benign nodules, and a total of 785 nodules in XZ dataset with 387 malignant nodules and 398 benign nodules were also involved.




2.2 CT acquisition and image preprocessing

CT scans in HB dataset were performed using Siemens 64-row 128-slice helical CT scan and 40-row 64-slice helical CT scan (SOMATOM Definition AS, tube voltage: 100 kV, tube current: 100 mA, pitch: 1.3, slice thickness: 5.0 mm, field of view (FOV): 430 mm). CT scans in XZ dataset were performed using PHILIPS Brilliance 64-row CT scan (collimator width: 0.75mm, pitch factor: 0.1-2.0, slice thickness: 0.75-2.0mm, scanning parameters 80-140KV, 80-320mAS, A scan matrix: 512 × 512). All CT images were independently reviewed by two radiologists (more than 5-10 years of experience in reading CT images) using LabelImg software with the annotation reference (17). If two Dice coefficient values were all greater than or at least equal to 0.95, they would be averaged as the ground truth of the image. Otherwise, a senior radiologist (more than 20 years of experience in reading CT images) would review and outline the images again to make the final determination. Since the CT imaged were generated by different scanning devices with different resolutions, all data were spatially resampled with the isotropic interval of 1.0 mm × 1.0 mm × 1.0 mm (20).




2.3 Development of the baseline segmentation algorithm

As shown in Figure 1, 3D MaskRCNN was used to develop a baseline segmentation algorithm to detect and segment nodules on LIDC database. Before inputting the CT images to the network, the input images were transformed to physical millimeter size from pixel size with the spatial location information unchanged. The lung area was first extracted with the remaining part supplemented with pixel of 170 whose neighborhoods are close to one another, where this significantly reduces noise while preserving most image content, and then the images were randomly cropped to the size of [128,128,128] as input training. 3D MaskRCNN is similar to the 2D MaskRCNN which consists of backbone architecture, RPN head and ROI head. The backbone architecture used in the research is resnet50, for which kernels with the size of 3x3x3 were used to convolve the input image, and the feature maps output from it were input into the pooling layer to aggregate contiguous values to one scalar by the mean. The RPN architecture includes a convolutional layer and two following heads which were used to generate every anchor’s shift and the score belonging to foreground, respectively. The ROI align head was involved to pool different proposals to boxes with the shape of 7×7×7, and then a box header and a mask predictor were applied to finetune box position and format the lesion boundary. Specifically, in the research, the image was first input into the backbone and it would output 256 features at a 1/32 ratio of the raw image size, then these features maps were input into the RPN network and 1000 proposals sorted by scores were obtained. Finally, the 1000 proposals were reshaped to 7×7×7 boxes and all the boxes were input into mask head. We ended up selecting the predicted result with a threshold of 0.5. The total training epoch was 200, and ROI Head and Mask Head were added when the epoch was 65 and 80, respectively.




Figure 1 | Study workflow. (A) The development of baseline and fine tuned segmentation model, and nodules were segmented as the output in the end. (B) The development of baseline and fine tuned classification model, and prediction score was given about malignancy or benignity.






2.4 Development of the baseline classification algorithm

Resnet was used to develop the baseline classification algorithm for benign and malignant nodules diagnosis (Figure 1). Specifically, first, in the binary classification task of benign and malignant nodules, the center point of the nodule was used as the reference point to extent 64 pixels in the x and y directions, and 32 layers were expanded in the z direction, forming a nodular cube block with the size of [3, 32, 64, 64], which was the input of the algorithm. Then the resnet18-3D was applied to make the calculation of the input of [b, 3, 32, 64, 64], and output [b, 2], where b is the batch size of the algorithm input.




2.5 Algorithm fine tuning

For both baseline segmentation algorithm and classification algorithm, 50% of the LIDC training set was replaced by HB and XZ datasets, and then they were trained again to be locally fine tuned, before which the HB and XZ datasets were divided into two parts of sets respectively. For the HB dataset, the one consisting of 172 malignant nodules and 268 benign nodules was used for algorithm fine tuning, and the other set consisting of 365 malignant nodules and 158 benign nodules was used as an independent test. Similarly, for XZ dataset, one set consisting of 172 malignant nodules and 268 benign nodules was used for algorithm fine tuning, and the other set consisting of 215 malignant nodules and 130 benign nodules was used as an independent test. Both baseline algorithms and fine-tuned algorithms were evaluated on HB and XZ independent sets respectively, and their performance were compared in the end(i.e., baseline segmentation algorithm vs. fine-tuned segmentation algorithm; baseline classification algorithm vs. fine-tuned classification algorithm).




2.6 Statistical analysis

In the process of evaluating the segmentation algorithm performance, labeled nodules by radiologists are defined as positive findings, and we illustrated segmentation test results by Dice coefficient (DICE), Intersection over Union (IOU), and Average Surface Distance (ASD). For the classification results, the positive findings are malignant nodules and benign nodules are negative, and the receiver operating characteristic (ROC) curve, the value of the area under the ROC curve (AUC), accuracy, sensitivity, specificity and F1 score were used. Statistical analysis was performed using Python 3.8 and SPSS 20. Statistical tests were conducted with p-value< 0.05 as an indicator of statistical significance.





3 Results



3.1 Clinical characteristics

The main characteristics of patients in the HB and XZ datasets are shown in Figure 2. 541 patients from HB dataset were 54.2% males, and the median age was 62 years with an age range of 17-85 years. XZ included 241 patients with 50.2% males (median age of 61 years; age range 21-87 years). There was no significant difference in the patient age (P = 0.668) and gender (P = 0.292) for both cohorts. However, we observed that the distribution of benign and malignant nodules was statistically significant among LIDC, HB and XZ datasets (P<0.001), and the two-two pairwise comparison between any two cohorts also showed significant difference (i.e., LIDC vs. HB: P<0.001; LIDC vs. XZ: P<0.001; HB vs. HB: P=0.007).




Figure 2 | Patients characteristics. (A) Age distribution in HB and XZ datasets. (B) Gender composition in HB and XZ datasets. (C) The composition of malignant nodules and benign nodules in LIDC, HB and XZ datasets. LIDC, lung image database consortium. ns, not significant; **p-value <0.01; ***p-value <0.001.






3.2 Effect of fine tuning on segmentation algorithms

The performance of the baseline and fine tuned segmentation algorithms assessed by the DICE, IOU, and ASD are summarized in Table 1. In the internal set of LIDC, the DICE, IOU, ASD of the baseline algorithm were 0.771, 0.642, 0.244, respectively. Then we observed a drop in its performance for external tests, with three metrics being 0.444, 0.348 and 0.304 in HB dataset and 0.486, 0.378 and 0.358 in XZ dataset. Fine tuning enabled the baseline algorithm to perform better on both local datasets, as we observed an increase in the value of DICE and IOU and a decrease in the value of ASD (i.e., 0.593, 0.450 and 0.283 in HB dataset and 0.601, 0.482 and 0.225 in XZ dataset) with corresponding change rate of 33.56%, 29.31% and -6.91% in HB and 23.66%, 27.51% and -37.15% in XZ. Almost all of the change rates are significant except for the -6.91%. Higher values of DICE and IOU, and a lower value of ASD indicate better performance of the segmentation algorithm.


Table 1 | Performance of baseline and fine tuned segmentation model in public LIDC dataset and two independent collected datasets.



Figure 3 shows examples of segmentation result of the algorithm with and without fine tuning. We observed that the baseline algorithm segmented the lesion region in more details after using the fine tuning method for the HB dataset (i.e., After_HB vs. Undo_HB), which could be reflected by a higher value of ASD that was used to evaluate the algorithms’ edge fitting performance. In addition, it is noteworthy that when the baseline algorithm was applied in XZ dataset, a false positive nodule was detected, but after the algorithm fine tuning the false positive nodule was no longer identified and segmented (i.e., After_XZ vs. Undo_XZ).




Figure 3 | The results for example cases before and after using the localized fine tuning method in pulmonary nodules segmentation, and the manually-labeled ROI (blue contour) was compared to segmentation algorithm predicted ROI (red contour).






3.3 Effect of fine tuning on classification algorithms

As shown in Table 2, the baseline classification algorithm achieved an AUC of 0.881, and the accuracy was 0.846 in the internal testing. When it was applied in two local datasets, the AUC decreased to 0.812 and 0.668, and the accuracy decreased to 0.769 and 0.617 in HB and XZ datasets, respectively. Other metrics of sensitivity, specificity and F1 score also experienced a decreasing tendency in both HB and XZ datasets. However, they exhibited varying degrees of decrease (Figures 4, 5), which is consistent with prior research revealing that the proposed algorithm would display high variability in performance across external datasets (18).


Table 2 | Performance of baseline classification model in both public dataset and independent collected datasets.






Figure 4 | Pairwise performance comparison of the baseline classification model in public LIDC dataset and two independent collected datasets. ns, not significant; **p-value <0.01; ***p-value <0.001. LIDC, lung image database consortium.






Figure 5 | Performance comparison of the baseline classification model in public LIDC dataset and two independent collected datasets. (A) The ROC curves in LIDC, HB and XZ datasets. (B) Normalized confusion matrix in LIDC dataset. (C) Normalized confusion matrix in HB dataset. (D) Normalized confusion matrix in XZ dataset. ROC, receiver operating characteristic; LIDC, lung image database consortium.



To explore the effect of fine tuning on classification algorithm, the comparison of the validation results between baseline algorithms and fine tuned algorithms, namely MHB and MXZ, was conducted (Table 3). The classification performance of both MHB and MXZ was improved after the fine tuning (Figure 6). Specifically, comparing with the baseline validation results, the MHB had higher AUC (0.851 vs. 0.812), accuracy (0.813 vs. 0.769), sensitivity (0.849 vs. 0.767) and F1 score (0.852 vs. 0.822), and their change rate were 4.8%, 5.7%, 10.7% and 3.6%. Though the specificity was slightly decreased by 5.4%, there was no significant difference (0.730 vs. 0.772, P=0.363). For MXZ validation results, all the evaluating metrics were increased, including AUC (0.724 vs. 0.668), accuracy (0.696 vs. 0.617), sensitivity (0.684 vs. 0.619), specificity (0.713 vs. 0.615) and F1score (0.737 vs. 0.668), and their change rate were 8.4%, 12.8%, 10.5%, 15.9% and 10.3%.




Figure 6 | Performance comparison between the baseline classification model and fine tuned classification model in two independent collected datasets. (A) The ROC curves of the two models in HB dataset. (B) Normalized confusion matrix of the fine tuned model in HB dataset. (C) The ROC curves of the two models in XZ dataset. (D) Normalized confusion matrix of the fine tuned model in XZ dataset. ROC, receiver operating characteristic.




Table 3 | Comparison of the baseline classification model and its fine tuned models.







4 Discussion

In this study, we developed a baseline segmentation algorithm and a baseline classification algorithm with public dataset of LIDC to segment nodules and classify them as being benign or malignant, and then conducted fine tuning for both of them to compare their performance with that of their baseline ones. The results showed that both segmentation and classification process benefit from fine tuning and end up obtaining higher performance for the site-specific use.

Generally, the development of a computer-aided diagnosis (CAD) scheme consists of the following steps: image preprocessing, ROI segmentation, feature extraction, and finally classification. DL models have been shown to significantly contribute to medical image analysis for the processes of segmentation and classification (21), and many methods have been proposed on optimizing the segmentation and classification algorithm independently (22). Technically, segmentation is used to detect and localize the ROI from the background within the medical image, followed by the segment-based classification task to classify the ROI to a certain class, and the DL model performance may largely rely on the reliable ROI segmentation and good classifier (23). In the current study, we first proposed baseline DL algorithms of segmentation and classification, and compared the performance before and after fine tuning on imaging to explore to what extent the fine tuning can help improve the segmentation and classification process independently.

Algorithms developed on public datasets may not be implied directly on other populations, and rigorous external validation is essential to objectively assess the performance of a detection algorithm (24). In the study, we developed a segmentation and a classification algorithm using public dataset of LIDC, and unlike most of the work with adopted and balanced validation dataset, we applied two external datasets which are inherently different from each other with a significant difference in the distribution of benign and malignant nodules. Thus, the algorithm performance was evaluated in the real-word screening setting, providing objective evidence for the usefulness of the algorithm. It is common to conduct a pilot phase to optimize a triaging threshold of CAD system for external test. However, the threshold choice is balanced between maximal case finding and lower false positive cases without model improvement (25, 26). Therefore, in the study, even with the optimal threshold we observed a decreased performance in the two external tests for both baseline segmentation and classification algorithm (Table 2). The results showed that the algorithm trained by public dataset needs further adjustments for site-specific use, which is consistent with reported research (27, 28).

In previous studies, the deep learning models used for lung nodules segmentation on LIDC dataset obtained the DICE values of over 0.6 (29), and the existed classification algorithm had AUC values of over 0.8 for benign and malignant nodules classification (5, 30, 31), which is similar to our baseline segmentation algorithm and baseline classification algorithm. However, the DICE value decreased when the baseline segmentation algorithm was applied on HB and XZ, and the performance drop could also be detected in the external tests for the baseline classification algorithm. This may result from the significant appearance variances caused by the population and setting differences (32–34). It has been reported that involving multi-center datasets to develop algorithm is effective to keep the algorithm robust to maintain its accuracy across datasets (10, 11). However, it is unclear how many datasets should be exactly included to create a robust detection algorithm to obtain comparable performances of the internal test, especially when those external datasets are significantly different from internal datasets. Furthermore, AlBadawy et al. reported that using multiple institutions for training does not necessarily remove the dataset shift limitation (32). Model tuning with additional data from specific settings may be an effective way to reduce site-specific biases (11) but few studies revealed its impact on segmentation and classification process alone. In the current study, the baseline models trained by public data set were fine tuned with site-specific images and we observed both segmentation and classification algorithm benefit from the fine tuning, which showed that localized fine tuning would be a potential and well-operated way to develop an automated diagnostic tool to screen lung cancer as both the segmentation process and classification process could get optimized (35). It should be noted that the baseline segmentation algorithm was fine tuned to have as high of a sensitivity as possible for localizing and segmenting the nodules, allowing for false positive reduction, which might be due to that homogeneous features of the local dataset were involved for the learning process.

There are some limitations to this study. First, although both segmentation process and classification process were found improved with the fine tuning, it only focused on lung nodules. For the next step of our study, we aim to expand to other lung abnormality/disease to comprehensively validate the effectiveness of the fine tuning method. Second, the current study was a retrospective study where both LIDC and two collected datasets were available at the time of study, therefore, a prospective evaluation is needed to further validate the proposed method.





Conclusion

Our work is among the first that conducted the localized fine tuning for DL algorithm on imaging to explore its impact on the segmentation and classification process respectively. Results showed that both segmentation and classification algorithm outperformed their baseline model, which might enable a baseline algorithm be generalized for site-specific use and promote the future in-depth research towards its clinical application.
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Background

Artificial intelligence (AI) discrimination models using single radioactive variables in recognition algorithms of lung nodules cannot predict lung cancer accurately. Hence, we developed a clinical model that combines AI with blood test variables to predict lung cancer.





Methods

Between 2018 and 2021, 584 individuals (358 patients with lung cancer and 226 individuals with lung nodules other than cancer as control) were enrolled prospectively. Machine learning algorithms including lasso regression and random forest (RF) were used to select variables from blood test data, Logistic regression analysis was used to reconfirm the features to build the nomogram model. The predictive performance was assessed by performing the receiver operating characteristic (ROC) curve analysis as well as calibration, clinical decision and impact curves. A cohort of 48 patients was used to independently validate the model. The subgroup application was analyzed by pathological diagnosis.





Findings

A total of 584 patients were enrolled (358 lung cancers, 61.30%,226 patients for the control group) to establish the model. The integrated model identified eight potential factors including carcinoembryonic antigen (CEA), AI score, Pro-Gastrin Releasing Peptide (ProGRP), cytokeratin 19 fragment antigen21-1(CYFRA211), squamous cell carcinoma antigen(SCC), indirect bilirubin(IBIL), activated partial thromboplastin time(APTT) and age. The area under the curve (AUC) of the nomogram was 0.907 (95% CI, 0.881-0.929). The decision and clinical impact curves showed good predictive accuracy of the model. An AUC of 0.844 (95% CI, 0.710 - 0.932) was obtained for the external validation group.





Conclusion

The nomogram model integrating AI and clinical data can accurately predict lung cancer, especially for the squamous cell carcinoma subtype.





Keywords: lung cancer, artificial intelligence, prediction model, pulmonary nodule, machine learning (ML)




1 Introduction

Lung cancer is the leading cause of cancer mortality worldwide now. But patients often have a long course without atypical symptoms and signs (1). Therefore, early diagnosis is not possible in most cases, and 5-year survival rate is only 16.1% (2). Low-dose computed tomography (LDCT) is the main method for public physical screening. The tumor markers assessment in hospital including carcinoembryonic antigen (CEA) and cytokeratin 19 fragment antigen21-1(CYFRA21-1) can improve the diagnosis rate (3). Artificial intelligence (AI) models are a step forward from automated nodule diagnosis, as they typically do not require nodule measurement or data entry.

Available radioactive prediction models include the Mayo model, Veterans Administration (VA) model, Brock University model, and Peking University People’s Hospital model (PKUPH). However, these models mainly focus on the CT performance of pulmonary nodules and currently, but there is not any model integrating routine blood test data, pathological data and the radioactive models combined with pathological data for accurate prediction of lung cancer (4). In this study, we aimed to build an integrated prediction model for pulmonary nodule diagnosis based on clinical laboratory data and the VA model (5). Thus, we developed a nomogram model incorporating pathological-based subgroup analysis as a timely and efficient tool for clinical application (6).




2 Methods



2.1 Training population and study design

This retrospective study was conducted in the thoracic surgery department of the First Hospital of Lanzhou University in China, following the Declaration of Helsinki, and was approved by the Ethical Committee of the First Hospital of Lanzhou University (reference number: LDYYLL2021-257). Written informed consent was obtained from all patients. The principles of this study are followed with TRIPOD (The Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis).




2.2 Patients enrollment

Consecutive pulmonary nodule patients who got AI tool assessment before surgery Between January 2018 to December 2021 were included in this study. Tumor pathological subtypes were assessed by an experienced pathologist. Exclusion criteria were: having accurate pathological data, multiple metastatic tumors, cases with missing data, lung transplant or previous history of lung surgery, and having radiotherapy and chemotherapy.

A total of 861 eligible patients were screened initially. Among these, 142 patients with current clear pathological diagnosis before the operation, 58 multiple metastatic tumors, 27 cases with missing data, and 50 patients with a history of lung surgery, radiotherapy, or chemotherapy were excluded from further analysis. Finally, 584 eligible patients were included in the study to train the model. Figure 1 shows the flowchart for patient recruitment in this study. In addition, a total of 48 eligible patients from January 2022 to May 2022 were recruited to validate the predictive value of the model.




Figure 1 | Flowchart of selected patients for modeling.






2.3 Data collection

Data was collected independently by two reviewers (WT. H. and X. Z.). More than 76 pre-surgical parameters were evaluated in the developing model: 1. Patients’ basic line characters include age, gender, history of hypertension, diabetes, history of smoking, drinks, and family history. 2. Blood laboratory tests including all parameters of coagulation and blood routine examination data. 3. All routine blood biochemical function test parameters. 4. The lung cancer-associated serum tumor markers include CEA, CYFRA 21-1, squamous cell carcinoma antigen(SCC), neuron-specific enolase (NSE), and Ferritin(FER). 5. The AI assessment score from σ-Discover/Lung Nodule intelligent diagnosis system (the system has got permission from the Chinese Medical Association) with a sensitivity of 80.17% and a specificity of 70.35%. 6. The pathological data include lung cancer subtype, the degree of tumor differentiation, tumor infiltration, the tumor node metastasis (TNM) stage (7).





3 Statistical analysis and development of a nomogram



3.1 Prediction model development

First, potential risk factors were identified through machine learning methods from the routine blood test data. The selected variables, AI score and patients’ basic line character were used as candidate parameters for model development. Then, the risk variables selection was calculated by stepwise multivariate logistic regression (backward, p<0.05) (8). In addition, different histopathological subtype were analyzed to verify the accuracy of the model for the recognition of different lung cancer subtypes. For clinical application, a nomogram figure was established as an integrated clinical prediction tool.




3.2 Machine learning model for variable selection

The machine learning methods were implemented through R (version 4.1.1). The machine learning methods including Least absolute shrinkage and selection operator (LASSO) regression and random forest (RF) were used to identify important features. Lasso regression can handle the multicollinearity problem of the available features and RF enables the implementation of variable selection procedures based on their impact on outcome prediction. RF parameters were optimized in logarithmic steps around their default values (using 500 trees, and a random subspace with dimensionality equal to the rounded value of the square of the number of features). Ten-fold cross-validation and external test set validation were both employed to validate the reliability of the model (9).




3.3 Logistic regression model method

Data were analyzed using SPSS v.22.0 (IBM, Armonk, New York, USA). Patients were grouped by postoperative pathological diagnosis. Univariate and multivariate logistic regressions classified the risk factors for lung cancer. The regression models either used chi-square test or student’s t-test for patients’ basic features (age, sex, etc.) analysis. P-values below 0.05 were considered statistically significant. Adjusted odds ratios (ORs) and corresponding 95% confidence intervals (95% CIs) were calculated. The Hosmer-Lemeshow test was used to assess the fitness of the model. The accuracy of the model was checked by plotting DCA(decision curve analysis) curve and CIC(clinical impact curve) curves using predicted probabilities against the actual probabilities. The receiver operating characteristic (ROC) and the area under the curve (AUC) were estimated for discrimination (7).




3.4 Subgroup analysis

After model construction, further subgroups analysis according to the postoperative pathological diagnosis. For patients’ pathological diagnosis types including squamous cell carcinoma (SQCC), adenocarcinoma (AD), other tumors such as non-small cell lung cancer (NSCLC), and neuroendocrine tumors patients, The predictive ability of different pathological types of cancer was tested using the integrated model, and the difference between the simple AI predictor and the nomogram was also compared. The prediction performance was estimated by De long test for the AUC, decision curve, and clinical impact curve (10).




3.5 External validation

An independent external validation from January 2022 to May 2022 in the First Hospital of Lanzhou University was performed by using the nomogram according to the cut-off parameter. The ROC curve, DCA curve, and CIC curve analysis were performed to validate the accuracy of the model by estimating the difference between the integrated nomogram from the modeling cohort and validation set.




36 Role of funding source

The funders had no involvement in study design, data collection, data analysis, interpretation of findings, the writing of this paper, or the decision to submit the paper for publication. There was no commercial support. The corresponding author (WBM) had full access to all the data in the study and had final responsibility for the decision to submit it for publication.





4 Results



4.1 Patient characteristic

A total of 584 eligible patients were enrolled (Figure 1). All patients’ basic line characteristics were analyzed before modeling. There was no difference between lung cancer patients and control group in sex, hypertension, diabetes, family history, drinking, and history of chronic pulmonary diseases before surgery. However, patients with age and smoking history before surgery had a higher rate of carcinoma (Table 1).


Table 1 | All patients’ baseline clinical features analysis.






4.2 Variables selection

We used the LASSO algorithm to select feature variables from laboratory test data. Except for uric acid (UA), all 76 variables excluded collinearity and could be included in the variable selection using the RF method (Figure 2). To obtain the best set of features, the importance of each variable was calculated; 30 features were identified by the RF method finally. These steps were performed by the “RandomForest” package that has been illustrated in Figure 3.




Figure 2 | Lasso regression for variable selection.






Figure 3 | Performance of top-ranking variables selected by RF.






4.3 Prediction model by logistic analysis

Factors found by the RF algorithms, AI score and baseline data were calculated in the univariate and multivariate logistic regression analysis in training group.

For lung cancer patients, radiological AI score higher than 77 (OR=1.098; 95% CI, 1.074-1.123), serum levels of CEA higher than 2.3 µg/L (OR=1.193; 95% CI, 1.019-1.396), serum levels of ProGRP higher than 40.2 µg/L (OR=1.014; 95% CI, 1.001-1.028), serum levels of CYFRA211 higher than 2.5 µg/L (OR=1.714; 95% CI, 1.356-2.167), serum levels of SCC higher than 0.8 U/L (OR=2.336; 95% CI, 1.240_4.402), serum levels of IBIL higher than 16.8 U/L (OR=1.057; 95% CI, 1.009-1.107), the APTT shorter than 34 s (OR=0.916; 95% CI, 0.862-0.974) and age>52 (OR=1.045; 95% CI, 1.018-1.072) were high risk predictors for developing integrated model in lung nodules patients (Tables 2, 3). The AUC of the nomogram for the prediction of lung cancer was 0.907 (95% CI, 0.881-0.929). The De Long test for comparing the performance of the integrated model and the AI model evaluation was 0.001 and accuracy was examined by DCA and CIC curve analysis (Figure 4).


Table 2 | Univariate and multivariate logistic regressions of risk factors for lung cancer.




Table 3 | The predicted value parameters of risk factors.






Figure 4 | Assessment of predictive ability of the integrated model using the ROC, calibration, DCA, and CIC curves.






4.4 External validation of the model

A cohort of 48 patients (32 lung cancer,66.7%,16 patients for the control group) was included to validate the nomogram by the cut-off value from the training set, followed by the ROC, DCA, and CIC curve analyses. The prediction ROC curve with an AUC of 0.844 (95% CI, 0.710-0.932)with a sensitivity of 81.20% and a specificity of 87.50%, calibration, DCA and CIC curves showed that the accuracy is in the fitting range. The external cohort showed that our integrated model is in line with the clinical setting (Figure 5).




Figure 5 | Assessment of predictive ability of the integrated model in external validation cohort using ROC, calibration, DCA, and CIC curves.






4.5 Nomogram of the model

To facilitate the application of our model, we established an open access nomogram prediction tool. Users could predict pulmonary nodules by 6 features combined AI scores in the figure (Figure 6). Each factor has a prediction reference value based on OR which shows the weight of each parameter and a total score will distinguish between healthy individuals and patients with lung cancer.




Figure 6 | The application of the integrated nomogram model.






4.6 Subgroup analysis

The nomogram was analyzed in different histological subtypes of lung cancer. For patients with SQCC, the integrated nomogram model showed a better predictive performance with an AUC of 0.827 (95% CI 0.794-0.857) as compared to the AI model achieved an AUC of 0.668 (95% CI 0.628-0.707). The p-value of the De Long test was 0.001 and accuracy was examined by DCA and CIC curve analysis, which showed the integrated model has a more accurate prediction ability. For patients with AD, the integrated nomogram model showed slightly better predictive performance with an AUC of 0.799 (95% CI 0.764–0.831) as compared to the AI model with an AUC of 0.735 (95% CI 0.697–0.770). The p-value of the De Long test is 0.001 and accuracy was examined by DCA and CIC curve analysis, which showed the integrated model has a more accurate prediction accuracy. For patients with other types of lung tumors, our integrated nomogram model showed no difference in predictive performance with an AUC of 0.728 (95% CI 0.690-0.764) in comparison with the AI model with an AUC of 0.553 (95% CI 0.491-0.574). The p-value of the De Long test was 0.052, the accuracy test in the DCA and CIC curve also proved there is no significant predictive differentiation for the integrated model (Appendix Figures 1–3).





5 Discussion

Lung cancer is the main cause of cancer-related deaths worldwide. Early diagnosis can facilitate intraoperative planning procedures (11). Several risk factors such as age, gender, imaging signs of nodules, and tumor markers are related to the malignancy of pulmonary nodules (12). With the development of artificial intelligence technology, the machine learning models provided a better alternative for creating applicable predictive clinical diagnosis tools. In this study, we developed and validated a diagnostic nomogram model to improve the diagnostic accuracy of lung cancer based on AI tools and clinical data (3, 10, 13).

The integrated model can strongly discriminate between lung malignancies and other pulmonary nodules. The model has the AUC of 0.907, sensitivity of 88.2%, and specificity of 85.3%. In addition, the p-value of the Hosmer Lemeshow test was 0.919, respectively, and the p-value of the De long test with AI was 0.001. The parameters and DCA, CIC, and calibration curve analyses revealed that our integrated model has an excellent predictive accuracy as compared to the AI model only.

The subgroup analysis for different histopathology subtypes demonstrated that for the SQCC, and AD, the integrated nomogram has a more accurate predictive performance advantage compared to the AI. External validation also proved that the integrated model has a better predictive value. We established a convenient and accurate prediction nomogram tool that could be utilized in the clinical setting.

AI systems based on radiomics features, calculated based on the LDCT images, are widely used for the screening and diagnosis of lung cancer. Current studies support the use of AI prediction models as an effective approach for early diagnosis of lung cancer (14). In our study, when the AI assessment score is higher than 77 by the AI system, the risk of lung cancer will increase and the OR has been applied in the nomogram. AI system scoring is the baseline step in this integrated model (15).

Serum tumor markers in serum have great diagnostic value for preoperative diagnosis. CEA, ProGRP, CYFRA211, and SCC can be used in detecting lung cancer; hence, it is necessary to combine serum tumor markers to improve the diagnostic accuracy (6). The integrated model took the application of serum tumor markers more convenient for patients as they are substantially less surgical and cost-effective than other methods. This is consistent with the clinical practice of serum tumor markers angiogenesis and neovascularization in malignancy cancer. Furthermore, the serum tumor markers hold a large proportion in our nomogram, It also suggests that we need to pay more attention to serum tumor markers as prediction parameters for lung cancer (16).

Age is one of the common risk factors for tumor course. In this study, age was positively associated with lung cancer, the optimal cutoff value was 52 years old. Thus, physical examination and screening are necessary for the prevention of lung cancer in the elderly.

Previous studies have shown that indirect bilirubin (IBIL) levels had an influence on survival times in 1,617 patients with resectable lung cancer (17). The optimal cutoff value for serum IBIL was 2.5 µg/L with a sensitivity of 27.6% and specificity of 94.25% suggesting that IBLB inhibits the mTOR pathway by altering the activity of the AMPK pathway leading to lung cancer metastasis. Moreover, APTT is one of the routine indexes of hemostatic examination for surgical patients, the optimal cutoff value for APTT time was 34 S with a sensitivity of 60.6% and a specificity of 72.12% (18). Tumor cell products presented on their surface or substances secreted in the microenvironment may either directly trigger clotting system activation or indirectly trigger it by stimulating extravascular host cells to release procoagulant products (19). This can be also one of the potential targets for cancer detection in the future.

To our knowledge, this is the first diagnostic integrated nomogram model combined with AI tool and clinical blood test data for lung cancer. The validated nomogram showed a high predictive value through the calibration and accuracy test. By the nomogram, the AUC for 8 variables for lung cancer prediction was 0.907 (95% CI, 0.881-0.929), and the p-value of the De Long test is 0.001, which is superior to any single radionics prediction model.

There are still some limitations in our study. First, the nomogram only suits those lung nodule patients instead of routine physical examination for the general population. Secondly, our findings were based on a single-center retrospective study of the eastern Asian population, with an inherent bias with missing data. For future model validation and correction, prospective global multicenter validation and large-scale studies are needed (20).

In conclusion, CEA, AI score, serum ProGRP, CYFRA211, SCC, IBIL, APTT, and age are potential independent factors that can be used for diagnosis of lung cancer. The presented nomogram, as a less invasive and convenient approach, can accurately predict lung cancer in patients with lung nodules, especially for the SQCC subtype to avoid unnecessary surgical resection.
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Introduction

Hepatocellular carcinoma (HCC) has very poor prognosis due to its immunosuppressive properties. An effective measure to regulate tumor immunity is brachytherapy, which uses 125I seeds planted into tumor. T cell immune receptors with immunoglobulin and ITIM domains (TIGIT) is highly expressed in HCC. The TIGIT-targeted probe is expected to be an effective tool for indicating immunomodulation of 125I seed brachytherapy in HCC. In this study, We constructed a novel peptide targeting TIGIT to evaluate the immune regulation of 125I seed brachytherapy for HCC by near-infrared fluorescence (NIRF).





Methods

Expression of TIGIT by immunofluorescence (IF) and flow cytometry (FCM) in different part and different differentiated human liver cancer tissues was verified. An optical fluorescence probe (Po-12) containing a NIRF dye and TIGIT peptide was synthesized for evaluating the modulatory effect of 125I seed brachytherapy. Lymphocytes uptake by Po-12 were detected by FCM and confocal microscopy. The distribution and accumulation of Po-12 in vivo were explored by NIRF imaging in subcutaneous and orthotopic tumors. IHC and IF staining were used to verify the expression of TIGIT in the tumors.





Results

TIGIT was highly expressed in HCC and increased with tumor differentiation. The dye-labeled peptide (Po-12) retained a stable binding affinity for the TIGIT protein in vitro. Accumulation of fluorescence intensity (FI) increased with time extended in subcutaneous H22 tumors, and the optimal point is 1 h. TIGIT was highly expressed on lymphocytes infiltrated in tumors and could be suppressed by 125I seed brachytherapy. Accumulation of Po-12-Cy5 was increased in tumor-bearing groups while declined in 125I radiation group.
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1 Introduction

Hepatocellular carcinoma (HCC) is the fifth most common cancer and the second leading cause of cancer-related death worldwide (1). The treatment of advanced HCC has been a dilemma because of its self-immune tolerance (2). Local radiotherapy (RT) is an effective immunomodulatory measure for tumors (3). 125I seed implantation brachytherapy is a new type of RT that has been widely used in the treatment of a variety of tumors, including liver cancer (4–8). 125I seed is a kind of single miniature radioactive source with low dose rate. The core of this seed is palladium wire of 125I radioactive nuclide, encased in cylindrical sealed titanium alloy tube, with half-life of 59.43 days, average energy of 27 ~ 35 keV and radiation distance of 1.7 ~ 2.0 cm.125I seed brachytherapy has a good safety profile for the treatment of HCC (9). Increasing evidence has confirmed that 125I seed brachytherapy inhibits tumor growth and activates antitumor immunity (10–13). However, RT alone is not enough to prevent tumor recurrence and metastasis. Combined RT can further promote this immunodulatory effect, in which the combination of nano-materials such as photothermal therapy (PTT) and photodynamics therapy (PDT) have a significant effect (14–16). More important, RT can also result in immunosuppression with the.accumulation of radiation dose (17). Nevertheless, there is currently no accurate method for evaluating immune molecule changes in the tumor microenvironment (TME) for clinical treatment. Therefore, real-time and dynamic monitoring of these molecules is needed to detect changes in immune translation and provide guidance for immunotherapy.

T cell immune receptor with immunoglobulin and ITIM domains (TIGIT) is a receptor of the Ig superfamily. It plays a key role in limiting adaptive and innate immunity and is involved in tumor immune surveillance, mainly expressed on T cells, natural killer cells (NK), and other antigen-presenting cells (APCs), which can reduce cytokine production and show strong immunosuppressive effects (18). Considering that NK cells account for a large proportion in liver, and TIGIT is expressed on both NK and T cells, TIGIT has been reported to be an important inhibitory immune checkpoint (ICP) in HCC (19). RT regulates the expression of TIGIT in tumors. RT combined with anti-TIGIT is a good anti-tumor strategy (20, 21). Consequently, TIGIT can be used as an indicator of tumor immunoactivity. Hence, we used TIGIT as a marker to reflect the immunoregulation of 125I seed brachytherapy in HCC.

The development of molecular imaging technology provides the possibility for the dynamic assessment of tumor immune microenvironment (TIME) changes in real time. It is reasonable to measure immunoactivities by molecular imaging of predictive biomarkers in tumors. Near-infrared fluorescence (NIRF) emitters have been widely used in the real-time imaging of tumors because of their excellent tissue penetration and target-background contrast (22, 23). Therapeutic targeted molecules and immune checkpoints (ICPs) labeled with NIRF dye have been tested in the evaluation of cancer therapy, demonstrating ideal safety and high accuracy in identifying the TME (24–26).

NIR imaging probes are usually composed of NIR dyes and targeting groups (including antibodies and their fragments, peptides, small molecules, etc.), which can bind to specific molecules in the process of tumorigenesis and development to achieve dynamic tracing of the TME (27–29). Among these, peptides stand out among many targeting groups because of their low immunogenicity, strong tissue penetration, fast blood clearance, and relatively simple production process (30, 31). Phage display technology combines the antigen recognition ability of recombinant proteins and is an efficient screening system to generate peptides against specific molecules or tumor structures. Therefore, it has great prospects in the development of tumor-specific peptides (32).

As TIGIT is highly expressed in HCC, and is a new immunotherapeutic target that may be regulated by RT (33), we introduced 125I seed implantation into the tumor for brachytherapy and regulated the expression of TIGIT. We also designed a 12-amino acid peptide targeting TIGIT to bind to lymphocytes in HCC. This peptide was combined with Cy5 to further evaluate the targeting efficacy of the probe in HCC before and after radiotherapy under NIRF, which can indicate the degree of immune regulation of HCC by 125I seed brachytherapy (Figure 1).




Figure 1 | Diagram showing the general scheme for using the TIGIT probe in near-infrared fluorescence (NIRF)-guided 125I seed brachytherapy in orthotopic HCC. 125I seed was used to implanted into orthotopic tumor for radiation. Po-12 conjugated Cy5 targeting TIGIT was administrated by tail vein. Change of TIGIT expression was detected by NIR imaging.






2 Methods



2.1 Expression and purification of recombinant TIGIT antigen

In order to obtain the recombinant TIGIT protein, the TIGIT gene (available in PubMed) was cloned into the BamHI and EcoRI sites of PET28-A vector (+) and transformed into BL21(DE3) competent Escherichia coli cells, which were cultured in Luria broth at 37 °C, containing ampicillin (OD values of 0.6-0.8). Subsequently, 1μM isopropyl-β-D-thio-galactoside (IPTG) was added to the culture to induce protein expression. Bacterial cultures were harvested and centrifuged at 5000 rpm for 10 min, after which the precipitate was resuspended in lysis buffer containing 8 M urea and 50 mM Tris (pH 7.4). After complete decomposition at high pressure, lysed bacteria were centrifuged at 15000 rpm for 30 min and loaded onto a nickel resin-bound (column affinity chromatography) column. The recombinant TIGIT protein was eluted with a highly stringent buffer containing 300 mM imidazole and verified by 10% SDS-PAGE and Coomassie Brilliant Blue staining to obtain purified recombinant TIGIT protein.




2.2 Screening of TIGIT targeted peptides

The resulting purified TIGIT protein was coated onto a 96-well plate and used for subsequent peptide screening. Phage display technology was used for the screening. Fifty microliters of phage supernatant were added to a 96-well plate coated with TIGIT protein for screening. 0.2 M Gly-HCl PH2.2 was used for elution and 1M Tris-HCl PH9.1 was used for neutralization. The neutralization solution (containing bacteriophages) was diluted 1000 or 10000 times and then added to E. coli for amplification. After three rounds of screening, the desired affinity clone target was obtained. The cloned target was sequenced using DNA and the target amino acid sequence was obtained by reverse sequencing. A sequence with a high affinity and the highest occurrence times was selected for chemical synthesis. To better link the Cy5 fluorophore, the Cy5 fluorophore was first added to the synthesized amino acid sequence and then the Cy5 fluorophore was added to the N-terminus of the amino acid sequence. All peptides were chemically synthesized using the solid-phase Fmoc method and purified by high-performance liquid chromatography (HPLC) and electrospray ionization mass spectrometry to a minimum purity of 95%.




2.3 Cell culture and animal models

H22 cells (Chinese National Collection of Authenticated Cell Cultures) were cultured in Roswell Park Memorial Institute 1640 medium (RPMI 1640, Gibco, USA), containing 10% fetal bovine serum (FBS, Gibco, USA) and 10% penicillin/streptomycin (P/S, Gibco, USA) at 37° in a humidified atmosphere containing 5% CO2. All animal experiments were approved by the Animal Ethics Committee of Southeast University and conducted in compliance with the Regulations for the Administration of Affairs Concerning Experimental Animals of China. Six-week-old male BALB/c mice (Vital River Laboratory Animal Technology, China) were housed at the Animal Center of the Southeast University laboratory. 1×106 H22 cells were used to induce subcutaneous tumors by an injection into the back of each mouse and tumor tissue was used to generate orthotopic hepatic tumors by implantation into the liver. The mice were anesthetized with an intraperitoneal injection of 60 mg/kg sodium pentobarbital. 125I seeds (activity of 0.8 mCi) were implanted into the tumor for radiation.




2.4 Cell sorting of T lymphocytes

The tumor tissues of each group were minced into small fragments and digested with tissue digestive enzymes(Miltenyi Biotec, Germany)at 37 °C for 40 min. Single cells were collected by filtration through a 70 μm colander (BD Biosciences, USA). T lymphocytes were sorted using magnetic beads and a CD45+ lymphocyte isolation kit (STEMCELL Technologies, Canada).




2.5 Flow cytometry

Isolated CD45+ lymphocytes were collected at 1 × 106 cells/sample and incubated with 300 μL control Con-12 or Po-12 (10 μg/mL) at 4 °C for 15 min. After incubation, the cells were washed with PBS 3 times and then resuspended in 400 μL staining buffer. Fluorescence analysis was performed using a flow cytometer (BD Biosciences) with a count of 1×106 living cells per sample. The results were analyzed by flow cytometry using Flow Jo software for 3 times (v7.6, OR, USA).




2.6 Immunofluorescence staining

Isolated CD45+ lymphocytes were seeded in a confocal chamber at 1 × 106 cells/well for 24 h and fixed with 4% paraformaldehyde at room temperature for 20 min. The cells were incubated with Po-12-Cy5 or Con-12-Cy5 at 4°C overnight. After staining with 4’ 6-diamidino-2-phenylindole (DAPI), cells were imaged using a confocal microscope (FV3000; Olympus, Japan). The prepared tumor sections were also subjected to immunofluorescence (IF), and the tumor tissues were resected and frozen for IF imaging. Slides were stained with DAPI and analyzed using a confocal microscope (FV3000, Olympus, Japan).




2.7 Western blotting

Isolated CD45+ lymphocytes were lysed to concentrate proteins using RIPA lysis buffer (Beyotime Biotechnology, China). Cell extracts were clarified by centrifugation, and protein concentrations were determined using the BCA assay. Protein extracts were separated by SDS-PAGE, transferred to microporous polyvinylidene difluoride membranes (Roche, USA), and blocked using 5% BSA. Then the membranes were incubated with anti-TIGIT polyclonal antibody (Abbexa, UK) or GAPDH monoclonal antibody (Cell Signaling Technology, MA, USA) at 4°C overnight. After washing, the membranes were incubated with HRP-conjugated secondary antibodies (Cell Signaling Technology, USA) at room temperature for 1 h. Protein bands were detected with enhanced chemiluminescence (ECL) and imaged using a chemiluminescence system (Bio-Rad, USA). The above experimental procedures were repeated 3 times.




2.8 Near-infrared fluorescence imaging

Six H22 tumor-bearing mice were randomly divided into two groups and intravenously injected with 20 μg Po-12-Cy5-peptide or Con-12-Cy5-peptide. After anesthesia with isoflurane in oxygen, in vivo fluorescence imaging was performed using an IVIS-Spectrum system (Perkin Elmer, Santa Clara, CA, USA) at several time points (0.5, 0.75, 1, 2, 4, and 8 h). The excitation and emission wavelengths of the probe were 620 and 670 nm, respectively. The mice were sacrificed after injection of the peptide; their tumors and major organs were dissected for ex vivo NIR imaging.




2.9 Statistical analysis

All data are presented as mean ± standard deviation (SD). Statistical significance between groups was determined using two-tailed Student’s t-test or one-way analysis of variance (ANOVA). The threshold of statistical significance was set at P < 0.05 (*P < 0.05, **P < 0.01). Statistical analyses were performed using the GraphPad Prism software (V9.0, CA, USA).





3 Results



3.1 TIGIT expression in human HCC samples

In experiments examining the expression of TIGIT protein in human HCC, different parts of the tissue (normal, paracancer, and tumor tissue) and differentiated tumor tissues (well, moderate, and poorly differentiated tumors) were collected. H&E and IF staining was used to assess TIGIT expression in each group. The probe distribution assay of IF showed extensive accumulation of fluorescence in tumor tissue compared to paracancerous tissue but was negligible in normal tissue (Figure 2A). Furthermore, fluorescence intensity (FI) increased with the degree of malignancy, which revealed a stronger accumulation in poorly differentiated tumors than in moderately differentiated tumors, while the well-differentiated tumor displayed the least FI (Figure 2C). To further verify the expression of TIGIT, we detected the expression of TIGIT on the surface of lymphocytes in each tissue using flow cytometry (FCM), and the results showed a consistent trend (Figures 2B–D, P < 0.01). These results indicate that TIGIT was highly expressed in HCC and increased with tumor differentiation.




Figure 2 | TIGIT expression in human HCC. (A) Representative IF staining of TIGIT in different parts of tissue. (B) Flow cytometric analysis of TIGIT expression on lymphocytes in different parts of tissue (n=3). (C) Representative IF staining of TIGIT in various differentiated tumor tissue. (D) Flow cytometric analysis of TIGIT expression on lymphocytes in different differentiated tumor tissue (n=3). (Scale bar: Up, 50 μm; Down, 20 μm). ****P < 0.01.






3.2 Identification and synthesis of TIGIT-targeted peptides

TIGIT protein was successfully purified. Three rounds of incubation and screening of expressed proteins were performed (Figure 3A). Significant enrichment of recovered phages was observed (Figure 3B). A consistently predicted molecular weight of approximately 29 kDa was determined by Coomassie Brilliant Blue staining (Figure 3C). After the last round of screening, 19 clones were randomly selected, verified by enzyme-linked immunosorbent assay (ELISA), and sequenced by high-throughput sequencing. The absorbance of the two highly repetitive peptide sequences at 450 nm was significantly higher than that of the control sample (Figure 3D). The high frequency of the peptide sequences indicated efficient enrichment during the screening process. The peptide sequence GAQYPHISRALH (named Po-12), with an OD equal to 10 times that of the control, was selected as the best candidate peptide for subsequent studies, and the peptide with sequence shuffling (named Con-12) was used as the control peptide (Figure 2D). The molecular structure of Po-12-Cy5 is presented in Figure S1A. Cy5 fluorophore was added to (red marker) the N-terminus of the naked peptide (Figure S1A). The mass to charge ratio (M/Z) of Po-12-Cy5 by mass spectrometry was determined at 2231.58(Figure S1B), and the retention time of peptide purification by HPLC was 11.023 min (Figure S1C).




Figure 3 | Identification of TIGIT-targeted peptides. (A) A flow chart for screening of TIGIT-targeted peptide. (B) Amino acid sequence of TIGIT protein. (C) Coomassie Brilliant Blue staining of TIGIT protein after purification. (D) The binding affinities of selected nine peptide. The OD values were analyzed by phage ELISA. ****P < 0.01.






3.3 Binding of TIGIT-targeted peptide to lymphocytes

The in vitro specificity of Po-12 to the TIGIT protein was evaluated using FCM. The results revealed that lymphocytes in the Po-12 group showed a stronger absorption of fluorescence intensity than those in the Con-12 group and isotype group (Figure 4A, P < 0.01). Confocal microscopy imaging was used to evaluate the cellular binding of the probes. Strong membranous binding was observed in lymphocytes treated with Po-12-Cy5, whereas almost no fluorescence was found in Con-12-Cy5-treated one (Figure 4B). These data indicated that the dye-labeled peptide retained a stable binding affinity for the TIGIT protein in vitro.




Figure 4 | Binding of TIGIT-targeted peptide to lymphocytes. (A) FCM analysis of lymphocytes after incubation with Con-12-Cy5 or Po-12-Cy5 peptide (n=3). (B) Confocal images of lymphocytes after treatment with Con-12-Cy5 or Po12-Cy5 peptide. Scale bar: 50 μm. ns, no significance; ****P < 0.01.






3.4 NIRF imaging of tumors models

NIRF imaging was performed in tumor-bearing BALB/c mice by intravenous injection of Cy5-peptides. Accumulation of FI increased in subcutaneous H22 tumors from 0.5 h until 1 h, after which the FI began declining. Quantitative analysis showed that the mean fluorescence intensity (MFI) of Po-12-Cy5 was significantly higher than that of Con-12-Cy5 (Figures 5A, B, P < 0.01). Ex vivo optical imaging of the tumors and main organs was performed 1 h post-injection. The quantification of FI corroborated the visualization of in vivo optical imaging. Biodistribution analysis indicated that Po-12-Cy5 showed prominent renal clearance. The enrichment of Po-12-Cy5 in H22 tumors was the highest in all organs except the heart (Figures 5C, D).




Figure 5 | In vivo imaging of H22 subcutaneous tumors and biodistribution of the probe. (A) In vivo imaging post-injection of probes and (B) quantification of fluorescence intensity (n=3). (C) Ex vivo imaging of tumor and normal organs (Tumor, heart, liver, spleen, lung, kidney) and (D) quantification of fluorescence intensity (n=3). **P < 0.01.






3.5 TIGIT expression and cellular uptake of probes in lymphocytes after brachytherapy

To detect the effect of brachytherapy on the expression of TIGIT in HCC, we established mouse subcutaneous tumor models under 125I seed radiation. Lymphocytes from each group were isolated from tumor tissue using magnetic beads and incubated with Po12-Cy5. Confocal microscopy imaging was also used to evaluate the cellular uptake of the TIGIT-targeted probe in lymphocytes after radiation. The results showed that the expression of TIGIT in the tumor control group was significantly increased compared with that in the normal control group and decreased in the 125I seed radiation group (Figure 6A). Consistent with confocal microscopy images, TIGIT protein expression in each group extracted from isolated lymphocytes assessed by western blotting also exhibited a similar tendency (Figures 6B, C, P < 0.01). These results demonstrated that TIGIT was highly expressed on lymphocytes infiltrated in tumors and could be suppressed by 125I seed brachytherapy, which suggested that this probe may not only visualize the expression changes of TIGIT in tumors but also provide dynamic guidance for RT in TME regulation.




Figure 6 | TIGIT expression and cellular uptake of probes in lymphocytes. (A) Confocal microscopic imaging of the cellular binding of probes in lymphocytes. (B) Western blotting of TIGIT protein in lymphocytes and (C) quantification of TIGIT expression (n=3). Scale bar: 20 μm. **P < 0.01.






3.6 NIRF-guided TIGIT expression in tumor model of HCC after brachytherapy

To verify the effect of radiation on TIGIT expression and the targeting of the probe in HCC, subcutaneous and orthotopic HCC tumor models were established in mice. The probe was injected into the tail vein, and accumulation of Po-12-Cy5 was increased in both subcutaneous and orthotopic tumors, while the normal control group without tumor showed no change. Quantification analysis revealed that FI in 125I radiation group declined significantly than tumor control one (Figures 7A–G, P < 0.01). The results of tumor growth curve were also consistent with IF, and the growth of subcutaneous and orthotopic tumor was inhibited observably (Figures 7C–H, P < 0.01). In addition, the tumors were excised for IHC and IF staining. Results revealed that TIGIT protein expression in IHC was negligible in the normal control group, while it was highly expressed in the tumor-bearing group and downregulated in the 125I radiation group (Figures 7D–I). In agreement with IHC, extensive accumulation of Po-12-Cy5 was observed in tumor-bearing groups compared to that in the normal control group, and also declined in the 125I radiation group (Figures 7E–J). These results reveal that Po-12-Cy5 has excellent TIGIT-positive tumor-targeting potential and can be used as a significant indicator of radiation immune regulation.




Figure 7 | Fluorescence imaging in subcutaneous and orthotopic model of HCC. (A–F) Imaging of subcutaneous and orthotopic tumor after infusion of probes. (B–G) Quantification of FI in subcutaneous and orthotopic tumor (n=3). (D–I) IHC of TIGIT expression in subcutaneous and orthotopic tumor. (E–J) Probe distribution evaluated via IF staining of frozen sections from subcutaneous and orthotopic tumor. (C–H) Tumor volume of subcutaneous and orthotopic tumor after 125I seed radiation (n=4). Scale bar: 50 μm. Scale bar: 20 μm. ****P < 0.01.







4 Discussion

Evaluation of the immune response has always been a challenge in tumor therapy because of the potential reversion or pseudoprogression (34). However, there is still a lack of effective non-invasive real-time dynamic evaluation measures based on immune molecules. The advent of molecular imaging technology provides an opportunity for noninvasive observation of abnormal immune molecular events in vivo. In response to the expression of TIGIT protein in cancer, a variety of therapeutic antibodies have been developed in phase I-II clinical trials (35, 36). Probe navigation systems for recognizing tumor molecules mainly include antibodies, peptides, and small molecules (27–29). Among them, peptides have been valued for their ability to bind hidden epitopes because of their smaller molecular weight (31). With the emergence and rapid development of phage display technology, new peptidyl molecular probes have greatly promoted the detection of tumor molecules, showing great potential for clinical exploration (37, 38).

To the best of our knowledge, the indication of ICP by optical labeling of peptide targeting TIGIT under real-time NIF for RT regulation has not been reported. In this study, the target peptide of TIGIT was identified using phage display technology. To determine the expression of TIGIT in HCC, we first collected different parts and differentiated human HCC tissues and detected the expression of TIGIT by IF staining and FCM. The results showed that the expression of TIGIT in tumor tissues was significantly higher than that in adjacent and normal tissues, and the expression of TIGIT in poorly differentiated liver cancer tissues was significantly higher than that in moderately and well-differentiated tissues. Furthermore, we isolated lymphocytes from mouse tumors and verified the high binding affinity of the Cy5-conjugated peptide (Po-12-Cy5) to lymphocytes by FCM and immunofluorescence confocal assay in vitro. In vivo optical imaging further verified the targeting ability of Po-12-Cy5 in a subcutaneous HCC model. The results showed that the fluorescence uptake of Po-12-Cy5 was significantly stronger than that of Con-12-Cy5, peaking rapidly within 1 h, and gradually declining over 7 h. In addition, the biodistribution results showed that the fluorescence intensity in the tumor was significantly higher than that of the hybrid peptide, which was consistent with in vivo observations. In addition, the uptake of Po-12-Cy5 in the kidney was higher than that in other organs, indicating that the kidney may be the main excretion route. This is consistent with what has been reported in a series of other literatures (39–41). These results indicate that Po-12-Cy5 has a good targeting effect on TIGIT in HCC and can be used as an important indicator of changes in the immune microenvironment in HCC. Therefore, we planned to use it to dynamically monitor the regulation of TIGIT by 125I seed RT in real-time.

Based on the specificity of the Po-12-Cy5 probe for TIGIT in liver cancer, we constructed a tumor brachytherapy model using 125I seed implantation and isolated tumor-infiltrating lymphocytes and compared the expression of TIGIT under 125I seed RT, tumor control, and normal control groups in vitro. Immunofluorescence confocal analysis showed that the fluorescence uptake in the tumor group was significantly higher than that in the normal control group, while that in the 125I seed RT group was downregulated. The expression of the TIGIT protein in each group also demonstrated this trend. To further demonstrate the indication of the Po-12-Cy5 probe on TIGIT by RT, we constructed subcutaneous and orthotopic tumor models of HCC in mice and further evaluated the targeting of the Po-12-Cy5 probe in vivo. Quantitative analysis showed that the FI of the 125I seed RT group was significantly lower than that of the tumor control group in both the subcutaneous and orthotopic tumor models. IF and IHC staining of tumor tissues also showed this trend. These results indicate that the Po-12-Cy5 probe has precise targeting of TIGIT in HCC and can be used as an indicator of RT immunoregulation, which has important clinical significance for guiding HCC immunotherapy.

However, there are still some problems associated with the clinical translation of the Po-12-Cy5 probe. First, the clinical safety of the NIF dye-Cy5, was not confirmed. Nonetheless, NIR-II dye-indocyanine green (ICG) has been approved for clinical use by the Food and Drug Administration (FDA) (42, 43). IRDye800cw, as a marker of SHRmAb antibodies, has been widely used because it has no obvious clinical toxicity evaluated in human trials (44). Therefore, it provides the possibility of improving the clinical translation of the Po-12 probe. Second, although peptides show superior performance in tumor diagnostic applications, their binding affinity is not yet comparable to that of specific antibodies. At present, the antibody-drug conjugate (ADC) has been used in tumor therapy as a very promising antitumor drug because of its high affinity and targeting (45). Therefore, using TIGIT as a naked antibody of ADC and further conjugation of NIR-II dye with peptide can not only further solve the limitations of this study but also further improve the efficacy of HCC immunotherapy. Finally, in contrast to bioluminescence imaging, which is affected by tissue depth and imaging dimension, PET/SPE-CT technology for small animals can achieve absolute quantification owing to the excellent penetration ability of radionuclides, with no signal attenuation; this provides three-dimensional information and accurate localization (46). Therefore, we need to construct PET imaging probes to evaluate tumor immune molecules in future studies.




5 Conclusion

In this study, we synthesized a TIGIT targeting NIRF probe, Po-12-Cy5. In vitro and in vivo experiments showed that Po-12-Cy5 was specifically absorbed by infiltrating lymphocytes in HCC. In addition, the probe could indicate TIGIT regulation of 125I seed radiation under NIRF guidance. As the TIGIT protein correlates with the degree of tumor differentiation and can be downregulated by RT, we believe that this probe can help indicate the regulation of the immune microenvironment of HCC by RT. Therefore, the Po-12-Cy5 probe can be used as an effective immunoevaluation tool with clinical translational potential.
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Purpose

To compare the diagnostic performance of radiomic analysis with machine learning (ML) model with a convolutional neural network (CNN) in differentiating thymic epithelial tumors (TETs) from other prevascular mediastinal tumors (PMTs).



Methods

A retrospective study was performed in patients with PMTs and undergoing surgical resection or biopsy in National Cheng Kung University Hospital, Tainan, Taiwan, E-Da Hospital, Kaohsiung, Taiwan, and Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan between January 2010 and December 2019. Clinical data including age, sex, myasthenia gravis (MG) symptoms and pathologic diagnosis were collected. The datasets were divided into UECT (unenhanced computed tomography) and CECT (enhanced computed tomography) for analysis and modelling. Radiomics model and 3D CNN model were used to differentiate TETs from non-TET PMTs (including cyst, malignant germ cell tumor, lymphoma and teratoma). The macro F1-score and receiver operating characteristic (ROC) analysis were performed to evaluate the prediction models.



Result

In the UECT dataset, there were 297 patients with TETs and 79 patients with other PMTs. The performance of radiomic analysis with machine learning model using LightGBM with Extra Tree (macro F1-Score = 83.95%, ROC-AUC = 0.9117) had better performance than the 3D CNN model (macro F1-score = 75.54%, ROC-AUC = 0.9015). In the CECT dataset, there were 296 patients with TETs and 77 patients with other PMTs. The performance of radiomic analysis with machine learning model using LightGBM with Extra Tree (macro F1-Score = 85.65%, ROC-AUC = 0.9464) had better performance than the 3D CNN model (macro F1-score = 81.01%, ROC-AUC = 0.9275).



Conclusion

Our study revealed that the individualized prediction model integrating clinical information and radiomic features using machine learning demonstrated better predictive performance in the differentiation of TETs from other PMTs at chest CT scan than 3D CNN model.
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Introduction

Prevascular mediastinal tumor (PMT) is relatively uncommon, making up less than 1% of all solid tumors (1). PMT consists of a wide variety of entities, including thymic epithelial tumor (TET), lymphoma, germ cell tumor, ectopic thyroid, and cyst, among which TET is the most frequently encountered (2). The NCCN guidelines suggested that patients with clinically resectable TETs undergo upfront surgical resection instead of preoperative transpleural biopsy to avoid converting stage I thymoma to stage IV thymoma by spreading tumor within the pleural space (3). Chest computed tomography (CT) scan is the standard assessment for PMT. It was reported that the accuracy rate of PMT interpretation via traditional radiographic features on CT scan reaches as high as 61% in experienced radiologists, leaving much room for improvements in the era of advanced technology (4).

The applications of radiomics in diagnostic medicine and outcome analysis have been increasingly proposed lately (5, 6). By combining image-filtering and feature-extraction methods, it is possible to extract a large number of high-order radiomic features from CT images (5). Studies have shown significant radiomic parameters such as skewness, kurtosis, and entropy, correlated with thymic tumor histology (7, 8). Redundancy is often the scenario in highly dimensional data, and classification model could be developed only through proper feature selection and proper machine learning (9).

Convolutional neural networks (CNNs) are a class of deep learning (DL) models that combine imaging filters with artificial neural networks through a series of successive linear and nonlinear layers (10, 11). CNN is far more data hungry because of its millions of learnable parameters to estimate, and therefore is more computationally expensive, resulting in the requirement of graphical processing units (GPUs) for model training. The major drawback in the application of 3D deep learning on medical images is its dependency on data availability and high computational cost (12). With powerful GPUs becoming increasingly available, we have seen exponential growth in the applications of 3D deep learning in different medical image modalities (11).

Nonetheless, with the low incidence of tumor occurrence and the resultant limited radiographic data and information, it is yet to be clarified if 3D CNN out-performs radiomics with ML in differentiating various kinds of mediastinal tumor. Our study aimed to compare the model using radiomics with traditional machine learning with 3D CNN model in differentiating TETs from PMTs, thus providing a prediction tool and the opportunity of improvement on the decisions for invasive diagnostic or treatment modalities.



Materials and methods




Study population

A retrospective study was performed in patients with PMTs and undergoing surgical resection or biopsy in National Cheng-Kung University Hospital, Tainan, Taiwan, E-Da Hospital, Kaohsiung, Taiwan, and Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan between January 2010 and December 2019. Informed consent was waived because the study was retrospective, and it was respectively approved by the Institutional Review Board of National Cheng Kung University Hospital (A-ER-111-211), E-Da Hospital (EMRP-110-145), and Kaohsiung Veteran General Hospital (VGHKS19-CT6-08). Exclusion criteria were patients younger than 20-year-old, missing imaging data, or metastatic prevascular mediastinal tumors. The patients younger than 20-year-old were excluded because the most common types of tumors in this age group are lymphomas and malignant germ cell tumors, and the rare occurrence of thymic epithelial tumors (TET) does not have much impact on histological classification of tumors (13). Clinical data including age, sex, myasthenia gravis (MG) symptoms and pathologic diagnosis were collected. We divided our dataset into UECT (unenhanced computed tomography) and CECT (enhanced computed tomography) for analysis and modelling. Radiomic model and 3D CNN model were adopted respectively to differentiate TETs from non-TET PMTs (including cyst, malignant germ cell tumor, lymphoma and teratoma). The flowchart of patient inclusion was shown in Figure 1.




Figure 1 | Flowchart of patients inclusion. NCKUH, National Cheng Kung University Hospital; KVGH, Kaohsiung Veteran General Hospital.






Image acquisition

All CT images were obtained using Siemens SOMATOM Definition Flash, Siemens SOMATOM Definition AS, Siemens SOMATOM Sensation 16, GE Optima CT660, GE Revolution CT, GE Bright Speed Elite, GE light speed VCT, and TOSHIBA CT64-TSX-01A64. The CT protocols were as follows: 120 kVp; tube current, 150–200 mAs with automatic tube current modulation. The section thickness ranged between 0.7 mm and 1.5 mm, and the image size was 512 × 512 pixels. The detailed protocol and contrast materials are summarized in Table E1. Three patients received solely non-enhanced CT scan due to renal function impairment, while the other patients received both non-enhanced and enhanced CT scan. Contrast enhanced images were obtained after intravenous administration of contrast medium (injection dose 60-120 mL at a rate of 1.5-3 ml/s) followed by a 20 ml saline flush. Contrast enhanced images were obtained 90s after contrast agent administration. All images were reconstructed into 5-mm sections.




Tumor segmentation and image preprocessing

CT images were imported into the open-source software 3D Slicer 4.10.2 and the tumors were then contoured manually by one of two observers (C.Y.L. a radiologist with 9 years of experience and C.C.C, a thoracic surgeon with 9 years of experience) blinded to patient diagnosis using the built-in paint tool (14). The delineation of tumor at UECT and CECT was performed in the mediastinal setting (window level, 50 HU; window width, 350 HU) on the axial CT plane. Consensus was reached by discussion if the interobserver variability was apparent. For normalization, all CT voxels were resampled to 1 mm3 using a cubic interpolation.




Radiomics feature extraction, selection and model building

The global framework showing the radiomic analysis process is shown in Figure 2. The whole PMTs in each CT examination served as VOIs, from which 3D radiomic features were extracted using the open-source platform PyRadiomics (15). A total of 851 radiomic features, including 14 shape features, 18 intensity histogram features, 74 texture features, and 745 wavelet features were extracted for further analysis.




Figure 2 | Flowchart of the proposed scheme. PMT, prevascular tumor; LASSO, least absolute shrinkage and selection operator; MG, myasthenia gravis; RF, random forest; XGBoost, extreme gradient boosting; LightGBM, light gradient boosting machine.



A multivariate logistic regression model was developed using the least absolute shrinkage and selection operator (LASSO) with L1 penalty to filter the features to reduce the redundancy of the features. The features with non-zero coefficients at optimized hyperparameter lambda were selected and used in ML. Relevant clinical information including age, sex and MG symptoms were also input as feature vectors in ML.

In combination with feature-selection method, eight ML classifiers were used to differentiate thymoma from other PMTs: KNeighbors, random forest (RF), extreme gradient boosting (XGBoost), Light Gradient Boosting Machine (LightGBM), CatBoost, Extra Tree, and Weight Ensemble Model (WeightEnsemble_L2). A Bayesian optimization algorithm (BOA) was applied to optimize the hyperparameters of these models. The flowchart of the proposed scheme was illustrated in Figure 2.




3D convolutional neural networks model

A fully convolutional neural network (CNN), as described in a recently published previous work was used (16). ROI patches were extracted from each CT image by defining a bounding box that enclosed each previously defined ROI. All patches were resized to 128 × 128 × 64. Owing to the limited training data, we applied random rotation (-30°~30°) for training data augmentation. As radiomics-based machine learning model, the clinical information including age, sex and MG symptoms were also input as feature vectors in this neural network model.

All the models are implemented in Python 3.8.9 based on tensorflow 2.8.0 and trained on 1 Tesla V100-DGXS-32GB. The loss function during training was the binary cross-entropy metric and was optimized using an Adam optimizer with a batch size of 2, and an initial learning rate of 10-5. Early stopping was employed to prevent overfitting, and training was stopped once model performance stops improving on a validation dataset after 350 constitutive training epochs (maximum epoch value = 1000). The best model observed during training would be the output model. The flowchart of the proposed scheme was illustrated in Figure 2.




Statistical analyses

Continuous variables were compared using the Student t-test, and categorical variables were compared using the chi-square test. P values of < 0.05 were considered statistically significant.

Clinical information (age, sex and presence of MG symptom) was added into radiomic model and 3D CNN model. Each dataset was randomly split into training, validation and testing sets in the ratio of 60:15:25. The models were evaluated through repeated random sub-sampling validation.

The accuracy, macro precision, macro recall, and macro F1-score for each dataset were calculated and determined to verify the performance of the different models. The macro F1-score reflected the effectiveness on small classes and is an effective evaluation metric for an imbalanced dataset. Receiver operating characteristic (ROC) analysis was performed, and the area under the curve (AUC) was used to evaluate the prediction models. The analysis was performed using python 3.8.9 with scikit-learn 1.0.1, autogluon 0.2.0, and statsmodels 0.13.1.




Result




Basic clinical characteristics

The clinicopathological characteristics of patients in our study are shown in Table 1. In UECT dataset, there were 297 patients with TETs and 79 patients with other PMTs. In CECT dataset, there were 296 patients with TETs and 77 patients with other PMTs. There was significant difference in age and MG symptoms in UECT dataset [TETs vs. other PMTs: 61.70 ± 12.99 vs. 51.19 ± 17.74, p < 0.001; 87 (29.3%) vs. 4 (5.1%), p < 0.001]. In TETs, there were 19.2% thymic carcinoma and 80.8% thymomas. In other PMTs, there were mostly cyst (54.4%). In CECT dataset, there was significant difference in age and MG symptoms [TETs vs. other PMTs: 61.46 ± 13.06 vs. 49.26 ± 17.76, p < 0.001; 87 (29.4%) vs 4 (5.2%), p < 0.001]. In TETs, there were 19.3% thymic carcinoma and 80.7% thymomas. In other PMTs, there were mostly cyst (53.2%).


Table 1 | Baseline characteristics of patients included for analysis.






Radiomics feature selection and optimal signature construction

After performing tumor segmentation in the included patients, 851 radiomics features were extracted (Supplementary Tables 1, 2). The top five feature selection using LASSO logistic regression with different values of lambda was shown in Tables 2, 3, and the top 20 feature selection was showed in Supplementary Tables 3, 4.


Table 2 | Top five variable feature selection performed by LASSO Logistic Regression at various lambda value using UECT.




Table 3 | Top five variable feature selection performed by Lasso Logistic Regression at various lambda value using CECT.



The result of best feature selection using various machine learning methods was demonstrated in Table 4. In UECT dataset, LightGBM with Extra Tree using features in selection_5 had best performance (macro F1-Score = 83.95%, accuracy = 89.99%). The ROC curve was shown in Figure 3 with AUC = 0.9117. In CECT dataset, LightGBM with Extra Tree using features in selection_4 had best performance (Macro F1-Score = 85.65%、accuracy = 91.15%). The ROC curve was shown in Figure 3 with AUC = 0.9464. The results of Bayesian optimization of different models and various feature selection in UECT and CECT were showed in Supplementary Tables 5, 6.


Table 4 | The best result of radiomics models and 3D CNN model to differentiate thymoma from other prevascular mediastinal tumors.






Figure 3 | Receiver operating characteristic (ROC) curves showed the performance of LightGBM with Extra Tree and 3D CNN on UECT and CECT. AUC, area under curve.






3D CNN analysis

The result of 3D CNN classification was shown in Table 4. In UECT dataset, macro F1-score was 75.54%, accuracy 84.16%. The ROC curve was shown in Figure 3 with AUC = 0.9015. In CECT dataset, macro F1-score was 81.01%, accuracy 86.73%. The ROC curve was shown in Figure 3 with AUC = 0.9275. Because we used repeated random sub-sampling validation method for 10 times, the total training time was 14.5 hours in UECT dataset and 14.1 hours in CECT dataset.

In comparison, the performance of radiomic analysis with machine learning model using LightGBM with Extra Tree had better performance than the 3D CNN model in both UECT and CECT dataset. Four cases were illustrated to differentiate thymic epithelial tumors from other prevascular mediastinal tumors with our ML and 3D CNN classification models in the Figure 4.




Figure 4 | Demonstration of the application of ML and 3D CNN classification models to analyze four distinct cases with varying pathologies. A case is classified as TET if the confidence score obtained from a ML model and 3D CNN using their UECT and CECT, respectively, is greater than 0.50, and classified as non-TET if it is less than or equal to 0.50. Yellow text indicates correct predictions, while blue text indicates incorrect predictions. (A) A 61 years old male with thymoma. Both LightGBM with Extra Tree and 3D CNN had correct prediction from UECT and CECT. (B) A 54 years old female with lymphoma. The LightGBM with ExtraTree had correct prediction from CECT. (C) A 50 years old male with malignant germ cell tumor. The LightGBM with Extra Tree had correct prediction from both UECT and CECT, while 3D CNN had correct prediction from UECT. (D) A 78 years old female with thymic cyst. The LightGBM with Extra Tree had correct prediction from both UECT and CECT, while 3D CNN had correct prediction from CECT.






Discussion

Our result showed radiomics with ensemble machine learning achieved better performance than 3D CNN in differentiating TETs from other PMTs. Deep learning (DL) model presented more stable shape than radiomics with ML model on ROC curve. Radiomics with ML and DL are active research in the field of oncology (17). Some studies showed that the DL model had better performance than the ML-based radiomics (18–20), some showed ML-based radiomics out-performed DL model (21), and some demonstrated DL-based radiomics model had the best performance (22, 23). Prior studies had performed radiomics based ML or DL to classify thymoma form other PMT (24–26). However, our study was the first to compare the performance of radiomics-based ML with DL using the same dataset to differentiated thymoma form other PMT. While it is well-known that with large datasets, the performance of DL model was superior to hand-crafted feature extraction, a large dataset is not always available in medicine and may be limited by factors such as disease incidence, prevalence, and obstacles in data procurement. For small dataset, studies have suggested feature engineering may be a more suitable machine learning strategy with notable advantages of radiomics for medical imaging analysis. At present, studies that directly compare radiomics and deep learning clinical model performance are relatively unexplored. In this study, we address these questions and further aim to enhance interpretability of such machine learning models (27).

There are a large number of vectors and associated computational cost in DL. We used 3D CNN in our study, which was relatively simple; however, the trainable parameters were up to 1,351,873. Because of the long training time, it would be of more difficulty for researchers to modify the algorithm repeatedly. In comparison, radiomics with ML had lower computational cost but was associated with more complicated process. After radiomic feature extraction, most feature vectors are redundant. Therefore, feature selection is demanded to build a model via ML. The method of ML has substantial impact on its performance. In our study, not all radiomics with ML method out-performed 3D CNN. In consistent with prior study, ensemble learning had the best result. Ensemble learning can also be applied in DL, with the cost of longer training time.

Our results revealed that dataset of CECT worked better than UECT in classifying thymoma from other PMTs using both radiomics models and 3D CNN model, which was consistent with our clinical experience. The imaging characters at chest CT scan of low-risk thymoma and thymic cyst showed round or oval shape, smooth contour, while high-risk thymoma showed irregular shape and contour. Nonseminomatous germ cell tumor demonstrated marked hemorrhagic necrosis, while teratoma revealed fat component (2). From the result of LASSO selection in UECT and CECT, sphericity in shape feature played an important role in two dataset model, consistent with the finding in our conventional CT scan. High resolution medical imaging contains many features that is difficult to discover by visual inspection. The ability of multi-scale and multiresolution in wavelet transform has been verified in many imaging studies, and often applied to image compression, edge detection, feature extraction, and texture analysis. Our study demonstrated that wavelet-based features were selected by two datasets, suggesting the importance of high order features in imaging identification. However, other shape features and original first order features are more important in classification in the UECT dataset than in the CECT dataset. Compared with CECT, UECT lacks contrast agent to demonstrate richer texture features of soft tissue, and the septa within the tumor or the range of necrosis are less clearly seen. This could be responsible for the reason that UECT had a different tendency of feature selection from CECT dataset.

In differentiating TET from cysts, radiologists primarily focus on the Hounsfield units (HU) changes between non-enhanced and contrast-enhanced scans. Previous studies have found that cysts have a mean attenuation value of around 23 HU and a maximal attenuation value of 58 HU (28). However, some thymic cysts may have increased CT attenuation if hemorrhage or infection occurs, and relying solely on non-enhanced scans may lead to misdiagnosis. According to our research approach, we have developed separate models for predicting TET from non-enhanced and contrast-enhanced CT scans. Interestingly, although contrast-enhanced CT has better predictive performance, using non-enhanced CT alone, whether based on radiomic-based machine learning or 3D convolutional neural network, achieves an AUC of > 0.9, which is close to the performance of the contrast-enhanced CT group. The difference of macro F1-score in all ML methods and 3D CNN in both UECT and CECT datasets was less than five percent. Tumor segmentation in UECT is sometimes difficult due to its proximity to adjacent vessel, heart, pericardial effusion, or consolidated lung. However, radiomics-based ML achieved an accuracy of 90%, indicating that our model had good performance using UECT. As the LDCT for lung cancer screening become more prevalent, there is increasing number of incidentally found asymptomatic PMTs. Once the UECT dataset provides high accuracy in differentiating PMTs, patients do not need to undergo CECT, and radiation dose and contrast agent exposure with the likelihood of kidney injury could therefore be minimized. Besides, previous literature has reported that approximately 22% to 68% of non-therapeutic thymectomies were unnecessary (28). In our dataset, 14% (53/376) of the patients had cysts or lymphoma and could have been otherwise managed instead of being operated on. Our model achieved an accuracy of 0.91. Therefore, we believe that increasing the accuracy of preoperative imaging diagnosis will help to reduce unnecessary invasive procedures.

Our study had several limitations. First, tumors were manually segmented; this could be user-dependent, time-consuming and labor-intensive. Prior studies have demonstrated DL-based tumor segmentation algorithm with robust performance. Automated tumor segmentation could probably be integrated into an automated processing pipeline to minimize subjectivity and facilitate large-scale studies. Second, after radiomics feature extraction, we used only LASSO regression with variable lambda value for feature selection. Adopting different feature selection methods could result in different outcome. Third, we used a relatively simple 3D CNN model for classification. Although complicated model is computationally expensive, future advancement in hardware (e.g., GPU or cloud computing) and algorithmic development is expectable. Fourth, because of the retrospective nature of this analysis, a selection bias was unavoidable. Lastly, CT images in our study were obtained using heterogeneous CT scanners, with various acquisition parameters, which can affect radiomic features and analysis. Nonetheless, the diagnostic performance of the radiomics model remained high in the validation cohort, which verified the good generalizability of the model.

As DL gradually becomes the mainstream of imaging study, some studies showed DL was superior to radiomics with ML in visual classification. However, it is susceptible to overfitting and takes a large number of data for model training and parameter tuning. Owing to the limited size of dataset, our proposed radiomics-based ML and 3D CNN scheme may be overfitting during training process. In rare disease with limited case number, radiomics-based ML may have better efficacy with lower computational cost. The best method of computing depends on the subject of study and size of dataset. Further studies are mandatory to evaluate the efficacy of ML and DL in the same dataset.



Conclusion

To conclude, an ensemble ML method with radiomic feature can be useful for differentiating TETs from other type of PMTs, performed slightly better than a 3D CNN, and demonstrated good generalizability across institutions.
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Objective

Existing guidelines for ultrasound-guided fine-needle aspiration biopsy lack specifications on sampling sites, but the number of biopsies improves diagnostic reliability. We propose the use of class activation maps (CAMs) and our modified malignancy-specific heat maps that locate important deep representations of thyroid nodules for class predictions.





Methods

We applied adversarial noise perturbations to the segmented concentric “hot” nodular regions of equal sizes to differentiate regional importance for the malignancy diagnostic performances of an accurate ultrasound-based artificial intelligence computer-aided diagnosis (AI-CADx) system using 2,602 retrospectively collected thyroid nodules with known histopathological diagnosis.





Results

The AI system demonstrated high diagnostic performance with an area under the curve (AUC) value of 0.9302 and good nodule identification capability with a median dice coefficient >0.9 when compared to radiologists’ segmentations. Experiments confirmed that the CAM-based heat maps reflect the differentiable importance of different nodular regions for an AI-CADx system to make its predictions. No less importantly, the hot regions in malignancy heat maps of ultrasound images in comparison with the inactivated regions of the same 100 malignant nodules randomly selected from the dataset had higher summed frequency-weighted feature scores of 6.04 versus 4.96 rated by radiologists with more than 15 years of ultrasound examination experience according to widely used ultrasound-based risk stratification American College of Radiology (ACR) Thyroid Imaging Reporting and Data System (TI-RADS) in terms of nodule composition, echogenicity, and echogenic foci, excluding shape and margin attributes, which could only be evaluated on the whole rather than on the sub-nodular component levels. In addition, we show examples demonstrating good spatial correspondence of highlighted regions of malignancy heat map to malignant tumor cell-rich regions in hematoxylin and eosin-stained histopathological images.





Conclusion

Our proposed CAM-based ultrasonographic malignancy heat map provides quantitative visualization of malignancy heterogeneity within a tumor, and it is of clinical interest to investigate in the future its usefulness to improve fine-needle aspiration biopsy (FNAB) sampling reliability by targeting potentially more suspicious sub-nodular regions.





Keywords: tumor heterogeneity, ultrasound guided biopsy, class activation map, artificial intelligence, thyroid nodule





Introduction

Thyroid nodules are detected in as high as 65% of the population (1), and thyroid cancer is one of the most frequently occurring malignant tumors. Meanwhile, ultrasound imaging is the most commonly used method for evaluating thyroid nodules, given its ease to detect the nodules and good sensitivity to differentiate benign from malignant tumors as well as its non-invasive nature with widespread accessibility in clinics. However, the diagnosis of thyroid nodules is highly dependent on radiologists’ personal experience and subjective judgment, leading to not uncommonly inconsistent conclusions. Currently, cytopathological examination performed on minimally invasive fine-needle aspiration biopsy (FNAB) typically has a diagnostic sensitivity and specificity that vary at 65%–98% and 72%–100%, respectively (2–4). More importantly, as cancerous masses are typically heterogeneous (5, 6), it is of clinical importance to be able to differentiate regions of different malignancy levels within the same imaged tissue such that FNAB sampling can be more precisely guided. To date, there are numerous practical guidelines about under what circumstances FNAB shall be applied (7–9), but there exists no consensus or guideline about the number of needle-sampling passes to acquire adequate specimens for diagnostic purposes, let alone recommendations for precise sampling sites in nodules under ultrasound guidance. With the advancement of artificially intelligent technologies and especially the development of deep learning algorithms, it becomes increasingly common for radiologists to include these auxiliary mathematical models in their toolboxes during clinical studies for disease detection and diagnosis (10–12).

Surprisingly or not, the capability of convolutional neural networks (CNNs) to approximate any arbitrary functions has become a double-edged sword, as any insights about how the models come to their conclusions are hardly accessible to human understanding given their architectural designs. Some proposed circumventing strategies include weighting the predicted classification probability of a CNN model as a contributing factor together with other human-interpretable image features (13) and taking the similarities between imaged lesions with known diagnosis as an extra channel of information to guide human-centered diagnosis (14).

Other possibilities to retrieve hints using computer-aided artificial intelligence diagnosis as we perceive include generating the class activation map (CAM) (15) that localizes the deep representation of class-discriminating image regions. In the field of medical imaging, CAMs have been employed to visualize hot regions that conclude each predicted classification type of tissue (16–18) using a heat map representation. To date, it is however mostly a visualization tool and lacks quantitative validation to show whether hot regions in such heat maps for malignant samples indeed possess higher importance in determining the classification type. If so, the question of how much more important the hot regions are relative to other regions still awaits an answer.

To answer these questions, we designed this proof-of-concept computational study described as the following. We first generated CAMs in two different rendering configurations using the Software Development Kit (SDK) of the artificial intelligence computer-aided diagnosis (AI-CADx) system referred to as “AI-SONIC™ Thyroid” for thyroid nodule diagnoses. In the first configuration, the heat maps were rendered conventionally such that they make no distinctions between benign and malignant cases visually, and the color temperature is supposed to show the associated regional importance in predicting the classification regardless of what the predicted type is. In the second configuration, however, the intensities of these heat maps were normalized to the malignancy probabilities predicted by the AI-CADx system and rendered in such a way that the more reddish the color, the higher probability that the nodule is predicted to be malignant, whereas the bluish color indicates benignity. In other words, the second visualization configuration presents essentially malignancy heat maps.

To quantitatively analyze the importance of different regions within the ultrasound-imaged thyroid nodules in the diagnosis by the AI-CADx system, we subdivided each nodular CAM into five concentric areas of the same size and then evaluated the AI diagnostic performances after the adversarial noises (19) were applied to each subdivided nodular region in ultrasound images. The motivation behind this is that, hypothetically, the regions of higher importance for predicting the correct diagnosis of thyroid nodules should be more vulnerable to noise perturbations. As a second attempt, we also performed a test by varying the heat intensity threshold to segment CAMs and evaluated how the diagnoses were based on regions above the thresholds.





Materials and methods




Data acquisition

The ultrasound images covering a total of 2,602 thyroid nodules from 2,488 patients were collected between January 2011 and February 2019 by The Cancer Hospital of the University of Chinese Academy of Sciences in Hangzhou, Zhejiang, China. All nodules were diagnosed by surgical pathological examinations, among which 1,581 cases were determined to be benign and 1,021 cases were found to be malignant. The local ethics committee waived the ethical approval in view of the retrospective nature of the study, and all reviews of the ultrasound image and postsurgical hematoxylin and eosin (H&E)-stained pathological images being performed were part of the clinical routine.





AI-CADx model

This study was based on the AI-SONIC™ Thyroid nodule diagnosis system (Demetics Medical Technology, Hangzhou, China). It is built on the EfficientNet (20) architectural backbone and employs supervised sharpness-aware minimization for model parameter optimization to realize automatic nodule segmentation and classification (21). The classification module of the AI model relies on the precise localization of the nodules. This system can automatically detect thyroid nodules in two-dimensional grayscale ultrasound images and output corresponding masks. Therefore, radiologists do not need to manually outline the thyroid nodules except on rare occasions when manual corrections are necessary.





Heat map

All the generated heat maps in this study were based on CAM (15) using global average pooling (GAP) in CNNs. Before the final output layer for image classification, we performed global average pooling on the convolutional feature maps and used those as features for a fully connected layer that produces the desired output. We projected back the weights of the output layer onto the convolutional feature maps using the cited CAM method. Global average pooling outputs the spatial average of the feature map of each unit at the last convolutional layer. A weighted sum of these values is used to generate the final output. We computed a weighted sum of the feature maps of the last convolutional layer to obtain our class activation maps.

For an image, we used   to represent the activation of unit k in the last convolutional layer at the spatial location. Next, for unit  , Gk is the result of performing global average pooling, which is defined as  . Then, for a class i, the input to the softmax Si is  , where the   is weight corresponding to class i for unit k. In particular, the   implies the importance of class i. The final output of the softmax for class i, Pi is given by  . The bias term was ignored as in the original paper by setting the input bias of the softmax to 0 to have no impact on the classification performance.

By adding   into the class score, we have the following:

	

In addition, we define Mi as the class activation map for class i, where each spatial element is the product of the weight   and the activation   given by the following:

	

Therefore,   and   directly show the importance of the activation at spatial grid (x, y) leading to the classification of an image to class i.

The CAM is a weighted linear sum of the presence of these visual patterns at different spatial locations. By upsampling the class activation map to the size of the input image, we could identify the image regions most relevant to the particular category.





Nodular region segmentation and noise perturbation

We divided each CAM of thyroid nodules into five nearly concentric regions of equal sizes. This was performed first by setting a binarization threshold to 0 to obtain a nodular segmentation with a total area of N. Then, we searched for a second threshold for level setting the CAM to segment the outermost region with the size of N/5. We iterated this process until we segmented out the innermost region with the same size.

To illustrate the different importance of each region of the heat map, we added perturbations to the different regions. A commonly employed first-order adversarial attack method—Fast Gradient Sign Method (FGSM) (19)—was used to generate perturbed thyroid ultrasound images.

Let x be the input to the model, y the output to the model (the targets associated with x), ϕ the parameters of a model, and L(x, y, ϕ) the cost function used to train the neural network. Then, we can linearize the cost function about the current value of ϕ, acquiring an optimal max-norm constrained perturbation of

	

where β is a predefined perturbation size, which represents the maximum change to pixel values of an image. sign() is a symbolic function, which is defined as

	

In addition, we used the back-propagation to compute the required gradient.

This method can reliably generate perturbations to the input of the model. The single-step FGSM perturbs the original example by a fixed amount along the direction (sign) of the gradient of loss function such that the result from the perturbed image is given by the following:

	





Statistical methods

To assess the performance of the AI-CADx system, we computed the receiver operating characteristic (ROC) curve and used the area under the curve (AUC) as the evaluation metric. For each nodule, we randomized five times the positions in segmented nodular regions where perturbation noises were applied, and we used the malignancy probabilities averaged over five times of randomized noise perturbations to compute the ROC curves and the subsequent AUC values. To compare individual ROC curves, we performed DeLong’s test (22) to evaluate whether the differences in AUC values were statistically significant.

For further statistical significance validation, we evaluated AUC values computed for different regions in each dataset (the division of which is described above), followed by paired t-test for different segmented nodular regions.





Ultrasound feature evaluations in highlighted regions versus the inactivated regions

We randomly selected 100 malignant nodules from our dataset and had the ultrasound features rated by radiologists with 15 years of ultrasound examination experience according to widely used ultrasound-based risk stratification American College of Radiology (ACR) Thyroid Imaging Reporting and Data System (TI-RADS) (23) in terms of nodule composition, echogenicity, and echogenic foci. We excluded feature evaluation based on shape and margin attributes, as they, by design, could only be evaluated on the whole rather than on the sub-nodular component levels. We included the statistical evaluation of sub-component localizations for the highlighted and inactivated regions visualized through our proposed malignancy heat map representation, however without any associated risk scores. Each scored feature was weighted against its occurrence frequency and multiplied with the risk points given by ACR TI-RADS criteria to gain an overview of the average ultrasound feature profile of the highlighted regions in contrast to the inactivated regions of our proposed malignancy heat map.





Histopathological correspondence evaluation of malignancy heat map

H&E staining images of postoperative histopathological slides with saved ultrasound images of matched sectional views were reexamined by a senior pathologist with 25 years of work experience with the boundaries and shapes of the malignant regions of thyroid tumors on the H&E slides outlined using software provided by digital pathology slide scanner KF-PRO-005-EX (Konfoong Biotech International Co., Ltd., Yuyao, China).






Results




Heat maps for benign and malignant nodule classifications

Representative examples of the CAMs generated by using AI-SONIC™ Thyroid SDK are shown in Figure 1. The first row shows a benign thyroid nodule, and the second row shows a malignant thyroid nodule. The maps highlight the discriminative image regions for thyroid nodule classification. On the left column, zoomed-in thyroid nodule images are shown, whereas the middle column shows the corresponding CAMs. The thyroid images together with their CAMs are superimposed and shown in the original images on the right column. We can see from the exemplars that the malignant nodule has a more complicated CAM profile than the benign one, which may reflect some correlation with the shapes of nodular margins.




Figure 1 | The CAMs of thyroid nodules. (A) A benign thyroid nodule. (B) The corresponding CAM. (C) The superposition of panels (A, B) in the original image. (D) A malignant thyroid nodule. (E) The corresponding CAM. (F) The superposition of panels (D, E) in the original image. CAMs, class activation maps.







Influence of noise perturbations to different CAM regions on thyroid nodule diagnosis

In order to evaluate whether different regions of thyroid nodules may contribute differently to their classifications by the AI-CADx system, we first segmented individual CAMs into five concentric areas of equal sizes according to the method section about nodular CAM segmentation as described above. An illustration of how the segmentation of a nodular CAM looks is given in Figure 2.




Figure 2 | Division of a CAM into five equal parts. (A) The CAM of a thyroid nodule. (B–F) The segmented region from the outermost region (labeled as region I) to the innermost region (labeled as region V), respectively. CAM, class activation map.



We then added gradient sign noise perturbation, which is commonly used for adversarial attacks for CNN models, to each segmented region in the original ultrasound images as shown in Figure 3. The first row shows the noise images added to each segmented region (Figure 2), and the second row shows the noise-perturbed images. The noises added to the original images are barely visible to human eyes but do have a strong impact on the diagnostic performance of the AI-CADx system. We chose the noise magnitude β to be 0.0136 by searching for the maximum absolute gradient of AUC values with respect to the noise magnitudes (Supplementary Figure 1). As a control, the ROC curve and the corresponding AUC value calculated for non-perturbed images are given in Supplementary Figure 2.




Figure 3 | Adding noise perturbations to five regions from the outermost area to the innermost area of equal sizes in the original image and their influence on classification performances. (A–E) The generated gradient sign noise images. (F–J) The perturbed images with noises with magnitude β of 0.0136 (identified as the point where the overall AUC values decay the fastest as measured by absolute gradient) added to each corresponding region. (K) ROC curves calculated from the complete dataset with nodular regions separately perturbed by noises in regions I to V represent the outermost to innermost nodular regions. (L) The associated p-value matrix for statistical comparisons. All p-values were ≤0.002, and p-values lower than 1 × 10−14 were shown as 1 × 10−14. Self-comparisons were omitted, as they were constant at 1. AUC, area under the curve; ROC, receiver operating characteristic.



All thyroid nodule images with noises added to different regions were then classified, and the ROC curves were computed for different noise-perturbed regions, as shown in Figure 3K. To statistically compare the influence of noise perturbation on different regions using ROC curves, we computed pairwise p-values according to DeLong’s test (16), with the results shown in Figure 3K. Note that we skipped the statistical comparisons against oneself, as in this case, the p-values were constant 1. It can be seen that it was not the innermost or hottest region (green line for region I) from the CAMs that were worst affected by noises but region IV (purple line) followed by region III (orange line), suggesting that the tissues surrounding the core area identified by CAMs played a crucial role in the benign and malignant nodule diagnoses.

To further validate this observation, we subdivided the complete dataset into five subsets randomly, summarized in Table 1.


Table 1 | The subdivided datasets for subsequent nodular region comparison experiment.



We calculated the AUC values for each dataset in which noise perturbations were applied in the same way as described above to individually segmented nodular regions, and we computed their average values and standard deviations over the five datasets as well as the p-value matrix for pairwise comparisons. The corresponding results are given in Figure 4.




Figure 4 | The AUC values calculated from the five subdivided datasets with nodular regions separately perturbed by noises and the associated p-value matrix for statistical comparisons. (A) Each bar representing the corresponding region is presented with the average AUC values over the five subdivided datasets and the standard deviations. (B) All p-values were<0.004, and self-comparisons were omitted, as they were constant at 1. AUC, area under the curve.







Influence of noise perturbations to different malignancy regions on thyroid nodule diagnosis

As cases with suspicious malignant features are more clinically important to be identified in order for subsequent treatment planning, for instance, FNAB, to verify the malignancy status, we modified the conventional CAMs by multiplying the malignancy probability predicted by the AI-CADx model with the CAM specific for cases suspicious for being malignant to generate malignancy heat maps.

We performed nodular segmentation and applied noise perturbations in the same way as described previously in the Materials and Methods section. In this experiment, we also randomly subset the samples with predicted malignancy scores of higher than 0.4 (below which the probability of being malignant was approximately 3%) to five datasets for the purpose of ensuring reproducibility. The results together with the p-value matrix for pairwise comparisons are summarized in Figure 5. It can be found that in this case, adding noises to innermost region V has the greatest influence on thyroid nodule diagnostic performances, correlating well with the heat intensity profile (Figure 5).




Figure 5 | Our proposed malignancy heat map and the influence of noise perturbations to five different regions on classification performances. (A, D) The cropped zoomed-in images for benign and malignant nodules, respectively. (B, E) The corresponding heat maps with color temperature bounded by the predicted malignant probabilities (0.2907 vs. 0.9382) by the AI-CADx system. (C, F) The superimposed images for the corresponding nodules and heat maps. (G) Each bar representing the corresponding region is presented with the average AUC values over the five subdivided malignant datasets and the standard deviations. (H) The associated p-value matrix for statistical comparisons. The smallest p-values were<0.001, and self-comparisons were omitted, as they were constant at 1. AI-CADx, artificial intelligence computer-aided diagnosis; AUC, area under the curve.







Correlation of highlighted regions with higher risks versus inactivated regions of the heat maps

To investigate whether the highlighted regions had a higher correlation with malignancy risks compared to the inactivated regions of our proposed malignancy heat map, radiologists with more than 15 years of ultrasound examination experience evaluated the ultrasound features according to the ACR TI-RADS risk stratification criteria in terms of nodular composition, echogenicity, and echogenic foci, which are applicable to subcomponent evaluations. The results summarized from 100 randomly selected malignant nodules in Table 2 show that the more centrally localized highlighted regions in the malignancy heat maps had higher summed weighted risk scores of 6.04 when compared to the inactivated regions of 4.96, demonstrating a higher correlation with the malignancy risks. On the whole, the highlighted regions turn out to be more hypoechoic and more likely to contain punctate calcifications.


Table 2 | The ACR TI-RADS feature analysis of CAM highlighted and inactivated regions in 100 malignant nodules randomly selected from the dataset.







Pathological significance of the heat maps

In order to verify the pathological significance of the heat maps, we first compared the nodule masks generated by the AI system with the masks outlined by the radiologists of different nodule sizes in Figure 6 to show that the basis for computing the heat maps is pathologically relevant. We calculated the dice similarity coefficient (Dice) as a metric to evaluate how well the AI system performs for localizing thyroid nodules within the gland tissues, with the result shown by the boxplot in Figure 7. It can be found that the masks outputted by the AI system are highly overlapped with the masks delineated by the radiologists (the median dice coefficient >0.9), demonstrating the high accuracy of the AI system in identifying the nodule areas. This verifies that the area of the heat map is mainly in the lesion area, as nodule segmentation is a key step for heat map computations.




Figure 6 | Comparison of the masks generated by the AI system and the masks outlined by the radiologists. (A, C) The original thyroid ultrasound images. (B, D) Masks generated by the AI system and radiologists, where the red segments are produced by the AI system, and the green ones are manually drawn by the radiologists. AI, artificial intelligence.






Figure 7 | The boxplot of the Dice coefficients for quantitative evaluation of the automatically segmented nodules by the AI system in comparison to radiologists’ segmentations. AI, artificial intelligence.



To further demonstrate and qualitatively verify the pathological relevance of the computed heat maps, we compared the post-operation pathological images with heat maps computed on ultrasound images shown in Figure 8. It shows that the shapes of cancer cell-rich areas in pathological images outlined by the pathologists have very good correspondence to “hot regions” in our proposed malignancy heat maps, suggesting that the malignancy heat map has promising potential to provide accurate sampling position guidance for FNAB. It is interesting to observe that in Figure 8G where there is clearly one single nodule in the original ultrasound image, the malignancy heat map shows two strongly activated subregions that correspond nicely with the two malignant cell-enriched regions outlined in H&E-stained histopathology images.




Figure 8 | Correspondence of post-operation pathological images and malignancy heat maps computed on ultrasound images. (A, D, G) The original thyroid ultrasound images. (B, E, H) The superimposed images for the corresponding nodules and heat maps. (C, F, I) The cropped zoomed-in pathological images.








Discussion

In this study, we proposed to take advantage of CAMs for differentiating regions in the ultrasound images of thyroid nodules that may contribute differently to the diagnosis by an AI-CADx system. We segmented the CAMs of individual nodule images into five concentric areas of equal sizes, applied adversarial noise perturbations to the different segmented regions, and evaluated the impact on the diagnostic performances of the AI-CADx system. Our results confirmed that the CAMs can reflect the importance of different degrees in different nodular regions for a CNN-based diagnosis system to make its predictions according to our noise perturbation experiments. Surprisingly or not, it was found that it was not the innermost region or in other words the “hottest” region seen in the CAMs that were most severely influenced by the noise perturbations as one might presumably expect. This phenomenon was again observed in experiments where we randomly divided the original dataset into five subsets and verified by the statistical significance tests, suggesting that the regional sensitivities to noise perturbations may not perfectly correlate with the heat intensity profile in conventional CAM for nodular malignancy state predictions.

We then tried modifying the conventional CAM by multiplying the heat maps generated by CAM with the predicted malignancy probabilities by the AI-CADx system to produce malignancy heat maps. The resulting heat maps can therefore visually convey information about the malignancy predictions for individual nodules. Furthermore, this malignant nodule-specific modification to the conventional CAM would in principle allow more insightful inspection of regional importance for malignancy assessment and thus provide guidance to doctors about where the FNAB should be mostly directed to. In this case, the innermost nodular area defined by the heat map was found to be the most sensitive region to noise perturbations, which could be due to the multiplication of malignancy probability, which improves its malignancy relevance and subsequently the perturbation responsiveness, though it was not statistically different from the region adjacent to it, which suggests that both regions are the most critical for determining malignant thyroid nodule diagnosis.

By comparing the influences of noises on AI-CADx performance for thyroid nodule diagnosis by perturbing regions segmented according to the conventional CAMs that analyze both benign and malignant nodules and our proposed variant that concentrates on suspicious nodules, it can be seen that noise perturbations to inner regions defined in CAMs had a more dramatic effect on datasets not excluding benign nodules predicted with high confidence. This could be because the inner regions of benign nodules are more vulnerable to noise perturbations, while the malignant nodules are more resistant to noise perturbations. This can also explain why the regional differences in suspicious malignant nodules were less abrupt. Nonetheless, the central region defined by the malignancy heat map was significantly more sensitive to noise perturbation, suggesting the potential of this technique for differentiating tumor heterogeneity.

As an alternative to the noise perturbation experiments, we have also tried varying binary thresholds to segment the CAMs and evaluated the diagnostic performance of the AI-CADx system directly on the ultrasound images of the regions above the thresholds with the hope of finding an appropriate heat intensity threshold that could permit a satisfactory cutoff to differentiate insignificant regions from regions where special attention would be paid to. However, such a conclusion could not be drawn from this attempt, as the AUC values (Supplementary Figure 3) showed a continual decrease with the heat intensity threshold. This can be attributed to the fact that the marginal shapes of thyroid nodules are crucial for malignancy diagnosis because the segmented regions can have very complicated margins and even hollow structures that can easily confuse the AI-CADx system. Noise perturbation experiments however circumvent this challenge.

As final proof, we qualitatively evaluate the spatial correlation of the malignancy heterogeneity identified by our CAM-based malignancy heat map with the surgical pathology. Due to not only the technical difficulty of automatically registering cross-modality images, i.e., digital histopathology images and ultrasound images, but also more importantly the retrospective nature of this study, we could not specifically collect the ultrasound images of the very nodular cross-sections that best corresponded to those of the histopathology images. Moreover, arbitrary shape changes can be introduced during the surgical operation and fully automatic registration between digital H&E histopathology images, and ultrasound images would also require training of a sufficient good segmentation model for cancer cell-rich regions in histopathology images, which is currently beyond our capacity of assessable resources. It is however important to note that the ultrasound feature evaluations of the highlighted regions performed by radiologists according to ACR TI-RADS criteria show a higher correlation with malignancy risks compared to the inactivated regions, demonstrating the malignancy relevance of the highlighted regions in our proposed variant of CAM heat map. This can be mainly attributed to two facts: the AI system has high accuracy in localizing thyroid nodules with a median dice coefficient >0.9, and the AI system has very high diagnostic accuracy with an AUC value of 0.9302 in this study for discriminating between malignant and benign nodules. The nodule segmentation is a crucial step for the computations of heat maps, and it proves that the corresponding area of the heat map is mainly in the lesion area of the nodule. Good performance in distinguishing malignant from benign nodules also plays a vital role in identifying the “hot” regions in the malignancy heat map to be the key regions for the diagnosis of malignant nodules. Furthermore, other recent studies have shown that the AI system has balanced specificity and sensitivity with overall diagnostic accuracy matching high-performing senior radiologists (24), can outperform senior radiologists in diagnosing rare thyroid carcinomas (25), and can be potentially helpful for discrimination between malignant and benign follicular-patterned thyroid lesions (21). Interestingly, the shapes and subregions of cancer cell-rich pathological images showed good correspondence to the heat maps computed from the ultrasound images, suggesting a promising potential to use the heat map visualization to guide targeted FNAB for more reliable sampling compared with conventional ultrasound-guided sampling.

Ultrasound-guided thyroid FNAB has been shown to improve the sampling accuracy for suspicious nodule identification (26). However, there is a trade-off between the reduction of patient discomfort that would put a constraint on the number of needle passes and the diagnostic accuracy that is limited by specimen adequacy. The CAM-based heat maps computed from AI-CADx systems with diagnostic performances comparable to or even better than those of senior radiologists (27–29) on ultrasound images with the capability of differentiating regional importance for malignancy diagnosis may provide additional guidance to localize diagnosis-enabling nodular regions, especially large ones, for more accurate sampling, given that the number of needle passes has to be limited. In addition, FNAB-based cytopathological examination is acknowledged to have a limitation in diagnosing follicular-patterned thyroid lesions (FPTLs) (30–32), while the AI system was found to be 69% accurate in differentiating thyroid follicular carcinoma from benign FPTL cases (21), suggesting that the heat maps developed on top of the AI system may provide better guidance than plain ultrasound for FPTL sampling by FNAB to help with newly developed proteomics-based diagnosis (33). Of course, for smaller thyroid nodules, it may be difficult to precisely guide FNAB of the segmented nodular regions based on the malignancy heat map. Meanwhile, it must be noticed that the FNAB selection of thyroid nodules has become increasingly conservative in clinical practice. FNAB for malignant suspicious thyroid nodules recommended by guidelines (23, 34) is commonly performed for nodules with the smallest diameter ≥10 mm. Therefore, it is of clinical significance for this study to guide FNAB of relatively large thyroid nodules with the heat maps. It may also be of special interest to investigate whether CAM-based heat maps on ultrasound images can be helpful for guiding core needle biopsies of, for instance, liver lesions, which was shown to have a complication rate of 10.6% for repeated biopsies with a diagnostic accuracy of 83.3% (35).

Furthermore, currently, the generation of CAMs is based on an AI-CADx system trained on static images. For real-world clinical applications, it will be beneficial to have such heat maps dynamically generated in real-time during ultrasound scanning, which would require the corresponding AI-CADx system to be able to operate in a dynamic mode with high diagnostic accuracy. Practically speaking, ultrasound reflections from needles might interfere with accurate heat map visualization in real time. Another noteworthy limitation of the proposed CAM and its variant presented in this study is that their visualization is currently limited to being two-dimensional and thus not very suited yet to visualizing the degree of malignancy suspiciousness of a targeted cross-sectional plane relative to that of the planes above and below. If a three-dimensional heat map visualization is to be developed such that additional guidance about how deep the needles shall be inserted into the nodules to acquire samplings can be possible. In addition to the applied basic CAM method, there are also other published variants such as Grad-CAM (36), Score-CAM (37), and Ablation-CAM (38). These methods of generating heat maps can in principle be investigated as well. However, it is for future studies to evaluate which heat map generation techniques can be the most useful for guiding FNAB. This work is mainly to show that CAM-based heat maps can visualize intra-nodular malignancy heterogeneity, and this may recommend better sites for FNAB sampling, which is to be evaluated in a separate study.





Conclusion

The CAM and its variant generated on ultrasound images through a highly accurate AI-CADx system can provide differential importance of nodular regions for tumor malignancy prediction, which was validated by adding noise perturbations to different regions of thyroid nodules. Our proposed malignancy heat map offers quantitative visualization of malignancy heterogeneity within a tumor, and the highlighted regions are better correlated with the malignancy risk than the inactivated regions. The good spatial correspondence with post-operation pathology warrants clinical interests to investigate further whether such AI-based malignancy-heterogeneity visualization techniques can provide targeted guidance for needle-based aspiration biopsies of tumors in comparison with plain ultrasound imaging to improve sampling accuracy and reduce complications that may associate with the procedures.
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Supplementary Figure 1 | 


Influence of adding gradient sign noise perturbations to ultrasound images of different magnitudes b. (a and d) The original image of thyroid nodule and its surroundings. (b and e) The generated gradient sign noises with the respective magnitude of 0.0136 and 0.05. (c and f) The resulting images corresponding to noise perturbations given by panels b and e. (g) The measurement of how the diagnosis performances (by AUC values) of the AICADx system are influenced by noise perturbations with magnitudes b ranging from 0 to 0.1.



Supplementary Figure 2 | 


The ROC curve of the AI-CADx system for thyroid nodule diagnosis and the corresponding AUC value.



Supplementary Figure 3 | 


The diagnostic performance of the AI-CADx system directly on segmented regions above the binarization CAM threshold (represented as a ratio to the maximum temperature intensity 255).
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Background

Without organized screening programs up to 60-70% of breast cancers are diagnosed at advanced stages that have significantly lower five-year survival rate and poorer outcomes, which is a serious global public health problem. The purpose of the blind clinical study was the assessment of the novel in-vitro diagnostic chemiluminescent CLIA-CA-62 assay for early-stage breast cancer detection.





Methods

Blind serum samples of 196 BC patients with known TNM staging, 85% with DCIS, Stage I & IIA, and 73 healthy control subjects were analyzed with the CLIA-CA-62 and CA 15-3 ELISA assays. Results were also compared to the pathology findings and to published data from mammography, MRI, ultrasound, and multi-cancer early detection test (MCED).





Results

The CLIA-CA-62 overall sensitivity for BC was 92% (100% for DCIS) at 93% specificity and it decreased in invasive stages (Stage I=97%, Stage II=85% and Stage III=83%). For the CA 15-3 assay sensitivity was 27-46% at 80% specificity. Sensitivity for mammography was 63-80% at 60% specificity, depending on the stage and the parenchymal density.





Conclusion

These results demonstrate that CLIA-CA-62 immunoassay could prove useful as a supplement to current mammography screening and other imaging methods, thus increasing the diagnostic sensitivity in DCIS and Stage I breast cancer detection.





Keywords: CLIA, tumor, CA-62, CA 15-3, breast cancer, ductal carcinoma in-situ (DCIS), screening, mammography




1 Introduction

According to current global cancer statistics, female breast cancer has become the most commonly diagnosed cancer globally (more than 2 million estimated cases in 2022 worldwide) surpassing lung cancer (1). The global annual percent change (APC) for BC mortality increased by 0.23% (2). The global deaths from breast cancer increased by 83.95% since 1990 (95% UI: 70.07–96.74%), with 685 000 new cases in 2022 (1). Asia takes a leading place for cancer incidence, followed by Europe and North and South America. For many low-and-middle-income countries from 40% to 70% of breast cancer is detected at advanced stages associated with lower five-year survival rates, which represents a serious global health problem (3). The target population for breast cancer awareness are women over 40 years of age, since breast cancer incidence rate increases with age, hereditary breast, and ovarian cancer syndrome, BRCA2 – germline mutations, and female sex hormones fluctuations from 60 cases per 100,000 in women 30-40 years of age to an average of 430 cases per 100,000 in women 65-75 years of age (4).

The following methods are being used for breast cancer diagnostics, such as bilateral and digital mammography, a conventional ultrasound of the mammary glands for women under 40 years of age, ultrasound elastography, and MRI scanning with contrast. Regardless of all the drawbacks of breast cancer mammography screening of women, such as missing some advanced cancers and producing 3/4 of “suspicious mammograms” associated with benign breast diseases, - mammography continues to be the only proven screening test to decrease mortality from breast cancer (5). At present, only a few countries with a high development index have improved prevention measures and implemented population-oriented breast cancer screening programs as well as improved quality of cancer care, allowing the detection of ~80% of early-stage breast cancer (1). The biggest obstacle to the overall screening approach worldwide is the very high cost of the organized screening programs, which have significant budget implications, depending on the size of the population and the healthcare system resources involved. For instance, the overall costs for annual breast cancer screening of 1,000 women in the general population of Canada are approximately $16.0 million as a lifetime expense (ages 40 to 74) (6). As opposed to the North America and some Western European countries practice, the majority of countries worldwide, including Asia, Arabic, and some Eastern European countries use mammographic screening as an opportunistic diagnostic method since there are no population-based mammographic screening programs (7). To resolve the growing breast cancer problem, it is critical to find an economically viable solution for the prevention of advanced breast malignant disease through early breast cancer detection and optimal access to treatment.

According to the tumor, node, metastasis (TNM) staging classification based on AJCC 8th edition Early-stage breast cancer refers to a malignant neoplasm that has not spread beyond the breast or the axillary lymph nodes (8). This includes Tis – Ductal carcinoma in situ or Paget's disease of the breast with no associated tumor mass, Stage I (T1aN0M0, T1bN0M0, and T1cN0M0), Stage IIA (T0N1M0, T1N1M0), and Stage IIB (T2N0M0, T2N1M0, T3N0M0).

For decades cancer biomarkers were extensively used to detect, diagnose, or manage certain types of cancer within the standard of care in many parts of the world. These biomarkers include different types of glycoproteins or various genes known to be associated with cancer, which are formed within the growth of a neoplasm (9). The detection and identification of such cancer biomarkers in a patient’s body fluids provide valuable data in regard to the diagnosis of invasive breast cancers, providing prognostic information and predicting response to a chosen therapy, and a selection of the strategy for treating cancer, which leads to improved outcomes. However, there is a limitation of using circulating biomarkers related to their low sensitivity (10-30%) for detecting early stages of breast cancer (10).

In recent years, our cancer research group has been studying various combinations of biomarkers (CA-125, CA 15-3, CEA, CYFRA 21.1, D-dimer, HE4 etc.) for their effective use in screening for different types of cancers (11, 12), including breast cancer (13). In this regard, we aimed to identify novel emerging biomarkers for their successful use in combination with other well-known cancer markers, which can significantly improve the accuracy of cancer screening using a classification model. Thus, in the last 5 years, our attention has been drawn to various pilot clinical studies that were carried out by our colleagues using a novel marker for epithelial carcinomas CA-62 and the results were presented at various international symposiums.

The purpose of this study was the assessment of the diagnostic characteristics of the novel FSSH-approved (Federal Service for Surveillance in Healthcare of the Russian Federation) in vitro diagnostic chemiluminescent immunoassay (IVD CLIA-CA-62) for early-stage breast cancer detection as compared to healthy controls. The same samples were analyzed with FSSH-CA 15-3 ELISA assay, and the results were compared to histopathologic diagnosis used as a gold standard.

The significance of this study is related to the unique qualities of the highly sensitive CA-62 marker, which allows detecting it in the blood of patients with ductal carcinoma in situ (DCIS) and Stage I breast cancer present in asymptomatic women. This study has the potential to provide insight into the usefulness of the CA-62 biomarker as a first-line test to select subjects at high risk for developing breast cancer (BC) who need further mammography, potentially avoiding radiological exposure in low-risk BC individuals who test negative.

CA 15-3 ELISA-BEST assay is based on the well-known cancer marker CA 15-3, an O-glycoprotein member of the mucin family commonly used for breast cancer control management (11, 14). It is a protein product of the MUC-1 gene, which is shed into the bloodstream from adenocarcinomas in a reduced glycosylated form. Despite its low sensitivity for early stages of breast cancer detection, CA 15-3 cancer antigen is extensively used for cancer treatment monitoring in combination with clinical examination and various imaging methods and for early detection of cancer recurrence (14, 15).

Human CLIA-CA-62 immunoassay is based on the novel marker for epithelial carcinomas CA-62, which is a carcinoma-specific mesenchymal marker, expressed on the epithelial cell surface of the EMT-transformed undifferentiated stem cells from the onset of cancer development. There are some previous publications describing CA-62, a patented set of reagents CLIA-CA-62 based on the biomarker CA-62 for early cancer detection (16–18) and monitoring response to chemotherapy (19). A marker for epithelial carcinomas CA-62 represents a family of low-weight membrane transport N-glycoproteins that bind alpha-fetoprotein (AFP) using a special combination of the branched polysaccharides, which are located on the mesenchymal cells’ surface and function by Clathrin-mediated endocytosis. Tumor cells release into the blood two main soluble cytoplasmic fractions of N-glycoprotein that are detected by the antibody used in the test. This allows to quantitatively measure a serum level of CA-62 antigen using a specific chemiluminescent assay CLIA-CA-62 intended to help with the medical decision-making process and recommended for early cancer detection in combination with clinical data and other diagnostic procedures (16, 17).

Test performance of both assays was also compared to histopathological findings and to published data for mammography, conventional ultrasound, ultrasound elastography, MRI, and also to blood-based multi-cancer early detection test MCED (from GRAIL Inc.).




2 Materials and methods



2.1 Study design and participants



2.1.1 Patients

Patients with histopathology-confirmed breast cancer before the treatment (N=57) and healthy control subjects (N=73) were enrolled in an observational clinical study in 2018 at the Institute for Personalized Medicine of the Sechenov First Moscow State Medical University (“Sechenov University”), Moscow, Russia. Inclusion criteria for breast cancer patients: women of any race and ethnicity between the ages of 25 and 80, who have been diagnosed with either DCIS or Stage I, Stage IIA-B, or Stage III of primary breast tumor with or without lymph node metastasis; histopathological confirmation of breast cancer, which was used for definitive diagnosis of the breast disease. Exclusion criteria for this study included factors such as age before 25 and above 80, more advanced stage of disease (Stage IV), and previous treatment history.

Breast tissues were collected from resected breast tumors at the time of mastectomy or lumpectomy, fixed in formaldehyde, and embedded in paraffin. The tissues were cut into sections and stained with hematoxylin/eosin. The diagnosis of a benign or malignant breast tumor was confirmed by certified pathologists. Histopathological classification and staging were performed according to AJCC eighth edition (8).

Healthy control subjects were selected based from a large pool of apparently healthy individuals on matching variables of interest such as age (from 25 – 80), same gender, any race and ethnicity, free of cancer, with normal biochemical and full blood count reference intervals seen in a healthy reference population according to the international standard ISO 15189:2012. Exclusion criteria for healthy control subjects included several factors, such as another gender (men), age before 25 and after 80, presence of comorbidities or verified breast benign disease or breast cancer.




2.1.2 Ethics approval and consent to participate

The study was approved by the Local Ethics Committee of Sechenov First Moscow State Medical University. All patients were given informed consent to participate in the study. In total 57 patients with histopathology-confirmed BC and 73 healthy control subjects were included in the analysis. Serum samples were collected at the Sechenov University Hospital after overnight fasting and delivered to the Clinical laboratory.




2.1.3 Serum samples

The total of 269 blinded serum samples included 196 breast cancer patients with known TNM classification (8, 20) and 73 healthy control subjects. Sera from healthy control subjects (N=73) and pre-treatment breast cancer sera (N=57) were collected at the Sechenov University Hospital after overnight fasting and delivered to the Clinical laboratory, processed and stored at −86°C until they were analyzed for CA-62 and CA 15-3 markers. Another set of archived histopathology-confirmed breast cancer sera (N=139) was obtained from the Biospecimen bank ProMedDX LLC, MA, USA. The entire set of serum samples was separated by centrifugation (1300 g, 10 minutes) in BD SST tubes with silica clot activator, and separating polymer gel, heat-inactivated at 56°C for 30 min using standard operating procedures for serum collection (21, 22), and stored at −86°C until used. Serum samples were collected under an IRB-approved protocol from Federal licensed/registered facility following GMPs. The majority (85%) of cancer samples were from patients with Stage I and Stage II cancers, as well as DCIS (T0). The baseline characteristics of the studied serum samples are presented in Table 1.


Table 1 | Baseline characteristics of the analyzed serum samples.






2.1.4 Study design

The entire blind set of serum samples (N=269) was analyzed using an FSSH-approved IVD medical device CLIA-CA-62 based on a competitive chemiluminescent assay and 177 BC cases together with 73 healthy control subjects were tested by another FSSH-approved IVD medical device ELISA-CA15-3 based on a sandwich enzyme-based immunoassay. A controlled blind clinical study using serum samples from histopathologically confirmed patients was carried out at Sechenov University, Moscow. A clinical study methodology is presented in Figure 1. The blinding was carried out by experts from the external independent laboratory of the Federal Service for Surveillance in Healthcare of the Russian Federation. Such study design provides a high level of internal validity and allows avoiding any bias, chance or confusion.




Figure 1 | A clinical study methodology.







2.2 Human CLIA-CA-62 immunoassay

Measurements of CA-62 cancer antigen in patients’ sera were performed using the in vitro diagnostic immunoassay from JVS Diagnostics LLC, Moscow, Russia (Lot# CLIA-CA-62-200221), according to the manufacturer’s instruction. IVD CLIA-CA-62 chemiluminescent immunoassay approved by the Federal Service for Surveillance in Healthcare of the Russian Federation (FSSH) is intended for the quantitative measurement of carcinoma-specific antigen CA-62 in human blood serum. A set of reagents CLIA-CA-62 is a one-step solid-phase competitive chemiluminescent immunoassay, in which a competition takes place between the carcinoma-specific antigen CA-62 contained in the test sample and the labeled cancer antigen CA-62-Acridinium (Acridinium NHS-ester) for binding to monoclonal antibodies (Mabs) to glycoprotein CA-62, immobilized on the solid phase (96-well plate) (18). The human CLIA-CA-62 test kit contains all the required sets of reagents to analyze 48 samples in duplicates, including the CA-62 standard calibrators. During 2-hour incubation, a solution containing a diluted serum sample (1:5), 50 µl of Positive control sample, 50 µl of Standard Calibrators CA-62, and 50 µl of the labeled cancer antigen 400 ng/ml solution were added to the wells with immobilized antibodies, thereafter the sorbent was washed away from unbound components. A series of standard calibrators CA-62 were tested simultaneously with the specimens to plot a Logit-Log calibration curve for the quantitative determination of the glycoprotein CA-62 in measurement units (U/ml) of the unknown samples. The measurable luminescent signals from the immune complexes {anti-CA62-Mab-(CA-62-Acridinium ester)} formed on the solid phase were then recorded immediately after the injection of the activating buffer solution (integration time 0.3 sec) in the wells, which induces the photon emission, detected by a flash chemiluminescence reader. The intensity of the luminescent signal is inversely proportional to the concentration of the measured analyte in the specimen. Samples with CA-62 units higher than the largest CA-62 calibrator were diluted accordingly with a working buffer followed by the determination of the exact concentration by multiplying on the dilution factor.

Measurements were made following the manufacturer’s instructions. Sensitivity of the assay: 35 U/ml; the assays had linearity of 91 and 105% over the measurement range of 1250 -10000 U/ml. The total analysis time was 4 hours. Detection method: flash chemiluminescence using Tecan Spark (Tecan Trading AG, Switzerland, EU). The cut-off value (5000 U/ml) used was recommended by the manufacturer based on CA-62 levels in sera from 353 healthy individuals 18 – 65 years old. All the test samples were done in duplicates using Standard calibrators CA-62 and Positive control samples as reference standards included in the set of reagents. 95% of the sera from healthy control subjects were above the limit of detection (LOD). The intra-assay coefficient of variation was ≤ 10%, over the range of concentrations.




2.3 The sandwich CA 15-3 ELISA

Measurements of CA 15-3 cancer antigen in studied serum samples were performed using a solid-phase sandwich CA 15-3 ELISA-BEST (FSSH-approved IVD medical device from Vector-BEST, Novosibirsk, Russia, Lot#T-8472) in accordance with the manufacturer’s instruction. The CA 15-3-ELISA-BEST is designed to quantitatively measure the amount of cancer antigen CA 15-3 bound between a matched antibody pair in human serum. It uses two types of monoclonal antibodies specific to different CA 15-3 epitopes. Capture CA 15-3 specific monoclonal antibodies have been pre-coated in the wells of the supplied microplate. Samples, CA 15-3 standards, positive controls, and substrate solution for the secondary peroxidase HRP- labeled antibody are then added into the corresponding wells, allowed to react with the HRP-antibody-CA-15.3 complex to produce a measurable optical signal to be recorded with a colorimetric microplate reader. The sandwich is formed by the addition of the secondary antibody. In this case, the intensity of this signal is directly proportional to the concentration of CA 15-3 antigen present in the original specimen. This approach to sandwich ELISA allows the formation of the antibody-analyte sandwich complex in a single step. Time-to-result: 3.5 Hrs. Sensitivity of the assay: 0.5 U/ml, diagnostic range: 10 U/ml - 250 U/ml, detection method: colorimetric. For the optical density measurements was used a Tecan Spark (Tecan, Switzerland, EU). The assay had linearity ranges from 97 to 98% over the range of concentrations from 5 to 65 U/ml. The cut-off value (30 U/ml) was recommended by the manufacturer based on CA 15-3 levels in sera from healthy females (N=97) of 18 – 50 years old. All the test samples were done in duplicates using Standard calibrators CA 15-3 and Positive control sample as reference standards included in the set of reagents. The intra-assay coefficient of variation was ≤ 8.2%.




2.4 Statistical analysis

The distribution of CA-62 and CA 15-3 in sera from healthy and breast cancer patients was tested for normality using the D’Agostino-Pearson omnibus test. The Pearson correlation coefficient (r) was used to determine the correlation between CA-62 and CA 15-3 serum levels. Since CA-62 values a 1000 times higher than the CA 15-3, the original values for both cancer markers in different subgroups were log-transformed (log10) before the analysis for obtaining the same equivalent scales, which allow getting a graphical correlation with y = a*Lg(x) + b. For the evaluation of the difference between cancer and healthy control groups the Mann–Whitney U test was used. In order to evaluate the diagnostic characteristics of each cancer antigen we calculated the sensitivity and specificity, test accuracy, PPV, and NPV, and compared the cancer samples to normal control subjects using the receiver operating characteristic (ROC) analysis for the two markers. The level of significance was set at p < 0.001. Statistical analyses were performed using the MedCalc statistical software (version 19.7.4, MedCalc Software Ltd, Belgium, EU). The weighted kappa k-coefficients were used for evaluation of the diagnostic test results against a gold standard, which is, in our case, the results of the histopathological findings.





3 Results

Serum samples from 73 healthy control subjects (women) and 196 patients with histopathologically confirmed breast cancer were analyzed for CA-62 cancer marker and 177/196 (due to insignificant sample’s volume) of breast cancer samples with 73 healthy control subjects for CA-15-3 serum levels, as described in the Materials and methods section. The values obtained are shown in Table 2. Significantly higher serum CA-62 levels were found in sera from breast cancer patients compared to healthy control women, and the glycoprotein concentration ranged from 1178 to 28598 U/ml (mean ± SD=12312 ± 5326) (Figure 2). The median CA-62 values were very high in all stages of breast cancer: ductal carcinoma in situ DCIS (12133 U/ml), Stage I (13045 U/ml), Stage II (9824 U/ml) and Stage III (17247 U/ml) as compared to healthy control subjects (2821 U/ml). Interestingly enough, the CA-62 detection level decreases with the tumor stage and demonstrates a very significant production of the marker for epithelial carcinomas from the onset of carcinogenesis, when cancer stem cells are poorly differentiated.


Table 2 | Diagnostic methods comparison: CA 15-3 ELISA, CA-62 CLIA, mammography, MRI, UE, and MCED in relation to clinical and pathologic data of breast cancer patients.






Figure 2 | CA-62 normal distribution in breast cancer samples. (A) CA-62 levels in sera from healthy controls and from all breast cancer groups (B) Error bars denote maximum and minimum values.



The CA 15-3 values in the breast cancer sera showed a broad range, from 0 to 330.4 U/ml with a median of 25.8 U/ml (mean ± SD= 35 ± 35.6) with its minimum (20.5 U/ml) at Stage I and its maximum (38.2 U/ml) at Stage III. A LOD value of 5 U/ml for the CA 15-3 ELISA immunoassay was used. The entire set of sera from healthy women had CA 15-3 antigen levels above the detection limit (5 U/ml) and 97% of them had detectable CA 15-3 levels in the range of 5 to 65 U/ml (the estimated mean ± SD = 0.2 ± 0.05). Less than half of women (46%) with confirmed breast cancer had elevated levels of CA 15-3 as compared to healthy control subjects. D’Agostino-Pearson omnibus normality test for CA-62 levels in healthy women as well as in breast cancer patients showed Gaussian normal distributions, whereas cancer antigen CA 15-3 levels were not normally distributed for breast cancer patients as compared to healthy control subjects. Both CA-62 and CA 15-3 glycoprotein levels in healthy as well as in breast cancer patients did not have any significant correlation with the age of the individuals at 95% Confidence interval (r = 0.129, p = 0.07 for CA-62 and r = 0.11, p = 0.16). No correlation was found between the serum CA-62 and CA 15-3 levels in the healthy control group and in breast cancer patients (r = 0.11, p < 0.0003). Overall, a significant correlation was found between the CLIA-CA-62 assay and the histopathological findings (r = 0.942, p < 0.0002) using linear regression for the entire set of breast cancer and r = 0.97, p < 0.0001 for Stage I.

The overall performance of the competitive CLIA-CA-62 and CA 15-3 ELISA assays in sera from breast cancer patients with stages I-III and the ductal carcinomas in situ was evaluated by constructing ROC curves. The results of the ROC-curve analysis for Stage I and DCIS for both CA-62 and CA 15-3 are shown in Table 2 and Figure 3A and the ROC-curves for all stages are presented in Figure 3B. ROC curve analysis for the entire set of breast cancer samples using the CA-62 cancer marker demonstrated a very high AUC = 0.955 with p < 0.001. The CLIA-CA-62 assay for DCIS and Stage I breast cancer showed an AUC of 0.989 with p < 0.0001 using a cut-off value of 5000 U/ml recommended by the manufacturer of the assay; Sensitivity was 97% at 95% specificity (Figure 3A) with the median and an average equal to 12133 and 13062, correspondingly. By contrast, the CA 15-3 ELISA assay yielded an AUC = 0.779, p < 0.001 for the entire set of samples, and using a cut-off value of 30 U/ml, the Sensitivity was 46% at 93% Specificity, which corresponds well with previously published studies. The ROC-curve analysis of CA 15-3 ELISA assay for DCIS and Stage I breast cancer showed an AUC of 0.76, p < 0.0001 with a Sensitivity of 40% at the same 93% Specificity (Table 2; Figure 3). The comparison of the results between the two cancer markers revealed that the Sensitivity of the CLIA CA-62 chemiluminescent assay was approximately double that of CA 15-3 ELISA for early stages of breast cancer, and over three times as high in DCIS (27% vs. 100%). The accuracy of the test (the proportion of the correct test results in a total number of cases) among all examined patients using the CLIA-CA-62 assay is 97% for detecting Stage I breast cancer compared to 92% for the entire set, whereas for sandwich CA 15-3 ELISA it is only 40% (46% for the entire set). The positive predictive value (PPV) and negative predictive value (NPV) were used to describe the performance of the diagnostic test. Further analysis compared the CA 15-3 and serum CA-62 glycoprotein values with published results for other methods of cancer diagnostics such as mammography, ultrasound, and MRI. The Positive predictive value (PPV) for CLIA-CA-62 is 97.8% as compared to 93% for CA 15-3, 78% - 90% for mammography and 75% for MRI and ultrasound. At the same time, test accuracy is the highest at 92.2% for CLIA-CA-62 as compared to 58% for CA 15-3 ELISA, and 75-85% for mammography, ultrasound, and MRI.




Figure 3 | The ROC-curve comparison of the CLIA-CA-62 and CA 15-3 ELISA IVD assays for DCIS and Stage I breast cancer patients in comparison with healthy controls (A) and the ROC-curves comparison of the CLIA-CA-62 and CA 15-3 ELISA assays for all stages of breast cancer (B).






4 Discussion

This study is unique in terms of the sensitivity demonstrated for the detection of the very early stages of breast cancer in asymptomatic women.

The aim of this study was not a differential diagnosis between breast cancer and breast benign disease using a biomarker CA-62 or an evaluation of the relationship between the level of CA-62 and different molecular subtypes. The main goal was to independently evaluate the diagnostic characteristics of the novel CLIA-CA-62 assay for early stages of breast cancer detection as compared to other CA 15-3 ELISA based on well-known cancer marker CA 15-3 and its prospective use thereof. However, the obtained results have demonstrated a potential in the future to carry out a prospective clinical study of the relationship between the CA-62 serum level and the tumor grade, as well as the molecular subtypes of breast cancer patients.

Measuring serum levels of cancer markers CA-62 and CA 15-3 in 269 samples has established that CA-62 antigen was increased in 180/196 (92%) (p < 0.0001) of breast cancer patients in the DCIS, Stage I, Stage II, and Stage III, whereas elevated CA 15-3 values were found only in 46% (82/177). Both cancer markers in the healthy control subjects’ group (N=73) had serum levels below the upper limit of the reference range (67/73 for CA-62 and 164/177 for CA 15-3). Cut-off values for CA 15-3 ELISA assay were > 30 U/ml, and > 5000 U/ml for CLIA-CA-62 upon which the sensitivity, specificity, AUC, and CI were calculated. Interestingly enough, patients with Stage I of breast cancer and non-invasive ductal carcinoma in situ DCIS have demonstrated from 97 to 100% detection using the novel CLIA-CA-62 assay, when curability is the highest, while the mucin-based CA 15-3 ELISA assay was not (27% detection only for DCIS). The same trend was observed for the entire set of breast cancer samples. Previous studies on cancer biomarkers for breast cancer (15) have demonstrated that their low sensitivity and specificity prevent from the use of serum markers such as the MUC-1 mucin glycoproteins (CA 15.3, BR 27.29) and carcinoembryonic antigen (CEA) for the diagnosis of early breast cancer. At the same time, serial measurement of these markers can result in the early detection of recurrent disease as well as reflect the efficacy of therapy.

The reason for such unusually high Sensitivity for early stages of BC detection found in this blind study could be that N-glycoprotein CA-62 is a mesenchymal light N-oligosaccharide, which is shed into the bloodstream far beyond the other cancer maker production. In general, epithelial tumors in a process of malignant transformation gradually lose their differentiation due to the destruction of the connections with the tumor microenvironment, which is controlling the degree of cell differentiation loss, up to the epithelial-mesenchymal transition with the formation of the tumor stem cells and re-expression of the embryonic antigens. During EMT epithelial cells lose their epithelial characteristics, and their polarity and gain some properties of the mesenchymal cells, such as spindle shape, anterior-posterior polarization, and strong migratory potential and mesenchymal markers. As a result, various epithelial cells possessing different morphological and phylogenetic classifications are transformed into the same pluripotent cancer stem cells. From the onset of carcinogenesis heavily branched N-glycoproteins are expressed in large quantities on the cell membrane of such “transformed” stem cells and act as a carcinoma-specific N-glycoprotein MEC/CA-62 detected by the CLIA-CA-62 chemiluminescent assay.

Authors (16, 17) revealed that a CA-62 marker associated with epithelial tumors can be significantly expressed and detected to varying degrees in the tissues of malignant tumors (such as breast, prostate, lung, uterus, stomach, kidney, colon, and ovaries), as well as in various human biological fluids (including blood and saliva). At the same time, healthy control subjects do not demonstrate increased expression of the CA-62 marker. However, some breast benign specimens (<10%) have demonstrated a slight increase in CA-62 level that might indicate a transitional stage of the tumor becoming malignant, which was actually confirmed lately for some benign patients (18). Patients having a strong elevation in serum CA-62 level might have another type of carcinoma, which does not make it false positive for breast cancer detection, but rather a substantial reason for simultaneous detection of other existing cancer.

As compared to low-weight CA-62 N-glycoprotein, a majority of other cancer markers including CA 15-3 represents heavyweight O-mucins (up to 800 kDa), are getting produced when the cancer cells differentiation reaches maturity and are released into the blood after the tumor cells destruction. In this case, the level of released into the blood accumulated tumor-specific and tumor-associated markers is proportional to the tumor growth. That could be a reason for the low detection level of CA 15-3 in the serum of patients with non-invasive or micro-invasive breast lesions as compared to amounts seen in sera from patients with advanced cancers (9, 15). The accepted overall established sensitivity of the CA 15-3 assay for breast cancer detection is in the 20 to 50% range, which is in agreement with the findings reported herein (Se = 27 - 56%) with lower values for DCIS (27%) and Stage I (42%), and higher values for Stage II (54%) and Stage III (50%) (23, 24).

According to the ASCO guidelines, CA 15-3 and CEA can be used only together with physical examination and imaging (23, 24), but mammography has a limited sensitivity of 63-90% due to many possible influences such as unclear lesions, poor aligning, dense parenchyma, calcifications, distortions, and misinterpretations (25). Hence, the probability that a patient with breast cancer will be detected by mammography alone is only 70-90%, and therefore the probability that it will be missed is 10 – 30%. Some multicenter trials established that up to 40% (30% at Stage I) of breast cancer cases are “missed cancers” due to detection and interpretation errors. At the same time, mammographic screening detects 50 per 100,000 (0.5%) invasive breast cancers in women while generating 2200 per 100,000 women (2.2%) false positive results from 90-99% of true negatives (26, 27).

Traditional bilateral mammography is being improved by using contrast-enhanced digital mammography (CEDM) which allows visualizing neovascularization associated with angiogenesis. Other greatly demanded and valuable screening methods are breast ultrasound and ultrasound elastography (UE), which shows superior advantages in differentiating benign and malignant breast tumors as compared to conventional ultrasound (28). On the other hand, breast MRI has some advantages over mammography since it does not use radiation, and is faster and exceptionally safe. MRI images reflect the tumor’s molecular and genetic characteristics. Unlike mammography, which generates images based on the density of the tissue, MRI has higher sensitivity by creating a “blood flow map” which allows visualizing tumor neovascularity, associated with some metabolic modifications that correlate with the proliferation and metastatic potential of the tumor (29, 30).

The published results for various methods of cancer diagnostics such as mammography (MMG), magnetic resonance imaging (MRI), an ultrasound and ultrasound elastography (UE), and DNA-based Multi-cancer early detection test MCED (31) were compared with results obtained for 196 patients with breast cancer using immunological methods CLIA-CA-62 assay and CA 15-3 ELISA. A weighted kappa-test (k) was performed to evaluate the diagnostic consistency of the mammography, CA 15-3 ELISA and CLIA-CA-62 assays with the results of histopathology. The sensitivity and specificity values for the combination of the instrumental methods of diagnostics, such as UE & MRI were 95.8% and 92.8%, correspondingly, which are comparable to the values obtained with the CLIA-CA-62 assay. Kappa coefficients are being interpreted as indices of the test quality in evidence-based medicine (32). In this case, the values of the weighed kappa-coefficient demonstrate a significant difference between the two diagnostic methods: 0.63 (UE&MRI) vs 0.80 (CLIA-CA-62). The comparison of the kappa coefficient (0.8) for the CLIA-CA-62 test with published elsewhere (28) kappa coefficients for UE, MRI, UE&MRI (0.512, 0.527 and 0.630, respectively, p<0.001), for mammography (0.52), and CA 15-3 ELISA (0.22) with significance level p<0.0001 indicate that the CLIA-CA-62 test classifies patients more reliably due to the lesser likelihood of a random coincidence of the test results with the histopathological findings.

Taken together, the results obtained in this independent double-blind study clearly demonstrate that the novel CLIA-CA-62 chemiluminescent assay has significant diagnostic advantages in detecting early stages of breast cancer as compared to other imaging diagnostic methods as well as to the other cancer markers including CA 15-3. The values of sensitivity, specificity, and accuracy of the CLIA-CA-62 IVD assay were 92%, 93%, and 92.2%, which is approximately 1.5 times higher as compared to various visual methods of diagnostics such as MRI, mammography, ultrasound etc. It is especially worth emphasizing the significant difference in detection of DCIS and Stage I & II. When using the CLIA-CA-62 assay, the detection rate was over 97%, whereas the other methods show a range of values from 27% for the CA15-3 assay (23, 24), to 55% for multi-cancer early detection test MCED (31) to 80% for FAST MRI (29).

The comparison of different breast cancer diagnostic methods allows concluding that only a combination of several methods is superior to the single use of either method for the detection of Stage I breast cancer. Data from Table 2 confirms that a combination of the CLIA-CA-62 and other methods of diagnostics including mammography could significantly improve the detection of non-invasive DCIS and Stage I breast cancer both having a high survival rate.

In the future, it seems appropriate to conduct a clinical approbation on a breast cancer screening of a group of women patients to develop a working algorithm for reliable detection of early-stage breast cancer using the CLIA-CA-62 immunoassay as a pre-screening tool before or in conjunction with breast mammography. It could be beneficial for current breast cancer screening algorithms and particularly for early-stage breast cancer detection. Another clinical study aiming the use of the CLIA-CA-62 immunoassay for differential diagnosis in women above 40 years old with BI-RADS 2, 3, and 4 mammograms, with moderate to high suspicion of breast cancer correlating mammographic and the CLIA-CA-62 data with pathologic findings might help with the interpretation of the pathologic findings and with the differentiation between benign lesions and malignant neoplasms.





Conclusions

	The CLIA-CA-62 assay demonstrated 100% sensitivity at 93% specificity for DCIS and 97.8% for Stage I breast cancer as compared to another known cancer marker for breast cancer, such as CA 15-3 (Se = 46%, Sp = 93%) and mammography (Se = 63-80% and 60% Specificity depending on the stage of cancer and parenchyma density).

	Cancer marker CA-62 has a few unique qualities that distinguish it from other well-known cancer markers: it is present at a very high level in the blood of patients (>97%) with asymptomatic ductal carcinoma in situ and Stage I breast cancer and it doesn’t increase along with the cancer progression and differentiation. Since the carcinoma-specific marker CA-62 appears on the surface of the transformed mesenchymal epithelial cancer cells in the course of carcinogenesis, it is gradually fading away, when tissue differentiation reaches maturity.

	There is a significant level of agreement (k=0.8) between the CLIA-CA-62 assay results based on the marker for epithelial carcinomas CA-62 with histopathological findings for the entire set of breast cancer, including Stage I.

	Despite the fact that the CA-62 is a marker for epithelial carcinomas and is not specific for breast cancer, the results obtained in this blind study suggest that the CLIA-CA-62 assay could be a useful tool to supplement existing mammography screening as well as other diagnostic imaging methods, which could improve the diagnostic sensitivity in DCIS and Stage I breast cancer detection thus improving clinical outcomes. Patients having a strong elevation in serum CA-62 level might have another type of carcinoma, which does not make it false positive for BC but rather benefits the simultaneous detection of some other existing cancer.

	This evaluation of the CLIA-CA-62 chemiluminescent assay for early stages of breast cancer detection strongly suggests it can provide independent and complementary information for the doctors in decision-making and can be considered a useful tool for the primary detection of breast cancer in asymptomatic women. It would be beneficial to use serum CA-62 level in conjunction with the clinical information and other diagnostic procedures.
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Objective

This study aimed to investigate the role of spectral detector computed tomography (SDCT) quantitative parameters and their derived quantitative parameters combined with lesion morphological information in the differential diagnosis of solid SPNs.





Methods

This retrospective study included basic clinical data and SDCT images of 132 patients with pathologically confirmed SPNs (102 and 30 patients in the malignant and benign groups, respectively). The morphological signs of SPNs were evaluated and the region of interest (ROI) was delineated from the lesion to extract and calculate the relevant SDCT quantitative parameters, and standardise the process. Differences in qualitative and quantitative parameters between the groups were statistically analysed. A receiver operating characteristic (ROC) curve was constructed to evaluate the efficacy of the corresponding parameters in the diagnosis of benign and malignant SPNs. Statistically significant clinical data, CT signs and SDCT quantitative parameters were analysed using multivariate logistic regression to determine the independent risk factors for predicting benign and malignant SPNs, and the best multi-parameter regression model was established. Inter-observer repeatability was assessed using the intraclass correlation coefficient (ICC) and Bland–Altman plots.





Results

Malignant SPNs differed from benign SPNs in terms of size, lesion morphology, short spicule sign, and vascular enrichment sign (P< 0.05). The SDCT quantitative parameters and their derived quantitative parameters of malignant SPNs (SAR40keV, SAR70keV, Δ40keV, Δ70keV, CER40keV, CER70keV, NEF40keV, NEF70keV, λ, NIC, NZeff) were significantly higher than those of benign SPNs (P< 0.05). In the subgroup analysis, most parameters could distinguish between benign and adenocarcinoma groups (SAR40keV, SAR70keV, Δ40keV, Δ70keV, CER40keV, CER70keV, NEF40keV, NEF70keV, λ, NIC, and NZeff), and between benign and squamous cell carcinoma groups (SAR40keV, SAR70keV, Δ40keV, Δ70keV, NEF40keV, NEF70keV, λ, and NIC). However, there were no significant differences between the parameters in the adenocarcinoma and squamous cell carcinoma groups. ROC curve analysis indicated that NIC, NEF70keV, and NEF40keV had higher diagnostic efficacy for differentiating benign and malignant SPNs (area under the curve [AUC]:0.869, 0.854, and 0.853, respectively), and NIC was the highest. Multivariate logistic regression analysis showed that size (OR=1.138, 95% CI 1.022-1.267, P=0.019), Δ70keV (OR=1.060, 95% CI 1.002-1.122, P=0.043), and NIC (OR=7.758, 95% CI 1.966-30.612, P=0.003) were independent risk factors for the prediction of benign and malignant SPNs. ROC curve analysis showed that the AUC of size, Δ70keV, NIC, and a combination of the three for differential diagnosis of benign and malignant SPNs were 0.636, 0.846, 0.869, and 0.903, respectively. The AUC for the combined parameters was the largest, and the sensitivity, specificity, and accuracy were 88.2%, 83.3% and 86.4%, respectively. The SDCT quantitative parameters and their derived quantitative parameters in this study exhibited satisfactory inter-observer repeatability (ICC: 0.811-0.997).





Conclusion

SDCT quantitative parameters and their derivatives can be helpful in the differential diagnosis of benign and malignant solid SPNs. The quantitative parameter, NIC, is superior to the other relevant quantitative parameters and when NIC is combined with lesion size and Δ70keV value for comprehensive diagnosis, the efficacy could be further improved.
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1 Introduction

In 2020, there were approximately 2.2 million new cases of lung cancer worldwide, accounting for 11.4% of all malignant tumours, and approximately 1.8 million deaths, accounting for 18.0% of all deaths due to malignant tumours (1, 2). The 5-year survival rate of patients with stage I lung cancer is 60%-80%, while that of stage IV patients is only 5.3%. Therefore, early detection, diagnosis, and treatment are important for patients with lung cancer (3). The common manifestations in the early stages of lung cancer, solitary pulmonary nodules (SPNs) are round or round-like pulmonary parenchymal lesions with relatively clear boundaries and a diameter of ≤ 30 mm (4). The detection of SPNs is increasing owing to the popularisation of CT examinations (5). However, due to the atypical clinical symptoms and incidental nature in some patients, SPNs can manifest as primary lung cancer, pulmonary metastatic nodules, infection foci, or other benign lesions. In addition, the malignancy rate of SPNs is only 30%-40% (6). Therefore, quick and accurate diagnosis of malignant SPNs and the provision of standardised diagnosis and treatment guidance are challenging.

Detection of SPNs by low-dose spiral computed tomography (LDCT) screening and early treatment interventions decreases the mortality of lung cancer patients by 20% (7); however, LDCT plays little role in the qualitative diagnosis of SPNs (8). Conventional CT plays an important role in evaluating the radiological signs and enhancement characteristics of SPNs, but some benign and malignant SPNs have highly similar lesion morphologies and enhancement patterns, and thus pose a great challenge in differentiating benign and malignant SPNs (9). 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) can reflect the internal metabolism of SPNs based on conventional CT, but false positive results due to inflammation, infection and other factors are difficult to avoid (10). In addition, the high radiation dose and the expensiveness of 18F-FDG PET/CT limits its application and promotion in China. Needle biopsy has high accuracy in differentiating benign from malignant SPNs. However, as an invasive examination, patients not only bear the risk of complications (pneumothorax, bleeding, infection, needle dissemination, and implantation) but also economic and mental stress. Therefore, it is very important and urgent to explore a non-invasive and accurate method for differentiating benign from malignant SPNs.

Dual-layer spectral detector computed tomography (SDCT), a milestone in the development of CT, uses materials to produce different energy information at various X-ray energies to convert simple CT images to functional imaging. In contrast to conventional CT, SDCT can also obtain quantitative parameters such as iodine concentration (IC), the slope of the spectral attenuation curve (λ), Z-effective (Zeff), and electron density (ED), in addition to CT values. Currently, SDCT is gradually being applied and promoted in many clinical fields (11, 12). In clinical oncology, SDCT is recognised for its ability to differentiate benign and malignant primary lesions, malignant tumour subtypes, primary lesions from metastases, and lymph node metastasis(LNM) predictions (13–15). Nonetheless, studies focusing on the differential diagnoses of benign and malignant pulmonary nodules are limited. Published literature focused on the quantitative parameters of SDCT in the differential diagnosis of benign and malignant SPNs (16–18). However, the clinical data of the patients and the morphological characteristics of the tumour were not included in the comprehensive analysis. Hence, this study aimed to 1) explore the importance of SDCT quantitative parameters and their derivatives, combined with morphological information of the lesion and clinical data of patients in the differential diagnosis of benign and malignant solid SPNs and 2) establish a prediction model for malignant SPNs to assist in the development of its best treatment strategy.




2 Materials and methods



2.1 Study population

The study was approved by the institutional ethics committee of Jiangsu Cancer Hospital (NO.ZN202212, Nanjing, Jiangsu, China) and the requirement for individual consent for this retrospective analysis was waived.

Data from 207 patients with newly diagnosed SPNs who underwent spectral CT examination in our hospital between September 2021 and August 2022 were retrospectively collected. The inclusion criteria for the participants were as follows: (i) SDCT chest scan performed in our hospital; (ii) patients diagnosed with solid SPNs with a lesion diameter of > 8 mm and ≤ 30 mm; and (iii) definite pathological results confirmed by surgery or puncture. The exclusion criteria were: (i) plain chest scan without enhanced scan (n = 52); (ii) anti-tumour therapy before SDCT examination (n = 11); (iii) patients with more than one solid solitary nodules (n = 9); and (iv) poor image quality (n = 3). Finally, 132 patients were enrolled in this study, including 102 with malignant SPNs and 30 with benign SPNs. A flow chart of patient inclusion and exclusion is shown in Figure 1.




Figure 1 | Patients enrolment flowchart.



Based on tumour pathology, the study participants were divided into two groups: malignant (n = 102) and benign (n = 30). The histopathological subtypes of malignant SPNs of the patients included are adenocarcinoma (n = 76); squamous cell carcinoma (n = 21); small cell lung cancer (n = 4); adenosquamous carcinoma (n = 1). Among 30 patients with benign SPNs, inflammation (n = 9), pulmonary hamartoma (n = 8), pulmonary tuberculosis (n = 8), inflammatory pseudotumour (n = 2), alveolar cytoma (n = 1), congenital cystic adenomatoid malformation (n = 1), and collagen nodules with lymphoproliferation (n = 1) were observed.




2.2 SDCT image acquisition

All patients underwent the same routine SDCT protocol (IQon; Philips Healthcare, Best, Netherlands). The patients were placed in the supine position, and the scanning range was from the thoracic entrance to the level of the costophrenic angle. The basic scanning parameters were: tube voltage, 120 kVp; tube current modulation; 3D modulation; collimator width, 64×0.625 mm; matrix, 512×512; and scanning field of view, 372 mm; pitch, 0.90; rotation time, 0.50 s. The slice thickness was 5 mm for scanning and 1 mm for reconstruction. Contrast medium (ioversol, 3.0 ml/kg; iodine, 350 mg/ml; HengRui Medicine, Jiangsu, China) was injected intravenously in the anterior elbow at a flow rate of 2.5-3.0 ml/s, followed by 20 ml normal saline at the same flow rate. A contrast-enhanced chest scan was performed 50 s later after the injection.




2.3 Radiological analysis of SPNs on SDCT



2.3.1 Analysis of the morphological characteristics

The images of all SPNs cases were interpreted and analysed by two radiologists (with 4 years and 8 years of work experience) blinded to the pathological findings. For analysing the morphological features of SPNs, different window widths, window levels, thin-slice scans, and multi-planar reconstruction techniques were used to observe the lesion location, shape, lobulation, spiculation, pleural indentation, vascular convergence sign, air bronchogram, vacuole sign, calcification, and other imaging signs. When perceptions were inconsistent, a consensus was reached through consultation.




2.3.2 Acquisition and analysis of SDCT quantitative parameters

All images were imported into a Philips workstation (IntelliSpace Portal, Philips Healthcare), and the analysis and processing of the images were performed using the software in the workstation (Spectral CT Viewer, Philips Healthcare). Image analysis was performed by a radiologist (with 4 years of radiology experience) and supervised by a senior radiologist (with 8 years of radiology experience). All SPNs image data were acquired within the mediastinal window. Regions of interest (ROI) were manually delineated at three consecutive levels, including the largest level of the SPNs and its adjacent upper and lower levels. Areas such as calcification, vessels, cavities, atelectasis, and necrosis, which may affect measurements, were avoided. An average of three measurements for each case was taken as the final data point for the analysis. The ROI of the aorta at similar levels was obtained using the same method and used for the normalisation of SDCT quantitative parameters. Subsequently, a series of parameters was obtained.

The parameters obtained in our study were: CT values of SPNs at virtual non-contrast (VNC) and enhancement (40keV and 70keV) were recorded as CTSPN-VNC, CTSPN-40keV and CTSPN-70keV, respectively. The CT values of the aorta at the VNC (CTaorta-VNC) and enhancement at 70keV (CTaorta) were recorded and used as a reference. The following formulas were used to calculate the ratio of lesion to aortic virtual plain scan (SARVNC), the ratio of the lesion to aortic contrast enhancement (SAR40keV, SAR70keV), the difference in CT value between lesion enhanced and virtual plain scan (Δ40keV, Δ70keV), and the contrast enhancement ratio (CER40keV, CER70keV). Standardised enhancement value scores (NEF40keV, NEF70keV) and spectral curve slopes (λ) (19).

	

	

	

	

	

	

To account for the haemodynamic variation between patients, the IC (mg/mL), Zeff and ED values were normalised to the aorta. The normalised iodine concentration (NIC), normalised electron density (NED), and normalised effective atomic number (NZeff) were calculated according to the following formula:

	

	

	

To assess inter-observer reproducibility and variability, 50% of the study participants (66/132) were randomly selected, and the previous measurement procedure was repeated by another radiologist. Interobserver agreement was assessed using Bland–Altman plots and intraclass correlation coefficients (ICC).





2.4 Statistical analyses

The data were statistically analysed using SPSS 22 (SPSS, Inc., Chicago, IL, USA) and MedCalc15 (MedCalc Software, Mariakerke, Belgium). Continuous variables were presented as mean ± standard deviation. The basic clinical data and SDCT morphological characteristics were analysed using the chi-square test or Fisher’s exact test. The SPNs SDCT quantitative parameters and derived parameters were tested for normality using the Kolmogorov–Smirnov method, followed by the Levene test for homogeneity of variance. An independent sample t-test or Mann–Whitney U test was used to compare multiparameter differences between benign and malignant SPNs. One-way Analysis of Variance (ANOVA) was used to compare the pairwise differences between the benign and adenocarcinoma groups, benign and squamous cell carcinoma groups, and adenocarcinoma and squamous cell carcinoma groups. Receiver operating characteristic (ROC) curve analysis was used to determine the area under the curve (AUC), accuracy, sensitivity, and specificity of the different parameters in predicting benign and malignant SPNs. The clinical data of SPNs, SDCT morphological features, SDCT quantitative parameters, and their derived parameters with statistical differences were analysed by multivariate logistic regression to determine the independent risk factors for predicting benign and malignant SPNs, and the best multi-parameter regression prediction model was established. The inter-observer agreement of spectral CT parameters was evaluated using ICC (0.000-0.200: poor; 0.201-0.400: general; 0.401-0.600: medium; 0.601-0.800: good; 0.801-1.000: excellent) and the Bland–Altman plot evaluation.





3 Results



3.1 Basic clinical data of the study participants

Of the 132 pathologically confirmed solid SPNs patients included, 102 showed malignancy (42 males; 59 females) with an average age of 64.147 ± 9.491 years, and 61 of them were smokers. The 30 patients with benign tumours (14 males; 16 females) had an average age of 60.233 ± 10.047 years, and 12 of them were smokers. There were no significant differences in age (P = 0.052), sex (P = 0.279), or smoking history (P = 0.985) between the benign and malignant groups Table 1.


Table 1 | Basic clinical data of the patients.






3.2 Morphological features of benign and malignant SPNs

Table 2 shows the differences in the morphological features of benign and malignant SPNs identified using SDCT. The radiological findings of the two groups were analysed based on the following 10 aspects: location, size, lesion shape, lobulation, short spiculation, pleural indentation, vascular convergence sign, air bronchogram, vacuole sign, and calcification. There were significant differences in lesion size (P = 0.04), shape (P = 0.014), short spiculation sign (P = 0.034), and vascular convergence sign (P = 0.015) between the benign and malignant groups. The difference in the location, lobulation sign, pleural indentation sign, air bronchogram sign, vacuole sign, and calcification were not significant between the two groups (P > 0.05).


Table 2 | Radiological morphological signs of benign and malignant SPNs on SDCT images.






3.3 Comparison of SDCT quantitative parameters between the benign and malignant groups

The SDCT quantitative parameters were obtained by ROI delineation and then calculated. 13 quantitative parameter indices were included in this study for statistical analysis, and the specific quantitative parameter analysis findings are shown in Table 3. Except for SARVNC and NED (P = 0.114 and 0.208, respectively), all other parameters (SAR40keV, SAR70keV, Δ40keV, Δ70keV, CER40keV, CER70keV, NEF40keV, NEF70keV, λ, NIC, and NZeff) were significantly higher in the malignant group than in the benign group (P< 0.05). A schematic diagram of ROI delineation and quantitative parameter acquisition for typical cases of benign and malignant SPNs are shown in Figures 2 and 3, respectively.


Table 3 | Comparison of SDCT quantitative parameters between benign and malignant SPNs.






Figure 2 | A 59-year-old female with a solid SPN in the posterior segment of the right upper lobe had pathologically confirmed hamartoma. The corresponding quantitative parameter maps of SDCT at 70keV, 40keV, virtual non-contrast (VNC), iodine density (IC), electron density (ED) and effective atomic number (Zeff) are shown in (A-F), respectively. The region of interest (ROI) outlined by the green circle reflects the corresponding SDCT quantitative parameters of the lesion and the aorta at the same level. In this case: CTSPN-70keV = 51.1 HU, CTSPN-40keV = 76.5 HU, CTSPN-VNC = 47.5 HU, ICSPN = 0.34 mg/ml, EDSPN = 104.7% EDW, Zeff-spn = 7.48, CT aorta-70keV = 173.5 HU, CT aorta-40keV = 490.1 HU, CT aorta-VNC = 39.6 HU, ICaorta = 5.28 mg/ml, EDaorta = 104.8% EDW, Zeff-aorta = 9.66.






Figure 3 | A 57-year-old woman with a solid SPN in the lateral basal segment of the left lower lobe had pathologically confirmed adenocarcinoma. The corresponding quantitative parameter maps of SDCT at 70keV, 40keV, virtual non-contrast (VNC), iodine density (IC), electron density (ED) and effective atomic number (Zeff) are shown in (A-F), respectively. The region of interest (ROI) outlined by the green circle reflects the corresponding SDCT quantitative parameters of the lesion and the aorta at the same level. In this case: CTSPN-70keV = 98.3 HU, CTSPN-40keV = 241.0 HU, CTSPN-VNC = 41.6 HU, ICSPN = 2.34 mg/ml, EDSPN = 104.4% EDW, Zeff-spn= 8.52, CTaorta-70keV = 170.6 HU, CTaorta-40keV = 507.5 HU, CTaorta-VNC = 40.6 HU, ICaorta = 5.48 mg/ml, EDaorta = 104.9% EDW, Zeff-aorta = 9.72.






3.4 Differences in SDCT quantitative parameters among benign, adenocarcinoma, and squamous cell carcinoma groups

The SDCT quantitative parameters among the benign, adenocarcinoma, and squamous cell carcinoma groups are shown in Table 4. Except for SARVNC and NED (P = 0.788 and 0.572, respectively), the other parameters (SAR40keV, SAR70keV, Δ40keV, Δ70keV, CER40keV, CER70keV, NEF40keV, NEF70keV, λ, NIC, and NZeff) were significantly higher in the adenocarcinoma group than in the benign group (P< 0.05). Similarly, except for SARVNC, CER40keV, CER70keV, NED, and NZeff (P = 0.209, 0.434, 0.230, 0.404, and 0.237), the other eight parameters (SAR40keV, SAR70keV, Δ40keV, Δ70keV, NEF40keV, NEF70keV, λ, and NIC) were significantly higher in the squamous cell carcinoma group than in the benign group (P< 0.05). There were no significant differences in the SDCT quantitative parameters between the adenocarcinoma and squamous cell carcinoma groups (P > 0.05).


Table 4 | Differences in SDCT quantitative parameters among the sub-groups.






3.5 Diagnostic performance of SDCT quantitative parameters

The diagnostic performance of SDCT quantitative parameters for different groups is shown in Tables 5–7 and Figure 4. Among the multiple quantitative parameters, NIC, NEF70keV and NEF40keV had the highest diagnostic efficiency in differentiating benign from malignant SPNs (AUC = 0.869, 0.854, and 0.853, respectively), and the AUC of NIC was the highest. When the cut-off value of NIC was 0.165, the sensitivity was 87.3%, the specificity was 76.7%, the positive prediction rate was 92.7%, the negative prediction rate was 63.9%, and the accuracy was 84.2%. NIC, Δ70keV and NEF70keV had the highest diagnostic efficiency in distinguishing benign SPNs from adenocarcinoma (AUC = 0.876, 0.857, and 0.854, respectively) and the NIC exhibited the highest detection efficiency. When the cut-off value of the NIC was 0.158, the sensitivity, specificity, positive predictive value, negative predictive value, and accuracy were 92.1%, 73.3%, 89.7%, 78.6%, and 86.0%, respectively. The three parameters with the highest diagnostic efficiency to distinguish between benign SPNs and squamous cell carcinoma were SAR40kev, NEF40keV and NEF70keV (AUC = 0.849, 0.849, and 0.837, respectively). The diagnostic efficiency of the NIC was 0.832, which was second only to the above three parameters. In general, NIC is the best quantitative index for differentiating benign from malignant SPNs and for the comparison between the different subgroups.


Table 5 | Diagnostic efficacy of SDCT quantitative parameters in benign and malignant groups.




Table 6 | Diagnostic efficacy of SDCT quantitative parameters in benign and adenocarcinoma groups.




Table 7 | Diagnostic efficacy of SDCT quantitative parameters in benign and squamous cell carcinoma groups.






Figure 4 | (A) Receiver operating characteristic curve (ROC) showed that NIC, NEF70keV and NEF40keV had the highest diagnostic efficiency in benign and malignant SPNS, and the AUC were 0.869, 0.854 and 0.853, respectively, of which NIC was the highest. (B) The three parameters with the highest diagnostic efficiency were NIC, Δ70keV and NEF70keV, and their AUC were 0.876, 0.857 and 0.854, respectively. NIC still had the highest detection efficiency. (C) SAR40keV, NEF40keV and NEF70keV were the three parameters with the highest diagnostic efficiency to distinguish benign SPN from the squamous cell carcinoma group. The AUC were 0.849, 0.849 and 0.837, respectively. The diagnostic efficiency of NIC was 0.832, which was second only to the above three parameters.






3.6 Morphological features in combination with SDCT quantitative parameters for the differential diagnosis of benign and malignant SPNs

Binary logistic regression analysis performed with the SPNs size, shape, short spiculation, vascular convergence, and 11 quantitative parameters (SAR40keV, SAR70keV, Δ40keV, Δ70keV, CER40keV, CER70keV, NEF40keV, NEF70keV, λ, NIC, and NZeff) that were different between benign and malignant groups as independent variables, and benign or malignant SPNs as the dependent variables showed that lesion size (OR = 1.138, 95% CI 1.022-1.267, P=0.019), Δ70keV (OR=1.060, 95% CI 1.002-1.122, P=0.043), and NIC (OR=7.758, 95% CI 1.966-30.612, P=0.003) were independent risk factors for the prediction of benign and malignant SPNs. ROC curve analysis showed that the AUC of size, Δ70keV, NIC, and a combination of the three for differential diagnosis of benign and malignant SPNs were 0.636, 0.846, 0.869, and 0.903, respectively. The AUC of the combination of the parameters (size +Δ70keV+NIC) was the largest (0.903) when the cut-off value was 0.728, the sensitivity, specificity, positive predictive rate, negative predictive rate and accuracy were 88.2%, 83.3%, 93.8%, 66.7% and 86.4%, respectively. The probability prediction model was logit(P) = -6.707 + 0.129size+0.059Δ70keV+2.049NIC. The details are presented in Table 8 and Figure 5.


Table 8 | Diagnostic efficacy of independent risk factors and the combination model.






Figure 5 | ROC curve analysis showed the AUC of size, Δ70keV, NIC and combination of the three for differential diagnosis of benign and malignant SPN were 0.636, 0.846, 0.869 and 0.903, respectively. The AUC (0.903) of the combination parameters (size +Δ70keV+NIC) was the largest, which was superior to NIC (AUC = 0.869), the highest diagnostic efficiency among independent risk factors.






3.7 Assessment of inter-observer agreement

All SDCT parameters showed good inter-observer agreement for assessing SPNs, with ICC values between 0.811-0.997 (Table 9, Figure 6).


Table 9 | Repeatability of multi-parameters between observers.






Figure 6 | Bland–Altman plots of inter-observer differences in SDCT-related parameters.







4 Discussion

A multi-centre retrospective study by Tanner et al. reported that up to 35% of patients with benign pulmonary nodules received surgical treatment, which not only increased the risk of complications and medical costs but also unnecessary psychological stress and social burden (20). Interestingly, our study suggests that SDCT quantitative parameters combined with morphological features are helpful in the diagnosis of solid SPNs with a diameter of 8–30 mm. Some SDCT parameters are also significant in differentiating the pathological subtypes of lung cancer presenting as solid SPNs. This study allowed patients to avoid invasive treatments and examinations. The combination of morphological and quantitative parameters has deepened the understanding of solid SPNs, which can better guide clinicians in developing the most appropriate treatment plan for patients with SPNs.

SPNs can be divided into solid SPN and sub-solid SPN based on the presence or absence of a ground-glass component, which includes pure ground-glass nodules (pGGN) and mixed ground-glass nodules (mGGN) (21). In this study, SDCT quantitative parameters were obtained by delineating the ROI of the solid components of the lesion in the mediastinal window, while there were no solid or less solid components in the mediastinal window in the sub-solid SPN. Therefore, patients with sub-solid SPNs were not included in this study.

Radiological morphology features are important for the diagnosis and the differential diagnosis of SPNs (22, 23). In this study, CT findings of benign and malignant solid SPNs were analysed for 10 aspects, including location, size, lesion shape, lobulation, short spiculation, pleural indentation, vascular convergence sign, air bronchogram, vacuole sign, and calcification. There were significant differences in lesion size, shape, short spiculation sign, and vascular convergence sign between benign and malignant SPNs. Malignant SPNs are larger than benign SPNs because of its malignant characteristics and rapid growth rate. This study shows that lesion size is closely related and an independent risk factor for the prediction of benign and malignant SPNs, which is consistent with previous reports (24, 25). Owing to the heterogeneity of tumour cells, the growth pattern of lesions can be multi-polarised, which also leads to the irregular morphology of malignant tumours (26, 27). The short spiculation sign refers to the radial short thin-line shadow that extends from the edge of the mass to the surrounding lung parenchyma and is not connected with the adjacent pleura (28). Yi et al. reported that the malignant probability of SPNs with a spicular sign is 88%-94% (29). The sign of vascular convergence is also common in malignant SPNs. On the one hand, the cancer focus pulls adjacent blood vessels off the original track and releases a large amount of vascular endothelial growth factor that promotes the formation of new blood vessels, enhances tumour growth, and provides a path for metastasis (30). The lobulation sign, pleural indentation sign, air bronchogram sign, and bubble sign are also important in the diagnosis of malignant SPNs (31, 32). However, this study showed no significant difference between the benign and malignant groups. We hypothesised that since the average size of malignant lesions is 18.225 ± 5.689 mm, which is relatively small; the significance of the imaging parameters could not be achieved. Also, the number of included cases was insufficient.

As a new CT technique, SDCT not only can obtain traditional CT images but also acquire a variety of spectral parameter images (such as VNC, virtual monoenergetic image (VMI), IC, Zeff, Uric Acid, and Calcium Suppression). These spectral images can be used to reduce artefacts, improve image quality, reduce contrast agent dosage, and reduce the radiation dose. At the same time, they can also provide more valuable information for the detection of lesions, accurate measurement of lesion size, and differentiation of benign and malignant lesions (33–35).

The application of enhanced CT-derived parameters, CT enhancement value, and enhancement ratio could reduce the background influence caused by machine differences and individual differences and are considered to be effective tools for evaluating tumour angiogenesis. Moreover, CT enhancement values and enhancement ratios are related to microvascular and lymphatic invasion in tumours and can be used as surrogate markers for preoperative detection of lymphovascular invasion (19, 36, 37). Inspired by this, our study will focus, in the future, on the application of SDCT quantitative parameters and their derived parameters after normalisation to evaluate the benign and malignant nature of SPNs more objectively and accurately.

The study showed that between benign and malignant solid SPNs, except for SARVNC and NED (P = 0.114, 0.208), there were significant differences in other SDCT-related parameters (SAR40keV, SAR70keV, Δ40keV, Δ70keV, CER40keV, CER70keV, NEF40keV, NEF70keV, λ, NIC, NZeff) (P< 0.05). The parameters of malignancy were significantly higher which might be because malignant nodules produce a large number of angiogenic factors for tumour growth and stimulate the formation of more microvessels. The increased density of microvessels leads to increased capillary perfusion, and the contrast agent rapidly accumulates after enhancement, such that malignant nodules show a relatively strong contrast enhancement effect. This is consistent with previous related reports (38, 39). Zeff is a quantitative index derived from the atomic number, which represents the composite atoms of compounds or mixtures of various materials and characterizes the tissue composition. The NZeff value of the malignant SPNs in this study was higher than that of the benign group, which is also consistent with a recent study (40). A possible explanation could be that malignant lesions are densely packed tumour cells with a higher nuclear/cytoplasmic ratio. ROC curve analysis showed that NIC, NEF70keV and NEF40keV were the three best parameters for predicting the diagnosis of benign and malignant SPNs, respectively and the AUC of the NIC were 0.869, 0.854, and 0.853, respectively. This study also showed that NIC still had the best diagnostic performance in differentiating benign from adenocarcinoma SPNs (AUC=0.876) and that NIC also performed well in differentiating benign from squamous cell carcinoma (AUC=0.832). Iodine, as the main component of the contrast agent, directly reflects blood flow and distribution in the intravascular and extracellular spaces. The iodine concentration map is generally considered to have the potential to evaluate the number and blood flow of blood vessels supplying the pulmonary nodules. Using aortic iodine concentration as the standard parameter of NIC minimises the influence of haemodynamic factors on the absolute enhancement of lesions among different individuals, thereby increasing the comparability between different cases and making NIC more specific and stable than other iodine-related indicators. In this study, the NIC cut-off value for differentiating benign and malignant SPNs obtained during the 50 s of enhanced scanning was 0.165, which is in the range of 0.13 and 0.31 under the 25 s and 60 s enhanced scanning time as reported by Wen et al., which was consistent with previous reports (38, 41).

Binary logistic regression analysis, performed on the indicators and parameters that showed statistically significant differences between benign and malignant solid SPNs demonstrated that NIC, Δ70keV and lesion size were independent risk factors for the prediction of malignant SPNs. When the three factors were combined for ROC curve analysis, the AUC for the differential diagnosis of benign and malignant SPNs was 0.903, the cut-off value was 0.728, and the sensitivity, specificity, positive prediction rate, negative prediction rate, and accuracy were 88.2%, 83.3%, 93.8%, 66.7%, and 86.4%, respectively. It was superior to the NIC (AUC=0.869), which had the highest diagnostic efficiency among the independent risk factors. The radiological image features reflect the macroscopic details of the lesion morphology, whereas the quantitative parameters of SDCT reflect microscopic details, such as blood flow and material composition. This study shows that the combination of morphological signs and SDCT quantitative parameters could more accurately reveal the essential characteristics of solid SPNs, thereby further improving diagnostic efficiency, which has rarely been reported in previous studies.

This study has some limitations. First, this was a single-centre retrospective study with a relatively small sample size, and thus larger and multi-centre validation is needed. Second, to reduce the radiation dose, the corresponding SDCT quantitative parameters obtained from venous phase scan images were used in a single phase, although some studies have reported that some parameters (IC, λ, etc.) in the venous phase were better than those in the arterial phase (41, 42), and a multi-phase scanning study to further improve the integrity of the study will be performed, in the future. Third, the radiologists in our centre are experienced in the evaluation of benign and malignant pulmonary nodules, and most of the benign pulmonary nodules are followed up regularly; therefore, the number of benign cases undergoing surgery is small. In the subgroup analysis, the sample sizes of adenocarcinoma and squamous cell carcinoma were small. In the future, a multi-centre collaboration will be considered to increase the sample size.

In conclusion, SDCT quantitative parameters are helpful for the differential diagnosis of benign and malignant solid SPNs, and NIC is superior to the other relevant quantitative parameters. When NIC is combined with lesion size and Δ70keV value for comprehensive diagnosis, the efficacy power could be further improved.
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Statistically significant values are highlighted in bold.
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Features CAM hot regions (100) CAM inactivated regions in the same nodules (100)

Localization Frequency Probability Weighted score Frequency Probability Weighted score
On the margin 27 027 - 93 093 -
Not on the margin 73 0.73 - 7 0.07 -
Echogenicity
Very hypoechoic 84 0.84 2.52 43 043 129
Hypoechoic i 16 I 0.16 [ 0.32 52 1 052 1.04
Isoechoic 0 0.00 0 5 0.05 0.05
Composition
Solid 100 1.00 2 100 1.00 2
Echogenic foci
Macro-calcification 0 0.00 0 16 0.16 0.16
Punctate calcification 40 0.40 12 14 0.14 042
None 60 0.60 0 70 0.70 0
Sum 100 1 6.04 100 1 1.96

Note that the nodular shapes and margin features in ACR TI-RADS are defined for the whole nodules but not sub-nodular regions. Therefore, only relative localizations are provided, which are
however not associated with defined risk points.
ACR, American College of Radiology; TI-RADS, Thyroid Imaging, Reporting and Data System; CAM, class activation map.
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Variables Cutoff AUC Sensitivity Specificity PPV NPV

Age 59.5 0.630 62.6% 62.7% 63.6% 61.7%
CT values in UP I 27.5 0.789 92.7% 57.6% 69.5% 88.3%
ERA 1.04 0.795 | 78.9% 69.5% 72.9% 75.9%
ERV 144 0.805 82.9% 66.1% 71.8% 78.8%
Gender - 0.679 75.6% 60.2% 66.4% 70.3%
Shape = 0.552 16.3% 94.1% 74.1% 51.9%
Cystic degeneration - 0.567 252% 88.1% 68.9% 53.1%
Histology of lung cancer - 0.628 34.1% 91.5% 80.8% 57.1%
Peak enhancement phase - 0.651 96.7% 223% 56.4% 86.7%
Clinical stage of lung cancer - 0.710 91.9% 39.0% 61.1% 82.1%

ROC, receiver operating characteristic curve; UP, unenhanced phase; ERA, enhancement ratio on arterial phase; ERV, enhancement ratio on venous phase; AUC, area under the curve; PPV, positive
predictive value; NPV, negative predictive value.
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Variables P value

Age 0.040
<595 1.0
2595 2269 (1.031-4.963)

Gender 0.002
Female 1.0
Male 3511 (1.570-7.848)

CT values in UP <0.001
<275 1.0
2275 6.968 (2.580-18.824)

Cystic degeneration/necrosis 0031
No 1.0
Yes 3.076 (1.110-8.521)

ERV <0.001
> 144 1.0
<144 4.835 (2.006-11.694)

Peak enhancement phase

Arterial phase 1.0 < 0.001
Venous phase 16.907 (4.319-66.182) < 0.001
Equally enhanced 14.036 (3.429-57.455) < 0.001

Clinical stage of lung cancer ‘

1 1.0 0.001
i 3.550 (0.496-25.433) 0.208
it 17.535 (2.959-103.905) 0.002
I\ 20.241 (3.532-116.007) 0.001

OR, odds ratio; CI, confidence interval; UP, unenhanced phase; ERV, enhancement ratio on venous phase.





OPS/images/fonc.2023.1091102/fonc-13-1091102-g002.jpg
Sensitivity(%)

100

80

60

40

20

Gender

o ~—— CTvaluesinUP
o7 Shape
— Cystic degeneration
----- ERA
-—-- ERV

— Histologic of lung cancer

~—— Peak enhancement phase

— Clinical stage of lung cancer

0 20 40 60 80 100

100-Specificity(%)





OPS/images/fonc.2023.1091102/fonc-13-1091102-g003.jpg
Sensitivity(%)

100

80

60

40

20

20

— Original diagnostic model
(AUC =0.919 SEN=0.837
SPE =0.890 ACC =0.863)

= = Diagnostic scoring model
(AUC =0914 SEN =0.797
SPE=0873ACC=0.834)

40 60 80

100-Specificity(%)

100





OPS/images/fonc.2023.1091102/fonc-13-1091102-g004.jpg
[ 10 20 30 40 50 60 70 80 90 100
Points - o
= Dxy 0.838
C(ROC) 0919
Age T T ——T— — R2 0.654
25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 D 0671
1 © Y -0.008
5 Q 0.679
— =]
Gender B Brier 0.109
Intercept 0.000
CT_values_in_UP T T 2':": ;gg
10 15 20 2 30 35 40 45 50 55 60 65 - 0 004
" . 1 3 © Eavg 0.007
Cystic_degeneration —— 8 Sz -0.203
o ° Sp 0.839
[
ERV ; ™ T T T
65 5 45 4 35 3 25 2 15 1 05 0 3 =
< o
2
Peak_enhancement_phase
3
- 2 3 Ideal
Clinical_stage_of_lung_cancer S — Logistic calibration
1 4 Nonparametric
Total Points ™
[ 50 100 150 200 250 300 350 ’ |
o P 1 T PR PO M Y Tt 11 |l Il
Risk of Metastases - — e
0.001 001 01 030507 09095 099
0.0 02 04 06 0.8 1.0

Predicted Probability






OPS/images/fonc.2023.1091102/fonc-13-1091102-g005.jpg





OPS/images/fonc.2023.1072510/utable1.jpg
A Amino acid

AnT Androgen deprivation therapy
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Neex National Comprehensive Cancer Network
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NIR Narinfrared
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NPs Nanoparticles
NT Neurotensin peptide
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P Prostate cancer
PETCT Positron emission tomography/computed tomography
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2980 patients with a history of histopathologically confirmed lung cancer and adrenal mass between
January 2010 and August 2022 underwent preoperatively chest or abdominal biphasic CECT scans

Exclusion patients

(1) Multiple lesions

(2) The long diameter of the lesion greater than 3 cm or smaller than lem

(3) Pre-contrast attenuation<10Hu
(4) Heterogeneity(the difference of plain CT value more than SHU)
(3) Incomplete clinical and imaging information

(6) Poorimaging quality

(7) Blurred border

345 patients remaining evaluated for lipid-poor adenomas and metastases

Inclusion criteria: Inclusion criteria:

(1) Histological confirmation(n=22) (1) Histological confirmation(n=3)

(2) Stability in size(n=96) (2) New occurrence(n=42)

(3) Short term growth(n=78)

118 lipid-poor adenomas
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Subtype of Non-Small
Cell Lung Cancer,
tumour cells have

squamous appearance

Definition

Strong association
with smoking, more so
than other NSCLCs

Leading cause of
cancer death, men > 65

years of age more
affected

Solid, epithelial
tumour; intercellular
bridges; keratin pearls;
expression of p40, p63

Cough, dyspnea, chest
pain, and hemoptysis;
however, 25% patients
may be asymptomatic,
with an incidental
finding on chest x-ray

Clinical
Presentation

Treatment
Prognosis

Surgical resection
with/without
chemotherapy

5-year survival
rate: 20%.
Better prognosis than
SCLC

Very heterogeneous group
of rare, solid cancers of
mesenchymal or connective
tissue origin

Nonmelanoma skin
cancer of keratinized
epidermal keratinocytes

Arise de novo with unclear
etiology,
Li-Fraumeni syndrome,
neurofibromatosis type 1.
Additional factors:
retinoblastoma,
chemotherapy or radiation
exposure, chronic irritation,
lymphedema

Actinic damage due to
chronic UV radiation
exposure

Second most common
nonmelanoma skin
cancer, more common
in men >60 years of age

<1% adult malignancies,
median age at diagnosis: 65

Keratinocytes,
differentiation depends
on grade

Desmin, vimentin, S100
antigen, neurofilaments

Non-healing skin lesion
usually found on the
head or neck. Hard,
scaly plaque with a

poorly defined edge. A

tumour may develop at
the site of the lesion

Gradually enlarging,
painless mass. Patients may
describe paresthesia or
edema in the extremity

Surgical resection,
radiation therapy,
chemotherapy

Surgical resection, radiation
therapy, chemotherapy

> 33.3% will die from the
disease, most due to lung
metastases

Excellent, with an
overall five-year cure
rate of >90 percent
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ER Visit - CXR ID of Masses

» May 5

Rib Bx Path: SCC

> May 16
2022

Transfer to TBRHSC

>Jun 18 >Jul 21

Cardiology Consult (cardiac surgery)
> Jun 27

Cycle 1 Chemotherapy & Immunotherapy
Jun 30

CT Chest/Abdomen/Pelvis - stable disease
Jul13

Adrenal Bx Path Consult: poorly
> differentiated carcinoma of lung
Jul14

Echo - LA mass decreased in size
> Jul1s
Adrenal Bx, Path: Sarcoma

Palliative Radiation 2000 cGy

>Jun 24 > Aug 11

Cycle 2 Chemotherapy & Immunotherapy

Discharged from TBRHSC

>Jun 23 » Aug 3

Cycle 3 Chemotherapy & Immunotherapy

> Xarelto prescribed
Oct 25

Echo - LA mass decreased in size

> Oct 25

cT
Chest/Abdomen/Pelvis
»- all masses smallest
Nov 17

2022

Jul14
Patient developed pruritic rash

»Jun 24

Echo - LA mass ID
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CycleGAN

Dataset

Real BI-  BCDR

RADS

D
CSAW
OPTIMAM
Hologic

View Real BI-RADSD  Synthetic BI-RADS D (input BI- Synthetic BI-RADS D Real BI-RADS A

(lower bound) RADS A from OPTIMAM (input BI-RADS A from (upper bound)
Hologic) INbreast)

cC+ 66.16 149.10 (BC-All) 103.98 (BC-All) 142.61

MLO

€C ‘ 42.57 99.95 (CS-CC) 124.84 (CS-CC) 142.34

MLO ‘ 73.54 165.48 (CS-MLO) 183.89 (CS-MLO) 206.04

¢c ‘ 34.17 73.16 (OP-CC) 132.04 (OP-CC) 107.99

MLO ‘ 57.24 109.68 (OP-MLO) 175.63 (OP-MLO) 140.93

The lower bound was defined as the FID between two different splits of real BI-RADS D mammograms from the same CycleGAN dataset. Similarly, the upper bound was given by the FID
between real BI-RADS A and BI-RADS D mammograms. The synthetic BI-RADS D images were generated from real BI-RADS A mammograms from OPTIMAM Hologic and INbreast
datasets. The different CycleGAN models (BC-All, CS-CC, CS-MLO, OP-CC and OP-MLO) were used to generate the synthetic images. Bold values indicates the FID values from the

synthetic images.
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Only synthetic BI-RADS D in train-  Synthetic and real BI-RADS D in training

ing
FROC AU Gain p-value FROC AUC  Gain p-value
OPTIMAM Hologic BI-RADS D Test Set ~ Baseline 79.71% Ref Ref 80.60% Ref Ref
(78.44, 80.98) (79.20, 82.00)
BC-Aug 79.62% -0.09 0.0064 81.10% +0.50 0.2277 0.2277
(77.83, 81.41) (80.40, 81.80)
OP-Aug 79.86% +0.15 0.8269 80.75% +0.15 0.5599 0.5599
(78.30, 81.42) (78.77, 82.73)
OP-CS-BC-Aug 80.95% +1.24 0.0696 80.76% +0.16 0.7921 0.7921
(79.63, 82.27) (79.92, 81.60)
INbreast Dataset (external validation) Baseline 81.51% Ref Ref 84.71% Ref Ref
(78.93, 84.09) (83.39, 86.03)
BC-Aug 85.66% +4.15 0.0002 84.88% +0.17 0.1666 0.1666
(81.91, 89.41) (82.86, 86.90)
OP-Aug 83.45% +1.94 6.08e-05 86.16% +1.45 0.0041 0.0041
(80.03, 86.87) (83.37, 88.95)
OP-CS-BC-Aug 84.47% +2.95 0.0008 84.29% -0.42 0.0162 0.0162
(82.32, 86.62) (82.22, 86.36)

The columns on the left correspond to the models trained without real BI-RADS D mammograms. The baseline models were trained without synthetic images. The 95% Confidence
Intervals of the FROC AUC are in parenthesis. The p-value was computed using the DeLong method with a maximum of 10 FPPL Bold values correspond to the best performing strategy.
Ref corresponds to the reference method.
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OPTIMAM Hologic BI-RADS D Test Set (external validation)

Only synthetic BI-RADS D in

Synthetic and real BI-RADS D

training in training
FROC AUC Gain p-value FROC AUC Gain p-value
Baseline 42.59% Ref Ref 44.59% Ref Ref
(39.73, 45.45) (42.87, 46.31)
OP-Aug 45.41% +2.81  4.58¢-22 48.84% +425 | 143e27
(4270, 48.12) (46.21, 51.47)
OP-CS-BC-Aug 43.65% 4105 2.32e-11 39.74% 485 | 9.40e-10
(40.64,46.66) (35.72, 43.76)

The columns on the left correspond to the models trained without real BI-RADS D mammograms. The baseline models were trained without synthetic images. The 95% Confidence
Intervals of the FROC AUC are in parenthesis. The p-value was computed using the DeLong's method with a maximum of 10 FPPL Bold values correspond to the best performing

strategy. Ref corresponds to the reference method.
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OPTIMAM

Reader A 0.580 0.664 0.651 0.718 0.818 0.962 ‘
Reader B 0.576 0.893 0.887 0.758 0.871 0.956 ‘
Reader C 0.689 0.673 0.489 0.636 0.784 0.944 ‘
Average + std 0.615 + 0.052 0.743 £ 0.105 0.675 + 0.163 0.704 + 0.050 0.824 + 0.037 0.954 + 0.007 ‘

Reader A: 9+ years of experience as a breast radiologist. Reader B: 7+ years of experience as a breast radiologist. Reader C: surgical oncologist with +12 years of experience in image

guided breast biopsy and lesion localization techniques.
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BCDR CSAW OPTIMAM Hologic INbreast

ACR  Normal LIBRA (%) Normal Volpara Normal  MMG with masses MMG with masses
MMG MMG VBD(%) MMG
BI-RADS A 1 40 <28 435 <35 972 344 1 42
BI-RADS B 2 40 (2.8, 25) 52064 (3.5,7.5) 3670 1740 2 36
BI-RADS C 3 62 (25,75) 38545 (7.5,15.5) 1987 808 3 21
BI-RADS D 1 58 275 394 2155 708 161 4 8

For each dataset, the total number of mammograms (MMG) with the available breast density information are mapped to the corresponding BI-RADS categories. In CSAW, the breast
percentage was obtained running LIBRA software. In OPTIMAM Hologic, the Volumetric Breast Density (VBD) percentage was obtained using Volpara software. In BCDR and INbreast,
only the American College of Radiology (ACR) categories are available in the dataset information.
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a total of 207 eligible patients
were included

75 patients were excluded:

-52 cases only had plain scan without
enhancement

-11 cases received anti-tumor therapy
before the examination

-9 cases with > 1 solid solitary nodule
-3 cases with poor image quality

totally 132 patients were enrolled
in this study

malignant group benign group
(n=102) (n=30)
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CA15-3,

Mammograph
U/ml CoaeIiaE MRI FASTE®! UE .
% . ' 2%l vs DM, . e . A cfDNA based Multi-cancer
Parameter Patient no Patient Patients % with Patients % with Patients % with early detection test MCEDE®!
(% > 5000) no S positive results positive results Y
o positive results
(% > 30)

Stage 14/14 (100%) | 2/11 (18%) 36 vs 41% 80% N/A N/A
DCIS (0)

38/88

4% vs 46. 16.

Stage 95/98 (97%) @3%) 34% vs 46.6% 6.8%

37/68
Stage I 61/73 (85%) (54%) 80% - 90% 40.4%
Stage 111 9/11 (83%) 5/10 (50%) 80% vs 92% 77%
Stage IV 92% 90.1%
Total 180/196(92%) 82/L77 63 vs 90% 64.8% 80% 51.5%

(46%)
Sensitivity % 92% 2% 63-90% vs 97% 77 - 80% 81% 51.5%
Specificity % 93% 92% 60% vs 64.5% 64.2% 78.5% 99.5%
AUC 0.955 0.77 78% vs 89% 079 0.867 44.4%
PPV 97.8% 93% 80% vs 90.9% N/A 75% 99.4%
NPV 81% 37% 75% vs 89.3% N/A 85% N/A
Test

922% 58% 83% vs 89% 75.5% 80.5% N/A

Accuracy%

*Published data based on accomplished screening programs.
*Using 0.7 breast cancer prevalence (USA and Western Europe) for population-based screening.
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Breast cancer Normal control subjects

(N = 196) (N =73)
Age, years
Mean (SD) 6lyears 55 years 61 years
Median 63years 54 years 62 years
Range 25 - 93 years 45 -70 years 25 - 93 years

Age group, n (%)

< 50 years 31 (15.8%) 21 (28.8%) 52 (19.3%)
50 - 60 years 36 (18.4%) 35 (47.9%) 71 (26.4%)
61 - 65 years 34 (17.4%) 9 (12.3%) 43 (16.0%)
>65 - 69 years 32 (16.3%) 6 (8.2%) 38 (14.1%)
>70 - 79 years 49 (25.0%) 2 (2.7%) 51 (19.0%)
>80 years 14 (7.1%) 0 (0%) 14 (52%)
Race, n (%)

!
Caucasian 167 (85.2%) 73 (100%) 240 (89.2%)
Asian 29 (14.8%) 0 (0%) 29 (10.8%)

Clinical cancer stage, with TNM classification n (%)

Stage 0 (DCIS, pTONOMO) 14 (7.1%)

Stage I A, B- (pTINOMO) 98 (50.0%)

Stage TIA - (pT1-2N0-1Mo, 56 (28.6%)

Stage 11 B - (pT2-3N0-1M0O 17 (8,67%) none
Stage 111 A - (pT2-3N1MO) 4(2.04%)

Stage 111 B - (pT1-4N2M0) 7 (3.57%)

Stage IV - (pT0-NxM1) 0 (0%)

Region, n (%)

USA 139 (70.9%) 0 (0%) 139 (51.7%)
Russian Federation 57 (29%) 73 (100%) 130 (49.3%)

Method of cancer diagnosis, n (%)

Identified by screening test 139 (70.9%) 0 (0%) 139 (51.7%)
Identified by clinical presentation 57 (29%) 73 (100%) 130 (49.3%)





OPS/images/fonc.2023.1147479/M1.jpg
NG/ CT oora-y





OPS/images/fonc.2023.1147479/fonc-13-1147479-g006.jpg
Difference

Difference

Diffterence

SARokev SARsgyey Agokev

@
t=3

3 340 5 3
5 5 5 5
5 5o 5 5
=) =] 2 =)
-40
-80
0.0 0.2 0.4 0.6 0 60 120 180 240 300
Average Average Average Average
3
Q
=
3
3
E=
=)
02 03
Average Average Average Average Average
NED SARy~c
o
3 ;
02781
5 I T L
= o
/ 0 02831
A1
0.94 0.96 0.98 1.00 1.02 0.0 0.5 1.0 15 2.0 0.0 06 1.2 18 24
Average Average

Average





OPS/images/fonc.2023.1078863/table3.jpg
Models

DWI 0.68 + 0.03 0.674 + 0.03 0.708 + 0.07 0.66 + 0.06 0.64 + 0.08 0.64 + 0.06 0.71 £ 0.20 0.58 +0.26
HRT2 0.57 £ 0.06 0.63 + 0.05 0.57 +0.18 0.65 + 0.09 0.62 + 0.02 0.62 + 0.02 0.58 £0.21 0.66 + 0.22
Merged (DWI+HRT2) 0.59 +0.04 0.63 + 0.07 0.66 + 0.10 0.62 + 0.13 ' 0.69 + 0.04 0.67 + 0.04 0.70 + 0.07 0.66 + 0.06
Clinical 0.81 +0.04 0.76 + 0.05 0.93 +0.05 0.72 +£ 0.07 0.81 + 0.06 0.80 + 0.02 0.96 + 0.05 0.63 + 0.07
Clinical-DWI 0.90 + 0.04 0.84 £ 0.05 0.94 +0.03 0.79 + 0.08 » 0.81 +0.02 0.77 £ 0.03 087 £0.04 | 0.68 +0.07
Clinical-HRT2 0.83 +0.04 0.75 + 0.04 0.94 +0.04 0.69 + 0.05 0.79 +0.02 0.76 + 0.02 0.77 + 0.06 0.75 + 0.07
Clinical-Merged (DWI+HRT2) 0.83 +0.05 0.75 + 0.06 0.97 +0.02 0.67 + 0.08 0.83 +£0.01 0.74 £ 0.03 0.86 £0.08 | 0.74 +0.07

Bold results indicate better results. The integrated model of clinical factors and diffusion-weighted imaging obtained the best performance.
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TDs-positive TDs-negative

Male 49(36.8) 136(37.1) 0.96
Gender
Female 84(63.0) 231(62.9)
Age 65.0(11.0) 64.4(10.5) 0.60
BMI 23.2(2.6) 22.9(3.2) 0.49
CEA (ng/ml) 16.5(40.3) 6.3(11.4) <0.01
CA 19-9 (IU/ml) 61.7(300.6) 27.1(217.9) 0.16
Distance(cm) 8.8(7.2) 8.9(34) 0.81
Tumor length (cm) 4.6(1.4) 4.1(1.3) <0.01
mrT stage T1 1(0.8) 8(2.2) <0.01
T2 14(10.5) 101(27.5)
T3 86(64.7) 228(62.1)
T4 32(24.1) 30(8.2)
mrN stage NO 2(1.5) 226(61.6) <0.01
N1 85(63.9) 101(27.5)
N2 46(34.6) 40(10.9)
CRM Presence 44(33.1) 53(14.4) <0.01
Absence 89(66.9) 314(85.6)
EVMI Presence 57(42.9) 68(18.5) <0.01
Absence 76(57.1) 299(81.5)
pT stage T1 1(0.8) 32(8.7) <0.01
T2 13(9.8) 121(33.0)
T3 109(81.9) 184(50.1)
T4 10(7.5) 30(8.2)
PN stage NO 0(0) 272(74.1) <0.01
Nla 32(24.1) 38(10.4)
N1b » 26(19.5) 35(9.5)
Nlc 35(26.3) 0(0)
N2a 27(20.3) 14(3.8)
N2b 13(9.8) 8(2.2)
LI Presence 29(21.8) 19(5.2) <0.01
Absence 104(78.2) 348(94.8)
PI Presence 40(30.1) 28(7.6) <0.01
Absence 93(69.9) 339(92.4)
Well differentiated 47(35.3) 181(49.3) 0.01
Grade Moderately differentiated 61(45.9) 145(39.5)
Poorly/undifferentiated 25(18.8) 41(11.2)

Unless otherwise indicated, data are the number of patients, with percentages in parentheses. Categorical variables were compared by using the chi-squared test. P < 0.05 indicates a statistically
significant difference. Continuous variables were expressed as means + standard deviations. TD, tumor deposition; CEA, carcinoembryonic antigen; CA19-9, carbohydrate antigen 19-9; mrT
stage, tumor stage on magnetic resonance imaging; mrN stage, lymph node stage on magnetic resonance imaging; CRM, circumferential resection margin; EMVI, extramural microvascular
invasion; pT' stage, pathological tumor stage; pN stage, pathological lymph node stage; LI, lymphovascular invasion; P1, perineural invasion; Grade, pathological tumor histological grade.
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Machine type

Modality
Repetition time (ms)
Echo time (ms)
Slice thickness (mm)
Slice gap (mm)

‘ Matrix
Echo train length
FOV (mmxmm)

b-values (s/mm2)

GE-Signa HDxt

HRT2
3300
130
3
03
512x512
20

160x160

DwI
5900
66
5
1
256x256
1
250%250

800

GE-Discovery MR750W

HRT2
3300
120
3
03
512x512
20

160x160

Dwi
8000
66
5
1
256x256
1
380380

1000

SIEMENS-Skyra

HRT2
5800
99
3
03
320x410
18

160x160

DWI

4400

61

5

1

128x160

1

300x300

800
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Asokev

CERjgjev
NEFoev
A

NED

SARvnc

1CC (95% CI)
0.849 (0.764-0.905)
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model

*p value<0.05.
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2020 (n=784)

Patients who underwent preoperative
MRI and radical surgery from 2013 to

The inclusion criteria were as follows:
(a) pathologically confirmed primary
rectal cancer;

(b) no neoadjuvant chemotherapy or
radiotherapy before surgery;

(c) tumor visible in at least three
sequential slices of HRT2 MRI images.

v

The exclusion criteria were as follows:
(a) inadequate MR image quality due to
an intractable artifact, including HRT2 (n
=113) and DWI (n = 78);

(b) tumors not visible in HRT2 images (n
= 14,

(c) CEA and CA19-9 levels not obtained
(n =44);

(d) lack of tissue differentiation grading in
pathology reports (n = 5);

(e) co-occurrence of other malignancies
of the digestive system (n = 30).

Finally included patients (n=500)

y

TD-positive (n=133)

TD-negative (n=367)
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Parameters value (%) value (%) (%) value
SARokev 0849 | 0617 81.0 767 68.0 84.6 75.0 <0.001*
SARiey 0792 0326 66.7 86.7 77.8 78.8 769 <0.001*
Agorev 0811 | 113217 | 76.2 80.0 727 82.8 769 <0.001*
Aogev 0817 | 3193 714 833 714 80.0 75.0 <0.001*
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NEFokev 0837 | 0.168 81.0 80.0 70.8 852 76.9 <0.001*
A 0806 | 2.662 76.2 80.0 727 82.8 769 <0.001*
NIC 0832 | 0.165 81.0 767 70.8 85.2 769 <0.001*

*p value<0.05.
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(%) (CH) value (%) value (%)
SARgkev 0842 0.656 75.0 80.0 89.1 54.8 74.8 <0.001%
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Agorev 0849 | 113217 | 789 80.0 90.9 60.0 785 <0.001*
Asotev 0857 | 330 75.0 86.7 934 57.8 776 <0.001*
I CERyokev 0747 | 37354 | 618 80.0 87.0 442 [ 654 <0.001*
CERgpev 0770 | 1.050 61.8 80.0 88.7 453 66.4 <0.001*
NEEgrev 0.850 | 0.650 724 833 9L5 53.2 73.8 <0.001*
NEFsokev ‘ 0.854 ‘ 0.155 78.9 767 89.6 59.0 776 <0.001*
IS 0.842 ; 2.662 78.9 80.0 90.9 60.0 785 <0.001*
NIC 0876 | 0158 92.1 733 89.7 » 78.6 86.0 <0.001*
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*p value<0.05.
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The scoring model vs. individual variables C Z statist p

Scoring model vs. age 0.914 vs. 0.630 7522 <0.001
Scoring model vs. CT values in UP 0.914 vs. 0.789 4345 <0.001
Scoring model vs. ERA 0.914 vs. 0795 I 4.626 [= 0.001
Scoring model vs. ERV 0.914 vs. 0.805 I 4.168 <0.001
Scoring model vs. gender 0914 vs. 0.679 7.488 <0.001
Scoring model vs. shape 0914 vs. 0.552 13712 <0.001
Scoring model vs. cystic degeneration/necrosis 0.914 vs. 0.567 11.882 <0.001
Scoring model vs. histology of lung cancer 0.914 vs. 0.628 10.164 <0.001
Scoring model vs. peak enhancement phase 0.914 vs. 0651 8.777 <0.001
Scoring model vs. clinical stage of lung cancer 0914 vs. 0.710 7.074 <0.001

AUC, area under the curve.
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SAR;giev 0848 | 0.617 794 76.7 920 523 782 <0.001*
SARsgpev 0783 | 0331 53.9 90.0 948 36.5 61.7 <0.001*
Agorev 0836 | 113217 | 755 80.0 9258 49.0 75.9 <0.001*
Asorev 0.846 | 33000 716 86.7 948 473 744 <0.001*
CERyokev 0737 | 37354 | 57.8 80.0 89.4 348 61.7 <0.001*
CERzokev 0750 | 1.105 53.9 833 917 347 60.2 <0.001*
NEF,gkev ‘ 0.853 ‘ 0.650 725 833 925 462 737 ‘ <0.001*
NEEgpev 0854 | 0.168 775 800 919 50.0 76.7 <0.001*
A 0831 | 2.662 76.5 80.0 929 50.0 76.7 <0.001*
NIC ‘ 0.869 ‘ 0.165 87.3 76.7 927 |39 842 <0.001*
NZeg 0695 | 0.814 36.3 96.7 948 365 61.7 <0.001*.

*p value<0.05.
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>3 0.504(0.496-0.513) 100(97.0-100) 0.85(0.02-4.6)
24 0.538(0.514-0.562) 100(97.0-100) 7.63(3.5-14.0)
5 0.602(0.565-0.638) 100(97.0-100) 2034(13.5-28.7)
26 0.644(0.603-0.685) 100(97.0-100) 28.81(20.8-37.9)
>7 0.746(0.701-0.791) 100(97.0-100) 49.15(39.8-58.5)
>3 0.789(0.742-0.836) 95.93(90.8-98.7) 61.86(52.5-70.6)
=9 0.824(0.777-0.872) 90.24(83.6-94.9) 74.58(65.7-82.1)
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>12 0.707(0.661-0.753) 43.90(35.0-53.1) 97.46(92.7-99.5)
>13 0.541(0.516-0.565) 8.13(4.0-14.4) 100(96.9-100)
>14 05 (0.5-0.5) 0(0.0-3.0) 100(96.9-100)

Numbers in the parentheses were 95% confidence interval; PPV, positive predictive value; NPV, negative predictive value.
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carcinoma carcinoma
SARync 0707 + 0.357 0765 + 0.242 0844 £ 0.177 0.788 0209 0.282
SARygkev 0512 +0.198 0.852 + 0,288 0.800 + 0.207 <0.001* <0.001* 0.739
SARsgkev 0240 + 0.098 0352 +0.110 0344 £0.08 <0.001* <0.001* 0.754
Asgiey 83.884 + 43.997 150.456 + 46.649 141389 + 47.793 <0.001* <0.001* 0.824
Avokev 21944 + 13.548 42.541 + 13.827 39.600 + 15.328 <0.001* <0.001* 0.812
CERprev 3.262 + 2.480 5374 £ 3.703 4076 + 1.744 0.003* 0434 0.075
CERygrev 0.830 + 0.699 1,528 + 1.090 1138 £ 0.545 0.001* 0230 0.078
NEF jopev 0462 +0.212 0.894 + 0.398 0.795 + 0.249 <0.001* 0.001* 0.244
NEFsokev 0.120 + 0.067 0254 +0.120 0.221 £ 0.073 <0.001* 0.001* 0.197
A 1.990 + 1,091 3529 + 1.101 3320 + 1.109 <0.001* <0.001* 0442
NIC 0.134 + 0,064 0264 +0.108 0229 + 0.075 <0.001* <0.001* 0.264
NED 0961 +0.089 0980 +0.112 | 0985 = 0.009 0572 0404 0.191
NZei 0.764 + 0.040 0.809 + 0.088 0.789 = 0.528 0.005* 0237 0271

*p value<0.05.
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Age (years) 60.233 + 10.047 64.147 + 9.491 0.052

Sex 0.279
male 14 43
female 16 59
Smoking 0.985
yes 12 61

no 18 41
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Location (lung) 0.496

upper lobe of left 9 2

lower lobe of left 6 14

upper lobe of right 6 38

middle lobe of right 3 7

lower lobe of right 6 19

size 15.772 + 5.661 mm 18.225 + 5.689 mm 0.040*
Lesion shape 0.014*
round 10 14

irregular 20 88

Lobulation 0.123

yes 17 73

no 13 29

Short spiculation 0.034*
yes 9 53

no 21 49

Pleural indentation 0.095

yes 6 37

no 24 65

Vascular convergence sign 0.015*
yes 8 53

no 22 49

Air bronchogram sign 0.053

yes 5 36

no 25 66

Vacuole sign 0.296

yes 1 12

no 29 90

Calcification 0.694

yes 3 7

no 27 95

*p value<0.05.
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reference point using Figure 1 reference point position
Segment the breast into 4 radial and 4 vertical segments, 16 in
total (Figure 2) and find mean fe of interest for each segment
Identify control segment (Figure 4) and plot mean fe
of interest against other segments for each z-band

and fe of interest

Subjects with all points within percentage tolerance = healthy;

Subjects with any point outside percentage tolerance = cancer (Figure 3)

Calculate sensitivity and specificity for each
tolerance based on known diagnosis

Cycle through all percentage tolerances (5%:90%) and
plot each sensitivity and specificity on an ROC curve Repeat for each

Use bootstrapping method to select 50 breasts
with replacement to generate 200 ROC curves
Fit y=1-e”(-ax) to the bootstrapped data
Determine optimal sensitivity,
specifity and ROC curve AUC

Check against diagnostic criteria
(Table 2)

control segment
configuration (Figure 4)
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0.89
(0.52, 1.00)
0.80
(0.66, 0.91)
0.54
(0.33,0.73)
0.72
(0.51, 0.88)

Specificity

PET
(95% CI)

1.00
(0.66, 1.00)
0.98
(0.88, 1.00)
0.96
(0.80, 1.00)
0.76
(0.55,091)

p-value

0.021

<0.001
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STATISTIC

Prevalence

GEE
adjusted

Sensitivity
GEE
adjusted

Specificity
GEE
adjusted

PPV

NPV

Accuracy

ALL STATIONS
(n=500)

0.58
(0.54, 0.63)

0.58

049
(0.43,0.55)
049
(0.42, 0.56)
087
(0.81,0.91)
0.86
(0.80, 0.93)
084
(0.77, 0.89)
055
(0.49, 0.60)
065
(0.60, 0.69)

LYMPH NODES
(n=40)

0.40
(0.25, 0.57)

0.40

0.56
(0.30, 0.80)
044
(0.21, 0.66)
079
(0.58, 0.93)
072
(0.53,091)
0.64
(0.35,0.87)
073
(0.52, 0.88)
0.70
(0.53,0.83)

UPPER ABDOMEN
(n=180)

Value(95% CI)

0.51
(0.44, 0.59)

0.51

0.29
(0.20, 0.40)
0.30
(0.18, 0.42)
0.93
(0.86, 0.97)
0.93
(0.88, 0.99)
0.82
(0.65, 0.93)
0.56
(0.47, 0.64)
0.61
(0.53, 0.68)

GI TRACT
(n=100)

0.63
(0.53, 0.72)

0.63

021
(0.11, 033)
0.21
(0.10, 031)
0.97
(0.86, 1.00)
0.97
(0.93,1.02)
0.93
(0.66, 1.00)
0.42
(0.31, 053)
0.49
(0.39, 0.59)

GI, gastrointestinal; CI, confidence interval; PPV, positive predictive value; NPV, negative predictive value. GEE, generalised estimating equations.

PERITONEUM
(n=160)

0.64
(0.56, 0.71)

0.64

074
(0.64, 0.82)
074
(0.62, 0.86)
072
(0.59, 0.83)
073
(0.60, 0.86)
0.82
(0.73, 0.90)
061
(0.48, 0.72)
073
(0.66, 0.80)
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STATISTIC

Sensitivity
Specificity
PPV

NPV
Accuracy

PPV, positive predictive value; NPV, negative predictive value; CI, confidence interval.

CT (95% CI)

0.85 (0.77, 0.91)
0.73 (0.63, 0.81)
0.77 (0.68, 0.84)
0.82 (0.73, 0.89)
(

0.79 (0.73, 0.84)

PET (95% CI)

054 (0.4, 0.63)
0.93 (0.86, 0.97)
0.88 (0.78, 0.95)
066 (0.57, 0.73)
0.73 (0.66, 0.78)

p-value

<0.001
<0.001
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Measure

AUC
Accuracy
Sensitivity
Specificity

F1 score

Performance (95% Cl)

Datasets

0.881 (0.830-0.920)
0.846 (0.792-0.888)
0.837 (0.744-0.902)
0.852 (0.782-0.903)

0.809 (0.789-0.828)

0.812 (0.776-0.845)
0.769 (0.731-0.803)
0.767 (0.721-0.808)
0.772 (0.700-0.831)

0.822 (0.803-0.840)

0.668 (0.615-0.717)
0.617 (0.565-0.667)
0619 (0.552-0.681)
0.615 (0.530-0.695)

0.668 (0.621-0.713)

AUC, area under the ROC curve.
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Measure Performance

Datasets

Dice coefficient (DICE)

Baseline algorithm 0.771 0.444 0.486

Fine tuned algorithm NA 0.593 0.601

Delta in DICE NA 33.56% 23.66%
2 NA 0.021 0.048

Intersection over Union (IOU)

Baseline algorithm 0.642 0348 0378
Fine tuned algorithm NA 0.450 0.482
Delta in IOU NA 29.31% 27.51%
P NA 0.029 0.035

Average Surface Distance (ASD)

Baseline algorithm 0.244 0.304 0.358
Fine tuned algorithm NA 0283 0225
Delta in ASD NA -6.91% -37.15%
P NA 0.067 0.022

LIDC, lung image database consortium; NA, not applicable.
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Macro F1-Score

Recall

Accuracy

‘ UECT
CatBoost Selection 4 0.8121 0.8686 0.7813 0.8882
ExtraTrees with Entropy Selection 1 0.7921 0.8519 0.7606 0.8786
ExtraTrees with Gini Selection 1 0.7985 0.8595 0.7663 0.8818
Kneighbors with Distance weights All feature 0.6128 0.6599 0.6015 0.7861
Kneighbors with Uniform weights All feature 0.6135 0.6623 0.6015 0.7861
LightGBM Selection 1 0.8258 0.8586 0.8052 0.8914
LightGBM with Extra Trees Selection 5 0.8395 0.8773 0816 0.8999
NeuralNetFastAl Selection 9 0.833 0.835 0.8376 0.8851
Random Forest with Entropy Selection 8 0.7952 0.8569 0.7631 0.8797
Random Forest with Gini Selection 4 0.7984 0.8567 0.7685 0.8797
‘WeightedEnsemble_L2 Selection 9 0.8328 0.8605 0.8145 0.8946
XGBoost Selection 1 0.8061 0.8305 0.7891 0.8775
3D CNN 0.7554 0.7679 0.7531 0.8416
CECT

[ CatBoost Selection 4 0.8374 0.8824 0.8111 0.9027
ExtraTrees with Entropy Selection 1 0.796 0.8747 0.7595 0.8856
ExtraTrees with Gini Selection 1 0.7981 0.8781 0.7602 0.8867
Kneighbors with Distance weights All feature 0.6344 0.7036 0.6189 0.8059
Kneighbors with Uniform weights All feature 0.6257 0.6865 0.6129 0.7985
LightGBM Selection 2 0.8533 0.8806 0.836 0.9081
LightGBM with Extra Trees Selection 4 0.8565 0.8889 0.8353 09115
NeuralNetFastAl Selection 7 0.8388 0.8351 0.8564 0.8854
Random Forest with Entropy Selection 3 0.8328 0.8932 0.8017 0.9039
Random Forest with Gini Selection 3 0.8344 0.8892 0.8029 0.9027
‘WeightedEnsemble_L2 Selection 5 0.8506 0.8763 0.8341 0.9072
XGBoost Selection 3 0.8496 0.8601 0.8432 0.9029
3D CNN 0.8101 0.8178 0.8082 0.8673
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wavelet-LHH_firstorder_Mean

Selected Variable

wavelet-LHH_glem_SumEntropy

wavelet-LHH_gldm_LargeDependenceEmphasis

Selection 1 0.04863 wavelet-LHH_ngtdm_Busyness wavelet-HLH_glszm_SizeZoneNonUniformityNormalized wavelet-HLH_ngtdm_Busyness
wavelet-LLL_firstorder_Median
wavelet-LHL_firstorder_Mean wavelet-LHH_firstorder_Mean wavelet-LHH_glem_SumEntropy
wavelet-LHH_girlm_RunLengthNonUniformityNormalized wavelet-LHH_glrlm_RunPercentage wavelet-LHH_ngtdm_Busyness

Selection 2 0.03511
wavelet-HLL_glszm_LargeAreaHighGrayLevelEmphasis. wavelet-HLH_glszm_SizeZoneNonUniformityNormalized wavelet-HLH_ngtdm_Busyness
wavelet-HHL_glem_Imel wavelet-HHL_glem_InverseVariance wavelet-LLL firstorder_Median
wavelet-LHL_firstorder_Mean wavelet-LHL_firstorder_Skewness wavelet-LHH_firstorder_Mean
wavelet LHH_glem_ointEnergy wavelet-LHH_glem_SumEntropy wavelet-LHH_glrlm_RunPercentage
wavelet-LHH_glszm_SizeZoneNonUniformityNormalized wavelet-LHH_ngtdm_Busyness wavelet-HLL_firstorder_90Percentile

Selection 3 002535
wavelet-HLL_glszm_LargeAreaHighGrayLevelEmphasis wavelet-HLH_glszm_SizeZoneNonUniformityNormalized wavelet-HLH_ngtdm_Busyness
wavelet-HHL_glem_Imcl wavelet-HHL_glem_InverseVariance wavelet-HHL_glem_MCC
wavelet-LLL_firstorder_Median
wavelet-LLH_glszm_GrayLevelVariance wavelet-LLH_glszm_LowGrayLevelZoneEmphasis wavelet-LHL_firstorder_Mean
wavelet-LHL_firstorder_Skewness wavelet-LHL_glem_InverseVariance wavelet-LHH_firstorder_Mean

Selection 4 0.01831
wavelet LHH_glom_Imc2 wavelet-LHH_glem_JointEnergy wavelet-LHH_glcm_SumEntropy
wavelet-LHH_glrlm_RunLengthNonUniformityNormalized wavelet-LHH_glrim_RunPercentage wavelet-LHH_glszm_SizeZoneNonUniformityNormalized
wavelet-LHH_ngtdm_Busyness wavelet-HLL_firstorder_90Percentile wavelet-HLL_glem_Correlation
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original_shape_Sphericity wavelet-LLH_glszm_GrayLevelVariance wavelet-LLH_glszm_LowGrayLevelZoneEmphasis
wavelet-LHL_firstorder_Maximum wavelet-LHL_firstorder_Mean wavelet-LHL_firstorder_Median
wavelet-LHL_firstorder._Skewness wavelet-LHL_glem_InverseVariance wavelet-LHH_firstorder_Mean
wavelet-LHH_glem_Ime2 wavelet-LHH_glem_JointEnergy wavelet-LHH_glem_SumEntropy
wavelet-LHH_glrlm_RunLengthNonUniformityNormalized wavelet-LHH_glrlm_RunPercentage wavelet-LHH_glszm_SizeZoneNonUniformityNormalized

Selection 5 001322 wavelet-LHH_ngtdm_Busyness wavelet-HLL_firstorder_90Percentile wavelet-HLL_glem_Correlation

wavelet-HLH_glem_MCC
wavelet-HLH_glszm_SizeZoneNonUniformityNormalized
wavelet-HHL_glem_InverseVariance
wavelet-HHL_glszm_LargeAreaHighGrayLevelEmphasis

wavelet-LLL_firstorder_Median

wavelet-HLH_glrlm_LongRunLowGrayLevelEmphasis
wavelet-HLH_ngtdm_Busyness
wavelet-HHL_glem_MCC

wavelet-HHL_glszm_SmallArealowGrayLevelEmphasis

wavelet- HLH_glszm_GrayLevelNonUniformityNormalized
wavelet-HHL_glem_Tmcl
wavelet-HHL_glem_MaximumProbability

wavelet-HHH_firstorder_Median
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UECT CECT

Variables

TET (n=297) Others (n=79) p value TET (n=296) Others (n=77) p value
Sex (male) 135 (45.5%) 36 (45.6%) 1 134 (45.3%) 36 (46.8%) 0.898
Age (y)* 61.70 +12.99 5119 £ 17.74 ‘ <0.001 61.46 + 13.06 49.26 +17.76 <0.001
Myasthenia gravis 87 (29.3%) 4 (5.1%) <0.001 87 (29.4%) 4 (5.2%) <0.001
Pathology
Thymoma 240 (80.8%) 239 (80.7%)
Thymic carcinoma 57 (19.2%) ‘ 57 (19.3%)
Cyst 43 (54.4%) ‘ 41 (53.2%)
Malignant germ cell tumor 10 (12.7%) 10 (13.0%)
Lymphoma ‘ 11 (13.9%) ‘ ‘ 11 (14.3%)
Teratoma 15 (19.0%) (19.5%)

Except where indicated, data are numbers of patients, with percentages in parentheses.
* Data are means + SDs.
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N

Age
Histology

BMI

Cytoreduction

Neoadjuvant chemotherapy

Duration of surgery in minutes
Number of erythrocyte concentrates

Ascites

Peritoneal carcinomatosis index (PCI)
Preoperative CA 12-5

FIGO stage

1A

105

Median 53 (range 32-82)

Serous: 91/86.7%
Endometrioid: 9/8.6%
Mucinous: 3/2.9%
Clear cell: 2/1.9%
<19: 6/5.7%

20-24: 48/45.7%
25-30: 32/30.5%
31-40: 14/13.3%
>40: 5/4.8%
Complete: 79/75.2%
Incomplete: 26/24.8%
Yes: 54/51.4%

No: 51/48.6%

Median 343 (range 126-691)
Median 2 (range 0-19)

None: 51/48.6%
Only pelvic ascites: 16/15.2%
In all 4 quadrants: 38/26.2%

Median 9 (range 1-29)

Median 115 (range 11-9,647 U/ml)
No. of patients

11

BMI, body mass index; FIGO, International Federation of Gynecology and Obstetrics.
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Tumor location

Paracolic

Right diaphragm
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Pelvic tumor
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in general
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Large bowel
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Mesenteric root
Splenic hilum
Liver surface
Porta hepatis
Gall bladder

Infrarenal lymph
nodes

Small intestine serosa
Rectosigmoid
Transverse colon
Tleocecal pol
Stomach wall
Omental cake

Liver metastases

Omentum minus

CHE, cholecystectomy.

Imaging: tumor/
no tumor

36/68
34/71
24/81
87/18
78125

20/28
20/42

48/55
14/90
41/64
40/65

10/78 (12x CHE)
104/1

29/73
45/38
32/69
13/86
18/86
33/71
4/100
11/89

Surgery reports: tumor/
no tumor

70/35
44/61
27/78
82/23
30/75

38/67
38/67

21/84
15/90
8197
6/99
2/91
30/74

18/87
56/49
22/83
21/84
8/97
52/53
4/100
10/95

Imaging not conclusively assessable/no documented
intraoperative assessment

1/0

2/0
57/0
43/0

2/0
1/0

5/0
0/1

31
22/0
4/0

6/0

1/0

1/0

1/0

5/0

p-
Value
003
0.001
002
0.004
0.002

0.001

<0.001

0.006
0.005
0.26
0.002
>0.99
>0.99

0.08
0.54
0.002
0.06
0.003
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AUC 0.80 0.70 0.68 0.74 0.78 0.85 0.73 0.70 0.79 0.76 0.85 0.76
Optimal Sensitivity 76 67 66 71 74 81 70 67 75 72 80 72
Optimal Specificity) 71 65 64 68 70 75 67 65 70 68 75 69
Sensitivity (with 80% specificity) 63 47 45 53 60 74 55 47 60 55 73 56
Specificity (with 80% sensitivity) 68 50 46 58 64 76 62 50 65 60 75 61

The bold values show configurations, which meet the diagnostic criteria.
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