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Editorial on the Research Topic
Epigenetic drugs and therapeutic resistance for epithelial malignancies

Epigenetic modifications are widely recognized for their crucial role in the development
and progression of cancer, particularly in epithelial malignancies. These changes involve
modifications to DNA molecules and their associated proteins that can influence gene
expression without altering the DNA sequence itself. Given their heritable and reversible
nature, epigenetic modifications have become an attractive target for cancer therapy. In
recent years, there has been a growing interest in developing epigenetic drugs that can target
specific modifications and potentially overcome therapeutic resistance. Many cancers, such
as breast cancer, lung cancer, and colorectal cancer, are some of the most commonly
diagnosed epithelial malignancies worldwide. Although significant progress has been made
in developing targeted therapies, drug resistance remains a significant challenge, which often
results in treatment failure and disease progression. Epigenetic modifications, such as
nuclear dynamic, DNA methylation, covalent histone modification, histone variants, and
non-coding RNA (ncRNA)—including microRNA (miRNA/miR) and long ncRNA
(lncRNA)—have all been shown to play a critical role in the development of therapeutic
resistance in cancer.

Epigenetic modifications play a significant role in the development of drug resistance in
cancer patients. However, drugs that target these modifications, such as DNA
methyltransferase inhibitors and histone deacetylase inhibitors, have the potential to
reverse them and restore sensitivity to standard therapies (Steele et al., 2009;
Vijayaraghavalu and Labhasetwar, 2018; Bao et al., 2020). One example of a successful
treatment is the use of 5-Aza-2′-deoxycytidine (5-aza-D) to reverse cisplatin resistance in
bladder cancer cells. This effect is attributed to the demethylation of the HOXA9 gene
promoter (Xylinas et al., 2016). The use of such drugs is a promising approach to combat
drug resistance, particularly in patients with hematological cancer types.

The focus of this Research Topic is on epigenetic events in epithelial malignancies,
particularly their development, properties, and mechanistic studies.

First, Epigenetic alterations are known to play a significant role in the development of
epithelial malignancies and can also serve as biomarkers to predict their outcome. In this
Research Topic, Ye et al. explore the roles of 84 methylation-related genes (MRGs)
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modification patterns in prostate cancer (PCa) and tumor
microenvironment (TME) diversity, clinicopathological
characteristics, and various prognostic regulatory mechanisms.
The clinical significance of MRGs is highlighted, offering a new
perspective for PCa research and advancing our understanding of
TME and immunotherapy. Similarly, Cao et al. investigate the role
of gene methylation in Pancreatic adenocarcinoma (PAAD),
screening potential anti-cancer small molecule drugs and
constructing a prediction model to assess PAAD prognosis. The
classification model based on differentially methylated and
expressed genes (DMEGs) accurately distinguished between
normal and tumor samples, underscoring the potential of
epigenetic biomarkers and precision medicine in managing PAAD.

Second, therapeutic resistance poses a significant challenge in
cancer treatment, and epigenetic changes have been identified as one
of the underlying factors. DNA methylation, histone modifications,
and chromatin remodeling are examples of epigenetic alterations
that contribute to the resistance of cancer cells to chemotherapy
therapy. These modifications can disrupt the expression of genes
involved in cell cycle regulation, DNA repair, and apoptosis,
ultimately leading to the survival and proliferation of cancer cells.
Across these publications, Zhang et al. investigate molecular
subtypes of thyroid cancer based on immune cell infiltration,
underscoring the role of epigenetic modifications in tumor
progression and their potential for immunotherapy. This
highlights the significance of considering epigenetic modifications
in the development of effective cancer therapies.

The role of lncRNA in epigenetics and therapeutic resistance has
garnered increasing attention. LncRNAs regulate gene expression
through various mechanisms, including transcriptional and post-
transcriptional regulation, chromatin remodeling, and competitive
binding with miRNAs. The mechanisms involved in lncRNA-
mediated gene expression regulation are complex and diverse.
Moreover, lncRNA has been linked to the development of
therapeutic resistance. In-depth research on lncRNA is expected
to yield new strategies and directions for tumor treatment and
prevention. Throughout research, Zhang et al. identified RNF157-
AS1 as a key lncRNA associated with both doxorubicin resistance
and hepatocellular carcinoma (HCC) prognosis. Furthermore, they
developed a four-gene risk model that shows potential for predicting
HCC prognosis.

Third, in recent years, high-throughput sequencing technology,
public databases, and single-cell sequencing technology have become
important tools in studying epigenetics. High-throughput sequencing
can quickly and accurately detect changes at multiple levels, such as
genome, transcriptome, and epigenome levels, providing valuable
insights into epigenetic mechanisms. Public databases, such as
TCGA and ICGC, include large-scale datasets of tumor samples,
enabling researchers to obtain comprehensive epigenetic information
and gain important insights into cancer therapy. Within this Research
Topic, multiple studies have utilized data from hepatocellular
carcinoma (Cheng et al.; Wang et al.), prostate cancer (Deng et al.
), pancreatic cancer (Cao et al.; Cao et al.; Ji et al., 2023), lung
adenocarcinoma (Liu et al.; Zhou and Zhao), glioblastoma (Lu
et al.), colon adenocarcinoma a (Feng et al.), clear cell renal cell
carcinoma (Deng et al.), and associated drug resistance data from
GEO, TCGA, ICGC, and GTEx. These databases hold a wealth of
valuable information that is yet to be fully explored.

Single-cell sequencing technology is a newly emerging tool that
enables high-throughput sequencing of the genome, transcriptome,
epigenome, and other information of individual cells with high
resolution and accuracy. It allows researchers to study the epigenetic
differences between cells, better understand the mechanisms
underlying tumor occurrence and development, and develop
more precise cancer therapy strategies. In this Research Topic,
Deng et al. utilized the single-cell dataset of clear cell renal cell
carcinoma to identify 24 cell clusters and marker genes for two
different cell types in each cluster. Correlation analysis from the
research of Lu et al. revealed that paclitaxel treatment affects
neurons and may improve glucose metabolism and modulate
immune function in glioblastoma. This study highlights the
potential of single-cell sequencing to investigate the
pharmacological targets and signaling pathways of paclitaxel in
glioblastoma and gain insights into its mechanism of action.

In addition, promising approaches have emerged for
overcoming therapeutic resistance in epithelial malignancies,
including small molecule drugs, traditional Chinese medicine,
and network pharmacology. Small molecule drugs, in particular,
have demonstrated great potential in targeting epigenetic
modifications, specifically histone acetylation and DNA
methylation. By selectively inhibiting the enzymes responsible for
these modifications, small molecule drugs can disrupt oncogenic
signaling pathways and induce apoptosis in cancer cells.
Additionally, combination therapy with small molecule drugs and
conventional chemotherapy can enhance treatment efficacy and
reduce the likelihood of therapeutic resistance. Traditional
Chinese medicine has demonstrated promising results in the
treatment of epithelial malignancies. These medicines have multi-
target effects that can modulate epigenetic modifications, including
histone deacetylation and DNA methylation, inhibiting cancer cell
growth and proliferation. Moreover, traditional Chinese medicine
injections can improve immune function, enhancing the body’s
ability to fight cancer. Network pharmacology, a novel approach that
combines computational methods with experimental validation, has
also shown promise in identifying the molecular mechanisms
underlying drug action. It can help to identify novel targets for
cancer therapy and provide insights into the mechanisms of
therapeutic resistance. In this Research Topic, Cao et al. describe
a study on paeoniflorin (PF), an herbal active ingredient with anti-
tumor effects. They identified PF targets and performed gene
enrichment analysis to determine the biological processes
impacted by PF. This study also identified the most relevant
genes to PF treatment and validated the identified targets using
PANC-1 and Capan-2 cells. The study found that PF may regulate
inflammatory factors through the p38 MAPK signal pathway and
may have potential as a natural anti-tumor compound for pancreatic
cancer. Similarly, Wang et al. identified active ingredients and
related genes of traditional Chinese medicine injections for
treating hepatocellular carcinoma (HCC), characterizing two
HCC subtypes and identifying important genes such as SPP1 as
an oncogene in HCC. The study suggests that traditional Chinese
medicine injections can serve as an important adjuvant treatment
modality for HCC.

As research on the role of epigenetics in cancer continues to
advance, the potential for epigenetic drugs to overcome therapeutic
resistance and improve patient outcomes becomes increasingly
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clear. Future studies are likely to focus on the development of more
specific and effective epigenetic therapies that can target specific
modifications and combat drug resistance. Additionally, the integration
of high-throughput sequencing technology, single-cell sequencing, and
network pharmacology will continue to provide new insights into the
underlyingmechanisms of tumor development and therapeutic resistance.
As personalizedmedicine andprecision oncology continue to advance, the
identification of epigenetic biomarkers for predicting patient response to
therapy will become increasingly important.
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hepatocellular carcinoma:
Exploration of prognosis,
immunological characteristics
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onco-multi-OMICS approach
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School of Biological Science and Medical Engineering, Southeast University, Nanjing, China

Transcatheter arterial chemoembolization (TACE) is an effective treatment for

hepatocellular carcinoma (HCC). During TACE, chemotherapeutic agents are

locally infused into the tumor and simultaneously cause hypoxia in tumor cells.

Importantly, the poor effect of TACE in some HCC patients has been shown to

be related to dysregulated expression of hypoxia-related genes (HRGs).

Therefore, we identified 33 HRGs associated with TACE (HRGTs) by

differential analysis and characterized the mutational landscape of HRGTs.

Among 586 HCC patients, two molecular subtypes reflecting survival status

were identified by consistent clustering analysis based on 24 prognosis-

associated HRGs. Comparing the transcriptomic difference of the above

molecular subtypes, three molecular subtypes that could reflect changes in

the immune microenvironment were then identified. Ultimately, four HRGTs

(CTSO, MMP1, SPP1, TPX2) were identified based on machine learning

approachs. Importantly, risk assessment can be performed for each patient

by these genes. Based on the parameters of the risk model, we determined that

high-risk patients have a more active immune microenvironment, indicating

“hot tumor” status. And the Tumor Immune Dysfunction and Exclusion (TIDE),

the Cancer Immunome Atlas (TCIA), and Genome of Drug Sensitivity in Cancer

(GDSC) databases further demonstrated that high-risk patients have a positive

response to immunotherapy and have lower IC50 values for drugs targeting cell

cycle, PI3K/mTOR,WNT, and RTK related signaling pathways. Finally, single-cell

level analysis revealed significant overexpression of CTSO, MMP1, SPP1, and

TPX2 in malignant cell after PD-L1/CTLA-4 treatment. In conclusion, Onco-

Multi-OMICS analysis showed that HRGs are potential biomarkers for patients

with refractory TACE, and it provides a novel immunological perspective for

developing personalized therapies.
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Introduction

Hepatocellular carcinoma (HCC) accounts for 85% of all

liver cancers (Villanueva., 2019). Despite advances in treatment

strategies for HCC, the overall 5-years survival rate for patients

with HCC remains below 20% (Zheng et al., 2018). Transcatheter

arterial chemoembolization (TACE) is a therapy in which drugs

are injected into the arteries supplying HCC tissue (Chang et al.,

2020). Some studies suggest that TACE-refractory may lead to

poor prognosis in HCC patients. It has been shown that TACE

procedures can exacerbate hypoxic states (Liu et al., 2016).

However, we still lack a multi-omics data-based perspective

on the immunological characteristics of hypoxia-associated

gene sets in TACE-refractory patients.

Hypoxia is an intrinsic feature of solid tumors due to the

imbalance between tumor cell proliferation rate and vascular

nutrient supply (Gray et al., 1953). Previous studies have shown

that hypoxia can regulate tumor immune microenvironment

(TME), such as promoting the recruitment of innate immune

cells, and interfering with the differentiation and function of

adaptive immune cells (Feng et al., 2022a). Certain cytokines

secreted by malignant tumors, especially in hypoxia condition,

may induce angiogenesis and metastasis (Zarogoulidis et al.,

2014). A retrospective clinical study has shown that high pre-

treatment IL-8 levels are a significant predictor of shorter survival

and increased refractoriness of TACE (Kim et al., 2015).

Therefore, further studies are needed to investigate the

hypoxia-related genes (HRGs) that contribute to TACE

refractoriness. Importantly, exploring the relationship between

the above genes and drug resistance can lead to the development

of new therapeutic strategies.

Nowadays, the study of molecular mechanisms based on

Onco-Multi-OMICS approach has become one of the most

important tools (Feng et al., 2022b; Zhu et al., 2022).

Therefore, we searched for hub HRGs contributing to TACE

refractoriness and searched for optimal biological markers by

combining transcriptome, single cellome, immunome, and

whole-exome. Our study also illustrated the immunological

characteristics in different risk group and explored their

impact on the response to chemotherapy and immunotherapy.

In conclusion, our results were beneficial for the management

and treatment of TACE-refractory patients.

Materials and methods

Data collection and pre-processing

The mRNA expression profile data of HCC patients were

retrieved from TCGA and GEO databases, and the exclusion

criteria was as follows: lack of complete follow-up information,

0 days of survival, and repeated sequencing. Supplementary

Table S1 showed treatment details for patients in the

GSE14520 cohort before exclusion. Finally, 365 tumor samples

from the TCGA-LIHC cohort and 221 tumor samples from the

GSE14520 cohort were included. Moreover, to study TACE

response, we obtained gene expression profile data from

GSE104580, which included 100 TACE-responsive samples

and 100 TACE-refractory samples (He et al., 2022). Both

somatic mutation data and CNV data were obtained from the

TCGA-LIHC cohort, including 371 tumor samples. Notably,

‘maftools’ package was used to present the mutation status of

each gene. We removed the batch effect between RNA-seq and

microarray data by using the ‘sva’ package and made the newly

generated gene matrix based on two cohorts as a meta cohort.

Identification of hypoxia-related genes in
TACE refractoriness

Differentially expressed genes (DEGs) between different

response states were identified by using the ‘limma’ package

in the GSE104580 cohort, p < 0.05, with |logFC| > 1 as the

threshold. In addition, 1,694 HRGs were extracted from the

previous study (Zhang et al., 2020). The above DEGs and HRGs

were overlaid to identify the HRGs associated with TACE

(HRGTs).

Enrichment analysis

Differential genes between subtypes were analyzed using the

‘limma’ package (adj. p < 0.05, |logFC| > 1). Biological pathways

were annotated by using the ‘clusterProfiler’ package for Gene

Ontology (GO), Kyoto Gene and Genome Encyclopedia

(KEGG). p-value < 0.05 and q-value < 0.05 were considered

as significant enrichment pathways. Differences in biological

pathways between subtypes were assessed by using ‘GSVA’

algorithm. And KEGG geneset (c2. cp. kegg. v7. 0. symbols.

Gmt) was used as the reference gene set with FDR <0.05 as the

threshold.

Consistent clustering analysis

In the meta cohort, the prognostic value of each HRGTs was

determined by using univariate cox regression analysis.

Consensus clustering, an unsupervised clustering method, is

a common method to classify subtypes based on the CDF slope

was smallest. Consistent cluster analysis and principal
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component analysis (PCA) were performed to determine

whether each subtype was relatively independent of the other

subtypes based on prognostic HRGTs (p < 0.05) and prognostic

DEGs (p < 0.05). The number of clusters was determined by

using ‘conensusClusterPlus’ package. A 1000 replicates with

pltem = 0.8 were performed to verify the stability of the

subtypes. We used Kaplan Meier analysis and log-rank test

to assess the overall survival (OS) of HCC patients in different

subtypes.

Identification and validation of risk scores

Modeling and validation were performed by TCGA-LIHC

cohort and GSE14520 cohort, respectively. The least absolute

shrinkage and selection operator (LASSO) (Feng et al., 2022c)

model was used to remove redundant genes from HRGTs.

Subsequently, multivariate Cox regression analysis was

performed to integrate the coefficients and then establish risk

score formulas by gene expression values. Univariate and

multivariate Cox regression analyses were used to assess the

prognostic value of risk scores across the entire dataset and the

external validation dataset. Time-dependent subject operating

characteristic (ROC) curves were used to compare the predictive

accuracy of risk scores with traditional clinicopathological

parameters.

Drug sensitivity analysis

Half maximal inhibitory concentration (IC50) was calculated

using the ‘prophetic’ package. Relevant drugs targeting cell cycle,

PI3K/mTOR, WNT, and RTK pathways were obtained from the

Genome of Drug Sensitivity in Cancer (GDSC) database.

Charoentong et al. developed a quantitative scoring scheme

called the Immunophenotype Score (IPS) to identify the

determinants affecting tumor immunogenicity. IPS is a

representative gene associated with immunogenicity calculated

using z-score, and our meta cohort’s IPS was calculated from the

Cancer Immunome Atlas (TCIA) database (Wu et al., 2018).

Moreover, Peng et al. designed a computational architecture,

Tumor Immune dysfunction and ejection (TIDE) score (Jiang

et al., 2018), to integrate the two mechanisms of tumor immune

escape. Our meta cohort’s TIDE score was calculated from the

TIDE database.

Single-cell analysis

The HCC single cell dataset was obtained from GSE125499,

and single cell expression profile with annotated cell information

were obtained from the Tumor Immune Single Cell Hub

(TISCH) database (Sun et al., 2021). Finally, we compared the

expression changes of CTSO,MMP1, SPP1, TPX2 in different cell

types.

Immunological analysis

We used different algorithms to estimate the abundance of

immune cells in different samples, such as ssGSEA, TIMER,

CIBERSORT, QUANTISEQ, MCP-counter, XCELL and EPIC.

Then, ESTIMATE algorithm was used to calculate the immune

score and stromal score to reflect the TME status.

Statistical analysis

All statistical analyses were performed using the R software

(v.4.1.1). Kruskal-wallis test was used for comparison between

groups, χ2 test was used for association between covariates, and

Kaplan-Meier method was utilized to compare survival differences

between groups. More detailed statistical methods for

transcriptome data processing are covered in the above section

(Ye et al., 2022). p < 0.05 was considered statistically significant.

Results

Landscape of HRGTs in HCC

A total of 274 DEGs were first identified from the

GSE104580 cohort (Figures 1A,C) and overlapped with

existing HRGs genes in the database. Finally, 33 HRGTs were

identified (Figure 1B). The above genes may play a key role in

TACE refractoriness. HRGTs were mutated in 34 of 371 samples

with a frequency of 9.16%, most of which had a low mutation

frequency (Figure 1D). In addition, Copy number variation

(CNV) were prevalent in HRGTs. ORG1 focused on copy

number amplification, while CNV deletion frequency was

common in CDC20 (Supplementary Figure S1A). The location

of HRGTs on the chromosome (Figure 1E). GSE14520, TCGA-

LIHC were included in a meta cohort using the ‘combat’

algorithm. The network of HRGTs specifically described the

combined gene interactions and their prognostic significance

for patients (Figure 2A). Cox regression analysis identified

24 HRGTs were indicative of prognostic significance for HCC

patients (Figure 2B).

Identification ofmolecular subtypes based
on HRGTs

The classificationwas optimalwhen the k value = 2 (Figure 2C).

Two different subtypes were finally identified, with 326 cases in

subtype A and 260 cases in subtype B. The heat map showed the
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distribution of the clinical features of the different subtypes, with

most genes significantly overexpressed in subtype A (Figure 2D).

PCA plot revealed that the two molecular subtypes had a relative

discrete features (Figure 2E). Prognostic analysis revealed a

significant survival disadvantage in the subtype B (Figure 2F).

Immunemicroenvironment and biological
pathways in molecular subtypes

The ESTIMATE algorithm reveals that subtypeAhas a higher

immune score, while the stromal score was significantly

FIGURE 1
Landscape of HRGTs in HCC. (A) The heat map showed a total of DEGs were identified from the GSE104580 cohort. (B) The venn plot showed
DEGs overlapped with existing HRGs in the database. (C) The volcano plot showed dysregulation status of DEGs. (D)Mutation landscape of HRGTs in
371 samples. (E) The location of HRGTs on the human chromosome.
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downregulated compared to subtype B (Figure 3A). In addition,

ssGSEA analysis demonstrated the TME status in different

molecular subtypes. We discovered that subtype A is probably

exhibiting hot tumor characteristics. This was due to a significant

rise in activated CD4+ T cells, whichmay have a more active TME

(Figure 3B). In addition, we showed the expression of HLA as well

asICImRNAindifferentsubtypes. Interestingly, thesubtypeAhad

higher mRNA expression inmost HLAs, such as HLA-A, HLA-B,

FIGURE 2
Molecular subtypes based on HRGTs. (A) The network of HRGTs described the combined interactions and prognostic significance. (B) A forest
plot showed 24 HRGTs were indicative of prognostic significance. (C) The classification was optimal when the k value = 2. (D) Heat map of
distribution of clinicopathological characteristics and molecular subtypes based on HRGTs. (E) PCA plot revealed that the two molecular subtypes
had a relative discrete features. (F) Kaplan-Meier analysis of overall survival time in different molecular subtypes.
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HLA-C, and HLA-DDA (Figure 3C). Similarly, subtype A had

highermRNAexpressioninmostICIs,suchasCTLA4(Figure3D).

We made a hypothesis that subtype A would benefit more from

immunotherapy. To explore the biological behavior between these

different subtypes, we performed Gene set variation analysis.

Subtype A showed significant enrichment with cell cycle

pathways compared to subtype B (Figure 3E). In addition, we

performed a differential analysis between the two subtypes. It was

found that the major enrichment pathways of the 496 DEGs

identified (Figure 4A) may be associated with biological

FIGURE 3
Immune microenvironment and biological pathways in molecular subtypes. (A) The Box plot of TME score in different molecular subtypes. (B)
The Box plot of immune cells score based on ssGSEA in different molecular subtypes. The Box plot of mRNA expression of HLA (C) and ICIs (D) in
different molecular subtypes. (E) GSVA analysis in different molecular subtypes using KEGG genesets. *p < 0.05, **p < 0.01, ***p < 0.001.
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processes related to oxidative stress, extracellular genes and drug

metabolism (Figures 4B,C). Finally, we identified three different

regulatory subtypes basedon the aboveDEGs (Figure 4D).Among

them, subtype B had the worst prognosis, while subtype C had the

best prognosis (Figure 4E). And the above 33 HRGTs were

differentially expressed in different subtypes (Figure 4F).

Identification of risk score in HCC

TCGA-LIHC was used as a training cohort with overall

survival (OS) as the outcome. The LASSO model was used to

remove redundant genes (Figures 5A,B). The coefficients of each

gene were obtained by multifactorial Cox regression analysis. A

FIGURE 4
Molecular subtypes based on DEGs. (A) The Volcano plot showed DEGs in different subtypes. Heat map of unsupervised clustering analysis. (B)
The circle plot of GO enrichment analysis based onDEGs. (C) The bubble plot of KEGG enrichment analysis based onDEGs. (D) The classification was
optimal when the k value = 3. (E) Kaplan-Meier analysis of overall survival time in different molecular subtypes based on DEGs. (F) The Box plot of
mRNA expression of HRGTs in different molecular subtypes. *p < 0.05, **p < 0.01, ***p < 0.001.
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final signature containing 4 HRGTs was obtained. The formula of

each patient was as follows: riskscore = (-0.1277 × expression

level of CTSO) + (0.1995 × expression level of MMP1) +

(0.1061 × expression level of SPP1) + (0.2385 × expression

level of TPX2). Using the median value of risk scores in the

TCGA cohort, we identified two risk groups for HCC patients:

FIGURE 5
Identification and validation of risk model. (A) Determination of the number of regulators using LASSO analysis. (B) Forest plot of multivariate
Cox regression analysis. (C) The heat map showed four HRGTs expression in different risk group (TCGA cohort). Risk status plot (D) and the survival
distribution plot (E) demonstrated the poorer prognosis of HCC patients with higher risk score. (F) Sankey diagram based on different subtypes. (G)
Differences in risk scores between the two molecular subtypes based on HRGTs. (H) Differences in risk scores between the three molecular
subtypes based onDEGs. PCA plot (I), Kaplan-Meier analysis (J), ROC curve of 1,3,5 years (K)of different risk groups in the TCGA andGEOcohort. *p <
0.05, **p < 0.01, ***p < 0.001.

Frontiers in Pharmacology frontiersin.org08

Cheng et al. 10.3389/fphar.2022.1011033

15

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2022.1011033


high-risk group, and low-risk group in all cohorts.WhereMMP1,

SPP1, and TPX2 were significantly highly expressed in the high-

risk group, while CTSO was significantly highly expressed in the

low-risk group (Figure 5C). Among them, the risk status plot and

the survival distribution plot demonstrated the poorer prognosis

of HCC patients with higher risk score (Figures 5D,E). The

FIGURE 6
Characteristics of immune microenvironment in different risk groups. (A) The heat map showed correlation between risk score and immune
function score. (B) The heat map showed differences in immune function of different risk groups. (C) The box plot showed differences in immune
checkpoint mRNA expression of different risk groups. (D) The box plot showed differences in HLA mRNA expression of different risk groups. (E) The
box plot showed differences in TMB score of different risk groups. (F) Survival analysis by combining TMB score and risk score. *p < 0.05, **p <
0.01, ***p < 0.001.
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results of the sankey plot showed a strong association between

risk subtypes and molecular subtypes. And most patients in the

subtype A and low risk group were in alive status (Figures 5F–H).

PCA also showed genomic heterogeneity between the two risk

groups (Figure 5I). Survival analysis and ROC curves indicated

(Figures 5J,K) that risk score had a good prognostic value in both

the TCGA-LIHC cohort and the GSE14520 cohort, and that

survival was suboptimal in patients with both high-risk subtypes.

Moreover, we performed correlation analysis between hub genes

and m6A methylation regulators, and interestingly, it was

positively correlated with most of the regulators except

IGFBP1, IGFBP2, and IGF2BP1 (Supplementary Figure S2).

Association of risk subtypes with immune
microenvironment

We simultaneously applied different algorithms such as

TIMER, CIBERSORT, QUANTISEQ, MCP-counter, XCELL

and EPIC to estimate the immune cell infiltration status in

each samples. Correlation analysis showed that as the risk

score increased, the infiltration score of killer immune cells,

such as CD4+ T and CD8+ T cell, also increased (Figure 6A).

Similarly, there were differences in the distribution of immune

cells in the different risk groups. The high-risk group had a more

active TME (Figure 6B). In HLA and ICI analysis, the

corresponding mRNA expression was higher in high-risk

subtypes (Figures 6C,D). Based on whole-exome sequencing

data, patients with both high- and low-risk subtypes did not

show significant differences in Top mutated genes, which were

TP53, CTNNB1, and TTN (Supplementary Figures S1B,C).

Considering the importance of tumor mutational burden

(TMB) for immunotherapy, we performed a statistical analysis

of the TMB differences between the high- and low-risk groups. It

was demonstrated that high-risk group had higher TMB, which

suggested that they might have a better response to

immunotherapy (Figure 6E). Importantly, when low-TMB and

low-riskscore are combined, patients will have the best survival

advantage (Figure 6F). In addition, we validated our risk

signature in immunotherapy cohort (IMvigor210), and the

results were consistent with the above findings, namely, high-

risk patients had poor survival outcomes, and high-risk patients

were more likely to achieve complete remission (CR), as shown in

Supplementary Figure S3.

Risk subtypes could reflect drug resistance
in HCC patients

We predicted the drug sensitivity of HCC patients in the

meta cohort by utilizing the ‘pRRophetic’ algorithm and a ridge

regression model. The results showed that targeting cell cycle

(CGP-60474, GW843682x, BI-2536, and CGP-082996)

(Figure 7A), PI3K/mTOR signaling (JW-7-52-1, MK-2206,

and A-443654) (Figure 7B), WNT signaling (CHIR-99021)

(Figure 7C), and RTK signaling (Sunitinib and PHA-665752)

(Figure 7D) were significantly more effective in high-risk group

than in low-risk group. The TIDE score showed that the

effectiveness of immunotherapy may be better in high-risk

patients (Figure 7E). In addition, the IPS results also

demonstrated that the high-risk group seems to have more

immunogenic phenotypes (Figure 7F).

HRGTs in single cell levels

We annotated the GSE125499 single cell expression profile

file based on the TISCH database, and t-SNE plot demonstrated

the subpopulation of different cells (Figure 8A). In addition, the

violin plot demonstrated the expression of CTSO, MMP1, SPP1,

and TPX2 in different cell types, with SPP1 being more highly

expressed in hepatic progenitor (Figure 8B). Interestingly, after

PD-L1/CTLA-4 treatment, CTSO,MMP1, SPP1, and TPX2 were

significantly up-regulated in tumor cells (Figure 8C). Finally, we

showed the changes in the proportion of different cell types

before and after immunotherapy (Figure 8D). The above data

suggest to us that four HRGTs involved in risk signature may

have a role in reflecting the response to immunotherapy.

Discussion

Primary liver cancer is one of the sixthmost common cancers

worldwide and is a common tumor of the digestive system with

high aggressiveness and poor prognosis (Choi et al., 2020). Since

HCC is not sensitive to conventional radiotherapy, surgery

becomes the main treatment method. TACE is the treatment

of choice for intermediate-stage hepatocellular carcinoma

(Morise et al., 2014). In recent years, however, TACE

refractoriness has become a thorny issue and has received

increasing attention. This is because TACE accompanied by

tumor ischemia plays a dual role in the treatment of HCC.

Initially, TACE induces tumor necrosis by blocking the

vasculature from the hepatic artery to the HCC. However,

TACE also stimulates angiogenesis by inducing hypoxia

thereby promoting tumor recurrence and metastasis (Kenji

et al., 1997). Tumor angiogenesis and invasiveness by TACE

have been found to be mediated by hypoxic signaling, which has

been effectively inhibited by antiangiogenic therapies (Liu et al.,

2016). However, there are few studies related to HRGs associated

with TACE. Although a series of studies have identified

predictors or models associated with TACE refractoriness, no

studies explore the relevance of HGRTs to the immune

microenvironment, prognosis and drug resistance.

Onco-Multi-OMICS approach have been commonly used to

discover potential biomarkers (Chakraborty et al., 2018). To date,
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few studies have constructed prognostic models based on

combinations of multiple HRGs in TACE-refractory HCC.

Importantly, genetic features and clinical characteristics have

performed unsatisfactorily in predicting survival outcomes for

TACE-refractory patients. Therefore, we aimed to explore a new

HRGTs-based risk stratification and propose potential

therapeutic targets for HCC patients. Tumor hypoxia

promotes the growth of tumor cells and their transformation

FIGURE 7
Risk subtypes could reflect drug resistance. (A) The box plot of targeting cell cycle drug in different risk groups, including CGP-60474,
GW843682x, BI-2536, and CGP-082996. (B) The box plot of targeting PI3K/mTOR signaling drug in different risk groups, including JW-7-52-1, MK-
2206, and A-443654. (C) The box plot of targeting WNT signaling drug in different risk groups, including CHIR-99021. (D) The box plot of targeting
RTK signaling drug in different risk groups, including Sunitinib and PHA-665752. (E) The box plot of TIDE score in different risk groups. (F) The
box plot of IPS in different risk groups.
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to a malignant phenotype. The exploration of hypoxia has

opened new perspectives for HCC. Hypoxia is a typical

hallmark of TME in almost all solid tumors, caused by rapid

and uncontrolled tumor proliferation and inadequate blood

supply (Graham and Unger, 2018). Under hypoxic conditions,

HIFs bind to transcriptional co-activators and hypoxia response

elements to increase the expression of a cascade of target genes,

thereby regulating various biological processes, including

proliferation, metabolism, angiogenesis, migration and

invasion. In addition, hypoxia increases the resistance of

FIGURE 8
HRGTs in single cell levels. (A) t-SNE plot demonstrated the subpopulation of different cells. (B) The violin plot demonstrated the expression of
CTSO, MMP1, SPP1, and TPX2 in different cell types. (C) The violin plot demonstrated the expression of CTSO, MMP1, SPP1, and TPX2 in different
treatment groups. (D) The histogram showed the changes in the proportion of different cell types before and after immunotherapys.

Frontiers in Pharmacology frontiersin.org12

Cheng et al. 10.3389/fphar.2022.1011033

19

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2022.1011033


tumor cells to chemotherapy, radiotherapy and even

immunotherapy (Li et al., 2004). It can inactivate effector

cytokine production by inhibiting T cell proliferation and

function. Therefore, it is important to fully understand the

effects of hypoxia on TACE. In our study, a total of

274 DEGs were first identified in the GSE104580 cohort and

overlapped with existing HRGs genes in the database. Finally,

identifying 33 HRGTs that may have played a key role in TACE

refractoriness. Patients were classified into different subtypes

according to the expression of prognostic HRGTs and DEGs.

The ESTIMATE algorithm showed that subtype A had a higher

immune score, and subtype A had higher mRNA expression of

most HLAs and ICIs.

ICIs therapy has been shown to be a highly effective agent for

the treatment of HCC(Graham and Unger, 2018). However, it is

unclear how to identify those who may benefit most from ICIs

therapy. Hypoxia promotes tumor progression in different ways,

including proliferation, metabolism, angiogenesis and migration,

and improves resistance to ICIs(Bao and Wong, 2021). In

addition, many factors, especially in TME, can influence the

effectiveness of ICIs(Zhang and Zhang, 2020). The TME is a

complex and integral component of cancer, containing tumor

cells, stromal cells, inflammatory cells, fibroblasts, metabolites

and cytokines. To investigate the value of risk subtypes in TME

status and immunotherapy, multiple algorithms were used

simultaneously in the immune cell analysis to estimate the

immune cell infiltration score in different samples. Correlation

analysis showed that as the risk score increased, the infiltration

fraction of killer immune cells, such as CD4+ T and CD8+ T cell,

also increased (Li et al., 2021). And the high-risk group had more

active TME. Corresponding mRNA expression was higher in the

high-risk subtype in HLA and ICIs analysis. For drug resistance,

our study suggested that the high-risk group may have a better

response to immunotherapy. We used the pRRophetic algorithm

to predict drug sensitivity of HCC patients in different risk

groups. The results showed that drugs targeting cell cycle,

PI3K/mTOR signaling, WNT signaling, and RTK signaling

were more effective in high-risk patients. Importantly, the IPS

results demonstrated that the high-risk group seems to have

more immunogenic phenotypes.

For the four HRGTs involved in the risk signature, we found

that all of them were associated with tumor immunity.

Secretory phosphorylated protein 1 (SPP1) is a secreted

multifunctional phosphorylated protein that specifically

binds and activates matrix metalloproteinases (MMPs) in

cancer (Chen et al., 2019a). Its main biological functions are

involved in immune response, biomineralization and tissue

remodeling. SPP1 has also been implicated in cell growth,

proliferation, migration, apoptosis and chemotaxis. Previous

studies have demonstrated that SPP1 is overexpressed in a

variety of cancers and can be used to predict chemotherapy

prognosis, such as ovarian cancer (Zeng et al., 2018),

glioblastoma (Kijewska et al., 2017), HCC (Liu et al., 2022)

and gastric cancer (Chen et al., 2018a).MMP1 is a member of a

family of zinc-dependent endopeptidases involved in wound

healing, inflammation, cancer and angiogenic remodeling of the

extracellular matrix (ECM) (Chen et al., 2019b). It has been

shown to be closely associated with migration and invasion in

many cancers. mmp1 promotes cell cycle acceleration in cancer

cells by activating the cdc25a/CDK4-cyclin D1 and p21/cdc2-

cyclin B1 complexes (Yu et al., 2021). A newly discovered

mechanism of MMP1 in tumor promotion is by activating

PAR1 to cleave downstream oncogenic signaling pathways

(Huang et al., 2018). This is expected to be a promising

strategy to address the TACE refractoriness. TPX2 has been

identified as an oncogenic factor in a variety of cancers. For

example, upregulated expression of TPX2 enhances breast

cancer metastasis by mediating MMP2 and MMP9

expression (Tan et al., 2019). In addition, TPX2 can inhibit

cell proliferation and enhance apoptosis by blocking the PI3k/

AKT/p21 pathway and activating the p53 pathway in breast

cancer (Chen et al., 2018b). It has been shown that TPX2 is

highly expressed in HCC tissues. TPX2 expression is associated

with the infiltration status of immune cells in HCC involving B,

CD4+T and CD8+ T cells, neutrophils, macrophages and

DCs(Zhu et al., 2020). In addition, CDK5-mediated

stabilization of TPX2 promotes HCC tumorigenesis (Wang

et al., 2019). Clearly, these studies suggest that TPX2 is an

unfavorable marker for HCC and holds promise as a

therapeutic target for TACE refractoriness. CTSO is a

cysteine protease that has been shown to have both

extracellular and intracellular functions. This class of

proteases mediates intracellular protein catabolism and

selectively activates extracellular protein degradation,

macrophage function and bone resorption (Shi et al., 1995).

The role in cancer therapeutic resistance is an emerging area of

interest.

In our study, different hypoxic patterns present different

biological processes, signaling pathways and immune features.

Based on the parameters of the risk model, we determined that

high-risk patients have a more active immune

microenvironment, and HRGs are potential biomarkers for

TACE-refractory patients. Especially, it may be an

independent prognostic factor for HCC patients. However,

our study has some limitations. Firstly, we should use

advanced artificial intelligence models rather than traditional

machine learning models such as Random Forest (RF) or LASSO

models. However, for clinical applications, machine learning

models with coefficients may be more helpful to clinicians.

The clinician can calculate the survival risk of each patient

from the mRNA expression and coefficient, however, more

advanced deep learning models are a ‘black box’. Moreover,

due to the limitation of laboratory conditions, we have no more

time to conduct in vivo or vitro experiments, and we will validate

the mechanism of four hub genes in TACE-refractory patients in

the future. In conclusion, our study will provide a novel
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immunological perspective for the development of treatment

options for TACE-refractory HCC.
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Methylation has a close relationship with immune reactions, metastasis, and

cancer cell growth. Additionally, RNA methylation-related proteins have

emerged as potential cancer therapeutic targets. The connection between

the tumor microenvironment (TME) and methylation-related genes (MRGs)

remains unclear. We explored the expression patterns of the MRGs in the

genome and transcriptional fields of 796 prostate cancer (PCa) samples

using two separate data sets. We identified a relationship between patient

clinicopathological characteristics, prognosis, TME cell infiltrating qualities,

and different MRG changes, as well as the identification of two distinct

molecular groupings. Then, we formed an MRGs model to predict overall

survival (OS), and we tested the accuracy of the model in patients with PCa.

In addition, we developed a very accurate nomogram to improve the MRG

model’s clinical applicability. The low-risk group had fewer tumor mutational

burden (TMB), greater tumor immune dysfunction and exclusion (TIDE) ratings,

fewermutant genes, and better OS prospects. We discuss howMGRsmay affect

the prognosis, clinically important traits, TME, and immunotherapy

responsiveness in PCa. In order to get a better understanding of MRGs in

PCa, we could further explore the prognosis and create more effective

immunotherapy regimens to open new avenues.

KEYWORDS

Prostate cancer, Methylation modification, Tumor microenvironment, Molecular
subtype, Prognostic model

OPEN ACCESS

EDITED BY

Zhi-qian Zhang,
Southern University of Science and
Technology, China

REVIEWED BY

Congxiao Wu,
Shenzhen Qianhai Taikang hospital,
China
Shilong Liu,
Harbin Medical University Cancer
Hospital, China

*CORRESPONDENCE

Hanchao Zhang,
zhanghanchao@cdu.edu.cn

SPECIALTY SECTION

This article was submitted to
Pharmacology of Anti-Cancer Drugs,
a section of the journal
Frontiers in Pharmacology

RECEIVED 29 August 2022
ACCEPTED 28 September 2022
PUBLISHED 12 October 2022

CITATION

Ye X, Wang R, Yu X, Wang Z, Hu H and
Zhang H (2022), m6A/ m1A /m5C/m7G-
related methylation modification
patterns and immune characterization
in prostate cancer.
Front. Pharmacol. 13:1030766.
doi: 10.3389/fphar.2022.1030766

COPYRIGHT

© 2022 Ye, Wang, Yu, Wang, Hu and
Zhang. This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

Frontiers in Pharmacology frontiersin.org01

TYPE Original Research
PUBLISHED 12 October 2022
DOI 10.3389/fphar.2022.1030766

23

https://www.frontiersin.org/articles/10.3389/fphar.2022.1030766/full
https://www.frontiersin.org/articles/10.3389/fphar.2022.1030766/full
https://www.frontiersin.org/articles/10.3389/fphar.2022.1030766/full
https://www.frontiersin.org/articles/10.3389/fphar.2022.1030766/full
https://www.frontiersin.org/articles/10.3389/fphar.2022.1030766/full
https://www.frontiersin.org/articles/10.3389/fphar.2022.1030766/full
https://www.frontiersin.org/articles/10.3389/fphar.2022.1030766/full
https://www.frontiersin.org/articles/10.3389/fphar.2022.1030766/full
https://www.frontiersin.org/articles/10.3389/fphar.2022.1030766/full
https://www.frontiersin.org/articles/10.3389/fphar.2022.1030766/full
https://www.frontiersin.org/articles/10.3389/fphar.2022.1030766/full
https://www.frontiersin.org/articles/10.3389/fphar.2022.1030766/full
https://www.frontiersin.org/articles/10.3389/fphar.2022.1030766/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fphar.2022.1030766&domain=pdf&date_stamp=2022-10-12
mailto:zhanghanchao@cdu.edu.cn
https://doi.org/10.3389/fphar.2022.1030766
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://doi.org/10.3389/fphar.2022.1030766


Introduction

Prostate cancer (PCa) is the most frequent cancer diagnosis

in men. Notably, PCa is the second most common neoplasm in

senior men and the fifth leading cause of cancer-related mortality

globally, accounting for 15% of all new tumor-related cases

(Vietri et al., 2021). Most instances progress slowly and pose

no danger to life. However, despite recent improvements, PCa

still poses a serious medical challenge for the men affected.

Therefore, finding novel prognostic indicators is essential for

creating efficient treatment plans and enhancing PCa patients’

prognoses (Zhao et al., 2020).

Numerous biological processes, including cell differentiation,

sex determination, stress response, and others, are known to be

impacted by RNA methylation and its connected downstream

signaling cascades (Menezo et al., 2020). RNA modification

disorders have been linked to a wide range of cancers,

including PCa (Haruehanroengra et al., 2020). As the third

layer of epigenetics, more than 170 RNA modifications have

been identified (Haruehanroengra et al., 2020). N6-

methyladenosine (m6A), 5-methylcytosine (m5C), N1-

methyladenosin (m1A), N7-methylguanosine (m7G) are post-

transcriptional modifications, which are abundant in most

eukaryotic mRNAs and involved in almost all stages of the

RNA life cycle, including RNA transcription, translation and

degradation. They are found in mRNA, lncRNA, and miRNA.

Additionally, it is essential for the growth and development of

numerous immune system illnesses, including cancers and a wide

range of other human pathogenic activities (Dai et al., 2021). The

evidence for RNA modification pathways being dysregulated in

human malignancies is growing, and these pathways may

provide excellent targets for cancer therapy (Barbieri and

Kouzarides, 2020).

Fluctuations in RNA methylation in cancer are known as

promising targets for developing useful diagnostic, prognostic

and predictive biomarkers (Koch et al., 2018). It is also exciting to

note that methylation has been connected to antitumor

immunity in cancer immunotherapy (B. Yang et al., 2021).

Besides necroptosis, methylation is also an important cellular

response that controls the initiation, progression, and metastasis

of cancer. Nevertheless, the role of some methylation regulators

in the prognosis and possible molecular mechanisms of PCa is

not well understood (B. Yang et al., 2021). Studying methylation

landscapes can help predict the prognosis of PCa, according to

Wen-Juan Li et al. (W. J. Li et al., 2021). A study identified

8 methylation-based biomarkers (cg04633600, cg05219445,

cg05796128, cg10834205, cg16736826, cg23523811,

cg23881697, cg24755931) which were useful for aggressively

detecting PCa (Pu et al., 2021). To increase PCa cell survival

and docetaxel resistance, SPOP mutations will upregulate the

formation of stress particles (Shi et al., 2019). An invasive tumor

is more likely to form in PCa with TP53 mutation (Maxwell et al.,

2022). all of which are strongly methylation-deregulated and

closely linked to prognosis. There are a few studies on the

relationship between methylation and PCa, so we need to

further study the fact that it plays a significant role in

carcinogenesis and anticancer mechanisms.

Immunological checkpoint blocking, or immunotherapy

(ICB, PD-1/L1 and CTLA-4), has shown astounding clinical

success in a small minority of patients with long-term

responses (Kalbasi et al., 2020). However, a large number of

patients received little to no therapeutic benefit, which falls far

short of satisfying a clinical need (M. Zhang et al., 2021a). It has

only ever been assumed that the multi-step process of tumor

formation alters the genetic and epigenetic makeup of tumor

cells. But a large number of studies have shown us that the tumor

microenvironment (TME) also has a significant role in the

growth of the tumor (Vitale et al., 2019). Direct and indirect

interactions between TME components can induce changes in

biological behaviors such as immune tolerance (M. Zhang et al.,

2021a). The MRG risk score for PCa was shown by Zhipeng Xu

et al. colleagues to strongly correlate with immune infiltration

(Xu et al., 2022). The decreased effectiveness of checkpoint

inhibitors (CPIs) in advanced prostate cancer compared to

other tumor types is likely largely due to an

immunosuppressive tumor microenvironment (TME) and

impaired cellular immunity (Bansal et al., 2021). The

complexity and variability of the TME landscape should

therefore be thoroughly parsed to identify various tumor

immune phenotypes, which would also enhance the ability to

predict and direct immunotherapeutic responsiveness (Hinshaw

et al., 2019; Song et al., 2021). The discovery of very accurate

biomarkers to gauge patients’ reactions to immunotherapy will

aid in the search for novel therapeutic targets (Ehrlich, 2019).

We are now able to fully examine the transcriptome,

metabolome, proteome, and genome in order to investigate

the biomarkers and carcinogenesis framework for the therapy

and prognosis of cancer when we explore the rapid advancement

of science and the development of the Gene Expression Omnibus

(GEO) and The Cancer Genome Atlas (TCGA) databases. We

sought to determine MRG expression in PCa, prognostic

importance, and putative regulatory axis. Our results may

provide more information on the molecular processes and

prognostic biomarkers of PCa.

Materials and methods

Data sources

From the TCGA (TCGA-PCa) and GEO (GSE65858 and

GSE116918) databases, RNA-seq and clinicopathological data for

PCa were retrieved (Supplementary Table S1). RNA-seq for PCa

was converted to Transcripts Per Kilobase Million (TPM) values

as previously mentioned and was taken into consideration to be

equivalent to those for microarrays. After integrating two
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datasets (TCGA-PCa and GSE65858), batch effects were

eliminated using the “Combat” method. The subsequent

analyses included 796 PCa patients because we excluded data

from people whose OS information was lacking or less than

30 days.

Consensus clustering analysis of MRGs

These 84 MRGs are shown in Supplementary Table S2’s

details. Using “ConsensusClusterPlus”, consensus unsupervised

clustering analysis was utilized to divide patients into distinct

molecular subgroups based on MRG expression. The following

criteria were used to group these items: First, there was a fluid and

progressive growth in the cumulative distribution function curve.

Second, there was no tiny sample size in any group. Thirdly,

although there was a drop in the inter-group correlation, the

intra-group correlation rose. Gene set variation analysis (GSVA)

was carried out to study MRG variation in biological processes.

Correlation between clinical features and
prognosis molecular subtypes

Age, gender, TNM stage, and clinical stage were some of the

patient’s features. And to assess the two clusters identified by

consensus clustering’s clinical value, we looked at the

connections between molecular subtypes, clinical features, and

prognosis. In addition, Kaplan-Meier curves, generated by the

“survival” and “survminer” R programs, were used to compare

OS among different subtypes.

Relationship of molecular subtypes
with TME

Additionally, the CIBERSORT algorithm was used to

calculate the scores of 22 different human immune cell types

for each PCa sample (Hao et al., 2019). We used single-sample

Gene Set Enrichment Analysis (ssGSEA) to explore the levels of

immune cell infiltration (Hwang et al., 2021). DEG identification

and functional annotation of DEGs with the “limma” package in

R, DEGs were discovered with a p-value of 0. 05 and |logFC| of 0.

585. We use the “clusterprofiler” package in R to perform

functional enrichment analyses on the DEGs, allowing us to

have a better analysis of the hidden functions of the methylation

clusters in DEGs and discriminate between the enriched

pathways and gene functions that go along with them.

Construction of the prognostic risk model

We used unsupervised clustering to classify patients into

different subtypes (gene cluster A and gene cluster B) for further

study. All patients with PCAwere randomly divided into training

and testing groups with a ratio of 0.7:0.3 to establish a prognostic

model. The DEGs were used in univariate Cox regression analysis

in order to identify the DEGs associated with PCa’s OS. We

employ the following procedures to calculate the risk score: Risk

score is equal to (expi * coefi), where expi and coefi are the

expression and risk coefficients of each gene, respectively. To

lessen the possibility of over-fitting using prognostic DRGs, the

LASSO Cox regression technique was temporarily used. In the

two groups, the expression levels of genes connected to MRGs

were examined. We divided patients into high-and low-risk score

groups by the median of risk scores, and Kaplan-Meier analysis

and receiver-operating characteristic (ROC) curves were used to

assess the accuracy of risk scores. GSE116918 was applied as an

external testing set to validate the model.

Construction of a nomogram scoring
system

We use the nomogram calibration plot to plot the forecast

value between 3-, 5-, and 8-year survival events and virtual

observations. A variable in a nomogram scoring system that

combines risk scores and clinical characteristics has a score, and

the total score is the sum of all the individual scores (Iasonos

et al., 2008).

Mutation, immunotherapy response and
drug susceptibility analysis

It is investigated how the genes in the model relate to the

22 immune cells. The ESTIMATE algorithm was applied to

assess the immune and stromal scores of each sample. The

TCGA database generates mutation annotation formats to

identify somatic mutations in various PCa sample groups. We

determine the tumor burden mutation (TBM) score for each PCa

patient across the two categories. We investigated the

associations between tumor immune dysfunction and

exclusion (TIDE) and different groups. We created the half-

maximal semi-inhibitory concentration (IC50) values of a

pRRophetic package of anti-tumor medications for PCa in

order to examine the difference in the treatment impact of

commonly used anti-tumor agents between the two groups.
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FIGURE 1
(A) The CNV of 84 MRGs. (B) Expression distributions of differentially expressed MRGs between normal and PCa tissues. (C) The positions of the
CNV alterations on their respective chromosomes for these MRGs. (D) The overall group of MRG interactions, regulatory factor connectivity and
value of prognosis in PCa patients was identified in the network.
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FIGURE 2
(A) Consensus matrix heatmap defining two MRG clusters (k = 2). (B) Kaplan-Meier curves indicated a shorter OS in patients with MRG cluster A
than in patients with MRG cluster (B) (C) Differences in clinical features and MRG expression levels between the two MRG subtypes.
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FIGURE 3
(A) Heatmap of GSVA enrichment analysis results. (B) Significant differences occurred among the two subtypes in the infiltration of some
immune cells.

Frontiers in Pharmacology frontiersin.org06

Ye et al. 10.3389/fphar.2022.1030766

28

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2022.1030766


Results

Genetic and transcriptional alterations of
MRGs in PCa

According to the analysis, we could see significant differences

in the potential function of MRGs in PCa carcinogenesis with the

expression levels and genetic landscape of MRGs between PCa

and control samples. In this investigation, 84 MRGs were

examined (Supplementary Table S2). We then looked into

somatic copy number variation in the 84 MRGs and

discovered that there were a number of common copy

number alterations, including increases in general copy

number variation (CNV) in NUDT16, NUDT4, APAF1,

AGO2, LSM1, and ALKBH5, and decreases in CNV in

ZC3H13, ELF4A1, CCNB1, IFIT5, ELF4E3, and NUDT12

(Figure 1A). MRGs with CNV loss were expressed at lower

levels, such as ZC3H13, IFIT5, ELF4E3 and NUDT12 in PCa

samples, when compared to those in normal PCa samples

(Figure 1B), hinting that the mRNA expression of MRGs

might be regulated by CNV. Figure 1C shows the locations of

CNV alterations on their respective chromosomes in MRGs.

DNA methylation factors could modulate gene expression

(Nishiyama and Nakaanishi., 2021).

Identification of methylation-related
subtypes

We picked 796 patients (TCGA and GSE116918) to explore

the expression pattern of MRG involved in tumorigenesis for

further analysis. The 12 prognostic MRGs were recognized by

univariate Cox analysis. The prognostic MRG interactions,

regulatory factor connectivity and value of methylation in PCa

patients were identified in the methylation network (Figure 1D).

Based on the 84 MRGs’ expression profiles, we used a consensus

clustering approach to classify the PCa patients. We classified the

entire cohort as the best choice forMRG cluster A and B based on

k = 2 (Figure 2A and Supplementary Figure S1). Patients in MRG

Group B had a better OS, as hinted by the Kaplan-Meier curves

(p = 0. 012; Figure 2B). Furthermore, we demonstrate that MRG

expression and clinical pathology characteristics are significantly

different (Figure 2C).

Evaluation of TME

GSVA enrichment analysis showed that MRG cluster B and

MRG cluster A were significantly different. One was in fc gamma

r mediated phagocytosis, T cell receptor signaling pathway, small

cell lung cancer, and pathways in cancer, while another was in

huntingtons disease, alzheimers disease, parkinsons disease, and

oxidsative phosphorylation (Figure 3A). We examine the

relationships between the 22 human immune cell subsets and

the two subtypes of each PCa sample by using the CIBERSORT

method. There were important variations between the two

subtypes in terms of the invasion of certain immune cells.

(Figure 3B).

Classification of gene clusters

To investigate the underlying biological behaviour of each

focal flash pattern, the R package “limma” was used to recognize

74 DEGs linked to MRG subtypes. These were then subjected to

functional enrichment analysis (Figures 4A,B). These DEGs were

widely distributed in biological processes and were associated

with immunity (Figure 4A and Supplementary Table S3). KEGG

analysis revealed an enrichment of immunological and cancer-

related pathways, demonstrating the significance of methylation

in the immune control of the TME (Figure 4B and

Supplementary Table S4). By using univariate Cox regression

analysis, 32 prognostic DEGs related to OS time were chosen

from 74 DEGs (p < 0.05; Supplementary Table S5). In order to

validate these regulatory mechanisms, consensus clustering

techniques were utilized to share patients into two gene

categories based on prognostic genes (Figure 5A and

Supplementary Figure S2). According to Kaplan-Meier curves

(p < 0. 001; Figure 5B), patients with gene cluster B had the

highest OS, which is obviously better than that of cluster A. The

two gene subtypes’ MRG expression showed significant variety,

which was in line with our predictions (Figure 5C.) Additionally,

a comparison of the clinicopathological characteristics of several

gene subtypes revealed a substantial difference between clinical

aspects and gene expression (Figure 5D).

Construction and validation of the
prognostic risk model

We randomly grouped the patients into training and testing

groups in a ratio of 0. 7: 0. 3 (“caret package” in R). To further

narrow down the best prognostic signature, the prognostic DEGs

were run through LASSO and multivariate Cox analysis (Figures

6A–C). The risk model was built using the following steps: risk

score = (0.315* COL1A1) + (0.243* ASPN) + (-0.333* PHYHD1)

+ (-0.134* PCGEM1). A Sankey diagram was used to illustrate

the relationship between the MRG cluster, gene cluster, risk

groups, and survival status (Figure 6D). The risk score

distributions for the two categories are shown in Figures 6E,F.

We found that the expression of MRGs varied considerably

between groups (Figure 6G).

The Kaplan-Meier analysis, expression profiles, pattern of

survival status, and distribution of risk scores are shared in

Figures 7A–C, which hints that patients in the low-risk

category will live longer. The model’s high sensitivity and
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specificity for predicting survival were demonstrated by the ROC

curves, and the overall set’s 8-year AUC value was 0. 759

(Figure 7D). In Supplementary Figures S3–S5, which provide

the above analysis for the training, testing and external testing

sets, the model’s dependability is shown. Figure 7E was the

nomogram that included the model and clinical characteristics.

Evaluation of TME

We also looked at the relationship between the number of

immune cells and the four genes in the proposed model, and

found that the majority of immune cells are obviously related to

the four genes (Figure 8A). The low-risk score group was strongly

correlated with a low immunological score, while the high-risk

score group was linked to a high stromal score (Figure 8B).

Mutation, immunotherapy response and
drug susceptibility analysis

We examined how the TCGA-PCa cohort’s various risk score

groups differed in the somatic mutation distribution. The top

10 mutant genes in the high- and low-risk categories were SPOP,

TTN, TP53, KMT2D, FOXA1, MUC16, SYNE1, KMT2C,

LRP1B, and SPTA1 (Figures 8C,D). Patients in the low-risk

score group had considerably higher frequencies of SPOP

mutations compared to those in the high-risk score

group. Further, high TBM was connected with poor OS (p <
0.001; Figure 8E). The high-risk score group had lower TIDE

scores, indicating that they might have responded better to

immunotherapy (Figure 8F). Furthermore, by examining the

IC50 of regularly used anticancer medicines, we found a

significant difference between the two patient groups’

susceptibility to the treatments. (Supplementary Figure S6).

Discussion

In vitro and in vivo tumor growth, invasion, migration, and

the epithelial-mesenchymal transition of cancer cells are all

influenced by dynamic RNA methylation and modification

events, such as m6A, m1A, m5C and m7G (X. Y. Li et al.,

2022; Traube et al., 2017). In addition to playing essential

roles in various cancers and anticancer effects, modification

events can also be used as prognostic indicators (Mahmoud

and Ali, 2019). There are still several unanswered questions

regarding the overall effect and the features of TME

penetration adjusted by the effects of numerous MRGs (M. Li

et al., 2021).

We identified two distinct molecular subgroups using

84 MRGs. And patients with subtype B had a better OS.

The features of the TME varied obviously across the two

subtypes. Variations in mRNA transcriptomes between

different methylation subtypes were strongly linked with

biological pathways involved in MRG and the immune

system (Gu et al., 2021; X. Y. Li et al., 2022). We

determined two gene subtypes relied on the DEGs between

the two methylation subtypes. According to the data, MRGs

may be utilized to predict PCa’s clinical prognosis and

responsiveness to treatment (Zhang et al., 2020). As a

result, we discovered and validated the accurate prognostic

FIGURE 4
(A–B) GO and KEGG enrichment analyses.
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FIGURE 5
(A)Consensusmatrix heatmap defining twoMRG clusters (k = 2). (B) Kaplan-Meier curves indicated that patients with gene cluster B had higher
OS. (C) The expression levels of MRGs in the two gene subtypes. (D) Differences in clinical features and MRG expression levels between the gene
subtypes.
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MRG-score. Higher and lower MRG-scores were seen in

immune activation- and inhibition-driven PCa patterns,

respectively. Finally, we combined the risk score and tumor

stage to produce a quantitative nomogram, which

dramatically improved performance and made it simpler to

utilize the risk score (Jeong et al., 2020).

FIGURE 6
(A–C) The model was constructed by LASSO and multivariate Cox regression analysis. (D) The relationship between MRG cluster, gene cluster,
risk groups, and survival status was visualized in a Sankey diagram. (E–F) The distribution of risk scores for the two subgroups. (G) The expression of
ICIs-related genes was significantly different between groups.
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FIGURE 7
(A–C) The Kaplan-Meier analysis, expression profiles, pattern of survival status, and the distribution of risk scores in the entire cohort. (D) The
ROC curves for the 3, 5, and 8-year AUC values in the entire cohort. (E) The nomogram containing the model and clinical features was reliable and
sensitive for predicting survival in patients with PCa.
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FIGURE 8
(A) The connection between the number of immune cells and the 4 genes in the model. (B) The high-risk scores were linked to a low stromal
score, and the low-risk scores was highly correlated with a high immune score. (C–D) In the high- and low-risk groups, the top 10 mutant genes
were SPOP, TTN, TP53, KMT2D, FOXA1, MUC16, SYNE1, KMT2C, LRP1B and SPTA1. (E) TBM score between different groups. (F) TIDE scores were
lower in the high-risk score group, suggesting that the high-risk score group was more responsive to immunotherapy.
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A growing body of research has established that MRG

alteration played a significant role in the post-transcriptional

modification of gene expression, which was strongly

associated with tumor formation, maintenance, progression,

and prognosis, thanks to advancements in detecting

technology. As reported, high TET3 expression

(m5C-related gene) was related to poor prognosis of PCa

(Yu et al., 2022). According to certain research, m6A

alteration significantly influences the stability of mRNA,

which in turn contributes to PCa development (Du C et al.,

2020). PCa bone metastases were related to high m6A levels of

NEAT1-1, and m6A levels of NEAT1-1 were a reliable

indicator of ultimate death (Wen et al., 2020). In recent

years, m7G has been thought to be actively implicated in

cancer-related translation problems. The m7G-score has

been shown to be an independent measure of BCR-free

survival in patients with PCa (Xin et al., 2022).

Additionally, recent research has shown that RNA

modification regulators may serve as biomarkers for cancer

diagnosis and prognosis surveillance (Haruehanroengra et al.,

2020). Nevertheless, a thorough examination of the prognostic

significance and functional annotation of MRGs regulators in

PCa is still lacking.

PCa patients’ prognoses are poor. There were significant

differences between patient subgroups in terms of TME,

immunological checkpoints, CSC index, prognosis,

mutation, and therapy susceptibility after standard therapy

because of high levels of checkpoints, lymphocytes that

infiltrate tumors, and tumor neoantigens (D. Li et al.,

2022). Despite recent developments in immunotherapy,

patients with PCa still experience heterogeneity in their

results, underlining the important role of TME in the

growth and development of PCa tumors (Yu et al., 2022).

Immune cells, including granulocytes, lymphocytes, and

macrophages, are important biological components of

TME. These cells participate in a variety of immunological

responses and behaviors, such as the inflammatory response

that tumors trigger to help them survive (Schmitt and Greten.,

2021). Additional data points to the TME having a significant

impact on cancer development, progression, and therapeutic

resistance (Cao et al., 2021; Martínez-Reyes and Chandel.,

2021). Immune inhibition-driven methylation (subtype A)

was associated with a higher risk score, whereas immune

activation-driven methylation (subtype B) was related to a

lower risk score. We discovered that the relative richness of

22 immune cells as well as the two molecular subtypes’

differences in risk scores and TME traits were significantly

different.

Various kinds of T cells are crucial components of the

immune defense against PCa (K. Yang and Kaliies., 2021).

Higher densities indicated a positive prognosis as tumor-

infiltrating T cell densities in PCa samples were higher

than those in normal tissues (Yu et al., 2022). The

enhanced infiltration of activated memory CD4+ and CD8+

T cells as well as gamma delta T cells was seen in the subtype B

and low risk score groups, indicating that they favourably

contribute to the progression of PCa. A worse prognosis was

associated with Treg infiltration, which blocks the immune

system’s anti-cancer response (Oh and Fong., 2021). This is in

line with our observation that patients in the high-risk group

and those with subtype B had more Tregs in the TME than

those in the low-risk group. Recently, it was shown that B cells

aid in the immune response (Fridman et al., 2022; Zhang et al.,

2022).

Petitprez et al. believed that in soft-tissue sarcomas, the

response to PD-1 inhibition was positively linked with B cell

enrichment (Petitprez et al., 2020). Patients who responded

to immune checkpoint blockade showed considerably higher

levels of the B cell-related genes than those who did not,

according to Helmink et al. (Fridman et al., 2022).

Additionally, in PCa, tumor-infiltrating B lymphocytes

were linked to a good prognosis (Horii et al., 2021).

Patients with significant B cell infiltration in their

metastatic PCa had prolonged overall survival and a

significantly lower risk of the disease coming back

(Engelhard et al., 2021). The results of this study

demonstrated that B cells are not only incidental

contributors to anti-cancer immunotherapy; rather, they

present a novel immunotherapy target and may be a

potent cancer-fighting tool. In our study, we found

subtype B had considerably fewer naive B cells and higher

MRG-score, which were associated with poorer overall

survival (Franchina et al., 2018).

In this study, the expression levels of a part of immune

cells were found to be obviously different in the risk model of

MRGs. The stromal score, CD4 memory resting T cells,

CD4 memory activated T cells, follicular helper T cells,

M0 macrophages, M1 macrophages, and resting mast cells

were linked with the risk score. This implies that PCa immune

cell infiltration is related to the risk model created using MRGs

(He et al., 2022). Our study shows that differentially expressed

ASPN,COL1A1, PCGEM1 and PHYHD1 was associated with

immune infiltration. The high-risk score group was related to

a high stromal score, and the low-risk score group was closely

associated with a high immune score. Pu Zhang et al. showed

that while ASPN is overexpressed in PCa, a bad prognosis is

predicted by excessively high ASPN expression and low

expression of other genes, ASPN is independently

associated with overall survival (OS) of patients (P. Zhang

et al., 2021b). High expression of COL1A1 can predict the

prognosis of cancer and is a reliable biomarker and

therapeutic target (Ma et al., 2019; Geng et al., 2021). And

many studies have shown that the high expression of

PCGEM1 and PHYHD1 can promote the value-added

migration and invasion of cancer, affecting prognosis (Jiang

et al., 2019; Zhang et al., 2019; Liu et al., 2022). Our study

Frontiers in Pharmacology frontiersin.org13

Ye et al. 10.3389/fphar.2022.1030766

35

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2022.1030766


identified the involvement of MRGs and constructed a risk

model for PCa. However, this must be confirmed using

additional clinical PCa tissue samples and cell experiments.

MRGs are generally involved in the occurrence and

development of PCa. An independent risk factor for a bad

prognosis in PCa patients and a high-risk score is related to

patient outcome (Chong et al., 2021). The risk score is

associated with PCa stromal score and levels of

CD4 memory resting T cells, M0 macrophages,

M1 macrophages, resting mast cells, CD4 memory activated

T cells, and follicular helper T cells (Xu et al., 2021).

The investigation suffered from a variety of flaws. First and

foremost, the samples applied in our investigation were

collected retrospectively, all the outcomes were obtained

using only data from public databases, and validation in a

separate clinical patient cohort is still lacking despite the use

of external datasets for validation. Next, surgery, neoadjuvant

chemotherapy, and chemoradiotherapy, which may have

affected how well the immune response and methylation

condition performed.

Conclusion

Here, we disclosure the roles of MRGs modification

patterns in the PCa and TME diversity, clinicopathological

characteristics and a wide range of prognostic regulatory

mechanisms. Next, the therapeutic obligations of MRGs in

immunotherapy and commonly used antineoplastic drugs are

explained by us. These discoveries emphasize the key clinical

significance of MRGs, which offer a new view into the field of

PCa research and promote the understanding of TME and

immunotherapy in the future.

Data availability statement

The original contributions presented in the study are

included in the article/Supplementary Material, further

inquiries can be directed to the corresponding author.

Author contributions

HZ conceived and designed the manuscript. XYe, RW and

XYu collected and analyzed the data. ZW and HH checked the

article.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/fphar.

2022.1030766/full#supplementary-material

SUPPLEMENTARY TABLE S1
The details of clinical characteristics.

SUPPLEMENTARY TABLE S2
The list of MRGs.

SUPPLEMENTARY TABLE S3
The details of GO analysis.

SUPPLEMENTARY TABLE S4
The details of KEGG analysis.

SUPPLEMENTARY TABLE S5
32 prognostic DEGs by univariate Cox analysis.

References

Bansal, D., Reimers, M. A., Knoche, E. M., and Pachynski, R. K. (2021).
Immunotherapy and immunotherapy combinations in metastatic Castration-
Resistant prostate cancer. Cancers (Basel) 13, 334. doi:10.3390/cancers13020334

Barbieri, I., and Kouzarides, T. (2020). Role of RNA modifications in cancer. Nat.
Rev. Cancer 20, 303–322. doi:10.1038/s41568-020-0253-2

Cao, S., Lin, C., Li, X., Liang, Y., and Saw, P. E. (2021). TME-Responsive
multistage nanoplatform for siRNA delivery and effective cancer therapy. Int.
J. Nanomedicine 16, 5909–5921. doi:10.2147/IJN.S322901

Chong, W., Shang, L., Liu, J., Fang, Z., Du, F., Wu, H., et al. (2021). M(6)A
regulator-based methylation modification patterns characterized by distinct tumor
microenvironment immune profiles in colon cancer. Theranostics 11, 2201–2217.
doi:10.7150/thno.52717

Dai, X., Ren, T., Zhang, Y., and Nan, N. (2021). Methylation multiplicity and its
clinical values in cancer. Expert Rev. Mol. Med. 23, e2. doi:10.1017/erm.2021.4

Du, C., Lv, C., Feng, Y., and Yu, S. (2020). Activation of the KDM5A/miRNA-
495/YTHDF2/m6A-MOB3B axis facilitates prostate cancer progression.
J. Exp. Clin. Cancer Res. 39, 223. doi:10.1186/s13046-020-01735-3

Ehrlich, M. (2019). DNA hypermethylation in disease: Mechanisms and clinical
relevance. Epigenetics 14, 1141–1163. doi:10.1080/15592294.2019.1638701

Engelhard, V., Conejo-Garcia, J. R., Ahmed, R., Nelson, B. H., Willard-Gallo, K.,
Bruno, T. C., et al. (2021). B cells and cancer. Cancer Cell 39, 1293–1296. doi:10.
1016/j.ccell.2021.09.007

Franchina, D. G., Grusdat, M., and Brenner, D. (2018). B-Cell metabolic
remodeling and cancer. Trends Cancer 4, 138–150. doi:10.1016/j.trecan.2017.12.006

Frontiers in Pharmacology frontiersin.org14

Ye et al. 10.3389/fphar.2022.1030766

36

https://www.frontiersin.org/articles/10.3389/fphar.2022.1030766/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fphar.2022.1030766/full#supplementary-material
https://doi.org/10.3390/cancers13020334
https://doi.org/10.1038/s41568-020-0253-2
https://doi.org/10.2147/IJN.S322901
https://doi.org/10.7150/thno.52717
https://doi.org/10.1017/erm.2021.4
https://doi.org/10.1186/s13046-020-01735-3
https://doi.org/10.1080/15592294.2019.1638701
https://doi.org/10.1016/j.ccell.2021.09.007
https://doi.org/10.1016/j.ccell.2021.09.007
https://doi.org/10.1016/j.trecan.2017.12.006
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2022.1030766


Fridman, W. H., Meylan, M., Petitprez, F., Sun, C. M., Italiano, A., and Sautès-
Fridman, C. (2022). B cells and tertiary lymphoid structures as determinants of
tumour immune contexture and clinical outcome. Nat. Rev. Clin. Oncol. 19,
441–457. doi:10.1038/s41571-022-00619-z

Geng, Q., Shen, Z., Li, L., and Zhao, J. (2021). COL1A1 is a prognostic biomarker and
correlated with immune infiltrates in lung cancer. PeerJ 9, e11145. doi:10.7717/peerj.11145

Gu, Y., Wu, X., Zhang, J., Fang, Y., Pan, Y., Shu, Y., et al. (2021). The evolving
landscape of N(6)-methyladenosine modification in the tumor microenvironment.
Mol. Ther. 29, 1703–1715. doi:10.1016/j.ymthe.2021.04.009

Hao, Y., Yan, M., Heath, B. R., Lei, Y. L., and Xie, Y. (2019). Fast and robust
deconvolution of tumor infiltrating lymphocyte from expression profiles using least
trimmed squares. PLoS Comput. Biol. 15, e1006976. doi:10.1371/journal.pcbi.1006976

Haruehanroengra, P., Zheng, Y. Y., Zhou, Y., Huang, Y., and Sheng, J. (2020). RNA
modifications and cancer.RNABiol. 17, 1560–1575. doi:10.1080/15476286.2020.1722449

He, R., Man, C., Huang, J., He, L., Wang, X., Lang, Y., et al. (2022). Identification of
RNA Methylation-Related lncRNAs signature for predicting hot and cold tumors and
prognosis in colon cancer. Front. Genet. 13, 870945. doi:10.3389/fgene.2022.870945

Hinshaw, D. C., and Shevde, L. A. (2019). The tumor microenvironment innately
modulates cancer progression. Cancer Res. 79, 4557–4566. doi:10.1158/0008-5472.
CAN-18-3962

Horii, M., and Matsushita, T. (2021). Regulatory B cells and T cell regulation in
cancer. J. Mol. Biol. 433, 166685. doi:10.1016/j.jmb.2020.10.019

Hwang, B. O., Park, S. Y., Cho, E. S., Zhang, X., Lee, S. K., Ahn, H. J., et al. (2021).
Platelet CLEC2-Podoplanin axis as a promising target for oral cancer treatment.
Front. Immunol. 12, 807600. doi:10.3389/fimmu.2021.807600

Iasonos, A., Schrag, D., Raj, G. V., and Panageas, K. S. (2008). How to build and
interpret a nomogram for cancer prognosis. J. Clin. Oncol. 26, 1364–1370. doi:10.
1200/JCO.2007.12.9791

Jeong, S. H., Kim, R. B., Park, S. Y., Park, J., Jung, E. J., Ju, Y. T., et al. (2020).
Nomogram for predicting gastric cancer recurrence using biomarker gene
expression. Eur. J. Surg. Oncol. 46, 195–201. doi:10.1016/j.ejso.2019.09.143

Jiang, H., Guo, S., Zhao, Y., Wang, Y., Piao, H. Y., Wu, Y., et al. (2019). Circulating
long non-coding RNA PCGEM1 as a novel biomarker for gastric cancer diagnosis.
Pathol. Res. Pract. 215, 152569. doi:10.1016/j.prp.2019.152569

Kalbasi, A., and Ribas, A. (2020). Tumour-intrinsic resistance to immune
checkpoint blockade. Nat. Rev. Immunol. 20, 25–39. doi:10.1038/s41577-019-
0218-4

Koch, A., Joosten, S. C., Feng, Z., de Ruijter, T. C., Draht, M. X., Melotte, V., et al.
(2018). Analysis of DNA methylation in cancer: Location revisited. Nat. Rev. Clin.
Oncol. 15, 459–466. doi:10.1038/s41571-018-0004-4

Li, D., Li, K., Zhang, W., Yang, K. W., Mu, D. A., Jiang, G. J., et al. (2022). The
m6A/m5C/m1A regulated gene signature predicts the prognosis and correlates with
the immune status of hepatocellular carcinoma. Front. Immunol. 13, 918140. doi:10.
3389/fimmu.2022.918140

Li, M., Zha, X., and Wang, S. (2021). The role of N6-methyladenosine mRNA in
the tumor microenvironment. Biochim. Biophys. Acta. Rev. Cancer 1875, 188522.
doi:10.1016/j.bbcan.2021.188522

Li, W. J., He, Y. H., Yang, J. J., Hu, G. S., Lin, Y. A., Ran, T., et al. (2021). Profiling
PRMTmethylome reveals roles of hnRNPA1 arginine methylation in RNA splicing
and cell growth. Nat. Commun. 12, 1946. doi:10.1038/s41467-021-21963-1

Li, X. Y., Wang, S. L., Chen, D. H., Liu, H., You, J. X., Su, L. X., et al. (2022).
Construction and validation of a m7G-Related Gene-Based prognostic model for
gastric cancer. Front. Oncol. 12, 861412. doi:10.3389/fonc.2022.861412

Liu, H., He, X., Li, T., Qu, Y., Xu, L., Hou, Y., et al. (2022). PCGEM1 promotes
proliferation, migration and invasion in prostate cancer by sponging miR-506 to
upregulate TRIAP1. BMC Urol. 22, 14. doi:10.1186/s12894-022-00969-x

Ma, H. P., Chang, H. L., Bamodu, O. A., Yadav, V. K., Huang, T. Y., Wu, A., et al.
(2019). Collagen 1A1 (COL1A1) is a reliable biomarker and putative therapeutic
target for hepatocellular carcinogenesis and metastasis. Cancers (Basel) 11, E786.
doi:10.3390/cancers11060786

Mahmoud, A. M., and Ali, M. M. (2019). Methyl donor micronutrients that modify
DNA methylation and cancer outcome. Nutrients 11, E608. doi:10.3390/nu11030608

Martínez-Reyes, I., and Chandel, N. S. (2021). Cancer metabolism: Looking
forward. Nat. Rev. Cancer 21, 669–680. doi:10.1038/s41568-021-00378-6

Maxwell, K. N., Cheng, H. H., Powers, J., Gulati, R., Ledet, E. M., Morrison, C.,
et al. (2022). Inherited TP53 variants and risk of prostate cancer. Eur. Urol. 81,
243–250. doi:10.1016/j.eururo.2021.10.036

Menezo, Y., Clement, P., Clement, A., and Elder, K. (2020). Methylation: An
ineluctable biochemical and physiological process essential to the transmission of
life. Int. J. Mol. Sci. 21, E9311. doi:10.3390/ijms21239311

Nishiyama, A., and Nakanishi, M. (2021). Navigating the DNA methylation
landscape of cancer. Trends Genet. 37, 1012–1027. doi:10.1016/j.tig.2021.05.002

Oh, D. Y., and Fong, L. (2021). Cytotoxic CD4(+) T cells in cancer: Expanding the
immune effector toolbox. Immunity 54, 2701–2711. doi:10.1016/j.immuni.2021.11.015

Petitprez, F., Meylan, M., de Reyniès, A., Sautès-Fridman, C., and Fridman, W. H.
(2020). The tumor microenvironment in the response to immune checkpoint
blockade therapies. Front. Immunol. 11, 784. doi:10.3389/fimmu.2020.00784

Pu, Y., Li, C., Yuan, H., and Wang, X. (2021). Identification of prostate cancer
specific methylation biomarkers from a multi-cancer analysis. BMC Bioinforma. 22,
492. doi:10.1186/s12859-021-04416-w

Schmitt, M., and Greten, F. R. (2021). The inflammatory pathogenesis of colorectal
cancer. Nat. Rev. Immunol. 21, 653–667. doi:10.1038/s41577-021-00534-x

Shi, Q., Zhu, Y., Ma, J., Chang, K., Ding, D., Bai, Y., et al. (2019). Prostate Cancer-
associated SPOP mutations enhance cancer cell survival and docetaxel resistance by
upregulating Caprin1-dependent stress granule assembly. Mol. Cancer 18, 170.
doi:10.1186/s12943-019-1096-x

Song, W., Ren, J., Xiang, R., Kong, C., and Fu, T. (2021). Identification of
pyroptosis-related subtypes, the development of a prognosis model, and
characterization of tumor microenvironment infiltration in colorectal cancer.
Oncoimmunology 10, 1987636. doi:10.1080/2162402X.2021.1987636

Traube, F. R., and Carell, T. (2017). The chemistries and consequences of DNA
and RNA methylation and demethylation. RNA Biol. 14, 1099–1107. doi:10.1080/
15476286.2017.1318241

Vietri, M. T., D’Elia, G., Caliendo, G., Resse, M., Casamassimi, A., Passariello, L.,
et al. (2021). Hereditary prostate cancer: Genes related, target therapy and
prevention. Int. J. Mol. Sci. 22, 3753. doi:10.3390/ijms22073753

Vitale, I., Manic, G., Coussens, L. M., Kroemer, G., and Galluzzi, L. (2019).
Macrophages and metabolism in the tumor microenvironment. Cell Metab. 30,
36–50. doi:10.1016/j.cmet.2019.06.001

Wen, S., Wei, Y., Zen, C., Xiong, W., Niu, Y., and Zhao, Y. (2020). Long non-
coding RNA NEAT1 promotes bone metastasis of prostate cancer through N6-
methyladenosine. Mol. Cancer 19, 171. doi:10.1186/s12943-020-01293-4

Xin, S., Deng, Y., Mao, J., Wang, T., Liu, J., Wang, S., et al. (2022).
Characterization of 7-Methylguanosine identified biochemical recurrence and
tumor immune microenvironment in prostate cancer. Front. Oncol. 12, 900203.
doi:10.3389/fonc.2022.900203

Xu, B., Lu, M., Yan, L., Ge, M., Ren, Y., Wang, R., et al. (2021). A Pan-Cancer
analysis of predictive methylation signatures of response to cancer immunotherapy.
Front. Immunol. 12, 796647. doi:10.3389/fimmu.2021.796647

Xu, Z., Chen, S., Zhang, Y., Liu, R., and Chen, M. (2022). Roles of m5C RNA
modification patterns in biochemical recurrence and tumor microenvironment
characterization of prostate adenocarcinoma. Front. Immunol. 13, 869759. doi:10.
3389/fimmu.2022.869759

Yang, B.,Wang, J. Q., Tan, Y., Yuan, R., Chen, Z. S., and Zou, C. (2021). RNAmethylation
and cancer treatment. Pharmacol. Res. 174, 105937. doi:10.1016/j.phrs.2021.105937

Yang, K., and Kallies, A. (2021). Tissue-specific differentiation of CD8(+) resident
memory T cells. Trends Immunol. 42, 876–890. doi:10.1016/j.it.2021.08.002

Yu, G., Bao, J., Zhan, M., Wang, J., Li, X., Gu, X., et al. (2022). Comprehensive
analysis of m5C methylation regulatory genes and tumor microenvironment in
prostate cancer. Front. Immunol. 13, 914577. doi:10.3389/fimmu.2022.914577

Zhang, B., Wu, Q., Li, B., Wang, D., Wang, L., and Zhou, Y. L. (2020). M(6)A
regulator-mediated methylation modification patterns and tumor
microenvironment infiltration characterization in gastric cancer. Mol. Cancer 19,
53. doi:10.1186/s12943-020-01170-0

Zhang, M., Song, J., Yuan, W., Zhang, W., and Sun, Z. (2021a). Roles of RNA
methylation on tumor immunity and clinical implications. Front. Immunol. 12,
641507. doi:10.3389/fimmu.2021.641507

Zhang, Q., Zheng, J., and Liu, L. (2019). The long noncoding RNA
PCGEM1 promotes cell proliferation, migration and invasion via targeting the
miR-182/FBXW11 axis in cervical cancer. Cancer Cell Int. 19, 304. doi:10.1186/
s12935-019-1030-8

Zhang, Q., Zhu, Z., Guan, J., and Zheng, C. (2022). Identification and
assessment of Necroptosis-Related genes in clinical prognosis and immune
cells in diffuse large B-Cell lymphoma. Front. Oncol. 12, 904614. doi:10.3389/
fonc.2022.904614

Zhao, S. G., Chen, W. S., Li, H., Foye, A., Zhang, M., Sjöström, M., et al. (2020).
The DNA methylation landscape of advanced prostate cancer. Nat. Genet. 52,
778–789. doi:10.1038/s41588-020-0648-8

Zhang, P., Qian, B., Liu, Z., Wang, D., Lv, F., Xing, Y., et al. (2021b). Identification
of novel biomarkers of prostate cancer through integrated analysis. Transl. Androl.
Urol. 10, 3239–3254. doi:10.21037/tau-21-401

Frontiers in Pharmacology frontiersin.org15

Ye et al. 10.3389/fphar.2022.1030766

37

https://doi.org/10.1038/s41571-022-00619-z
https://doi.org/10.7717/peerj.11145
https://doi.org/10.1016/j.ymthe.2021.04.009
https://doi.org/10.1371/journal.pcbi.1006976
https://doi.org/10.1080/15476286.2020.1722449
https://doi.org/10.3389/fgene.2022.870945
https://doi.org/10.1158/0008-5472.CAN-18-3962
https://doi.org/10.1158/0008-5472.CAN-18-3962
https://doi.org/10.1016/j.jmb.2020.10.019
https://doi.org/10.3389/fimmu.2021.807600
https://doi.org/10.1200/JCO.2007.12.9791
https://doi.org/10.1200/JCO.2007.12.9791
https://doi.org/10.1016/j.ejso.2019.09.143
https://doi.org/10.1016/j.prp.2019.152569
https://doi.org/10.1038/s41577-019-0218-4
https://doi.org/10.1038/s41577-019-0218-4
https://doi.org/10.1038/s41571-018-0004-4
https://doi.org/10.3389/fimmu.2022.918140
https://doi.org/10.3389/fimmu.2022.918140
https://doi.org/10.1016/j.bbcan.2021.188522
https://doi.org/10.1038/s41467-021-21963-1
https://doi.org/10.3389/fonc.2022.861412
https://doi.org/10.1186/s12894-022-00969-x
https://doi.org/10.3390/cancers11060786
https://doi.org/10.3390/nu11030608
https://doi.org/10.1038/s41568-021-00378-6
https://doi.org/10.1016/j.eururo.2021.10.036
https://doi.org/10.3390/ijms21239311
https://doi.org/10.1016/j.tig.2021.05.002
https://doi.org/10.1016/j.immuni.2021.11.015
https://doi.org/10.3389/fimmu.2020.00784
https://doi.org/10.1186/s12859-021-04416-w
https://doi.org/10.1038/s41577-021-00534-x
https://doi.org/10.1186/s12943-019-1096-x
https://doi.org/10.1080/2162402X.2021.1987636
https://doi.org/10.1080/15476286.2017.1318241
https://doi.org/10.1080/15476286.2017.1318241
https://doi.org/10.3390/ijms22073753
https://doi.org/10.1016/j.cmet.2019.06.001
https://doi.org/10.1186/s12943-020-01293-4
https://doi.org/10.3389/fonc.2022.900203
https://doi.org/10.3389/fimmu.2021.796647
https://doi.org/10.3389/fimmu.2022.869759
https://doi.org/10.3389/fimmu.2022.869759
https://doi.org/10.1016/j.phrs.2021.105937
https://doi.org/10.1016/j.it.2021.08.002
https://doi.org/10.3389/fimmu.2022.914577
https://doi.org/10.1186/s12943-020-01170-0
https://doi.org/10.3389/fimmu.2021.641507
https://doi.org/10.1186/s12935-019-1030-8
https://doi.org/10.1186/s12935-019-1030-8
https://doi.org/10.3389/fonc.2022.904614
https://doi.org/10.3389/fonc.2022.904614
https://doi.org/10.1038/s41588-020-0648-8
https://doi.org/10.21037/tau-21-401
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2022.1030766


Deciphering the action
mechanism of paeoniflorin in
suppressing pancreatic cancer: A
network pharmacology study
and experimental validation
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Teng Wang3, Chaoxu Wu1* and Xiaofeng Rong1*
1Department of Integrated Traditional Chinese and Western Medicine, The First Affiliate Hospital of
Chongqing Medical University, Chongqing, China, 2Hubei University of Chinese Medicine, Wuhan,
China, 3Chongqing Medical University, Chongqing, China

Background: Paeoniflorin (PF) is the main active component of Chinese

herbaceous peony that has been shown to have an anti-tumor effect.

However, there are few studies on the prevention and treatment of

pancreatic cancer with PF.

Methods: We gathered Microarray data pertaining to paeoniflorin intervention

in pancreatic cancer by utilizing the GEO database (GSE97124). Then, the DEGs

were filtered by the 33R program. RNA-seq data of pancreatic cancer and

normal tissue samples were taken from the TCGA and GTEx databases,

respectively, and the WGCNA technique was utilized to examine the

pancreatic cancer-specific genes. Paeoniflorin target genes for the

treatment of pancreatic cancer were determined based on the overlap

between DEGs and WGCNA. GO and KEGG enrichment analyses were then

performed on paeoniflorin target genes to discover which biological processes

were impacted. Using the 3 hierarchical methods included in the Cytohubba

plugin, we re-screened the hub genes in the target genes to find the genesmost

relevant to paeoniflorin treatment. The overall survival effects of hub genes

were confirmed using the TCGA database. Finally, the paeoniflorin targets

identified by the network pharmacology analysis were validated using

PANC-1 and Capan-2 cells.

Results: We identified 148 main potential PF targets, and gene enrichment

analysis suggested that the aforementioned targets play a crucial role in the

regulation of MAPK, PI3K-AKT, and other pathways. The further screening of the

prospective targets resulted in the identification of 39 hub genes. Using the

TCGA database, it was determined that around 33.33% of the hub gene’s high

expression was linked with a bad prognosis. Finally, we demonstrated that PF

inhibits IL-6 and IL-10 expression and p38 phosphorylation in pancreatic cancer

cells, thereby reducing inflammation.

Conclusion: PF may regulate inflammatory factors mainly through the

p38 MAPK signal pathway. These findings provide theoretical and
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experimental evidence suggesting the PF as a promising natural source of anti-

tumor compounds for pancreatic cancer.

KEYWORDS

paeoniflorin, pancreatic cancer, network pharmacology, p38 MAPK signal pathway,
WGCNA

1 Introduction

Over the previous decade, the yearly number of pancreatic

cancer diagnoses has increased from 43,140 to 60,430 (Jemal et al.,

2010; Siegel et al., 2021). It is now the third highest cause of cancer

mortality in the United States, behind lung cancer and breast cancer

(Grossberg et al., 2020). Despite racial disparities in the risk of

gastrointestinal disease, studies from numerous nations on various

continents and with diverse ethnic structures indicate that the

prevalence of pancreatic cancer continues to increase due to the

aging of the global population (Jia et al., 2018; Nipp et al., 2018;

Klein, 2021).Moreover, themortality rate of pancreatic cancer is still

high compared with other malignancies, and the ensuing social

impact cannot be underestimated. This may be owing to the subtle

start, quick development, and early metastasis of pancreatic cancer

and the fact that the majority of patients have lost the window of

opportunity for surgery at the time of diagnosis (Strobel et al., 2019).

In addition, pancreatic cancer surgery is challenging and needs

negative margins under the microscope. Only a minority of patients

benefit from surgery (Kamisawa et al., 2016; Kang et al., 2016).

Therefore, the greatmajority of patients with pancreatic cancermust

receive radiation treatment or chemotherapy.

In recent years, novel targeted medicines and immunotherapy,

including Erlotinib, Everolimus, and Olaparix, have offered patients

some hope (Wong and Lemoine, 2009; Leroux and Konstantinidou,

2021). However, these medications and treatments continue to have

many adverse events. For instance, during the administration of

erlotinib, side effects such as dermatitis and diarrhea occurred with a

frequency that was not negligible (Rudin et al., 2008). There have

also been occasional reports of erlotinib causing interstitial

pneumonia and treatment-related fatalities (Wang et al., 2016).

These adverse effects have a devastating impact on older

pancreatic cancer patients and may even force them to

discontinue therapy. In addition, owing to individual variances,

pricey targeted medications are ineffective for certain individuals.

This puts the therapeutic use of some targeted medications in a

dilemma. If pancreatic cancer patients are going to live longer and

have a better quality of life, it is still important to find newmedicines

to treat the disease.

Many herbs have healing properties and have been used to treat

diseases in China for thousands of years. However, it should be

reminded that hazardous substances and non-pharmaceutical

chemicals are also present throughout the herb. Therefore, it is a

reasonable choice to investigate natural substances with well-defined

chemical structures that are isolated from herbal remedies as

medicinal pharmaceuticals. Numerous natural compounds, like

paclitaxel, resveratrol, etc., have shown potent anticancer activity.

Even at large concentrations, several natural chemicals are well

tolerated by patients (Rejhová et al., 2018). Therefore, novel natural

chemicals have a promising future in the creation of anti-cancer

medications. Paeoniflorin (PF) is the main active component of

Radix Paeoniae Alba, Radix Paeoniae Rubra, and Paeonia

Suffruticosa Andr, which is a water-soluble monoterpene

glycoside (Wu et al., 2010), extracted from the peony in 1963 for

the first time (Hu et al., 2013). By blocking the activity of the Notch-

1 signaling pathway, Zhang and colleagues have shown that PF

reduces the growth and invasion of breast cancer cells (Zhang et al.,

2016b). Treatment of colorectal cancer cells with PF leads to

downregulation of FoxM1 and inhibits colorectal cancer cell

migration (Yue et al., 2018). However, the chemical and

pharmacological foundation of PF as a pancreatic cancer

inhibitor has not been proven or investigated.

Network pharmacology is a novel inter-disciplinary

technique that has assisted several researchers in investigating

the pharmacological effects of natural substances and compound

herbal remedies. To further elucidate the mechanism of action of

PF in the treatment of pancreatic cancer, we used network

pharmacology to investigate the impact of PF on pancreatic

cancer and confirmed the regulatory link between PF and key

signaling pathways in vitro. Figure 1 depicts the workflow for this

research.

2 Materials and methods

2.1 Predicting the targets genes of the
paeoniflorin in pancreatic cancer

GSE97124 (Li et al., 2017) is a dataset related to paeoniflorin

treatment of pancreatic cancer from the GEO database (http://

ww.ncbinlm.nih.gov/geo/). The dataset for pancreatic cancer was

preprocessed and normalized for future analysis using the

normalize Quantities function of the limma (Ritchie et al.,

2015) package in R (Version 4.1.0). Using the limma,

differentially expressed genes (DEGs) were assessed between

paeoniflorin-free and paeoniflorin-treated samples. The results

are plotted with the ggplot2 package as a volcano map and

heatmap (Ito and Murphy, 2013).

Weighted gene correlation networks Analysis (WGCNA)

reveals modules of co-expressed genes in complex biological

procedures (Langfelder and Horvath, 2008). For WGCNA

analysis, we utilized 177 pancreatic cancer tissues from The
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Cancer Genome Atlas (TCGA, https://portal.gdc.cancer.gov/)

and 167 normal tissues from Genotype-Tissue Expression

(GTEx, https://commonfund.nih.gov/GTEx). Confirm the

soft threshold using the pickSoftThreshold function of the

WGCNA package in R with reference to Linbang et al. (Wang

et al., 2021). Following the formation of a scale-free network

according to the soft threshold, a topology matrix and

hierarchical clustering are applied. That meant 60 genes

were the bare minimum per module needed for dynamic

gene module cleavage. Then, each module’s Eigengenes

were established. Based on the Eigengenes module,

hierarchical clustering was carried out once the correlation

between modules was established. A total of six modules were

created by once more combining the earlier components. The

link between modules and between modules and PF was

investigated using Pearson correlation. Significantly

connected modules were regarded as crucial PF elements

for a subsequent investigation.

Finally, paeoniflorin’s target genes for the therapy of

pancreatic cancer were determined by looking at the overlap

between WGCNA and DEGs screening.

2.2 Gene set enrichment analysis and
Gene Set Variation Analysis

Many of the most enriched gene sets defining metabolic

activities were uncovered using GSEA (Subramanian et al.,

2005). We ran a gene set enrichment analysis on Microarray

data collected from the GEO database to investigate the

changes induced by paeoniflorin. The gene set “c2. cp.v7.2.

symbols.gmt” from the MSigDB database (https://www.gsea-

msigdb.org/gsea/msigdb/) was used for the aforementioned

procedures (Liberzon et al., 2015). The R package “GSVA” was

used to perform Gene Set Variation Analysis (GSVA). An

enrichment score (ES) was generated for each sample and

pathway as a result of the analysis using a non-parametric

unsupervised approach that converted a traditional gene

matrix (gene-by-sample) into a gene set-by-sample matrix.

Then, the mean values of ES of cells in the two groups of

samples were compared using the t-test. The MSigDB

database’s “c2. cp.kegg.v7.5.1. symbols” is one of the target

gene sets used in this study. A false discovery rate (FDR) < 0.

25 was considered significant enrichment (Zhang et al.,

2016a).

2.3 Gene ontology and kyoto
encyclopedia of genes and genomes
enrichment analysis

Gene ontology (GO) enrichment analysis and Kyoto

Encyclopedia of Genes and Genomes (KEGG) enrichment

analysis were performed on target genes (Gene Ontology

Consortium, 2015; Kanehisa et al., 2019). The “clusterProfiler”

package (Yu et al., 2012) of the R program was used to carry out

FIGURE 1
The workflow of this study.
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these gene enrichment analyses. Pathways with p < 0.01 were

considered statistically significant. Then, the visualized the top

20 or 30 pathways using the “ggplot2” package in R.

2.4 Building a PPI network and Kaplan-
Meier curves

The Protein-Protein Interaction Network was built by

inserting target genes into the STRING database (Szklarczyk

et al., 2017). Change the needed minimum interaction score to

0.9. The PPI network was visualized and displayed by Cytoscape

(Shannon et al., 2003). Likewise, the cytoHubba plugin (Shannon

et al., 2003) was used to exclude non-central genes from the target

genes, substantially reducing the number of target genes. We

then used the TCGA database to examine the association

between the expression of these hub genes and prognosis. The

specific strategy involves downloading the pancreatic cancer

dataset from the TCGA database through the TCGAbiolinks

package (Colaprico et al., 2016), and then choosing a total of

178 individuals with complete overall survival (OS) and clinical

characteristics. Patients were divided into high- and low-

expression groups based on the median of the difference in

expression of a single hub gene; the difference in overall

survival between the two groups was then examined using the

Kaplan-Meier curves. The “survminer” package is utilized for

data visualization, whereas the “survival” package is utilized for

survival data statistical analysis.

2.5 Molecular docking verification

Molecular docking was utilized to anticipate interactions

between paeoniflorin and its primary targets. The Protein

Data Bank (Berman et al., 2000) contains detailed information

and 3D structures, including the original structures of important

targets. Paeoniflorin’s chemical structure was derived from the

PubChem website (Kim et al., 2021). Import the structure of the

aforementioned protein into the AutoDock Vina tool (Seeliger

and de Groot, 2010), select the default settings, and set the Grid

Box to the entire protein molecule. Then, run AutoDock Vina for

molecular docking to confirm the binding activity of the target

and the compound and obtain the binding energy.

2.6 Experimental validation in Vitro

2.6.1 Reagents and materials
Prior to usage, the purity of paeoniflorin (CAS: 23180-57-6)

acquired from Sigma-Aldrich (St. Louis, United States) was

verified by UPLC-MS to be more than 95%. From Procell Co.,

Ltd. (Wuhan, China) purchased the human pancreatic cancer cell

lines PANC-1 and Capan-2. Gibco supplied the DEME, fetal

bovine serum, and penicillin-streptomycin necessary for cell

culture (Grand Island, United States). From BOSTER

Technology Co., Ltd. (Wuhan, China) bought ELISA kits.

DMSO, CCK-8 kit, RIPA buffer, and BCA Protein Assay Kit

were procured from Solarbio Technology Co., Ltd. (Beijing,

China). Primary antibodies against p38, phospho-p38, p44/

42 MAPK (Erk1/2), phospho-p44/42 MAPK (Erk1/2), SAPK/

JNK, phospho-SAK/JNK, and β-actin were bought from Abcam

and Cell Signaling Technology, both in the United States.

2.6.2 Cell culture and viability assay
Panc-1 cells and Capan-2 were cultured in a 10% FBS and

100 U/mol penicillin-streptomycin solution in an incubator at

37°C, 5% CO2, and 95% relative humidity. Upon intervention,

every cell was in the logarithmic growth phase. PF was dissolved

in DMSO to achieve a concentration of 400 μM. 100 ml of PF

(400 μM) was then diluted to 200, 100, and 50 μM, respectively,

in 100, 300, and 700 ml of DMEM. In six-well plates, cells (about

1 × 106 per well) were seeded and cultured for 24 h with varying

doses of PF-treated DEME or DEME without PF. The collection

of cells and cell culture media for use in later investigations.

CCK-8 cell viability was evaluated in accordance with the

manufacturer’s instructions. Panc-1 cells were planted at a

density of 3 × 104 cells per well in 96-well plates

(approximately 100 μl medium per well). After 24 h of

treatment with various PF concentrations, 10 μl of CCK-8

solution was applied to the 96-well plate. The plate was

incubated at 37°C for 4 h. Use a microplate reader (Bio-Rad,

United States) to figure out the optical density of each well at

450 nm.

2.6.3 Measurement of IL-6 and IL-10
Using an ELISA kit and the manufacturer’s instructions, the

IL-6 and IL-10 levels in cell culture supernatants were assessed.

2.6.4 Western blot analysis
After 48 h of treatment with various doses of PF (0, 50,

100, and 200 μM), PANC-1 cells were harvested. PANC-1

cells were lysed in RIPA buffer with a protease and

phosphatase inhibitor cocktail. Upon completion of the

lysis, the protein concentration was determined with the

BCA kit. 30 mg of protein was loaded per lane on 10%

SDS-PAGE gels and transferred to 0.45 m PVDF

membranes (Millipore). After 60 min of blocking with 5%

skim milk, the membrane was incubated at 4°C overnight with

the primary antibody (1:1000) indicated in 2.6.1. After three

washes, the membrane was re-incubated with HRP-

conjugated secondary antibody IgG (1:2000) at room

temperature for 1 h in the dark. Signals were recognized by

autoradiography after applying ECL (FluorChem E,

Proteinsimple, United States). The densitometric findings

were examined using ImageJ (National Institutes of

Health, United States).
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2.7 Statistical analysis

The information was given in the form of means and

standard deviations. A student’s t-test was used to assess

differences between pairs of groups, while one-way analysis of

variance (ANOVA) was used to investigate differences between

three or more groups. Data analysis and graphing were

performed using GraphPad Prism 7 (San Diego, United States).

3 Results

3.1 Identification of Target genes in
datasets

We identified 1632 differentially expressed genes (DEGs)

in the GSE97124 dataset based on a p value <0.01 (Figures

2A,B). Next, we did an analysis of the TCGA and GTEx data

FIGURE 2
Identification of Target genes for paeoniflorin treatment of pancreatic cancer. (A) Heatmap of the top 40 DEGs associated with Paeoniflorin-
treated pancreatic cancer. (B) The Volcano plot shows the distribution of genes that are differentially expressed (log2 fold change) compared to a
measure of statistical significance (−log10 p-value) in the GSE97124 dataset. Genes that were downregulated are shown in blue, whereas genes that
were upregulated are shown in red. (C) The results show a highly significant correlation between GS and MM in the MEblue module. (D) Genes
screened by DEGs (pink circles), genes in modules strongly connected to PF in WGCNA analysis (blue circles), and portions of these two classes of
genes that overlap (purple circles).
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FIGURE 3
GSEA identified IL-6 type cytokine receptor ligand interactions. (A,B) IL-6 family signaling pathways; (C) IL-10 pathway and (D)MAPK cascade as
regulatory targets of paeoniflorin in pancreatic cancer. (E) Differences in pathway activities scored per sample by GSVA between PF-treated group
and control group. Blue represents the pathway with t value greater than 2, and green represents the pathway with t value less than -2. NES,
normalized enrichment score; FDR, False discovery rate.
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using the WGCNA method. The pickSoftThreshold function

identifies 9 as the optimal soft threshold (Supplementary

Figure S1A). Then, the dynamic tree cutting algorithm

identifies six modules, which are differentiated by distinct

colors and marked on the diagram (Supplementary Figures

S1B,C). Module eigengenes (ME) refer to the major

components of every module. By evaluating the correlation

between the modules’ eigengenes, it was evident that the

MEblue modules were most strongly related to pancreatic

cancer (Supplementary Figure S1D; Figure 2C). Therefore, we

considered the genes in the MEblue module as disease-related

characteristic gene sets. The MEblue module has 1521 genes,

of which 182 (11.97%) overlap with DEGs (Figure 2D). Select

as target genes the genes that overlap between DEGs and this

module gene.

3.2 GSEA and GSVA

Using the previously mentioned R software package, we

investigated significantly enriched pathways for paeoniflorin

intervention and control groups. In the Microarray data set,

IL-6, IL-10, and MAPK pathways were strongly related to

paeoniflorin intervention, indicating that paeoniflorin may

play a crucial role via these pathways (Figures 3A–D). We

also performed a GSVA analysis. The results of a GSVA

FIGURE 4
Biological Function and Pathway Analysis. (A) GO enrichment analysis of target genes. In the figure, terms enriched in the BP category are
depicted in blue, terms enriched in the CC category in green, and terms enriched in the MF category in yellow. The p value’s cutoff value was set at
0.05. p value is used to rank terms within a category. (B) KEGG enrichment analysis of target gene. (C) Distribution of Target genes in the MAPK
signaling pathway. The red box in the figure represents Target genes.
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analysis were arranged by the magnitude of the absolute t-value

and displayed in figure format (Figure 3E). In terms of biological

processes such as focal adhesion, gnrh signaling pathway,

endocytosis, proteasome, terpenoid backbone biosynthesis,

and butanoate metabolism, there were substantial variations

between the treatment group and the control group.

3.3 Biological Function and Pathway
Analysis

We utilized the “clusterProfiler” package to do GO

annotation and KEGG pathway analysis on pancreatic cancer

target genes. Figure 4A; Supplementary Table S1 depict the most

enriched items across the three categories of biological process

(BP), cellular component (CC), and molecular function (MF).

Epidermal growth-related pathway, ERBB signaling pathway,

collagen metabolic process, ribosome, and regulation of

protein tyrosine kinase activity were among the targets in the

BP test. The four most frequently occurring GO terms under the

category of cellular component were endoplasmic reticulum

lumen, lysosomal membrane, lytic vacuole membrane, and

clathrin-coated vesicle membrane. The overwhelming majority

of CC terms were linked to vesicles or membranes. In MF, the

primary targets were serine-type peptidase activity, serine

hydrolase activity, serine-type endopeptidase activity, and

integrin binding. Based on a p-value of 0.05, KEGG analysis

identified 50 enriched pathways (Figure 4B, Only the top ten

enriched terms are shown in the figure). This suggests that

paeoniflorin’s regulatory mechanisms include the PI3K-AKT

signaling route, the RAS signaling pathway, and the MAPK

signaling network. Since the MAPK signaling route was

included in both GSEA, GSVA and KEGG enrichment, we

visualized the link between important genes and the MAPK

signaling pathway (Figure 4C).

3.4 PPI and survival analysis

Import the 184 targets discovered in 3.1 into the STRING

platform, set the confidence score to 0.9, and construct a PPI

network. Due to the enormous number of nodes, the 182 target

genes with the highest node values are displayed on the graph

There are 126 nodes in the PPI network and 238 edges (as shown

in Figure 5A, the color gradually turns yellow, the greater the

possibility of becoming a core protein). The Cytohubba plugin

includes the following degree algorithms: MNC, MCC, and

DEGREE. We implement these algorithms to filter nodes in

the PPI network and designate the intersection nodes as hub

genes (Figures 5B–D). The conclusion is represented by a Venn

diagram (Figure 5E). These hub genes are predominantly

associated with the matrix metalloprotein (MMP) family. The

above findings show that paeoniflorin may have a role in the

therapy of pancreatic cancer by interfering with these main

targets.

In addition, using pancreatic cancer patient information

from the TCGA database, we analyzed the effect of these hub

genes on overall survival. Four of the twelve genes had clearly

separated KM curves. This indicates that low expression of these

four genes (MMP1, MMP7, MMP14, and HBEGF) predicts

longer overall survival than high expression (Figure 6). These

four genes and PF were subsequently considered ligands and

receptors, respectively. Lower binding energies suggest a more

stable binding configuration between the receptor and ligand.

Figure 7 depicts interactions between receptors and their ligands

and affinity. The image on the left was captured when the lens

was focused further away, while the one on the right was captured

when the lens was focused closer.

3.5 PF inhibited proliferation of pancreatic
cancer cells

PANC-1 and Capan-2 cells were treated with PF (0, 50, 100,

200, and 300 μM) for 24 h to determine the effects of various PF

concentrations on human pancreatic cancer PANC-1 and

Capan-2 cells. The findings demonstrated that the presence of

PF lowered the number of viable PANC-1 and Capan-2 cells in

comparison to the control group (Figure 8). In addition, PF

inhibited both types of pancreatic cancer cells in a concentration-

dependent manner between 0 and 200 μM. The inhibitory effect

did not change appreciably when the concentration of PF was

increased to 300 μM from 200 μM. In the subsequent trials,

dosages ranging from 0 to 200 μM are used.

3.6 PF alleviates inflammation in PANC-1
cells and Capan-2 cells

The levels of inflammatory factors were measured to

establish whether PF may attenuate the inflammatory

response in pancreatic cancer. ELISA showed that the levels of

IL-6 and IL-10 were lower in the group that was given PF than in

the control group (Figure 9).

3.7 PF suppressed the MAPK signal
pathway

Firstly, we conducted docking experiments between PF and

p38. Figure 10A depicts the final output optimization using

AutoDock Vina. Docking data indicated that the absolute

value of the affinity of the target protein for PF is 8. The

lower the binding energy, the greater the binding activity and

the greater the target protein’s capacity to bind to PF.

Consequently, p38 can tightly bind to PF. Subsequently, we
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demonstrated the therapy of pancreatic cancer with PF through

the MAPK pathway in pancreatic cancer cells. In the range of

0–200 μm, the inhibitory impact of PF on p38 phosphorylation

grew progressively, but p38 concentrations did not differ

substantially from those of the controls. PF reduced the

activation of P38 MAPK, but not ERK and JNK

FIGURE 5
PPI network construction and hub genes screening. (A) PPI network of paeoniflorin for treating pancreatic cancer. The greater the number of
linked nodes, the larger and darker the circle and its color. Three screening techniques for hub genes (implemented by the Cytohubba plugin). Yellow
nodes have the lowest correlation strength, whereas red nodes have the greatest. (B)MCC; (C)MNC; (D)DEGREE. (E) A Venn diagram analysis of hub
gene screening using Cytohubba. Each hue corresponds to a screening algorithm. The core gene is the hub gene, which is the gene present in
all five algorithms.
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FIGURE 6
Kaplan-Meier curves of hub genes. According to the expression level of each hub gene, it is separated into high expression (red line) and low
expression (blue line) groups, and the KM curve of each gene is drawn independently. (A) HBEGF; (B) MMP1; (C) MMP7; (D) MMP14.

FIGURE 7
Molecular docking models of PF binding to potential targets. (A) HBEGF; (B) MMP1; (C) MMP7; (D) MMP14.
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phosphorylation, as revealed by a standard western blot (Figures

10B–E).

4 Discussion

Due to the high lethality of pancreatic cancer, it is vital to

create new therapies and medications for pancreatic cancer. It

should be highlighted that the molecular process underlying the

formation and progression of pancreatic cancer is complicated,

including numerous proteins or pathways, and therefore a single

targeted treatment may not have the desired therapeutic impact

(Li et al., 2019). According to previous studies, a number of

Chinese medicines and herbal extracts offer unique advantages in

the treatment of pancreatic cancer (Triantafillidis et al., 2022).

Quercetin, for instance, may block EMT by reducing TGF-β,
cause cell death, and reduce the development of pancreatic

cancer cells by downregulating c-Myc expression (Asgharian

et al., 2021). Apigenin contains antioxidant and anti-

inflammatory characteristics and can exert a therapeutic effect

on PC cells via HIF, VEGF, and GLUT-1 (Ashrafizadeh et al.,

2020). The medicinal effects of the chemicals derived from these

plants are multitarget and multipathway. Then we set our sights

on paeoniflorin, a natural compound with anti-inflammatory

FIGURE 8
Effects of PF intervention on the growth of pancreatic cancer cells. PANC-1 cells and Capan-2 were treated with 50 μM, 100 μM, 200 μM, and
300 μMPF, and the CCK-8 assay was used to evaluate cell viability. The experiments were repeated at least three times. Data were expressed as
mean ± SD. *p < 0.05; ***p < 0.001, versus control group.

FIGURE 9
The contents of IL-6 and IL-10 in the culture supernatant of pancreatic cancer cells were determined by ELISA. (A) IL-6 expression in the culture
supernatant of PANC-1 cells. (B) IL-10 expression in the culture supernatant of Capan-1 cells. *p < 0.05; ***p < 0.001, versus control group.

Frontiers in Pharmacology frontiersin.org11

Cao et al. 10.3389/fphar.2022.1032282

48

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2022.1032282


and anti-tumor effects (Zhou et al., 2020; Wang et al., 2022).

Paeoniflorin has been demonstrated to inhibit the early phases of

EMT induced by TGF-β. This may be accomplished by inhibiting

the production of transcription factors Snail and Slug via the

Smad pathway (Ji et al., 2016). Paeoniflorin impacts the

progression of hepatocellular carcinoma, which is also a

cancer of the digestive system, by downregulating the 5-HT1D

inhibitory Wnt/β-Catenin pathway (Zhou et al., 2021).

Moreover, pancreatic cancer growth is inhibited by

paeoniflorin, which does so through increasing HTRA3 (Li

FIGURE 10
PF suppressed MAPK signal pathway in PANC-1. (A) PF exhibited good binding activity to p38 as determined bymolecular docking. (B) Based on
the results of Western blot analyses, PF was shown to decrease p38-related phosphorylation in MAPK signaling. This image displays some typical
consequences from WB banding. (C–E) Each protein’s relative expression level was measured using statistical methods: p-ERK, p-JNK, and p-P38.
***p < 0.001 vs. control group.
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et al., 2017). So, we used network pharmacology to look into the

possible pharmacological mechanism of paeoniflorin, thinking of

it as a possible molecule for treating pancreatic cancer.

Previous network pharmacology is defined by the use of

several internet databases to construct a network of multiple links

between medications, targets, and disorders in order to study

drug pharmacology (Jiao et al., 2021). For paeoniflorin, a

substance isolated from plants with a well-defined chemical

structure and characteristics, the usage of pharmacological

data retrieval targets cannot be used to create an intersecting

network. In addition, since certain databases are updated slowly,

it is difficult to acquire more targets (Zhuang et al., 2019). To

investigate the pharmacological effects of paeoniflorin in more

depth, we downloaded the Microarray data of pancreatic cancer

from the GEO database and screened its targets using the

WGCNA method in this work. The genes in the modules

screened by WGCNA were crossed with DEGs, and a total of

182 genes were obtained as target genes. KEGG and GO

enrichment analysis were performed on these genes. The

findings of the GO analysis suggested that epidermal growth

and serine were crucial for PF intervention in pancreatic cancer.

Serine promotes protein, amino acid, and glutathione

production, which are critical for cell development and

survival. Many tumor cells show dependence on exogenous

serine and dietary serine (Yang and Vousden, 2016; Tajan

et al., 2021). Pancreatic ductal adenocarcinoma patients had

lower blood levels of essential and non-essential amino acids.

PGAM1 knockdown increases 3-PG accumulation in serine-

starved PDAC cells, resulting in increased cell proliferation

and tumor formation (Itoyama et al., 2021). As for the

traditional EGFR receptor, it is often referred to as ERBB-1.

The MAPK pathway robustly stimulates the transcription and

release of numerous ERBB ligands in pancreatic cancer

(Mendelsohn and Baselga, 2003). Tumor-specific targeted

delivery of 5FU using EGFR aptamers as the carrier achieved

high target specificity, overcame 5 FU resistance (Mahajan et al.,

2021). The KEGG analysis supports this conclusion. According

to KEGG analysis, cancer MAPK signaling, PI3K-Akt signaling,

and RAS signaling pathways could be regulated by PF. These

pathways are intrinsically associated with the inflammatory

response. Previous research has demonstrated that

inflammation is present at every stage of tumor development

(Greten and Grivennikov, 2019). In recent years, several

endeavors have been made to discover the processes behind

inflammation-induced carcinogenesis (Hausmann et al., 2014).

Similarly, the GESA enrichment results were significantly

correlated with GO and KEGG analyses, which were both

enriched in inflammation-related aspects. Meanwhile, through

algorithmic screening, we obtained 12 hub genes. The survival

analysis of these genes indicated that the high expression of four

of them (HBEGF, MMP1,MMP7, andMMP14) was indicative of

a poor prognosis for overall survival. MMP1, MMP7, and

MMP14 are all members of the family of Matrix

Metalloproteinases. The MMP family drives tumor invasion

and the creation of distant metastases, and is recognized to

play a crucial role in a number of human malignancies,

including pancreatic cancer (Huang et al., 2018). Expression

of MMP1 in the early stages of a number of malignancies is

correlated with a dismal prognosis. By activating MAPK

pathways, RAS oncogenes may play a crucial role in the

constitutive production of MMP1 in human pancreatic cancer

cells (Huang et al., 2018, 1). MMP7 is involved in the injury

response of mucosal epithelia and the degradation of

extracellular matrix components, and it has been shown to be

overexpressed in pancreatic ductal adenocarcinoma and its

precursors, PanIN and intraductal papillary mucinous

neoplasms, with MMP7 alterations evident even in

intermediate-grade (Kartsonaki et al., 2022). IL-17 stimulates

MMP7 expression in prostate cancer to destroy the E-cadherin/

β-catenin complex and release -catenin, hence promoting EMT

and tumor cell invasion (Zhang et al., 2017). Additionally,

exosome-transferred MMP14 is a crucial facilitator of

gemcitabine resistance in pancreatic cancer (Li et al., 2022).

Based on the results of CCK-8 and early studies, it was

observed that PF intervenes in pancreatic cancer cells in a

concentration-dependent way (in the range of 0–200 μm) in

this experiment; hence, the 0–200 μm concentration was

selected for further investigations. The presence of the IL-

10 cytokine in the culture supernatant of PANC-1 cells was

barely detectable in the first ELISA tests. This corroborates the

findings of Graziella et al. (G et al., 2006). Capan-2 cells that

released substantially higher IL-10 were therefore chosen.

Then, we subjected PANC-1 and Capan-2 cells to 50, 100,

and 200 μm dosages for 24 h and measured the levels of the

cytokines IL-10 and IL-6, as well as the expression of MAPK

pathway-related proteins. The results suggest that PF can have

a therapeutic function by reducing the activation of

inflammatory pathways and variables associated with

pancreatic cancer. The activation of inflammatory signals

can release a large number of cytokines, inflammatory

mediators, and free radicals. Genes of the Interleukin 10

(IL-10) family play a dual, contentious function in a variety

of cancers. According to a number of studies, an increase in

IL-10 levels can dramatically drive tumor proliferation,

metastasis, and immune evasion in a range of tumor

models, including pancreatic cancer, and hence result in

diverse pathologies (Zhuang et al., 2019). Our studies

demonstrated that paeoniflorin dose-dependently inhibits

IL-10 expression in pancreatic cancer cells. In addition,

there is a complicated interaction effect between IL-10 and

the MAPK pathway, whereby the activation of the MAPK

pathway, which increases the production of IL-10 and TGF by

cancer cells by maturing immune suppressive regulatory CD4+

T-cells, results in a complex interaction effect (Hou et al.,

2020). The activation of an ERK/JNK/P38 MAPK

inflammatory pathway by IL-10 appears to enhance the
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progression of chronic pancreatitis to pancreatic cancer. IL-6

can promote EMT by activating numerous molecular

pathways of the JAK2/STAT3 and MAPK signaling axis,

hence enhancing the metastatic potential of tumors

(Abaurrea et al., 2021). In addition, our enrichment

analysis revealed that the signaling pathways PI3K-AKT,

and MAPK, etc. were related to pancreatic cancer. Since

our hub genes are closely related to MAPK signaling

pathway. Therefore, we chose MAPK signaling pathway for

validation. Phosphorylation activates members of the

Mitogen-activated protein kinase (MAPK) family, which

includes ERK1/2, JNK, and p38. This activation causes the

expression of target genes. Under normal circumstances, the

expression of each member of the MAPK family maintains a

dynamic balance, thereby maintaining cell proliferation and

apoptosis in a balanced state. More and more studies have

shown that the occurrence and development of tumors are

related to the regulation of MAPK information transmission.

In our study, paeoniflorin inhibited p38 but not ERK or JNK to

affect pancreatic cancer. Wang et al. showed that p38gamma-

MAPK promotes pancreatic cancer by activating PFKFB3 and

GLUT2 through the KRAS oncogene signaling and aerobic

glycolysis (Wang et al., 2020).

Nonetheless, we must recognize that PF is an unstable, water-

soluble monoterpene glycoside that is strongly impacted by

strong alkali and high temperatures. Therefore, when it is

used in the body, whether it will have a decomposition

reaction or in volve more complex pathways to play a role

requires further research.

5 Conclusion

In conclusion, our research implemented a combination of

bioinformatics, network pharmacology, and in vitro

experiments to analyze the potential PF treatment pathways

for pancreatic cancer. PF inhibits the proliferation of

pancreatic cancer cells by interfering with the MAKP

signaling pathway, IL-10, IL-6, and additional inflammatory

factors. We provide some references for the development of PF

as a follow-up treatment for pancreatic cancer.
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Exploring a four-gene risk model
based on doxorubicin
resistance-associated lncRNAs in
hepatocellular carcinoma

Zunyi Zhang, Weixun Chen, Chu Luo and Wei Zhang*

Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and
Technology, Wuhan, China

Background: Liver cancer is a lethal cancer type among which hepatocellular

carcinoma (HCC) is the most common manifestation globally. Drug resistance

is a central problem impeding the efficiency of HCC treatment. Long non-

coding RNAs reportedly result in drug resistance. This study aimed to identify

key lncRNAs associated with doxorubicin resistance and HCC prognosis.

Materials andMethods:HCC samples with gene expression profiles and clinical

data were accessed from public databases. We applied differential analysis to

identify key lncRNAs that differed between HCC and normal samples and

between drug-fast and control samples. We also used univariate Cox

regression analysis to screen lncRNAs or genes associated with HCC

prognosis. The least absolute shrinkage and selection operator (LASSO) was

used to identify the key prognostic genes. Finally, we used receiver operating

characteristic analysis to validate the effectiveness of the risk model.

Results: The results of this study revealed RNF157-AS1 as a key lncRNA

associated with both doxorubicin resistance and HCC prognosis. Metabolic

pathways such as fatty acid metabolism and oxidative phosphorylation were

enriched in RNF157-AS1-related genes. LASSO identified four protein-coding

genes—CENPP, TSGA10, MRPL53, and BFSP1—to construct a risk model. The

four-gene risk model effectively classified HCC samples into two risk groups

with different overall survival. Finally, we established a nomogram, which

showed superior performance in predicting the long-term prognosis of HCC.

Conclusion: RNF157-AS1 may be involved in doxorubicin resistance and may

serve as a potential therapeutic target. The four-gene risk model showed

potential for the prediction of HCC prognosis.
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Introduction

Primary liver cancer is the seventh most frequently

diagnosed cancer worldwide and shows a high mortality

rate among all cancer types (Sung et al., 2021). Asia and

Africa are two regions with large numbers of cases (Sung

et al., 2021). Hepatocellular carcinoma (HCC) accounts for

85–90% of all cases of liver cancer (McGlynn et al., 2021).

Hepatitis B virus (HBV) infection largely contributes to the

development of HCC; other factors such as hepatitis C virus

(HCV) infection, alcohol use, nonalcoholic fatty hepatitis,

and liver cirrhosis can also increase the risk of HCC. Surgical

treatment is a recognized strategy for HCC treatment, in

which hepatectomy and liver transplantation are two major

methods to increase survival time (Zhou et al., 20192020).

However, for patients with metastatic HCC, surgical

treatment is not effective. Chemotherapy or radiotherapy

is the main treatment choice for killing metastatic cancer

cells.

Drugs for systemic chemotherapy, including sorafenib,

lenvatinib, and oxaliplatin, have demonstrated effectiveness as

first-line therapy against late-stage HCC in clinical studies and

are included in treatment guidelines (Zhou et al., 20192020).

However, the use of single drugs is unsatisfactory and drug

resistance is common with the continuous use of these drugs

(Lohitesh et al., 2018). For example, only around 30% of patients

with HCC can benefit from sorafenib and show only 6 months of

drug response (Tang et al., 2020). Therefore, understanding drug

resistance is required to optimize these chemotherapeutic drugs.

Recent studies suggest the roles of epigenetics, regulated RNAs,

cell death, and the tumor microenvironment in the occurrence of

drug resistance in HCC (Ding et al., 2018; Liang et al., 2020; Tang

et al., 2020).

Long non-coding RNAs (lncRNAs) are involved in multiple

biological or pathological processes regulating cell proliferation,

cell death, immune response, and others, which also

contribute to drug resistance in HCC (Ding et al., 2018).

For example, the knockdown of lncARSR inhibited PTEN

expression and activated the PI3K/Akt pathway during the

treatment of HCC, which was involved in doxorubicin

resistance (Li et al., 2017). Tsang and Kwok reported that

H19 knockdown suppressed MDR1 expression and increased

HepG2 cell sensitivity to doxorubicin (Tsang and Kwok,

2007). Zhou et al. (2017)observed that the knockdown of

HOTAIR lncRNA increased cisplatin efficiency on HCC cells

by regulating the STAT3/ABCB1 signaling pathway.

Therefore, lncRNAs play a critical role in drug resistance

and HCC progression, and it is crucial to identify lncRNAs

related to doxorubicin resistance to guide HCC treatment.

Therefore, in the current study, we aimed to identify key

lncRNAs related to drug resistance in HCC based on

expression profiles of HCC and to construct a lncRNA-

related risk model to predict HCC prognosis.

Materials and methods

Datasets

The Cancer Genome Atlas-Liver Hepatocellular Carcinoma

(TCGA-LIHC) dataset, which contains RNA sequencing (RNA-

seq) data and clinical information from HCC and paracancerous

samples, was downloaded through the TCGA GDC API. The

GSE76427 and GSE125180 datasets were downloaded from Gene

Expression Omnibus (GEO) (https://www.ncbi.nlm.nih.gov/geo/

query/acc.cgi?acc=GSE76427, https://www.ncbi.nlm.nih.gov/

geo/query/acc.cgi?acc=GSE125180). The GSE76427 dataset

contains microarray data from HCC samples, while the

GSE125180 dataset contains microarray data from three

doxorubicin drug-fast samples and three control samples.

RNA-seq and microarray data processing

For RNA-seq data in the TCGA dataset, we included samples

with data on overall survival and survival status. The Ensembl ID

of each gene was transferred to the gene symbol. We determined

the average expression level for genes with multiple gene

symbols. After processing, 360 primary HCC samples and

50 paracancerous samples remained.

For microarray data in the GEO datasets, normal samples

were removed. Probes were converted to gene symbols using the

platform annotation file. Probes corresponding to multiple genes

were removed. Samples lacking data on survival time and

survival status in the GSE76427 dataset were excluded. Finally,

115 HCC samples from the GSE76427 dataset remained.

Acquisition of lncRNA data

Gene transfer format (GTF) file (v32) was obtained from the

GENCODE website (https://www.gencodegenes.org/). The

expression data from the TCGA and GSE76427 datasets were

converted to mRNA and lncRNA data. Mutual lncRNA data

from the two datasets were included in the analyses.

Identification of key lncRNAs related to
drug resistance and HCC prognosis

The limma R package (Ritchie et al., 2015) was applied to

perform differential analysis and identify differentially expressed

lncRNAs (DElncRNAs) between HCC and paracancerous

samples in the TCGA dataset, drug-fast and control samples

of GSE76427. p < 0.05 and |log2(fold change)|>log2(1.2) (Chen
et al., 2021) were determined to screen DElncRNAs. The

intersection of DElncRNAs in two datasets was included, and

univariate Cox regression analysis was further performed on the
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screened DElncRNAs, with p < 0.05 indicating potential

prognostic DElncRNAs.

Pathway analysis

We downloaded the Kyoto Encyclopedia of Genes and

Genomes (KEGG) pathways from the KEGG website (https://

www.genome.jp/kegg/pathway.html). Single-sample gene set

enrichment analysis (ssGSEA) was performed for each HCC

sample in the TCGA dataset using the ssGSEA algorithm in the

GSVA R package (Hänzelmann et al., 2013).

Evaluation of tumor microenvironment
and the relationships between DElncRNAs
and immune infiltration

We used CIBERSORT (Chen et al., 2018) to estimate the

proportions of 22 immune-related cells and the ESTIMATE tool

(Yoshihara et al., 2013) to calculate the immune and stromal

scores. We applied the Hmisc R package (https://cran.r-project.

org/web/packages/Hmisc/index.html) to conduct Pearson

correlation analyses to assess the correlations between

DElncRNA expression and immune infiltration. WebGestaltR

package (Liao et al., 2019) was used to perform enrichment

analysis on gene ontology (GO) and KEGG pathways using a

false discovery rate (FDR) of <0.05 to screen for enriched GO

terms and pathways.

Construction of a risk model related to key
DElncRNAs

We first performed Pearson correlation analysis using the

“rcorr” function in the Hmisc R package to screen for genes

significantly correlated with the key DElncRNAs (|correlation

coefficient| > 0.4 and p < 0.001). Next, we used the survival R

package to perform a univariate Cox regression analysis of the

screened genes, with genes with p < 0.001 defined as potential

prognostic genes. Least absolute shrinkage and selection operator

(LASSO) Cox regression analysis was conducted using the

glmnet R package (Friedman et al., 2010) to decrease the

number of prognostic genes. For each variable (prognostic

gene), a trajectory of coefficient variation with the changing

lambda value was visualized. With increasing lambda values, the

coefficients of prognostic genes approached zero. We applied

ten-fold cross-validation to construct the model, which was

defined as follows: Risk Score = Σβi×Expi, where βi represents
the Cox coefficients of the prognostic genes and Expi represents

the expression levels. For each sample, a risk score was calculated

and converted to a z-score. According to z-score = 0, the samples

were divided into high-risk (z-score > 0) and low-risk (z-score <

0) groups. We conducted Kaplan–Meier survival analysis to draw

survival plots of the two risk groups. The TimeROC R package

(Blanche et al., 2013) was used to examine the efficiency of the

risk model in predicting overall survival.

Statistical analysis

The bioinformatics analysis in this study was supported by

the Sangerbox tool (http://vip.sangerbox.com/) (Shen et al.,

2022). All statistical analyses were conducted in R software

(v4.1). Wilcoxon tests were performed for comparisons

between groups. Log-rank tests were used in the Cox

regression and survival analyses. p < 0.05 was defined as

statistical significance.

Results

Screening lncRNAs related to both drug
sensitivity and HCC prognosis

We first screened for DElncRNAs between the drug-fast and

control groups in the GSE125180 dataset by differential analysis.

We identified a total of 28 DElncRNAs, including 18 that were

upregulated and 10 that were downregulated (p < 0.01, |log2(fold

change)| > log2(1.2); Supplementary Figure S1A). We then

performed the same analysis between HCC and paracancerous

samples in the TCGA dataset, which revealed 534 upregulated

and 49 downregulated DElncRNAs (Supplementary Figure S1B).

The Venn plot showed that three DElncRNAs (HNF4A-AS1,

RNF157-AS1, and LINC00488) were found in both datasets

(Figure 1A). The expression of the three lncRNAs was

upregulated in the drug-fast group compared to that in the

control group (p < 0.05; Figure 1B). These lncRNAs also

displayed differential expression levels between HCC and

paracancerous samples (p < 0.05; Figure 1C). To explore the

relationship between three lncRNAs and HCC prognosis, we

classified the HCC samples as having high or low expression

based on the median cut-off value of the expression of the three

lncRNAs. Survival analysis revealed that the high- and low-

expression groups of HNF4A-AS1 and RNF157-AS1 had

differential overall survival (p < 0.05; Figure 1D). However,

univariate Cox regression analysis showed that only RNF157-

AS1 expression was independently associated with overall

survival (p = 0.015, hazard ratio (HR) = 1.231; Figure 1E).

Potential pathways related to RNF157-AS1

As we identified that RNF157-AS1 expression was

dysregulated in drug-fast and HCC samples and was also an

independent risk factor, we considered RNF157-AS1 as an
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important lncRNA involved in HCC development and drug

resistance. Therefore, we further explored the functional

pathways with which it was correlated. The enrichment score

for all hallmark pathways was calculated for each HCC sample.

We further performed a correlation analysis between the

pathway score and the RNF157-AS1 expression level. We

identified 10 functional pathways that were associated with

RNF157-AS1 expression (Figure 2A). For example, bile acid

metabolism, fatty acid metabolism, and oxidative

phosphorylation were negatively associated with RNF157-AS1

expression, while MYC target V1 and WNT-β catenin signaling

were positively associated with RNF157-AS1 expression. A

heatmap also showed the correlations between the

10 pathways and RNF157-AS1 expression, consistent with

Figure 2A (Figure 2B).

Association between RNF157-AS1 and
immune infiltration

The characteristics of the tumor microenvironment reflect

cancer development and prognosis, as well as the sensitivity to

FIGURE 1
Identification of key DElncRNAs related to drug resistance and HCC prognosis. (A) Venn plot of DElncRNAs in the TCGA and
GSE125180 datasets. (B) Expression of three DElncRNAs in control and drug-fast samples from the GSE125180 dataset. Wilcoxon tests were
conducted. (C) Expression of three DElncRNAs in HCC and paracancerous samples in the TCGA dataset. Wilcoxon tests were conducted. (D)
Kaplan–Meier survival plots of high- and low-expression of three DElncRNAs. (E) Univariate Cox regression analysis of three DElncRNAs. Log-
rank tests were conducted. *p < 0.05, ****p < 0.0001.
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cancer treatment. Therefore, we assessed the potential correlation

between RNF157-AS1 and the tumor microenvironment in

HCC. The CIBERSORT results indicated that

M2 macrophages, CD8 T cells, and gamma delta T cells

were negatively correlated with RNF157-AS1 expression,

while naïve CD4 T cells, M0 macrophages, eosinophils,

and neutrophils were positively correlated with RNF157-

AS1 expression (p < 0.05; Supplementary Figure S2A). The

results of the ESTIMATE analysis further demonstrated a

significant correlation between RNF157-AS1 expression and

immune infiltration (Figure 2C). In addition, we calculated

the ssGSEA scores of immune-related pathways and

discovered that complement and coagulation cascades,

natural killer cell-mediated cytotoxicity, and FC gamma-

R-mediated phagocytosis were associated with RNF157-AS1

expression (Supplementary Figure S2B). Together, these

results suggested that RNF157-AS1 was involved in

immune infiltration regulation through some immune-

related pathways.

Identification of prognostic genes related
to RNF157-AS1

We performed Pearson correlation analysis to identify

protein-coding genes (PCGs) associated with RNF157-AS1

based on their expression levels. The results revealed

1,498 PCGs that were significantly associated with RNF157-

AS1 (correlation coefficient |>0.4, p < 0.001). Functional

analysis revealed enrichment of mRNA-related terms, cell

cycle, and RNA transport in the 1,498 PCGs (Supplementary

Figures S3A–D). Univariate Cox regression analysis to identify

prognostic genes identified 166 risk genes that were associated

with HCC prognosis (Supplementary Figure S4A). Subsequently,

FIGURE 2
Functional pathways related to RNF157-AS1 and the relationship between RNF157-AS1 and immune infiltration. (A)Correlation analysis between
the enrichment of pathways and RNF157-AS1 expression. Red and blue indicate positive and negative correlations, respectively. (B) Heatmap
showing the enrichment score of pathways ranked by increasing RNF157-AS1 expression. Darker green: higher expression. Red and blue: high and
low expression levels, respectively. (C) Pearson correlation analysis of RNF157-AS1 with immune, stromal, and ESTIMATE scores.

Frontiers in Pharmacology frontiersin.org05

Zhang et al. 10.3389/fphar.2022.1015842

58

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2022.1015842


we implemented LASSO regression analysis to determine the key

prognostic genes for constructing an optimal risk model. At a

lambda value of 0.0708, the model reached the optimal status

(Supplementary Figures S4B,C). Finally, four risk genes

remained, including CENPP, TSGA10, MRPL53, and BFSP1

(Supplementary Figure S4D). The expression levels of these

four genes were related to RNF157-AS1 expression (p < 0.001;

Figure 3A). Cox regression analysis showed that the four genes

were independent risk factors (p < 0.001, HR > 1.8; Figure 3B).

Survival analysis showed distinct overall survival between the

high- and low-expression groups of all four genes (p < 0.01;

Figure 3C), indicating that these four genes were highly

associated with HCC prognosis. Therefore, we included these

genes in the construction of the risk model.

Validation of the four-gene risk model

For each HCC sample, we calculated the risk score and

validated the efficiency of the risk model in predicting

prognosis by ROC analysis. The results showed that the risk

model had a good performance in evaluating 1- and 5-year

prognosis, with AUC values of 0.69 and 0.70, respectively, in

the TCGA dataset (Figure 4A). HCC samples were classified into

two risk groups (high and low risk) based on the cut-off

(z-score = 0). The Kaplan–Meier survival plots showed a

significant difference in the prognosis of the two risk groups

(p < 0.0001; Figure 4A). In the GSE76427 dataset, we observed

similar results, which suggested the robust performance of the

risk model (Figure 4B). Notably, we observed a markedly positive

correlation between RNF157-AS1 expression and risk score (R =

0.532; Figure 4C).We then evaluated the distribution of RNF157-

AS1 expression levels and risk scores in different clinical features.

The RNF157-AS1 expression level was much higher in G3 and

G4 compared to that of G1 and G2 (p < 0.0001; Figure 4D).

Moreover, severe clinical stages had higher risk scores than

moderate stages (p < 0.001; Figure 4E), suggesting the

reliability of the risk model.

Establishing a nomogram based on the
four-gene risk model and clinical features

After demonstrating the robustness and reliability of the

four-gene risk model related to RNF157-AS1, we next tried to

further increase the accuracy of its application in the clinical

FIGURE 3
Relationship of RNF157-AS1 with four key PCGs and the association between four PCGs and HCC prognosis. (A) Pearson correlation analysis
between the expression of RNF157-AS1 and four lncRNAs. Red and blue: positive and negative correlations, respectively. (B) Univariate Cox
regression analysis of four lncRNAs. (C) Kaplan–Meier survival plots of high- and low-expression groups in the four lncRNAs. Log-rank tests were
conducted. ***p < 0.001.
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setting. Cox regression analysis of the clinical features and risk

score showed that only stage and risk score were independent risk

factors of HCC prognosis (Figures 5A,B). Therefore, we used

these factors to establish a nomogram for predicting 1-, 3-, and 5-

year death rates (Figure 5C). The calibration curve showing the

predicted overall survival was similar to the observed values

(Figure 5D). Decision curve analysis (DCA) further

demonstrated that patients could benefit more from the

nomogram compared to other indicators (Figure 5E). Finally,

ROC analysis revealed the superior performance of the risk score

and nomogram for predicting long-term overall survival

(Figure 5F).

Discussion

Trans-arterial chemoembolization (TACE), an effective

strategy for patients with unresectable HCC, requires the

injection of embolizing agents in combination with

doxorubicin (Fong and Tanabe, 2014). TACE is a recognized

management scheme for patients with intermediate-stage HCC

(Bruix and Sherman, 2011). The combination of the embolic

effect with doxorubicin suppressed tumor progression and

improved the prognosis of patients with HCC in randomized

clinical trials (Llovet et al., 2002; Malagari et al., 2010). Moreover,

doxorubicin-based TACE has a positive effect on reducing tumor

size, which provides conditions benefitting liver transplantation

(Fong and Tanabe, 2014). Nevertheless, resistance to

doxorubicin markedly limits the treatment efficiency of

patients with HCC, with only 27% of tumors treated with

TACE showing a complete response and approximately 50%

showing no response (Lammer et al., 2010). Consequently, it is of

great importance to understand the mechanisms of resistance to

doxorubicin in HCC. As a novel gene regulator, lncRNA is

closely related to the occurrence, development, and prognosis

of human disease, especially cancer. The abnormal expression of

some lncRNAs may be related to the overgrowth, apoptosis

inhibition, invasion, metastasis, and poor prognosis of HCC

cells (Li et al., 2018; Pan et al., 2019; Huang et al., 2020). The

present study is the first to comprehensively analyze the potential

lncRNAs and genes associated with doxorubicin resistance

in HCC.

FIGURE 4
Performance of the four-gene risk model. (A) ROC analysis of survival plots of the risk model in the TCGA dataset. (B) ROC analysis of survival
plots of the risk model in the GSE76427 dataset. (C) Pearson correlation analysis between RNF157-AS1 expression and risk score. (D) RNF157-AS1
expression of HCC samples grouped by different clinical features. (E) Distribution of risk scores for different clinical features. Log-rank tests were
conducted in (A, B). Wilcoxon tests were performed in (D, E). ns: no significance. ***p < 0.01, ****p < 0.0001.
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In this study, we compared RNA-seq data fromHCC samples

and doxorubicin-resistant HCC samples to control data to

identify key lncRNAs. Differential analysis between HCC and

paracancerous samples and between doxorubicin-resistant and

control samples revealed three candidate DElncRNAs. However,

only RNF157-AS1 was an independent risk factor significantly

associated with overall survival in HCC. Functional analysis

revealed that some metabolic pathways, including bile acid

metabolism, fatty acid metabolism, and oxidative

phosphorylation, were negatively correlated with RNF157-AS1

expression. These metabolic pathways are involved in the

pathogenesis or immune response of HCC (Wang et al., 2016;

Ma et al., 2018; Liu et al., 2020); thus, RNF157-AS1 may regulate

HCC progression and induce doxorubicin resistance by

interacting with these metabolic pathways.

RNF157-AS1 has not been specifically reported in HCC or

other cancer types. Some studies focusing on constructing gene

signatures for cancer have identified RNF157-AS1 as a

prognostic lncRNA in the signature. For instance, Lin et al.

(2021) identified a five-lncRNA signature including RNF157-

AS1 for predicting ovarian cancer prognosis. Jiang et al. (2020)

reported RNF157-AS1 as a candidate gene related to HBV-

based HCC.

To understand the potential mechanism of RNF157-AS1 in

HCC development, we identified a series of RNF157-AS1-

associated PCGs. Function analysis showed significant

enrichment of the mRNA surveillance pathway, RNA

transport, and the cell cycle in RNF157-AS1-associated

PCGs, implying that RNF157-AS1 may be involved in

regulating mRNA-related biological processes and cell

proliferation. Based on these RNF157-AS1-associated

PCGs, we constructed a risk model containing four

prognostic PCGs (CENPP, TSGA10, MRPL53, and BFSP1).

The four-gene risk model showed reliable performance and a

high AUC score in different datasets. The result also showed

that the risk score was an independent indicator of overall

survival in HCC. In addition, we established a nomogram

based on the HCC risk score and stage to increase the

accuracy in the prediction of HCC prognosis. Compared

to other indicators, the nomogram showed superior

performance in the DCA plot, indicating that the

nomogram could benefit patients with HCC.

FIGURE 5
Nomogram construction and evaluation. Univariate (A) and multivariate (B) Cox regression analysis of the risk score, age, sex, stage, and grade.
(C) Nomogram based on risk score and stage for predicting death rate at 1, 3, and 5 years. (D) Calibration curve for predicting the accuracy of the
nomogram. (E) DCA plot of the nomogram, risk score, and stage. (F) AUC of the nomogram, risk score, and clinical features.
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Among these four genes, only TSGA10 has been reported

relatively often in cancer; the other three genes were less

often reported. Tanaka et al. (2004) observed

TSGA10 overexpression in 4 of 20 patients with HCC, two

of whom showed antibodies against recombinant

TSGA10 protein. TSGA10 was also suggested as a

potential biomarker in cancer tumorigenesis (Mobasheri

et al., 2007). Dianatpour et al. (2012) observed

upregulated TSGA10 expression in breast cancer cell lines

and suggested its important role in breast cancer

proliferation and prognosis. However, the association

between RNF157-AS1 and these four genes requires

further analysis. The four-gene risk model also requires

further verification in clinical cases. However, this study

has several limitations. For example, the sample size of the

included dataset is limited, which may lead to bias in the

screening results and biological function analysis. Moreover,

the prognostic model requires further experimental

verification.

Conclusion

In conclusion, the results of this study identified a key

lncRNA (RNF157-AS1) that may contribute to doxorubicin

resistance by involving metabolic pathways in HCC. Based on

RNF157-AS1-associated PCGs, we constructed a four-gene risk

model that reliably predicted HCC prognosis.
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Paclitaxel is an herbal active ingredient used in clinical practice that shows anti-

tumor effects. However, its biological activity, mechanism, and cancer cell-

killing effects remain unknown. Information on the chemical gene interactions

of paclitaxel was obtained from the Comparative Toxicogenomics Database,

SwishTargetPrediction, Binding DB, and TargetNet databases. Gene expression

data were obtained from the GSE4290 dataset. Differential gene analysis, Kyoto

Encyclopedia of Genes and Genomes, and Gene Ontology analyses were

performed. Gene set enrichment analysis was performed to evaluate disease

pathway activation; weighted gene co-expression network analysis with diff

analysis was used to identify disease-associated genes, analyze differential

genes, and identify drug targets via protein-protein interactions. The

Molecular Complex Detection (MCODE) analysis of critical subgroup

networks was conducted to identify essential genes affected by paclitaxel,

assess crucial cluster gene expression differences in glioma versus standard

samples, and perform receiver operator characteristic mapping. To evaluate the

pharmacological targets and signaling pathways of paclitaxel in glioblastoma,

the single-cell GSE148196 dataset was acquired from the Gene Expression

Omnibus database and preprocessed using Seurat software. Based on the

single-cell RNA-sequencing dataset, 24 cell clusters were identified, along

with marker genes for the two different cell types in each cluster.

Correlation analysis revealed that the mechanism of paclitaxel treatment

involves effects on neurons. Paclitaxel may affect glioblastoma by improving

glucose metabolism and processes involved in modulating immune function in

the body.
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1 Introduction

The most common primary malignant brain tumors of the

central nervous system are gliomas, which originate from

neuroectodermal cells (Jiang et al., 2011a; Wang et al., 2016)

and are responsible for 74.6% of malignant tumors and 24.7% of

initial brain tumors (Mat Zin and Zulkarnain, 2019). Gliomas are

characterized by rapid growth, aggression, relapse after surgery,

and a high death rate (Liu et al., 2012). Surgery, chemotherapy,

radiation, and other methods are the main treatment options for

glioblastoma (Yang et al., 2013). Treatments for glioblastoma

have advanced in recent years through the development of

chemotherapeutic medicines. Chemical drugs improve

outcomes following surgery or radiation therapy and prolong

the survival time and tumor-free survival time (Chen et al., 2017).

However, the targets of chemotherapeutic drugs are unclear, the

drugs do not easily cross the blood-brain barrier, and their effects

are insufficient; additionally, effective drugs do not concentrate at

the lesion site and do not remain at this site long-term (Johnson

and Phillips, 1996). These drugs also show low bioavailability

(Talibi et al., 2014). Thus, new treatment options for

glioblastoma are needed (Bush et al., 2017).

The anticancer drug paclitaxel is extracted from the bark of

the yew tree and targets microtubule proteins (Bastiancich et al.,

2019). Paclitaxel accelerates the formation of microtubules from

microtubule dimers and prevents their separation, which induces

abnormal mechanical reorganization of the microtubules and

inhibits normal cell division. This drug also inhibits the effects of

other factors on the microtubule system and, together with the

stable binding of microtubule proteins, eventually induces

apoptosis (Liu et al., 2017a). In clinical applications, paclitaxel

has shown good efficacy in treating non-small cell lung cancer

(Hoang et al., 2012), breast cancer (Manhas et al., 2022), gastric

cancer (Tu et al., 2022), nasopharyngeal cancer (Xia et al., 2022),

ovarian cancer (Kong et al., 2023)and cervical cancer (Yasunaga

et al., 2022), particularly for drug-resistant tumors (Song et al.,

2018; Kawiak et al., 2019). Although the therapeutic efficacy of

paclitaxel in glioma has been confirmed, its therapeutic

mechanism remains unclear.

In addition, the activity of paclitaxel against brain tumors was

disappointing in phase II experiments due to the presence of the

blood-tumor barrier (BTB) and/or blood-brain barrier (BBB)

(Zhang et al., 2012). In recent years, more and more studies have

been devoted to the combined administration to break through

the blood-brain barrier and act precisely on gliomas, and

p-glycoprotein has been confirmed to be an important

obstacle to preventing paclitaxel from entering the brain

through studies of paclitaxel crossing the blood-brain barrier

in vitro and in vivo (Fellner et al., 2002; Zhang et al., 2012; Li et al.,

2016). One study showed angiopep-2 modified cationic

liposomes for effective co-delivery of therapeutic genes

encoding human tumor necrosis factor-related apoptosis-

inducing ligand (pEGFP-hTRAIL) and paclitaxel to gliomas

(Sun et al., 2012). Local delivery of brain-penetrating

nanoparticles significantly improved the efficacy of paclitaxel

for malignant gliomas and substantially delayed tumor growth

(Nance et al., 2014). These studies and methods provide great

help for paclitaxel to break through the blood-brain barrier and

act as a precise drug-targeted therapy, and also make our study

meaningful. This study was conducted to evaluate the specific

effects of paclitaxel on glioblastoma and provide a new approach

for treating this disease in clinical settings.

In this study, we investigated the mechanism of action of

paclitaxel in glioblastoma therapy by using network,

pharmacology, and genetics analyses. We determined the

crucial role of immune function regulation in the prognosis of

patients with glioblastoma. Analysis of transcription data from

the Gene Expression Omnibus (GEO) database and

corresponding clinical information revealed differentially

expressed genes (DEGs). We also explored the correlations

between drug- and disease-acting genes and levels of immune

function activation, constructed a glioblastoma predictionmodel,

and identified several different genes associated with immune

activation as potential biomarkers. The findings were validated

using the GEO single-cell dataset. Our findings revealed a crucial

role for immunomodulation in treating glioblastoma with

paclitaxel, which may act on neuronal cells and improve

processes such as glucose metabolism to regulate the body’s

immune function.

2 Materials and methods

Flowchart was shown in Figure 1.

2.1 Identification of targets of paclitaxel

The SwissTargetPrediction database (https://www.

swisstargetprediction.ch/) was used to query paclitaxel for its

targets and associated target genes. The Comparative

Toxicogenomics Database (CTD; https://ctdbase.org/),

BindingDB (http://bindingdb.org/bind/index.jsp), and

TargetNet database (https://targetnet.scbdd.com/) were also

used to identify potential target genes. Additionally, we used

the UniProt database (https://www.uniprot.org/uploadlists/) to

query genes corresponding to potential target proteins to screen

for active ingredients. Our results were used to locate paclitaxel

lactones through Excel searching and sorting. Gene Ontology

(GO) was used for functional annotation. The Database for

Annotation, Visualization, and Integrated Discovery (DAVID)

(https://david.ncifcrf.gov/) was employed for functional

annotation, Kyoto Encyclopedia of Genes and Genomes

(KEGG) pathway analysis, and Disease Ontology (DO)

functional annotation of the target genes. DAVID integrates

biological information and statistical tools to help researchers
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identify gene and protein material. The bioinformatics tool GO

analyzes and classifies biological processes into genes, with

molecular functions, biological processes, and cells as the

three GO components. Molecular data obtained using high-

volume experimental techniques can be utilized to investigate

signaling pathways, including numerous protein interactions and

activities that regulate cellular function and metabolic activity.

The ggplot2 tool in R was used to visualize the data, and an

adjusted p < 0.05 was utilized for barrier testing.

2.2 Identification of DEGs in glioblastoma

77 glioblastoma samples and 23 healthy controls comprised

the GSE4290 microarray dataset downloaded from the GEO

database (http://www.ncbi.nlm.nih.gov/geo). To obtain a gene

expression matrix for the samples, it was first normalized and

integrated. The genomes of glioblastoma samples and healthy

controls were analyzed using the R package “limma (version 3.5.

1)". p-values were adjusted using the Benjamin–Hochberg

method. The segmentation criteria were modified to |

[log2 fold-change]| >1 and p < 0.05. Using the R packages

“ggplot2 (version 3.3.2)” and “heatmap (version 0.3.2),” all

genes were displayed in a volcano plot. Heatmap (version 0.7.

7) was used to show the top 20 DEGs (Ito and Murphy, 2013).

Ridge plots were designed, and the defined genomes were

analyzed using gene set enrichment analysis (GSEA) to

identify significant differences between the two characteristics

(Subramanian et al., 2007). The biological pathways and

processes involved in the pathogenesis of module membership

(MM) were predicted using GSEA (version 3.0, http://www.gsea-

msigdb.org/gsea/index.jsp). Hub gene expression values were

employed as phenotype files to calculate Pearson correlation

coefficients, and the KEGG pathway gene set was used as an

enrichment background. The above gene sets were used as

background genes for enrichment analysis, and the correlation

coefficients of each hub gene with other genes were sorted in

descending order as scan sequences. Analyses were performed

using the following settings: false discovery rate <0.25, nominal

p-value < 0.05, |normalized enrichment score| > 1.

2.3Weighted gene co-expression network
analysis of GEO

In the weighted gene co-expression network analysis

(WGCNA) package of the R software, 5,000 genes with the

highest average expression were selected to construct a

weighted gene co-expression network using expression as a

screening condition. The screening threshold was set to

convert the paired correlation matrix into a neighborhood

correlation matrix to ensure that the scale-free network

calculated the paired Pearson correlation coefficients between

all genes individually. The minimum number of genes per gene

FIGURE 1
Flowchart.
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module was set to 30 using the dynamic hybrid shear tree

algorithm criterion, and eigenvector values were calculated for

each module. Themodules were analyzed by clustering, and close

modules were combined into a new module. The WGCNA

algorithm calculates the module feature correlation to

determine the correlation between module genes and disease

subgroup phenotypes, and the heat map reflects the strength of

the correlation. Individual modules were considered as

significantly correlated with the phenotype when p < 0.05.

The module showing the highest correlation coefficient with

glioblastoma was selected as the key module. Pearson’s

correlation coefficients were calculated for each co-expression

module with gene identity values to screen for key genes. Genes

with module membership (MM) > 0.8 and gene importance

(GS) > 0.65 were selected as key genes. Differential genes were

intersected with WGCNA as disease-related genes and imported

into DAVID 6.8 for GO and KEGG pathway enrichment

analyses. Pathway enrichment analysis was performed to

validate the significant gene functional categories (p < 0.05).

2.4 Generation of protein-protein
interaction networks

Protein-protein interactions (PPIs) were investigated using

the cross-targets identified in STRING (version 10.5, https://

string-db.org/). The network nodes and edges depict protein and

high-binding conversations, respectively. Cytoscape software was

used to create and visualize the PPI interaction networks (version

3.6.0). The Molecular Complex Detection (MCODE) algorithm

detects dense regions of tightly linked protein or PPI networks

and is used to screen for critical subnetworks that contribute to

glioblastoma development, derive essential subpopulation genes,

and perform GO enrichment analysis.

2.5 Differential expression of crucial
subpopulation genes in glioblastoma and
normal tissues

Differential expression analysis of crucial subpopulation

genes was performed on the GEO dataset using statistical

software R4.1.3 (The R Project for Statistical Computing,

Vienna, Austria). Differential expression of crucial

subpopulation genes between disease and control groups was

explored under screening conditions of p-value < 0.05 and |

[(log2 fold-change)]| > 1 and visualized as heat maps in R

language. Data from GSE4290 were used to construct a

disease control model validation set to assess the association

of critical genes with glioblastoma in R language software (Robin

et al., 2011). Receiver operating characteristic (ROC) curves were

plotted, and screened core genes were evaluated by calculating

the area under the ROC curve.

2.6 Single-cell RNA sequencing data
analysis and identification of
glioblastoma-associated genes

The original expression profile dataset (GSE148196) used for

analysis was screened using the GEO public database. The dataset

consisted of biopsies from four patients with active glioblastoma.

Tissues were extracted and then analyzed using expression

profiling microarrays on the Illumina NextSeq assay platform.

The raw dataset was preprocessed using the Seurat R package to

ensure the quality of the results. The total number of molecules

within the cell (nCount RNA) and genes detected in each cell

(nFeature RNA) were determined, and the number of genes was

compared to the number of reads obtained from sequencing of

each cell. Widespread mitochondrial genomic contamination in

low-quality or dead cells was assessed by calculating the number

of reads paired with the mitochondrial genome using a

percentage feature set function. Cells were clustered based on

the filtered principal components and visually classified using the

unified manifold approximation and projection dimensionality

reduction technique. Immune cell marker genes with adjusted

p-values < 0.05 were screened. Immune cell marker genes were

retrieved using the PanglaoDB database and intersected with the

corresponding genes for each class group to identify the class

group of the immune cells. The results revealed the potential

targets of paclitaxel in glioblastoma.

2.7 Statistical analysis

A two-sided p-value of 0.05 was considered to indicate

statistically significant results. Rstudio (www.r-project.org;

version 4.2.1) was used to sort and observe the data

(Packages: limma, edgeR, ggplot2, survminer, survival, RMS,

randomForest, pROC, glmnet, heatmap, timeROC, via

storyline, complot, ConsensusClusterPlus, forest plot, survival

rock, beeswarm, edgeR, “TxDb.Hsapiens.UCSC.hg38,” “known

gene,” “cluster profile,” “org.Hs.eg.DB,” “karyoploteR,” “GSVA,”

“GSEABase,” “stringr,” “GEOquery,” “dplyr,”

“ComplexHeatmap,” and “RColorBrewer”).

3 Results

3.1 Target genes of paclitaxel

Using the SwissTargetPrediction, CTD, BindingDB, and

TargetNet databases, we identified and retrieved 1,010 target

genes associated with paclitaxel lactone (Figure 2A;

Supplementary Table S1). We performed GO and DO

functional enrichment and KEGG pathway enrichment

analyses. The GO biological process category was mainly

enriched in regulation of peptidase activity, response to
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FIGURE 2
Screening analysis of paclitaxel targets. (A) Venn diagram of paclitaxel in the four databases. (B) Gene Ontology (GO) enrichment analysis of
paclitaxel targets. (C,D)DOenrichment analysis of paclitaxel targets. (E,F) Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of
paclitaxel targets.
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FIGURE 3
Expression of differentially expressed genes (DEGs) in the GSE4290 dataset. (A,B) Datasets were compared before and after normalization. (C)
Volcano plot of DEGs in the GSE4290 dataset. (D) Ridge plots with normalized enrichment scores show the pathways where DEGs aremost enriched
in gene set enrichment analysis (GSEA). (E,F) GSEA analysis based on KEGG analysis.
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peptides, and endopeptidase activity. The GO cellular

component category was mainly enriched in collagen-

containing extracellular matrix, vesicle lumen, and cytoplasmic

vesicle lumen. The molecular function category was mainly

enriched in protein serine/threonine/tyrosine kinase,

endopeptidase, and protein serine/threonine kinase activities

(Figure 2B). DO upregulation was mainly enriched in

musculoskeletal system cancer, connective tissue cancer, non-

small cell lung carcinoma, bone cancer, female reproductive

organ cancer, and breast carcinoma (Figures 2C,D). KEGG

analysis revealed enrichment mainly in the pathways of

neurodegeneration, multiple diseases, Alzheimer’s disease,

PI3K-Akt signaling pathway, lipid and atherosclerosis, and

Epstein-Barr virus infection (Figures 2E,F).

3.2 Target genes in glioblastoma

Using normalization between arrays based on the

GSE28424 dataset (Figures 3A,B), 3,135 genes were

screened for differential expression between glioblastoma

samples and normal tissue. Among the genes, 1,345 were

upregulated and 1790 were downregulated (Supplementary

Table S2); the top 20 genes are shown in a volcano plot

(Figure 3C) and ridge plot (Figure 3D) drawn using R

language for the glioblastoma group. Pathway enrichment

was evaluated using GSEA pathway between the

glioblastoma and control groups. The results showed that

allograft rejection, asthma, DNA replication, mismatch

repair, and Staphylococcus aureus infection activation were

enriched in glioblastoma (Figure 3E). GABAergic synapses,

insulin secretion, morphine addiction, nicotine addiction, and

synaptic vesicle cycle were significantly inhibited (Figure 3F),

suggesting that immune dysfunction plays an essential role in

glioma development.

3.3 WGCNA

GSE4290 microarray data and clinical information were

downloaded and pre-processed to obtain a final expression

matrix of 100 samples corresponding to 23,323 genes. The

5,000 genes with the highest average expression were selected

to create a gene co-expression module. The dataset was processed

for outlier detection, which showed no significant outliers. Next,

we directly analyzed the gene clustering module against the

clinical grouping phenotypes. The soft threshold power was to

1–30, with R2 > 0.9. The soft threshold power and mean

connectivity were close to zero, indicating that the network

was scale-free. Therefore, a soft threshold of 9 was chosen

(Figure 4A). The topological overlap matrix and correlation

matrix between genes were also computed. The topological

overlap matrix was used to build a hierarchical clustering tree

between genes, and merging of similar modules produced eight

modules. The turquoise module showed the strongest correlation

with glioblastoma (r = 0.78, P 0.01), as shown in Figures 4B,C.

The scatter plot revealed a strong correlation between GS and

MM within the turquoise module (correlation = 0.93, p < 0.01)

(Figure 4D). Thus, the turquoise module may be a pivotal module

linked to glioblastoma.

3.4 Functional enrichment analysis of
genes within modules

Genes in the turquoise module were compared with differential

genes to identify disease-related genes in GO and KEGG analyses

(Figure 5A). According to the GO enrichment results, the enriched

pathways were mainly involved in modulation of chemical synaptic

transmission, regulation of transsynaptic signaling, synapse

organization, presynaptic membrane, and glutamatergic synapses.

According to KEGG enrichment analysis, the enriched pathways

were mainly involved in GABAergic synapses, glutamatergic

synapses, MAPK signaling pathways, and morphine addiction

(Figures 5B–F).

To construct the PPI network, 155 disease-related genes and

molecular drug targets were imported into the STRING online

database (version 11.0) (Figure 6A). Aberrant proteins were

removed, resulting in a 154-protein interaction network.

Cytoscape’s plugin code was used to identify 17 essential

subpopulation genes (score = 13) (Figure 6B). Key cluster genes

were upregulated for proteoglycans in cancer, bladder cancer, PI3K-

Akt signaling pathway, AGE-RAGE signaling pathway in diabetic

complications, HIF-1 signaling pathway, Kaposi sarcoma-associated

herpesvirus infection, endocrine resistance, small cell lung cancer,

pancreatic cancer, and human cytomegalovirus infection (Figures

6C,D). In addition to acting on cellular metabolic pathways,

paclitaxel may be useful for diagnosing glioblastoma.

3.5 Differential expression of critical genes
in tumor tissue and controls and
prognostic analysis

As shown in the box plots, individual essential sub-cluster

genes were significantly different between the disease and control

groups (Figure 7A), and the ROC curves showed that all

17 essential sub-cluster genes had excellent robustness for

glioblastoma (area under the ROC curve >0.6) (Figure 7B).

The immune heat map showed that the significant regulatory

targets of the critical cluster genes were mainly in the immune

pathways of Macrophages_M0, Macrophages_M2,

Mast_cells_activated, and T_cells_follicular_helper (Figures

7C,D), indicating that these genes are involved in regulating

glioma immune function, which is consistent with previous

studies (Wang et al., 2022).
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3.6 Single-cell assay analysis

Analysis of biopsy specimens from four patients with active

glioblastoma showed a strong positive correlation between the

measured gene expression and number of genes detected in the

cells, both in normal and diseased tissues. In contrast, gene

expression detected in the cells was not correlated with the

percentage of mitochondria. Therefore, cells

with >2,500 and <200 genes detected per cell and cells with

a >5% mitochondrial percentage were filtered out to ensure the

quality of the analyzed cells. Quality control and screening of

single-cell sequencing of samples from patients with

glioblastoma are shown in (Figures 8A,B). Principal

component analysis plots were downscaled for cluster

analysis (Figures 8C,D); the cluster tree was scaled to a

resolution of 1.5 (Figure 8E), and the principal component

FIGURE 4
Enrichment levels in genomic weighted gene co-expression network analysis (WGCNA). (A). Selection of soft thresholds. (B,C) Correlation of
module eigengenes with glioblastoma. (D) Correlation of turquoise eigengenes with glioblastoma.
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value was 16 (Figure 8F). The heatmap shows each gene type

(Figure 9A). Unified manifold approximation and projection

showed 24 cell clusters (Figure 9B), with different categories of

cells labeled with different colors. Relevant genes were

retrieved using the Cellmaker database and intersected with

the gene corresponding to each unified manifold

approximation and projection cluster (Figure 9C). The

cellular distribution of drug target AUCell functional scores

showed that paclitaxel acts mainly on neuronal cells

(Figure 9D).

FIGURE 5
Analysis of differential genes and weighted gene co-expression network analysis (WGCNA) genes. (A) Venn diagram of differential genes and
WGCNA genes. (B–F) Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of disease genes.
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4 Discussion

Glioblastoma is a highly malignant primary malignant

tumor; and WHO grade III and IV malignant glioblastoma is

a common type of high-grade glioblastoma (Mitobe et al., 2022;

Yilmaz et al., 2022), with no apparent boundary between the

tumor tissue and surrounding tissue. Therefore, the efficacy of

surgery alone in treating malignant glioblastoma is poor and

results in a median survival of only approximately 10 months

(Liu et al., 2017b). Paclitaxel is a traditional anti-tumor drug

effective against ovarian cancer, colorectal cancer, breast cancer,

and glioblastoma (Dorsey et al., 2009). In recent years, more and

more studies have shown the therapeutic effect of paclitaxel on

glioma, and it has been verified in vivo and in vitro experiments

(Xie et al., 2006; Jiang et al., 2011b). Substantial progress has been

made in the in vitro treatment of glioma with continuous delivery

of paclitaxel through biodegradable materials (Xie and Wang,

2006). In addition, it has been shown that the treatment of

glioblastoma with tumor-targeted gene vectors and brain-

targeted micelles and paclitaxel co-delivery has achieved good

efficacy in mouse experiments (Zhan et al., 2012). In this

experiment, we used single-cell sequencing data for in-depth

mining, and advances in this next-generation sequencing

approach have enabled genomic analysis of single cells, which

is beneficial to reveal heterogeneous tumors and has an

important role in the treatment of cancer (Navin and Hicks,

2011; Zhang et al., 2016). In addition, single-cell sequencing is

likely to improve several aspects of pharmacology, including

precise targeting of drugs, cellular receptors, and deeper

mechanisms of action (Lee et al., 2014; Heath et al., 2016).

We identified 1,010 target genes related to paclitaxel using

the SwissTargetPrediction, CTD, BindingDB, and TargetNet

databases. GO analysis showed enrichment in the regulation

of peptidase activity, response to peptide, and regulation of

endopeptidase activity in the biological process category. In

the cell component category, enrichment was observed in

collagen-containing extracellular matrix, vesicle lumen, and

cytoplasmic vesicle lumen. For molecular function, we

FIGURE 6
Analysis of crucial cluster genes. (A,B) Screening for essential subcluster genes. (C,D) Kyoto Encyclopedia of Genes and Genomes (KEGG)
enrichment analysis of essential subcluster genes (top 10).
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observed enrichment in protein serine/threonine/tyrosine kinase

activity, endopeptidase activity, and protein serine/threonine

kinase activity (Figure 2B). DO enrichment analyses were

mainly enriched in musculoskeletal system cancer, connective

tissue cancer, non-small cell lung carcinoma, bone cancer, female

reproductive organ cancer, and breast cancer; pathways related to

neurodegeneration-multiple diseases, Alzheimer disease, PI3K-

Akt signaling pathway, lipid and atherosclerosis, Epstein-Barr

virus infection were enriched according to KEGG analysis. These

results suggest that paclitaxel can treat a variety of tumor cells by

regulating the body’s peptidase activity and other signaling

pathways. The 3,135 genes differentially expressed between

glioblastoma samples and normal tissues, including

1,345 upregulated genes and 1790 downregulated genes, were

enriched in allograft rejection, asthma, DNA replication,

mismatch repair, and glioblastoma. Replication, mismatch

repair, and S. aureus infection pathway were activated.

GABAergic synapse, insulin secretion, morphine addiction,

nicotine addiction, and synaptic vesicle cycle pathways were

significantly inhibited, suggesting that immune function was

overactivated in the tumor tissues (Perelroizen et al., 2022).

We also identified 2,479 key genes involved in disease

progression. Fifty-three key subgroups of genes were enriched

in proteoglycans in cancer, bladder cancer, and PI3K-Akt

FIGURE 7
Relationship between crucial cluster genes and immune infiltration and receiver operating characteristic (ROC) prediction. (A) Differential
expression of crucial subgroup genes in tumor and control tissues. (B) ROC curves of essential subcluster genes predicting disease onset. (C)
Differential expression of immune function between tumor and control tissues. (D) Relationship between crucial cluster genes and immune
infiltration.
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signaling pathways. Cybersport analysis was used to calculate

the number of genes in 22 immune cells. The results showed

that the drug-disease critical cluster of genes was primarily

targeted by one of the major immune pathways and other

pathways to exert a therapeutic effect. Single-cell data analysis

showed that the main target of paclitaxel was neuronal cells,

FIGURE 8
Comparison of single-cell analysis before and after normalization. (A,B) Quality control analysis of single-cell data sets. (C,D) Plots of principal
component analysis (PCA) before and after standardization. (E,F) Resolution with principal components (PCs) to be confirmed.
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which is consistent with previous results (Duhamel et al.,

2018).

Our results suggest that paclitaxel improves the prognosis

of glioblastoma by acting on neuronal cells and modulating

immunity (Xue et al., 2017). We also identified ITGB1, FN1,

EGFR, SERPINE1, ACTA2,HIF1A, CDK4, CDKN1A,MAP2K1,

CASP3, VCAM1, MMP9, KIT, BDNF, CXCR4, VEGFA, and

NES as essential cluster genes, which agrees with the results of

previous related studies. Li et al. suggested that

GLIPR1 enhances the proliferation, migration, and invasion

of glioblastoma and may be involved in activation of the

TIMP1-CD63-ITGB1-AKT signaling pathway, which is a

potential target for the clinical prevention or management

of glioblastoma (Jiang et al., 2022). Wu et al. (2021) found that

the regulation of ITGB1 expression promotes progression,

suggesting an essential role for ITGB1 in glioblastoma.

Andersson et al. (2010) demonstrated that regulation of the

EGFR pathway is involved in glioblastoma progression and

that specific genotypes of the EGFR gene may be associated

with glioblastoma risk. According to Ohtaki et al. (2017),

ACTC1 is as an independent prognostic and aggressive

marker of gliomas. In addition, Wu et al. (2022)

demonstrated that CXCR4 promotes the proliferation of

GICs through the KLF5/BCL2L12-dependent pathway.

These essential cluster genes may have good predictive

efficacy for glioblastoma and are essential for glioblastoma

development. Further studies are needed to identify the

molecular mechanisms involved in the immune response to

glioblastoma.

Our experiments still have some limitations, lack

prospective cohort and in vitro experiments, and the

specific molecular mechanism of paclitaxel affecting glioma

remains unclear, but our advantage lies in the clear

description of paclitaxel target cells based on single-cell

data, which makes an important contribution to the study

of the specific molecular mechanism in the next step.

5 Conclusion

We examined the interactions and molecular mechanisms of

paclitaxel in glioblastoma. Paclitaxel and glioblastoma synergistically

FIGURE 9
Paclitaxel pathways of action. (A) Heat map of each gene table level. (B) Unified manifold approximation and projection clustering into
24 clusters. (C) iTalk analysis identified two clusters. (D) Paclitaxel drug pathways of action.
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affected differentially regulated genes. We used modern network

medicinal theories to investigate the molecular biological

mechanisms of paclitaxel in glioblastoma, which may help guide

clinical practice. In future studies, we will validate these results in

pharmacological and molecular biology experiments.
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Background: Lung cancer poses great threat to human health, and lung

adenocarcinoma (LUAD) is the main subtype. Immunotherapy has become

first line therapy for LUAD. However, the pathogenic mechanism of LUAD is still

unclear.

Methods: We scored immune-related pathways in LUAD patients using single

sample gene set enrichment analysis (ssGSEA) algorithm, and further identified

distinct immune-related subtypes through consistent clustering analysis. Next,

immune signatures, Kaplan-Meier survival analysis, copy number variation

(CNV) analysis, gene methylation analysis, mutational analysis were used to

reveal differences between subtypes. pRRophetic method was used to predict

the response to chemotherapeutic drugs (half maximal inhibitory

concentration). Then, weighted gene co-expression network analysis

(WGCNA) was performed to screen hub genes. Significantly, we built an

immune score (IMscore) model to predict prognosis of LUAD.

Results: Consensus clustering analysis identified three LUAD subtypes, namely

immune-Enrich subtype (Immune-E), stromal-Enrich subtype (Stromal-E) and

immune-Deprived subtype (Immune-D). Stromal-E subtype had a better

prognosis, as shown by Kaplan-Meier survival analysis. Higher tumor purity

and lower immune cell scores were found in the Immune-D subtype. CNV

analysis showed that homologous recombination deficiency was lower in

Stromal-E and higher in Immune-D. Likewise, mutational analysis found that

the Stromal-E subtype had a lower mutation frequency in TP53 mutations.

Difference in gene methylation (ZEB2, TWIST1, CDH2, CDH1 and CLDN1)

among three subtypes was also observed. Moreover, Immune-E was more

sensitive to traditional chemotherapy drugs Cisplatin, Sunitinib, Crizotinib,

Dasatinib, Bortezomib, and Midostaurin in both the TCGA and GSE cohorts.

Furthermore, a 6-gene signature was constructed to predicting prognosis,

which performed better than TIDE score. The performance of IMscore

model was successfully validated in three independent datasets and pan-

cancer.
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1 Introduction

Lung cancer still serves as the most common malignancy

and the foremost cause of cancer death in the world

(Thandra et al., 2021). Lung adenocarcinoma (LUAD) as

a main subtype of lung cancer belong to the larger group of

non-small cell lung cancer, and accounts for about 40% of all

lung cancer cases Moreover, it is strongly associated with

smoking (Pintarelli et al., 2019; Spella and Stathopoulos,

2021). Although treatment modalities such as surgery,

chemoradiotherapy, targeted therapy, and

immunotherapy have been widely used for the treatment

of lung cancer, but the prognosis remains dismal (Ladanyi

and Pao, 2008; Bronte et al., 2010; Denisenko et al., 2018),

with a 5-year survival rate as low as less than 10% (Hirsch

et al., 2017).

Cancer evolution is influenced by complex interactions

between tumor cells and host immune responses within the

tumor microenvironment (Taube et al., 2018). Different

immune cell populations are actively involved in tumor

immune microenvironment (TIME), however, their

relationship is currently unclear in LUAD therapy (Zhang

et al., 2020). Immune cells are both positive and negative

regulators of cancer progression (Zamarron and Chen, 2011).

For example, B-cells exert antitumor functions by enhancing

T-cell immunity, stimulating the production of interferon-γ
and helping natural killer (NK) cells against tumors

(Sorrentino et al., 2011). However, B-cells also suppress

immune responses and promote angiogenesis (Schwartz

et al., 2016). Considering the importance of TIME in

cancers, we attempted to classify LUAD based on immune

pathways and compared their characteristics.

Disease prediction models have been widely used to

evaluate patient survival and other prognostic indicators in

LUAD (Jiang et al., 2020; Jiang et al., 2022). Recently, a novel

model related to lactate metabolism for predicting overall

survival and immune signature in LUAD was reported and

different immune signatures were built (Jiang et al., 2022).

Moreover, an increasing number of LUAD prognostic

biomarkers have been discovered by analyzing expression

profiles from public databases and related clinical

information (Jiang et al., 2020).

Due to advances in genetic technology, various molecular

subtypes and gene expression studies have been published and

popularized for the identification of prognostic biomarkers (Li

and Wang, 2021). However, the prognostic manifestations of

established biomarkers are controversial and limited. In the

current study, we identified and classified three immune

subtypes and a six-gene combination capable of predicting

survival in patients with LUAD.

2 Materials and methods

2.1 Data collection

To better understand the pathogenesis of LUAD, RNA-Seq

data of LUAD with clinical survival and characteristic

information were downloaded from TCGA database by using

TCGA GDC API. Fragments per kilobase of transcript per

million fragments mapped (FPKM) were converted into

transcripts per million (TPM), and then Log2 was

transformed for subsequent analysis. In addition, we

downloaded the GSE37745, GSE50081, GSE30219,

GSE31210 microarray datasets with survival times from the

GEO database (Yamauchi et al., 2012; Botling et al., 2013;

Rousseaux et al., 2013; Der et al., 2014). For GEO, MINiML

formatted family file(s) were downloaded and samples was

preprocessed using RMA implemented in affy package.

Normalized data values were transformed in log2 space and

used in subsequent analysis.

2.2 Data quality control

To ensure the accuracy of downstream analysis, the RNA-Seq

data of TCGA-LUAD without clinical follow-up information or

survival time were removed. Next, the data without status were

filtered. Then, only the genes with more than one expression in

more than 50% of the samples were retained.

For GSE data, firstly, normal tissues, samples without clinical

follow-up information, samples without OS data and samples

without status were filtered. Then, we converted the probes to

symbols according to the annotation file.

2.3 Batch effect processing

The removeBatchEffect function of the limma (R package)

was used to remove batch effects between different datasets

(Ritchie et al., 2015). Principal component analysis (PCA) was

used to observe the batch effect (Supplementary Figure S1).

2.4 LUAD classification based on pathway
score

In order to explore the molecular typing of LUAD, single

sample gene set enrichment analysis (ssGSEA) analysis was used

to calculate the score related to immune pathway

(Supplementary Table S1) (Gao et al., 2021). Next,

ConsensusclusterPlus (R Bioconductor/R package) software
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was used for consensus clustering analysis with “pam” arithmetic

and “pearson” distance, and the input was a sample matrix pool

of immune pathway scores (Wilkerson and Hayes, 2010). Then,

we determined the optimal number of clusters according to the

cumulative distribution function (CDF).

2.5 Gene mutation analysis

The mutect2 software was applied to perform gene mutation

analysis (Benjamin et al., 2019). The tumor promoting genes

were obtained from previous study. The fisher’s test was used to

screen genes with significantly high frequency mutations in each

subtype, with a threshold of p-value < 0.05. Moreover, the

maftools software (R package) was used to calculate the tumor

mutational burden (TMB) score (Mayakonda et al., 2018).

2.6 Copy number variation (CNV) analysis

GISTIC2.0 was used to analyze the change of CNV (Mermel

et al., 2011). If the ratio was greater than 0.2, it was considered as

FIGURE 1
Identification of LUAD immunophenotyping. (A), The cumulative distribution function (CDF) of different consensus index. (B), The CDF Delta
area curve. (C), The heat map showing the immune pathway score in TCGA and GSE cohorts. (D), PCA analysis in TCGA cohorts, different color
means different subtypes. (E), PCA analysis in GSE cohorts, different color means different subtypes.
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Gain, if the ratio was less than −0.2, it was considered as Loss, and

the rest was considered as Diploid.

2.7 Methylation analysis

The 450K methylation data of LUAD were used to perform

methylation analysis of EMT-promoting genes (Wang and Zhou,

2013), and missing values were imputed using the KNN

algorithm of the impute software (R package) (Hastie et al., 2011).

2.8 Treatment plan sensitivity analysis

We used the tumor immune dysfunction and exclusion

(TIDE) (https://tide.dfci.harvard.edu/) algorithm to predict

response of immunotherapy (Jiang et al., 2018). The higher

the TIDE prediction score, the higher the likelihood of

immune escape, and the lower the likelihood that the patient

would benefit from immunotherapy. Moreover, IC50 (half

maximal inhibitory concentration) analysis was used to

determine the sensitivity of different subtypes to

chemotherapy drugs using pRRophetic method.

2.9 Weighted gene co-expression
network analysis (WGCNA)

WGCNA was performed by WGCNA (R package) to filter

hub genes in the module related to different LUAD subtypes

(Langfelder and Horvath, 2008). Hub genes refer to genes that

play key roles in modules and are generally closely related to

shape. The hub genes were further subjected to KEGG pathway

analysis by using clusterProfiler (R Bioconductor/R package). p-

value < 0.05 was considered significance.

2.10 IMscore predicted by prognostic
model

IMScore model was constructed using univariate Cox

regression analysis and LASSO analysis. Finally, six prognostic

FIGURE 2
Immune features of different subtypes. (A), Comparison of distribution of StromalScore in subtypes. (B), Comparison of distribution of
ImmuneScore in subtypes. (C), Comparison of distribution of ESTIMATEScore in subtypes. (D), Comparison of distribution of TumorPurity in
subtypes. (E), EMT score Comparison of distribution among subtypes. (F), Comparison of distribution of Cytolytic activity scores among subtypes.
(G), Comparison of distribution of immune cell scores among subtypes. (H), Density distribution map of gene PD1, CTLA4, LAG3 and PD-L1 in
different subtypes. * means p-value < 0.05, ** means p-value < 0.01, *** means p-value < 0.001, **** means p-value < 0.0001.
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genes were obtained, including MARCKS, CDK2, SFN, SSBP1,

MRE11 and FZD7. IMScore = ΣExp(i)*β(i), where i refers to the
immune-related prognostic genes, Exp refers to the expression

levels of genes, and β refers to the LASSO coefficients.

3 Results

3.1 LUAD classification based on pathway
scores

The pathway scores of different samples in the TCGA and

GSE cohorts were calculated by ssGSEA algorithm, and then

consensus clustering analysis was performed on the pathway

scores. The optimal number of clusters was determined

according to the CDF, and the CDF Delta area curve was

observed. When it was selected as 3, it has a relatively stable

clustering result, and finally we choose k = 3 to obtain three

related subtypes, including immune-Enrich subtype (Immune-

E), stromal-Enrich subtype (Stromal-E) and immune-Deprived

subtype (Immune-D) (Figures 1A,B). A heatmap showing the

trends in pathway scores for each sample demonstrated a good

discrimination between the three different subtypes (Figure 1C).

In addition, PCA analysis between different subtypes showed

that in both datasets, there were distinct boundaries between

different subtypes (Figures 1D,E).

3.2 Analysis of clinical characteristics of
different subtypes

Survival analysis showed a better prognosis in the Stromal-E

subtype and a worse prognosis for the Immune-D subtype, which

was consistent in the TCGA cohort (left) and the GSE cohort (right)

(Supplementary Figure S2A). Analysis of differences in the

distribution of clinical features among subtypes in the TCGA

dataset showed significant differences in age, sex as well as the

distribution of T Stage among subtypes (Supplementary Figure S2B).

Comparative analysis of the molecular subtypes with the six

previously identified immunophenotypes (Thorsson et al., 2018)

FIGURE 3
Mutation features of different subtypes. (A), Waterfall plot of tumor mutated genes in different subtypes. (B), Differential analysis of TMB
distribution in different subtypes. (C). Kaplan-Meier survival analysis of mutation and wild-type tumor driver genes. Ns means no significance, *
means p-value < 0.05, ** means p-value < 0.01, *** means p-value < 0.001, **** means p-value < 0.0001.
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showed that the previously published immunophenotypes were

significantly different from our current study, for example, the

Immune-E subtype had the highest proportion of the C2 subtype

and C3 subtype had the best prognosis and also contributed the

largest proportion in Stromal-E subtype. These results supported the

reliability of our immunosubtyping (Supplementary Figure S2C)

FIGURE 4
CNV features of different subtypes. (A), CNV distribution of tumor driver genes. (B–E), Differences in NtAI, LST, LOH and HRD score of different
subtypes, respectively. (F), Differences in gene expression by tumor driver gene CNV groupings. Nsmeans no significance, *means p-value < 0.05, **
means p-value < 0.01, *** means p-value < 0.001, **** means p-value < 0.0001.
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3.3 Immune characteristics among
different LUAD subtypes

In order to further understand the immune characteristics

among the various subtypes of LUAD, we first used the

Estimate software to evaluate the immune scores and tumor

purity score of the TCGA and GSE cohorts. The results

demonstrated that the immune score, stromal score, and

ESTIMATE score were the highest in Immune-E subtype

both in the TCGA and GSE cohorts (Figures 2A–C). The

opposite was true for the tumor purity score (Figure 2D).

Epithelial-mesenchymal Transition (EMT) is closely related

to tumor metastasis and recurrence (Wang and Zhou, 2013).

Therefore, we applied the ssGSEA algorithm to evaluate the

difference in EMT scores between different subtypes. The

results showed that in the TCGA cohort, the Stromal-E

subtype had the highest EMT score, and in the GSE cohort

Immune-E subtype was the highest (Figure 2E). Cytolytic

activity is associated with immunotherapy, and here

ssGSEA was used to assess differences in Cytolytic activity

score (Rooney et al., 2015). We found that both in TCGA and

GSE cohorts, the score was highest in Immune-D subtype and

the lowest in Immune-E subtype (Figure 2F). To further

understand the status of different immune cells, we

assessed immune cell infiltration between different subtypes

and found the highest scores in Immune-E, such as

FIGURE 5
Methylation features of different subtypes. (A), The distribution of methylation value of EMT-promoting gene in subtypes. (B), Correlation
analysis of methylation value and expression value of EMT-promoting gene. (C), The beta value of cg probe site of gene CDH1 in subtype Differences
in distribution among subtypes. (D). Correlation of beta values of cg probe sites for CDH1 with CDH1 gene expression. Ns means no significance, *
means p-value < 0.05, ** means p-value < 0.01, *** means p-value < 0.001, **** means p-value < 0.0001.
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Plasmacytoid dendritic cell, Regulatory T cell and Gamma

delta T cell. This was also the same in the TCGA and GSE

cohorts (Figure 2G). Moreover, we determine the expression

level of PD1, PD-L1, CTLA4 and LAG3, and observed that the

expression level was higher in Immune-E subtype (Figure 2H).

3.4 Mutational analysis of tumor driver
genes in different subtypes

A total of 172 tumor driver genes were obtained from

previous study (Gao et al., 2013). Mutation analysis of tumor

FIGURE 6
Sensitivity analysis of treatment options. (A), Difference analysis of TIDE score of different immune subtypes in TCGA cohort. (B), Difference
analysis of TIDE score of different immune subtypes of GSE cohort. (C), Difference analysis of drug IC50 of in TCGA cohort. (D), Difference analysis of
drug IC50 of in GSE cohort. Ns means no significance, * means p-value < 0.05, ** means p-value < 0.01, *** means p-value < 0.001, **** means p-
value < 0.0001.
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driver genes in different subtypes of TCGA dataset found that

13 genes had different mutations in different groups and

TP53 had the highest mutation frequency in the Immune-E

subtype (Figure 3A). The results of TMB analysis in different

subtypes found that TMB in Stroma-E subtype was

significantly lower than that in Immune-E and Immune-D

subtypes. There was no difference in TMB distribution

between Immune-E and Immune-D subtypes in TCGA

dataset (Figure 3B). In addition, survival curve (KM)

analysis of mutations in driver genes and wild-type samples

in TCGA dataset demonstrated that mutations in nine genes

were significantly different from wild-type, including CNTLN,

ZNF48, ZNF878, BRDS, SERPINI1, LARP7, SLITRK6 and

DSTN (Figure 3C). Those analysis indicated that three

subtypes may predict mutation status.

3.5 CNV analysis of tumor driver genes in
different subtypes

A total of 159 of 172 tumor driver genes had CNV data. To

understand CNV in tumor driver genes, GISTIC2 was used to

perform CNV analysis. The results showed that the amplification

and deletion of 159 driver genes were significant in different

subtypes in TCGA dataset, and top 18 genes were visualized.

Notably, immune-D had the largest amounts of CNVs

(Figure 4A). Homologous recombination deficiency (HRD) is

associated with a poorer cancer prognosis (Knijnenburg et al.,

2018). Loss of heterozygosity (LOH), LST (large-scale state

transitions), NtAI (number of telomeric allelic imbalances)

score and HRD score were selected to assess the HRD status

in different subtypes, and we found that the above scores were the

FIGURE 7
WGCNA identifies functional modules associated with different subtypes. (A), Dendrogram of all genes clustered based on a dissimilarity
measure. Different colors on the bottom panel represent different modules. (B), Lollipop plot showing the number of genes in differentmodules. (C),
Clustering tree showing correlation between different modules. (D), Heat map showing module correlation with different subtypes. (E–G), The top
10 KEGG pathway in magenta (Immune-E), pink (Stromal-E) and blue (Immune-D) module, respectively.
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lowest in Stromal-E and highest in Immune-D (Figures 4B–E).

The expression level of tumor driver genes in the gene CNV

grouping showed that the expression of the genes corresponding

to the grouping with Gain was higher, while that corresponding

to the grouping with Loss was lower (Figure 4F).

3.6 Methylation analysis of genes in
different subtypes

The methylation status of genes plays an important role in

gene expression. DNA methylation analysis of seven EMT-

promoting genes showed that the methylation status of

ZEB1 and VIM did not differ among subtypes in TCGA

dataset, while the methylation status of ZEB2, TWIST1,

CDH2, CDH1 and CLDN1 were significantly different in each

subtype (Figure 5A). The correlation analysis between gene

expression value and methylation status showed that the gene

expression values of VIM, CDH2, CDH1, and CLDN1 were

significantly negatively correlated with methylation status

(Figure 5B). The distribution of cg sites of CDH1 in different

subtypes in TCGA dataset showed that some sites had significant

differences in different subtype groups, and that the highest value

in Immune-E was in a hypermethylated state (Figure 5C). From

the correlation analysis of CDH1 cg loci and CDH1 gene

expression, most of the cg loci and CDH1 gene expression

showed a significant negative correlation (Figure 5D).

3.7 Immunotherapy and drug sensitivity of
different subtypes

The TIDE (https://tide.dfci.harvard.edu/) algorithmwas used

to assess the potential clinical effects of immunotherapy on

different molecular subtypes. In the TCGA cohort, the TIDE

score of Immune-E was significantly higher than that of Stromal-

E and Immune-D. The immunotherapy effect analysis indicated

that the proportion of responses in Immune-E was only 22%,

which was much lower than that of Stromal-E and Immune-D

(Figure 6A). In GSE dataset, TIDE score was also higher in

Immune-E. (Figure 6B). In addition, we also analyzed the

response of different subtypes to the traditional chemotherapy

drugs Cisplatin, Sunitinib, Crizotinib, Dasatinib, Bortezomib,

Midostaurin. The results suggested that all the six drugs were

FIGURE 8
IMscore model to predict prognosis. (A), Distribution of IMscore for each sample in the TCGA cohort. (B), Distribution of LASSO coefficients for
six genes. C andD, Kaplan-Meier survival analysis in different IMscore group in TCGA (C) andGSE (D) cohort. E and F, Differences in the distribution of
IMscore among different subtypes ((E), TCGA cohort; (F), GSE cohort). Ns means no significance, * means p-value < 0.05, ** means p-value < 0.01,
*** means p-value < 0.001, **** means p-value < 0.0001.
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more sensitive to the Immune-E subtype in both the TCGA and

GSE cohorts (Figures 6C, D).

3.8 WGCNA to identify the key gene of
subtypes

Hierarchical cluster analysis of cohort samples showed no

discrete samples in the TCGA cohorts (Supplementary Figure

S3A). In order to ensure that the gene network we constructed

conformed to the scale-free distribution, we set the β value to 9 at
the time R2 > 0.85 (Supplementary Figures S3A,S3C). After

clustering the modules and merging the closer modules into a

new module, we acquired a total of nine modules (Figure 7A).

The lollipop graph showed the number of genes in each module.

It can be observed that the turquoise color module had the largest

number of genes, which was more than 4,000 genes (Figure 7B).

The heat map of correlation analysis of each subtype and module

showed that the Immune-D subtype had the highest positive

correlation with the blue module, the Immune-E subtype had the

highest positive correlation with the magenta module, and the

Stromal-E subtype had the highest positive correlation with the

pink module (Figures 7C,D). Further, we performed KEGG

pathway analysis on the genes in the above three modules,

and the results demonstrated that the genes in the magenta

module were closely related to Natural killer cell mediated

cytotoxicity, the genes in the pink module were closely related

to ECM-receptor interaction, and the genes in the blue module

were closely related to Genes were closely related to Mismatch

repair, etc. (Figures 7E–G).

3.9 IMscore prognostic model
construction

In GSE, six prognostic pathways (Fc gamma R-mediated

phagocytosis mediated phagocytosis, p53 signaling, Mismatch

repair, Homologous recombination, Wnt signaling, Cell cycle)

from 15 pathways were identified by univariate COX analysis.

Then, Pearson analysis on the genes in six pathways and six

pathways score was used to select the top20 genes. Through

univariate COX analysis and LASSO regression analysis, we

obtained six genes form 20 genes as related genes affecting

prognosis (Figures 8A, B), and the model score was developed

based on the following formula: IMScore = 0.400*MARCKS +

0.353*CDK2 + 0.232*SFN + 0.450*SSBP1 + 0.604*MRE11 −

0.169*FZD7.

The survminer package was used to find the best cutoss of

IMScore and divide the GSE and TCGA data set samples into

high IMscore group (high group) and low IMscore group (low

group). In the GSE cohort, survival analysis of high- and low-

groups found that the prognosis of high groups was significantly

worse than that of low groups. High group also had worse

survival outcome in TCGA datset (Figures 8C, D). In

addition, we compared the distribution differences of IMScore

among subtypes in different datasets and found that: IMScore in

Stromal-E had the lowest in GSE and TCGA, while Immune-D

had the highest IMscore in GSE, Immune-E had highest IMscore

in TCGA dataset (Figures 8E, F).

3.10 Prediction efficiency of IMscore
prognostic model

The survival curve analysis of IMScore model in different

cancer types showed that except ESCA, our IMScore had

significant differences in high and low IMScore in all cancer

types, and that the prognosis of high IMScore was significantly

worse than that of low IMScore (Supplementary Figure S4).

Furthermore, IMvigor210, GSE91061 and GSE135222 data

were used to examine the efficiency of the IMscore model in

immunotherapy. To evaluate the efficiency of IMscore, TIDE

analysis was used as a control. For IMvigor210 cohort, survival

analysis showed significant differences in survival among

different groups (IMscore: p-value < 0.0001; TIDE, p-value =

0.012) (Supplementary Figures S5A, S5B). For GSE91061 cohort,

survival analysis showed significant differences in survival among

different IMscore groups (p-value < 0.023) (Supplementary

Figures S5C). TIDE group was not statistically significant (p-

value = 0.067) (Supplementary Figures S5D). For

GSE135222 cohort, survival analysis showed no significant

differences in IMscore or TIDE groups (IMscore: p-value =

0.055; TIDE, p-value = 0.051) (Supplementary Figures S5E,

S5F). Notably, ROC curve analysis demonstrated that in the

above three cohorts, the predictive efficiency of IMscore was

higher than that of TIDE.

4 Conclusion

LUAD is one of the most common malignant tumors, with

high metastasis rate and strong invasiveness. Its low 5-year

survival rate seriously threatens the life and health of human

beings (Charloux et al., 1997; Tan et al., 2016). Significantly,

early-stage LUAD has been reported to be associated with a

higher risk of postoperative recurrence and death (Bittner et al.,

2014). The immune system has been shown to play a critical role

and even determine different stages of cancer development and

progression (Shurin, 2018). Hence, an accurate classification of

LUAD patients according to immune characteristics and the

identification of LUAD biomarkers have positive significance for

the selection of LUAD treatment methods. A previous study

reported six subtypes in LUAD, including Wound Healing, IFN-

γ Dominant, Inflammatory, Lymphocyte Depleted,

Immunologically Quiet, and TGF-β Dominant (Thorsson

et al., 2018). However, in this research, three molecular

Frontiers in Pharmacology frontiersin.org11

Liu et al. 10.3389/fphar.2022.1081244

89

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2022.1081244


subtypes classified by immunological features were obtained and

defined as Immune-E, Stromal-E and Immune-D.

Kaplan-Meier survival analysis was able to determine

survival differences between different subtypes (Goel et al.,

2010). We found that Stromal-E subtype had a better

prognosis and Immune-D had a worse prognosis. To gain a

deeper understanding of the differences in survival between the

different subtypes, we used Estimate software for immune

calculating index scores and tumor purity scores (Yoshihara

et al., 2013). The results showed that higher tumor purity and

lower immune cell scores were in the Immune-D subtype, which

accounted for the poorer prognosis of the subtype.

Recently, immunotherapy has also been developed as a new

treatment for LUAD (Saito et al., 2018). Moreover, antibodies

against PD-1 and PD-L1 have been reported to be effective in the

treatment of various malignancies (Antonia et al., 2017; Bie et al.,

2021). Although the biology of the TIME driving these responses

was not fully understood, it is critical for the design of

immunotherapeutic strategies. We found that the expression

level of PD1, PD-L1, CTLA4 and LAG3 was higher in

Immune-E subtype. However, as we mentioned above, the

survival analysis showed that the Stromal-E subtype had a

better prognosis, which suggested the complexity of

tumorigenesis mechanisms.

TMB is an emerging tumor biomarker and it is associated

with response to PD-1/PD-L1 targeted therapies in lung

cancer (Spigel et al., 2016). We found that TMB in the

Stromal-E subtype was significantly lower than in the

Immune-E and Immune-D subtypes. TP53, known as the

guardian of the genome, is one of the most well-known

tumor suppressor genes (Surget et al., 2014). Interestingly,

the mutation analysis suggested that Stromal-E subtype had a

lower TP53 mutation rate of only 32%, while the other two

subtypes both exceeded 50%, which explained a better

prognosis of Stromal-E subtype. Moreover, high levels of

TIDE scores suggested that Immune-E was more likely to

occur immune escape, suggesting that the Immune-E subtype

had limited benefit from immunotherapy (Jiang et al., 2018).

Interestingly, although the Immune-E subtype had little

limited benefit from immunotherapy, IC50 analysis of

chemotherapeutic agents showed that this subtype was

more sensitive to chemotherapeutic agents, including

Cisplatin, Sunitinib, Crizotinib, Dasatinib, Bortezomib and

Midostaurin.

The above analysis showed a high heterogeneity among

different immune subtypes. In order to better understand the

differences between different subtypes, we used WGCNA

analysis to identify hub genes among each subtype. Extensive

analyses showed that WGCNA was an effective method for

identifying phenotype-genotype linkages and biomarkers and

therapeutic targets (Niemira et al., 2019; Ma et al., 2021; Zhang

et al., 2022). Nine modules were obtained, and pink module was

highly associated with Stromal-E subtype. Further function

enrichment analysis showed that the hub genes in pink

module were involved in ECM-receptor interaction pathway.

Tumor progression depends not only on cell-autonomous

changes in tumor cells, but also on the changes within the

microenvironment (Götte and Kovalszky, 2018). An important

feature of the dysregulated lung cancer microenvironment is the

altered extracellular matrix (ECM), which can promote tumor

angiogenesis, allow tumor cell immune escape, etc. (Mahale et al.,

2016). In addition, magenta module was positively correlated

with Immune-E subtype and participated in natural killer cell

mediated cytotoxicity.

Notably, we developed an IMscore model containing six

immune-related genes (MARCKS, CDK2, SFN, SSBP1,

MRE11 and FZD7) to predict LUAD prognosis. CCNA2-

CDK2 complex have been reported to inhibit LUAD

progression (Li et al., 2021). CDK2 also was a biomarker for

other cancers and next-generation CDK2 inhibitors play an

increasingly pivotal role in the treatment of cancer (Wadler,

2001; Chohan et al., 2015; Tadesse et al., 2020). SFN gene encodes

a protein participating in regulating epithelial-mesenchymal

interaction (Asdaghi et al., 2012). Aya Shiba-Ishii reported

that SFN promoted early progression of LUAD by activating

cell proliferation (Shiba-Ishii, 2021). SSBP1, MRE11 and

FZD7 have been considered as potential treatment sites of

LUAD (Sun et al., 2017; Wang et al., 2017; Zeng et al., 2020).

Kaplan-Meier survival analysis showed the high IMScore group

had a significantly lower prognosis than the low IMScore

group. Then, we detected the IMScore in three immune-

related subtypes. As expected, the lowest score of IMScore in

Stromal-E subtype was obtained. To explore the efficiency of the

IMscore model, we used the expression profile data of the

remaining 32 cancer types in the TCGA database for

validation, and found that IMScore was significantly different

in all cancer types except ESCA.

5 Conclusion

In this study, we used immune-related signaling pathways to

classify LUAD and obtained three different subtypes, which had

great differences in survival, gene mutation, CNV, gene

methylation, etc. We further constructed an IMscore model to

predict the prognosis among different subtypes of LUAD, and

observed that the IMscore model had a higher efficiency. In

addition, data in different cancers further confirmed the validity

of the IMscore model.
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Background: Traditional Chinese medicine in China is an important adjuvant

therapy for the treatment of hepatocellular carcinoma (HCC) and traditional

Chinese medicines injections have a wide range of clinical applications. The

purpose of this study was to identify the active ingredients and related genes of

traditional Chinesemedicine injections that can treat hepatocellular carcinoma.

Methods: Effective small molecule components were extracted from 14 types

of traditional Chinese medicines from 8 injections and the main gene targets

were identified. The 968 patients with HCC were classified based on the target

gene set, and the characteristics of patients with different subtypes were

analyzed. Patients with two subtypes of HCC were compared with normal

tissues and cirrhosis to identify important gene targets related to traditional

Chinese medicines in HCC progression.

Results: In this study, 138 important genes associated with traditional Chinese

medicines were identified and two HCC subtypes were identified. By analyzing

the differences between the two subtypes, 25 related genes were associated

with HCC subtypes. Through clinical and pharmacological analysis, this study

identified quercetin as an important traditional Chinese medicines small

molecule and secreted phosphoprotein 1 (SPP1) as an important oncogene

in HCC.

Conclusion: Traditional Chinese medicines injection is an important adjuvant

treatment modality for HCC. SPP1 is an important oncogene in HCC.
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Introduction

Liver cancer is the sixth leading cause of death in the world,

accounting for about 8.3% of cancer mortality (Sung et al., 2021).

Liver cancer is a common chronic liver disease. Hepatitis viruses

HBV and HCV are common causes of liver cancer. Liver cirrhosis

caused by virus can develop into liver cancer under the action of

various incentives. Liver cancer caused by hepatitis virus is also a

common type of liver cancer in the Chinese population (Shi et al.,

2005; Schietroma et al., 2018). At the same time, excessive intake of

aflatoxin, alcoholic liver disease and non-alcoholic fatty liver

disease are also common causes of liver cancer (Sagnelli et al.,

2020; Llovet et al., 2021).Most of these diseases can cause liver

fibrosis and chronic inflammation, thereby promoting the

occurrence and development of liver cancer (Dhar et al., 2020).

Hepatocellular carcinoma (HCC) is a liver tumor originating from

hepatocytes and is the most common type of liver cancer. 90% of

liver cancers are hepatocellular carcinoma (Gao et al., 2020).

Traditional treatments for HCC include surgery, chemotherapy,

radiation therapy, targeted therapy, etc., (Wang et al., 2019). In

recent years, with the emergence of immunotherapy, many

immunotherapy drugs, such as PD-L1/PD-1 monoclonal

antibody, have been widely used in the treatment of liver

cancer. At present, immunotherapy combined with traditional

targeted therapy has become an important treatment method for

HCC (Makarova-Rusher et al., 2015; De Martin et al., 2018; Xu

et al., 2018; Faivre et al., 2020).

Traditional Chinese medicine is a traditional Chinese

medicine treatment method. Many studies have shown that

traditional Chinese medicine has a greater role in a variety of

tumor microenvironments. Many active ingredients of

traditional Chinese medicine can promote the generation of

tumor immune cells and the occurrence of anti-tumor

responses (Zhai et al., 2019; Wang et al., 2020a). Traditional

Chinese medicine has a variety of anti-tumor effects in the

treatment of HCC and can play a greater role in other

therapeutic methods (Wei et al., 2022). However, traditional

Chinese medicines are often administered orally or externally

due to the complex composition of traditional Chinese

medicines. In this way, the effect of some traditional Chinese

medicines is not obvious and it is difficult to study the main

active components of traditional Chinese medicines. In recent

years, with the discovery of traditional Chinese medicine

ingredients and the improvement of refining technology, more

traditional Chinese medicine injections have appeared in clinical

treatment. In this study, 8 kinds of commonly used and

commercialized traditional Chinese medicine injections were

collected, and these injections were all related to

hepatocellular carcinoma. Ideas and results.

Method and material

Classification of traditional Chinese
medicine and acquisition of active
ingredients

In this study, the commonly used traditional Chinese

medicine injections were screened, and 8 traditional

Chinese medicine injections related to HCC were obtained.

Eight kinds of traditional Chinese medicine injections contain

a total of 14 kinds of traditional Chinese medicines. According

to the medicinal properties and pharmacological effects of

traditional Chinese medicines, we divided the 14 kinds of

traditional Chinese medicines into three categories. The first

category is heat-clearing traditional Chinese medicine (HCM),

including marsdenia tenacissima, sarcandra glabra, semen

coicis, venenum bufonis and mylabris. The second category

is tonic traditional Chinese medicine (TCM), including

ginseng, astragalus mongholicus, red ginseng and

acanthopanax root. The third category of pain-relieving

traditional Chinese medicine (PRCM), including caulis

sinomenii, celandine, schefflera kwangsiensis, aconiti radix

and radix aconiti agrestis.

We obtained the main components of relevant Chinese

medicines from 4 Chinese medicine databases including

SymMap, TCMID, TCMSP, and TCM-ID. The

pharmacokinetics and pharmacokinetics of these components

were obtained from the TCMSP database. We screened the main

components with DLS0.1 and TPSA≤140 as the active

ingredients of various traditional Chinese medicines. Among

the three types of traditional Chinese medicines, 50 active

ingredients were screened by HCM; 153 active ingredients

were screened by TCM; 110 active ingredients were screened

by PRCM.

Acquisition of related genes in active
ingredients of traditional Chinese
medicine

In this study, the target of 303 main components of three

types of traditional Chinese medicines was determined through

the four traditional Chinese medicine databases of SymMap,

TCMID, TCMSP and TCM-ID. Then, we obtained the HCC-

related target sets through the DisGNET database and the

GeneCard database, and obtained the intersections with the

three types of traditional Chinese medicines targets

respectively. The three target gene sets were intersected and

138 target genes were found.
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RNA-seq data of HCC patients and
correlation analysis

In this study, RNA-seq data were collected from three online

databases, TCGA(TCGA-LIHC), ICGC(ICGC-LIRI) and GEO

(GSE14520,GSE116174,GSE54236), for 968 cases of patients

with HCC. RNA-seq data from another 340 patients with

cirrhosis were also collected for comparison in GEO

(GSE15654,GSE84044). A total of 479 cases of RNA-seq data

from normal liver tissues were obtained from three online

databases, TCGA(TCGA-LIHC), GTEx and GEO

(GSE14520,GSE54236). All sequencing data were transformed

into FPKM data and normalized accordingly. Spearman test was

used for all gene expression correlation analysis in this study. In

this study, the expression of 120 target genes in HCC was

demonstrated.

Consistent clustering and variance
analysis

Based on the expression of 120 target genes, 968 patients

were divided into Class I and Class II by consistent clustering

method. Then, the differential genes between the two groups

were detected by DeSeq2 differential gene analysis. Differential

gene screening conditions were p < 0.05 and log2FC < -1 or

log2FC > 1. WGCNA analysis was used to further identify

important sets of differential genes between the two HCC

subtypes.

Gene and pathway enrichment analysis

GSEA enrichment analysis was performed on the differential

genes of the two types of samples, and gene functions were

annotated by using the gene sets of GO and KEGG. At the same

time, the basic enrichment analysis was performed on the target

gene sets of three types of traditional Chinese medicines by using

the gene sets of GO and KEGG. GSVA pathway analysis was used

to analyze the differences in pathway enrichment between the

two HCC subtypes.

Immune infiltration analysis and survival
analysis

The Cibersort immune infiltration analysis was performed

on the gene sets of the two types of samples, and the differences in

the infiltration degrees of 22 immune cells in the two types of

samples were obtained. 576 patients with HCC had clinical

survival data. KM analysis was used to analyze the effect of

HCC subtypes on survival of patients. Cox analysis was used to

identify important genes associated with traditional Chinese

medicines target genes that are associated with survival of

patients with HCC.

Genetic multi-omics analysis and drug
analysis

The GEPIA database is used to observe gene expression in a

variety of cancers. The ULCAN database is used to analyze gene

methylation. cBioPortal database is used to analyze gene

mutations. HPA data is used to analyze gene expression and

cellular localization at the protein level. Oncopredict package and

easier package are used to analyze different subtypes of HCC

patients’ sensitivity to common small molecule drug treatments

and immunotherapy. A molecular docking approach was used to

validate the interactions between important small molecule

components of traditional Chinese medicines and gene target

proteins.

Statistical analysis

The software used in this study includes R studio (R4.2.1),

Cytoscape 3.7.2, Prism 9, Autodock4, Pymol and SPSS 26.

Statistical results at p < 0.05 were considered statistically

significant.

Result

Classification and target screening of
traditional Chinese medicines related
to HCC

In this study, we included 8 clinically used traditional

Chinese medicine injections and collected small molecules and

effective targets of 14 classes of Chinese medicines

(Supplementary Table S1). A detailed analysis flow chart has

been shown in Supplementary Figure S1. We divided the

14 classes of traditional Chinese medicine into three major

categories based on the pharmacology and clinical efficacy of

Chinese medicine. The first group of traditional Chinese

medicine is HCM, which has the effect of clearing heat and

detoxifying the body, and can inhibit the development of

inflammation and cancer. The number of HCC-related targets

of HCM is 243 (Figure 1A). The second group of traditional

Chinese medicine is TCM, which has the effect of benefiting the

immune function of the body and promoting the body’s anti-

disease function. The number of HCC-related targets of TCM is

548 (Figure 1A). The third group of traditional Chinese medicine

is PRCM, which has pain-relieving effect and is often used in the

treatment of cancer pain in advanced cancer. The number of

HCC-related targets of PRCM is 297 (Figure 1A). Gene
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FIGURE 1
Classification and target screening of traditional Chinese medicines. (A) The number of HCC-related targets of three types. (B) Gene function
analysis of HCM gene targets. (C) Gene function analysis of TCM gene targets. (D) Gene function analysis of PRCM gene targets.
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FIGURE 2
Common targets and classification subtypes. (A) The number of common targets. (B) Gene enrichment Go analysis of common targets. (C)
Gene enrichment KEGG analysis of common targets. (D) PPI analysis of common targets. (E) Core networks 1 of PPI analysis. (F) Core networks 2 of
PPI analysis.(G) Core networks 3 of PPI analysis. (G) Consensus matrix of consistent clustering. (H) Consensus CDF of consistent clustering.
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FIGURE 3
Gene differential analysis of two subtypes. (A) PCA analysis. (B) Volcano map of differential analysis. (C) Expression of 120 traditional Chinese
medicine targets. (D) Correlation of 120 traditional Chinese medicine targets. (E) GSEA Go analysis. (F) GSEA KEGG analysis.
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enrichment analysis showed that the targets of HCMwere related

to drug response (Figure 1B); the targets of TCM were related to

extracellular stimulation (Figure 1C); and the targets of PRCM

were related to cell chemotaxis (Figure 1D). All three types of

TCM were associated with hepatitis virus (Figures 1B–D). PPI

analysis showed that the target sets of all three types of traditional

Chinese medicine had high correlation (Figures 1B–D).

Common targets of traditional Chinese
medicine and classification subtypes
of HCC

In this study, 138 gene targets were obtained from the target

sets of three types of traditional Chinese medicine (Figure 2A).

Based on 138 genes, we collected related traditional Chinese

medicine and small molecule components (Supplementary Table

S2).Gene enrichment analysis showed that most of the

138 targets were associated with cellular stress response,

hepatitis virus (Figures 2B,C). PPI analysis showed a large

correlation between targets (Figure 2D) and three core

networks were obtained with clustering indices of 7.5

(Figure 2E), 6.87 (Figure 2F), and 5 (Figure 2G), respectively.

Most of the genes in all three core networks were associated with

cellular stress response and cellular inflammation. In this study,

sequencing data from 968 HCC cases were used to find the

expression of 120 targets (The details are shown in

Supplementary Table S3). Therefore, based on the expression

of 120 targets, consistent clustering was performed and patients

with HCC were classified into two subtypes, Class I and Class II

(Figures 2H,I).

Target expression and differential analysis
of different subtypes of HCC

PCA analysis showed that based on the expression of

traditional Chinese medicine targets, 968 patients could be

clearly classified into two categories, with 525 cases in Class I

and 443 cases in Class II (Figure 3A). Differential analysis showed

that there were 76 genes with higher expression and 151 genes

with lower expression in Class II compared with Class I. Among

them, SPP1 was the most significantly differential gene with a

LogFC of 2.36 (Figure 3B). We observed the expression and

correlation of 120 traditional Chinese medicine targets in HCC

(Figures 3C,D). VEGFA, an important target for HCC, was

generally highly expressed in Class II (Figure 3C), so we

hypothesized that Class II was more malignant than Class I.

GSEA analysis showed that the gene set based on GO (Figure 3E)

and KEGG (Figure 3F), Class II exhibits enhanced cell cycle and

cell division processes, as well as reduced metabolic processes

(especially P450 enzyme metabolism). The p-values of GSEA in

this study were all less than 0.05, and the top5 items with higher

NES were screened for presentation (Figures 3E,F;

Supplementary table S4).This indicates that Class II is more

malignant than Class I but less drug metabolic than Class I

(Figure 3F).

Subtype characteristics and key genes of
different subtypes of HCC

WGCNA analysis was performed on HCC sequencing

data (Figures 4A–C). The soft threshold value obtained from

the screening was 5 (Figure 4A). The analysis divided

9651 genes into 13 gene sets (Figure 4B). And the HCC

subtype was found to be most correlated with the MEbrown

gene set (r = 0.7, p < 0.05, Figure 4C). GSVA analysis was

performed using three pathway gene sets, KEGG (Figure 4D),

Reactome (Figure 4E) and Wiki (Figure 4F). The results of

the study showed that there was a reduction in liver function-

related metabolism in Class II compared to Class I, especially

for P450-related drug metabolism. We also analyzed the

metabolism of P450-related drugs in cirrhotic versus

normal tissues by GSVA analysis (Figure 4G). The degree

of Class II drug metabolism was found to be lower than

cirrhosis versus normal tissue, but the degree of Class I drug

metabolism was higher than cirrhosis and lower than normal

tissue. This proximally confirms that Class II is less

metabolizable and thus more malignant than Class I. The

MEbrown gene set was intersected with the traditional

Chinese medicine target set to obtain 25 key genes

(Figure 4H). Among the 25 genes, Class II had low

expression of 23 genes and high expression of 2 genes

compared with Class I. SPP1 and MMP1 were more highly

expressed in Class II and higher than in cirrhotic versus

normal tissues (Figure 4I), and negatively correlated with the

expression of other key genes (Figure 4J). Gene enrichment

analysis revealed that these genes were associated with

extracellular stimulation (Figure 4K) and with chemical

carcinogenesis receptor activation (Figure 4L).

Immune microenvironment
characteristics and survival analysis of
different subtypes of HCC

Previous results demonstrated that Class II has a higher

degree of malignancy and greater damage to liver function, as

well as a lower metabolism. In this study, we first performed

Estimate analysis of sequencing data from HCC patients

(Figure 5A). We found that Class II had a higher Estimate

score and had more immune cell components with stromal

cell components. However, Class I had higher tumor purity

than Class II. Cibersort immune infiltration analysis showed

significant differences between Class I and Class II in terms of
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FIGURE 4
Subtype characteristics and key genes. (A) Soft threshold of WGCNA. (B) Cluster Dendrogram of WGCNA. (C) Module-trait relationships of
WGCNA. (D) GSVA analysis by KEGG. (E) GSVA analysis by Reactome. (F) GSVA analysis by Wiki. (G)Metabolism of P450-related drugs by KEGG with
GSVA analysis. (H) Intersection of MEbrown gene set and target genes. (I) Expression of 25 key genes. (J) Correlation of 25 key genes. (K) Gene
enrichment Go analysis of key genes. (L) Gene enrichment KEGG analysis of key genes.
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macrophage and T-cell infiltration (Figure 5B). In terms of

macrophage infiltration (Figure 5C), there was a decrease in

the M1 type ratio and an increase in the M2 type ratio in Class

II, resulting in a lower M1/M2 in Class II. In terms of T-cell,

there was a decrease in CD4-positive T-cell, a decrease in

CD8-positive T-cell, and an increase in the CD4/CD8 ratio in

FIGURE 5
Immune microenvironment characteristics and survival analysis. (A) Estimate analysis of HCC. (B) Cibersort immune infiltration analysis. (C)
Macrophage infiltration analysis. (D)CD4-positive and CD8-positive T-cell infiltration analysis. (E) Treg infiltration analysis. (F) KM analysis of different
subtypes of HCC (G) Correlation of 13 key genes related to survival. (H) HR Forest Map of 13 key genes. (I) Nomogram of 13 key genes. (J)
SPP1 expression in different stages of HCC.
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Class II (Figure 5D). Of note is the presence of a higher

infiltration of Treg cells in Class II (Figure 5E). In summary

Class II has more extracellular matrix and suppresses anti-

tumor immune responses in the microenvironment.

We performed a survival analysis of 576 HCC patients with

clinical data. KM analysis showed that Class II had a worse

prognosis and shorter survival time than Class I (Figure 5F). We

constructed Cox survival regression models using 25 key gene

FIGURE 6
Multi-omics analysis and sensitive drug analysis. (A)Mutation analysis of key genes. (B) Pan-cancer expression of SPP1. (C) SPP1expression of
different subtypes of HCC. (D) Gene methylation of SPP1 and MMP1 in HCC. (E) IHC analysis of SPP1 expression. (F) IF analysis of SPP1 subcellular
localization. (G) The top 10 small molecule drugs sensitive in different subtypes. (H) ICIs expression in different subtypes. (I) Sensitivity analysis of
commonly used HCC therapeutic drugs. (J) Three different immune response scores for different subtypes. (K) Easier scores for different
subtypes. (L) Drug-component-target network for 13 key genes. (M)Molecular docking of SPP1 with quercetin. (N)Molecular docking of MMP1 with
quercetin.
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expressions and screened 13 genes that were associated with

survival time (Figure 5G). Among the 13 genes, four genes, SPP1,

MMP1, PON1, and FAS, were significantly associated with

survival (Figure 5H) and could predict the probability of

patient survival (Figure 5I). In particular, it is important to

note that SPP1, a key gene with significant differences, had

high expression in advanced tumors (Figure 5J), suggesting

that SPP1 may be an important oncogene in HCC.

Multi-omics analysis of key genes and
sensitive drug analysis

We perform further analysis of important key genes.

Mutation analysis showed that SPP1, MMP1, PON1, and FAS

all had low mutation rates in HCC, which demonstrated that all

four genes were stably expressed genes (Figure 6A). Pan-cancer

analysis showed that SPP1 was in high expression in most of the

32 tumors (Figure 6B). And the expression of SPP1 in Class II

was significantly higher than that in Class I with normal tissues.

And there was high expression of SPP1 in cirrhosis, which

proximately suggested that SPP1 was associated with

malignant phenotype (Figure 6C). Methylation analysis

showed low methylation of both SPP1 and MMP1 in HCC

(Figure 6D). IHC analysis showed high expression of SPP1 in

hepatic tissues of HCC, but almost no expression in the

mesenchyme (Figure 6E). IF analysis showed that

HepG2 SPP1 protein was widely present in the cytoplasm and

had a large overlap with microtubule regions overlap with the

microtubule region, suggesting that SPP1 may have a greater

relationship with HCC metastasis (Figure 6F).

We also analyzed the sensitivity of small molecule drugs with

immunotherapy in HCC patients of two subtypes. The results

showed that Class I had greater sensitivity to carboplatin

(Figure 6G) versus oxaliplatin (Figure 6I), while Class II had

greater sensitivity to sorafenib, fluorouracil (Figure 6I). We show

the top 10 small molecule drugs sensitive to both subtypes

(Figure 6G). Class II showed higher sensitivity to lenvatinib

and regorafenib than class I, but there was no significant

difference (Figure 6I). Class II had higher expression of

immunosuppressive checkpoints than class I vs. normal tissue

(Figure 6H). And easier package immunotherapy sensitivity

analysis showed that Class II had high immune response

scores (Figure 6J) and easier scores (Figure 6K). Therefore

Class II and higher immunotherapy sensitivity than Class I.

This suggests that Class II may be prioritized for targeted

therapy and immunotherapy, and that herbal therapy may

enhance the efficacy of both treatments. We screened 13 key

genes related to survival for effective small molecules of

traditional Chinese medicine (Figure 6L). Molecular docking

validation showed that both SPP1 (Figure 6M) and MMP1

(Figure 6N) could interact with quercetin through hydrogen

bonds with binding energies of −7.58 kj/mol and −7.22 kj/

mol, respectively. This suggests that quercetin may be an

important adjunctive therapeutic agent for HCC.

Discussion

As the main type of liver cancer, HCC has a variety of

treatment methods. At present, surgery is still the best

treatment for HCC. But not all patients have the possibility of

surgery, which requires other treatments to make patients have

the opportunity for surgery. Chemotherapy and radiotherapy are

traditional surgical adjuvant treatment methods, but the

prognosis is poor and there are many adverse reactions. In

recent years, with the development of genomics and tumor

immunology, targeted therapy and immunotherapy have

gradually replaced traditional therapy for adjuvant therapy

and the treatment of advanced HCC patients. However, due

to the single target of targeted therapy and immunotherapy, a

large part of patients have no target, resulting in poor drug

response and poor prognosis.

Traditional Chinese medicine is a national treasure of China

and the main treatment method of traditional Chinese medicine.

There are a variety of traditional Chinese medicines and

prescriptions for the treatment of HCC. Relevant studies have

shown that traditional Chinese medicine can affect the

development, occurrence and spread of tumors and lead to

imbalance within the tumor (Xi and Minuk, 2018).

Traditional Chinese medicine can inhibit the invasion and

metastasis of HCC, and is related to the EMT process of HCC

(Jia et al., 2021; Li et al., 2021). At the same time, traditional

Chinese medicine can promote tumor angiogenesis and the

growth of tumor stem cells in HCC (Li, 2016; Wang et al.,

2020b; Tang et al., 2020). The pharmaceutical preparations of

traditional Chinese medicines are mostly extracts of traditional

Chinese medicines, which have a variety of active ingredients and

belong to different types of compounds. Among them, related

studies have shown that alkaloids related to traditional Chinese

medicine have anti-HCC effects and have certain development

prospects (Liu et al., 2019a; Liu et al., 2019b). Most of the HCC-

related components have immunomodulatory effects, which can

promote the body’s immune response and facilitate the

immunotherapy of HCC (Jia and Wang, 2020). This is

consistent with the conclusion of this study. Traditional

Chinese medicine injections commonly used in clinic are also

used in combination with targeted therapy and immunotherapy.

Although there are many targets for the action of traditional

Chinese medicine, most of them are still used as adjuvant therapy

in clinic due to the complex composition and the slow mode of

action of the drug. One study showed that taking it for more than

3 months in a row increased the 3-year survival rate of patients

with HCC (Hou et al., 2022). Another study also came to similar

conclusions that taking traditional Chinese medicine for more

than 6 months increased the survival time of patients, and this
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was associated with multiple pathway enrichment (Zhang et al.,

2022). However, traditional Chinese medicine still needs to be

used in combination with a variety of therapies. Several studies

have shown that the combined treatment of traditional Chinese

medicine can improve the survival rate and quality of life of HCC

patients compared with western medicine alone (Liao et al., 2015;

Yang et al., 2017; Liu et al., 2019c; Liao et al., 2020).

However, traditional Chinese medicine cannot be used as the

main treatment for HCC. This may be due to the fact that most of

the traditional Chinese medicine preparations are oral and

external medicines, which have a long action time and need

to be taken for a long time. Compared with chemotherapy drugs,

targeted drugs and immune preparations, traditional Chinese

medicine lacks good preparations for intravenous infusion.

Although the commonly used traditional Chinese medicine

injection has a certain anti-cancer effect, it is prone to many

adverse reactions due to its complex composition. This study

explores the active ingredients of commonly used liver cancer

injections in clinic, aiming to discover the main targets of

traditional Chinese medicine in the treatment of HCC, which

is conducive to the development of more comprehensive HCC-

related traditional Chinese medicine injections, and provides

ideas and preliminary ideas for the further development of

traditional Chinese medicine anticancer drugs Research results.
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Wnt signaling pathway-derived
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Background: Lung adenocarcinoma (LUAD) is the most common subtype of lung
cancer. Due to tumor heterogeneity, understanding the pathological mechanism of
tumor progression helps to improve the diagnosis process and clinical treatment
strategies of LUAD patients.

Methods: The transcriptome pattern, mutant expression and complete clinical
information were obtained from the cancer genome atlas (TCGA) database and
microarray data from gene expression omnibus (GEO) database. Firstly, we used
single sample Gene Set Enrichment Analysis (ssGSEA) to estimate the activation of
Wnt signaling pathway in each sample. Consensus clustering algorithm was used to
classify LUAD samples into different subgroups according to the transcription
patterns of 152 Wnt signaling pathway related genes. Then, ESTIMATE, ssGSEA
and Gene Set Variation Analysis (GSVA) algorithms were used to assess the
biological pathways and immunocytes infiltration between different subtypes.
LASSO-COX algorithm was conducted to construct prognostic model. Kaplan-
Meier and multivariate Cox analysis were performed to evaluate the predictive
performance of risk model. Gene features were further confirmed using external
datasets. Finally, we conducted vitro assay for validating hub gene (LEF1).

Results: Based on the transcription patterns of 152Wnt signaling pathway related genes,
four different subtypes of LUAD patients were screened out by consensus clustering
algorithm. Subsequently, it was found that patients with cluster A and B had massive
immunocytes infiltration, and the survival rate of patients with cluster B was better than
that of other subgroups. According to the coefficients in the LASSO- Coxmodel and the
transcriptome patterns of these 18 genes, the risk score was constructed for each
sample. The degree of malignancy of LUAD patients with high-risk subgroup was
remarkable higher than that of patients with low-risk subgroup (p < 0.001).
Subsequently, five top prognostic genes (AXIN1, CTNNB1, LEF1, FZD2, FZD4.) were
screened, and their expression valueswere different between cancer and normal tissues.
FZD2 and LEF1 were negatively related to ImmunoScore, and AXIN1 was negatively
related to ImmunoScore. The significant correlation between LUAD patient risk score
and overall survival (OS) was verified in external datasets. In the A549 cell line,
knockdown of LEF1 can reduce the invasive and proliferation ability of LUAD cells.

Conclusion: A innovative 18 genes predictive feature based on transcriptome pattern
was found in patients with lung adenocarcinoma. These investigations further promote
the insight of the prognosis of lung adenocarcinoma and may contribute to disease
management at risk stratification.
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Introduction

Lung adenocarcinoma (LUAD) is the main cause of cancer-related
deaths worldwide, accounting for about 40% of lung cancer patients
(Nguyen et al., 2022). Over the past decade, treatment for epidermal
growth factor receptors and anaplastic lymphoma kinases has
benefited only a small proportion of LUAD patients (Wang et al.,
2019; Wang et al., 2020). Clinically defined LUADmolecular subtypes
urgently need precise treatment.

Previous studies have integrated different data types such as
transcriptome, genome, and metabonomics to characterize the
molecular mechanism of lung cancer and predict the survival
status of cancer patients. Zou et al. (2020) quantified the
infiltration of immunocytes in 32 types of cancer and observed
considerable heterogeneity in the prognostic correlation of these
immunocytes in different types of cancer. An immune cell feature
score model with good prognosis was constructed for LUAD, which
can further deepen our understanding of the LUAD and have an
impact on immunotherapy (Zuo et al., 2020). On the basis of co-
occurrence of KEAP1 mutation, Marinelli et al. (2020) identified four
genes that may be related to the reduction of immunotherapy effect
(KEAP1, PBRM1, SMARCA4, and STK11). This study suggested that
co-existing changes in a limited set of genes were the characteristics of
LUAD patients who are no response to immunotherapy and high
TMB. The immune cold microenvironment may explain the clinical
process of the disease. Similar to other cancers (Troiano et al., 2020),
LUAD also exhibits peculiar molecular and clinical behavior
compared to lung squamous cell carcinoma.

Recently, studies have been conducted to generate genetic
signatures that predict prognostic risk in patients with lung
adenocarcinoma. Zhang et al. (2020b) collected seven cohorts’ of
1300 patients with LUAD and constructed the first tumor Necrosis
Factor family-based model to predict the clinical outcome and
immune status of LUAD patients (Zhang et al., 2020a). Zhao et al.
(2020) obtained RNA sequencing data of LUAD from the cancer
genome atlas (TCGA) database, as well as microarray data from the
gene expression omnibus (GEO) database, and found a new type of
19 prognostic characteristics based on transcriptome pattern in LUAD
patients. Compared with patients with high-risk scores, the mortality
risk of patients with low-risk scores was reduced by 81%. The above
investigation identified different genetic characteristics for prognostic
risk prediction by using different algorism and presented different
genomics profile.

Wnt signaling pathway is a classic tumor activation pathway
related to tumor progression, which regulates cell growth,
differentiation and migration. (Yang et al., 2017; Pan et al., 2020;
Li et al., 2021a). There are three Wnt signaling pathways that have
been described so far: classical β-catenin dependent pathway, non-
classical Wnt/calcium pathway and non-classical planar cell polarity
pathway (Zhao et al., 2019; Abplanalp et al., 2021). Wnt signal
abnormalities are associated with some tumor disease, and the
most significant ones are lung cancer, breast cancer, bladder
cancer, clear cell renal cell cancer and prostate cancer (Xu et al.,
2022; Xue et al., 2022; Zhao et al., 2022). Most investigation on Wnt
signaling pathway in lung adenocarcinoma only focus on Wnt

pathway as a downstream signaling pathway to regulate the
proliferation and differentiation of lung adenocarcinoma cells
(Tammela et al., 2017; Wu et al., 2021).

This investigation did not demonstrate the effect of Wnt signaling
pathway as a whole regulatory profile on the results of lung
adenocarcinoma. Therefore, current studies have identified the
correlation between Wnt signaling pathway and clinicopathologic
parameters of cancer by using transcriptome pattern downloaded
from TCGA website, and identified the impact of Wnt pathway-
related genes on lung adenocarcinoma results. Moreover, a predictive
model was established based on transcriptome pattern, and its
applicability and predictive performance in lung adenocarcinoma
were evaluated.

Materials and methods

Dataset collecting and processing

The transcriptome pattern, mutant expression and complete
clinical information were obtained from the TCGA website and
microarray data from GEO website. Patients without complete
clinical data were excluded from assessment. A total of two
datasets (GSE68465 and GSE72094) were downloaded, and the
combat method of “sva” R package was employed to remove the
batch effect. The merged TCGA and GEO cohort were named as meta-
cohort.

Consensus clustering of lung
adenocarcinoma

We first collected 152 Wnt signaling pathway related genes from
previous articles (Sun et al., 2021). According to the transcriptome
pattern of 152 Wnt signaling pathway-related genes, the optimal
k-means clustering (“kmeans” function in R tool) was employed to
assign different distribution information to each patient, and each
patient was classified into our subgroups. The “ConsensusClusterPlus”
R package was employed for cluster analysis, and 1000 cycles were
calculated to ensure stability and reliability. Kaplan-Meier algorism
was performed to assess the total survival (OS) rate between different
subgroups.

Identification of differential pathways

The GSVA algorithm was conducted to assess the differences
in biological pathways between subgroups. GSVA algorism mainly
evaluated gene set enrichment based on microarray nuclear
transcriptome level. The principle of GSVA algorithm is to
calculates the expression matrix of gene set among samples, so
as to evaluate whether the mechanism pathway is enriched among
different samples (Hänzelmann et al., 2013). c2. cp. kegg. v7.0.
symbols as a reference gene set, FDR <0.05 as a screening
threshold.

Frontiers in Pharmacology frontiersin.org02

Zhou and Zhao 10.3389/fphar.2022.1091018

107

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2022.1091018


Comparison of immunocytes infiltration

In order to investigate the component of immunocytes
infiltration between the four subtypes, we employed the
“ESTIMATE” technological method to estimate immune score
and stromal score for further prediction of immunoreaction and
tumor microenvironment. Then we conducted the ssGSEA
technological method to assess the enrichment level of
immunocytes infiltration and immune-related pathways based
on meta-cohort. Mann-Whitney U test was performed to
compare the differences among the four subgroups.

LASSO-COX regression and prognostic
signature verification

In order to improve the predictive performance and feasibility of
the Wnt signal pathway related model, Lasso-Cox model was
conducted to analyze the correlation between the clinical
characteristics of Wnt signaling pathway and the risk score. Using
“glmnet” R package, the best Wnt signaling pathway genes were
screened and the prognosis model was constructed. Use the
following formula to generate risk score:

Risk score = expression*genei × coefficient*gene i

Importantly, we used coefficient of each gene in multivariate cox
regression. The according to the median risk, the patients were divided
into high-risk group and low-risk group. Target genes in the model
include risk genes and protective genes. HR > 1 was considered as risk
factor, whereas it was a protective factor. Then, Kaplan-Meier survival
model and ROC curve model were draw to assess the predictive
performance of the model. We input the risk signature genes into the
STRING database and employed MCCmethod to identify the key Top
5 molecular in the protein-protein interaction network.

Vitro assay

The shRNAs targeting LEF1 were designated by Biomics
Biotechnologies Co. Ltd. (Nantong, China). The expression
plasmids, pU6H1-GFP-shLEF1-1, -2, -3, and controls were
constructed. Sequences of targeting LEF1 from references as
follows (Xiao et al., 2021): shRNA1: GCGATTTAGCTGACA
TCAA, shRNA2: AGATGTCAACTCCAAACAA, shRNA3: GTT
GCTGAGTGTACTCTAA, shRNA-NC: TTCTCCGAACGTGTC
ACGT. Additional experimental details are presented in our
previous study (Feng et al., 2022a; Feng et al., 2022b; Cheng et
al., 2022).

Results

Wnt signaling score based on ssGSEA in the
multicenter study

The Wnt signaling pathway absolute enrichment score were
calculated in each dataset (Figure 1A). The range of Wnt scores
was approximated in most of the datasets except for
GSE14814 dataset. In addition, cox regression analysis
demonstrated that Wnt scores had prognostic value in the

GSE31210, GSE30129, GSE29016, GSE31210, GSE72094 and
GSE68465 datasets (Figure 1B). Interestingly, the mutational
landscape (Figure 1C) as well as the activation pathways
(Figure 1D) were significantly different in different Wnt groupings.

Relationship between Wnt signaling pathway
related genes and phenotypic characteristics
of lung adenocarcinoma

In order to explore whether Wnt signaling pathway related
genes play a regulatory role in lung adenocarcinoma. We first
explored the Wnt signaling pathway related genes in cancer tissues
and normal tissues based on TCGA dataset. Heatmap showed the
expression level of Wnt signaling pathway related genes
(Figure 2A). We found that there were significant differences in
molecular expression between normal tissues and tumor tissues.
Based on the expression pattern of Wnt signaling pathway related
genes, we classified the lung adenocarcinoma patients into different
subgroups. Using the similarity of Wnt-related gene expression, we
selected the value of k = 4 (Figures 2B,C). The lung
adenocarcinoma patients from meta-cohort dataset were divided
into four subgroups (Cluster A, Cluster B, Cluster C and Cluster D).
The four subgroups contained 376 samples, 451 samples,
229 samples and 259 samples, respectively. As shown in
Figure 2D, K-M survival curve analysis showed that cluster B
had the best clinical outcomes, and cluster C had the shortest
survival time (p < 0.001). We compared the expression patterns of
Wnt signaling pathway-related genes in these subgroups
(Figure 2E).

Differences of TME infiltration among four
subtypes of Wnt signaling pathway

Subsequently, we explored the tumor immune
microenvironment among different subtypes to attempt to
explain that Wnt signaling pathway affects the clinical outcome
of patients by regulating the tumor immune microenvironment.
We analyzed the information of immune cell infiltration and found
that activated innate immune cells in cluster A and B were
abundant, including activated dendritic cells, CD56dim natural
killer cells, macrophages, activated B cells, and activated CD4 and
CD8 T cells, which had significant survival advantages (Figure 3A).
Although some tumor tissues have a large number of immune cells,
these immune cells cannot penetrate the tumor and are forced to
remain in the surrounding stromal tissues. Therefore, stromal
activation in tumor microenvironment is considered to be
immunosuppressive (333). Therefore, the clinical outcome of
Cluster A is not ideal. In this investigation, the “ESTIMATE”
algorism also showed that the immune scores of cluster A and B
were higher than those of cluster C and D (Figure 3B). We also
noticed that although the types of immunocytes infiltration were
consistent in different subtypes, the proportion of immunocytes in
different subgroups was different. This indicates that tumor
regulatory pathways such as Wnt, RAS and other signaling
pathways do not alter the types of immune infiltrating cells, but
they may change their proportions. Figure 3C verified the above
results. Subsequently, we continued to detect the expression levels
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of immunomodulators among different subtypes. The Mann-
Whitney U test was conducted to compare differences between
the four subgroups. Immunomodulators such as CD27, CD86,
CTLA4 and HLA family were highly expressed in cluster A and

B. Immunomodulators induce immune response and regulate
immune response. This further confirmed that cluster A and B
have higher immune cell infiltration levels than cluster C and D
(Figures 3D,E).

FIGURE 1
Wnt Signaling Score Based on ssGSEA in the Multicenter Study. (A) The Wnt signaling pathway absolute enrichment score based ssGSEA in different
datasets. (B) Cox regression analysis in multicenter study demonstrated that Wnt scores had prognostic value. (C) The mutational landscape in different Wnt
groupings. (D) The activation pathways in different Wnt groupings.
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FIGURE 2
Construction of molecular subtypes in lung adenocarcinoma. (A) The heatmap was utilized to present the transcriptome pattern of 152 wtn signal
pathway related genes in distinct samples. (B,C) Unsupervised clustering was conducted to divided samples into four subgroups performed according to the
152 wtn signal pathway related genes patterns. (D) Kaplan–Meier survival model for lung adenocarcinoma, p < 0.001. (E) The heatmap was utilized to present
the transcriptome pattern of 152 wtn signal pathway related genes in distinct subtypes. Red/blue represented high/low expression of genes. The
comments on the right include TNM stage, clinical grade/stage, gender, age, project and cluster, respectively.
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Identification of biological behavior patterns

Subsequently, we conducted GSVA enrichment analysis to identify
the differences in biological behaviors among these four subgroups, so as

to determine the pathways through whichWnt signaling pathway-related
genes regulate malignant differentiation of tumor cells. Cluster A
presented with Cell cycle, DNA replication, mismatch repair. Cluster
B showed enrichment of metabolic pathways, including linoleic acid

FIGURE 3
Immunological characteristic of differentmolecular subgroups. (A) the heatmap displayed the immunocytes infiltration in differentmolecular subgroups.
(B) the stromalScore, immunoScore, ESTIMATEScore was calculated by “ESTIMATE” algorism. (C) the immunocytes infiltration in different molecular
subgroups. (D,E) Expression levels of immunomodulators in different molecular subgroup, The median value: black lines in boxes, the outliers: black dots out
boxes.
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metabolism, retinal metabolism, drug metabolism cytochrome
P450 signaling pathways. Cluster C shows enrichment of carcinogenic
activation pathways, such as small cell lung cancer, cell cycle, pathway in
cancer, and P53 signature. ClusterD is enriched in RNAdegradation, base
excision repair and other signaling pathways (Figure 4).

Prognostic prediction model of Wnt pathway
in lung adenocarcinoma

After discovering that Wnt signaling pathway was related to the
clinical results of lung cancer, we tried to establish prognostic risk score
based on Wnt signaling pathway. We collected 152 Wnt pathway related
genes. After applying the LASSO algorithm to these 152 genes, we
removed highly correlated genes and reduced the dimension of
subsequent multivariate COX algorithm (Figure 5A). Subsequently,
COX multivariate model was constructed to screen the final
prognostic genes. A total of 18 genes were identified as independent
prognostic genes, including FZD4, FZD7, LEF1, FZD9, CTNNBIP1,

AXIN1, DKK4, CSNK2A1, TBL1Y, NFATC1, PLCB2, PLCB3,
PRKCG, FOSL1, PSEN1, CTNNB1, PPARD, and FZD2. The LASSO-
Cox regression coefficient was integrated with the corresponding gene
expression values to establish a riskmarker feature (Figure 5B). According
to the median risk marker, we divided lung adenocarcinoma patients into
high-risk group and low risk group. The heatmap showed the
transcriptome pattern of prognostic genes in high and low risk
patients. Red represents high expression, while green represents low
expression (Figure 5C). The scatter plot displayed the risk score of
patients, and the correlation between mortality and risk score. With
the increase of risk value, mortality increases (Figures 5D,E). In addition,
the K-M survival curve showed that the overall survival time of the low-
risk group was longer than that of the high-risk group in TCGA cohort
and GEO cohort (Figures 5F,G). In order to test the predictive
performance of the prognostic model, we draw the ROC curve, and
the area under the curve (AUC) was used to evaluate the 1, 3, and 5–year
survival rates in TCGA cohort, 0.749, 0.756, and 0.743 respectively
(Figure 6A). The multivariate Cox model proved that the prognostic
model can independently predict the clinical outcomes of lung

FIGURE 4
Pathway enrichment analysis (A–F) The heatmap displayed the biological processes among each cluster, plotted by GSVA algorithm.
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adenocarcinoma patients (Figures 6B,C). As an external validation, we
performed ROC curve, univariate and multivariate Cox model analysis
again. The area under the curve (AUC) was used to evaluate the 1, 3 and
5–year survival rates in GEO cohort, 0.694, 0.661, and 0.565 respectively
(Figure 6D). The results of univariate and multivariate Cox analysis were
consistent with the above (Figures 6E, F). Clinical pathological
parameters, especially TNM staging, are closely related to the
prognosis of patients. In order to improve the accuracy of the
prediction model, we integrated M stage and risk score to construct a
nomogram for improving the prediction performance (Figure 6G). The
calibration curve of the established nomogram showed high accuracy
between the actual observation value and the predicted value
(Figures 6H, I).

Association of five genes with immune
microenvironment in lung adenocarcinoma

In order to explore the mechanism of 18 prognostic genes, we
constructed the interaction diagram of 18 prognostic genes
(Figure 7A). MCC method was used to identify the key Top
5 proteins in the protein-protein interaction network, including

AXIN1, CTNNB1, LEF1, FZD2, FZD4 (Figure 7B). Therefore, we
speculate that the above five top genes may be the key molecules
affecting the disease progression. We detected the expression level of
these molecule in normal tissues and cancer tissues of lung
adenocarcinoma patients in TCGA and GEO cohorts. We found that
AXIN1, CTNNB1 and LEF1 were highly expressed in tumor tissues and
FZD4 was highly expressed in normal tissues in TCGA cohort
(Figure 7C). In GEO cohort, AXIN1 and LEF1 were highly expressed
in tumor tissues, while FZD4 and FZD2 were highly expressed in normal
tissues (Figure 7D). Subsequently, we detected the correlation between
these five genes and immune scores. FZD2 and LEF1 were positively
related to immune scores, and AXIN1 was negatively related to immune
score (Figures 7E–G). Finally, we conducted vitro assay for validating the
carcinogenic potency of LEF1 (Figures 7H–J). In the A549 cell line,
knockdown of LEF1 can reduce the invasive and proliferation ability of
LUAD cells.

Discussion

Lung adenocarcinoma is the most common form of lung cancer
and the deadest cancer in the world. In order to characterize the

FIGURE 5
Construction and validation of predictive model. (A) 26 candidate genes were selected by LASSO regression (B) The forest map displayed the hazard
ratios of the 18 target genes (C) The heatmap displayed the expression values of 18 target genes in different risk score groups. (D,E) The scatter plot depicts the
distribution of patient risk values and mortality. (F,G) The K-M survival model was constructed to explore the predictive performance.
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genomic and transcriptome abnormalities of lung adenocarcinoma
and identify the survival outcomes of patients, different data types
such as transcriptome, genome, and metabonomics have been
employed for comprehensive analysis (Jin et al., 2020; Sun et al.,
2020). Recently, prognostic risk features have emerged to cluster lung
adenocarcinoma patients. In our investigation, we used RNA-seq data
which downloaded from the TCGA website to determine the
correlation between Wnt signaling pathway and the clinical
outcomes of lung adenocarcinoma. In addition, a prognostic model
was established based on transcriptome pattern, and its applicability
and value in lung adenocarcinoma were evaluated.

Abnormalities of Wnt signaling pathway is usually associated
with cancer (Lei et al., 2021). The characteristics of lung
adenocarcinoma include abnormal epigenetic regulation of Wnt
pathway genes and inactivation of tumor suppressor genes (Hou
et al., 2021). Tumor suppressor genes inhibit Wnt signaling
pathway. However, the silencing of these tumor suppressor
genes leads to the activation of Wnt signaling pathway, which is
involved in the occurrence or progression of human malignant
tumors (Líbalová et al., 2014). NKX2-1/ERK drived Wnt pathway
to promote cell proliferation, shorten the value-added cycle, and

increased the malignancy of lung adenocarcinoma. BRAF/MEK
inhibitors drived NKX2-1 positive tumor cells into a stationary
state, while NKX2-1 negative cells cannot exit the cell cycle after the
same treatment. These data clarify the complex interrelationship
between lineage specificity and carcinogenic signaling pathways,
which may affect lineage-specific treatment strategies in regulating
lung adenocarcinoma characteristics. Kerdidani et al.
demonstrated that Wnt silenced chemokine genes in dendritic
cells and induces adaptive immune resistance in lung
adenocarcinoma. Moreover, we examined whether 18 target
genes from classical and non-classical Wnt signaling pathways
could accurately detect the risk of lung adenocarcinoma. The report
of the Guidelines for Prognosis of Tumor Markers has recently
been applied in many journals (Zhang et al., 2020b).

Based on the TCGA data, we constructed a lung
adenocarcinoma prognosis model, and we found five key Wnt
signaling pathway related genes, including AXIN1, CTNNB1,
LEF1, FZD2, FZD4. These key genes were related to cancer and
play an indispensable role in lung adenocarcinoma pathway. These
markers were candidate genes for molecular targeting. Li et al.
(2021b) confirmed that AXIN1 encoding the negative regulator of

FIGURE 6
Construction and validation of nomogram. (A) The ROC curve was performed to verify the predictive performance of predictive model. (B,C) Univariate/
multivariate Cox regression model was constructed to verify the independent predictive performance of each parameter in TCGA-BLCA cohort. (D–F) ROC
curve and Univariate/multivariate Cox regression model were plotted to verify in GEO database. (G)Construction of a nomogram combining M stage and risk
score. (H,I) Calibration plot showing that nomogram-predicted survival probabilities corresponded closely to the observed proportions.
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Wnt/β-catenin signal was the direct target of YTHDF2.
YTHDF2 promotes AXIN1 mRNA decay and subsequently
activates Wnt/β-catenin signal. Knockout of AXIN1 fully

rescued the inhibitory effect of YTHDF2 depletion on
proliferation, colony formation and migration of lung cancer
cells. These results suggest that YTHDF2 promotes the

FIGURE 7
Collection of key prognostic genes. (A) Protein-protein interaction network diagram of 18 target genes (B) MCC method was performed to identify the
key Top 5molecular in the protein-protein Interaction network. (C,D) the expression level of 5 key prognostic genes in normal tissues and tumor tissues (E–G)
the Correlation between 5 key prognostic genes and immune scores. (H) qPCR assay detect the expression of LEF1. (I) Transwell assay detect the invasion of
the A549 cell line after knockdown LEF1. (J) CCK-8 assay detect the proliferation of the A549 cell line after knockdown LEF1.
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development of LUAD by upregulating AXIN1/Wnt/β-catenin
signaling, which may be a potential therapeutic target for
LUAD. Zhou et al. 2022 collected 564 patients with lung
adenocarcinoma, of which 30 (5.3%) carried
CTNNB1 mutations. The study found that female patients and
non-smokers had high CTNNB1 mutations, and the clinical
outcomes of primary lung adenocarcinoma with
CTNNB1 mutations was poor (Zhou et al., 2019). Nguyen et
found that LEF1 and HOXB9 mediated Wnt/TCF signal
transduction to promote lung adenocarcinoma metastasis,
indicating that LEF1 may be a target for lung adenocarcinoma
metastasis (Nguyen et al., 2009). In addition, Li et al. 2021a
collected clinical information of LUSC patients from the Cancer
Genome Atlas database and related methylation sequences from
the University of California, Santa Cruz database to construct
methylation subtypes and analyze clinical outcomes. The
researchers constructed a predictive model based on the
difference of DNA methylation level to classify the molecular
subtypes of LUSC patients, and provided more personalized
clinical treatment strategies according to different clinical
subtypes. GNAS, FZD2 and FZD10 are the three core genes that
may be related to the prognosis of LUSC patients (Li et al., 2021c).

First of all, our investigation was worthy of recognition, which
obtained Wnt-related prognostic genes, and then constructed a
Wnt-related scoring model. The function of Wnt is most common
in embryogenesis and tumorigenesis, but previous literature has
only described the carcinogenic effect of Wnt and rarely
investigated its predictive ability. Therefore, our study opened
up a new horizon for exploring the Wnt pathway. Our research
has some limitations. First of all, our investigation was based on the
public database for multi-omics analysis, which was a retrospective
study with subjective bias. Future investigation needed to validate
the diagnostic value of 18 candidate genes in fresh frozen biopsy or
peripheral blood. Secondly, our research had a moderate sample
size and needed a larger case-control study for LUAD patients.
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Background: Although the role of tumormicroenvironment in lung adenocarcinoma
(LUAD) has been explored in a number of studies, the value of TME-related signatures
in immunotherapy has not been comprehensively characterized.

Materials and Methods: Consensus clustering was conducted to characterize TME-
based molecular subtypes using transcription data of LUAD samples. The biological
pathways and immune microenvironment were assessed by CIBERSORT, ESTIMATE,
and gene set enrichment analysis. A TME-related risk model was established through
the algorithms of least absolute shrinkage and selection operator (Lasso) and stepwise
Akaike information criterion (stepAIC).

Results: Four TME-based molecular subtypes including C1, C2, C3, and C4 were
identified, and they showed distinct overall survival, genomic characteristics, DNA
methylation pattern, immune microenvironment, and biological pathways. C1 had the
worst prognosis and high tumor proliferation rate. C3 and C4 had higher enrichment of
anti-tumor signatures compared to C1 and C2. C4 had evidently low enrichment of
epithelial–mesenchymal transition (EMT) signature and tumor proliferation rate. C3 was
predicted to be more sensitive to immunotherapy compared with other subtypes. C1 is
more sensitive to chemotherapy drugs, including Docetaxel, Vinorelbine and Cisplatin,
while C3 is more sensitive to Paclitaxel. A five-gene risk model was constructed, which
showed a favorable performance in three independent datasets. Low-risk group showed
a longer overall survival, more infiltrated immune cells, and higher response to
immunotherapy than high-risk group.

Conclusion: This study comprehensively characterized the molecular features of
LUAD patients based on TME-related signatures, demonstrating the potential of
TME-based signatures in exploring the mechanisms of LUAD development. The
TME-related risk model was of clinical value to predict LUAD prognosis and guide
immunotherapy.

OPEN ACCESS

EDITED BY

Zhi-qian Zhang,
Southern University of Science and
Technology, China

REVIEWED BY

Xinglong Fan,
Qilu Hospital of Shandong University,
China
Ji Lv,
Maternity and Child Health Hospital of
Qinhuangdao, China
Joshua Ochieng,
University of Texas MD Anderson Cancer
Center, United States

*CORRESPONDENCE

Anxin Gu,
guanxin@hrbmu.edu.cn

Mingyan E,
emingyan889@163.com

†These authors have contributed equally to
this work

SPECIALTY SECTION

This article was submitted to
Pharmacology of Anti-Cancer Drugs,
a section of the journal
Frontiers in Pharmacology

RECEIVED 16 November 2022
ACCEPTED 03 January 2023
PUBLISHED 16 January 2023

CITATION

Jie Y, Wu J, An D, Li M, He H, Wang D, Gu A
and EM (2023), Molecular characterization
based on tumor microenvironment-
related signatures for guiding
immunotherapy and therapeutic
resistance in lung adenocarcinoma.
Front. Pharmacol. 14:1099927.
doi: 10.3389/fphar.2023.1099927

COPYRIGHT

©2023 Jie, Wu, An, Li, He, Wang, Gu and E.
This is an open-access article distributed
under the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Pharmacology frontiersin.org01

TYPE Original Research
PUBLISHED 16 January 2023
DOI 10.3389/fphar.2023.1099927

118

https://www.frontiersin.org/articles/10.3389/fphar.2023.1099927/full
https://www.frontiersin.org/articles/10.3389/fphar.2023.1099927/full
https://www.frontiersin.org/articles/10.3389/fphar.2023.1099927/full
https://www.frontiersin.org/articles/10.3389/fphar.2023.1099927/full
https://www.frontiersin.org/articles/10.3389/fphar.2023.1099927/full
https://www.frontiersin.org/articles/10.3389/fphar.2023.1099927/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fphar.2023.1099927&domain=pdf&date_stamp=2023-01-16
mailto:guanxin@hrbmu.edu.cn
mailto:guanxin@hrbmu.edu.cn
mailto:emingyan889@163.com
mailto:emingyan889@163.com
https://doi.org/10.3389/fphar.2023.1099927
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://doi.org/10.3389/fphar.2023.1099927


KEYWORDS

lung adenocarcinoma, molecular subtypes, immunotherapy, cisplatin, paclitaxel, DNA
methylation

Introduction

Lung cancer consists of the largest population of all cancers
worldwide, where lung adenocarcinoma (LUAD), as the most
common histological type, contributes to a proportion of
approximately 40% in all lung cancer cases (Sung et al., 2021). The
common risk factors are smoking, the exposure to environmental
carcinogens, and genetic susceptibility (Gibelin and Couraud, 2016). A
large number of lung cancer patients are diagnosed at a late stage,
leading to a low 5-year survival rate no more than 20%. (Senosain and
Massion, 2020). In the recent years, molecular profiling of lung cancer
promotes the development and improvement of molecular-targeted
therapy and immunotherapy (Network, 2014; Saito et al., 2018). A
diversity of molecular biomarkers of LUAD have been discovered
involving transcriptional alteration, genetic mutations, copy number
variations, and epigenetics features (Devarakonda et al., 2015;
Daugaard et al., 2016; Calvayrac et al., 2017; Hua et al., 2020).

Molecular biomarkers help to predict the prognosis of cancer
patients or even are capable to assist decision-makings in clinical
treatment. Advanced or metastatic LUAD patients can benefit little
from traditional therapy, while the rising immunotherapy or other
targeted therapy maybe can function on these patients. For example,
immune checkpoint blockade is a hot therapeutic strategy, such as
programmed cell death protein 1/programmed cell death ligand 1
(PD-1/PD-L1) inhibitors exhibiting a favorable performance in cancer
immunotherapy (Borghaei et al., 2015; Herbst et al., 2016; Jain et al.,
2018). However, resistance or immune escape to immunotherapy is a
common issue resulting in its inefficiency and poor outcomes. The
feature of tumormicroenvironment (TME) is one of the critical factors
contributing to different response to immunotherapy (Binnewies et al.,
2018). For example, high expression of PD-1/PD-L1 is associated with
high efficiency of anti-PD-1/PD-L1 therapy (Brody et al., 2017).
Cytokines and chemokines released by immune cells, neoplastic or
stromal cells can orchestrate and reconstruct the immune
microenvironment, and thus lead to different anti-tumor responses
(Nisar et al., 2021). Cytokines such as tumor necrosis factor (TNF)-α
(Laha et al., 2021), interleukin (IL) family (Sato et al., 2011; Kitamura
et al., 2017), and transforming growth factor (TGF)-β (Yao et al., 2010)
play an important role in angiogenesis, immune evasion, resistance to
immunotherapy, and epithelial-mesenchymal transition (EMT)
process responsible for tumor progression and metastasis.
Consequently, TME-related features largely determine the anti-
tumor response and the activated response to immunotherapy.

Bagaev et al. collected a total of 29 knowledge-based functional gene
expression signatures related to TME from previous studies, and
grouped them into four classes including anti-tumor
microenvironment (e.g., T cells), pro-tumor microenvironment (e.g.,
macrophages), angiogenesis fibrosis (e.g., angiogenesis), and malignant
cell properties (e.g., EMT signature) (Bagaev et al., 2021). Based on these
TME-related signatures, they identified four microenvironment
subtypes and comprehensively elucidate the relation between TME
and melanoma by using transcriptomic and genomic data. The four
microenvironment subtypes were also conserved in other cancer types,
and were correlated with the response to immunotherapy. The ASLC/
ATS/ERS classification is a significant improvement in the classification

criteria for lung adenocarcinoma, encompassing pathology, molecular
biology, radiology, oncology and clinical practice to provide better
clinical diagnosis (Yoshizawa et al., 2011; Gu et al., 2013). The
current molecular classification still has limitations on the prognosis
evaluation of lung adenocarcinoma patients, such as, the new
classification content is too complex to apply. Inspiring by the above
study, we sought to explore the TME in LUAD through analyzing these
TME-related signatures, and identify effective prognostic genes for
guiding immunotherapy or other therapy in LUAD patients.

Materials and Methods

Data collection and data preprocessing

TCGA-LUAD dataset (abbreviated as TCGA dataset in the
following) containing the RNA sequencing (RNA-seq) data and
clinical information of LUAD samples was obtained from The
Cancer Genome Atlas (TCGA) database through Sangerbox
platform (http://vip.sangerbox.com/) (Shen et al., 2022). mRNA
expression was quantified with fragments per kilobase of exon per
million reads mapped (FPKM), which converted into transcripts per
million (TPM). GSE72094 (Schabath et al., 2016) and GSE50081 (Der
et al., 2014) datasets containing microarray data were obtained from
Gene Expression Omnibus (GEO) database. In TCGA dataset, LUAD
samples with survival status and survival time were included. The
average expression value was used when one gene had multiple
ensemble IDs. For microarray data, probes were annotated by the
annotation profile of corresponding chip platform. If a gene had
multiple probes, the averaged value was used. After data
preprocessing, 487 LUAD samples were remained in TCGA
dataset, 442 and 127 LUAD samples were remained in
GSE72094 and GSE50081 datasets respectively.

Identification of TME-based molecular subtypes
A total of 29 TME signatures were obtained from the previous

research (Bagaev et al., 2021), including four groups of signatures,
anti-tumor microenvironment (MHCⅠ, MHCⅡ, coactivation
molecules, cytotoxic cells, T cells, T cells trafficking, B cells,
M1 signature, NK cells, Th1 signature, and anti-tumor cytokines),
pro-tumor microenvironment (Treg, Treg traffic, MDSC, MDSC
traffic, neutrophil signature, granulocyte traffic, macrophages,
Th2 signature, macrophages/DC traffic, and pro-tumor cytokines),
angiogenesis fibrosis (angiogenesis, endothelium, cancer-associated
fibroblasts (CAFs), matrix, matrix remodeling), and malignant
properties (proliferation rate signature and EMT).

The enrichment score of 29 TME signatures was measured by single
sample gene set enrichment analysis (ssGSEA) (Hänzelmann et al.,
2013). ConsensusClusterPlus R package (Wilkerson and Hayes, 2010)
was utilized to construct consensusmatrix based on the ssGSEA score of
TME signatures in TCGA dataset. 1 - Pearson correlation was selected
as distance and KM algorithm was used for repeating 500 times of
bootstraps with each bootstrap having 80% samples of TCGA dataset.
The optimal cluster number (k) was selected according to the
cumulative distribution function (CDF) curves and consensus matrix.

Frontiers in Pharmacology frontiersin.org02

Jie et al. 10.3389/fphar.2023.1099927

119

http://vip.sangerbox.com/
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1099927


For the validation of the TME-based subtyping in the external
datasets (GSE72094 and GSE50081), a support vector machine (SVM)
model was used (Huang et al., 2018) (LUAD samples within TCGA
dataset were randomly grouped into training set and testing set with a
ratio of 7: 3).

Functional enrichment analysis

Gene sets of Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathways were obtained from Molecular Signature Database
(MSigDB), and used for GSEA by “fgsea” algorithm (Liberzon
et al., 2015). GSVA R package (Hänzelmann et al., 2013) was
utilized to conduct ssGSEA on hallmark pathways obtained from
MSigDB and 11 oncogenic pathways (EGFR, hypoxia, NFκB, PI3K,
JAK-STAT, MAPK, TGF-β, Trail, VEGF, TNF-α, and P53) obtained
from the previous research (Schubert et al., 2018).

DNA methylation analysis
In order to observe the methylation difference of different

subtypes, we obtained the methylation data set of
HumanMethylation450 from the TCGA database, extracted the
methylation signals of each sample, and completed the missing
values using the KNN method. Limma was used to analyze the
methylation difference of each subtype (P.val< 0.05 and |logFC|
>log2 (1.1)). In addition, we annotated the methylation sites to the
gene promoter region to obtain genes regulated by methylation, The
Biological Pathway to Obtain Methylation Disorder of Each Subtype
by Function Enrichment Analysis.

Prediction of the response to immunotherapy
and chemotherapeutic drugs

The gene signatures of T cell inflamed GEP (Ayers et al., 2017),
Th1/IFN-γ (Danilova et al., 2019), and cytolytic activity (Rooney et al.,
2015) were obtained from previous studies. SsGSEA was conducted on
these gene signatures. The estimated sensitivity of different groups to
chemotherapeutic drugs was evaluated by pRRophetic R package
(Geeleher et al., 2014). TIDE algorithm (Jiang et al., 2018) was
implemented to analyze immunosuppressive cells and T cell status
for estimating immune escape to immunotherapy. Higher TIDE score
represents higher immune escape. The immune infiltration and
stromal infiltration were evaluated by ESTIMTAE analysis
(Yoshihara et al., 2013). CIBERSORT algorithm (Chen et al., 2018)
was performed to analyze the proportion of 22 immune-related cells.
IMvigor210 dataset (Balar et al., 2017) (treated by anti-PD-L1 therapy)
was included to assess the effectiveness of the risk model in predicting
prognosis and response to immunotherapy. Drug sensitivity data was
downloaded from Genomics of Drug Sensitivity in Cancer (GDSC)
database (https://www.cancerrxgene.org/) (Yang et al., 2013).

Construction and validation of a TME-based
risk model

Firstly, differential analysis was performed between different
subtypes through limma R package (Ritchie et al., 2015), and
differentially expressed genes (DEGs) were screened under

criterions of |log2 (fold change, FC)| > 1 and false discovery rate
(FDR) < .05. Functional analysis of DEGs including the enrichment
analysis of Gene Ontology (GO) terms and KEGG pathways was
carried out by ClusterProfiler R package (Yu et al., 2012). The DEGs
significantly associated with prognosis (p < 0.05) was screened by
univariate Cox regression analysis. Least absolute shrinkage and
selection operator (Lasso) regression analysis (Friedman et al.,
2010) and stepwise Akaike information criterion (stepAIC) (Zhang,
2016) were conducted to compress the number of prognostic genes.
The formula of risk model was defined as: risk score = Σ(βi*expi),
where i represents genes, β represents Lasso coefficients, and exp
represents gene expression levels.

TCGA dataset was set as the training set. GSE72094 and
GSE50081 datasets were set as the validation set. Each sample
obtained a risk score and the risk score was transferred to z-score.
The samples were stratified into high-risk (z-score > 0) and low-risk
(z-score <0) groups. The effectiveness and efficiency of the risk model
was validated by Kaplan-Meier survival analysis and receiver
operation characteristic (ROC) curve analysis.

Statistical analysis

Statistical analysis in this study was conducted in R software
(v4.2.0). Wilcoxon test was employed to detect the difference
between two groups. The difference among multiple groups was
examined by Kruskal–Wallis test. Log-rank test was conducted in
survival analysis. We determined p < 0.05 as statistically significant.

Results

TME signatures were associated with LUAD
prognosis

We compared the enrichment of 29 TME signatures in normal
and LUAD samples using ssGSEA. 18 TME signatures were
significantly different in normal and tumor samples (Figure 1A).
Stromal-related signatures such as CAFs (p < 0.01), matrix (p <
0.01), and matrix remodeling (p < 0.0001) were more enriched in
tumor samples compared to the normal. In addition, pro-tumor
signatures such as regulatory T cells (Tregs) and malignant cell
properties such as tumor proliferation rate were more accumulated
in tumor samples (p < 0.0001). Correlation analysis on these 29 TME
signatures revealed evidently positive correlations among them,
suggesting close interactions among these signatures (Figure 1B).
We assessed the relation between the signatures and clinical
characteristics, and found that MHC Ⅱ and Th2 signature were
positively correlated with age (Figures 1C,D). Anti-tumor
signatures such as T cells, B cells, coactivation molecules, and
MHC Ⅱ were negatively correlated with gender, T stage, N stage,
M stage, and Stage. Notably, tumor proliferation rate was significantly
upregulated in N1-N3 stages and Stage Ⅲ+Ⅳ (Figure 1D). In the
relation of 29 TME signatures to LUAD overall survival, we found that
some of them were risk factors such as tumor proliferation rate, matrix
remodeling, and EMT signature and some were protective factors such
as B cells, Th2 signature, T cells, and MHC Ⅱ (p < 0.05, Figure 1E),
indicating a close relation between TME signatures and LUAD
prognosis.
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Identification of TME-based molecular subtypes
Given that TME signatures were significantly related to LUAD

prognosis, we attempted to identify molecular subtypes based on their
enrichment scores. By using consensus clustering, we determined four

molecular subtypes (C1, C2, C3, and C4) according to CDF and
consensus matrix (Supplementary Figure S1). Four subtypes had
distinct enrichment patterns of 29 TME signature as shown in the
heatmap (Figure 2A). C3 and C4 subtypes had higher enrichment of

FIGURE 1
The relation between TME signatures and LUAD analyzed in TCGA dataset (A) The ssGSEA score of TME signatures in tumor and normal samples (B)
Correlation analysis among TME signatures (C) Correlation between TME signatures and clinical characteristics (D) Fold change of the enrichment of TME
signatures in different stages, ages, and genders (E) Hazard ratio of 29 TME signatures. ns, not significant. **p < 0.01, ***p < 0.001, ****p < 0.0001.
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anti-tumor signatures compared to C1 and C2. C4 subtype had
evidently lower enrichment of EMT signature and tumor
proliferation rate compared to C1, C2 and C3 subtypes. Principle

component analysis (PCA) displayed the different distribution of four
subtypes based on the TME signatures (Figure 2B). Significant
differences were shown among four subtypes on the enrichment of

FIGURE 2
The immune and pathway difference of four TME-basedmolecular subtypes in TCGA dataset (A) The heatmap showed the enrichment of TME signatures
in four subtypes (B) 3D PCA plot of four subtypes based on TME signatures (C) The ssGSEA score of TME signatures in four subtypes (D) The heatmap showed
the enrichment of oncogenic pathways in four subtypes (E) The ssGSEA score of oncogenic pathways in four subtypes (F) Kaplan-Meier survival plot of four
subtypes. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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all TME signatures (Figure 2C). In addition, we analyzed the
oncogenic activity of four subtypes, and the result showed different
activation of these oncogenic pathways (Figures 2D,E). PI3K and
hypoxia were activated in C1, EGFR and TGF-β were activated in C2,

JAK-STAT and NFκB were activated in C3, and P53 signaling was
activated in C4. Moreover, survival analysis revealed that C1 subtype
had the worst prognosis while C4 had the longest overall survival (p <
0.0001, Figure 2F). Different activation of these pathways may indicate

FIGURE 3
Gene mutations and genomic features of four subtypes in TCGA dataset (A) The score of TMB, aneuploidy, homologous recombination deficiency,
intratumor heterogeneity, loss of heterozygosity, tumor purity, and ploidy in four subtypes (B) The distribution of previously reported immune subtypes (C1,
C2, C3, C4, and C6) in TME-based subtypes (C) The top 20 mostly mutated genes in LUAD (D) Cross Venn Diagram of Different Methylation Sites of Each
Subtype (E) Biological pathway of significant enrichment of methylation sites in different subtypes (top5).
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different TME-based molecular mechanisms of tumor progression.
Furthermore, we evaluated the distribution of different clinical
characteristics in four subtypes. The result exhibited an evident
trend that the samples with advanced stages were more distributed
in C1 (Supplementary Figure S2). Female patients and the patients
with age >60 had a higher proportion in C4 compared with that in C1-
C3 (Supplementary Figure S2). Not surprisingly, C1 had the largest
number of the samples with dead status than other subtypes
(Supplementary Figure S1).

Genomic landscape and DNA methylation of four
TME-based subtypes

Genomic instability has been demonstrated to be associated with
tumor development.We obtained a series of genomic characteristics of
TCGA-LUAD data from a pan-cancer research (pan-cancer)
(Thorsson et al., 2018). C1 subtype had relatively high scores of
tumor mutation burden (TMB), aneuploidy, homologous
recombination deficiency, loss of heterozygosity, purity, and ploidy,
while C3 showed relatively high score of intratumor heterozygosity
(Figure 3A). In the previous pan-cancer research, they identified six
immune subtypes of LUAD (C1, C2, C3, C4, and C6 immune
subtypes). We analyzed the distribution of previous immune
subtypes in our TME-based subtypes (Figure 3B). C1 immune
subtype (also known as wound healing) mostly distributed in
C1 and C2 TME-based subtypes. C2 immune subtype (also known
as IFN-γ dominant) mostly accumulated in C1 and C3 TME-based
subtypes. C4 TME-based subtype had the highest proportion of
C3 immune subtype (also known as inflammatory). The different
distribution of previous immune subtypes in our TME-based subtypes
also supported the distinct TME characteristics of four subtypes. In
addition, we evaluated the gene mutations in four subtypes, and
observed that TP53, LRP1B, and SPTA1 contributed high somatic
mutation frequencies (Figure 3C). In addition, we analyzed the
different DNA methylation sites of each subtype in the genome.
Among them, C1 has the most differential methylation sites,
C2 has only a small amount of DNA methylation differences, and
the different methylation sites of each subtype overlap less
(Figure 3D). Further functional analysis showed that the
methylation site of C1 imbalance was mainly related to LUNG
CANCERALVEOLAR CELL CARCINOMA, INCLUDED, the
methylation site of C2 imbalance was mainly related to Type II
interaction signaling (IFNG), the methylation site of C3 imbalance
was mainly related to ER Phagosome pathway, and the methylation
site of C4 imbalance was mainly related to detection of chemical
stimulus involved in sensor performance of smart (Figure 3E), These
results indicate that different molecular subtypes may have different
apparent disorder patterns.

Four TME-based subtypes had differently activated
pathways

To further understand the different molecular mechanism of
tumor development in four subtypes, we analyzed the biological
pathways using GSEA. Different pathways were enriched in four
subtypes. In C1 subtype, cell cycle and DNA repair-related
pathways were relatively activated such as mismatch repair, base
excision repair, homologous recombination, and DNA replication
(Figure 4A). In C2 subtype, EMT-related pathways were
significantly enriched such as ECM receptor interaction, tight
junction, TGF-β signaling pathway, and focal adhesion (Figure 4B).

In C3 subtype, cell cycle and immune-related pathways were activated
such as DNA replication, cell cycle, cytokine-cytokine receptor
interaction, antigen processing and presentation, chemokine
signaling pathway, and Toll-like receptor signaling pathway
(Figure 4C). In C4 subtype, immune-related pathways were also
evidently activated such as chemokine signaling pathway, antigen
processing and presentation, cytokine-cytokine receptor interaction,
and complement and coagulation cascades (Figure 4D).

Additionally, similar results were carried out in hallmark
pathways (Figure 4E). Cell cycle-related pathways were much
enriched in C1 subtype. C2 subtype showed activated EMT,
angiogenesis, hypoxia, Notch signaling, and TGF-β signaling.
Immune-related pathways were significantly enriched in both
C3 and C4 subtypes. Besides, C4 subtype also had relatively high
enrichment of metabolic pathways such as heme metabolism,
fatty acid metabolism, adipogenesis, xenobiotic metabolism, and
bile acid metabolism. The above results implied that these
differently enriched pathways may result in different TME
characteristics in four subtypes.

Different response of four TME-based
subtypes to immunotherapy and
chemotherapeutic drugs

TME characteristics can decide the outcomes of clinical treatment
to some extent especially immunotherapy. We selected three immune-
related signatures including T cell inflamed gene expression profiles
(GEP), Th1/IFN-γ, and cytolytic activity from previous studies to
evaluate the predicted response to immunotherapy. T cell inflamed
GEP has been illustrated to reflect the response to immune checkpoint
inhibitors (ICIs) (Ott et al., 2019). IFN-γ is an important cytokine in
modulating immune response and anti-tumor activity (Danilova et al.,
2019). Cytolytic activity reflects the cytotoxicity of activated T cells
(Rooney et al., 2015). The above three signatures manifested
differences in four subtypes, with that C3 subtype had the highest
ssGSEA score of T cell inflamed GEP, IFN-γ, and cytolytic activity
(Figures 5A–C). Immune checkpoints are also important in the
response to ICIs. High expression of PD-1/PD-L1 indicates high
response to ICIs. Analysis on immune checkpoints clarified that
C3 subtype had the highest expression levels of PDCD1 (PD-1),
CD274 (PD-L1), CTLA4, LAG3, PDCD1LG2, BTLA, HAVCR2,
and TIGIT (p < 0.0001, Figure 5D), meaning that C3 subtype was
predicted to have the highest sensitivity to immune checkpoint
blockade treatment. Furthermore, we examined the estimated
IC50 of four chemotherapeutic drugs including Docetaxel,
Vinorelbine, Paclitaxel, and Cisplatin. C1 subtype had the lowest
estimated IC50 of Docetaxel, Vinorelbine, and Cisplatin, and
C3 subtype had the lowest IC50 of Paclitaxel (p < 0.01, Figure 5E).
The results suggested that C1 may benefit much from the treatment of
Docetaxel, Vinorelbine, and Cisplatin, and C3 may benefit much from
Paclitaxel.

Validation the robustness of TME-based
subtypes in two external datasets

LUAD samples in the TCGA dataset were randomly grouped into
training cohort (n = 343) and test cohort (n = 144). TME score was
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inputted to SVM model for determining TME-based subtypes in the
training cohort. The accuracy of the SVMmodel in the test cohort was
1. We then used the SVM model to examine the TME-based subtypes
in the external datasets (GSE72094 and GSE50081). The external
datasets showed the similar results on the TME score of four subtypes
compared to the result in the TCGA dataset (Figures 6A–D).
C1 subtype showed the worst prognosis and C4 subtype had the
best prognosis in both two external datasets (Figures 6A,C). The
enrichment patterns of 29 TME signatures in GSE72094 and
GSE50081 datasets were similar to that in TCGA dataset (Figures
6B,D; Figure 2A). Tumor proliferation rate was highly enriched in
C1 subtype. Anti-tumor and pro-tumor signatures were both more
enriched in C3 compared with other subtypes. The ssGSEA scores of
most TME signatures were different among four subtypes in two
external datasets (Figures 6E,F). The validation of TME-based
subtypes in the external datasets supported the reliability and
robustness of the subtyping, and suggested the important role of
these TME signatures in LUAD.

Development of a TME-based prognostic model
As four TME-based subtypes showed different TME scores,

prognosis and activated pathways, we then identified the DEGs
among four subtypes. A total of 353 DEGs (135 upregulated and
218 downregulated) were screened in C1 vs other, 91 DEGs
(9 upregulated and 82 downregulated) were screened in C2 vs
other, 171 DEGs (161 upregulated and 10 downregulated) were
screened in C3 vs other, and 396 DEGs (223 upregulated and
173 downregulated) were screened in C4 vs other. Functional
analysis on all upregulated DEGs unveiled different biological
function of upregulated DEGs in different subtypes. Cell cycle-
related pathways and processes were enriched in C1; stromal-
related processes were enriched in C2; immune-related pathways
and processes were enriched in C3 (Supplementary Figure S3).

We screened a total of 648 DEGs among four subtypes in TCGA
dataset after removing the duplicate DEGs. Univariate Cox regression
analysis detected a total of 164 risk genes and 254 protective genes
within 648 DEGs (p < 0.05, Supplementary Table S1). Next, we applied

FIGURE 4
Analysis of KEGG and hallmark pathways in TCGA dataset (A–D)GSEA revealed the top 10 enriched KEGG pathways of C1 (A), C2 (B), C3 (C), and C4 (D, E)
The heatmap showed the enrichment of hallmark pathways. Comparison of the enrichment score among four subtypes was performed and the significance
was shown in the right. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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Lasso regression and stepAIC to dig out key prognostic genes from the
above risk and protective genes. Lasso analysis compressed the
coefficients to zero and remained nine prognostic genes when the
lambda value = 0.0689 (Figures 7A,B). Subsequently, stepAIC was
performed on the nine prognostic genes and further compress the
number of genes. Consequently, five prognostic genes were remained,
including PTTG1, MS4A1, ZNF750, RHOV, and KRT6A. The 5-gene
prognostic model was determined as: Risk Score =
0.206*PTTG1—0.155*MS4A1—0.12*ZNF750 + 0.136*RHOV +
0.05*KRT6A.

Examination the performance of the 5-gene
prognostic model

Each LUAD sample obtained a risk score, and was stratified into
high-risk and low-risk groups referring z-score = 0 as a cut-off
(Figure 7D). Two risk groups exhibited different enrichment
pattern of survival status, with a higher density of dead samples in

high-risk groups. Five prognostic genes showed distinct expression
patterns in two risk groups, where ZNF570 andMS4A1 were relatively
upregulated in low-risk group, while RHOV, PTTG1, and KRT6A
were upregulated in high-risk group. There were 242 and 245 LUAD
samples in high- and low-risk groups respectively, and two groups
exhibited distinct prognosis (p < 0.0001, Figure 7E). ROC curve
analysis revealed that the risk model had favorable AUC in
predicting survival at 1, 3, and 5 years with the scores of 0.75, 0.72,
and 0.67 respectively (Figure 7F). Furthermore, we validated the 5-
gene risk model in two independent datasets (GSE72094 and
GSE50081). The validation results were consistent with the TCGA
dataset (Figures 7G–J), which demonstrated the effectiveness and
reliability of the risk model.

The relation of risk score to different clinical characteristics was
assessed and a trend showed that the risk score was higher in the
advanced stages compared with early stages (Supplementary Figure
S4). A significant difference was also observed in different ages and

FIGURE 5
Prediction of the response to immunotherapy and chemotherapeutic drugs in TCGA dataset (A–C) The ssGSEA score of T cell inflamed GEP, Th1/IFN-γ,
and cytolytic activity in four subtypes (D) The expression of immune checkpoint genes in four subtypes (E) The estimated IC50 of four chemotherapeutic
drugs in four subtypes. ****p < 0.0001.
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genders. Moreover, we compared the risk score in four TME-based
subtypes, and the results showed that the prognosis of subtypes was
consistent with their risk levels. C1 with the worst prognosis showed
the highest risk score, which was consistent with the previous results

(Supplementary Figure S4; Supplementary Figure S2). In different
clinical characteristics, the risk model also showed a favorable
performance in dividing samples into high-risk and low-risk
groups (Supplementary Figure S4).

FIGURE 6
Validation of TME-basedmolecular subtypes in two external datasets (A) Survival plot of four subtypes in GSE72094 dataset (B) The heatmap showed the
enrichment of TME signatures in GSE72094 dataset (C) Survival plot of four subtypes in GSE50081 dataset (D) The heatmap showed the enrichment of TME
signatures in GSE50081 dataset (E–F) The ssGSEA score of 29 TME signatures in four subtypes in GSE72094 and GSE50081 datasets. ns, not significant. *p <
.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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Biological pathways and immune characteristics of
two risk groups

Next, we compared the difference of two risk groups in biological
pathways and immune characteristics. GSEA on KEGG pathways

revealed that high-risk group had relatively activated pathways of
purine metabolism, pyrimidine metabolism, citrate cycle TCA cycle,
oxidative phosphorylation, and DNA replication (Figure 8A).
Consider that immunity is related to the tumor, thus we determine

FIGURE 7
Construction and validation of a TME-based risk model (A–B) Lasso regression analysis of prognostic genes. The coefficients changed with increasing
lambda value (A). Partial likelihood deviance under different lambda values (B). When lambda = 0.0689 (red dotted line in A and red dot in B), the model
reached the optimal (C) The forest plot of the final five prognostic genes in the risk model (D) The risk score, survival status and expression of five prognostic
genes of tumor samples in TCGA dataset (E–I) Survival plot of high-risk and low-risk groups in TCGA (E), GSE72094 (G), GSE50081 (I) datasets (F–J) ROC
curve of the risk model in predicting survival in TCGA (F), GSE72094 (H), GSE50081 (J) datasets.
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FIGURE 8
The difference of two risk groups on biological pathways and immune characteristics analyzed in TCGA dataset (A) GSEA result showed the significantly
enriched KEGG pathways in high-risk group (B) The immune score, stromal score and ESTIMATE score calculated by ESTIMATE analysis (C) The estimated
proportion of 22 immune-related cells analyzed by CIBERSORT (D) Correlation analysis among immune cells and risk score. Red and blue lines indicate the
positive and negative correlations respectively. The thicker line indicates the stronger correlation (E) Correlation analysis among oncogenic pathways
and risk score. Red and blue indicate positive and negative correlations respectively. The darker color indicates the stronger correlation. (F) the correlation
analysis between risk score and 29 TME pathways.

Frontiers in Pharmacology frontiersin.org12

Jie et al. 10.3389/fphar.2023.1099927

129

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1099927


immune characteristics. In terms of tumor microenvironment, two
risk groups had distinguished infiltration levels that low-risk group
had higher infiltration of both immune cells and stromal cells than
high-risk group (Figure 8B). Of 22 immune cells, 11 immune cells
were differentially distributed in two risk groups (Figure 8C). Low-risk
group had higher infiltration of resting dendritic cells, memory B cells,
resting memory CD4 T cells, and resting mast cells than high-risk
group, while M0 macrophages and M1 macrophages were lower
enriched in low-risk group. Supportively, risk score was
significantly correlated with resting memory CD4 T cells and
M0 macrophages (Figure 8D). In the relation of risk score with
oncogenic pathways, EGFR, hypoxia, PI3K, and VEGF pathways
were positively correlated with risk score (R = 0.42, 0.42, 0.36, and
0.28, respectively) (Figure 8E), suggesting that these pathways may be
highly involved in the TME modulation and tumor progression.

Moreover, risk score was strongly associated to 29 TME pathways
(Figure 8F).

Different response of two risk groups to
immunotherapy and chemotherapeutic drugs

Assessment on immunotherapy-related indicators unveiled that
low-risk group had higher score of T cell inflamed GEP, Th1/IFN-γ,
and cytolytic activity (Figures 9A–C), indicating a higher response of
low-risk group to immunotherapy than high-risk group. Immune
checkpoint analysis showed PD-1, CTLA-4, BTLA, and TIGIT were
higher expressed in low-risk group than that in high-risk group
(Figure 9D), suggesting that low-risk group was more responsive to
immune checkpoint inhibitors. TIDE analysis predicted that high-risk

FIGURE 9
The predicted response to immunotherapy and chemotherapeutic drugs analyzed in TCGA and IMvigor210 datasets (A–C) The score of T cell inflamed
GEP, Th1/IFN-γ signature, and cytolytic activity in two risk groups (D) The expression of immune checkpoint genes in two risk groups (E) TIDE analysis
calculated the enrichment of immunosuppressive cells, T cell exclusion, T cell dysfunction, and TIDE score in two risk groups (F)Correlation of risk score with
immunotherapy-related indicators (G) The risk score in CR/PR and SD/PD groups in IMvigor210 dataset (H) The proportion of CR/PR and SD/PD in two
risk groups in IMvigor210 dataset (I–K) Survival plot of high-risk and low-risk groups in all stages (I), early stage (I+Ⅱ) (J), and late stage (Ⅲ+Ⅳ) (K) in
IMvigor210 dataset (L) The estimated IC50 of four chemotherapeutic drugs in two risk groups (M) Drug sensitivity of potential drugs in the relation to the risk
score. Rs < 0 indicates drug sensitivity and Rs > 0 indicates drug resistance.
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group was more prone to escape from immunotherapy, which may
result from its high enrichment of myeloid-derived suppressor cells
(MDSCs) and high T cell exclusion (Figure 9E). Correlation analysis of
risk score with the above immunotherapy-related indicators showed
that risk score was positively correlated with MDSC (R = .67), T cell
exclusion (R = .44), and TIDE score (R = .21) but was negatively
correlated with BTLA (R = -0.53) and T cell dysfunction (R = -0.39)
(Figure 9F). Moreover, risk score was positively correlated to TMB
(Supplementary Figure S5), and high group had enhanced TMB
(Supplementary Figure S5).

Furthermore, we used an immunotherapy dataset (IMvigor210) to
validate the reliability of the risk model in predicting immune
response. Risk score was significantly higher in SD/PD group
compared with that in CR/PR group (p = 0.024, Figure 9G), and
low-risk group also had a higher proportion of CR/PR (p = 0.2325302,
Figure 9H). The risk model was also effective to distinguish high-risk
patients receiving immunotherapy in IMvigor210 dataset, especially in
the patients with late stages (Figures 9I–K). In addition, we evaluated
the ability of the risk model in predicting the response to
chemotherapeutic drugs in TCGA dataset. High-risk group had
significantly lower estimated IC50 of all four chemotherapeutic
drugs (Figure 9L), implying that high-risk group was more
sensitive to these four drugs than low-risk group. By utilizing the
drug sensitivity data in GDSC database, we identified six drugs
significantly correlating with risk score where four drugs
(entinostat, GDC0810, ABT737, and venetoclax) may serve as
therapeutic drugs for LUAD (Figure 9M).

Discussion

In the present study, we used 29 TME-related signatures as a basis
to identify TME-based molecular subtypes for LUAD. Four TME-
based subtypes were identified and their clinical and molecular
features such as survival time, gene mutations, genomic
characteristics, immune infiltration, and biological pathways were
characterized. Four subtypes showed distinct clinical and molecular
features, as well as different response to immunotherapy and
chemotherapeutic drugs. By comparing the expression profiles
between different subtypes, we identified DEGs and screened five
key prognostic genes to construct a TME-related risk model for
predicting LUAD prognosis.

Among 29 TME-related signatures, tumor proliferation rate, EMT
signature, and matrix remodeling were shown to be positively
correlated with poor prognosis. EMT has been widely known as a
promotive process in inducing tumor cell invasion and metastasis
through weakening cell-cell adhesion (Ye and Weinberg, 2015). The
junctions of mesenchymal cells with extracellular matrix are loose,
which enable tumor cells easily to migrate. Tumor proliferation rate
had the highest HR (1.40) among these signatures, in accordant with
the close relation between tumor proliferate rate and stage. Evidently
positive correlations were observed among 29 TME-related signatures,
suggesting a complicated regulation system of TME. Therefore, we
used these TME-related signatures as a basis to perform molecular
subtyping for LUAD patients.

We identified four TME-based molecular subtypes and each
subtype showed different enrichment patterns of TME-related
signatures. C1 subtype had the highest enrichment of tumor
proliferation rate, which was considered as a pro-tumor phenotype.

C2 subtype had the least infiltration of anti-tumor immune cells or
molecules, and relatively high enrichment of angiogenesis (Voron
et al., 2014), CAFs (Ziani et al., 2018), and pro-tumor cytokines, which
was suggested as an immune-suppressed phenotype. C3 subtype had
the highest enrichment of anti-tumor cells but the immunosuppressive
cells or signatures such as tumor-associated macrophages (Pan et al.,
2020), Treg (Tanaka and Sakaguchi, 2017), and checkpoint molecules
were also highly enriched. C3 subtype was considered as an immune
infiltrated phenotype. C4 subtype had the lowest enrichment of tumor
proliferation rate and EMT signature. Therefore, we suggested
C4 subtype as a tumor-silent phenotype. Survival analysis of four
subtypes showed that C1 had the worst survival and C4 had the longest
survival, which was consistent with their TME-related features.

Genomic instability is an important feature and is considered as a
hallmark in cancers (Negrini et al., 2010). The mutation of oncogenes
promotes DNA damage and genomic arrangements in cancer (Tubbs
and Nussenzweig, 2017). High non-synonymous TMB was
demonstrated to be associated with favorable prognosis in resected
non-small cell lung cancer patients (Devarakonda et al., 2018). In our
results, C1 had the highest score of aneuploidy, homologous
recombination deficiency, loss of heterozygosity and ploidy,
indicating high genomic instability thus contributing to poor
prognosis of C1. Although high TMB was also shown in C1, the
large number of genomic alterations covered the beneficial effect of
TMB. The contribution of TME in genomic instability has been revealed
in recent years, and hypoxia is a main factor causing DNA damage and
genomic instability (Sonugür and Akbulut, 2019). In pathway analysis,
we found that two hypoxia-related pathways, reactive oxygen species
pathway and oxidative phosphorylation, were relatively activated in C1,
which supported the above observation.

Biological pathway analysis revealed that four TME-based
subtypes had different activated pathways that may lead to their
different outcomes. In C1 subtype, cell cycle-related pathways such
as E2F targets, G2M checkpoint, MYC targets, and DNA repair were
strikingly enriched, while immune response-related pathways were
relatively inhibited, which was consistent with high tumor
proliferation rate of C1. The crosstalk among activated cell cycle
pathways, genomic instability and oxidative stress promoted the
tumor progression and thus led to unfavorable outcome in
C1 subtype. Oncogenic pathways such as WNT, TGF-β, Notch,
Hedgehog, angiogenesis, hypoxia, and EMT were more enriched in
C2 subtype compared with other subtypes. Lines of evidence have
verified the role of these oncogenic pathways in the regulation of TME
and response to immunotherapy (Yang et al., 2010; Albini et al., 2018;
Meurette and Mehlen, 2018; Patel et al., 2019; Gampala and Yang,
2021). Immune response pathways such as interferon response, IL2-
STAT5 signaling, complement, IL6-JAK-STAT3 signaling, and
inflammatory response were much enriched in C3 and
C4 subtypes, which were responsible for their favorable prognosis.
In addition to immune response pathways, metabolic pathways such
as fatty acid metabolism, adipogenesis, and bile acid metabolism were
also enriched in C4 subtype. The metabolic alterations have been
demonstrated to shape TME components thereby influencing tumor
progression and immunotherapy efficiency (Lyssiotis and
Kimmelman, 2017; DeBerardinis, 2020).

Cancer patients with different TME may have different response
to immunotherapy. We estimated the potential response of four
subtypes to immunotherapy by using immunotherapy-related
indicators (T cell inflamed GEP, Th1/IFN-γ, and cytolytic activity).
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Four subtypes showed distinct enrichment of these indicators where
C3 subtype was predicted to benefit most from immunotherapy. In
addition, four subtypes also displayed differential expression of key
immune checkpoints such as PD-1, CD274, CTLA-4, and LAG3.
C3 subtype exhibited the highest expression of these checkpoints,
suggesting C3 subtype was sensitive to ICIs. From the above results, we
concluded that the TME-based subtyping was effective to provide a
guidance for LUAD patients receiving immunotherapy.

Furthermore, we established a TME-related risk model containing
five prognostic genes (PTTG1, MS4A1, ZNF750, RHOV, and KRT6A)
for predicting LUAD survival. PTTG1 was found to promote lung
cancer migration and invasion (Li et al., 2013), and knockdown of
PTTG1 could enhance anti-tumor activity in LUAD (Chen et al.,
2021). The expression of MS4A1 was shown to be positively correlated
with the survival of colorectal carcinoma (Mudd et al., 2021), which
was consistent with our result that MS4A1 was highly expressed in
low-risk group. ZNF750 is a tumor suppressor in squamous cell
carcinoma, which can suppress cell migration (Hazawa et al.,
2017). In our study, ZNF750 expression level was downregulated in
high-risk group, which supported its protective role in inhibiting
tumor progression. RHOV was shown to facilitate tumor cell
growth and metastasis in LUAD (Zhang et al., 2021). In our
results, RHOV was evidently elevated in high-risk
group. Overexpression of KRT6A was able to promote LUAD cell
proliferation through EMT process (Yang et al., 2020), which may lead
to poor prognosis in high-risk group. Previous studies have illustrated
that the five prognostic genes are involved in tumor progression and
migration in lung cancer or other cancer types, implying that our
TME-related risk model was reliable to predict LUAD prognosis. ROC
curve analysis showed a high AUC and validated the efficiency of the
risk model. In addition, we evaluated the predictive value of the risk
model in guiding immunotherapy and chemotherapy. Two risk
groups showed differential immune responses to immunotherapy
and differential IC50 to four chemotherapeutic drugs (docetaxel,
vinorelbine, paclitaxel, and cisplatin), which illustrated that the risk
model also had a potential in assisting the decision-makings in
immunotherapy and chemotherapy.

Conclusion

In conclusion, our study revealed the molecular characteristics of
LUAD patients based on TME-related signatures. The distinct
biological pathways and TME features of four TME-based subtypes

laid a foundation for the further exploration of the crosstalk among
TME, genomic instability, and oncogenic pathways in LUAD. The
TME-related risk model was efficient and reliable to predict LUAD
prognosis and assist clinical treatment.
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A systematic and comprehensive
analysis of T cell exhaustion related
to therapy in lung adenocarcinoma
tumor microenvironment
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Background: T cell exhaustion (TEX) is an important immune escape mechanism,
and an in-depth understanding of it can help improve cancer immunotherapy.
However, the prognostic role of TEX in malignant lung adenocarcinoma (LUAD)
remains unclear.

Methods: Through TCGA and GEO datasets, we enrolled a total of 498 LUAD
patients. The patients in TCGA-LUAD were unsupervised clustered into four
clusters according to TEX signaling pathway. WGCNA analysis, survival random
forest analysis and lasso regression analysis were used to select five differentially
expressed genes among different clusters to construct a TEX risk model. The risk
model was subsequently validated with GEO31210. By analyzing signaling pathways,
immune cells and immune checkpoints using GSEA, GSVA and Cibersortx, the
relationship between TEX risk score and these variables was evaluated. In
addition, we further analyzed the expression of CCL20 at the level of single-cell
RNA-seq and verified it in cell experiments.

Results: According to TEX signaling pathway, people with better prognosis can be
distinguished. The risk model constructed by CD109, CCL20, DKK1, TNS4, and
TRIM29 genes could further accurately identify the population with poor
prognosis. Subsequently, it was found that dendritic cells, CD44 and risk score
were closely related. The final single-cell sequencing suggested that CCL2O is a
potential therapeutic target of TEX, and the interaction between TEX and CD8 + T is
closely related.

Conclusion: The classification of T cell depletion plays a crucial role in the clinical
decision-making of lung adenocarcinoma and needs to be further deepened.

KEYWORDS

T exhausted, lung adenocarcinoma, single cell sequencing, biomarkers, tumor
microenvironment

1 Introduction

The mortality rate of lung adenocarcinoma remains high throughout the world (Relli et al.,
2019). LUAD is the most common form of primary lung cancer. Smoking-primary or
secondary exposure, are the main causes (Hutchinson et al., 2019). The traditional
treatment of LUAD includes surgical resection, chemotherapy, and radiotherapy. A number
of new therapeutic approaches have also been discovered that can be used to treat LUAD, such
as immunotherapy (Succony et al., 2021).
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As a subset of T immunocytes, CD8+ T lymphocytes are
responsible for mediating the activity of the T immunocytes to
chronic infections and cancers (Zhang and Bevan, 2011). Chronic
infections and tumor antigens cause differentiated CD8 + T cells to
exhaust (Speiser et al., 2014; McLane et al., 2019). The expression of
cytokine suppression, decreased killing, and hypoproliferation of
T cells are all symptoms of T cell exhaustion (TEX), which occurs
as a result of these processes (Freeman et al., 2006; Zhang et al., 2022).
The immune checkpoint inhibitors working mechanism is not
depleting T cells in the immune microenvironment, and TEX is
thought to be a pathway of resistance (Chow et al., 2022). In
parallel, Immunotherapy to restore TEX responses has transformed
the current clinical decision for cancer treatment (Hudson and
Wieland, 2022). There has been evidence that inhibiting the PD-1
inhibitory receptor pathway can reactivate the TEX response and
active the immune anti-tumor effect (McLane et al., 2019).

Although T lymphocytes in the body can attack tumors, the latter
often present a highly reactive microenvironment that shuts down the
killing capacity of T cells (Ma et al., 2019). The tumor
microenvironment (TME) is a key factor in the escape of tumor
cells from the immune system, and this environment plays a key role
in cancer development (Gholami et al., 2017). In the TME, T cells are
regulated by a complex immunosuppressive network consisting of
cancer cells, inflammatory cells, stromal cells and cytokines (Jiang
et al., 2015). Among these TME components, cancer cells,
inflammatory cells, and suppressor cytokines have key roles in
regulating T cell phenotype and function (Speiser et al., 2016).
These components contribute to the eventual differentiation of
T cells into “exhausted” T cells. Eventually, the majority of T cells
in the TME differentiate into exhausted T cells that express high levels
of suppressor receptors, produce fewer effector cytokines, and lose the
ability to eliminate cancer.

In the initial characterization of exhausted T cells, the levels of
transcription factors T cell factor (TCF1) and programed cell death
protein (PD-1) expression were used to distinguish between the
progenitor and terminally differentiated subtypes (Im et al., 2016;
Siddiqui et al., 2019). As a result of progenitor exhaustion, T cells
exhibit stem cell characteristics or memory characteristics, which
enable them to self-renew and transform into terminally
differentiated cells (Akbar and Henson, 2011; Utzschneider et al.,
2016). Comparatively, the terminally differentiated branching subtype
does not have a functional recovery potential and is limited in its
expansion potential (Philip et al., 2017; Khan et al., 2019). In another
study, TEX was divided into four stages based on Ly108 and
CD69 expression (TEXprog1: Ly108 + CD69+; TEXprog2: Ly108 +
CD69−; TEXint: Ly108-CD69−; TEXterm: Ly108-CD69+) (Beltra et al.,
2020). These studies have shown the TEX process is dynamic, with a
phenotypic and functional continuum of intermediate states,
indicating a developmental hierarchy (Zhang et al., 2022). Further
researches showed that individual patients displayed different levels of
T cell exhaustion (Kim et al., 2021) and the presence of T cell
activation or exhaustion biomarkers such as sTIM-3, CD25 in
patients is evidence of this, these markers are associated with a
poor outcome (Berg et al., 2022). In a pan-cancer analysis, Zhang
et al. obtained TEX-related genes through machine learning to classify
tumors in different things TEX for clinical decision-making (Zhang
et al., 2022).

In this study, we performed clustering analysis on the TCGA-
LUAD data through TEX-related pathways, and further WGCNA and

random survival forest and lasso regression analyses to construct TEX
risk scores. Subsequently, the relationships between TEX risk scores
and GSEA pathway enrichment analysis, GSVA pathway enrichment,
and CIBERSORTX immune infiltrating cells were analyzed.
348 urothelial cancer patients which treated with atezolizumab
(PD-L1) were collected to examined the effect of TEX risk score on
immunotherapy effectiveness. Single-cell sequencing data and
experiment were finally used to analyze potential therapeutic
targets and cell communication in TEX.

2 Materials and methods

2.1 Data acquisition

The expression data, gene mutations, and clinical information
were collected from the Cancer Genome Atlas (TCGA) website for
284 patients with LUAD (Tomczak et al., 2015). And 214 LUAD
patients’ information were collected through dataset GSE31210 in the
GEO database. Single-cell sequencing data (GSE176021) of tumor-
infiltrating T lymphocytes from six NSCLC patients were obtained
from the GEO database. For data inclusion criteria, we selected patient
samples with RNA transcriptome sequencing data and complete
clinical data. For data from different datasets de-batching effects
were performed and normalized, and we used fragment per
kilobase transcript/fragment per million mapping (FPKM)
expression values for further analysis. In FPKM, RNA-seq data
were normalized to the length of each gene and the total number
of aligned reads in the library (Trapnell et al., 2010). FPKM values
were transformed using log2 (FPKM + 1). The flowchart of our
investigation was displayed in Figure 1.

2.2 Unsupervised cluster analysis

The molecular signature database provided information on TEX
signaling pathways and marker genes (Wherry, 2011; Liberzon et al.,
2015). Similar to previous studies, we performed an unsupervised
cluster analysis of LUAD patients using IFN-γ, TNF, and IL-2
signaling pathways to represent the TEX pathway (Zhang et al.,
2022). The specific method is to use ssGSEA through the “GSVA”
R package to estimate the activity score of each patient’s TEX pathway
(Hänzelmann et al., 2013). The percentage of patients at different
stages in different clusters is also shown.

2.3 Comparison of overall survival between
different clusters

To further explore the differences among different subgroups, we
first drew Kaplan-Meier (K-M) survival curves for different clusters
with the mark of 50% survival rate. Then the K-M survival curve of
pairwise subgroups was drawn.

2.4 CIBERSORTX

To further explore the abundance of immunocytes in different
classifications, we used CIBERSORTX algorithm to evaluate
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22 immunocytes in samples fromdifferent clusters (Steen et al., 2020). After
cell infiltration of each sample was obtained, COX regression analysis was
conducted to explore the prognostic value of various cells in each TEX
cluster. Based on median immune cell content, LUAD was divided into
diverse subgroups, and survival rates were compared between groups.

2.5 Weighted gene co-expression network
analysis

The correlation patterns among genomics can be described using a
systems biology method known as a weighted correlation network analysis
(WGCNA) (Langfelder and Horvath, 2008). The R package repository had
the package WGCNA 3.6.1 that was used for the WGCNA. WGCNA
analysis was performed after deunion of the four cluster differential genes.
The significance of each gene was taken into account when calculating the
association between the gene expression profile and the TEX score, and the
relationship between module eigengenes and gene expression profiles was
taken into consideration when determining module membership. The soft
threshold parameters were set at a power of 4 and a scale-free R2 of 0.9, in
order to ensure the topology network was scale-free despite the number of
nodes. The analysis consisted of retrieving an initial set of six modules, and
the Grey modules that showed the strongest correlations were applied for
further investigation.

2.6 RandomForest

Using the survival random forest of 1,000 trees by the R package
randomSurvivalForest version 3.6.4, it was possible to validate the

results and rank the importance of 7 genes obtained from Lasso
regression using the R package randomSurvivalForest Version 3.6.4
(Taylor, 2011). The relative importance of gene > 0.2 is considered the
ultimate hub gene.

2.7 Construction and validation of risk models

Gene expression tends to show significant collinearity between
genes, which means it is necessary to use prognostic models if needed.
LASSO regression and other methods reduce the number of variables
to further reduce the redundancy of the model and increase the
convenience of clinical use. Based on the following formula, we
were able to calculate the risk score according to the following
(Tibshirani, 1997):

Risk score � ∑
n

i�1
Exp i*Coef i

Here, the TCGA-LUAD data set was employed as the training set
to construct the risk model of LUAD patients based on survival
random forest screening genes, took OS as the outcome event, and
p value less than 0.05 as the limit of statistical significance. We then
categorized the patients into diverse subgroups based on the formula
generated by the risk model. Meanwhile, the K-M survival curve was
drawn for the high and low risk group. Receiver operating
characteristic (ROC) curves have a wide range of uses in
identifying the diagnostic power of threshold changes. To further
analyze the predictive power of prognostic models, we plotted the
ROC. An analysis of multivariate cox regression was undertaken in

FIGURE 1
Flow chart of the study.
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order to determine the independent prognostic significance of risk
scores. To ensure the value of external generalization of the prognostic
model, we used another LUAD dataset (GSE31210) for validation.

2.8 Biological function in relation to risk score

A follow-up analysis looked at genes with differential
expression (DEGs) between high and low risk groups. It was
established that the cut-off criteria for the study were |FC| >
2 and adj. p.val > 0.05. GSEA software was used to analyze
three data sets of HALMARK, KEGG and GO for the biological
functional differences among high-risk patients (Shi and Walker,
2007; Subramanian et al., 2007).

2.9 GSVA analysis between high-And low-risk
groups

By using the GSVA analysis, it was possible to explore the
differences between subgroups in signaling pathways for disease
development (Hänzelmann et al., 2013). Moreover, a correlation
analysis was conducted between the partial signal pathway score
and the risk score.

2.10 The predictive significance of TEX risk
model

A boxplot was made to illustrate the expression of 11 immune
checkpoints between different subgroups. An analysis of 22 different
types of immune cell infiltration was performed using the
CIBERSORTX algorithm.

The detailed gene mutation statuses of the subgroups were
displayed using the R package “maftools” to make comparisons
between the two subgroups (Mayakonda et al., 2018). With the
IMvigor210 package, we were able to determine gene expression
and immunotherapeutic effectiveness in the IMvigor210 cohort
(Mariathasan et al., 2018). IMvigor210 cohort is widely used to
analyze the efficacy of immunotherapy.

2.11 Single cell sequencing analysis

It is a standard processing procedure that is used to do
downstream processing on scRNA-seq data which is carried out
using Seurat R software package, version 3.0.2, and a standard
downstream processing package for this analysis (Stuart et al.,
2019). In addition, genes detectable in fewer than 3 cells and genes
detected in fewer than 200 cells were excluded, and the percentage
of mitochondria detected was limited to no more than 20% of the
total number of genes. Then, t Data was normalized using
LogNormalize. A non-linear method used for reducing the
dimensions of a sample is t-distributed stochastic neighborhood
embedding (t-SNE) that is used for unsupervised clustering and
unbiased visualization of cell populations on a two-dimensional
map after principal component analysis (PCA) (Van Der Maaten
and Hinton, 2008). A minimum fraction of 0.25 cell population
fraction was used in both populations in order to identify marker

genes in each cluster using the “FindAllMarkers” function. The
filtering criterion was filter value of absolute log2 fold change
(FC) ≥1. To visualize each marker gene’s expression patterns
within the cluster, the “DotPlot” function in Seurat was used.
Then, the SingleR package (version 1.0.0) was utilized for
annotating cell types based on marker-based information (Aran
et al., 2019).

2.12 Cell culture

The A549 and BEAS-2B cell lines were obtained from Dr Liu.
A549 cell lines were cultured in RPMI-1640 (Invitrogen) and
BEAS-2B cells were cultured in DMEM medium, The medium
was supplemented with 10% FBS (Gibco).

2.13 Molecular expression verification

The expression of CCL20 in tumor and normal tissues of LUAD
patients was compared through GEPIA2 online website, and we
analyzed the overall survival rate of high expression group and low
expression group (Tang et al., 2017).

The total RNA was extracted using the Trizol reagent. RT was
performed with DNA-free total RNA in Revert Aid First Strand cDNA
Synthesis Kit (Thermo). For PCR amplification, specific primers were
used to amplify the transcribed cDNA. CCL20 Forward: ATGTGC
TGTACCAAGAGTTTGC; CCL20 Reverse: CCAATTCCATTCCAG
AAAAGCC.

Integrated DNA technologies (Coralville, IA, United States)
provided us the synthetic siRNA and the scrambled negative
control siRNA. This experiment consisted of transfecting cells with
LipofectamineTM RNAiMAX (Thermo Fisher Scientific,
Massachusetts, United States) in opti-MEM according to the
procedure given by the manufacturer.

2.14 Flow cytometry

The manufacturer’s instructions were followed when
performing flow cytometry. Apoptosis was detected with the
Annexin V-PE/7-ADD Apoptosis Detection Kit (Vazyme,
A213-01). The B525 nm wavelength was selected for the
Fluorescein (FITC) signal channel, and the B610 nm
signal channel was selected for the ECDPE-TR (ECD) signal
channel.

2.15 Statistical analysis

It was determined that two groups with normally distributed
variables and those with variables that were not normally
distributed were statistically significant using independent t-tests
and Mann-Whitney U tests. In order to make a comparison
between the two groups on the basis of differences between the
groups, we conducted an analysis of variance (ANOVA) and a
Kruskal–Wallis test (Hazra and Gogtay, 2016). We performed
Spearman correlation and distance correlation analyses using
the R package Hmisc 4.4.1. To analyze the correlation between
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the objects. Those objects whose coefficient was greater than
0.5 were considered highly correlated (Faul et al., 2007). For the
purpose of identifying the prognostic factors, Cox regression
analyses were conducted. A survival curve with all survivorship
curves generated by the R package survminer was also used to
determine the overall survival (OS) and TEX riskScore values

before generating any survival curves with the R package
survminer. As a means of plotting the heatmaps, the R package
Complex Heatmap 2.4.3 was used. R package ggplot2 was used for
visualizing data comparisons. There were two-sided statistical
analyses conducted using R software, which was used for all
statistical analyses.

FIGURE 2
Unsupervised cluster analysis was performed on LUAD patients according to TEX signaling pathway. Unsupervised cluster analysis of patients with
TCGA□LUAD (consensus matrix k = 4) (A). Delta area of unsupervised consensus cluster analysis (B). Heatmap of scores for four T cell exhaustion and IFNG/
TNF/IL-2 signaling pathways (C). Percentages of different clinical stages in TEX clusters (D). Kaplan-Meier survival curves for the four TEX clusters (E). Kaplan-
Meier survival curves for TEXC and TEXD (F). Kaplan-Meier survival curves for TEX A and TEXD (H). The cibersortX algorithm in four TEX clusters was used
to analyze the infiltration results of 22 immune cells (G). K-M survival curves of patients with high and low abundance of mast cells resting in TEXa (I) and TEXc
(J). Volcano plot of differential genes between TEXa and TEXb (K), TEXc and TEXa (L), TEXd and TEXa (M), TEXc and TEXb (N), TEXd and TEXb (O), TEXd and
TEXc (P).
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FIGURE 3
WGCNA analysis and random survival analysis. Clustering dendrogram of TCGA-LUAD (A). Heatmap of correlation between WGCNA modules and
clinical features (B). Various soft thresholding powers are calculated according to their scale-free fit index (C). Soft-threshold power mean connectivity
analysis (D). Plot of random survival forest based on number of trees and error rate (E). Variable Importance ranking of genes in random survival forests (F).
Relative Importanc ranking of genes in random survival forests (G).
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3 Results

3.1 Unsupervised cluster analysis

The outcome of unsupervised cluster analysis were displayed in
Figures 2A, B, where the best result was to classify the 284 LUAD
patients into four TEX cluster (consensus matrix k = 4) according to
the GSVA scores of the three IFNG/TNFA/IL-2 pathways. Figure 2C
displayed the GSVA scores of the three pathways within the four
clusters. Cluster B has the highest IFNG/TNF/IL-1 pathway score, and
cluster D has the lowest score. The number of patients with stage1 in
cluster b was larger than in cluster A, B and C. The number of patients
with stage1 in cluster B was larger than that in cluster A, B and C
(Figure 2D), suggesting that the overall survival of patients in cluster b
may be better than that in other cluster populations. We plotted K-M
survival curves for the overall survival of the four cluster populations,
and there was no statistically significant difference (p = 0.116) in
survival between the four clusters (Figure 2E). We plotted the K-M
survival curves separately for cluster B and cluster A C D, and the
results suggested that the overall survival rate of cluster B was higher
than that of cluster A C D (Figures 2F-H; Supplementary Figure S1)
(Cluster C vs. D, p = 0.042; cluster A vs. D, p = 0.025; cluster B vs. D,
p = 0.073).

To further analyze the abundance of immune cells in different
cluster, we applied the CIBERSORTX algorithm to evaluate the
22 immune cells in the samples in different clusters. After cell
infiltration score was obtained for each sample, COX regression
analysis was performed to explore the prognostic value of various
cells in each TEX cluster. Mast cell resting was a protective factor in
both TEXa and TEXc (Figures 2I, J).

For further analysis of the transcriptome differences between
different cluster, we will contrast between different cluster
differences in gene analysis, analysis of the standard is greater than
or equal to | logFC | = 0.5, rectify the p value is less than 0.05, and
mapped the volcano map is used to display the results of the analysis
(Pearson correlation coefficient = 0.2, p value < 0.001) (Figures 2K–P).

3.2WGCNA and survival random forest results

WGCNA analysis results suggested that the grey module was most
relevant to survivals related information, and the grey module was
selected for subsequent analysis (Figures 3A–D). There were 36 genes
chosen as hub genes in the Grey module since they had absolute values
of module membership [MM] that were greater than 0.5 and absolute
values of gene significance [GS] that were greater than 0.5 within the
module (Supplementary Table S1). Variable selection based on
minimum depth values above the threshold (0.001) and importance
values above the threshold (0.2) yielded seven tentative (SOX9, CD109,
CCL20, DUSP5, DKK1, TNS4, and LCAL1) candidate prognostic
markers for LUAD. This suggests that these seven genes are most
relevant to the prognosis of LUAD (Figures 3E–G).

3.3 Development and validation of TEX risk
model

A TEX risk model that includes five genes was constructed using
lasso regression analysis. The formula for the risk score is as follows:

risk socre = (0.2628*CD109 + 0.0464*CCL20 + 0.0163*DKK1 +
0.0359*TNS4 + 0.0348*TRIM29). The TCGA-LUAD patients were
divided into high- and low-risk groups based on their risk scores. The
K-M survival curve between high and low risk groups suggested that
the high-risk group had worse overall survival (p < 0.001) (Figure 4A).
The AUC values of the TEX risk model were 0.823 in the first year,
0.688 in the third year, and 0.619 in the fifth year (Figure 4B).
Multivariate COX analysis showed that TEX Score was an
independent prognostic factor (p < 0.05, Hazard Ratio :1.625
[1.329−1.986]) (Figure 4C). In the validation set GSE31210, we also
found that high-risk LUAD patients had worse OS (Figure 4D). The
AUC values of TEX risk model in the validation set were 0.643 in the
first year, 0.655 in the third year, and 0.700 in the fifth year. These
results TEX risk model have good predictive power (Figure 4E).

3.4 TEX risk score and biological function
GSEA analysis

Based on the HALLMARK, KEGG, and GO datasets, we
performed an enrichment analysis of biological functions in high-
risk patients using GSEA software. The results showed that the five
HALLMARK pathways with the highest enrichment were bile acid
metabolism, heme metabolism, MYC target v1, peroxisome, and
protein secretion (Figure 4F). The five most enriched pathways in
the GO database were DNA conformational changes, negative
regulation of cellular macromolecular biosynthetic processes,
ribonucleoprotein complex biogenesis, mitochondrial matrix, and
vacuolar membrane (Figure 4G). The top five enriched KEGG
pathways were insulin signaling pathway, melanoma, peroxisome,
T cell receptor signaling pathway, and vascular smooth muscle
contraction (Figure 4H). The results showed that high-risk patients
were highly associated with many tumor proliferation and
metabolism-related pathways, suggesting that targeted TEX affects
the prognosis of LUAD patients mainly through tumor proliferation
and metabolic pathways.

3.5 TEX risk score and GSVA analysis

We selected several gene sets for GSVA analysis based on the
above GSEA results and found that TEX score was positively
correlated with glycosaminoglycan degradation, linoleic acid
metabolism, o glycan biosynthesis, leukocyte transendothelial
migration, focal adhesion, ECM receptor interaction and
p53 signaling pathway (Figures 5A, B). This suggests a potential
pathway through which TEX exerts its effects.

3.6 Relationship between TEX risk score and
immunity

Considering the great potential of TEX for immunotherapy, In
both high and low risk groups, we plotted the expression levels of
11 immune checkpoints. In the high-risk group, CD44 expression was
higher, which may be a therapeutic target in the future (Figure 5C).
Based on 22 immune cell infiltrations, the high-risk group had a higher
percentage of resting Dendritic cells and a lower percentage of
activated Dendritic cells (Figure 5D). Further correlations of TEX
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risk scores and 22 immunocytes are shown in Figure 5E. The radar
chart further showed the contents of 22 immunocytes in the high-risk
group (Figure 5F), suggesting that TEX may affect the prognosis of
LUAD by regulating the state of Dendritic cells.

3.7 Relationship between TEX risk score and
genetic mutations

We used a map to determine the landscape of gene mutations in
high and low-risk subgroups of patients (Figures 6A, B). There was no
statistically significant difference between the gene mutation

frequencies between the groups that were analyzed, but it was
noted that TP53 and TTN had the highest mutation frequencies.

3.8 Relationship between TEX risk score and
immunotherapy

Based on the TCGA-LUAD data set and the IMvigor210 data
set, subgraph analyses were conducted to evaluate immunotherapy
and chemotherapy in high-risk and low-risk groups. The high-risk
group demonstrated a lower percentage of responders to
immunotherapy (Figure 7A), and TEXscore was lower in those

FIGURE 4
Construction and validation of TEX risk model. Kaplan-Meier (K–M) survival curves of patients in the high and low risk groups in TCGA-LUAD (A) and
GSE31210 (D). Multivariate Cox analysis in TCGA-LUAD cohort (C). TEX risk model AUC values at year 1, 3, and 5 in TCGA-LUAD (B) and GSE32120 (E).
HALLMARK pathway enrichment analysis (F), GO pathway enrichment analysis (G) and KEGG pathway enrichment analysis (H) of the high-risk group in TCGA-
LUAD.

Frontiers in Pharmacology frontiersin.org08

Hu et al. 10.3389/fphar.2023.1126916

142

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1126916


with low response (Figure 7B). These results suggest that patients
with lower TEX risk scores are able to achieve a better
immunotherapy response. Specific immunotherapy responses fall

into four types: CR: complete response; PR, partial response; SD:
stable disease; PD: progressive disease. There was no statistically
significant difference in TEX risk scores among the four types of

FIGURE 5
Relationship between TEX risk scores and immunity. GSVA analysis between high and low risk groups in TCGA-LUADA (A). Correlation scores of TEX risk
scores and signaling pathways (B). Expression of 11 immune checkpoints in the high and low risk groups (C). The abundance of 22 immune cells in cibersortx
high and low risk groups was analyzed (D). Association of TEX risk scores and 22 immune cells (E). Radar plot of the abundance of 22 immune cells in the high-
risk group (F).
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response, suggesting that the specific immunotherapy response was
not related to the risk score (Figure 7C).

It was found that the high-risk group had also a poorer overall
survival rate than the low-risk group when they received
immunotherapy, regardless of the median risk score (Figure 7D).
These results suggest that the TEX risk score has a role in predicting
the efficacy of immunotherapy and the prognosis of patients receiving
immunotherapy.

3.9 Single-cell sequencing analysis revealed
the therapeutic targets of TEX

To further search for the potential therapeutic target-cell interactions
of TEX, a total of 8 cell subtypes were identified in the single-cell
sequencing dataset of T cells (B, CD4 Tconv, CD8T cell, CD8Tex,
DC, NK, T prolif, Treg) (Figure 8A). The key gene in the risk model,
CCL20, was most highly expressed on TEX cells (Figures 8B,C), CCL20, a
key gene in the risk model, was most highly expressed on TEX cells,
suggesting that CCL20 plays an important role in the TEX process in
LUAD patients and is a potential therapeutic target. GSEA analysis
showed that TEX cells were mainly enriched in cell adhesion (Figure 8D).
The results of cell communication showed that TEX mainly interacted
with CD8T cells (Figures 8E,F). These results provide new explanatory
theories and therapeutic targets for TEX depletion in LUAD.

3.10 GEPIA2, real-time quantitative PCR, and
flow cytometry validation

The GEPIA2 website contained 483LUAD patients and 347 normal
lung tissues, and we found the expression level of CCL20 was higher in
tumors tissues. Subsequently, the LUAD patients were classified into

diverse subgroups based on CCL20 expression value (Figure 9A), and the
results also showed that the high expression group had a shorter overall
survival (p = 0.022) (Figure 9B). In addition, we detected CCL20mRNA
values in both normal and tumor cell lines. The results displayed that the
mRNA expression level of CCL20 in A549 was more than twice that in
BEAS-2B (Figure 9C). Subsequently, we knocked down CCL20 in
A549 cells by siRNA (Figure 9D), and the CCL20 knockdown cells
had more apoptosis than the control cells (Figure 9E).

4 Discussion

A growing body of evidence suggests that TEX is the result of
delayed phenotypic differentiation as well as intermediate functional
stages within T cells that follow a sustained state of hierarchy
dysfunction. Like other forms of cellular differentiation, it is
believed that TEX is the result of T cell hierarchical dysfunction
over a prolonged period of time (Wherry, 2011; Jiang et al., 2015;
Blank et al., 2019). By understanding CD8 + T cell dysregulation and
exhaustion in the tumor microenvironment (TIME), we can overcome
the TEX barrier and improve immune checkpoint blockade therapies
in the clinic, regardless of whether the type of tumor is the same or
different (Kurtulus et al., 2019). The dynamics and heterogeneity of
TEX in the TIME are not well studied across LUAD.

In this study, we preferred unsupervised CLUSTER analysis of
284 LUAD patients based on the three most closely TEX signaling
pathways (IFNG, TNF, and IL-2), and the patients were divided into
four clusters. In cluster D, the number of LUAD patients with the lowest
signal pathway score and the largest number of stage1 was the highest.
The K-M curve showed that cluster D patients had a better prognosis.
PD-1 overexpression leads to inhibitory signaling and induces TEX,
leading to tumor immune escape (Zwergel et al., 2022), which suggested
that we can use TEX related pathways for prognosis judgment and precise

FIGURE 6
Gene mutation landscape. Gene mutation landscape in high (A) and low risk groups (B).
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treatment of LUAD. Analysis of immune cell infiltration in four
TEXclusters 22 by cibersortx revealed that higher abundance of mast
cells resting in TEXa and TEXc was associated with worse prognosis. The
existence of mast cells is associated with the prognosis of patients with
lung adenocarcinoma, as exosomes derived from mast cells have been
shown to promote the proliferation of lung adenocarcinoma cells (Xiao
et al., 2014; Bao et al., 2020). However, the specific mechanism of TEX
and mast cells needs to be further studied.

WGCNA analysis of the differentially expressed genes and
survival random forest analysis obtained 7 key genes (SOX9,
CD109, CCL20, DUSP5, DKK1, TNS4, and LCAL1). Then we
selected 5 genes (CD109, CCL20, DKK1, TNS4 and TRIM29) by
lasso regression algorism to build a TEX risk model. In the
training set TCGA-LUAD and the validation set GSE, high-risk
patients had worse overall survival. The AUC value and
multivariate cox regression analysis of TEX risk model in training
set and validation set showed that Tex risk model had good predictive
value and clinical application value. Cluster of differentiation 109
(CD109) is a glycosylphosphatidylinositol-anchored protein (Lee et al.,

2020). Further studies showed that CD109 promoted lung
adenocarcinoma invasion and metastasis in vivo through TGF-β
signaling pathway (Chuang et al., 2017; Lee et al., 2020; Taki et al.,
2020). However, there is no study on CD109 and TEX.

Through the enrichment analysis of GSEA and GSVA, we found
that TEX score was positively correlated with glycosaminoglycan
degradation, linoleic acid metabolism, o glycan biosynthesis,
leukocyte transendothelial migration, focal adhesion, ECM receptor
interaction and P53 signaling pathway. Targeting P53 has been shown
to restore CD8 + T cells depleted in hepatitis C virus infection.
However, other pathways and TEX pathways are still worthy of
further exploration in LUAD. Subsequent immune checkpoint
analysis revealed that the high risk group had increased expression
of CD44, a stemness marker of non-small cell lung cancer, and
activation of CD44 related pathways promoted squamous cell lung
cancer resistance to FGFR1 inhibition (Elakad et al., 2022; Panda and
Biswal, 2022). These results suggest that TEX may be involved in the
stemness and other phenotypes of LUAD resulting in a poorer
prognosis in high-risk patients.

FIGURE 7
Relationship between TEX risk score and immunotherapy. Percentage weight with response (R) and no response (NR) in the high and low risk groups (A).
Wilcoxon test for TEX scores in response and no response populations (B). Boxplots of TEX scores in the four treatment responses (C). K-M survival curves for
the high and low risk groups in the immunoresponsive population (D). PR, partial response; CR:complete response; PD: progressive disease; SD: stable
disease.
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Furthermore, in the pathway enrichment analysis, we found that
bile acid metabolism, peroxisome, and T cell receptor signaling
pathways were significantly enriched. It has been shown that bile
acids can regulate cell growth and proliferation and that alterations in

bile acid levels in disease states are associated with liver injury/
regeneration and tumorigenesis (Li and Apte, 2015). Peroxisomes
can regulate various biological processes and play an important role in
several diseases and conditions, and some studies suggest that they

FIGURE 8
Analysis of TEX by single-cell sequencing. Major subtypes of cells (A). The amount of CCL20 expression on different cells (B,C). Up-regulated kegg
pathways in different cell types (D). Interaction conunts of different cell subtypes (E). Diagram of the interaction network between TEX and other cell types,
with the width of the network edge being the total number of ligand and receptor pairs (F).
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may also have an important role in the development and progression
of cancer and may represent a new opportunity for cancer therapy
(Peters et al., 2005; Youssef and Badr, 2011). In contrast, T cell

receptor-based immunotherapy has been shown to be a promising
approach for the treatment of various types of cancer. TCRs can
recognize epitopes of proteins from any subcellular compartment,

FIGURE 9
GEPIA2, Real-time quantitative PCR, and flow cytometry validation. CCL20 expression in LUAD tissues and normal lung tissues in GEPIA (A). K-M curves
of overall survival of LUAD patients with high and lowCCL20 expression in GEPIA2 (B). Relative mRNA expression of CCL20 in A549 cell line and BEAS-2B cell
line (C). After knocking down CCL20 in A549 cells by siRNA, the expression of CCL20 gene in the three groups of cells was detected (D). The number of
apoptotic cells in the three groups was counted by flow cytometry (E). * <0.05.
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including the membrane, cytoplasm and nucleus, and these
advantages allow TCRs to detect a wide range of targets, such as
neoantigens, cancer germline antigens and viral oncoproteins, and in
the clinical setting TCR-based immunotherapy can mediate solid
regression of malignant tumors, including immune checkpoint
inhibitor-refractory cancers (Schmitt et al., 2009; Kirsch et al.,
2015; Chandran and Klebanoff, 2019).

To accurately describe the mechanism of TEX at the single-cell
level, we found that the major cells could be divided into eight types
through single-cell sequencing data GSE of T cells. It has been found
that C-C motif chemokine ligand 20 (CCL20) is involved in the
occurrence and development of various types of cancer. We found
that CCL20, a key gene in the TEX risk score, was highly expressed on
TEX cells. In LUAD patients, high expression of CCL20 is related to
epithelial-mesenchymal transition (EMT), which is associated with
poor prognosis. Patients responding to anti-PD-L1 therapy were
significantly better when CCL20 expression was low rather than
high (Fan et al., 2022). Notably, TNF signaling is also a key
pathway in TEX, suggesting that targeting CCL20 in TEX may
have potential clinical value. KEGG signaling pathway analysis
identified multiple gene sets up-regulated in TEX, and three
signaling pathways attracted our attention. The first is the antigen
processing and presentation pathway. Previous findings suggested that
patients with higher TEX risk scores had a higher proportion of
dendritic cells. The single-cell analysis here further confirms the
possible interaction between TEX and DC. Studies have shown that
immune checkpoint therapy can restore the immune function of TEX,
but it depends on the depleted precursor state of T cells. Dendritic cells
provide an important niche for TPEX and prevent its excessive
activation (Dähling et al., 2022). Cell communication shows that
TEX mainly interacts with CD8T cells, CD8 + T cells differentiate
and deplete to TEX, and TEX further acts on CD8 + T cells. This
suggests that if we can stop this process, it may provide new ideas for
immunotherapy. Subsequent GEPIA2 data analysis, RT-PCR and flow
cytometry results similarly indicated CCL20 as a prognostic indicator
for LUAD.

Clinically, there are a number of available risk models based on
multiple genes that can predict the prognosis of cancer patients. For
example, 21 gene expression analysis (Oncotype DX, Genomic Health)
is one of several commercially available gene expression assays that
provide prognostic information in hormone receptor-positive breast
cancer (Sparano et al., 2018). In clinical practice guidelines for breast
cancer, the National Comprehensive Cancer Network (NCCN)
strongly recommends 21-gene expression testing (Sparano et al.,
2018). Our study now consists of 5 genes and represents a
clinically convenient test. Moreover, our model is based on TEX-
related genes, which means that our model also has unique potential
for predicting immune function in patients.

However, our experiments still have some limitations. Our model
performs well, but additional experiments are needed to further
validate our model. In addition, although basic experiments were
performed to validate one gene in the model, the specific mechanism
by which it exerts its function still needs to be explored clearly.

Compared with other traditional models, our model still has great
advantages. Our model has not only been validated using different
datasets, but also an in-depth analysis based on single cell sequencing
data, which will greatly affirm the reliability of our model. Our model
can well predict the prognosis and immune control of LUAD patients
and provide help for individual precision treatment.

5 Conclusion

We comprehensively described the prognostic significance,
immunotherapy value and possible mechanism of TEX in LUAD
patients for the first time. Nevertheless, the study has certain limitations.
Firstly, we defined TEX only according to the scores of three TEX-related
signaling pathways, whichmay simplify the definition of TEX. Secondly, we
used public data to analyze the relationship between TEX and LUAD, and
there is a lack ofmolecular biology experiments and in vivo results to further
confirm our conclusion. In conclusion, our results provide a new insight
into the role of TEX in LUAD.
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analysis of aging related gene
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Background: Colon adenocarcinoma (COAD) is a heterogeneous tumor and
senescence is crucial in the occurrence of cancer. This study aimed to identify
senescence-based subtypes and construct a prognostic signature to predict the
prognosis and guide immunotherapy or chemotherapy decisions for COAD patients.

Methods: Based on the single-cell RNA sequencing (scRNA-seq) data of 13 samples
from theGene ExpressionOmnibus (GEO) database, we assessed cellular senescence
characteristics. Transcriptome data, copy number variations (CNVs) and single
nucleotide variations (SNVs) data were obtained from The Cancer Genome Atlas
(TCGA) database. GSE39582 and GSE17537 were used for validation. Senescence
subtypes were identified using unsupervised consensus clustering analysis, and a
prognostic signature was developed using univariate Cox analysis and least absolute
shrinkage and selection operator (LASSO). Response of risk groups to chemotherapy
was predicted using the half-maximal inhibitory concentration (IC50) values. We
further analyzed the relationship between risk gene expression andmethylation level.
The prediction performance was assessed by nomogram.

Results: Senescence-related pathways were highly enriched in malignant cells and
bulk RNA-seq verified cellular senescence. Three senescence subtypeswere identified,
inwhichpatients in clust3 hadpoorest prognosis andhigher T stage, accompaniedwith
higher tumormutation burden (TMB) andmutations, activated inflammatory response,
more immune cell infiltration, and higher immune escape tendency. A senescence-
based signature using 11 genes (MFNG, GPRC5B, TNNT1, CCL22, NOXA1, PABPC1L,
PCOLCE2,MID2, CPA3, HSPA1A, andCALB1) was established, and accurately predicted
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a lower prognosis in high risk patients. Its robustness was validated by external cohort.
Low risk patients were more sensitive to small molecule drugs including Erlotinib,
Sunitinib, MG-132, CGP-082996, AZ628, Sorafenib, VX-680, and Z-LLNle-CHO. Risk
score was an independent prognostic factor and nomogram confirmed its reliability.
Four risk genes (CALB1, CPA3, NOXA1, and TNNT1) had significant positive correlation
with theirmethylation level, while six genes (CCL22,GPRC5B,HSPA1A,MFNG, PABPC1L,
and PCOLCE2) were negatively correlated with their methylation level.

Conclusion: This studyprovidesnovel understandingofheterogeneity inCOADfromthe
perspective of senescence, and develops signatures for prognosis prediction in COAD.
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Introduction

Colorectal cancer (CRC), is the most common diagnosed
gastrointestinal malignant tumor, and ranks third in the morbidity
and second in the mortality with an estimated 3.2 million new
COAD cases in 2040 worldwide (Xi and Xu, 2021). The prevalence of
CRC is 0.56 million in 2020, and will increase to 0.91 million in 2040 in
China (Xi and Xu, 2021). Among these, colon adenocarcinoma (COAD)
accounts for 90% of cases (Munro et al., 2018). Patients with Stage 1-
2 have a 5-year survival rate of 82%–94%, while it reduces to 67% for
patients with stage 3 and advanced metastatic or stage 4 have a dismal 5-
year survival rate of only 11% (Sagaert et al., 2018). Various treatments
such as radical surgery followed by adjuvant chemotherapies can be used
for treatment of resectable COAD patients, and palliative chemo- or
radiotherapy is optimal for unresectable COAD patients to prolong their
life. It has been recognized that COAD is a malignancy with intertumor
and intratumor heterogeneity, which contribute to difference of prognosis
and therapy response (Punt et al., 2017). Hence, it is great of importance
to stratify patients with COAD and develop novel markers to accurately
predict prognosis and therapy response.

Over the past decades, high throughput sequencing technology has
been widely used in various fields of biology and medicine, greatly
promoting relevant research and clinical application (Lightbody et al.,
2019). The traditional RNA sequencing technology (bulk RNA-seq) is
applied to determine gene expression profiles, isoform expression,
alternative splicing and single-nucleotide polymorphisms on basis of
tissue samples, which contains various cell types (Kuksin et al., 2021).
On the contrast, single-cell RNA sequencing (scRNA-seq), a novel
technology can detect the gene expression patterns for each transcript
within single cell and distinguish cell subtypes (Lähnemann et al., 2020).
Recently, scRNA-seq has been employed widely used in different cell
type of various species, especially in human and mouse, to assess
biological variability (Papalexi and Satija, 2018).

Cellular senescence is a cell state of cell cycle arrest that can eliminate
damaged cells and promote tissue remodeling. Cellular senescence is
predominantly elicited in response to intrinsic and extrinsic stimulus,
such as oncogene activation, stress, DNA damage, CDKN2A locus
derepression, mitochondrial dysfunction (Hernandez-Segura et al.,
2018). Unfortunately, compelling evidence has suggested that cellular
senescence is implicated in pathological status, in which senescence-
associated secretory phenotype (SASP) affects the clearance of senescent
cells and further results the decline of tissue function (Muñoz-Espín and
Serrano, 2014), and secret pro-inflammatory cytokines including

interleukin (IL)-6 and IL-8, chemokines and growth factors, which
contributes to tumorigenesis in aged organisms (Herranz and Gil,
2018). Cellular senescence has been studied in various cancer types and
compelling evidences have revealed that cellular senescence is associated
with cancer prognosis (Dai et al., 2022a; Domen et al., 2022a; Domen et al.,
2022b). Development of senescence-related classification and
characterization of senescence-based signature have attracted much
attention in tumor research (Feng et al., 2022a; Hong et al., 2022).
However, the mechanisms of cellular senescence in COAD, as well as
the specific prognostic signatures are poorly understood. Therefore, this
study identified senescence-based subtypes based on scRNA-seq and shed
novel insights into potential roles of cellular senescence in COAD
heterogeneity. We further constructed a prognostic risk model in The
Cancer GenomeAtlas (TCGA)-COAD,which offered a novel approach to
predict clinical outcomes in patients with COAD.

Material and methods

Single-cell RNA sequencing (scRNA-seq)
data collection and pre-processing

The scRNA-seq expression profiles of 13 samples (GSE161277)
(Zheng et al., 2022) were downloaded from Gene-Expression
Omnibus (GEO; https://www.ncbi.nlm.nih.gov/geo/) database. To
comprehensively understand the profile of cellular senescence-
related genes in COAD patients, we filtered scRNA-seq data by
setting each gene expressed in at least three cells, and each cell
expressing at least 250 genes. The percentage of mitochondria and
rRNA in each cell was calculated using the PercentageFeatureSet
function ensuring 100 < genes < 6,000 and mitochondrial
content <5% in each cell. Data of 13 samples were normalized
using log-normalization method, and the FindVariableFeatures
function was used to identify variable features based on variance
stabilization transformation (“vst”) and select highly variable genes.

Transcriptome data collection and pre-
processing

The gene expression profiles and clinical information of COAD
were obtained from The Cancer Genome Atlas (TCGA) database
(https://portal.gdc.cancer.gov/) project, including 432 tumor samples
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and 41 para-carcinoma tissue samples. The RNA-seq data
standardization method was TPM normalization. To process
TCGA-COAD data, samples lacking clinical follow-up information,
survival time, and survival status were eliminated from further analysis,
and all samples with survival time more than 0 days. Ensembl gene IDs
were further transformed into gene symbol IDs. Then, the gene with
multiple gene symbol IDs was normalized as median. We also
downloaded the gene expression profiles of 573 COAD samples in
GSE39582 (Marisa et al., 2013) and 55 COAD samples in GSE17537
(Xiao et al., 2022) from GEO database. Among these, clinical follow-up
information, survival time, and survival status were excluded from this
study. We converted ensembl gene IDs to gene symbol IDs. The probe
related to several genes was removed, and the gene withmultiple probes
was expressed as median.

Masked copy number segment data of COAD were collected from
TCGA and progressed by gistic2 software. Single nucleotide variations
(SNVs) data of COAD that was derived using mutect2 software were
obtained from TCGA cohort. Moreover, we obtained methylation data
from TCGA. Methylation data was processed with following steps: 1)
KNN function in “impute” R package was used to complete the NA
value. 2)We converted beta value toM value. 3)We removed the cross-
reactive CpG sites as previously reported (Chen et al., 2013). 4) We
removed the unstable genomic methylation sites, that was, removed the
CpG sites and single nucleotide sites on the sex chromosome. 5) Tumor
samples (solid tumors) were retained in this study.

Collection of senescence-related pathways

Senescence-related pathways were retrieved in the Molecular
Signatures Database (MSigDB, https://www.gsea-msigdb.org/gsea/
index. jsp).

Screening for cell subpopulations and
marker genes

Subsequently, all genes were scaled through the ScaleData function,
and principal components analysis (PCA) was conducted to reduce the
dimensionality. The FindNeighbors and FindClusters functions were used
to cluster cells (Resolution = 0.1). Further, we reduced the t-distributed
stochastic neighbor embedding (TSNE) dimensionality using RunTSNE
founction and then annotated the cell subpopulations with some classic
markers of immune cells (Zheng et al., 2022). The FindAllMarkers
function was employed to identify marker genes with logFC = 0.5 and
Minpct = 0.5 under the statistical threshold of adjusted p < 0.05.
“clusterProfiler” package (Yu et al., 2012) was implemented for Kyoto
Encyclopedia of Genes and Genomes (KEGG) enrichment analysis.

Cellular senescence characteristics in tumor
microenvironment (TME) of single cell

The number of DNA copies was calculated by “copycat” package
(Gao et al., 2021) under the threshold of at least 5 genes in each
chromosome. We distinguished aneuploidy (malignant cells) and
diploid (non-malignant cells) with at least 25 genes selected for each
segment and KS. cut = 0.15.We downloaded the cellular senescence-

related pathways from gene set enrichment analysis (GSEA, http://
www.gsea-msigdb.org/gsea/index.jsp), and calculated single sample
GSEA (ssGSEA) scores of aneuploidy and diploid through “GSVA”
package (Hänzelmann et al., 2013). The distribution was compared
using the wilcox. test, and p < 0.05 was considered statistically
significant.

Verification of cellular senescence based on
bulk RNA-seq data

Furthermore, we used bulk RNA-seq data to analyze abnormal
cellular senescence in tumor and normal COAD samples. GSEA was
applied to performed pathway enrichment analysis, and ssGSEA
scores of cellular senescence-related pathways were calculated in
tumor and normal COAD samples. The distribution was compared
using the wilcox. test.

Identification of senescence subtypes

Based on the above analysis, genes in GOBP_REPLICATIVE_
SENESCENCE, REACTOME_CELLULAR_SENESCENCE, REACT
OME_DNA_DAMAGE_TELOMERE_STRESS_INDUCED_SENESC
ENCE, and KEGG_P53_SIGNALING_PATHWAY were selected for
univariate Cox regression analysis using “survival” package (Therneau
and Lumley, 2015) in R. Candidates with p < 0.05 were considered as
prognosis-related genes. A consensus clustering analysis was performed
to categorize the 432 TCGA-COAD samples based on the expression
profiles of the 16 senescence-related genes using “Consensus ClusterPlus”
package (Wilkerson et al., 2013) with “Partitioning Around Medoids”
(PAM) algorithm (Kaufman and Rousseeuw, 1990) and Euclidean
distancing, in procedures with 500 bootstraps containing 80% COAD
patients. 2–10 clusters were tested. The cumulative distribution function
(CDF) and consensus matrix were performed identify the optimal
subtypes. Kaplan-Meier curves of identified subtypes were generated
in TCGA cohort and GSE39582 cohort.

Analysis of clinicopathologic characteristics
among senescence subtypes

We further compared the distributions of clinicopathologic
characteristics (gender, T stage, N stage, M stage, Stage, age, and
survival status) among three senescence subtypes in TCGA cohort
using Chi square test. Besides, the distributions of subtypes in T stage
and survival status (alive or dead) were also analyzed using Sankey
diagram.

Differences in mutation characteristics
among senescence subtypes

We integrated copy number variations (CNVs) of TCGA-
COAD patients through gistic2 software with a confidence level
of 0.9 and hg38 as the reference genome to analyze the differences of
CNVs among the three subtypes. “maftools” package (Mayakonda
et al., 2018) was employed to analyze SNVs data in TCGA cohort.
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Additionally, comparisons of TMB and the number of genetic
mutations were carried out using wilcox. test among three subtypes.

Relationship between senescence subtypes
and enriched pathway characteristics

To evaluate the relationship between senescence subtypes and
epithelial-to-mesenchymal transition (EMT), we calculated ssGSEA
scores of EMT in each TCGA-COAD sample on basis of 200 genes
of HALLMARK_EPITHELIAL_MESENCHYMAL_TRANSITION in
MSigDB (Yu et al., 2021). We calculated hypoxia score of genes of
HALLMARK_HYPOXIA using ssGSEAmethod. Based on 24 genes as
previously reported (Masiero et al., 2013), we scored angiogenesis by
ssGSEA method. Differential analysis of these ssGSEA scores were
performed using wilcox. test. Meanwhile, 10 tumor-related pathways
were obtained (Sanchez-Vega et al., 2018) and the enrichment score was
calculated by ssGSEA, followed by kruskal. test for comparisons.

Relationship between senescence subtypes
and immune characteristics

We evaluated the immune cell infiltration in TCGA cohort by
ESTIMATE algorithm, and calculated the score of 28 kinds of
immune cells (Charoentong et al., 2017) by ssGSEA. Afterwards,

we downloaded the genes related to inflammation through GSEA
and calculated their ssGSEA scores. Comparisons were analyzed
using kruskal. test. The tumor immune dysfunction and
exclusion (TIDE) is a computational method that can
determine the signatures of T cell dysfunction by using gene
expression profiling in tumors interacts with the cytotoxic T
lymphocytes infiltration level to affect patient survival and
response to immunotherapy (Jiang et al., 2018). A high TIDE
score indicates a low response rate to immune checkpoint
inhibition (ICI) therapy. Thus, the TIDE algorithm (http://
tide.dfci.harvard.edu/) was employed to predict the potential
clinical effects of immunotherapy in subtypes.

Construction and validation of senescence-
based risk model

To identify the differential expressed genes (DEGs), “limma” package
(Ritchie et al., 2015) in R was applied to perform differential analysis when
clust1 vs. non-clust1, clust2 vs. non-clust2 and clust3 vs. non-clust3. Under
the threshold of p < 0.05 and |log2 (Fold Chage)| > log2 (1.5), 2,085 DEGs
were identified and selected for univariate Cox regression analysis using
coxph function embedded in “survival” package, and candidates with p <
0.005 were selected as genes that have greater impact on prognosis. To
reduce the number of genes, the LASSO Cox regression was performed
using “glmnet” package (Hastie et al., 2021) in R. Stepwise multivariate

FIGURE 1
Screening for cell subpopulations and marker genes. (A), TSNE diagrams of 5 samples. (B), TSNE diagrams of 17 cell subpopulations. (C), TSNE
diagrams of 8 subpopulations after annotation. (D), The number of cells of each subpopulation and its proportion in different samples. (E), Top 5 maker
genes in each subpopulation and the enrichment analysis.
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regression analysis with stepwise Akaike information criterion (AIC) was
used to determine genes for risk model construction.

The risk score formula related to the prognostic signature was as
follows: RiskScore = 0.417*MFNG + 0.424*GPRC5B +
0.137*TNNT1−0.389*CCL22 + 0.308*NOXA1 + 0.149*PABPC1L
+ 0.338*PCOLCE2 + 0.337*MID2−0.215*CPA3 + 0.261*HSPA1A +
0.161*CALB1. After calculating risk score in TCGA cohort,
“timeROC” package (Blanche, 2015) was employed to carry out
receiver operating characteristic (ROC) analysis with areas under
the ROC curve (AUCs) for 1, 3, and 5 years. Finally, risk score was
standardized as zscore, and TCGA-COAD samples were divided
into high-risk group (zscore >0) and low-risk group (zscore <0).
Kaplan-Meier curves were generated between high- and low-risk
groups.

Associations of senescence-based risk score with
clinicopathologic characteristics and biological characteristics.

To explore the relationship between RiskScore score and
clinical characteristics of COAD patients, we analyzed the
differences of risk score among clinicopathologic
characteristics including gender, age, T stage, N stage, M

stage, Stage, and clusters in TCGA-COAD cohort.
Additionally, we performed correlation analysis between
senescence-based risk score and biological characteristics
(hypoxia, angiogenesis, and metastasis) with rcorr function in
“Hmisc” package (Harrell and Harrell, 2019). Further, we used
“GSVA” package to score pathways in KEGG, and performed
correlation analysis between senescence-based risk score and
pathways with |cor| > 0.2 and p < 0.05. We compared the
scores of senescence-related pathways between high- and low
risk groups. Wilcox. test was applied for comparisons.

Prediction of responsiveness to
chemotherapy

To predict the responsiveness to traditional chemotherapy
drugs, the half-maximal inhibitory concentration (IC50) values
were evaluated using the “pRRophetic” package. Comparisons of
IC50 values between high- and low-risk groups were performed
using wilcox. tests.

FIGURE 2
Cellular senescence characteristics in single cell TME. (A), TSNE diagrams of malignant cells and non-malignant cells in single cell. (B), Cell
proportions of malignant cells and non-malignant cells in 13 samples. (C), Comparisons of senescence-related pathway scores between malignant cells
and non-malignant cells.
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Relationship between risk gene expression
and methylation

Based on the methylation data of the TCGA dataset, we
constructed the methylation level of the CpG sites in the risk
model and calculated the mean values of methylation level at
different CpG sites of the same gene. The relationship between
risk gene expression and the methylation level was analyzed using
Pearson correlation analysis.

Construction of nomogram

Furthermore, the univariate and multivariate Cox regression
analysis were utilized to determine whether senescence-based risk
score is an independent predictor of prognosis. To predict the
clinical outcomes of COAD patients, a nomogram based on risk
score and clinicopathological characteristics was constructed with
calibration curve. To evaluate the accuracy and reliability of this
model, decision curve analysis (DCA) was established.

Statistical analysis

Data was processed and analyzed using (version 3.6.0, https://
www.r-project.org/) and Seurat R package (Gribov et al., 2010)
(version 3.6.3, https://satijalab.org/seurat/). Wilcox. test or
kruskal. test was applied to determine the significant differences

and p < 0.05 was considered statistically significant. Log-rank test
was used to determine the statistically significant for Kaplan-Meier
curves.

Results

Single cell RNA-seq analysis and marker
gene recognition of COAD

Supplementary Figure S1A showed the cell number of
13 samples before and after filtering. As displayed in
Supplementary Figure S1B, 13 samples overlapped significantly
between the TSNE diagrams. After PCA for dimension reduction
(Supplementary Figure S1C, D), we select dim = 35 for further
analysis.

We clustered cells based on dim = 35 and obtained 17 cell
subpopulations. Figure 1A showed t-SNE-maps of adenoma,
blood, carcinoma, normal and para-cancer samples. Figure 1B
portrayed 17 cell subpopulations after clustering. Then, we
annotated the cell subpopulations with some classic markers
of immune cells. Supplementary Figure S2 provided TSNE
diagram of marker gene expression. Figure 1C showed the
clustering characteristics of annotated cell subpopulations.
Subpopulations 2, 3, 5, 7, 9, 11, and 12 were epithelial cells
expressing EPCAM; Subpopulations 0 and 6 were natural killer
(NK) T cells expressing CD3D, KLRD1, and CD8A.
Subpopulations 1 and 10 were follicular B cells expressing

FIGURE 3
Verification of cellular senescence based on bulk RNA-seq data. (A), The results of GSEA enrichment analysis in TCGA cohort. (B), Four key pathways
of GSEA analysis in TCGA cohort. (C), Heatmap of ssGSEA scores of senescence-related pathways between tumor and para-cancer tissues in TCGA
cohort. *p < 0.05, **p < 0.01, and ***p < 0.001.
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MS4A1; Subpopulation 8 was plasma B cells expressing MZB1;
Subpopulation 4 was monocyte derived macrophages (MDMD)
expressing CD68, CD14, and FCGR3A; Subpopulation 13 was
fibroblasts expressing DCN; Subpopulations 15 and 16 were mast
cells expressing KIT. Accordingly, we counted the number of
cells of each subpopulation and calculated its proportion in
different samples (Figure 1D). The subpopulations epithelial
and NK T had larger number of cells than others. Figure 1E
showed top 5 maker genes in each subpopulation and the
enrichment analysis showed that marker genes were closely
associated with human T-cell leukemia virus 1 infection,
Th17 cell differentiation, hematopoietic cell lineage, and
Th1 and Th2 cell differentiation.

Cellular senescence characteristics in TME

To characterize cellular senescence in TME of single cell, we
distinguished aneuploidy and diploid in cell subpopulations. The
results revealed that there were 12,362 aneuploid (malignant cells)
and 30,833 diploid (non-malignant cells), and their TNSE-maps were
shown in Figures 2A, B suggested that there are more malignant cells in

cancer tissues, but fewer malignant cells in para-cancer tissues. Further
we calculated the cellular senescence-related pathway scores using the
ssGSEA method in malignant cells and non-malignant cells. Higher
scores of senescence-related pathways were found in malignant cells
than that of non-malignant cells (p < 0.0001) (Figure 2C).

Cellular senescence was verified based on
bulk RNA-seq data

To further verify the cellular senescence characteristics, we
evaluated the senescence-related pathways in tumor and para-
cancer tissues based on bulk RNA-seq data. GOBP_
REPLICATIVE_SENESCENCE, REACTOME_CELLULAR_
SENESCENCE, REACTOME_DNA_DAMAGE_TELOMERE_
STRESS_INDUCED_SENESCENCE, and KEGG_P53_
SIGNALING_PATHWAY were significantly enriched in
tumor tissues in TCGA cohort (Figures 3A, B). Through
calculating senescence-related pathway scores using the
ssGSEA method, several pathways including RGOBP_
REPLICATIVE_SENESCENCE, REACTOME_CELLULAR_
SENESCENCE, REACT OME_DNA_DAMAGE_TELOMERE_

FIGURE 4
Three senescence subtypes were identified. (A), Univariate cox regression analysis of senescence-related genes. (B), Consensus CDF in TCGA
cohort. (C), Consensus matrix heatmap defining three clusters (k = 3). (D-E), Kaplan-Meier curves of three subtypes in TCGA cohort and in
GSE39582 cohort.
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STRESS_INDUCED_SENES CENCE, and KEGG_P53_SIGNALING_
PATHWAY had higher senescence scores in tumor tissues than that of
para-cancer tissues (p < 0.001) (Figure 3C).

Three senescence subtypes were identified

We performed univariate Cox regression analysis using genes from
these four enriched pathways above (Supplementary Table S1). A total of
16 genes associated with prognosis were identified (Figure 4A). To
further identify the subtypes, a consensus clustering analysis was
conducted to categorize the 432 TCGA-COAD samples based on the
expression profiles of the 16 senescence-related genes. From the results of
CDF Delta area, cluster = 3 had a relatively stable clustering effect

(Figure 4B). Considering that consensus matrix k = 3 is a preferable
choice, we divide the whole cohort into three subtypes (Figure 4C). Next,
Kaplan-Meier curves revealed significant variations among the three
subtypes, and clust3 had the lowest survival probability while clust1 had
the best prognosis inTCGA (p=0.0021) (Figure 4D). Similar results were
also observed in GSE39582 cohort (p = 0.0027) (Figure 4E).

Clust3 had poorest prognosis and higher T
stage

We subsequently compared the distribution of clinicopathologic
characteristics (gender, T stage, N stage,M stage, Stage, age, and survival
status) among three subtypes in TCGA cohort. The results found

FIGURE 5
Clust3 had poorest prognosis and higher T stage. (A), Distribution of clinicopathologic characteristics among three subtypes in TCGA cohort. (B),
Sankey diagram detailed the distribution of three subtypes in T stage and survival status.
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significant differences in T stage and survival status among the three
subtypes (Figure 5A). Additionally, Sankey diagram detailed the
distribution of three subtypes in T stage and survival status
(Figure 5B). The patients with clust3 had poorest prognosis and
higher T stage (predominantly in T3 and T4 stage).

Clust3 exhibited higher TMB and mutations

Furthermore, mutation characteristics were further evaluated
among senescence subtypes. The CNVs were remarkably changed
among three subtypes (Figure 6A). Meanwhile, the results from
SNVs showed APC (69%), TP53 (51%), TTIN (49%), and KRAS
(39%) exhibited higher mutation frequencies among top 15 mutated
genes (Figure 6B). Besides, TMB and the number ofmutated genes were
both increased in clust3 compared with that of clust1 (Figures 6C, D).

Senescence subtypes were associated with
EMT, hypoxia, angiogenesis and tumor-
related pathways

In tumors, cellular senescence promotes the extracellular matrix
cleavage resulting in growth factors release that can promote

epithelial-to-mesenchymal transition (EMT), which leads to tumor
metastasis. Hence, we clarified the relationship between senescence
subtypes and EMT score. EMT score was distinctly different
among senescence subtypes and clust3 has the highest EMT score
compared with that of clust1 and clust2 (Figure 7A). At the same
time, hypoxia and angiogenesis scores were higher in clust3 than
that of clust1 and clust2 (Figures 7B, C). Figure 7D found that
9 tumor-related pathways were significantly altered in the three
subtypes, including cell cycle, HIPPO, MYC, NOTCH, NRF1,
PI3K, TGF-beta, RAS, TP53 and WNT.

Relationship between senescence subtypes
and immune characteristics

Immune infiltration scores including StromalScore, ImmuneScore,
and ESTIMATEScore were remarkably different among three subtypes
(Figure 8A), and we found that clust3 had a higher degree of immune
infiltration. Significant changes in immune cells infiltration were found
among the three subtypes (Figure 8B). Clust3 also had higher scores of
several inflammation-related pathways such as JAK-STAT signaling
pathway, NF-Kappa B signaling pathway, Toll-like receptor signaling
pathway, B cell receptor signaling pathway, T cell receptor signaling
pathway, and inflammatory response (Figures 8C–H). Furthermore,

FIGURE 6
Clust3 exhibited higher TMB and mutations. (A), Peaks of CNVs, amplified (red) genes and deleted (blue) genes among three subtypes. (B), Top
15 mutated SNV genes among three subtypes. (C), TMB alterations among three subtypes. (D), The number of mutated genes among three subtypes. Ns
represents p > 0.05; *p < 0.05.
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TIDE score was higher in clust3 (Figure 8I), indicating more prone to
immune escape of clust3.

Construction and validation of senescence-
based risk model

Through differential analysis among the three subtypes,
2,085 DEGs were identified, which were used for univariate
Cox regression analysis. 194 genes that have greater impact on
prognosis were selected, including 180 risk genes and
14 protective genes (Figure 9A). To reduce the number of
genes, LASSO Cox regression was performed. With the
gradual increase of lambda, the number of independent
variable coefficients tending to zero increased gradually
(Figure 9B). 10-fold cross-validation was utilized and the
confidence interval under each lambda was shown in
(Figure 9C). When lambda = 0.0347, 25 genes were selected
for further analysis. Based on stepwise multivariate regression
analysis with AIC, 11 genes were finally identified (MFNG,
GPRC5B, TNNT1, CCL22, NOXA1, PABPC1L, PCOLCE2,
MID2, CPA3, HSPA1A, and CALB1). Subsequently, survival
analysis in TCGA cohort revealed that patients with high risk
had lower prognosis than that of patients with low risk (p <
0.0001) with 1 year AUC of 0.81, 3-year AUC of 0.77, and 5-year

AUC of 0.75 (Figure 9D). To validate its robustness, survival
analysis was performed in GSE39582 and GSE17537 cohort. High
risk patients had lower prognosis than that of low risk patients in
GSE39582 (p < 0.0001) and in GSE17537 (p = 0.006) with good
performance in prognosis prediction (Figures 9E, F).

Associations of risk score with
clinicopathologic characteristics and
biological characteristics

To further clarify the relationship between risk score and
clinicopathologic characteristics, we compared the differences of
risk score in clinicopathologic characteristics in TCGA cohort
and found that patients with higher clinical stage (T stage, N
stage, M stage and Stage) had higher risk scores (Figure 10).
Besides, patients with clust3 had higher risk score (Figure 10). To
evaluate the relationship between risk score and biological
characteristics, we performed the correlation analysis of risk
score with hypoxia, angiogenesis, and EMT scores. Figures
11A–C showed that hypoxia, angiogenesis, and EMT scores
were both positively correlated with risk score. Next, we
performed correlation analysis between senescence-based risk
score and underlying regulatory KEGG pathways to find risk
score-related pathways (Figure 11D) and further statistics

FIGURE 7
Association of senescence subtypes between EMT, hypoxia, angiogenesis and tumor-related pathways. (A), Box plots of EMT score among three
subtypes in TCGA cohort. (B), Box plots of hypoxia score among three subtypes in TCGA cohort. (C), Box plots of angiogenesis score among three
subtypes in TCGA cohort. (D), Box plots of 10 tumor-related pathways among three subtypes in TCGA cohort. Ns represents p > 0.05; *p < 0.05, **p <
0.01, ***p < 0.001, and ****p < 0.0001.
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revealed that only some pathways were significant different
between high- and low-risk group (Figure 11E). Moreover, we
compared the scores of senescence-related pathways between
high- and low risk groups. The results showed that high risk
patients exhibited higher scores in GOBP_AGING, GOBP_
MUSCLE_ATROPHY, and GOBP_NEGATIVE_REGULA
TION_OF_CELL_AGING; while low risk patients had higher
scores in GOBP_STRESS_INDUCED_PREMATURE_SENESC
ENCE, KEGG_P53_SIGNALING_PATHWAY, and REACTO

ME_DNA_DAMAGE_TELOMERE_STRESS_INDUCED_SENE
SCENCE (Supplementary Figure S3).

Prediction of responsiveness to
chemotherapy

Furthermore, we assessed the responsiveness to traditional
chemotherapy drugs between high- and low-risk groups. As

FIGURE 8
Association of senescence subtypes with immune characteristics. (A), Box plots of immune infiltration scores among three subtypes. (B), Box plots of
immune infiltration cells among three subtypes. (C–H), Box plots of JAK-STAT signaling pathway, NF-kappa B signaling pathway score, toll-like receptor
signaling pathway, B cell receptor signaling pathway, T cell receptor signaling pathway and inflammatory response scores among three subtypes. (I),
Alteration of TIDE score among three subtypes. Ns represents p > 0.05; *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001.
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displayed in Figure 12, low risk patients exhibited significant
lower IC50 values of Erlotinib (p < 0.001), Sunitinib (p < 0.001),
MG-132 (p < 0.001), CGP-082996 (p < 0.01), AZ628 (p < 0.01),
Sorafenib (p < 0.001), VX-680 (p < 0.01), and Z-LLNle-CHO
(p < 0.01) than that of high risk patients, which indicated that
low risk patients were more sensitive to Erlotinib, Sunitinib,
MG-132, CGP-082996, AZ628, Sorafenib, VX-680, and
Z-LLNle-CHO.

Relationship between risk gene expression
and methylation level

Moreover, we analyzed the methylation level for 11 risk
genes in TCGA (Supplementary Figure S4) and performed
correlation analysis between risk gene expression and
methylation level. Figure 13 displayed that the expression of
CALB1, CPA3, NOXA1, and TNNT1 had significant positive

FIGURE 9
Construction and validation of senescence-based risk model. (A), A total of 2,085 promising candidates were identified among the DEGs. (B),
Independent variable coefficients changed with lambda increase. When lambda = 0.00347, 25 genes were identified. (C), 10-fold cross validation to
determine the confidence interval under each lambda. (D–F), Survival analysis with ROC curves and Kaplan-Meier curves in TCGA cohort,
GSE39582 cohort and GSE17537 cohort.
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correlation with their methylation level; whereas the
expression of CCL22, GPRC5B, HSPA1A, MFNG, PABPC1L,
and PCOLCE2 had significant negative correlation with their
methylation level.

Construction of nomogram

On basis of univariate and multivariate Cox regression
analysis, the results showed that risk score was an
independent prognostic factor (Figure 14A). To better
quantify the risk assessment and survival probability of COAD
patients, we constructed a nomogram to estimate 1-, 3-, and 5-
year OS using the risk score and clinicopathological
characteristics. Figure 14B revealed that risk score had the
most impact on OS of COAD patients. The calibration curves
of this nomogram showed high consistency between the observed
and predicted values (Figure 14C). To evaluate the reliability of
this model, DCA analysis was conducted and confirmed that both
nomogram and risk score had the most powerful in predicting
prognosis (Figure 14D).

Discussion

Senescent cells are closely related to aging and pathological
status. Cellular senescent is crucial in tumorigenesis through

the SASPs and the heterogeneity of senescence-associated
genes promotes the progression of tumor and its escape
from anti-tumor therapy (Junaid et al., 2022). Thus, it is
believed that cellular senescence is involved in cancer
heterogeneity. A previous study has identified several
senescence-associated gene signatures using transcriptome
data from TCGA database, which can predict clinical
outcomes and responses to immunotherapy in patients with
head and neck squamous cell carcinoma (Wang et al., 2022).
Another study has developed the senescence-related subtypes,
established a prognostic risk model, and further revealed their
potential roles in TME in breast cancer only using
transcriptome data from GEO cohort (Zhou et al., 2022). In
the present study, we downloaded the scRNA-seq data of
13 COAD samples from GEO database and demonstrated
that senescence-related pathways were highly expressed in
malignant cells than that of non-malignant cells, indicating
that cellular senescence was largely associated with
heterogeneity of TME in COAD at single cell level.
Furthermore, we identified three senescence subtypes and
found clust3 had poorest prognosis, manifested with higher
T stage, elevated TMB, increased pathway scores (EMT,
hypoxia and angiogenesis), activated inflammatory response,
and immune cell infiltration as well as immune escape
tendency.

Immune cell infiltration serves as an indicator of the immune
microenvironment in tumor. Notably, we found that

FIGURE 10
Distribution of risk score in different clinicopathologic characteristics. Ns represents p > 0.05; *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001.
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clust3 patients with poor prognosis had extremely higher
expression levels of myeloid-derived suppressor cells (MDSCs)
and macrophages than that of other subtypes. It has been

reported that MDSCs are immature myeloid cells with
heterogeneity, and its accumulation suppress anti-tumor
immunity particular suppressing T cells in cancer patients

FIGURE 11
Associations of risk score with biological characteristics. (A–C), Correlation analysis of risk score with hypoxia, angiogenesis, and EMT scores. (D),
Scatter plots of correlation between risk score and underlying regulatory KEGG pathways. (E), Box plots of underlying regulatory KEGG pathway scores
between high- and low-risk group. Ns represents p > 0.05; *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001.
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FIGURE 12
Prediction of responsiveness to chemotherapy. Estimated IC50 values for traditional chemotherapy drugs including erlotinib, sunitinib, MG-132,
CGP-082996, AZ628, sorafenib, VX-680, and Z-LLNle-CHO. ***p < 0.001, and ****p < 0.0001.

FIGURE 13
Correlation analysis was performed between risk gene expression and methylation level.
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(Ma et al., 2019). Additionally, MDSCs also directly promote
tumor growth and metastasis. MDSCs exert these effects mainly
through inhibiting T cell proliferation and T cell migration,
triggering apoptosis of T cells and NK cells, suppressing
immune effector cell functions, and repressing anti-tumor T
cell-mediated reactivity by interaction with PD-1 receptor
(Umansky et al., 2016). Moreover, macrophage infiltration in
solid tumors accounts for poor outcomes and correlates with
chemotherapy resistance in most cancers, which contributes to

development and progression of cancer via provoking
angiogenesis, metastasis, and immunosuppression (Cassetta
and Pollard, 2018). In this study, highly expressed MDSCs
might exert inhibitory effects on T cells and NK cells,
inducing a decline of immune function in TME of COAD
patients. Besides, macrophage infiltration might induce the
suppression of immunity. We also found that patients with
poor prognosis had a high TIDE score that represented a low
response rate to ICI therapy. Collectively, MDSC infiltration,

FIGURE 14
Nomogram construction for predicting prognosis of COAD patients. (A), Univariate and multivariate Cox regression analysis of prognostic values of
risk score and clinicopathological characteristics. (B), Nomogram for predicting the 1-, 3-, and 5-year OS of COAD patients. (C), Calibration curves for
validating the established nomogram. (D), Decision curve analysis o of nomogram. *p < 0.05, **p < 0.01, and ***p < 0.001.
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macrophage infiltration and low response rate to ICI therapy
contribute to poor clinical outcome of COAD patients in clust3.
Synergistically, EMT, hypoxia, angiogenesis, and activated
inflammatory response were responsible for poor prognosis
of COAD patients.

Highly variant tumors are considered to have an increased
burden of new antigens that may lead to immunogenicity. It has
been recognized that TMB is a potential immune-response marker
predicting ICI therapy (Choucair et al., 2020). As a tumor
suppressor gene, APC is highly mutated in CRC (about 70%),
and its mutation is important in colorectal tumorigenesis (Zhang
and Shay, 2017). Recently, a study has analyzed the clinical
characterizes and gene mutations in APC-mutant type and
APC-wild-type Chinese CRC patients and confirms that APC
mutation can be used as a promising biomarker to predict the
immunotherapy responsiveness (Feng et al., 2022b). Another
tumor suppressor gene TP53, is thought to be a major driver
for CRC with approximately 50% mutation frequency (Timar and
Kashofer, 2020). It has been reported that TP53 mutation is closely
associated with rectum tumor, advanced stage and dismal
prognosis of CRC patients (Li, 2019). Additionally, RAS is the
most frequent mutated gene in human cancers. Interestingly,
KRAS and APC are very common co-mutated (about 80%) and
co-mutation of KRAS with TP53 is about 40% in CRC (Timar and
Kashofer, 2020). In this study, APC (69%), TP53 (51%), TTIN
(49%), and KRAS (39%) exhibited higher mutation frequencies
among top 15 mutated genes. The TMB and the number of
mutated genes were both increased in clust3 than that of clust1.
These results indicated that the higher TMB and large mutations
contributed to poor prognosis of COAD patients. Notably, we
found that TTIN (49%) was highly mutated except for the known
APC, TP53, and KRAS, implying that TTINmutation is a potential
genetic alteration of COAD heterogeneity.

Furthermore, 11-senescence-related gene-based prognostic
risk model was established and patients with high risk had
lower prognosis. MFNG is a kind of glycosyltransferases that
activates Notch signaling and plays an important role in breast
cancer, whereas inhibition of MFNG may attenuate the triple-
negative breast cancer (Mugisha et al., 2022). A whole
transcriptomics analysis has revealed that GPRC5B is elevated
in immuno-activated breast cancer cells, while apigenin induces a
94% reduction in GPRC5B expression (Bauer et al., 2019). A recent
research of RNA-seq has showed TNNT1 is a representative
prognostic mRNAs that is associated with the prognosis of CRC
patients (Deng et al., 2022). It has confirmed that high expression
of CCL22 is related to a better prognosis in patients with colon
cancer, and CCL22 as a prognostic DEG is used to construct a
cellular senescence-related risk model in colon cancer (Dai et al.,
2022b). NADPH oxidase 1 (NOX1), derived reactive oxygen
species and modulated by NOXA1, is crucial in the progression
of cancer (Attri et al., 2020). PABPC1L is a key gene in tumor
progression and postoperative prognosis, while inhibition of
PABPC1L suppresses CRC cell growth and metastasis (Wu
et al., 2019). Meanwhile, PABPC1 and FOXC2 bind to cis-
regulatory elements and inhibit cellular senescence through
downregulating p16INK4a in endothelial cells (Wu et al., 2022).
Similarly, PCOLCE2 is a novel senescence-related gene that is used
to establish a prognostic model in CRC (Yao et al., 2021). MID2, as

a promoter of STAT3, is interacted with protein MORC4, which
regulates DNA damage response and gene transcription in breast
cancer (Wang et al., 2021). CPA3 belongs to carboxypeptidase
family of zinc metalloproteases released by mast cells and has been
demonstrated to be involved in endogenous proteins
degradation as well as colon cancer prognosis (Fang et al.,
2021). The 70 kDa heat shock protein, called HSPA1A, is
considered as a potential biomarker for the initiation and
development breast cancer (de Freitas et al., 2022). The level
of HSPA1A is upregulated after heat stress response, but is
downregulated by senescence (Llewellyn et al., 2021). It has
been reported that CALB1 can promote the interaction
between p53 and MDM2, and alleviates ovarian cancer cell
senescence (Cao et al., 2019). Collectively, these results suggest
that the prognostic genes in senescence-based signatures may
be crucial in cellular senescence and prognosis of COAD.

There are some limitations in this study. Data from TCGA and
GEO are collected and used for bioinformatics analysis in this
study, and these retrospective data may have selection bias. Thus,
prospective studies with large samples are needed to validate these
results. Although the robustness of our prognostic risk model has
been validated by external GEO datasets, its reliability should be
iteratively improved with long-term clinical application. Besides,
the regulatory mechanism of MDSCs and macrophages on T cells
and NK cells should be further investigated in COAD patients with
poorer prognosis and better prognosis according to these
senescence-based subtypes.

Conclusion

In conclusion, we developed senescence-based subtypes that
could distinguish prognosis, T stage, mutation and immune
characteristics, which might guide further mechanism
investigation of heterogeneity of COAD. Additionally, we
constructed and validated a senescence-based signature and
provided a reliable tool for prognosis prediction in COAD patients.
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construction of prognosis-related
methylation prediction model for
pancreatic cancer patients and its
application value

Tiansheng Cao*, Hongsheng Wu and Tengfei Ji*

Department of Hepatobiliary Surgery, Affiliated Huadu Hospital, Southern Medical University (People’s
Hospital of Huadu District), Guangzhou, China

Objective: Pancreatic adenocarcinoma (PAAD) is a highly malignant gastrointestinal
tumor with almost similar morbidity and mortality. In this study, based on
bioinformatics, we investigated the role of gene methylation in PAAD, evaluated
relevant factors affecting patient prognosis, screened potential anti-cancer small
molecule drugs, and constructed a predictionmodel to assess the prognosis of PAAD.

Methods: Clinical and genomic data of PAAD were collected from the Tumor
Genome Atlas Project (TCGA) database and gene expression profiles were
obtained from the GTEX database. Analysis of differentially methylated genes
(DMGs) and significantly differentially expressed genes (DEGs) was performed on
tumorous samples with KRAS wild-type and normal samples using the “limma”
package and combined analysis. We selected factors significantly associated with
survival from the significantly differentially methylated and expressed genes
(DMEGs), and their fitting into a relatively streamlined prognostic model was
validated separately from the internal training and test sets and the external
ICGC database to show the robustness of the model.

Results: In the TCGA database, 2,630 DMGs were identified, with the largest gap
between DMGs in the gene body and TSS200 region. 318 DEGs were screened,
and the enrichment analysis of DMGs and DEGs was taken to intersect DMEGs,
showing that the DMEGs were mainly related to Olfactory transduction, natural
killer cell mediated cytotoxicity pathway, and Cytokine -cytokine receptor
interaction. DMEGs were able to distinguish well between PAAD and
paraneoplastic tissues. Through techniques such as drug database and
molecular docking, we screened a total of 10 potential oncogenic small
molecule compounds, among which felbamate was the most likely target drug
for PAAD. We constructed a risk model through combining three DMEGs (S100P,
LY6D, and WFDC13) with clinical factors significantly associated with prognosis,
and confirmed the model robustness using external and internal validation.

Conclusion: The classification model based on DMEGs was able to accurately
separate normal samples from tumor samples and find potential anti-PAAD drugs
by performing gene-drug interactions on DrugBank.
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1 Background

Pancreatic adenocarcinoma (PAAD) is the 14th most
common cancer globally (Kocarnik et al., 2022), with an
estimated 458,918 confirmed pancreatic cancer cases and
432,242 death cases each year all over the world (Ferlay et al.,
2019). The incidence of PAAD varies widely by country, as
Europe and North America showed the highest age-
standardized incidence, which was the lowest in South-Central
Asia and Africa (Ilic and Ilic, 2016). Incidence rate of PAAD is
generally higher in developed countries compared to developing
countries, with a standardized incidence rate of 4.9/100,000 and
3.6/100,000 for men and women, respectively. In the
United States, 5-year survival rate of PAAD is 9.3%, and it is
the fourth leading factor resulting in cancer-related mortality
(Gandhi et al., 2018). Apart from smoking, diabetes, alcohol
drinking, obesity, occupational exposure and genetic factors,
PAAD is as well an epigenetic disease (Goral, 2015; Midha
et al., 2016; Hu et al., 2021). Abnormal DNA methylation
patterns are a common human tumorous feature (Kulis and
Esteller, 2010). From precancerous lesions to PAAD,
epigenetic changes play an important role in the multistage
carcinogenesis (Xu et al., 2019).

Epigenetics are changes in gene expression but not in DNA
sequence, and the major epigenetic alteration leading to PAAD
progression is DNA methylation (Wang et al., 2016). To detect
epigenetic abnormalities in PAAD, it is necessary to identify
genome-wide patterns of DNA methylation. Nones et al.
(2014) used high-density arrays to capture 167 untreated
PAAD sample methylation and compared it with normal
tissue adjacent to the cancerous one and identified
3,522 abnormally methylated genes. In addition, partial
methylation of CDKN1C promoter CpG islands and reduced
expression of protein products are observed when comparing
PAAD precursor cells methylation expression to normal
pancreatic duct epithelial cells (Sato et al., 2008). Basic studies
have shown that in PAAD precursor cells, CDKN1C gene is
under-expressed and there is reduced expression of protein
products and partial methylation of CDKN1C promoter CpG
islands. The above evidence supports that aberrant DNA hypo/
hypomethylation occurs in PAAD precursor lesions leading to
further progression to PAAD (13).

As research continues, aberrant methylation of DNA CpG
islands has become a prominent feature of PAAD and a potential
diagnostic marker and therapeutic target for PAAD. However, the
results of clinical trials were disappointing, probably due to the
low level of epigenetic specificity (Matsubayashi et al., 2006;
Marabelle et al., 2020). Therefore, in order to use methylation
as a future therapeutic tool for PAAD, an in-depth understanding
of the methylation expression profile and supporting pathways of
PAAD is needed. According to the mutation and gene
expression profile data of PAAD patients and gene expression
profiles of normal pancreas from GTEX, this study screened
differentially methylated and expressed genes (DMEGs),
and confirmed that methylation was a reliable prognostic
marker for PAAD and a potential oncogenic drug target
for PAAD.

2 Materials and methods

2.1 Acquisition of clinical data, gene
expression profiles and data processing

Methylation data, clinical follow-up data, and gene expression
profiles of PPAD came from TCGA (https://portal.gdc.cancer.gov/)
by means of UCSC Xena. The gene expression profiles of normal
pancreas samples were obtained from the GTEX (http://www.
gtexportal.org/home/index.html) databases using UCSC Xena.

For sample data reliability, we set the following inclusion criteria
(Kocarnik et al., 2022): only normal samples and primary PAAD
samples were retained (Ferlay et al., 2019); PAAD samples with
wild-type KRAS gene were retained (Ilic and Ilic, 2016); PAAD
samples with complete clinical data were retained. A total of
182 samples were obtained from TCGA, including 178 tumor
samples, 70 KRAS wild-type tumor samples and 4 normal
samples. A total of 167 normal pancreas samples were obtained
from the GTEX database. In order to homogenize the data, the “sva”
R package was applied to remove the batch effect from the combined
data of the two datasets, and a total of 19,593 protein-coding genes
were retained by ENSG conversion of gene symbols using
genecode V35.

2.2 Analysis of differentially methylated
genes (DMGs)

The Illumina HumanMethylation450 BeadChip matrix
contained 380,097 probes of around 99% (n = 26,081) of the
RefSeq genes. For each probe, the raw gene methylation intensity
was expressed as a beta value. To identify differentially methylated
CpG sites (DMS), PAAD tumor samples were compared with
paracancer samples using the “limma” R package (Ritchie et al.,
2015). The Benjamini and Hochberg (BH) method adjusted p-value
of each methylation site to FDR (false discovery rate) (Ghosh, 2012).
Statistical thresholds were set for FDR <0.01 and |delta β-value|> 0.1.

The CpG locus to gene match files were downloaded from the
Illumina website (https://www.illumina.com/). In different regions
(TSS200, TSS1500, Gene body, 5′-UTR, 3′-UTR, transcription start
site, integration region), the average β-values of genes were
calculated with the correspondence. Using the “limma” R
package, the differentially methylated regions were calculated,
where FDR <0.01, delta β-values < -0.1 were the demethylated
regions, FDR <0.01, delta β > 0.1 were hypermethylated regions.

2.3 Analysis of differentially expressed
genes, differentially methylated genes and
pathways

Differentially expressed genes (DEGs) were analyzed for normal
and tumor samples in the TCGA-PAAD cohort using the “limma” R
package, and p values were adjusted using the Benjamini and
Hochberg (BH) method, where FDR >0.01 and log2FC > 2 were
up-regulated genes, and FDR >0.01 and log2FC < −2 were down-
regulated genes.
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To identify the relationship between gene methylation and gene
expression profiles, we took the intersection of differentially
methylated genes and DEGs to obtain differentially methylated
and expressed genes (DMEGs) and classified them into four
groups: HyperDown, HyperUp, HypoDown, HypoUp (Table 1).
Then, we used Gene Ontology (GO) functional enrichment analysis
and the Kyoto Encyclopedia of Genes and Genomes (KEGG)
database through the “clusterProfiler,” “org.Hs.eg.db,”
“enrichplot” and “ggplot2” R software packages (Wu et al., 2021),
and FDR <0.05 was used as the screening condition to perform
enrichment analysis of DEGs to discover the main biological
characteristics of DEGs and plot the bubble map.

2.4 Marker evaluation of PAAD methylation
and expression profiles

DEGs were proposed as tumor markers for the diagnosis of
PAAD, and 50% of the expression profile data of DMEGs and
methylation data of DMEGs for PAAD were the training set and
50% as the test set. The training set data were analyzed by principal
component analysis (PCA) with the “prcomp” R function (Luu et al.,
2017) to clarify the eigenvector weights of the principal components
and construct a diagnostic model of PAAD, which was plotted and
visualized using the “ggplot2” R software package (Maag, 2018).
Finally, to evaluate the diagnostic advantage of PCA model for
PAAD, the receiver operating characteristic (ROC) curves of the
PCAmodel were plotted by the “pROC” R software package and the
area under curve (AUC) was calculated for the training set and test
set (Robin et al., 2011), where AUC showed a low accuracy at
0.5–0.7, higher accuracy at 0.7–0.9, and high accuracy at AUC
above 0.9.

2.5 The prediction of DMEGs and target
drugs

The use of key genes as potential therapeutic targets is a
cornerstone in the development of therapeutic agents for sepsis.
We determined PAAD and drug proximity based on drug-target
pairs from the drugbank database (https://go.drugbank.com/) and
the Protein-Protein interaction (PPI) network (threshold score of
400). Here, given distance d (s,t) as the shortest path between node s
and node t (where s ∈ S, PAAD-related genes; t ∈ T, drug target
genes), D (degree of related gene set nodes in PPI), T (set of drug
target genes), S (PAAD-related genes), and the calculation is as
follow:

d S, T( ) � 1
T| | ∑t∈T

mins∈S d s, t( ) + ω( ) (1)

where ω, the weight of the target gene, was calculated as ω = -ln
(D+1) if the target gene was a gene in the PAAD-related gene set,
otherwise ω = 0.

Next, between these simulated drug targets and the key gene set, we
calculated the distance d (S,R), and generated the simulated reference
distributions after performing random repetitions for 10,000 times, at
the same time we the observed distances corresponding to the actual
were scored using the mean and standard deviation of the μd (S,R) and
σd (S,R) reference distributions and converted into a normalized
scoring, i.e., the proximity z.

z S, T( ) � d S, T( ) − μd S,R( )
σd S,R( )

(2)

Finally, a gene set distance density score map was constructed by
normalized distance scoring.

2.6 Molecular docking

A technique for designing drugs based on receptor features and the
way that drug molecules interact with receptors is called molecular
docking. In the realm of computer-aided drug development, it is a
theoretical modeling technique that primarily investigates the
interaction between molecules (such as ligands and receptors) and
forecasts their binding mechanism and affinities. (Lohning et al., 2017;
Saikia and Bordoloi, 2019). Autodock Vina software was used in
molecular docking (Trott and Olson, 2010). To prepare input files,
we applied AutoDockTools 1.5.6. The pdb file of the protein came from
Protein Data Bank (Velankar et al., 2021) with PDB ID 6SUK. The
Polar hydrogens were added to the solution after all water molecules,
potassium ions, and protein B chains had been eliminated. The zinc
ion’s charge was modified in the receptor protein’s PDBQT file to +2.0,
and the grid’s coordinates in each XYZ direction were −19.5, 74.5, and
34.8 during molecular docking. The lengths were 20 in each XYZ
direction. The Lamarckian approach was utilized to determine the
ligand molecule’s strongest binding mode. The maximum number of
output conformations was set to 10, the exhaustiveness was set to 8, and
the allowable energy range was set to a maximum of 3 kcal/mol. With
the aid of Pymol, the output maps were processed.

2.7 Dynamics simulation

In this study, the binding stability of the receptor-ligand complex
was assessed by performing molecular dynamics simulations of 100 ns
(Zhou et al., 2022) using the Gromacs2019 package. In the molecular
dynamics simulations the CHARMm36 force field was employed.With
the aid of the CHARMMCommon Force Field (CGenFF) software, the
str files for the ligands were acquired. The system was dissolved in
TIP3P water molecules in a dodecahedral box. At a concentration of
0.154M, sodium and chloride ions were introduced to the system to
neutralize its charge. Using a cutoff of 5,000 steps and the steepest
descent algorithm, the solventized system’s energy was minimized. The
LINCS method was used to restrict the length of covalent bonds. Using
the PME technique, the total electrostatic interactions were determined.

TABLE 1 Criteria for grouping DMEGs.

Groups Methylation cut-off Expression cut-off

HypoUp FDR <0.01 and delta β-value < −0.1 FDR <0.01 and log2FC > 2

HypoDown FDR <0.01 and delta β-value < −0.1 FDR <0.01 and log2FC < -2

HyperUp FDR< 0.01 and delta β-value >0.1 FDR <0.01 and log2FC > 2

HyperDown FDR <0.01 and delta β-value >0.1 FDR <0.01 and log2FC < -2

FDR:false discovery rate; log2FC: log2 fold change.
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FIGURE 1
Analysis of PAAD differentially methylated genes. (A) Volcano plot of differentially methylated within the gene body, TSS200 and TSS1500 regions.
(B)Histograms of differentially methylated genes within the three regions. (C) Venn diagram of hypermethylation within three different regions. (D) Venn
diagrams of demethylated genes within three different regions. (E) KEGG andGO functional enrichment analysis of differentially methylated genes, where
the color from blue to red indicates that the FDR is from large to small, and the dots from small to large represent the increasing number of enriched
genes, left: hypermethylation, right: demethylation.
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At constant temperature (300 K) and pressure (1 bar), NVT and NPT
simulations were then run for 100 ps, with the compound’s confined
atoms re-establishing the system’s equilibrium at its initial coordinates.
Finally, a 100 ns long Pruduct MD run with a 2 fs time step was
completed. The Gromacs built-in tool was used to determine the
ligands’ root mean square deviation (RMSD) values.

2.8 Development and verification of the
prognostic gene signature model associated
with DMEG

In the TCGA-PAAD dataset, we first randomly and equally divided
241 KRAS wild samples into training (Train) and validation (Test)
groups according to the ratio of 1:1, and then reduced the associated
genes (Tibshirani, 1997) by Least absolute shrinkage and selection
operator (Lasso) regression method. In regression analysis, by

compressing some coefficients at the same time setting some
coefficients to zero, Lasso regression can better solve
multicollinearity. We choose the number of factors when the
coefficients of independent variables tended to zero with the gradual
increase of lambda. Then, we used the AIC deficit pool information
criterion through stepwise regression that takes the statistical fit of the
model and parameter numbers into account. A better model of smaller
value indicated a sufficient fit of the model with fewer number of
parameters (Zhang, 2016). After that, the “survminer” packagewas used
to find the best cutoff (Niu et al., 2021) of the gene signature in the Train
dataset of TCGA, and the PAADwas divided into two groups based on
the cutoff value, and finally the log-rank test was used to compare the
survival differences between the two groups.

To verify the robustness of the gene signature model, we first
used the same model and the same coefficients as the training set in
the validation set, and then compared the survival differences
between the two groups by log-rank test. After that, we

FIGURE 2
Analysis of PAAD differential genes. (A) Volcano plot of differentially expressed genes in expression profile. (B) Heat map of differentially expressed
genes. (C) Results of differential gene KEGG enrichment. (D) Results of differential gene GO BP enrichment. (E) Differential gene GO CC enrichment
results. (F) Differential gene GO MF enrichment results, the color from blue to red in CDEF represents FDR from large to small, the size of the dot
represents the number of enriched to genes, a larger dot indicates more enriched genes.
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downloaded the expression profiles of PAAD from the ICGC
database as well as clinical information, and then used the model
constructed above to calculate each score separately and obtain the
best cutoff, and then performed the survival curve analysis in the
external dataset for the high- and low-risk groups.

2.9 Statistical analysis

All statistical analyses were operated in R software (version 4.1.2,
https://cran.r-project.org/doc/manuals/R-lang.html). The optimal
threshold of gene expression or score was selected for risk
grouping of PAAD using the surv_cutpoint function of the
“survminer” package. The Kaplan-Meier assessment method was
used to assess the survival differences between the low-risk and high-

risk groups, and the Log-rank test was used for comparison. Unless
otherwise stated, all statistical tests were two-sided and p < 0.05 was
considered statistically significant. Comparisons between multiple
groups were performed and plotted using the “ggpubr” and
“ggplot2” packages, and the statistical significance of box plots
was assessed using the Mann-WhitneyU or Kruskal–Wallis tests.

3 Results

3.1 Analysis of differentially methylated
genes in PAAD

To identify differential gene methylation in PAAD, we first
performed a comparative analysis of methylation data from

FIGURE 3
Joint analysis of differentially expressed genes and differentially methylated genes. (A) Venn diagram of differentially expressed genes with
differentially methylated genes in the GeneBody region. (B) Venn diagram of differentially expressed genes with differentially methylated genes in the
TSS200 region. (C) Venn diagrams of differentially expressed genes versus differentially methylated genes within the TSS1500 region. (D)Quadrant plots
of differentially expressed genes versus differentially methylated genes within the TSS200, TSS1500, and GeneBody regions. (E) Histogram of four
regulatory patterns of differentially expressed genes and differentially methylated genes in TSS200, TS1500, and GeneBody.
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185 KRAS wild-type PAAD samples and 10 normal samples, and
identified a total of 2,630 differentially methylated genes
(FDR <0.01, |delta β-values| > 0.1, Figure 1A), within the
Gene body region, 758 genes were hypermethylated and
418 genes were demethylated. 834 genes were hypermethylated
and 462 genes were demethylated in TSS20; 748 genes were
hypermethylated and 498 genes were demethylated in
TSS1500. We found that the number of hypermethylation in
the three regions was slightly larger than that of
hypermethylation overall (Figure 1B). In the Gene body and
TSS200 regions, the difference between hypermethylation and
demethylation was the largest, with a ratio of about 1.8:1. Among

the hypermethylated genes, 244 genes appeared in all three
regions of Gene body, TSS20 and TSS1500, 369 genes
appeared in two of them, and the remaining 870 genes
appeared in only one region (Figure 1C). Among the
demethylated genes, only 32 genes appeared in all three
regions, and 163 genes appeared in two of them. These
differentially methylated genes were mainly associated with
GABAergic synapse, Neuroactive ligand-receptor interaction,
Nicotine addiction, and other pathways, as shown by GO and
KEGG functional enrichment analysis (Figure 1D). (Figure 1E).
The above results confirmed that PAAD methylation was region-
specific.

FIGURE 4
Analysis of DMEGs. (A) Distribution of DMEGs on the genome. From inside to outside, there are DMGs in the TSS1500 region, DMGs in the
TSS200 region, DMGs in the genebody region, DEGs, and corresponding values. The outermost circle is the corresponding chromosome position. (B)
PCA analysis could distinguish tumor from normal samples based on the gene expression and methylation of DMEGs. (C) ROC curves of tumor and
normal samples based on a linear discriminant model using the expression profiles and methylation of DMEGs. (D) Results of KEGG and GO
enrichment analysis of DMEGs, where different colors represent different pathways and connecting lines represent the existence of association between
genes and pathways.
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3.2 Analysis of differential genes in PAAD and
combined analysis of differentially
metaylated genes

To screen the differential genes between normal and KRAS wild-
type PAAD samples, we analyzed the differential genes between
171 normal samples and 70 KRAS wild-type tumor samples using
the “limma” package, and obtained a total of 2,928 significantly DEGs,
of which 2029 were down-regulated and 1,163 were up-regulated in
tumors (FDR <0.01, |log2FC| > 2, Figure 2A). A total of
2,928 significantly DEGs were obtained, of which 1,163 were up-
regulated and 2029 were down-regulated in tumors (FDR <0.01, |
log2FC| > 2, Figure 2A). Then, unsupervised hierarchical clustering of
these significantly differentially expressed genes revealed that the
differential genes could clearly screen tumor samples from the
normal ones (Figure 2B). KEGG study showed that the significant
differential genes were mainly related to Fat digestion and absorption
(Figure 2C). Biological process (BP) enrichment study demonstrated
that the differential genes were largely correlated with Lipid transport,
Lipid localization and other pathways; cellular components (CC)
showed that the differential genes were associated with neural cell
body, trans-Golgi. The results of Molecular Function (MF) showed that
the differential genes were related to Cytokine-cytokine receptor
interaction, natural killer cell-mediated cytotoxicity, Olfactory
transduction, and other such pathways that have been previously
reported to be associated with PAAD occurrence Figures 2D–F
(Malchiodi and Weiner, 2021; Hu et al., 2022).

To search for genes more critical for PAAD occurrence,
differentially methylated and expressed genes (DEMGs) were
obtained by intersection analysis of DMGs and DEGs. In Gene
body, TSS200 and TSS1500, 141, 187 and 154 DEMGs were
obtained, respectively (Figures 3A–C). The methylation ploidy
and expression difference ploidy of these DMEGs are shown in
Figure 3D, and each graph shows the 22 genes with the largest
expression difference ploidy. Next, we counted DMEGs in the three
regions and identified a total of 318 DMEGs, including 56 in
HyperUp, 112 in HyperDown, 69 in HypoUp, and 81 in
HypoDwon (Figure 3E).

3.3 Analysis of DMEGs genes in PPAD

To further investigate the role of DMEGs in PAAD, we first used
the “circlize” package to map the distribution of 318 DMEGs on
chromosomes, with chromosomes chr11 and chr12 having the
largest number of 26 DMEGs, chr10, chr12, chr17, chr16, chr2,
chr19, chr3, chr20, chr5, chr4, chr7, chr6, and chr6. Chr17, chr16,
chr2, chr19, chr3, chr20, chr5, chr4, chr8, chr7, chr6 chromosomes
also possessed more than 10 DMEGs each (Figure 4A). We
constructed a linear judgment classification model using the gene
expression profiles of DMEGs and methylation data from
GeneBody, TSS200 and TSS1500, respectively, to evaluate the
difference of DNA methylation patterns and gene expression
between PAAD tumors and normal samples, and also performed
PCA and ROC analyses. The results of PCA showed that DMEGs
could classify PAAD and normal samples effectively (Figure 4B),
and the AUC values were all 1, suggesting an excellent performance
in classification (Figure 4C). GO and KEGG enrichment analysis
showed that DMEGs were mainly associated with cell differentiation
in spinal cord, neuron fate commitment, calcium signaling pathway,
phospholipase C-activating G protein-coupled receptor signaling
pathway, digestion, central nervous system neuron differentiation,
neuroactive ligand-receptor interation, cell fate commitment,
regionalization, and pattern specification process (Figure 4D).

3.4 DMEGs and potential target therapeutic
agents

As mentioned previously, DMEGs may be the key genes causing
PAAD, and therefore targeting DMEGs is a potential target for the
treatment of PAAD. To this end, we calculated the proximity of
DMEGs to PAAD according to Formula 1 and converted the
observed distances into normalized scores according to Formula
2. We found that either with our randomly selected gene set as a
sample or DEMGs as a sample, using the random data acquired for
multiple hypothesis testing and selecting drugs with a distance set
distributed around 0 to 3 and FDR <0.01, a total of 78 potential
target drugs were obtained, and Figure 5 shows the distance density
fraction of drugs to DMEGs.

3.5 Molecular docking and pharmacokinetic
simulation

Currently, the ADRA1A protein does not have any resolved
crystal structure. We used the AlphaFold Protein Structure Database
website (https://www.alphafold.ebi.ac.uk/) website for ADRA1A
homology modeling to obtain the 3D structure of the ADRA1A
protein and the Deepsite (https://www.playmolecule.com/deepsite/)
website to predict the protein activity of ADRA1A (32). In addition,
the Gromacs2019 software package was used to predict potential
small molecule compounds, and a total of 10 small molecule
compounds were identified by calculating RMSD values, namely
DB06201, DB12733, DB00610, DB00450, DB00699, DB06706,
DB06711, DB06764 DB00949, and DB08954 (see Table 2).

Taken together, DB0094 (Felbamate) 9 had the highest
molecular docking score and therefore had a higher potential to

FIGURE 5
DMEGs and potential target therapeutic drugs. Density
fractionation plot of drug to DMEGs gene set distance.

Frontiers in Pharmacology frontiersin.org08

Cao et al. 10.3389/fphar.2023.1086309

177

https://www.alphafold.ebi.ac.uk/
https://www.playmolecule.com/deepsite/
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1086309


be a potential inhibitor of GRIN2B protein. Compound
DB0094 interacted with GRIN2B protein, and the RMSD value
of compound DB0094 was relatively stable overall (basically stable at
around 3 Å) (Figure 5). The compound was able to produce
hydrogen bonding interactions with SER132 and GLU106 of
GRIN2B protein, and favorable hydrophobic interactions with
ILE111, PRO78, ALA107, PRO177 and ALA135, as well as with
TYR109, PHE114 and PHE176. Compound DB00949 (Felbamate)
showed a high molecular docking score that many favorable
interactions with GRIN2B protein were produced.

Figure 6A shows the changes of RMSD values of the D-protein
backbone of GRIN2B protein bound to compound DB00949
(Felbamate) during the molecular dynamics simulation at 80 ns As
can be seen from the figure, the conformation of the GRIN2B protein
was very stable during the molecular dynamics simulation at 80 ns,
which also indicated to some extent that the protein structure generated
based on homology modeling was relatively reasonable (Figure 6B). In
addition, Figure 6C gives the RMSD values of the molecular backbone
of compoundDB00949 (Felbamate) binding toGRIN2B protein during
molecular dynamics (MD) simulation of 80 ns The results

demonstrated that compound DB00949(Felbamate)’s RMSD value
fluctuated relatively large by an obvious increasing trend during the
first 20 ns The stability was basically achieved when it reached 20 ns It
remained comparatively constant in the subsequent 60 ns Since the
molecular docking was semi-flexible in this experiment, it is
understandable that the RMSD values of the ligand’s molecular
backbone fluctuated moderately in the initial stage of the dynamics
simulation. Overall, compound DB00949 (Felbamate) was relatively
stable when binding to GRIN2B protein, which further suggested that
compound DB00949 (Felbamate) had a high potential to be a potential
inhibitor of GRIN2B protein.

3.6 Establishment of prognostic gene
signature associated with DMEG

To explore the role of DMEG gene expression in PAAD
prognosis, we first randomly divided 241 KRAS wild samples
into two groups, one as the training set (n = 121) and one as the
validation set (n = 120). We used 10-fold cross-validation to execute

TABLE 2 Molecular docking scores of compounds and proteins and the important interactions generated.

Compound Compound Target Docking score H-bond interactions

DB06201 Rufinamide GRM5 −4.874 SER143, SER145, THR168

DB12733 Dipraglurant GRM5 −4.348 SER145, THR168

DB00610 Metaraminol ADRA1A −5.158 MET1, GLU87

DB00450 Droperidol ADRA1A −5.819 GLU87

DB00699 Nicergoline ADRA1A −2.137 MET1

DB06706 Isometheptene ADRA1A −2.752 GLU87

DB06711 Naphazoline ADRA1A −5.167 —

DB06764 Tetryzoline ADRA1A −5.246 —

DB00949 Felbamate GRIN2B −10.586 GLU106, SER132

DB08954 Ifenprodil GRIN2B −6.821 GLU106, ARG115, ALA135

FIGURE 6
Binding mode plot of GRIN2B protein with compound DB00949(Felbamate). (A) RMSD diagram of GRIN2B protein during 80 ns molecular
dynamics simulation. (B) RMSD values of compound DB00949 (Felbamate) during 80 ns molecular dynamics simulation. (C) Plot of the dynamic binding
pattern of GRIN2B protein with compound DB00949 (Felbamate) during 80 ns molecular dynamics simulation.
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1,000 Lasso regression analysis on the expression and clinical
survival data of these 318 DMEGs genes, and we counted the
appearances of each probe 100 times (Figure 7A). 3 probes
(S100P, LY6D, and WFDC13) appeared the most frequently, and
these 3 genes showed the highest frequency with different coefficient
of variation trajectories of lambda as Figure 7B, standard deviation
distributions of different lambda as Figure 7C. K-M survival curve
results indicated that these three genes were able to distinguish more

significantly between the two risk groups (Figures 7D–F). Finally,
the risk score formula was obtained as follow:

RiskScore � 0.44*S100P + 0.147*LY6D + 0.29*WFDC13

According to the expression level of the sample, we calculated the risk
score for PAAD samples, and the RiskScore distribution is shown in
Figure 8A. From the results of survival analysis, samples with high risk
scores showed a significantly worse overall survival (OS) (p < 0.001).

FIGURE 7
Establishment of prognostic gene signature associated with DMEG. (A) Frequency of individual gene combinations for one thousand lasso
regressions. (B) Coefficient change trajectories of individual genes under different lambda. (C) Standard deviation distribution of the models under
different lambda. (D) Prognostic KM curves of S100P in high and low expression groups. (E) Prognostic KM curves of LY6D in high and low expression
groups. (F) Prognostic KM curves of WFDC13 in high and low expression groups.
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Then, we used the “timeROC” package to perform ROC analysis for
prognostic classification of RiskScore, and the AUCs of predictive
classification efficiency were 0.82, 0.89, and 0.77 for one-, three-, and
five-year, respectively (Figure 8B), suggesting a good predictive
performance. Finally, we performed zscore for Riskscore and
determined the cut-off value, divided the sample into high-risk and
low-risk groups, and plotted K-M curves. The low-risk group showed
significantly better prognosis than that in the high-risk group (Figure 8C,
log rank p < 0.0001).

3.7 Validation of the prognostic gene
signature associated with DMEG

The model was validated further by using the same coefficients and
model in the training set as in the validation set. The risk score of each
sample was calculated using the same method, and the RiskScore
distribution is shown in Figure 9A. Similarly, the AUCs of the
classification efficiency of the one-year, three-year, and five-year
prognostic predictions were 0.53, 0.86, and 0.85, respectively
(Figure 9B), and the OS of the high-risk-score samples was
significantly worse than that of the low-risk-score samples (Figure 9C,

log rank p = 5e x10-4, HR = 2.42). Next, we used the same coefficients
and model in the TCGA-PAAD cohort KRAS wild-type group samples
as in the training set. We also calculated risk scores for each sample
separately based on the expression level of the samples, and the RiskScore
distribution is shown in Figure 10A, with AUCs of 0.72, 0.88, and
0.85 for the prognostic predictive classification efficiency at one, three,
and 5 years, respectively (Figure 10B). Survival analysis showed that the
OS of the high-risk score samples was significantly smaller than that of
the low-risk score samples (Figure 10C, log-rank p= 0.00039,HR= 3.78).
Finally, we performed the same validation in the ICGC-PAAD external
data cohort, and the RiskScore distributions for each sample are shown in
Figure 11A. The AUCs for prognostic predictive classification efficiency
at one, three, and 5 years were 0.85, 0.85, and 0.91, respectively
(Figure 11B), and survival analysis showed that the OS of the high-
risk score sample was significantly worse than that of the low-risk score
sample (Figure 11C, log rank p = 0.00024, HR = 1.68).

4 Discussion

PAAD as one of the most lethal and aggressive malignancies has a
5-year survival rate of less than 10%, (Jiménez et al., 2017), and is now

FIGURE 8
Performance of the prognostic gene signature in training set. (A) Risk score, survival time and survival status and expression of the 3 genes in training
set. (B) ROC curve and AUC of the 3-gene signature classification. (C) Distribution of KM survival curves of the 3-gene signature in training set.
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among the top four leading causes resulting in tumor-associated death
(Kleeff et al., 2016). The median age of onset of PAAD is 71 years, and
with the aging of the population, its morbidity and mortality will
increase rapidly. By 2030, PAAD is estimated as a second cause to
tumor mortality (Rahib et al., 2014). The cause of pancreatic cancer is
still unclear, and only 5%–10% of pancreatic cancer patients can be
attributed to genetic factors (Siegel et al., 2022), although the mutation
rate of KRAS reaches 95%, but a single KRAS gene mutation does not
lead to the development of pancreatic cancer. Epigenetic alterations are
more closely related to environmental and age factors than genetics.
Past studies have found that epigenetic alterations occur in the early
stages of tumor and are cumulative with tumor development (Nebbioso
et al., 2018). In this study, we first DEGs and DMGs in normal samples
versus tumor samples without KRAS wild-type based on expression
profiling data of pancreatic cancer, and performed functional analysis.
Then a classification model was constructed, which can accurately
separate normal samples from tumor samples. Finally, we used DMEGs
to perform gene-drug interactions on DrugBank to find some potential
anti-PAAD drugs, which provides new ideas and potential targets for
understanding the role of methylation in PAAD and treating PAAD.

In the early 20th century, Fukushima N and other scholars
extensively studied the methylation of different genes in PAAD

and its precancerous lesions (intra-epithelial neoplasia (PanIN),
and found abnormal methylation of ppENK and p16 (13). Next, it
was shown that the incidence of aberrant methylation was 7.3%–

7.7% in PanIN-1 patients, 22.7% in PanIN-2 patients, and 46.2%
in PanIN-3 patients, a phenomenon that suggests that the
incidence of aberrant methylation increases with a more
advanced PanIN grade, but the exact mechanism is not clear
(Fukushima et al., 2002). Our study, by screening for
differentially methylated genes, initially it was found that
methylation genes were mediated through Cytokine-cytokine
receptor interaction, Natural killer cell-mediated cytotoxicity,
Olfactory transduction, and some other pathways leading to the
development of PAAD. To further confirm the pathway
correlation between PAAD and gene methylation, the
intersection of differentially genes and differentially
methylated genes was taken and performed enrichment
analysis again, and the results demonstrated that methylation
led to PAAD by affecting cytokine receptor, NK cell-mediated
cytotoxicity pathway.

Illumina human methylation 450 k bead array provides a better
technical platform for further study of DNA methylation, therefore,
we focused on methylation genes within the three regions of Gene

FIGURE 9
Validation of the prognostic gene signature in validation set. (A) Risk score, survival time and survival status and expression of the 3 genes. (B) ROC
curve and AUC of the 3-gene signature classification. (C) Distribution of KM survival curves of the 3-gene signature in the validation set.
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body, TSS1500, and TSS200. A total of 758 hypermethylated genes
and 418 demethylated genes were identified within the Gene body
region, which was consistent with the incidence of PAAD
hypomethylation reported in previous studies, and
hypomethylation was mainly associated with cell cycle cycling,
cell differentiation, and cell surface antigen/cell adhesion
(Pedersen et al., 2011; Schäfer et al., 2021; Zhu et al., 2021).
TSS1500 is a functional element belonging to differential
methylation and is located between 1.5 kb and 200 bp upstream
of the transcription start site. Previous studies identified the
TSS1500 region as an oncogenic cofactor variable in lung
adenocarcinoma and squamous carcinoma by differential
methylation probes, and extensive analysis showed that gene
probes outside the TSS1500 region could act as potential
pathogenic players by affecting the activity of
phosphatidylinositol-3,4,5-trisphosphate (Cao et al., 2022). Our
study likewise demonstrated an expression imbalance between
hypermethylation and hypomethylation in the TSS1500 region,
and by using genes in the TSS1500 region, we were able to
construct a classification model to distinguish PAAD from
normal tissue, providing a useful tool to identify PAAD.

tSS200 also belongs to the transcription factor repressor
functional element, and methylation in the TSS200 region is not
only related to tumor development, but also involved in the
acceleration of epigenetic mutational load and epigenetic age,
providing a new perspective for our understanding of the age of
DNA methylation (Yan et al., 2020).

In 2005, the European Palliative Care Research Collaborative
(EPCRC) network working group screened important clinical
markers for survival prediction in patients with end-stage cancer
based on decades of clinical evidence and recommended a variety of
prognostic tools. On this basis, researchers have successively
validated and derived several relevant prediction models
according to cancer types, and PAAD prognostic models have
emerged, which can be broadly classified into traditional manual
prediction and statistical-based bioinformatics modeling, with the
latter being the majority at present, but they all share common
problems such as small sample size, low specificity, and poor
predictive performance (Yuan et al., 2021) (Wang et al., 2021;
Zhao et al., 2021). Compared with previous PAAD models, we
performed model improvement by combining methylation genes
(S100P, LY6D, and WFDC13) with clinical factors in prognostic

FIGURE 10
Validation of prognostic gene signatures in KRAS wild-type PAAD samples. (A) Risk score, survival time and survival status and expression of the
3 genes in KRAS wild-type samples; (B) ROC curves and AUC of the 3-gene signature classification; (C) Distribution of KM survival curves of 3-gene
signature in TCGA KRAS wild-type samples.
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factors and confirmed the model robustness by external and internal
validation. S100P is a member of the S100 protein family containing
2 EF-hand calcium-binding motifs. s100 is localized in the
cytoplasm and/or nucleus of a variety of cells and is involved in
cell cycle progression and cell differentiation. Meta-analysis showed
that S100P is a highly sensitive and highly specific tool for the diagnosis
of PAAD (AUC = 0.93) (Hu et al., 2014; Camara et al., 2020). LY6D is
mainly involved in lymphoid differentiation and cell surface activity, and
the study showed that LY6D is significantly highly expressed in PAAD
and is a valid predictor of PAAD, a result consistent with our study
(Wang et al., 2020; Xu et al., 2021). WFDC13 belongs to the telomere
cluster family of genes, and there are relatively few studies on
WFDC13 in PAAD. Our data indicated that WFDC13 was a
potential prognostic gene for PAAD and was implicated in the
methylation process of PAAD, which provided new ideas for future
basic experiments. However, our study was still inadequate and further
basic experiments to elucidate the mechanism of the role of this
methylation gene in PAAD are required.

There are some limitations in this study. Although the results
showed that 3-DMEGs-based signature could distinguish tumor
samples and normal samples, the model reliability should be
improved with long-term clinical application. Additionally, we

downloaded expression profiles and methylation data of PAAD
from public databases. Thus, further prospective data should be
collected to validate the results. Besides, experimental studies and
clinical trials should be performed to verify the results of molecular
docking in this study.

5 Conclusion

With the gene expression profile data of PAAD, we identified
DEGs and DMGs between normal samples and tumor samples with
KRAS wild type; the classification model based on DMEGs was able
to accurately separate normal samples from tumor samples, and the
gene-drug interactions were performed on DrugBank to find some
potential anti PAAD drugs.
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FIGURE 11
Validation of prognostic gene signatures in external datasets. (A) Risk score, survival time vs. survival status and expression of the 3 genes; (B) ROC
curve and AUC for the 3-gene signature classification; (C) Distribution of KM survival curves of 3-gene signature in ICGC-PAAD samples.
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Anoikis-related long non-coding
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Background: Cervical cancer (CC) is a major health threat to females, and distal
metastasis is common in patients with advanced CC. Anoikis is necessary for the
development of distal metastases. Understanding the mechanisms associated
with anoikis in CC is essential to improve its survival rate.

Methods: The expression matrix of long non-coding RNAs (lncRNAs) from cervical
squamous cell carcinoma and endocervical adenocarcinoma (CESC) patients was
extracted from The Cancer Genome Atlas (TCGA), and highly relevant anoikis-related
lncRNAs (ARLs) were identified by the single sample gene set enrichment analysis
(ssGSEA) method. ARLs-related molecular subtypes were discerned based on
prognosis-related ARLs. ARLs-related prognostic risk score (APR_Score) was
calculated and risk model was constructed using LASSO COX and COX models. In
addition,wealso assessed immunecell activity in the immunemicroenvironment (TME)
for both subtypes and APR_Score groups. A nomogram was utilized for predicting
improved clinical outcome. Finally, this study also discussed the potential of ARLs-
related signatures inpredicting response to immunotherapy and smallmolecular drugs.

Results: Three ARLs-related subtypes were identified from TCGA-CESC (AC1,
AC2, and AC3), with AC3 patients having the highest ARG scores, higher
angiogenesis scores, and the worst prognosis. AC3 had lower immune cell
scores in TME but higher immune checkpoint gene expression and higher
potential for immune escape. Next, we constructed a prognostic risk model
consisting of 7-ARLs. The APR_Score exhibited a greater robustness as an
independent prognostic indicator in predicting prognosis, and the nomogram
was a valuable tool for survival prediction. ARLs-related signatures emerged as a
potential novel indicator for immunotherapy and small molecular drug selection.

Conclusion: We firstly constructed novel ARLs-related signatures capable of
predicting prognosis and offered novel ideas for therapy response in CC patients.
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Introduction

Cervical cancer (CC) is a serious health threat to females, and
according to WHO data, CC is the fourth leading cause of cancer
deaths among females, accounting for 342,000 deaths in 2020
(Sung et al., 2021). The most common histological type of CC is
squamous cell carcinoma that accounts for about 75% of all cases,
followed by the second most common type of adenocarcinoma
that accounts for 20% of all cases (Meng et al., 2021). Unlike other
cancers among females, effective measures including effective
early screening and HPV vaccination could significantly reduce
the incidence of CC and early targeted treatment (Canfell et al.,
2020). Current mainstream treatment options for CC patients
including systemic surgical treatment and radiotherapy could
improve the 5-year survival rate of early CC patients to 91.5%
(Bhatla et al., 2018). However, survival outcomes for patients with
advanced CC due to postoperative recurrence and distant
metastases are unsatisfactory (Marth et al., 2017). Therefore,
there was an immediate demand for monitoring biomarkers to
evaluate the CC metastasis risk.

Anoikis, a defense mechanism to prevent abnormal cell
migration, is mainly manifested as the loss of cell adhesion to
ECM and cell apoptosis and death in the process of migration
(Paoli et al., 2013). Anoikis plays an essential component in
inhibiting tumor cell migration and is important in delaying
cancer progression (Adeshakin et al., 2021). Studies have found
that tumor cells secrete growth factors and activate EMT signaling
pathway to resist Anoikis, which also became a prerequisite for tumor
cell metastasis (Kim et al., 2012). Anti-anoikis has become a landmark
event in the occurrence of remote cancermetastasis (Kim et al., 2012).
However, few studies focused on the correlation between anoikis and
distal metastasis of CC. In view of the inability to accurately evaluate
the prognosis of advanced CC patients, it was indispensable to explore
the mechanism of anoikis in CC to improve its treatment.

Therefore, we developed an assessment system for prognostic
risk stratification and constructed an anoikis-related long non-

coding RNAs (ARLs)-related prognostic model in CC. We
further investigated the relationship among prognostic indicators
and immune microenvironment (TME), immunotherapeutic
response, and chemotherapeutic drug suitability. The purpose of
this study was to formulate a novel prognostic scoring system for
CC, which was designed to accurately guide the prognosis of CC and
improve its treatment options.

Materials and methods

Dataset download and processing

RNA-sequencing data and corresponding clinical
information of cervical squamous cell carcinoma and
endocervical adenocarcinoma (CESC) samples were available
in The Cancer Genome Atlas (TCGA, https://portal.gdc.cancer.
gov/) database using TCGA GDC API. We also downloaded
mutect2-processed single-nucleotide variants (SNVs) data from
TCGA. The expression matrix with TPM format was transformed
into log 2 (TPM+1). Samples were filtered using the Sangerbox
(http://sangerbox.com/) (Shen et al., 2022) database as follows: 1)
removing samples without follow-up information; 2) retaining
samples with survival time greater than 0; 3) remove samples
without Status. A total of 291 samples were included after
screening. RNA annotation file in GENCODE (https://www.
gencodegenes.org/) was used to obtain mRNAs and lncRNAs
expression matrix. Anoikis-related genes (ARGs) were available
in GeneCards (https://www.genecards.org/).

Recognition of anoikis-related lncRNAs
(ARLs) and molecular subtypes

Based on the expression profiles of ARGs, the ARG scores of
samples were attained via the single sample gene set enrichment

FIGURE 1
Identification of ARLs TCGA-CESC (A) Forest map of ARLs affected OS (B) Heatmap of ARLs correlation affected OS (C) 37 Expression heatmap OS
related ARLs.
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analysis (ssGSEA) algorithm (Barbie et al., 2009). ARLs were
identified using the rcorr function in the Hmisc package under
screening thresholds of |cor|>0.3 and p < 0.01 (Hmisc.pdf).
Univariate COX models were performed on the ARLs to screen
for prognostically relevant ARLs under the threshold of p < 0.01. A
consistency clustering analysis was carried out on samples in TCGA-
CESC to identify molecular subtypes, according to the methods of
Wilkerson et al. (Wilkerson and Hayes, 2010).

Gene set variation analysis (GSVA) and gene
mutation landscape in ARLs-related
subtypes

For patients in different subtype groups, hallmark gene sets were
captured from the Molecular Signatures Database (MSigDB, https://
www.gsea-msigdb.org/gsea/msigdb/) and GSVA was conducted
using the GSVA package to explore differences in biological
pathway variants across groups (Hanzelmann et al., 2013). Next,
oncogenic pathway signatures were obtained from Sanchez-Vega

et al. (Sanchez-Vega et al., 2018) and differences in oncogenic
pathway scores were assessed in subtypes using the ssGSEA
method. SNV data from CC were processed in The Genome
Analysis Toolkit (GATK) software in the mutect2 plugin. Genes
with mutation frequencies ≥3 were screened (fisher test, p < 0.05),
and the mutation landscape was mapped using the maftools package
(Mayakonda et al., 2018).

Construction of ARLs-related prognostic
risk model (APR_Score)

The TCGA-CESC samples were clustered into training and test
sets at 1:1 ratio for analysis. In the training set, LASSO and
multivariate COX models were executed on prognosis-related
ARLs to discriminate ARLs significantly affecting CC prognosis.
ARLs-related prognostic risk model was constructed based on the
following formula (Simon et al., 2011).

APR Score � ∑ExpressionARLs*βARLs

FIGURE 2
Heat map shows the expression of 37 ARLs in ARLs-related molecular subtypes in CC patients and clinical information.
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In the formula, expression of ARLs represented the expression
data of prognosis-related ARLs, and βARLs indicated the COX
regression coefficients after normalization. We calculated the
ARLs-related prognostic risk score (APR_Score) of each patient
in TCGA. Patients were assigned to the high-APR_Score and low-
APR_Score groups according to the optimal p-value based on
survminer package.

Clinical meaning of APR_Score and
association with prognosis

We analyzed the variation in APR_Score and prognosis amongst
the molecular subtypes. In this study, for different molecular
subtypes and APR_Score groups, K-M curves were evaluated in
the training set and the validation set to assess prognostic
differences, and ROC curves were used to assess the accuracy of
APR_Score. Furthermore, univariate and multivariate COX model
analyses were performed on the TCGA-CESC cohort.

Gene set enrichment analysis (GSEA)

For patients in different APR_Score groups, GSEA was
performed to explore differences in the biological pathways
involved (p < 0.05, FDR<0.25).

Relationship between CC patients and
tumor microenvironment (TME)

For ARLs-related molecular subtypes and APR_Score groups,
we quantified the relative abundance of 22 immune cell species in
the TME of CC patients using the CIBERSORT algorithm (Chen
et al., 2018). Next, we further assessed the immune scores of
10 immune cell species in the TME using the MCP-Count
method (Becht et al., 2016). Finally, 47 classes of immune
checkpoint genes were obtained from the study by Danilova et al.
(Danilova et al., 2019) to assess their expression levels in subtypes of
CC patients.

FIGURE 3
ARLs-relatedmolecular subtypes in TCGA-CESC. (A)Cumulative distribution function (CDF) of consensus clustering (B)CDFDelta area curve for k=
2–10 (C)Heatmap of sample clusters shows consensusmatrix k=3 (D) K-M curves of AC1-3 patients in TCGA-CESC (E) Statistical graph of patient survival
status for patients in AC1-3 (F) Distribution of ARG score amongst clusters AC1-3. *p < 0.05.
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Construction of nomogram

In this study, we constructed a nomogram for predicting 1-year, 3-
year and 5-year survival rates of patients using the APR_Score
(rms.pdf), and calibration curves were applied to evaluate the
predictive accuracy of the nomogram. Finally, the ROC curves were
exploited to validate the clinical use of APR_Score and nomogram.

Immunotherapy and small molecular drug
sensitivity analysis

We assessed TIDE scores in the Tumor Immune Dysfunction
and Exclusion (TIDE, http://tide.dfci.harvard.edu/) website between
the APR_Score groups. In addition, we computed the half maximal
inhibitory concentration (IC50) values of commonly used small
molecular drugs in the pRRophetic package (Geeleher et al., 2014).

Statistical analysis

The packages included in this study were downloaded from R
(version 4.1.1, https://www.r-project.org/) and analyzed using R

Studio, an integrated development environment (IDE) for the R
language. The packages included Hmisc, ConsensusClusterPlus,
GSVA, survival, survminer, glmnet, maftools, timeROC, rms, and
pRRophetic. Sangerbox was deployed for sample screening and data
processing. In this study, p < 0.05 was considered statistically
significant.

Results

Identification of ARLs in TCGA-CESC

Based on annotation file in GENCODE, a total of 14,176 lncRNAs
were obtained. Firstly, we computed the ARG score for samples of
TCGA-CESC via ssGSEA, and 574 ARLs (|cor|>0.3 and p < 0.01) were
screened based on correlation analysis. This was followed by univariate
COX model analysis, filtering a total of 37 prognosis-related ARLs
(26 risk factors and 11 protective factors, p < 0.01) (Figure 1A).
Furthermore, we analyzed the correlation among 37-ARLs, and the
correlation heat mapwas illustrated in Figure 1B. Finally, the expression
of 37-ARLs in 291 TCGA-CESC samples was counted, andwe observed
that 37-ARLs were differentially expressed, showing changes of ARG
score in TCGA-CESC patients (Figure 1C).

FIGURE 4
Features of TME in AC1-3 subtypes. (A) Distribution of immune cell scores estimated by CIBERSORT amongst three subtypes (B) Differences of
Angiogenesis scores amongst three subtypes (C) Differences of immune checkpoint gene expression amongst three subtypes. ns p > 0.05; *p < 0.05;
**p < 0.01; *** p < 0.001; ****p < 0.0001.
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ARLs-related molecular subtypes in TCGA-
CESC

To determine the potential connections among ARG scores
and clinical information, this study counted the expression of
clinical information and 37-ARLs in TCGA-CESC patients. We
found that risk factors were highly expressed in AC3 and
protective factors were highly expressed in AC1 (Figure 2).
Classification of TCGA-CESC patients was conducted based
on consistent clustering of the 37-ARLs expression matrix. We
found that the TCGA-CESC patients could be significantly
clustered into three clusters (Figures 3A–C), therefore we
derived three ARLs-related molecular subtypes, namely, ARLs-
Cluster 1 (AC1), ARLs-Cluster 2 (AC2), and ARLs-Cluster 3
(AC3). Furthermore, the K-M curves showed significant
prognostic differences between patients with AC1-3, with
AC1 patients having the optimal prognosis and AC3 having

the poorest prognosis (Figure 3D). Survival status statistics
also showed more deaths among AC3 patients (p < 0.05,
Figure 3E). We examined the ARG scores of patients in AC1-
3 and found that the highest ARG scores were in AC3 patients
(Figure 3F).

Features of TME in AC1-3 subtypes

To determine the relationship between ARG score and TME in
CC, we assessed the relative infiltration abundance of 22 immune
cell species in TME using the CIBERSORT method. We
determined that the infiltration abundance of B cells naïve,
T cells CD8, T cells regulatory (Tregs), and Mast cells resting
was significantly lower in AC3 than in AC1 and AC2. In contrast,
the infiltration risk of Macrophages M0, Mast cells activated, and
Neutrophils was remarkably higher in AC3 than in AC1 and AC2

FIGURE 5
Genetic Landscapes and Biological Pathways in AC1-3 subtypes (A–C) Themutation frequencies of top 15 genes in clusters AC1-3 (D)Distribution of
tumorigenesis-related pathways score in AC1-3 (E) Heatmap shows pathway characteristic based on GSVA results. Red represents ssGSEA score is
greater than 0 while blue represents ssGSEA score is lower than 0. ns p > 0.05; *p < 0.05; **p < 0.01; *** p < 0.001; ****p < 0.0001.
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(Figure 4A). Accumulating evidence indicated that angiogenesis
could influence tumor development and metastasis (Detmar,
2000; Parmar and Apte, 2021). Therefore, we computed the
Angiogenesis score in AC1-3 and clearly observed that the
poor prognosis AC3 subtype had the highest Angiogenesis

score (p < 0.05, Figure 4B). In addition, we found that
17 immune checkpoint genes were highly expressed in clusters
AC3 (Figure 4C). These results suggested that a higher ARG score
was associated with immunosuppressive activity in TME of CC,
which could lead to higher Angiogenesis scores, and that the

TABLE 1 Clinical information of CC patients in the training and validation sets.

Characteristics Train(N = 146) Test (N = 145) Total (N = 291) pvalue FDR

Status 0.76 1

Alive 112 (38.49%) 108 (37.11%) 220(75.60%)

Dead 34 (11.68%) 37 (12.71%) 71 (24.40%)

T.stage 0.49 1

T1 70 (24.05%) 67 (23.02%) 137 (47.08%)

T2 30 (10.31%) 37 (12.71%) 67 (23.02%)

T3 9 (3.09%) 7(2.41%) 16(5.50%)

T4 3 (1.03%) 7 (2.41%) 10 (3.44%)

Uknown 34 (11.68%) 27 (9.28%) 61 (20.96%)

N.stage 0.91 1

N0 63 (21.65%) 65 (22.34%) 128 (43.99%)

N1 29 (9.97%) 26 (8.93%) 55 (18.90%)

Uknown 54 (18.56%) 54 (18.56%) 108 (37.11%)

M.stage 0.99 1

M0 53 (18.21%) 54 (18.56%) 107 (36.77%)

M1 5 (1.72%) 5 (1.72%) 10 (3.44%)

Uknown 88 (30.24%) 86 (29.55%) 174 (59.79%)

Stage 0.77 1

I 84 (28.87%) 75(25.77%) 159 (54.64%)

II 29 (9.97%) 35 (12.03%) 64 (21.99%)

III 20 (6.87%) 21 (7.22%) 41 (14.09%)

IV 11 (3.78%) 10 (3.44%) 21 (7.22%)

Uknown 2 (0.69%) 4 (1.37%) 6 (2.06%)

Grade 0.86 1

G1 8 (2.75%) 10 (3.44%) 18 (6.19%)

G2 65 (22.34%) 64 (21.99%) 129 (44.33%)

G3 59 (20.27%) 57 (19.59%) 116 (39.86%)

G4 0 (0.0e+0%) 1 (0.34%) 1 (0.34%)

Uknown 14 (4.81%) 13 (4.47%) 27 (9.28%)

Age1 0.86 1

<=46 76 (26.12%) 73 (25.09%) 149 (51.20%)

>46 70 (24.05%) 72 (24.74%) 142 (48.80%)
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development and metastasis of CC might be inextricably linked to
immune escape.

Genetic landscapes and biological pathways
in AC1-3 subtypes

Based on the genomic mutational landscape, we found variation
among AC1-3 subtypes. AC3 showed markedly higher mutation
frequencies than in AC1 and AC2, with the highest mutation
frequencies for PCLO, HDWE1 and CDK12 in AC3 (Figures
5A–C). Based on the results of ssGSEA analysis, we noted that
AC3 was substantially enriched in tumorigenesis-related pathways
containing RAS, TGF-Beta, NRF1, NOTCH, MYC, HIPPO,
CellCyle (Figure 5D). Similarly, GSVA results further validated
the result because TGF BETA SIGNALING, PI3K AKT MTOR
SIGNALING, TNFA SIGNALING VIA NFKB, WNT BETA
CATENIN SIGNALING and NOTCH SIGNALING were
remarkably activated in AC3 but remarkably inhibited in AC1
(Figure 5E). These results further supported a higher risk of
metastasis in patients with CC in AC3, which in turn could lead
to the negative prognosis.

Construction and validation of APR_Score

The prognostic risk model was constructed based on ARLs by
randomly dividing patients in TCGA-CESC into training and
validation set at a ratio of 1:1, with the clinical information of the
samples in each group shown in Table 1. In the training set, the LASSO
COX model was applied to optimize the model, and 11 ARLs were
identified based on the penalty parameter lambda and the model
trajectory change curve (Supplementary Figure S1). Seven ARLs
affecting prognosis were selected based on the multivariate COX
model, namely AC092614.1, AL158071.3, AC016394.2, LINC02749,
MIR100HG, AC079313.1, and ATP2A1-AS1. According to APR_
Score=1.847*AC092614.1+(−0.88*AL158071.3)+(−0.675*AC016394.2)
+(−1.099*LINC02749)+0.514*MIR100HG+0.766*AC079313.1+(-0.323*
ATP2A1-AS1), the prognostic risk model was assessed. Patients in the
training and validation sets were classified into high-APR_Score and low-
APR_Score groups by the optimal p-value in the survminer. Based on the
K-M curves, we noted that high APR_Score scores predicted poorer OS
in the training set, validation set and total TCGA-CESC cohort (Figures
6A–C). In the training set, theAUCswere 0.73, 0.89, 0.91, 0.91 and 0.9 for
1, 2, 3, 4 and 5 year(s) of survival, respectively (Figure 6D). While in the
validation set and the total TCGA-CESC cohort, APR_Score still showed

FIGURE 6
Development and validation of APR_Score (A–C) K-M curves for the 7 ARLs in the training set, validation set and TCGA-CESC cohort (D–F) ROC
curves of the training set, validation set and TCGA-CESC cohort.
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higher AUC values in predicting 1-, 2-, 3-, 4-, and 5-year OS in CC
patients (Figures 6E, F). These results suggested that APR_Score had a
high accuracy in predicting OS risk in CC patients and might be a novel
prognostic indicator.

Correlation between APR_Score and clinical
characteristics

To determine the relationship between APR_Score and
clinical characteristics, this study discussed the interaction
between APR_Score and different clinical features. First, we
found that the APR_Score was the highest in the poor
prognosis AC3 subtype, with more death cases in the high
APR_Score group (Figures 7A, B). Expression differences of
AC092614.1, AL158071., AC016394.2, LINC02749,
MIR100HG, AC079313.1, ATP2A1- AS1 in different types of
patients are shown in Figure 7B. In addition, to compare the

meaning of APR_Score in clinicopathological subgroups for CC
prognosis, K-M survival analysis was performed on patients with
high APR_Score and low APR_Score in clinicopathological
subgroups. The results showed that patients with high APR_
Score had markedly poorer OS than those with low APR_Score in
Stage, Grade and Age subgroups (p < 0.0001, Figures 7C–E).
Additionally, we compared the differences of clinical
characteristics (N satge and M stage) between risk groups in
TCGA-CESC cohort. The patients with metastasis (including
lymph node metastasis and distal metastasis) in the high-
APR_Score group were more than those in the low-APR_Score
group (Supplementary Figure S2).

Nomogram for predicting survival rate of CC

To further discuss the clinical value of APR_Score in CC
patients, univariate and multivariate COX model analyses were

FIGURE 7
Correlation between APR_Score and clinical characteristics of CC (A) APR_Score in AC1-3 subtypes (B) Heatmap showing the expression of 7 OS-
related ARLs in ARLs-related molecular subtypes and APR_Score groupings (C–E) K-M curves for patients with high APR_Score and low APR_Score in
Stage, Grade, and Age subgroups.
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performed, and we determined that APR_Score and Stage were
clinically significant for CC prognosis (p < 0.05, Figures 8A, B).
Due to a close correlation between APR_Score and Stage and
prognosis, we created a nomogram based on APR_Score and
Stage to assess OS of CC patients (Figure 8C). The calibration
curves showed a great overlap between Nomogram predicted
survival at 1-, 3- and 5-year OS with actual observations,
indicating that nomogram was a reliable tool for predicting OS
(Figure 8D). We also found that the nomogram and APR_Score
showed higher accuracy in predicting 1-year, 3-year and 5-year
OS when compared to Age, TNM Stage, Stage and Grade
(Figures 8E–G).

TME activity assessment in APR_Score
groups

The CIBERSORT and MCP-count algorithms were applied to
assess the abundance of immune cell infiltration and immune score
in TME of APR_Score groups. CIBERSORT results, as presented in
Figure 9A, showed that T cells CD8, Tregs infiltration abundance
was lower in high-APR_Score group. MCP-count results also
showed lower immune score of CD8 T cells in high-APR_Score
group (Figure 9B). Then, to discuss the potential connection

between APR_Score and immunotherapy response, we assessed
TIDE scores and Exclusion scores in the APR_Score groups.
TIDE scores and Exclusion scores were slightly higher in the
high APR_Score group than in the low APR_Score group,
suggesting that patients with high APR_Score were more likely to
experience immune escape and less responsive to immunotherapy
(Figures 9C, D).

Association between APR_Score and
chemotherapy drug sensitivity

Until immunotherapy was proposed as an alternative
treatment for CC, conventional resection and radiotherapy
were the dominant treatments (Serkies and Jassem, 2018). In
this study, to discuss the potential of APR_Score as therapeutic
response marker for predicting chemotherapeutic agents, we
evaluated the IC50 values of 20 chemotherapeutic agents in
TCGA-CESC. Initially, correlations between APR_Score and
drug IC50 values were computed, and highly correlated drugs
were selected for comparison in the APR_Score groups
(Supplementary Figure S3). We found positive responses to
small molecular drugs including Rapamycin, KIN001-135,
Roscovitine, Phenformin treatments in the low APR_Score

FIGURE 8
Nomogram for predicting survival rate of CC (A, B) Forest plots for univariate and multivariate COX models for APR_Score (C) Nomogram of APR_
Score and Stage (D) Calibration curves for 1-year, 3-years and 5-years survival (E–G) The ROC curves of a variety of clinical features for overall OS at 1-
year, 3-year and 5-year.
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group, while the high APR_Score group responded positively to
Sunitinib, MG-132, Paclitaxel, AZ628, Sorafenib, Saracatinib,
Dasatinib, CGP-60474, A-770041, WH-4-023, WZ-1 -84,
CMK, Bortezomib, Lapatinib, Midostaurin, Embelin treatments
(Figure 10). Overall, the APR_Score was correlated with the
sensitivity to small molecular drugs.

Biological pathway characterization of APR_
Score groups

Moreover, to discuss the biological pathway variation in APR_
Score groups, we evaluated the markedly enriched pathways in
distinct APR_Score groups using GSEA methods via
h.all.v7.5.1.symbols.gmt signatures. We noted that TGF BETA
SIGNALING, APICAL JUNCTION, HYPOXIA, EPITHELIAL
MESENCHYMAL TRANSITION, APOPTOSIS, UV RESPONSE
DN, KRAS SIGNALING UP, TNFA SIGNALING VIA NFKB,
PROTEIN SECRETION, ANGIOGENESIS were markedly
enriched in high-APR_Score group (p < 0.05, FDR<0.25,
Figure 11).

Discussion

Anoikis is a protective mechanism via which the organism
self-corrects abnormal disorders in the presence of disorders
and damage, and is essential for the normal growth and
development process of living organisms (Zhong and
Rescorla, 2012). Advanced cancer patients are affected by
tumor metastasis, which occurs in large tumors and could
result in death (Steeg, 2016). The prerequisite for tumor cells
to migrate would be their own resistance to Anoikis, otherwise
the self-correcting capacity of the organism could prevent the
formation of metastatic lesions (Simpson et al., 2008; Kim et al.,
2012). In fact, the existing studies related to the principles of the
anoikis mechanism in CC remained limitations.

In this study, we defined three potential subtypes based on
anoikis-related lncRNAs in CC that exhibited remarkable
prognostic variation as well as immunoreactivity. Notably,
AC3 patients exhibited higher ARG scores and angiogenesis
scores. Angiogenesis is essential and important in the
development of malignant tumor (Viallard and Larrivee,
2017). In contrast, tumor cell anoikis resistance was

FIGURE 9
TME activity assessment in APR_Score groups (A) Results of immune cell scores estimated by CIBERSORT between APR_Score groups in TCGA-
CESC cohort (B) Results of immune cell scores using MCP-count between APR_Score groups in TCGA-CESC cohort (C) Distribution of TIDE score
between APR_Score groups in TCGA-CESC cohort (D) Exclusion scores in high-APR_Score group and low-APR_Score group. ns p > 0.05; *p < 0.05;
**p < 0.01; *** p < 0.001; ****p < 0.0001.
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sufficiently necessary for the formation of new blood vessels and
for migration (Kim et al., 2012). The interaction between anoikis
and tumor angiogenesis was reported. Gao and colleagues

showed that osteosarcoma cells resist through anoikis by
activating Src kinase, which in turn activates JNK/ERK/
VEGF-A to promote the formation of tumor metastases (Gao

FIGURE 10
Differences of IC50 values for 20 chemotherapy drugs between APR_Score groups in TCGA-CESC cohort. ns p > 0.05; *p < 0.05; **p < 0.01; *** p <
0.001; ****p < 0.0001.
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et al., 2019). In the present study, we also found marked
activation of angiogenesis and NOTCH signaling in the
AC3 subtype (Figure 5E). The survival rate of AC3 patients
was not satisfactory. This allowed us to speculate that
AC3 patients might have a higher probability of postoperative
recurrence and higher prognostic risk. However, distal
metastases occurred in the majority of cases at the time of
diagnosis in CC patients at present (Dereje et al., 2020;
Sengayi-Muchengeti et al., 2020; Ryzhov et al., 2021).
Accurate determination of disease staging would be crucial
for patient treatment modalities and clinical outcomes.
Therefore, the ARLs-related subtypes defined in this study
might assist M Stage and more accurately calculate the risk of
metastasis in CC patients.

Here, we have constructed prognostic risk stratification models
for CC based on the expression of ARLs. We explored the potential
utility of APR_Score in predicting patient survival and prognosis. In
addition, this study also explored the potential function of APR_Score
in guiding immunotherapy and chemotherapy. Immunotherapy
offered promising opportunities for patients as an emerging option
for the rehabilitation of advanced CC patients (Duska et al., 2020;
Colombo et al., 2021). Pembrolizumab was approved by the Food and
Drug Administration (FDA) as an immunotherapeutic agent for CC
(De Felice et al., 2021), however, the current treatment with
Pembrolizumab for CC remained limited due to the absence of

efficacy biomarkers to determine treatment benefit (Marret et al.,
2019). In this study, there were discrepancies in immune cell scores
between high- and low-APR_Score patients and in the TIDE scores.
We observed higher T cell CD8, T cell CD4memory resting and TIDE
scores in patients with high APR_Score. Tumor cells blocked T cell
killing by expression of PD-1/PD-L1, causing immune escape of
tumor cells (Pardoll, 2012; Chabanon et al., 2016). Another study
concluded that CC cells had a greater tendency of immune escape and
were accompanied by increased T cells (Mortezaee, 2020). Moreover,
acquisition of anoikis-resistance enhances the abilities of invasiveness,
escaping from immune surveillance and therapeutic agents in cancer
cells. Fanfone and colleagues have demonstrated that mechanically
stressed and anoikis-resistant cancer cells had increased cell motility
and escape from killing by natural killer cells (Fanfone et al., 2022),
suggesting that anoikis was strongly associated with immune escape of
tumor cells. We constructed a prognostic model based on ARLs, and
patients with high APR_Score had suboptimal immunotherapy
benefit and were more suitable for taking conventional
chemotherapy, suggesting that ARLs-based prognostic risk model
was a promising predictor in immunotherapy and chemotherapy.
Furthermore, the COX model demonstrated that APR_Score was an
independent prognostic indicator, and that the nomogram developed
in conjunction with APR_Score was a valid prognostic tool. Thus, this
finding confirmed the positive utility of ARLs-related signatures in
guiding the prognosis and treatment selection, which might provide a

FIGURE 11
Biological pathway characterisation of APR_Score groups via GSEA.
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theoretical basis for the development of precise and personalized
treatment guidelines for CC.

ARLs-related prognostic risk model consisted of AC092614.1,
AL158071.3, AC016394.2, LINC02749, MIR100HG, AC079313.1,
ATP2A1-AS1. We found that MIR100HG and ATP2A1-AS1 were
correlated with multiple cancers and the remaining ARLs were the
first identified tumor prognostic markers. Several studies suggested
that aberrant expression of MIR100HG was associated with poor
clinical outcome and pathological features, and that it was involved
in multiple pathways related to tumorigenesis (Wu et al., 2022).
aTP2A1-AS1 is a potential prognostic biomarker for CC (Feng
et al., 2021). The mechanism of anoikis in CC was not completely
elucidated, and the ARLs identified in this study were important
for the elucidation of the molecular mechanisms of CC. However,
limitations of this study should be equally noted. In other datasets,
there are few cervical cancer-related data sets and they lack clinical
information (survival time). Due to the difficulty in annotating
lncRNAs in other databases, only the TCGA database was used and
randomly divided into training set and validation set to construct
and validate the risk model in this study. The accuracy of APR_
Score should be validated in the future using clinical samples or
sequencing data from multiple centers. Finally, the mechanism of
7-ARLs in CC still required further study, which was our follow-up
research plan.

Conclusion

In this study, we defined three molecular subtypes of anoikis-
related lncRNAs and generated ARLs-related signatures for
assessing the prognosis of patients with CC. The molecular
subtypes contributed to a better understanding of the mechanism
of CC metastasis and the signatures held potential clinical value in
predicting response to therapy.
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Background: Thyroid cancer is a common malignant tumor of the endocrine
system that has shown increased incidence in recent decades. We explored the
relationship between tumor-infiltrating immune cell classification and the
prognosis of thyroid carcinoma.

Methods: RNA-seq, SNV, copy number variance (CNV), and methylation data for
thyroid cancer were downloaded from the TCGA dataset. ssGSEA was used to
calculate pathway scores. Clustering was conducted using ConsensusClusterPlus.
Immune infiltration was assessed using ESTIMATE and CIBERSORT. CNV and
methylation were determined using GISTIC2 and the KNN algorithm.
Immunotherapy was predicted based on TIDE analysis.

Results: Three molecular subtypes (Immune-enrich(E), Stromal-enrich(E), and
Immune-deprived(D)) were identified based on 15 pathways and the
corresponding genes. Samples in Immune-E showed higher immune
infiltration, while those in Immune-D showed increased tumor mutation
burden (TMB) and mutations in tumor driver genes. Finally, Immune-E showed
higher CDH1 methylation, higher progression-free survival (PFS), higher suitability
for immunotherapy, and higher sensitivity to small-molecule chemotherapeutic
drugs. Additionally, an immune score (IMScore) based on four genes was
constructed, in which the low group showed better survival outcome, which
was validated in 30 cancers. Compared to the TIDE score, the IMScore showed
better predictive ability.

Conclusion: This study constructed a prognostic evaluation model andmolecular
subtype system of immune-related genes to predict the thyroid cancer prognosis
of patients. Moreover, the interaction network between immune genes may play a
role by affecting the biological function of immune cells in the tumor
microenvironment.
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Introduction

Among endocrine tumors, thyroid cancer is a malignant tumor
with the highest incidence and manifests low mortality and a
relatively favorable prognosis (Wang et al., 2020). However, for
locally advanced or recurrent and metastatic thyroid cancer, the
existing treatment methods cannot effectively improve patient
prognosis. Therefore, novel therapeutic approaches such as
immunotherapy targeting the molecular mechanisms of thyroid
cancer initiation and progression are under exploration (Farkona
et al., 2016). Immune-related genes can be used to predict the
prognosis of patients with thyroid cancer and can also serve as
therapeutic targets (Gunda et al., 2018). The tumor
microenvironment (TME) includes the various cell types
(immune cells, fibroblasts, endothelial cells, etc.) and
extracellular components (growth factors, cytokines,
extracellular matrix, hormones, etc.) surrounding cancer cells
(Wu and Dai, 2017). Recent studies have shown that different
types of immune cells affect the tumor progression of various
cancer types, reflecting TME heterogeneity (Zhang et al., 2020;
Chen et al., 2021). Therefore, it is important to understand the role
of immune cells and immune genes in the thyroid cancer
microenvironment.

Immune checkpoint inhibitors have achieved great efficacy in
the treatment of a variety of tumors (Branchoux et al., 2019). In
papillary thyroid carcinoma, BRAF V600E mutation is positively
correlated with the expression of programmed death ligand 1/
programmed death receptor 1 in tumor tissues and immune
checkpoint inhibitors can effectively kill thyroid tumor cells
(Bai et al., 2018). Gnjatic et al. (2017) found that the number
and distribution of tumor-infiltrating immune cells (TIICs)
could affect the treatment response in patients with cancer
and that TIICs are a potential drug target to further improve
patient survival. Inflammation and immune cell infiltration are
closely involved in thyroid cancer initiation and development;
therefore, the exploration of immune infiltration patterns is
needed to evaluate patient treatment response and prognosis
(Mould et al., 2017). Immune genes as prognostic molecular

markers and potential targets for thyroid cancer immunotherapy
have attracted attention (Ma et al., 2020; Zhi et al., 2020; Qin
et al., 2021). The current AJCC TNM staging and risk
stratification of recurrence for patients with differentiated
thyroid cancer are used to guide individualized treatment and
are formulated based on the clinicopathological data on patients
with thyroid cancer without molecular detection. As the AJCC
TNM system is still not sufficiently accurate to classify patients
with cancer with different prognoses, patients must be classified
at the RNA level.

This study applied bioinformatic methods to identify immune
molecular subtypes and construct prognostic models and risk-
scoring systems. We evaluated the prognosis of thyroid cancer at
the gene andmolecular levels and further analyzed the immune gene
regulatory network of thyroid cancer to provide new ideas for the
study of the immune-related mechanisms of thyroid cancer and the
development of immune-targeted drugs.

Materials and methods

Raw dataset

RNA-seq, clinical data, transcriptome data, SNV, CNV, and
methylation data on patients with thyroid cancer were
downloaded from The Cancer Genome Atlas on 23 April
2022. For RNA-seq data, samples without clinical follow-up

TABLE 1 Pathological types of thyroid cancer.

Var1 Freq

Other, specify 9

Thyroid papillary carcinoma—classical/usual 355

Thyroid papillary carcinoma—follicular (≥99% follicular patterned) 101

Thyroid papillary carcinoma—tall cell (≥50% tall cell features) 36

FIGURE 1
Identification of three molecular subtypes in thyroid cancer. (A) Identification of Immune-Enrich, Stromal-Enrich, and Immune-Deprived subtypes
in the TCGA dataset. (B) Principal component analyses of the three molecular subtypes.
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information, survival time, or status were removed; Ensembl was
converted into gene symbol, and the median expression of
multiple GeneSymbols was used. The pathological types of
thyroid cancer are shown in Table 1.

Data on a total of 15 pathways (immune, stromal, DNA damage
repair, and oncogenic) and their corresponding genes were obtained
from a previous study (Li and Wang, 2021).

ssGSEA

ssGSEA analysis was used to calculate the scores of the
15 pathways, EMT pathways (HALLMARK_EPITHELIAL_
MESENCHYMAL_TRANSITION), and cytolytic activity (Rooney
et al., 2015) using the R package “GSVA”.

Clustering analysis

Molecular subtyping was performed separately for the TCGA
dataset samples via ConsensusClusterPlus 1.52.0 using the scores for
the 15 pathways (Wilkerson and Hayes, 2010). A total of
500 bootstraps were completed with “pam” arithmetic and
“pearson” distances. Each bootstrap involved TCGA dataset
specimens (≥80%). The cluster number k was set from 2 to 10,
and the optimum k was defined as per cumulative distribution
function (CDF) and AUC. Differences in survival (KM) curves
were analyzed according to the molecular subtypes. Similarly, the
distribution differences in clinical characteristics were compared, and
chi-square tests were conducted. p < 0.05 was defined as statistically
significant. Principal component analysis (PCA) was also performed
to test the rationality of the molecular subtype distributions.

FIGURE 2
Immune infiltration analysis among three molecular subtypes. (A) Distributions of StromalScore among the three molecular subtypes. (B)
Distributions of ImmuneScore among the three molecular subtypes. (C) Distributions of ESTIMATEscores among the three molecular subtypes. (D)
Distributions of TumorPurity among the three molecular subtypes. (E) Differences in EMTscores among the three molecular subtypes. (F) Differences in
cytolytic activity among the three molecular subtypes. (G) Differences in the scores for 28 kinds of immune cells among the three molecular
subtypes. (H) Differences in the scores for 22 kinds of immune cells among the three molecular subtypes. *p < 0.05; **p < 0.01; ***p < 0.001; ****p <
0.0001; ns: no significance.
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Immune cell infiltration

The proportions of 22 tumor-infiltrating immune cells (TIICs)
were calculated using the CIBERSORT algorithm in all malignant
tumor samples. ImmuneScore, StromalScore, ESTIMATEScore, and
TumorPurity were determined using the ESTIMATE algorithm.
ssGSEA identified scores for 28 kinds of immune cells.

Genetic mutations and epigenetics

For 172 tumor driver genes (159 of which had copy data) (Gao
et al., 2013), we used GISTIC2 to analyze the changes in copy number.
Those with a ratio >0.2 were considered Gains, while those with a
ratio <0.2 were considered Losses; and the rest were considered to be
Diploid. SNV was determined using maftools. Methylation of 450K in
seven EMT genes and two mismatch repair genes was determined
using the KNN algorithm in the impute package.

Tumor immune dysfunction and exclusion
(TIDE)

The TIDE (Jiang et al., 2018; Fu et al., 2020) algorithm (http://
tide.dfci.harvard.edu) was used to evaluate the exclusion of CTL and
dysfunction of tumor infiltration cytotoxic T lymphocytes (CTL) by
immunosuppressive factors.

Drug sensitivity analysis

The sensitivity to traditional medicines (IC50 values) was
predicted using pRRophetic (Geeleher et al., 2014).

Construction of the IMscore

In the TCGA dataset, thyroid cancer samples were randomly
grouped into the training and test datasets in a 1:1 ratio. In the
TCGA dataset, we identified pathway genes and pathways with
Pearson correlations below the threshold |R| > 0.4, p < 0.05 to obtain
related genes. In the training dataset, univariate Cox analysis was
performed to screen genes related to prognosis. LASSO Cox
regression in the glmnet package in R language and stepAIC in
the MASS package were performed to select the best prognostic
genes. A penalty coefficient λ of the optimal value and genes for the
model development were determined through 10-fold cross-
validation for a total of 1000 iterations. The risk scores for each
were calculated using the following formula:

IMscore � ∑ βi × Expi,

where βi refers to the Cox hazard ratio coefficient of mRNA and
Expri is the expression level of a gene. Samples in the training dataset
were assigned into two groups of high-risk and low-risk based on the
optimal segmentation point cutoff, which was determined using the

FIGURE 3
Immune checkpoint genes among the three molecular subtypes. (A) Differences in PDCD1 expression among the three molecular subtypes. (B)
Differences in CTLA4 expression among the three molecular subtypes. (C) Differences in LAG3 expression among the three molecular subtypes. (D)
Differences in CD274 expression among the three molecular subtypes. (E) Differences in MHC-related gene expression among the three molecular
subtypes. ****p < 0.0001.
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survminer package. Simultaneously, the effectiveness and robustness
of the prognostic risk model were validated in test and entire TCGA
datasets. Survival differences among the risk groups were evaluated
using Kaplan–Meier (KM) curves combined with log-rank tests. The
performance of IMscore in pan-cancer, immunotherapy datasets
(IMvigor210 and GSE91061) was also evaluated.

Sangerbox assisted with this article (Shen et al., 2022).

Statistical analysis

The software packages used in this study were implemented in R
software (version 4.2.2; https://www.r-project.org/). A p-value < 0.
05 was considered statistically significant.

Results

Identification of three molecular subtypes in
thyroid cancer

Based on scores in 15 pathways, three molecular subtypes
(Immune-Enrich (E), Stromal-Enrich (E), and Immune-Deprived
(D)) in thyroid cancer were identified by ConsensusClusterPlus for

k = 3 (Figure 1A). The PCA results showed that the three molecular
subtypes had distinct boundaries, indicating the rationality of the
subtype classification (Figure 1B). Samples in Immune-D showed
better OS, while those in Immune-D showed better progression-free
survival (PFS) (Supplementary Figure S1A). The distribution of
clinical features of the three molecular subtypes indicated the
significance of the T and N stages (Supplementary Figure S1B).

Immune cell infiltration analysis among
molecular subtypes

The results of the ESTIMATE analysis showed higher and lower
ImmuneScore, StromalScore, and ESTIMATEScore in Immune-E
and Immune-D, respectively (Figures 2A–C). TumorPurity was
lower in Immune-E (Figure 2D). A higher EMT score was
observed in Stromal-E (Figure 2E). The cytolytic activity score
was increased in Immune-E (Figure 2F). In total, 28 kinds of
immune cells showed higher scores in Immune-E (Figure 2G),
while 18 of 22 immune cells also had higher scores in Immune-E
(Figure 2H).

Furthermore, the expression levels of PDCD1, CTLA4, LAG3,
and CD274(PD-L1) were upregulated in Immune-E (Figures
3A–D). The expression analysis of MHC genes showed increases

FIGURE 4
Mutation analysis of tumor-driving genes. (A)Mutation analysis of tumor-driving genes among the threemolecular subtypes. (B)Differences in TBM
among the three molecular subtypes. (C) KM survival curves of CSMD1 and ERBB3 mutants and wildtype. **p < 0.01; ns: no significance.
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in 21 genes in Immune-E (Figure 3E). These results indicated higher
immune infiltration in Immune-E.

Genome mutation analysis of the molecular
subtypes

Next, we analyzed the gene mutations among the molecular
subtypes. The results demonstrated that 60 genes among
172 tumor-driving genes showed varying degrees of mutation in
the three molecular subtypes (Figure 4A). The TMB was higher in
Immune-D compared to Stromal-E (Figure 4B). Tumor driver
gene mutations and wild-type samples used for KM analysis
showed better survival outcomes in samples with CSMD1 and
ERBB3 wildtype compared to samples with CSMD1 and ERBB3
mutations (Figure 4C). CNV analysis of 159 genes showed copy
number amplification and deletion in 22 genes in the three
molecular subtypes (Figure 5A). Expression analysis of the
corresponding genes in CNV groups of DOLPP1, PLEKHA6,
PTEN, and MNDA demonstrated that the four genes had higher
expression levels in the Gain group and low expression in the Loss
group (Figure 5B).

A total of seven EMT genes and two mismatch repair genes were
used to calculate the 450K beta values. The beta values of ZEB1,
TW1ST1, CDH2, CDH1, and MLH1 differed among the three
molecular subtypes (Figure 6A). Pearson correlation analysis of gene
expressions and beta values showed that ZEB1, VIM, CDH2, CDH1,
and CLDN1 expressions were negatively correlated with beta value
(Figure 6B). The beta value of the cg probe site in CDH1 was higher in
Immune-E (Figure 6C). Similarly, the beta value of the cg probe site was
negatively correlated with CDH1 expression (Figure 6D).

Immunotherapy prediction and drug
sensitivity analysis

We used TIDE (http://tide.dfci.harvard.edu/) software to
evaluate the potential clinical effect of immunotherapy according
to the molecular subtypes. The TIDE score was lower for Immune-E,
indicating that Immune-E may be more suitable for
immunotherapy. Moreover, 47% of samples in Immune-E
showed immunotherapy response, a proportion higher than those
in Stromal-E and Immuno-D (Figure 7A). The IC50 values for
cisplatin, erlotinib, sunitinib, paclitaxel, saracatinib, and dasatinib

FIGURE 5
CNV analysis of tumor-driving genes. (A) CNV analysis of tumor-driving genes among the three molecular subtypes. (B) Expression differences of
four genes in three CNV groups. *p < 0.05; **p < 0.01; ****p < 0.0001; ns: no significance.
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were lower in Immune-E, suggesting that Immune-E is more
sensitive to those chemotherapeutic drugs (Figure 7B).

Construction of the IMScore

In the TCGA dataset, Pearson correlation analysis between
genes in pathways and pathways identified 1784 genes with |R|
>0.4 and p < 0.05. Then, in the TCGA training dataset, seven
prognosis genes (p < 0.05) for thyroid cancer were screened from
1784 genes using univariate Cox analysis. Finally, four genes were
used to construct a prognostic model (IMScore =
0.732*HSPA6+0.917*FLNC 1.083*CLDN2 0.966*E2F1) through
lasso analysis and the stepAIC method.

In the TCGA training, testing, and entire TCGA datasets,
samples were classified into high and low IMScore groups using
the cutoff. KM curve analysis showed that patients in the low group
had longer survival times. Moreover, in terms of PFS, DFI, and DSS,
the low group showed better PFI (p = 0.04) and DSS (p < 0.0001)
(Figure 8A). The IMScores were higher in the Immune-D and
Stromal-E subtypes (Figure 8B).

Performance prediction of the prognostic
model

Among 32 cancer types in the TCGA dataset, high IMScore
survival times were shorter than low IMScore survival times except
for TGCT and UCS (Supplementary Figure S2). We validated the
prediction effect of IMScore in the immunotherapy datasets
IMvigor210 and GSE91061. In the IMvigor210 dataset, samples
with a low IMScore had better survival outcomes, and the 0.5-, 1-,
and 1.5-year AUCs were 0.58, 0.64, and 0.65, respectively
(Figure 9A). The samples with low TIDE had better survival
outcomes, and the 0.5-, 1-, and 1.5-year AUCs were 0.54, 0.57,
and 0.57, respectively (Figure 9B). Samples with low PD-L1 also had
better survival outcomes, and the 0.5-, 1-, and 1.5-year AUCs were
0.6, 0.6, and 0.59, respectively (Figure 9C). The prediction of the
response to treatment showed AUCs of TIDE, PD-L1, and IMScore
of 0.58, 0.57, and 0.67, respectively (Figure 9D). In the
GSE91061 dataset, samples with a low IMScore had better
survival outcomes, and the 0.5-, 1-, and 1.5-year AUCs were
0.59, 0.75, and 0.75, respectively (Figure 9E). The samples with
low TIDE had better survival outcomes, and the 1-, 2-, 2.5-year

FIGURE 6
Methylation analysis of genes among the three molecular subtypes. (A) 450K beta value differences for nine genes among the three molecular
subtypes. (B) Correlation analysis between 450K beta values and gene expression. (C) Distributions of beta in the cg probe site in CDH1 among the three
molecular subtypes. (D) Correlation analysis between 450K beta values of CDH1 and CDH1 expression. *p < 0.05; **p < 0.01; ***p < 0.001; ****p <
0.0001; ns: no significance.

Frontiers in Pharmacology frontiersin.org07

Zhang et al. 10.3389/fphar.2023.1130399

207

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1130399


AUCs were 0.61, 0.58, and 0.59, respectively (Figure 9F). The
survival outcomes did not differ significantly between the low-
and high- PD-L1 groups, and the 0.5-, 1-, 1.5-year AUCs were
0.54, 0.57, and 0.57, respectively (Figure 9G). The prediction of the
response to treatment showed AUCs of TIDE, PD-L1, and IMScore
of 0.58, 0.55, and 0.61, respectively (Figure 9H). The results of the
aforementioned analyses demonstrated the better prediction effect
of the IMScore compared to TIDE.

Nomogram model of thyroid cancer

First, univariate analysis showed that age, gender, TNM stage
(p < 0.001), stage, and IMScore were significantly associated with a
shorter OS in patients with thyroid cancer (Figure 10A). Then, we
established a nomogram model that included the important
predictors in the Cox analysis to predict the prognosis of thyroid
cancer (Figure 10B). The calibration curve showed good

concordance between the predicted and observed values of 1-, 3-,
and 5-year OS (Figure 10C). The decision curve showed that the
nomogram had the best prediction performance for the prognosis of
thyroid cancer (Figure 10D).

Discussion

The main obstacle to tumor progression is the immune system,
which sees tumors as emerging pathogens that require elimination
(Martin et al., 2021). Understanding tumor immunity is critical for
improving current immunotherapy regimens. In 2018, Thorsson
et al. (2018) developed a new immune classification system
comprising six immune subtypes: C1 (wound healing), C2 (IFN-
γ phenotype), C3 (inflammatory), C4 (lymphocyte depletion),
C5 Type I (immunosilencing), and type C6 (TGF-β dominant).
In different tumors, different immune subtypes have different
prognoses, and patients with C4 and C6 tumors have worse

FIGURE 7
TIDE and drug sensitivity analysis. (A) TIDE analysis among the three molecular subtypes. (B) IC50 analysis of eight drugs among the three molecular
subtypes. *p < 0.05; **p < 0.01; ****p < 0.0001; ns: no significance.
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prognoses. In colorectal cancer, the immune subtypes are mainly
types C1 and C2. Different immune subtypes cause different
biological differences, which may explain drug heterogeneity in
patients with traditional cytotoxic drugs and immunotherapy
(Soldevilla et al., 2019). We divided thyroid cancer samples into
three immune types based on immune cells: Immune-enrich (E),
Stromal-enrich(E), and Immune-deprived(D). Immuno-E showed a
high immune cell infiltration but shorter OS, probably because of a
small number of dead samples (7.96%).

Cancer is essentially a genomic disease that progresses as
mutations including CNVs and SNPs accumulate in somatic
cells, as well as epigenomic alterations with or without inherited
alterations. CNV is one of the most common markers in the cancer

genome, which can lead to oncogene activation and tumor
suppressor gene inactivation (Nakagawa and Fujita, 2018). DNA
methylation is the most important epigenetic variation in the human
genome, and the process of cell carcinogenesis is always
accompanied by extensive changes in DNA methylation (Locke
et al., 2019; Pan et al., 2021). To further explore the underlying
differences in mechanism among the three immune subtypes, we
selected methylation and gene copy number. We detected CNV and
hypermethylation of tumor driver genes in all three subtypes. The
methylation and copy values of genes were negatively and positively
correlated with mRNA expression levels, respectively; hence, the
differences between thyroid cancer subtypes may be due to changes
in gene copy number and methylation.

FIGURE 8
KM survival analysis. (A) KM survival analysis of the high and low groups in TCGA train, test, entire, TCGA-PFI, TCGA-DFI, and TCGA-DSS datasets. (B)
Differences in IMScore among the three molecular subtypes.
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FIGURE 9
Performance of IMScore in immunotherapy datasets. (A) KM survival curve and ROC analysis of IMScore in the IMvigor210 dataset. (B) KM survival
curve and ROC analysis of TIDE in the IMvigor210 dataset. (C) KM survival curve and ROC analysis of PD-L1 in the IMvigor210 dataset. (D) ROC analysis of
IMScore and TIDE in the IMvigor210 dataset. (E) KM survival curve and ROC analysis of IMScore in the GSE91061 dataset. (F) KM survival curve and ROC
analysis of TIDE in the GSE91061 dataset. (G) KM survival curve and ROC analysis of PD-L1 in the GSE91061 dataset. (H) ROC analysis of IMScore and
TIDE in the GSE91061 dataset.

FIGURE 10
Nomogram construction. (A) Univariate analysis of the IMScore and clinical features. (B) Nomogram that incorporated the IMScore and clinical
features was developed. (C) Calibration curve. (D) Decision curve analysis.
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In this study, biological information analysis identified four genes,
HSPA6, FLNC, CLDN2, and E2F1 as candidate biomarkers of thyroid
cancer. Recently, HSPA6 was found to be indispensable in the
Withaferin A-mediated inhibition of apoptosis/autophagy or
migration in breast cancer cells (Hahm et al., 2021). Alterations in
Claudin-2 (CLDN2), a component of cellular tight junction, are involved
in the progression of a variety of cancer types (Buchert et al., 2010;
Tabariès et al., 2011; Tabariès et al., 2012). E2F1 is a potent oncogene in
human cancers, including thyroid cancer, prostate cancer, lung cancer,
and colorectal cancer, that can accelerate the invasion, spread, and
metastasis of cancer cells and further predict poor prognosis (Bi et al.,
2017; Yin et al., 2017; Zhou et al., 2020; Yang et al., 2022).

Although we used bioinformatics methods on large numbers of
samples to identify genetic subgroups and develop a prognosis model
of thyroid carcinoma that showed significant prognostic differences,
this study has several limitations. Future work will place a greater
emphasis on research that is both fundamentally experimental and
functionally in-depth. Moreover, we were unable to consider other
factors because the samples lacked essential clinical follow-up
information, such as diagnostic specifics; for instance, whether the
patients had other health conditions. These factors may have
informed the differentiation of the molecular subtypes.

In conclusion, we identified three immune molecular subtypes
and developed a prognostic model based on four prognostic genes,
which may provide new targets for the diagnosis and treatment of
thyroid cancer. Further studies are needed to confirm the
mechanism of prognostic genes, which will provide new
opportunities for the diagnosis and treatment of thyroid cancer.
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The m6A-regulation and single
cell effect pattern in sunitinib
resistance on clear cell renal cell
carcinoma: Identification and
validation of targets
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1Clinical Laboratory, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan,
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Background: Sunitinib is the main target drug for clear cell renal cell carcinoma.
However, the effect of sunitinib is often limited by acquired drug resistance.

Methods: The open-accessed data used in this studywere obtained from different
online public databases, which were analyzed using the R software. The RNA level
of specific genes was detected using quantitative Real-Time PCR. Sunitinib-
resistant cell lines were constructed based on protocol get from the previous
study. Colony formation and Cell Counting Kit-8 assays were applied to detect cell
proliferation ability.

Results: In this study, through publicly available data and high-quality analysis, we
deeply explored the potential biological mechanisms that affect the resistance of
sunitinib. Detailed, data from GSE64052, GSE76068 and The Cancer Genome
Atlas were extracted. We identified the IFITM1, IL6, MX2, PCOLCE2, RSAD2 and
SLC2A3 were associated with sunitinib resistance. Single-cell analysis, prognosis
analysis and m6A regulatory network were conducted to investigate their role.
Moreover, the MX2 was selected for further analysis, including its biological role
and effect on the ccRCC microenvironment. Interestingly, we noticed that
MX2 might be an immune-related gene that could affect the response rate of
immunotherapy. Then, in vitro experiments validated the overexpression of MX2 in
sunitinib-resistance cells. Colony formation assay indicated that the knockdown
of MX2 could remarkably inhibit the proliferation ability of 786-O-Res and Caki-1-
Res when exposed to sunitinib.

Conclusion: In summary, through publicly available data and high-quality analysis,
we deeply explored the potential biological mechanisms that affect the resistance
of sunitinib. MX2 was selected for further analysis, including its biological role and
effect on the ccRCCmicroenvironment. Finally, in vitro experiments were used to
validate its role in ccRCC.
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Introduction

Renal cell carcinoma (RCC) is a malignant tumor that arises out
of the renal tubular epithelium, which is very common in the world.
It is estimated that about 300,000 new cases are created each year,
and 130,000 cancer-related deaths are caused at the same time
(Cohen and McGovern, 2005). Among them, seventy to eighty
percent of all cases of renal cell carcinoma are clear cell (ccRCC)
(Wettersten et al., 2017). As a multifactorial disease, the
pathogenesis of ccRCC is not completely clear, and it is closely
related to age, obesity, smoking, hypertension, genetic factors, and so
on (Znaor et al., 2015). In the past decade, the incidence rate of renal
tumors worldwide has shown a trend of continuous growth, and the
internal microenvironment of tumors is usually accompanied by the
reprogramming of metabolic networks and pathways. Through
metabolic reprogramming, tumor cells proliferate rapidly, survive
under hypoxia and nutrient depletion, and escape immune
surveillance (Wettersten et al., 2017). Meanwhile, due to the lack
of early clinical symptoms, more than 30%–50% of ccRCC patients
missed the best opportunity for surgery, making the diagnosis,
treatment, and prevention of it a serious public health problem
worldwide.

At present, for early and resectable RCC, radical surgery is still a
major treatment. Although surgery can cure most early-stage
patients, due to the high blood metastasis rate, about 25% of
locally progressed or localized patients will suffer from metastasis
(Dudani et al., 2021). Additionally, considering the occult symptoms
of RCC, about 20%–25% of patients had distant metastasis at the
time of diagnosis and could not undergo radical surgery (Xue et al.,
2021). Moreover, for patients with advanced or metastatic stages, the
five-year survival rate is only about 23% due to the high
heterogeneity and invasiveness of the disease (Atkins and Tannir,
2018). Unfortunately, the treatment of ccRCC with radiotherapy
and chemotherapy is not effective, which limits its treatment options
to some extent. Sunitinib is a kind of drug that can selectively target
tyrosine kinase, which is widely utilized in RCC and has achieved
encouraging results (Bex et al., 2019). However, some patients
receiving sunitinib treatment will still be limited by acquired
drug resistance (McDermott et al., 2018). Considering the
practical significance of this problem, researchers have begun to
pay attention to and identify the specific biological mechanism of
acquired resistance to sunitinib (Broxterman et al., 2009). Zhu and
their colleagues found that the ZHX2 can induce sunitinib resistance
through the autophagy regulated by MEK/ERK axis (Zhu et al.,
2020). Bender and their colleagues noticed that the overexpressed
PRKX, TTBK2 and RSK4 can lead to sunitinib resistance (Bender
and Ullrich, 2012). The m6A RNA methylation is an epigenetic
modification pathway widely existing in the cancer
microenvironment. Chen and their colleagues revealed that
TRAF1 can contribute to sunitinib resistance based on the
METTL14 and m6A modifications (Chen et al., 2022).
Consequently, it is of practical clinical significance to identify
biological targets that may participate in the resistance of sunitinib.

Access to public data can provide convenience for researchers
(Wang et al., 2019a; Wei et al., 2020; Zhang et al., 2022). Here,
through publicly available data and high-quality analysis, we deeply
explored the potential biological mechanisms that affect the
resistance of sunitinib. Detailed, data from GSE64052,

GSE76068 and TCGA were extracted. We identified the IFITM1,
IL6, MX2, PCOLCE2, RSAD2 and SLC2A3 were associated with
sunitinib resistance. Single-cell analysis, prognosis analysis andm6A
regulatory network were conducted to investigate their role.
Moreover, the MX2 was selected for further analysis, including
its biological role and effect on the ccRCC microenvironment.
Interestingly, we noticed that MX2 might be an immune-related
gene that could affect the response rate of immunotherapy. Then,
in vitro experiments validated the overexpression of MX2 in
sunitinib-resistance cells. Colony formation assay indicated that
the knockdown of MX2 could remarkably inhibit the
proliferation ability of 786-O-Res and Caki-1-Res when exposed
to sunitinib.

Methods

Acquisition and pre-processing of open-
accessed data

The open-accessed data used in this study were obtained from
the Gene Expression Omnibus (GEO) and The Cancer Genome
Atlas (TCGA) databases. The GSE64052 and GSE76068 contain
the sequence information between the sunitinib-resistant and
wild-type RCC cells (Zhang et al., 2015). For the TCGA database,
the clinical features and transcription profile information were
directly downloaded from the TCGA-KIRC project. Initially, the
expression profile file of the individual patient was downloaded in
“STAR-Counts” format and converted into TPM format through
R code. Before analysis, we adjusted the range of expression
values to 1–20 through data preprocessing for all data. The
first step is to annotate the probe ID as the corresponding
gene symbol through the annotation file (GRCh38. p13). The
second part is to complete the missing values in the expression
matrix. The third step is to average the expression amount of
duplicate gene symbols and remove the part where the mean
value is less than 0.1. Limma package was applied to identify the
genes differentially expressed between different groups (Ritchie
et al., 2015). The genes affected by sunitinib were get from the
CTD database. The baseline information of TCGA-KIRC patients
was shown in Supplementary Table S1.

Gene ontology (GO) and kyoto encyclopedia
of genes and genomes (KEGG)

GO and KEGG analysis can reflect the biological effect based on
the input molecules, which was performed using the clusterprofiler
package (Yu et al., 2012). Detailed, the “OrgDb” was “org.Hs.eg.db”;
the “pvalueCutoff” was 0.05; the “qvalueCutoff” was 0.05; the “ont”
was “all”.

Single-cell evaluation

Specific gene expression patterns in the ccRCC
microenvironment were evaluated using the online website
TISCH project, a scRNA-seq database aiming to
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characterize tumor microenvironment at single-cell
resolution (Sun et al., 2021). Detailed, the database in
TISCH projects KIRC_GSE111360, KIRC_GSE121636, KIRC_
GSE139555 and KIRC_GSE145281 were selected to
illustrate the single-cell expression pattern of MX2 (major-
linegae).

Cytoscape software

The co-expression analysis was visualized using the Cytoscape
software (Shannon et al., 2003).

Pathway investigation

To identify pathways significantly different between the two
groups, gene set enrichment analysis (GSEA) was employed.
Reference gene set was “Hallmark”. The enriched pathways with
false discovery rate (FDR) < 0.25 and p.adjust < 0.05 were regarded
as significant (Subramanian et al., 2005). Based on the pathway set,
single sample GSEA (ssGSEA) analysis was conducted
(Hänzelmann et al., 2013).

Methylation

The list of molecules involved m6A process was collected from
the previous study (Lv et al., 2021). The correlation between clinical
features and gene methylation was investigated using the
MEXPRESS database (https://mexpress.be/).

Tumor microenvironment

Through bioinformatics analysis, the tumor
microenvironment can be quantified using specific algorithms.
In our study, the tumor microenvironment was quantified using
the EPIC, MCPCOUNTER, TIMER, CIBERSORT, QUANTISEQ
and XCELL algorithms (Becht et al., 2016; Li et al., 2017; Chen
et al., 2018; Racle and Gfeller, 2020).

Tumor immune dysfunction and exclusion
(TIDE)

The TIDE score quantified by the TIDE algorithm can reflect the
response rate of patients on immunotherapy. Meanwhile, as well as
immune dysfunction and immune exclusion levels, the TIDE
algorithm quantified cancer-associated fibroblasts,
M2 macrophages, and myeloid-derived suppressor cells (Fu et al.,
2020).

Immunohistochemistry

In the HPA database, MX2 was immunohistochemically
detected in ccRCC tumors and normal tissue (Uhlén et al., 2015).

Establishment of sunitinib-resistant cell lines
and cell culture

The 786-O and Caki-1 cell lines were laboratories stored and
cultured in RPMI-1640 culture medium added with 10% fetal bovine
serum (FBS) under the standard cell culture conditions of 37°C with
5% CO2. The process to induce the cell lines resistant to sunitinib
was followed by a previous study (Sakai et al., 2013; Wei et al., 2021).
The IC50 of used cells 786-O/786-O-Res and Caki-1/Caki-1-Res
were 27.66/102.1 and 10.26/73.59 nM.

Quantitative Real-Time PCR

Total RNA extraction and cDNA preparation were conducted
following the standard process (Wei et al., 2021). The primer used
for PCR was: forward, 5′-TGAACGTGCAGCGAGCTT-3′, reverse,
5′-GGCTT GTGGGCCTTAGACAT-3′; GPADH, 5′-CTGGGC
TACACTGAGCACC-3’; reverse, 5′-AAGTGGTCGTTGAGG
GCAATG-3’.

RNA interference

The plasmids used for cell transfection were purchased from
Shanghai GenePharma Co., Ltd., and the sequences were: sh#1: 5′-
GCACGATTGAAGACATAAA-3′, sh#2: 5′- GGGACGCCTTCA
CAGAATA-3′, sh#3: 5′-GCCAACCAGATCCCATTTA-3’. The
processes of cell transfection were conducted following the
standard process using the Lipofectamine 3,000 regrant.

Cell Counting Kit-8 (CCK8) and colony
formation assays

CCK8 and colony formation assays were conducted following
the standard process (Wei et al., 2021).

Statistical analysis

All the analysis were completed in the R, SPSS and GraphPad
Prism 8 software. The 0.05 was set as the statistical threshold.
Normally distributed data are analyzed using independent
T-tests. Non-normally distributed data are analyzed using the
Mann-Whitney U tests.

Results

Figure 1 illustrates the flow chart of our study. In this study, we
identified the molecules involved in sunitinib resistance through the
data from GSE64052, GSE76068 and TCGA-KIRC. Then, the
biological enrichment and single-cell analysis based on TISCH
project were conducted to investigate the role of identified
molecules in ccRCC, as well as their interaction network with
m6A regulators. Ultimately, MX2 was identified for further
analysis, including expression pattern, prognosis role, biological
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investigation, tumor microenvironment, immunotherapy
evaluation and in vitro experiments validation.

Effect of sunitinib-resistant related genes in
ccRCC

The data normalization process of GSE64052 and
GSE76068 were shown in Figures 2A–D. We investigated the
underlying biological effects of sunitinib on ccRCC cells. For
genes positively correlated with sunitinib (Supplementary
Material S1), the genes were enriched in cytoplasmic translation,
rRNA processing, ribosome biogenesis, ncRNA processing, process
utilizing autophaic mechanism and autophagy (Figure 2E, GO-BP);
cytosolic ribosome, late endosome, lysosomal membrane, vacuolar
membrane and lytic vacuole membrane (Figure 2F, GO-CC);
phosphatidylinositol binding, ubiquitin-protein transferase
activity and ubiquitin-like protein transferase activity (Figure 2G,
GO-MF); biosynthesis of amino acids, HIF-1 signaling pathway,
p53 signaling pathway, phosphatidylinositol signaling system, FoxO
signaling pathway and mTOR signaling pathway (Figure 2H,
KEGG). For genes negatively correlated with sunitinib
(Supplementary Material S1), the genes were enriched in DNA-
dependent DNA replication, mitotic sister chromatid segregation,
mitotic nuclear division, DNA replication, nuclear division, and
organelle fission (Figure 2I, GO-BP); centromeric region, condensed
chromosome, chromosomal region and spindle (Figure 2J, GO-CC);
DNA replication origin binding, structural constituent of muscle,

actinin binding, DNA helicase activity, catalytic activity, acting on
DNA and actin binding (Figure 2K, GO-MF); DNA replication, cell
cycle, cardiac muscle contraction, age-race signaling pathway in
diabetic complications, prion disease and parkinsion disease
(Figure 2L, KEGG). Through the limma package with the
threshold of |log FC| > 0.5 and p < 0.05, 280 downregulated and
200 upregulated genes were identified in GSE64052 between the
sunitinib-resistant and wild-type RCC cells (Figure 2M);
83 downregulated and 53 upregulated genes were identified in
GSE76068 between the sunitinib-resistant and wild-type RCC
cells (Figure 2N). Furthermore, we found that six genes were
commonly upregulated, while nine genes were commonly
downregulated in both GSE64052 and GSE76068 cell lines
(Figure 2O). The clinical roles of these six genes were shown in
Supplementary Figure S1A–D.

Single-cell analysis

Following this, we evaluated the single-cell level of six
commonly upregulated genes in the ccRCC single-cell level
(Figures 3A–D; Supplementary Figure S2A–E). Results indicated
that IFITM1 was mainly expressed in NK cells, Treg and CD8+

T cells in four ccRCC single-cell cohorts, GSE111360, GSE121636,
GSE139555 and GSE145281; the overall expression level of IL6,
PCOLEC2 and RSAD2 seems to be very low; MX2 and SLC2A3 are
expressed in various cells. KM survival curves were then used to
identify the prognosis role of these genes (Figures 3E–G).

FIGURE 1
The flow chart of the whole study.
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Results indicated that the MX2 and IL6 are associated with worse
survival performance of patients, but the statistical p-value of
IFITM1, PCOLCE2, RSAD2, and SLC2A3 were not significant.

The m6A-regulation regulatory network of
sunitinib-resistant related genes

The m6A modification is an important part of the epigenetic
field and has been reported to affect sunitinib resistance (Li et al.,

2022). The expression pattern of m6A regulators was shown in
Figure 4A. We noticed that the IFITM1 was regulated by
YTHDC1, METTL14, RBM15, ALKBH5, WTAP, HNRNPC,
YTHDF1, METTL3, ZC3H13, YTHDF2 and FTO (Figure 4B);
RSAD2 was regulated by YTHDC2, FTO, ALKBH5, RBM15,
ZC3H13, YTHDF2, YTHDF1, WTAP, HNRNPC, YTHDC1,
METTL14, METTL3 and YTHDC2 (Figure 4C);
PCOLCE2 was regulated by YTHDC2, ZC3H13, RBM15, FTO,
HNRNPC, ALKBH5, WTAP, YTHDF1, METTL14, YTHDC1,
YTHDF2 (Figure 4D); MX2 was regulated by YTHDC2, FTO,

FIGURE 2
Effect of sunitinib-resistant related genes in ccRCC. (A) The GO-BP terms of genes positively correlated with sunitinib (CTD database); (B) The GO-
CC terms of genes positively correlated with sunitinib (CTD database); (C) The GO-CC terms of genes positively correlated with sunitinib (CTD database);
(D) The KEGG terms of genes positively correlated with sunitinib (CTD database); (E) The GO-BP terms of genes negatively correlated with sunitinib (CTD
database); (F) The GO-CC terms of genes negatively correlated with sunitinib (CTD database); (G) The GO-CC terms of genes negatively correlated
with sunitinib (CTD database); (H) The KEGG terms of genes negatively correlated with sunitinib (CTD database); (I,J) Data normalization of GSE64052;
(K,L)Data normalization of GSE76068; (M)DEGs analysis of GSE64052; (N)DEGs analysis of GSE76068; (O) Intersection of DEGs result of GSE76068 and
GSE64052.
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RBM15, YTHDC1, ZC3H13, METTL3, ALKBH5, YTHDF2,
HNRNPC, WTAP, METTL14 and YTHDF1 (Figure 4E);
SLC2A3 was regulated by ZC3H13, METTL14, RBM15,
YTHDF2, ALKBH5, YTHDF1, YTHDC2, FTO, HNRNPC,
WTAP, METTL3 and YTHDC1 (Figure 4F). Interestingly, we
noticed MX2 was positively correlated with all m6A regulators,

including HNRNPC, YTHDF2, METTL3, YTHDF1, YTHDC2,
ALKBH5, FTO, YTHDC1, ZC3H13, RBM15, WTAP and
METTL14 (Figures 4G–R). Moreover, we noticed that the
methylation sites cg00764652, cg05656374, cg152811283, and
cg21130374 were negatively correlated with the
MX2 expression (Figures 4S–V).

FIGURE 3
Single-cell and prognosis analysis of IFITM1, IL6, MX2, PCOLCE2, RSAD2 and SLC2A3. (A) Single-cell analysis of IFITM1, IL6, MX2, PCOLCE2,
RSAD2 and SLC2A3 in GSE111360; (B) Single-cell analysis of IFITM1, IL6, MX2, PCOLCE2, RSAD2 and SLC2A3 in GSE121636; (C) Single-cell analysis of
IFITM1, IL6, MX2, PCOLCE2, RSAD2 and SLC2A3 in GSE139555; (D) Single-cell analysis of IFITM1, IL6, MX2, PCOLCE2, RSAD2 and SLC2A3 in GSE145281;
(E)Overall survival of IFITM1, IL6, MX2, PCOLCE2, RSAD2 and SLC2A3 in ccRCC; (F) Disease free survival of IFITM1, IL6, MX2, PCOLCE2, RSAD2 and
SLC2A3 in ccRCC; (G) Progression free survival of IFITM1, IL6, MX2, PCOLCE2, RSAD2 and SLC2A3 in ccRCC.
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FIGURE 4
The m6A regulatory network of IFITM1, IL6, MX2, PCOLCE2, RSAD2 and SLC2A3. (A) The expression pattern of m6A regulators in ccRCC; (B–F) The
m6A regulatory network of IFITM1, IL6, MX2, PCOLCE2, RSAD2 and SLC2A3; (G–R) Correlation between MX2 and m6A regulators; (S–V) Correlation
between MX2 and methylation site.
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FIGURE 5
Effect pattern of MX2 in ccRCC. (A) Pan-cancer analysis of MX2; (B) The immunohistochemistry image of MX2 in normal renal tissue, ns = p > 0.05,
* = p < 0.05, ** = p < 0.01, *** = p < 0.001, **** = p < 0.0001; (C) The immunohistochemistry image of MX2 in renal cancer tissue; (D) Overview of
MX2 methylation in ccRCC, * = p < 0.05, *** = p < 0.001; (E) Univariate Cox regression analysis of MX2; (F) Multivariate Cox regression analysis of MX2.
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FIGURE 6
Biological investigation of MX2. (A–C) Correlation between MX2 and immune score, stromal score and estimate score quantified by estimate
package; (D) DEGs analysis in patients with high and low MX2 expression; (E) GO and KEGG analysis of MX2 in ccRCC; (F, H–J) GSEA analysis based on
Hallmark gene set; (G) ssGSEA algorithm was used to quantify the enrichment score of immune pathways.
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FIGURE 7
Effect of MX2 on ccRCC microenvironment. (A) The ccRCC microenvironment was quantified based on multiple algorithms; (B–G) Correlation
betweenMX2 and specific cells; (H) The expression level of specific immune checkpoints in patients with high and lowMX2 expression; (I) The expression
level of MX2 in immunotherapy responders and non-responders, *** = p < 0.001; (J) Levels of immune dysfunction, immune exclusion and CAF, MDSC
and TAM M2 in patients with high and low MX2 expression.
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Subsequent analysis of MX2

Next, we evaluated the expression pattern of MX2 in
pan-cancer. Results showed that MX2 was
differentially expressed in most cancer (Figure 5A).
We noticed a relatively higher protein level of MX2 in
ccRCC protein (Figures 5B, C). The overview of the
MX2 and methylation site were shown in Figure 5D. Cox
regression analysis of single factor and multiple factors
showed that MX2 is an independent prognosis factor for
ccRCC survival (Figures 5E, F). We also explored the
lncRNAs and mRNAs significantly correlated with
MX2 expression, which was shown in Supplementary Material
S2, S3.

Biological investigation

The Estimate R package was utilized to quantify the
tumor microenvironment of the ccRCC microenvironment.
In the correlation analysis, the immune score, stromal score,
and estimate score were positively correlated with the
MX2 (Figures 6A–C). The differentially expressed genes
(DEGs) analysis was performed between the patients with
high and low MX2 expression (Figure 6D). Based on these
DEGs, we found MX2 was mainly enriched in the terms of
GO:0006885, hsa04966, GO:0055067, hsa05110, GO:0033176,
GO:0004252, GO:0008236, GO:0017171, hsa04145, GO:
0048018, GO:0019814, GO:0043062, GO:0030198 (Figure 6E).
There was a positive correlation between MX2 and multiple
pathways in the ssGSEA analysis (Figure 6G). Using GSEA
analysis, it was revealed that the DEGs with a high level of
epithelial-mesenchymal transition, allograft rejection and
inflammation were enriched in the Hallmark signaling
(Figures 6F, H–J).

Effect of MX2 on tumor microenvironment

Multiple algorithms mentioned in the method section were
utilized to quantify the tumor microenvironment of ccRCC.
From the heatmap, we observed a remarkably different
infiltration pattern of quantified cells in patients with high and
low MX2 expression (Figure 7A). Correlation analysis showed that
MX2 was positively correlated with endothelial cell_EPIC,
macrophages M2_QUANTISEQ, monocyte_XCELL, Tregs_
QUANTISEQ, yet negatively correlated with the NK cell_
QUANTISEQ and B cell plasma_XCELL (Figures 7B–G).
Moreover, we noticed that all the key immune checkpoints,
including LAG3, SIGLEC15, CTLA4, HAVCR2, PDCD1LG2,
CD274, PDCD1 and TIGIT were overexpressed in patients with
high MX2 level (Figure 7H). Furthermore, we tried to explore
whether MX2 has an impact on the immunotherapeutic response
of ccRCC. Results showed that the immunotherapy non-responders
had a higher MX2 level (Figure 7I). Meanwhile, patients with higher
MX2 expression might have a higher level of immune dysfunction,
immune exclusion and CAF, while a lower level of MDSC and TAM
M2 (Figure 7J).

MX2 is associated with sunitinib resistance

Through the method mentioned above, we construct two cell
lines resistant to sunitinib, named 786-O-Res and Caki-1-Res. The
results of IC50 to sunitinib validated the resistance of these cells on
sunitinib (Figure 8A, IC50 of 786-O-wild = 27.66, IC50 of 786-O-
Res = 102.1; Figure 8B, IC50 of Caki-1-wild = 10.26, IC50 of Caki-1-
Res = 73.59). The result of the PCR revealed that MX2 was
overexpressed in sunitinib-resistance cell lines (Figure 8C, 786-O-
Res and Caki-1-Res). The inhibition efficiency of MX2 in cell lines
was validated using the PCR and sh#2 was selected for further
experiments (Figure 8D). Colony formation assay indicated that the
knockdown of MX2 could remarkably hamper the proliferation
ability of 786-O-Res and Caki-1-Res when exposed to sunitinib
(Figure 8E).

Discussion

With the change in the comprehensive environment, the
incidence rate of ccRCC is increasing year by year (Jonasch et al.,
2021). Advanced RCC is mainly treated with drugs, and it is not
sensitive to radiotherapy and has a poor effect on chemotherapy
(Barata and Rini, 2017). Although non-specific immunotherapy is
beneficial to some patients with advanced RCC, it has little clinical
benefit in most cases and obvious toxic exposure (Barata and Rini,
2017). Sunitinib has effectively improved the survival performance
of patients with RCC, with relatively small side effects, and is
currently the main means of drug treatment for renal cancer
(Barata and Rini, 2017). However, in practical clinical
application, some patients receiving sunitinib treatment often
have acquired drug resistance, which limits their therapeutic
benefits (Larroquette et al., 2021).

In this study, through publicly available data and high-quality
analysis, we deeply explored the potential biological mechanisms
that affect the resistance of sunitinib. Detailed, data from GSE64052,
GSE76068 and TCGA were extracted. We identified the IFITM1,
IL6, MX2, PCOLCE2, RSAD2 and SLC2A3 were associated with
sunitinib resistance. Single-cell analysis, prognosis analysis andm6A
regulatory network were conducted to investigate their role.
Moreover, the MX2 was selected for further analysis, including
its biological role and effect on the ccRCC microenvironment.
Interestingly, we noticed that MX2 might be an immune-related
gene that could affect the response rate of immunotherapy. Then,
in vitro experiments validated the overexpression of MX2 in
sunitinib-resistance cells. Colony formation assay indicated that
the knockdown of MX2 could remarkably inhibit the
proliferation ability of 786-O-Res and Caki-1-Res when exposed
to sunitinib.

Six genes were identified to induce sunitinib resistance in
ccRCC, including IFITM1, IL6, MX2, PCOLCE2, RSAD2 and
SLC2A3. Some of these genes have been reported to play an
important role in cancer. Provance and their colleagues found
that the IFITM1 could be affected by crosstalk between the NF-κB
and interferon-alpha and regulated breast cancer progression
(Provance et al., 2021). Lee and their colleagues noticed that
the IFITM1 affected gastric cancer pathological characteristics
through epigenetic regulation (Lee et al., 2012). Yu and their
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colleagues indicated that the IFITM1 could facilitate colon cancer
metastasis by regulating CAV-1 (Yu et al., 2015). Yao and their
colleagues found that the SLC2A3 could facilitate
M2 macrophage infiltration by inducing glycolysis
reprogramming (Yao et al., 2020). Liu and their colleagues
demonstrated that the SLC2A3 could lead to the reduction of
vitamin C uptake, therefore inhibiting leukemia development
(Liu et al., 2020). Juraleviciute and their colleagues noticed
that the MX2 could regulate the XAF1 and make the
melanoma cells sensitive to targeted therapy (Juraleviciute
et al., 2021). Wang and their colleagues found that the
MX2 could suppress the glioblastoma progression through
ERK/P38/NF-κB signaling (Wang et al., 2019b). Our results
provide a reference for revealing the mode of action of these
genes in ccRCC. Meanwhile, we deeply and comprehensively
analyzed the role pattern of MX2 in ccRCC, and validated its
influence on sunitinib resistance through in vitro experiments,
making it a potential clinical target.

We found that these sunitinib-resistant related genes were regulated
by multiple m6A regulators. The m6A epigenetic modification has also
been reported to be related to sunitinib resistance. Chen and their
colleagues noticed that TRAF1 can contribute to sunitinib resistance
based on the METTL14 and m6A modifications (Chen et al., 2022). Li
and their colleagues noticed that the level of YTHDC1 was
downregulated by YY1/HDAC2 and could regulate the sunitinib
resistance targeting the ANXA1-MAPK pathway (Li et al., 2022).

Correlation analysis showed that MX2 was positively correlated
with endothelial cell_EPIC, macrophages M2_QUANTISEQ,
monocyte_XCELL, Tregs_QUANTISEQ, yet negatively correlated
with the NK cell_QUANTISEQ and B cell plasma_XCELL. Previous
studies have reported the relationship between these cells and the
progression of ccRCC. For example, van Hooren and their
colleagues noticed that agonistic CD40-antibody could be enhanced
by sunitinib through reducingMDSCs, increasing endothelial activation,
and enhancing T cell recruitment (van Hooren et al., 2016).
Dannenmann and their colleagues found that the tumor-associated

FIGURE 8
MX2 is associated with sunitinib resistance (A–B) The IC50 of wild-type and sunitinib-resistant cells (786-O and Caki-1); (C) The expression level of
MX2 in wild-type and sunitinib-resistant cells, ** = p < 0.01; (D) PCR was used to validate the knockdown efficiency of MX2, ** = p < 0.01, *** = p < 0.001;
(E) Colony formation assay in 786-O-Res and Caki-1-Res when exposed to sunitinib.
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macrophages could destroy the function of T cells and reduce the
survival rate of ccRCC (Dannenmann et al., 2013). Xu and their
colleagues found that HK3 could facilitate the immune escape of
ccRCC by inducing monocyte infiltration (Xu et al., 2021). Our
results indicate that MX2 may complete the remodeling of the
tumor microenvironment by affecting the infiltration level of these
cells and then play its biological role.

Although our article provides a biological explanation for sunitinib
resistance, some limitations still need to be noted. Firstly, the result
from GSE64052 and GSE76068 was only at the cell level. However, due
to the complex regulatory mechanism in vivo, our conclusions should
be subsequently validated in vivomodels. Secondly, the deep biological
mechanism of MX2 in ccRCC still needs to be explored.

Conclusion

In summary, through publicly available data and high-quality
analysis, we deeply explored the potential biological mechanisms that
affect the resistance of sunitinib. MX2 was selected for further analysis,
including its biological role and effect on the ccRCCmicroenvironment.
Finally, in vitro experiments were used to validate its role in ccRCC.
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Establishment of a 7-gene
prognostic signature based on
oxidative stress genes for
predicting chemotherapy
resistance in pancreatic cancer

Shengmin Zhang†, Jianrong Yang†, Hongsheng Wu,
Tiansheng Cao* and Tengfei Ji*

Department of Hepatobiliary Surgery, Affiliated Huadu Hospital, Huadu People’s Hospital, Guangzhou,
Guangdong, China

Background:Oxidative stress is involved in regulating various biological processes
in human cancers. However, the effect of oxidative stress on pancreatic
adenocarcinoma (PAAD) remained unclear.

Methods: Pancreatic cancer expression profiles from TCGA were downloaded.
Consensus ClusterPlus helped classify molecular subtypes based on PAAD
prognosis-associated oxidative stress genes. Limma package filtered
differentially expressed genes (DEGs) between subtypes. A multi-gene risk
model was developed using Lease absolute shrinkage and selection operator
(Lasso)-Cox analysis. A nomogram was built based on risk score and distinct
clinical features.

Results: Consistent clustering identified 3 stable molecular subtypes (C1, C2, C3)
based on oxidative stress-associated genes. Particularly, C3 had the optimal
prognosis with the greatest mutation frequency, activate cell cycle pathway in
an immunosuppressed status. Lasso and univariate cox regression analysis
selected 7 oxidative stress phenotype-associated key genes, based on which
we constructed a robust prognostic riskmodel independent of clinicopathological
features with stable predictive performance in independent datasets. High-risk
group was found to be more sensitive to small molecule chemotherapeutic drugs
including Gemcitabine, Cisplatin, Erlotinib and Dasatinib. The 6 of 7 genes
expressions were significantly associated with methylation. Survival prediction
and prognostic model was further improved through a decision tree model by
combining clinicopathological features with RiskScore.

Conclusion: The risk model containing seven oxidative stress-related genes may
have a greater potential to assist clinical treatment decision-making and prognosis
determination.
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pancreatic cancer, oxidative stress, methylation, molecular subtypes, risk score, small
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Introduction

Pancreatic adenocarcinoma (PAAD) is one of the most
difficult malignancies to treat (Katona et al., 2021), with
gallstones, chronic pancreatitis, smoking, alcohol drinking as
the most common risk factors for PAAD (Lowenfels et al.,
1993). Ductal adenocarcinoma of the pancreas is the
predominant histopathological type accounting for 85% of all
the PAAD cases. Surgical resection is not available to
proximately 80%–85% of patients due to a lack of typical
manifestations at the initial stage (Singhi et al., 2019). For
those patients with PAAD who have taken surgery, 5-year
overall survival probability is only about 20% (Wu et al.,
2019). The technology of genome sequencing has further
characterized the molecular patterns and genotypic
heterogeneity of pancreatic cancer. Given that molecular
targeting therapies have become indispensable in treatment,
discovering new therapeutic targets is crucial. Hence, for
improving the prognostic prediction of PAAD, it is
imperative to identify novel prognostic indicators.

Oxidative stress functions importantly in pathogenesis of
multiple diseases, including inflammatory diseases, cancer, and
immune-mediated (Azmanova and Pitto-Barry, 2022). Oxidative
stress induces reactive oxygen species (ROS) that could damage
lipids, proteins, DNA, and produce mutagenic metabolites to
affect tumor biological behaviors and transform malignant
phenotype (Sosa et al., 2013). Tumor microenvironment
consists of surrounding tissue components and interacting
tumor cells, with the latter favoring biological behaviors of
tumor cells. ROS has a complex and multifaceted role in
tumor microenvironment. A study found that the non-
classical glutamine pathway promotes the development of
pancreatic cancer with dysregulation of oxidative stress (Son
et al., 2013). ROS inhibits the arginine methylation enzyme
CARM1, which in turn inhibits MDH1 activity. Thus, ROS
could activate non-classical glutamine metabolism to promote
pancreatic cancer cell growth (Son et al., 2013). Glutamine and
asparagine are two key nutrients affecting pancreatic cancer cell
development, moreover, these two are one of the bases of protein
synthesis in pancreatic cancer cells to promote resistance to
oxidative stress and are essential for pancreatic cancer cell
growth and proliferation. Pathria et al. showed that
simultaneous inhibition of asparagine metabolic pathway and
MAPK pathway inhibited pancreatic cancer development
(Pathria et al., 2019). Methionine residues has been found to
serve as a reversible redox switch in controlling different
signaling outcomes. To control tumor metastasis, MSRA-
PKM2 axis is a regulatory bridge between cancer metabolism
and redox biology (He et al., 2022). Therefore, future studies on
the role of oxidative stress in PAAD and the impact on TME are
needed to optimize immunotherapy or develop new therapeutic
strategies.

Consistent clustering screened stable molecular subtypes
utilizing genes of oxidative stress pathway. We also compared
immune features, mutational, clinical pathway features among
the subtypes. Finally, we identified genes associated with
oxidative stress phenotypes using differential expression
analysis and LASSO. Moreover, a risk model and clinical

prognostic model was developed for facilitating personalized
PAAD treatment.

Materials and methods

Data collection and processing

We used TCGA GDC API to download the mutation data and
RNA-seq data [transcripts per million (TPM)] of TCGA-PAAD. A
total of 176 primary tumor samples were finally obtained after
screening. We downloaded transcriptomic data of samples from the
pancreatic cancer-Australia (PACA-AU) and pancreatic cancer-
Canada (PACA-CA) cohorts in the International Cancer Genome
Consortium (ICGC) database (https://dcc.icgc.org/projects), with
each cohort containing 267 and 215 pancreatic cancer samples,
respectively. Oxidative stress-related genes were obtained e oxidative
stress pathway “GOBP_RESPONSE_TO_OXIDATIVE_STRESS”
in MSigDB database.

Data pre-processing

The RNA-seq data from TCGA were preprocessed as follows.

1) Removing samples that did not contain clinical information of
follow-up;

2) Removing samples that did not show survival time;
3) Removing samples that did not show status;
4) Conversion of Ensembl to Gene symbol;
5) Mean value taken for expression in the cases of multiple Gene

Symbols.

Molecular subtyping of oxidative stress-
related genes

Clustering and subtyping of the samples were achieved using
ConsensusClusterPlus (Wilkerson and Hayes, 2010). To obtain
molecular subtypes, expression of cellular senescence-correlated
genes were utilized. “KM” algorithm and “1—Pearson
correlation” was the metric distance in performing
500 bootstraps. Each bootstrapping contained 80% training set
patients. Cluster number was from 2 to 10. Molecular subtypes
as well as the optimal classification were obtained through
calculation of consistency matrix and consistency cumulative
distribution function.

Risk model

1) Among subtypes, differentially expressed genes (DEGs) were
identified by the previously identified molecular subtypes, and
we used the Limma package to calculate genes differentially
expressed between C1 vs. Other, C2 vs. Other and C3 vs. Other in
the TCGA-PAAD cohort (Ritchie et al., 2015).

2) Selection of differentially expressed genes of prognostic
significance (p < 0.01).
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3) Furthermore, genes were reduced by lasso regression (Tibshirani,
1997) to obtain prognostically significant genes associated with
the oxidative stress phenotype.

4) Risk modeling, the formula RiskScore = Σβi × Expi, where Expi is
gene expression of the prognostic-related gene with features of
the oxidative stress phenotype, and β is corresponding gene lasso
cox regression coefficient, was used to calculate the risk score for
each patient. Then zscore was performed, and patient
classification into low- and high- RiskScore groups was
conducted under the threshold “0”. To draw raw curves for
prognostic analysis, KM method was used and the log-rank test
determined difference significance.

Gene set enrichment analysis (GSEA)

To explore pathways of different biological processes, we used
“GSEA” based on all the candidate gene sets in Hallmark database
for pathway analysis in different subtypes (Liberzon et al., 2015).
Significant enrichment was when false discovery rate (FDR) < 0.05.
Ferroptosis pathway were from “WP_FERROPTOSIS” in MSigDB
database; autophagy pathway were from “GOBP_REGULATION_
OF_AUTOPHAGY” in MSigDB database; from Liu et al. (Liu et al.,
2020), we obtained inflammatory signature-related gene set;
angiogenesis-related gene set were from Masiero et al. (Masiero
et al., 2013).

Protein-protein interaction (PPI) analysis

PPI networks were produced. The DEGS between subtypes were
entered into the STRING online tool (https://string-db.org/), and in
Cytoscape (version 3.9.1) software visualization of the PPI networks
were done. Next, module analysis of the PPI networks was
performed using the Molecular Complex Detection (MCODE)
tool of Cytoscape software (Bader and Hogue, 2003).

Calculation of TME cell invasion

In PAAD, CIBERSORT algorithm (https://cibersort.stanford.
edu/) was introduced to quantify relative abundance of
22 immune cells (Newman et al., 2015). ESTIMATE software was
applied for the calculation of immune cells proportion, followed by
comparison of immune cell infiltration using Wilcoxon test (Runa
et al., 2017).

Correlation analysis of risk score and drug
sensitivity

Drug sensitivity data of about 1,000 cancer cell lines were
retrieved from Genomics of Drug Sensitivity in Cancer (GDSC)
(http://www.cancerrxgene.org) (Yang et al., 2013). Area under ROC
curve (AUC) for each antitumor drug served as an indicator for drug
response in cancer cell lines. To calculate the association of AMrs
scores with drug sensitivity, Spearman correlation analysis was
carried out, we considered | Rs |> 0.1. FDR was adjusted by

Benjamini and Hochberg, a significant correlation was defined
when FDR was less than 0.01.

Results

Molecular subtyping based on oxidative
stress-associated genes

The expression pattern of oxidative stress-related genes
pancreatic cancer samples in the TCGA-PAAD and PACA-AU
datasets with clinical information was determined via univariate
Cox regression. A total of 27 oxidative stress genes showing
significant prognosis in both pancreatic cancer datasets were
screened. Univariate cox analysis of these 27 genes in TCGA-
PAAD and PACA-AU filtered 19“risk genes” and 8“protective
genes” (Figures 1A,B). Next, we classified patients by consistent
clustering based on 27 prognostically significant oxidative stress
gene expression profiles, and according to the cumulative
distribution function (CDF), determined the optimal number of
clusters. From CDF Delta area curve, we could see that the Cluster
selection of 3 had more stable clustering results (Figures 1C,D), and
three molecular subtypes (C1, C2, C3) were categorized under k = 3
(Figure 1E). Furthermore, we analyzed their prognostic
characteristics and significant differences in prognosis
(Figure 1F). Generally, the prognosis of C3 was better in contrast
to a worse prognosis of C1. Also, this result was validated in the
PACA-AU cohort (Figure 1G).

Analysis on the “oxidative stress ssGSEA scores” for each
pancreatic cancer patient in the TCGA-PAAD cohort showed
that the C1 subtype had higher “oxidative stress ssGSEA scores”
and it was the lowest in C3 (Figure 1H), noticeably, C1 presented
activated oxidative stress. We also compared the expression
differences of 27 oxidative stress genes in different molecular
subtypes (Figure 1J). C1 subtype showed an overall high-
expressed “Risk” genes, while in the C3 subtype, the “Protective”
gene was high-expressed. This phenomenon was also observed in
the PACA-AU cohort (Figures 1I,K).

Genomic landscape between molecular
subtypes

To further investigate the potential molecular mechanisms
underlying the classification of oxidative stress subtypes, we
explored genomic alteration differences among these three TCGA
cohort molecular subtypes. Here, information of molecular
signature of TCGA-PAAD was acquired from a previous pan-
cancer study (Thorsson et al., 2018). The Anenploidy Score, loss
of heterogeneity (LOH), tumor mutation burden (TMB),
Homologous Recombination Defects all differed greatly among
the three subtypes. It has been observed that the C1 subtype had
higher levels of these four indicators (Figure 2A). In addition, in this
study, according to 160 different immune signatures, five molecular
subtypes of PADD were categorized, among which the most
favorable prognosis was the immunoassay subtype C3. Then,
comparison of the current molecular subtypes were compared
with the five immune molecular subtypes showed that our
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C3 subtype was more occupied by the immune molecular subtype
C3, which coincided with the most favorable prognosis of our
molecular subtype C3 (Figure 2B). The top significant 20 genes
were shown (Figure 2C). It could be seen that genes such as KRAS
and TP53 had significantly different mutation frequencies between
the three molecular subtypes.

Immune characteristics between molecular
subtypes and differences in
immunotherapy/chemotherapy

Between different molecular subtypes, differences in the PAAD
immune microenvironment was further explored by assessing
immune cell infiltration in patients in TCGA-PAAD and PACA-
AU cohorts based on gene expression in the immune cells. Relative

abundance of 22 immune cell types was determined using
CIBERSORT, and in the TCGA-PAAD cohort we found that six
immune cell types (Mcrophages, CD8 T cells, naive B cells,
Monocytes, memory CD4 T cells, regulatory T cells,
Macrophages M0) differed significantly between subtypes, and T_
cells_CD8 and Monocytes were enriched in the C3 subtype
(Figure 3A). Immune cell infiltration was assessed using
ESTIMATE. In the TCGA cohort, the three subtypes differed
significantly in distribution in the StromalScore, ImmuneScore
and ESTIMATEScore, and the highest score was in the
C3 subtype but the lowest was in the C1 subtype (Figure 3B).
We also analyzed the PACA-AU data set and found that eight
immune cell types, including resting memory CD4 T cells,
M0 Macrophages, naïve CD4 T cells, M1 Macrophages,
CD8 T cells, helper follicular T cells, Monocytes, Neutrophils, in
the PACA-AU cohort differed significantly between subtypes

FIGURE 1
Three pancreatic cancer molecular subtypes based on oxidative stress-related genes. (A) In the TCGA-PAAD cohort, the forest plot of
27 prognostically significant oxidative stress genes; (B) The forest plot of 27 prognostically significant oxidative stress genes in the PACA-AU cohort; (C)
CDF curves of TCGA-PAAD samples; (D) CDF Delta area curves of the samples, with the horizontal axis indicating the number of categories k and the
vertical axis indicating the relative change in area under the CDF curve; (E) At consensus k = 3, the heatmap of clustered samples; (F) KM curve of the
prognosis of three subtypes of the TCGA-PAAD samples; (G) KM curve of the prognosis of three subtypes of the PACA-AU samples; (H) Differences in
“oxidative stress ssGSEA scores” among the TCGA-PAAD molecular subtypes; (I)Differences in “oxidative stress ssGSEA scores” among the PACA-AU
molecular subtypes; (J)Heatmap of prognostic significant oxidative stress-related genes in TCGA-PAAD subtypes; (K)Heatmap of prognostic significant
oxidative stress-related genes in PACA-AU subtypes.
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(Figure 3C). Furthermore, immune cell infiltration in the PACA-AU
cohort was consistent with the TCGA-PAAD cohort (Figure 3D).

Some studies have reported that oxidative stress and
inflammation are intertwined processes in disease
progression and response to therapy by interfering with
multiple signaling pathways. Here, the enrichment scores of
seven metagenes clusters were greatly different in the three
molecular subtypes, with the exception of Interferon, STAT1,
and the remaining five metagenes clusters, and overall, the
C3 subtype had higher inflammatory activity (Figure 3E). In
addition, it has been reported that ferroptosis from oxidative
stress and inflammation plays a key role in the pathogenesis of
cardiovascular diseases (Yu et al., 2021), such as stroke, vascular

sclerosis, heart failure, ischemia-reperfusion injury. Thus,
comparison on the differences in ferroptosis scores between
the three subtypes has demonstrated significant distributional
differences between C1 and C2 subtypes, with C2 subtype
having a lower ferroptosis score (Figure 3F). In addition, a
study reported that inflammation stimulates excessive
autophagy or severe oxidative stress could result in
autophagy-dependent cell death (Cai et al., 2018). The
autophagy scores for the subtypes (Figure 3G) were
significantly different between the three subtypes, with the
C3 subtype having a higher autophagy score. Additionally,
we found statistically significant differences in angiogenesis
between C2 and C3 subtypes and between C1 and

FIGURE 2
In TCGA-PAAD cohort genomic alterations of molecular subtypes. (A) Comparison of Aneuploidy Score, LOH, tumor 25 burden, Intratumor
Heterogeneity, ploidy, Homologous Recombination Defects, purity in TCGA-PAAD subtypes; (B) Comparing our molecular subtypes to the other six
existing immune molecular subtypes; (C) Chi-square test on the somatic mutations in the three molecular subtypes. *p < 0.05; **p < 0.01; ***p < 0.001;
and ****p < 0.0001.
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C3 subtypes, with C3 subtype having the highest score
(Figure 3H).

Immunotherapy and drug sensitivity
differences between molecular subtypes

Some sample compounds were examined because immune
checkpoint blockade (ICB) cancer treatment works by
suppressing important immune checkpoints. Among the
three subtypes, CTLA4 and PD-1 were differentially
distributed, and C3 was significantly more high-expressed,
while PD-L1 was not differentially expressed (Figure 4A). We
also applied the “T-cell-inflamed GEP score” to assess the
predictive potential of different molecular subtypes in

immunotherapy for cancers. It could be observed from
Figure 4B, the C3 subtype had a noticeably higher “T-cell-
inflamed GEP score”. Considering that IFN-γ is a cytokine
with a key role in anti-cancer immunity and
immunomodulation (Rydyznski Moderbacher et al., 2022),
our analysis revealed that in the C3 subtype the IFN-γ
response was significantly enhanced (Figure 4C).
Additionally, we also found that Cytolytic activity (CYT)
scores, which reflects cytotoxic effects, were significantly
higher in C3 subtypes compared with other subtypes
(Figure 4D).

Additionally, response of the molecular subtypes in the
TCGA-PAAD cohort to the conventional chemotherapeutic
agents such as Gemcitabine, Erlotinib, Cisplatin, 5-
Fluorouracil were analyzed, and found that C1 was more

FIGURE 3
Immune characteristics of different subtypes. (A) TCGA-PAAD molecular subtypes varied in the differences of 22 immune cell scores; (B) TCGA-
PAAD molecular subtypes varied in the differences of ESTIMATE immune infiltration; (C) PACA-AU molecular subtypes varied in the differences of
22 immune cell scores; (D) PACA-AU molecular subtypes varied in the differences of ESTIMATE in immune infiltration; (E) TCGA-PAAD molecular
subtypes varied in the differences of scores of seven inflammation-related gene clusters; (F) TCGA-PAAD molecular subtypes varied in the
differences of ferroptosis pathway; (G) TCGA-PAAD molecular subtypes varied in the differences in scores of autophagy pathway; (H) TCGA-PAAD
molecular subtypes varied in the differences in scores of angiogenesis-related genes; *p < 0.05; **p < 0.01; ***p < 0.001; and ****p < 0.0001.
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sensitive to Gemcitabine, Erlotinib, Cisplatin (Figure 4E), while
C3 was more sensitive to 5-Fluorouracil.

Differential functional analysis between the
molecular subtypes

Limma package was used to determine DEGs. There is
64 DEGs in C1vs. other in TCGA-PAAD dataset and PACA-
AU dataset, 137 DEGs in C3 vs. other in TCGA-PAAD dataset
and PACA-AU dataset. After union analysis, 144 DEGs were
obtained. Functional enrichment analysis was conducted on the
DEGs among the subtypes. The enrichment results of GO and
KEGG pathways on the DEGs in the “C1” subtype demonstrated
that the DEGs had significant enrichment in some biological
functions than cellular communication (Supplementary Figure

S1A). However, in “C3” subtype these DEGs were significantly
enriched to some immune-related biological pathways
(Supplementary Figure S1B). To better investigate the
interactions among these DEGs, the STRING online tool for
developing a PPI network (Supplementary Figure S1C) was
applied. In addition, two important modules in the PPI
network were determined based on the module analysis
(Supplementary Figure S1D).

Identification of key genes for the oxidative
stress phenotype

Next, we performed univariate COX regression analysis on
144 DEGs among the subtypes and identified 61 genes showing
great prognostic significance (p < 0.01), including 31“Risk” and

FIGURE 4
Differences in treatment sensitivity among the molecular subtypes. Among different molecular subtypes, (A) Differences in “T cell inflamed GEP
score”; (B) differences in “response to IFN-γ”; (C) Differences in “response to IFN-γ". (B) Differences in “response to IFN-γ”; (C) Differences in immune
checkpoint gene expression; (D)Differences in “Cytolytic activity”; (E) Box plots of IC50 of cisplatin, gemcitabine, 5-fluorouracil, erlotinib in TCGA-PAAD;
*p < 0.05; **p < 0.01; ***p < 0.001; and ****p < 0.0001.
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30“Protective” genes (Figure 5A). PPI network analysis indicated
that these genes are related to each other (Supplementary Figure S2).
To further compress these 61 genes in the risk model, Lasso
regression was used. Independent variable’s trajectory is shown in
Figure 5B. The number of independent variable coefficients close to
zero likewise showed a progressive increase as the lambda gradually
increased. Moreover, 10-fold cross-validation was applied to develop
a model and to analyze confidence intervals under each lambda
(Figure 5C). When lambda = 0.119, the model was optimized,
therefore, 7 genes at lambda = 0.119 were determined in this
study as the genes related to oxidative stress to affect patients
prognosis (Figure 5D). These genes included ATP2A3, ANLN,
GJB4, FAM83A, CEP55, COL17A1, and SCAMP5. The formula
as followed: RiskScore = + 0.134*ANLN-
0.086*SCAMP5+0.048*FAM83A-0.111*ATP2A3+0.322*CEP55 +
0.11*GJB4+0.1*COL17A1 Single-cell division TISCH2 (http://
tisch.comp-genomics.org/home/) analyzed the expression
distribution of seven genes in multiple single-cell data of
pancreatic cancer, and the results showed that the expression of
COL17A1 and FAM83A genes in malignant cells was significantly
higher than that in other cell types (Supplementary Figure S3).

The performance and validation of
prognostic model

The expression and coefficients of seven prognostic genes were
used to construct a clinical prognostic model and for calculating and
ranking the risk values of TCGA-PAAD samples. According to the
cut-off, we divided 81 samples into “Low-risk” group and 95 samples
were in the “High-risk” group. The prognosis prediction at 1, 2, and
3 years (s) was further analyzed for its classification efficiency
(Figure 6B), respectively. The model demonstrated a high area
under the AUC line (1-Year, AUC = 0.73; 2-Year, AUC = 0.75;
3-Year, AUC = 0.79). KM curves were plotted and a highly
significant difference was shown between the two RiskScore
groups (p < 0.0001), with the “Low-risk” group showing a
significantly better prognostic outcome than “High-risk” group
(Figure 6C). To confirm the robustness of the clinical prognostic
model, we performed validation in 2 additional independent
pancreatic cancer cohorts (PACA-AU, PACA-CA), and it can be
seen that in the validation cohort showed similar results to the
training set, with the “Low-risk” group showing a significantly better
prognostic outcome than “High-risk” group (Figures 6D–G).

FIGURE 5
Screening of genes correlated with oxidative stress that affect prognosis. (A) Totally 61 candidates were screened from all the DEGs; (B) With the
change of lambda, trajectory of each independent variable was shown; (C) Confidence interval under lambda; (D) Oxidative stress-related prognostic
gene markers and the distribution of LASSO coefficients.
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The RiskScore on the subtypes and various
clinicopathological features

To assess the correlation of PAAD clinical features with
RiskScore, the differences in RiskScore between different TNM
grades and clinical stages in the TCGA-PAAD and PACA-AU
datasets were studied. Samples with higher clinical grades showed
higher RiskScore. Also, C1 subtypes had the highest RiskScore
but C3 subtypes had the lowest RiskScore (Supplementary
Figures S4A,C). Additionally, difference comparison between
RiskScore groups and molecular subtypes was conducted,
showing a majority of “C1” or “C2” patients in the “high-risk”
group (Supplementary Figures S4B,D). Moreover, the prognosis
of TCGA-PAAD between the low- and high-risk groups in
relation to clinicopathological characteristics was explored,
and our risk grouping was equally effective across clinical
subgroups, with the “Low-risk” group showing a significantly
better prognosis, demonstrating the reliability of our risk

grouping (Supplementary Figures S4E). In addition, the
correlation analysis of spearman between expression levels and
methylation on 6 genes except ANLN gene showed a negative
phenomenon but had a positive with SCAMP5 gene
(Supplementary Figures S5).

Immune infiltration/pathway characteristics
between RiskScore subgroups

Differences in immune microenvironment in the RiskScore
subgroups were studied, we used ESTIMATE to assess immune
cell infiltration (Figure 7A), and observed that the “Low-risk”
group was significantly higher in immune cell infiltration. The
most significant top 10 pathways showing differences between
the high- and low-risk groups are shown in Figure 7B. It can be
seen that high-RiskScore was significantly enriched to some cell
cycle-related pathways such as G2M_CHECKPOINT, MTOTIC

FIGURE 6
Generation and evaluation of risk score models using 7 genes related to oxidative stress. (A) RiskScore, expression of oxidative stress-related
prognostic genes and survival time and status in TCGA dataset; (B) RiskScore classification in TCGA dataset and ROC and AUC curves; (C) Distribution of
KM survival curve of RiskScore in TCGA dataset; (D, E) ROC curve and KM survival curve distribution of RiskScore in PACA-AU cohort; (F, G) ROC curves
and KM survival curves of RiskScore in the PACA-CA cohort.
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SIGNSLING, and E2F TARGETS. Furthermore, association of
the RiskScore with the enrichment scores of these functions was
analyzed, with the functions showing a correlation greater than
0.5 being identified. Figure 7C manifests a positive correlation
of the RiskScore with cell cycle-related pathways.

Differences in chemotherapy/
immunotherapy among the RiskScore
subgroups

First, we used the “T-cell-inflamed GEP score” to assess the
prediction potential of the different RiskScore subgroups in
cancer immunotherapy (Figure 8A), and the results showed that
in the low-RiskScore group the “T-cell-inflamed GEP score” was
significantly higher. Further analysis on the response to IFN-γ
in both groups revealed that the response to IFN-γ was
significantly enhanced in the low-RiskScore group
(Figure 8B). Moreover, the CYT score had cytotoxic effect,
and it was significantly lower in the high-RiskScore group
(Figure 8C). Some representative immune checkpoint
molecules were significantly high-expressed CTLA4, PD-1 in
the low-RiskScore group, while PD-L1 was not differentially
expressed between molecular subtypes (Figure 8D).

The effect of RiskScore on drug response was analyzed based on the
relationship between RiskScore and cancer cell lines’ response to drugs.
There were 11 drug sensitivities in the GDSC database showing
significant correlation with RiskScore. There were three drug
sensitivities showing a negative correlation with RiskScore, namely,
KU-55933, Tozasertib, Dasatinib (Figure 8E). Furthermore, we also
analyzed the signaling pathways of the genes targeted by these drugs,
which mainly target the SRC pathway (Figure 8F).

Moreover, response degree of the TCGA-PAAD subtypes to
chemotherapeutic agents (Gemcitabine, Erlotinib, Cisplatin, 5-
Fluorouracil, and Dasatinib) was studied. We found that the
High-risk group responded to Gemcitabine, Cisplatin, Erlotinib
and Dasatinib. Overall, High-risk group showed a higher
sensitivity to Gemcitabine, Cisplatin, Erlotinib and Dasatinib.
Low-risk group had higher sensitivity to 5-Fluorouracil (Figure 8G).

RiskScore in combination with
clinicopathological features to improve
survival prediction and the prognostic
models

For the TCGA-PAAD cohort (Figure 9A), only RiskType, and
Age, N Stage remained in the decision tree that was originally

FIGURE 7
Immunology and pathway between different RiskScore subgroups. (A) ESTIMATE software was applied to determine immune cell components in
the TCGA database; (B) The top 10 pathways showing the greatest significant differences between Low-risk and high-risk groups; (C)Correlation analysis
results on the RiskScore and KEGG pathways scored greater than 0.5; *p < 0.05; **p < 0.01; * **p < 0.001; and ****p < 0.0001.
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established with TNM Stage, gender, pathology information and
RiskScore, patient age, and it identified four different risk
subgroups (Lowest, Low, Mediate, High). Among them
RiskType was the parameter of the greatest impact. The four
risk subgroups showed significant difference in overall survival,
with the “Lowest” group having the optimal prognosis and the
“High” group having the worst prognosis (Figure 9B). Patients in
the risk subgroups were all “Low","Lowest”, and “Mediate” Low-
risk group patients (Figure 9C). In addition, “High-risk” group
showed more distribution of our defined molecular subtypes
C1 and C2 (Figure 9D). From Figures 9E,F, the most
significant prognostic factor was the RiskScore. To quantify
survival probability of PAAD patients and the risk assessment,
other clinicopathological characteristics were combined with
RiskScore for nomogram development (Figure 9G), here, the
RiskScore demonstrated the greatest impact on predicting
patients’ survival. Furthermore, we evaluated the model
prediction accuracy with calibration curve (Figure 9H). At the
calibration points of 1, 2, 3 years (s), the prediction calibration

curves almost completely encircled the standard curve, indicating
good prediction accuracy. We also assessed model reliability by
decision curve analysis, and in comparison to the extreme curves,
benefit of both RiskScore and Nomogram was significantly
greater and the two showed a stronger survival prediction
(Figure 9I).

Herein, we selected three risk models from previous studies (5-
gene signature (Yan) (Yan et al., 2022), 3-gene signature (Yang)
(Yang et al., 2022) and 9-gene signature (Liu) (Liu et al., 2022)) to
compare with our model. In order to make the model have a
certain comparability, the same method is used to calculate the
sample risk score according to the corresponding genes in the three
models, and zscore is performed for Riskscore. After zscore, the
samples with Riskscore greater than zero are divided into high-risk
group and those with riskscore less than zero are divided into low-
risk group.

ROC analysis showed that the AUC value was lower than that in
our model (Supplementary Figures S6A–C). The C-index in our model
was higher than that in other 3 models (Supplementary Figure S6D).

FIGURE 8
The prognostic risk models in predicting patients’ benefit from immunization/chemotherapy. (A)Differences in “T cell inflamed GEP score” between
subgroups; (B) Differences in “response to IFN-γ” between subgroups; (C) Differences in “C-γ” between subgroups. (C) Difference of “Cytolytic activity”
between different subgroups; (D)Difference of immune checkpoint gene expression between different subgroups; (E) Spearman analysis was conducted
for correlation analysis on drug sensitivity and RiskScore, with each column representing a type of drug. Correlation significance is reflected in color
brightness. The correlation of RiskScore with drug sensitivity (Rs < 0) or drug resistance (Rs > 0) was reflected in the height of a column. (F) The horizontal
axis is the drug name and the vertical axis is the signaling pathway targeted by the drug. The signaling pathway targeted by the drug is sensitive to
RiskScore (blue); (G) Box plots of IC50 estimates for dasatinib, gemcitabine, cisplatin, erlotinib and 5-fluorouracil in TCGA-PAAD; *p < 0.05; **p < 0.01;
***p < 0.001; and ****p < 0.0001.
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Discussion

Pancreatic cancer shows a significantly poor prognosis with a 5-
year survival chance of approximately 5% (Ilic and Ilic, 2016).
Accurate prognostic evaluation enables patients suffering from
PAAD to benefit more from effective treatments such as more
intensive surgery, targeted molecular therapies, neoadjuvant
therapy, immunotherapy, radiotherapy, chemotherapy. Thus,
treatment could be personalized to individual patient for
improving prognosis. In the early diagnosis of highly
heterogeneous PAAD, molecular prognostic markers are
potentially valuable, which at the same time could help overcome
the impediment of heterogeneity. Multiple molecular markers
increase the accuracy than single molecular markers in reflecting

pancreatic cancer prognosis, the progression of which is in a
complex network involving different signaling pathways. Wu
et al. identified a 9-gene signature and also developed a
prognostic nomogram that could reliably predict PAAD overall
survival (Wu et al., 2019). Weng et al. established a multi-omics
perspective consisting of 3 mRNAs, 3 miRNAs, 60 lncRNAs related
to PAAD prognosis, and constructed a classifier based on 14mRNAs
with a good predictive function in the cohort and helped to predict
PAAD prognosis (Weng et al., 2020). Based on 14 necroptosis-
associatedgenes, Wu et al. developed a prognostic model for the
diagnosis, prognosis of PAAD and its treatment (Wu et al., 2022).
Our work identified the molecular subtypes of PAAD based on
oxidative stress due to the non-negligible regulatory impact from
oxidative stress plays.

FIGURE 9
The nomogram of prognostic risk models with clinicopathological features. (A) To optimize risk stratification, patients with full-scale annotations
including TNM Stage, age, gender, and RiskScore were enrolled for developing a survival decision tree; (B) Risk subgroups showed significant overall
survival differences; (C, D) Comparative analysis between different subgroups; (E, F) RiskScore and clinicopathological (E, F) Univariate and multifactorial
Cox analysis on clinicopathological features and RiskScore; (G) The nomogram model; (H) Calibration curves for 1, 3, and 5 years (s) of the
nomogram; (H:Decision curve for the columnar graph; (I) The most powerful capacity of the nomogram for survival prediction when compared with
other clinicopathological features. *p < 0.05; **p < 0.01; ***p < 0.001; and ****p < 0.0001.
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First, we employed oxidative stress-related genes to consistently
cluster three stable molecular subtypes, each of which has its own
unique prognostic, route, clinical, and immunological properties. Our
analysis demonstrated a better prognosis of C3 and a worse one of C1.
ROS could cause several types of DNAdamage (Ebrahimi et al., 2020).
Persistent DNAdamage is resulted from the continuous production of
ROS and an inflammatory cascade that triggers genomic changes and
a tendency to increase epigenetic alterations. The development of
cancer may be facilitated by the accumulation of epigenetic changes
that disrupt genome-wide cell signaling system and promote
malignant transformation (Kgatle et al., 2017). Our comparative
analysis of genomic alterations in the three subtypes revealed that
the C1 subtype showed higher “TMB”, “Homologous Recombination
Defects”, “Aneuploidy Score”, “Intratumor Heterogeneity”, “LOH”.
TMB is a sensitive biomarker for screening sensitive responders to
immunotherapy and has been shown to be correlated with more
significantly with response, with higher blockade of PD-L1 and PD-1
than PD-1 or PD-L1 expression. Mechanistically, high TMB provides
more opportunities for “non-me” neoantigen production and
activation of immune cell enrichment. Nevertheless, these theories
have only been confirmed in some places for immunotherapy of
certain tumors, but they may not be applicable to tumors such as
pancreatic cancer (Strickler et al., 2021). For immune
microenvironment differences, significantly higher immune cell
infiltration and “ImmuneScore” were observed in C2 and C3. In
addition, as oxidative stress is closely associated with multiple
physiological activities, and our analysis demonstrated that
C3 subtypes had higher inflammatory activity and autophagy
scores and the lowest angiogenic scores. Though many
achievements have been made in the immunotherapy of cancer,
not all patients can benefit from immunotherapy. Our analysis
showed significantly enhanced IFN-γ response and higher “T-cell-
inflamed GEP score” in the C3. Additionally, the CYT score, which
reflects cytotoxic effects, was noticeably higher in C3 than in other
subtypes. In the multimodal treatment of pancreatic cancer,
chemotherapy is an important component. Adjuvant
chemotherapy can significantly improve disease-free survival and
overall survival after curative resection (Springfeld et al., 2019).
Analysis on conventional chemotherapeutic drug response showed
C1 was more sensitive to Erlotinib, Cisplatin, and Gemcitabine.

Seven key genes (GJB4, CEP55, SCAMP5, ANLN, FAM83A,
ATP2A3, COL17A1) associated with oxidative stress phenotypes,
were identified. CEP55 plays an important role in cytoplasmic
division, tumor stage, aggressiveness, metastasis and poor
prognosis in many tumor types such as breast, lung, colon and
liver cancers (Jeffery et al., 2016). In many malignancies ANLN is an
upregulated actin-binding protein. Wang et al. found that in
pancreatic cancer tissues and cell lines, ANLN expression is
upregulated and is predictive of a poor PAAD prognosis. ANLN-
mediated pancreatic cancer invasion and migration, colony
formation, cell proliferation may involve EZH2/miR-218-5p/
LASP1 signaling axis (Wang et al., 2019). The gap junction β-4
protein is an integral membrane protein member involved in
tumorigenesis and may play a role as a tumor promoter (Liu
et al., 2019). Moreover, in lung cancer, it has also been found to
induce chemoresistance and metastasis via Src activation (Lin et al.,
2019). As an important component of type I hemibridges (HD),
COL17A1 encodes collagen XVII (COL17) (Yodsurang et al., 2017),

and has been identified as a marker for pancreatic cancer by Shen
et al. (Shen et al., 2017). In a variety of human tumors, family with
sequence similarity 83 member A was initially identified by
bioinformatics methods as a potential tumor-specific gene with
overexpression, including in bladder, lung, testicular, breast
cancers, etc. Chen et al. found that in pancreatic cancer FAM83A
shows significant overexpression, which promotes CSC-like features
by activating Wnt/β-catenin and TGF-β pathways. Therefore they
concluded that FAM83A has the potential of acting as a therapeutic
target for patients with pancreatic cancer (Chen et al., 2017).
SCAMP functions as a post-Golgi transporter protein in all
mammalian cells and is an effective prognostic and diagnostic
biomarker for pancreatic cancer (Mao et al., 2021). ATP2A3 is a
significantly upregulated gene that encodes a Ca2+ -ATPase
localized to the ER membrane and is involved in Ca2+ transport
(Zhang et al., 2019). Eduardod et al. showed that resveratrol
upregulates the expression of the ATP2A3 gene in breast cancer
cell lines through an epigenetic mechanism (Izquierdo-Torres et al.,
2019).

In spite of this, there are some limitations in this study, which
should be verified by PCR and immunohistochemical experiments.
We did not consider other factors because the samples lacked
necessary clinical follow-up information, especially diagnostic details.

Conclusion

This paper first identified a novel prognostic risk model consisting of
7 oxidative stress-related genes that well predict PAAD prognosis of
PAAD. The 7 genes demonstrated complex molecular functions that
remained to be explored further. In addition, this work highlighted the
correlation between of the prognosis of PAAD with oxidative stress-
related genes. The current findings facilitate personalized treatment for
PAAD patients.
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