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Editorial on the Research Topic
The roles of immune cell homeostasis in cancer research and therapeutic
response

Immune cells within the tumor microenvironment (TME) significantly contribute to the
composition and dynamics of the TME, thereby influencing cancer pathogenesis and
therapeutic response. The dynamic balance of interactions among immune cells and
between immune cells and tumor cells has been identified as a promising therapeutic
strategy for treating various cancers. Several therapies have been demonstrated to alleviate
such immune disorders and restore immune cell homeostasis. Therefore, it is urgently
necessary to deeply explore the significant implications of immune cell homeostasis in
cancers, and to unravel the underlying molecular mechanisms and biological functions of
this interplay, with the goal of improving treatment efficacy.

This Research Topic aims to explore the Frontier research in the context of immune cell
homeostasis in the TME, with a spotlight on 1) immune cell-based strategies for cancer
research and treatment; 2) the interaction between cancer cells and immune cells; 3) the
molecular mechanisms of tumor-infiltrating immune cell regulation; 4) underlying roles of
cancer-associated molecules in immune cell infiltration; 5) clinical or bioinformatics
analyses to explore immune cell-based therapeutic targets.

Huang et al. focused their research on the integration of artificial intelligence with
immunosignals for the precision treatment of liver diseases associated with Hepatitis B Virus
(HBV). They identified CLST and aCD4, two immunosignals integral to the virus’s pathogenesis,
as key players in the inflammation, fibrosis, and hepatocellular carcinoma triggered by HBV.
Using gene set variation analysis, they developed immunogenomic signatures that streamlined
the creation of robust diagnostic and prognostic models. The clinical application of CLST and
aCD4 as indicators could significantly improve the precision management of hepatocellular
carcinoma. This study provides an in-depth understanding of the gene characteristics tied to the
immune microenvironment in HBV infection and offers subtle insights for the clinical
management of HBV-related hepatocellular carcinoma, thereby establishing a strong
foundation for precision medicine. Liu et al. successfully integrated machine learning to
build classifiers related to aberrant alternative splicing (AS) events. These classifiers are
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designed to predict prognosis and the response to immunotherapy in
patients with hepatocellular carcinoma. They found that AS can be
instrumental in classifying HCC subtypes, as it alters the activity of
tumor-related pathways through differential splicing effects. This, in
turn, impacts the TME and plays a role in immune reprogramming.
The authors have outlined the clinical and molecular characteristics,
offering a fresh approach for personalized treatment of HCC patients.

Glioma is one of themost common types of primary brain tumor. Li
et al. reveal that the transcription factor ZBTB42 is highly expressed in
glioma, it could be regarded as a promising prognostic factor for glioma.
Moreover, ZBTB42 appears to be linked to immune cell infiltration,
potentially playing a role in the immune-suppressive TME. Notably, the
study also found a correlation between ZBTB42 and stem cell markers,
indicating a positive association with glioma stemness. Therefore, the
research identifies ZBTB42 as a prognostic biomarker for glioma, with
its function tied to both the suppressive TME and the stemness of
glioma. Fang et al. found that URB2 is also significantly overexpressed in
glioma, and has a potential oncogenic role, as evidenced by the
substantial impairment of cell viability upon its knockdown. Its
expression level can independently predict overall survival.
Interestingly, a strong link between URB2 and immune responses
has been discovered, with the URB2 phenotype possibly contributing
to immune suppression in GBM. This study indicated URB2 may serve
as a crucial tool for prognosis prediction and immunotherapy guidance
in glioma treatment. Luo et al. conducted a bioinformatic analysis of IL-
15, a cytokine with diverse roles in immune regulation and
tumorigenesis, as a potential prognostic biomarker across various
cancers and its link to exercise’s anti-cancer effects. They discovered
that IL-15 is generally downregulated in most cancers, with its high
expression predicting better survival outcomes. Amplification emerged
as themost commonmutation type in IL-15’s genome. Additionally, IL-
15 expression correlated with the infiltration levels of different immune
cells and positively associated with ferroptosis/cuproptosis-related genes
(ACSL4 and LIPT1) across various cancers. This study underscores IL-
15’s potential as a prognostic biomarker for patient outcomes, immune
responses, and ferroptosis/cuproptosis in pan-cancer, shedding light on
exercise’s anti-cancer effects.

Li et al. found that tissues resistant to TPF chemotherapy, a
regimen comprising Docetaxel, Cisplatin, and Fluorouracil, in
HPSCC patients exhibited upregulated T cell activation and
downregulated glycolysis. They identified SEC61G as a key gene
negatively correlated with CD8+ T cells and involved in glycolysis.
Their findings suggest that while enhanced glycolysis may promote
immune escape, it may also increase TPF chemotherapy response.
Targeting the E2F1/SEC61G pathway could potentially boost MHC-
I expression, offering a new therapeutic avenue.

Zeng et al. analyzed the link between TGF-β signaling pathway-
related genes (TSRGs), clinical prognosis, the TME, and immunotherapy
in gastric cancer. This study discerned two unique TGF-β subgroups in
gastric cancer, with one subgroup showing an immunosuppressive
environment and reduced survival. A new TGF-β-related prognostic
model was developed, indicating that patients with lower risk scores have
improved prognosis and are more responsive to immunotherapy. These
insights emphasize the role of TSRGs in shaping the tumor immune
microenvironment and tailoring immunotherapy for gastric cancer
patients. Interestingly, TGF-β has also been explored as a potential
prognostic biomarker for glioma. Chen et al. have identified a crucial
connection between serine and glycine metabolism-related genes

(SGMGs) and both the prognosis and immune microenvironment of
glioma. They’ve constructed a unique SGMG signature that holds
promise in predicting patient prognosis and immune responses. This
research implies that SGMGs could potentially steer the choice of
immunotherapy in treating glioma. Qi et al. analyzed the genomic
and transcriptomic profiles of 34 anoikis-related genes (ARGs), which
are crucial for maintaining immune cell balance. The researchers found
significant differences in ARG expression between soft-tissue sarcoma
and normal tissues, suggesting a potential disruption of immune
homeostasis in cancer. Their anoikis scoring system, which effectively
predicted immune cell infiltration and immunotherapy response, could
serve as a tool for assessing immune status and guiding personalized
immunotherapy in cancer treatment.Meng et al. identified twomolecular
subtypes in uveal melanoma (UM) based on matrix-remodeling
associated genes (MAGs), which showed significant differences in
clinical outcomes. They developed a risk score system involving six
MAGs that effectively predicted prognosis and immune activity. Their
findings suggest that this MAGs-based system could enhance prognosis
assessment and guide clinical decision-making in UM, highlighting the
role of immune cell homeostasis in cancer therapy response.

Clearly, these research findings will serve as a critical source of
information to benefit all stakeholders involved in understanding the
impact of immune cell homeostasis in cancer and their potential
therapeutic responses.
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Chuanyu Li4†, Jun Li5,6, Han Ding2, Hailiang Zhang3,
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Shanghai Cancer Institute, Reni Hospital, School ofMedicine, Shanghai Jiao TongUniversity, Shanghai, China

Introduction: In hepatocellular carcinoma (HCC), alternative splicing (AS) is

related to tumor invasion and progression.

Methods: We used HCC data from a public database to identify AS subtypes

by unsupervised clustering. Through feature analysis of different splicing

subtypes and acquisition of the differential alternative splicing events

(DASEs) combined with enrichment analysis, the differences in several

subtypes were explored, cell function studies have also demonstrated

that it plays an important role in HCC.

Results: Finally, in keeping with the differences between these subtypes,

DASEs identified survival-related AS times, and were used to construct risk

proportional regression models. AS was found to be useful for the

classification of HCC subtypes, which changed the activity of tumor-

related pathways through differential splicing effects, affected the tumor

microenvironment, and participated in immune reprogramming.

Conclusion: In this study, we described the clinical and molecular characteristics

providing a new approach for the personalized treatment of HCC patients.
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Introduction

Hepatocellular carcinoma (HCC) has become the second leading

cause of cancer-related deaths worldwide, with more than

800,000 deaths each year (Sung et al., 2021). Surgical resection, liver

transplantation, tumor ablation, and interventional techniques are all

potential treatment methods (Bishay et al., 2016; Guro et al., 2016; Sun

et al., 2019; Yoon and Lee, 2019). However, improvements in the

prognosis of liver cancer remain challenging. The therapeutic effects of

first-lineHCCdrugs such as sorafenib are poor (Galun et al., 2017; Saffo

and Taddei, 2019), and no prognostic classification and markers have

been identified to provide guidance for personalized treatment (Liu

et al., 2020a; Zhao et al., 2021a; Zhao et al., 2021b). Therefore, a new

treatment strategy is required to predict the prognosis of liver cancer.

Aberrant alternative splicing (AS) is the result of splicing

regulatory sequence mutations or ectopic RNA binding protein

regulation. It plays an indispensable role in cancer and many other

diseases (Gamundi et al., 2008; Fu and Ares, 2014; Shiraishi et al.,

2018). Although integrated multiomics analyses have been reported

in HCC subtypes, splicing characteristics and splicing regulatory

networks are rarely systematically discussed. We previously studied

the regulatorymechanism of AS-related genes and their effect on the

prognosis of somemalignant tumors (Liu et al., 2020b). On this basis

in the current study, we conducted a comprehensive analysis of

HCC subtype classification and splicing characteristics and their

relationship with clinical characteristics, gene mutations, pathway

changes, and immune heterogeneity.

Materials and methods

Patients and tissue samples from online
databases and real-world cohorts

All splicing data for liver cancer were downloaded from the cancer

genome atlas (TCGA) SpliceSeq database includingAS data, expression

data, phenotype data, and survival data (Supplementary Table S1).

We also downloaded the human genome sequence from the

TCGA database (Barrett et al., 2013), the human gtf file from the

Ensembl database (Yates et al., 2020), and the Gene Set Variation

Analysis (GSVA) gene set (Hänzelmann et al., 2013) and immune

cell-related gene set.The variable splicing score was calculated by the

network tool Maximum Entropy (Kim et al., 2018).

Sample clustering and survival differences

We used the R package Rtsne (v0.15), which based on the

t-distributed stochastic neighbor embedding (t-SNE) method, to

cluster the samples according to their PSI values (Chen et al.,

2021). Because the clinical feature grouping is displayed in t-SNE,

the sample division was not obvious. Therefore, the R package

ConsensusClusterPlus (v1.50.0) was used to perform unsupervised

clustering of the samples (Zheng et al., 2020). The Kaplan–Meier

algorithm was used to obtain the PSI-based AS subtype, and t-SNE

was undertaken for verification and presentation of the results,

followed by analysis by the R packages survival (v3. 2–7) and

survminer (v0.4.8) to determine the survival of the samples and

construct Kaplan–Meier curves (Rizvi et al., 2019; Wang et al., 2020).

To further detect the differences in the distribution of age,

sex, grade, pathologic T stage, alcohol, hepatitis B, and hepatitis C

groups in the AS subtypes, Fisher test was applied (Di Francesco

et al., 2019).

Identification and presentation of subtype
differences in AS events, and analysis of
the differential alternative splicing events

DASEs of cancer samples and normal samples were called

according to the PSI value of AS. DASEs met two conditions: 1)

Wilcoxon rank-sum test between groups reached a significant

level (after Bonferroni correction adjustment p < 0.05); and 2)

Chi-squared test based on the median PSI reaching a significant

level (p < 0.05). After DASEs were obtained, those whose average

PSI of cancer samples were greater than the average PSI of

normal samples were regarded as upregulated, and those

whose PSI were less were regarded as downregulated. Next,

DASEs between samples of different subtypes and normal

samples were collected in the same way, and the number of

different AS types in the relevant subtypes was counted, with the

results included in a histogram. After obtaining the DASEs

between subtypes, the overlap similarity of the upregulated

and downregulated DASEs between subtypes was calculated as

follows: Overlapping similarity = intersection of two sets/

minimum value of the two sets. According to the obtained

DASEs, analysis of variance was used to screen differential AS

events between the two subtypes, with a threshold of p < 0.05, and

then the intersection was taken for subsequent analyses.

Analysis of splicing characteristics of
DASEs in alternative splicing subtypes,
corresponding gene expression display
and GSVA difference analysis

In a further analysis of the AS score, GC content, and AS

fragment length of DASEs, Python 3.8.8 (Spyder (Anaconda3)) was
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first used to obtain the reference sequence of each chromosome

from the reference genome (Paillusseau et al., 2020), and the splice

site positions provided by TCGA SpliceSeq database were combined

to obtain all DASEs with alternate acceptor site (AA), alternate

donor site (AD), exon skip (ES), retained intron (RI) sequence, and

5′ or 3′ splice site sequence splicing types. To calculate the AS score,
the first 3′ position sequence of AA, the second 3′ position sequence
of AA, the first 5′ position sequence of AD, and the second 5′
position sequence of AD were extracted according to the

requirements of MaxEntScan. The ’ site sequence, the 5′ and 3′
site sequence of ES, and the 5′ and 3′ site sequence of RI were

analyzed online to obtain the score of the corresponding site, which

was shown in a box plot. The GC content was the percentage of G

and C bases in the entire AS sequence. Alternative splicing length =

log10 (exon/intron length). Finally, a box plot was drawn to show

theGC content andAS length.We identified genes corresponding to

DASEs from the AS information, and then drew a heat map to show

the expression of the corresponding gene [log2 (fpkm-uq+1)].

All gene sets were downloaded from theMSigDB database (Guo

and Wan, 2014), and the R package GSVA (v1.34.0) was used to

calculate the enrichment scores of each sample for different gene sets

according to the expression data, and the cumulative distribution

curve of GSVA scores was drawn according to the different subtypes.

Then the R package limma (v3.42.2) was used to obtain the enriched

differential gene sets (DESs) in different subtype samples and

normal samples (Ritchie et al., 2015), and the threshold to |

logFC|> 0.5 and adj.P.Val<0.05 was called. A bar graph was

drawn to plot the upregulated and downregulated adjustments in

different subtypes of DESs.

Analysis of the correlation between
differential gene sets, AS events, and AS
factors

The correlation between the differential gene sets within the

subtypes and the AS events was further calculated. First, the AS

event was selected according to a PSI interquartile range of

greater than 0.05 as the threshold in the samples, and then

the screening results were used to calculate the Spearman’s

correlation coefficient (coef) for the differential gene set.

Alternative splicing-related pathways (SPs) in the MSigDB

database were searched using “splice”, “splicing”, and

“spliceosome” as keywords, and protein-coding genes in

related pathways were used as splicing factors (SFs). After

that, Spearman’s correlation coefficients of AS events and SPs

and SFs were further calculated, and then the largest |coef. of SP|

and |coef. of SF| corresponding to each AS event was selected to

construct a scatter plot. Because coef. of SP and coef. of SF had

the greatest number of AS events greater than 0.5 at the same

time, the relevant AS events were selected for further PSI display,

as well as the strongly correlated SP enrichment score of each

subtype and the strongly correlated SF differential expression

[edgeR (v3.28.1)] (Robinson et al., 2010). The R package estimate

(v1.0.13) was used to calculate the StromalScore, ImmuneScore,

ESTIMATEScore, and TumorPurity of all samples in TCGA-

LIHC data, and the immune cell-related gene set was used to

calculate the enrichment scores of 28 immune infiltrating cells,

combined with immune checkpoints.

Combining mRNA expression profiles to
predict differences in AS typing
immunotherapy and drug sensitivity

To predict whether an immunosuppressive agent has a

therapeutic effect on different AS subtypes, SubMap was used

to map different AS subtype samples to samples with inhibitor

processing information (Ay et al., 2011), as well as to calculate the

similarity between the samples and then predict the possible

effects of variant splicing subtypes on treatment with two

inhibitors.

The R package pRRophetic (v 0.5) was then to predict the

sample’s response to 138 drugs (Geeleher et al., 2014), generating

predicted IC50 values, and then the differences in the IC50 value of

the samples of different AS subtypes was further counted using

Kruskal’s algorithm to detect the significant differences. Next

adj.p < 0.05 was used to screen for significantly different drugs,

and the IC50 values of bosutinib, dasatinib, midostaurin,

elesclomol, pazopanib, bortezomib, sorafenib, docetaxel, and

gefitinib were plotted in box plots.

Construction of a prognostic model of AS

Cancer samples were collected according to the PSI value of

differential AS in the previous step combined with OS data, and

batch Cox one-way regression analysis was performed on

differential AS. After regression analysis, p < 0.05 was used as

a threshold to screen significantly related AS events for

subsequent analyses.

Lasso regression was further performed on the single-factor Cox

regression results and a risk scoring model was built. This process

mainly relied on the R package glmnet (v4.0–2). In the glmnet

function (Engebretsen and Bohlin, 2019), Y is Surv (time, event), and

family is Cox. To build a more accurate regression model, we first

used cross-validation for lambda screening, then selected the model

corresponding to lamdba.min, and further extracted the expression

matrix of related genes in the model, and then calculated the risk

score of each sample according to the following formula:

RScorei � ∑
n

j�1
PSIji × βj

Where PSI represents the PSI value of the corresponding AS,

β represents the regression coef. of the corresponding gene in the
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lasso regression result, and RScore represents the PSI value of the

significantly related AS event in each sample multiplied by the

corresponding AS event. The coef was then calculated, where i is

the sample and j is the AS event. On the basis of the risk score of

the sample, the high and low risk groups were divided by the

median as the node and combined with the overall survival (OS)

and disease-free interval (DFI) data to generate a Kaplan–Meier

curve, with a p-value of <0.05 indicating that the difference

between the high and low risk groups was significant.

Validation in human HCC tissues

Paired tumoral and adjacent normal samples were from

patients diagnosed with HCC and accepted surgery at the

Department of Transplantation, Xinhua Hospital affiliated to

Shanghai Jiao Tong University School of Medicine (Shanghai,

China) after the written informed consent. All these samples

were kept and processed as previously described. RT-PCR was

implemented using transcripts specific primers by 2 × Green

PCR Mix (Vazyme, Nanjing, China). Splicing specific transcripts

were distinguished using agarose gel electrophoresis and

grayscale-measured using software ImageJ (Rawak Software

Inc., Stuttgart, Germany). PSI of each lane was calculated by

the greyscale of the longer transcript divided by the sum greyscale

of the longer and the shorter transcripts.

Results

Splicing clustering and clinical features of
HCC subtypes

HCC AS data (percentage of samples with PSI value = 100%)

was downloaded from TCGA SpliceSeq database, and 11,179 AS

events were obtained, corresponding to 4423 genes, which

included 568 AAs, 469 ADs, 968 alternate promoters (APs),

6346 alternate terminators (ATs), 1992 ESs, 29 mutually

exclusive exons (MEs), and 807 retained introns (RIs). At the

same time, relevant HCC expression data and clinical data were

downloaded from the UCSC Xena database, and 370 cancer

samples and 50 normal samples were obtained after integration.

According to the t-SNE method, the PSI values of all samples

were displayed in clusters, and a scatter plot revealed that the

cancer samples could be clearly distinguished from the normal

samples (Figure 1A). Next, unsupervised clustering of cancer

samples was performed to obtain five subtype samples

(Figure 1B). The t-SNE method was used to demonstrate that

cluster 1 and cluster 2 samples were relatively similar in the five

subtype samples, and cluster 3 and cluster 5 samples were similar.

Therefore, cluster 1 and cluster 2 were merged into cluster 1, and

cluster 3 and cluster 5 were merged into cluster 3, and finally

three subtypes (cluster 1, cluster 3, cluster 4) were obtained. The

scatter plot shows that the three subtypes were more distinct

from each other (Figure 1C).Then, we analyzed the correlation

between cluster samples and clinical traits such as age, sex, grade,

pathological stage, type, alcohol consumption, and hepatitis B/C

infection, and found that AS also affects various clinical

characteristics of HCC (Figure 1D).

Analysis of differences in survival between
subtypes, clinical characteristics, and
distribution of typical types

The survival analysis of the three subtypes was further based on

OS, and a Kaplan–Meier curve was generated. The results showed

that the survival difference of the three subtypes was significant, and

the survival curve of cluster 4 samples dropped faster (Figure 1E).

The distribution differences of age, sex, grade, pathological T

stage, alcohol consumption, hepatitis B, and hepatitis C groupings in

AS subtypes were further examined (Figures 1F–M). The results

showed that there were significant differences in the distribution of

age, grade, pathological T stage, and hepatitis B groupings among the

subtypes. For age, cluster 1 was more than 65 years old and had

significantly more samples than cluster 4 (Figure 1F). For grade, the

number of G1–2 samples in cluster 1 was significantly higher than

that in cluster 3 and cluster 4 (Figure 1J). For pathological T stage, the

number of T3–4 samples in cluster 4 was significantly higher than in

cluster 1 (Figure 1K). For stage, the number of stage III–IV samples

in cluster 4 was significantly higher than that in cluster 1 and cluster

3 (Figure 1H). For hepatitis B, there were significantlymore hepatitis

B patients in cluster 3 than cluster 1 (Figure 1L). These data indicate

that AS exhibits different patterns according to the histological type

of HCC and is closely related to clinical characteristics and patient

survival, and thus is suitable as a subtype classification.

Overall differences in AS events and
identification of subtype differences in AS
events

On the basis of the PSI value of AS, the DASEs of cancer

samples and normal samples were retrieved. After threshold

screening, 1,777 DASEs were obtained, of which 977 were

upregulated and 800 were downregulated, corresponding to

1,005 genes (Supplementary Table S2). According to the type

of AS, DASEs had the most AT events, followed by ES, RI, and

AP, and the corresponding genes also had the most AT events.

The UpSet chart showed that 17 genes had AT and ES at the

same time, and 11 genes had AP and ES at the same time

(Figures 2A–C, Supplementary Table S3).

Next, the DASEs between the three subtypes and the normal

samples were obtained. Cluster 1-normal had 1,681 DASEs,

including 948 that were upregulated and 733 that were

downregulated; cluster 3-normal had 2,545 DASEs, including
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FIGURE 1
Sample cluster display and survival differences and clinical analysis. (A) Cluster scatter plot display of cancer samples and normal samples. (B)
Unsupervised clustering scatter plot display of cancer samples in 5 categories. (C) Scatter plot display of 5 categories of samples merged into
3 categories.(D) Clustering Heat map display of samples and clinical traits. (E) KM curves of 3 alternative splicing subtypes. (F–M) Display of clinical
features and distribution of typical types. ****p < 0.0001; ***p < 0.001; **p < 0.01; *p < 0.05.
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FIGURE 2
Analysis of DASEs and DASEs between subtypes and alternative splicing fragment length and score of the overall DASEs. (A) Schematic diagram
of alternative splicing types. (B) Statistics of the number of splicing types of DASEs and corresponding gene splicing types. (C) UpSet diagram of the
different alternative splicing types of DASEs corresponding genes. (D)Statistics of alternative splicing types of DASEs of each subtype. (E)Overlap
similarity of DASEs up and down between subtypes. (F)Alternative splicing fragment length of overall DASEs. (G) GC content of overall DASEs.
(H) Alternative splicing score for overall DASEs.
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1,275 that were upregulated and 1,270 that were downregulated; and

cluster 4-normal had 2,862 DASEs, including 1,565 that were

upregulated and 1,297 that were downgraded. (Figure 2D,

Supplementary Table S4). After obtaining the DASEs between the

subtypes, the overlap similarity of the upregulated and

downregulated DASEs was calculated between the subtypes. The

heatmap in Figure 3E shows that in cluster 1 and cluster 4, regardless

of the upregulation or downregulation of DASEs, the overlap

similarity was relatively high, at greater than 0.8 in both (Figure 2E).

Analysis of splicing characteristics of
DASEs in AS subtypes

The AS score, GC content, and AS fragment length of the overall

DASEs were further analyzed. For the length of AS fragments, the AS

length of downregulated AAs was significantly higher than that of

upregulated AAs and unchanged AAs, while the AS length of

downregulated ADs was significantly lower than that of

unchanged ADs, ESs, and RIs. There were no significant

differences among the three groups (Figure 2F).

For GC content, the GC content of downregulated AAs was

significantly higher than that of upregulated AAs, and theGC content

of downregulated ESs was significantly higher than that of

upregulated ESs and unchanged ESs. The GC content of

upregulated RIs was significantly higher than that of upregulated

RIs (Figure 2G).

For the AS score, the score of the first 5′ site of upregulated ADs
was significantly higher than the score of the first 5′ site of

unchanged ADs (Figure 2I), and the score of the second 3′ site
of upregulated AAs was significantly higher than the score of the

second 3′ locus of unchanged AAs (Figure 2H). Conversely, the

score of the 3′ locus of downregulated ESs was significantly higher

than that of the other two groups (Figure 2H). Furthermore, the

score of the 5′ locus of upregulated RIs was significantly higher than
the score of 5′ sites with downregulated RIs and 5′ sites with no

change in RIs, and the score of 3’ sites with upregulated RIs was also

significantly higher than the other two groups (Figure 2H).

Correlation analysis of DASE-
corresponding genes in AS subtypes

Next, we analyzed the total DASEs corresponding to

1,005 genes, and drew heat maps based on the expression of

related genes. The heat map showed that the overall gene

expression of cluster 3 samples was high, while the overall

gene expression of cluster 4 samples was low (Figure 3A).

A total of 32,284 gene sets was downloaded from theMSigDB

database. The enrichment score of each sample for all gene sets

FIGURE 3
Analysis of DASEs Corresponding Genes and Alternative Splicing Events and GSVA Analysis. (A) Heat map of DASEs corresponding gene
expression. (B) Statistics of the number of differential enrichment pathways of each subtype compared with normal samples. (C) We exploited a
Nomogram to evaluate the prognosis of HCC with prediction model of POLD1 expression and pTNM stage. (D–F) Display of strong correlation
between differential gene sets and alternative splicing events.
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was obtained and the cumulative distribution curve of GSVA

scores according to different subtypes was generated. The score

curve showed that compared with normal samples, the GSVA

score distribution of samples of other subtypes was relatively. The

score distribution of cluster 1 samples among subtypes was the

most concentrated, while cluster 3 samples had more scores of

less than 0, and cluster 4 had more scores of greater than 0

(Figure 3B). After obtaining the DESs of different subtype

samples and normal samples, for all subtypes, there were

more downregulated enrichment pathways than upregulated

enrichment pathways, and cluster 4 samples and normal

samples had the most different pathways (Figure 3C,

Supplementary Tables S5, S6).

Correlations between differential gene sets within subtypes

and AS events were further calculated. According to the

interquartile range of the sample PSI, 3,662 AS events were

screened, and strong correlations were screened from each

subtype according to a Spearman’s correlation coefficient

greater than 0.6. Eighty-eight splicing events and 326 gene

sets in cluster 1 samples had a strong correlation, 519 splicing

events in cluster 3 samples and 1,103 gene sets had a strong

correlation, and 320 splicing events and 1,187 gene sets in cluster

4 samples were strongly correlated (Figures 3D–F). The above

research showed that cluster 4, which had the most splicing

events, gene sets, and differential pathways, was closely related to

worst overall survival. These results partly describe the

differences between the internal and external environments of

HCC subtypes and normal tissue cells and the corresponding

different splicing regulatory mechanisms.

Correlation analysis of AS pathways, AS
events, and AS factors

Twenty-four SPs and 370 SFs were identified from the MSigDB

database. In further calculations of the Spearman’s correlation

coefficients of AS events and SPs and SFs, a scatter plot showed

that the coef. of SP and coef. of SF at the same time were greater than

0.5 AS events, including 138 AS events in each subtype. A heat map

of the median of related events showed that the PSI value of cluster

3 samples was higher than that of the other subtypes, and the

enrichment score of SPs of cluster 3 samples was higher. For SFs, in

the cluster 4 samples, some SFs were significantly downregulated

(Figures 4A,B; Supplementary Table S7). AVenn diagramof SPs and

differential pathways showed that there was one pathway in

common, namely

GOMF_PRE_MRNA_5_SPLICE_SITE_BINDING (Figure 4C).

Therefore, these subtype-specific changes in HCC, including

pathway activation and SF expression, may be related to its

severe abnormal splicing (Supplementary Table S8). To

characterize the splicing-based mechanisms that may contribute

to the relative malignancy of HCC, we performed analyses according

to the up- and down-regulation of DASE-related gene formation in

subtypes. We selected PABPN1, CCDC12, ISY1 and PQBP1 for

analysis based on the effect of SFs on survival in HCC. The ΔPSI
values were determined for 25 each tumor-normal pair, and eight

out of nine AS events showed a significant positive correlation

(p < 0.01).

The longer spliced isoforms of these SFs were significantly

overexpressed in all HCC subtypes and validated by RT-PCR in

HCC tissues (Figures 4D,E). These may suggest that longer

transcripts of PABPN1, CCDC12 and ISY1 are important for

maintaining cancer cell survival (p < 0.01). The difference in PSI

of PQBP1 was not significant (p = 0.081), but the trend was

consistent with the other three SFs. Therefore, the upregulation

of PSI in HCC may be responsible for the upregulation of SFs

such as PABPN1, CCDC12, ISY1 and PQBP1. Overall, the

heterogeneity and homogeneity of splicing changes in HCC-

related pathways may suggest a distinct role for alternative

splicing in tumorigenesis and maintenance of cancer cell

survival. Irregular splicing may regulate isoform switching of

genes in cancer biological pathways and mRNA expression to

promote HCC infiltration and invasion.

Immune-related and clinically relevant
analysis of AS subtypes

We further explored the immune status of AS subtypes. A heat

map showed that the StromalScore, ImmuneScore, and

ESTIMATEScore of the cluster 3 samples were slightly lower

than the other two subtypes. From median data, the tumor

purity of cancer samples was significantly higher than that of

normal samples, and the immune-related scores were significantly

lower than normal samples. There was no significant difference in

the expression of immune checkpoints and the enrichment scores of

related pathways in each subtype. For most immune cells, the

immune cell score of normal samples was significantly higher

than that of cancer samples. In addition, cluster 4 samples had a

higher activated CD4 T cell enrichment score and a lower activated

CD8 T cell enrichment score. For G3–4 and hepatitis B patients, the

related differences were also obvious (Figure 5A).

Kaplan-Meier analysis was further performed within the

group for grade grouping and hepatitis B grouping. This

showed that for the G3–4 samples, the Kaplan–Meier curves

between the internal AS subtypes were significantly different, and

for the samples with hepatitis B, the Kaplan–Meier curves

between the internal AS subtypes were significantly different

(Figures 5B–E). The above results suggest that the anti-tumor

immune response produced by SF can be offset by the tumor

micro environment (TME), and aggressive cancer cells with a

large number of intracellular mutations and tumor-associated

antigens survive immune reprogramming. Therefore, blocking

these immunosuppressive molecular pathways should be

combined with immunotherapy against neoantigens to

regulate the immune response of HCC patients.
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FIGURE 4
Correlation analysis of alternative splicing pathways, alternative splicing events and alternative splicing factors. (A) Scatter plot showing the
association between alternative splicing events and SPs and SFs. (B) Heat map showing the association between alternative splicing events and SPs
and SFs. (C) Venn diagram shows the common pathways of SPs and differential pathways. (D)Differentially expressed splicing transcripts of CCDC12,
ISY1, PABPN1 and PQBP1 were validated in human HCC tissues by RT-PCR and consequent agarose gel electrophoresis. PSI of each lane was
calculated by the greyscale of the longer transcript divide the sum greyscale of the longer and the shorter transcripts. (E) Significance of difference
between HCC tumor and adjacent normal tissues for splicing of CCDC12, ISY1, PABPN1 and PQBP1 were evaluated separately by two-tailed paired
t-test.

Frontiers in Pharmacology frontiersin.org09

Liu et al. 10.3389/fphar.2022.1019988

15

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2022.1019988


FIGURE 5
Analysis between alternative splicing subtypes and immunity and clinical survival. (A)The heat map shows the immune status of alternative
splicing subtypes. (B–E) KM curve between grade group and Hepatitis_B group.
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Combining mRNA expression profiles to
predict differences in AS for
immunotherapy and drug sensitivity

Using SubMap to predict the possible therapeutic effects of

related immunosuppressive agents on different AS subtypes, the

results showed that the similarity between cluster 4 samples and

CTLA4 response samples reached a significant level, suggesting

that CTLA4 inhibitors may have a better effect on cluster

4 samples. (Supplementary Figure S1).

We further predicted the samples’ responses to 138 drugs to

obtain predicted IC50 values. The results showed that there were

significant differences in the degree of response of 111 drugs

among the different subtypes (Supplementary Table S9). The

IC50 values of bosutinib, dasatinib, midostaurin, elesclomol,

pazopanib, bortezomib, sorafenib, docetaxel, and gefitinib

were plotted in box plots. For bosutinib, dasatinib,

midostaurin, elesclomol, pazopanib, and bortezomib, the

efficacy of cluster 1 and cluster 4 was relatively good and the

efficacy of cluster 3 was relatively poor, while cluster 3 mainly

FIGURE 6
Response of alternative splicing subtypes to drugs. (A) Bosutinib (B) Dasatinib (C)Midostaurin (D) Elesclomol (E) Pazopanib (F) Bortezomib (G)
Sorafenib (H) Docetaxel (I) Gefitinib.
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responded well to sorafenib, docetaxel, and gefitinib (Figures

6A–I) 0Screening of AS events and construction of a prognostic

model of AS.

According to the obtained PSI values of DASEs, the

differential AS events between subtypes were screened. There

were 1,109 DASEs between cluster 1 and cluster 3, 1,154 DASEs

between cluster 3 and cluster 4, and 1,177 DASEs between cluster

1 and cluster 4. Intersection of the three clusters resulted in a total

of 455 DASEs for subsequent analysis (Figure 7A). Using cancer

samples, on the basis of PSI values of the shared DASEs obtained

in the previous step combined with the OS data, batch Cox one-

way regression analysis was performed on differential AS, and

111 survival-related DASEs were obtained (Figure 7B).

Lasso regression was then performed on 111 survival-related

DASEs, and 20 AS events were obtained to construct a risk

model. Regression coefficients and PSI values were

analyzed to obtain the following risk scores: PSI39967 *

(−5.5748) + PSI64018 * (−2.0928) + PSI46796 * (−0.5633) +

PSI83140 * (−0.3544) + PSI44266 * (0.3162) + PSI85919 *

(−0.3101) + PSI50488 * (−0.2602) + PSI19307 * (−0.1502) +

PSI17008 * (−0.0950) + PSI19309 * (1.0474) E−13) + PSI50489 *

0.0014 + PSI85920 * 0.0023 + PSI85601 * 0.0223 + PSI58889 *

0.5534 + PSI1730 * 0.6888 + PSI24866 * 1.0308 + PSI61665 *

1.0423 + PSI 82016 * 1.6102 + PSI18599 * 40.6609 + PSI24760 *

51.4456 (Figures 7C–E).

Further validation of the prognostic model
of AS

According to the risk score of the samples, the high and

low risk groups were divided by the median as the node, and a

Kaplan–Meier curve was drawn on the basis of the OS data

and DFI data. The results showed that the difference between

FIGURE 7
Analysis of Differential Alternative Splicing Events between Subtypes. (A)Venn diagram of alternative splicing events for differences between
subtypes. (B) Top 20 single factor cox regression results. (C) Display the corresponding changes of lambda and variable coefficients. (D) Obtain
lambda.min through cross-validation. (E) Display the regression coefficients corresponding to the variables after screening.
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the high and low risk groups was significant (OS, p < 0.0001;

DFI, p = 0.0083; Figures 8A–F). The sample risk score was

used as the model prediction result, combined with the

survival data to calculate the AUC value of the model, and

then an ROC curve was drawn. The AUC values of 1-, 3-, and

5-year OS were all greater than 0.7, indicating that the model

has good performance (Figure 8G). A Sankey diagram was

constructed to show the relationship between risk score

grouping, AS subtypes, and stage and grade groupings. As

shown in Figure 8H, most of the cluster 1 samples belonged to

the low-risk group, most of the cluster 1 samples were G1 and

stage I samples, and most of the cluster 4 samples belonged to

the high-risk group, consistent with the results of the Kaplan-

Meier analysis.

Discussion/conclusion

HCC is the most common primary liver cancer. Liver cancer is

the sixth most common cancer and the second leading cause of

cancer-related deaths worldwide. In the past few decades, the

incidence of liver cancer and liver cancer-related deaths has

increased in many parts of the world, including China (Siegel

et al., 2021). Sorafenib remains the only targeted drug for the

treatment of advanced liver cancer. As a chemotherapy-resistant

tumor, HCC has an unsatisfactory response to radiotherapy and

chemotherapy. In addition, patients with advanced liver cancer

usually have obvious underlying liver disease, and thus the

prognosis of patients is often poor and the mechanism is not

understood.

FIGURE 8
Effectiveness verification of a risk model based on PSI events. (A)Build model KM curve verification based on OS-based lasso regression. (B)
Curve graph of risk scores of all samples based on OS. (C) Scatter plot of survival time of all samples based on OS. (D) Build model KM based on lasso
regression of DFI Curve verification. (E)Curve graph of risk scores of all samples based on DFI. (F) Scatter plot of survival time of all samples based on
DFI. (G) Time-based ROC curve. (H) Sankey diagram of clinical traits, risk grouping and alternative splicing subtype.
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Alternative splicing can be regulated by many different

mechanisms, such as histone modification and DNA

methylation, which are usually associated with specific SFs or

transcriptional elongation (Li et al., 2018; Sessa et al., 2019). The

latest research identified a significant correlation between

intragenic DNA methylation and exon usage in solid tumors

(Sun et al., 2020). There are also reports that mitochondria are

involved in the regulation of transcriptional activity, which has a

great influence on splicing regulation (Guantes et al., 2015).

Alternative splicing is the main mechanism to increase the

transcriptional diversity of eukaryotes (Pan et al., 2008; Wang

et al., 2008). Dozens of abnormal splice variants are associated

with human diseases (Schrock et al., 2016; Urbanski et al., 2018;

Di et al., 2019). Studies have shown that these AS events play

wide-ranging roles in the process of carcinogenesis, participating

in cell proliferation, apoptosis, epithelial–mesenchymal

transition, hypoxia, angiogenesis, and immune escape (Chen

et al., 2018; Du et al., 2022). These previous studies have

shown that in addition to classic cis-/trans-acting regulation,

there are many other mechanisms of AS regulation (Yae et al.,

2012; Picard, 2022; Zhang et al., 2022). Here, we use GSVA to

conduct a comprehensive pathway analysis of 32,284 gene sets in

MSigDB. We demonstrated that splicing regulation is also

affected by many pathways, including negative/positive

regulation of mRNA splicing by spliceosomes, pre-mRNA 5′-
splice site binding, and the mRNA splicing minor pathway,

among others. These pathways may constitute the basic

environment for irregular splicing in HCC subtypes and affect

the TME. We also observed changes in the mRNA expression of

several SFs in different HCC subtypes. To determine how these

changes are related to pathway activation and AS regulation,

more research is required.

Future research aims to determine the molecular drivers of the

transition from cluster 1 to cluster 4 subtypes. These changes may be

triggered by changes in the genome or by epigenetic or

transcriptional regulators that have been shown to drive splicing

factor changes in other tumor types. Understanding these

mechanisms will allow us to determine the development of AS-

based HCC treatments. AS research is moving in the direction of

making full use of the potential of AS in precision medicine.

In this analysis, we identified AS subtypes through

unsupervised clustering, analyzed the characteristics of

different spliced subtypes, obtained DASEs, and combined the

findings with GSVA enrichment analysis to explore the

differences in the subtypes. Finally, on the basis of the DASEs

of different subtypes, the survival-related AS time was identified,

and the PSI value was used to construct a risk proportional

regressionmodel to guide prognosis.We systematically described

clinical, splicing, transcriptomic, genomic, and immunological

characteristics, and identified the underlying regulatory

mechanisms of AS in HCC subtypes (Supplementary Figure S2).

Our research shows that the splicing regulation of SFs may

play a role in the transformation and survival of HCC cancer

cells. We studied AS comprehensively and systematically and

used TCGA data to explore possible non-classical regulatory

mechanisms in HCC. The data sample size of our research was

sufficient, and the results of the verification data are good and

have strong statistical significance, covering a wide range of

fields. Our findings may provide the foundation for more in-

depth research in the future, such as studies of the splicing

regulation mechanism, cancer biomarker design, targeted drug

screening, and other clinical applications.
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Metastasis is responsible for 90% of deaths in cancer patients. Most patients

diagnosed with metastatic cancer will die within 5 years. PA is good for health

and has become an emerging adjuvant therapy for cancer survivors. Regular

moderate exercise substantially lowers the incidence and recurrence of several

cancers, alleviates cancer-related adverse events, enhances the efficacy of anti-

cancer treatments, and improves the quality of life of cancer patients. Revealing

the mechanisms of PA inhibiting tumor metastasis could upgrade our

understanding of cancer biology and help researchers explore new

therapeutic strategies to improve survival in cancer patients. However, it

remains poorly understood how physical activity prevents metastasis by

modulating tumor behavior. The immune system is involved in each step of

tumor metastasis. From invasion to colonization, immune cells interact with

tumor cells to secret cytokines and proteases to remodel the tumor

microenvironment. Substantial studies demonstrated the ability of physical

activity to induce antitumor effects of immune cells. This provides the

possibility that physical activity can modulate immune cells behavior to

attenuate tumor metastasis. The purpose of this review is to discuss and

summarize the critical link between immune function and exercise in

metastasis prevention.

KEYWORDS

physical activity, tumor metastasis, microenvironment, immune function, immune
cells

1 Introduction

Cancer metastasis is an important cause of death in cancer patients, with up to 90% of

solid tumor patients dying from metastasis (Steeg, 2016). Most patients diagnosed with

metastatic cancer will die within 5 years. The majority of current treatments concentrate

on resection or elimination of primary tumor. Moreover, some clinical treatment
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strategies such as surgery have been demonstrated to aggravate

cancer metastasis (Ma et al., 2019). Finding a safe and effective

therapy for metastasis remains urgent.

Physical activity (PA) is good for improving physical and

mental health. Nowadays, PA has become an important adjuvant

therapy for cancer patients and has a remarkable influence on

reinforcing conventional cancer therapies (Schmitz et al., 2019).

Compared to other cancer treatments, PA has almost no toxic

side effects, shows significant safety, and reduces treatment-

related adverse events. According to the World Health

Organization (WHO), cancer survivors should undertake at

least 150–300 min of moderate intensity physical activity, or

75 min of vigorous intensity physical activity per week (Bull

et al., 2020). Recently, PA has been shown to reduce the incidence

of various cancers and improve the survival of cancer patients. A

previous prospective cohort study reported that PA was

negatively correlated with the incidence of post-menopausal

breast cancer (Bellocco et al., 2016). Besides breast cancer,

compelling evidence revealed that PA reduced the risk of

additional cancer types, including colon, kidney, endometrial,

bladder, esophageal and stomach cancers (Rock et al., 2020).

Some prospective observational studies found that PA after

cancer diagnosis may decrease cancer mortality, especially in

colon (Meyerhardt et al., 2006), breast (Rock et al., 2020) and

endometrial (Friedenreich et al., 2020) cancers. In addition, PA

has been shown to improve the fatigue and quality of life (QoL) of

cancer survivors, relieving anxiety and depression (Schmidt et al.,

2015). However, whether PA has beneficial effects on metastasis

is more attractive. Revealing the mechanisms of PA inhibiting

tumor metastasis could upgrade our understanding of cancer

biology and help researchers explore new therapeutic strategies

to improve survival in cancer patients. In order to explore the

potential mechanism linking PA with metastasis, some

preclinical studies established various exercising animal

models, especially running and swimming.

The immune system can effectively prevent the occurrence,

development and metastasis of primary tumors through immune

surveillance. Immune cells can recognize tumor-specific antigens

and destroy cancer cells. Recently, some studies suggested that

the modulation of the immune system through PA can

significantly affect the exercise-dependent prevention of tumor

metastasis (Lucia and Ramírez, 2016; Febbraio, 2017). Therefore,

the aim of this review was to discuss and summarize recent

findings that highlight the critical link between immune function

and exercise in metastasis prevention.

2 Tumor metastasis and Physical
activity

Tumor metastasis is a tangled and complicated process that

can be categorized into five stages: invasion, intravasation,

circulation, extravasation, and colonization. The cells were

isolated from the primary tumor and acquired an invasive

mesenchymal phenotype. In turn, invasive tumor cells

infiltrate the blood vessels, a process closely related to vascular

permeability and the interaction between tumor cells and

endothelial cells. Once in circulation, invasive tumor cells are

called circulating tumor cells (CTCs), and they confront

challenges such as shear stress, oxidative stress, and immune

surveillance. A few surviving CTCs invade blood vessels and

colonize distant tissues, forming metastases. Emerging evidence

suggests that physical exercise inhibits not only the invasion of

tumor cells, but also the survival and distant colonization of

circulating tumor cells. A schematic illustration of the association

of exercise and metastasis is shown in Figure 1.

2.1 Physical activity and invasion

PA has been confirmed to attenuate the invasion of tumor

cells via inhibiting epithelial-mesenchymal transition (EMT). A

study showed that voluntary exercise led to an intratumor

increase in E-cadherin levels and an intratumor decrease in

the nuclear levels of β-catenin in ApcMin/+ mice (Ju et al.,

2008). As is known to all, decreased expression of E-cadherin and

increased expression of vimentin are the main characteristics of

EMT. PA regulates multiple pathways to attenuate EMT.

Moderate swimming could suppress EMT induced by TGF-β
in transplanted hepatocellular carcinoma cells via promoting

dopamine receptor 2 (DR2) activity (Zhang et al., 2016a). High-

performance sports and resistance training can induce skeletal

muscle to release myokine irisin. Irisin could inhibit EMT and

invasion of tumor cells via the PI3K/Akt/Snail pathway has been

demonstrated (Shao et al., 2017). Another study reported that

irisin could be relevant to the activation of AMPK (Tang et al.,

2016). Irisin downregulated the mTOR pathway and inhibited

EMT of human pancreatic cancer cells via activating the AMPK

(Liu et al., 2018). Moreover, irisin reversed the IL-6 induced EMT

and downregulated the expression of MMP-2 by suppressing the

STAT3/Snail signaling pathway (Kong et al., 2017).

2.2 Physical activity and intravasation

Physical exercise could influence intra-tumor angiogenesis

by altering vascular epithelial growth factor (VEGF) in serum

and tumor tissue. In prostate cancer, exercise induced the

upregulation of HIF-1α and VEGF via activating MEK/MAPK

and PI3K/mTOR signaling pathway, which is associated with a

shift to tumor vascular normalization and inhibition of tumor

metastasis (Jones et al., 2012). Data from ultrasonographic and

thermographic also indicated higher vascularization of

mammary tumors in exercised rats (Faustino-Rocha et al.,

2017). The hypoxia and high permeability of the intratumoral

vasculature also promote the intravasation of tumor cells.
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Physical exercise enhances tumor perfusion, diminishes hypoxia

and transforms an aggressive tumor phenotype with abnormal

leaky tumor vasculature to a weakly invasive tumor phenotype

with normalized and mature vasculature (McCullough et al.,

2014). Previous studies have demonstrated that physical exercise

increases microvessel density and vessel maturity (Jones et al.,

2012). In Ewing sarcoma, exercise modulated S1PR1 and

S1PR2 expression, remodelling vasculature to reduce vessel

hyperpermeability.

2.3 Physical activity and survival of
circulating tumor cells

CTCs exposed to the circulation need to face various physical

and biological stressors such as shear force, immune system

surveillance, anoikis, and so on. Only a small portion (0.1%) of

CTCs survive, and they have a relatively short half-life of about

1.0–2.4 h in circulation. Many studies have shown that exercise

reduced CTCs in cancer patients. For instance, using amicrofluidic

antibody-mediated capture device to quantify CTCs inside venous

blood of stage I-III colon cancer patients, researchers found that

exercise led to a significant decrease in CTCs (Brown et al., 2018a).

Exercise leads to an obvious increase in vascular shear force.

During moderate-intensity exercise, the hemodynamic shear

force can increase to 60 dyn/cm2 in human arteries and

5.2–6.2 dyn/cm2 in human veins (Tanaka et al., 2006). A

previous study investigated the impact of hemodynamic shear

force on the CTCs survival. The result revealed that high shear

stress of 60 dyn/cm2 at intensive exercise killed more than 90% of

CTCs within the first 4 h of circulation, contrasted with low shear

stress of 15 dyn/cm2 at the resting state only killed 48% of CTCs

(Regmi et al., 2017). Anoikis resistance played an important role in

maintaining the survival of CTCs within circulation. HIF-1α
protected CTCs from anoikis cell death by keeping an EMT

state of CTCs (Majidpoor and Mortezaee, 2021). In untrained

humans, acute exercise induced a transient increase of HIF-1α
levels, while regular endurance exercise steadily reduced HIF-1α
(Lundby et al., 2006; Wu et al., 2020a). Hippo signaling pathway

has also been reported to be correlated with anoikis resistance. In

metastatic breast cancer, up-regulated expression of zinc finger

protein 367 (ZNF367) inhibited Hippo signaling pathway, giving

rise to anoikis resistance and increased CTCs in circulation (Wu

et al., 2020b). Exercise-conditioned sera could activate the Hippo

signaling pathway and increase the inactivation of YAP (Baldelli

et al., 2021). Exercise-induced epinephrine and norepinephrine

also activated the tumor suppressor Hippo signaling pathway and

promoted the phosphorylation of YAP. The phosphorylation then

contributed to the sequestration of YAP in cytoplasm, which

deterring the induction of tumor cell proliferation and survival

by target genes (Dethlefsen et al., 2017). The effects of exercise on

immune surveillance will be described in detail later.

FIGURE 1
PA and themetastatic cascade. Firstly, PA reduced the invasion of tumor cells by inhibiting EMT. Next, PA reduced vascular permeability, inhibitd
the interaction between endothelial cells and tumor cells, and suppressed intravasation. Exercise can also inhibit the survival of circulating tumor
cells (CTCs) by increasing vascular shear force, recruiting macrophages, NK cells, and CD8+T cells, regulating metabolism and inducing anoikis.
Exercise inhibitd platelet-tumor cells aggregates and the capacity of tumor cells to adhere to endothelial cells, which suppress extravasation.
The figure was created with BioRender.com.
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2.4 Physical activity and extravasation

Surviving CTCs must arrest in the circulation and then start

extravasation. In a previous study, long-term exercise led to a

consistent lower retention of tumor cells in the pulmonary

capillary bed compared with sedentary mice (MacNeil and

Hoffman-Goetz, 1993a). Similarly, another study detected the

radioactivity of 51Cr labelled CIRAS 1 tumor cells in lungs, liver,

spleen and kidney. Researchers found that exercising mice showed a

lower retention of radioactivity in secondary organs after tumor cells

were injected into a tail vein (Hoffmann-Goetz et al., 1994).

2.5 Physical activity and colonization

Exercise may change the microenvironment of the major

sites of metastases to inhibit the process of colonization. Recently,

a study reported that exercise suppressed ovarian cancer

colonization in the peritoneal cavity (Morrisson et al., 2021).

The secretion of CCL2 and IL-15 had a significant increase in the

peritoneal fluid of exercised mice. CCL2 can recruit macrophages

and enhance their cytotoxicity. IL-15 can increase the reactivity

of NK cells and CD8+Tcells in the peritoneal environment.

Exercise also decreased the level of CCL22, VEGF, and

CCL12 in peritoneal fluid. These cytokines lead to an

immunosuppressive microenvironment by recruiting MDSC

and Treg cells. Lung is a common metastasis site in malignant

tumors, and it is also dramatically modulated by exercise. A

further mechanism exploration found that exercise elevated

antitumor cytotoxicity of alveolar macrophages by increasing

the levels of tumor necrosis factor or reactive nitrogen

intermediates (Davis et al., 1998). In order to successfully

colonize the bone, tumor cells must escape the dormancy and

keep proliferation. Tumor–osteoblast interactions have been

proved to promote the dormancy of tumor cells. Physical

exercise activated Cx43 hemichannels, and mechanically

stimulated osteocytes to secrete Wnt and OPN (Fan et al.,

2020), enhancing osteoblast activity and promoting the

dormancy. Simultaneously, exercise increased the release of

ATP from osteocytes (Genetos et al., 2007). The ATP-rich

tumor microenvironment has been reported to suppress the

proliferation of various tumor cells.

3 Tumor metastasis and immune
function

The immune system can be divided into natural and adaptive

immunity, and these two immune responses work synergistically

to protect the organism (Wang et al., 2020). Natural immunity,

also called innate immunity, is a semi-specific and extensive form

of immunity. Natural immunity includes multiple immune cells

and soluble factors and plays important roles in battling against

pathogens. For example, neutrophils, macrophages, dendritic

cells (DCs), natural killer (NK) cells, complement proteins

and antimicrobial peptides (Janeway and Medzhitov, 2002).

Adaptive immunity, also called acquired immunity or specific

immunity, is a type of immune response that is generated by

contact with a specific pathogen that can be recognized and

initiated against the specific pathogen (Bonilla and Oettgen,

2010). Adaptive immunity consists mainly of T and B

lymphocytes. T cells mediate cellular immune responses, while

B cells are closely associated with the humoral immune response.

In the process of tumor metastasis, most cytotoxic innate and

adaptive immune cells can synergistically control tumor behavior. A

large number of cytotoxic immune cells such as NK and CD8+

T cells infiltrated around the primary tumor to eliminate many

immunogenic cancer cells (Pagès et al., 2010). Natural killer (NK)

cells can mediate tumor cells apoptosis via releasing granzyme B-

and perforin. Cytotoxic CD8+ T cells kill tumor cells by secreting

TNF-α and IFN-γ, while CD4+ T cells producemultiple cytokines to

boost anti-tumor immune responses (Swann and Smyth, 2007;

Ostrand-Rosenberg, 2008). The high levels of NK cells and

cytotoxic T cells infiltration around the tumor are associated

with better prognosis in cancer survivors (Nelson, 2008). CTCs

are particularly sensitive to circulating immune cells. Circulating

immune cells can directly and indirectly affect the viability of CTCs

to control cancer metastasis (Dianat-Moghadam et al., 2021). The

recruitment of cytotoxic M1 macrophages and N1 neutrophils, NK

cells and mature DCs can all contribute to the elimination of CTCs.

However, some immunosuppressive cells such as myeloid-

derived suppressor cells (MDSC) and regulatory T cells (Tregs),

can secrete multiple cytokines and proteases to reshape the

tumor microenvironment and promote immune escape,

thereby promoting tumor metastasis (Smith and Kang, 2013).

As tumors progress, cancer cells can secret multiple cytokines

such as IL-4 and IL-13 to induce polarization ofM2macrophages

and N2 neutrophils, which contributes to angiogenesis,

extracellular matrix (ECM) remodeling and immune evasion.

In addition, immature DCs also play important roles in

facilitating tumor metastasis (Gonzalez et al., 2018).

4 Physical activity-dependent
modulation of immune cells

PA has a positive effect on the human immune system,

especially the innate immune system. During PA, cytotoxic

immune cells are mobilized into the circulation through

stress-induced shear stress and adrenergic signaling (Idorn

and Hojman, 2016). This mobilization is not to induce the

body to produce a new generation of immune cells, but to

recruit the existing storage of immune cells (Walsh et al.,

2011). According to numerous studies, chronic and acute

physical exercise show significant responses in terms of

immune cells redistribution, activity and function in cancer
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patients. The intensity and duration of exercise also affects the

redistribution of immune cells to the circulation (Robson et al.,

1999; Freidenreich and Volek, 2012; Bigley and Simpson, 2015).

In some tumor-bearing animal models, exercise led to an increase

in the number and function of effector cells and a decrease in

immunosuppressive cells (Thompson et al., 2010; Hagar et al.,

2019). Here we discuss the effect of exercise on multiple immune

cells in the process of metastasis. A schematic illustration of the

association of exercise and immune cells is shown in Figure 2.

4.1 Physical activity and natural immune
cells

As the first-line defenders against pathogens, natural

immune cells are hot topics to exercise immunology.

4.1.1 Natural killer cells
Among natural immune cells, NK cells are the most

responsive to exercise, showing exercise-dependent acute

mobilization. The number of NK cells can be increased to

more than six-fold during a brief stair climb, without

immediate functional decrease after rest (Millard et al., 2013).

This rapid mobilization of NK cells is mainly related to the

exercise intensity-dependent changes in catecholamine

concentrations (Kappel et al., 1991). NK cells have the most

abundant β-adrenergic receptors in all immune cells (Landmann,

1992). Systemic administration of epinephrine mimics the

exercise-induced increase in circulating NK cell infiltration,

while nonselective and selective β1-and β2-blockers can block

this mobilization effect from exercise (Murray et al., 1992).

During acute PA, muscle-derived cytokines such as IL-15, IL-

7, and IL-6 are also involved in NK cells activation (Benatti and

FIGURE 2
Modulation of immune cells during exercise. During physical activity, the numbers and antitumor effects of NK cells, dendritic cells, T cells and
B cells were increased, the polarization of M2macrophages andN2 neutrophils are inhibited, and the recruitment ofMDSC and Tregwas suppressed.
Moreover, PA inhibited the formation of platelet-CTCs aggregates and reduced the adhesion of platelets to endothelial cells. The figure was created
with BioRender.com.
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Pedersen, 2015). However, after long-term exercise, the number

of circulating NK cells was reduced, which may due to tissue

migration or re-marginalization (Timmons and Cieslak, 2008).

PA not only increases the number of circulating NK cells, but also

enhances their antitumor activity. A previous study has

demonstrated that exercise enhanced splenic NK cells activity

in tumor-bearing mice (MacNeil and Hoffman-Goetz, 1993b).

Another study has found that mice randomly assigned to the

voluntary wheel had an obvious increase in NK cells infiltration

in various tumor models (melanoma, Lewis lung cancer and liver

cancer), leading to reductions in tumor incidence, growth and

metastases. Exercise recruits NK cells via β-adrenergic signaling

and induces muscle-derived IL-6 to redistribute and activate NK

cells. Moreover, the expression levels of NK cell-related activating

receptor ligands (NKG2D, MULT1, H60a, and Clr-b) also had an

increase in the tumors of running mice, revealing that exercise

worked on the mobilization of NK cells and the formation of NK

cell activated tumor microenvironment (Pedersen et al., 2016).

4.1.2 Macrophages
Macrophages also play a pivotal role in controlling tumor

metastasis. M1 macrophages have the capacity to diminish a

large number of CTCs, while M2 macrophages are related to the

promotion of tumor metastasis. Exercise can enhance antitumor

macrophage cytotoxicity and suppress the polarization of

macrophages to the M2 (Davis et al., 1998; Goh et al., 2012).

Short-term moderate-exercise training led to an increase in

macrophages antitumor cytotoxicity and decreased the lung

tumor metastases of injected B16 melanoma cells (Murphy et al.,

2004). Another recent study using a triple-negative breast cancer

mouse model reported that exercise reduced M2 macrophage

polarization by inhibiting the JAK-STAT signaling pathway, thus

decreasing lung cancer metastasis (Kim et al., 2020).

M2 macrophages secreted chemokine CCL22, which attracted

CCR4-expressing Tregs in circulation toward the

CCL22 gradient, thus facilitating the recruitment of Tregs.

Exercise contributed to a significant decrease in CCL22 mRNA

expression in M2 macrophages and resulted in a reduction in Treg

recruitment, which delayed invasive breast cancer progression and

metastasis in polyoma middle T oncoprotein (PyMT) transgenic

mouse (Goh et al., 2013). Similarly, in an ApcMin/+ mouse model,

the mRNA expression of M2 related macrophage markers such as

CD206, CCL22 and Arg consistently decreased in exercise mice

(McClellan et al., 2014).

4.1.3 Neutrophils
Some recent studies revealed that neutrophils promoted the

metastasis potential of cancer cells. In circulation, neutrophils

induced the aggregation of tumor cells to improve the survival

rate of CTCs (Szczerba et al., 2019). Neutrophil extracellular traps

(NETs) released by neutrophils was also demonstrated to enhance

the tumor metastasis. Some studies have shown that exercise can

inhibit NETs formation (Shi et al., 2020). The accumulation of

exercise-induced lactic acid decreases the release of NETs in serum

(Shi et al., 2019). A recent study reported that exercisemitigated liver

ischemia-reperfusion injury derived inflammatory responses and

metastasis via inhibiting neutrophil recruitment and diminishing

NETs release in the mouse model of colorectal adenocarcinoma

(Yazdani et al., 2021). Nevertheless, tumor-associated neutrophils

(TANs) had a two-sided effect in the progression of tumor (Uribe-

Querol and Rosales, 2015). Some previous reports demonstrated

that neutrophils directly destroyed tumor cells both in vitro and in

vivo (Uribe-Querol and Rosales, 2015). In metastatic breast cancer

and renal carcinoma, the tumor cells produced CCL2 and IL-8 that

induced neutrophil recruitment to inhibit lung metastasis,

respectively (Granot et al., 2011; López-Lago et al., 2013).

Similar to the M1 and M2 phenotypes of macrophages,

neutrophils also have N1 and N2 polarization states.

N1 neutrophils have anti-tumor function by secreting type I

interferon and inducing NK cells to secret IL-18. N2 neutrophils

secrete multiple molecules such as arginase and peroxidase to

inhibit T cells and NK cells functions, which promote tumor

metastasis. TGF-β derived from tumor microenvironment can

induce the activation of N2 neutrophils (Fridlender et al., 2009).

PA has been demonstrated to inhibit the expression of TGF-β in
tumor tissue (da Silva Alves et al., 2020), which attenuates the

polarization of N2 neutrophils.

4.1.4 Dendritic cells
DCs play a key role in eliminating and controlling tumor

progression. In human exercise studies, PA can increase the

number of DCs in the peripheral blood circulation (Ho et al.,

2001; LaVoy et al., 2015). Further study showed that exercise

upregulated the expression of MHC II and IL-12 on DCs in

animal models (Liao et al., 2006; Chiang et al., 2007). A previous

study investigated the composition of DCs subpopulations

mobilized in response to acute aerobic exercise. The findings

showed that exercise preferentially mobilized plasmacytoid DCs

into peripheral blood to enhance immune surveillance (Brown

et al., 2018b). However, there are few studies investigating the

effects of exercise on DCs in cancer patients, and more research is

needed in the future.

4.1.5 Myeloid-derived suppressor cells
MDSCs are effective inhibitory factors of immune function

and contribute to the immune escape. Augmented ROS produced

by MDSCs induced the upregulation of Notch1 in CTCs through

the ROS-NRF2-ARE axis, thus enhancing CTCs metastatic traits

(Sprouse et al., 2019). Recently, a preclinical study found that PA

reduced the tumor-induced accumulation ofMDSCs and delayed

the tumor growth in a mouse model of triple negative breast

cancer (Wennerberg et al., 2020). In 4T1 tumor-bearing mice,

voluntary wheel running potently relayed the accumulation of

IMCs/MDSCs in the spleen, blood, and tumor. Moreover, these

effects led to a reduction in the number of metastatic lung

nodules in exercising mice (Garritson et al., 2020). Another
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previous study also showed that the combination of PA and

energy restriction decreased MDSC accumulation by restraining

myelopoiesis and/or the mobilization and transportation of

MDSCs to secondary sites (Turbitt et al., 2019). In a mouse

model of pancreatic cancer, PA diminished MDSC via

downregulating the expression levels of Cxcr2 and Csf3r on

myeloid cells (Kurz et al., 2022). These findings suggested that

PA was beneficial to inhibiting tumor progression andmetastases

via suppressing MDSCs accumulation.

4.1.6 Platelets
Platelets activation plays an essential role in elevating the

survival rate of the CTCs. Activated platelets adhere to CTCs to

protect the tumor cells from various stressors in circulation.

Moreover, aggregates of platelets and CTCs have been shown to

inhibit NK cells antitumor cytotoxicity in vitro-model. Some

reports have found that PA affected the clearance of CTCs by

modulating platelets activity. Compared with sedentary mice

with breast cancer, exercising mice had a lower number of

circulating platelets (Smeda et al., 2017). In patients with

nasopharyngeal carcinoma, moderate-intensity exercise

decreased the formation of platelets-CTCs aggregates and

minimized the risk of metastasis (Wang et al., 2007). Another

study by the same team found that warm-up exercise before

severe exercise reduced platelet-impeded cytotoxicity of NK cells

to nasopharyngeal carcinoma cells (Wang et al., 2009).

The activation of platelets is also critical for CTCs to extravasate.

Adhesion molecules on activated platelets can gather CTCs to

securely adhere to the activated vascular endothelial cells. PA

might be related with the downregulation of adhesion molecules

on platelets and endothelial cells (ECs), such as P-selectin and

epithelial cell adhesion molecule-1 (EPCAM-1) (Wang et al.,

2005; Souza et al., 2017). In P-selectin-deficient mice, lung

metastasis was significantly reduced post injection of tumor cells

(Borsig, 2004). Nevertheless, the positive effects of exercise might be

limited by intensity. Some investigations have found that strenuous

exercise promoted platelets aggregation and the capacity of CTCs to

adhere to ECs for sedentary healthy humans (Chen et al., 2009), yet

moderate exercise inhibited platelets aggregation and adhesiveness

(Wang and Liao, 2004; Wang et al., 2005; Wang, 2006).

4.2 Physical activity and adaptive immune
cells

Adaptive immune cells consist mainly of T and B

lymphocytes. In general, exercise-induced lymphocytosis is

proportional to the duration and intensity of exercise.

4.2.1 Cytotoxic T cells
Cytotoxic T cells recognize and diminish CTCs by specifically

identifying mutation-induced neoantigens. A study using breast

cancer mice found that acute exercise caused a transient increase

in CD8+ T cells. Exercise-induced decrease in tumor growth was

contingent on the levels of CD8+ T cell in circulation. And key

metabolites that muscles released into the blood during exercise,

including lactate, made CD8+ T cells more effective. Moreover,

these super-effective CD8+ T cells extracted from exercising mice

showed better antitumor efficacy when transferred to sedentary

mice (Rundqvist et al., 2020). Recently, a preclinical study also

suggested that PA can increase the infiltration and effector

function of CD8 T cells in breast tumors. Further

investigation showed that CXCL9/11-CXCR3 pathway is

required for the CD8+ T cell-mediated antitumor effect of PA

(Gomes-Santos et al., 2021). In a mouse model of pancreatic

cancer, PA activated IL-15/ IL15Rα pathway to promotes

activation of CD8+ T cells (Kurz et al., 2022). Notable,

exercise-induced IL-15Rα CD8+ T cells selectively upregulate

checkpoint PD-1, which contributes to increase sensitivity to

chemotherapy.

CD4+ T cells also play a central role in antitumor immune

response. Similar to CD8+ T cells, a temporary increase in CD4+

T cells was detected after resistance exercise (Natale et al., 2003).

In a mouse model of hepatocellular carcinoma, exercise

enhanced immunity by raising CD4+ T lymphocytes in

peripheral blood (Zhang et al., 2016b).

4.2.2 Tregs
Tregs effectually inhibit the activation and proliferation of CD8+

T cells, which are considered to be the important barriers to impede

the effect of anti-tumor immunity. An increased number of Tregs

indicated a higher CTCs-positive rate and contributed to a poorer

clinical outcome in cancer patients (Xue et al., 2018). A previous

study demonstrated that endurance exercise suppressed the

recruitment of Tregs and relayed the tumor growth in breast

cancer. Exercise led to a greater tumor immune response by

increasing the ratio of CD8/Tregs (Hagar et al., 2019). PA

induced the downregulation of chemokines such as CCL5,

CCL20 and CCL25, which were closely associated with the

recruitment of Tregs (Turbitt et al., 2019).

4.2.3 B cells
The role of B cells in cancer progression ismuch less understood

than that of T cells. Growing evidence suggested that tumor-

infiltrating B cells may exert both tumor suppressive and tumor

promoting effects (Gu et al., 2019; Xu et al., 2022). During exercise,

circulating B-cell counts increased mildly immediately and in

proportion to exercise duration and intensity (Ronsen et al.,

2001). However, there are few studies elucidating the effects of

exercise on B cells immune function in cancer patients.

4.3 Additional exercise effects

Physical exercise improves blood perfusion and hypoxia,

which also affect immune function. Hypoxia induces
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overexpression of connexin 43 in tumor cells, leading to

degradation of NK cell immune synapses and impairing NK

cell killing activity (Tittarelli et al., 2015). Improving intra-

tumor hypoxia can indirectly increase the cytotoxicity of

tumor-infiltrating NK cells. Moreover, PA promotes

normalization of intratumoral vessels and blood perfusion,

which can increase the accessibility of immune cells and

delivery of antitumor drugs.

5 Deficiencies and prospects

Existing preclinical and clinical studies have demonstrated

that PA, particularly regular moderate exercise, plays a

beneficial role in tumor metastasis. The immune system is

highly responsive to exercise, which may lead to beneficial

effects on tumor metastasis. During exercise, a large number

of cytotoxic immune cells with antitumor functions are

mobilized into circulation to kill CTCs. To be sure, the

mechanisms of exercise modulating immune cells are

extensive and diverse. However, the exploration of the

potential mechanisms underlying the beneficial effect of

exercise on immune cells is still in its early stages. The

review analyzed that PA can control metastasis by

regulating immune function. As the understanding of the

mechanisms by which PA effects tumor metastasis

continues to improve, new therapeutic strategies will be

identified and validated, potentially contributing to

improve survival in cancer patients.
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Objective: Exercise can produce a large number of cytokines that may benefit

cancer patients, including Interleukin 15 (IL-15). IL-15 is a cytokine that has

multiple functions in regulating the adaptive and innate immune systems and

tumorigenesis of lung and breast cancers. However, the roles of IL-15 in other

types of cancer remain unknown. In this article, we try to systematically analyze

if IL-15 is a potential molecular biomarker for predicting patient prognosis in

pan-cancer and its connection with anti-cancer effects of exercise.

Methods: The expression of IL-15 was detected by The Cancer Genome Atlas

(TCGA) database, Human protein Atlas (HPA), and Genotype Tissue-Expression

(GTEX) database. Analysis of IL-15 genomic alterations and protein expression in

human organic tissues was analyzed by the cBioPortal database and HPA. The

correlations between IL-15 expression and survival outcomes, clinical features,

immune-associated cell infiltration, and ferroptosis/cuproptosis were analyzed

using the TCGA, ESTIMATE algorithm, and TIMER databases. Gene Set

Enrichment Analysis (GSEA) was performed to evaluate the biological

functions of IL-15 in pan-cancer.

Results: The differential analysis suggested that the level of IL-15 mRNA

expression was significantly downregulated in 12 tumor types compared

with normal tissues, which is similar to the protein expression in most

cancer types. The high expression of IL-15 could predict the positive survival

outcome of patients with LUAD (lung adenocarcinoma), COAD (colon

adenocarcinoma), COADREAD (colon and rectum adenocarcinoma), ESCA

(esophageal carcinoma), SKCM (skin cutaneous melanoma), UCS (uterine

carcinosarcoma), and READ (rectum adenocarcinoma). Moreover,

amplification was found to be the most frequent mutation type of IL-15

genomic. Furthermore, the expression of IL-15 was correlated to the

infiltration levels of various immune-associated cells in pan-cancer assessed

by the ESTIMATE algorithm and TIMER database. In addition, IL-15 is positively

correlated with ferroptosis/cuproptosis-related genes (ACSL4 and LIPT1) in
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pan-cancer. Levels of IL-15 were reported to be elevated in humans for

10–120min following an acute exercise. Therefore, we hypothesized that

the better prognosis of pan-cancer patients with regular exercise may be

achieved by regulating level of IL-15.

Conclusion: Our results demonstrated that IL-15 is a potential molecular

biomarker for predicting patient prognosis, immunoreaction, and ferroptosis/

cuproptosis in pan-cancer and partly explained the anti-cancer effects of

exercise.

KEYWORDS

pan-cancer, IL-15, prognosis, ferroptosis/cuproptosis, immune, exercise, multi-
analyses

Introduction

Over time, the global rise in cancer incidence and mortality

has corresponded with an increase in a range of cancer-related

lifestyle factors, such as obesity and inactivity (Bray et al., 2018);

thus, optimizing lifestyles and exercise (Anand et al., 2008) have

been emphasized as tools for cancer prevention andmanagement

(Bourke et al., 2016; Gunnell et al., 2017). Exercise oncology-the

application of sports medicine to cancer is a rapidly growing

subspecialty within the field of clinical oncology, and the quantity

and quality of research in this area are increasing (Jones and

Alfano, 2013). Although substantial evidence has supported a

link between exercise and reduced progression and mortality in

several types of cancer: Exercise-induced myokines play an

important role in increasing cytotoxicity and the infiltration of

immune cells into the tumour on prostate cancer. Myokines

released from activated skeletal muscle impaired growth and

migration of PC(Pancreatic cancer) cells and enhanced PC cell

death. However, the molecular mechanism between exercise and

disease progression has not been fully elucidated. (Kim et al.,

2021; Schwappacher et al., 2021). Research suggests that exercise

could lead to a variety of physiological alterations, thereby

reducing the risk of developing chronic disease. For example,

the factors such as muscle secretome and catecholamines in

serum will be regulated after exercise. (Jones and Alfano, 2013;

Rönn et al., 2014; Bohlen et al., 2018; Chen et al., 2022).

Preclinical evidence suggested that exercise may modulate

levels of systemic factors such as local growth factors (IGF1),

hormones (insulin and leptin), and inflammatory cytokines (IL-

6, IL-15), which are known factors that have a possible impact on

the cancer process (Kim et al., 2021). It has been determined that

skeletal muscle is a significant source of IL-15 (rEF.146). After a

single exercise session, IL-15 mRNA expression in skeletal

muscle (Bohlen et al., 2018; Kim et al., 2021; Morrisson et al.,

2021) was much greater in healthy volunteers than it was before

the exercise (Riechman et al., 2004; Tamura et al., 2011). It was

also widely reported that circulating levels of IL-15 were

significantly higher after many kinds of exercise, which may

benefit human health (Riechman et al., 2004; Nielsen et al., 2007;

Tamura et al., 2011; Jones and Alfano, 2013; Bazgir et al., 2015;

Crane et al., 2015; Palareti et al., 2016).

Interleukin 15 (IL-15) is a cytokine of the interleukin 2 (IL-2)

family that has multiple functions similar to IL-2 in regulating the

adaptive and innate immune systems (Bohlen et al., 2018).

Although IL-15 is released in small amounts, the alpha receptor

(IL15Rα), a transmembrane protein with a high affinity for IL-15,

facilitates IL-15 transport from the endoplasmic reticulum through

the cytoplasm and presents the IL-15/IL-15Rα complex on the cell

surface (Nadeau and Aguer, 2019). Upon cell activation, IL-15 is

secreted primarily by dendritic cells (DCs), macrophages, and

monocytes (Do Thi et al., 2019); however, it can also be secreted by

many other cell types, including endothelial cells, mesenchymal

cells, and renal epithelial cells, but not by T cells or natural killer

(NK) cells (Nielsen et al., 2007; Vilsmaier et al., 2021). With

improved immune cell activation and migration, IL-15 is

involved in anti-tumor immunity (Morrisson et al., 2021;

Schwappacher et al., 2021; Vilsmaier et al., 2021). Many studies

suggested that IL-15 is involved in tumor suppression by

enhancing anti-tumor immunity (Crane et al., 2015; Dethlefsen

et al., 2017; Bohlen et al., 2018; Liu et al., 2021). In recent years,

many studies have been conducted to investigate the oncogenesis

and development of pan-cancer to reveal the similarities and

differences in cancer (Xu et al., 2021; Zhang et al., 2022).

Therefore, it is of interest to further explore the spectrum of

oncogenes in pan-cancer, but to date, there is no association

analysis between IL-15 and pan-cancer.

Ferroptosis and cuproptosis are two forms of cell death

induced by unbalanced ion homeostasis, which ferroptosis is

driven by iron-dependent lipid peroxidation, while cuproptosis

terms to intracellular copper accumulation triggers the aggregation

and destabilization of proteins (Stockwell, 2022; Tang et al., 2022).

A better understanding of the molecular determinants of the two

cell death modes will contribute to innovate anticancer therapies

(Lei et al., 2022; Tsvetkov et al., 2022). For example, much research

has revealed that drugs targeting ferroptosis could kill cancer cells

both in vitro and in vivo (Lei et al., 2022). Studies have reported

CD8+ T cells could activate ferroptosis in tumor cells in vivo and

further induce cancer cells death(32778143). But currently, rare
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studies have discovered the association between IL-15 and

ferroptosis/cuproptosis-related genes in pan-cancers, which is

wealthy to explore.

We have systematically investigated the role of IL-15 in human

pan-cancer. We comprehensively investigated the different

expression levels of IL-15 in tumor and normal control tissues

by using The Cancer Genome Atlas (TCGA), Genotype-Tissue

Expression (GTEX), and tumor-related databases. The predictive

value of IL-15 on prognosis was also evaluated. Meanwhile,

potential relationships between IL-15 mRNA expression levels

and clinical features, DNA gene mutations, immune cells

infiltration, and pathway regulation were evaluated in pan-

cancer. This study highlights the multifaceted role of IL-15 in

pan-cancer. Combined with its correlation with exercise, we

provide a theoretical basis for exercise to prevent cancer and

IL-15 as a pan-cancer therapeutic target.

Methods

Data processing and IL-15 expression
analysis

Transcriptomic data and clinical features of tumor tissues

were analyzed using UCSC Xena (https://xena.ucsc.edu/))

software (Chen et al., 2021). The GTEx portal (https://www.

gtexportal.org/) was used to obtain Human normal tissue

expression matrices. Strawberry Perl scripting software was

applied to get the IL-15 expression data in 33 TCGA tumors

and GTEx normal tissues (http://strawberryperl.com/, version 5.

30.0.1). In addition, IL-15 expression in various tumor types and

cell types was also assessed from the Human Protein Atlas

database (https://www.proteinatlas.org/). The expression levels

of IL-15 in healthy male and female tissues were presented by the

Gganatgraph R program package. Expression data were cleared

using log2 (TPM) to exclude missing data and duplicate values. R

version 4.0.2 software was used (https://www.Rproject.org) to

conduct the analysis. The Encyclopedia of Cancer Cell Lines

(https://portals.broadinstitute.org/ccle/) was utilized to extract

IL-15 mRNA expression in cell lines.

Immunohistochemical tissue

The relative IL-15 protein expression data in pan-cancer were

obtained in the Human Protein Atlas (https://www.proteinatlas.

org/) including both normal tissue and pathology tissue (Zhang

et al., 2022). The overall expression can be observed directly

through tissue samples.

Correlation analysis between genes in
pan-cancer

The Timer database (https://cistrome.Shinyapps.io/Timer/)

was utilized to analyze the relationship between the expression

level of IL-15 and ferroptosis/cuproptosis-related genes in pan-

cancerous tissues (Li et al., 2017). Ferroptosis: SLC7A11, GPX4,

CISD1, NFS1, NRF2, P53, VDACs, ACSL4, and NCOA4;

Cuproptosis: CDKN2A, FDX1, DLD, DLAT, LIAS, GLS, LIPT1,

MTF1, PDHA1, and PDHB.

Genomic alterations IL-15 in pan-cancer

The genetic alterations of IL-15 in the TCGA pan-cancer

dataset were analyzed using the Bioportal database (http://www.

cbioportal.org/) (Cerami et al., 2012). Data on the genetic

alterations and mutation sites of IL-15 was gotten from the

“OnCoprint”, “Summary of Cancer Types” and “Mutations”

modules.

Association analysis of IL-15 expression
with tumor immune microenvironment in
cancers

The lollipop plots were produced by R (3.6.3 version, GSVA

packages) to show the correlation between IL-15 expression and

immune cells, including aDC [activated DC]; B cells; CD8+

T cells; Cytotoxic cells; DC; Eosinophils; iDC [immature DC];

Macrophages; Mast cells; Neutrophils; NK CD56bright cells; NK

CD56dim cells; NK cells; pDC [Plasmacytoid DC]; T cells; T

helper cells; Tcm [T central memory]; Tem [T effector memory];

Tfh [T follicular helper]; Tgd [T gamma delta]; Th1 cells;

Th17 cells; Th2 cells; Treg.

The Timer database (https://cistrome.Shinyapps.io/Timer/)

was utilized to analyze the relationship between the expression

level of IL-15 and the abundance of various immune-related cells

in pan-cancerous tissues (Li et al., 2017). The expression of IL-15

in various cancer types was assessed by the “diff Exp” module in

the Timer database.

The biological functions of IL-15 were analyzed using the

Gene Set Enrichment Analysis (GSEA) (Luo et al., 2022a; Luo

et al., 2022b; Sun et al., 2022). The GSEA online database (https://

www.gsea-msigdb.org/gsea/downloads.jsp) was used to perform

Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis

and the biological functions of IL-15 in pan-cancer were

conducted via GSEA analysis using the R-packages “cluster

Profiler”.
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FIGURE 1
Differential expression pattern of IL-15. (A) IL-15 mRNA expression in normal tissues from GTEX data. (B) Differential IL-15 mRNA expression
between paired samples in TCGA cancers. The red dot represents cancer samples, and the blue dot represents paired normal samples. (C)Differential
IL-15 mRNA expression between TCGA cancers and GTEX normal tissues. The red column represents cancer samples, and the blue column
represents normal samples. The normal group was normal tissue in TCGA and GTEX databases. (D) IL-15 mRNA expression in different cancer
types in TIMER. The normal group was normal tissue in the TCGA database. *p < 0.05, **p < 0.01, and ***p < 0.001.
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Statistical analysis

Differences in expression and correlation between the two

groups were assessed by Wilcoxon rank-sum test and the

Spearman rank-sum test. Kaplan-Meier survival curves with

the log-rank test were applied to survival analysis. Besides,

Hazard ratios (HR) were calculated using Cox proportional

risk regression models. In addition, statistical analysis was

calculated by GraphPad Prism 9.0 and R software (4.0.2). p <
0.05 was considered statistically significant.

Results

Expression of IL-15 in normal tissue and
pan-cancer

To assess the mRNA expression of IL-15 in human normal

tissue, IL-15 expression was tested in physiological tissue of the

GTEX dataset. IL-15 was overexpressed in the thyroid, adipose,

endocrine tissues, bone marrow, and lung tissues (Figure 1A;

Supplementary Figures S1A–C). As for IL-15 in normal cell

types, endometrial stromal cells and monocytes express the

highest level of IL-15 mRNA (Supplementary Figure S1D).

The expression abundances of IL-15 in various tissues within

male and female were also observed. Generally, no significant

difference was found between gender and IL-15 mRNA

expression levels (Supplementary Figure S1E). According to

the Atlas database, IL-15 was decreased in almost all the

human cell which in lines with analysis of the CCLE database

except the Lymphoid cell line (Supplementary Figure S1F).

Then, via analyzing the RNA-seq data of TCGA and GTex

databases, the expression of IL-15 in pan-cancer was assessed

deeper. A significant expression difference of IL-15 was evaluated

in 33 types of cancer in paired or unpaired samples except those

without normal tissue data. In paired samples (Figure 1B), IL-15

expression was downregulated in BLCA (bladder urothelial

carcinoma), BRCA (breast invasive carcinoma), COAD (colon

adenocarcinoma), LUAD (lung adenocarcinoma), PRAD (prostate

adenocarcinoma), READ (rectum adenocarcinoma), THCA

(thyroid carcinoma), and UCEC (uterine corpus endometrial

carcinoma), while upregulated in CHOL (cholangiocarcinoma),

ESCA (esophageal carcinoma), HNSC (head and neck squamous

cell carcinoma), and KIRC (kidney renal clear cell carcinoma). In

unpaired samples (Figure 1C), IL-15 expression was considerably

downregulated in ACC (adrenocortical carcinoma), BLCA, BRCA,

COAD, LUAD, LUSC (lung squamous cell carcinoma), PRAD,

READ, THCA, LGG (brain lower grade glioma), SKCM (skin

cutaneous melanoma) and UCEC, while upregulated in CHOL,

DLBC (lymphoid neoplasm diffuse large B-cell lymphoma), ESCA,

GBM (glioblastoma multiforme), HNSC, KIRC, LAML (acute

myeloid leukemia), OV (ovarian serous cystadenocarcinoma),

PAAD (pancreatic adenocarcinoma), STAD (stomach

adenocarcinoma), TGCT (testicular germ cell tumors), and

THYM (thymoma) compared to control tissues. Next, the

mRNA expression of IL-15 in human pan-cancer was further

assessed in the TIMER database. IL-15 expression was increased in

CHOL, ESCA, and HNSC, while IL-15 was significantly decreased

in BRCA, ESCA, LUAD, LUSC, PRAD, READ, SKCM, THCA,

UCEC, and COAD (Figure 1D) compared to the control group.

Protein expression of the IL-15 in human
tissues

The protein levels of IL-15 in pan-cancer were assessed by the

Human Protein Atlas (HPA) (Figure 2). The protein levels of IL-

15 were considerably downregulated in COADREAD (colon and

rectum adenocarcinoma), LUAD, BRCA, and BLCA, while it was

not obvious in LGG, SKCM, THCA, and PRAD compared with

corresponding normal tissues.

Prognostic assessment value of IL-15 in
pan-cancer

To investigate the prognostic assessment value of IL-15 in

pan-cancer, Kaplan–Meier analysis and Cox proportional

hazards model were performed to assess the relationship

between IL-15 expression levels and patients’ survival period

(Figure 3). The expression of IL-15 was positive correlated with

OS (overall survival) in LUAD (p = 0.037), COAD (p = 0.045),

COADREAD (p = 0.008), SKCM (p < 0.001), PCPG (p = 0.032),

UCS (Uterine Carcinosarcoma, p = 0.014) and READ (p = 0.029)

as a good prognostic marker performed by Cox proportional

hazards regressionmodel. On the contrary, IL-15 was regarded as

a high-risk factor for OS of GBM, OSCC, LGG, THYM, LIHC,

LAML, PAAD, and GBMLGG (Supplementary Table S1;

Supplementary Figure S2). In addition, DSS (disease-specific

survival) of ESCA (p = 0.029), COADREAD (p = 0.004),

COAD (p = 0.047), LUAD (p = 0.037), READ (p = 0.017),

and SKCM (p < 0.001) were also positive correlated with IL-15

expression level, while that of GBM (p = 0.005) and LGG (p <
0.001) was negative correlated with IL-15 levels. For PFI

(Progression-Free Interval), the overexpressed mRNA level of

IL-15 showed an adverse factor in LGG (p < 0.001), THYM (p =

0.019), GBM (p < 0.001), PRAD (p = 0.026) and OV (p = 0.022)

(Supplementary Table S1). Kaplan–Meier curves for PFI

indicated a positive correlation between IL-15 overexpression

and good survival outcome in patients with LUAD (p = 0.048),

COAD (p = 0.006), COADREAD (p < 0.001), SKCM (p < 0.001),

UCS (p = 0.012) and READ (p = 0.002) (Supplementary Table

S1). Therefore, we performed the following assessments on the

good-survival patients positive correlated with high IL-15

expression, including LUAD, PCPG, COAD, READ,

COADREAD, ESCA, SKCM, and UCS.
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Correlation analysis between IL-15
expression and clinicopathological
phenotypes in pan-cancer

The correlation between the mRNA expression level of IL-15

and patients’ clinicopathological features progression was further

investigated in pan-cancer. IL-15 expression was negatively

correlated to tumor stage in LUAD, COAD, READ,

COADREAD, ESCA and SKCM (Supplementary Figures

S4A–G). Higher expression of IL-15 was found in the

age≥65 years group in COAD (p < 0.05) (Supplementary

Figure S3C). It was discovered that IL-15 expression level was

not significantly associated with tumor treatment response,

especially between CR and PR groups (Supplementary Figure

S4). Then, it was found that the overexpression of IL-15 was

significantly associated with tumor status in COAD, SKCM, and

COADREAD (Supplementary Figures S4C,E,G). In the three

cancer types, patients with lower IL-15 expression were with

higher-level tumor status. These results suggest that IL-15

expression levels could impact the prognosis in LUAD,

COAD, READ, COADREAD, ESCA, and SKCM patients.

Genetic alteration analysis of IL-15 in pan-
cancer

Pan-cancer patients with uterine corpus endometrial

carcinoma, sarcoma, cholangiocarcinoma, and esophageal

adenocarcinoma owned the highest gene alteration rate of IL-

15 (>2%) compared with the primary type in the cBioPortal

database (Figure 4A). Three main types of frequent genetic

alterations of IL-15 were missense mutation, amplification,

and deep deletion (Figure 4B). Figure 4C further presented

the types, sites, and case numbers of the IL-15 gene

modification. IL-15 missense mutation was the main type of

alteration, while splice alteration was detected in 3 cases.

Amplification, gain function, and diploid were the Top-3

frequent putative copy-number alterations of IL-15

(Figure 4D). The gene alteration of IGLVIL-66-1, ALC5A6,

Lnc00189, MFSD13B, PPP1R1A, REX1BD, NUP50-DT, and

SKP1P2 was more frequent in the altered group than in the

unaltered group (Figure 4E).

Correlation of IL-15 expressionwith tumor
immune microenvironment

To further assess the relationship between IL-15 and the

human immune system, based on the ssGSEA algorithm and

TIMER database, the relationship between IL-15 expression and

the tumor immune microenvironment was evaluated (Figure 5).

First of all, the relationship between IL-15 expression and

immune-associated cells infiltration in pan-cancer was

assessed using the ssGSEA algorithm. It was found that

almost all the relative immune cells including aDC, B cells,

CD8+ T cells, Cytotoxic cells, DC, Eosinophils, iDC,

FIGURE 2
The protein expression level of IL-15 in human multiple cancer tissues (A) LGG, (B) COADREAD, (C) SKCM, (D) LUAD, (E) BRCA, (F) BLCA, (G)
THCA, and (H) PRAD. Representative images of IL-15 expression in pan-cancer tissues are shown. Original magnification, ×100 and ×400. Scare
bar = 200 μm or 50 μm.
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Macrophages, Neutrophils, NK CD56- cells, NK cells, T cells, T

helper cells, Tcm, Tem, fh, Tgd, Th1 cells, and Treg, were

positively correlated with IL-15 except Th17 cells, NK CD56+

cells, Th2 cells, Mast cells, and pDC presented by Lollipop

diagrams. The boxplot displayed the statistical significance of

T cells, NK cells, macrophages, CD8+ T cells, and B cells with low

or high IL-15 expression., in which enrichment scores of the high

IL-15 group were significantly higher than that of the low IL-15

group except for NK cells. Next, the TIMER database was used to

further evaluate the relationship between immune-associated

cells infiltration and IL-15 expression in pan-cancer. It was

shown that IL-15 expression was significantly correlated with

six types of infiltrating immune-associated cells including B cells,

CD8+T cells, CD4+T cells, neutrophils, macrophages, and

dendritic cells in LUAD, COAD, SKCM, ESCA, and USC,

except PCPG (Supplementary Figure S4).

Biological function of IL-15 in cancer

The main (Top-5) biological processes affected by IL-15 were

explored by GSEA analysis in pan-cancer. Based on KEGG gene

FIGURE 3
High expression of IL-15 promoted patient survival period. (A and G) Kaplan–Meier analysis of the association between IL-15 expression and
DSS in LUAD and ESCA. (B–F,H) Kaplan–Meier analysis of the correlation between IL-15 expression and OS in COAD, COADREAD, SKCM, PCPG,
READ, and UCS. The red line shows high IL-15 expression, and the blue line represents low IL-15 expression. OS, overall survival; DSS, disease-
specific survival.
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FIGURE 4
The genetic alterations of IL-15. (A) Alteration summary of IL-15 in TCGA pan-cancer datasets. (B) Summary of IL-15 structural variant,
mutations, and copy-number alterations. (C) The mutation types, number, and sites of the IL-15 genetic alterations. (D) The alteration types of IL-15
in pan-cancer. (E)The related genes alteration frequency in the IL-15 altered group (Red) and unaltered group (blue).
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sets analysis, the data suggested that IL-15 positively regulated

signaling pathways in LUAD, PCPG, COAD, READ,

COADREAD, ESCA, SKACM, and UCS (Figure 6). Cytokine

receptor interaction and Gαs signaling were the most common

signaling pathways of IL-15 for pan-cancer, followed by olfactory

transduction, neutrophil degranulation, immunoregulatory

interactions pathway. In addition, GPCR(G Protein-Coupled

Receptor) ligand binding, infection, phagocytosis, and DNA

damage checkpoint pathways were all involved in IL-15

biology function in pan-cancer biological analysis.

Correlation of IL-15 expression with
ferroptosis-related genes and survival
analysis

We first analyzed the expression of ferroptosis-related genes

with IL-15 in LUAD, the largest sample size, and our results only

found a correlation between ACSL4 and IL-15 (Figure 7). We

further analyzed the expression of ACSL4 in pan-cancer, and we

found a strong and significant positive correlation between

ACSL4 and IL-15 in SKCM patients, and a general level of

positive correlation in PCPG, UCS, ESCA, COAD, and LUAD

(p less than 0.05), while the correlation was not strong in READ.

Further, we analyzed the relationship between ACSL4 and overall

survival, and we found that in SKCM, high expression of ACSL4

significantly increased patient survival (p less than 0.05). The

above results suggest that the improvement of overall survival in

SKCM by IL-15 may be achieved by promoting the expression of

iron death-related genes. In addition, low expression of ACSL4

protein was found in SKCM and ACSL4 protein was relatively

higher in normal skin tissue.

Correlation of IL-15 expression with
cuproptosis-related genes and survival
analysis

We first analyzed the expression of cuproptosis-related genes

with IL-15 in LUAD and SKCM, which had the largest sample

size, and our results found a correlation between LIPT1, FDX1,

MTF1, and IL-15, and LIPT1 was the strongest (R = 0.348)

(Figure 8). Further, we analyzed the expression of LIPT14 in pan-

cancer, and we found that LIPT1 and IL-15 had a strong and

significant positive correlation in SKCM and READ, and a

general level of positive correlation in LUAD, ESCA, PCPG (p

less than 0.05), but not with UCS, COAD. We further analyzed

the relationship between ACSL4 and overall survival, and we

found that in SKCM, high expression of LIPT1 significantly

increased the survival rate of patients (p less than 0.05),

meanwhile, in LUAD, high expression of LIPT1 also show

general prognostic impact (p = 0.055). The above results

suggest that IL-15 improves the overall survival of SKCM, and

LUAD may be reached by promoting the expression of

FIGURE 5
Correlation between IL-15 gene expression and tumor immune microenvironment in TCGA database. (A–H) Analysis of immune-associated
cells infiltration with IL-15 expression in pan-cancer using lollipop diagrams and box plots. *p < 0.05, **p < 0.01, and ***p < 0.001.
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cuproptosis-related genes. Furthermore, low expression of LIPT1

protein was found in SKCM and LIPT1 protein was relatively

higher in normal skin tissue.

Discussion

Numerous studies have shown that circulating levels of IL-15

are elevated in humans for 10–120 min following an acute

exercise (Riechman et al., 2004; Tamura et al., 2011; Crane

et al., 2015). For example, Regular endurance training for

12 weeks led to a 40% rise in the amount of IL-15 protein in

the basal skeletal muscle (Rinnov et al., 2014). Weightlifting

increased circulating IL-15 levels in untrained and trained young

subjects during and immediately after exercise (Nielsen et al.,

2007; Bazgir et al., 2015; Nadeau and Aguer, 2019; Kim et al.,

2021). Recently, IL-15 has emerged as a promising cytokine for

the treatment of cancer (Berger et al., 2019; Ligibel et al., 2019;

Xiao et al., 2019; Schwappacher et al., 2021; Pereira et al., 2022).

IL-15 is also a key factor in the development, proliferation, and

activation of NK cells and CD8+ T cells (Berger et al., 2019; Do

Thi et al., 2019; Fiore et al., 2020; Liu et al., 2021), which are able

to destroy cancer cells in the tumor microenvironment. Several

current products include ALT-803 ALT-803 (Hu et al., 2018),

P22339 (Hu et al., 2018), chimeric IL-15 apolipoprotein A-I

(Ochoa et al., 2018), or NKTR-255 (Miyazaki et al., 2021),

illustrating the promise of IL-15 in cancer therapy. Recently,

some completed clinical trials have reported usage of

recombinant human single-chain IL-15 and IL-15

superagonist in cancer treatment (Zhang et al., 2021). Conlon

et al. utilized recombinant human single-chain IL-15 to treat

metastatic malignant melanoma or renal cell cancer patient with

maximum tolerated dose 0.3 ug/kg (Conlon et al., 2015). The

results indicated IL-15 could dramatically mediate the NK cells in

blood. In the following study by Conlon et al.and Miller et al., the

results showed a better mediated effect to NK cells and CD8+ cells

FIGURE 6
GSEA analysis in KEGG signature of IL-15 in LUAD (A), PCPG (B), COAD (C), READ (D), COADREAD (E), ESCA (F), SKCM (G), and UCS (H). The left
panel: Different color curves show different functions or pathways (Top 5). The peak of the upward and downward curve represents the positive and
negative regulation of IL-15, respectively. Score, enrichment score. The right panel: Summary of GSEA plots of representative data is presented. The
horizontal axis is the degree of correlation, and the vertical axis is the corresponding pathway.
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when the maximum tolerated dose up to 2 ug/kg (Miller et al.,

2018; Conlon et al., 2019). However, no studies have explored IL-

15 in pan-cancer, limiting its possible clinical application, and the

present study has explored the relevance by focusing on both

prognostic and immunological directions.

It was found in this study that IL-15 is highly expressed in the

thyroid, intestine, bone marrow, and lymphatic system, while it is

less expressed in tissues such as skin and pancreas and varies

independently of sex. It was also decreased in most tumor cell

lines and was highly expressed in epithelial cells and monocytes,

which are similar to the previous reports (Van Acker et al., 2018;

Nadeau and Aguer, 2019; Xiao et al., 2019; Liu et al., 2021). IL-15

gene expression was found to be downregulated in BLCA, BRCA,

COAD, LUAD, PRAD, READ, THCA, and UCEC in both

FIGURE 7
Correlation and survival analysis for IL-15 and ferroptosis-related genes in pan-cancers (A) Correlation between IL-15 and ferroptosis-related
genes in LUAD. (B) Correlation between IL-15 and ACSL4 in pan-cancers. (C) Survival analysis for ACSL4 in pan-cancers. (D) Protein expression of
ACSL4 in SKCM and normal skin tissue.
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matched and unmatched specimens in the TCGA database, GTex

database, and TIMER database. We further examined IL-15

expression in tissues and found that the relative expression of

IL-15 protein was downregulated in COADREAD, LUAD,

BRCA, and BLCA. Currently, rare studies have checked the

IL-15 expression in pan-cancer using tissue microassays

except in those databases. Cierna et al. (2021) found that

decreased levels of circulating IL-15 suggested PD-L1

overexpression in tumors of primary breast cancer patients

and poor prognosis. Krizia et al. (Cierna et al., 2021) reported

that higher IL-15 levels would lead to better outcomes in prostate

cancer, which is consistent with our findings. Margolin et al.

(2018) recently found that the injection of IL-15N72D: IL-

15RαSu/IgG1 Fc complex could reduce cancer growth, induce

FIGURE 8
Correlation and survival analysis for IL-15 and cuproptosis-related genes in pan-cancers (A)Correlation between IL-15 and cuproptosis-related
genes in LUAD. (B) Correlation between IL-15 and cuproptosis -related genes in SKCM. (C) Correlation between IL-15 and LIPT1 in pan-cancers. (D)
Survival analysis for LIPT1 in pan-cancers. (E) Protein expression of LIPT1 in SKCM and normal skin tissue.
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NK cell expansion and improve survival in patients with

incurable advanced melanoma, renal cell, non-small cell lung,

and head and neck cancer. The above results suggest that IL-15

plays an important role in the development of human cancers.

Next, we sought to analyze the relationship between mRNA

expression levels of IL-15 and the prognosis of patients with cancer.

Kaplan-Meier survival analysis showed that OS in LUAD, COAD,

COADREAD, SKCM, UCS, and READ, OS in LUAD, COAD,

COADREAD, SKCM, UCS and READ, PFI in ESCA,

COADREAD, COAD, LUAD, READ, and DSS in SKCM were

positively correlated with IL-15 expression, with statistically

significant differences. In addition, we found that IL-15 was

significantly lower in COAD, SKCM, and COADREAD with

worse clinical staging compared to patients with lower staging.

These results may confirm that IL-15 plays a protective role in

human cancers. However, we also found that mRNA expression

levels of IL-15 played a cancer-promoting role in GBM, OSCC,

LGG, THYM, LIHC, LAML, PAAD, and GBMLGG. These suggest

that the mechanism of IL-15 in cancers are complex and IL-15 may

play a negative role in certain cancer types in a specific condition,

which will need to be further tested in the future (Waldmann, 2014;

Fiore et al., 2020; Cierna et al., 2021). For example, overexpression of

IL-15 mRNA is associated with clinical staging and metastasis in

cutaneous T-cell lymphoma (Döbbeling et al., 1998), but we found

from the Kaplan-Meier database that IL-15 is more likely to be a

protective factor for patients with SKCM. In addition, clinical studies

have reported a correlation between high intra-tumor IL-15

concentrations and poor clinical outcomes in patients with lung

cancer (Seike et al., 2007), which is contrary to our results. We

suspect that the discrepancy between our online database results and

the reported data may be due to the different methods used to detect

IL-15 expression. Gene expression of IL-15 in lung adenocarcinoma,

whereas mRNA and protein expression of IL-15 was detected in the

Kaplan-Meier and Atlas databases. Therefore, the result of this study

should be further validated in corresponding cancer samples for

deeper investigation.

The IL-15 gene is located on chromosome 4q31 and encoded

the 14–15 kDa glycoprotein-IL-15(54). IL-15 deficiency, due to

mutations in its gene, has been extensively studied in many

diseases, such as liver injury (Hou et al., 2012), diabetes (Liu

et al., 2017) and allergy (Mathias et al., 2017). However, there are

rare studies on the alteration of the IL-15 gene in human tumors.

Therefore, we used the cBio-portal database to reveal the fact that

amplification is the greatest frequency of IL-15 changes in pan-

cancer. Alterations in IGLVIL-66-1, ALC5A6, Lnc00189,

MFSD13B, PPP1R1A, REX1BD, NUP50-DT, and SKP1P2 were

found to co-exist among IL-15mutations.However, by our assay, we

found that IL-15 variants do not seem to affect the prognosis of

cancer patients (data not presented). Furthermore, studies have

reported that if IL-15 deficiency leads to a range of problems

(Gillgrass et al., 2014; Mathias et al., 2017; Van Acker et al.,

2018; Schwappacher et al., 2021), suggesting that these variants

may not affect the functional profile of IL-15 in cancer.

Due to a marked reduction in the number of peripheral

lymphocytes, NK cells, T cells in IL-15-deficient mice (Grabstein

et al., 1994; Miller et al., 2018), we believed that IL-15may play an

important role in the immune regulation of human tumors.

Firstly, we used the ssGSEA algorithm in the TCGA database and

found that IL-15 was positively associated with a range of

immune cells including aDC, B cells, CD8+ T cells, Cytotoxic

cells, DC, Eosinophils, iDC, Macrophages, Neutrophils, NK

CD56- cells, NK cells, T cells, T helper cells, Tcm, Tem, fh,

Tgd, Th1 cells, and Treg. Only NK CD56+ cells, Th2 cells, Mast

cells, and pDC were not significantly positively correlated with

IL-15 expression. Timer database mining further revealed that

IL-15 expression was significantly correlated with infiltration

levels of a variety of immune-related cells, including B cells,

CD8+T cells, CD4+T cells, neutrophils, macrophages, and

dendritic cells in LUAD, COAD, SKCM, ESCA, and USC.

The role of IL-15 in the human immune system has been

studied in recent years. In mouse models, exogenous IL-1t5

treatment can reverse the downregulation of NK cell and

T cell activity in IL-15 deficient mice (Kennedy et al., 2000).

In terms of the cancer microenvironment, systemic IL-15

treatment reduced tumor growth, metastasis, and recurrence

by increasing the cytotoxic effects of NK cells in mice

inoculated with a lung and breast cancer models (Tang et al.,

2008; Gillgrass et al., 2014). A preclinical study showed reduced

tumor growth and increased immune cell infiltration in a mouse

model of prostate cancer with IL-15 overexpression 2.5-fold and

2.7-fold higher numbers of CD8+ T cells and NK cells,

respectively than in mice in the model without IL-15 injection

(Morris et al., 2014). Our study suggested that IL-15 could also be

useful in LUAD, COAD, SKCM, ESCA, and USC by improving

the infiltration of the immune cells in tumors.

Furthermore, it has been suggested that IL-15 plays an

important role in modulating lipid metabolism and glucose

metabolism (Nadeau and Aguer, 2019; Kim et al., 2021). In

mice, high levels of circulating IL-15 prevented abnormal glucose

tolerance and insulin resistance induced by the high-fat diet.

Overexpression of muscle-specific IL-15 in mice and

supraphysiological IL-15 treatment in rats resulted in lower

respiratory exchange rates and higher whole-body fatty acid

oxidation, showing a greater tendency to use lipids as a high-

energy fuel (Almendro et al., 2006; Morris et al., 2014). The series

of abnormal expressions of lipid metabolism and gluconeogenic

signaling pathways that may be induced by the reduction of IL-15

in pan-cancer may lead to the metabolic dysfunction of the body

in the development of cancer (Crane et al., 2015; Bohlen et al.,

2018; Nadeau and Aguer, 2019). This can at least partly explain

why the upregulated IL-15 gene expression can be a risk factor in

OS of GBM, OSCC, LGG, THYM, LIHC, LAML, PAAD, and

GBMLGG in our results. Moreover, GPCR ligand binding,

infection, phagocytosis, and DNA damage checkpoints were

found to be IL-15 mediated pathways in pan-cancer, which

deserved further investigation.
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Finally, we analyzed the relationship between IL-15 and ion-

induced death and their impact on clinical prognosis. Our results

show that IL-15 is positively associated with ferroptosis/

cuproptosis-related genes in various types of tumors, such as

LIPT1, ACSL4. High expression of these genes can improve the

prognosis of patients with SKCM and LUAD, which suggests that

IL-15 may be able to kill cancer cells by activating the process of

ferroptosis/cuproptosis. The literature reports that loss ACSL4

will promote cancer progress and enhanced ACSL4 expression

will result in better clinical outcomes in tumors (Liao et al., 2022).

Furthermore, high LIPT1 expression was reported to be a good

prognostic factor in SKCM (Lv et al., 2022), which is in line with

our work. IL-15 may be in synergy with ferroptosis/cuproptosis

inducers for tumor treatment in the future.

Further studies can continue to delve into the evidence of

potential associations between IL-15 expression and DNA

mismatch repair system, microsatellite instability, ferroptosis/

cuproptosis, or tumor mutation burden, and explore the

possibility that IL-15 may influence the response of cancer

patients to immune checkpoint therapy, which will contribute to

further understanding of the mechanisms of immunotherapy for

cancer treatment. In addition, pharmacological target exploration

can be performed to search for drugs that can target or synergize IL-

15 and contribute to clinical cancer treatment.

Conclusion

This study systematically evaluated the characteristics of IL-

15 in various aspects, including expression pattern, survival

prognosis, genetic mutation, tumor immune

microenvironment, ferroptosis/cuproptosis, and signaling

pathway. Exercise-induced IL-15 might serve as a potential

candidate for multiple-cancer treatments since it showed low

expression in multiple cancers and predicted a better prognosis

in cancer patients. Moreover, the aberrant IL-15 expression may

be related to the tumour immune microenvironment in multiple

types of cancer. This study highlights the positive roles of IL-15 in

pan-cancer and provides data-based insights for the application

of IL-15 in cancer treatment.
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Glossary

ACC Adrenocortical carcinoma

BLCA Bladder urothelial carcinoma

BRCA Breast invasive carcinoma

CHOL Cholangiocarcinoma

COAD Colon adenocarcinoma

COADREAD Colon and rectum adenocarcinoma

DCs Dendritic cells

DLBC Lymphoid neoplasm diffuse large B-cell lymphoma

DSS Disease-specific survival

ESCA Esophageal carcinoma

GBM Glioblastoma multiforme

GSEA Gene Set Enrichment Analysis

GTEX Genotype Tissue-Expression

HNSC Head and neck squamous cell carcinoma

HPA Human protein Atlas

HR Hazard ratios

IL-15 Interleukin 15

KEGG Kyoto Encyclopedia of Genes and Genomes

KIRC Kidney renal clear cell carcinoma

LAML Acute myeloid leukemia

LGF Local growth factors

LGG Brain lower grade glioma

LUAD Lung adenocarcinoma

LUSC Lung squamous cell carcinoma

NK Natural killer

OS Overall survival

OV Ovarian serous cystadenocarcinoma

PAAD Pancreatic adenocarcinoma

PFI Progression-Free Interval

PRAD Prostate adenocarcinoma

READ Rectum adenocarcinoma

SKCM Skin cutaneous melanoma

STAD Stomach adenocarcinoma

TCGA The Cancer Genome Atlas

TGCT Testicular germ cell tumors

THCA Thyroid carcinoma

THYM Thymoma

UCEC Uterine corpus endometrial carcinoma

UCS Uterine carcinosarcoma
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Serine and glycine
metabolism-related gene
expression signature stratifies
immune profiles of brain gliomas,
and predicts prognosis and
responses to immunotherapy
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Glioma is one of the most lethal cancers and causes more than 200,000 deaths

every year. Immunotherapy was an inspiring therapy for multiple cancers but

failed in glioma treatment. The importance of serine and glycine and their

metabolism has been well-recognized in the physiology of immune cells and

microenvironment in multiple cancers. However, their correlation with

prognosis, immune cells, and immune microenvironment of glioma remains

unclear. In this study, we investigated the relationships between the expression

pattern of serine and glycine metabolism-related genes (SGMGs) and

clinicopathological features, prognosis, and tumor microenvironment in

glioma based on comprehensive analyses of multiple public datasets and

our cohort. According to the expression of SGMGs, we conducted the

consensus clustering analysis to stratify all patients into four clusters with

remarkably distinctive clinicopathological features, prognosis, immune cell

infiltration, and immune microenvironment. Subsequently, a serine and

glycine metabolism-related genes signature (SGMRS) was constructed based

on five critical SGMGs in glioma to stratify patients into SGMRS high- and low-

risk groups and tested for its prognostic value. Higher SGMRS expressed genes

associated with the synthesis of serine and glycine at higher levels and

manifested poorer prognosis. Besides, we confirmed that SGMRS was an

independent prognostic factor and constructed nomograms with

satisfactory prognosis prediction performance based on SGMRS and other

factors. Analyzing the relationship between SGMRS and immune landscape,

we found that higher SGMRS correlated with ‘hotter’ immunological phenotype

and more immune cell infiltration. Furthermore, the expression levels of

multiple immunotherapy-related targets, including PD-1, PD-L1, and B7-H3,

were positively correlated with SGMRS, which was validated by the better

predicted response to immune checkpoint inhibitors. In conclusion, our

OPEN ACCESS

EDITED BY

Kui Zhang,
The University of Chicago, United States

REVIEWED BY

Zeyuan Wang,
Merck, United States
Chiwei Xu,
The Rockefeller University,
United States
Enchao Qiu,
Thomas Jefferson University,
United States
Yuanning Zheng,
Stanford University, United States
Guangzhao Pan,
Institute of Cancer and Basic Medicine
(CAS), China

*CORRESPONDENCE

Yuan Yang,
yangyuan@wchscu.cn
Yanhui Liu,
liuyh@scu.edu.cn

†These authors have contributed equally
to this work

SPECIALTY SECTION

This article was submitted to
Pharmacology of Anti-Cancer Drugs,
a section of the journal
Frontiers in Pharmacology

RECEIVED 17 October 2022
ACCEPTED 07 November 2022
PUBLISHED 17 November 2022

CITATION

Chen S, Zhang S, Feng W, Li J, Yuan Y,
Li W, Wang Z, Yang Y and Liu Y (2022),
Serine and glycine metabolism-related
gene expression signature stratifies
immune profiles of brain gliomas, and
predicts prognosis and responses
to immunotherapy.
Front. Pharmacol. 13:1072253.
doi: 10.3389/fphar.2022.1072253

COPYRIGHT

© 2022 Chen, Zhang, Feng, Li, Yuan, Li,
Wang, Yang and Liu. This is an open-
access article distributed under the
terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution
or reproduction is permittedwhich does
not comply with these terms.

Frontiers in Pharmacology frontiersin.org01

TYPE Original Research
PUBLISHED 17 November 2022
DOI 10.3389/fphar.2022.1072253

51

https://www.frontiersin.org/articles/10.3389/fphar.2022.1072253/full
https://www.frontiersin.org/articles/10.3389/fphar.2022.1072253/full
https://www.frontiersin.org/articles/10.3389/fphar.2022.1072253/full
https://www.frontiersin.org/articles/10.3389/fphar.2022.1072253/full
https://www.frontiersin.org/articles/10.3389/fphar.2022.1072253/full
https://www.frontiersin.org/articles/10.3389/fphar.2022.1072253/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fphar.2022.1072253&domain=pdf&date_stamp=2022-11-17
mailto:yangyuan@wchscu.cn
mailto:liuyh@scu.edu.cn
https://doi.org/10.3389/fphar.2022.1072253
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://doi.org/10.3389/fphar.2022.1072253


study explored the relationships between the expression pattern of SGMGs and

tumor features and created novel models to predict the prognosis of glioma

patients. The correlation of SGMRSwith immune cells andmicroenvironment in

gliomas suggested an essential role of serine and glycine metabolism in

reforming immune cells and microenvironment. Finally, the results of our

study endorsed the potential application of SGMRS to guide the selection of

immunotherapy for gliomas.

KEYWORDS

serine, glycine, metabolism, glioma, prognosis, immune infiltration, tumor
microenvironment, immune checkpoint inhibitor

Introduction

Glioma is one of the most life-threatening tumors and

accounts for approximately 80% of malignant tumors in the

central nervous system (Ostrom et al., 2021). The prognosis of

glioma patients remains poor even after a complete standard

treatment regime consisting of surgery, chemotherapy, and

radiotherapy (Stupp et al., 2005). For example, the median

overall survival of patients with glioblastoma, which is the

most aggressive glioma and accounts for nearly 50% of all

gliomas, is fewer than two years after thorough treatment

(Chinot et al., 2014; Gilbert et al., 2014; Stupp et al., 2015;

Omuro et al., 2022). Therefore, exploring novel therapy to

improve the prognosis of glioma patients is urgently needed

and attracts abundant researchers to devote themselves to it.

In recent years, the applications of immunotherapy, which

aims to enhance anti-tumor immunity delivered by immune

cells, have been endorsed by lots of studies in multiple cancers,

including melanoma (Larkin et al., 2015), non-small-cell lung

cancer (Reck et al., 2016), gastric cancer (Janjigian et al., 2021),

and renal cell carcinoma (Choueiri et al., 2021a). Multiple

randomized clinical trials were also devoted to evaluating the

efficacy of immune checkpoint inhibitors (ICIs) in the

treatment of glioblastoma, but all these attempts eventually

failed (Reardon et al., 2020; Lim et al., 2022; Omuro et al.,

2022). The immunologically quiescent environment of the

brain is considered an important reason for these failures.

The blood-brain barrier not only prevents the majority of

antitumor drugs out of brain, but also blocks most peripheral

immune cells from entering central nervous system. Besides,

regulatory T (Treg) cells in tumor microenvironment of

glioma functions to deliver immunosuppressive effects by

exhausting cytotoxic T cells, which is another reason for

the failure of immunotherapy to activate T cells (Colombo

and Piconese, 2007). However, metastatic brain tumors

located in similar environments with gliomas can benefit

from ICIs therapy (Tawbi et al., 2018; Hendriks et al.,

2019), indicating that the unique immune

microenvironment of gliomas may result in resistance to

ICIs. Adjuvant ICIs for glioblastoma would reshape the

immune microenvironment and enhance anti-tumor

immunity (Cloughesy et al., 2019; Schalper et al., 2019).

Therefore, investigating potential pathways that influence

the immune microenvironment of gliomas can provide

novel methods to reshape the immune landscape and

subsequently enhance anti-tumor immunity, reinforce the

efficacy of immunotherapy, and improve prognosis.

Serine and glycine, two non-essential amino acids, play

critical roles in multiple cell physiological processes (Sullivan

and Vander Heiden, 2017). Cells require serine and glycine via

intracellular synthesis and uptake from the extracellular

environment. The synthesis process of serine and glycine

consists of two steps: de novo synthesis of serine branched

from glycolysis and reversible interconversion from serine to

glycine (Geeraerts et al., 2021), indicating the tight

relationship between the metabolism processes of these two

amino acids. The function of serine, glycine, and their

metabolism in cancers attracted significant attention in

recent years. Upregulated synthesis of serine and glycine

has been demonstrated in multiple cancers, including lung

cancer and glioma (Kim et al., 2015; Liao et al., 2019b). The

important physiological roles of serine and glycine synthesis in

tumors, including fueling nucleotide biosynthesis (Fan et al.,

2019), regulating lipid metabolism (Gao et al., 2018), altering

sphingolipid diversity (Muthusamy et al., 2020), and

maintaining cellular redox homeostasis (Ye et al., 2014),

were potential causes that drive the tumors to upregulate

the synthesis of serine and glycine to meet the aberrant

demand. The process of serine and glycine synthesis can

generate abundant one-carbon units and replenish carbon

sources for one-carbon metabolism in cancer cells

(Locasale, 2013; Newman and Maddocks, 2017; Fan et al.,

2019). Besides, serine and glycine are critical for the survival

and growth of cancer cells (DeBerardinis, 2011; DeBerardinis

and Chandel, 2016). Downregulation of serine and glycine

synthesis has been shown to inhibit cancer cell proliferation

(Mullarky et al., 2016; Pacold et al., 2016). Cancer cells can not

only upregulate serine and glycine synthesis, but also secret

extra serine and glycine to extracellular spaces to reshape

tumor microenvironment (Geeraerts et al., 2021). In

glioma, glycine concentration was determined as a

biomarker of aggressiveness (Tiwari et al., 2020). Serine and
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glycine in tumor microenvironment enhanced nucleotide

production and cell proliferation in brain metastasis (Ngo

et al., 2020). Furthermore, serine and glycine synthesized and

secreted by cancer cells play multiple roles in tumor immune

microenvironment. Serine in extracellular environments

inhibits the functions of macrophages and neutrophils (He

et al., 2019). A high level of phosphoglycerate dehydrogenase

(PHGDH), an essential enzyme for serine and glycine

synthesis, can induce macrophages to immunosuppressive

M2-like macrophages (Wilson et al., 2020). Serine and

glycine synthesis can also switch the phenotype of

macrophages to express immunosuppressive programmed

death-ligand (PD-L1) by inducing the production of IL-1β
(Su et al., 2018; Rodriguez et al., 2019). These findings suggest

that the metabolism of serine and glycine is involved in

tumorigenesis and related to the aggressiveness and

immune microenvironment of cancers. However, the role of

serine and glycine metabolism in malignant features and the

immune landscape of glioma remains unclear and need to be

further elucidated.

In this study, we comprehensively analyzed the RNA-

sequence data from multiple glioma patient cohorts,

including TCGA, CGGA325, CGGA693, and our

institution, to investigate the relationship between serine

and glycine metabolism-related genes (SGMGs) expression

and clinicopathological characteristics of glioma. Moreover,

we constructed a serine and glycine metabolism-related gene

risk signature (SGMRS) to evaluate the clinical significance of

SGMGs expression profile. Additionally, we also conducted

several analyses to investigate the correlation between the

expression of SGMGs and the tumor immune

microenvironment landscape of glioma.

Materials and methods

Data sources

Gene expression profile (fragments per kilobase million,

FPKM) and clinicopathological features in this study were

obtained from three public databases and an own cohort.

Those patients with primary oligodendroglioma,

astrocytoma, and glioblastoma were included in this study.

Those patients with recurrent gliomas or age <18 were exclude
from this study, because these tumors occupied minority of the

data set with distinctive biological features (Louis et al., 2021).

The three cohorts of public databases were from the Cancer

Genome Atlas (TCGA, https://portal.gdc.cancer.gov/) and the

Chinese Glioma Genome Atlas (CGGA, http://www.cgga.org.

cn/). The TCGA cohort contained 662 primary glioma

samples, and 655 of which had complete survival data.

There are two cohorts from the CGGA database,

CGGA325 and CGGA 693 cohorts. The CGGA325 cohort

contained 226 adult primary gliomas, and the

CGGA693 cohort contained 415 primary gliomas. FPKM

data of these two cohorts were downloaded from the

CGGA website.

Our own cohort consisted of 77 primary glioma patients

from West China Hospital (WCH). The tumor samples were

obtained during tumor resection surgery and subsequently

sequenced for mRNA. After that, the mRNA sequencing data

was quantified and normalized to FPKM by STAR. Prognosis

information of these 77 patients was obtained through regular

follow-up and telephone interview. The overall survival (OS) was

calculated as the time length from surgery to death or last follow-

up (censored value). In preprocessing procedure, we exclude the

genes with too low FPKM values (maximum FPKM <0.1 or

standard deviation < 0.01, which may represent sequencing/

mapping artifacts) from further analyses. Detailed

clinicopathological information of these four cohorts was

showed in Table 1.

Consensus clustering analyses based on
serine and glycine metabolism-related
genes

The serine and glycine metabolism-related genes (SGMGs)

were identified based on the serine and glycine metabolism

pathway from PathBank (https://pathbank.org/, pathway No.

SMP0000004), which contained 24 SGMGs. After excluding

the genes with low expression levels, 21 SGMGs were

eventually enrolled in the following analyses. The list of these

24 SGMGs was downloaded from the PubChem website (https://

pubchem.ncbi.nlm.nih.gov/pathway/PathBank:SMP0000004/),

and the list of SGMGs before and after exclusion was given in

Supplementary Table S1. Subsequently, unsupervised consensus

clustering analyses were conducted based on expression patterns

of SGMGs to represent the different serine and glycine

metabolism patterns in gliomas. Consensus clustering analysis

was conducted using the R package ‘ConsensusClusterPlus’.

Briefly, for number of clusters (k) from 2 to 10, hierarchical

clustering of k clusters was performed over 1,000 random subsets

of samples based on Pearson correlation. The consensus index

was calculated as the frequency for which two samples were

stratified into the same cluster. The optimal k was determined

when gain in area under the cumulated distribution function

(CDF) curve of the consensus index converged with the increase

of k, under the restriction that the sample size of each cluster

should not too small to study its implications. Furthermore, we

performed the t-Distributed Stochastic Neighbor Embedding

(tSNE) analysis to visualize the different expression patterns

of SGMGs in each cluster. Besides, a naïve Bayes classifier was

constructed based on the SGMGs expression and cluster labels of

the TCGA cohort to classify the patients of the other three

cohorts into distinctive clusters.
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Construction and validation of the serine
and glycinemetabolism-related genes risk
signature

To elucidate the relationship between serine and glycine

metabolism and glioma, we constructed a gene risk

signature based on the expression of SGMGs, the serine

and glycine metabolism-related genes risk signature

(SGMRS). In the first step, patients of TCGA cohort were

split into training and validation sets with a ratio of 6:4, and all

the other three cohorts were defined as validation sets.

Subsequently, we utilized the Least Absolute Shrinkage and

Selection Operator (LASSO) Cox regression analysis to

filter the 21 SGMGs in the training set. The SGMG was

determined as critical SGMG if its coefficient was not

zero at the optimal model with maximum C-indices in over

80 random repetitions of LASSO Cox regression out of 100.

Moreover, we fitted a concluding multivariate Cox regression

model to the training set with critical SGMGs. The serine and

glycine metabolism-related genes risk signature (SGMRS) was

calculated using the following formula:

SGMRS � ∑
i�1
(βipExpi)

TABLE 1 Clinicopathological characteristics of patients in TCGA, CGGA325, CGGA693, and WCH cohorts.

Characteristics TCGA (N = 662) CGGA325 (N = 226) CGGA693 (N = 415) WCH (N = 77)

Age: mean (range) 46 (18–89) 52 (22–87) 43 (19–76) 46 (19–77)

Gender

Female 282 (42.6%) 87 (38.5%) 176 (42.4%) 30 (39.0%)

Male 380 (57.4%) 139 (61.5%) 239 (57.6%) 47 (77.0%)

NA 0 0 0 0

Histology

Astrocytoma 341 (51.5%) 82 (36.3%) 182 (43.9%) 22 (28.6%)

Oligodendroglioma 167 (25.2%) 60 (26.6%) 94 (22.7%) 21 (27.3%)

Glioblastoma 154 (23.3%) 84 (37.2%) 139 (33.5%) 34 (44.2%)

Grade

G2 214 (32.3%) 94 (41.6%) 134 (32.3%) 29 (37.7%)

G3 237 (35.8%) 48 (21.2%) 142 (34.2%) 14 (18.2%)

G4 154 (23.3%) 84 (37.2%) 139 (33.5%) 34 (44.2%)

NA 57 (8.6%) 0 0 0

IDH status

Mutant 421 (63.6%) 115 (50.9%) 169 (40.7%) 42 (54.5%)

WT 236 (35.6%) 110 (48.7%) 207 (49.9%) 35 (45.5%)

NA 5 (0.8%) 1 (0.4%) 39 (9.4%) 0

1p19q Codeletion

Codel 167 (25.2%) 54 (23.9%) 267 (64.3%) 19 (24.7%)

Non-codel 488 (73.7%) 169 (74.8%) 88 (21.2%) 43 (55.8%)

NA 7 (1.1%) 3 (1.3%) 60 (14.5%) 15 (19.5%)

TERT promoter status

Mutant 340 (51.4%) NA NA 30 (39.0%)

WT 156 (23.6%) NA NA 23 (29.9%)

NA 166 (25.1%) NA NA 24 (31.2%)

MGMT promoter status

Methylated 472 (71.3%) 97 (42.9%) 141 (34.0%) 35 (45.5%)

Unmethylated 157 (23.7%) 115 (50.9%) 195 (47.0%) 13 (16.9%)

NA 33 (5.0%) 14 (6.2%) 79 (19.0%) 29 (37.7%)

ATRX status

Mutant 192 (29.0%) NA NA 22 (28.6%)

WT 459 (69.3%) NA NA 53 (68.8%)

NA 11 (1.7%) NA NA 2 (2.6%)

Abbreviation: TCGA, the cancer genome atlas; CGGA, chinese glioma genome atlas; WCH, west china hospital; IDH, isocitrate dehydrogenase; TERT, telomerase reverse transcriptase;

MGMT, O6-methylguanine-DNA, methyltransferase; ATRX, alpha-thalassemia x-linked intellectual disability syndrome; WT, wild type; NA, not available.
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In this formula, β represented the coefficient of each critical

SGMG when fitted by the concluding multivariate Cox regression

model. Exp standed for the expression level of each essential SGMG.

Furthermore, the optimal SGMRS cut-off value was settled by the

function ‘surv_cutpoint’ of the R package ‘survminer’ with each

group proportion ≥0.3. According to the optimal cut-off value, all

patients were allocated into SGMRS low-risk or high-risk

group. Eventually, to validate the efficacy of prognostic

prediction, we illustrated the receiver operating characteristic

(ROC) curves in validation sets of 1-, 2-, and 3-year survival

rates and used the R package ‘time ROC’ to calculate the area

under the ROC curve (AUC).

Assessments of gene alterations and copy
number variation

We obtained the data of gene alterations and copy number

variation (CNVs) from the cBioPortal database (https://www.

cbioportal.org/) for the TCGA cohort to assess the gene

alterations and CNVs between different clusters and SGMRS

risk groups. Subsequently, the R package ‘maftools’ was used to

depict the different patterns of gene alterations and tumor

mutation burdens (TMBs). Moreover, the CNV levels were

represented as the Genomic Identification of Significant

Targets in Cancer (GISTIC) score.

Gene set enrichment analyses

In the section of gene set enrichment analyses, we used the R

package ‘clusterProfiler’ to conduct the over-representation and

gene set enrichment analysis (GSEA) to assess the differentially

expressed genes (DEGs). Besides, we used the R package ‘limma’

to determine the DEGs between clusters and risk groups. DEGs

were defined as those genes with |log2FC| > 0.5 and adjusted

p-value < 0.05. In the GSEA, the DEGs were arranged according

to their log2FC values and a Running Enrichment Score for each

gene set was computed by adding 1/(number of DEGs) when a

DEG was found in the gene set and subtracting 1/(number of

DEGs) if not. Moreover, we converted the logFPKM matrix of

genes to the pathway expression matrix using the R package

‘GSVA’. The differentially expressed pathways between clusters

and risk groups were identified with the ‘limma’ package.

Comprehensive characterization of tumor
immune microenvironment based on
serine and glycine metabolism

To explore the impact of serine and glycine metabolism on

the tumor immune cells and immune microenvironment, we

conducted multiple analyses to characterize the differences in the

tumor immune microenvironment between different clusters

and risk groups. Firstly, we applied the website of

CIBERSORTx (https://cibersortx.stanford.edu/). Subsequently,

we utilized the Estimation of Stromal and Immune Cells in

Malignant Tumor issues using Expression data (ESTIMATE)

to calculate the stromal, immune, and ESTIMATE scores in

glioma, contributing to evaluating the infiltration of stromal and

immune cells in the tumor microenvironment (Yoshihara et al.,

2013). In this algorithm, the non-hematopoiesis-related genes

that were differentially expressed between tumor cells and

matched stromal cells separated by laser capture

microdissection in multiple cancers were screened. The

stromal related genes were selected from these genes. Besides,

we also integrated the tumor purity data based on the

ESTIMATE score and consensus purity estimation (CPE)

previously published by D.Aran et al. (Aran et al., 2015). To

identify the tumor immunological phenotype (TIP), we applied

another previously published algorithm (Wang et al., 2021) to

compute the TIP gene signature. According to the TIP gene

signature, we could identify the immunological phenotype of

tumor as either relatively ‘cold’ or ‘hot’ tumors. Additionally, the

Tumor Immune Dysfunction and Exclusion (TIDE) suite (http://

tide.dfci.harvard.edu/) was applied to predict potential response

to therapy with ICIs.

Nomogram construction based on SGMRS
and other prognostic factors

To construct a nomogram that could effectively predict

glioma patients’ prognosis, we initially identified independent

prognostic factors using univariate and multivariate Cox

regression analyses. Firstly, the SGMRS, together with other

potential prognostic factors, including age, gender, tumor

grade, radiotherapy, chemotherapy, Karnofsky Performance

Scale (KPS), isocitrate dehydrogenase (IDH) mutation, and

1p/19q codeletion, were enrolled into univariate Cox

regression analysis. Then those prognostic factors with

p-value < 0.05 in univariate Cox regression analysis entered

the following multivariate analysis. Eventually, those

prognostic factors with p-value < 0.05 in multivariate Cox

regression analysis were determined as independent

prognostic factors.

The nomograms were constructed based on these

independent prognostic factors using the R package ‘rms’. To

assess the efficacy of nomograms in the prediction of prognosis,

we computed calibration curves for each nomogram.

Statistical analyses

The R software (version 4.2.1) was used to perform the

above bioinformatic analyses unless otherwise specified. For

Frontiers in Pharmacology frontiersin.org05

Chen et al. 10.3389/fphar.2022.1072253

55

https://www.cbioportal.org/
https://www.cbioportal.org/
https://cibersortx.stanford.edu/
http://tide.dfci.harvard.edu/
http://tide.dfci.harvard.edu/
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2022.1072253


FIGURE 1
Clustering of gliomas based on expression pattern of SGMGs. (A) tSNE map for SGMGs expression patterns of four consensus clusters. (B)
Heatmap for expression of 21 SGMGs based on four clusters. (C) The expression levels of PHGDH, PSAT1, PSPH, and SHMT1 among four clusters. (D)
K-M curves based on four consensus clusters in (D) TCGA, (E) CGGA325, (F) CGGA693, and (G) WCH cohorts.
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continuous variables, the Wilcoxon rank sum test was used to

evaluate the differences between different clusters and risk

groups. For categorical variables, the chi-square test was used

to evaluate the differences. All the survival analyses were

performed using the R package ‘survminer’. The differences

between Kaplan-Meier (K-M) curves were tested by log-rank

test. Univariate and multivariate Cox regression analyses were

conducted using the ‘coxph’ function of the R package

‘survival’. The LASSO Cox regression analysis was

performed using the R package ‘glmnet’. In linear

regression analysis, the T Iterative Grubbs test was utilized

to exclude the outliers.

Ethic approval and data availability

The collection processes of clinical data and tumor

samples were approved by the institutional review board of

West China Hospital (No. 2018.569) following the

1964 Helsinki declaration and its later amendments.

Besides, every patient signed written consent for collecting

and using tumor tissue and clinical information. All the tumor

tissue sequencing data from West China Hospital were

available at the Genome Sequence Archive for Humans

with accession code: HRA002839 (https://ngdc.cncb.ac.cn/

gsa-human/s/JQssVoV1).

Results

Unsupervised consensus clustering
analyses based on serine and glycine
metabolism-related genes

Based on the expression patterns of 21 serine and glycine

metabolism-related genes (SGMGs), we performed an

unsupervised consensus clustering analysis in patients of

TCGA cohort. According to the clustering algorithm

explained in Material and Method section, the delta area of

CDF dropped significantly when k increased from 3 to 4, which

suggest convergence of within-cluster similarity over between-

cluster similarity with increased k over 4. Therefore, 4 was chosen

to be the optimal number of clusters, and patients of TCGA

cohort were classified into four consensus clusters

(Supplementary Figure S1). The different expression patterns

of SGMGs among these four clusters were illustrated using tSNE

analysis (Figure 1A). Besides, the expression levels of four

important genes involved in serine and glycine synthesis were

illustrated (Figure 1B). Notably, cluster 3 significantly highly

expressed PHGDH and PSAT1, and cluster 4 significantly highly

expressed PSPH and SHMT1 (Figure 1C). The expression levels

of all SGMGs in different clusters are illustrated in

Supplementary Figure S1.

The survival analysis demonstrated that the prognosis of

cluster 4 was overwhelmingly worse than the other three clusters

in TCGA cohort (Figure 1D). Based on the naïve Bayes clustering

classifier trained by the TCGA cohort, patients of the other three

cohorts were also classified into four clusters. In survival analyses,

the other three cohorts also exhibited the same trend (Figures 1E,

F), indicating that the expression pattern of SGMGs was related

to the prognosis of glioma patients even in independent glioma

cohorts.

To investigate the distinctive patterns of pathway

alterations related to serine and glycine metabolism, we

conducted functional enrichment analyses between cluster

1 and cluster 4, which showed the most differential SGMGs

expression profiles and prognosis. In GSEA, the cytokine

signaling in immune system pathway (NES = 2.739,

adjusted p-value < 0.001) and the extracellular matrix

organization pathway (NES = 3.165, adjusted p-value <
0.001) ranked among the top five REACTOME gene sets in

the differentially expressed genes (DEGs) between cluster

1 and 4 (Figure 2A), suggesting the potential impact of

serine and glycine metabolism on the tumor

microenvironment and immunity. Besides, the extracellular

matrix receptor interaction pathway (NES = 2.869, adjusted

p-value <0.001) and the asthma pathway (NES = 2.983,

adjusted p-value < 0.001) were also among the top 5 most

significantly enriched Kyoto Encyclopedia of Genes and

Genomes (KEGG) gene sets in the cluster 1/4 DEGs

(Figure 2B), indicating the potential effect on inflammation

and neurogenesis in glioma.

The results of gene mutation analysis revealed different

gene mutation models of each cluster (Figure 2C).

IDH1 mutation, a critical marker for diagnosis and

prognosis of gliomas, was frequently observed in cluster 1, 2,

and 3 but hardly occurred in cluster 4. Moreover, the mutation

rates of TP53 and ATRX in cluster 3 were remarkably higher

than the other 3 clusters. Moreover, most CIC mutations

occurred in cluster 1. The analysis of CNVs also suggested

distinctive characteristics among the four clusters. The gain of

chromosome 7 and loss of chromosome 10 (+7/-10), which was

recognized as a diagnostic marker for glioblastoma,

predominantly occurred in cluster 4.1p/19q codeletion,

which was indispensable for diagnosis of oligodendroglioma,

mainly occurred in cluster 1, in line with the best prognosis of

cluster 1. In clinicopathological features, the proportion of

WHO grade 4 tumors grew from cluster 1 to cluster 4,

which were characterized by glioblastomas and gliomas with

unmethylated MGMT promoter, while TERT promoter wild-

type tumors occupied the majority of cluster 3 gliomas,

suggesting a potential connection between these tumors and

alternative telomere lengthening (Figures 2E–H). Additionally,

the differences in other clinicopathological features among

these four clusters were also illustrated in Supplementary

Figure S2.
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FIGURE 2
Functional enrichment and clinicopathological characteristics of the four consensus clusters in TCGA cohort. (A) Top five pathways with the
highest NES in the REACTOME gene set between cluster 1 and cluster 4. (B) Top five pathways with the highest NES in the KEGG gene set between
cluster 1 and cluster 4. (C) Top 20mutated genes of the four consensus clusters. (D)Heatmap for copy number variations of the four clusters. (E) The
differences in (E) tumor grade, (F) histological diagnosis, (G) MGMT promoter status, and (H) TERT promoter status among four clusters. *p <
0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.
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FIGURE 3
Different immunological landscapes of tumor microenvironment among four clusters. (A) Boxplots for infiltration fraction of four types of
immune cells based onCIBERSORTx in TCGA cohort. (B)Differences in stromal, immune, and ESTIMATE scores among four clusters in TCGA cohort.
(C)Difference in tumor purity among four clusters in TCGA cohort. (D) TIP score and related gene expression heatmap among four clusters in TCGA
cohort. (E)Difference in TIP score among four clusters in TCGA cohort. (F) TIP score and related gene expression heatmap among four clusters
in CGGA325 cohort. (G) Difference in TIP score among four clusters in CGGA325 cohort. (H) Differences in expression levels of CD274 and
CD276 among four clusters in TCGA and CGGA 325 cohorts. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.
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Analyses of immune cells infiltration and
tumor microenvironment based on
consensus clusters

Based on the consensus clusters, we performed comprehensive

analyses to explore the impact of serine and glycine metabolism on

the immune cells and immune microenvironment in glioma. The

analyses of immune cell infiltration in the tumor

microenvironment revealed that there were more abundant

M2 macrophages, resting NK cells, and resting memory CD4+

T cells but fewer plasma B cells in the tumor microenvironment of

cluster 4 (Figure 3A). Besides, the calculation of stromal, immune,

and ESTIMATE scores based on the ESTIMATE algorithm

demonstrated that cluster 4 had remarkably higher scores than

the other three clusters. Higher stromal, immune, and ESTIMATE

scores represented for more stromal cells and more immune

infiltration in the tumor microenvironment. In comparison,

cluster 3 gliomas also had significantly higher scores than

cluster 1 and 2, suggesting that these tumor microenvironment-

related scores were related to serine and glycine metabolism and

prognosis in glioma (Figure 3B). Furthermore, for the analysis of

tumor purity, cluster 4 was manifested with significantly lower

tumor purity than other clusters, indicating amore complex tumor

microenvironment of cluster 4 (Figure 3C). Moreover, based on

the computation of the TIP score, cluster 4 was demonstrated with

higher expression of genes related to the ‘hot’ immunological

phenotype of tumor than other clusters in TCGA cohort

(Figure 3D). The resulting TIP score of cluster 4 was

significantly higher than other clusters, suggesting cluster

4 could be a relatively ‘hotter’ tumor compared to those in

other clusters (Figure 3E). These findings were also validated in

CGGA325 cohort (Figure 3F, G), suggesting a robust association

between the expression of serine/glycine metabolism-related genes

and the immune landscape of gliomas. Additionally, analyses of

markers related to immunotherapy revealed that expression levels

of CD274 (PD-L1) and CD276 (B7-H3), which were essential

targets for immunotherapy, expressed at remarkably higher levels

in cluster 4 compared to other clusters in TCGA and

CGGA325 cohorts (Figure 3H). Combined results of TIP score

and the expression levels of immunotherapy-related targets

demonstrated that cluster 4, which exhibited ‘hotter’

immunological phenotype and expressed more immunotherapy-

related targets, might be more likely to response to

immunotherapy than patients of other clusters.

Construction and validation of serine and
glycine metabolism-related genes risk
signature

In this section, we filtered the 21 SGMGs with the LASSO

Cox regression in training set to identify critical genes for the

construction of serine and glycine metabolism-related genes risk

signature (SGMRS). Five SGMGs, including SHMT1, PSPH,

GNMT, SARDH, and ALDH2, were identified as critical genes

for the construction of SGMRS (Figure 4A), and the formula of

the SGMRS was derived by fitting a final multivariate Cox

regression model to the expression of the 5 critical SGMGs in

the training dataset. The SGMRS was calculated using the

following formula:

0.505*SARDH+0.243*SHMT1-1.77e-4*PSPH-
0.050*ALDH2-0.209*GNMT

Further univariate analysis demonstrated that SHMT1,

SARDH, and PSPH were hazardous prognostic factors for

glioma (Figure 4B). GNMT and ALDH2 were protective

factors for glioma (Figure 4B). Moreover, to validate these

results, we obtained representative immunohistochemical

staining for SARDH and PSPH from the Human Protein

Atlas (https://www.proteinatlas.org/) (Pontén et al., 2008).

The staining figures revealed that the protein levels of

SARDH and PSPH were higher in high-grade gliomas

compared to low-grade gliomas (Supplementary Figure 3A-

B), which was consistent with the results of the univariate

analysis. Subsequently, the ‘surv_cutpoint’ algorithm was used

to identify the optimal SGMRS cut-off for all these four

cohorts, and the patients were classified into SGMRS high-

and low-risk groups based on this cut-off (Figure 4C). Further

survival analyses revealed that the patients in SGMRS high-

risk group had an enormously poorer prognosis than low-risk

group in the TCGA validation cohort (Figure 4D), which was

also confirmed by the other three cohorts (Figures 4E,F). We

also conducted ROC analyses to examine the efficacy of

SGMRS to predict survival rates at 1, 2, and 3 years. AUCs

of the ROC curves of SGMRS in TCGA validation cohort at 1,

2, and 3 years was 0.815, 0.842, and 0.848, endorsing the

effectiveness of SGMRS on prognosis prediction (Figure 4H).

In the other three cohorts, the performances of SGMRS on

prognosis prediction were similar (Figure 4H).

To illustrate the expression pattern of these five critical

SGMGs, we aligned a heatmap of the expression level of each

patient in order of SGMRS. Besides, the clinicopathological

features, including tumor grade, histology diagnosis, IDH

status, 1p/19q codeletion, TERT promoter status, ATRX

status, and MGMT promoter status, were also integrated

(Figure 5A). As for the analysis of gene mutations, the

SGMRS high-risk group manifested with a lower incidence

of IDH1 and TP53 mutation (Figure 5B) and a higher

incidence of EGFR and PTEN mutation. Furthermore, the

tumor mutation burden (TMB) analysis between

SGMRS high- and low-risk groups revealed a significantly

higher TMB in high-risk groups (Figure 5C). Additionally,

the analysis of CNVs demonstrated that most of chromosome

+7/-10 occurred in SGMRS high-risk group (Figure 5D),

and most of the 1p/19q codeletion occurred in the low-risk

group.
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FIGURE 4
Construction of SGMRS and its relationship with prognosis. (A) Average of coefficients of five critical SGMGs in the LASSO Cox regression at
each lambda value. (B) The prognostic effect of each critical SGMG in glioma. (C)Optima cutoff value of SGMRS in all four cohorts. (D) K-M curves of
the (D) TCGA, (E)CGGA325, (F)CGGA693, and (G)WCHcohorts based on SGMRS high- and low-risk groups. (H) ROC curves andmatched AUCof 1-
, 2-, 3-year survival rate in all four cohorts.

Frontiers in Pharmacology frontiersin.org11

Chen et al. 10.3389/fphar.2022.1072253

61

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2022.1072253


FIGURE 5
Clinicopathological features of SGMRS risk groups. (A) Expression level of five critical SGMGs and its relationship with clinicopathological
features. (B)Gene mutations of five critical SGMGs and top eight frequently mutated genes in gliomas ordered by SGMRS risk groups. (C) Difference
in tumor mutation burden between SGMRS high- and low-risk groups. (D) Copy number variation and its relationship with clinicopathological
features ordered by SGMRS risk groups. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.
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Functional enrichment analyses based on
SGMRS risk groups

In this section, we performed multiple functional enrichment

analyses to investigate the pathway alterations in different

SGMRS risk groups. The extracellular matrix organization of

REACTOME gene sets and the extracellular matrix receptor

interaction of KEGG gene sets were identified with high odds

ratio and p-value between high- and low-risk groups (Figures

6A,B). The retinoid cycle disease events pathway was listed in the

FIGURE 6
Functional enrichment analyses between two SGMRS risk groups. (A) Pathways with high confidence and odds ratio in REACTOME gene sets.
(B) Pathways with high confidence and odds ratio in KEGG gene sets. (C) Top 12 pathways in REACTOME gene set with the highest GSVA scores. (D)
Top 12 pathways in KEGG gene set with the highest GSVA scores. (E) Top five pathways in REACTOME gene set with the highest normalized
enrichment scores. (F) Top five pathways in KEGG gene set with the highest normalized enrichment scores.
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FIGURE 7
Prognostic value of SGMRS and construction of SGMRS-based nomograms. (A) Univariate analysis of potential prognostic factors in glioma. (B)
Multivariate analysis to identify independent prognostic factors in glioma. (C)Nomogramof 1-, 2-, and 3-year survival rate of glioma patients in TCGA
cohort. (D) Calibration plots for the nomogram of TCGA cohort. (E) Nomogram of 1-, 2-, and 3-year survival rate of glioma patients in
CGGA325 cohort. (F) Calibration plots for the nomogram of CGGA325 cohort.
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top 12 dysregulated pathways in the REACTOME gene set

(Figure 6C). The glutathione metabolism pathway, which was

regulated by serine and glycine synthesis (Geeraerts et al., 2021),

was listed in the top 12 pathways with highest GSVA scores in the

KEGG gene set (Figure 6D). Besides, the cytokine signaling in

immune system pathway (NES = 2.568, adjusted p-value <0.001)
and extracellular matrix organization pathway (NES = 2.718,

adjusted p-value <0.001) of REACTOME gene sets were ranked

in the top five pathways in comparison between two SGMRS risk

groups using GSEA (Figure 6E). The complement and

coagulation cascades pathway (NES = 2.223, adjusted

p-value <0.001) and the focal adhesion pathway (NES = 2.354,

adjusted p-value <0.001) of KEGG gene sets were ranked in the

top five (Figure 6F).

Construction of nomograms based on
SGMRS to predict prognosis in glioma
patients

We firstly conducted univariate and multivariate Cox

regression analyses to identify independent prognostic factors

for the subsequent construction of nomograms. The SGMRS,

together with other potential prognostic factors, including tumor

grade, patient age, radiotherapy, chemotherapy, sex, KPS, 1p/19q

codeletion, and IDHmutation, were enrolled into univariate Cox

regression analysis in TCGA cohort (Figure 7A). Subsequently,

those prognostic factors (p-value < 0.05 in univariate analysis)

were enrolled into multivariate Cox regression analysis.

Eventually, the SGMRS, together with tumor grade,

radiotherapy, 1p/19q codeletion, and IDH mutation, were

identified as independent prognostic factors in glioma

(p-value < 0.05, Figure 7B). These factors were utilized to

construct a nomogram to achieve individualized survival rate

prediction (Figure 7C). The corrected C-index of this nomogram

based on TCGA cohort was 0.848. This nomogram’s efficacy in

predicting the prognosis of glioma patients was validated by the

1-, 2-, and 3-year calibration curves (Figure 7D). For the

CGGA325 and cohort, the corrected C-index of the

nomogram was 0.765 (Figure 7E). For the CGGA693 cohort

and WCH cohort, it is 0.772 and 0.696 respectively. The 1-, 2-,

and 3-year calibration curves derived from

CGGA325 dataset also endorsed performance of the

nomogram (Figure 7F).

Correlation of SGMRS with immune cells
and immune microenvironment

To investigate the connection between SGMRS and the

immune landscape of gliomas, we performed comprehensive

analyses to elucidate the correlation between SGMRS and

multiple immunity-related indexes. Firstly, we computed

the infiltration fraction of 22 types of immune cells in the

tumor microenvironment using the CIBERSORTx algorithm.

The results revealed that gliomas of SGMRS high-risk group

harbored more macrophages (including M0, M1, and M2),

resting NK cells, and resting memory CD4+ T cells infiltrated

into the tumor microenvironment, and fewer plasma cells and

activated NK cells (Figure 8A), depicting distinctive immune

cell infiltration models between SGMRS high- and low-risk

groups. Subsequently, we utilized the ESTIMATE algorithm to

analyze immune-related scores and tumor purity. The SGMRS

high-risk group manifested with higher stromal, immune, and

ESTIMATE scores compared to the low-risk group in TCGA,

CGGA325, and WCH cohorts (Figure 8B), indicating a

significantly more complex tumor microenvironment in

gliomas with higher SGMRS. The analysis of tumor purity

also confirmed that gliomas of the high-risk group had

remarkably lower tumor purity than those of the low-risk

group, which was in accordance with the results of immune-

related scores (Figure 8C). Further correlation analysis

confirmed that the stromal score, immune score, and

ESTIMATE score were strongly positively correlated with

the value of SGMRS in these three cohorts (Figures 8D–F).

The tumor purity was negatively correlated with the value of

SGMRS in these three cohorts (Figure 8G).

To explore potential applications of SGMRS in the

guidance of immunotherapy, we analyzed the relationship

between multiple immunotherapy-related markers and

SGMRS. In gliomas of SGMRS high-risk group, the

expression levels of CD274 (PD-L1), CD276 (B7-H3), and

CD279 (PD-1) were remarkably higher compared to the low-

risk group in TCGA cohort (Figure 9A). In the

CGGA325 cohort, this result was also confirmed

(Figure 9B), indicating that gliomas with high SGMRS

would overexpress multiple targets for immunotherapy.

Furthermore, to validate the potential ability of SGMRS to

direct the use of immunotherapy, we calculated the TIP score

to identify the relationship between the immunological

phenotype and SGMRS in glioma. The result demonstrated

that gliomas of SGMRS high-risk group would highly express

immunological ‘hot’ tumor genes (Figure 9C) in TCGA

cohort. And the TIP scores of gliomas in the high-risk

group were enormously higher than low-risk group

(Figure 9D). Correlation analysis confirmed the positive

correlation between TIP score and SGMRS (Figure 9E).

These findings were also validated in the CGGA325 cohort

(Figures 9F–H). Additionally, the analysis of cytotoxic T cells

(CTLs) revealed that the gliomas of SGMRS high-risk group

harbored more CTLs infiltration compared to the low-risk

group in TCGA and CGGA325 cohort (Figure 9I). It is also

demonstrated that patients of the high-risk group would

respond better to immune checkpoint inhibitors compared

to low risk in TCGA cohort (Figure 9J). Most of these findings

can be validated in other cohorts (Supplementary Figure S4).
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FIGURE 8
Analyses on immune landscapes of tumor microenvironment between SGMRS high- and low-risk groups. (A) Boxplot for the estimated
infiltration fraction of 22 types of immune cells in tumors. (B) Differences in the stromal, immune, and ESTIMATE scores between two risk groups in
TCGA, CGGA325, and WCH cohorts. (C)Differences in tumor purity between two risk groups in TCGA, CGGA325, and WCH cohorts. (D) Analyses of
correlations of SGMRS with the (D) stromal score, (E) immune score, (F) ESTIMATE score, and (G) tumor purity in TCGA, CGGA325, and WCH
cohorts. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.
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FIGURE 9
Differences in expression of immunotherapy-related genes, immunological phenotype, and response to ICIs between two SGMRS risk groups.
(A) Boxplot for the expression level of 33 immunotherapy-related genes in two risk groups in TCGA cohort. (B) Analyses of correlations between
SGMRS and the expression levels of CD274, CD276, CD44, and PD-1 in TCGA cohort. (C) Analysis of TIP score and related gene expression levels
ordered by SGMRS in TCGA cohort. (D) Difference in TIP score between two risk groups in TCGA cohort. (E) Analysis of correlation between

(Continued )
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Discussion

As one of the most lethal cancer, glioma causes more than

200 thousand deaths worldwide every year (Sung et al., 2021).

Due to its heavy burden and direct threats to human health,

countless researchers devoted themselves to exploring novel

therapies to improve the prognosis of glioma patients.

However, there is hardly inspiring breakthrough in the field of

glioma, especially for glioblastoma, which accounts for 50% of

gliomas and presented with only a median overall survival of

22 months after the complete treatment process, including

surgery resection, radiotherapy, chemotherapy, and even

tumor treating field (Stupp et al., 2005; Stupp et al., 2017).

Immunotherapy, emerging under the spotlight as a novel

therapy for cancers, has been proven effective in multiple

types of cancer (Eggermont et al., 2018; Gandhi et al., 2018;

Choueiri et al., 2021b; Cortes et al., 2022). Hence, several studies

have concentrated on the potential therapeutic effects of

immunotherapy in glioma. However, almost all these attempts

at the application of immunotherapy failed to improve the overall

survival of glioma patients in phase 3 clinical trials (Weller et al.,

2017; Wakabayashi et al., 2018; Reardon et al., 2020; Lim et al.,

2022; Omuro et al., 2022). The blood-brain barrier (BBB), which

functions to block most peripheral immune cells out of the

central nervous system (CNS), was recognized as an

important reason for these failures. However, inspiringly, a

novel lymphatic pathway permitting antigen-presenting cells

to escape from CNS was introduced in recent years (Louveau

et al., 2015). Further research proved that lymphocytes outside

CNS could be primed by these antigen-presenting cells and then

infiltrate into the brain and execute immune responses (Lim

et al., 2018). These studies suggest that brain is not a closed area

for applications of immunotherapy. If we can further investigate

and understand the mechanisms of immune cell infiltrations and

reshaped immune landscapes of the tumor microenvironment,

immunotherapy might become another robust weapon for us to

fight against glioma. Therefore, our present study devoted to

investigating the underlying mechanisms of the unique immune

landscape of glioma, aiming to provide potential help to the

application of immunotherapy.

In the field of tumor immunity, the relationship between

unique metabolic patterns and immunological characteristics of

tumors has become an attractive topic (Xia et al., 2021). Many

studies have suggested that serine and glycine metabolism has

critical effects on cancers (DeBerardinis, 2011; DeBerardinis and

Chandel, 2016). As two non-essential amino acid, cells can gain

serine and glycine through intracellular synthesis and uptake

from the environment (de Koning et al., 2003; Sullivan and

Vander Heiden, 2017). The upregulation of serine and glycine

synthesis has been observed in many cancers (Kim et al., 2015;

Liao et al., 2019b). As a side-branch of glycolysis, serine and

glycine synthesis was tightly regulated by the activity of

glycolysis. Due to the Warburg effect, cancer cells could fulfil

the requirement of glycolytic intermediates in the synthesis of

serine and glycine through activated aerobic glycolysis

(DeBerardinis and Chandel, 2020). Upregulating the activity

of M2 isoform of pyruvate kinase (PKM2), an enzyme

functioned to catalyze conversion of phosphoenolpyruvate

into pyruvate, can restrict 3-PG, the initial compound of

serine and glycine synthesis, channeling into serine and

glycine synthesis (Chaneton et al., 2012). In cancer cells,

activation of PKM2 can reduce the synthesis of serine and

glycine and render cancer cells dependent on uptake from

environment (Kung et al., 2012). On the other way, restriction

of dietary serine and glycine, which functioned to decrease serine

and glycine uptake from environment, can reduce tumor growth

(Maddocks et al., 2013; Gravel et al., 2014). But this effect was

alleviated in those cancer models with upregulated serine and

glycine synthesis, suggesting that the synthesis of serine and

glycine can compensate the lack of uptake from environment

(Maddocks et al., 2017). Therefore, the simultaneous application

of inhibiting serine and glycine synthesis and uptake exhibited a

promising effect and called for more studies.

Moreover, in glioma, the concentration of glycine was also

proved with a positive correlation with aggressiveness (Tiwari

et al., 2020). Furthermore, serine and glycine were manifested as

immunosuppressive metabolites (He et al., 2019). Cancer cells

can overproduce abundant serine and glycine, which delivers

robust immunosuppressive effects and might contributes to the

immune evasion of cancer cells (Hanahan and Weinberg, 2011).

Extracellular serine can suppress the function of macrophages

and neutrophils (He et al., 2019). High activity of PHGDHwould

promote macrophages to differentiate intoM2-like (Wilson et al.,

2020). Hence, investigating the relationship between serine and

glycine metabolism and the immune landscape of glioma may

contribute to the application of immunotherapy.

In the present study, to explore the relationship between

SGMGs and clinicopathological features and the immune

landscape of gliomas, we firstly classified all patients into four

consensus clusters based on their distinctive expression patterns

of SGMGs. Compared to the other clusters, gliomas in cluster

4 expresses significantly higher levels of PSPH and

FIGURE 9 (Continued)
SGMRS and TIP score in TCGA cohort. (F) Analysis of TIP score and related gene expression levels ordered by SGMRS in CGGA325 cohort. (G)
Difference in TIP score between two risk groups in CGGA325 cohort. (H) Analysis of correlation between SGMRS and TIP score in CGGA325 cohort.
(I) Difference in proportion of patients with high cyto-toxic T lymphocytes infiltration between two risk groups in TCGA cohort. (J) Difference in
proportion of patients with predictive response to immune checkpoint inhibitors between two risk groups in TCGA cohort.
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SHMT1 which were known culprits of aberrant serine and

glycine production in malignant cancers (Geeraerts et al.,

2021). Additionally, the strong immunohistochemistry signal

of PSPH in high grade gliomas presented as an example that

the dysregulated SMGMs could be used as pathological

biomarkers to identify the most aggressive gliomas

(Supplementary Figure S3). Among these four clusters,

different clinicopathological features and prognosis patterns

were depicted. Furthermore, the incidences of gene alterations

also differed among these four clusters. For instance, IDH

mutation, a critical diagnostic and prognostic marker for

glioma would lead to abnormal tricarboxylic acid (TCA) cycle

(Yan et al., 2009; Pirozzi and Yan, 2021). Besides, the serine and

glycine synthesis pathway was reported to provide approximately

50% of the total anaplerotic flux of glutamine into the TCA cycle

(Possemato et al., 2011), indicating potential interaction between

serine and glycine metabolism and IDH mutation. Nevertheless,

even with potential interaction with other prognostic factors, the

SGMRS was still proved as an independent prognostic factor in

multivariate analysis, which included SGMRS and other potential

prognostic factors, indicating the satisfactory potential of

SGMRS as a prognostic factor.

After filtering SGMGs, five SGMGs were identified as critical

genes for the prognosis of glioma, suggesting the strong interaction

between these five genes and glioma. For example, phosphoserine

phosphatase (PSPH), an essential enzyme of serine and glycine

metabolism, catalyzes the dephosphorylation of phosphoserine to

serine. In multiple cancers, PSPH promotes tumor growth and

metastasis (Liao et al., 2019a; Rawat et al., 2021). In our study, the

hazardous effect of PSPH was illustrated. Serine hydroxymethyl

transferase 1 (SHMT1) is a critical enzyme that converts serine to

glycine (Hebbring et al., 2012). Upregulation of SHMT1 would

increase the concentration of glycine. Several studies have found that

SHMT1 can promote tumor growth and progression (Pandey et al.,

2014; Gupta et al., 2017). The activity of SHMT1 was strongly

negatively correlated with the overall survival in both clustering

analysis and SGMRS analysis, which was accordance with previous

study and endorsed the critical role of SHMT1 on the prognosis of

glioma patients. Compared to other three essential enzymes of serine

and glycine synthesis, SHMT1 showed significantly stronger

correlation with prognosis both in consensus clustering analysis

and in SGMRS analysis, suggesting that SHMT1 was the essential

enzyme of serine and glycine synthesis to regulate the malignancy of

glioma. Besides, glycine N-methyltransferase (GNMT) catalyzes the

methylation of glycine to form sarcosine (Yeo and Wagner, 1994),

which might decrease glycine concentration in the tumor. GNMT

has been proven to have tumor suppression function in

hepatocellular carcinoma (Chen et al., 1998). However, there is

no study to elucidate the effects of GNMT in glioma. Our study

suggested the protective effects of GNMT in glioma, inspiring

further research on it.

Further analyses of immune cell infiltration and immune

landscapes depicted the relationship between serine and glycine

metabolism and the immune microenvironment of glioma. The

CIBERSORTx analyses estimated the infiltration fraction ofmultiple

types of immune cells. The results demonstrated that the infiltration

ofmany immune cells was correlatedwith SGMRS. For example, the

infiltration of M2 macrophages into the tumor microenvironment

was strongly positively correlated with SGMRS. Circulating

monocytes and neighboring macrophages can be recruited by

tumor cells and then infiltrated into the tumor

microenvironment. Subsequently, these macrophages were

polarized from M1-like to M2-like, forming tumor-associated

macrophages (TAMs) (Anderson et al., 2021). TAMs can

synthesize cytokines to suppress the function of T lymphocytes

and upregulated immunosuppressive surface proteins (Curiel et al.,

2004; Colombo and Piconese, 2007; Yang and Zhang, 2017). These

immunosuppressive functions of TAMs became an important

reason for the immune evasion of tumors. The correlation

between high SGMRS and high infiltration of TAMs suggests the

role of serine and glycine metabolism in immune evasion, inspiring

that serine and glycine metabolism could be another target to

suppress immune evasion of glioma. The expression levels of

multiple immunotherapy-related genes, including PD-1 and PD-

L1, were also strongly positively correlated with SGMRS. The serine

and glycine synthesis was also reported to induce macrophages to

overexpress PD-L1 by promoting the release of IL-1β (Su et al., 2018;
Rodriguez et al., 2019; Yu et al., 2019), according to our study.

Additionally, higher SGMRS was correlated with immunological

‘hotter’ features and more potential responders to ICIs. These

findings suggested the potential ability of SGMRS to predict the

expression of targets for immunotherapy and the consequent ability

to guide the selection and use of immunotherapy in glioma.

Although comprehensive analyses were conducted in our

present study, there are still some limitations. First, protocols

used for data preprocessing and sequencing were different

among these four cohorts. Next, compared to metabolic and

proteomic data, the abundance of public RNA-sequencing

datasets allows more robust analysis and validation of the

results in multiple independent cohorts. However, the results

derived from transcriptome analysis as performed here would

be still more impactful if validated in future experiments.

Besides, all the analyses and related genes were about

serine and glycine metabolism, in other word, in the scope

of pharmacodynamics of serine and glycine. The disposition of

serine and glycine in different organs or tissues might also

influence their effects, which remains to be explored. In

addition, due to lack of transcriptomic data from

gliomas patients receiving immunotherapy, the implications

of our findings are confined to estimated ICI responses

rather than actual response. The application of the

prediction results should be evaluated with a clinical study

design. Finally, the underlying mechanism of how serine and

glycine metabolism impacted immune cell infiltration and the

immune landscape remains unclear and calls for further

investigation.
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Conclusion

In conclusion, we demonstrated that expression patterns of

SGMGs were closely related to clinicopathological features,

immune cell infiltration, and the immune landscape of

glioma. A novel serine and glycine metabolism assessment

score system, SGMRS, exhibited with robust ability to predict

the prognosis of glioma patients. Besides, higher SGMRS,

standing for more glycine synthesis and less glycine

catabolism, predicts more immune cells infiltration, a more

complex tumor microenvironment, and more expression of

targets for immunotherapy, endorsing the application of

SGMRS to guide the choice and use of immunotherapy in glioma.
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Background: TGF-β signaling pathway plays an essential role in tumor

progression and immune responses. However, the link between TGF-β
signaling pathway-related genes (TSRGs) and clinical prognosis, tumor

microenvironment (TME), and immunotherapy in gastric cancer is unclear.

Methods: Transcriptome data and related clinical data of gastric cancer were

downloaded from the Cancer Genome Atlas (TCGA) and Gene Expression

Omnibus (GEO) databases, and 54 TSRGs were obtained from the Molecular

Signatures Database (MSigDB). We systematically analyzed the expression

profile characteristics of 54 TSRGs in 804 gastric cancer samples and

examined the differences in prognosis, clinicopathological features, and TME

among different molecular subtypes. Subsequently, TGF-β-related prognostic

models were constructed using univariate and least absolute shrinkage and

selection operator (LASSO) Cox regression analysis to quantify the degree of risk

in each patient. Patients were divided into two high- and low-risk groups based
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on the median risk score. Finally, sensitivity to immune checkpoint inhibitors

(ICIs) and anti-tumor agents was assessed in patients in high- and low-risk

groups.

Results: We identified two distinct TGF-β subgroups. Compared to TGF-β
cluster B, TGF-β cluster A exhibits an immunosuppressive microenvironment

with a shorter overall survival (OS). Then, a novel TGF-β-associated prognostic

model, including SRPX2, SGCE, DES, MMP7, and KRT17, was constructed, and

the risk score was demonstrated as an independent prognostic factor for gastric

cancer patients. Further studies showed that gastric cancer patients in the low-

risk group, characterized by higher tumor mutation burden (TMB), the

proportion of high microsatellite instability (MSI-H), immunophenoscore

(IPS), and lower tumor immune dysfunction and exclusion (TIDE) score, had

a better prognosis, and linked to higher response rate to immunotherapy. In

addition, the risk score and anti-tumor drug sensitivity were strongly correlated.

Conclusion: These findings highlight the importance of TSRGs, deepen the

understanding of tumor immune microenvironment, and guide individualized

immunotherapy for gastric cancer patients.

KEYWORDS

gastric cancer, TGF-β, molecular pattern, prognosis, tumor microenvironment,
immunotherapy

Introduction

Gastric cancer is a highly heterogeneous malignant tumor of

the digestive system, ranking fifth in incidence and third in

mortality worldwide (Smyth et al., 2020). As the early symptoms

of gastric cancer are not obvious, some patients have already

entered the middle and late stages with poor prognostic when

diagnosed (Wei et al., 2020). In recent years, with the application

of targeted drugs such as trastuzumab in clinical treatment, the

prognosis of HER-2-positive patients with advanced gastric

cancer has improved (Zhu et al., 2021). However, the overall

prognosis of gastric cancer is still disappointing (Patel and

Cecchini, 2020).

Immune checkpoint inhibitors (ICIs) bring new hope to

tumor patients due to their significant efficacy and low side

effects. However, the response rate of immunotherapy for

patients with advanced gastric cancer is less than 30% (Chen

et al., 2022), which limits their use in clinical treatment. Studies

have shown that the tumor microenvironment (TME) plays a

vital role in tumor development and can influence the response

rate of ICIs(Zhang and Zhang, 2020). Several biomarkers

reflecting the TME, such as tumor mutation burden (TMB),

microsatellite instability (MSI), the density of tumor-infiltrating

lymphocytes (TILs), and PD-L1 expression, have been found to

correlate with the therapeutic efficacy of ICIs(Rizzo et al., 2021;

Niu et al., 2022). Tumor cells with high microsatellite instability

(MSI-H) have an increased TMB and generate new antigens due

to unrepaired mis-replicated DNA, which allows more TILs to

infiltrate and thus respond better to ICIs(Lizardo et al., 2020). In

addition, patients with high PD-L1 expression have higher

response rates to ICIs and longer survival time in most

tumors (Ni et al., 2021). Most biomarkers reflect only one

aspect of the TME. Recently, some investigators have used

transcriptomic data to systematically assess the TME with the

help of bioinformatics approaches to screen for different immune

phenotypes and thus predict the response rate to ICIs. For

example, Zhang et al. (2020) used transcriptomic data from

multiple m6A regulators to identify three m6A modification

patterns associated with immune phenotypes and to construct an

m6A scoring system to predict immunotherapy response.

TGF-β can be produced by most cells through autocrine and

paracrine forms, such as tumor cells, stromal cells, and immune

cells (Ungefroren, 2019). TGF-β signaling pathway plays a vital

role in embryonic development, tumor progression, and immune

response (Morikawa et al., 2016; Kim et al., 2021). In early tumor

cells, the TGF-β signaling pathway can inhibit proliferation,

induce cell cycle arrest and apoptosis, and is considered a

tumor suppressor (Colak and Ten Dijke, 2017; Garcia-

Rendueles et al., 2017). However, in advanced tumor cells, the

TGF-β signaling pathway regulates tumor recurrence and

metastasis through mechanisms such as promoting

angiogenesis, inducing epithelial-mesenchymal transition

(EMT), regulating genomic instability, and immune escape

(Colak and Ten Dijke, 2017; Garcia-Rendueles et al., 2017). In

addition, the collagen fibers induced by activation of the TGF-β
signaling pathway in fibroblasts in the TME restrict the

infiltration of T cells into tumor cells, which in turn inhibits

the body’s anti-cancer immune response and is regarded as an

immunosuppressive cytokine (Batlle and Massagué, 2019; Zhao

et al., 2020a). Currently, most studies focus on only one or two
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genes in the TGF-β signaling pathway, while tumor development

is often the result of a large number of genes interacting together.

Therefore, it is necessary to systematically analyze the

relationship between multiple genes in the TGF-β signaling

pathway and the TME to discover new and different immune

phenotypes and screen people sensitive to immunotherapy for

more precise treatment.

In this study, 804 gastric cancer samples were obtained from

TCGA and GEO databases, and 54 TSRGs were collected from

MSigDB. We analyzed the expression levels and gene mutation

characteristics of 54 TSRGs in gastric cancer and classified gastric

cancer patients into two distinct TGF-β subgroups based on the

expression levels of the 54 TSRGs. Subsequently, three gene

subgroups were identified based on the differentially expressed

genes (DEGs) between the two distinct TGF-β subgroups. Next,

we constructed and validated a prognostic model, which can

predict the prognosis of gastric cancer patients, paint a picture of

immune infiltration, and predict ICIs response rates and

antitumor drug sensitivity.

Materials and methods

Data collection

Gene expression data, somatic mutation data, copy number

variation (CNV) data, and corresponding clinicopathological

information of gastric cancer patients were downloaded from

the TCGA database (https://portal.gdc.cancer.gov/). The

GSE84337 dataset was obtained from the GEO database

(https://www.ncbi.nlm.nih.gov/geo/). After excluding patients

with missing survival time, 804 samples were included in this

study, 371 from the TCGA-STAD dataset and 433 from the

GSE84437 dataset. To eliminate batch effects of different

datasets, we converted fragments per kilobase million (FPKM)

values of the TCGA-STAD dataset to transcripts per kilobase

million (TPM) and merged two datasets using the ComBat

algorithm of the R package sva (Leek et al., 2012). 54 TSRGs

were obtained from the MSigDB (HALLMARK_TGF_BETA_

SIGNALING) (Supplementary Table S1) (Yu et al., 2022).

Differential expression and mutational
analysis of TSRGs

We performed differential expression analysis of 54 TSRGs

in gastric cancer samples and normal samples using R package

limma with the adjusted p < 0.05 and | log2 FC)|>1 (Ritchie et al.,
2015). The protein-protein interaction network of 54 TSRGs was

constructed in the STRING database (https://string-db.org/). R

package maftools was utilized to map the somatic mutation

waterfall of 54 TSRGs in gastric cancer patients (Mayakonda

et al., 2018). Lastly, we calculated the CNV gain or loss

percentage of 54 TSRGs in gastric cancer patients and

analyzed the chromosomal location using the R package

RCircos (Zhang et al., 2013).

Consensus clustering analysis of TSRGs

We first extracted the expression of 54 TSRGs in 804 samples

and then performed consensus unsupervised clustering analysis

based on 54 TSRGs expression levels using the R package

ConsensusClusterPlus (Wilkerson and Hayes, 2010). PCA was

performed to visualize the distribution between the two different

TGF-β subgroups. To explore the clinical significance of different
TGF-β subgroups, we performed Kaplan–Meier survival analysis

using the R package survival and survminer (Wang et al., 2020).

In addition, we mapped the expression heat map of 54 TSRGs

using the R package pheatmap in conjunction with the

clinicopathological features of the patients.

TGF-β-based subtype TME analysis

To explore the differences in TME between TGF-β
subgroups, we first analyzed the stromal score, immune score,

and ESTIMATE score between two subgroups using the

ESTIMATE algorithm. We analyzed the differences in the

expression of critical immune checkpoints such as PD-1, PD-

L1, and CTLA-4 between the two subgroups. Subsequently, we

calculated the infiltration level of 22 immune cells in each sample

using the CIBERSORT algorithm (Newman et al., 2015) and

analyzed the abundance of immune cell infiltrates between the

two subgroups using the single sample gene set enrichment

analysis (ssGSEA) algorithm (Zeng et al., 2022). In addition,

gene set variation analysis (GSVA) was performed with the

hallmark gene set (h.all.v7.5.1.symbols) to investigate the

differences in TGF-β subgroups in signaling pathways

(Hänzelmann et al., 2013).

Gene consensus clustering analysis of
TGF-β pattern-related DEGs

To identify DEGs in the distinct TGF-β subgroups, R

package limma was utilized with |log2-fold change (FC)| ≥
1 and adjusted p < 0.05. Based on the DEGs, we performed

gene ontology (GO) enrichment analysis and kyoto

encyclopedia of genes and genomes (KEGG) signaling

pathway analysis. We performed a clustering analysis based

on the expression of DEGs and performed a Kaplan–Meier

survival analysis among gene subgroups. In addition, we

combined TGF-β subgroups, gene subgroups, and

clinicopathological features of patients to map the

expression heat map of DEGs.
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Construction and validation of the risk
model for gastric cancer

To quantify the degree of risk for each patient, we constructed a

riskmodel based onDEGs. First, we performed univariate regression

analysis to screen DEGs associated with the prognosis of gastric

cancer patients. Second, we randomly divided the patients into

training and testing sets in a 1:1 ratio (Qing et al., 2022). The training

set is used to construct the risk model, and the testing set and the

entire set are used to validate the risk model. Third, the LASSO Cox

regression analysis was executed in the training set to reduce

overfitting genes with 10-fold cross-validation and 1000 repeated

times (Tibshirani, 1997). Finally, we performed a multivariate

regression analysis using the genes screened by the LASSO

regression analysis and calculated the risk score for each patient

according to expression levels and regression coefficients of genes.

The formula was as follows: Risk score = β gene1 × exp gene1 + β gene2 ×

exp gene2 + . . . + β genen × exp genen (Qing et al., 2022). Patients were

divided into high- and low-risk groups based on the median risk

score. Furthermore, we analyzed the relationship between the TGF-β
cluster, gene cluster, risk score, and survival status using the R

package ggalluvial and the differences in risk scores between distinct

subgroups (Zeng et al., 2022). In the training and validation sets, we

performed Kaplan-Meier survival analysis with the R package

survminer and survival (Wang et al., 2020) and ROC curve

analysis with the R package timeROC (Zeng et al., 2022),

respectively.

Subgroup analysis based on available
clinicopathological characteristics

To explore the performance power of the risk score among

different subgroups of clinicopathological characteristics, we first

analyzed the correlation between risk scores and clinicopathological

characteristics using the Student’s t-test. In addition, Kaplan–Meier

survival analysis was performed in different subgroups stratified by

age (≤65 years or >65 years), sex (female or male), T stage (T1-2 or

T3-4), and N stage (N0 or N1-3).

Independent prognostic and nomogram
analysis

Univariate and multivariate Cox regression analyses were

performed to explore whether the risk score could be an

independent prognostic factor for gastric cancer patients in the

training, testing, and entire set, respectively. Age, gender, tumor size

(T), lymph node metastasis (N), and risk score were included for

analysis. In addition, we constructed a nomogram integrated the risk

score and clinicopathological factors to predict the survival of gastric

cancer patients at 1-, 3-, and 5-year using R package rms in the

training set, testing set, and entire set, respectively (Zeng et al., 2022).

Calibration curves were plotted to determine the performance of the

nomograms in predicting OS.

Investigation of the immune landscape

To explore the differences in the tumor immune

microenvironment between high- and low-risk groups of

gastric cancer patients based on the risk model, we first

analyzed the stromal score, immune score, and ESTIMATE

score between the two groups using the ESTIMATE

algorithm. Then, we analyzed the Spearman correlation

between the risk score and immune cells using seven

methods, including the XCELL, TIMER, QUANTISEQ,

MCPCOUNTER, EPIC, CIBERSORT-ABS, and CIBERSORT

algorithms (Zeng et al., 2022). We further analyzed the

Spearman correlation between the expression of 5 genes in

the model and immune cells. In addition, the ssGSEA was

subjected to calculate the infiltrating immune cells’ scores and

assess the activity of immune-related pathways between high-

and low-risk groups using the R package gsva (Hänzelmann et al.,

2013). Finally, we analyzed the expression levels of immune

checkpoint-related genes between high- and low-risk groups.

Immunotherapy response and antitumor
drug sensitivity

TMB(Rizzo et al., 2021), MSS(Rizzo et al., 2021), IPS(Wu

et al., 2021), and TIDE (Zeng et al., 2022) scores were considered

markers to predict immunotherapy response. First, we

downloaded the mutation data of gastric cancer patients in

MAF format from the TCGA database and annotated them

using the R package maftools (Mayakonda et al., 2018), and

subsequently analyzed the correlation between the risk score and

TMB as well as the mutated genes common to patients in high-

and low-risk groups. Second, we downloaded IPS and MSS data

from the TCIA database (http://tcia.at/) for gastric cancer

patients and analyzed the differences between patients in

high- and low-risk groups. Finally, we analyzed the response

rate of gastric cancer patients to immunotherapy based on the

TIDE website (http://tide.dfci.harvard.edu/).

Next, we used the R package pRRophetic to calculate the half

inhibitory centration (IC50) of antitumor drugs for each patient and

analyzed the differences in sensitivity to antitumor drugs between

patients in high- and low-risk groups (Geeleher et al., 2014).

Statistical analysis

R software (version 4.1.2) and related R packages were

utilized for statistical analyses. The Wilcoxon test was used to

compare clinicopathological characteristics, immune status,

Frontiers in Pharmacology frontiersin.org04

Zeng et al. 10.3389/fphar.2022.1069204

76

http://tcia.at/
http://tide.dfci.harvard.edu/
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2022.1069204


FIGURE 1
Genetic mutational characteristics of TSRGs in gastric cancer, (A)Differential expression analysis of TSRGs in gastric cancer and normal tissues.
(B) Protein-protein interaction network analysis of TSRGs in the STRING database. (C) Mutation frequency analysis of TSRGs in gastric cancer. (D)
Frequencies of CNV gain, loss, and non-CNV among TSRGs. (E) Locations of CNV alterations in TSRGs on chromosomes. TSRGs, TGF-β signaling
related genes; CNV, copy number variant; *p < 0.05; **p < 0.01; ***p < 0.001.
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TMB, IPS, TIDE scores, and IC50 values between different

groups. Kaplan-Meier curves were used to compare OS

between different groups. Univariate and multivariate Cox

regression analyses were used to analyze independent

prognostic factors. ROC curves and nomograms were used to

evaluate the predictive power of the risk model. p < 0.05 was

considered statistically significant. *p < 0.05; **p < 0.01;

***p < 0.001.

Results

Differential expression and genetic
variation landscape of TSRGs in gastric
cancer

The design idea of this study is shown in Supplementary

Figure S1. We first performed differential expression analysis of

54 TSRGs in gastric cancer tissues and normal gastric tissues. We

obtained 43 DEGs with the adjusted p < 0.05 and | log2 FC)|>1, of
which JUNB, ID1, CDKN1C, ID3, and BCAR3 were lowly

expressed in gastric cancer tissues, and the remaining DEGs

were highly expressed in gastric cancer tissues (Figure 1A).

Protein-protein interaction network analysis based on the

String database revealed a close linkage between most genes

(Figure 1B). Next, we explored the somatic mutation levels and

the frequency of CNVs alteration in 54 TSRGs in gastric cancer

patients. The waterfall plot in Figure 1C shows that 197 (45.5%)

of the 433 samples had TSRG mutations. Among them, APC

(11%) had the highest mutation frequency, followed by CDH1

(8%) and NCOR2 (6%). Missense mutations are the most

common form of mutation in TSRGs. We also investigated

the frequency of CNVs alterations of TSRGs and found that

FURIN, SKIL, and ARID4B had the most significant copy

number increase, while HIPK2, ID3, and BMPR1A had the

most significant copy number deletion (Figure 1D). Figure 1E

shows the site of CNVs of TSRGs on chromosomes.

Identification of TGF-β subgroups in
gastric cancer

To understand the expression pattern of TSRGs involved in

tumorigenesis, data from 804 gastric cancer samples from

TCGA-STAD and GSE84437 datasets were enrolled in our

study for further analysis (Supplementary Table S2). To

explore the characteristics of 54 TSRGs expression profiles in

gastric cancer, we performed unsupervised clustering analysis to

identify gastric cancer subtypes based on 54 TSRGs expression

levels. The results showed that K = 2 was the most appropriate

cluster, and 804 gastric cancer patients were classified into TGF-β
cluster A (n = 443) and TGF-β cluster B (n = 361) (Figures 2A–C

and Supplementary Table S3). The PCA results further

demonstrate the excellent grouping effect (Figure 2D).

Kaplan-Meier survival analysis showed a more significant

survival advantage for TGF-β cluster B (p < 0.001, Figure 2E).

In addition, we combined TGF-β subgroups and

clinicopathological features of gastric cancer patients to map

54 TSRGs expression heatmaps and found that 54 TSRGs were

expressed at higher levels in TGF-β cluster A compared to TGF-β
cluster B (Figure 2F).

Characteristics of the TME in two distinct
TGF-β subgroups

To explore the correlation between TSRGs and TME in

gastric cancer, we first performed an ESTIMATE analysis. The

results showed that patients in TGF-β cluster A had a higher

stromal score, immune score, and ESTIMATE score (Figures

3A–C), suggesting that gastric cancer patients in the TGF-β
cluster A have higher immune activity and lower tumor

purity. Then, expression analysis of three crucial immune

checkpoint genes (PD1, PD-L1, and CTLA4) showed higher

expression levels of PD1, PD-L1, and CTLA4 in gastric

patients in the TGF-β cluster A compared to patients in TGF-

β cluster B (Figures 3D–F). We further analyzed the level of

infiltration of 23 immune cells in patients with two distinct TGF-

β clusters using the CIBERSORT algorithm. As shown in

Figure 3G, the infiltration levels of activated B cell, activated

dendritic cell, CD56 bright natural killer cell, eosinophil, gamma

delta T cell, immature B cell, immature dendritic cell, MDSC,

macrophage, mast cell, natural killer T cell, natural killer cell,

plasmacytoid dendritic cell, regulatory T cell, T follicular helper

cell, type 1 T helper cell, and type 2 T helper cell were higher in

the TGF-β cluster A than those in the TGF-β cluster B, while

activated CD4 T cell and neutrophil had significantly lower

infiltration in TGF-β cluster A than those in the TGF-β
cluster B. In addition, GSVA enrichment analysis revealed

multiple tumor-associated signaling pathways enriched in

TGF-β cluster A, including KRAS, IL2/STAT5, inflammatory

response, hypoxia, apoptosis, and wnt/β-catenin signaling

pathways (Figure 3H).

Identification of gene clusters based on
TGF-β pattern-related DEGs

To further explore the potential biological functions of the

TGF-β clusters, we obtained 202 TGF-β clusters-related DEGs

(Supplementary Table S4) using R package limma and performed

functional enrichment analysis. These TGF-β cluster-related

DEGs are mainly enriched in biological processes associated

with the extracellular matrix (Figure 4A). KEGG analysis

showed that DEGs were associated with metastasis and

tumor-related signaling pathways (Figure 4B), suggesting that
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FIGURE 2
Overall survival and clinicopathological characteristics of two different TSRG subgroups. (A) Consensus matrix heatmap defining two clusters
(k=2). (B) The cumulative distribution function (CDF) from k= 2 to 9. (C) Relative variation of the area under the CDF region at k=2–9. (D) PCA shows
different distributions between the two subgroups. (E) Kaplan-Meier survival analysis between two different TSRG subgroups. (F) Differences in
clinicopathologic characteristics and expression levels of TSRGs between the two distinct TSRG subgroups. TSRGs, TGF-β signaling related
genes; CDF, cumulative distribution function; PCA, principal components analysis.
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TSRGs play an essential role in tumorigenesis and metastasis.

Then, 202 TGF-β cluster-related DEGs were subjected to

univariate Cox regression analysis to screen for genes

associated with OS in gastric cancer. We obtained 199 genes

related to the prognosis of gastric cancer patients at p < 0.05

(Supplementary Table S5). To further explore the potential

mechanisms of prognosis-related DEGs in gastric cancer,

based on the expression level of 199 prognostic genes,

unsupervised consensus clustering analysis was utilized to

classify gastric cancer patients into three different gene

clusters, namely gene cluster A, gene cluster B, and gene

cluster C (Supplementary Table S6). Kaplan-Meier survival

analysis showed that patients in gene cluster A had the worst

OS, whereas patients in gene cluster C showed a superior OS

FIGURE 3
Analysis of the tumor immunemicroenvironment between two different TGF-β subgroups. (A–C) Stromal score, immune score, and ESTIMATE
score analyses between two subgroups. (D–F) Expression levels of PD-1, PD-L1, and CTLA-4 in the two subgroups. (G) The abundance of
23 infiltrating immune cell types in the two different TGF-β subgroups. (H) GSVA of biological pathways between two subgroups. GSVA, gene set
variation analysis; PD-1, programmed cell death 1; PD-L1, programmed cell death 1 ligand 1; CTLA-4, cytotoxic T-lymphocyte associated
protein 4; *p < 0.05; **p < 0.01; ***p < 0.001.
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FIGURE 4
Identification of gene subgroups based on DEGs among two TGF-β subgroups. (A,B) GO and KEGG enrichment analyses of DEGs among two
TGF-β subgroups. (C) Kaplan-Meier survival analysis between three different gene subgroups. (D) Heatmap of clinicopathologic characteristics and
DEGs expressions among the three gene subgroups. (E) Differences in the expression of 54 TSRGs among the three gene subgroups. DEGs,
differentially expressed genes; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; TSRGs, TGF-β signaling related genes;
*p < 0.05; **p < 0.01; ***p < 0.001.
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(Figure 4C). In addition, we combined the TGF-β cluster, gene

cluster, and clinicopathological features of gastric cancer patients

to map heat maps and found significant expression differences

among gene clusters (Figure 4D). The three gene clusters showed

significance in TSRGs expression, as expected from the TGF-β
clusters (Figure 4E).

Construction and validation of the risk
model

To quantify the risk of each gastric cancer patient, we

constructed a prognostic risk model based on TGF-β cluster-

related prognostic DEGs. First, the R package caret was used

to randomize patients into a training set (n = 402)

(Supplementary Table S7). And a testing set (n = 402)

(Supplementary Table S8) at a ratio of 1:1. Second, in the

training set, LASSO and multivariate Cox regression analyses

were used to construct an appropriate risk model. Based on

the minimum partial likelihood deviance, 12 potential

candidate genes were screened by LASSO regression

analysis (Figures 5A,B; Supplementary Table S9).

Subsequent multivariate Cox regression of 12 prognosis-

related genes yielded five genes used to construct the risk

model, namely SRPX2, SGCE, DES, MMP7, and KRT17. We

calculated the risk score for each patient based on the formula.

Risk score= (0.1586×expression of SRPX2) +

(0.1438×expression of SGCE) + (0.0728×expression of DES)

+ (0.0554×expression of MMP7) + (0.0754×expression of

KRT17) (Figure 5C). The Sankey diagram showed the

correlation between risk score and TGF-β clusters, gene

clusters, and survival status (Figure 5D). In addition, we

observed an obvious difference in the risk score of the

TGF-β clusters and gene clusters (Figures 5E,F). The

previous survival analysis showed shorter OS in the TGF-β
cluster A and gene cluster A groups, and our model showed

FIGURE 5
Construction of the TGF-β cluster-related DEGs prognostic model. (A,B) Twelve optimal TGF-β cluster-related DEGs were found using the
LASSO cox regression. (C) Five optimal TGF-β cluster-related DEGs were found using the multivariate Cox analysis. (D) Sankey diagram of TGF-β
cluster, gene cluster, risk score, and survival status. (E) Differences in risk score between two TGF-β clusters. (F) Differences in risk score between
three gene clusters. DEGs, differentially expressed genes; LASSO, least absolute shrinkage and selection operator; Coef, coefficient.
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the highest risk scores in TGF-β cluster A and gene cluster A

groups, which further demonstrated the excellent

performance of our risk model.

Next, we divided gastric cancer patients into high- and

low-risk groups based on the median risk score. The risk

score curve and survival status scatter plots show that the

number of deaths in gastric cancer patients increases as the

risk score increases (Figures 6A,B). Kaplan-Meier survival

analysis showed that patients in the high-risk group had

worse OS than those in the low-risk group (Figure 6C). The

risk score’s 1-, 3-, and 5-year AUC values were 0.612, 0.668,

and 0.694, respectively (Figure 6D). Meanwhile, we did

the same analysis in two validation sets (the testing set

and the entire set), respectively, and we obtained

similar results (Figures 6E–L). In the

IMvigor210 cohort, patients in the high-risk group had

significantly lower survival than the low-risk group

(Supplementary Figure S2A), which further validates the

accuracy of our constructed prognostic model. Taken

together, our established risk model has an excellent

performance in predicting the survival outcome of gastric

cancer patients.

FIGURE 6
Prognosis value of the TGF-β cluster-related DEGs prognostic model. (A) The distribution of risk score, (B) survival status, (C) Kaplan–Meier
survival curves, (D) the 1-, 3-, and 5-year ROC curves. (E–L) The validation sets, including the testing set and the entire set, were analyzed similarly.
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Clinical correlation analysis and
stratification analysis of the risk model

To explore the correlation between the risk score and

available clinicopathological characteristics, we first analyzed

differences in risk scores across clinical subgroups. The

subgroups were divided by age (≤65 years or >65 years), sex
(female or male), T stage (T1-2 or T3-4), and N stage (N0 or

N1-3). The results showed that the risk scores were not

statistically different across age and gender subgroups

(Figures 7A,B), while patients in the T3-4 and N1-3

subgroups had higher risk scores (Figures 7C,D). In

addition, we performed Kaplan-Meier survival analysis for

different subgroups. We found that in the age ≤65 years
(Figure 7E), age >65 years (Figure 7F), female (Figure 7G),

male (Figure 7H), T3-4 (Figure 7J), N1-3 (Figure 7L)

subgroups of gastric cancer patients, the OS of patients in

the high-risk group was significantly lower than that of low-

risk patients, while no significant differences were seen for T1-

2 (Figure 7I), N0 (Figure 7K) subgroups.

Independent prognostic and nomogram
analysis

To explore whether the risk score is an independent

prognostic factor for patients with gastric cancer, we

performed univariate and multivariate Cox regression analyses

in the training set and two validation sets (testing set and entire

set) in combination with clinicopathological characteristics. In

the training set, univariate Cox regression analysis displayed that

age (HR = 1.025, 1.011–1.039, p < 0.001), T stage (HR = 1.233,

1.011–1.505, p = 0.039), N stage (HR = 1.472, 1.256–1.725, p <
0.001), and risk score (HR = 2.122, 1.675–2.690, p < 0.001)

predicted worse OS (Figure 8A). Multivariate Cox regression

analysis showed that the age (HR = 1.028, 1.018–1.038, p <
0.001), N stage (HR = 1.392, 1.181–1.604, p < 0.001) and risk

score (HR = 2.005, 1.562–2.574, p < 0.001) were independent

prognostic factors in gastric cancer patients (Figure 8B). In the

testing set, univariate Cox regression analysis displayed that age

(HR = 1.027, 1.012–1.042, p < 0.001), T stage (HR = 1.276,

1.051–1.550, p = 0.014), N stage (HR = 1.633, 1.387–1.923, p <

FIGURE 7
Prognostic model-based clinicopathological characteristics and survival subgroup analysis, Differential analysis of the risk score for (A) age, (B)
gender, (C) T stage, and (D)N stage subgroups. Kaplan-Meier survival analysis for (E) age ≤65 years, (F) age >65 years, (G) female, (H)male, (I) T1-2, (J)
T3-4, (K) N0, and (L) N1-3 between high- and low-risk groups.
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0.001), and risk score (HR = 1.722, 1.337–2.217, p < 0.001)

predicted worse OS (Figure 8C). Multivariate Cox regression

analysis showed that the age (HR = 1.033, 1.018–1.048, p <
0.001), N stage (HR = 1.576, 1.334–1.863, p < 0.001) and risk

score (HR = 1.674, 1.293–2.166, p < 0.001) were independent

prognostic factors in gastric cancer patients (Figure 8D). In the

entire set, univariate Cox regression analysis displayed that age

(HR = 1.026, 1.016–1.036, p < 0.001), T stage (HR = 1.255,

1.093–1.442, p = 0.001), N stage (HR = 1.549, 1.383–1.735, p <
0.001), and risk score (HR = 1.922, 1.617–2.285, p < 0.001)

predicted worse OS (Figure 8E). Multivariate Cox regression

analysis showed that the age (HR = 1.028, 1.018–1.038, p <
0.001), N stage (HR = 1.475, 1.312–1.659, p < 0.001) and risk

score (HR = 1.819, 1.519–2.179, p < 0.001) were independent

FIGURE 8
The independent prognosis analysis of the risk score and clinicopathological variables in gastric cancer. (A,B) Univariate and multivariate Cox
regression analyses of clinicopathological variables and risk scores with OS in the training set, (C,D) testing set, and (E,F) entire set.
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FIGURE 9
Construction and validation of a nomogram for predicting OS in gastric cancer. (A,B) The nomogram combining gender, age, T stage, N stage,
and risk score for predicting gastric cancer patient OS at 1-, 3-, and 5- years in the training set, (C,D) testing set, and (E,F) entire set. *p < 0.05; **p <
0.01; ***p < 0.001.
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FIGURE 10
Differential analysis of tumor immune microenvironment between high- and low-risk groups. (A) TME score between high- and low-risk
groups. (B) Spearman correlation analysis of immune components and risk scores based on XCELL, TIMER, QUANTISEQ, MCPCOUNTER, EPIC,
CIBERSORT-ABS, and CIBERSORT algorithms. (C) Spearman correlations between the abundance of immune cells and five genes in the prognostic
model. (D) 16 immune cells and (E) 13 immune-related functions between the high- and low-risk groups by ssGSEA. (F) The expression of
immune checkpoint-related genes between the high- and low-risk groups.
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prognostic factors in gastric cancer patients (Figure 8F). Taken

together, the risk score is an independent prognostic factor for

patients with gastric cancer.

Given the close correlation between the risk score and

prognosis of gastric cancer patients, we integrated gender, age,

T stage, N stage, and risk score to plot a nomogram to predict the

1-, 3-, and 5-year survival rates in the training set and two

validation sets (testing set and entire set) (Figures 9A,C,E).

Furthermore, the 1-, 3-, and 5-year calibration curves showed

great accuracy between the nomogram-predicted OS and the

actual observed OS (Figures 9B,D,F).

Analysis of tumor immune
microenvironment between high- and
low-risk groups

To explore the differences in tumor immune

microenvironment between high- and low-risk groups of

gastric cancer patients, we first performed ESTIMATE

analysis. The results showed that gastric patients in the high-

risk group had a higher stromal score, immune score, and

ESTIMATE score (Figure 10A). Subsequently, seven

algorithms were used to assess the correlation between the

level of immune cell infiltration and the risk score. As shown

in Figure 10B, the risk score was positively correlated with

myeloid dendritic cell, CD4+ T cell, CD8+ T cell, cancer-

associated fibroblast, hematopoietic stem cell, neutrophil, and

macrophage M2, while negatively correlated with T cell CD4+

memory activated, T cell follicular helper, NK cell resting, and

mast cell resting (Supplementary Table S10). We also performed

a correlation analysis between the five genes in our prognostic

model and the immune cells. We found that DES, KRT17, SGCE,

and SRPX2 were significantly correlated with most immune cells,

while MMP7 only correlated with macrophages M1 and

eosinophils (Figure 10C). In addition, we further explored the

difference of 16 immune cells and 13 immune-related pathways

between the two subgroups using ssGSEA. We found that B cells,

DCs, iDCs, macrophages, mast cells, neutrophils, TIL, CCR,

HLA, parainflammation, type I IFN response, and type II IFN

response were more enriched in the high-risk group, while the

Th1 cells, Th2 cells, APC co inhibition, and MHC class I is less

enriched in the high-risk group (Figures 10D,E). Finally, we

analyzed the expression levels of immune checkpoint-related

genes between two subgroups. Figure 10F showed that

24 immune checkpoint-related genes were differentially

expressed in the high- and low-risk groups.

Immunotherapy response analysis

TMB and MSI are considered biomarkers of tumor

immunotherapy response rate (Rizzo et al., 2021), and

patients with high TMB and MSI-H benefit from

immunotherapy and have more prolonged survival. Therefore,

we first analyzed the correlation between the TMB and risk score.

The results showed a negative correlation between the TMB and

risk score (Figure 11A), and the TMB of gastric cancer patients in

the low-risk group was significantly higher than that of gastric

cancer patients in the high-risk group (Figure 11B). Kaplan-

Meier survival analysis showed that the risk score diminished the

prognostic advantage of patients with gastric cancer in the high

TMB group (Figure 11C). We further analyzed the somatic

mutations in the high- and low-risk groups of gastric cancer

patients. The results showed that the most common form of

mutation was missense mutation, and the top five mutated genes

were TTN, TP53, MUC16, ARID1A, and LRP1B, and the

frequency of mutations was higher in the low-risk group

(Figure 11D), which was consistent with the results of the

above study. In addition, we analyzed the correlation between

the MSI and risk scores and showed that patients in the low-risk

group had a higher proportion of MSI-H and that patients with

MSI-H had lower risk scores (Figure 11E).

IPS and TIDE scores are novel tumor immunotherapy

response rate biomarkers that better assess the efficacy of

anti-PD1 and anti-CTLA4 therapies. A high IPS score

represents higher immunogenicity, and a high TIDE score

represents a greater likelihood of tumor immune escape (Wu

et al., 2021; Zeng et al., 2022); therefore, the higher the IPS and

the lower the TIDE score, the better the patient’s outcome to

immunotherapy. Our results showed that gastric cancer patients

in the low-risk group had higher IPS (Ips_ctla4_neg_pd1_neg,

ips_ctla4_pos_pd1_neg, and ips_ctla4_pos_pd1_pos scores)

than those in the high-risk group, but there was no

statistically significant difference between the two groups in

the ips_ctla4_neg_pd1_pos score (Figures 11F–I).

Furthermore, the TIDE, dysfunction, and exclusion scores of

gastric cancer patients in the low-risk group were lower than

those in the high-risk group (Figures 11J–L). In addition, analysis

of immunotherapy response based on the IMvigor210 cohort

showed that patients in the immunotherapy-responsive group

(complete response (CR)/partial response (PR) group) had

significantly lower risk scores than the immunotherapy non-

responsive group (stable disease (SD)/progressive disease (PD)

group) (Supplementary Figure S2B). The above results suggest

that patients with gastric cancer in the low-risk group may be

may be more sensitive to immunotherapy.

Antitumor drug sensitivity analysis

To explore the potential role of our established risk model for

clinical treatment, we analyzed the differences in IC50 of

common antitumor drugs between high- and low-risk groups.

We found that gastric cancer patients in the low-risk group were

more sensitive to ATRA, cytarabine, gefitinib, gemcitabine,
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FIGURE 11
Analysis of immunotherapy response rates between high- and low-risk groups. (A) Spearman correlation analysis of the risk score and TMB. (B)
Analysis of TMB differences between high- and low-risk groups. (C) Kaplan-Meier survival analysis among four subgroups stratified by both TMB and
risk score. (D) The waterfall plot of somatic mutation landscape high- and low-risk groups. (E) Relationships between risk score and MSI. (F) The
ips_ctla4_neg_pd1_neg, (G) ips_ctla4_neg_pd1_pos, (H) ips_ctla4_pos_pd1_neg, and (I) ips_ctla4_pos_pd1_pos analyses between the high-
and low-risk groups. (J–L) The TIDE, dysfunction, and exclusion score analyses between the high- and low-risk groups. TMB, tumor mutation
burden; IPS, immunophenoscore; TIDE, tumor immune dysfunction and exclusion; ***p < 0.001.
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methotrexate, metformin, paclitaxel, rapamycin, sorafenib,

tipifarnib, and vorinostat than those in the high-risk group,

while gastric cancer patients in the low-risk group were less

sensitive to axitinib, bleomycin, bortezomib, docetaxel,

doxorubicin, erlotinib, imatinib, lapatinib, and pazopanib than

those in the high-risk group (Figure 12). The above results

FIGURE 12
Antitumor drug sensitivity analysis of gastric patients in high- and low-risk groups, IC50 analysis of ATRA (A), axitinib (B), bleomycin (C),
bortezomib (D), cytarabine (E), docetaxel (F), doxorubicin (G), erlotinib (H), gefitinib (I), gemcitabine (J), imatinib (K), lapatinib (L), methotrexate (M),
metformin (N), paclitaxel (O), pazopanib (P), rapamycin (Q), sorafenib (R), tipifarnib (S), and vorinostat (T) in the high- and low-risk groups, which
were classified by the prognostic model. IC50, half-maximal inhibitory concentration.
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suggest that our prognostic model can be an essential indicator of

antitumor drugs for patients with gastric cancer.

Discussion

Numerous studies have shown that the TGF-β signaling

pathway plays an essential role in the tumor immune

microenvironment and can exert both pro- and anti-tumor

effects (Morikawa et al., 2016; Colak and Ten Dijke, 2017;

Garcia-Rendueles et al., 2017; Batlle and Massagué, 2019; Kim

et al., 2021). However, most studies focus on one or two TGF-β
signaling pathway genes or a single TME cell, and the overall

TME infiltration characteristics mediated by the multiple TGF-β
signaling pathway genes have not been comprehensively

understood. Discovering the role of different TGF-β-related
subtypes in the TME will help improve our understanding of

the antitumor immune microenvironment and guide more

precise individualized immune therapy.

In this study, we first analyzed the differential expression

levels and genetic mutation characteristics of 54 TSRGs using the

TCGA-STAD dataset. Although the mutation frequency of

54 TSRGs was low, most were highly expressed and closely

related in gastric cancer. Subsequently, we identified two

distinct TGF-β subgroups, TGF-β cluster A and TGF-β cluster

B, based on 54 TSRGs transcriptome expression levels using an

unsupervised clustering approach. Compared to gastric cancer

patients with TGF-β cluster B, gastric cancer patients with TGF-β
cluster A had shorter OS, higher expression levels of 54 TSRGs,

higher stromal scores, immune scores, ESTIMATE scores, higher

levels of PD1, PD-L1, CTLA4 expression levels, and higher

infiltration levels of MDSC, macrophage, and regulatory

T cells. The above results imply that TGF-β cluster A has a

more active immunosuppressive TME. Tumor cells in the

immunosuppressive TME can evade the killing effect of

immune cells and have a high degree of malignancy, which in

turn leads to a shorter survival of patients (Lei et al., 2020). And

the patients with TGF-β cluster A in this study had shorter

survival, which is consistent with this phenomenon. Next, we

identified the DEGs between two distinct TGF-β subgroups and

further identified three gene subgroups based on DEGs. There

was a significant difference in OS between the three gene

subgroups. In addition, 41 of the 54 TSRGs were significantly

differentially expressed among the three gene subgroups. This

demonstrated a close association between gene subgroups and

TGF-β subgroups.

Next, we constructed a TGF-β-related prognostic model to

calculate the risk score for each patient. We first screened

prognosis-related genes by univariate Cox regression analysis

for differentially expressed genes between two TGF-β subgroups.
Next, LASSO Cox regression analysis was used to construct a

prognostic model containing five genes, and each patient’s risk

score was calculated. We found that TGF-β cluster A and gene

cluster A were mainly concentrated in the high-risk group, while

TGF-β cluster B and gene cluster C were primarily concentrated

in the low-risk group. Patients in the high-risk group had a poor

prognosis, consistent with the previous results of poor prognosis

in the TGF-β cluster A and gene cluster A groups. The five genes

in the prognostic model were SRPX2, SGCE, DES, MMP7, and

KRT17. Studies have shown that SRPX2 is highly expressed in

gastric cancer and can promote migration and adhesion of gastric

cancer cells, which is closely associated with poor prognosis of

gastric cancer patients (Tanaka et al., 2009). The present study

showed that SRPX2 is a risk factor for the prognosis of gastric

cancer patients, which is consistent with the above findings.

SGCE has a hazard ratio greater than 1 in gastric cancer and is

considered a poor prognostic marker (Hou et al., 2017), which is

consistent with the results of this study. SGCE is a sponge

molecule of EGFR and its E3 ubiquitination ligase (c-Cbl).

High expression of SGCE inhibits EGFR degradation via the

ubiquitin lysosomal pathway, increases tumor cell drug

resistance, and promotes metastasis (Zhao et al., 2020b).

Studies have shown that desmin (DES) protein is more

advantageous than elastin protein in detecting vascular

invasion in gastric cancer and is considered one of the

markers of tumor invasion (Ekinci et al., 2018; Shin et al.,

2020). MMP7 expression was significantly associated with

poor clinicopathological features of gastric cancer patients,

including vascular invasion, undifferentiated histological types,

higher TNM stage, and high CEA levels (Wattanawongdon et al.,

2022), and was considered one of the prognostic markers of

gastric cancer (Chang et al., 2014). It was shown that silencing

KRT inhibited the proliferation, migration, and invasion of

gastric cancer cells, induced apoptosis, and stalled the gastric

cancer cell cycle at the G1/S phase by decreasing the expression of

cyclin E1 and cyclin D (Hu et al., 2018). In addition, Zhou et al.

constructed a prognostic signature based on multiple gastric

cancer datasets in the GEO database, including MMP7 and

KRT17 (Zhou et al., 2021), which indirectly demonstrated the

reliability of our prognostic model. Next, we performed a survival

analysis between high- and low-risk groups, which showed that

OS was worse in the high-risk group of gastric cancer patients.

This result was also confirmed in both validation sets (testing set

and entire set). The risk scores also had excellent performance

across clinicopathological characteristics subgroups. Univariate

and multifactorial Cox regression analyses demonstrated that the

risk score was an independent prognostic factor for patients with

gastric cancer. In addition, the nomograms constructed by the

risk score combined with clinicopathological characteristics also

excelled in predicting the overall survival of gastric cancer

patients at 1-, 3-, and 5-year. Overall, the TGF-β-related
prognostic model we constructed could excellently predict the

prognosis of gastric cancer patients.

The TME is the internal environment on which tumor cells

depend for survival. Under normal circumstances, immune cells in

the TME can recognize and remove tumor cells on time, but tumor
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cells can create an immunosuppressive TME through a complex

regulatory network to produce immune escape (Joyce and Fearon,

2015; Jiang et al., 2019). The immunosuppressive TME consists of

immunosuppressive cells such as regulatory T cells (Tregs), tumor-

associated macrophages (TAMs), tumor-associated neutrophils

(TANs), myeloid-derived suppressor cells (MDSCs), tumor-

associated fibroblasts (CAFs), extracellular matrix, suppressive

cytokines such as interleukin 10, interleukin 17, TGF-β exosomes

and immune checkpoint molecules such as PD1, PD-L1, and

CTLA4 (Zhang et al., 2019; Li et al., 2020; Nakamura and

Smyth, 2020). Studies have shown that increased MDSCs in

tumor tissues promote the production of Tregs and deplete

activated T cells (Davis et al., 2016). Furthermore, Tregs can

inhibit CD80 and CD86 co-stimulatory signaling via CTLA4,

secrete suppressive cytokines, and kill effector T cells (Tekguc

et al., 2021). TAMs can enhance the immunosuppressive TME in

several ways. In gastric cancer, TAMs promote PD-L1 expression

through the secretion of CXCL8, thereby suppressing the antitumor

effects of CD8+ T cells (Lin et al., 2019). TAMs can also recruit Tregs

through the secretion of chemokines such as CCL2, CCL3, CCL20,

and CCL22, which in turn form immunosuppressive

TMEs(Cassetta and Pollard, 2020; Pan et al., 2020). In addition,

TAMs-derived TGF-β can promote its secretion of CCL22 to recruit

Tregs, which in turn can secrete IL-8 to promote TGF-β secretion by
TAMs, thereby enhancing immunosuppressive TME (Wang et al.,

2019). This study showed higher MDSC, macrophage, and

regulatory T cell infiltration levels and more active signaling

pathways such as TGF-β, and Wnt/β-catenin signaling pathways

in the TGF-β cluster A, suggesting a more active

immunosuppressive microenvironment. Spearman correlation

analysis of immune cells and risk scores showed a positive

correlation between risk scores and myeloid dendritic cells,

M2 macrophages, and CAFs, suggesting that the TME of

patients in the high-risk group was immunosuppressive. Patients

with gastric cancer of TGF-β cluster A were mainly concentrated in

the high-risk group, and the results of the before-and-after study

were consistent.

ICIs offer new hope for patients with advanced cancer due to

their significant efficacy and fewer side effects. However, only a

small number of patients can benefit from them. Therefore, there

is an urgent need to screen the population with a high response

rate for more precise treatment. Currently, common biomarkers

to predict the efficacy of ICIs include TMB, microsatellite status,

IPS, and TIDE score. Tumor cells with MSI-H have an increased

TMB and generate new antigens due to unrepaired mis-

replicated DNA, which allows more TILs to infiltrate and thus

respond better to ICIs (Lizardo et al., 2020). This study showed

that the low-risk group had a higher TMB and a higher

percentage of MSI-H than the high-risk group, suggesting that

low-risk gastric cancer patients may have a better treatment effect

on ICIs. IPS and TIDE scores are novel immunotherapy

biomarkers with good predictive power for response rates to

ICIs (Wu et al., 2021). A high IPS represents higher

immunogenicity, and a high TIDE score represents a greater

likelihood of tumor immune escape (Wu et al., 2021; Zeng et al.,

2022); therefore, the higher the IPS and the lower the TIDE score,

the better the patient’s outcome to ICIs. This study showed that

patients with gastric cancer in the low-risk group had higher IPS

scores and lower TIDE scores, suggesting that patients in the low-

risk group are highly immunogenic, again demonstrating that

patients in the low-risk group are a potentially highly beneficial

population for ICIs treatment. In addition, we analyzed the

differences in sensitivity of common antitumor drugs between

high- and low-risk groups to provide a new perspective on

clinical antitumor drug combination strategies.

Our study also has some limitations. This study is a

retrospective study based on public data and needs to be

further validated in a large, multicenter prospective study.

Second, this study needs to incorporate more

clinicopathological features for a more comprehensive analysis

of the clinical value of the risk model. In addition, in vivo and

in vitro experiments are needed to further explore the specific

mechanisms of risk scores in the TME.

Conclusion

In this study, we found that TGF-β cluster A presented an

immunosuppressive microenvironment with shorter OS. Second,

we constructed a risk model associated with TSRGs to predict the

prognosis of gastric cancer patients. In addition, gastric cancer

patients in the low-risk group, characterized by higher TMB, the

proportion of MSI-H, IPS, and lower TIDE score, may be more

sensitive to immunotherapy.
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Schematic diagram of the study design.

SUPPLEMENTARY FIGURE S2

Riskmodel validation on the imvigor210 cohort. (A) Kaplan–Meier survival
analysis between high- and low-risk groups. (B) Immunotherapy
response analysis. CR: Complete response; PR: Partial response; SD:
Stable disease; PD: Progressive disease.
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Hepatitis B virus pathogenesis
relevant immunosignals
uncovering amino acids
utilization related risk factors
guide artificial intelligence-based
precision medicine
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Background: Although immune microenvironment-related chemokines,

extracellular matrix (ECM), and intrahepatic immune cells are reported to be

highly involved in hepatitis B virus (HBV)-related diseases, their roles in

diagnosis, prognosis, and drug sensitivity evaluation remain unclear. Here,

we aimed to study their clinical use to provide a basis for precision medicine

in hepatocellular carcinoma (HCC) via the amalgamation of artificial

intelligence.

Methods: High-throughput liver transcriptomes from Gene Expression

Omnibus (GEO), NODE (https://www.bio.sino.org/node), the Cancer

Genome Atlas (TCGA), and our in-house hepatocellular carcinoma patients

were collected in this study. Core immunosignals that participated in the entire

diseases course of hepatitis B were explored using the “Gene set variation

analysis” R package. Using ROC curve analysis, the impact of core

immunosignals and amino acid utilization related gene on hepatocellular

carcinoma patient’s clinical outcome were calculated. The utility of core

immunosignals as a classifier for hepatocellular carcinoma tumor tissue was

evaluated using explainable machine-learning methods. A novel deep residual

neural network model based on immunosignals was constructed for the long-

term overall survival (LS) analysis. In vivo drug sensitivity was calculated by the

“oncoPredict” R package.

Results: We identified nine genes comprising chemokines and ECM related to

hepatitis B virus-induced inflammation and fibrosis as CLST signals. Moreover,

CLST was co-enriched with activated CD4+ T cells bearing harmful factors

(aCD4) during all stages of hepatitis B virus pathogenesis, which was also

verified by our hepatocellular carcinoma data. Unexpectedly, we found that

hepatitis B virus-hepatocellular carcinoma patients in the CLSThighaCD4high

subgroup had the shortest overall survival (OS) and were characterized by a
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risk gene signature associated with amino acids utilization. Importantly,

characteristic genes specific to CLST/aCD4 showed promising clinical

relevance in identifying patients with early-stage hepatocellular carcinoma

via explainable machine learning. In addition, the 5-year long-term overall

survival of hepatocellular carcinoma patients can be effectively classified by

CLST/aCD4 based GeneSet-ResNet model. Subgroups defined by CLST and

aCD4 were significantly involved in the sensitivity of hepatitis B virus-

hepatocellular carcinoma patients to chemotherapy treatments.

Conclusion: CLST and aCD4 are hepatitis B virus pathogenesis-relevant

immunosignals that are highly involved in hepatitis B virus-induced

inflammation, fibrosis, and hepatocellular carcinoma. Gene set variation

analysis derived immunogenomic signatures enabled efficient diagnostic and

prognostic model construction. The clinical application of CLST and aCD4 as

indicators would be beneficial for the precision management of hepatocellular

carcinoma.

KEYWORDS

hepatitis B virus, hepatocellular carcinoma, tumor microenvironment (TME), artificial
inteligence-AI, anti-tumor drug, prognosis, amino acids utilization

Introduction

Chronic hepatitis B virus (HBV) infection remains a major

health concern worldwide (Kramvis et al., 2022). First-line anti-

HBV drugs approved by FDA including PEG IFN-α and

nucleoside (acid) analogs (NAs) are not yet effective in

achieving functional cure referring to hepatitis B surface

antigen (HBsAg) and covalently closed circular DNA

(cccDNA) elimination (Levrero et al., 2018; Fanning et al.,

2019; Yang et al., 2019; Tout et al., 2020). Over 200 million

people are afflicted with chronic hepatitis B (CHB) and are at a

high risk of developing liver fibrosis (LF), liver cirrhosis, and

hepatocellular carcinoma (HCC) (Wangensteen and Chang,

2021). HBV-related diseases cause heavy economic pressure

and psychological burden to many families, especially in the

Asia-Pacific region, where HBV is highly prevalent (Wang et al.,

2017; Wong et al., 2019; Howell et al., 2020; Sarin et al., 2020).

Considerable evidence suggests that chemokines, the

extracellular matrix (ECM), parenchymal hepatic cells, tissue-

resident lymphocytes, and extrahepatic immune cells in the liver

microenvironment are associated with HBV-related diseases

progression (Yuen et al., 2018). CXCR3-related chemokines

(CXCL9 and CXCL10), directly produced by hepatocytes or

liver sinusoidal endothelial cells at the early stage of HBV

infection, can result in intrahepatic lymphocyte infiltration

(Rehermann, 2013). SPP1(the CD44 ligand) derived from

activated hepatic stellate cells (HSC) serves as a stimulator for

KLRG1+ NK cells that can mediate liver scarring limitation in

CHB pathogenesis (Wijaya et al., 2019) and has predictive value

in the prognosis of HCC (Shang et al., 2012; da Costa et al., 2015).

SOX9, which can be directly induced in HBV-infected human

hepatoma cells (Yang et al., 2020) has been identified as a risk

factor for cirrhosis and HCC (Chen et al., 2021; Damrauer et al.,

2021). However, these previous studies are performed just

through flow cytometry (FCM), immune fluorescence (IF),

and immunohistochemistry (IHC) with limited

subpopulations of liver-infiltrating lymphocytes (LILs) and a

small samples size; the orchestra of multiple chemokines and

ECM related genes with a variety of LILs during HBV

pathogenesis are not globally indicated.

The core mechanism underlying amino acid metabolic

adaptations in cancer cells to grow in a nutrient-deficient

tumor microenvironment (TME) was recently reported, and

LYSET (TMEM251) and other amino acid utilization-

associated genes (ATF4, TSC2, VPS18, RAB7A, SLC7A5,

SLC3A2, TGFBRAP1, GNPTAB, and GCN2) have been

primarily screened out mainly through CRISPR-Cas9 based

high-throughput method (Pechincha et al., 2022). Although

these key players essential for tumor cell proliferation in harsh

TME conditions and LYSET invovled in lysosomal biogenesis

have been uncovered in the latest studies (Pechincha et al., 2022;

Richards et al., 2022), their impact on pan-cancer clinical

outcomes remains unknown. The metabolic status of amino

acids in HCC patients with different immune subtypes

according to HBV pathogenesis-relevant immunosignals is

worthy of further study.

Currently, precise diagnosis and prognosis of HBV-related

liver diseases have attracted much attention (Petrizzo et al., 2018;

Zheng et al., 2020). The main obstacle to artificial intelligence

(AI) models’ establishment in genome medicine is that neither

gene microarray nor RNA-seq data are suitable for direct

learning (Oh et al., 2021). Although several AI models based

on these high-dimensional biological data have been constructed

to detect liver cancer at an early stage and assess the prognosis
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(Long et al., 2019; Tao et al., 2020; Christou and Tsoulfas, 2021;

LiuW. et al., 2021; Liu X. et al., 2021), the input data used in these

models are relatively complex and not easy to follow. Until now,

the optimal model with a promising predictive value for clinical

utilization has been far from reaching a general consensus (Le

Berre et al., 2020; Christou and Tsoulfas, 2021; Liu X. et al., 2021;

Oh et al., 2021; Wang et al., 2022). “Gene set variation analysis

(GSVA)” R package (GSVA, for short) (Aran et al., 2017;

Charoentong et al., 2017), CIBERSORT (Newman et al.,

2015), MCP-counter and TIMER were primarily developed

and used for novel immune cell subtype identification and

concentration evaluation using tissue transcriptome data

(Aran et al., 2017; Charoentong et al., 2017; Danaher et al.,

2017; Finotello and Trajanoski, 2018; Thakur et al., 2022).

Among these tools, GSVA has been widely used in tumor

(Charoentong et al., 2017; Deng et al., 2019; Shen et al., 2019;

Xiao et al., 2020; Gong et al., 2021; Zhuang et al., 2021) and non-

tumor researches (Hu et al., 2021; Shen et al., 2021; Yu et al.,

2021) for core module identification at the gene-set level. AI-

based models constructed using low-dimensional biological

pathway data generated by GSVA as inputs have become

popular and demonstrate promising effects (Chawla et al.,

2022; Martinez et al., 2022). However, the application of

GSVA-derived core immunosignals with even lower

dimensionality for efficient feature selection, which benefits

machine learning and deep learning in precision oncology,

has not been researched.

In this study, immunogenomic profiling of liver

transcriptomes was performed to explore the core

immunosignals involved in the entire disease course of

hepatitis B and their extended clinical applications in early

diagnosis, prognostic assessment, and precision usage of anti-

cancer drugs. First, we employed GSVA to identify a meaningful

HBV pathogenic gene module, named CLST. The potential role

of CLST in predicting liver injury and detecting HBV-LF was

uncovered. Co-enrichment of CLST and activated CD4+T cells

(aCD4) in liver tissue from HCC patients was identified and

experimentally verified in our in-house RNA-seq data. Next, a

high enrichment score for nutritional utilization of amino acid-

related genes was demonstrated as a predictive factor for poor

overall survival (OS). The link between nutritional utilization of

amino acids and CLST/aCD4 dysregulation in patients with

HBV-HCC was explored. Powerful and explainable machine

learning methods were then incorporated to construct tools

for tumor tissue identification. Simultaneously, a novel deep

residual neural network model (GeneSet-ResNet) based on

CLST and aCD4 was proposed for long OS(LS) status

prediction. Finally, the utility of aCD4 and CLST for

evaluating anti-HCC drug sensitivity was evaluated. A new

strategy for the construction of novel gene set-based AI

models will be helpful for precision medicine.

Materials and methods

Raw data collection and proceeding

A total of 11 Gene Expression Omnibus (GEO) datasets were

downloaded from the GEO database (https://www.ncbi.nlm.nih.

gov/geo/). The CHCC cohort comprising Chinese patients with

HBV-HCCwas obtained fromNODE (https://www.bio.sino.org/

node). The TCGA-LIHC cohort, consisting of HCC patients, was

collected from The Cancer Genome Atlas (TCGA). Brief

information about the 13 cohorts and workflow of this study

are provided in Additional files (Supplementary Table S1;

Supplementary Figure S1). R Studio (Version 1.4.1103) was

used to obtain raw data (normalization, gene ID convention,

clinical information collection) based on the recommended R

packages. The CHCC-GSE14520 dataset comprising 396 tumor

tissue samples from HBV-HCC patients was cross-technology

combined. The non-biological effects across CHCC and

GSE14520 were corrected through “SVA” R package (Tang

et al., 2021).

Collection and sequencing of liver cancer
tissue

Fresh liver cancer tissue specimens from HBV-HCC patients

surgically resected from the Shanghai Public Health Clinical

Center affiliated with Fudan University (SPHCC) were

collected, aliquoted, and stored in a liquid nitrogen tank

at −80°C within 2 h. Total tissue RNA was extracted and sent

for transcriptome high-throughput sequencing (RiboBio Co.,

Ltd.) to compare changes in the transcript mRNA levels of

related genes in liver cancer.

Identification of differentially expressed
genes (DEGs)

Grading (G) and staging (S) systems have been utilized for

the efficient evaluation of inflammation and fibrosis in chronic

liver diseases, respectively. DEGs (S1/S0, S2/S0, S3/S0, and S4/

S0) of GSE84044 were downloaded from the supplementary

materials provided in a previous study (Wang et al., 2017) and

visualized using GraphPad Prism. DEGs (G1/G0, G2/G0, G3/

G0, and G4/G0) of GSE84044 were screened primarily via

“Limma” R package and visualized via “ggplot2” R package,

“pheatmap” R package or “EnhancedVolcano” R package. As

for the “Enhanced Volcano” R package, upregulated genes with

fold change (FC) > 1.5 and p-value < 0.05 were considered

statistically significant. Venn analysis was used to identify

overlapping DEGs.
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Functional annotation and hub genes
screening

Gene Ontology (GO) analyses were performed to

investigate the biological function annotation of overlapping

DEGs of GSE84044 using “clusterProfiler” R package and

visualized via the “ggplot2” R package. Kyoto Encyclopedia

of Genes and Genomes (KEGG) signaling pathway analyses

were based on “clusterProfiler” R package and also visualized

via the “ggplot2” R package. A PPI network of overlapping

DEGs from GSE84044, containing 57 nodes and 89 edges, was

constructed using the STRING database. Cytoscape software

was used to visualize and screen the hub genes. Protein and

protein interaction (PPI) analyses of member genes of

aCD4 were conducted and visualized using online tools

provided by the STRING database.

ssGSEA score calculation

The enrichment scores (ES) of 28 LILs and CLST in liver

samples from the GEO database or NODE were calculated

primarily via the “GSVA” R package with single sample gene

set enrichment analysis (ssGSEA) algorithm (Hanzelmann

et al., 2013; Charoentong et al., 2017; Yu et al., 2021). A

total of 28 gene sets consisting of cell-specific marker genes

represent 28 LILs (Charoentong et al., 2017). CLST and amino

acid utilization-associated gene signatures were defined in this

study according to previous studies (Subramanian et al., 2005;

Barbie et al., 2009).

Correlation and comparison

The heatmap showing spearman comparison among hub

genes and grading (or staging) was calculated and drawn by using

the “Hmisc” R package. The “Hmisc” R package was utilized to

calculate the correlations between selected genes and LILs. The R

package “ggcorrplot” was used to calculate correlations between

CLST and LILs. The results were visualized using the “pheatmap”

R package. Comparisons of differences between the two groups

were performed and visualized as box plots or dot plots via the

“ggplot2” R package, and heatmap via the “pheatmap” R package,

respectively according to the guidelines. Statistical significance

was set at p < 0.05.

Diagnostic values evaluation and overall
survival analysis

The diagnostic values of CLST and LILs immune signals for

identifying whether CHB patients are living with liver injury or

liver fibrosis were calculated through COX analysis using the

“pROC” R package based on liver transcriptomes of

GSE83148 and GSE84044, respectively. OS analysis was

performed using the Kaplan-Meier survival” R package based

on expression values of hub genes or ES of identified

immunogenomic signals in tumor tissues of GSE14520 and/or

CHCC with available survival information. Kaplan-Meier curves

were drawn and plotted via the “survminer” R package. Statistical

significance was set at p < 0.05.

Explainable machine learning algorithms
for tumor tissue detection

Nine powerful AI algorithms, including logistic regression

(LR), linear discriminant analysis (LDA), K neighbors (KNN),

Gaussian naive Bayes (GNB), support vector machine (SVM),

random forest (RF), decision tree (CRAT), gradient boosting

decision tree (GBDT), and LightGBM (LGBM, leaf-wise GBDT)

were evaluated for tumor detection. The area under the curve

(AUC) was calculated to quantify predictive performance.

Shapley additive explanation method (SHAP) was

implemented to provide the model-level quantitative

interpretation by evaluating the importance of each feature to

the classification.

Long term OS analysis via GeneSet-
ResNet

A two-dimensional (2-D) ResNet-18 model, called

GeneSet-ResNet, was proposed in this study, where the

input layers receiving 2-D pseudo-images were converted

by the expression values of unique feature genes of both

CLST and aCD4 that could be detected in the liver

transcriptomes of HCC patients. The sample imbalance

between HCC patients with long-term overall survival (LS)

and those with short-term overall survival (SS) was solved

using Borderline SMOTE. Repeated stratified K-fold cross-

validations (splits = 10, repeats = 30, and random state = 2022)

were used in the GeneSet-ResNet model. In each 10-fold

cross-validation, the dataset was randomly divided into a

training set (70% of the samples) for batch training and a

test set (10% of the samples) for performance evaluation. The

model performance was also validated using a validation set

comprising 20% of the samples. In addition, excellent training

results and generalization ability were achieved by employing

the root-mean-square propagation (RMsprop) optimization

algorithm and the learning rate decay method. Accuracy

(ACC) were calculated as follows:

ACC � TP + TN( )/ TP + TN + FN + FP( )

TP, true positive; FP, false positive; TN, true negative; FN, false

negative.
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The area under the curve (AUC) was calculated to quantify

predictive performance.

Chemotherapy sensitivity prediction

The half-maximal inhibitory concentration (IC50) for

patients with HCC based on liver transcriptomes was

predicted using the “calcPhenotype” algorithm provided by a

ridge regression model (“oncoPredict” R package) (Maeser et al.,

2021). The differences in sensitivity between first-line and

emerging drugs used for HCC treatment between HBV-HCC

patients in the CLST high aCD4 high subgroup and those in the

CLSTlowaCD4 low subgroup were analyzed using the Wilcoxon

test. Statistical significance was set at p < 0.05.

Results

CLST definition

The gene expression profiles of HBV-LF were re-analyzed

according to a previous study. Overlapping DEGs upregulated in

S2, S3, and S4 when compared to the S0 group were selected

(Supplementary Figures S2A, S2B). Chemokine signaling

pathways in which cargo-carrying genes encoding CXC

subfamily ligands and CCL subfamily ligands were observed

to be primarily enriched (Supplementary Figures S2C, S2D).

Of the overlapping DEGs, 15 hub genes belonging to the

chemokine-related gene cluster and ECM-related gene cluster

with the highest maximal clique centrality (MCC) score were

screened (Figures 1A,B). The majority of 15 hub genes were also

significantly upregulated in the G2, G3, and G4 groups compared

to the G0 group (Supplementary Figures S3A–D). Fourteen hub

genes that were positively associated with G and S were listed in

this study as GS-associated hub genes (Figure 1C). These genes

were confirmed to be upregulated in the liver tissues of HBV-

infected patients (Figure 1D) and CHB patients with liver injury

(Supplementary Figures S3D−E) compared to normal controls.

All GS-associated hub genes were highly enriched in CHB

patients at immune active (IA) phases (Liu et al., 2018) and

displayed a similar expression pattern in CHB patients at

immune tolerance phases (IT) and immune carrier phases

(IC) (Supplementary Figure S3F). To further uncover the

original inducers of GS-associated hub genes, the liver

transcriptomes of HBV-infected human hepatocyte chimeric

mice were analyzed. We found that GS-associated hub genes

that could be detected in liver tissues of human hepatocyte

FIGURE 1
CLST identification. (A) PPI network of overlapping DEGs by STRING (GSE84044). (B) Seven chemokine-related genes and eight ECM-related
genes in two groupswere further identified using Cytoscape ofMCODE plug-in. (C)Correlations among expression values of 14 hub genes, G scores,
and S scores. (D) Dot plots of 14 GS-associated hub genes in liver samples of CHB group and control group. (E) Heatmap of nine hub genes in HBV-
infected mice and control mice. (F) Heatmap showing ES of gene set comprised of 14 GS-associated hub genes and CLST in HBV-PHH and
control PHH.
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chimeric mice were upregulated upon HBV infection (Figure 1E)

and significantly expanded in ex vivo HBV-infected human

primary hepatocytes (PHH) (Figure 1F). Therefore, in our

study, we defined GS-associated hub genes as a gene set,

including CCL19, CCL20, CXCL9, CXCL10, LUM, SOX9,

SPP1, THBS1, and THBS2, named CLST.

CLST, co-expanded with LILs, could
effectively predict HBV-liver inflammation
and fibrosis

The host immune response plays an important role in HBV

pathogenesis. Therefore, the landscape of CLST and LILs in CHB

and LF is presented in this section. Both CLST and LILs were

highly enriched in HBV-infected patients (Figure 2A), CHB

patients with a higher score of liver inflammation that was

characterized by G (Figure 2B), and with a higher score of LF

that was characterized by S (Figure 2C). As shown in Figure 2D,

17 overlapping LILs, including NKT, MDSC, and activated

T cells bearing CCL20 (aCD4), were screened from 28 LILs.

Overlapping LILs were co-expressed with CLST in liver samples

of CHB (Figure 2E) and HBV-LF (Figure 2F). Generally, we can

conclude that CLST can be directly induced upon initial HBV

infection and is associated with liver inflammation (G) and LF

(S). All AUCs of CLST, NKT, MDSC, and activated T cells

bearing CCL20 (aCD4) in predicting abnormal serum ALT/AST

levels were above 0.85 (Figures 2G,H). Moreover, CLST was

ranked as the leading gene set, followed by NKT, aCD4, and

MDSC, which effectively segregated LF from normal liver

samples (Figure 2I).

CLST synergizing with aCD4 were risk
signals in HBV-HCC

The batch effect among GSE83148, GSE84044, and

GSE14520 was removed by using the SVA algorithm

(Supplementary Figures S4A,B). Enrichment Scores of CLST,

NKT, aCD4, and MDSC were identified to be significantly higher

in tumor tissues of HBV-HCC than in those without HBV in the

integrated gene microarray dataset (Supplementary Figure S4C).

Correlation analyses were performed in normal and tumor tissue

mixed samples of two independent HBV-HCC cohorts (Figures

3A,B) and our HBV-HCC data (Figure 3C), and severe positive

relationships between CLST and aCD4 were verified. In addition,

FIGURE 2
Co-enrichment and diagnostic values of CLST, NKT, MDSC, and aCD4 in CHB and HBV-LF. (A) Boxplot comparing immune signals between
patients with chronic HBV infection and normal tissues from patients without HBV infection. (B) Boxplot comparing immune signals between
patients with inflammation (G ≥ 1) and those without inflammation (G = 0). (C) Boxplot comparing immune signals between patients with liver fibrosis
(S ≥ 1) and those without liver fibrosis (S = 0). (D) Venn diagram of upregulated LILs. (E,F) Correlation heatmap showing the co-enrichment
pattern of CLST and LILs in CHB and HBV-LF. (G–I) ROC curves of CLST and LILs for predicting liver injury and LF.
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CLST and aCD4 were significantly co-enriched in the tumor

tissues of the three independent HBV-HCC cohorts (Figures

3D–F). Interestingly, positive correlations among CLST, liver-

resident CD4+ T naïve-like cells (CD4+TLR-NL), acquisition of a

TH17 polarization state (CD4+TLR-NL), CD4+TEM-TH1/TH17, and

immune checkpoints (ICs) indicated their cross-talk in the tumor

tissue of HBV-HCC (Figure 4A).

Additionally, PPI analysis revealed that CCL20 was the

leading gene exhibiting the closest relationship with aCD4 in

HBV-HCC patients (Figure 4B). Further survival analysis

suggested that a higher aCD4/CLST/CCL20 was associated

with significantly shorter OS (Supplementary Figure S5). The

CLSThighaCD4high (Figure 4C) and aCD4highCCL20high

(Figure 4D) subgroups showed worse OS probabilities,

highlighting the application of CLST and aCD4 for the

establishment of diagnostic and prognostic models in HCC

patients.

Patients with HBV-HCC in the
CLSThighaCD4high subgroup were
characterized by an unfavorable status of
excess nutritional usage of amino acids

As shown in Figure 5A, LYSET, ATF4, VPS18, RAB7A,

SLC7A5, TGFBRAP1, and GNPTAB were previously

identified as proteins involved in the nutritional utilization of

amino acids (Pechincha et al., 2022; Richards et al., 2022).

Surprisingly, survival analysis showed that a higher gene

expression level of LYSET/ATF4/VPS18/RAB7A/SLC7A5/

TGFBRAP1/GNPTAB was associated with a significantly

shorter OS in HBV-HCC patients (Figures 5B–H). HBV-HCC

patients in the CLSThighaCD4high and CLSTlowaCD4low subgroups

exhibited a distinct pattern of GSVA-based amino acid

utilization-associated gene signature. Consistently, a higher ES

of the amino acid utilization-associated gene signature

represented a worse OS probability (Figure 5I). The ES of

amino acid utilization-associated gene signature was found to

increase in the CLSThighaCD4high subgroup, reflecting a shorter

OS (Figure 5J).

An explainable machine learning model
based on feature genes belonging to CLST
and aCD4 was powerful for tumor tissue
detection

Nearly half of the feature genes belonging to aCD4 at

higher levels were associated with a significantly shorter OS in

the CHCC cohort (Supplementary Figure S6). Among them,

seven genes (KIF11, CCNB1, EXO1, KNTC1, PRC1, RGS1,

and CCL20) were identified as overlapping risk factors for

survival in the GSE14520 cohort (data not shown). Thus,

fifteen feature genes comprised of nine genes from CLST

and seven genes from aCD4 were ultimately used to

construct a diagnostic model for tumor tissue detection.

FIGURE 3
Correlation between CLST and LILs in tumor tissues of patients with HBV-HCC (A–C) Pearson correlation analysis showing co-enrichment
among CLST, aCD4, NKT, and MDSC in liver tissues of GSE121248, GSE14520, and our in-house RNA-seq data. (D–F) Pearson correlation analysis
showing co-enrichment among CLST, aCD4, NKT, and MDSC signals in liver tumor tissues of three independent GSE datasets.
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Briefly, nine AI algorithms were trained and validated to

separate tumor tissues from the normal liver, cirrhosis, and

tumor tissues in the GSE25097 cohort. Of the nine AI

algorithms, SVM outperformed in terms of the highest

ACC (Supplementary Figure S7A), showed potent

robustness with stratified K-fold cross-validations, and

achieved the highest average AUC that could accurately

separate tumor tissue from any other type of liver sample

(Figures 6A,B). The efficiency of SVM was further tested in an

independent HCC cohort (TCGA-LIHC), with an AUC of 0.97

(Figure 6C). SVM also was powerful in separating tumor

tissues at early stage (BCLC stage 0-A) from non-tumor

tissues (GSE14520) among nine AI algorithms

(Supplementary Figure S7B) and achieved an average AUC

of 0.99 and 0.99 with stratified K fold cross-validations

(splits = 5 and 10), respectively (Figures 6D,E). The

diagnostic power of SVM was also excellent in an

independent test set (CHCC), with an AUC of 0.98

(Figure 6F). The SHAP summary plot suggested that

CCNB1, PRC1, CCL20, KIF11, and EXO1 were the top five

variables that had important impacts on the performance of

SVM in the CHCC cohort (Figures 6G,H).

Deep learning model fed by feature genes
from CLST and aCD4 was efficient for LS
prediction

The process of generating gene expression pseudo-images

and the GeneSet-ResNet architecture using resnet-18 as the

backbone for LS prediction is illustrated in Figure 7A. In

brief, there were 26 small squares (rows = 2, columns = 13)

in each pseudo-image representing the expression value of

26 unique feature genes from one HBV-HCC sample. The

sample imbalance between the LS and SS subgroups was

solved using borderline SMOTE generated synthetic minority

samples. The LS and SS subgroups in HBV-HCC were further

classified using the GeneSet-ResNet model with gene expression

pseudo-images as inputs. Model performance was evaluated in

30 repeated stratified 10-fold cross-validations. As shown in

Figure 7B, an average AUC of 0.907 and ACC of 0.919 over

30 repeats of the stratified 10-fold cross-validation for LS

(survival time >5 years) prediction were achieved in the

CHCC-GSE14520 dataset. Interestingly, the GeneSet-ResNet

model outperformed the TCGA-LIHC dataset in LS prediction

(Figure 7C). These results suggest that GeneSet-ResNet, based on

FIGURE 4
Prognostic values of CLST and aCD4 for OS prediction in HBV-HCC. (A)Heatmaps showing correlations betweenCLST, aCD4, MDSC, NKT, and
specific immune genes in HBV-HCC. (B) PPI analysis of member genes belonging to aCD4 and correlations among aCD4, CLST, and hub gene
expression values. CCL20was an overlapping gene in both aCD4 andCLST (GSE14520). (C,D) KM survival analysis of OS in tumor tissues with a higher
ES of both aCD4 and CCL20 or a higher ES of both aCD4 and CLST in two independent HBV-HCC cohorts. Time was calculated in years. The
log-rank test for p-value and p-value <0.05 was considered significant.
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CLST and aCD4, is a robust deep learning model for 5 years LS

prediction in HCC.

CLST and aCD4 guided precision anti-HBV
immunotherapy and anti-cancer
chemotherapy

The ESs of CLST and aCD4 in liver transcriptomes from a

CHB cohort treated with IFN-α therapy were calculated, and the

results indicated that CLST and aCD4 were remarkably

upregulated in treatment responders (Figure 8A). These

results suggest that the sensitivity of anti-HBV

immunotherapy can be predicted using CLST and aCD4. The

ESs of CLST and 28 LILs in the liver tissues of treatment

responders pre- and post-IFN-α were also evaluated. CLST

and LILs tended to be downregulated in responders after

receiving PEG IFN-α (Figure 8B). Both CLST and aCD4 were

significantly suppressed in paired samples with the engagement

of PEG IFN-α (Figure 8C). Moreover, only aCD4 and CLST levels

showed a significant positive correlation in these responders

(Figure 8D). The sensitivities of the CLSThighaCD4high and

CLSTlowaCD4low subgroups in HBV-HCC patients to

198 anticancer chemotherapies from a resource for therapeutic

biomarker discovery in cancer cells (Genomics of Drug

Sensitivity in Cancer, GDSC) were compared (Supplementary

Table S2; Figure 8E). HBV-HCC patients in the CLSThighaCD4high

subgroup were more sensitive to the majority of anticancer drugs

(167/198) than those in the CLSTlowaCD4low subgroup

(Figure 8E). In terms of first-line chemotherapy selection,

patients in the CLSThighaCD4high subgroup were more sensitive

to sorafenib (Figure 8F). Patients in the CLSTlowaCD4low

subgroup were more sensitive to two emerging

chemotherapies: SB505124 (TGF-β receptor inhibitor) and

dihydrorotenone (Figure 8F).

Discussion

Although most of the feature genes in CLST, including

intrahepatic mRNA for CXCL9 (Wang et al., 2017; Jiang

et al., 2021), CXCL10 (Wang et al., 2017; Singh et al., 2020;

Jiang et al., 2021), CCL20 (Zhao et al., 2014), SOX9 (Xu et al.,

2016; Yang et al., 2020), SPP1 (Shang et al., 2012), and LUM (Xu

et al., 2016) have been reported involved in several HBV-related

diseases, there are no reports systemically describing their

landscape during all the stages of HBV related diseases even

less the integration of these genes as a gene set for predicting liver

FIGURE 5
The prognostic value of nutritional utilization of the amino acid-associated gene signature in HBV-HCC (A) Lysosomal nutrient generation and
nutritional utilization of amino acids for tumor cell growth. LYSET (TEME251), ATF4, VPS18, RAB7A, SLC7A5, TGFBRAP1, andGNPTABwere involved in
this process. (B–H) Plots depict the KM survival curves for each nutritional utilization of amino acid-associated genes in HBV-HCC patients from the
CHCC cohort divided into low and high expression groups according to the gene expression value. (I) KM survival curves for OS in tumor tissues
of HBV-HCC patients from CHCC cohort with a high ES of the “nutritional utilization of amino acid-associated gene” signature and a low ES of the
“nutritional utilization of amino acid-associated gene” signature. (J) Differences in the enrichment levels of the “nutritional utilization of amino acid-
associated gene” signature between HBV-HCC patients from the CHCC cohort in the CLSThighaCD4high subgroup and those in the CLSTlowaCD4low

subgroup.
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injury and LF, to our best knowledge. Host-encoding genes can

serve as prognostic biomarkers in LF, and a fibrosis risk score

(FRS) has been established; however, none of these studies

considered global immunogenomic information in

consideration (Xu et al., 2016; Zhou et al., 2017; Singh et al.,

2018). “GSVA” R package is a powerful tool for analyzing and

exploring the complex involvement of the immune

microenvironment in larger samples (Moeini et al., 2019;

Chawla et al., 2022; Martin-Serrano et al., 2022). Through

GSVA, we identified hub genes associated with HBV

pathogenicity and demonstrated that the CLST signal initially

induced by HBV infection was co-enriched with the majority of

LILs in CHB and HBV-LF patients. CLST was ranked as the

leading factor for efficient diagnosis of CHB patients living with

LF compared to those without LF. Interestingly, CLST and

aCD4 exhibited the strongest correlation in the largest HBV-

HCC cohort among multiple independent cohorts and were

verified in our in-house HBV-HCC patients. These

observations suggest that the CLST-aCD4 axis plays an

important role in HCC pathogenesis. Mechanistically, CLST

and aCD4 were found to be highly associated with both Th1/

Th17 polarization and ICs in tumor tissues.

TH17 has beenwidely reported to be an important inflammatory

factor in HCC (Bansal, 2020; Ma et al., 2020; Li et al., 2021). Recently,

the expansion of liver-resident CD4+T naïve-like cells (CD4+TLR-NL)

acquiring a TH17 polarization state has been proven to be a candidate

contributor to primary sclerosing cholangitis (PSC) pathogenesis

(Poch et al., 2021). Immune checkpoints (ICs) are associated with

poor clinical outcomes in HCC (Ma et al., 2019; Wang et al., 2019;

Shen et al., 2022). Interestingly, in this study, positive correlations

among CLST, CD4+TLR-NL, CD4+TEM-TH1/TH17, and ICs indicated

their crosstalk in the tumor tissue of HBV-HCC. Th17 cells recruited

via the CCL20-CCR6 axis in the tumor microenvironment (TME)

are drivers of worse clinical outcomes (Zhang et al., 2009; Liao et al.,

2013; Li et al., 2016; Li et al., 2017) and ICs have been well

demonstrated to account for immunosuppressive

microenvironment formation that favors anti-tumor immune

evasion (Sangro et al., 2021). Our study leads to the hypothesis

that CLST and aCD4 bearing CCL20 are important causes of

damaged immune surveillance and TME generation. Actually, a

recent study provides a solid foundation for the association

between CCL20 and TME and it will be promising for further

study in HBV related diseases (Fan et al., 2022). Correspondingly,

a higher ES of CLST or aCD4 implies a shorter OS. We provide

insights into the 25 member genes of aCD4 and highlight that nearly

half of these genes are significantly associated with worse survival

rates. Obviously, aCD4 could be referred to as a special CD4+T cell

subset at the station of activation. Currently, novel functional immune

FIGURE 6
Fifteen feature genes of CLST and aCD4were promising diagnostic signals for tumor tissue identification. (A,B) ROC curves of expression values
of 15 feature genes for HCC tumor prediction among HCC tumor, adjacent non-tumor, cirrhotic, and normal liver samples using SVM with stratified
K-fold cross-validations (n_splits = 5 and 10). (C) ROC curves of expression values of 15 feature genes as a diagnostic set for the separation of HCC
tumors from non-tumor liver samples via SVM. (D,E) AUC of ROC curves of expression values of 15 feature genes as diagnostic markers for
early-stage HBV-HCC tumor identification from non-tumor liver samples via SVM with stratified K-fold cross-validations (n_splits = 5 and 10). (F)
ROC curves of expression values of 15 feature genes as diagnostic markers for separation of tumor tissues at the early stage of HBV-HCC from non-
tumor liver samples in the CHCC cohort via SVM. (G,H) SHAP profiles of 15 feature genes of the outperformed SVMmodel in the CHCC cohort. The
dot plot shows the effect of the expression value of the feature gene on the model output. The bar plot shows the decreasing average feature
importance of the expression value of the 15 feature genes on the influence of the final model output for predicting tumor tissues at an early stage.
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subsets at the single-cell level resolution have been studied (Song et al.,

2020; Lian et al., 2022) and the definition of aCD4 in HBV-related

diseases is worthy of further exploration.

Further research in this study also highlights that HBV-HCC

patients with dual higher ES of both CLST and aCD4 predict worse

overall survival. To uncover the underlying mechanism, we focused

on the characteristics of the amino acid utilization system in

CLSThighaCD4high and CLSTlowaCD4low subgroups. Non-glucose

nutrients, such as amino acids, lactate, acetate, and

macromolecules, can also be absorbed by cancer cells as

alternative energy sources (Kamphorst et al., 2015; Pechincha

et al., 2022). Both the macropinocytosis and lysosomal catabolic

signaling pathways in malignant tumor cells are activated in

nutrient-deficient environments (Commisso et al., 2013;

Kamphorst et al., 2015; Palm et al., 2015; Pechincha et al., 2022).

The increased activity of extracellular protein uptake and lysosomal

breakdown constitute an alternative source of amino acids that

enables cancer cell growth (Pechincha et al., 2022). Interestingly, we

found that each amino acid utilization-associated gene represents a

risk factor that affects the clinical outcome of HBV-HCC patients. A

lower ES of amino acid utilization associated gene signature in

HBV-HCC patients is beneficial for improving survival. We

propose that unfavorable nutritional utilization of amino acids

may be a potent carcinogenic factor for HCC progression, and

the potential link between excess amino acid usage and a

dysregulated immune microenvironment according to CLST and

aCD4 still requires further experimental exploration.

Dual higher ES of both CLST and aCD4 was critical for the

poor progression of HBV-HCC, implying the potential role of

CLST/aCD4 interaction in promoting poor clinical outcomes. To

test the potential value of CLST and aCD4 in the construction of

prognostic models, we present a methodology to compare

survival rates for the first time. The survival-sensitive deep

residual neural network model based on these two gene sets,

named GeneSet-ResNet, outperformed the deep residual neural

network classifier in 5 years of LS prediction in liver cancer. This

model takes the expression values of low-dimensional feature

genes belonging to immunogenomic gene sets as inputs. The

gene expression pseudo-images generated in this study were

simpler than ever (Hao et al., 2018; Oh et al., 2021; Wang

et al., 2022) and hold promising predictive values, thus

providing a perspective on their future use in other cancer types.

FIGURE 7
Unique feature genes belonging to CLST and aCD4 were promising prognostic signals in LS prediction. (A) Process of LS prediction in HCC
patients (generation of gene expression pseudo-images with CLST and aCD4, oversampling with synthetic minority samples, input layer, detailed
architecture of the deep residual networkmodule, and output layer for LS status prediction). (B) The average AUC and ACC values of 30 repeats for LS
status (>5 years) prediction in HBV-HCC patients. (C) The average AUC and ACC values of 30 repeats for LS status (>5 years) prediction in HCC
patients.
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Fifteen feature genes from CLST and aCD4 were

incorporated to perform nine AI algorithms with K-fold

cross-validation to detect tumor tissues in HCC. The SVM-

derived model was built and worked robustly with high

accuracy and a powerful AUC in both training cohorts and

independent test cohorts. Our bioinformatics analysis indicated

that CLST and aCD4 are powerful diagnostic and prognostic

signals across all stages of HBV infection that are suitable for

constructing AI models in HCC. There is an urgent need for

robust tools to detect tumors at an early stage and predict tumor-

related death due to the limitation of efficient HCC treatments,

and the AI models developed in this study will facilitate the

improvement of clinical management and precision medicine.

PEG IFN-α treatment has the potential to prevent advanced

HBV-LF and HBV-HCC occurrence in responders (Liang et al.,

2016; Ye and Chen, 2021). The liver transcriptomes of HBV patients

receiving standard PEG IFN-α were analyzed to test whether first-

line therapy exerts an anti-HBV effect by modulating CLST and

aCD4 signals. Correspondingly, CLST and aCD4 were significantly

suppressed in responders to PEG IFN-α. These findings suggest that
the impact of PEG-IFN-α on improving liver function and

inhibiting disease progression during HBV infection is closely

related to the CLST-aCD4 axis, which requires further

experimental verification. HCC is resistant to current therapies

(Song et al., 2021; Rai and Mukherjee, 2022; Xia et al., 2022;

Zhang et al., 2022), and a novel strategy that considers the

immunology of the disease to improve treatment remains

important (Donne and Lujambio, 2022; Rai and Mukherjee,

2022; Shen et al., 2022). Significant differences in sorafenib

response between the CLSThighaCD4high and CLSTlowaCD4low

subgroups illustrated that CLST and aCD4 might be important

biomarkers for optimizing the use of multi-kinase inhibitors for

precision HCC treatment. More importantly, TGF-β inhibition

therapies may constitute a promising option for treating HCC in

the future. Employing the CLST-aCD4 signal as a predictor allows

the appropriate selection of HCC patients that could benefit from

interrupting the TGF-β/TβR signaling pathway.

In conclusion, via GSVA and AI, our study provides a

comprehensive understanding of immune microenvironment-

related gene characteristics involved in HBV infection and detect

subtle clues for clinical management of HBV-related HCC,

providing basis for precision medicine.

There are still limitations in our current study. Although a large

number of web accessible high throughput data were enrolled in this

FIGURE 8
CLST and aCD4 were involved in drug sensitivity to anti-HBV immunotherapy and anti-cancer chemotherapies. (A) Comparisons of CLST and
aCD4 between PEG IFN-α treatment responders and non-responders (GSE27555). (B) Heatmaps showing differences in liver samples from HBV-
infected patients pre and post PEG-IFN-α treatment (GSE66698). (C) Boxplot of pairwise comparisons of CLST, aCD4, NKT, and MDSC between the
control group and PEG IFN-α-treated group (GSE66698). (D) Correlations among CLST, aCD4, NKT, and MDSC in PEG IFN-α-treated liver
samples (GSE66698). (E) Volcano plot of the sensitivity of HBV-HCC patients in the CLSThighaCD4high subgroup and CLSTlowaCD4low subgroup to
198 anti-cancer drugs. (F) Comparisons of the sensitivity to first-line chemotherapy (sorafenib) and emerging chemotherapies (SB505124,
dihydrorotenone) between the CLSThighaCD4high subgroup and CLSTlowaCD4low subgroup (CHCC).
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study, more experiments are needed for further validation before

clinical application of CLST/aCD4 signals in HBV related diseases.

The current study only focuses on the clinical application of

immunosignals in precision medicine of HBV-related liver

diseases, and their specific in HCC at pan-cancer level are

promising in further research.
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SUPPLEMENTARY FIGURE S1
Detailed steps of the study.

SUPPLEMENTARY FIGURE S2
Venn diagram and functional annotation of DEGs in HBV-LF. (A) Histogram
bar chart of upregulated DEGs at differential S were drawn using GraphPad
Prism (GSE84044). (B) The Venn diagram of overlapping upregulated
DEGs among S2/S0, S3/S0, and S4/S0 performed by online tool http://
bioinformatics.psb.ugent.be/webtools/Venn/. (C) Visualization of GO
analysis of 64 DEGs and extracellular matrix (ECM) with the most counts
and lowest p value. MF: molecular function. CC, cellular component;
BP,biological process. (D) Visualization of KEGG pathway analysis.
Chemokine signaling pathway was highly enriched.

SUPPLEMENTARY FIGURE S3
Validation of GS associated hub genes in HBV-LF and CHB. (A-C) Volcano
plots illustrate hub genes that upregulated in G2, G3, and G4 when
compared to the G0 group (GSE84044). (D,E) Volcano plot performed
by “EnhancedVolcano” R package showing 14 GS associated hub genes
were upregulated in HBV patients with abnormal ALT and AST when
compared to HBV patients with normal ALT and AST, respectively
(GSE83148). (F) Heatmap of GS associated hub genes in CHB patients at
IC, IT, and IA phases (GSE65359).

SUPPLEMENTARY FIGURE S4
Comparisons of immune signals in tumor tissues with HBV and normal
tissues without HBV. “SVA” R package was utilized to merge and normalize
three microarray datasets (GSE83148, GSE84044, and GSE14520). Batch
effects were visualized using PCA algorithm before (A) and after removing
(B) via the ComBat function provided by “SVA” R package. (C) Boxplot of
comparisons of immune signals in HBV-tumor tissue samples and normal
samples without HBV infection in combined data.

SUPPLEMENTARY FIGURE S5
Kaplan-Meier (KM) survival analysis. Kaplan-Meier (KM) survival plot for
patients according to aCD4 and CLST in HCC (GSE14520).KM analysis of
CCL20 in tumor tissues from HBV-HCC patients for OS in two
independent cohorts (CHCC, left; GSE14520, right).

SUPPLEMENTARY FIGURE S6
OS analysis of feature genes belonging to aCD4. The association between
each of feature genes belonging to aCD4 and OS probability in HBV-
HCC tumor tissues (CHCC). Time was calculated by year.

SUPPLEMENTARY FIGURE S7
SVMoutperformed in nine AI algorithms for HCC tumor tissue identification.
(A)Comparison of nine AI algorithms based on expression value of
15 feature genes as a prognostic set with ACC calculation for HCC tumor
identification amongHCC tumor, adjacent non-tumor, cirrhotic and healthy
liver samples (GSE25097). (B) Comparison expression value of fifteen
feature genes based on nine AI algorithms with ACC calculation for
predicting tumor tissue at early stage of HCC (GSE14520).
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Increased response to TPF
chemotherapy promotes immune
escape in hypopharyngeal
squamous cell carcinoma

Ruichen Li†, Li Yan†, Shu Tian*†, Yang Zhao, Yi Zhu* and
Xiaoshen Wang*

Department of Radiation Oncology, Eye and ENT Hospital of Fudan University, Shanghai, China

Background: There is an urgent need to identify which patients would benefit from
TPF chemotherapy in hypopharyngeal squamous cell carcinoma (HPSCC) and to
explore new combinations to improve the treatment effect.

Materials and methods: Gene-expression profiles in 15 TPF-sensitive patients were
compared to 13 resistant patients. Immunohistochemistry (IHC) was performed to
detect CD8+ T cells in 28 samples. Patient-Derived Tumor Xenograft (PDX) model
and IHC were used to verify markers that optimize treatment for HPSCC.

Results: Through RNA sequencing 188 genes were up-regulated in TPF
chemotherapy-resistant (CR) tissues were involved in T cell activation, while
60 down-regulated genes were involved in glycolysis. Gene set enrichment
analysis (GSEA) showed that chemotherapy-sensitive (CS) group upregulation of
the pathways of glycolysis, while immune response was downregulated.
CIBERSORT, MCP-counter, and IHC proved that most immune cells including
CD8+ T cells in the CR significantly higher than that in CS group. Among the
16 up-regulated genes in CS had close associations, the most significant negative
correlation between the gene level and CD8+ T cells existed in SEC61G. SEC61G was
related to glycolysis, which was transcriptionally regulated by E2F1, and participated
in antigen degradation through ubiquitin-dependent protein catabolic process.
Palbociclib, combined with Cetuximab decreased the tumor burden and
significantly suppressed the expression of E2F1 and SEC61G while activating
MHC-I in PDX model.

Conclusion: Enhanced glycolysis promoted immune escape, but increased response
to TPF chemotherapy. SEC61G was the center of the molecular network and
targeting the E2F1/SEC61G pathway increased the expression level of MHC-I.

KEYWORDS

hypopharyngeal squamous cell carcinoma, TPF, chemotherapeutic sensitivity, glycolysis,
immune response, SEC61G
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Introduction

Head and neck squamous cell carcinoma (HNSCC) is one of the
most common malignant tumors in the world. Hypopharyngeal
squamous cell carcinoma (HPSCC) is relatively rare and accounts
for roughly 3% of all head and neck cancers (Garneau et al., 2018;
Zhang et al., 2021). Patients with HPSCC frequently present at an
advanced stage which is characterized by extensive local spread and
early metastasis (Uzcudun et al., 2001; Eckel and Bradley, 2019).
HPSCC has a poor prognosis with an overall 5-year survival rate of
only 25%–35% (Liu et al., 2020; Visini et al., 2021; Marzouki et al.,
2022). Therefore, exploring effective targets to improve the prognosis
of HPSCC is urgently required.

Surgery combined with radiotherapy and chemotherapy is the
main treatment method, among which cisplatin (DDP)-based
chemotherapy is widely applied in HPSCC (Yu et al., 2014; Li
et al., 2022). However, chemotherapeutic resistance resulted in
treatment failure, including recurrence and distant metastasis in
various human tumors (Yu et al., 2014). Based on molecular
mechanism, resistance to first-line chemotherapy agents, such as
TPF as the most effective therapeutic management in HPSCC is a
multifactorial event (Arora et al., 2010; Galluzzi et al., 2012; Mukhtar
et al., 2014; Azwar et al., 2021).

Immunotherapy has dramatically changed the treatment
landscape for patients with different tumors. Programmed death-
ligand 1 (PD-L1) expression by tumor cells is a mechanism for
down-regulation of antitumor T-cell responses and is a target for
immunotherapy in various cancers. PD-1+ T lymphocytes were wildly
infiltrated in HPSCC tissues, whose positivity in combination with
CD8 high expression has been reported to present predictive potential
in HPSCC (Hu et al., 2020; Wang et al., 2021). However, relevant
large-scale and randomized clinical studies are lacking. There is an
urgent need to identify which patients would benefit from
chemotherapy or immunotherapy based on target markers, to
optimize treatment for HPSCC patients in the future.

In previous study (Li et al., 2022), we have reported that modified
TPF chemotherapy was an effective approach for laryngeal
preservation in HPSCC. However, there were still 35%–45% of
patients who showed no response after chemotherapy (Li et al.,
2022). In present study, we further identify the differentially
expressed genes that are closely related to the TPF-chemotherapy-
sensitivity (CS) in HPSCC by RNA sequencing. Patient-Derived
Tumor Xenograft (PDX) model and immunohistochemistry (IHC)
staining were used to verify markers that optimize treatment for
HPSCC.

Materials and methods

Patient source and inclusion criteria

Between April 2014 and December 2018, patients with a
pathological diagnosis of HPSCC who were treated in the Eye and
ENT Hospital of Fudan University were enrolled. The inclusion
criteria were as follows: 1) Patients with a confirmed pathological
diagnosis of primary HPSCC in our hospital, and the tumor specimens
from the biopsy are available; 2) Patients were not exposed to any
treatment before they got a biopsy; 3) Locally advanced HPSCC with
confirmed clinical stages of III, IVA, and IVB as defined by the eighth

edition of the American Joint Committee on Cancer; 4) Patients
received at least 2 cycles of TPF induction chemotherapy, and the
tumor regression could be evaluated; 5) Patients with complete clinical
and follow-up data.

TPF induction chemotherapy and treatment
efficacy

We performed at least two 21-day cycles of TPF neoadjuvant
chemotherapy with docetaxel (75 mg/m2, day 1), cisplatin (25 mg/m2,
days 1–3), 5-fluorouracil (500 mg/m2, days 1–4) or capecitabine
(825 mg/m2, twice daily, days 1–14). Treatment efficacy was
evaluated based on Response Evaluation Criteria in Solid Tumors
(RECIST, V1.1). The efficacy of induction chemotherapy was
evaluated on days 14–21 of the second cycle of chemotherapy.
According to the RECIST, a total of 28 patients met the screening
criteria, and were divided into two groups: fifteen patients proved to be
sensitive to treatment, while the rest thirteen patients were grouped
into chemotherapy-resistant (CR). The clinical features are
summarized in Supplementary Table S1.

Gene quantitative profiling and bioinformatic
analysis

The research was approved by the Clinical Ethics Committee and we
obtainedwritten informed consent from the patient. RNA sequencingwas
conducted by Shanghai oebiotech Co. (Shanghai, China). Very low
expression genes were filtered out firstly (sum (FPKM) < 6, FPKM
means Fragments Per Kilobase of transcript per Million fragments
mapped), fold change (FC) combined with T-test were conducted to
analyze the differentially expressed genes (DEGs). Compared to the gene
expression from the sensitive group, FC < 1 in the resistant group was
regarded as a down-regulated gene, while FC > 1 was up-regulated gene.
Genes with a FC > 2, or <.5 compared to the sensitive group and p <
.05 were subjected to further verification.

The gene ontology (GO), Kyoto encyclopedia of genes and
genomes (KEGG) were analyzed using the online system
“Metascape” (https://metascape.org) for enrichment analysis. R
package clusterProfiler (3.8.0) (Yu et al., 2012) was used to carry
out Gene Set Enrichment Analysis (GSEA) to elaborate on the
significant pathway between drug-resistant and sensitive samples.
C5.go.bp.v7.5.1.symbols.gmt, c2.cp.kegg.v7.5.1.symbols.gmt, and
h.all.v7.5.1.symbols.gmt in the MsigDB Collections were used as
the reference gene collection. FDR <.25, adjusted p-value <.05, and
|NSE| > 1 was considered as statistically significant. Twomethods were
used to analyze the components of immune cells. Method 1: the
relative proportions of 22 types of immune cells were analyzed by
online tool CIBERSORT (https://cibersort.stanford.edu). Method 2:
Based on the FPKM expression profile, the following cell abundance
was analyzed using MCP-counter (https://zenodo.org/record/61372#.
XVPIB6276qB) of R language: T cells, Monocytic lineage, B lineage,
Neutrophils, Cytotoxic lymphocytes, NK cells, CD8+T cells, Myeloid
dendritic cells, Fibroblasts, and Endothelial cells. The significance of
different types of immune cells in the two groups was analyzed by
Mann-WhitneyU test. The online system “STRING (https://cn.string-
db.org/)” was conducted to build the functional protein association
network.
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Enrichment analysis of SEC61G

The correlation between the expression of different genes and
CD8+T cells infiltration, or MHC-I molecular antigen presentation
was explored by TIMER 2.0 (https://cistrome.shinyapps.io/timer/).
The correlation between SEC61G expression and EGFR expression in
HNSC normal and tumor was explored by GEPIA (http://gepia.
cancer-pku.cn/). Datasets of Head and Neck Squamous Cell
Carcinoma (TCGA, Firehose Legacy) was acquired from cBioportal
(https://www.cbioportal.org/). Spearman’s correlation coefficient (r)
was calculated to assess the correlation between co-expressed genes
and SEC61G, of which p < .001 and |r| > .35 were selected.
“Transcription Factor Target” analysis for 2275 co-expressed genes
related to SEC61G in HNSCC (Head and Neck Squamous Cell
Carcinoma (TCGA, Firehose Legacy)) was carried out through
Webgestalt (http://www.webgestalt.org/). The gene expression data
of SEC61G and the HPV status in TCGA-HNSC project were acquired
from UCSC Xena browser (http://xenabrowser.net/datapages/). Cases
without complete gene expression data and HPV status were excluded.
Patients with HNSCC were classified into low- and high-expression
groups according to the mean SEC61G expression value.

Exploring the immune-related functional
relationship network

ImmuNet (https://immunet.princeton.edu/) was utilized to
predict the related molecular network in antigen processing and
presentation, natural killer cell mediated cytotoxicity, B cell
receptor signaling pathway, T cell receptor signaling pathway, and
chemokine signaling pathway.

In vivo study

Animal studies were performed in compliance with the
International Animal Care and Use Committee-approved protocol
(IACUC). PDX model, was derived from a patient with HPSCC who
had never received systemic therapy. The study was approved by the
Ethics Committee and the patient agreed with written informed
consent. Small pieces (5 × 5 × 5 mm3) of tumor samples were
obtained from the patient and subcutaneously injected into NOD-
SCIDmice. When tumor sizes reached 1,000 mm3, it was removed and
divided into small pieces and transplanted into another mouse. We
defined patient-oriented mice model as P0 generation, and
subsequently generations were numbered consecutively (P1, P2,
and P3). After P1 generation, the tumor was engrafted into BALB/
c male nude mice. P3 generation model was utilized for drug response.
The mice were randomly grouped and treatment started when tumor
sizes reached 70 mm3. Each group included 6 mice.

Mice were treated with 100 mg/kg Palbociclib (daily), 1 mg
Cetuximab (weekly), or a combination of Palbociclib and
Cetuximab. Palbociclib was administrated by oral gavage and
Cetuximab was administrated by intraperitoneal injection. Tumor
size and body weight were measured twice weekly. After 28 days of
drug treatment, tumors were removed, weighed, photographed, fixed,
and kept at −80°C. (Palbociclib (PD-0332991) was obtained from
Selleck Chemicals and dissolved in water. Cetuximab was obtained
from Merck kGaA.)

Immunohistochemistry

Antibodies against E2F1 (sc-251): Santa Cruz Biotechnology.
SEC61G (11147-2-AP) and HLA class I ABC (15240-1-AP):
Proteintech. CD8 (GTX16696): GeneTex. IHC staining was
performed as described previously (Hu et al., 2020).

Statistical analysis

Statistical analyses were conducted using GraphPad Prism
(version 9.0, San Diego, CA, United States). Mann-Whitney U or
ANOVA was used to compare the difference between groups. Fisher’s
exact probability method was used for comparison between groups of
categorical variables. All tests were on two sides, and p < .05 was
considered statistically significant.

Results

Molecular profiles in TPF-responsive patients
relative to resistant patients

The drug-sensitive one was defined as tumor volume reduced more
than 50% after treatment. Among 15,671 protein-coding geneswith a sum
(FPKM) greater than 6, 1,310 genes exhibited statistically differentiated
expression in the CR compared to CS (p < .05) (Supplementary Figure
S1). Furthermore, of these 1,310 genes, 188 genes with an FC >
2 presented a higher expression in the tissue from the CR, while
60 with an FC < .5 were down-regulated (Supplementary Figure S1).

Functional annotation of differentially
expressed genes

From the identified 1,310 differentially expressed genes, pathway
enrichment analysis was performed. As shown in Figure 1A, “T cell
activation”, and “Central carbon metabolism in cancer” attracted our
attention. Next, the 188 up-regulated genes in resistant group (Figure 1B)
were involved in “inflammatory response”, “regulation of leukocyte
activation”, “positive regulation of immune response”, “adaptive
immune response”, and “T cell activation”. On the contrary, 60 down-
regulated genes were involved in “HIF-1 signaling pathway”, “Glycolysis/
Gluconeogenesis”, and “regulation of proteolysis” (Figure 1C).

A GSEA analysis (Figure 2) was also conducted to explore the
potential pathways correlated with the CS group. GSEA analyses
showed that CS group upregulation of the pathways involving
glycolysis, oxidative phosphorylation, protein secretion, and unfolded
protein response (UPR). However, B cell activation involved in immune
response, positive regulation of natural killer cell mediated immunity,
complement, interferon gamma response, allograft rejection, and T cell
receptor signaling pathway were downregulated.

The correlation between chemosensitivity
and immune cell infiltration

Due to the pathways related to immune response being
downregulated in CS group (Figures 1, 2), firstly, as shown in
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Figure 3A, CIBERSORT showed that the proportions of naïve
CD4+T cells and monocytes significantly increased in the CR group
(p < .05), while neutrophils significantly increased in the CS group (p <
.05). Secondly, the absolute abundance of 8 types of immune cells,
endothelial cells, and fibroblasts were analyzed by MCP-counter. As

shown in Figure 3B, T cells, B cells, monocytes, and endothelial cells
were significantly increased in the CR group (p < .05).

We further performed IHC to detect CD8+ T cells in 28 samples
(Figure 3C). Consistent with our hypothesis, CD8+ T cells were
significantly lower in resistant patients’ samples than in sensitive

FIGURE 1
The gene expression profiles in chemotherapy-sensitive and resistant hypopharyngeal cancer patient tissues. (A) Gene oncology (GO)-biological
processes (BP), GO-molecular functions (MF) and Kyoto encyclopedia of genes and genomes (KEGG) analysis of 1,310 genes showed significant differences in
the expression levels of tissues from the non-sensitive group compared to the sensitive group (p < .05) based on mRNA-targeted genes. (B) The GO
enrichment analysis and KEGG pathway analysis for evaluating 188 up-regulated genes in the resistant group. (C) The GO enrichment analysis and KEGG
pathway analysis for evaluating 60 up-regulated genes in the sensitive group.
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ones (p = .046). Supplementary Table S2 shows the correlation
between CD8+lymphocyte subsets and clinicopathological
parameters of 28 patients. The increased infiltration density of
CD8+ T cells was significantly associated with CR (p = .002) but
not other factors (p > .05).

Key factor in HPSCC chemosensitivity

STRING web platform was used to predict the protein association
network related to 60 up-regulated genes in the CS group and we
found that 16 proteins had functional and physical associations
(Figure 4A). The 16 related proteins closely related to the
regulation of glucose metabolic pathway and signaling (Figure 4B).
Owing to the infiltration of CD8+ T cells being significantly decreased
in CS group, among the 16 genes, CA12, EGFR, FABP4, FABP5, HK2,
MAGEA3, MAGEA6, SEC61G, SLC2A1, SLC5A1, and TMEM45A
were significantly negatively correlated with CD8+ T cells infiltration
(Supplementary Figure S2), while the most significant negative
correlation existed in SEC61G (partial correlation: −.273, p =
1.52e-09), also known as endoplasmic reticulum (ER)
SEC61 gamma subunit.

Functional enrichment analysis of SEC61G in
HNSCC

A total of 2275 co-expressed genes related to SEC61G in HNSCC
(Head and Neck Squamous Cell Carcinoma (TCGA, Firehose Legacy))
were identified, of which 1,041 genes were positively correlated. Then
the functions of positively co-expression in patients with HNSCC were
predicted (Figure 5A). The GO-biological processes (BP), molecular
functions (MF) items, and KEGG pathway were including “ribosome”,
“oxidative phosphorylation”, “protein folding”, “UPR”, “proteasome”,
“ubiquitin mediated proteolysis”.

Next, we divided HPV-negative and HPV-positive patients
respectively into high- and low-expression groups based on the

mean SEC61G expression. In HPV-negative HNSCC (Figure 5B),
GSEA showed that high SEC61G expression positively upregulated the
pathways including E2F targets, UPR, G2M checkpoint, glycolysis,
ribosome, oxidative phosphorylation, and translation. However,
B/T cell receptor signaling pathway, natural killer cell mediated
cytotoxicity, antigen presentation folding assembly and peptide
loading of class I MHC, and interferon gamma signaling were
downregulated. Surprisingly, in HPV-positive HNSCC (Figure 5C),
UPR, protein secretion, hypoxia, and glycolysis were downregulated.

CDK4/6 inhibitor and EGFR inhibitor increase
MHC-I expression by targeting E2F1/SEC61G
axis

SEC61G acted a significant role in MHC-I mediated antigen
processing and presentation (Figure 5). Thus, ImmuNet was
utilized to explore the immune-related molecular network
involving. As shown in Figures 6A,B, SEC61G was the center of
the molecular network in relation to “antigen processing and
presentation” and “natural killer cell mediated cytotoxicity”.
Functional enrichment showed that endoplasmic reticulum protein-
containing complex and ubiquitin-dependent protein catabolic
process were enriched. However, neither molecular network nor
enrichment was obtained regarding SEC61G in B/T cell receptor
and chemokine signaling pathway (Figures 6C–E), which means
that SEC61G is not directly involved in the inhibition of T cells
signaling pathway. Figure 6F illustrated that SEC61G expression
significantly negatively correlated with HLA-A, HLA-B, HLA-C,
and β2-microglobulin (B2M) in HNSCC.

A “Transcription Factor Target” analysis was performed using the
2275 co-expressed genes related to SEC61G in HNSCC and predicted
that SEC61G was transcriptionally regulated by E2F (Figure 7A). The
result was consistent with the study in breast cancer, E2F1 bound to
the promoter of SEC61G directly and controlled its expression (Ma
et al., 2021). Previous reports have shown that SEC61G and EGFR
were encompassed in the minimal overlapped regions of amplification

FIGURE 2
Enrichment plots derived from the gene set enrichment analysis (GSEA) related to drug-sensitive group.
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(Lu et al., 2009), and inhibition of EGFR could decrease downstream
E2F1 transcriptional activity (Nishioka et al., 2011; Wang et al., 2020).
As illustrated in Figure 7B, SEC61G expression significantly positively
correlated with EGFR in HNSC tumor but not in HNSC normal.
Therefore, we believe that targeting E2F1/SEC61G by CDK4/
6 inhibitor or EGFR inhibitor to improve the expression of MHC-I
in HNSCC is feasible. To verify our hypothesis, we analyzed the

potential application of Palbociclib/Cetuximab in PDX model of
HPSCC (Figure 7C). Palbociclib monotherapy surprisingly
exhibited a comparable effect to that in Cetuximab monotherapy.
We observed a significant reduction in tumor growth in combination
treatment. In the combination group, the mean tumor weight was
lower (90 mg) compared to Palbociclib (230 mg), Cetuximab (170 mg)
and vehicle control (600 mg). Next, the tumors in PDX model were

FIGURE 3
The correlation between chemosensitivity and immune cell infiltration. (A) The relative proportions of 22 types of immune cells in 28 samples were
analyzed by online tool CIBERSORT. (B) The absolute abundance of 8 types of immune cells, endothelial cells, and fibroblasts in 28 samples was analyzed by
MCP-counter. (C) Representative CD8 immunohistochemistry staining and the count of CD8 positive cells in hypopharyngeal cancer tissues. Mann-Whitney
U was used to compare the difference between groups. Negative: drug-resistant; Positive: drug-sensitive.
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analyzed by IHC. As expected, the levels of E2F1 and SEC61G were
substantially diminished in Palbociclib-treated group when compared
to control, while the expression of MHC-I was correspondingly

increased (Figure 7D). Similarly, Cetuximab monotherapy or the
combination therapy also effectively decreased the expression of
E2F1 and SEC61G but activated MHC-I (Figure 7D).

FIGURE 4
The protein association network related to up-regulated genes in chemotherapy-sensitive group. (A) Sixteen proteins among 60 up-regulated proteins
in sensitive group which had functional and physical associations were predicted by STRING web platform. (B) GO and KEGG analyses of 16 related genes in
functional protein association network.
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Discussion

The prognosis of HPSCC is extremely poor, especially metastasis is
the main factor of poor prognosis which is widely known at present
(Kuo et al., 2016). Chemotherapy plays a very important role,
commonly used chemotherapy regimens for HPSCC include TPF.
However, resistance to drugs is a common clinical issue in the
treatment of patients with HPSCC. Many studies have confirmed
single genetic markers associated with chemotherapy sensitivity in
HPSCC. For instance, COX-2 expression has been found to be
associated with chemoresistance through the cancer stemness
property (Saito et al., 2021). The ctDNA might play a significant
role in DDP resistance in HPSCC by amplifying related functional
genes (Lin et al., 2022). However, genome-wide analysis associated
with chemotherapy resistance HPSCC is lacking.

In this study, the main DEGs involving the BPs including
“regulation of immune response” and “Glycolysis/
Gluconeogenesis”. Glycolysis has been confirmed to be significantly
associated with the development of certain diseases (Ganapathy-
Kanniappan and Geschwind, 2013). The genetic modifications
could influence metabolism and induced aerobic glycolysis (Van
den Bossche et al., 2022). HNSCC presents a high rate of glycolysis
to fulfill their metabolic requirements (Raj et al., 2021). Glycolysis
provides ATP, NADPH, and carbon skeletons for the growth and
construction of tumor cells (Dang, 2012; Alfarouk et al., 2014). As to
the correlation between glycolysis and the response to the
chemotherapy, most evidence illustrated that enhanced glycolysis

contributed to resistance to cisplatin-based chemotherapy in many
tumors (Simons et al., 2007; Xintaropoulou et al., 2018; Zhang et al.,
2018; Sawayama et al., 2019; Dai et al., 2020; Varghese et al., 2020).
However, in our study, we surprisingly found that DEGs significantly
clustered in glycolysis which is associated with TPF-chemotherapy
sensitivity in HPSCC patients. For example, SLC5A1, which was one
of the 16 related up-regulated genes in CS group in our study,
facilitates glucose transport (Mueckler and Thorens, 2013). A risk
model found that SLC5A1 is one of the three hub genes that related to
cisplatin therapy response in ovarian cancer (Chen et al., 2022).
Several studies have also proved that an increased glycolysis rate
can enhance the sensitivity to chemotherapy. As a key driver of aerobic
glycolysis, upregulation of Pyruvate Kinase M2 (PKM2) facilitates the
response to chemotherapy in gastric cancer, breast cancer and
intestinal cancer (Zhu et al., 2016). Knockdown of
PFKFB2 increased the glycolysis rate and enhanced the effect of
paclitaxel-based chemotherapy in breast and ovarian cancers (Yang
et al., 2019). Metformin suppressed Nrf2 and decreased cisplatin
resistance through enhanced glucose metabolism (Cai et al., 2020).
Hypoxia improved the response of retinoblastoma cells to
chemotherapy by activation of glycolysis (Yang et al., 2017).
Together, glycolysis is a complex process, which may display
completely opposite effects in different settings.

Another case that surprised us was that most immune cells
including CD8+ T cells in the CS group significantly lower than
that in CR group. Glycolysis can transform the efficacy of immune
cells and contributes to cancer cells to escape immunological

FIGURE 5
SEC61G-associated gene enrichment analysis. (A)Gene oncology (GO)-biological processes (BP), GO-molecular functions (MF) and Kyoto encyclopedia
of genes and genomes (KEGG) analysis of 1041 SEC61G positive co-expression genes in HNSCC (Head and Neck Squamous Cell Carcinoma (TCGA, Firehose
Legacy)). (B) Enrichment plots derived from the gene set enrichment analysis (GSEA) related to high SEC61G expression in HPV-negative HNSCC based on
TCGA-HNSC database. (C) GSEA related to high SEC61G expression in HPV-positive HNSCC based on TCGA-HNSC database.
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FIGURE 6
The immune-related analysis involving SEC61G. (A) A molecular network involving SEC61G in antigen processing and presentation based on ImmuNet
analysis. (B) Amolecular network involving SEC61G in natural killer cell mediated cytotoxicity based on ImmuNet analysis. (C)Nomolecular network was built
related to B cell receptor signaling pathway. (D) No molecular network was built related to T cell receptor signaling pathway. (E) No molecular network was
built related to chemokine signaling pathway. (F) The correlation between SEC61G expression and key components in MHC-I presentation in HNSCC via
TIMER.
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FIGURE 7
CDK4/6 inhibitor and EGFR inhibitor increase MHC-I expression by targeting E2F1/SEC61G axis. (A) “Transcription Factor Target” analysis for 2275 co-
expressed genes related to SEC61G in HNSCC (Head and Neck Squamous Cell Carcinoma (TCGA, Firehose Legacy)) through webgestalt approach. (B) The
correlation between the expression of SEC61G and EGFR in HNSC normal andHNSC tumor based on TCGA-HNSC database. (C)Combination Palbociclib and
Cetuximab in Patient-Derived Tumor Xenograft (PDX) model related to hypopharyngeal squamous cell carcinoma. Hypopharyngeal cancer PDXmodels
were treated with control, Palbociclib (100 mg/kg/day), Cetuximab (1 mg/week) or Cetuximab plus Palbociclib for 28 days (n = 6 per group). The growth
curves of xenografts are shown. After 28 days, the mice were killed, and tumors were dissected, weighed and photographed. One-way ANOVA and Tukey’s
multiple comparisons test. *p < .05, **p < .01, ***p < .001. Pal, Palbociclib; Cet, Cetuximab; ns, not significant. (D) Immunohistochemistry staining of E2F1,
SEC61G, and HLA class I ABC (MHC-I) in PDX models after treatments. Pal, Palbociclib treatment mouse; Cet, Cetuximab treatment mouse; Pal + Cet,
Palbociclib plus Cetuximab treatment mouse.
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surveillance within the tumor microenvironment (TME) (Gill et al.,
2016). Disturbance of intracellular pH due to the lactate produced by
glycolysis inhibits the proliferation and the activity of immune cells in
the TME (Ganapathy-Kanniappan, 2017). Such low-pH TME has
been proved to decrease the physiology of antigen-presenting cells
(Romero-Garcia et al., 2016). Xie (Xie et al., 2021) proved that lactate
produced by Notch1 signaling inhibits the activity of T cell and NK cell
and leads to the immune escape of lung cancer. Aerobic glycolysis
enhanced by EGFR signaling inhibits the efficacy of cytotoxic T cell in
triple negative breast cancer cells (Lim et al., 2016). Thus, alteration of
TME to reduce glycolysis and acidity may improve the effect of
immunotherapy.

Immunotherapy, including anti-PD-1/PD-L1 and CTLA-4 has
been more and more widely used in HNSCC (Pitt et al., 2016; Dogan
et al., 2018; Fasano et al., 2022). And its combination with
chemotherapy is currently under investigation to improve long-
term survival prognosis for tumor patients due to the synergism
mechanism such as activation of various innate immune pathways.
Pembrolizumab plus chemotherapy has been the preferred choice for
recurrent HNSCC, based on the bulky disease or CPS scores from
patients (Burtness et al., 2019). In this study, the correlation between
DEGs and infiltrating immune cells was verified, and interestingly in
CR patients the DEGs significantly clustered in the immune-related
GO terms involving T cells, B cells, and monocytes, while not in CS
group. The IHC results also validated that CD8+ T cells in the CR
group significantly increased. Previous studies showed that with
certain types of cancer, patients have been resistant to
chemotherapy could be rescued by immunotherapy (Naoum et al.,
2018; Yang et al., 2020), and our study probably provided the potential
mechanism to identify the better immunotherapy combinations for
patients based on different chemo-respond and different proportions
of immunological cells infiltration.

The SEC61 complex forms a transmembrane channel where
proteins are translocated across and integrated into the ER
membrane (Hartmann et al., 1994; Greenfield and High, 1999). For
kidney cancer SEC61G knockdown significantly promoted cell
apoptosis in a caspase-dependent manner (Meng et al., 2021).
Upregulation of SEC61G also promote cell invasion, and migration
via modulating glycolysis in breast cancer (Ma et al., 2021). SEC61G
expression is also elevated in head and neck cancer based on TCGA
database, which is found to be significantly correlated with clinical
stage, genetic mutation status, and poorer prognosis (Liang et al.,
2021). However, its role in chemotherapy of HPSCC is unclear. In this
study, SEC61G was up-regulated remarkably in CS group, meanwhile,
the expression level of SEC61G was significantly negatively correlated
with the infiltration of CD8+ T cells in our study. SEC61G is
significantly involved in antigen processing. However, neither
molecular network nor enrichment was obtained regarding
SEC61G in B/T cell receptor signaling. It means that SEC61G is
not directly involved in the inhibition of T cells infiltration. Without
MHC-I molecules, ineffectively immune cell recruitment and
activation would lead to tumor immune escape (Garrido et al.,
2016). The study furtherly examined that Palbociclib, as the
selective CDK4/6 inhibitor, combined with Cetuximab decreased
the tumor burden in PDX model. E2F1, as the transcription factor
directly bound to the promoter and regulate the expression of
SEC61G, has been validated in breast cancer (Ma et al., 2021).
Here we demonstrated that the expression of E2F1 and SEC61G
were remarkably reduced, while the expression of MHC-I was

increased. The combination therapy of immunotherapy and CDK4/
6 inhibitors or EGFR inhibitors is rational. The role and mechanism of
SEC61G modulating the chemosensitivity of HPSCC through
metabolic and immune-related signaling pathways deserves further
study.

Although this study enhanced a better understanding of the
relationship between immune escape and the response to TPF
chemotherapy, some limitations really existed. The exploration of
the role of SEC61G was mainly based on RNA sequencing analysis and
bioinformatic analysis, which lacks verification from samples, and the
relevant pathways are still needed for further validation.

Conclusion

In conclusion, enhanced glycolysis promoted immune escape, but
increased response to TPF chemotherapy. SEC61G was the center of
the molecular network and targeting the E2F1/SEC61G pathway
increased the expression level of MHC-I, which potentially in turn
affects the difference in tumor drug sensitivity. The molecular
mechanisms that affect drug sensitivity in HPSCC deserve further
exploration.

Data availability statement

The data presented in the study are deposited in the Genome
Sequence Archive (GSA) repository (http://bigd.big.ac.cn/gsa-
human), accession number HRA005361.

Ethics statement

The studies involving human participants were reviewed and
approved by Clinical Ethics Committee in the Eye and ENT
Hospital of Fudan University. The patients/participants provided
their written informed consent to participate in this study. The
animal study was reviewed and approved by Clinical Ethics
Committee in the Eye and ENT Hospital of Fudan University.

Author contributions

RL: Conceptualization, Methodology, Software, Formal analysis,
Investigation, Visualization, Writing-Original Draft; LY:
Methodology, Software, Formal analysis, Validation, Writing-
Original Draft; ST: Resources, Data Curation, Methodology,
Visualization; YZ: Investigation, Formal analysis; YZ:
Conceptualization, Methodology, Supervision, Writing-Review and
Editing; XW: Conceptualization, Supervision, Project administration,
Funding acquisition, Writing-Review and Editing.

Funding

This study was supported by the Medical Guidance Project of the
Shanghai Science and Technology Commission [number
21Y11900300] and the National Key R&D Program of China
[number 2020YFE0205500].

Frontiers in Pharmacology frontiersin.org11

Li et al. 10.3389/fphar.2022.1097197

121

http://bigd.big.ac.cn/gsa-human
http://bigd.big.ac.cn/gsa-human
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2022.1097197


Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/fphar.2022.1097197/
full#supplementary-material

References

Alfarouk, K. O., Verduzco, D., Rauch, C., Muddathir, A. K., Adil, H. H., Elhassan, G. O.,
et al. (2014). Glycolysis, tumor metabolism, cancer growth and dissemination. A new pH-
based etiopathogenic perspective and therapeutic approach to an old cancer question.
Oncoscience 1, 777–802. doi:10.18632/oncoscience.109

Arora, S., Kothandapani, A., Tillison, K., Kalman-Maltese, V., and Patrick, S. M. (2010).
Downregulation of XPF-ERCC1 enhances cisplatin efficacy in cancer cells. DNA Repair
(Amst) 9, 745–753. doi:10.1016/j.dnarep.2010.03.010

Azwar, S., Seow, H. F., Abdullah, M., Faisal, J. M., and Mohtarrudin, N. (2021). Recent
updates on mechanisms of resistance to 5-Fluorouracil and reversal strategies in colon
cancer treatment. Biol. (Basel) 10, 854. doi:10.3390/biology10090854

Burtness, B., Harrington, K. J., Greil, R., Soulieres, D., Tahara, M., de Castro, G. J., et al.
(2019). Pembrolizumab alone or with chemotherapy versus cetuximab with chemotherapy
for recurrent or metastatic squamous cell carcinoma of the head and neck (KEYNOTE-
048): A randomised, open-label, phase 3 study. Lancet 394, 1915–1928. doi:10.1016/
S0140-6736(19)32591-7

Cai, L., Jin, X., Zhang, J., Li, L., and Zhao, J. (2020). Metformin suppresses Nrf2-
mediated chemoresistance in hepatocellular carcinoma cells by increasing glycolysis.
Aging (Albany NY) 12, 17582–17600. doi:10.18632/aging.103777

Chen, S., Wu, Y., Wang, S., Wu, J., Wu, X., and Zheng, Z. (2022). A risk model of gene
signatures for predicting platinum response and survival in ovarian cancer. J. Ovarian Res.
15, 39. doi:10.1186/s13048-022-00969-3

Dai, S., Peng, Y., Zhu, Y., Xu, D., Zhu, F., Xu, W., et al. (2020). Glycolysis promotes the
progression of pancreatic cancer and reduces cancer cell sensitivity to gemcitabine.
Biomed. Pharmacother. 121, 109521. doi:10.1016/j.biopha.2019.109521

Dang, C. V. (2012). Links between metabolism and cancer. Genes Dev. 26, 877–890.
doi:10.1101/gad.189365.112

Dogan, V., Rieckmann, T., Munscher, A., and Busch, C. J. (2018). Current studies of
immunotherapy in head and neck cancer. Clin. Otolaryngol. 43, 13–21. doi:10.1111/coa.12895

Eckel, H. E., and Bradley, P. J. (2019). Natural history of treated and untreated
hypopharyngeal cancer. Adv. Otorhinolaryngol. 83, 27–34. doi:10.1159/000492305

Fasano, M., Corte, C., Liello, R. D., Viscardi, G., Sparano, F., Iacovino, M. L., et al. (2022).
Immunotherapy for head and neck cancer: Present and future. Crit. Rev. Oncol. Hematol.
174, 103679. doi:10.1016/j.critrevonc.2022.103679

Galluzzi, L., Senovilla, L., Vitale, I., Michels, J., Martins, I., Kepp, O., et al. (2012).
Molecular mechanisms of cisplatin resistance. Oncogene 31, 1869–1883. doi:10.1038/onc.
2011.384

Ganapathy-Kanniappan, S., and Geschwind, J. F. (2013). Tumor glycolysis as a target for
cancer therapy: Progress and prospects. Mol. Cancer 12, 152. doi:10.1186/1476-4598-
12-152

Ganapathy-Kanniappan, S. (2017). Linking tumor glycolysis and immune evasion in
cancer: Emerging concepts and therapeutic opportunities. Biochim. Biophys. Acta Rev.
Cancer 1868, 212–220. doi:10.1016/j.bbcan.2017.04.002

Garneau, J. C., Bakst, R. L., and Miles, B. A. (2018). Hypopharyngeal cancer: A state of
the art review. Oral Oncol. 86, 244–250. doi:10.1016/j.oraloncology.2018.09.025

Garrido, F., Aptsiauri, N., Doorduijn, E. M., Garcia, L. A., and van Hall, T. (2016). The
urgent need to recover MHC class I in cancers for effective immunotherapy. Curr. Opin.
Immunol. 39, 44–51. doi:10.1016/j.coi.2015.12.007

Gill, K. S., Fernandes, P., O’Donovan, T. R., McKenna, S. L., Doddakula, K. K., Power, D.
G., et al. (2016). Glycolysis inhibition as a cancer treatment and its role in an anti-tumour
immune response. Biochim. Biophys. Acta 1866, 87–105. doi:10.1016/j.bbcan.2016.06.005

Greenfield, J. J., and High, S. (1999). The Sec61 complex is located in both the ER and the ER-
Golgi intermediate compartment. J. Cell Sci. 112 (10), 1477–1486. doi:10.1242/jcs.112.10.1477

Hartmann, E., Sommer, T., Prehn, S., Gorlich, D., Jentsch, S., and Rapoport, T. A. (1994).
Evolutionary conservation of components of the protein translocation complex. Nature
367, 654–657. doi:10.1038/367654a0

Hu, C., Tian, S., Lin, L., Zhang, J., and Ding, H. (2020). Prognostic and
clinicopathological significance of PD-L1 and tumor infiltrating lymphocytes in
hypopharyngeal squamous cell carcinoma. Oral Oncol. 102, 104560. doi:10.1016/j.
oraloncology.2019.104560

Kuo, P., Sosa, J. A., Burtness, B. A., Husain, Z. A., Mehra, S., Roman, S. A., et al. (2016).
Treatment trends and survival effects of chemotherapy for hypopharyngeal cancer:
Analysis of the National Cancer Data Base. Cancer-Am Cancer Soc. 122, 1853–1860.
doi:10.1002/cncr.29962

Li, R., Ye, L., Zhu, Y., Ding, H., Wang, S., Ying, H., et al. (2022). Induction chemotherapy
of modified docetaxel, cisplatin, 5-fluorouracil for laryngeal preservation in locally
advanced hypopharyngeal squamous cell carcinoma. Head. Neck 44, 2018–2029.
doi:10.1002/hed.27119

Liang, L., Huang, Q., Gan, M., Jiang, L., Yan, H., Lin, Z., et al. (2021). High SEC61G
expression predicts poor prognosis in patients with head and neck squamous cell
carcinomas. J. Cancer 12, 3887–3899. doi:10.7150/jca.51467

Lim, S. O., Li, C. W., Xia, W., Lee, H. H., Chang, S. S., Shen, J., et al. (2016). EGFR
signaling enhances aerobic glycolysis in Triple-Negative breast cancer cells to promote
tumor growth and immune escape. Cancer Res. 76, 1284–1296. doi:10.1158/0008-5472.
CAN-15-2478

Lin, C., Chen, Y., Zhang, F., Liu, B., Xie, C., and Song, Y. (2022). Encoding gene RAB3B
exists in linear chromosomal and circular extrachromosomal DNA and contributes to
cisplatin resistance of hypopharyngeal squamous cell carcinoma via inducing autophagy.
Cell Death Dis. 13, 171. doi:10.1038/s41419-022-04627-w

Liu, Y. P., Zheng, C. C., Huang, Y. N., He, M. L., Xu, W. W., and Li, B. (2020). Molecular
mechanisms of chemo- and radiotherapy resistance and the potential implications for
cancer treatment. MedComm 2, 315–340. doi:10.1002/mco2.55

Lu, Z., Zhou, L., Killela, P., Rasheed, A. B., Di, C., Poe, W. E., et al. (2009). Glioblastoma
proto-oncogene SEC61gamma is required for tumor cell survival and response to
endoplasmic reticulum stress. Cancer Res. 69, 9105–9111. doi:10.1158/0008-5472.CAN-
09-2775

Ma, J., He, Z., Zhang, H., Zhang,W., Gao, S., and Ni, X. (2021). SEC61G promotes breast
cancer development and metastasis via modulating glycolysis and is transcriptionally
regulated by E2F1. Cell Death Dis. 12, 550. doi:10.1038/s41419-021-03797-3

Marzouki, H., Addas, M. A., Nujoom, M., Zawawi, F., Almarzouki, H. Z., and Merdad,
M. (2022). Hypopharyngeal reconstruction: Possibilities, outcomes, and updates for
improving the human health for quality of life. Comput. Intell. Neurosci. 2022,
6132481. doi:10.1155/2022/6132481

Meng, H., Jiang, X., Wang, J., Sang, Z., Guo, L., Yin, G., et al. (2021). SEC61G is
upregulated and required for tumor progression in human kidney cancer. Mol. Med. Rep.
23, 427. doi:10.3892/mmr.2021.12066

Mueckler, M., and Thorens, B. (2013). The SLC2 (GLUT) family of membrane
transporters. Mol. Asp. Med. 34, 121–138. doi:10.1016/j.mam.2012.07.001

Mukhtar, E., Adhami, V. M., andMukhtar, H. (2014). Targeting microtubules by natural
agents for cancer therapy. Mol. Cancer Ther. 13, 275–284. doi:10.1158/1535-7163.MCT-
13-0791

Naoum, G. E., Morkos, M., Kim, B., and Arafat, W. (2018). Novel targeted therapies and
immunotherapy for advanced thyroid cancers. Mol. Cancer 17, 51. doi:10.1186/s12943-
018-0786-0

Nishioka, T., Kim, H. S., Luo, L. Y., Huang, Y., Guo, J., and Chen, C. Y. (2011).
Sensitization of epithelial growth factor receptors by nicotine exposure to promote breast
cancer cell growth. Breast Cancer Res. 13, R113. doi:10.1186/bcr3055

Pitt, J. M., Marabelle, A., Eggermont, A., Soria, J. C., Kroemer, G., and Zitvogel, L. (2016).
Targeting the tumor microenvironment: Removing obstruction to anticancer immune
responses and immunotherapy. Ann. Oncol. 27, 1482–1492. doi:10.1093/annonc/mdw168

Raj, S., Kumar, A., and Kumar, D. (2021). Regulation of glycolysis in head and neck
cancer. Adv. Exp. Med. Biol. 1280, 219–230. doi:10.1007/978-3-030-51652-9_15

Frontiers in Pharmacology frontiersin.org12

Li et al. 10.3389/fphar.2022.1097197

122

https://www.frontiersin.org/articles/10.3389/fphar.2022.1097197/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fphar.2022.1097197/full#supplementary-material
https://doi.org/10.18632/oncoscience.109
https://doi.org/10.1016/j.dnarep.2010.03.010
https://doi.org/10.3390/biology10090854
https://doi.org/10.1016/S0140-6736(19)32591-7
https://doi.org/10.1016/S0140-6736(19)32591-7
https://doi.org/10.18632/aging.103777
https://doi.org/10.1186/s13048-022-00969-3
https://doi.org/10.1016/j.biopha.2019.109521
https://doi.org/10.1101/gad.189365.112
https://doi.org/10.1111/coa.12895
https://doi.org/10.1159/000492305
https://doi.org/10.1016/j.critrevonc.2022.103679
https://doi.org/10.1038/onc.2011.384
https://doi.org/10.1038/onc.2011.384
https://doi.org/10.1186/1476-4598-12-152
https://doi.org/10.1186/1476-4598-12-152
https://doi.org/10.1016/j.bbcan.2017.04.002
https://doi.org/10.1016/j.oraloncology.2018.09.025
https://doi.org/10.1016/j.coi.2015.12.007
https://doi.org/10.1016/j.bbcan.2016.06.005
https://doi.org/10.1242/jcs.112.10.1477
https://doi.org/10.1038/367654a0
https://doi.org/10.1016/j.oraloncology.2019.104560
https://doi.org/10.1016/j.oraloncology.2019.104560
https://doi.org/10.1002/cncr.29962
https://doi.org/10.1002/hed.27119
https://doi.org/10.7150/jca.51467
https://doi.org/10.1158/0008-5472.CAN-15-2478
https://doi.org/10.1158/0008-5472.CAN-15-2478
https://doi.org/10.1038/s41419-022-04627-w
https://doi.org/10.1002/mco2.55
https://doi.org/10.1158/0008-5472.CAN-09-2775
https://doi.org/10.1158/0008-5472.CAN-09-2775
https://doi.org/10.1038/s41419-021-03797-3
https://doi.org/10.1155/2022/6132481
https://doi.org/10.3892/mmr.2021.12066
https://doi.org/10.1016/j.mam.2012.07.001
https://doi.org/10.1158/1535-7163.MCT-13-0791
https://doi.org/10.1158/1535-7163.MCT-13-0791
https://doi.org/10.1186/s12943-018-0786-0
https://doi.org/10.1186/s12943-018-0786-0
https://doi.org/10.1186/bcr3055
https://doi.org/10.1093/annonc/mdw168
https://doi.org/10.1007/978-3-030-51652-9_15
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2022.1097197


Romero-Garcia, S., Moreno-Altamirano, M. M., Prado-Garcia, H., and Sanchez-Garcia,
F. J. (2016). Lactate contribution to the tumor microenvironment: Mechanisms, effects on
immune cells and therapeutic relevance. Front. Immunol. 7, 52. doi:10.3389/fimmu.2016.
00052

Saito, S., Ozawa, H., Imanishi, Y., Sekimizu, M., Watanabe, Y., Ito, F., et al. (2021).
Cyclooxygenase-2 expression is associated with chemoresistance through cancer stemness
property in hypopharyngeal carcinoma. Oncol. Lett. 22, 533. doi:10.3892/ol.2021.12794

Sawayama, H., Ogata, Y., Ishimoto, T., Mima, K., Hiyoshi, Y., Iwatsuki, M., et al. (2019).
Glucose transporter 1 regulates the proliferation and cisplatin sensitivity of esophageal
cancer. Cancer Sci. 110, 1705–1714. doi:10.1111/cas.13995

Simons, A. L., Ahmad, I. M., Mattson, D. M., Dornfeld, K. J., and Spitz, D. R. (2007). 2-
Deoxy-D-glucose combined with cisplatin enhances cytotoxicity via metabolic oxidative
stress in human head and neck cancer cells. Cancer Res. 67, 3364–3370. doi:10.1158/0008-
5472.CAN-06-3717

Uzcudun, A. E., Bravo, F. P., Sanchez, J. J., Garcia, G. A., Rabanal, R. I., Gonzalez, B. M.,
et al. (2001). Clinical features of pharyngeal cancer: A retrospective study of
258 consecutive patients. J. Laryngol. Otol. 115, 112–118. doi:10.1258/0022215011907703

Van den Bossche, V., Zaryouh, H., Vara-Messler, M., Vignau, J., Machiels, J. P.,
Wouters, A., et al. (2022). Microenvironment-driven intratumoral heterogeneity in
head and neck cancers: Clinical challenges and opportunities for precision medicine.
Drug Resist Updat 60, 100806. doi:10.1016/j.drup.2022.100806

Varghese, E., Samuel, S. M., Liskova, A., Samec, M., Kubatka, P., and Busselberg, D.
(2020). Targeting glucose metabolism to overcome resistance to anticancer chemotherapy
in breast cancer, Cancers (Basel). 12, 2252. doi:10.3390/cancers12082252

Visini, M., Giger, R., Shelan, M., Elicin, O., and Anschuetz, L. (2021). Predicting factors
for oncological and functional outcome in hypopharyngeal cancer. Laryngoscope 131,
E1543–E1549. doi:10.1002/lary.29186

Wang, J., Lun, L., Jiang, X., Wang, Y., Li, X., Du, G., et al. (2021). APE1 facilitates PD-L1-
mediated progression of laryngeal and hypopharyngeal squamous cell carcinoma. Int.
Immunopharmacol. 97, 107675. doi:10.1016/j.intimp.2021.107675

Wang, Z. J., Chang, L. L., Wu, J., Pan, H. M., Zhang, Q. Y., Wang, M. J., et al. (2020). A
novel rhynchophylline analog, y396, inhibits endothelial dysfunction induced by oxidative
stress in diabetes through epidermal growth factor receptor. Antioxid. Redox Signal 32,
743–765. doi:10.1089/ars.2018.7721

Xie, M., Fu, X. G., and Jiang, K. (2021). Notch1/TAZ axis promotes aerobic glycolysis
and immune escape in lung cancer. Cell Death Dis. 12, 832. doi:10.1038/s41419-021-
04124-6

Xintaropoulou, C., Ward, C., Wise, A., Queckborner, S., Turnbull, A., Michie, C. O.,
et al. (2018). Expression of glycolytic enzymes in ovarian cancers and evaluation of the
glycolytic pathway as a strategy for ovarian cancer treatment. Bmc Cancer 18, 636. doi:10.
1186/s12885-018-4521-4

Yang, C., Xia, B. R., Zhang, Z. C., Zhang, Y. J., Lou, G., and Jin, W. L. (2020).
Immunotherapy for ovarian cancer: Adjuvant, combination, and neoadjuvant. Front.
Immunol. 11, 577869. doi:10.3389/fimmu.2020.577869

Yang, H., Shu, Z., Jiang, Y., Mao, W., Pang, L., Redwood, A., et al. (2019). 6-
Phosphofructo-2-Kinase/Fructose-2, 6-Biphosphatase-2 regulates TP53-Dependent
paclitaxel sensitivity in ovarian and breast cancers. Clin. Cancer Res. 25, 5702–5716.
doi:10.1158/1078-0432.CCR-18-3448

Yang, Q., Tripathy, A., Yu, W., Eberhart, C. G., and Asnaghi, L. (2017). Hypoxia inhibits
growth, proliferation, and increases response to chemotherapy in retinoblastoma cells.
Exp. Eye Res. 162, 48–61. doi:10.1016/j.exer.2017.07.001

Yu, G., Wang, L. G., Han, Y., and He, Q. Y. (2012). ClusterProfiler: An R package for
comparing biological themes among gene clusters. Omics 16, 284–287. doi:10.1089/omi.
2011.0118

Yu, L., Gu, C., Zhong, D., Shi, L., Kong, Y., Zhou, Z., et al. (2014). Induction of autophagy
counteracts the anticancer effect of cisplatin in human esophageal cancer cells with
acquired drug resistance. Cancer Lett. 355, 34–45. doi:10.1016/j.canlet.2014.09.020

Zhang, X., Zhang, Y., Yu, X., Sun, Y., Miao, S., Liu, S., et al. (2021). Different primary
sites of hypopharyngeal cancer have different lymph node metastasis patterns: A
retrospective analysis from multi-center data. Front. Oncol. 11, 727991. doi:10.3389/
fonc.2021.727991

Zhang, X. Y., Zhang, M., Cong, Q., Zhang, M. X., Zhang, M. Y., Lu, Y. Y., et al.
(2018). Hexokinase 2 confers resistance to cisplatin in ovarian cancer cells by
enhancing cisplatin-induced autophagy. Int. J. Biochem. Cell Biol. 95, 9–16.
doi:10.1016/j.biocel.2017.12.010

Zhu, H., Wu, J., Zhang, W., Luo, H., Shen, Z., Cheng, H., et al. (2016). PKM2 enhances
chemosensitivity to cisplatin through interaction with the mTOR pathway in cervical
cancer. Sci. Rep. 6, 30788. doi:10.1038/srep30788

Frontiers in Pharmacology frontiersin.org13

Li et al. 10.3389/fphar.2022.1097197

123

https://doi.org/10.3389/fimmu.2016.00052
https://doi.org/10.3389/fimmu.2016.00052
https://doi.org/10.3892/ol.2021.12794
https://doi.org/10.1111/cas.13995
https://doi.org/10.1158/0008-5472.CAN-06-3717
https://doi.org/10.1158/0008-5472.CAN-06-3717
https://doi.org/10.1258/0022215011907703
https://doi.org/10.1016/j.drup.2022.100806
https://doi.org/10.3390/cancers12082252
https://doi.org/10.1002/lary.29186
https://doi.org/10.1016/j.intimp.2021.107675
https://doi.org/10.1089/ars.2018.7721
https://doi.org/10.1038/s41419-021-04124-6
https://doi.org/10.1038/s41419-021-04124-6
https://doi.org/10.1186/s12885-018-4521-4
https://doi.org/10.1186/s12885-018-4521-4
https://doi.org/10.3389/fimmu.2020.577869
https://doi.org/10.1158/1078-0432.CCR-18-3448
https://doi.org/10.1016/j.exer.2017.07.001
https://doi.org/10.1089/omi.2011.0118
https://doi.org/10.1089/omi.2011.0118
https://doi.org/10.1016/j.canlet.2014.09.020
https://doi.org/10.3389/fonc.2021.727991
https://doi.org/10.3389/fonc.2021.727991
https://doi.org/10.1016/j.biocel.2017.12.010
https://doi.org/10.1038/srep30788
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2022.1097197


Transcription factor ZBTB42 is a
novel prognostic factor associated
with immune cell infiltration in
glioma

Yanwen Li1,2, Yongwei Zhu1,2*, Long Chen1,2, Shunjin Xia1,2,
Abraham Ayodeji Adegboro1,2, Siyi Wanggou1,2 and Xuejun Li1,2*
1Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China, 2Hunan
International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital,
Central South University, Changsha, China

Background: ZBTB42 is a transcription factor that belongs to the ZBTB transcript
factor family and plays an important role in skeletal muscle development.
Dysregulation of ZBTB42 expression can lead to a variety of diseases. However,
the function of ZBTB42 in glioma development has not been studied by now.

Methods: We analyzed the expression of ZBTB42 in LGG and GBM via the The
Cancer Genome Atlas CGA and Chinese Glioma Genome Atlas database. Gene
Ontology, KEGG, and GSVA analyses were performed to illustrate ZBTB42-related
pathways. ESTIMATE and CIBERSORT were applied to calculate the immune score
and immune cell proportion in glioma. One-class logistic regression OCLR algorithm
was used to study the stemness of glioma. Multivariate Cox analysis was employed to
detect the prognostic value of five ZBTB42-related genes.

Results: Our results show that ZBTB42 is highly expressed in glioma and may be a
promising prognostic factor for Low Grade Glioma and GBM. In addition, ZBTB42 is
related to immune cell infiltration and may play a role in the immune suppression
microenvironment. What’s more, ZBTB42 is correlated with stem cell markers and
positively associated with glioma stemness. Finally, a five genes nomogram based on
ZBTB42 was constructed and has an effective prognosis prediction ability.

Conclusion: We identify that ZBTB42 is a prognostic biomarker for Low Grade
Glioma and GBM and its function is related to the suppressive tumor
microenvironment and stemness of glioma.

KEYWORDS

glioma, ZBTB42, microenvironment, immune suppression, stemness

Introduction

Glioma is the most lethal cancer among brain tumors which have a complex pathogenetic
mechanism and characteristic that is prone to relapse (Taga and Tabu, 2020). WHO (World Health
Organization) classified glioma as grades I to IV based on histopathological characteristics and
prognostic factors. Glioblastoma (GBM) is themost aggressive, invasive, andmalignant brain tumor
and has been defined as grade IV byWHO (Hanif et al., 2017). There is no effective strategy to cure
this malignant disease. After surgery and radiotherapy with concomitant temozolomide treatment,
5-year survival in patients with glioblastoma is only 4.1% (Stupp et al., 2009). One reason is the
intricate tumor microenvironment (TME) in glioma. In addition to tumor cells, the TME also
harbors stromal cells, extracellular proteins, chemokines, growth factors, etc. These stromal cells and
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extracellular matrix can facilitate tumor proliferation and help tumor cells
resist hypoxia, radiotherapy, and chemotherapy (Nijkamp et al., 2013;Wu
and Dai, 2017). In the meanwhile, the chemokines, cytokines, and growth
factors secreted by tumor and stromal cells can induce immune cell
infiltration in solid glioma tissue. The immune cells are usually
reprogrammed into immunosuppressive phenotype and regulate the
interaction between host and tumor, which can promote glioma
development (Gieryng et al., 2017; Quail and Joyce, 2017). On the
other hand, the immune checkpoints such as the programmed cell
death 1 (PD-1) and the Cytotoxic T-lymphocyte associated protein 4
(CTLA4) expressed on the surface of the immune cells can decrease the
T cell activation and proliferation (Huang et al., 2020). Therefore,
immune therapy and immune checkpoint inhibitor (ICI) therapy have
drawn much attention and brought hope to glioma patients.

ZBTB (Zinc finger and BTB domain-containing) transcript factors
are a family of members, which is highly conserved in mammals and
plays a crucial role in the development of the hemopoietic system and
central neural system (Okado, 2021). Many ZBTB family genes such as
Bcl6(ZBTB27), PLZF (ZBTB16), and Rp58 (ZBTB18, ZNF238),
regulate neuronal cell’s fate lineage decision, migration, maturation,
and maintenance (Tiberi et al., 2012; Xiang et al., 2012; Gaber et al.,
2013). Whereas, deregulation of these genes promotes multiple kinds
of tumor progression, especially glioma. Bcl6 and cofactor NCoR
complex repress the MEK-ERK and S6K-RPS6 pathway via regulating
the expression of AXL to promote glioma proliferation (Xu et al.,
2017). PLZF can stimulate cellular transformation and proliferation in
glioma and increase tumor growth by repressing the transcription of
CDKN1A (Choi et al., 2014). Low expression of Rp58 is associated
with the epithelial-mesenchymal transition (EMT) and cell survival in
glioma (Tatard et al., 2010; Xiang et al., 2021).

Here, we find that ZBTB42, a member of the ZBTB transcription
factor family, is a new biomarker for glioma. ZBTB42 is known to be
expressed in skeletal muscle and testis and mutation of ZBTB42 leads to
Lethal congenital contracture syndrome (LCCS) (Takahashi et al., 2008;
Patel et al., 2014). ZBTB42 expression knockdown with shRNA in glioma
cells induced decreased growth ability (Xu et al., 2017).More interestingly,
ZBTB42 is almost never expressed in the normal brain while highly
expressed in glioma tissue, but its mechanism of regulating glioma
progression is still unknown. In this study, we found abnormally high
expression of ZBTB42 in glioma and verified this discovery with clinical
glioma samples and cultured cells. Then we demonstrated that increased
expression of ZBTB42 leads to an immunosuppressivemicroenvironment
and a worse prognosis, and ZBTB42 is highly related to immune
checkpoint genes. On the other hand, glioma patients with high
expression of ZBTB42 usually comprise higher stemness of glioma
which may be another aspect of ZBTB42 potential function in glioma.

Materials and methods

Data collection

The transcriptome expression of glioma, LGG and GBM was
downloaded from the TCGA data portal (https://tcga-data.nci.nih.gov/
tcga/) and CGGA database (http://www.cgga.org.cn/). The patients
without clinical information were excluded. The expression of
ZBTB42 in pan-cancer and GTEx was downloaded from GEPIA2. The
mRNA expression and methylation of ZBTB42 from the TCGA database
and GSE databases were obtained from the Brainbase website tool.

Clinical tissue collection and cell culture

15 glioma tissues and 11 normal brain samples were collected from
Xiangya Hospital, Central South University between January 2016 and
January 2022. Gliomas were classified according to 2016 WHO
classification: five WHO II cases, four WHO III cases, and six
WHO IV cases. The glioma tissues of different WHO grades and
normal brain tissues were analyzed by immunohistochemistry
staining (IHC) and 11 pairs of glioma samples and normal brain
samples were analyzed by RT-qPCR. This study was approved by the
Ethics Committee of Xiangya Hospital of Center South University.
Human glioma cells HA 1,800, A172, U87, U251, HS683, and
LN229 were purchased from Shanghai Cell bank. All cells were
cultured in a humidified atmosphere containing 5% CO2/95% air
at 37°C. Dulbecco’s Modified Eagle’s Medium (high glucose) with 10%
fetal bovine serum (Bovogen) and 1% penicillin/streptomycin was
applied to culture cells.

Real-time quantitative polymerase chain
reaction

The samples were kept at −80°C freezer until RNA extraction. We
used Total RNA Extractor (Sangon Biotech, China) to extract RNA
from clinical samples and cultured cells. The Prime Script® RT reagent
Kit (Takara) was applied to synthesize RNA into cDNAs. RT-qPCR
was performed in the 7,500 Real-time PCR System (Applied
Biosystems) with SYBR Premix Ex Taq (Takara, Japan). The
primers are ZBTB42: 5′-GCCGCCTACTGGACTTCATGTAC-
3′(Forward), 5′-GCCCTTGCAGACCTTGACGATG -3′(Reverse)
and GAPDH: 5′- TGACATCAAGAAGGTGGTGAAGCAG-
3′(Forward), 5′-GTGTCGCTGTTGAAGTCAGAGGAG-
3′(Reverse). Each assay was carried out in triplicate and 2-△△Ct was
calculated to analyze the gene expression difference.

Immunohistochemistry

Glioma tissues of different WHO grades and normal brain tissues
were fixed with 4% paraformaldehyde and embedded in paraffin.
Then, the tissues were sectioned into 4 µm and rehydrated with
gradient concentration ethanol. Citrate buffer was used for antigen
retrieval and 3% hydrogen peroxide (H2O2) was applied to quench
endogenous peroxidase. After blocking in 10% normal goat serum, the
sections were incubated with ZBTB42 antibody (1:500, HPA,
HPA066961) overnight at 4°. Then, the sections were incubated by
secondary antibody (goat anti-rabbit IgG, 1:5,000, Proteintech) for 1 h
at room temperature. Finally, the sections were stained with
diaminobenzidine tetrahydrochloride (DAB) and hematoxylin. The
quantification of ZBTB42 immunohistochemistry staining was
performed by the software ImageJ.

Gene set enrichment analysis and protein-
protein interaction (PPI) network

The Differential Expression Genes (DEGs) were generated by
“limma” package from the high ZBTB42 expression group and low
expression group. The Gene Ontology (GO) and Kyoto
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Encyclopedia of Genes and Genomics (KEGG) enrichment were
then performed via the R package “clusterProfiler.” The
GSVA Reactome and Hallmark gene sets were obtained from
the Molecular Signatures Database (MSigDB). The PPI
was generated from the website tools STRING (https://string-db.
org/).

Immune-related analysis

ESTIMATE algorithms were applied to calculate the immune
score, stromal score, and ESTIMATE score of the high
ZBTB42 expression and low expression groups. The proportion of
immune cell infiltration was generated by “CIBERSORT.” Correlation

FIGURE 1
ZBTB42 expression profile in pan-cancer and glioma. (A) ZBTB42 mRNA expression of pan-cancer in TCGA dataset. (B) ZBTB42 is highly expressed in
glioma compared with normal tissue in three different GEO datasets. (C) ZBTB42 mRNA expression in normal brain and glioma tissues. (D) ZBTB42 mRNA
expression in human glia cell line and different glioma cell lines. (E) Quantification of ZBTB42 IHC staining between different WHO grades of gliomas and
normal tissues (n = 12). (F) Immunohistochemistry staining of ZBTB42 in normal brain and glioma samples (n = 12). *p < 0.05; **p < 0.01; ***p < 0.001;
****p < 0.0001.
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analysis of ZBTB42 with immune-related genes and stemness
signature genes was carried out by R package “corrplot.”

Statistical analysis

All statistical analyses were performed on R studio version 4.2.0.
The Wilcoxon rank-sum test was applied to analyze the expression of
ZBTB42 in cultured cells, AOD of normal tissue and glioma samples,
and different clinicopathological subgroups. All statistical tests were
two-sided. The p < .05 was regarded as a significant difference. The

optimal cutting point was determined by the R package “Survminer”
to separate glioma, LGG, and GBM patients into high
ZBTB42 expression and low expression groups. The Kaplan-Meier
plotter was utilized to illustrate the overall survival of glioma, LGG,
and GBM patients between the high ZBTB42 expression and low
expression groups. Least Absolute Shrinkage and Selection Operator
(LASSO) regression filtrated DEGs between the high
ZBTB42 expression and low expression groups into five prognostic
genes. Multivariate cox regression analysis was performed to detect the
independent prognostic performance of these genes. The nomogram
based on prognostic genes was constructed by R package “rms.” The

FIGURE 2
ZBTB42 expression in different subgroups of glioma and correlated with tumor progression. (A) Expression of ZBTB42 in clinical subgroups of glioma. (B)
Optimal cut point determination in glioma, LGG, andGBM. (C)High expression of ZBTB42 leads to poor prognosis in both LGG andGBM. *p < 0.05; **p < 0.01;
***p < 0.001; ****p < 0.0001.
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area under curve (AUC) was generated by the R package
“survivalROC” to evaluate the predictive ability of the model.

Result

ZBTB42 expression analysis in pan-cancer
and glioma

To investigate the expression of ZBTB42 in normal tissue and
tumors, we used the online tool GEPIA2 to analyze this gene in
34 tumors versus adjacent tissues (or GTEX). According to Figure 1A,
the expression of ZBTB42 is slightly increased in breast invasive
carcinoma (BRCA), glioblastoma multiforme (GBM), ovarian
serous cystadenocarcinoma (OV), Prostate adenocarcinoma
(PRAD), thymoma (THYM), and uterine corpus endometrial
carcinoma (UCEC), while it is also increased in many other
tumors including Brain Low Grade Glioma (LGG). To further
verify ZBTB42 expression in glioma, especially in GBM, Brainbase
was used to analyze multiple glioma GSE datasets. In GSE4290,
GSE50161, and GSE59612, ZBTB42 expression is highly elevated in
glioma and GBM (Figure 1B). Furthermore, we performed
ZBTB42 RT-qPCR on glioma and normal brain tissue. The
increased expression of ZBTB42 was observed and the difference
was significant (Figure 1C). Compared with normal human glia
cells, the A172, U87, U251, HS683, and LN229 shows increasing
expression of ZBTB42 (Figure 1D). The immunohistochemistry
staining showed an evident ZBTB42 signal in different WHO
grades of glioma samples (Figure 1F). The quantification analysis
of area optical density (AOD) indicated that ZBTB42 is higher
expressed in glioma tissues compared with normal brain tissue

(Figure 1E). The graphic schematic and immunofluorescence on
the U-2 OS and MCF7 cell lines showed that ZBTB42 is expressed
in the nucleus and cell membrane (Supplementary Figures S1A, B).
Meanwhile, we found that in the GTEx dataset, ZBTB42 is lowly
expressed in brain tissue (Supplementary Figures S1C, D) which
indicated that ZBTB42 may play a role in the development of glioma.

ZBTB42 shows expression preference in
malignant subtypes of glioma and is
correlated with tumor progression

To further understand the distribution of ZBTB42 in glioma with
different clinical parameters, we analyzed the glioma patients from the
CGGA-325 cohort, CGGA-693 cohort, and the TCGA dataset by the
Brainbase website. Interestingly, the level of ZBTB42 expression
increased with the improvement of the WHO grade in all glioma
datasets (Figure 2A). Remarkably, compared with the IDHmutant and
1p/19q codeletion subgroup, a higher expression of ZBTB42 was
observed in the IDH wild type and 1p/19q non-codeletion
subgroup (Figure 2A). These data suggested that ZBTB42 may be
involved in glioma malignancy progression. Then we asked does
ZBTB42 deregulation plays a role in the progression of glioma. We
divided the 631 TCGA glioma patients into high ZBTB42 expression
and low expression groups by optimal cutoff point (Figure 2B).
Kaplan-Meier plotter analysis showed that the patients in the high
expression group, have poor overall survival (Figure 2C). When we
analyzed the LGG and GBM separately, the conclusions were the same
(Figure 2C).

To answer why the expression of ZBTB42 is elevated, we moved to
the genetic alterations, copy number variation (CNV), and

FIGURE 3
The copy number variations, mutation and epigenetic modification of ZBTB42 (A) Amplification state of ZBTB42 in glioma. (B) Copy number variations
(CNVs) changes of ZBTB42. (C,D)Methylation of ZBTB42 promoter and ZBTB42 body in different WHO grades glioma. (E,F)Methylation of ZBTB42 promoter
and ZBTB42 body in 1p19q codel and 1p19q non-codel subgroups. (G,H) Methylation of ZBTB42 promoter and ZBTB42 body in IDH wild type and mutant
subgroups. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.
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methylation modification of ZBTB42 in the TCGA dataset. Firstly, we
check the genetic alterations state. ZBTB42 is amplified in .6% of
glioma patients and most of which are IDH wild-type glioma
(Figure 3A). The CNV decreased in Grade 3 glioma compared
with Grade 2 while there was no significant difference between
Grade 3 and Grade 4 (Figure 3B). In terms of epigenetics, we
found that the methylation of ZBTB42 promoter and body
decreases accompanied by Grade 2 to Grade 4 (Figures 3C, D). A
similar demethylation of ZBTB42 also appeared in the IDH wild-type
and 1p19q non-codeletion subgroup (Figures 3E–H). Therefore, the
demethylation of the promoter and body may result in the increased
expression of ZBTB42, and abnormal expression of ZBTB42 reveals a
more severe tumor progression.

Pathway enrichment analysis of dysregulation
of ZBTB42 in TCGA cohort

To elucidate the effect of ZBTB42 alteration on biological
functions in glioma, we compared the high ZBTB42 expression
group and low expression group in glioma and filtered out
upregulated and downregulated genes. After that, GO and KEGG
enrichment analyses were performed. In GO analysis of upregulated

genes, we found that except for skeletal system development which we
already know, most related pathways were focusing on extracellular
matrix and immune-related pathways such as T cell activation, MHC
class II protein complex, and immune receptor activity (Figure 4A).
Spearman correlation analysis showed that ZBTB42 was highly related
to the T cell activation-related genes, such as CD28, CD247, AKT1,
etc., (Supplementary Figure S2). In terms of downregulated genes, the
pathways were focusing on the channel activity of the cell member
(Figure 4B). In the KEGG analysis, the upregulated genes were in the
hematopoietic cell lineage, cytokine-cytokine receptor, and JAK-
STAT signaling pathway (Figure 4C). Taken all together, we
speculated that dysregulation of ZBTB42 in glioma affects glioma
progression via the tumor microenvironment, especially the immune
microenvironment.

To verify this hypothesis, we performed GSVA analysis with DEGs
between the high ZBTB42 expression group and low expression group
on Reactome and Hallmark gene sets from MSigDB. The GSVA
Reactome analysis suggests multiple pathways such as
PD1 signaling, CLEC7A inflammasome, and immune response
were positively related to upregulated genes. Besides that, the cell-
extracellular matrix, cell cycle, and cell death pathways were also
highly related to these genes (Figure 4D). In GSVA hallmark analysis,
a similar result was detected (Figure 4E), which confirmed the

FIGURE 4
Pathway enrichment analysis of dysregulation of ZBTB42 in TCGA cohort. (A,B) Biological process analysis on upregulated genes (A) and downregulated
genes (B) between the ZBTB42 high expression group and low expression group. (C) The pathways related to upregulated genes and downregulated genes by
KEGG enrichment analysis. (D) GSVA analysis on Reactome gene set between glioma patients with high ZBTB42 expression and low expression. (E) GSVA
analysis on Hallmark gene set between glioma patients with high ZBTB42 expression and low expression. (F) Protein-protein interaction network based
on ZBTB42-related genes by STRING database. The lines between genes represent protein-protein associations and different colors represent how these
relationships were validated. The green line represents two genes are neighborhood genes; The pink line represents the relationship that has been
experimentally determined by existing papers. The black line represents two genes that are co-expressed. The purple line represents protein homology.
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relativity between ZBTB42 and the glioma microenvironment. In
addition, protein-protein interaction suggested that
ZBTB42 potentially interacted with PGBD1, ZSCAN20, and
ZNF396. These genes are all associated with glioma prognosis and
ZSCAN20 is related to the immune infiltration of tumors (Figure 4F).

The high ZBTB42 expression group is
associated with immune suppression in
glioma

To further investigate the interaction between the high
ZBTB42 expression group with the immune microenvironment in
glioma, the CIBERSORT algorithm was applied to detect immune cell
proportion in glioma from the TCGA dataset. Interestingly, compared
with the low expression group, the high expression group had more
immune cell infiltration, such as resting CD4+ memory T cells, Treg
cells, M1Macrophages, andM2Macrophages (Figure 5A). In contrast,
the number of memory B cells, naïve T cells, and monocytes in the
high expression group decreased. Increasing T reg cells and
M2 macrophages suggested that there was immune suppression in
the high expression group microenvironment. Then, we performed
ssGSEA analysis to explore the immune-related signature variations.

The results showed that checkpoint molecules, immune suppression
by myeloid cells, protumor cytokines, and Treg signature were
increased in the high expression group (Figure 5B). To calculate
immune scores and verify the presence of infiltrating immune cells,
ESTIMATE algorithms were employed in LGG and GBM patients
from the TCGA dataset. In LGG, the result showed that all three scores
were increased and the tumor purity was decreased in the high
expression group, predicting the existence of more stroma cells and
immune cells (Figure 5C). In GBM, the Stromal score, Immune score,
and ESTIMATE score were higher and the tumor purity was lower in
the high ZBTB42 expression group. However, the difference in stromal
score wasn’t significant (Figure 5D). In addition, we found that
ZBTB42 was positively related to chemokines and cytokines, such
as FGL2, SPP1, and CCL, CXCL subfamilies (Figure 5E). In both LGG
and GBM, ZBTB42 was positively related to CSF1, which is known for
promoting glioma immune suppression (Figures 5E, F). On the other
hand, the immune checkpoint gene like PD1 was reported to inhibit
T cell effects, induce T cell inactivity and make T cells exhausted.
Correlation analysis showed that ZBTB42 was positively related to
PD1, PD-L1, PD-L2, CTLA4, TIM3, and LAG3 in LGG (Figure 5G)
and positively related to PD-L1, PD-L2, SIRPA in GBM (Figure 5H),
suggesting that the high expression of ZBTB42 may promote glioma
progression via immune suppression microenvironment.

FIGURE 5
High ZBTB42 expression group is associated with immune suppression in glioma. (A) The fraction of 22 immune cell infiltration in high
ZBTB42 expression group and low expression group of gliomas. (B) Immune-related signature scores between high ZBTB42 expression group and low
expression group of gliomas by ssGSEA analysis. (C,D) Stromal score, Immune score, and ESTIMATE score, and tumor purity of LGG (C) and GBM (D) in the
TCGA dataset. (E–H) Map of ZBTB42 correlation with cytokine genes, chemokine genes, and immune checkpoint genes in LGG (E, G) and GBM (F, H).
*p < 0.05; **p < 0.01; ***p < 0.001.
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High ZBTB42 expression is related to the
stronger tumor-stemness feature of glioma

Interestingly, in the GO and KEGG analysis, the upregulation genes
were enriched in the cell cycle, and cytokines (Figure 4A). In ssGSEA
analysis, tumor proliferation-related signatures and extracellular matrix
signatures such as angiogenesis, protumor cytokines, tumor proliferation
rate, and matrix remodeling were also significantly improved in the high
ZBTB42 expression group (Figure 5B). Therefore, we asked if ZBTB42 is
related to the stemness of glioma. To answer this question, four stemness
indices were calculated by the one-class logistic regression (OCLR)
algorithm in glioma, LGG, and GBM. We found that the stemness
indices of the high expression group were significantly higher than the
low expression group in glioma and LGG (Figures 6A, B). However, we
didn’t get the same conclusion in GBM (Figure 6C). To further validate
our assumption, correlation analysis was performed between ZBTB42 and
stemnessmarkers. ZBTB42 was positively related to stem cell markers like
PROM1, CD44, MSI1, FUT4, ITGA6, NES, CD36, and GFAP in glioma,
LGG, and GBM (Figures 6D–F). In addition, we collected the single cell

sequence data of glioma. As a result, we found ZBTB42 was mainly
expressed in stem-like cells and differentiation-like cells (Figure 6G). We
also detected the expression of ZBTB42 in sphere-forming cells which
received radiation and a hypoxia culture environment. Interestingly, the
expression of ZBTB42 was increased in stem-like, differentiation-like, and
proliferation stem-like cells after radiation, indicating that ZBTB42 wasn’t
only related to the stemness of glioma but alsomay play a role in radiation
resistance in glioma treatment (Figure 6H). These data suggested that
increased expression of ZBTB42 was also associated with the stemness of
glioma and may play a role in glioma stem cells.

Construction of a ZBTB42-related prognostic
model

To further illustrate the potential role of ZBTB42 in glioma, we
applied Lasso regression on the DEGs between the high
ZBTB42 expression group and low expression group in LGG
patients (Figures 7A, B). 5 genes were detected which were mostly

FIGURE 6
High ZBTB42 expression is related to the stronger tumor-stemness feature of glioma. (A,B) mDNAsi, EREG.mDNAsi, DMPsi, and ENHsi of high
ZBTB42 expression and low expression group in glioma (A), LGG (B) and GBM (C). (D–F) Map of ZBTB42 correlation with stemness characteristic genes in
glioma (D), LGG (E), and GBM (F). (G,H) ZBTB42 was expressed in stem-like and proliferation stem-like cell subtypes analyzed by single cell sequencing data.
*p < 0.05; **p < 0.01; ***p < 0.001.
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related to the clinical prognosis. Interestingly, all these genes were
related to the expression of ZBTB42 in LGG (Figure 7C). Multivariate
Cox analysis confirmed that these genes were independent prognostic
factors for LGG patients (Figure 7D). The risk score and survival time
showed that the high risk group had a poor clinical outcome
(Figure 7E). Kaplan-Meier plotter analysis showed that the low-risk
group of the patients had a better prognosis (Figure 7F). The area
under the curve (AUC) of 1 year, 3 years, and 5 years were 0.898,
0.865, and 0.769 indicating that this model can predict the survival of
glioma patients efficiently (Figure 7G). Furthermore, we verified the
prognostic value of these genes in GBM and glioma via multivariate
Cox analysis (Supplementary Figures S3A, B). The result suggested
that KCNIP, IGFBP2, IL5, and SAMD9L were independent poor
prognostic factors for GBM and glioma. On the other hand,
CRTAC1 was associated with good clinical outcomes. The patients
were divided into high risk group and low risk group based on the

distribution of expression of five genes and the high risk group was
associated with a bad prognosis (Supplementary Figures S3C, D, G,
H). The Kaplan-Meier plotter and ROC analysis confirmed the good
performance of these genes in the clinical prediction (Supplementary
Figures S3E, F, I, J). The same analysis was also performed in the
CGGA-325 cohort and CGGA-693 and the results support that
5 ZBTB42-related genes have good prognostic prediction ability
(Supplementary Figure S4).

Discussion

ZBTB42 was found in the testes, and regulates the development of
skeletal muscle, while its function in tumors hasn’t been well described
(Takahashi et al., 2008). Here we first illustrated the
ZBTB42 expression profile in pan-cancer and investigated its

FIGURE 7
Construction of a prognostic model with ZBTB42-related genes in LGG. (A) LASSO coefficients profiles of DEG between high ZBTB42 expression group
and low expression group in LGG. (B) LASSO regression with cross-validation obtained optimal prognostic-related genes in LGG. (C) Map of
ZBTB42 correlation with prognostic related genes in LGG. (D)Multivariate Cox analysis of KCNIP3, IGFBP2, CRTAC1, IL15, and SAMD9L with clinical outcomes
for LGG. (E) The risk score, survival time, and expression distribution of the five genes in the LGG cohort. (F) Kaplan-Meier survival analysis of high-risk
model and low-risk model. (G) Prediction sensitivity validation of the prognostic model by receiver operating characteristic (ROC) curve analysis in 1, 3, and
5 years for LGG patients. *p < 0.05; **p < 0.01; ***p < 0.001.
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potential relationship with glioma. High expression is detected in
glioma and leads to a poor prognosis. The epigenetic modification of
glioma plays a crucial role in tumor cell plasticity and resistance to
hypoxia, chemotherapy, and radiotherapy (Johnson et al., 2021). The
most common epigenetic alteration in malignant tumors is
methylation. The methylation of intergenic regions, gene bodies,
and DNA repetitive sequences in DNA repair and tumor
suppressor genes is an important part of tumor formation and
progression (Aoki and Natsume, 2019; Ehrlich, 2019). In glioma,
the methylation status of the O6-methylguanine-DNA
methyltransferase (MGMT) promotor is associated with the
response to temozolomide treatment (Aoki and Natsume, 2019;
Mathur et al., 2020). Our data show increased ZBTB42 promotor
and gene body methylation preference in benign subtypes of glioma,
which is negatively related to ZBTB42 expression. In addition, a high
level of ZBTB42 methylation leads to better overall survival in LGG
patients. Collectively, ZBTB42 is a prognostic biomarker of glioma and
the hypomethylation of ZBTB42 is, at least partly, the reason for the
promotion of ZBTB42 expression.

In our present study, we performed GO, KEGG, and GSVA
analysis on the DEGs. The pathways enriched are mainly focused
on immune response, T cell activation, cytokines, and JAK-STAT
signaling. The tumor microenvironment is a complicated cellular
milieu constructed during tumorigenesis which consists of tumor
cells, immune cells, stromal cells, and extracellular matrix
molecules (Hanahan and Coussens, 2012; Senga, 2021). The
immune cells such as macrophages, T cells, B cells, natural killer
cells, dendritic cells, and myeloid-derived suppressor cells (MDSCs)
interact with stromal cells, tumor cells, cytokines and decide the
immune characteristics and tumor progression (Nagarsheth et al.,
2017). The tumor-associatediated macrophages (TAMs), which
contain M1 and M2 subgroups, take up the largest proportion of
the immune cells and usually play an immunosuppressive role in
microenviroment regulation (Grabowski et al., 2021).
M1 macrophages are antineoplastic because of their enhanced
antitumor inflammatory reactions and intrinsic phagocytosis
function while M2 macrophages behave as immune-suppressor
with immunosuppressive factors secretion and decreased antigen-
presentingenting ability (Ruffell et al., 2014; Zhou et al., 2017; Liu
et al., 2021). Besides the antiinflammation, the M2 macrophages can
also induce angiogenesis to promote tumor growth and metastasis
(Martinez et al., 2008; Fleetwood et al., 2009). In the tumor
microenvironment, T reg cells are a subset of CD4+ T cells and
they can curtail the function of multiple immune cells by
decreasing the production of interleukin (IL)-2 and interferon
(IFN)-γ, increasing Th2 cytokine skewing, and directly inhibiting
of endogenous generation and expansion (Humphries et al., 2010).
Our immune cell infiltration analysis shows increasing
M2 macrophages and T-reg cells in the high ZBTB42 expression
group. In the contrast, the number of memory B cells, naïve T cells,
and monocytes decreased. Colony-stimulating factor-1(CSF-1) plays
an important role in the differentiation and survival of TAM
(Pyonteck et al., 2013). Several experiments were performed to
target glioma-associated macrophage populations by colony-
stimulating factor-1 receptor (CSF-1R). In mice, inhibition of CSF-
1R can either block the transformation of M2 macrophages or deplete
TAMs to prevent glioma progression and invasion (Yan et al., 2017).
The survival in the preclinical model was enhanced efficiently in the
treatment group (Pyonteck et al., 2013; Sun et al., 2019; Akkari et al.,

2020). In the correlation analysis, ZBTB42 is positively related to the
expression of CSF-1 in both LGG and GBM indicating ZBTB42 is
associated with immune suppression in glioma and this feature may be
related to the increased expression of CSF-1.

Moreover, the immune checkpoint genes can induce immune
suppression and anti-immune checkpoint inhibitors (ICI) have been
wildly studied both in basic research and clinical trials (Qi et al., 2020).
Programmed Cell Death Protein 1 (PD-1), which has become the most
comprehensively immune checkpoint molecule, is a transmembrane
protein on the T and B cells and plays a crucial role in inducing
immunosuppression. PD-1 can modulate the activity of T-cells,
activate apoptosis of antigen-specific T cells, and inhibit apoptosis
of Treg cells (Han et al., 2020). Cytotoxic T-lymphocyte-associated
protein 4 (CTLA-4) express on the activated T cells and Treg cells and
belongs to the immunoglobulin superfamily. CTLA4 can inhibit T cell
co-stimulatory by combining with the ligands CD80 and CD86 which
are expressed on antigen-presenting cells (APCs) (Fong et al., 2012).
We found that ZBTB42 is associated with PD1, and PD-L1. PD-L2,
CTLA4 HAVCR2, LAG3. Considering that ZBTB42 is expressed in
the nucleus and cell membrane, targeting ZBTB42 may help people
precisely kill cells with immune checkpoints and promote the overall
survival of patients.

On the other hand, glioma stem cells (GSCs) are an important part
of the glioma microenvironment and regulate glioma initiation,
progression, and recurrence (Folkins et al., 2007). In the tumor
microenvironment, the GSCs can secret cytokines such as fibroblast
growth factor 2 (FGF2), hypoxia-inducing factor (HIF), and vascular
endothelial growth factor (VEGF) to promote tumor invasion, recruit
immune cells, induce angiogenesis, and self-renew (Hambardzumyan
and Bergers, 2015). ZBTB42 is positively related to glioma stem cells
marker genes such as CD44, MSI1, Fut4, and NES and the high
expression group has a stronger relationship with glioma stemness.
Interestingly, we found that ZBTB42 was expressed in the stem-like,
proliferation stem-like, and differentiation-like cells based on the
download single cell sequencing data (Johnson et al., 2021). After
radiation, the percentage of ZBTB42 in the above tumor cells was
increased, indicating that ZBTB42 may play a role in the radiation
resistance of glioma cells.

Finally, we sorted out 5 genes which highly related to ZBTB42 and
they showed potent prognostic value. Based on these genes, we
constructed a nomogram model which has a sensitive prognosis
prediction ability in LGG, GBM, and glioma patients. This model
may help clinicians make clinical prognosis predictions and decide on
treatment strategies.

Conclusion

In summary, we have identified ZBTB42 as a novel prognostic
biomarker for glioma. ZBTB42 is related to immune suppression and
glioma stemness in the microenvironment. Targeting ZBTB42 treatment
may help glioma patients have better overall survival.
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Integrated single-cell and
transcriptome sequencing analyses
develops a metastasis-based risk
score system for prognosis and
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Background: Uveal melanoma (UM) is the most frequent ocular neoplasm with a
strong metastatic ability. The prognostic value of metastasis-associated genes
(MAGs) of UM remains unclear. It is urgent to develop a prognostic score system
according to the MAGs of UM.

Methods: Unsupervised clustering was used to identify MAGs-based molecular
subtypes. Cox methods were utilized to generate a prognostic score system. The
prognostic ability of the score system was detected by plotting ROC and survival
curves. The immune activity and underlying function were depicted by CIBERSORT
GSEA algorithms.

Results: Gene cluster analysis determined two MAGs-based subclusters in UM,
which were remarkably different in clinical outcomes. A risk score system
containing six MAGs (COL11A1, AREG, TIMP3, ADAM12, PRRX1 and GAS1) was set
up. We employed ssGSEA to compare immune activity and immunocyte infiltration
between the two risk groups. Notch, JAK/STAT and mTOR pathways were greatly
enriched in the high-risk group. Furthermore, we observed that knockdown of AREG
could inhibit UM proliferation and metastasis by in vitro assays.

Conclusion: The MAGs-based subtype and score system in UM can enhance
prognosis assessment, and the core system provides valuable reference for
clinical decision-making.

KEYWORDS

uveal melanoma, metastasis, prognosis, immunotherapy response, drug sensitivity, areg

Introduction

Uveal melanoma (UM), the major primary intraocular malignancy in adults, accounts for
83% of intraocular melanomas. Among them, choroidal, ciliary and iris melanomas account for
85%–90%, 5%–8%, and 3%–5%, respectively (Singh et al., 2011). Patients mostly complain of
decreased visual acuity, visual distortion, and loss of visual field, and 30% of patients may not
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have any ocular symptom, making them highly susceptible to
underdiagnosis and misdiagnosis. This highly malignant disease is
prone to invasive metastasis, mainly in the liver (89%) (Diener-West
et al., 2005). Once metastasized, the prognosis is extremely poor.
Currently, UM is mainly treated by ophthalmopexy, local tumor
resection, local radiation therapy (external scleral dressing or
stereotactic radiation therapy, proton beam treatment) and laser
photocoagulation treatment (transpupillary thermal or
photodynamic therapy) (Carvajal et al., 2017). The high
proliferative activity of UM cells and the extreme susceptibility to
extraocular metastasis are the main reasons for the therapeutic
difficulty and high mortality of this tumor. However, the current
treatments for UM are ineffective against tumor metastasis
(Augsburger et al., 2009), so most studies have diverted to
immunotherapy. Identification of probable biomarkers of UM may
offer key data for early recurrence monitoring or treatment (Bol et al.,
2016). Currently, though some key genes and pathways in UM are
identified, the prognosis remains unsatisfactory (Xue et al., 2019).
Hence, new markers are urgently needed to evaluate the prognosis
of UM.

With the fast advancement of immunotherapy recently, the tumor
microenvironment (TME) is reportedly pivotal in cancer growth and
therapeutic response (Arneth, 2019). Prognostic or predictive
biomarkers related to TME may largely help assess tumor
prognosis and advance oncology therapies.

TME is a complicated and integrated system consisting of various
stromal cells, such as fibroblasts, smooth muscle cells, immune and
inflammatory cells, glial cells, adipocytes, and some vascular cells
(Song et al., 2021a; Liu et al., 2022a). These cells can be initiated by
tumor cells to produce abundant growth factors, cytokines, and
stromal degrading enzymes around them, which facilitate the
division and invasion of tumor cells (Song et al., 2021b). TME is
the material basis for the survival and development of tumor cells, and
TME and tumor cells are an interdependent and mutually promoting
whole (Chen et al., 2021; Liu et al., 2022b). TME is physiologically
characteristic of low oxygen, low pH and high interstitial hydraulic
pressure, which provide the necessary material basis for tumor
formation, development, invasion, metastasis, drug therapy
resistance, and immune response (Watnick, 2012).

Tumor metastasis is a major factor contributing to the poor
prognostic outcome of various cancers. There are several
theoretical models about the mechanism of tumor metastasis, and
the most prevalent one is the epithelial-mesenchymal transition
(EMT) theory (Mittal, 2018). This theory suggests that first some
cells during tumor metastasis undergo EMT, which causes tumor cells
to lose their cell-to-cell adhesion and fall off from the tumor tissues
into the blood circulation system. Then the cells flow with the blood to
other suitable places for growth (Song et al., 2021c). EMT leads to
tumor cytoskeleton rearrangement, reduced cellular rigidity and cell/
cellular connectivity, facilitating tumor metastasis and invasion (Davis
et al., 2014).

Diverse developmental signaling pathways, such as tumor growth
factor (TGF)-β, WNT, NOTCH and growth factor receptor tyrosine
kinase, are associated with the induction of EMT in certain
physiological circumstances. TGF-β, a cytokine released by tumor
cells and stromal fibroblasts in the TME, is regarded a main cause of
EMT (Katsuno et al., 2013). Other signaling pathways involved in
EMT induction are inflammatory cytokines such as TNF-a via NF-jB
(Wu et al., 2009), IL-6/STAT pathways (Lo et al., 2007) and

extracellular matrix (ECM) stiffness (Wei et al., 2015). Then these
signaling molecules can stimulate various EMT transcribing factors
EMT-(tf) to start the EMT program, including inhibition of epithelial
markers and stimulation of mesenchymal markers.

The occurrence of CD4+ T lymphocyte inflammatory infiltration
in UM has been reported. Moreover, the ability of
CD4+CD25+FoxP3+ Treg cells to suppress Th1 or cytotoxic T
lymphocyte reactions is a main principle of tumor escape in many
cancers (Amaro et al., 2017). In cardiomyocyte studies, fibroblast
growth factor (FGF)-2 generation can be modulated transcriptionally
(Jin et al., 2000) and FGF-2 prevents UM cells from growth restriction
by bromodomain and extra-terminal protein inhibitors (Chua et al.,
2019). In addition, EMT may contribute to the transdifferentiation of
epithelial tumor cells, conferring their migration and invasiveness
(Smolkova et al., 2018).

In present academic research, two independent UM cohorts were
utilized explore the significance of metastasis-associated genes
(MAGs) in UM in order to explore new prognostic biomarkers.
We set up a MAGs-based risk score system for forecasting
prognosis of UM cases. Our data disclosed potential function and
prognostic power of MAGs in UM. Furthermore, AREG was selected
to confirm the model accuracy by various wet lab experiments.

Materials and methods

Data collection

The gene expression profile and relevant clinical data were
acquired from the GEO (https://www.ncbi.nlm.nih.gov/geo/) and
TCGA (https://portal.gdc.cancer.gov/) databases, respectively. The
TCGA-UM cohort including the gene expressions and clinical data
of 80 UM patients was chosen as the training set to build a prognostic
model. The GSE22138 with RNA sequencing of 63 UM samples was
used as the validating set. The metastasis-associated genes (MAGs)
obtained from MSigDB website (https://www.gsea-msigdb.org/gsea/
index.jsp) are provided in Supplementary Table S1.

Construction of MAGs-based risk score
system (MBRSS)

Prognostic genes in the training set were identified through
univariate Cox analysis. Then the coefficients of these model genes
were computed to construct a prognostic model via multivariate
analysis. The equation is: risk score � ∑n

i�1(coef × Expi), where
Expi and coef are the expression level and risk coefficient of each
gene respectively. The patients were classified by the median risk score
into high- and low-risk groups. An external dataset GSE68465 was
adopted to validate the predictive ability of signature.

Functional enrichment analysis

GSEA was done to uncover the probable molecular mechanisms of
the prognostic genes at the cutoff value of adjusted p < 0.05. The
signaling pathways for UM were recognized using the Kyoto
Encyclopedia of Genes and Genomes (KEGG) on R clusterProfiler
and visualized on R ggplot2 (Yu et al., 2012).
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Determination of a prognostic nomogram

The independence of the model was determined via Cox
regression analyses. Then a nomogram was set up to strengthen
the predictive ability of the model based on diverse clinical traits.
The nomogram was verified via a calibration curves.

Immune activity analysis

Relative infiltration levels of 21 types of immune cells were
quantified using the CIBERSORT algorithm as described before
(Subramanian et al., 2005). The immune activities between groups,
as de-scribed by the normalized enrichment score (NES), were
compared with single sample gene set enrichment analysis (ssGSEA).

Single-cell analysis

To investigate the expression pattern of genes at single-cell level,
GSE139829 dataset including 11 samples was collected from GEO

database. We applied “Seurat” R package to conduct data quality
control and normalization. The UMAP algorithm was employed to
reduce the dimension of data. Next, cells were annotated according to
surface markers.

Cell culture and transfection

Human UM cell line (MUM-2B) was obtained from the Fuheng
Biology Inc., (Fuheng, Shanghai, China). For MUM-2B cell culture,
DMEM (keyGEN bioTECH, China) with 10% fetal bovine serum
(FBS) was used. Cells were transfected with the synthesized siRNAs
(GenePharma, China) targeting AREG by the
Lipofectamine3000 based on the manufacturer’s protocol. The
siRNA-AREG sequences are provided in Supplementary Table S2.

Quantitative real-time PCR

The cell total RNA of was collected using RNA easy reagent
(Vazyme, China) and cDNA was obtained using a PrimeScript RT

FIGURE 1
The flowchart of the present research.
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Reagent Kit (Takara, Japan). Then, qRT-PCR was performed through
a ChamQ SYBR qPCR Master Mix (Vazyme, China). The relative
expression levels of m RNA were normalized to GAPDH. The primer
sequences of AREG and GAPDH are shown in Supplementary
Table S1.

Cell capability assay
The transfected cells were seeded in a 96-well plate. Cell capability

was measured by CellTiter-Glo luminescent cell viability assay (CTG,
Promega, Germany). After CTG kit incubation, the luminescence was
detected multifunctional enzyme marker.

EdU assay
The transfected cells were seeded in a 96-well plate. Following

incubation in EdU reagent (Ribobio, China) for 2 h, cells were fixed

and permeated, and stained with Apollo reagent for half hour. Nuclei
were stained with Hoechst 33342.

Migration and invasion assays
A transwell insert with 8 mm pores (Millipore) was utilized. In the

upper chamber, 1 × 104 cells were seeded in 200 mLmedia without serum,
while 500 mL complete medium was supplied in the lower chamber.
Based on the manufacturer’s instructions, we performed Matrigel for the
invasion detection (BD Biosciences, United States).

Immunofluorescence (IF) assay
After 30 min of treatment with the blocking solution, cells were

incubated with primary antibody (E-cadherin and N-cadherin)
overnight. Fluorescence-labeled secondary antibodies and DAPI
were then applied for staining.

FIGURE 2
Determination of MAGs-based Molecular Subtype in UM. (A)GO analysis, (B) KEGG enrichment and (C) Consensus clustering analysis of MAGs. (D) PCA,
(E) survival analysis and (F) GSVA analysis of two subclusters.
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Statistical analysis

All statistical analyses were finished on R 4.0.5. The outcomes of
UM cases were compared between groups through Kaplan-Meier
(KM) analysis. The area under the curve (AUC) generated by ROC
analysis was computed to test the modeling accuracy. The AUCs for 1-
, 3-, and 5-year survival rates were estimated.

Results

MAGs-based molecular subtype in UM

The flowchart of the present research is shown in Figure 1.
Totally 200 MAGs were collected from MSigDB portal. GO and

KEGG analyses were employed to better understand the functions of
these MAGs. Results revealed that MAGs were mainly involved in
EMT-related biological process, including cell adhesion, wound
healing and cell migration (Figure 2A). As shown in Figure 2B,
MAGs may regulate TNF, PPAR, and Wnt pathways.

Next, we applied consensus cluster analysis of the 200 MAGs
and identified a novel molecular subtype. The UM cases were
clustered into two optimal subsets at k = 2 (Figure 2C). PCA
demonstrated that the two subsets can be effectively separated by
MAGs (Figure 2D). Survival curves suggest that cluster A has a
favorable survival outcome compared to cluster B (Figure 2E). In

addition, epithelial cell signaling and cell adhesion pathways were
great in cluster B (Figure 2F).

Establishment and validation of the MBRSS

The training cohort (TCGA-UM) was utilized to screen out
prognostic factors. Uni-variate Cox analysis was first applied to
determine a total of 94 MAGs with prognostic values. LASSO
regression was conducted to shrink the overfitting value of the
signature and screened out 12 candidate genes for next analysis
(Figures 3A, B). Finally, we obtained six MAGs (COL11A1, AREG,
TIMP3, ADAM12, PRRX1, and GAS1) from multivariate Cox analysis
to create the MBRSS: [COL11A1 × (−2.4808)] + [AREG × (5.1680)] +
[TIMP3 × (−1.1211)] + [ADAM12× (2.0108)] + [PRRX1 × (3.2377)] +
[GAS1 × (−1.3746)] (Figure 3C). Depending on the median risk score, all
UM samples were divided into high-risk and low-risk groups. KM
survival analysis disclosed three protective indicators and three risky
indicators (Figure 3D). Except for GAS1 and PRRX1, all other genes were
significant in DFS (Figure 3E).

In the training set, K-M curves illustrated that the MBRSS-low
subgroup presented favorable survival outcome (Figure 4A). The
AUCs of 1-, 3-, and 5-year survival were 0.949, 0.987, and 0.898,
respectively (Figure 4B). The risk score and clinical status of each case
from two risk groups were shown in Figure 4C. Moreover, we
confirmed the forecasting ability of MBRSS in the testing set

FIGURE 3
Development of the MAGs-based score system. (A–B) LASSO coefficient profile analysis. (C) Six MAGs identified for score system (*p < 0.05, **p < 0.01,
***p < 0.001). Kaplan-Meier curves of (D) OS and (E) DFS.
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(Figures 4D–F). The difference in clinical outcome be-tween groups
was further verified in the testing cohort. The AUCs were 0.712,
0.772 and 0.726 for 1-, 3-, and 5-year survival, respectively (Figure 4E).

Development t of an MBRSS-Associated
nomogram

Cox regression analysis was performed to confirm the independent
value of the MBRSS. Univariate regression unearthed that age, stage and
risk score were closely corre-lated to the survival outcome (Figure 5A).
After multivariate analysis, the risk score was still an independent
prognosis indicator in UM (Figure 5B). Then we set up an MBRSS-
based nomogram to enhance its capability of prognosis assessment
(Figure 5C). Calibration curves were plotted to demonstrate the
optimal forecasting effectiveness of the nomogram (Figure 5D).

GSEA enrichment of MBRSS

GSEA with hallmark gene sets was applied to better understand
the underlying functions in the MBRSS-high group. Results disclosed
that the high-risk UM samples were related to hallmarks including
IL6/JAK/STAT5, mTOR, Notch, and P53 signaling pathways
(Figure 6A). In addition, fatty acid metabolism, glycolysis,
inflammatory response and oxidative phosphorylation were
remarkably enriched in the MBRSS-high group (Figure 6B).

Characterization of Immune Landscape in UM

Given the essential effect of immune checkpoints in anti-tumor
immunotherapy, their correlation with MBRSS was detected. LAG3,
PDCD1, HAVCR2, CD276, CD274 and CTLA4 were highly expressed
in the high-MBRSS group (Figures 7A, B). Figure 7C presents the
differences in immunocyte infiltration level between the two groups.
As for the immune function of UM samples, APC stimulation,
checkpoint, HLA, II-IFN response were activated in the high-
MBRSS group (Figure 7D).

Clinical potency analysis of MBRSS

We further explored the relationship between TMB and
MBRSS and found that TMB value was lower in the high-
MBRSS group (Figures 8A, B). Survival curves illustrated that
the high-TMB UM patients presented favorable survival outcome
(Figure 8C). The UM cases with low TMB and high risk had the
lowest 5-year survival rate (Figure 8D). In addition, the
relationship between MBRSS and m6A regulators was analyzed.
Results revealed that YTHDF2, YTHDC2, ALKBH5 and
YTHDF1 were upregulated, and ZC3H13 was low expressed in
high-MBRSS group (Figure 8E). Drug sensitivity analysis
demonstrated that High-MBRSS group displayed high
IC50 value of Camptothecin, Doxorubicin, Etoposide and
Tipifarnib (Figure 8F).

FIGURE 4
Evaluation of the MAGs-based score system. (A,D) Survival analysis for patients in the two subgroups. (B,E) ROC curves displayed the favorable ability of
the model. (C,F) Distribution of the risk score and survival status.
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Single-cell analysis of MBRSS

A total of 11 UM samples were collected from GSE139829.
Figure 9A presents a favorable integration effect of 11 samples,
suggesting this data can be utilized for next analysis. After
dimension reduction and the t-SNE clustering, all cells were
divided into 22 different clusters (Figure 9B). According to
different cell markers, 22 cell clusters were classified into 8 cell
populations including B cells, endothelial cells, iPS cells,
macrophage cells, monocyte cells, neurons, T cells and stem
cells (Figure 9C). Then, we explored the cell location of each
model genes. The results indicated that ADAM12 highly

expressed in macrophage cells, AREG mainly located in T cells
and TIMP3 highly expressed in neurons (Figure 9D).

Knockdown of AREG blocks UM proliferation
and metastasis

We selected AREG for in vitro experiments since it has the
highest HR score. Figure 10A shows the favorable silencing
efficiency by qRT-PCR assay. Then, we observed that MuM-2B
cells proliferation was greatly inhibited by silencing AREG based
on the results of CTG and EdU assays (Figures 10B–D). To evaluate

FIGURE 5
Establishment of the nomogram. (A–B) independent prognosis analysis by univariate and multivariate analyses. (C) Nomogram for improving prognosis
assessment. (D) Calibration curves of the nomogram.
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the role of AREG on MuM-2B cell metastasis, transwell assay was
conducted. The results indicated that cell migration and invasion
ability were remarkably suppressed in AREG knockdown group
(Figures 10E, F). Then, we explore the role of AREG in regulation of

cell metastatic ability by IF assay. The results disclosed that
silencing AREG blocked E-cadherin expression whereas
enhanced N-cadherin levels, indicating that AREG affects UM
cell metastasis through meditation of EMT process (Figure 10G).

FIGURE 6
GSEA of MBRSS. (A) Tumor-related pathways of hallmark. (B) Cellular biological process of hallmark.

FIGURE 7
Characterization of Immune Landscape in UM. (A–B) Immune checkpoints analysis. (C) Immunocyte infiltration analysis. (D) The relationship between
immune function analysis and MBRSS (ns > 0.05, *p < 0.05, **p < 0.01, ***p < 0.001).
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Discussion

We probed into the prognostic characteristics of UM based on
comprehensive assay of TCGA and GEO. To investigate the
relationship between patient prognosis and gene expression in the
training set, we applied KM, univariate Cox analysis, and LASSO Cox
regression, which found 10 genetic features associated with prognosis.
Applying this signature to the training group, we found significant
differences in Cox regression, ROC, and KM analyses between the
high- and low-risk groups. The prognostic power of the ten-gene
markers was similarly verified in the validation set, which fully
demonstrated the validity of the ten-gene signature in forecasting
the prognosis of UM. GSEA and immune infiltration analysis
suggested that the ten-gene marker risk scores of UM patients may
be associated with the TME. This study plays a positive role in guiding
the further clinical treatment of UM.

Here, six genes were found to be strongly associated with tumor
development. Amphiregulin (AREG) gene, which belongs to the
epidermal growth factor (EGF) family, is overexpressed in many
cancer tissues. AREG participates in EMT in pancreatic cancer cells
through NF-κB signaling and facilitates the movement and spread of
pancreatic cancer cells (Wang et al., 2020). AREG upregulates ICAM-
1 expression via EGFR/PI3K/Akt/NF-κB signaling and promotes the
cancer cell viability of osteosarcoma (Liu et al., 2015). Paired related
homeobox 1 (PRRX1), is a key member of the homomeric protein
pairing family located at the nucleus. PRRX1 mediates cancer cell
invasion and metastasis by starting EMT (Meng et al., 2022). In

addition, PRRX1 impacts the division and metastasis of various
tumor cells via Wnt/β-catenin and Notch pathways, and maintains
the characteristics of tumor stem cells to promote EMT (Du et al.,
2021). A disintegrin and metalloprotease12 (ADAM12) is implied in
the starting and advancement of many tumors. ADAM12 is
significantly more expressed in hepatocellular carcinoma (HCC)
tissues than in surrounding tissues, and a signal pathway related to
ADAM12 is found. The high ADAM12 gene expression in HCC
tissues is remarkably positively related with T stage, pathological stage
and residual tumor (Du et al., 2022). In breast cancer, hypoxia starts
HIF-dependent expression of ADAM12, which cleaves the
extracellular domain of membrane-bound heparin-bound EGF-like
growth factor (HB-EGF). The released extracellular domain of HB-
EGF connects to EGF receptor and triggers signal transduction
pathways that endow breast cancer cells with enhanced cell
migrating and invading abilities, resulting in distant metastasis
(Wang et al., 2021). TIMP3 is a main component of the tissue
inhibitors of the metalloproteinase (TIMP) family. It is mainly
enclosed in the extracellular matrix (ECM) of tissues and inhibits
abscission enzymes, transmembrane MMPs and membrane-bound
MMPs. TIMP3 promoter methylation is recently recognized as an
epigenetic candidate for the treatment of brca1 breast cancer.
Knockdown of lncRNA ROR regulates the division, death and
invasion of breast cancer cells by inhibiting TIMP3 (Hu et al.,
2021). Growth arrest specific 1 (Gas1) plays a key role in growth
inhibition. Gas1 negatively regulates glycolysis and provides energy for
tumor progression and metastasis. Gas1 negatively regulates the

FIGURE 8
Clinical potency analysis ofMBS. (A–B) The relationship between TMB andMBRSS. Survival analysis of different groups (C)with TMB and (D)with TMB and
risk score. (E) The relationship between m6A regulators and MBRSS (ns > 0.05, *p < 0.05, **p < 0.01, ***p < 0.001). (F) Drug sensitivity analysis of MBS.
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AMPK/mTOR/p70S6K signaling axis andmodulates the proliferation,
metastasis and abnormal metabolism of malignant tumor cells (Li
et al., 2016). Collagen type X1 alpha 1 (COL11A1), from the collagen
family, is mostly expressed and released by cancer-related fibroblast
subsets, and modulates matrix-tumor interaction and the mechanical
characteristics of ECM. It is up-expressed in most human tumor cell
lines and tissues and can regulate cell cycle to promote cancer and
affect tumor cell proliferation. In ovarian cancer cells,
COL11A1 modulates TGF-β3 via the NF-κB/IGFBP2 axis, thereby
activating cancer-associated fibroblasts and influencing tumor
development and migration (Wu et al., 2021).

Immune checkpoints (ICPs), a class of immune-resisting
molecules, are expressed on immune cells and mediate the level of
immune stimulation. They are pivotal in avoiding autoimmunity (Zhu
et al., 2021). ICP molecules enable the immune system to be activated
within the normal range. Tumor cells express substances that activate
ICPs, which, upon activation, prevent antigen presentation to T cells
and in tumor immunity, thereby inhibiting the immune role of T cells
and allowing them to avoid surveillance and survive. Immunotherapy
through ICPs modulates T cell activity to kill tumor cells through a
series of pathways, such as co-inhibition or co-stimulatory signals. UM

is a highly metastatic cancer for which ICP therapy is largely
ineffective compared to cutaneous melanoma. ICPs are
epigenetically mediated via DNA methylation. Luka de Vos et al.
found that DNA methylation of CTLA4, PD-1, PDL1, PD-L2, LAG3,
TIGIT and TIM-3 was remarkably associated with mRNA
expressions, BAP1-apoptosis and prognosis of UM. Therefore, the
application of ICP gene DNA methylation assays to the biomarker
program of the ICP blockade (ICB) trial may help better explain the
underlying mechanisms of UM to ICB (de Vos et al., 2022).

The tumor immune microenvironment (TIME) consists of a diverse
array of cell types, including T lymphocytes, B lymphocytes, tumor-
associated macrophages (TAMs), natural killer cells (NKs), dendritic cells
(DCs), tumor-associated neutrophils (TANs), and myeloid-derived
suppressor cells (MDSCs). Various biochemical molecules released by
the abnormal metabolism of cancer cells reshape the TME and affect the
normal immune response of immune cells (Domblides et al., 2019).

Macrophages are important intrinsic immune cells that function
mainly through phagocytosis and intake of cellular debris and
pathogens, and activation of other immune cells against pathogen
invasion. TAMs infiltrating tumor tissues are highly plastic and
heterogeneous (Biswas et al., 2013). In the early tumor stage, pro-

FIGURE 9
Single cell sequencing analysis. (A) Data integration of 11 samples. (B) Dimensionality reduction and cluster analysis. (C) The cells were classified into
approximately 8 cell types, including B cells, endothelial cells, iPS cells, macrophage cells, monocyte cells, neurons, T cells and stem cells. (D) Cell location of
each model gene.
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inflammatory cytokines such as toll-like receptor (TLR) agonists can
promote TAM polarization to M-type, and NO and reactive oxygen
species (ROS) produced by M macrophages can considerably restrict
tumor cell division and kill tumor cells. The tumor cells are killed by
NO and ROS (Mantovani and Allavena, 2015). During tumor

progression, interleukin (IL)-4 and colony-stimulating factor (CSF)-
1 induce TAMs to polarize to M2 macrophages. M2 macrophages
secrete EGF, matrix metalloprotein 9 (MMP-9), and other proteins to
suppress antitumor effects and promote tumor progression
(Mantovani et al., 2017).

FIGURE 10
Silencing AREG inhibits UM proliferation andmetastasis. (A) Transfection efficiency was detected by qRT-PCR. Cell proliferation was detected by (B)CTG
and (C,D) EdU assays. Scale bar, 50 mm. (E,F) The role of AREG on cell metastasis was tested by transwell assay. (G) Downregulation of AREG enhanced
N-cadherin and inhibited E-cadherin by Immunofluorescence. Scale bar, 50 mm (**p < 0.01, ***p < 0.001).
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Tregs differentiate from initial CD4+ T cells, which are a class of
immunosuppressive T cells that highly express FOXP3, CD25, and
CD4. Tregs often accumulate in tumors, supply energy for immune
responses through lipid metabolism and the OXPHOS pathway,
maintain the immunosuppression of the TME, and promote tumor
infiltration and metastasis (Sharma et al., 2017).

As the first line of antitumor defense in the body, NKs can release
perforin on the surface of target cells, resulting in cell perforation,
allowing granzyme b to enter tumor cells to induce apoptosis and thus
non-specifically kill tumor cells. It also promotes the anti-tumor
behaviors of adaptive immune cells by secreting cytokines.
Defective transcription factor c-Myc protein (Loftus et al., 2018),
accumulation of lactate in the TME (Harmon et al., 2019), and
excessive lipid metabolism (Michelet et al., 2018) inhibit the
metabolic activity of NKs and affect their normal function.

Type 2 IFN, the main cytokine regulating the immune system,
mainly functions to upregulate the expression of MHC molecules and
activate macrophages. Type 2 IFN can intensify the activity of NK cells
and T cells, promoting the secretion of Thl cytokines, which is
conducive to the activation of anti-tumor immune pathway.
Additionally, high concentration of type 2 IFN or continuous low
dose of type 2 IFN is conducive to the formation of tumor cell immune
escape microenvironment. Our results show that type 2 IFN is lowly
expressed in the high-risk group and is potentially an early tumor
detection and molecular target (Corrales et al., 2017).

Furthermore, we selected AREG to confirm our proposed score
system in UM by a variety of in vitro experiments. In line with
previous studies (Wang et al., 2020; Bolitho et al., 2021), we observed
that downregulation of AREG remarkably blocked UM cell growth
and metastatic ability, further demonstrating the ability of AREG to
regulate proliferation, migration and invasion in tumors.

Nevertheless, there are some shortcomings in our project. Although
we performed experiments for validation, the main results were derived
from bioinformatics analyses based on public UM datasets. More clinical
data frommultiple centers need to confirm the ability and accuracy of our
proposed MBRSS. Moreover, animal experiments and patient specimens
need to further test the role of AREG in UM.

Conclusion

In conclusion, we successfully identified metastatic molecular
subtype in UM and further created a risk score system based on

MAGs with single-cell and transcriptome analyses bioinformatics
prediction and experimental validation. Further, we found that
RRM2 might be a future biomarker and a reference to predict
immune response. These findings may aid in understanding the
role of RRM2 and its clinical application in cancers.
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Background: Soft-tissue sarcoma (STS) is amassive threat to human health due to its
high morbidity and malignancy. STS also represents more than 100 histologic and
molecular subtypes, with different prognosis. There is growing evidence that anoikis
play a key role in the proliferation and invasion of tumors. However, the effects of
anoikis in the immune landscape and the prognosis of STS remain unclear.

Methods: We analyzed the genomic and transcriptomic profiling of 34 anoikis-
related genes (ARGs) in patient cohort of pan-cancer and STS from The Cancer
Genome Atlas (TCGA) database. Single-cell transcriptome was used to disclose
the expression patterns of ARGs in specific cell types. Gene expression was further
validated by real-time PCR and our own sequencing data. We established the
Anoikis cluster and Anoikis subtypes by using unsupervised consensus clustering
analysis. An anoikis scoring system was further built based on the differentially
expressed genes (DEGs) between Anoikis clusters. The clinical and biological
characteristics of different groups were evaluated.

Results: The expressions of most ARGs were significantly different between STS and
normal tissues. We found some common ARGs profiles across the pan-cancers.
Network of 34 ARGs demonstrated the regulatory pattern and the association with
immune cell infiltration. Patients from different Anoikis clusters or Anoikis subtypes
displayed distinct clinical and biological characteristics. The scoring system was
efficient in prediction of prognosis and immune cell infiltration. In addition, the
scoring system could be used to predict immunotherapy response.

Conclusion:Overall, our study thoroughly depicted the anoikis-related molecular
and biological profiling and interactions of ARGs in STS. The Anoikis score model
could guide the individualized management.

KEYWORDS

soft-tissue sarcoma, anoikis, immune cell infiltration, tumor microenvironment, scoring
system
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Introduction

Soft-tissue sarcoma (STS) is rare and accounts for approximate
1% of all adult malignancies (Gamboa et al., 2020), most commonly
occurring in the extremities. In 2022, 13,190 people were newly
diagnosed with STS and 5,130 people died of STS in United States
(Siegel et al., 2022). STS was known as its heterogeneity which
includes at least 100 different histologic and molecular subtypes.
Genomic study has indicated that STS was mainly characterized by
copy number variations but low mutation loads (Cancer Genome
Atlas Research Network. Electronic address and Cancer Genome
Atlas Research Network, 2017). However, a few genes (TP53, ATRX,
RB1) showed highly recurrent mutations across different sarcoma
types. These findings highlighted the importance of genetic
alterations in STS, corresponding to its heterogeneity. Meanwhile,
transcriptomic profiling of STS enhanced our understanding of STS
biology and provided potential therapeutic targets. Transcriptomics
can identify patients among different histological subtypes (Nielsen
et al., 2002; Linn et al., 2003). Expression of some gene signatures
were associated with prognosis of STS, such as hypoxia-inducible
factor alpha (HIFA) and its targets (Francis et al., 2007).

In recent years, multiple molecular processes have been
introduced to cancer biology and treatment such as the anoikis.
Anoikis is a programmed cell death manner, happening when cells
detached from appropriate extracellular matrix, which is a crucial
mechanism in maintenance of plastic cell growth and attachment
(Taddei et al., 2012). Cancer cells are characterized by insensitivity to
anoikis since its survival and proliferation do not rely on adhesion to
extracellular matrix (Cai et al., 2015). Thus, cancers represent a
feature of anoikis resistance. In this scenario, figuring out the anoikis
regulators of cancers contributes to the discovery of novel
therapeutics, especially for cancer metastasis (Sakamoto and
Kyprianou, 2010). For instance, in LKB1-deficient lung cancer,
the PLAG1-GDH1 axis was reported to accelerate anoikis
resistance through the CamKK2-AMPK pathway (Jin et al.,
2018). Nuclear MYH9-induced CTNNB1 expression could
facilitate gastric cancer cell anoikis resistance and induce
metastasis. Similarly, it was reported that anoikis resistance in
gastric cancer was regulated by TCF7L2 through transcriptionally
activating PLAUR (Zhang et al., 2022), resulting in enhancement of
metastasis. IQGAP1, a scaffolding protein that regulates cellular
motility and extracellular signals, also reported to modulate the
anoikis resistance and metastasis of hepatocellular carcinoma by
accumulation of Rac1-dependent ROS and activation of Src/FAK
signaling (Mo et al., 2021). These researches highlighted the critical
role of anoikis profiling in various cancers.

Specifically, anoikis resistance also participate in the biology
of STS. Recently, a study has conducted proteomic screens to
identify suppressors of anoikis in Ewing sarcoma. The result
indicated that the upregulation of IL1 receptor accessory
protein (IL1RAP) significantly suppressed anoikis, which
could be a new cell-surface target in Ewing sarcoma (Zhang
et al., 2021). In a previous study, E-cadherin cell-cell adhesion
was demonstrated to mediate suppression of anoikis by
activating the ErbB4 tyrosine kinase in Ewing sarcoma (Kang
et al., 2007).

Together, these findings have depicted a potential but limited
role of anoikis in STS. More comprehensive studies are required to

reveal the muti-omic profiling, regulator networks,
microenvironments, targetable molecules, and prognostic
predictors for STS. Further genotyping based on anoikis-related
genes would help to understand the heterogeneity of STS, which is
important to the personalized medicine. Therefore, in this study, we
comprehensively analyzed the cross-talk of the anoikis-related genes
(ARGs) and their molecular profiling in STS. We also focused on the
impact of ARGs on tumor microenvironment, especially on the
immune cell infiltration. Meanwhile, the stratification system and
prognostic scoring model were established based on ARGs to guide
the therapeutics for STS.

Materials and methods

Data collection and processing

The gene expression matrices of STS were downloaded from
UCSC Xena (https://xenabrowser.net/) and GEO database
(https://www.ncbi.nlm.nih.gov/geo/). Normal adipose and
muscle tissue sample from Genotype-Tissue Expression
(GTEx) database were used as normal control (https://
gtexportal.org/home/). UCSC Xena has co-analyzed the TCGA
data and GTEx data using UCSC bioinformatic pipeline (TOIL
RNA-seq) for gene expression comparison. The copy number
variations (CNVs), somatic mutation, and clinical information
were downloaded from TCGA-SARC cohort. For pan-cancer
analysis, data was derived from the TARGET Pan-Cancer
(PANCAN) cohort. In GEO database, we identified two cohort
of STS (GSE17674 and GSE63157) with prognosis data and one
dataset of single-cell RNA-seq for STS (GSE131309). Moreover,
we introduced a cohort of immunotherapy, in which the patients
were treated with the combination of anti-PD-1 and anti-CTLA-
4 therapy (Gide et al., 2019). By using this cohort, we analyzed the
association between immunotherapy response and Anoikis score.

Unsupervised clustering of ARGs

We identified the ARGs from GOBP_ANOIKIS term of Gene
Set Variation Analysis (GSVA) database (http://www.gsea-
msigdb.org/gsea/msigdb/cards/GOBP_ANOIKIS).
Chromosome location of ARGs was plotted by the package
“Rcircos” (version 1.2.1). Next, we conducted unsupervised
clustering analysis using the 34 ARGs to define distinct
clusters of patients. We set the key parameters of maxK =
9 and repetitions = 1,000 for algorithm packaged in
“ConsensusClusterPlus” (Wilkerson and Hayes, 2010).
Further, we recognized the differentially expressed genes
(DEGs) (log2|FC|≥3, adjp <0.05) between Anoikis clusters by
using the R package “limma” (version 3.48.3). Univariate COX
regression analysis was utilized to recognize DEGs with
significant prognostic relevance in STS.

As the prognostic DEGs were identified, we further input them
into unsupervised clustering analysis and stratified patients into
different Anoikis subtypes. These subtypes were more applicative
and accurate since the DEGs reflected more comprehensive and
common gene profiling.
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GSVA and Gene Ontology (GO) annotation

For the above defined clusters or subtypes, GSVA analysis was
conducted to probe their biological characteristics by using the R
package “GSVA” (version 1.40.1) (Hanzelmann et al., 2013).
Meanwhile, biological differences between subgroups with high
and low Anoikis score were also analyzed by GSVA. The
h.all.v7.5.1 and c2.cp.kegg.v7.4 gene sets were downloaded from
the Molecular Signatures Database (MSigDB). The R package
“limma” (version 3.48.3) was utilized when comparing the
differential expressed hallmark gene sets and tested using
moderated t-statistics. The results were plotted using the R
package “ggplot2” (version 3.3.5). Additionally, the R package
“clusterProfiler” (version 4.0.5) was adopted for GO annotation.
The significant enrichment was determined by false discovery rate
(FDR) < 0.05.

Evaluation of tumor immune infiltration

To assess the immune cell infiltration in tumor
microenvironment, we applied the single-sample gene set
enrichment analysis (ssGSEA), the marker genes of multiple
types of immune cells were downloaded from previous study
(Bindea et al., 2013). Infiltration level was normalized ranging
from 0 to 1. Tumor mutation burden (TMB) signatures from
published data (Mariathasan et al., 2018) were utilized to
estimate the association between tumor microenvironment and
biological processes. Moreover, we extracted signatures related to
immunotherapy-predicted pathways and cancer-immunity cycles as
previously reported (Chen and Mellman, 2013; Hu et al., 2021).
Specifically, the cancer-immunity cycles containing seven steps: step
one and two: cancer antigen release and presentation, step three:
T-cell priming and activation, step four: immune cell recruitment,
step five: immune cell infiltration into tumors, step six: T-cell
recognition of cancers, step seven: killing of cancer cells. These
cycles were applied to guide frameworks for immunotherapy. We
used GSVA to calculate the signatures scores of immunotherapy-
predicted pathway and cancer-immunity cycles as previously
described. The associations between Anoikis score and GSVA
scores of different gene sets were compared by using the R
package “ggcor” (version 0.9.4.3).

Establishment of the anoikis scoring model

In order to applied the above findings in more patients, we next
generated the anoikis scoring system based on our previous
established Anoikis clusters. DEGs between Anoikis cluster
C1 and C2 were identified and Univariate COX regression
analysis was conducted to recognize prognosis relevant DEGs.
The prognostic DEGs were then analyzed using principal
component analysis (PCA) and calculated for signature scores.
This method was advantageous in identification of the score of
the set with most significant correlation and elimination of unrelated
blocks. To calculate the Anoikis score, the formula of Σ(PC1i + PC2i)
was applied where i was the expression of the enrolled prognostic
DEGs. On this basis, patients were divided into the high and low

Anoikis score group according to a cut-off value determined by the
algorithm.

Single-cell transcriptome analysis

In this study, we used a single-cell RNA-seq dataset
(GSE131309) from published study (Jerby-Arnon et al., 2021).
The data were analyzed following standard pipeline of the
package “Seurat” (version 4.0.5). Gene expression was normalized
by LogNormalize (scale factor = 10,000). 2,000 highly variable genes
(HVGs) were then recognized within the function of
FindVariableGenes. 25 PC were picked up based on the result of
ElbowPlot. Subsequently, we performed the cell clustering and
t-distributed stochastic neighbor embedding (t-SNE) to figure out
the cell subpopulations. The same labels from the data resource were
used for specific cell cluster annotation, as described in previous
study (Jerby-Arnon et al., 2021). Expression of specific genes was
illustrated in t-SNE plots.

Prediction of chemotherapeutic sensitivity

Drug response data were retrieved from the Genomics of Drug
Sensitivity in Cancer (GDSC) (https://www.cancerrxgene.org/
downloads/anova). The GDSC database provides the drug
sensitivity data and genetic correlation for more than
1,000 genetically characterized human cell lines (Yang et al.,
2013). Drug response data of 518 compounds targeting
24 pathways were identified. IC50 and drug sensitivity score were
utilized to assess the chemotherapeutic sensitivity, as calculated by
the R packages “pRRophetic” (version 0.5) and “oncoPredict”
(version 0.2) (Iorio et al., 2016; Maeser et al., 2021).

Cell lines and real-time PCR

The human synovial sarcoma (SW-982) and liposarcoma cell line
(SW-872) were purchased from the Procell Life Science & Technology
Co., Ltd. Primary human skin fibroblast cell line (HSF) was acquired
from Fenghui Biotechnology Co., Ltd. The primary hSS-005R cell line
was established by our laboratory. They were cultured in Dulbecco’s
modified Eagle medium (DMEM) completed with 10% fetal bovine
serum (FBS) and 1% Penicillin-Streptomycin at 37 °C and 5% CO2.

For real-time PCR analysis of mRNA expression, 2×105 cells were
cultured in six well plates for 24 h and the RNA Express Total RNA Kit
(M050, NCM Biotech, China) was used for subsequent total RNA
extraction. RevertAid First Strand cDNA Synthesis kit (K1622, Thermo
Fisher Scientific, United States) was utilized for cDNA synthesis. For
each sample, 50 ng cDNA was mixed with Hieff® qPCR SYBR Green
Master Mix (11201ES03, YEASEN, China) and gene specific primers
following the manufacturer’s protocol. Reactions were performed on
the Applied Biosystems QuantStudio (Thermo Fisher Laboratories).
Real-time PCR experiments were repeated using three biological
replicates. The primer sequences were as follow: GAPDH, 5′- CAG
GAGGCATTGCTGATGAT -3’ (forward), 5′- GAAGGCTGGGGC
TCATTT-3’ (reverse); E2F1, 5′- ACGTGACGTGTCAGGACCT -3’
(forward), 5′- GATCGGGCCTTGTTTGCTCTT -3’ (reverse); SNAI2,
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5′- TGTGACAAGGAATATGTGAGCC -3’ (forward), 5′- TGAGCC
CTCAGATTTGACCTG -3’ (reverse); DAPK2, 5′- GGGACGCCG
GAATTTGTTG -3’ (forward), 5′- TTCCTGCTTCGTGTCTCCCA
-3’ (reverse).

Full-length transcriptome analysis

We performed full-length mRNA-seq on four STS samples and
four paired normal tissues (GSE198568). Total RNA was extracted
from fresh frozen samples for full-length transcriptome analysis.
The sequencing was performed by Biomarker Technologies
(Biomarker Technologies Ltd., Beijing, China) following the
operation protocols of Oxford Nanopore Technologies (Oxford
Nanopore Technologies, Oxford, United Kingdom). Data were
analyzed in accordance with the pipeline provided by Biomarker
Technologies Ltd.

Statistical analysis

R software (version 4.1.0) was used for statistical analysis. We
conducted the spearman correlation test when calculating the

correlations of ARGs. Student’s t-tests andWilcoxon signed-rank
test were conducted for parametric comparisons and non-
parametric comparisons. Multiple groups comparisons were
tested by one-way ANOVA or Kruskal–Wallis test. Log-rank
test was applied in survival analysis. The prognostic factors were
determined by Univariate and multivariate Cox regression. To
assess the accuracy of model, Receiver operating characteristic
(ROC) curves were plotted and area under the curve (AUC) was
calculated by using R package “timeROC” (version 0.4). The
optimal cut-off value of Anoikis scores was determined by using
the package “survminer” (version 0.4.9). Besides, chi-square or
Fisher exact tests was adopted to compare clinical characteristics
in different groups. p-value <0.05 was defined as statistical
significance.

Results

Pan-cancer analysis of ARGs

We first analyzed the profiling of ARGs in pan-cancer level.
Copy number variance (CNV) analysis of ARGs indicated CNV
gain of CVA1, E2F1, MCL1, PDK4, PIK3CA, PTK2, SNAI2, and

FIGURE 1
Pan-cancer analysis of Anoikis-related genes (ARGs) in pan-cancer TCGA data. (A) The illustration of somatic copy number variance (SCNV) of ARGs
in different cancer types. The percentage of amplification and deletion was annotated. (B) The correlation of SCNV and expression of ARGs within
different cancer types. (C) The prognostic effects of the expression of ARGs across different cancer types. Red indicates the risk factor, and blue indicated
the protective factor. (D) Themutation frequency of ARGs in different cancer types. (E) The expression patterns of ARGs between tumor and normal
samples in different cancer types. The upper histograms illustrate the number of significantly differentially upregulated (red) and downregulated (blue)
genes.
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SRC in various cancer types (Figure 1A). Significant correlation
between SCNV and expression of PTK2 was found in different
cancer types (Figure 1B). As reveled by survival analysis, high
expression of most ARGs suggested high risk effect for LGG,
LIHC, ACC and KICH but protective effect for KIRC
(Figure 1C). Besides, ITGA5 and ITGB1 were risk factors for
multiple cancer types (Figure 1C). Among the 34 ARGs, PIK3CA
showed the highest mutation frequency in different cancer types
(Figure 1D). E2F1 and CHEK2 were highly expressed across
most cancer types compared to normal samples, while PDK4 and
NTRK2 were decreased in various cancers (Figure 1E).

Genomic and transcriptional landscapes of
ARGs in STS

More specifically, the ARGs were analyzed in STS cohort. Only
32 (13.5%) of 237 samples showed ARGs-related mutations,
concentrating within 18 ARGs (Figure 2A). Most ARGs located
in chromosome 1, 9, 17, 19 (Figure 2B). The SCNV frequency of
ARGs were depicted in Figure 2C. Notably, the expression profiling
of 34 ARGs could discriminate against tumor and normal tissues
(Figure 2D) since most of them showed significant differential
expression (Figure 2E). In order to specialize the expression

FIGURE 2
Genomic and transcriptional landscapes of ARGs in soft-tissue sarcoma (STS) in TCGA database. (A) The mutation frequency of ARGs (Top 18) in
237 patients with STS in TCGA database. (B) The specific location of ARGs on the human chromosomes. (C) The SCNV of ARGs in patients with STS in
TCGA database. Red indicates CNV gain, and green indicates CNV loss. (D) The principal component analysis (PCA) of ARGs expression to identify tumor
among normal samples based on the TCGA-GTEx database. Red indicates tumor samples, blue indicate normal tissues. (E) The expression of ARGs
between tumor (red) and normal samples (blue) based on the TCGA-GTEx database. *, 0.01 ≤ p < 0.05; **, 0.001 ≤ p < 0.01; ***, 0.0001 ≤ p < 0.001; ****,
p < 0.0001; ns, p ≥ 0.05.
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FIGURE 3
Validation of expression patterns of ARGs at single-cell resolution. (A) The t-distributed stochastic neighbor embedding (t-SNE) plot showing
specific cell types of STS. (B) The t-SNE plots showing the expression of ARGs in different cell types. (C) The violin plots illustrating expression levels of
ARGs across different cell types. (D–F) Validation of expression of ARGs between STS cell lines and the control cell line by the real-time PCR. Real-time
PCR experiments were repeated using three biological replicates. (G–I) The box plots illustrating the expression of ARGs between STS andmatched
adjacent normal tissues based on our own sequencing data. *, 0.01 ≤ p < 0.05; ***, 0.0001 ≤ p < 0.001; ****, p < 0.0001.
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FIGURE 4
Cross-talk of ARGs and identification of Anoikis clusters. (A) The correlation analysis of the expression of ARGs and signatures of immune cells. Red
indicated positively associated and blue indicated negatively associated. (B) The correlation network of ARGs in the TCGA-SARC cohort. The significance
of the prognostic effects was illustrated by the circle size. (C) The Kaplan-Meier curve comparing the survival between different Anoikis clusters. (D) The
heatmap of ARGs between different Anoikis clusters. (E)The gene set variation analysis (GSVA) illustrating pathways significantly enriched between
different Anoikis clusters. (F) The infiltrations of different immune cells between different Anoikis clusters. *, 0.01 ≤ p < 0.05; **, 0.001 ≤ p < 0.01; ***,
0.0001 ≤ p < 0.001; ****, p < 0.0001; ns, p ≥ 0.05.
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FIGURE 5
Identification of distinct Anoikis subtypes and related biological characteristics. (A) The volcano plot showing significantly differentially expressed
genes (DEGs) between different Anoikis clusters (C2 versus C1). Genes significantly upregulated were marked in red, while genes significantly
downregulated were marked in blue. (B) The Kaplan-Meier curve comparing the survival between different Anoikis subtypes. (C) Gene Ontology (GO)
enrichment analysis of DEGs identified in the above resulted. BP, biological process; CC, cellular component; MF, molecular function. (D) The
unsupervised clustering of TCGA-SARC cohort based on the ARGs-related DEGs. (E, F) The GSVA comparing pathways significantly enriched among
distinct Anoikis subtypes.
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FIGURE 6
Establishment and validation of Anoikis score. (A) Alluvial diagram showing the relations among Anoikis clusters, Anoikis subtypes and
Anoikis score groups. (B, C) The box plots illustrating the Anoikis score in different Anoikis clusters and Anoikis subtypes. (D–F) The Kaplan-Meier
curves comparing the survival between low (blue) and high (red) Anoikis score groups in TCGA-SARC cohort (D), GSE17674 (E) and GSE63157 (F).
(G) The time-dependent receiver operating characteristic curve (ROC) assessing the predictive performance of Anoikis score in TCGA-SARC
cohort. (H) The correlation analysis between Anoikis score and signatures of immune cells. Red indicated positively associated and blue indicated
negatively associated. (I) The box plot of tumor mutation burden (TMB) between low and high Anoikis score groups in TCGA-SARC cohort. (J) The
pie plots showing proportions of different clinical characteristics between low and high Anoikis score groups in TCGA-SARC cohort. (K) The
forest plot illustration multi-variate Cox analysis including clinical information and Anoikis score. *, p < 0.05.
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FIGURE 7
The genomic and transcriptional characteristics between Anoikis score groups. (A, B) The differences in mutation frequency between high (A) and
low (B) Anoikis score groups. (C) The GSVA illustrating significantly differently enriched pathways between Anoikis score groups. (D) The correlation
analysis of Anoikis scorewith immunotherapy-predicted pathways and cancer immunity cycles. (E) The frequency of arm-level amplification and deletion
between Anoikis score groups. (F) The Kaplan-Meier curve comparing the survival between low and high Anoikis score groups in an immunotherapy
cohort. (G) The rates of clinical response between Anoikis score groups in an immunotherapy cohort. (H) The box plots showing significant differences in
the estimated IC50 of several drugs between Anoikis score groups in TCGA-SARC cohort. *, p < 0.05.
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pattern of ARGs, we next visualized their expression in single cell
transcriptomics from GSE131309 (Figures 3A, B). We noticed that
ITGB1, MCL1, and SIK1 broadly expressed in all cell types while
TLE1, TSC2, and SNAI2 were mainly clustered in malignant
subtypes (Figures 3B, C; Supplementary Figure S1). As validated
by real-time PCR, the expression of E2F1 and SNAI2 were
significantly higher in STS cell lines including SW-982, hss-005R,
and SW-872 compared to HSF cell line, while DAPK2 was lower in
STS cell lines (Figures 3D–F). Additionally, the consistent results
were identified in our own sequencing data of four pairs of STS and
normal samples (Figures 3G–I).

Cross-talk of ARGs and identification of
anoikis clusters

Tumor immune microenvironment is a key regulator of
tumor progression, in which the immune cells cross-talk with
other cell types and impact their predestination. Through
correlation analysis of the expression pattern of ARGs and
signatures of immune cells, we found that expression of
MCL1, DAPK2, PDK4, and BRMS1 were positively correlated
with most immune cells (Figure 4A). The network of 34 ARGs
displayed a comprehensive landscape of the interactions
(Figure 4B). Among them, most ARGs such as BMF, BCL2,
ANKRD13C, AKT1, ZNF304, TSC2 showed positive
correlation with other genes, but BRMS1 negatively correlated
with most ARGs (Figure 4B). These findings indicated the
interactive patterns of ARGs.

Further, we conducted unsupervised consensus clustering to
identify distinct expression patterns of ARGs in different patients
(Supplementary Figure S2). Consequently, 258 patients were
clustered into two clusters by using K = 2 as the optimal
index based on elbow method (Krolak-Schwedt and Eckes,
1992), named as C1 and C2 containing 147 and 111 patients
respectively. The two clusters showed distinct prognosis (p =
0.016), ARGs expression patterns, and pathway enrichment
patterns (Figures 4C–E), indicating the different characteristics
between them. Specifically, patients of cluster C1 showed better
survival and improved immune infiltration patterns (Figures 4C,
F). GSVA showed that Cluster C1 were positively enriched in
chemokine signaling and JAK-STAT signaling pathways
(Figure 4E).

Identification of distinct anoikis subtypes
and related biological characteristics

In order to further identify distinct patient groups based on the
characteristic of Anoikis clusters, we performed unsupervised
consensus clustering using DEGs between cluster C1 and C2
(Figure 5A; Supplementary Figures 3A–F). As a result, three
subtypes (S1, S2, S3) were identified, with the patient number of
49, 96, 113 respectively. Patients of the three subtypes were
significantly different in survival (Figure 5B). Besides, the DEGs
were enriched in GO terms of ribonucleoprotein complex
biogenesis, RNA splicing, focal adhesion, cell-subtract junction,
cadherin binding, etc. (Figure 5C). Gene expression patterns of

three subtypes were distinct but the clinical characteristics were
irregular (Figure 5D). Pathway analysis of different subtypes were
conducted to identify corresponding characteristics. GSVA
suggested the enrichment of hedgehog signaling, basal cell
carcinoma, and glycosaminoglycan biogenesis in S3 subtype
(Figure 5E), while the pathways of cytosolic DNA sensing,
natural killing cell mediated cytotoxicity, and cytokine-cytokine
receptor interaction were enriched in S2 subtype (Figure 5F).
Interestingly, subtype S2 showed higher infiltration of most
immune cells compared to S1 and S2 (Supplementary Figure S3G).

Establishment and validation of anoikis
score

As displayed above, the identification of Anoikis clusters (C1,
C2) and Anoikis subtypes (S1, S2, S3) helped to classify patients with
different gene expression patterns. Nevertheless, they were limited
within the TCGA-SARC cohort. Therefore, we further established
the Anoikis score based on DEGs between Anoikis clusters C1 and
C2 to apply this model in external cohorts. The flow diagram was
illustrated in Figure 6A. The Anoikis score was significantly different
among Anoikis clusters or Anoikis subtypes (Figures 6B, C). Patients
were then divided into the high Anoikis score and low Anoikis score
group by an algorithm calculated cut-off value. Patients with high
Anoikis score showed poor prognosis in TCGA-SARC cohort (p <
0.001) (Figure 6D). External validation using GSE17674 (p = 0.019)
and GSE63157 (p = 0.045) data further confirmed this result (Figures
6E, F). The AUC also suggested the reliability of Anoikis score in 1-,
3-, and 5-year survival prediction, with the values of 0.907, 0.883,
and 0.832 respectively (Figure 6G). Notably, the Anoikis score was
negatively correlated with multiple types of innate immune cells and
adoptive immune cells including B cells, Macrophages, and various
subtypes of T cells (Figure 6H), suggesting the potential of Anoikis
score in STS immune infiltration prediction. There was a slight
difference in TMB between high and low Anoikis score group
(Figure 6I). Additionally, groups with high and low Anoikis score
showed differences in clinical characteristics including survival
status (p < 0.001), gender (p < 0.001), and histology (p < 0.001),
but not in age and tumor site (Figure 6J). Multivariate Cox
regression analysis indicated that high Anoikis score was a
significant risk factor for STS (Figure 6K; Supplementary Figure
S4). Together, these findings demonstrated the reliability of our
Anoikis score model in prognostic prediction for STS.

The genomic and transcriptional
characteristics between anoikis score
groups

Next, we interrogated the genomic and transcriptional profiling
between high and low Anoikis score groups. We observed a higher
frequency of mutation in high Anoikis score group with alteration in
66 (75.86%) of 87 samples (Figure 7A), compared with low Anoikis
score group with mutations in 92 (62.59%) of 147 samples
(Figure 7B). Noteworthily, the frequency of arm-level
amplification and deletion seems to be higher in high Anoikis
score group compared to low group (Figure 7E). Considering the
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enriched pathways in different Anoikis score groups, we found
positive enrichment of pathways including G2M checkpoint,
MYC targets, and E2F targets in high Anoikis score group but
negative enrichment of pathways including interferon alpha
response, inflammation response, and interferon gamma response
(Figure 7C). This result was consistent with previous finding
(Figure 6H) that high Anoikis score indicated poor immune
infiltration. Moreover, we analyzed the correlation of Anoikis
score with immunotherapy-predicted pathways and cancer
immunity cycles. As a result, the Anoikis score was significantly
negative associated with various immune cells including B cell, CD4+

T cells, CD8+ T cells, dendritic cells, etc. Meanwhile, Anoikis score
was positively correlated with most immunotherapy-predicted
pathways such as Base excision repair, cell cycle, and DNA
replication (Figure 7D).

Because of the close relationship of Anoikis score and immune
status, we further analyzed the Anoikis score in an immunotherapy
cohort. Interestingly, patients with high Anoikis score showed poor
survival (p = 0.002) (Figure 7F) and poor response to immunotherapy
(p < 0.001) (Figure 7G). Additionally, we utilized the GDSC database to
screen for drugs with different response in high and low Anoikis score
groups. Surprisingly, we identified three drugs with higher IC50 in high
Anoikis score group compared to low score group, namely, erlotinib
(p < 0.001), GNF.2 (p < 0.001) and LFM.A13 (p < 0.001) (Figure 7H).
These findings could provide potential methods for individualized
immunotherapy of STS patients.

Discussion

STS is an uncommon and heterogeneous tumor with limited
treatment currently (Linch et al., 2014). Several studies have explored
the genomic and transcriptomic characteristics of STS to uncover the
molecular profiling and find new therapeutic targets. Anoikis, a critical
process of cell death, has shown great impact on STS biology,
predominantly through a mechanism of anoikis resistance, which
could create a microenvironment suitable for tumor metastasis (Kang
et al., 2007; Zhang et al., 2021). Although the intriguing conclusions have
been made, there is a lack of comprehensive analysis and applicable
predictive model for ARGs in STS. The interactions between ARGs and
tumor microenvironment, especially the immune cell infiltration, have
not been recognized for STS. In the present study, we conducted
comprehensive analysis of the 34 ARGs in STS.

In spite of the fact that all cancers are molecularly distinct, many of
them share commondrivermutations or characteristics of transcriptional
regulation (Ciriello et al., 2013).We first analyzed the profiles of ARGs at
pan-cancer level. Several ARGs showed gain of CNVs such as E2F1,
MCL1, and PIK3CA across multiple cancers. CNVs of E2F1 were
reported previously in various type of cancers to be associated with
cancer susceptibility (Nelson et al., 2006; Rocca et al., 2017; Rocca et al.,
2019; Rocca et al., 2021). MCL1 also displayed CNVs in non-small lung
cancer and uterine cervix adenocarcinoma and impact on survival of
patients (Yin et al., 2016; Lin et al., 2020). Similarly, PIK3CA acquired
CNVs in a wide-range of cancers which regulated the cancer progression
and prognosis (Yamamoto et al., 2008; Brauswetter et al., 2016;Migliaccio
et al., 2022). Interestingly, PIK3CA showed the highest frequency of
mutations among all ARGs in different cancers, which was consistent
with previous studies (Mei et al., 2016; Mosele et al., 2020).

In STS, mutation frequency of PIK3CA was also at the top of
ARGs list, indicating its critical role in STS biology. Despite this, the
overall mutation burden of ARGs in STS was relatively low. The
expression of most ARGs were differentially expressed so that the
expression pattern could discriminate between STS and normal
tissues. Differential expression of some ARGs was further confirmed
by real-time PCR and our own sequencing data. For unbiased high-
resolution snapshots of gene expression programs, single-cell RNA
sequencing is the preferred method. Single-cell resolved gene
expression profiles offer several key advantages over bulk
population sequencing (Kanev et al., 2021). Notably, by single-
cell transcriptomic analysis, we found that the expression of
ARGs showed cell-type specificity, e.g., ITGB1, MCL1, and
SIK1 highly expressed in multiple cell types while TLE1, TSC2,
and SNAI2 were predominantly identified in malignant subtypes.
This characteristic could help guiding the discovery of new
therapeutic targets. Single-cell transcriptomics in prostate cancer
revealed the high expression of MCL1 in persistent senescent tumor
cells, a kind of metabolically active cell that promoted tumor
proliferation and metastatic dissemination (Troiani et al., 2022).
Hence, MCL1 maybe a potential indicator for cancer malignancy.

Next, we established the clustering system for STS based on
34 ARGs by using unsupervised consensus clustering. Two clusters
were recognized (C1 and C2), in which the cluster C1 was characterized
by better prognosis and improved immune cell infiltration. We
speculated that the distinct ARGs patterns in cluster C1 resulted in
a tumor microenvironment suitable for immune cell response. As
expected, pathway analysis indicated the enrichment of chemokine
signaling and JAK-STAT signaling in cluster C1. Increase of chemokine
contributed to the improvement of immune cell engraftment, such as
T cells (Dangaj et al., 2019). The IFNγ-JAK-STAT signaling was also a
determinant for chemokine expression (Xu et al., 2019). To further
classify patients based on Anoikis clusters, we performed unsupervised
consensus clustering based onDEGs between C1 and C2. Subsequently,
three Anoikis subtypes with different characteristics were established
(S1, S2, S3). We noticed that S1 showed the best prognosis while S2 was
characterized by optimal immune infiltration. Compared with S3, the
S1 subtype was enriched in several metabolic pathways such as histidine
metabolism, tryptophan metabolism, butanoate metabolism, and
adipocytokine signaling pathway. Among them, the histidine
metabolism was associated with good response of cancer therapy
(Frezza, 2018). However, the tryptophan metabolism and
adipocytokine signaling pathway could promote cancer progression
in other cancers (Rose et al., 2004; Platten et al., 2019). This inconsistent
conclusion may be explained by the heterogeneity in different cancer
types, further studies are required for exploration of the metabolism-
related mechanisms and the cancer suppression metabolic niche in
specific STS subtype. Not surprisingly, we also observed the enrichment
of cytokine-cytokine receptor interaction in S2. It was reported that
higher level of TMB was associated with poorer in cancer patients, and
the risk scores of STS patients with higher risk score were also higher in
our study, which needs further research (Valero et al., 2021).

Moreover, we built an anoikis scoring system according to the
prognostic DEGs between cluster C1 and C2. The anoikis scoring
system could be utilized to calculate specific score of individual patients.
The system was effective in prediction of prognosis in multiple cohort
which was of great potential in clinical guidance. The group of low
Anoikis score showed better prognosis and immune infiltration.

Frontiers in Pharmacology frontiersin.org12

Qi et al. 10.3389/fphar.2023.1136184

160

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1136184


Similarly, the low Anoikis score group was enriched in immune-related
pathway such as IL6 JAK-STAT3 signaling, TNFA signaling,
complement, INFγ response, INFα response, and inflammatory
response. Further, the Anoikis score may also serve as an indicator
for the response of immunotherapy. Similar findings were also reported
in other cancer types, as ARGs were significantly associated with TME
(Guizhen et al., 2022; Zhang et al., 2023). Although the anoikis scoring
system achieved good predictive performance, high intratumor
heterogeneity between samples may limit further application of this
tool. Besides, larger sample size is needed to validate results in the future.

Conclusion

Taken together, this study comprehensively analyzed the anoikis
profiles in STS for the first time. We unraveled the profiling and
interactions of ARGs in both the pan-cancer levels and STS, figuring
out the critical role of ARGs in tumor biology. The establishment of
Anoikis subtypes reflected the heterogeneity of ARGs between
patients regarding the prognosis and immune cell infiltration.
The Anoikis scoring system further provided individualized
assessment for prognosis and immune response, which could
guide personalized treatment for STS.
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The t-SNE plots of the expression of ARGs in different cell types.

SUPPLEMENTARY FIGURE S2
The identification of Anoikis clusters. (A-E) Consensus clustering based on
ARGs (K = 2-6). (F) Consensus cumulative distribution function (CDF) Plot
based on ARGs.

SUPPLEMENTARY FIGURE S3
The identification of Anoikis subtypes. (A-E) Consensus clustering based on
ARGs-realted DEGs (K = 2-6). (F) Consensus cumulative distribution
function (CDF) Plot based on ARGs-realted DEGs. (G) The infiltrations of
different immune cells between different Anoikis subtypes. ***, 0.0001 ≤
p <0.001.

SUPPLEMENTARY FIGURE S4
Subgroup analysis of Anoikis score based on clinical characteristics. The
Kaplan-Meier curves comparing the survival between low and high Anoikis
score groups in different genders (A-B), ages (C-D), histology (E-I) and
tumor sites (J-K).
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Introduction: Glioma is the most common primary brain tumor and primary
malignant tumor of the brain in clinical practice. Conventional treatment has not
significantly altered the prognosis of patients with glioma. As research into
immunotherapy continues, glioma immunotherapy has shown great potential.

Methods: The clinical data were acquired from the Chinese Glioma Genome Atlas
(CGGA) database and validated by the Gene Expression Omnibus (GEO) database,
The Cancer Genome Atlas (TCGA) dataset, Clinical Proteomic Tumor Analysis
Consortium (CPTAP) database, and Western blot (WB) analysis. By Cox regression
analyses, we examined the association between different variables and overall
survival (OS) and its potential as an independent prognostic factor. By constructing
a nomogram that incorporates both clinicopathological variables and the
expression of URB2, we provide a model for the prediction of prognosis.
Moreover, we explored the relationship between immunity and URB2 and
elucidated its underlying mechanism of action.

Results: Our study shows that URB2 likely plays an oncogenic role in glioma and
confirms that URB2 is a prognostic independent risk factor for glioma.
Furthermore, we revealed a close relationship between immunity and URB2,
which suggests a new approach for the immunotherapy of glioma.

Conclusion: URB2 can be used for prognosis prediction and immunotherapy of
glioma.

KEYWORDS

URB2, glioma, immunity, prognosis, immunotherapy

1 Introduction

Glioma accounts for approximately thirty percent of brain tumors and eighty percent of
malignant brain tumors and is the most frequent primary brain tumor (Omuro and DeAngelis,
2013; Ostrom et al., 2015). According to the criteria of the World Health Organization (WHO),
glioma is classified into four different groups, which are associated with malignancy (Ostrom
et al., 2017; Wesseling and Capper, 2018). Although aggressive therapies, including debulking
surgery, chemotherapy, and external beam radiation therapy, are available, glioma patients
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currently face a dismal prognosis (Stewart, 2002). Furthermore,
systemic medications do not reach therapeutic concentrations inside
solid tumors and cause systemic side effects (Blakeley, 2008; Sriraman
et al., 2014). Hence, further research on the potential mechanisms of
gliomas is imperative.

In recent years, glioma patients have increasingly chosen
targeted therapy as a treatment option. Previous studies have
revealed a high degree of immune infiltration in glioma (Bush
et al., 2017). Numerous mechanisms are involved in the highly
inhibited immune function in the glioma microenvironment,
including immune checkpoint inhibitors (ICIs) (Ghouzlani et al.,
2021). Immune checkpoints (ICs) are costimulators or
cosuppressors required to produce an immune response (Korman
et al., 2006). There is no doubt that the discovery of immune
checkpoints such as CTLA-4 and PD-1 has exerted a significant
boost in cancer immunotherapy development and has emerged as a
potential treatment option for glioma (Ghouzlani et al., 2021). A
breakthrough in glioma treatment by affecting immune checkpoints
is being made.

In yeast, URB2 (URB2 ribosome biogenesis homolog) localizes
to the nucleolus and encodes a protein measuring 135.2 kDa, which
is essential for ribosome biogenesis. As it is critical for the biogenesis
of the 60 S subunit, a mutation or depletion of URB2 will disrupt
ribosomal subunits and rRNAs (Rosado et al., 2007). However, to
date, no study has addressed the specific roles of URB2 in
tumorigenesis and progression. Therefore, we investigated the
predictive value of URB2 in glioma and elucidated its
relationship with immunity in this study. Moreover, GSEA was
conducted to confirm URB2-related biological functions and
signaling pathways. To better understand the immunological
correlates of URB2, we evaluated the relationship between
URB2 expression and prognosis related to immune infiltration
and the tumor microenvironment. This study is expected to lead
to the development of novel therapies and provide effective clinical
biomarkers for glioma.

2 Materials and methods

2.1 Cell culture

The U87 and U251 human malignant glioblastoma cell lines were
purchased from the China Infrastructure of Cell Line Resources
(Beijing, China). Cells were cultured in complete DMEM/
F12 medium (2.5% certified fetal bovine serum, FBS (Vivacell,
Shanghai, China), 15% horse serum, and a 1% antibiotic mixture)
under 5%CO2 and 37°C. Themediumwas changed every 3–4 days, and
cultures were split using 0.25% trypsin. All experiments were carried out
on cells with viability >95%. The cell lines were authenticated at
VivaCell Shanghai using short tandem repeat analysis.

2.2 Transfection of siRNA

U87 and U251 cells in 6-well plates (about 5 × 105 cells/well)
were transfected with siURB2 or corresponding negative controls.
Lipo3000 transfection reagent was simultaneously added into the
medium for efficient transfection. After 6 h, we replaced the culture

medium. Detection was made 24 h after transfection. The human
targeting siRNA of URB2 was purchased from sigama-aldrich.

2.3 Cell viability assay

The viability of glioma cells was evaluated using Cell Counting
Kit-8 (CCK-8; cat. No. CK04; Dojindo Molecular Technologies,
Inc.). U87 and U251 cells were seeded in 96-well plates (100 µl
containing 3,000 cells/well). Cells were cultured in DMEM at 37°C
under 5% CO2 conditions for 24, 48 or 72 h. CCK-8 solution (10 µl)
was then added to the cells for 4 h, and the optical density was
detected at 490 nm using a Tecan microplate reader (Infinite F50;
Tecan Group, Ltd.).

2.4 Western blot analysis

Human tissues and cell samples were prepared using RIPA lysis
buffer. Forty nanograms of protein sample was loaded onto an
SDS–PAGE gel and transferred to a nitrocellulose membrane. The
membrane was blocked with 5% nonfat milk and incubated with
primary antibodies overnight at 4°C: rabbit anti-URB2 (1:1000,
HPA008902, Merck); rabbit anti-PCNA (ab92552; 1:1000;
Abcam); and rabbit anti-β-actin (ab115777; 1:5000; Abcam). The
membranes were incubated with the corresponding secondary
antibody for 2 h.

2.5 Dataset acquisition and processing

To analyze the glioma patient characteristics, the clinical data
were obtained from the CGGA database (http://www.cgga.org.cn/
about.jsp). The protein expression profiles were obtained from the
CPTAC database (https://cptac-data-portal.georgetown.edu/datasets)
(Zhang et al., 2016).We consideredOS as the primary outcome. Using
the R programming language, the URB2 gene expression data and
standardized RNA-seq data were compared. We applied box plots to
display the expression difference of discrete variable visualization, and
R 4.1.1 (https://www.r-project.org/) was used to perform all the
analyses. To investigate the differences in URB2 mRNA expression
levels in TCGA glioma patients, the R package “Limma” was applied.
Additionally, an adjusted p-value (FDR) < 0.05 and |log2-fold change
(FC)| ≥1 were considered statistically significant.

2.6 Chemotherapy sensitivity analysis

To evaluate NCI-60, we used the CellMiner (https://discover.nci.
nih.gov/cellminer/) database (Reinhold et al., 2012). We used
Pearson correlation analysis to determine whether the expression
of URB2 was associated with drug sensitivity in the model.

2.7 Gene set enrichment analysis (GSEA)

By using GSEA, we can determine gene sets of hallmarks that
significantly differ between the two groups (low and high
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URB2 expression). We performed GSEA to examine the
significance of differences in survival between the two groups.
A 1000-fold permutation of gene sets was performed for each
analysis to determine significant biological pathways. The
pathways were considered significant when the nominal p
values < 0.05 and |normalized enrichment score (NES)|>1.5.

2.8 Single-cell data analysis

We downloaded the raw data of GSE103224 and
GSE148842 from the TISCH database, which were derived from
two articles on single-cell sequencing of gliomas (Yuan et al., 2018;
Zhao et al., 2021). After a series of dimensionality reduction
clustering and corresponding cell annotation, we annotated
each cell population into specific cells and showed the
expression of the gene in each cell type using UMAP and violin
plots, respectively.

2.9 Independent prognostic factor
evaluation and nomogram construction

Cox regression analysis was applied in our model to examine the
association between OS and variables and its independent
prognostic value. We also confirmed the related gene
URB2 expression. To visualize the relationship between survival
rates and individual predictors, a nomogram-based model was
constructed by the R “rms” package. Through the “survival
ROC” package in R, we evaluated the prognostic ability by AUC
and ROC analysis.

2.11 Immune correlation analysis

The correlation between URB2 expression and tumor
mutational burden (TMB) was calculated by the Pearson
correlation coefficient. The same calculation procedure was
used for microsatellite instability (MSI) and tumor
neoantigen burden (TNB). By analyzing the TIMER (https://
cistrome.shinyapps.io/timer/) database, the relationship
between URB2 expression and CD8 T-cells, B cells,
macrophages, CD4 T-cells, dendritic cells, and neutrophils
was determined. To explore the composition of the TME, we
assessed the existence of infiltrating immune cells in glioma and
calculated the ESTIMATEScore, which was estimated by
expression data. To investigate the association between
immunity and glioma progression, we profiled the expression
of immune cells and immune checkpoints in glioma patients in
TCGA datasets.

2.12 Statistical analysis

Analysis of all statistical data and figures was performed using R
4.1.1. (https://www.r-project.org/). The Pearson correlation method
was used to analyze the correlation between two genes. The
Wilcoxon signed rank test and logistic regression were applied to

estimate the relationship between URB2 and clinicopathological
characteristics. The log-rank test and Kaplan‒Meier (KM) curve
were applied to confirm the risk score (RS) and survival predictive
ability of URB2. In this study, statistical significance was determined
by p > 0.05.

3 Results

3.1 URB2 expression and its relationship to
overall survival in glioma, as validated by
other datasets

Figure 1A shows the expression levels of URB2 mRNA across
all types of cancer in the TCGA study, which illustrates the high
expression of URB2 either in GBM or LGG compared with
normal tissue. By analyzing the GEPIA (http://gepia.cancer-
pku.cn/) database, we constructed human tissue-enriched
mRNA expression maps for URB2 in a more intuitive manner
(Figure 1B). URB2 expression was markedly higher in both GBM
and LGG than in normal tissue (p < 0.05; Figure 1C). Based on the
median expression level, URB2 expression was divided into low
and high groups. Then, the KM curves indicated that the high
URB2 expression group had a worse OS than the low
URB2 expression group in the TCGA database (p-value < 0.01;
Figure 1D). Similar results were found in the GEO datasets
GSE50161 and GSE4290 (both p < 0.01, Figures 1E, F).
Moreover, a higher expression of URB2 was associated with
worse OS, as validated in the CGGA database (Figure 1G). To
further assess the diagnostic ability of URB2, we conducted a
receiver operating characteristic (ROC) curve analysis, and the
area under the curve (AUC) was 0.592 (1-year), 0.658 (3-year),
and 0.6790 (5-year), respectively, indicating a low efficacy
in diagnosing glioma based on the expression of URB2
(Figure 1H).

3.2 Protein expression of URB2 in
glioblastoma multiforme in the CPTAP
database

To demonstrate the difference in the protein expression level of
URB2 between normal brain tissues and glioma, we further validated
the CPTAC database (Figure 2). In CPTAP samples, URB2 protein
expression was much higher in gliomas (Figure 2A), and similar
results were found in glioma patients of different sexes (Figure 2B),
ages (Figure 2C) and weights (Figure 2D).

Then, we also tested the expression of URB2 in low-grade
glioma (LGG) and high-grade glioma (HGG). According to the
results of Western blot, it can be observed that the expression of
URB2 was significantly higher in HGG than LGG (Figure 2E). To
further explore the role of URB2 in the progression of glioma, we
downregulated the expression of URB2 in U87 and U251 cells. Of
note, the cell proliferation was markedly inhibited after
downregulation of URB2 in both cells (Figure 2F). Consistent
with the results of cell viability, downregulation of URB2 in both
cells can inhibited the expression of PCNA, which also indicated
the inhibited cell proliferation (Figure 2G).
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3.3 Clinicopathological variables and overall
survival are correlated with URB2 expression

Independent-samples t tests were used to evaluate the clinical
meaning of URB2 expression.We revealed that the URB2 expression
level was significantly correlated with 1p/19q codeletion status
(Figure 3B), Chemo status (Figure 3D), grade (Figure 3E), IDH
mutation status (Figure 3F), and histology (Figure 3I) while there
was no correlation in gender (Figure 3A), age (Figure 3C), RAS_type
(Figure 3G), and Radio status (Figure 3H).

Cox regression analysis revealed that the URB2 expression level can
be used as an independent prognostic risk factor related to OS
(Supplementary Table S1). Univariate Cox analysis indicated that
PRS type, histology, 1p/19q status, age, grade, IDH mutation,
Chemo status, and URB2 expression were significantly related to OS

in glioma patients (Figure 4A). In addition, multivariate Cox regression
analysis revealed a large negative correlation between URB2 expression
andOS (HR= 1.602; p< 0.001). Some parameters associatedwithworse
OS included Chemo status, PRS type, IDH mutation, grade, 1p/19q
status, and age (Figure 4B). The analyses suggest that URB2 expression
can be used as an independent prognostic factor for OS.

3.4 Establishment of nomogram for
prognosis prediction of glioma

By constructing a nomogram that incorporates both
clinicopathological variables and URB2 expression, we introduced a
quantitative method to predict prognostic risk (Figure 5A). ROC
analysis was also performed to determine the prognostic value of

FIGURE 1
URB2 is overexpressed in glioma. Differences in the expression of URB2 in various cancers and normal tissues in the TCGA database (A). Differential
expression of URB2 between normal and tumor tissue in brain (B). Differential expression of URB2 between LGG/GBM and normal tissue (C). Overall
survival of glioma patients in high and low URB2 expression groups from the TCGA database (D). Differential expression of URB2 between normal and
tumor tissue in GEO database (E–F). KM survival curve of URB2 in CGGA dataset (G). ROC curves associated with 1-, 3-, and 5-year AUC values of
URB2 in CGGA dataset (H). *p < 0.05; ***p < 0.001; ****p < 0.0001.
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FIGURE 2
Protein expression of URB2 in Glioblastoma multiforme by CPTAP analysis and validated by Western blot. Differential expression of URB2 protein
between normal tissue and primary glioblastoma multiforme (A). Differential expression of URB2 protein among primary glioblastoma multiforme in
different genders (male and female) and normal tissue (B). Differential expression of URB2 protein among primary glioblastoma multiforme at different
ages (21–40 years; 41–60 years; 61–80 years; 81–100 years) and normal tissues (C). Differential expression of URB2 protein among primary
glioblastomamultiforme at different weight (normal weight, extreme weight, obese, and extreme obese) (D). URB2 protein expression levels in GBM and
LGG (E). The cell proliferation after downregulation of URB2 in U87 and U251 cells (F). The expression of PCNA after downregulation of URB2 in U87 and
U251 cells (G). **p < 0.01; ****p < 0.001.
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URB2 expression in gliomas, in which the AUC of URB2 expression was
0.856 (1-year; Figure 5B), 0.885 (3-year; Figure 5C), and 0.881 (5-year;
Figure 5D), and the C-index was 0.8009. As shown in Figure 5E–G, the
consistency between actual and ideal values is verified. These findings
suggest thatURB2 in combinationwith other parameters can be regarded
as a predictor to predict the OS of glioma patients, which means that our
nomogram is able to predict survival with a medium level of accuracy.

3.5 Identification of URB2-related signaling
pathways

A GSEA was conducted on tissues with varying URB2 expression
levels to identify pathways potentially related to URB2. Based on NES
and Nom p-val <0.05, the pathways that were most substantially
enriched were identified. High expression of URB2 was correlated
with several signaling pathways, including the cell cycle, TGF beta
signaling pathway, ERBB signaling pathway, RIG I-like receptor
signaling pathway, and P53 signaling pathway (Figure 6) (NES,
normalized enrichment score; and Nom P-val, normalized p-value).

3.6 Associations between URB2 and TMB,
TNB, MSI, and PPI

The protein‒protein interaction (PPI) network indicated that
ten different genes (UFM1, C11orf54, SNRPC, SAV1, NOL8,

URB1, NIP7, UTP15, RRS1, MAK16) were significantly related
to URB2 (Figure 7A). We also revealed that URB2 was not related
to MSI (GBM, p = 0.36; LGG, p = 0.61), TNB (GBM, p = 0.59;
LGG, p = 0.18), or TMB in GBM (p = 0.7) (Figures 7B–D),
while URB2 was related to TMB in LGG (p = 0.0075) (Figure 7D).
Thus, in gliomas, TMB may play an important role in
URB2 function.

3.7 Relationships among URB2 and immune
infiltrations, the tumor microenvironment,
and immune checkpoint molecules

We examined the possibility of a relationship between
URB2 and the infiltration of six immune cell types using
correlation coefficients over 0.3 and p values under 0.001. We
found that URB2 expression is correlated with none of the six
immune cell types in GBM (Figure 8A), while significantly
correlated with B cells, CD8+ T-cells, and Dendritic cells in
LGG (Figure 8B). According to our criteria, URB2 and the
immunosuppressive microenvironment of GBM were
significantly correlated (Figure 8C), while no correlation was
found in LGG (Figure 8D). According to our results, URB2 is
significantly correlated with several immune checkpoint
molecules in GBM, such as ADORA2A, BTNL2, CD160,
CD200R1, and CD244, while the correlated immune
checkpoint molecules in LGG include ADORA2A, BTLA,

FIGURE 3
Relationship between clinicopathologic characteristics and overall survival of URB2 (A–I). Correlation of URB2 expression with Gender (A), 1p/19q
codeletion status (B), Age (C), Chemo status (D), Grade (E), IDH mutation status (F), PRS type (G), Radio status (H), and Histology (I).
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CD160, CD200R1, and CD27 (Figure 8E). GBM also exhibited a
significant association with URB2 and several immune cells,
such as activated CD8 T-cells, activated dendritic cells, and
activated B cells, while it activated CD56dim natural killer
cells, central memory CD4 T-cells, and CD4 T-cells in LGG
(Figure 8F).

3.8 Single-cell data analysis

We downloaded the raw data of the GSE103224 and
GSE148842 datasets from the TISCH database. After a series
of downscaling clustering and corresponding cell annotation, a
total of eight cell classes were annotated in the GSE103224 and
GSE148842 datasets, which are shown in Supplementary Figures
S1A, B. UMAP plots and violin plots of URB2 expression in
various types of annotated cells in the GSE103224 and
GSE148842 datasets are shown in Figure 9. As is shown in
figures, URB2 was expressed in all types of annotated cells,
including immune cells, which partially supports the close
association of URB2 with immunity in glioma.

3.9 Drug sensitivity analysis

Figure 10 shows scatter plots demonstrating that drug sensitivity
was significantly correlated with URB2 expression (p < 0.05).
Notably, URB2 has a positive correlation with the sensitivity of
fludarabine (correlation coefficient = 0.338, p < 0.01, Figure 10A)
and XL-147 (correlation coefficient = 0.333, p < 0.01, Figure 10B).

4 Discussion

As the most frequent primary malignant brain tumor (GBD,
2016 Brain and Other CNS Cancer Collaborators, 2019), glioma
claims a large number of lives every year worldwide. While GBM
is one of the rarest types of glioma, its poor prognosis still makes
it a critically important topic for public health concern (Iacob
and Dinca, 2009). In this context, new prognostic targets must be
investigated for the prediction of OS and treatment in glioma
patients. URb2 is essential for the biosynthesis of 60 S ribosomal
subunits. Impairment of URB2 disrupts ribosomal subunits and
rRNAs. However, the prognostic role of URB2 and the specific

FIGURE 4
Forest plot showing univariate and multivariate cox regression analyses. Forest plot showing univariate and multivariate cox regression analyses of
URB2 mRNA levels and clinicopathological variables predictive of overall survival (A, B).
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roles of URB2 in tumorigenesis and progression in glioma have
not been reported. Therefore, URB2 was evaluated in glioma in
terms of prognostic and immunological values in the present
study.

In our research, we demonstrated that the expression of
URB2 is higher in glioma than adjacent normal tissue, an
indication that OS may be poor. This performance has also
been verified in the GEO dataset, CGGA dataset, and Western
blot (WB) analysis. The protein expression of URB2 in GBM also
showed the same result in the CPTAP database. In the CGGA
database, low expression of URB2 has a strong correlation with
better pathological stage, histological grade, and longer OS in

glioma patients. Cox regression analysis revealed that URB2 may
be a predictor for prognosis in glioma patients. URB2 expression
in patients with gliomas was incorporated with nine
clinicopathological variables to generate a risk score, including
IDH mutation status, grade, sex, histology, age, radio status,
Chemo status, PRS type, and 1p/19q codeletion status. The
nomogram also performed well in predicting one-, three-, and
5-year mortality, with AUCs of 0.856, 0.885, and 0.881,
respectively. We further performed GSEA between tissues with
different URB2 expression levels to explore the role of URB2 in
glioma pathogenesis. We found that several key signaling
pathways, including the KEGG cell cycle, ERBB signaling

FIGURE 5
Evaluation of URB2 expression as a prognostic indicator for glioma. The nomogram uses clinical parameters and expression of URB2 to predict
overall survival for glioma patients (A). Analyses of the ROC curves for the OS of URB2 expression in the CGGA cohort over a 1-year, 3-year, and 5-year
period (B–D). An analysis of the nomogram for the prediction of survival over time (E–G).
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pathway, TGF beta signaling pathway, RIG I-like receptor
signaling pathway, and p53 signaling pathway, were correlated
with URB2 expression. Moreover, we revealed that
URB2 expression was strongly associated with the tumor
immune microenvironment, immune cell infiltration, immune
checkpoint molecules, and immune cells. Using CellMiner, we
further found two drugs (fludarabine and XL-147) correlated with
URB2, which means that inhibitors of these two drugs can be
potential treatment drugs for immune therapy in glioma.

Nomograms are often used in various cancer types to
intuitively predict prognosis (Xu et al., 2021a; He et al., 2022).
Previous literature has reported that age, chemotherapy status,
histopathology, radiotherapy status, IDH, tumor recurrence, and
1p/19q were common prognostic markers in gliomas (Qu et al.,
2021; Huang et al., 2022). Our study constructed a nomogram for
predicting the OS of glioma patients according to the CGGA
dataset based on ten independent prognostic factors, including
1p/19q codeletion status, PRS type, Radio status, Histology,
Chemo status, Gender, Age, IDH mutation status, Grade, and
URB2. The established nomogram performed moderately with
respect to the C-index, ROC curves, and calibration plots with
regard to predicting OS for gliomas. Similarly, previous studies
have been conducted to predict patient survival by constructing
prognostic models for glioma with satisfactory results. By
constructing a prognostic model such as a nomogram can
more accurately predict the prognostic value of patients with

glioma (Qu et al., 2020). Overall, we were successful in building
an accurate nomogram plot of glioma patient prognosis.

Then, we determined five URB2-related signaling pathways
by means of GSEA, including the CELL cycle, RIG I-like receptor
signaling pathway, ERBB signaling pathway, P53 signaling
pathway, and TGF beta signaling pathway. As reported, ERBB
receptor tyrosine kinases play a key role in both normal
physiology and cancer. Many epithelial tumors contain
mutations of ERBB2, and clinical studies indicate that they are
correlated with tumor progression (Hynes and MacDonald, 2009;
Xu et al., 2022). When cells are exposed to different stress signals,
their p53 signaling pathway is activated, activating several
transcriptional programs, including cell cycle arrest,
senescence, DNA repair, and apoptosis, leading to tumor
growth inhibition (Marei et al., 2021). There are a large
number of previous studies on TGF beta signaling pathway.
Studies have shown that the TGF-beta signaling pathway has
different roles in the different stages of human cancer progression
(Manni and Min, 2020; Baba et al., 2022). TGF-beta acts as a
cancer suppressor in the initial stage of tumorigenesis (de
Caestecker et al., 2000; Zhang et al., 2017; Chandra Jena et al.,
2021). Nevertheless, TGF-β acts as a proto-oncogene in the later
stage of tumor to promote tumor development (Katz et al., 2013;
Huynh et al., 2019). Currently, dysregulation of the TGF-β
signaling pathway can be detected in many cancers, such as
colon cancer and breast cancer (Sheen et al., 2013; Villalba

FIGURE 6
Enrichment of pathways and genes identified by GSEA (A–E). The CELL cycle (A), ERBB signaling pathway (B), P53 signaling pathway (C), RIG I like
receptor signaling pathway (D) and TGF beta signaling pathway (E) are differentially enriched in URB2-related glioma. (F)On the basis of their normalized
enrichment score (NES), the five signaling pathways most highly enriched are displayed.
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et al., 2017). In summary, our results reveal potential signaling
pathways and biological functions correlated with URB2, which
are instructive for further functional studies of URB2.

With regard to the relationship between immunity and URB2,
we demonstrate that the expression of URB2 is significantly
associated with immune cells, tumor immune
microenvironments (TIMs), and immune checkpoint molecules
(ICMs). The activation of immune checkpoint blockade appears
to be one of the most promising ways to activate therapeutic
antitumor immunity (Pardoll, 2012). Additionally, the
characterization of the tumor microenvironment (TME) within
a patient’s tumor enables us to predict and guide
immunotherapeutic responses (Binnewies et al., 2018). Tumor
cells can influence the surrounding cells through the TME, which
not only facilitates the development of tumor cells, but also
evades the surveillance of the immune system and thus affects
the therapeutic effect (Quail and Joyce, 2013). In addition to
tumor cells, TME also includes non-malignant cells, extracellular
matrix, surrounding vascular system, and signaling molecules
(Hanahan and Coussens, 2012). TME is characterized by nutrient
deprivation, high acidity, hypoxia, and an immunosuppressive
microenvironment, through which tumor cells are able to
consolidate their advantage and gain a competitive position
(Shi et al., 2020). Immunotherapy for tumors, which is the

activation of the body’s anti-tumor immunity, including ICIs,
T-cell transfer therapy, monoclonal antibodies, cancer vaccines
and immune system modulators, has become one of the most
promising and advanced anti-cancer strategies (Topalian et al.,
2020). Immunotherapy is dependent on the interaction between
tumor cells and immune cells in TME. In addition, the
development of nanotechnology and nanomaterials also
provides powerful tools for immunotherapy of tumors. Some
of these biomaterials (e.g., dendrimers) can be used as carriers for
immunologically active drug delivery in cancer through
implantation, injection, and transdermal delivery, providing a
more advanced approach to immunotherapy (Cai et al., 2020; Gao
et al., 2021). Local delivery of immunotherapy through these
materials can activate the immune response, reduce the drug dose
and achieve high efficacy and safety of the treatment. In some
latest studies, nano adjuvants have been used to enhance
immunotherapy response and boost anti-tumor immunity
through synergistic light-mediated immunotherapy (Zhu et al.,
2023). Because of its high specificity and long-lasting antitumor
effects, light-mediated immunotherapy has been regarded as a
promising therapy for cancer treatment (Monaco et al., 2022). As
a result, tumor immunotherapy has been seen as a method for
controlling and eliminating cancer. It has been shown that cancer
immunotherapy, in particular ICI, has yielded very promising

FIGURE 7
Associations between URB2 and PPI (A), MSI (B), TNB (C), and TMB (D) in TCGA dataset.

Frontiers in Pharmacology frontiersin.org10

Fang et al. 10.3389/fphar.2023.1113182

172

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1113182


clinical results for a wide range of cancer types, which has
triggered considerable interest as a new therapeutic approach
for glioma (Assi et al., 2018). Rather than directly killing tumors,
immunotherapeutic drugs enhance the human immune system,
which results in more effective tumor death and longer-lasting
cancer remission while causing fewer side effects.

Furthermore, a correlation was also found between the
expression of URB2 in six immune-infiltrating cells taken from
the TIMER database. Previous studies have revealed that tumor-

infiltrating immune cells (TIICs) play a key role in glioma
patients (Liu et al., 2017). TIIC is part of the complex
microenvironment. More specifically, it plays a critical role in
promoting or inhibiting tumor growth (Domingues et al., 2016).
In this research, we evaluated immune infiltration based on
URB2 expression and demonstrated that URB2 expression
positively correlated with B cells, CD8+ T-cells, and Dendritic
cells in LGG; however, no correlation was found in GBM. Then,
we evaluated the StromalScore, ImmuneScore, and

FIGURE 8
Immune relevance of URB2 in glioma patients. Associations between URB2 and immune infiltrations in GBM (A) and LGG (B), tumor
microenvironment in GBM (C) and LGG (D). Expression of URB2-related immune checkpoint genes in different tumors (E). Expression of URB2-related
immune cell pathway marker genes in different tumors (F).
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ESTIMATEScore to determine whether URB2 expression
correlates with the microenvironment around gliomas. The
URB2 phenotype may be associated with immune suppression

in GBM but not in LGG, as we found immune involvement in
GBM but not in LGG. Furthermore, several immune checkpoints
that have been implicated in gliomas were evaluated and

FIGURE 9
UMAP plots and violin plots. Violin plots of URB2 expression in various types of annotated cells in theGSE103224 andGSE148842 datasets are shown
in (A, B), respectively. UMAP plots of URB2 expression in various types of annotated cells in the GSE103224 and GSE148842 datasets are shown in (C, D)
respectively.

FIGURE 10
Drug response analysis. The correlation between drug sensitivity (Fludarabine and XL-147) and URB2 in Cellminer database. The scatter plots are
ranked by p-value.
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associated with URB2 using immune checkpoint analysis.
Multiple immune checkpoints correlated significantly with
URB2 in LGG as well as GBM, suggesting that immune
therapy could be targeted at some of these immune
checkpoints. Several immune cells associated with URB2 in
gliomas were expressed. These findings showed that gliomas
are associated with a dysfunctional immune system, given that
the microenvironment in which gliomas develop is
immunosuppressive. We further found two drugs (fludarabine
and XL-147) with a correlation with URB2, which means that
inhibitors of these two drugs can be potential treatment drugs for
immune therapy in glioma.

In recent years, research on single-cell sequencing and single-
cell data analysis has become very popular and has been used in
various tumor studies, especially in brain tissue (Wouters et al.,
2020; Zhang et al., 2021). In the study of tumors, it can identify
the tumor and immune microenvironment, the heterogeneity of
the tumor, and the mechanisms associated with the development
and evolution of the tumor (van Galen et al., 2019; Zilionis et al.,
2019). In breast cancer, for example, scRNA-seq can examine the
multi-omic features of individual cells, thus mapping tumor
microenvironment (TME) in breast cancer, which also
supports precise treatment. In glioma, the spatial, molecular,
and functional heterogeneity of tumor-associated immune cells
can be investigated to identify immunotherapeutic targets
(Abdelfattah et al., 2022). In conclusion, we can better
understand the molecular characteristics of glioma by scRNA-
seq, which is important for the development of new therapeutic
strategies.

In addition, microsatellite instability (MSI) is defined as MMR-
impaired DNA mismatch repair (MMI) causing genetic
hypermutability. Genetic hypermutability results from impaired
DNA mismatch repair (MMR). The presence of MSI indicates
that the function of MMR is not normal (Boland and Goel,
2010). MSI is associated with all types of cancers, including brain
cancer (Eckert et al., 2007; Latham et al., 2019), even if MSI
phenotyping appears to be closely linked with specific
clinicopathological features, primarily in colorectal cancer
(Boland and Goel, 2010). Screening for gene mutations in MSI
and MMR has been seen as important in the treatment of patients
with glioma (Leung et al., 1998; Xu et al., 2021b). Thus, we analyzed
the correlation between MSI and the expression of URB2 in glioma.
Our results showed no association between MSI and
URB2 expression in either GBM or LGG, with p values of
0.36 and 0.61, respectively. In many cancer types, tumor
mutational burden (TMB) can be used as a biomarker (Johnson
et al., 2017). Our results indicated that URB2 expression had no
correlation with TMB in GBM, with p values of 0.7, but had a
significant association with TMB in LGG (p = 0.0075).

Last, this study has several highlights. In addition to being
discovered in the CGGA dataset, URB2 expression has also been
verified in the TCGA dataset, GEO database, and Western blot
analysis, which makes our results more reliable. Furthermore, we
not only identified the correlation between URB2 and immunity
through multiple perspectives but also identified
immunotherapeutic agents targeting URB2 in glioma. Most
importantly, this is the first study of the prognostic role of
URB2 and the immunological role of URB2 in tumorigenesis

and progression in glioma. This study also has some limitations,
such as the lack of clinical information. Aside from tumor
biology, several other factors can also affect the prognosis of
glioma patients, including the clinical medical data related to
their treatment center. Thus, the role of the URB2 gene has not
been fully investigated, and few previous articles have discussed
this. The specific role of URB2 in glioma has not been fully
investigated experimentally. Therefore, there is a strong need for
further experimental work to verify the prediction.

5 Conclusion

Together, our research indicated that URB2 plays an oncogenic role
in gliomas. According to Cox regression analyses, URB2was considered
an independent factor for glioma. GSEA was applied to search for
URB2-associated pathways, including the ERBB and P53 signaling
pathways. Additionally, the nomogram we performed demonstrated
that URB2 may be a valid predictor, whether alone or in combination
with other clinical factors. More importantly, a close relationship
between immunity and URB2 was found, which is preliminary and
underling evidence that the immune response contributes to glioma
progression, suggesting novel approaches to immune therapy for
glioma. Finally, further in vitro and in vivo experiments are
necessary to verify our results.

Data availability statement

The original contributions presented in the study are included in the
article/Supplementary Materials, further inquiries can be directed to the
corresponding authors.

Ethics statement

The studies involving human participants were reviewed and
approved by Ethical Committee for Human Investigation of the
Shanghai General Hospital and the Second Hospital affiliated to
Zhejiang University. The patients/participants provided their written
informed consent to participate in this study.

Author contributions

CF, ZZ, PH, and HX performed bioinformatic analysis. CF,
ZZ, and YH performed and analyzed experiments. ZZ, YH, YD,
and LY were involved in data analysis and interpretation. AZ, AS,
and ML designed the experiment, interpreted the data, and wrote
the manuscript. All authors reviewed and approved the
manuscript.

Funding

This work was supported by the Natural science foundation of
Shanghai (18ZR1430400) and the Zhejiang Provincial Natural
Science Foundation of China (LY22H090020).

Frontiers in Pharmacology frontiersin.org13

Fang et al. 10.3389/fphar.2023.1113182

175

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1113182


Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fphar.2023.1113182/
full#supplementary-material

References

Abdelfattah, N., Kumar, P., Wang, C., Leu, J. S., Flynn, W. F., Gao, R., et al. (2022).
Single-cell analysis of human glioma and immune cells identifies S100A4 as an
immunotherapy target. Nat. Commun. 13 (1), 767. doi:10.1038/s41467-022-28372-y

Assi, R., Kantarjian, H., Ravandi, F., and Daver, N. (2018). Immune therapies in acute
myeloid leukemia: A focus on monoclonal antibodies and immune checkpoint
inhibitors.Curr. Opin. Hematol. 25 (2), 136–145. doi:10.1097/MOH.0000000000000401

Baba, A. B., Rah, B., Bhat, G. R., Mushtaq, I., Parveen, S., Hassan, R., et al. (2022).
Transforming growth factor-beta (TGF-β) signaling in cancer-A betrayal within. Front.
Pharmacol. 13, 791272. doi:10.3389/fphar.2022.791272

Binnewies, M., Roberts, E. W., Kersten, K., Chan, V., Fearon, D. F., Merad, M., et al.
(2018). Understanding the tumor immune microenvironment (TIME) for effective
therapy. Nat. Med. 24 (5), 541–550. doi:10.1038/s41591-018-0014-x

Blakeley, J. (2008). Drug delivery to brain tumors. Curr. Neurol. Neurosci. Rep. 8 (3),
235–241. doi:10.1007/s11910-008-0036-8

Boland, C. R., and Goel, A. (2010). Microsatellite instability in colorectal cancer.
Gastroenterology 138 (6), 2073–2087.e3. doi:10.1053/j.gastro.2009.12.064

Bush, N. A., Chang, S. M., and Berger, M. S. (2017). Current and future strategies
for treatment of glioma. Neurosurg. Rev. 40 (1), 1–14. doi:10.1007/s10143-016-
0709-8

Cai, L., Xu, J., Yang, Z., Tong, R., Dong, Z., Wang, C., et al. (2020). Engineered
biomaterials for cancer immunotherapy. MedComm 1 (1), 35–46. doi:10.1002/mco2.8

Chandra Jena, B., Sarkar, S., Rout, L., and Mandal, M. (2021). The transformation of
cancer-associated fibroblasts: Current perspectives on the role of TGF-β in CAF
mediated tumor progression and therapeutic resistance. Cancer Lett. 520, 222–232.
doi:10.1016/j.canlet.2021.08.002

de Caestecker, M. P., Piek, E., and Roberts, A. B. (2000). Role of transforming growth
factor-beta signaling in cancer. J. Natl. Cancer Inst. 92 (17), 1388–1402. doi:10.1093/
jnci/92.17.1388

Domingues, P., González-Tablas, M., Otero, Á., Pascual, D., Miranda, D., Ruiz, L.,
et al. (2016). Tumor infiltrating immune cells in gliomas and meningiomas. Brain
Behav. Immun. 53, 1–15. doi:10.1016/j.bbi.2015.07.019

Eckert, A., Kloor, M., Giersch, A., Ahmadi, R., Herold-Mende, C., Hampl, J. A., et al.
(2007). Microsatellite instability in pediatric and adult high-grade gliomas. Brain
Pathol. 17 (2), 146–150. doi:10.1111/j.1750-3639.2007.00049.x

Gao, Y., Shen, M., and Shi, X. (2021). Interaction of dendrimers with the immune
system: An insight into cancer nanotheranostics. VIEW 2 (3), 20200120. doi:10.1002/
viw.20200120

GBD 2016 Brain and Other CNS Cancer Collaborators (2019). Global, regional, and
national burden of brain and other CNS cancer, 1990-2016: A systematic analysis for the
global burden of disease study 2016. Lancet Neurol. 18 (4), 376–393. doi:10.1016/S1474-
4422(18)30468-X

Ghouzlani, A., Kandoussi, S., Tall, M., Reddy, K. P., Rafii, S., and Badou, A. (2021).
Immune checkpoint inhibitors in human glioma microenvironment. Front. Immunol.
12, 679425. doi:10.3389/fimmu.2021.679425

Hanahan, D., and Coussens, L. M. (2012). Accessories to the crime: Functions of cells
recruited to the tumor microenvironment. Cancer Cell 21 (3), 309–322. doi:10.1016/j.
ccr.2012.02.022

He, L., Wang, X., Jin, Y., Xu, W., Lyu, J., Guan, Y., et al. (2022). A prognostic
nomogram for predicting overall survival in pediatric wilms tumor based on an
autophagy-related gene signature. Comb. Chem. High. Throughput Screen 25 (8),
1385–1397. doi:10.2174/1386207324666210826143727

Huang, C., Qiu, O., Mao, C., Hu, Z., and Qu, S. (2022). An integrated analysis of
C5AR2 related to malignant properties and immune infiltration of gliomas. Cancer
Innov. 1 (3), 240–251. doi:10.1002/cai2.29

Huynh, L. K., Hipolito, C. J., and Ten Dijke, P. (2019). A perspective on the
development of TGF-β inhibitors for cancer treatment. Biomolecules 9 (11), 743.
doi:10.3390/biom9110743

Hynes, N. E., and MacDonald, G. (2009). ErbB receptors and signaling pathways in
cancer. Curr. Opin. Cell Biol. 21 (2), 177–184. doi:10.1016/j.ceb.2008.12.010

Iacob, G., and Dinca, E. B. (2009). Current data and strategy in glioblastoma
multiforme. J. Med. Life 2 (4), 386–393.

Johnson, A., Severson, E., Gay, L., Vergilio, J. A., Elvin, J., Suh, J., et al. (2017).
Comprehensive genomic profiling of 282 pediatric low- and high-grade gliomas
reveals genomic drivers, tumor mutational burden, and hypermutation
signatures. Oncologist 22 (12), 1478–1490. doi:10.1634/theoncologist.2017-0242

Katz, L. H., Li, Y., Chen, J. S., Muñoz, N. M., Majumdar, A., Chen, J., et al. (2013).
Targeting TGF-β signaling in cancer. Expert Opin. Ther. Targets 17 (7), 743–760. doi:10.
1517/14728222.2013.782287

Korman, A. J., Peggs, K. S., and Allison, J. P. (2006). Checkpoint blockade in
cancer immunotherapy. Adv. Immunol. 90, 297–339. doi:10.1016/S0065-2776(06)
90008-X

Latham, A., Srinivasan, P., Kemel, Y., Shia, J., Bandlamudi, C., Mandelker, D., et al.
(2019). Microsatellite instability is associated with the presence of lynch syndrome pan-
cancer. J. Clin. Oncol. 37 (4), 286–295. doi:10.1200/JCO.18.00283

Leung, S. Y., Chan, T. L., Chung, L. P., Chan, A. S., Fan, Y. W., Hung, K. N., et al.
(1998). Microsatellite instability and mutation of DNA mismatch repair genes in
gliomas. Am. J. Pathol. 153 (4), 1181–1188. doi:10.1016/S0002-9440(10)65662-3

Liu, Z., Meng, Q., Bartek, J., Jr., Poiret, T., Persson, O., Rane, L., et al. (2017). Tumor-
infiltrating lymphocytes (TILs) from patients with glioma. Oncoimmunology 6 (2),
e1252894. doi:10.1080/2162402X.2016.1252894

Manni, W., and Min, W. (2020). Signaling pathways in the regulation of cancer stem
cells and associated targeted therapy. MedComm 3 (4), e176. doi:10.1002/mco2.176

Marei, H. E., Althani, A., Afifi, N., Hasan, A., Caceci, T., Pozzoli, G., et al. (2021).
p53 signaling in cancer progression and therapy. Cancer Cell Int. 21 (1), 703. doi:10.
1186/s12935-021-02396-8

Monaco, H., Yokomizo, S., Choi, H. S., and Kashiwagi, S. (2022). Quickly evolving
near-infrared photoimmunotherapy provides multifaceted approach to modern cancer
treatment. VIEW 3 (3), 20200110. doi:10.1002/viw.20200110

Omuro, A., and DeAngelis, L. M. (2013). Glioblastoma and other malignant gliomas:
A clinical review. Jama 310 (17), 1842–1850. doi:10.1001/jama.2013.280319

Ostrom, Q. T., Gittleman, H., Liao, P., Vecchione-Koval, T., Wolinsky, Y., Kruchko,
C., et al. (2017). CBTRUS Statistical Report: Primary brain and other central nervous
system tumors diagnosed in the United States in 2010-2014. Neuro Oncol. 19 (5),
v1–v88. doi:10.1093/neuonc/nox158

Ostrom, Q. T., Gittleman, H., Stetson, L., Virk, S. M., and Barnholtz-Sloan, J. S.
(2015). Epidemiology of gliomas. Cancer Treat. Res. 163, 1–14. doi:10.1007/978-3-319-
12048-5_1

Pardoll, D. M. (2012). The blockade of immune checkpoints in cancer
immunotherapy. Nat. Rev. Cancer 12 (4), 252–264. doi:10.1038/nrc3239

Qu, S., Liu, S., Qiu, W., Liu, J., and Wang, H. (2020). Screening of autophagy genes as
prognostic indicators for glioma patients. Am. J. Transl. Res. 12 (9), 5320–5331.

Qu, S., Qiu, O., and Hu, Z. (2021). The prognostic factors and nomogram for patients
with high-grade gliomas. Fundam. Res. 1 (6), 824–828. doi:10.1016/j.fmre.2021.07.005

Quail, D. F., and Joyce, J. A. (2013). Microenvironmental regulation of tumor
progression and metastasis. Nat. Med. 19 (11), 1423–1437. doi:10.1038/nm.3394

Reinhold, W. C., Sunshine, M., Liu, H., Varma, S., Kohn, K. W., Morris, J., et al.
(2012). CellMiner: A web-based suite of genomic and pharmacologic tools to explore

Frontiers in Pharmacology frontiersin.org14

Fang et al. 10.3389/fphar.2023.1113182

176

https://www.frontiersin.org/articles/10.3389/fphar.2023.1113182/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fphar.2023.1113182/full#supplementary-material
https://doi.org/10.1038/s41467-022-28372-y
https://doi.org/10.1097/MOH.0000000000000401
https://doi.org/10.3389/fphar.2022.791272
https://doi.org/10.1038/s41591-018-0014-x
https://doi.org/10.1007/s11910-008-0036-8
https://doi.org/10.1053/j.gastro.2009.12.064
https://doi.org/10.1007/s10143-016-0709-8
https://doi.org/10.1007/s10143-016-0709-8
https://doi.org/10.1002/mco2.8
https://doi.org/10.1016/j.canlet.2021.08.002
https://doi.org/10.1093/jnci/92.17.1388
https://doi.org/10.1093/jnci/92.17.1388
https://doi.org/10.1016/j.bbi.2015.07.019
https://doi.org/10.1111/j.1750-3639.2007.00049.x
https://doi.org/10.1002/viw.20200120
https://doi.org/10.1002/viw.20200120
https://doi.org/10.1016/S1474-4422(18)30468-X
https://doi.org/10.1016/S1474-4422(18)30468-X
https://doi.org/10.3389/fimmu.2021.679425
https://doi.org/10.1016/j.ccr.2012.02.022
https://doi.org/10.1016/j.ccr.2012.02.022
https://doi.org/10.2174/1386207324666210826143727
https://doi.org/10.1002/cai2.29
https://doi.org/10.3390/biom9110743
https://doi.org/10.1016/j.ceb.2008.12.010
https://doi.org/10.1634/theoncologist.2017-0242
https://doi.org/10.1517/14728222.2013.782287
https://doi.org/10.1517/14728222.2013.782287
https://doi.org/10.1016/S0065-2776(06)90008-X
https://doi.org/10.1016/S0065-2776(06)90008-X
https://doi.org/10.1200/JCO.18.00283
https://doi.org/10.1016/S0002-9440(10)65662-3
https://doi.org/10.1080/2162402X.2016.1252894
https://doi.org/10.1002/mco2.176
https://doi.org/10.1186/s12935-021-02396-8
https://doi.org/10.1186/s12935-021-02396-8
https://doi.org/10.1002/viw.20200110
https://doi.org/10.1001/jama.2013.280319
https://doi.org/10.1093/neuonc/nox158
https://doi.org/10.1007/978-3-319-12048-5_1
https://doi.org/10.1007/978-3-319-12048-5_1
https://doi.org/10.1038/nrc3239
https://doi.org/10.1016/j.fmre.2021.07.005
https://doi.org/10.1038/nm.3394
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1113182


transcript and drug patterns in the NCI-60 cell line set. Cancer Res. 72 (14), 3499–3511.
doi:10.1158/0008-5472.CAN-12-1370

Rosado, I. V., Dez, C., Lebaron, S., Caizergues-Ferrer,M., Henry, Y., and de la Cruz, J. (2007).
Characterization of Saccharomyces cerevisiae Npa2p (Urb2p) reveals a low-molecular-mass
complex containing Dbp6p, Npa1p (Urb1p), Nop8p, and Rsa3p involved in early steps of 60S
ribosomal subunit biogenesis. Mol. Cell Biol. 27 (4), 1207–1221. doi:10.1128/MCB.01523-06

Sheen, Y. Y., Kim, M. J., Park, S. A., Park, S. Y., and Nam, J. S. (2013). Targeting the
transforming growth factor-β signaling in cancer therapy. Biomol. Ther. Seoul. 21 (5),
323–331. doi:10.4062/biomolther.2013.072

Shi, R., Tang, Y-Q., and Miao, H. (2020). Metabolism in tumor microenvironment:
Implications for cancer immunotherapy. MedComm 1 (1), 47–68. doi:10.1002/mco2.6

Sriraman, S. K., Aryasomayajula, B., and Torchilin, V. P. (2014). Barriers to drug
delivery in solid tumors. Tissue Barriers 2, e29528. doi:10.4161/tisb.29528

Stewart, L. A. (2002). Chemotherapy in adult high-grade glioma: A systematic review
and meta-analysis of individual patient data from 12 randomised trials. Lancet 359
(9311), 1011–1018. doi:10.1016/s0140-6736(02)08091-1

Topalian, S. L., Taube, J. M., and Pardoll, D. M. (2020). Neoadjuvant checkpoint blockade
for cancer immunotherapy. Science 367 (6477), eaax0182. doi:10.1126/science.aax0182

van Galen, P., Hovestadt, V., Wadsworth Ii, M. H., Hughes, T. K., Griffin, G. K., Battaglia,
S., et al. (2019). Single-cell RNA-seq reveals AML hierarchies relevant to disease progression
and immunity. Cell 176 (6), 1265–1281.e24. doi:10.1016/j.cell.2019.01.031

Villalba, M., Evans, S. R., Vidal-Vanaclocha, F., and Calvo, A. (2017). Role of TGF-β
in metastatic colon cancer: It is finally time for targeted therapy. Cell Tissue Res. 370 (1),
29–39. doi:10.1007/s00441-017-2633-9

Wesseling, P., and Capper, D. (2018). WHO 2016 Classification of gliomas.
Neuropathol. Appl. Neurobiol. 44 (2), 139–150. doi:10.1111/nan.12432

Wouters, J., Kalender-Atak, Z., Minnoye, L., Spanier, K. I., De Waegeneer, M., Bravo
González-Blas, C., et al. (2020). Robust gene expression programs underlie recurrent cell
states and phenotype switching in melanoma. Nat. Cell Biol. 22 (8), 986–998. doi:10.
1038/s41556-020-0547-3

Xu, S., Qi, J., Bie, Z. X., Li, Y. M., Li, B., Guo, R. Q., et al. (2021). Local progression after
computed tomography-guided microwave ablation in non-small cell lung cancer

patients: Prediction using a nomogram model. Int. J. Hyperth. 38 (1), 1366–1374.
doi:10.1080/02656736.2021.1976852

Xu, Y., Mohyeldin, A., Nunez, M. A., Doniz-Gonzalez, A., Vigo, V., Cohen-Gadol, A.
A., et al. (2021). Microvascular anatomy of the medial temporal region. J. Neurosurg.
137, 747–759. doi:10.3171/2021.9.JNS21390

Xu, Y., Nunez, M. A., Mohyeldin, A., Vigo, V., Mao, Y., Cohen-Gadol, A. A., et al.
(2022). Microsurgical anatomy of the dorsal clinoidal space: Implications for
endoscopic endonasal parasellar surgery. J. Neurosurg. 137, 1418–1430. doi:10.3171/
2021.12.JNS211974

Yuan, J., Levitin, H. M., Frattini, V., Bush, E. C., Boyett, D. M., Samanamud, J., et al.
(2018). Single-cell transcriptome analysis of lineage diversity in high-grade glioma.
Genome Med. 10 (1), 57. doi:10.1186/s13073-018-0567-9

Zhang, C., Xiong, B., Chen, L., Ge, W., Yin, S., Feng, Y., et al. (2021). Rescue of
male fertility following faecal microbiota transplantation from alginate
oligosaccharide-dosed mice. Gut 70 (11), 2213–2215. doi:10.1136/gutjnl-
2020-323593

Zhang, H., Liu, T., Zhang, Z., Payne, S. H., Zhang, B., McDermott, J. E., et al. (2016).
Integrated proteogenomic characterization of human high-grade serous ovarian cancer.
Cell 166 (3), 755–765. doi:10.1016/j.cell.2016.05.069

Zhang, Y., Alexander, P. B., and Wang, X. F. (2017). TGF-B family signaling in the
control of cell proliferation and survival. Cold Spring Harb. Perspect. Biol. 9 (4), a022145.
doi:10.1101/cshperspect.a022145

Zhao, W., Dovas, A., Spinazzi, E. F., Levitin, H. M., Banu, M. A., Upadhyayula,
P., et al. (2021). Deconvolution of cell type-specific drug responses in human
tumor tissue with single-cell RNA-seq. Genome Med. 13 (1), 82. doi:10.1186/
s13073-021-00894-y

Zhu, H., Yang, C., Yan, A., Qiang, W., Ruan, R., Ma, K., et al. (2023). Tumor-targeted
nano-adjuvants to synergize photomediated immunotherapy enhanced antitumor
immunity. VIEW, 20220067. doi:10.1002/viw.20220067

Zilionis, R., Engblom, C., Pfirschke, C., Savova, V., Zemmour, D., Saatcioglu, H. D.,
et al. (2019). Single-cell transcriptomics of human and mouse lung cancers reveals
conserved myeloid populations across individuals and species. Immunity 50 (5),
1317–1334.e10. doi:10.1016/j.immuni.2019.03.009

Frontiers in Pharmacology frontiersin.org15

Fang et al. 10.3389/fphar.2023.1113182

177

https://doi.org/10.1158/0008-5472.CAN-12-1370
https://doi.org/10.1128/MCB.01523-06
https://doi.org/10.4062/biomolther.2013.072
https://doi.org/10.1002/mco2.6
https://doi.org/10.4161/tisb.29528
https://doi.org/10.1016/s0140-6736(02)08091-1
https://doi.org/10.1126/science.aax0182
https://doi.org/10.1016/j.cell.2019.01.031
https://doi.org/10.1007/s00441-017-2633-9
https://doi.org/10.1111/nan.12432
https://doi.org/10.1038/s41556-020-0547-3
https://doi.org/10.1038/s41556-020-0547-3
https://doi.org/10.1080/02656736.2021.1976852
https://doi.org/10.3171/2021.9.JNS21390
https://doi.org/10.3171/2021.12.JNS211974
https://doi.org/10.3171/2021.12.JNS211974
https://doi.org/10.1186/s13073-018-0567-9
https://doi.org/10.1136/gutjnl-2020-323593
https://doi.org/10.1136/gutjnl-2020-323593
https://doi.org/10.1016/j.cell.2016.05.069
https://doi.org/10.1101/cshperspect.a022145
https://doi.org/10.1186/s13073-021-00894-y
https://doi.org/10.1186/s13073-021-00894-y
https://doi.org/10.1002/viw.20220067
https://doi.org/10.1016/j.immuni.2019.03.009
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1113182


+41 (0)21 510 17 00 
frontiersin.org/about/contact

Avenue du Tribunal-Fédéral 34
1005 Lausanne, Switzerland
frontiersin.org

Contact us

Frontiers

Explores the interactions between chemicals and 

living beings

The most cited journal in its field, which advances 

access to pharmacological discoveries to prevent 

and treat human disease.

Discover the latest 
Research Topics

See more 

Frontiers in
Pharmacology

https://www.frontiersin.org/journals/Pharmacology/research-topics

	Cover
	FRONTIERS EBOOK COPYRIGHT STATEMENT
	The roles of immune cell homeostasis in cancer research and therapeutic response
	Table of contents
	Editorial: The roles of immune cell homeostasis in cancer research and therapeutic response
	Author contributions
	Acknowledgments
	Conflict of interest
	Publisher’s note

	Integrating machine learning to construct aberrant alternative splicing event related classifiers to predict prognosis and  ...
	Introduction
	Materials and methods
	Patients and tissue samples from online databases and real-world cohorts
	Sample clustering and survival differences
	Identification and presentation of subtype differences in AS events, and analysis of the differential alternative splicing  ...
	Analysis of splicing characteristics of DASEs in alternative splicing subtypes, corresponding gene expression display and G ...
	Analysis of the correlation between differential gene sets, AS events, and AS factors
	Combining mRNA expression profiles to predict differences in AS typing immunotherapy and drug sensitivity
	Construction of a prognostic model of AS
	Validation in human HCC tissues

	Results
	Splicing clustering and clinical features of HCC subtypes
	Analysis of differences in survival between subtypes, clinical characteristics, and distribution of typical types
	Overall differences in AS events and identification of subtype differences in AS events
	Analysis of splicing characteristics of DASEs in AS subtypes
	Correlation analysis of DASE-corresponding genes in AS subtypes
	Correlation analysis of AS pathways, AS events, and AS factors
	Immune-related and clinically relevant analysis of AS subtypes
	Combining mRNA expression profiles to predict differences in AS for immunotherapy and drug sensitivity
	Further validation of the prognostic model of AS

	Discussion/conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	Supplementary material
	References

	Physical activity prevents tumor metastasis through modulation of immune function
	1 Introduction
	2 Tumor metastasis and Physical activity
	2.1 Physical activity and invasion
	2.2 Physical activity and intravasation
	2.3 Physical activity and survival of circulating tumor cells
	2.4 Physical activity and extravasation
	2.5 Physical activity and colonization

	3 Tumor metastasis and immune function
	4 Physical activity-dependent modulation of immune cells
	4.1 Physical activity and natural immune cells
	4.1.1 Natural killer cells
	4.1.2 Macrophages
	4.1.3 Neutrophils
	4.1.4 Dendritic cells
	4.1.5 Myeloid-derived suppressor cells
	4.1.6 Platelets

	4.2 Physical activity and adaptive immune cells
	4.2.1 Cytotoxic T cells
	4.2.2 Tregs
	4.2.3 B cells

	4.3 Additional exercise effects

	5 Deficiencies and prospects
	Author contributions
	Acknowledgments
	Conflict of interest
	Publisher’s note
	References

	Exercise-induced IL-15 acted as a positive prognostic implication and tumor-suppressed role in pan-cancer
	Introduction
	Methods
	Data processing and IL-15 expression analysis
	Immunohistochemical tissue
	Correlation analysis between genes in pan-cancer
	Genomic alterations IL-15 in pan-cancer
	Association analysis of IL-15 expression with tumor immune microenvironment in cancers
	Statistical analysis

	Results
	Expression of IL-15 in normal tissue and pan-cancer
	Protein expression of the IL-15 in human tissues
	Prognostic assessment value of IL-15 in pan-cancer
	Correlation analysis between IL-15 expression and clinicopathological phenotypes in pan-cancer
	Genetic alteration analysis of IL-15 in pan-cancer
	Correlation of IL-15 expression with tumor immune microenvironment
	Biological function of IL-15 in cancer
	Correlation of IL-15 expression with ferroptosis-related genes and survival analysis
	Correlation of IL-15 expression with cuproptosis-related genes and survival analysis

	Discussion
	Conclusion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	Supplementary material
	References
	Glossary

	Serine and glycine metabolism-related gene expression signature stratifies immune profiles of brain gliomas, and predicts p ...
	Introduction
	Materials and methods
	Data sources
	Consensus clustering analyses based on serine and glycine metabolism-related genes
	Construction and validation of the serine and glycine metabolism-related genes risk signature
	Assessments of gene alterations and copy number variation
	Gene set enrichment analyses
	Comprehensive characterization of tumor immune microenvironment based on serine and glycine metabolism
	Nomogram construction based on SGMRS and other prognostic factors
	Statistical analyses
	Ethic approval and data availability

	Results
	Unsupervised consensus clustering analyses based on serine and glycine metabolism-related genes
	Analyses of immune cells infiltration and tumor microenvironment based on consensus clusters
	Construction and validation of serine and glycine metabolism-related genes risk signature
	0.505*SARDH+0.243*SHMT1-1.77e-4*PSPH-0.050*ALDH2-0.209*GNMT

	Functional enrichment analyses based on SGMRS risk groups
	Construction of nomograms based on SGMRS to predict prognosis in glioma patients
	Correlation of SGMRS with immune cells and immune microenvironment

	Discussion
	Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	Supplementary material
	References

	Identification of TGF-β signaling-related molecular patterns, construction of a prognostic model, and prediction of immunot ...
	Introduction
	Materials and methods
	Data collection
	Differential expression and mutational analysis of TSRGs
	Consensus clustering analysis of TSRGs
	TGF-β-based subtype TME analysis
	Gene consensus clustering analysis of TGF-β pattern-related DEGs
	Construction and validation of the risk model for gastric cancer
	Subgroup analysis based on available clinicopathological characteristics
	Independent prognostic and nomogram analysis
	Investigation of the immune landscape
	Immunotherapy response and antitumor drug sensitivity
	Statistical analysis

	Results
	Differential expression and genetic variation landscape of TSRGs in gastric cancer
	Identification of TGF-β subgroups in gastric cancer
	Characteristics of the TME in two distinct TGF-β subgroups
	Identification of gene clusters based on TGF-β pattern-related DEGs
	Construction and validation of the risk model
	Clinical correlation analysis and stratification analysis of the risk model
	Independent prognostic and nomogram analysis
	Analysis of tumor immune microenvironment between high- and low-risk groups
	Immunotherapy response analysis
	Antitumor drug sensitivity analysis

	Discussion
	Conclusion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	Supplementary material
	References

	Hepatitis B virus pathogenesis relevant immunosignals uncovering amino acids utilization related risk factors guide artific ...
	Introduction
	Materials and methods
	Raw data collection and proceeding
	Collection and sequencing of liver cancer tissue
	Identification of differentially expressed genes (DEGs)
	Functional annotation and hub genes screening
	ssGSEA score calculation
	Correlation and comparison
	Diagnostic values evaluation and overall survival analysis
	Explainable machine learning algorithms for tumor tissue detection
	Long term OS analysis via GeneSet-ResNet
	Chemotherapy sensitivity prediction

	Results
	CLST definition
	CLST, co-expanded with LILs, could effectively predict HBV-liver inflammation and fibrosis
	CLST synergizing with aCD4 were risk signals in HBV-HCC
	Patients with HBV-HCC in the CLSThighaCD4high subgroup were characterized by an unfavorable status of excess nutritional us ...
	An explainable machine learning model based on feature genes belonging to CLST and aCD4 was powerful for tumor tissue detection
	Deep learning model fed by feature genes from CLST and aCD4 was efficient for LS prediction
	CLST and aCD4 guided precision anti-HBV immunotherapy and anti-cancer chemotherapy

	Discussion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	Supplementary material
	References

	Increased response to TPF chemotherapy promotes immune escape in hypopharyngeal squamous cell carcinoma
	Introduction
	Materials and methods
	Patient source and inclusion criteria
	TPF induction chemotherapy and treatment efficacy
	Gene quantitative profiling and bioinformatic analysis
	Enrichment analysis of SEC61G
	Exploring the immune-related functional relationship network
	In vivo study
	Immunohistochemistry
	Statistical analysis

	Results
	Molecular profiles in TPF-responsive patients relative to resistant patients
	Functional annotation of differentially expressed genes
	The correlation between chemosensitivity and immune cell infiltration
	Key factor in HPSCC chemosensitivity
	Functional enrichment analysis of SEC61G in HNSCC
	CDK4/6 inhibitor and EGFR inhibitor increase MHC-I expression by targeting E2F1/SEC61G axis

	Discussion
	Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	Supplementary material
	References

	Transcription factor ZBTB42 is a novel prognostic factor associated with immune cell infiltration in glioma
	Introduction
	Materials and methods
	Data collection
	Clinical tissue collection and cell culture
	Real-time quantitative polymerase chain reaction
	Immunohistochemistry
	Gene set enrichment analysis and protein-protein interaction (PPI) network
	Immune-related analysis
	Statistical analysis

	Result
	ZBTB42 expression analysis in pan-cancer and glioma
	ZBTB42 shows expression preference in malignant subtypes of glioma and is correlated with tumor progression
	Pathway enrichment analysis of dysregulation of ZBTB42 in TCGA cohort
	The high ZBTB42 expression group is associated with immune suppression in glioma
	High ZBTB42 expression is related to the stronger tumor-stemness feature of glioma
	Construction of a ZBTB42-related prognostic model

	Discussion
	Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	Supplementary material
	References

	Integrated single-cell and transcriptome sequencing analyses develops a metastasis-based risk score system for prognosis an ...
	Introduction
	Materials and methods
	Data collection
	Construction of MAGs-based risk score system (MBRSS)
	Functional enrichment analysis
	Determination of a prognostic nomogram
	Immune activity analysis
	Single-cell analysis
	Cell culture and transfection
	Quantitative real-time PCR
	Cell capability assay
	EdU assay
	Migration and invasion assays
	Immunofluorescence (IF) assay

	Statistical analysis

	Results
	MAGs-based molecular subtype in UM
	Establishment and validation of the MBRSS
	Development t of an MBRSS-Associated nomogram
	GSEA enrichment of MBRSS
	Characterization of Immune Landscape in UM
	Clinical potency analysis of MBRSS
	Single-cell analysis of MBRSS
	Knockdown of AREG blocks UM proliferation and metastasis

	Discussion
	Conclusion
	Data availability statement
	Author contributions
	Conflict of interest
	Publisher’s note
	Supplementary material
	References

	Identification of anoikis-related molecular patterns to define tumor microenvironment and predict immunotherapy response an ...
	Introduction
	Materials and methods
	Data collection and processing
	Unsupervised clustering of ARGs
	GSVA and Gene Ontology (GO) annotation
	Evaluation of tumor immune infiltration
	Establishment of the anoikis scoring model
	Single-cell transcriptome analysis
	Prediction of chemotherapeutic sensitivity
	Cell lines and real-time PCR
	Full-length transcriptome analysis
	Statistical analysis

	Results
	Pan-cancer analysis of ARGs
	Genomic and transcriptional landscapes of ARGs in STS
	Cross-talk of ARGs and identification of anoikis clusters
	Identification of distinct anoikis subtypes and related biological characteristics
	Establishment and validation of anoikis score
	The genomic and transcriptional characteristics between anoikis score groups

	Discussion
	Conclusion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	Supplementary material
	References

	URB2 as an important marker for glioma prognosis and immunotherapy
	1 Introduction
	2 Materials and methods
	2.1 Cell culture
	2.2 Transfection of siRNA
	2.3 Cell viability assay
	2.4 Western blot analysis
	2.5 Dataset acquisition and processing
	2.6 Chemotherapy sensitivity analysis
	2.7 Gene set enrichment analysis (GSEA)
	2.8 Single-cell data analysis
	2.9 Independent prognostic factor evaluation and nomogram construction
	2.11 Immune correlation analysis
	2.12 Statistical analysis

	3 Results
	3.1 URB2 expression and its relationship to overall survival in glioma, as validated by other datasets
	3.2 Protein expression of URB2 in glioblastoma multiforme in the CPTAP database
	3.3 Clinicopathological variables and overall survival are correlated with URB2 expression
	3.4 Establishment of nomogram for prognosis prediction of glioma
	3.5 Identification of URB2‐related signaling pathways
	3.6 Associations between URB2 and TMB, TNB, MSI, and PPI
	3.7 Relationships among URB2 and immune infiltrations, the tumor microenvironment, and immune checkpoint molecules
	3.8 Single-cell data analysis
	3.9 Drug sensitivity analysis

	4 Discussion
	5 Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	Supplementary material
	References

	Back Cover



