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Editorial on the Research Topic

E�cient deep neural network for intelligent robot system: Focusing on

visual signal processing

With the availability of a vast amount of data in the public domain and the advancement

of computing power, deep neural network (DNN) models are being increasingly utilized

in machine learning tasks related to visual signal processing. However, the extensive use of

larger DNN model architectures to enhance learning abilities and performance indicators

for various tasks is hindered by their high complexity and computing power requirements.

This impedes their efficient deployment on edge platforms and for real-time operations. To

overcome these challenges and enable widespread deployment of DNNs in intelligent robot

systems, researchers are now focusing on developing efficient DNNmodels that can improve

their training and running speeds.

The purpose of this Special Issue is to collect high-quality articles on the recent

development and trend of efficient DNN for intelligent robot system based on visual signal

processing, and disseminate the outcomes and products from this topic to a wide range of

communities, helping peers and non-expert readers understand the highly efficient design

of DNNs. Researchers from all over the world actively participate and contributed a lot of

manuscripts. After carefully and professionally reviewing all submissions, 12 high-quality

manuscripts are accepted.

One contribution in this topic is about model pruning. Wu et al. propose a novel filter

pruning method based on filter similarity to address the limitations of current criterion-

based methods used for inference acceleration and hardware compatibility. It achieves

significant FLOPs and parameter reduction with no loss in accuracy on different benchmark

datasets and network architectures.

Six contributions are about the research of lightweight models and algorithms for

classical image processing and computer vision tasks. Lan et al. propose a physical-model

guided self-distillation network (PMGSDN) for single image dehazing. Experimental results

on synthetic and real-world images show that the proposed method outperforms other

methods and achieves high-quality dehazed results with clear textures and good color

fidelity. Kumari and Mustafi develop a robust digital watermarking algorithm that uses

an informed watermark retrieval architecture, fractional Fourier transform, blind source
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separation, and a heuristic algorithm. The algorithm’s performance

is evaluated against common attacks such as JPEG compression and

Gaussian noise, and the optimal fractional domain is found using

a genetic algorithm. Dai et al. propose SiamHFFT, a lightweight

object tracking algorithm capable of handling small targets in

complex scenarios. The proposed algorithm uses a hierarchical

feature fusion transformer to extract multi-level features from

a lightweight backbone, which allows for comprehensive feature

representations in an end-to-end manner. The model achieves

state-of-the-art results on various benchmark datasets and operates

at a rate of 29 FPS on a CPU, making it practical for real-world

applications. Zhong et al. propose a lightweight facial expression

recognition model based on the Northern Goshawk Optimization

algorithm and the bidirectional LSTM neural network, which

improves recognition accuracy and can be effectively applied to

facial expression recognition. Lu et al. present a facial image

inpainting method using a multistage GAN and the global

attention mechanism. The proposed method can effectively restore

incomplete facial images by enhancing featuremining and semantic

expression, using skip connections, encoder-decoder structure, and

a local refinement network. Comparative experiments demonstrate

that the proposed method generates realistic inpainting results

with high PSNR and SSIM, indicating the model’s performance

and efficiency. Lin et al. address the shortage of boxing coaches

in Chinese campuses by proposing a novel solution that employs

human pose estimation technology to train interns. Specifically,

they develop a model transfer technique that utilizes channel

patching to enhance the accuracy of pose key points by an average

of 1–20% and 3D accuracies by 0.3–0.5% compared to 2D baselines.

The proposed method is not only practical but also effective for

boxing pose estimation.

Five contributions focus on the implementation of lightweight

models to address other signals. Zheng presents a writing feature

abstraction process based on ON-LSTM and attention mechanism

for sentiment analysis, addressing the problem of ignoring syntactic

and tag semantics information in emotional text feature extraction.

The study shows the high application potential of deep learning

models for dynamic user sentiment analysis. Wang and Chen

investigate teachers’ acceptance of robotics education and its

relationship to the effectiveness and sustainability of robotics

education using the UTAUT model and deep learning algorithms.

The study also found that deep learning models such as mDAE

and AmDAE reduced training time compared to existing noise-

reducing autoencoder models. Teng et al. address the lack of

technical and algorithmic support in music therapy for cancer

patients and design a neural network robotic system based on

breast cancer patients to analyze the effect of music relaxation

training on alleviating adverse reactions after chemotherapy. The

research provides reference for the next development of neural

network robot system in the medical field. Chen and Fan utilize the

neural Turingmachinemodel to investigate the tensile properties of

metallicmaterials, and they improve themodel to achieve faster and

more explicit results. The improved model demonstrates potential

for practical applications in the exploration ofmetal material tensile

properties testing technology. Xue et al. develop a modular system

for robots to collaborate with humans in using tools. The system

uses a multi-layer instance segmentation network to find task-

related operating areas and identify tools based on the state of the

robot in the collaborative task, generating a state semantic region.

The system performs well on an untrained real-world tool dataset

and is validated using a robot platform based on Sawyer.

Overall, all papers published in this Special Issue show that

efficient DNN for intelligent robot system have developed very fast

in recent years.We hope that this topic can provide some references

and novel ideas for researchers in this field. It should be emphasized

that for such a rapidly developing research field, the work that has

been done so far is only a drop in the ocean. The manuscripts we

collect this time can only be a small leaf in the Amazon rainforest.

We would like to thank all the authors for their innovative

contributions, and all the reviewers for their professional, crucial,

yet constructive comments. Also, we wish to express our thanks

to Mr Hang Ran, PhD students at Institute of Semiconductors,

Chinese Academy of Sciences, for his assistance in this process.

Last, we wish to express our gratitude to the editorial team

of Frontiers in Neurorobotics for their support throughout this

venture. We hope you enjoy this collection of papers and that the

Special Issue can stimulate further research and development in

this area.

Author contributions

All authors listed have made a substantial, direct, and

intellectual contribution to the work and approved it

for publication.

Funding

This work was supported by the National Natural Science

Foundation of China (Grant No. 6190143).

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Frontiers inNeurorobotics 02 frontiersin.org5

https://doi.org/10.3389/fnbot.2023.1191655
https://doi.org/10.3389/fnbot.2022.1082346
https://doi.org/10.3389/fnbot.2023.1155038
https://doi.org/10.3389/fnbot.2022.1111621
https://doi.org/10.3389/fnbot.2023.1148545
https://doi.org/10.3389/fnbot.2022.1006755
https://doi.org/10.3389/fnbot.2022.1009093
https://doi.org/10.3389/fnbot.2023.1120560
https://doi.org/10.3389/fnbot.2022.1000646
https://doi.org/10.3389/fnbot.2022.1082550
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


TYPE Brief Research Report

PUBLISHED 15 September 2022

DOI 10.3389/fnbot.2022.1000646

OPEN ACCESS

EDITED BY

Xin Ning,

Institute of Semiconductors

(CAS), China

REVIEWED BY

Zhenjun Xu,

Qingdao Agricultural University, China

Jun Tian,

Dongguan University of

Technology, China

*CORRESPONDENCE

Xuewen Chen

chenxw197088@163.com

RECEIVED 22 July 2022

ACCEPTED 22 August 2022

PUBLISHED 15 September 2022

CITATION

Chen X and Fan W (2022) Testing

technology for tensile properties of

metal materials based on deep

learning model.

Front. Neurorobot. 16:1000646.

doi: 10.3389/fnbot.2022.1000646

COPYRIGHT

© 2022 Chen and Fan. This is an

open-access article distributed under

the terms of the Creative Commons

Attribution License (CC BY). The use,

distribution or reproduction in other

forums is permitted, provided the

original author(s) and the copyright

owner(s) are credited and that the

original publication in this journal is

cited, in accordance with accepted

academic practice. No use, distribution

or reproduction is permitted which

does not comply with these terms.

Testing technology for tensile
properties of metal materials
based on deep learning model

Xuewen Chen1* and Weizhong Fan2,3

1Guangdong Engineering Polytechnic College, Guangzhou, China, 2Huajin New Materials Research
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The properties of metallic materials have been extensively studied, and

nowadays the tensile properties testing techniques of metallic materials still

have not found a suitable research method. In this paper, the neural Turing

machine model is first applied to explore the tensile properties of metallic

materials and its usability is demonstrated. Then the neural Turing machine

model was improved. The model is then improved so that the required

results can be obtained faster and more explicitly. Based on the improved

Neural Turing Machine model in the exploration of tensile properties of

metal materials, it was found that both H-NTM and AH-NTM have less

training time than NTM. A-NTM takes more training time than AH-NTM.

The improvement reduces the training time of the model. In replication,

addition, and multiplication, the training time is reduced by 6.0, 8.8, and 7.3%,

respectively. When the indentation interval is 0.5–0.7mm, the error of the initial

indentation data is large. The error of the tensile properties of the material

obtained after removing the data at this time is significantly reduced. When the

indentation interval is 0.8–1.5mm, the stress is closer to the real value of tensile

test yield strength 219.9 Mpa and tensile test tensile strength 258.8 Mpa. this

paper will improve the neural Turingmachinemodel in the exploration ofmetal

material tensile properties testing technology has some application value.

KEYWORDS

neural Turing machine, metallic material, tensile experiment, inspection technique,

hard sigmoid

Introduction

As a material, metallic materials are widely used in human production, life and social

development (Stock et al., 2018). Metallic materials have many properties, such as high

elasticity, high toughness, and high hardness (Kumar et al., 2020). In the metal industry,

metallic materials are usually divided into pure metals and alloys (Suryanarayana,

2019). The physical properties of metal materials are usually tested when making the

corresponding materials and equipment. The physical testing of metals is carried out

according to industry standards and using scientific methods. Therefore, it is necessary

to strengthen the research on the physical properties testing technology of metals and to

improve the corresponding technical measures (Xu et al., 2021).
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The effects on the properties of metallic materials are usually

reflected within the metallic material. When people process

metal materials, the metal material is easily affected by the

tensile speed. Generally metal inclusions, metal crystals and

other impurities are present inside the metallic material. These

magazines lead to problems such as crystal misalignment and

poor bonding within the metallic material (Ford et al., 2019).

Metallic materials generally have a relatively consistent overall

performance, but the tensile properties of metallic materials

will be affected when external elastic deformation or plastic

deformation occurs during processing (Khalid et al., 2022).

According to Regan et al. (2020), who studied plastic materials,

it was found that plastic deformation of materials can be

accomplished by stretching. The external processing can cause

the relative sliding of the metal material beyond the slip

threshold, and this phenomenon will cause the crystalline and

crystallographic motion of the metal crystal. This process will

have a velocity of motion. When the metal material is stretched,

the strength will also increase when the stretching temperature

increases, and there will be a time lag in the stretching process.

At a slow rate of stretching, the technical material can withstand

a tensile force of 200 kN.

When the stretching speed is increased, applying 200 kN

tension to the metal material will cause dislocation intensive

reduction of the material tensile properties and fracture of the

metal material. Yuan and Fan (2019) found that a reasonable

choice of speed and pressure is required when stretching metal

materials. When the metal is stretched, this operation needs to

ensure that the metal crystal slip is produced and the tensile

properties of the material are taken into account. And to

avoid the fracture of the metal material during the operation.

The properties of metallic materials have been widely studied,

but for their tensile properties testing techniques, they are

currently difficult to find a suitable method for researchers

to explore simple, accurate and fast testing techniques for

the tensile properties of metallic materials. In today’s era of

exponential growth of data, the value laws behind the data are

often buried under the vast amount of information. How to

uncover the potential value through the surface phenomenon

and exploit it has become the focus of current technology

research (Bai et al., 2022). Yao and Guan (2018) stated that

natural language processing is a popular area of data research. In

terms of algorithm implementation, machine learning methods

have received wide attention from scholars both at home and

abroad. Neural networks have features such as automatic feature

extraction and strong description ability (Ning et al., 2022).

Among many machine learning methods, neural networks have

become a dark horse in the machine learning community.

Neural networks have made breakthroughs in many research

areas. In the research of Neural Turing Machine (NTM), a

Neural Turing Machine (NTM) is a kind of neural network with

Turing-complete properties. It has the ability to fit functions

and can theoretically implement any function. According to

Gangal et al. (2021), it was found that the most important

difference between NTM and physical Turing machines is

that a Neural Turing Machine is an algorithm that can

pass gradients backwards. The physical concept of a Turing

machine uses the 0 or 1 representation of data in a computer

to compute all logical functions (Malekmohamadi Faradonbe

et al., 2020). The same feature as all algorithms is that neural

Turing machines, like all neural network algorithms, use mainly

real numbers (Boce et al., 2022). Neural Turing machines

use activation functions with smoother function images to

make the neural network properties appear continuously non-

linear. Such non-linear neural networks composed of real

numbers are easier to train (Huang et al., 2020). Neural Turing

machines combine physical Turing machine ideas and smooth

activation functions to perform the operations associated in

physical Turing machines. Another difference from physical

Turing machines is that physical Turing machines read the

instructions to be executed continuously in one direction in

a sequential manner (Mühlhoff, 2020). In contrast, during the

addressing of a neural Turing machine, the neural Turing

machine can computationally generate a displacement that shifts

the center of gravity of the current attention to the left or

right, rather than simply to one direction (Faradonbeh and Safi-

Esfahani, 2019). The focus of NTM is on the management of

external memory. NTM extends the functionality of standard

controllers by reading and writing external memory as a result

of addressing. Thus, they can make the NTM implement the

memory management function. According to Sharma et al.

(2020), it was found that the addressingmechanism of NTM also

makes the controller in NTM to generate certain attention. Thus,

NTM can improve the model’s ability to process sequences.

Deep Reinforcement Leaning (DRL) is used to solve the

problem of too many states in reinforcement learning (Wang

et al., 2022). Deep reinforcement learning methods construct

a function with parameters to fit the value assessment of

state actions (Quan et al., 2020). Deep reinforcement learning

obtains action chains with corresponding values by trying

different strategies, which in turn can tune the parameters of

the value function. Thus, they can make the prediction of

the value function converge to the actual value (Bai et al.,

2021). It has also become a trend to add deep learning to

NTM as the optimal strategy can be obtained through the

value function (Wang et al., 2021). In the study by Gross

et al. (2021), this study used the NTM mechanism to improve

the network model structure. A data copy experiment and a

data repetitive copy experiment were designed in the study.

The effectiveness of the attention mechanism generated by

NTM was verified from the experimental results. The metal

material tensile property testing technique has been widely

explored, so combining neural network applied tometal material

tensile property testing technique is rarely studied and the

applicability study under this combined neural Turing model is

almost absent.
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In summary, this problem is explored for the tensile

properties testing technique of metal materials. In this study,

an improved neural Turing machine model is proposed. The

model uses the Hard sigmoid function instead of the sigmoid

activation function in NTM. This approach makes the model

computationally simple and easy to optimize. This approach

ensures that the core structure of the NTM remains unchanged,

while reducing the computational effort of the model and

speeding up the model training. In this paper, the improved

neural Turing machine model is applied to the problem of

exploring the tensile properties testing technology for metal

materials. In the study, it is found that the improved neural

Turing machine can reduce the training time of the model.

When the indentation interval of metal material is 0.5–0.7mm,

the error of the tensile property results obtained after removing

the initial indentation data is significantly reduced and is closer

to the real value. When the indentation interval is 0.8–1.5mm,

the accuracy of fitting the results using the default range

is higher.

System model

Introduction to the neural turing
machine model and formulas

Introduction of neural turing machine

A neural Turing machine is a neural network architecture

with the addition of an external storage matrix. The external

storage matrix enhances the neural network’s ability to

remember long input sequences, forming an attention

mechanism similar to the Seq2Seq model. This external

memory-based architecture is consistent with computer Turing

machines. Only in contrast to computer Turing machines, an

end-to-end microscopic neural network model of NTM can be

trained using gradient descent method for network modeling.

The main components of the NTM are the controller, the

read/write side, and an external memory (Urien, 2019). The

controller in the NTM is equivalent to the CPU in a computer,

and the external memory is equivalent to the memory of a

computer. The read/write side is equivalent to the IO device of

the computer. The controller modifies and reads the memory

blocks through the read/write side. During the operation of

the computer, the CPU addresses the data according to the

control signals from the controller, and the CPU determines

where in the memory to read and write the data information.

Unlike actual machines, there is no concept of bootability

for computer operations on memory. In NTM, all read and

write operations to the memory block matrix are derivable

(Vishwakarma and Lee, 2018).

The output of the NTM controller controls the entire

workflow of the NTM. The implementation of the controller

is a neural network. This means that it can be a recurrent

neural network. It can also be a fully connected or convolutional

network. It is the neural network controller that interacts with

the entire system input and output. The read and write sides

of the NTM calculate the weights of each vector in the external

memory matrix for the current state based on the control signals

from the controller. The values of the memory matrix in the

NTM are affected by all the inputs up to the current moment.

the memory matrix in the NTM is a real matrix. the memory

matrix in the NTM is the object of direct operations by the

read and write side. The process of reading and writing against

the memory matrix in the sequence model is represented as an

attention mechanism.

Formulation of the neural turing machine

M(t) denotes the memory matrix of size N× E at moment t,

where N denotes the number of memory cells and E denotes the

size of each memory cell. w(t) denotes the weight vector output

through the read head at the moment of t. w(t) whose the i-th

dimensional element w
(t)
i represents the weight occupied by the

i-th memory cell and satisfies the following constraint.

N
∑

i= 1

w
(t)
i = 1, 0 ≤ w

(t)
i ≤ 1, i = 1, 2, . . .N (1)

Then the reading vector r(t) at moment t is calculated

according to Equation (2).

r(t) = w(t)M(t) (2)

At the moment of t, the write head outputs the weight

vector w(t), the E dimensional elimination vector e(t) and the

E dimensional a(t). e(t) each element belongs to the interval

(0, 1). Then the value of the memory matrix can be calculated

according to Equations (3)–(5) as follows:

e(t) = σ (Weh(t) + be) (3)

a(t) = Wah(t) + ba (4)

M(t) = M(t−1)|1− w(t)(e(t))
T
| + w(t)(a(t))

T
(5)

where, 1 in Equation (5) denotes an all-1 matrix of size

N× E, denotes the output of the controller at the moment of

t, We, be, Wa, and ba are the weights and biases corresponding

to the elimination vector and the additive vector, respectively.

From Equation (5), it can be seen that each element of the

memory matrix is reset to 0 when each element of e(t) and w(t)is

equal to 1, and then a new memory vector is written.

When each element of e(t) and w(t) is equal to 0, each

element of the memory matrix remains unchanged.

The addressing mechanism based on location addressing is

introduced into NTM. In this paper, the addressing mechanism
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of NTM, that is, the weight vector occupied by the ith memory

unit, is summarized as the following four formulas:

C
(t)
i =

exp
(

β(t)k(k(t),M
(t)
i )

)

∑

j exp
(

β(t)k(k(t),M
(t)
i )

) (6)

G
(t)
i = g(t)C

(t)
i +

(

1− g(t)
)

w
(t−1)
i (7)

w̃
(t)
i =

N−1
∑

j=0

G
(t)
j s

(t)
i−j (8)

w
(t)
i =

w̃
(t)y(t)
i

∑

j w̃
(t)γ (t)
j

(9)

The K function in Equation (6) represents the cosine

similarity function.

k(u, v) =
u · v

||u||||v||
(10)

Equations (6) and (9) involves the five parameters k(t), β(t),

g(t), s(t) ,γ (t) and according to the previous section, have their

specific physical meaning. In the structure of NTM, they each

correspond to a single layer of neural networks whose inputs

are controller outputs h(t). Where k(t) corresponds to a linear

activation function, β(t), g(t), s(t), γ (t) corresponding to the

activation functions 1+ReLU, sigmoid, softmax, and 1+ReLU,

respectively. the following equation gives the definition of these

five parameters:

k(t) = Wkh(t) + bk (11)

β(t) = 1+ ReLU
(

Wβh(t) + bβ
)

(12)

g(t) = sigmoid
(

Wgh(t) + bg
)

(13)

s(t) = softmax
(

Wsh(t) + bs
)

(14)

γ (t) = 1+ ReLU
(

Wγ h(t) + bγ
)

(15)

shows the output of the time-step t controller, and the

W and b appearing in Equation are the weights and biases

corresponding to each parameter, respectively.

Improvement of neural Turing machine

In order to speed up the training of the model, this

paper uses hard sigmoid function instead of sigmoid activation

function in NTM. Hard sigmoid function has the main

properties of sigmoid activation function. Hard sigmoid

function also has the characteristics of simple calculation and

easy optimization of relu activation function. The hard sigmoid

function is used as the activation function, which ensures that

the core structure of NTM does not change. It also reduces the

calculation of the model.

The relu activation function is defined as follows:

g (x) = max (0, x) (16)

Relu is a piecewise linear function. When x is a negative

number, G (x) is equal to zero; When x is >0, G (x) is equal

to X.

Sigmoid activation function. The activation function related

to this article is sigmoid function. It is defined as follows:

σ (x) =
1

1+ e−x
(17)

Its characteristics are: the value range of the function is an

interval (0, 1), the function is derivable, and the exp function

and division must be calculated for both the function value and

the derivative value. Compared with linear function, sigmoid

activation function has a huge amount of computation and

saturation at both ends of the function.

According to literature (Mao, 2020), this paper notes that

Kaiser et al. introduced the truncation mechanism in N-GPUs.

Gate truncation mechanism used by Kaiser means that in the

gate mechanism of N-GPUs, the sigmoid function is replaced by

the function defined in Equation (18).

σ ′(x) = max(0,min(1, 1.2σ (x)− 0.1)) (18)

Hard sigmoid function is a piecewise linear approximation

function of sigmoid function. Its definition is shown in Equation

(19). According to the introduction of literature (Darabi et al.,

2018), this definition comes from courbariaux.

σ ′(x) = max(0,min(1, (x+ 1)/2)) (19)

Introduction and formula of tensile
properties of metal materials

Tensile properties are one of the important mechanical

properties of metallic materials, the yield strength, tensile

strength, elongation and sectional shrinkage of metals can be

measured by tensile tests and other performance indicators. The

relationship between elongation and section shrinkage during

the uniform deformation phase has been derived in previous

studies under the assumption of constant volume; after necking,

the “true stress-strain” curve is also plotted under incorrect

strain values.

The stress-strain relationship of the hardening section of

power hardening and line hardening metal materials is shown

in Equations (20) and (21), respectively.
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σR = KεnR (20)

K is the strength coefficient of power hardening material,

which is fitted by the least square method.

σR = E2ε + b (21)

E2 is the tangent modulus of linear hardening material,

and b is the material constant. For metallic materials satisfying

the linear elastic power hardening model, the yield strength is

the intersection of the elastic deformation line and the plastic

deformation curve. Generally, it is determined by the offset of

0.2% of the elastic segment. The tensile strength is calculated by

the concept of tensile instability:

σy = E
(

εy − 0.002
)

= Kεny (22)

σu = k
(n

e

)n
(23)

In the formula, the elastic modulus E has been calculated

by indentation contact stiffness, contact projection circle area

and other indentation parameters before calculation. E is the

base of natural logarithm. For metal materials that meet the

line hardening model, the yield strength can be obtained by

Meyer’s law. The tensile strength is obtained according to the

concepts of volume incompressibility and instability during

tensile deformation (Ye et al., 2020).

σy = βmA (24)

σu =
E2

exp[(E2 − b)/E2]
(25)

A is the Meyer index and the material yield parameter,

respectively, which is obtained by non-linear regression of

the Meyer equation. m is the material constant, which is

related to the type of metal material. For carbon steel and

austenitic stainless steel, this value is usually taken as 0.2285

and 0.1910.

Analysis and discussion

Analysis and discussion of neural turing
machine

The experiments introduced in this section compare the

performance of different models in algorithm learning tasks,

including RNN, LSTM, GRU, and NTM. The experimental tasks

include replication, addition andmultiplication. Each task trains

a model independently. In the copy task, the model trained

50,000 Batches; In the addition task, the model trained 150,000

Batches; In the multiplication task, the model trained 300,000

batches. The performance differences of different models are

compared in Figure 1.

The training time of different models is compared in

Figures 1A–C. In Figures 1A–C, from top to bottom are copy,

addition and multiplication, respectively. The models include

RNN, LSTM, GRU, and NTM. The unit of time is minutes.

Pink represents RNN, orange represents LSTM, blue represents

GRU, and purple represents NTM. It can be seen from the

figure that training NTM takes the longest time and training

RNN takes the least time. The training time increases in the

order of RNN, GRO, LSTM and NTM. In the replication task,

it takes 28min to train RNN, 46min to train Gru, 49min

to train LSTM, and 101min to train NTM; In addition to

this task, it takes 267min to train RNN, 188min to train

Gru, 200min to train LSTM, and 658min to train NTM; In

multiplication tasks, it takes 140min to train RNN, 374min to

train GRU, 439min to train LSTM and 1,829min to train NTM.

Although the accuracy of NTM on the test set is higher than

GRU, LSTM and NTM, the performance of the model is still

relatively poor.

NTM has a long training time. In the replication task, the

time required to train NTM is between 2 and 5 times that of

other models. In addition to task, the time needed to train

NTM is between 3 and 6 times that of other models. In the

multiplication task, the time required to train NTM is between 4

and 9 times that of other models.

Improved neural turing machine analysis
discussion

Figures 1D–F show the comparison of the training time of

different models. four network structures are involved in this

experiment as follows: (1) ordinary NTM. (2) NTM using Hard

sigmoid activation function, which is referred to as H-NTM

in the experiment. (3) NTM trained using adaptive curriculum

learning strategy based on adaptive curriculum scaling, referred

to as A-NTM. (4) H-NTM trained using adaptive curriculum-

based scaling of curriculum learning strategies, referred to as

AH-NTM. In Figures 1D–F, from top to bottom, are replication,

addition, and multiplication, respectively. The models include

AH-NTM,A-NTM,H-NTM, andNTM. Time units areminutes.

Orange represents AH-NTM, yellow represents A-NTM, cyan

represents NTM, and purple represents H-NTM. As can be seen

from the figure, the time required to train NTM and A-NTM is

very close, and the time required to train H-NTM and AH-NTM

is very close. In the replication task, NTM takes 101min; A-

NTM takes 103min; H-NTM takes 93min; and AH-NTM takes

95min. In the addition task, NTM takes 658min; A-NTM

both take 657min; H-NTM takes 604min and AH-NTM takes
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FIGURE 1

Comparison of training time of di�erent models, (A) replication; (B) addition; (C) multiplication; (D) replication; (E) addition; (F) multiplication.

600min. In the multiplication task, NTM requires 1,829min;

both A-NTM require 1,801min; H-NTM requires 1,688min,

and AH-NTM requires 1,694 min.

Figures 1D–F shows that the training time of H-NTM and

AH-NTM is less than that of NTM and A-NTM takes more

training time than AH-NTM. The specific figures are as follows:
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in the copying task, the training time of H-NTM is 8.0% less

than that of NTM; the training time of AH-NTM is 6.0% less

than that of NTM. In the addition task, the training time of H-

NTM was reduced by 8.2% compared to NTM, and the training

time of AH-NTM was reduced by 8.8% compared to NTM.

In the multiplication task, the training time of H-NTM was

reduced by 7.7% compared to NTM, and the training time of

AH-NTMwas reduced by 7.3% compared to NTM. In summary,

the training time of the model is reduced by using the Hard

sigmoid activation function instead of the sigmoid activation

function in the NTM. The combination of the Hard sigmoid

activation function and the adaptive course scaling-based course

learning strategy reduces the training time of the model.

Analysis and discussion of tensile
properties of metal materials

In this experiment, the indentation interval is small

and taken as 0.5, 0.55, 0.6, and 0.65mm variables for the

experimental study. The results of the second indentation test

in this study were mainly influenced by the raised material

surface. Its initial indentation load value is much larger than

the true value, and the calculated distribution pattern of the

characterized stress-strain data points deviates from the power-

law intrinsic structure relationship of the aluminum alloy

material. In order to improve the accuracy of the fitting results

of this experiment. In this study, the results corresponding to the

small initial indentation depth can be excluded. On this basis, the

data points in the latter part of the study were selected to bemore

reasonably distributed for fitting. The smaller number of test

points means that more initial data points are eliminated. For

example, the 14 points represent the remaining 14 data sets after

removing the stress-strain points obtained at the indentation

depth of 10µm. The indentation results at 0.5mm indentation

interval were used for the experimental analysis. The influence

of the data selection range on the fitting and calculation results

was investigated. The experimental study found that the most

significant effect was caused by the first indentation at this

working condition. As shown in Figure 2A, the stress of tensile

strength and yield strength showed an increasing trend with the

increase of fitting data points. As the number of points increases,

the further away from the true value of the test. The true value

of tensile test yield strength stress is 219.9 Mpa. The true value

of the tensile strength stress of another group of tensile tests

is 258.8 Mpa. This indicates that the indentation results with a

small indentation depth are the main factor affecting the final

calculation results. However, the number of test fitting points

should be >10.

The yield strength obtained from this experiment using a

10-point fit was 4.32%. The relative error of the tensile strength

was 4.17%. The relative errors of the initial results in the

experiment were 15.17 and 14.68%. The comparison of the

initial results with the 10-point fit indicates that reducing the

choice of fitted data points in this case can significantly improve

the accuracy of the calculated results. The 10-point fits were

performed separately for the indentation results at different

indentation intervals in the experiments. The variations of

the calculated yield strength and tensile strength results are

shown in Figure 2B. From the results, it can be obtained that

the error of the initial indentation data is larger when the

indentation interval is 0.5–0.7mm. The error of the material

tensile property results obtained after removing this section of

data is significantly reduced and is closer to the true value. The

data obtained were closer to the true value of the tensile test

yield strength of 219.9 Mpa. another set of data was closer to the

tensile test tensile strength of 258.8 Mpa. when the indentation

interval was 0.8–1.5mm, the accuracy of fitting the results using

the default range was higher. The test stress data is infinitely

closer to the true value with less error. Reducing the fitted

data points will increase the calculated value of indentation and

reduce its accuracy to some extent.

Conclusion

Nowadays, metal material properties have become a hot

research problem. Based on the assistance of neural Turing

machine model, an improved neural Turing machine model is

proposed in this paper. The model is applied to the exploration

of tensile properties testing techniques for metallic materials.

The model allows us to get the required results faster and more

explicitly. It is found that the accuracy of fitting the results using

the default range is higher when the press-in interval is 0.8

mm-1.5mm. The specific findings of this study are as follows.

(1) In the experiments of neural Turing machine, the training

time of four different models, RNN, LSTM, GRU and

NTM, was compared for three different experimental tasks

of replication, addition and multiplication. The analysis

reveals that the training time of NTM is longer. In the

replication task, the time required to train NTM is 2–5 times

longer than the other models, respectively. In the addition

task, it took 3–6 times as long to train as the others. In the

multiplication task, it took 4–9 times longer to train than

the others.

(2) In the experiments of the improved neural Turing

machine, the training time was compared for four different

models, NTM, H-NTM, A-NTM, and AH-NTM, for three

different experimental tasks of replication, addition, and

multiplication. The analysis shows the training time of

H-NTM and AH-NTM is less than that of NTM. The

training time of A-NTM is more than that of AH-NTM.

The improvement of them reduces the training time of

the models. In replication, the training time of AH-NTM

is reduced by 6.0% compared to NTM, respectively. In
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FIGURE 2

Calculated results of metal tensile properties, (A) material tensile properties for di�erent data ranges at 0.5mm press-in interval; (B) re-choice of

fitted data.

addition, its training time was reduced by 8.8%, and in

multiplication, its training time was reduced by 7.3%.

(3) When the indentation interval is 0.5–0.7mm, the error of

the initial indentation data is larger. This value is closer to

the real value of the tensile test yield strength 219.9 Mpa

and the real value of tensile test tensile strength 258.8 Mpa.

When the indentation interval is 0.8–1.5mm, the accuracy

of fitting the results with the default range is higher, whose

values are infinitely close to the true values. Reducing the

number of fitted data points will increase the calculated

value of indentation and reduce its accuracy to some extent.

Data availability statement

The raw data supporting the conclusions of this article will

be made available by the authors, without undue reservation.

Author contributions

XC and WF validated their proposed ideas by designing

experiments and analyzing the results in detail and then

completed the paper writing. All authors read and approved the

final draft.

Conflict of interest

Author WF was employed by Huajin New Materials

Research Institute (Guangzhou) Co., Ltd. and Guangdong

Hongbang Metal Aluminum Co., Ltd.

The remaining author declares that the research was

conducted in the absence of any commercial or financial

relationships that could be construed as a potential conflict

of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.

References

Bai, X., Wang, X., Liu, X., Liu, Q., Song, J., Sebe, N., et al. (2021). Explainable
deep learning for efficient and robust pattern recognition: a survey of recent
developments. Pattern Recogn. 120, 108102. doi: 10.1016/j.patcog.2021.108102

Bai, X., Zhou, J., Ning, X., and Wang, C. (2022). 3D Data Computation and
Visualization. Elsevier, 102169.

Boce, H., Fono, A., and Kutyniok, G. (2022). Inverse problems
are solvable on real number signal processing hardware.
arXiv preprint.

Darabi, S., Belbahri, M., Courbariaux, M., and Nia, V. P. (2018). Bnn+: Improved
Binary Network Training. Available online at: openreview.net

Frontiers inNeurorobotics 08 frontiersin.org

13

https://doi.org/10.3389/fnbot.2022.1000646
https://doi.org/10.1016/j.patcog.2021.108102
openreview.net
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Chen and Fan 10.3389/fnbot.2022.1000646

Faradonbeh, S. M., and Safi-Esfahani, F. (2019). A review on neural turing
machine. arXiv preprint.

Ford, M. J., Ambulo, C. P., Kent, T. A., Markvicka, E. J., Pan, C., Malen, J., et al.
(2019). A multifunctional shape-morphing elastomer with liquid metal inclusions.
Proc. Natl. Acad. Sci. 116, 21438–21444. doi: 10.1073/pnas.1911021116

Gangal, A., Kumar, P., Kumari, S., Li, W., Bai, X., and Wang, Y. (2021). Neural
Computing. arXiv preprint.

Gross, J. E., Caceres, S., Poch, K., Hasan, N. A., Davidson, R. M., Epperson, L.
E., et al. (2021). Healthcare-associated links in transmission of nontuberculous
mycobacteria among people with cystic fibrosis (HALT NTM) study: rationale
and study design. PLoS ONE 16, e0261628. doi: 10.1371/journal.pone.02
61628

Huang, Z., Zhu, X., Ding, M., and Zhang, X. (2020). Medical image classification
using a light-weighted hybrid neural network based on PCANet and DenseNet.
Ieee Access 8, 24697–24712. doi: 10.1109/ACCESS.2020.2971225

Khalid, M. Y., Arif, Z. U., Ahmed, W., and Arshad, H. (2022). Evaluation of
tensile properties of fiber metal laminates under different strain rates. Proc. Inst.
Mech. Eng. E J. Proc. Mech. Eng. 236, 556–564. doi: 10.1177/09544089211053063

Kumar, J., Singh, D., Kalsi, N. S., Sharma, S., Pruncu, C. I., Pimenov,
D. Y., et al. (2020). Comparative study on the mechanical, tribological,
morphological and structural properties of vortex casting processed, Al–SiC–Cr
hybrid metal matrix composites for high strength wear-resistant applications:
fabrication and characterizations. J. Mater. Res. Technol. 9, 13607–13615.
doi: 10.1016/j.jmrt.2020.10.001

Malekmohamadi Faradonbe, S., Safi-Esfahani, F., and Karimian-Kelishadrokhi,
M. A. (2020). review on neural turing machine (NTM). SN Comput. Sci. 1, 1–23.
doi: 10.1007/s42979-020-00341-6

Mao, J. (2020). Efficient Neural Network Based Systems on Mobile and Cloud
Platforms. Duke University.

Mühlhoff, R. (2020). Human-aided artificial intelligence: or, how to run large
computations in human brains? Towardmedia sociology of machine learning. New
Media Soc. 22, 1868–1884. doi: 10.1177/1461444819885334

Ning, X., Tian, W., Yu, Z., Li, W., Bai, X., and Wang, Y. (2022). HCFNN: high-
order coverage function neural network for image classification. Pattern Recogn.
108873. doi: 10.1016/j.patcog.2022.108873

Quan, H., Li, Y., and Zhang, Y. A. (2020). novel mobile robot
navigation method based on deep reinforcement learning. Int. J.

Adv. Robotic Syst. 17, 1729881420921672. doi: 10.1177/17298814209
21672

Regan, B., Aghajamali, A., Froech, J., Tran, T. T., Scott, J., Bishop, J., et al. (2020).
Plastic deformation of single-crystal diamond nanopillars.Adv.Mater. 32, 1906458.
doi: 10.1002/adma.201906458

Sharma, R., Kumar, A., Meena, D., and Pushp, S. (2020). Employing
differentiable neural computers for image captioning and neural machine
translation. Proc. Comp. Sci. 173, 234–244. doi: 10.1016/j.procs.2020.06.028

Stock, T., Obenaus, M., Kunz, S., and Kohl, H. (2018). Industry 4.0 as enabler
for a sustainable development: a qualitative assessment of its ecological and social
potential. Proc. Safety Environ. Prot. 118, 254–267. doi: 10.1016/j.psep.2018.06.026

Suryanarayana, C. (2019). Mechanical alloying: a novel technique to synthesize
advanced materials. Research. 1–17. doi: 10.34133/2019/4219812

Urien, P. (2019). “Introducing innovative bare metal crypto terminal for
blockchains and bigbang paradigm,” in 2019 10th IFIP International Conference
on New Technologies, Mobility and Security (NTMS), 1–4.

Vishwakarma, G., and Lee,W. (2018). Exploiting JTAG and its mitigation in IOT:
a survey. Future Int. 10, 121. doi: 10.3390/fi10120121

Wang, C., Wang, X., Zhang, J., Zhang, L., Bai, X., Ning, X., et al. (2022).
Uncertainty estimation for stereo matching based on evidential deep learning.
Pattern Recogn. 124, 108498. doi: 10.1016/j.patcog.2021.108498

Wang, X., Wang, C., Liu, B., Hasan, N. A., Davidson, R. M., Epperson, L. E.,
et al. (2021). Multi-view stereo in the deep learning era: a comprehensive revfiew.
Displays 70, 102102. doi: 10.1016/j.displa.2021.102102

Xu, T., Wang, K., and Song, S. (2021). Measurement uncertainty and
representation of tensile mechanical properties in metals. Metals 11, 1733.
doi: 10.3390/met11111733

Yao, L., and Guan, Y. (2018). An improved LSTM structure for natural
language processing. IEEE Int. Conf. Safety Prod. Inform. (IICSPI) 2018, 565–569.
doi: 10.1109/IICSPI.2018.8690387

Ye, J.-Y., Zhang, L.-W., and Reddy, J. (2020). Large strained fracture
of nearly incompressible hyperelastic materials: enhanced assumed strain
methods and energy decomposition. J. Mech. Phys. Solids 139, 103939.
doi: 10.1016/j.jmps.2020.103939

Yuan, S., and Fan, X. (2019). Developments and perspectives on the precision
forming processes for ultra-large size integrated components. Int. J. Extreme
Manufact. 1, 022002. doi: 10.1088/2631-7990/ab22a9

Frontiers inNeurorobotics 09 frontiersin.org

14

https://doi.org/10.3389/fnbot.2022.1000646
https://doi.org/10.1073/pnas.1911021116
https://doi.org/10.1371/journal.pone.0261628
https://doi.org/10.1109/ACCESS.2020.2971225
https://doi.org/10.1177/09544089211053063
https://doi.org/10.1016/j.jmrt.2020.10.001
https://doi.org/10.1007/s42979-020-00341-6
https://doi.org/10.1177/1461444819885334
https://doi.org/10.1016/j.patcog.2022.108873
https://doi.org/10.1177/1729881420921672
https://doi.org/10.1002/adma.201906458
https://doi.org/10.1016/j.procs.2020.06.028
https://doi.org/10.1016/j.psep.2018.06.026
https://doi.org/10.34133/2019/4219812
https://doi.org/10.3390/fi10120121
https://doi.org/10.1016/j.patcog.2021.108498
https://doi.org/10.1016/j.displa.2021.102102
https://doi.org/10.3390/met11111733
https://doi.org/10.1109/IICSPI.2018.8690387
https://doi.org/10.1016/j.jmps.2020.103939
https://doi.org/10.1088/2631-7990/ab22a9
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


TYPE Brief Research Report

PUBLISHED 29 September 2022

DOI 10.3389/fnbot.2022.1006755

OPEN ACCESS

EDITED BY

Xin Ning,

Institute of Semiconductors

(CAS), China

REVIEWED BY

Yuning Tao,

South China University of

Technology, China

Quanyong Wang,

Guangdong Research Institute of

Petrochemical and Fine Chemical

Engineering, China

*CORRESPONDENCE

Qi Zheng

zhengq0727@163.com

RECEIVED 29 July 2022

ACCEPTED 25 August 2022

PUBLISHED 29 September 2022

CITATION

Zheng Q (2022) E�cient recognition

of dynamic user emotions based on

deep neural networks.

Front. Neurorobot. 16:1006755.

doi: 10.3389/fnbot.2022.1006755

COPYRIGHT

© 2022 Zheng. This is an open-access

article distributed under the terms of

the Creative Commons Attribution

License (CC BY). The use, distribution

or reproduction in other forums is

permitted, provided the original

author(s) and the copyright owner(s)

are credited and that the original

publication in this journal is cited, in

accordance with accepted academic

practice. No use, distribution or

reproduction is permitted which does

not comply with these terms.

E�cient recognition of dynamic
user emotions based on deep
neural networks

Qi Zheng*

School of Communication, Zhengzhou Normal University, Zhengzhou, China

The key issue at this stage is how to mine the large amount of valuable user

sentiment information from the massive amount of web text and create a

suitable dynamic user text sentiment analysis technique. Hence, this study

o�ers a writing feature abstraction process based on ON-LSTM and attention

mechanism to address the problem that syntactic information is ignored in

emotional text feature extraction. The study found that the Att-ON-LSTM

improved the micro-average F1 value by 2.27% and the macro-average F

value by 1.7% compared to the Bi-LSTM model with the added attentivity

mechanisms. It is demonstrated that it can perform better extraction of

semantic information and hierarchical structure information in emotional text

and obtain more comprehensive emotional text features. In addition, the ON-

LSTM-LS, a sentiment analysis model based on ON-LSTM and tag semantics,

is planned to address the problem that tag semantics is ignored in the process

of text sentiment analysis. The experimental consequences exposed that the

accuracy of the ON-LSTM and labeled semantic sentiment analysis model on

the test set is improved by 0.78% with the addition of labeled word directions

compared to themodel Att-ON-LSTMwithout the addition of labeled semantic

information. Themacro-averaged F1 value improved by 1.04%, which indicates

that the sentiment analysis process based on ON-LSTM and tag semantics can

e�ectively perform the text sentiment analysis task and improve the sentiment

classification e�ect to some extent. In conclusion, deep learning models for

dynamic user sentiment analysis possess high application capabilities.

KEYWORDS

deep learning models, dynamic users, sentiment analysis, text extraction, tag

semantics

Introduction

In recent years, online social media and mobile smart terminals have emerged in

large numbers and developed rapidly. They provide people with new communication

process and interactive spaces, making people’s lifestyles change dramatically (Aprem

and Krishnamurthy, 2017). A growing number of people tend to use smart terminals to

obtain information, exchange ideas and spread information through online social media.

The process of information dissemination is no longer the one-way communication of

traditional media, but interactive communication (Nduhura and Prieler, 2017). Among

them, there is a large amount of text as the simplest and most direct carrier for human

beings to express their thoughts and spread knowledge in the Internet. It involves
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hot events, product reviews, news information and many

other aspects. They contain rich emotional information and

attitudinal views, with high social value and commercial

application value (Liu et al., 2017). Emotion, a physiological

and psychological state that results from a combination of

feelings, thoughts, and behaviors (Chao et al., 2017). Such as

happiness, sadness and anger are also among the chief factors

that influence human behavior. People discuss certain hot topics

and express their opinions on social platforms. They publish

reviews of products or services on shopping platforms, etc. These

unstructured online texts contain a lot of valuable information

about users’ emotions (Angioli et al., 2019). These emotional

messages inherently have a certain abstraction and are difficult

to be processed directly. It has attracted the attention of many

researchers to find out how to extract this effective information

from the huge amount of web texts and then apply it effectively

in real life, resulting in the emergence of dynamic user text

sentiment analysis techniques.

Initial studies on sentiment analysis focused on coarse-

grained research on sentiment polarity dichotomization or

trichotomization. With the gradual research on text sentiment

analysis techniques and the desire to have amore comprehensive

understanding of users’ psychological states, the study of text

sentiment analysis gradually shifted to more fine-grained multi-

categorization research. Emotion recognition is the foundation

and prerequisite of emotion classification. In the vast amount of

realistic web texts, there are filled with abundant unemotional

texts and emotional texts. Emotionless text is an objective

description of things or events without any emotion. Emotional

texts contain personal emotions such as happiness, anger,

sadness and so on. Emotional texts are the main object of

textual emotion analysis, therefore, it is necessary and chief

to identify the presence or absence of emotions in a large

amount of real texts and filter out emotional texts. Sachdev

et al. (2020) collected a corpus of blog posts, which were

annotated with word-level emotion categories and intensities,

and used a knowledge-based approach to identify sentences

with and without emotions with an accuracy of 73.89%.

Wallgrün et al. (2017) constructed a corpus oriented to

microblogging texts, annotated whether the microblogging

texts contain emotion information or not. At the same time,

they performed a multi-label annotation of the emotion

categories contained in the microblog texts with emotions.

They summarized the results of the NLP&CC2013 Chinese

microblog sentiment analysis evaluation task on sentiment

recognition, which facilitated the research related to sentiment

analysis. Huang et al. (2017) planned a text emotion recognition

process based on syntactic information, which expands the

performance of emotion recognition by making full use of

syntactic information through lexical annotation sequences and

syntactic trees. Emotion classification, as chief research direction

of emotion analysis, is based on emotion recognition to classify

texts containing emotion information at a finer granularity

and obtain the specific emotion category (e.g., happy, angry,

sad, etc.) expressed by the user in the text. The majority

of early sentiment classification studies utilized lexicon- and

rule-based process to determine sentiment categories. Fine-

grained multi-class sentiment classification is the difficulty

and focus of sentiment analysis, researchers have studied

sentiment classification from different perspectives, such as

construction of sentiment corpus (Fraser and Liu, 2014; Kawaf

and Tagg, 2017), author sentiment and reader sentiment

prediction (Chang et al., 2015; Yoo et al., 2018), document-

level sentimentality organization, sentence-level sentimentality

organization and word-level sentiment classification (Liu et al.,

2020; Zhang L., et al., 2021). Alves and Pedrosa (2018) planned

a process based on frequency and co-occurrence information

to classify the sentiment of headline texts by making full use

of the co-occurrence relationship between contextual words

and sentiment keywords. Subsequently, various researchers have

used traditional machine learning-based process for sentiment

classification studies. Pan et al. (2017) planned a multi-label K-

nearest neighbor (KNN) based sentiment classification process

that explores the polarity of words, sentence subject-verb-object

components, and semantic frames as features for their impact

on sentiment classification. To differ from this, Aguado et al.

(2019) have taken into accounts the interaction of sentiments

between sentences and use a coarse-to-fine analysis strategy

to do sentiment classification of sentences, first obtaining the

set of possible sentiments embedded in the target sentence

roughly using a multi-label K-nearest neighbor approach, and

then refining the sentiment category of the target sentence by

combining the sentiment transfer probabilities of neighboring

sentences. Rao et al. (2016) utilized a maximum entropy model

to model words and multiple sentiment categories in a text

to estimate the relationship between words and sentiment

categories to classify sentiment in short texts. Traditional

machine learning process extract text features manually through

feature engineering, while deep learning uses representation

learning process to extract text features automatically without

relying on artificial features. Effective feature extraction is

the core of research on emotion classification process, and

most of research works show that reasonable use of deep

learning techniques based on neural networks to extract rich

semantic information in emotional texts contributes to the

effectiveness of text emotion classification. Abdul-Mageed and

Ungar (2017) constructed a large-scale fine-grained sentiment

analysis dataset employing Twitter data and designed a represent

neural network based on gating units to achieve 24 classes of

fine-grained sentiment classification. Kim and Huynh (2017)

experimentally explored text emotion classification utilizing

the LSTM model as well as its variant nested long-short-term

memory network (Nested LSTM) model, respectively, which

showed that the Nested LSTM model facilitates better accuracy

of sentiment classification. Wang et al. (2016) planned neural

network (NN) model based on bilingual attentively mechanisms

Frontiers inNeurorobotics 02 frontiersin.org

16

https://doi.org/10.3389/fnbot.2022.1006755
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Zheng 10.3389/fnbot.2022.1006755

for the problem of emotion classification in bilingual mixed

text, where the LSTM model is used to construct a document-

level text illustration and the attention mechanism captures

semantically rich words in both monolingual and bilingual

texts. In addition, some studies have applied a joint multi-task

learning approach to the task of emotion classification. Awal

et al. (2021) incorporated emotion classification and emotion

cause detection as two subtasks into a unified framework

through a joint learningmodel, trained simultaneously to extract

the emotional features needed for emotion classification and

the event features needed for emotion cause detection. Yu

et al. (2018) planned a dual-attention-based transfer learning

process that aims to improve the performance of emotion

classification using sentiment classification. At present, there are

plenty of results for research on text sentiment analysis process,

but sentiment analysis still faces many challenges due to the

colloquial and irregular nature of online texts and the complexity

of sentiment itself (Ning et al., 2021). For text representation,

most approaches use pre-trained models such as Word2Vec and

GloVe to obtain word directions, which are simple, efficient,

and can characterize contextual semantics well, but suffer from

the problem of multiple meanings of a word (Ning et al.,

2022). For text feature extraction, commonly used NNs such as

CNN and Bi-LSTM extract semantic features while ignoring the

syntactic hierarchy features of the text (Ning et al., 2020). Most

approaches only symbolize sentiment category labels and act as

a supervisory role in the classification process, while ignoring

semantic information contained in the labels themselves, which

is undoubtedly a “semantic waste”. In this paper, we explore and

improve the text sentiment analysis process based on the above

three problems.

Based on this, the main research of this paper is to use

deep learning techniques to accomplish the task of emotional

analysis of online text, based on the ordered neuronal long

and short term memory network (ON-LSTM) and attention

mechanism, and incorporating the semantic information of

emotional category labels to build the emotional analysis model

ON- LSTM-LS. First, the text features are extracted based

on ON-LSTM and attention mechanism. Then the sentiment

analysis model based on ON-LSTM and label semantics. In

this study, for online social text, we build the sentiment

analysis model ON-LSTM-LS based on ordered neuron long

and short term memory network and attention mechanism,

and incorporate the semantic information of sentiment category

labels to improve the performance of text sentiment analysis.

Theory and model construction

Text representation

Text data usually consists of a set of unstructured or semi-

structured strings. Since computers cannot directly recognize

and process text strings, they need to numerate or directionize

the text, i.e., text representation. Text representation enables

computers to process real text efficiently and is a fundamental

and chief step in the study of text sentiment analysis. In Chinese,

words are generally considered to be the most basic semantic

units of text. Therefore, general research for Chinese text should

first perform word separation operation, and then the words in

the text are represented afterwards.

Word direction representation

NN-based distributed representation is also recognized as

word direction, word embedding or distributed representation

of words. This process models the target word, context of target

word and the relationship between them, and represents the

target word as a low-dimensional solid real-valued direction

in continuous space. Compared with matrix-based distributed

representation and cluster-based distributed representation,

word direction representation can contain more and more

complex semantic information. It is extensively used in various

normal language dispensation errands.

The word directions are gained by training the language

model, which uses a single-layer NN to perform the solution of

the binary language model while obtaining the word direction

representation. Based on this, the NN language model NNLM

is planned (Wang et al., 2022). The model takes the first k

words of the present word wt , wt−k−1, . . . ,wt−1, as input

and uses a NN to predict the conditional likelihood of the

occurrence of the present word wt to obtain a word direction

representation while training the language model. As the NNLM

is capable of handling only fixed-length sequences, lacking

flexibility. Due to the slow training speed, the researchers

improved the NNLM. They planned two words direction

training models, which are successive bag-of-words model

CBOW and skip-word model. They open source a tool

Word2Vec for word direction computation. Differs from the

NNLM in which the representation of the present word wt

depends on its predecessor. In CBOW and Skip-gram models,

the representation of the present word wt depends on k words

before and after it. In the CBOW and Skip-gram models,

representation of present word wt depends on k words before

and after it.

Both CBOW and Skip-gram models have same three-layer

hierarchy: input layer, mapping layer, output layer, and structure

diagram are exposed in Figure 1A. In the input layer, the input

words are randomly initialized as N-dimensional directions.

They enter the hidden layer after a simple linear operation, and

then likelihood distribution of the target words is output by

hierarchical Softmax.

The CBOW model is to predict the provisional

likelihood of the occurrence of the word wt by the context
{

wt−k, · · · ,wt−1,wt+1, · · · ,wt+k

}

of present word wt , which
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FIGURE 1

Model structure diagram. (A) ELMo model structure diagram. (B)

LSTM model structure diagram. (C) Attention model structure

diagram.

is calculated as:

p (wt|ct) =
exp

(

e′(wt)
Tx
)

|V|
∑

i=1
exp

(

e′(wi)
Tx
)

(1)

x =
∑

i∈k

e (wi) (2)

where ct denotes the words
{

wt−k, · · · ,wt−1,wt+1, · · · ,wt+k

}

in the context window, e (wt) is input direction of word wt ,

e′ (wt) is output direction of word wt , x is the context direction,

V is the corpus word list.

The Skip-grammodel uses the present wordwt to predict the

conditional likelihood of each word in the vocabulary to occur in

its context (Wang et al., 2021) and is calculated as:

p
(

wj|wt
)

=
exp

(

e′
(

wj
)T

e (wt)

)

∑|V|
i=1 exp

(

e′(wi)
Te (wt)

) (3)

To limit the number of restrictions to restore the training

efficiency of the model, Word2Vec is optimized using two

techniques, hierarchical Softmax and negative sampling. In the

training process of model, representation of words is constantly

updated by the output direction of the mapping layer is the

direction of words.

Considering that Word2Vec only considers contextual co-

occurrence features within a finite window when learning,

global statistical features are ignored. Researchers propose

the GloVe word embedding technique that fuses global

and local contextual features of text. gloVe belongs to

matrix-based distribution representation, which is a global

logarithmic bilinear regression model. They construct global

word-word co-occurrence matrices based on the statistical

information between words in the corpus. They use a global

matrix decomposition and local context window approach

for unsupervised training of non-zero positions in the co-

occurrence matrix, and a back-propagation algorithm to solve

the word directions. Compared with Word2Vec, GloVe has

stronger scalability.

Word2Vec and GloVe use pre-training techniques to

represent each word as a word direction with a contextual

semantic representation. They solve the problems of sparse

data, dimensional disaster, and lack of semantic information

representation that exist in traditional one-hot directions. At the

same time, they have become themainstream text representation

techniques because of their simplicity and efficiency. They have

greatly contributed to the development of natural language

processing research.

Dynamic word direction technique

While the word direction representation techniques,

represented by Word2Vec and GloVe, have greatly advanced

the development of natural language processing, they also

have some problems. One of the biggest problems is polysemy.

Word2Vec and GloVe learn word directions as static word

directions, i.e., the word-direction relationship is one-to-one.

In other words, no matter how the context of a word changes,

the trained word direction is uniquely determined and does

not change in any way as the context changes. This static word

direction cannot solve the problem of multiple meanings of

a word. To solve the problem, researchers have conducted

some exploratory research. They have planned a dynamic word

direction technique based on language model. Dynamic word

directions are not fixed, but change at any time according to the

contextual background. ELMo, a language model that can be

used to train dynamic word directions, is presented next.

ELMo (Embedding from Language Models) is a novel

deep contextualized word representation model planned by

Peters et al. By training the model, high quality dynamic word

directions can be gained. The model is trained using a deep

bi-directional language model (biLM) to obtain different word
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representations for different contextual inputs, i.e., to generate

word directions dynamically.

ELMo uses a two-stage training process. The first stage

is to pre-train a language model on a large corpus using

a multilayer biLM before training on a specific task. This

language model is equivalent to a “dynamic word direction

generator” that generates specific word directions for a specific

task. In the second stage, the word directions generated

by the language model in the first stage are added to the

downstream task as a feature supplement for task-specific

training. The model structure of ELMo is exposed in Figure 1B.

Where (E1, E2, . . . , EN) are the static Word Embedding of

the input word sequence, (T1, T2, . . . , TN) are the dynamic

Word Embedding of the output gained by pre-training the

ELMo model.

The ELMomodel employs bivectorial LSTM languagemodel

to train word representation in the first stage. Specifically,

suppose that given a word sequence (w1,w2, . . . ,wN) of length

N, the forward LSTM language model calculates the sequence

likelihood of the occurrence of the word at the 1, 2, . . . , k− 1 by

taking the word sequence at the given first position as:

p (w1,w2, . . . ,wN) =

N
∏

k=1

p
(

wk|w1,w2, . . . ,wk−1

)

(4)

The backward LSTM language model calculates the

sequence likelihood of the occurrence of words at position k +

1, k+ 2, . . . , k+N by taking the sequence of words at position k

given as:

p (w1,w2, . . . ,wN) =

N
∏

k=1

p
(

wk|wk+1,wk+2, . . . ,wN
)

(5)

The combination of frontward LSTM language model and

backward LSTM language model constitutes the bi-directional

language model biLM, which is required to maximize the

following objective function during the training process as:

N
∑

k=1







log p
(

wk|w1,w2, . . . ,wk−1;2x, E2lstm,2s

)

+ log p

(

wk|wk+1,wk+2, . . . ,wN ;2x,
←

2lstm,2s

)






(6)

where 2x denotes the word direction matrix, 2x is the

parameter of the softmax layer, E2lstm and 2̄lstm denote

frontward LSTM language model and the backward LSTM

language model, respectively.

The L-layer biLM model is used in the pre-training,

and the word representations gained from each layer have

different features. For each input word, the word representation

with features such as syntactic semantics is output for it by

pre-training with the L-layer biLM model as:

Rk =
{

xLMk , EhLMk,j , h̄
LM
k,j |j = 1, . . . , L

}

=

{

hLMk,j |j = 0, . . . , L
}

(7)

where hLM
k,0

is the word layer, hLM
k,j
=

∣

∣

∣

∣

∣

EhLM
k,j

,
←

h
LM

k,j

∣

∣

∣

∣

∣

.

A language model and word representations for each hidden

layer will be gained after the first stage of training. In the second

stage, the sentences in the downstream task will be used as input

to the dimensional ELMo. For each word in the sentence, ELMo

combines the word representations of all hidden layers into a

direction by calculating the weights of each hidden layer. That

is, a direction of words in the present context. It is formalized as:

ELMotaskk = E
(

Rk;2
task

)

= γ task
L
∑

j=0

staskj hLMk,j (8)

where γ task is the validated global scaling factor and staskj is the

softmax normalized weighting factor.

ELMo is able to dynamically generate different word

directions for the similar word in dissimilar circumstances.

It conforms to the word direction of the present context. It

solves the problem of encoding multiple meanings of a word

to some extent and performs well in several natural language

processing tasks.

Deep learning models

The concept of deep learning (DL) (Wang et al., 2021)

originated from the study of artificial NNs. It involves ofmultiple

layers of artificial NNs connected to be able to extract effective

feature representation information from a large amount of

input data. Deep learning mimics the way the human brain

operates. It learns from experience and has the ability to excel

in representation learning. It has been successfully applied in

several research fields.

Represent NNs

Represent neural network (RNN) is a NN with short-term

memory capability to process temporal information of varying

lengths. It is widely used for several tasks in natural language

processing. RNNs use neurons with self-feedback to process

temporal information of arbitrary length by unfolding multiple

times. Where xt denotes input direction at the time of t, ht

denotes state of the hidden layer at the time of t. ot denotes

output direction at the time of t.U denotes Input layer to hidden

layer weight matrix, V denotes Value matrix of weights from

hidden layer to output layer. W denotes value of the weight

Frontiers inNeurorobotics 05 frontiersin.org

19

https://doi.org/10.3389/fnbot.2022.1006755
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Zheng 10.3389/fnbot.2022.1006755

matrix of the preceding moment of hidden layer as input value

of the current moment.

The RNN gives an output ot with present network hidden

layer state ht for input xt at t. The value of ht at time t depends

upon not only xt , as well as also on the hidden layer state ht−1 at

previous moment, calculated as:

ot = g
(

Vht
)

(9)

ht = f
(

Uxt +Wht−1
)

(10)

where f represents a non-Linear activation function such as

sigmod or tanh. The network parameters are shared at different

moments and are trained by the backpropagation over time

algorithm (BPTT).

Theoretically, RNNs are capable of handling text sequences

of arbitrary length. However, in practice, when the length of

text sequences is too long, the problem of gradient explosion

or gradient dispersion occurs. It makes parameter updating

difficult, which in turn prevents RNNs from learning long-

range dependency information. It also leads to biased learning

results of long-range dependencies, i.e., RNNs learn short-

term dependence.

Short long-term memory network

A variation of RNN, Long-Short-Term Memory Network

(LSTM) can effectively tackle the problem of gradient explosion

or gradient dispersion in RNN (Yan et al., 2021). The

improvement of LSTM for RNN is twofold. On the one hand,

during the training process of the network, RNN has only

one state ht at the moment t, LSTM adds a state ct on

this basis, ct represents the memory state of the represent

unit, which involves a small number of function operations

and thus can store long distance information. On the other

hand, LSTM introduces a gating mechanism and designs three

gate structures, forgetting gate, input gate, and output gate,

which enable represent NN to selectively forget some unchief

information while remembering the past information through

the interaction between the three gates, and thus learn longer

distance dependencies.

The cell of LSTM has certain memory function because of it.

It also called a memory cell. The structure of the LSTM loop cell

is exposed in Figure 1B. where xt represents input direction of

the memory cell at moment t. ht represents output direction of

the memory cell at time t. represents present information after

updating the memory. ft , ot and it represent the forgetting gate,

output gate and input gate, respectively.

The forgetting gate ft selectively forgets a portion of the cell

state information through the sigmod layer, i.e., it determines

how much of the cell condition ct−1 of previous moment needs

to be retained in the cell state ct of the present moment. The

calculation formula is as follows:

ft = σ

(

Wf xt + Uf ht−1 + bf

)

(11)

Input gate it selectively records new inputs in the memory

cells through the sigmod layer. It determines how much of the

present network’s input xt needs to be saved into the cell state

ct . Also, the cell state ct of the present input is determined based

on the output ht−1 of hidden layer state and xt at the present

moment, which is calculated as follows:

it = σ
(

Wixt + Uiht−1 + bi
)

(12)

ĉt = tanh
(

Wcxt + Ucht−1 + bc
)

(13)

The present memory ĉt and the historical memory ct−1

need to be combined before the output gate to update the

cell state ct at the present moment. The forgetting gate allows

chief information from long ago to be preserved, and the input

gate allows irrelevant information from the present input to be

filtered and forgotten.

ft = σ

(

Wf xt + Uf ht−1 + bf

)

(14)

The output gate ot inputs the input information and the

present cell state update to the next hidden layer ht through the

sigmod layer, i.e., it controls how much of the cell state ct needs

to be output to the hidden layer state ht at the present moment.

The calculation formula is as follows:

ot = σ
(

Woxt + Uoht−1 + bo
)

(15)

ht = ot ◦ tanh (ct) (16)

In the above equations,Wf ,Wi andW◦ are weight matrices

from input layer to the forgetting gate, input gate and output

gate, respectively. Uf , Ui and Uo are weight matrices from

output layer to the forgetting gate, input gate and output gate,

respectively. Wc is connection weight from input layer to the

LSTM loop unit. Uc is the connection weight from the previous

node to the present node of the LSTM loop unit, bf , bi, bo and

bc are all offsets.

Weight parameters in RNN are shared across time steps,

which is why there is gradient explosion or dispersion. In

contrast, there are multiple paths of gradient propagation in

LSTM. In which the process of cell state update at the present

moment is carried out by element-by-element multiplication

and summation. Its gradient flow is relatively stable, thus greatly
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reducing the risk of gradient explosion or dispersion. Thus,

LSTM is able to handle long-range temporal information.

The input gate determines degree of retention of the input

information. The forgetting gate determines the extent to which

memory information is forgotten. The output gate, on the other

hand, controls the extent to which internal memory is output

to the outside. Each of the three gating switches has its own role,

which enables LSTM to effectively use historical information and

establish long-range temporal dependencies. In turn, it is widely

used in tasks related to sequential problems.

Gated circulation unit

Gated represent unit (GRU) is a represent NN based on

another gating mechanism. The basic design idea of GRU is

the same as LSTM, and it can be said to be a variant of LSTM.

Its difference lies in two main aspects. On the one hand, the

structure of GRU is relatively simple, using two gate structures.

The reset gate determines how much historical information

requires to be forgotten. The update gate determines how much

of the history information can be saved to the present state. On

the other hand, GRU directly passes the hidden state to the next

cyclic unit without using an output gate.

Where xt represents input direction at the present moment,

ht−1 represents state at previous moment, h̃t is the candidate

state at the present moment, rt and zt represent reset gate and

update gate, respectively, and output direction ht at the present

moment is calculated as in Eqs. (17–20).

rt = σ
(

Wrxt + Urht−1
)

(17)

zt = σ
(

Wzxt + Uzht−1
)

(18)

h̃t = tanh
(

Whxt + Uh

(

rt ◦ ht−1
))

(19)

ht = (1− zt) ◦ ht−1 + zt ◦ h̃t (20)

Reset gates help capture short-term dependencies. The

update gate, on the other hand, helps to capture long-term

dependencies. Therefore, GRU can handle long and short-

term dependencies in sequences. At the same time, GRU has

one less gate structure compared to LSTM, and the number

of parameters is relatively less, and the overall training speed

is improved.

Attentional mechanisms

The Attention mechanism assigns higher weights to task-

relevant information by weighting (Zhang M., et al., 2021).

While assigning lower weights to task-irrelevant information,

and then filtering the relatively chief information from

the large amount of information. Introducing the attention

mechanism into machine translation tasks in the natural

language domain achieves significant effect improvement. Since

then, the attention mechanism has received some attention in

natural language processing. Researchers have combined it with

DNN to extract features that are more relevant to the task

and thus expand the performance of the model. For example,

in sentiment classification, a set of directions or matrices with

parameters are used to characterize the importance of words

in a text sentence. In the process of extracting features, the

features that are more relevant to the sentiment classification are

extracted based on the importance of the words.

The core idea of the attention mechanism is to move

from “focus on all” to “focus”. It focuses the limited attention

on the chief information related to the task, so that effective

information can be gained quickly. As exposed in Figure 1C, the

Source can be observed as the content deposited in a memory,

whose rudiments consist of (address Key, value Value), and given

a query with Key=Query, the Value conforming to the query

is removed, i.e., the Attention value. The specific calculation

process is:

(1) The similarity between the Query and each Key is calculated

as the weight coefficient of the Value conforming to each

Key. The similarity is usually calculated by dot product,

cosine, multilayer perceptron network, etc.

Simi = F
(

Query, Keyi
)

(21)

(2) The similarity gained in the previous stage is normalized

using softmax and transformed into a similarity whose sum

of all similarity weights is 1, thus highlighting the weights of

chief elements. The calculation formula is as follows, and is

the weight coefficient conforming to each value.

αi = softmax (Simi) =
eSimi

∑Lx
j=1 e

Simj
(22)

(3) The normalized weighting coefficients are weighted and

summed with the conforming Value to obtain the final

attention value.

Attention
(

Query, Source
)

=
∑Lx

i=1
αi · Valuei (23)

Presently, the values of Key and Value are same in

the research for natural language processing. And in the

commonly used self-attention mechanism (self-Attention),

Query (Q), Key (K) and Value (V) are all from the same

input and all three are the same, noted as Q = K = V.

In text analysis, for example, a sentence is input, and the
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self-attention mechanism requires that each word in the

sentence is computed with all the words in the judgment

to learn the dependences among the words within the

sentence. The computation is formalized as:

Attention(Q,K,V) = softmax

(

QKT

√

dk

)

V (24)

where dk is the dimension of Q and K directions,
√

dk is a

scaling factor, and the same division of
√

dk is to avoid the

softmax gradient from decreasing or even disappearing due

to excessive dot product.

Experiment and analysis

ON-LSTM-A based text feature extraction
process

To confirm the dependability of the experimental

consequences, this chapter uses the public dataset provided

by the NLP&CC2013 Chinese microblog sentiment analysis

evaluation task. The dataset is derived from Sina Weibo, with

a total of 14,000 microblog texts. The dataset is divided into

7 categories of emotions and labeled with “none” for the text

without emotions. In this chapter, the experiment classifies the

text with emotion, so the text without emotion is removed. The

distribution of the number of each type of emotional samples

in the experimental data set is exposed in Table 1. From them,

60% were arbitrarily designated as the training set and 40% as

the test set for the experiments.

This experiment uses the same evaluation metrics as the

evaluation task: macro-averaged F1 values (MacroF measure) and

micro-averaged F1 values (MacroF measure), which are calculated

as follows:

MacroPercision =
1

7

∑

i

#system_orrect (emotion = i)

#system_roposed (emotion = i)
(25)

MacroRe call =
1

7

∑

i

#system_orrect (emotion = i)

#gold (emotion = i)
(26)

MacroF−measure =
2×MacroPercision ×MacroRecall
MacroPercision +MacroRecall

(27)

MicroPercision =

∑

i #system_orrect (emotion = i)
∑

i #system_roposed (emotion = i)
(28)

MicroRecall =

∑

i #system_correct (emotion = i)
∑

i #gold (emotion = i)
(29)

MicroF_measure =
2×MicroPercision ×MicroRecall
MicroPercision +MicroRecall

(30)

Where #gold is the number of manually labeled results,

#system_correct is the number of correctly classified tweets,

#system_planned is the total number of tweets forecasted by the

model for the present category, i is one of the seven categories

of sentiment.

To confirm the effectiveness of the Att-ON-LSTM model

planned in this study, a comparison experiment with the

following similar models was designed.

LSTMl, which encodes text sequences from front to back

in a unidirectional manner. Only the influence of the above

information on the below information is considered, and the

contextual semantic features of the text sequences are extracted.

Bi-LSTM, encoding text sequences from both positive and

negative directions, extracting to the relationship before and

after the text, for the more reasonable text sequence features.

ON-LSTM: ordered neuron long and short-term

memory network, capable of extracting text semantics

along with hierarchical syntactic information of text to obtain

comprehensive text features.

Bi-LSTM+Attention, which adds attention mechanism to

Bi-LSTM to extract contextual semantic features, making

the model focus more on the features of words related

to classification.

ON-LSTM+Attention: that is, the sentiment analysis model

Att-ON-LSTM based on ON-LSTM and attention mechanism

planned in this chapter. Three layers of ON-LSTM network

are used to extract text features, and attention mechanism is

used to increase the attention of words related to classification.

The results of the comparison experiments are exposed

in Table 2.

The experimental results show that ON-LSTMhas improved

micro F1 values and macro F1 values compared to LSTM

and Bi-LSTM. The ON-LSTM+Attention model, i.e., Att-

ON-LSTM planned in this section, improves the micro-

average F1 value by 2.27% and the macro-average F value

by 1.7% compared with the Bi-LSTM model with the added

attention mechanism. It is indicated that the text features

extracted by Att-ON-LSTM are more comprehensive and can

effectively improve the effect of text emotion classification.

In this section, the Att-ON-LSTM model is experimentally

validated by comparing it with similar baseline models.

The study illustrates that the ON-LSTM network can better

extract text features, which helps to improve the effect of

sentiment analysis.
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TABLE 1 Emotional sample data statistics table.

Emotional category Happiness Sadness Joy Disgust Anger Fear Surprise

Number of samples 1,487 1,132 2,155 1,360 671 151 348

TABLE 2 Comparison results of similar models.

Models MicroF
−
measure MacroF

−
measure

LSTM 0.3039 0.0665

Bi-LSTM 0.3008 0.2632

ON-LSTM 0.3144 0.2781

Bi-LSTM+Attention 0.3090 0.2893

ON-LSTM+Attention(ours) 0.3317 0.2910

Research on sentiment analysis process
based on ON-LSTM and label semantics

Experimental environment and parameter
setting

This chapter uses Google’s open source deep learning

framework TensorFlow to complete the experiment, the specific

experimental environment configuration is shown in Table 3.

The model parameter settings in the experiments of this

chapter are adjusted according to the performance of the

validation set, and the relevant parameter settings are shown in

Table 4.

Experimental data set

To ensure the reliability of the experimental results, the

CLUE Emotion Analysis Dataset provided by the Chinese

Language Understanding Benchmark Assessment was used for

the experimental data in this chapter. The corpus in this

dataset comes from Sina Weibo and contains a total of 39,661

emotion samples, each with an emotion category label. There are

seven types of emotion category labels: happiness, sadness, like,

disgust, anger, fear, and surprise. In this experiment, 80% of the

dataset is selected. Serving as the training set, 10% being used as

the validation set, while the remaining 10% being used as the test

set, specific distribution of the sample data is shown in Table 5.

Evaluation indicators

The sentiment classification problem is a multi-category

problem and the following metrics are used in this experiment:

Accuracy, Precision P, Recall R and F1 value. Accuracy usually

measures the performance of the model on the whole data set.

Accuracy cannot be reflected when the model is biased and is

always wrong in certain categories of judgments. Therefore, it

TABLE 3 Experimental environment configuration.

Experimental environment Configuration

CPU 19

Memory 64GB

Video card NVIDIA GTX 2080ti

Development languages python 3.7.4

Deep learning tools TensorFlow 1.15.0

needs to be judged for each category using the P, R, and F1

values, and then averaged, and thus judged for the model as

a whole. There are two types of averaging: Macro-average and

Micro-average. Macro-average considers each category equally,

increasing the impact of categories with less data. Micro-average

considers each sample to be classified equally and is more

influenced by common categories. In order to better measure the

classification effect of the model for each category, the F1 value

of macro-average is chosen as the evaluation index in this paper.

For the entire data set, Accuracy is calculated as:

Accuracy =

∑7
i=1 aEi
N

(31)

where
∑7

i=1 aEi denotes the sum of the number of correctly

forecasted samples in each category and N is the total number

of samples in the dataset.

For the sentiment category, Precision, Recall and F1-

measure are calculated as:

P =
a

a+ c
(32)

R =
a

a+ b
(33)

F1 =
2 · P · R

P + R
(34)

Macro-averaging treats each category equally and calculates

the arithmetic mean of the indicators for each category as:

Macro− P =
1

7

7
∑

i=1

Pi (35)

Macro− R =
1

7

7
∑

i=1

Ri (36)
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TABLE 4 Model-related parameter settings.

Parameter name Value

Word vector dimension 768

Maximum number of words in a sentence 100

ON-LSTM training dimension [100,128]

Learning rate 0.01

Dropout ratio 0.25

Batch 256

Number of iterations 30

TABLE 5 Statistics on the distribution of samples in the data set.

Emotional Training Validation Test Total Percentage (%)

category set set set

Happy 7,975 1,006 978 9,959 25.11

Sad 11,210 1,394 1,448 14,052 35.43

Pleasant 3,657 430 453 4,540 11.45

Disgusted 3,896 509 471 4,876 12.29

Anger 3,657 458 447 4,562 11.50

Fear 525 69 67 661 1.67

Surprise 808 100 103 1,011 2.55

Total 31,728 3,966 3,967 39,661 100.00

Macro− F1 =
2×Macro− P ×Macro− R

Macro− P +Macro− R
(37)

Analysis of experimental results

To confirm the effectiveness of the sentiment analysis model

based on ON-LSTM and label semantics and its performance,

two sets of experiments were designed in this study. The

first group is an ablation experiment to confirm the effect

of label semantics on the effect of sentiment classification.

The second group is a similar model comparison experiment,

which compares the ON-LSTM-LS model with other sentiment

analysis models based on deep learning to confirm the

effectiveness and performance of the ON-LSTM-LS model

planned in this chapter.

A. Ablation experiment results and analysis.

The set of experiments is based on the Att-ON-LSTM

model in Chapter 3, and the semantics of labeled word

directions, the semantics of labeled semantics expanded text,

and optimization with a weighted loss function are added

in turn to confirm the effect of labeled semantics on the

effect of emotion classification. The contrasting models are

as follows.

(a) ON-LSTM+Attention: The model is Att-ON-LSTM,

a sentiment analysis model based on ON-LSTM

and attention mechanism in Section ON-LSTM-A

based text feature extraction process it uses the

combination of three-layer ON-LSTM network and

attentionmechanism to extract the sentiment features

in the text as the baseline model for this group

of experiments;

(b) ON-LSTM + Attention + Label: add word direction

semantic features of labeled words to the Att-ON-

LSTM model. It is combined with the sentiment

features of the text to guide the model for sentiment

classification using label semantics;

(c) ON-LSTM + Attention + Label + Extra: This

model expands the label semantics using the label

semantic expansion process. It obtains richer label

semantic features and expects to improve the effect of

emotion classification;

(d) ON-LSTM+Attention+Label+Extra+Customloss:

This model is the ON-LSTM-LS model planned in

this chapter. The cross-entropy loss function with

weights is used on the basis of the model in (3) to

alleviate the problem of sample imbalance.

The experimental results of the above model on the test

set are exposed in Table 6. Compared with the model Att-

ON-LSTM without adding labeled semantic information,

the accuracy of the model improves by 0.78% after adding

labeled word directions. The macro-average F1 value is

improved by 1.04%. Its shows that the semantic information

of tag words is helpful to improve the effect of sentiment

classification. However, the improvement effect is limited

because the semantic information of the labeled words is

not sufficient. After using the label semantic expansion

process to enrich the semantic features of the labels, the

accuracy of the model is improved by 1.79%. The average

F1 value of the macro was improved by 2.02%. It indicates

that the label semantic expansion process planned for

this paper is effective. The optimized model ON-LSTM-

LS using the cross-entropy loss function with weights has

further improved the effect of emotion classification. Its

accuracy is improved by 5.83% relative to the baseline model

Att-ON-LSTM. The macro-average F1 value is improved

by 6.38%, further demonstrating that the ON-LSTM-LS

model can effectively improve the effectiveness of text

sentiment analysis.

B. Comparative experimental results and analysis of

similar models

This group of experiments compares the ON-LSMT-

LS model with related similar models to confirm the

validity and accuracy of the ON-LSTM-LS model

planned in this chapter. The comparison models are

as follows:

(1) LSTM: Long Short-Term Memory Network Model,

which encodes text sequences from front to back. It is
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TABLE 6 Results of ablation experiments.

Models Accuracy Macro-F1

ON-LSTM+ Attention

(baseline)

0.4691 03300

ON-LSTM+

Attention+ Label

0.4769 0.3404

ON-LSTM+Attention+

Label+ Label Extra

0.4870 03502

ON-LSTM+Attention+

Label+ Label

Extra+ Cutom Loss

(ours)

0.5229 0.3938

ON-LSTM+ Attention

(baseline)

0.4691 03300

able to learn the distant information in the text and

extract the one-way semantic features of the text.

(2) CNN: Convolutional neural network model, which is

able to extract n-elements features at different locations

in a sentence by convolutional operation. It is able to

learn textual relations within a certain distance through

pooling operation and has an advantage over LSTM in

terms of training speed.

(3) LSTM-CNN: a hybrid model of long- and short-term

memory network and convolutional neural network,

the long- and short-term memory network is used to

extract the global features of text. Convolutional neural

network is used to extract local features of text, and then

complete the learning of text contextual features.

(4) Bi-LSTM: Bi-directional long- and short-term memory

network model, which encodes text sequences from

both positive and negative directions. It can learn

the association relationship between the preceding and

following words in the text and extract the contextual

semantic features of the text.

(5) Att-Bi-LSTM: Emotion analysis model based on Bi-

LSTM and attention mechanism, which adds attention

mechanism to the bidirectional long and short-term

memory network. Its makes the model pay more

attention to the words that have more influence on the

classification effect during the learning process.

(6) ON-LSTM: ordered neuron long and short-term

memory network model. It is able to extract the text

semantics while extracting the hierarchical syntactic

information of the text to obtain a more comprehensive

text feature.

“The experimental results of the above models on the

test set are exposed in Table 7. The model ON-LSTM-

LS planned in this paper has a substantial improvement

TABLE 7 Experimental results of comparing similar models.

Models Accuracy Macro-F1

LSTM 03,250 0.0764

CNN 0.3893 0.2747

LSTM-CNN 0.4034 0.2633

Bi-LSTM 0.4279 03582

Att-Bi-LSTM 0.4650 0.3264

ON-LSTM 0.4325 0.3251

Att-ON-LSTM 0.4691 03300

ON-LSTM-LS (ours) 0.5229 0.3938

FIGURE 2

Distribution of forecasted categories and true categories.

in accuracy and macro-average F1 value compared with

similar baseline model LSTM, CNN, LSTM-CNN, Bi-LSTM,

and Att-Bi-LSTM. The accuracy is improved by 19.79,

13.36, 11.95, 9.5, and 5.79%, respectively. Its shows that

using three-layer ON-LSTM to extract semantic features

of emotional text and combining them with semantic

features of labels can improve the effectiveness of emotional

classification more substantially. Compared with ON-LSTM

and Att-ON-LSTM, the accuracy is improved by 9.04

and 5.28%, respectively. The macro-average F1 value score

was improved by 6.87 and 6.38%. The study illustrates

that the semantic information of labels is helpful for the

improvement of sentiment analysis. As a whole, the ON-

LSTM-LS model planned in this paper outperforms similar

models for sentiment classification. The study shows that

the ON-LSTM-LS model can effectively perform the text

sentiment classification task with certain advantages.

Figure 2 shows the distribution of the predicted and true

results of the ON-LSTM-LSmodel for different categories on the

test set. The difference between the actual and predicted values of
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the seven emotions is small. However, due to data imbalance, the

model has better classification results for two categories, disgust

and sadness, than the prediction results for the remaining five

categories. And the prediction effect of two emotions, happy and

angry, was poor. In the next work, different methods should be

explored to alleviate the data imbalance problem.

Conclusion

How to extract this effective information from the huge

amount of web texts and then apply it effectively in real

life. This problem has led to the emergence of dynamic user

text sentiment analysis techniques. To address the problem

that syntactic information is ignored in emotional text feature

extraction, this paper proposes a text feature extraction process

based on ON-LSTM and attention mechanism. It is proved that

it can better extract the semantic and hierarchical information

in the emotional text and obtain more comprehensive emotional

text features. The experimental results show that the sentiment

analysis process based on ON-LSTM and tag semantics can

effectively complete the text sentiment analysis task and improve

the sentiment classification effect to a certain extent. The specific

findings of the study are as follows:

(1) Att-ON-LSTM, compared with the Bi-LSTM model with

added attention mechanism, improved the micro-average

F1 value by 2.27% and the macro-average F value by 1.7%.

The text features extracted by Att-ON-LSTM are more

comprehensive and can effectively improve the effect of text

emotion classification;

(2) The experimental results of ON-LSTM and the sentiment

analysis model with labeled semantics on the test set showed

a 0.78% improvement in the accuracy of the model with the

addition of labeled word directions compared to the model

Att-ON-LSTM without the addition of labeled semantic

information. The macro-average F1 value was improved

by 1.04%;

(3) The accuracy of the model improved by 1.79% after

the label semantic features were enriched using the label

semantic expansion process. The macro-average F1 value

was improved by 2.02%. The sentiment classification of the

model ON-LSTM-LS, which was optimized using the cross-

entropy loss function with weights, was further improved.

Its accuracy was improved by 5.83% relative to the baseline

model Att-ON-LSTM.
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With the advancement of artificial intelligence, robotics education has been

a significant way to enhance students’ digital competency. In turn, the

willingness of teachers to embrace robotics education is related to the

e�ectiveness of robotics education implementation and the sustainability of

robotics education. Two hundred and sixty-nine teachers who participated in

the “virtual human education in primary and secondary schools in Guangdong

and Henan” and the questionnaire were used as the subjects of study.

UTAUT model and its corresponding scale were modified by deep learning

algorithms to investigate and analyze teachers’ acceptance of robotics

education in four dimensions: performance expectations, e�ort expectations,

community influence and enabling conditions. Findings show that 53.68%

of the teachers were progressively exposed to robotics education in the

last three years, which is related to the context of the rise of robotics

education in schooling in recent years, where contributing conditions have a

direct and significant impact on teachers’ acceptance of robotics education.

The correlation coe�cients between teacher performance expectations,

e�ort expectations, community influence, and enabling conditions and

acceptance were 0.290 (p = 0.000<0.001), −0.144 (p = 0.048<0.05), 0.396

(p = 0.000<0.001), and 0.422 (p = 0.000<0.001) respectively, indicating that

these four core dimensions both had a significant e�ect on acceptance.

Optimization comparison results of deep learningmodels show thatmDAE and

AmDAE provide a substantial reduction in training time compared to existing

noise-reducing autoencoder models. It is shown that time-complexity of the

deep neural network algorithm is positively related to the number of layers of

the model.

KEYWORDS

digital virtual human, acceptance, deep learning, UTAUT model, neural network

algorithm
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Introduction

The beginning of worldwide research on artificial

intelligence (AI) traces back to the Dartmouth Symposium

held in 1956, in which the American scholar McCarthy defined

the concept of AI from an engineering perspective, and AI

has accumulated enormous potential over the past 60 years.

Education, as one of the important fields of AI applications,

is moving toward a new ecology of AI education. In other

words, AI is leading the transformation of education and

becoming an essential factor in promoting the development of

education information technology integration and innovation

(Wenge, 2021; Kim and Shim, 2022). As the most revolutionary

technology nowadays, it will be of great benefits in optimizing

the teaching environment, intelligent assessment, personalized

tutoring, identifying classroom deficiencies and enhancing

the learning experience to facilitate accurate teaching. There

is no doubt that this will shock the traditional education

objectives, contents and processes. Therefore, along with the

rapid development of the intelligent era, the education field

will be facing greater challenges and should make full use of AI

technology to deepen education reform comprehensively and

build an intelligent, lifelong and personalized talent training

system so that education can better serve and develop people

(Woolf et al., 2013; Aoun, 2017; Ahmad et al., 2021).

With the new wave of AI development, practice and

application of avatar education in the basic education stage

is becoming increasingly popular and gradually becoming

an important vehicle for the development of AI (Benitti,

2012). As a concrete manifestation of the change in the basic

approach and methodology of teaching, it not only plays

an important role in promoting students’ innovative spirit,

computational thinking, practical skills and social skills, but

also facilitates the development of interesting learning courses

and the construction of personalized (student-specific) learning

environments. This is a key element in the effective practice and

promotion of robotics education, with virtual teachers playing a

pivotal role in delivering robotics courses and guiding students

in robotics competitions. Currently, China’s education and

teaching model has transformed from the “teacher-centered”

and then “student-centered” unilateral teaching to the current

“dominant-subject” model. The dual-focused education and

teaching model has evolved into the current “lead-subject”

model. Only when teachers play their “leading role” well can

students effectively play their “main effect.” The starting point

for effective practice and application of robotics education

in primary and secondary schools is the teacher, which

requires not only careful planning of teaching activities and

selection of appropriate media and technologies, but also the

embedding of new concepts and ideas to compensate for the

limitations of traditional teaching models and to expand the

advantages of robotics education for teachers and students, thus

effectively enhancing teaching effectiveness. Takuya Hashimoto,

a Japanese scholar, introduced a self-developed robot teacher

into elementary school science classroom teaching, where

participating students could discuss relevant issues with the

robot teacher, showing that robots have greater potential in

elementary school science classroom teaching, not only to

enhance learners’ knowledge acquisition, but also to improve

students’ creativity and questions (Hashimoto et al., 2013).

Russian academic Elena Ospennikova used a quasi-experimental

approach to examine the possibilities of robotics education

in science and mathematics curricula. The study selected 186

students from grades 7 to 9 as target subjects and over three

years of experimental observation concluded that robotics is a

key element in the multidisciplinary orientation of the teaching

and learning process in schools (Ospennikova et al., 2015).

Andri Ioannou introduced Nao, a humanoid robot developed by

Aldebaran Robotics in France, to the education of children with

autism (ASD), based on an in-depth analysis of the advantages

of combining humanoid robot education with the development

of social communication skills in children with autism. After a

four-session intervention with a boy with ASD, the robot was

found to be an effective way to promote independence and

emotional expression in the education of children with ASD

(Ioannou et al., 2015). Deep neural networks are an extremely

popular research direction in artificial intelligence since 2012, as

well as artificial intelligence algorithms for effective analysis and

processing of big data (Wang et al., 2021). Its advantages include

overcoming the disadvantages of time-consuming and labor-

intensive manual feature design, more effective (exponential)

distributed data learning by pre-training layer-by-layer data

to obtain the primary features of each layer. Compared with

shallow modeling approaches, deep modeling enables more

detailed and efficient representation of actual complex nonlinear

problems. This technique shows potential to efficiently solve

quantitative recognition techniques (Foad et al., 2022; Wang

et al., 2022).

Objectively, research on robotics education in China has

accelerated in the early twenty-first century, however, the key

to making robotics education truly effective lies in the ability of

teachers to accept and use robotics-supported teaching models.

Since teachers’ understanding of the concept of informational

teaching and learning of the implementation content are

internal factors that limit the development of their informational

teaching skills (Smith and Sivo, 2012). As a result, studying

the acceptance of virtual (robot) education by primary and

secondary school teachers as well as grasping its influencing

factors are beneficial to the development of robotics education

in primary and secondary schools. For this reason, based

on the teachers’ own perspective, this study draws on the

integrated information technology acceptance model (UTAUT

model) and the technology acceptance theory model, optimizes

the construction of the teachers’ acceptance model of robotics
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FIGURE 1

UTAUT model.

education based on deep learning algorithms, analyzes the

influencing factors of primary and secondary school teachers’

acceptance of virtual human education using the questionnaire

method, as well as proposes corresponding countermeasures to

provide reference for the effective implementation of robotics

education at all levels of teaching.

Models and research methods

Deep learning-based construction of
UTAUT model

UTAUT model

From the domestic and international studies on teacher

IT acceptance models, it is found that UTAUT model is

widespread in the field of IT acceptance research. However,

by combing through the studies related to robotics education

and teacher acceptance, finding that there are fewer studies

exploring its effective promotion and implementation from the

influence of teachers in the main body of robotics education.

Therefore, based on the theoretical basis of the UTAUT model

and characteristics of robotics teaching, this study explores the

factors influencing teachers’ acceptance of robotics education

from the teachers’ perspective.

The UTAUT model was first proposed by Venkatesh

et al. (2003). The model contains four core determinants

of performance expectations, effort expectations, community

influence and enabling conditions and fourmoderating variables

of age, gender, experience, and voluntariness. As shown in

Figure 1. This model explains 70% of technology adoption and

usage behavior, outperforms previous technology acceptance

models, which is now extensively applied to explore user

acceptance behavior.

To investigate the factors influencing teachers in carrying

out robotics education, this study remained using the four core

determinants in the UTAUT model. Since the development

of robotics education in China is oriented to competition or

club activities, both teachers and students have little access to

robotics. Most teachers had little experience in using robotics

FIGURE 2

Theoretical model of factors influencing teachers’ acceptance

of robotics education.

and were not highly motivated to do so autonomously. As a

result, two moderating variables, experience and voluntariness,

were removed, while teaching experience and IT proficiency

were added as moderating variables in conjunction with

the technical characteristics of robotics education in primary

and secondary schools and expert interviews. In addition,

considering that acceptance includes both individual’s own

behavior and individual’s attitude toward the object, both usage

intention and behavior in the original model are collectively

referred to as acceptance level, A theoretical model of factors

influencing the acceptance of teacher robotics education is

proposed, as shown in Figure 2.

Improvising approach based on deep learning

Deep learning networkmodel involves inputting the original

input data into a neural network containing multiple implicit

layers, through nonlinear operations in the middle multiple

implicit layers, where final output of the implicit layers is the

deeper, abstract depth features learned from the input data

through this deep network model (Guan et al., 2020). However,

certain datasets without initial labels to whether the initial labels

are involved in the whole network training process will be

divided into three categories of deep feature learning, namely

supervised feature learning, semi-supervised feature learning

and unsupervised feature learning, where supervised feature

learning of which can also be referred to as classification, semi-

supervised feature learning between the two, which refers to

the presence of both labeled and unlabeled data in the trained

data, unsupervised supervised feature learning is also known as

clustering (Gu et al., 2014).

The Expectation Maximization (EM) algorithm was first

proposed by Dempster et al. The EM algorithm has a wide

range of applications. The EM algorithm is utilized in numerous

algorithms in machine learning (Intisar and Watanobe, 2018;

Goulden et al., 2019). Such as the K-means, Support Vector

Machine (SVM) (Ukil, 2007), GMM, Hidden Markov Mode

(HMM) (Arica and Vural, 2000), Topic Generation Model LDA
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(Latent Dirichlet Allocation) (Hoffman et al., 2010), as well

as various other models in which parameter estimation EM

algorithm is used. It refers to solving some target parameters

from the entire data set including hidden variables by iterative

iterations employing a strategy of great likelihood estimation.

Iteration of the EM algorithm is done by two main steps,

E-step (Expectation Step) and M-step (Maximization Step).

The expectation of each step of the expectation maximization

algorithm is to calculate expectation of the model based on the

hidden state of the model, after which Gaussian distribution

of the conjectured hidden data is calculated, then fixed model

parameters using maximum likelihood estimation to calculate

the complete result containing both observed and hidden data,

followed by the execution of M-step to finally obtain the

parameters of the Gaussian mixture model. The E- and M-step

are iterated until the parameters of solved Gaussian mixture

model are approximately unchanged. Algorithm convergence

is achieved and optimal expectation, covariance matrix and

weights of each Gaussian distribution are obtained for the

Gaussian mixture model. Expectation of the log-likelihood

function of the mixture model is illustrated by the initial values

of model parameters that have been selected, as defined in

Equation (1):

EQ

[

log p(θ |Y ,Q)|θ (i),Y
]

=

∫

log[p(θ |Y ,Q)]p
(

Q|θ (i),Y
)

dQ

(1)

where, Q denotes implicit data that fail to be observed, θ (i)

denotes posterior standard deviation after the i+1st iteration.

Conditional expectation probabilities of the joint distribution of

the hybrid model can be expressed by Equation (2) as follows:

L (θ , θi) =

m
∑∑

P
(

zi|xi, θj
)

log P (xi, zi|θ) (2)

Extreme values of the parameters of the log-likelihood

function with conditional probabilities can be bounded by

Equation (3) as follows:

θ j+1 = argmaxθL
(

θ , θ j
)

(3)

The above E- and M-step are iterated continuously,

terminating the iteration when θ (i) and θ (i+1) are infinitely close

to each other.

Theoretical model optimization of
technology acceptance based on Elman
neural network

Elman neural network model

Compared with the ordinary neural network structure, a

new takeover layer is incorporated in the Elman network, where

the implicit layer transmits processed data to the takeover layer,

which memorizes incoming information from the implicit layer

and uses received data together with the input layer input at

the next moment as the input to the implicit layer at the next

moment (Cheng et al., 2002). By storing it through the takeover

layer and outputting it to the hidden layer at the next moment,

it makes neural network have dynamic memory recognition of

historical input data and enhances its ability to treat dynamic

information. Its specific mathematical model is:











h(k) = g
(

w3 · q(k)
)

q(k) = f
[

w1 · qc(k)+ w2(u · (k− 1))
]

qc(k) = q(k− 1)

(4)

where, h represents output of the output layer, g() represents

transfer function of the output layer, w3 represents weight of

data received by the output layer that is processed by the implicit

layer, q represents state of the implicit layer, and k represents

currentmoment. In the second equation, f represents processing

function of the implicit layer, Sigmoid is chosen in most cases,

w1 represents weight of data processed by the implicit layer in

the total received data of the takeover layer,w2 represents weight

of the information received by the input layer transmitted to

the implicit layer, u represents input of the input layer; qc in

the second and third equations refers to the state output for the

takeover layer, and k-1 in q indicates the previous moment.

Di�usion of innovation theory

Diffusion of Innovation Theory (DIT) was first introduced

in 1962 by Everett M. Rogers, an American scholar, who used

certain channels to make members of a social group more

open to adopting new concepts and things. It emphasizes

that an innovation is a thought or concept that can be

perceived as novel by an individual or a social community.

Diffusion of innovation is the process by which a new product

spreads through a social system over a period of time through

appropriate communication channels. DIT is divided into five

groups of adopters based on the sequence of adoption and

usage of innovations: (1) Innovation pioneers: first to adopt

and use innovations with a spirit of discovery, accounting for

2.5% of the total; (2) Early adopters: highly visible, adopting and

using innovations after the innovation pioneers, accounting for

13.5% of the total; (3) Early adopters: those who take longer

to adopt and use innovations with more deliberation than

innovation pioneers and early adopters, 34% of the total; (4)

Late adopters: those who accept decisions only when they are

clearly guided by the norms in the social system, 34% of the total;

(5) Conservatives: those who are the last in the social network

system to adopt and use innovations, 16 % of the total.
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FIGURE 3

TRA model.

Theory of rational behavior

Theory of Rational Behavior (TRA) was co-proposed by

American scholars Fishbein and Ajzen in the 1970s to explore

the correlation between an individual’s internal attitude toward

a behavior and the actual performance of that behavior. TRA

model has its origins in psychology and covers three basic

assumptions: first, social groups are rational and able to accept

and utilize knowledge and experience they acquire based on a

systemic and holistic view; second, unconscious latent variables

do not influence actual behaviors of social groups; and third,

individuals themselves entirely determine their own conscious

behaviors. The TRA model is given in Figure 3, from which it

can be noticed that behavioral intentions in the TRA model

can effectively infer actual behaviors used by individuals; while

individual attitude and subjective norm that an individual

displays when performing a certain behavior can effectively infer

one’s behavioral intention.

Theory of planned behavior

Theory of Planned Behavior (TPB) was first proposed by

American psychologist Ajzen in 1985 to compensate for the

limitations of the TRA model (Mahlaole, 2021). TPB model

is considered as an extension and improvement of the TRA

model, which can make fuller predictions and more convincing

explanations of human behavior, as presented in Figure 4. The

discrepancy between TPB and TRA lies in the predictors of

individual behavioral intentions. In addition to subjective norms

and attitudes, which are included in the TRA model, TPB

also adds potential variable of perceived behavioral control

(PBC). It refers to the perceived ease of performing a behavior.

When individuals perceive that they have more opportunities

and resources, their internal expectation of behavioral control

increases, while the perceived constraints are reduced.

PSD learning algorithm

By analogy with the Widrow-Hoff (WH) learning rule the

following equation can be obtained (Hinton and Nowlan, 1990):

1wi = αxi
(

yd − yo
)

(5)

FIGURE 4

TPB model.

where, wi denotes weight of the ith input counterpart, α denotes

learning rate, yd denotes desired sequence, y0 denotes the actual

output sequence, and xi denotes sequence of inputs. Since

the actual output is a sequence containing pulse spikes, it is

challenging for derivation, and a derivable continuous value is

obtained by convolving a sharp pulse with a convolution kernel

when the PSD rule, defining as:

K
(

t − tj
)

= V0 ·

(

exp

(

−
(

t − tj
)

τs

)

− exp

(

−
(

t − tj
)

τf

))

(6)

Research methodology

Questionnaire design

In this study, based on the relevant mature scales from

existing studies, we designed independently measurement items

for each variable in the context of the real situation of robotics

education in less developed regions. In order to ensure the

reliability and validity of questionnaires, author conducted two

rounds of research. In the first round, 35 robotics teachers were

randomly selected, followed by a revision of the questionnaire

based on the initial research results to better match the real

situation of robotics teachers in less developed regions. Final

developed formal questionnaire consisted of the following

two components with 33 question items. The first part is a

survey of basic information of primary and secondary school

teachers, with 15 question items, including gender, teaching age,

title, school nature, school location, proficiency in information

technology, frequency and barriers to robotics education, etc.

The second part is a survey of factors affecting teachers’

acceptance of robotics education, including five dimensions,

namely, performance expectancy (PE), effort expectancy (EE),

community influence (SI), enabling conditions (FC), and

acceptance (AD), with a total of 18 questions. To ensure

robotics teachers’ recognition of the questionnaire answers,

these measurement questions were in the form of a five-point

Likert scale, with 1–5 indicating strongly disagree, disagree,

neutral, agree, and strongly agree, respectively.
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Questionnaire reliability and validity analysis

Reliability (reliability) focuses on the accuracy, consistency

and stability of the recovered sample data. That is, themagnitude

of the variability of the measurement results by the random

errors generated during the measurement process. Before the

formal questionnaire is distributed, reliability testing is normally

conducted to purify the content of the questionnaire. The

value indicating reliability index is called reliability coefficient,

which is correlation coefficient between the results obtained

by two or more tests, mostly distributed in the range of 0–1.

Reliability tests mainly include test-retest reliability and internal

reliability, in which a scale is repeatedly tested on the same

target object at different times and the degree of similarity of the

test results is then determined. However, repeated tests possibly

have the following problems: first, there will be variability in

the measurement subject’s own cognitive level after having

one subject experience; second, the measurement subject may

change somewhat when a subject is measured twice or more.

Therefore, most experts and scholars use internal reliability to

calculate reliability size. Metrics for detecting internal reliability

are generally θ coefficient, Ω coefficient, Cronbach Alpha

confidence coefficient (Cronbach’s α), and total correlation

coefficient of calibration items (CITC). Among them, CITC

and Cronbach’s α are the more commonly used methods for

reliability evaluation.

• Cronbach’s α reliability analysis

Cronbach’s alpha captures both degrees of internal

consistency and correlation among test items and is defined in

Equation (7).

α =
K

K− 1

(

1−

∑

S2i
S2

)

(7)

where, α represents Cronbach’s alpha coefficient, K represents

total number of questionnaire items, S2i represents variance

corresponding to the ith measurement item, and S2 represents

variance of the whole questionnaire item scores.

When a measurement questionnaire involves several

unrelated contents (i.e., different dimensions), it is required to

test the internal reliability corresponding to each dimension

separately, and on this basis to calculate the internal reliability

of the whole questionnaire, instead of directly calculating the

alpha coefficient 1 of the whole questionnaire. the reason for

this is primarily because questions under the same dimension

all reflect the characteristics of a certain aspect and have a high

correlation, while the whole questionnaire needs to examine

the comprehensive consideration of a certain “coverage,”

thus there are differences between the one and the other.

Larger Cronbach’s alpha values indicate better correlation

among the items. In general, Cronbach’s alpha values >0.9

indicate excellent reliability, as well as Cronbach’s alpha values

TABLE 1 Cronbach alpha test criteria.

Cronbach’s alpha value Credibility

Cronbachα≥0.9 Extremely credible

0.7≤Cronbachα <0.9 Credible (more common)

0.5≤Cronbachα <0.7 Credible (most common)

0.4≤Cronbachα <0.5 Credible

0.3≤Cronbachα <0.4 Less credible

Cronbachα <0.3 Not credible, should be deleted

between 0.7 and 0.9 indicate good reliability, meaning that the

questionnaire scale is still acceptable. However, if Cronbach’s

alpha value of each measurement dimension (subscale) is

<0.6 and Cronbach’s alpha value of the total scale is <0.7, it is

determined that internal consistency of the scale is inferior and

questionnaire needs to be redesigned. Based on the summary of

several researchers’ views on Cronbach’s alpha value, Ming-Lung

Wu divided reliability value testing criteria in detail, as shown

in Table 1.

• Total item statistics analysis

CITC is designed to measure correlation coefficients

between each item and its dimension, in order to remove “junk”

items from the questionnaire and clean up the content. There

is no unanimous opinion on the evaluation criteria of CITC.

Foreign scholar Cronbach considered that questions with CITC

<0.5 should be discarded, while domestic scholar Lu Zhendai

considered that questions with CITC >0.3 should be retained.

The criteria for eliminating items in this study were based on two

principles proposed by Cronbach: first, CITC is <0.5; second,

alpha coefficient of the deleted item exceeds alpha coefficient of

the variable to which it belongs, i.e., the reliability of the potential

variable corresponding to the item has improved significantly.

Results are shown in Table 2, and items were removed when

they met both of these principles. To ensure the scientific

validity of the study, two rounds of research were conducted

with teachers participating in the “Virtual Human Education

in Guangdong and Henan Primary and Secondary Schools” as

the research subjects. Thirty-five teachers were selected for the

first round of research, formal research was conducted by online

questionnaire, 203 questionnaires were collected, of which 190

were valid. The survey results showed that 64.21% of the teachers

who participated in robotics education training were male

teachers; 78.42% of the teachers were aged between 26 and 45;

96.84% of the teachers’ education was concentrated in college

and undergraduate level, and only 2.11% of the teachers were

graduate and above; 72.11% of the teachers’ teaching experience

was concentrated in 6–15 years, 15 years or above; 68.42% of

the teachers’ titles were concentrated in secondary school level 2

and secondary school level 1. In terms of the surveyed teachers’
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proficiency in IT, 61.58% were competent; teachers from public

schools accounted for 98.95%, while teachers from private

schools accounted for only 1.05%; rural teachers accounted for

38.95%, while urban teachers accounted for 61.05%. In addition,

in terms of the school year in which the teachers serve the

students, due to the shortage of teachers in robotics education

in Henan Province, there is still a phenomenon that the same

teacher teaches students in different grades; therefore, total

number of teaching grades involved in the surveyed teachers is

>190, covering 67.89, 34.21, and 11.05% of elementary, middle,

and high schools, respectively.

Research results and analysis

Relationship analysis of teachers’
acceptance of robotics education and
influencing factors

Based on the results obtained from the sample data

processing analysis to validate initial model and research

hypotheses, this study revealed that effort expectation,

perceived enjoyment, and performance expectation were

factors that directly influenced teachers’ acceptance of robotics

education, while enabling conditions, community influence, and

innovation expectation significantly and indirectly influenced

acceptance, and perceived enjoyment could also indirectly

influence acceptance through community influence, which will

be analyzed and discussed in detail next.

E�ect of performance expectations and e�ort
expectations on acceptance

Performance expectations and effort expectations in robotics

education positively and directly affect teachers’ acceptance

(Hl, H2), i.e., the higher performance expectations (PE)

or effort expectations (EE) that teachers place on robotics

education, the stronger their acceptance of robotics education.

This conclusion is not only consistent with the original

UTAUT model, but also with earlier research findings (Almaiah

et al., 2019; Raffaghelli et al., 2022). Analysis of the paths

revealed that performance expectations (path coefficient of

0.117) had a slightly stronger effect on acceptance than effort

expectations (path coefficient of 0.101), generally speaking,

teachers’ willingness to attempt to introduce a new teaching

model into their actual classrooms will heavily consider whether

the model contributes to their performance levels. For virtual

human teachers, if the implementation of robotics education

causes them to feel a shift in their role and facilitates their salary,

title, or promotion opportunities, which truly leads to more

professional development, then this will undoubtedly strengthen

their belief in practicing and applying robotics education.

Descriptive statistical analysis of the core variables showed that

teachers scored higher on the performance expectation level

for questions PE-1 and PE-4, with scores of 3.73 and 3.68,

respectively, indicating that most teachers perceived robotics

education as both a key component in transforming their

teaching role and an ideal platform for their professional

growth, which facilitated their acceptance of robotics education.

However, scores for PE-2 and PE-3 were low, at 3.38 and

3.10, respectively, which indicates that teachers in the current

regional basic education level basically do not receive additional

rewards for carrying out robotics education, and to some extent,

it may also weaken teachers’ enthusiasm to carry out robotics

education. Therefore, in the process of promoting the practical

application of robotics education, teachers’ awareness of the

concept of robotics education needs to be strengthened. In

the process of actively organizing training in robotics project

instruction and teaching skills, attention needs to be paid to the

role of robotics education in teachers’ professional development

and to improving relevant assessment and reward mechanisms.

E�ects of innovation expectations and
facilitating conditions on e�ort expectations

Enabling conditions and innovation expectations in robotics

education positively influenced virtual teachers’ own effort

expectations (H7, H8), i.e., more innovative teachers or

more adequate accommodations already in place, the greater

teachers’ effort expectations, which enhanced their acceptance

of robotics education. This is consistent with earlier research

findings as well. The path analysis indicated that innovation

expectations (path coefficient of 0.329) acted slightly more on

effort expectations than enabling conditions (path coefficient

of 0.294). Innovation expectations refer to the degree of

teachers’ innovativeness and problem-solving intentions when

confronted with a new technology or a new pedagogical

paradigm, which contributes to teachers’ beliefs about the

acceptance of a new technology or a new pedagogical paradigm

(Rosenbusch et al., 2019). In general, if teachers frequently

follow the latest developments of emerging technologies and

are particularly willing to experiment with the introduction of

new educational ideas into the actual classroom when they are

exposed to them, they may not deplete excessive time to pay

attention to whether such teaching ideas will affect the teaching

order and their own emotions, but whether they are able to

understand it or apply it or encounter obstacles to overcome it

better as soon as possible, and such teachers are relatively more

confident in accepting new teachers are relatively confident in

accepting new technologies or teaching ideas, their willingness

to try new teaching models is largely to satisfy their curiosity.

Conversely, if teachers are reluctant to introduce new teaching

models into the classroom, they may subconsciously believe that

implementing models will make the classroom disorderly and

stressful in guiding students in the process of project practice,

which in turn will increase their teaching tasks. Therefore,
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TABLE 2 Results of exploratory factor analysis.

Sample Ingredients

1 2 3 4 5

EE1 −0.145 0.654 0.073 −0.012 0.032

EE2 −0.022 0.779 −0.038 0.123 −0.024

EE3 −0.081 0.678 −0.125 −0.042 0.386

EE4 −0.076 0.687 0.168 0.028 −0.298

EE5 0.089 0.668 0.036 −0.125 −0.325

PE1 0.037 0.038 0.134 0.884 0.039

PE2 0.020 −0.006 0.084 0.788 0.062

PE3 0.373 −0.002 −0.025 0.587 0.042

FC1 0.168 −0.098 0.305 0.101 0.808

FC2 0.312 −0.081 0.202 0.045 0.798

S11 0.219 0.068 0.827 0.085 0.152

S12 0.102 0.018 0.878 0.067 0.152

S13 0.219 0.041 0.698 0.192 0.119

AD1 0.702 −0.205 0.258 0.021 0.142

AD2 0.788 −0.198 0.231 0.078 0.143

AD3 0.888 −0.087 0.064 0.010 0.095

AD4 0.878 0.015 0.119 0.052 0.087

AD5 0.787 0.095 0.079 0.118 0.058

TABLE 3 Descriptive statistical analysis of model variables.

Variant Average value Standard deviation Cronbach’s α Sum of Cronbach’s α

Performance Expectations 3.26 0.78 0.785 0.782

Effort Expectations 2.92 0.59 0.760

Community Impact 3.39 0.85 0.808

Enabling conditions 3.08 0.94 0.842

Acceptance level 3.87 0.58 0.889

teachers should be trained to be creative and innovative at the

level of their subjectivity and practical activities in receiving

robotics education.

E�ects of perceived pleasantness and
innovation expectations

There is a positive direct effect of teachers’ perceived

pleasantness on robotics education on their level of acceptance

(H6), i.e., the stronger teachers’ perceived pleasantness

on robotics education, the stronger their internal level of

acceptance, which is consistent with earlier findings (Adieze,

2016). By comparing path coefficient values for each factor,

it is observed that the direct effect of perceived pleasantness

on acceptance is as high as 0.852 (p = 0.000<0.05), which is

significantly higher than the effect of each other variable. One

possible reason for this is that virtual teachers have a strong

interest in novelty or new teaching models, they want to be

more enjoyable and stimulate their curiosity and exploration,

rather than teaching in the traditional test-based education

model for a long time, whereas robotics education as an

existing new teaching concept can largely lead them to explore

new knowledge and stimulate their curiosity, which makes

it prone to feel enjoyable and enhance their motivation and

interest in teaching, which in turn significantly enhances their

belief that they tend to accept the model. As indicated by the
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TABLE 4 Correlation coe�cients of teachers’ acceptance of robotics education and its various influencing factors.

Dimension Performance

expectation

Effort

expectations

Community

impact

Enabling

conditions

Acceptance

level

Performance expectations 1

Effort expectations 0.003 1

Community impact 0.308*** 0.045 1

Enabling conditions 0.232*** −0.169 0.418*** 1

Acceptance level 0.287*** −0.142* 0.397*** 0.412*** 1

*p < 0.05, **p < 0.01, ***p < 0.001.

TABLE 5 Compound regression analysis of acceptance and coe�cients.

Model R Square R Adjusted R Square Std. Error of the Estimate

1 0.432 0.196 0.191 2.689

2 0.506 0.254 0.250 2.587

3 0.530 0.281 0.270 2.655

descriptive statistical analysis of core variables, teachers’ scores

on the question items PP-1, PP-2, and PP-3 in the perceived

pleasantness dimension were roughly comparable, with scores

of 3.80, 3.82, and 3.75 respectively, indicating that most teachers

have favorable perceived pleasantness of robotics education

and are willing to actively attempt robotics education, however,

they are still between neutral and agree (mean value of 3.79

between 3 and 4). Therefore, in the process of promoting

practical applications of robotics education, teachers’ perceived

enjoyment of robotics education can be further enhanced by

training practical activities.

Analysis of teacher acceptance of
robotics education

Descriptive statistical analysis of questionnaires

Results of the study demonstrated that the scores for each

variable ranged from 2.92 to 3.87, with the highest score for

acceptance (3.87) and the lowest score for effort expectancy

(2.92). The standard deviation of the variables is <1.0, which

indicates that scores of the variables are densely distributed

around mean values, and mean values are well-represented, as

shown in Table 3.

Variance and regression analysis of teachers’
acceptance of robotics education

Taking into account the different background characteristics

of elementary and secondary school teachers, one-way ANOVA

with independent samples t-test was employed in this study

to explore the variability in the factors exhibited by teachers

from different backgrounds. Results indicated that there were no

significant differences in performance expectations, community

influence, enabling conditions, and acceptance among teachers

of different ages and titles, with significant differences only

in effort expectations, suggesting that teachers with older ages

and higher titles would perceive robotics instruction as more

complex. There were significant differences in effort expectation

and acceptance among teachers of different teaching ages,

while teachers with more than 15 years of teaching experience

showed a phenomenon of “low effort expectation and high

acceptance,” indicating that teachers of higher teaching ages

may perceive many barriers to robotics education, however,

it is possible that they want to break through the limitations

of the old teaching methods and are more receptive to new

things. Teachers with different levels of IT acceptance reached

significant differences in terms of effort expectations, enabling

conditions, and acceptance levels. There were no significant

differences between public and private teachers, urban and rural

teachers on these five variables.

Relevance between variables was measured in this study

by applying Pearson’s product-difference correlation coefficient,

and correlations basically existed between all dimensions (Um

and Crompton, 1986). Among them, acceptance was positively

correlated with performance expectancy, community influence

and enabling conditions; since the questions about effort

expectancy designed in this study were biased toward the reverse

questions, as in the case of conducting robotics education

that tends to create uncontrolled, stressful and time-consuming

classrooms, results of negative correlation between effort

expectancy and acceptance coincided with the design of this

experiment; moreover, correlations between effort expectancy

and acceptance were weak, results of which are shown in Table 4.

To further validate the hypothesized model, multiple

regression analysis was utilized in this study in an attempt
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FIGURE 5

The path of influencing factors of virtual human teacher

education acceptance.

to examine the causal relationships among the influencing

factors. As seen in Table 4, the correlation coefficients

between teacher performance expectations, effort expectations,

community influence, enabling conditions, and acceptance

were 0.290 (p = 0.000<0.001), −0.144 (p = 0.048<0.05),

0.396 (p = 0.000<0.001), and 0.422 (p= 0.000<0.001),

respectively, indicating that that all four core dimensions

had a significant effect on acceptance. In addition, previous

one-way ANOVAs showed that moderating variables such

as teachers’ teaching experience and IT proficiency also

had significant effects on acceptance, therefore, multiple

regression analysis was attempted in this study to explore

the specific effects of these variables on teachers’ acceptance,

and regression results are presented in Table 5. As seen

in this, model 3 explained 28.2% of the results, while the

adjusted R2 was finally chosen to explain 27.1% of the results,

considering the sample size and the number of independent

variables. In particular, enabling conditions had a significant

correlation with acceptance; teaching age moderated effects

of performance expectations on acceptance; community

influence on acceptance was moderated by IT acceptance;

effort expectations did not have a direct effect on acceptance

of teacher robotics education. Through multiple regression

analysis, a path diagram of factors influencing the acceptance

of teacher robotics education can be obtained, as shown in

Figure 5.

E�ect analysis of neural network
optimization

To verify effectiveness of the proposed algorithms in this

study. Existing deep neural networks composed of noise-

reducing autoencoding (DAE), marginalized depth autoencoder

(mDAE) and marginalized depth autoencoder with adaptive

noise (AmDAE) were compared in experiments under the

same conditions. Experiments were conducted to compare the

algorithmic performance of the three algorithms, with statistics

on the average time required to train the three deep neural

network models once. Different implied layer building numbers

of deep neural networks with different methods of model

training time are shown in Figure 6.

As shown in Figure 6, mDAE and AmDAE have a

substantial reduction in training time compared to the existing

noise-reducing autoencoder model, reflecting the lower time

complexity of the marginalization method, while the improved

AmDAE and mDAE models take little difference in training

time; model training time basically increases approximately

linearly with the number of layers as the number of training

layers increases for different standard MNIST variant datasets,

indicating that the time complexity of the deep neural network

algorithm is positively correlated with the number of layers of

the model.

Conclusion

Based on the UTAUT model, this study focuses on the main

factors influencing the acceptance of virtual human education by

teachers in order to promote application of robotics education

in educational teaching activities, by taking some colleges and

universities in Guangdong and Henan provinces as examples

and draws the following basic conclusions.

• Robotics education is mostly taught by IT teachers, and

there is a paradox of “low knowledge and high frequency.”

Results of study showed that 53.68% of teachers were

gradually introduced to robotics education in the last three

years, which is related to the background of the rise of

robotics education in school education in recent years.

• Descriptive statistical analysis, analysis of variance and

reliability tests were conducted on the formal sample data

using the appropriate software, while AMOS 22.0 software

was used to test the correctness and rationality of the

theoretical model and the 15 research hypotheses to obtain

the final model that established the factors influencing the

acceptance of robotics education by the virtual human

teachers. Effects of influencing factors were in descending

order: community influence< enabling conditions< effort

expectations < performance expectations < innovation

expectations < perceived pleasantness.

• Multiple regression analysis of model optimization based

on neural networks showed that model 3 explained

28.2% of the results. Meanwhile, its explanatory

ratio for the outcome reached 27.1%. In this case,

enabling conditions have a significant correlation with

acceptance; teaching age moderates effects of performance

expectations on acceptance; community influence on

acceptance is moderated by IT acceptance; and effort

expectations do not directly affect acceptance of teacher

robotics education.
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FIGURE 6

Time required for model training. (A) basic model, (B) rotating model, (C) background image, and (D) o�set model.
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The spatial frequency domain
designated watermarking
framework uses linear blind
source separation for intelligent
visual signal processing

Rani Kumari* and Abhijit Mustafi

Department of Computer Science, Birla Institute of Technology, Ranchi, India

This paper develops a digital watermarking algorithm using an informed

watermark retrieval architecture. The developed method uses the fractional

Fourier transform to embed the watermark in the space-frequency domain

and extracts the watermark using blind source separation techniques. The

watermark embedding is further enhanced using a heuristic algorithm to

increase the strength of the watermarking system. We use genetic algorithm

to find the optimal fractional domain by minimizing the coe�cient of RMSE

between the input image and the watermarked image. The algorithm’s

performance against various common attacks, e.g., JPEG compression and

Gaussian noise, is presented to estimate the algorithm’s robustness.

KEYWORDS

digital watermarking, fractional Fourier transform, blind source separation, genetic

algorithm, robustness

Introduction

With the proliferation of computers and other digital devices in society, the rapid

growth of the internet, the demand for free availability of copyrighted digital entities, and

weak cyber laws existing inmost nations, digital piracy has grown tomassive proportions

in the past few years. Authorities worldwide are struggling to contain this phenomenon,

costing many industries a vast amount of money in terms of revenue. Even though many

systems have been developed to fight this menace, the effectiveness of these systems

remains in question for large-scale public use. Many of these systems utilize the tenets

of cryptography to encrypt digital entities before distributing them across networks

(public key and private key infrastructures). However, such systems are helpless if rightful

owners of copyrighted digital entities make illegal copies of the material and proceed

to distribute it illegally. Cryptographic systems are quite capable of preventing abuse of

digital entities during the distribution phase but are not very effective once the decryption

process has been performed.

Watermarking and steganographic systems attempt to fill this void and complement

the functioning of cryptographic algorithms. These algorithms control the authenticity

of digital entities even after decryption and allow the ownership of digital entities to

be verified. This can be of extreme importance not only for public use but also in
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sensitive application domains like defense and intelligence.

Many of these domains need to maintain stringent control on

distributed digital entities, and verifying ownership is crucial.

Establishing a source-verified or informed watermarking system

is considered an extremely efficient solution in such cases, and

developing such systems has become an area of active research.

Various methods have been cited in the literature to

embed watermarks in signals. These techniques can be

broadly categorized as time (space) domain techniques and

frequency domain techniques. For digital images, spatial domain

watermarks are embedded by directly manipulating the intensity

values of the individual pixels to cause little change in the

visual perceptibility of the image. Methods in this category

include LSB (least significant bit) based techniques, XOR-

based techniques, color manipulation, etc. In the frequency

domain, the image is first transformed to the frequency domain

using the Fourier transform before the transform coefficients

are manipulated to embed the watermark. Watermarking

techniques have recently been developed in the time-frequency

domain and using the fractional Fourier transform. Wavelet-

based techniques have also been proven to be highly effective

in digital watermarking. The efficiency of spread spectrums

in channel communication has also drawn the attention

of researchers working in watermarking and steganography.

Spread spectrums provide an excellent diffusion mechanism

for spreading watermark signatures across a random set of

frequencies and be extremely robust.

In this paper, we present the design of a watermarking

system for digital images using the fractional Fourier transform

(FrFT) and blind source separation (BSS). The developed system

embeds a watermark in the space-frequency domain, and

the retrieval of the watermark is accomplished using a BSS

technique. The embedded watermark is inserted using a mixing

matrix whose coefficients are optimized using genetic algorithms

to ensure that the watermark is not visually perceivable and the

integrity of the pixels in the watermarked image is minimally

compromised in comparison to the original image.

Related work

In recent decades a digital revolution has occurred that no

one could have imagined a few years ago. Massive digitalization

has revolutionized the way we work and our social interactions

(Woods and Gonzalez, 2002). While digitalization has made

data easier to store and preserve, it has also posed cognitive

issues of global significance, requiring massive computational

infrastructure and efficient algorithms. The storing of textual

documents in digital archives is a case in point. The prevailing

trend was to scan text documents as images and submit them to

storage repositories.

Now, we have tools and techniques that allow us to create

digital texts that can be encoded using ASCII and UTF-8/16

(Djurovic et al., 2001). Scanned text documents are convenient

to store but processing them is difficult. Text extraction from

scanned images is not harrowing, but it is far from perfect.

The massive production and storage of digital documents is

an issue for organizations worldwide. The internet’s advent

has created new pathways for generating virtual text, with the

web offering several alternatives (Cox et al., 2008). Web pages,

social media sites, encyclopedias, and other internet sources

are widespread. If new digital techniques are not investigated,

the speed at which documents are produced could surpass our

computational capabilities. In this paper, we investigate another

aspect of the digital revolution which has to do with security in

the form of watermarking.

A watermarking technique for identifying copyright

infringement was developed by Komatsu and Tominaga

(1989), specifically for digital entities. The idea of storing a

watermark generated with spread spectrummethods and matrix

transformations that was imperceptible in grayscale images

and resistant to tempering was given by Boland et al. (1995). It

has suggested a technique for embedding robust watermarks

in images. Recent years have seen the development of

watermarking methods in both frequency and spatial domains.

Several methods have been used in spatial domain algorithms,

including paired pixel manipulation, LSB substitution in the

host images, and textured block coding. LSB substitution and

several variations are the most effective and computationally

efficient methods for embedding watermarks (Lu et al., 2003).

However, LSB replacement is still not considered a robust

algorithm, notwithstanding these attempts to improve it. A

secure spatial domain technique was devised by Lin (2000) to

survive challenging attacks, including JPEG compression.

The frequency-domain digital watermarking algorithms

offer significantly more security than their spatial counterparts.

The algorithms transform images from the time domain to

the transform domain and then embed the watermark into

the frequency domain (Abraham and Paul, 2017). Many of

these methods involve the discrete Fourier transform (Candan

et al., 2000), discrete cosine transform (Hernandez et al.,

2000), or discrete wavelet transform (Xia et al., 1998). Zhang

et al. (2020) effectively encrypted color images using a 2D

discrete Fourier transform and a blind watermarking method.

Fares et al. (2020) proposed a method for color images in

the Fourier transform domain where embedding was carried

out independently in each image plane. The discrete wavelet

transform was effectively employed by Xia et al. (1997) to

embed watermarks in multiresolution images. In this method,

the significant coefficients in the high and medium frequency

bands of the DWT image were assigned pseudo-random codes.

The fractional Fourier transform, and its applications have

been explored extensively by researchers. One of the most well-

known early introductions to the transformation is given by

Namias (1980). He also suggested embedding watermarks in

images using the technique of phase shift keying to make the
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watermarking more imperceptible. Kumar et al. (2013) created

a blind digital image watermarking system based on the FrFT.

The study proved that the FrFT could be used to provide good

imperceptibility and resilience to complex JPEG compression

attacks. Based on the FrFT, Mustafi and Ghorai (2013) proposed

a new method for denoising medical images. The presented

method uses blind source separation and fractional Fourier

transform algorithm to eliminate noise from medical images,

resulting in enhanced and robust denoising. Lang and Zhan

(2014) proposed a new blind image watermarking method

based on the FrFT for embedding a visually unidentifiable

watermark into an image. The original cover image is divided

into non-overlapping blocks for watermarking, each modified

using a 2D fractional Fourier transform of two fractional

orders. Kumari and Mustafi (2020) presented a straightforward

digital watermarking method based on the fractional Fourier

transform. This presented work provides a more secure

information hiding technique that is robust, undetectable and

has a more extensive data concealing capacity to meet the

needs of each recipient across a broad spectrum of frequencies

and spatial domains. Kumari and Mustafi (2021) developed a

powerful image watermarking method based on the 2D discrete

fractional Fourier transform. The method includes a twofold

transform technique to improve its robustness to attacks.

PSO was used to determine the best fractional ordering for

embedding watermarks in the cover image. Kumari and Mustafi

(2022) described an effective solution for image denoising using

the FrFT. Images are denoised using a parallel set of filters

and FrFT to extract the watermark. Simulations show that their

approach is as accurate as current denoising techniques.

Recent watermarking techniques have also used nature-

based algorithms (Naheed et al., 2014). Most watermarking

techniques require lengthy searches to determine the ideal

location for the watermark (in space or frequency domain).

Due to local optima and high dimensionality, standard search

strategies are often inadequate. Shieh et al. (2004) proposed

a genetic algorithm-based watermarking approach in the

transform domain. GA optimizes conflicting requirements.

Watermarking using GA seems to be simple. They also

evaluate their approach using GA’s fitness function, which

considers robustness and invisibility. Simulations illustrate GA’s

robustness under attacks and improvement in watermarked

image quality. Wang et al. (2011) provided an optimal image

watermarking methodology employing a multiobjective genetic

algorithm in accordance with the multiobjective nature of

image watermarking. A multiobjective genetic algorithm

was employed to autonomously determine the optimal

watermarking parameters, and a variable-length mechanism

was used to seek the best watermark embedding locations. The

optimization results indicate that multiobjective watermarking

can increase the performance of watermarking algorithms

without the problem of determining optimal parameters.

Naheed et al. (2014) devised reversible watermarking to

enhance embedding strength and invisibility. GA and PSO-

based reverse interpolation watermarking provide for medical

and standard images. Experimental data show that the

suggested technique improves perceptual quality and the

size of the watermark payload. An effective blind digital

watermarking system based on a genetic algorithm is given by

Alvarez et al. (2018). The experimental results suggest that,

compared to previous approaches in the literature, the scheme

maintains invisibility, security, and robustness more frequently.

Calculations showed that the proposed watermarking method

is robust to several attacks caused by salt and pepper, Gaussian

noise, and jpeg compression.

Blind source separation (BSS) methodologies are used to

separate audio, image, or any other source signal from a group

of observation or mixed signals without identifying the mixing

procedure and source signal characteristics (Sanchez, 2002).

Separation is performed using several algorithms. However,

BSS employing Non-Negative Matrix Factorization is frequently

used. Non-NegativeMatrix Factorization algorithms (Silva et al.,

2020) still have difficulties with solution space convergence and

separation quality. BSS was described by Belouchrani et al.

(1997) as the recovery of a set of sources from a mixture

without knowledge of the original signals or mixing technique.

When a single source is recovered from several mixtures, the

problem is called blind source separation (Choi et al., 2002).

Recent studies by Silva et al. (2020) developed an output-

only operational modal analysis method based on blind source

separation. The method uses each pixel as a measurement point.

This increases sensor density by orders of magnitude. Using

extracted modal data, a simple method is provided to magnify

and visualize independent vibration modes. The results show

that the proposed technique can decompose, visualize, and

rebuild weakly stimulated vibration modes.

Overview of fractional Fourier
transform and blind source
separation

The fractional Fourier transform coupled with BSS can

provide an extremely efficient framework for developing

watermarking and steganographic systems. The FrFT, with

its ability to provide a singular domain space-frequency

representation of a signal (Ozaktas et al., 2001), can quickly

disperse an embedded watermark in the host entity to prevent

localization attacks in the spatial domain. Such watermarks are

usually challenging but simple to retrieve using blind source

separation. The algorithm’s simplicity is enhanced because BSS

does not require any apriori knowledge at the retrieval end to

extract the watermark. Consequently, the watermarking system

is not only extremely robust but also simple to operate for the

authorized user.
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Fractional Fourier transform

The fractional Fourier transform (FrFT) is an extension of

the Fourier transform (FT) with an additional degree of freedom

α(0 ≤ α ≤ 1), known as the order of the transform (Namias,

1980). This extra degree of freedom allows the FrFT to generate

a powerful time (spatial) frequency signal representation. The

FrFT has been compared to the short-term Fourier transform,

Wigner Distribution, and wavelets in literature. As FrFT is a

specialization of the Fourier transforms, it is also reversible

and follows Parseval’s theorem (Mustafi and Ghorai, 2013).

Though not as closed andmathematically consistent as its analog

counterpart, the discrete and two-dimensional version of the

transform also exists under moderate limitations that are almost

always satisfied.

The formal definition of the FrFT employs a forward

transformation kernel Kα , which is defined in Eq. (1) (Bultheel

and Sulbaran, 2004).

Kα (t,u)=































δ (t−u) α is a multiple of 2π

δ (t+u) (α+π) is a multiple of 2π
√

1−jcot(α)
2π e

j
(

u2+t2

2

)

cot(α)−j ut cosec(α)
else
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Using this forward transformation kernel, the FrFT of order

α is defined in the regular form as

Fα (u)=

∫ ∞

−∞
f (t)Kα (t,u) dt (2)

The Euler representation, which is used to further simplify

the expression in Eq. (1)

√

1−jcot(α)

2π
=

√

−jejα

2π sin(α)
(3)

According to Eq. (1), the Fourier transform is a special

case of the FrFT coinciding with the first order (i.e., α =

1) FrFT, whereas the zeroth order (α = 0) FrFT is the

signal’s representation of the space domain. The FrFT provides a

joint space-frequency signal representation for all other orders.

Figure 1 is a visual representation of the FrFT’s functioning.

The FrFT is simple to apply successively andmathematically;

the successive application of the FrFT is denoted (Ozaktas et al.,

2001) as

Fα1(Fα2) =Fα1+α2 (4)

From Eq. (4), the computation of the inverse FrFT for the

domain a is simply another FrFT with order−α i.e.,

FIGURE 1

The time-frequency plane (Namias, 1980).

F−α (Fα)=Fα−α=F0=I (5)

Eq. (4) and Eq. (5) are the basis for developing the

watermarking system. Interestingly, a discrete representation

of the FrFT exists and can be expressed in terms of the

discrete Hermite-Gaussian function (Kutay et al., 1997). The

mathematical representation of the discrete form of the FrFT

forward kernel is given as

Fα [m,n]=

N
∑

k=0,k6=(N−1+(N)2)

uk [m] e−jπkα2 uk[n] (6)

Where uk[n] is the kth discrete Hermite Gaussian function

and (N)2 ≡ N mod2

Blind source separation

Blind source separation refers to extracting source signals

from a linear or non-linear mixture without any apriori

knowledge about the sources (Yeredor, 2000). Mathematically

we conceptualize the discrete linear BSS problem as

X = AS (7)

S is a matrix representing the collection of N source signals

known to exist atM discrete points. Thus, S can be visualized as

S=
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FIGURE 2

Watermark system architecture for informed watermarking (Cox et al., 2008).

The term A in Eq. (7) is an unknown matrix of dimension

n × n made of real coefficients. The mixed signals output

by the mixing signals are represented by the individual rows

of the matrix X. It is obvious that X is a linear mixture of

all the source symbols si, 1 ≤ i ≤ n and is a collection of

signal mixtures observed by the receptors. The extension to the

case of two-dimensional signals is straightforward. To solve the

BSS problem, we must find the coefficients of the matrix S.

However, in doing so, we work without any knowledge about

A. Consequently, the only observed quantity available to us

is matrix X. It can be observed that a solution to the linear

BSS-problem reduces to finding the coefficient of the matrix A.

Mathematically, it can be written as

X = AS (9)

A−1X = A−1AS (10)

S = A−1X (11)

Thus, knowledge about the coefficients of A is sufficient to

completely recover S, which is the goal of any BSS algorithm.

The linear BSS problem is the one that has found the most

relevance in real-world applications, though a lot of research

has also focused on solving the non-linear BSS problem

(Silva et al., 2020).

Various techniques have been proposed in the literature

to solve the BSS problem (Song et al., 2019). Some

more common approaches have focused on higher-

order statistics or cumulants, the mutual information

between the extracted sources, non-gaussianity of signals,

principal component analysis, etc. In the present work,

BSS has been used to extract the watermark from the

watermarked image.

FIGURE 3

A SAR image of an agricultural field.

Proposed algorithm

Figure 2 shows the architecture of an informed

watermarking system. Such systems are characterized by the

fact that extraction of watermarks (Bo et al., 2011) necessitates

the participation of the original watermarked digital entity or

some variation. Thus, the system allows for “source verification,”

which is an essential asset in ownership verification.

Figure 3 shows an example of a typical satellite image used in

defense and intelligence. The image is typical as it shows several

different features, all of which are distinguishable by their gray

values, even though the image itself is only greyscale. The reader

may also observe that the grab shows significant blocking effects

and periodic noise symptoms. The common issues with images

captured under non-optimal circumstances include sub-optimal
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FIGURE 4

Cover images (A–E) and signature watermark image (F).

environmental conditions, inappropriate lighting, acquisition

device malfunction, etc. Digitally watermarking such images

is a challenge due to several reasons. The induced watermark

should result in a minimum variation of greyscale values of

pixels, as these values are often interpreted automatically or

semi-automatically. The watermark should also induce minimal

distortion and artifacts, given the already impure nature of

the images.

Even though it is common to embed random patterns

(usually a collection of k random numbers) as watermarks

in digital images, the retrieval process is cumbersome for

many applications. In high-security application domains, it

makes sense to embed visually perceptible watermarks (Wang

et al., 2011) that can instantly be recognized in keeping with

traditional paper watermarks. Thus, the proposed method

embeds binary images as watermarks in the host image. One

added advantage of this is that the method can be used for

steganography even though such a use cannot be recommended

except for the most trivial of cases. This is because the recovered

watermark may lack integrity from the original watermark,

which is not desirable for a robust steganography method.

Figure 4 shows some of the other test images used in this

paper and the watermark that was embedded in each of these

test images.

Embedding procedure

The proposed method embeds the watermark image in the

αth FrFT domain of the host image. The embedding is done with

the help of a mixing matrix A of size 2 × 2, as explained in

Section Blind source separation. The process of embedding the

watermark is illustrated using the flowchart shown in Figure 5.

The signature watermark image is padded with zeros to be the

same dimension as the target or host image. In our experiments,

we found that scaling the signature image’s greyscale to have

the same mean as the target image increases the effectiveness of

the algorithm.

Embedding can be done with the watermark when the

target image is first transformed into the αth FrFT domain, and

then the scaled and padded watermark image is multiplicatively

introduced into the FrFT domain using a mixing matrix A.

The resultant modified FrFT is returned to the spatial domain

using the inverse FrFT transform, equivalent to performing an

FrFT with −α. We see the resultant flowchart of watermark

embedding in the target image, which found the output of

two watermarked images. In an informed watermarking system,

one of the resultant images is stored in a secure repository

while the other can be distributed for use. By choosing a

suitably high FrFT domain, the embedded watermark can be

dispersed intricately in the space-frequency domain, making it

very difficult to remove. In the experimental results presented,

the FrFT domain chosen was α = 0.75. Mathematically the

embedding process is expressed (Belouchrani et al., 1997) as

[

W1

W2

]

= F−α

{[

a11&a12

a21&a22

] [

Fα
{

∣

∣f
(

x,y
)

|
}

|h
(

x,y
)

|

]}

(12)

Where W1 and W2 are two distinct representations of the

watermarked image, aij are the coefficients of the mixing matrix
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FIGURE 5

Flowchart of proposed system.

FIGURE 6

The chromosome representing the coe�cients of the mixing

matrix A.

and |f
(

x, y
)

| and |h
(

x, y
)

| are column matrix representations

of the target image and watermark image zero-padded to be of

equal length. Fα is the αth order fractional Fourier transform as

discussed in section Fractional Fourier transform.

Though much research has been devoted to the possibility

of using the FrFT as a tool for the digital watermarking of

images (Zhang et al., 2020), not much work has focused on

using the BSS in conjunction with the FrFT. An ant colony

approach to optimizing the FrFT coefficients has been discussed

in Al-Qaheri et al. (2010). However, using both these tools, a

high level of robustness can be provided to the watermarking

process. While the FrFT can diffuse the watermark over the

spatial-frequency domain simultaneously, the BSS can be used

to recover the watermark back with minimal effort. However,

optimizing the mixing matrix to allow the embedding of an

entire image requires exact tuning of the mixing matrix. One of

the issues in choosing a mixingmatrix-based approach to embed

the watermark image in an FrFT domain is the distortion that

may be induced in the watermarked image once it is brought

back to the spatial domain using the inverse FrFT transform.

Without any constraints to guide the choice of the coefficients

of matrix A, the watermarked image usually displays many

distortions. The distortions can clearly be seen in the form of

wave-like structures in the top half of the image.

To reduce such distortions, the matrix coefficients must be

chosen carefully.Without any apriori knowledge regarding these

coefficients, themethod employs the genetic algorithm to choose

the optimal set of coefficients.

Genetic algorithm-based coe�cient
optimization for mixing matrix

Genetic Algorithms (GAs) have long been considered an

extremely efficient optimization tool for large search spaces.

The functioning of these algorithms is based on the natural

law of evolution and the concept of the “survival of the fittest.”

Genetic Algorithms iterate through generations by creating a

population of candidates which tend to propagate the best

traits of the previous generation of candidates (Goldberg, 1989).

The algorithm employs several steps to ensure that the current

population converges to an optimal solution, even over large

search spaces having numerous variables. Themutation operator

ensures that GAs is not trapped in local maxima and can quickly

converge to global solutions even in large search spaces. GAs is

considered ideal for cases where a near-optimal solution has to

be established in a short period.

Basics of genetic algorithm

1. Initialize population

2. Create initial population

3. Evaluate individuals in the initial population.

4. Create new population

5. Select-fit individuals for reproduction

6. Generate offspring with genetic operator crossover.

7. Mutate offspring.

8. Evaluate offspring.

In the proposed method, the four coefficients of the mixing

matrix A =

[

a11&a12

a21&a22

]

, 0 < apq < ∞ are used to

create a multi-gene chromosome for use in the GA. A typical
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FIGURE 7

Watermarked images using GA-based mixing matrix coe�cient

optimization and its objective evaluation of imperceptibility for

di�erent images. (A) Original Test1. (B) Watermarked Image

(PSNR = 51.2 and SSIM = 0.98). (C) Original Test2. (D)

Watermarked Image (PSNR = 53.9 and SSIM = 0.95). (E) Original

Test3. (F) Watermarked Image (PSNR = 53.9 and SSIM = 0.96).

(G) Original Test4. (H) Watermarked Image (PSNR = 50.6 and

SSIM = 0.96). (I) Original Test5. (J) Watermarked Image (PSNR =

53.8 and SSIM = 0.96).

Target

Image

Recovered 

Watermarked 

(if exists)

Distributed 

Watermarked 

Image

Watermarked 

image in 

Repository

FrFT with order FrFT with order

BSS

FIGURE 8

Schematic representation of watermark extraction.

FIGURE 9

A view of the Wigner’s plane in the watermarking scheme.

chromosome is shown in Figure 6 (Shieh et al., 2004). The upper

limit of the coefficients was restricted to 500 for experimental

purposes. The fitness function used to converge the search is

defined as the average RMSE of the two images in comparison

to the original target image and is mathematically defined as

F=
1

2

[

∑2

i=1

√

1

MN

∑N−1

x=0

∑M−1

y=0

[

T
(

x,y
)

−T̂i(x,y)
]2

]

(13)

In Eq. (13), T
(

x, y
)

represents the original image and T̂i(x, y)

represents one of the watermarked images. The images are

considered of sizeM × N for generality, but in our experiments,

only square images were used for the sake of computational
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FIGURE 10

Schematic representation of extracted watermark after performing some geometric attacks. (A) Translation. (B) Rotation 300. (C) Rotation 600.

(D) Scaling. (E) Cropping. (F) Poisson. (G) Gaussian. (H) Salt and Pepper. (I) Contrast. (J) JPEG.

simplicity. Using the GA-based approach (Wang et al., 2011), the

mixing matrix used to embed the watermark produced minimal

distortions in the watermarked images when using reasonably

small-sized watermarked images. However, the distortions show

a marked increase when the size of the watermark image is

increased relative to the target image. As the sole aim of the

signature image is to verify the authenticity and ownership of

the target image, even small watermarks are more than sufficient

for this purpose.

Figures 7B,D,F,H,J shows all watermarked images using

the GA-based optimization method. The lack of wave-like

distortions in the top half of the image is noticeable (compared

with Figures 7A,C,E,G,I respectively). It is evident that the

watermarked image is heavily distorted for any signature image

larger than approximately 30% of the size of the target image.

Very slight wave-like disturbances in the image are noticeable

toward the top left corner of the image. However, they are quite

insignificant in the context of the overall image.

Watermark extraction

The watermark extraction in the proposed method is

straightforward to perform. The process inverts the extraction

method and is depicted using the flowchart shown in

Figure 8. It is interesting to note that the actual extraction

employs the technique of BSS, and the knowledge of the

mixing matrix A used at the encoding end is not required

during the retrieval process. The FrFT domain α in which

the watermark was embedded functions as the key in the

watermarking scheme, as shown in Figure 2. Our experimental

setup used the highly efficient FASTICA package to perform

the BSS. Figure 10 shows the recovered watermark using

the retrieval process. Even though traces of the frequency

component of the target image are visible in the retrieved

watermark, the extracted watermark has been extracted with

remarkable clarity.

Due to its time (space) frequency capabilities embedding

watermarks in the FrFT domains is a highly robust way of

securing images. Figure 9 shows a visual representation of

watermark embedding in the FrFT domain. The figure shows the

target and signature images in theWigner plane (Xia et al., 1997),

with the two axes representing space and frequency, respectively.

It is seen that the watermark image cannot be separated from

the target image in either the spatial domain or the frequency

domain alone. Thus, targeted attacks to remove the watermark

in any of these domains are not likely to succeed, and this

significantly increases the robustness of the method. Figure 9

also shows that the oblique FrFT axis, which corresponds to a

rotation in the Wigner plane, can separate the two components,

and it is in this domain that we perform BSS to extract the

watermark. Thus, knowledge of the correct FrFT domain is

essential in extracting the watermark. Figure 13 shows the PSNR

of the recovered watermark for different FrFT domains. The

actual embedding of the watermark was performed in the FrFT

domain α = 0.75. The plot clearly shows that the watermark has
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FIGURE 11

(A) Performance outcome of imperceptibility (PSNR). (B) The outcome of MSE (Mean Square Error), MSSIM (Mean Structure Similarity Index

Measure), SSIM (Structure Similarity Index Measure), and UIQI (Universal Index, Quality Index).

failed to be extracted for all other domains except for the domain

in which it was embedded.

Experimental results and discussions

To evaluate the robustness of the proposed watermarking

method, the watermarked images were subjected to several

common signal processing attacks (Lu et al., 2003). Due to the

visual nature of the embedded watermark, the quality of the

retrieved watermark is subject to human interpretation rather

than statistical parameters, e.g., PSNR (Kumari and Mustafi,

2021) and RMSE (Alvarez et al., 2018). This is often an advantage

for end-users. The experimental results show that the watermark

can be successfully extracted at the retrieval end in almost

all cases.

Figure 10 summarizes the performance of the method for

various test cases of simulated attacks. In Figure 10 results,

the watermarked image has been blurred using a Gaussian

filter (Zhang et al., 2020). Such filters are very mild and

do not have a significant abrasive effect on the image. The

recovered watermark shows a high degree of clarity, as seen in
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Figure 10G. However, the watermark is still reasonably extracted

and is visually recognizable. A similar result is observed in

the case of salt and pepper noise. The watermark is still

perceptible even though salt and pepper noise distorts the

entire frequency spectrum and often adversely affects many

watermarking schemes. In Figure 10E, the watermarked image

shows a simulated cropping effect, replacing a section of

the image with black grayscale values. The crop position is

intentionally chosen as standard embedding using a mixing

matrix that would place the watermark at the top left of the target

image. Even though the recovered watermark shows marked

distortions, it is quite recognizable even by the naked eye, and

the authenticity of the image can be validated.

As can be seen, the method is quite robust and can detect

the watermark in the case of most attacks. In a few cases, like

Gaussian filtering and JPEG compression (Naheed et al., 2014),

the choice of the FrFT domain affected the performance of the

method, and the retrieval was found to be more efficient in

FrFT domains.

The proposed method can easily be extended to multiple

plane formats like RGB images, where two alternative methods

for embedding the watermark may be adopted. The watermark

may be embedded in one of the three planes (which increases

the robustness of the algorithm to a small extent), or the

watermark image can be partitioned and embedded in all three

planes. The second method is interesting as the choice of the

FrFT domain α can be different for the three planes. Another

possible improvement can be to choose an optimal FrFT domain

to embed the watermark. Our experiments observed that the

best results were obtained for the higher FrFT domains, but

some domains performed better than others. The choice of

the FrFT domain can again be performed using a heuristic or

meta-heuristic algorithm, e.g., GA. However, even for randomly

chosen non-optimized FrFT domains, the method is found to be

highly competent.

Performance evaluation criteria

Imperceptibility, robustness, payload, and security are four

attributes that determine the quality of an image watermarking

scheme (Fares et al., 2020). Further, the algorithmic complexity

is also often considered an important parameter while judging

the efficiency of a watermarking algorithm.

Quality metrics

While the quality of an image watermarking scheme can be

judged by the human visual system (HVS) using our latent sense

of perception (Shih, 2017), several mathematical techniques have

been suggested in the literature to measure the performance of

an image watermarking scheme quantitatively.

TABLE 1 Evaluation of di�erent geometric attacks with their

respective robustness results.

Attacks type WPSNR NCC SM BER

Translation 50.8 1 1 0

Rotation 300 52.4 1 1 0

Rotation 600 51.5 1 1 0.114

Scaling 50.48 1 1 0

Cropping 49.6 1 1 0

Poisson 51.3 0.95 1 0

Gaussian 51.3 1 1 0.14

Salt and pepper 50.8 0.93 1 0

Speckle 51.3 0.94 1 0

Contrast 51.8 1 1 0

JPEG (q= 100) 50.12 1 1 0

In the current work, we have employed four conventional

performance metrics to evaluate the imperceptibility and

robustness of the proposed algorithm. These quality metrics

(Woods and Gonzalez, 2002) are peak signal-to-noise ratio

(PSNR), structural similarity index measurement (SSIM),

normalized cross-correlation (NC), and bit error rate (BER).

Among these, PSNR and SSIM have been used to evaluate the

imperceptibility of a digital watermark, while NC and BER test

the robustness of the proposed method. A brief description of

these quality metrics is provided in the following sections.

Imperceptibility and capacity test

The tests outlined in the previous section were performed to

evaluate the proposed method. Figure 11A shows PSNR values

for experimental images. PSNR readings remain high, proving

the watermark is imperceptible. Figure 11B shows MSE values

between 0.21 and 0.28, indicating aminimal loss in watermarked

image quality. Maximum UIQI values are close to 1 (0.93–0.97).

This illustrates that watermarked images always seem to be like

the originals. Regarding structural similarity, the original and

watermarked are comparable, and the highest value for both

SSIM and MSSIM is 0.98, indicating high perceptual quality.

Robustness test

Robustness can be determined by examining the extracted

watermark after the watermarked image has been attacked (Shih,

2017). We evaluated the algorithm against geometric attacks.

Table 1 depicted the watermark and extracted the watermark’s

robustness after some attacks. In Figure 12A, we had shown the

WPSNR values for the experiment conducted. In Figure 12B,

performance outcome of NCC (Normalized Cross-Correlation),
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FIGURE 12

(A) Performance outcome of robustness (WPSNR), (B) Performance outcome of NCC (Normalized Cross-Correlation), SM (Similarity

Measurement), BER (Bit Error Rate).
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FIGURE 13

PSNR results of images with di�erent fractional order α.

SM (Similarity Measurement), BER (Bit Error Rate) has been

shown. The table demonstrates that the maximum WPSNR

value is 52db which is good. NCC results are also excellent,

except for Poisson, Salt & Pepper, and Speckle. NC > 0.93

means the original and extracted watermarks are similar. The

SM (Similarity Measurement) also reports promising findings.

Except for Rotation and Gaussian noise addition, the Bit Error

Rate is less. The proposed algorithm is resilient against attacks.

The PSNR values acquired across various fractional orders

have also been evaluated, and we found that, most often,

the best PSNR was obtained almost at a rotation angle of

30◦. In Figure 13, the PSNR value of the watermarked image

gradually decreased on each side. The optimal embedding,

according to this, occurs in the higher fractional orders. The

optimal embedding fractional order had to be determined

manually for each image, resulting in one of the drawbacks

of the present work. This is an additional computing load,

and research efforts may be directed toward developing

more effective techniques for determining the appropriate

fractional order.

Conclusion

In this paper, a novel informed watermarking technique

for digital images has been proposed. The method uses the

fractional Fourier transform and BSS to embed and extract

the watermark. The embedded watermark is intentionally

chosen to be visually recognizable to make the retrieval and

identification process more conducive for typical end-users. The

method also utilizes GA to optimize the embedding phase,

ensuring that the watermark can be embedded in the target

image with minimum distortions. Further work to provide

RST invariance to the method only make the technique more

robust. Currently, the usefulness of the Log polar transform

is being explored to provide the necessary RST invariance

property to the method. Additionally, more research must be

conducted to optimize the process more robustly when faced

with significant image cropping, in which case the watermark

recovery is significantly hampered.

According to the results presented, the method works highly

efficiently for the average case and is also very robust against

many known signal processing attacks. Another important

consideration while evaluating the algorithm’s robustness is that

the retrieval process depends stringently on correctly identifying

the FrFT domain. For all other domains, the watermark

stays hidden and thus does not lend itself to passive attacks

or masquerades.
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Object tracking is a fundamental task in computer vision. Recent years,

most of the tracking algorithms are based on deep networks. Trackers

with deeper backbones are computationally expensive and can hardly meet

the real-time requirements on edge platforms. Lightweight networks are

widely used to tackle this issue, but the features extracted by a lightweight

backbone are inadequate for discriminating the object from the background

in complex scenarios, especially for small objects tracking task. In this paper,

we adopted a lightweight backbone and extracted features from multiple

levels. A hierarchical feature fusion transformer (HFFT) was designed to mine

the interdependencies of multi-level features in a novel model—SiamHFFT.

Therefore, our tracker can exploit comprehensive feature representations in

an end-to-end manner, and the proposed model is capable of handling

small target tracking in complex scenarios on a CPU at a rate of 29 FPS.

Comprehensive experimental results on UAV123, UAV123@10fps, LaSOT,

VOT2020, and GOT-10k benchmarks with multiple trackers demonstrate

the e�ectiveness and e�ciency of SiamHFFT. In particular, our SiamHFFT

achieves good performance both in accuracy and speed, which has practical

implications in terms of improving small object tracking performance in the

real world.

KEYWORDS

visual tracking, hierarchical feature, transformer, lightweight backbone, real-time

Introduction

Visual tracking is an important task in computer vision that provides underlying

technical support for more complex tasks; and is an essential procedure for advanced

computer vision applications. Additionally, visual tracking has been widely used in

various fields such as unmanned aerial vehicles (UAVs) (Cao et al., 2021), autonomous

driving (Zhang and Processing, 2021), and video surveillance (Zhang G. et al., 2021).

However, several challenges remain that hamper tracking performance, including edge

computing devices and difficult external environments with occlusion, illumination

variation, and background clutter.
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Over the past few years, visual object tracking has

made significant advancements based on the development of

convolutional neural networks due to the breakthroughs that

have been made to generate more powerful backbones, such

as deeper networks (He et al., 2016; Chen B. et al., 2022),

efficient network structure (Howard et al., 2017), attention

mechanism (Hu et al., 2018). Inspired by the way of the human

brain process the overload information (Wolfe and Horowitz,

2004), the attention mechanism is utilized to enhance the vital

features and surpass the unnecessary information of the input

feature. Due to the powerful feature representation ability,

the attention mechanism becomes an important means to

enhance the input features, such as channel attention (Hu et al.,

2018), spatial attention (Wang F. et al., 2017; Wang N. et al.,

2018), temporal attention (Hou et al., 2020), global attention

(Zhang et al., 2020a), and self-attention mechanism (Wang

et al., 2018). Among them, the self-attention based models,

the transformer was initially designed for natural language

processing (NLP) (Vaswani et al., 2017) task, where the attention

mechanism is utilized to perform the machine translation tasks

and achieved great improvements. Later, the pre-training model

BERT (Devlin et al., 2018) achieve breakthrough progress in

NLP tasks, further advance the development of the Transformer

model. Since then, both academia and industry have set off a

boom in the research and application of pre-trained models

based on Transformer, and gradually extended from NLP to

CV. For example, Vision Transformer (ViT) (Dosovitskiy et al.,

2020), DETR (Carion et al., 2020), have surpassed previous

SOTA in the fields of image classification, inspection, and video,

respectively. Various variant models based on Transformer

structure have been proposed, multi-task indicators in various

fields have been continuously refreshed, and the deep learning

community has entered a new era. Meanwhile, muti-level

features fusion can effectively alleviate the deficiency of the

transformer in handling the tracking of small objects.

Although transformer models provide enhancements in

feature representation and result in promotion in terms of

accuracy and robustness, trackers based on transformers have

high computational costs that hinder them from meeting

the real-time demands of tracking tasks on edge hardware

devices, providing a disadvantage for the landing of the

application. Therefore, how to balance the efficiency and

efficacy of object trackers remains a significant challenge.

Generally, discriminative feature representation is essential for

tracking. Therefore, deeper backbones and online updaters

are utilized in tracking frameworks, however these methods

are computationally expensive leading to increased run time

and budget. Typically, the lightweight backbone is also

limited as it typically provides inadequate feature extraction,

rendering the tracking model less robust for small objects or

complex scenarios.

In this study, we employed a lightweight backbone network

to avoid the efficiency loss caused by the computations of deep

networks. To address the insufficient feature representations

extracted by shallow networks, we extracted features from

multiple levels of the backbone to enrich the feature

representations. Furthermore, to leverage the advantages

of transformers in global relationship modeling, we designed

a hierarchical feature fusion module to integrate multi-

level features comprehensively using multi-head attention

mechanisms. The proposed Siamese hierarchical feature fusion

transformer (SiamHFFT) tracker achieved robust performance

in complex scenarios while maintaining real-time tracking

speed on a CPU and it can be deployed on consumer CPUs.

The main contributions of this study can be summarized

as follows:

(1) We proposed a novel type of tracking network based on a

Siamese architecture, which consisting of feature extraction,

reshape module, Transformer-like feature fusion module,

and head prediction modules.

(2) We designed a feature fusion transformer to exploit the

hierarchical features in the Siamese tracking framework

in an end-to-end manner, which is capable of advancing

discriminability for small object tracking task.

(3) Comprehensive evaluations on five challenging benchmarks

demonstrate the proposed tracker achieved promising

results among state-of-the-art trackers. Besides, our tracker

can run at a real-time speed. This efficient method can be

deployed on resource-limited platforms.

The remainder of this paper is organized as follows. Section

Related work describes related work on tracking networks

and transformers. Section Method introduces the methodology

used for implementing the proposed HFFT and network

model. Section Experiments presents the results of experiments

conducted to verify the proposed model. Finally, Section

Conclusion contains our concluding remarks.

Related work

Siamese tracking

In recent years, Siamese-based networks have become a

ubiquitous framework in the visual tracking field (Javed et al.,

2021). Tracking an arbitrary object can be considered as

learning similarity measure function learning problems. SiamFC

(Bertinetto et al., 2016) introduced a correlation layer as a

fusion tensor into the tracking framework for the first time,

which pioneered the Siamese tracking procedure. Instead of

directly estimating the target position according to the response

map, SiamRPN (Li B. et al., 2018) attaches a region proposal

extraction subnetwork (RPN) to the Siamese network and

formulates the tracking as a one-shot detection task. Based on

the results of classification and regression branches, SiamRPN

achieves enhanced tracking accuracy. DaSiamRPN (Zhu et al.,
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2018) uses a distractor-aware module to solve the problem of

inaccurate tracking caused by the imbalance of positive and

negative samples of the training set. C-RPN (Fan and Ling,

2019) and Cract (Fan and Ling, 2020) incorporate multiple

stages into the Siamese tracking architecture to improve tracking

accuracy. To address unreliable predicted fixed-ratio bounding

boxes when a tracker drifts rapidly, an anchor-free mechanism

was also introduced into the tracking task. To rectify the

inaccurate bounding box estimation strategy of the anchor-

based mechanism, Ocean (Zhang et al., 2020b) directly regresses

the location of each point located in the ground truth. SiamBAN

(Chen et al., 2020) adopts box adaptive heads to handle the

classification and regression problem parallelly. SiamFC++ (Xu

et al., 2020) and SiamCAR (Guo et al., 2020) draw on the

FCOS architecture and add a branch to measure the accuracy of

the classification results. Compared with anchor-based trackers,

anchor-free-based trackers utilize fewer parameters and do not

need prior information for the bounding box, these anchor-free-

based trackers can achieve a real-time speed.

As feature representation plays a vital role in the tracking

process (Marvasti-Zadeh et al., 2021), several works delicate to

obtain discriminative features from different perspectives, such

as adopting deeper or wider backbones, and using attention

mechanisms to advance the feature representation. In the

recent 3 years, the Transformer is capable of using global

context information and preservingmore semantic information.

The introduction of the Transformer model in the tracking

community boots the tracking accuracy to a great extent (Chen

X. et al., 2021; Lin et al., 2021; Liu et al., 2021; Chen et al., 2022b;

Mayer et al., 2022). However, the promotion of the accuracy

of these trackers’ increasingly complex models relies heavily on

powerful GPUs, leading to the inability to deploy such models

on edge devices, which hinders the further practical application

of the models.

In this study, to optimize the trade-off between tracking

accuracy and speed, we designed an efficient algorithm that

employs a concise model consisting of a lightweight backbone

network, a feature reshaping model, a feature fusion module,

and a prediction head. Our model is capable of handling

complex scenarios, and the proposed tracker can also achieve

real-time speed on a CPU.

Transformer in vision tasks

As a new type of neural network, transformer shows

superior performance in the field of AI applications (Han

et al., 2022). Unlike the structure of CNNs and RNNs,

Transformer adopts the self-attention mechanism, which has

been proved to have strong feature representation ability

and better parallel computing capability, making it more

advantageous in several tasks.

The transformer model was first proposed by Vaswani

et al. (2017) for application to natural language processing

(NLP) tasks. In contrast to convolutional neural networks

(CNNs) and recurrent neural networks (RNNs), self-attention

facilitates both parallel computation and short maximum

path lengths. Unlike earlier self-attention models based on

RNNs for input representations (Lin Z. et al., 2017; Paulus

et al., 2017), the attention mechanisms in transformer model

are implemented with attention-based encoders and decoders

instead of convolutional or recurrent layers.

Because transformers were originally designed for sequence-

to-sequence learning on textual data and have exhibited good

performance, their ability to integrate global information has

been gradually unveiled and transformers have been extended

to other modern deep learning applications such as image

classification (Liu et al., 2020; Chen C. -F. R. et al., 2021; He

et al., 2021), reinforcement learning (Parisotto et al., 2020; Chen

L. et al., 2021), face alignment (Ning et al., 2020), object detection

(Beal et al., 2020; Carion et al., 2020), image recognition

(Dosovitskiy et al., 2020) and object tracking (Yan et al., 2019,

2021a; Cao et al., 2021; Lin et al., 2021; Zhang J. et al., 2021; Chen

B. et al., 2022; Chen et al., 2022b; Mayer et al., 2022). Based on

CNNs and transformers, the DERT (Carion et al., 2020) applies a

transformer to object detection tasks. To improve upon previous

CNN models, DERT eliminates post-processing steps that rely

on manual priors such as non-maximum suppression (NMS)

and anchor generators; and constructs a complete end-to-end

detection framework. ViT (Dosovitskiy et al., 2020) mainly

converts images into serialized data through token processing

and introduces the concept of patches, where input images

are divided into smaller patches and each patch is converted

into a bidirectional encoder representation from transformers-

like structure. Similar to the concept of patches in ViT, Swin

Transformer (Liu et al., 2021) uses the concept of windows,

but the calculations of different windows do not interfere with

each other, hence, the computational complexity of the Swin

Transformer is significantly reduced.

In the tracking community, transformers have achieved

remarkable performance. STARK (Yan et al., 2021a) utilizes

an end-to-end transformer tracking architecture based on

spatiotemporal information. SwinTrack (Lin et al., 2021)

incorporates a general position-encoding solution for feature

extraction and feature fusion, enabling full interaction between

the target object and search region during tracking process. TrTr

(Zhao et al., 2021) used the transformer architecture to perform

target classification and bounding box regression and designed

a plug-in online update module for classification to further

improve tracking performance. DTT (Yu et al., 2021) also feed

these architectures to predict the location and the bounding

box of the target. Cao et al. (2021) proposed an efficient

and effective hierarchical feature transformer (HiFT) for aerial

tracking. HCAT (Chen et al., 2022b) utilizes a novel feature

sparsification module to reduce computational complexity and
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a hierarchical cross-attention transformer that employs a full

cross-attention structure to improve efficiency and enhance

representation ability. The hierarchical-based methods, both

HiFT and HCAT show good tracking performance. However,

transformer-based trackers lack robustness in small objects. In

this paper, we propose a novel hierarchical feature fusionmodule

based on a transformer to enable a tracker to achieve real-time

speed while maintains good accuracy.

Feature aggregation network

Feature aggregation plays a vital role in the multi-

level feature process, and is used to improve cross-scale

feature interaction and multi-scale feature fusion, thereby

enhancing the representation of features and enhancing

network performance. Zhang G. et al. (2021) proposed

a hierarchical aggregation transformer (HAT) framework

consisting of transformer-based feature calibration (TFC) and

deeply supervised aggregation (DSA)modules. The TFCmodule

can merge and preserve semantic and detail information at

multiple levels, and the DSA module aggregates the hierarchical

features of the backbone with multi-granularity supervision.

Feature pyramid networks (FPN) (Lin T.-Y. et al., 2017)

introduce cross-scale feature interactions and achieve good

results through the fusion of multiple layers. Qingyun et al.

(2021) introduced a cross-modality fusion transformer, that

makes full use of the complementarity between different

modalities to improve the performance of features. However, the

main challenge of a simple feature fusion strategy is how to fuse

high-level semantic information and low-level detailed features.

To address these issues, we propose an aggregation structure

based on hierarchical transformers, which can fully mine the

coherence among multi-level features at different scales, and

achieve discriminative feature representation ability.

Method

Overview

In this section, we describe the proposed SiamHFFT model.

As can be seen in Figure 1, our model follows a Siamese

tracking framework. There are four key components in our

model, namely the feature extraction module, reshape module,

feature fusion module, and prediction head. During tracking,

the feature extraction module extracts feature from the template

and search region. The features of the two branches from the

last three layers of the backbone are correlated separately, and

the outputs are denoted as M2, M3, and M4 in order. We

then feed the correlated features into the reshaping module,

which can transform the channel dimensions of the backbone

features and flatten features in the spatial dimension. The

feature fusion module is implemented by fusing features using

our hierarchical feature fusion transformer (HFFT) and a self-

attention module. Finally, we used the prediction head module

to perform bounding box regression and binary classification on

the enhanced features to generate tracking results.

Feature extraction and reshaping

Similar to most Siamese tracking networks, the proposed

method uses template frame patch (Z ∈ R
3×80×80) and search

frame patch (X ∈ R
3×320×320) as inputs. For the backbone,

our method can use an arbitrary deep CNN such as ResNet,

MobileNet (Sandler et al., 2018), AlexNet, or ShuffleNet V2 (Ma

et al., 2018). In this study, because a deeper network is unsuitable

for deployment with limited computing resources, we adopted

ShuffleNetV2 as a backbone network. This network is utilized

for both template and search branch feature extraction.

To obtain robust and discriminative feature representations,

we incorporate detailed structural information into our visual

representations by extracting hierarchical features with different

scales and semantic information in stage two, three and four of

feature extraction. We denote feature tokens from the template

branch as Fi(Z) and those from the search branch as Fi(X),

where i represents the stage number of feature extraction and i ∈

{2, 3, 4}.

Next, a convolution operation is performed on the feature

maps from the multi stages correlation, which is defined as:

Mi = Fi(Z) ∗ Fi(X), i = 2, 3, 4, (1)

where Mi ∈ R
Ci×Hi×Wi , and C, H, and W denote the channel,

width, and height of the feature map respectively. Additionally,

Ci ∈ {116, 232, 464} and ∗ denotes the cross-correlation

operator. Next, we use the reshaping module which consists of

1 × 1 convolutional kernels, to change the channel dimensions

of the features from Equation (1). We then flatten the features

in the spatial dimension because a unified channel can not

only effectively reduce computing resource requirements, but is

also an essential component for improving the performance of

feature fusion. After these operations, we can obtain a reshaped

feature mapMi
′ ∈ R

WiHi×C , where C = 192.

Feature fusion and prediction head

As illustrated in Figure 1, following the convolution and

flattening operations in the reshaping module, the correlation

features from different stages are unified in the channel

dimension. To explore the interdependencies among multi-

level features fully, we designed the HFFT, which is detailed in

this section.

Multi-Head Attention (Vaswani et al., 2017): Generally,

transformers have been successfully applied to enhance feature
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FIGURE 1

Architecture of the proposed SiamHFFT tracking framework. This framework contains four fundamental components: a feature extraction

network, reshaping module, feature fusion module, and prediction head. The backbone network is used to extract hierarchical features. The

reshaping module is designed to perform convolution operations and flatten features. The feature fusion transformer consists of the proposed

HFFT module and a self-attention module (SAM). Finally, bounding boxes are estimated based on the regression and classification results.

representations in various bi-modal vision tasks. In the proposed

feature fusion module, the attention mechanism is also a

fundamental component. It is implemented using an attention

function and operated on queries Q, keys K and values V using

the scale dot-production method, which is defined as:

Attention(Q,K,V) = softmax(
QK⊤

√
C

)V (2)

where C is the key dimensionality for normalizing the attention,

and
√
C is a scaling factor to avoid gradient vanishing in the loss

function. Specifically,Q = [q1, . . . , qN ]
T ∈ R

N×C is the q input

in Figure 2B, which denotes a collection of N features; similarly,

K and V are the k and v inputs, respectively, which represent

a collection of Mfeatures (i.e., K,V ∈ R
M×C). Notably, Q, K,

V represent the mathematical implementation of the attention

function and do not have practical meaning.

According to Vaswani et al. (2017), extending the attention

function in Equation (2) to multiple heads is beneficial for

enabling the mechanism to learn various attention distributions

and enhancing its feature representation ability. This extension

can be formulated as follows:

MultiHead(Q,K,V) = Concat(head1, . . . headh)W
o (3)

headi = Attention(QW
Q
i ,KW

K
i ,VW

V
i ), i = 1, . . . h (4)

where W
Q
i , W

K
i and WV

i ∈ R
C×dh , and Wo ∈ R

C×C . Here, h

is the number of attention heads, which is defined as dh = C
h
. In

this study, we adopted and h = 6 as default values.

Application to Dual-Input Tasks: The structure of a

dual-input task is presented in Figure 2A, where Q, K, and

V for normal NLP/vision tasks (Nguyen et al., 2020) share

the same modality. In recent years, this mechanism has

been extended to dual-inputs and applied to vision tasks

(Chen X. et al., 2021; Chen et al., 2022a,b). However, the

original attention mechanism cannot distinguish between the

position information of different input feature sequences. The

original mechanism only considers the absolute position and

adds absolute positional encodings to inputs. It considers the

attention from a source feature φ to a target feature θ as:

Aφ(θ) = MultiHead(θ + Pθ ,φ + Pφ ,φ) (5)

where Pθ and Pφ are the spatial positional encodings of features

θ and φ, respectively. Spatial positional encoding is generated

using a sine function. Equation (5) can be used not only as

a single-direction attention enhancement, but also as a co-

attention mechanism in which both directions are considered.

Furthermore, self-attention from a feature to itself is also defined

as a special case:

Aθ (θ) = MultiHead(θ + Pθ , θ + Pθ , θ) (6)

As shown in Figure 2A, following Equations (5) and (6),

the designed transformer blocks are processed independently.
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FIGURE 2

(A) Structure of a dual-input tasks; (B) Structure of a multi-input tasks. Unlike the original dual-input tasks, multi-input tasks can be used to learn

the interdependencies of multi-level features and enhance the feature representation of the model in an end-to-end manner.

Therefore, the two modules can be used sequentially or in

parallel. Additionally, a multilayer perceptron (MLP) module is

used to enhance the fitting ability of themodel. TheMLPmodule

is a fully connected network consisting of two linear projections

with a Gaussian error linear unit (GELU) activation function

between them, which can be denoted as:

MLP(θ ′) = FC2(GELU(FC1(θ
′))) (7)

Application to Multi-Input Tasks: To extend the attention

mechanism to multiple inputs that are capable of handling

multimodal vision tasks, pyramid structures, etc., we denote the

total input number as S. The structure of a multi-input task is

presented in Figure 2B. If we consider each possibility, there are

a total of S(S − 1) source-target cases and S self-attention cases.

Now, we denote the multiple inputs as
{

θ ,φ1, . . . ,φS−1
}

, where

the target θ ∈ R
N×C and source φi ∈ R

M×C . Notably, θ and φi

must have the same size as C. We then compute all the source-

target cases as
{

Aφ1 (θ), . . . ,AφS−1 (θ)
}

. Next, we concatenate all

source-to-target attention cases with self-attention Aθ (θ), which

can be formulated as:

θconcat = [Aθ (θ),Aφ1 (θ), . . . ,AφS−1 (θ)] (8)

where θconcat ∈ R
N×SC . After concatenation, the dimensions

of the enhanced features in the channel change to match the

size SC of the original feature. To accelerate these calculations

further, we apply a fully connected layer to reduce the channel

dimensions to:

θconcat
′ = Linear[θconcat] (9)

where θconcat
′ ∈ R

N×C . Through this process, we can obtain

more discriminative features efficiently by aggregating features

from different attention mechanisms.

HFFT: As is shown in Figure 2B, in our model, we make full

use of the hierarchical features Mi
′ ∈ R

WiHi×C (i ∈ {2, 3, 4})

and generate tracking-tailored features. To integrate low-level

spatial information with high-level semantic information, we

feed the reshaped features from the output of Equation (1),

namely M2
′, M3

′, and M4
′, into the HFFT module, where

M3
′ is used for target feature, M2

′ and M4
′ represent source

features. The importance of different aspects feature information

is assigned by applying the cross-attention operator to M2
′

and M4
′, which is beneficial for obtaining more discriminative

features. We apply self-attention to M3
′, which can preserve

the details of target information during tracking. Furthermore,
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positional information is encoded during the calculation process

to enhance spatial information during the tracking process. The

attention mechanisms are implemented using the operation of

K, Q, V. Then, comprehensive features can be obtained by

concatenating the outputs. Due to the complexity of a model

increases with its input size, a fully connected layer is utilized

to resize outputs. We also adopt residual connections around

each sub-layer. Additionally, we use an MLP module to enhance

the fitting ability of the model, and layer normalization (LN) is

performed before the MLP and final output steps. The entire

process of the HFFT can be expressed as:

Mconcat = [AM3
′ (M3

′),AM2
′ (M3

′),AM4
′ (M3

′)],

Mconcat
′ = Linear[Mconcat],

Mout = LN(Mconcat
′ +M3

′),

Xout = LN(Mout +MLP(Mout)) (10)

SAM: The SAM is a feature enhancement module. The

structure of the SAM is presented in Figure 3. The SAM

adaptively integrates information from different feature maps

using multi-head self-attention in the residual form. In the

proposed model, the SAM take the out of Equation (10)

Xout as input. The mathematical process of the SAM can be

summarized as:

Xout2 = LN(MultiHead(Xout + PX ,Xout + PX ,Xout)+ Xout),

XSAM = LN(MLP(Xout2)+ Xout2) (11)

Prediction Head: The enhanced features are reshaped back

to the original feature size before being fed into the prediction

head. The head network consists of two branches: a classification

branch and bounding box regression branch. Each branch

consists of a three-layer perceptron. The former is utilized to

distinguish the target from the background, and the latter is used

for estimating the location of the target by using a bounding box.

Overall, the model is trained using a combination loss function

formulated as:

L = λclsLcls + λgiouLgiou + λlocLloc (12)

where Lcls, Lgiou, and Lloc represent the binary cross-entropy,

GIOU loss, and L1-norm loss, respectively. λcls, λgiou, and

λloc are coefficients that balance the contributions of each type

of losses.

FIGURE 3

Architecture of the proposed SAM.

Experiments

This section presents the details of the experimental

implementation of the proposed model. To validate the

performance of the proposed tracker, we compared our method

to state-of-the-art methods on four popular benchmarks.

Additionally, ablation studies were conducted to analyse the

effectiveness of key modules.

Implementation details

The tracking algorithm was implemented in Python based

on PyTorch. The proposed model was trained on a PC with

an Intel i7-11700k, 3.6 GHz CPU, 64 GB of RAM, and an

NVIDIA 3080Ti RTX GPUs. The training splits of LaSOT (Fan

et al., 2019), GOT-10k (Huang et al., 2019), COCO (Lin et al.,

2014), and TrackingNet (Muller et al., 2018) were used to train

the model. We randomly selected two image pairs from the

same video sequences with a maximum gap of 100 frames to

generate the search patches and template patches. The sizes of

search patches were set to 320 × 320 × 3 and template patches

were resized to sizes of 80 × 80 × 3. The parameters for the
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backbone network were initialized using ShuffleNetV2, which

was pretrained on ImageNet. All models were trained for 150

epochs with a batch size of 32. Each epoch contained 60,000

sampling pairs. The coefficient parameters in Equation (12) were

set to λcls = 2, λgiou = 2, and λloc = 5. In the offline training

phrase, the parameters of the model are optimized by ADAMW

optimizer. The learning rates of the backbone network were set

to le-5, and le-4 for the remaining parts.

Comparisions to state-of-the-art
methods

We compared SiamHFFT to state-of-the-art trackers on

four benchmarks: LaSOT, UAV123 (Mueller et al., 2016),

UAV123@10fps, and VOT2020 (Kristan et al., 2020). The

evaluation results are presented in the following paragraphs. It is

worthy note that the performance (accuracy and success scores)

of the comparision methods on these compared benchmarks are

obtained by the public tracking results files, which are released

by their authors.

Evaluation on LaSOT: LaSOT is a large-scale long-term

tracking benchmark consisting of 1,400 sequences. We used

test splits and the one pass evaluation (OPE) to evaluate the

performances of the compared trackers. That is, initialize the

tracking algorithm according to the target position given in the

first frame of the video sequence, and then run the prediction

of the target position and size in the whole video to obtain the

tracking accuracy or success rate.

Figures 4, 5 report the plots of the precision and success

scores of the comparision trackers, respectively. The precision

score measures the center location error (CLE), which calculates

the average Euclidean distance between the estimated bounding

box and the ground truth. The CLE is calculated as follows:

CLE =

√

(

xa − xb
)2

+
(

xa − xb
)2

(13)

As the CLEs of frame are obtained, the precision plots

(Figure 4) show the percentage of frames in which the estimated

CLE is lower than a certain threshold (usually set to 20 pixels) in

the total frames of the video sequence.

The Success curve (Figure 5) refers to the percentage of the

number of frames whose predicted overlap rate between the

estimated bounding box and the ground truth is higher than the

given threshold (usually set to 0.5) to the total number of frames

in the video sequence. The overlap rate is calculated as follows:

S =

∣

∣bt ∩ bg
∣

∣

∣

∣bt ∪ bt
∣

∣

(14)

where bt denotes the estimated bounding box, bg represents the

ground truth bounding box, ∩ refers to intersection operator, ∪

stands for union operator, and || denotes the number of pixels in

the resulted region.

The curves of the proposed SiamHFFT are depicted in

green. Overall, our tracker ranks the third in precision, and

achieves the second-best score in success, with 61% at the

precision score and 62% success score. Compared with the

trackers with deeper backbones, such as SiamCAR, SiamBAN,

and SiamRPN++ (Li B. et al., 2019), our tracker exhibits

competitive performance with a lighter structure. The DiMP

achieves the best performance both in precision and success. Our

SiamHFFT tracker outperforms other Siamese-based trackers,

even with deeper backbones and dedicated-designed structures.

Evaluation on UAV123: UAV123 is an aerial tracking

benchmark consisting of 123 videos containing small objects,

target occlusions, out of view, and distractors. To validate the

performance of our tracker, we evaluated the performances

of our trackers and other state-of-the-art trackers, including

SiamFC, ECO (Danelljan et al., 2017), ATOM (Danelljan et al.,

2019), SiamAttn (Yu et al., 2020), SiamRPN++, SiamCAR,

DiMP (Bhat et al., 2019), SiamBAN, and HiFT. Table 1 lists

the results in terms of success, precision, and speed on GPU.

Additionally, the backbones of the trackers are also reported

for an intuitive comparision. The best performance for each

criterion is indicated in red.

Among the trackers, those with deeper backbones, such as

DiMP, ATOM, and SiamBAN, achieve better performance in

term of both precision and success rate. SiamFC, HiFT, and

the proposed SiamHFFT utilize lightweight backbone. SiamFC

achieves the best performance in speed, but this naive network

structure does not achieve satisfactory results in terms of

precision and success rate. HiFT adopts a feature transformer

to enhance feature representations. Compared to HiFT, our

tracker exhibits a clear advantage in term of precision (82.8 vs.

78.7%) and success rate (62.5 vs. 58.9%), which validates the

effectiveness of the proposed tracker. According to the last row

in Table 1, all compared trackers can run in real-time on a GPU

at an average speed of 68 FPS, proving that SiamHFFTmaintains

a suitable balance between performance and efficiency.

Figure 6 depicts the qualitative results by multiple

algorithms on a subset of sequences in UAV123 benchmarks.

We choose three sets of the challenging video sequences:

Car18_1, Person21_1, and Group3_4_1. All of the three video

sequences are shot by the camera of the UAV, the video frames

undergo multiple challenges, for example scale variation,

changes of different viewpoint, and so on. Generally, the

given target appears in small size during the tracking process.

The bounding boxes estimated by the trackers are marked in

different colors to give an intuitive contrast. The bounding box

of our SiamHFFT is shown in red, and it is obvious that our

tracker can handle these complex scenarios well, especially for

the small object tracking task.

UAV123@10fps: UAV123@10fps is a subset of UAV123

obtained by down-sampling the original videos with an image
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FIGURE 4

Precision scores of compared trackers on LaSOT.

FIGURE 5

Success scores of compared trackers on LaSOT.
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TABLE 1 Quantitative evaluation on UAV123 in term of precision (Prec.), success (Succ.) and GPU speed (FPS).

SiamFC ECO ATOM SiamAttn SiamRPN++ SiamCAR DiMP SiamBAN HiFT SiamHFFT

Feat. Alex VGG R18 R50 R50 R50 R50 R50 Alex ShuffleNet

Prec. 72.5 75.2 83.7 84.5 76.9 76 84.9 83.3 78.7 82.9

Succ. 49.4 52.8 64.2 65 57.9 61.4 65.4 63.1 58.9 62.6

FPS 130 45 46 45 35 52 45 40 / 68

The best performance are shown in red.

FIGURE 6

Qualitative experimental results in several challenging sequences on UAV123 dataset. (A) Video sequences of the Car, (B) video sequences of the

Person, and (C) video sequences of the Group.

rate of 10 FPS. We use SiamFC, AutoTrack (Li et al.,

2020), TADT (Li X. et al., 2019), MCCT (Wang et al.,

2018), SiamRPN++, DeepSTRCF (Li F. et al., 2018), CCOT

(Danelljan et al., 2016), ECO, and HIFT as comparisions.

Among these trackers, AutoTrack, TADT, MCCT, CCOT, ECO

and DeepSTRCF are correlation filter based trackers, which has

a lightweight structure and less parameters than deep learning

based trackers, and the model can be deployed on limited

source device. Compared with UAV 123 benchmark, challenge

in UAV123@10fps dataset are more abrupt and severe. The

experimental results are listed in Table 2. Compared with the

correlation filter based trackers, the deep trackers, HiFT and

SiamRPN++ achieve higher precision and success scores, the

performance of SiamFC is closer to these correlation based

trackers, SiamFC utilize the AlexNet as the backbone, but the

model does not further enhance the feature representation.

Our SiamHFFT model yields the best precision (76.5%) and

success rate (59.5%), which has an advantage over HiFT

by 1.1, 2.1%, demonstrating the effectiveness of the HFFT

module, and superior robustness capacity compared to other

prevalent trackers.

Evaluation on VOT2020: We also test SiamHFFT on the

VOT2020 benchmark against HCAT, LightTrack (Yan et al.,

2021b), ATOM and DiMP. VOT2020 consists of 60 videos

with mask annotations and adopts the expected average overlap

(EAO) as the metric for evaluating the performance of the

trackers, which is calculated by:

φ̄NS =
1

NS

∑NS

i=1
φNS (15)
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TABLE 2 Overall evaluation on UAV123@10fps.

SiamFC AutoTrack TADT MCCT SiamRPN++ DeepSTRCF CCOT ECO HiFT SiamHFFT

Prec. 67.8 67.6 68.4 68.1 74.0 68.0 70.4 70.9 75.4 76.5

Succ. 47.2 48.1 50.7 49.2 55.5 49.9 50.2 51.9 57.4 59.6

The best performance are shown in red.

TABLE 3 Evaluation on VOT2020.

HCAT LightTrack ATOM DiMP SiamHFFT

EAO 0.276 0.242 0.271 0.274 0.231

Accuracy 0.455 0.422 0.462 0.457 0.459

Robustness 0.747 0.689 0.734 0.740 0.646

The best performance are shown in red.

where NS denotes the length of the video sequences, φNS

denotes the average accuracy of a video sequence whose length

is NS. Finally, the EAO value can be obtained by calculating the

average value of the video sequences of NS length.

The experimental results are presented in Table 3. Our

tracker achieves an EAO value of 0.231, robustness of 0.646, and

accuracy of 0.459. The performance of SiamHFFT is comparable

to that of the state-of-the-art models for each criterion.

Speed, FLOPs and params

To verify the efficiency of our tracker, we conducted a set

of experiments on the GOT-10k benchmark, which is a large-

scale tracking dataset consisting of more than 10,000 videos,

covering a wide range of 560 types of common moving objects.

Following the test protocols of GOT-10k, all of the evaluated

trackers are trained with the same training data, and are tested

with the same test data. We evaluated the performance of

SiamHFFT against TransT, STARK, DiMP, SiamRPN++, ECO,

ATOM, and LightTrack. Our SiamHFFT is conducted on PC

while the data of other trackers on GOT-10k is obtained from

Chen et al. (2022b). Both average overlap (AO) and speed

were considered to evaluate the performance of the trackers.

We visualize the AO performance with respect to the frames-

per-seconds (FPS) tracking speed. The comparision results are

presented in Figure 7. Each tracker is represented by a circle, and

the radius of the circle r is calculated as follows:

r = k
speed/Average(speed)

AO
(16)

where k denotes a scale factor, we set k=10. The higher value

of r indicates the better performance. All trackers were tested

on CPU platform, and real-time line (26 fps) performance is

represented by a dotted line to measure the real-time capacity

of the trackers, trackers locate on the right side of the line

are considered to achieve the real-time performance. According

FIGURE 7

Speed and performance comparisions on GOT-10k. The

horizontal axis represents model speed on a CPU and the

vertical axis represents the AO score.

to Figure 7, only SiamHFFT and LightTrack can meet the

real-time requirement on the CPU. Among these comparision

trackers, TransT utilized a modified ResNet50 as backbone and

a transformer-based network to obtain discriminative features,

and achieve the highest AO score, but it sacrifices the speed

which runs a low speed on CPU. Similarly, STARK, DiMP,

prDiMP, SiamRPN++ can only obtain satisfactory AO scores

at the expense of speed. The correlation filter-based tracker,

ECO, also adopts the deep features which does not achieve a

satisfactory speed on CPU. Our tracker exhibits an average speed

of 28 FPS on the CPU, not only reach the real-time requirement,

but the area of the circle representing our method is the second

large of all the trackers.

To validate the lightness of our model, we compared the

floating-point operations (FLOPs) and Params of themodel with

STARK-S50 and SiamRPN++. FLOPs represent the theoretical
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TABLE 4 Comparision about the FLOPs and params.

Trackers FLOPs (G) Params (M)

STARK-S50 10.5 23.3

SiamRPN++ 48.9 54

SiamHFFT 0.6 4.4

FIGURE 8

Visualization of the confidence maps of three trackers on several

sequences from the UAV123 dataset. The response visualization

results are an intuitive reflection of tracker performance.

calculation volume of the model, which means the number

of calculations required for the inference. Params refer to

the amount of the parameters in the model, which directly

determines the size of the model and also directly affects the

memory consumption when a model making inferences. The

comparison results are illustrated in Table 4. It is worth note

that our SiamHFFT tracker achieve a promising result over other

trackers. The FLOPs and Parameters are 16× and 5× less than

those of STARK-S50. This shows that our method can use fewer

parameters and lower memory consumption, making it possible

for deployments in the edge hardware environments.

Ablation studies

This section presents ablation studies conducted to verify the

effectiveness of our framework. We selected several challenging

frames from the UAV123 dataset and visualized the tracking

results using heatmaps, as shown in Figure 8. The first column

presents the given target which is highlighted with a red box,

and the remaining columns present the visualized results of the

predicted target prior to the current frame.

The second column presents the visualization results of the

baseline, which only adopts ShuffleNetV2 as backbone with the

reshaping module and the prediction head. The response area of

TABLE 5 Experimental results on UAV 123 benchmark with di�erent

backbones.

Baseline Baseline+HFFT SiamHFFT

AlexNet 73.6 77.2 78.9

ShuffleNetV2 74.1 81.6 82.8

the baseline is much larger than the original target size and has

obscure edges affected by distractors in the frames.

The third column presents the visualization results of the

baseline with the HFFT module. Compared with the baseline

alone, the response area is smaller and clearer because the HFFT

module enhances the critical semantic and spatial features of

the target, enabling the model to generate more discriminative

response maps. With the HFFT module, our tracker achieves

significant improvement in tracking accuracy, which validates

the effectiveness of the HFFTmodule for handling small objects.

The last column presents the response map generated by

the proposed SiamHFFT, which adopts the entire operation

module, backbone, reshaping module, HFFT module and the

SAM, where the classification and regression head are utilized to

estimate the location of a target. According to the visualization

results of the response maps, our SiamHFFT model has clear

advantages over other modified versions. The response areas are

more precise and discriminative relative to the distractors.

We also test the performance on UAV123 benchmark with

different backbones, we use the accuracy score to measure the

performance variation. Experimental result is shown in Table 5,

we choose two lightweight networks, AlexNet and ShuffleNetV2,

to make a comparision. Similar to Figure 8, the effectiveness of

the HFFT module is measured in a quantitative manner. The

model adopts ShuffleNetV2 as backbone has better performance

on all of the three criteria. The experiment results of Table 4 also

demonstrate the effectiveness of the HFFT module.

Conclusion

In this paper, an HFFT tracking method based on a

Siamese network was proposed. To integrate and optimize

multi-level features, we designed a novel feature fusion

transformer that can reinforce semantic information and

spatial details during the tracking process. Additionally, based

on our lightweight backbone, excessive computation for

feature extraction is avoided, which accelerates object tracking

speed. To validate the effectiveness of our trackers, extensive

experiments were conducted on five benchmarks. Our method

achieves excellent results on small target datasets such as

UVA123 and UAV123@10fps, and also shows good performance

on genetic public visual tracking datasets, such as LaSOT,

VOT2020, and GOT-10k. Our method can potentially inspire
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further research on small object tracking, particularly for

UAV tracking.
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Physical-model guided
self-distillation network for
single image dehazing

Yunwei Lan , Zhigao Cui*, Yanzhao Su, Nian Wang, Aihua Li

and Deshuai Han

Xi’an Research Institute of High Technology, Xi’an, China

Motivation: Image dehazing, as a key prerequisite of high-level computer

vision tasks, has gained extensive attention in recent years. Traditional

model-basedmethods acquire dehazed images via the atmospheric scattering

model, which dehazed favorably but often causes artifacts due to the error

of parameter estimation. By contrast, recent model-free methods directly

restore dehazed images by building an end-to-end network, which achieves

better color fidelity. To improve the dehazing e�ect, we combine the

complementary merits of these two categories and propose a physical-model

guided self-distillation network for single image dehazing named PMGSDN.

Proposed method: First, we propose a novel attention guided feature

extraction block (AGFEB) and build a deep feature extraction network by it.

Second, we propose three early-exit branches and embed the dark channel

prior information to the network tomerge themerits of model-basedmethods

and model-free methods, and then we adopt self-distillation to transfer the

features from the deeper layers (perform as teacher) to shallow early-exit

branches (perform as student) to improve the dehazing e�ect.

Results: For I-HAZE and O-HAZE datasets, better than the other methods, the

proposed method achieves the best values of PSNR and SSIM being 17.41dB,

0.813, 18.48dB, and 0.802. Moreover, for real-world images, the proposed

method also obtains high quality dehazed results.

Conclusion: Experimental results on both synthetic and real-world images

demonstrate that the proposed PMGSDN can e�ectively dehaze images,

resulting in dehazed results with clear textures and good color fidelity.

KEYWORDS

image dehazing, knowledge distillation, attention mechanism, deep learning,

computer vision

Introduction

Images captured under haze condition have abnormal brightness and low contrast,

which affects the further application in high-level computer vision tasks, such as

image super-resolution (Chen et al., 2021a,b) and semantic segmentation. Hence, image

dehazing, as a key prerequisite of high-level computer vision tasks, becomes a significant
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subject in recent years. Generally, the formation of hazy images

can be modeled as Equation 1, atmospheric scattering model

(also called as physical-model):

I (x) = J (x) t (x) + A (1− t (x)) (1)

where I represents images obtained under haze condition; J

represents haze-free images; x represents the pixel location; A

and t represent the atmospheric light and transmission map,

respectively. Obviously, we cannot directly restore the haze-

free images J from the given hazy images I since both the

atmospheric light A and transmission map t are undetermined.

To address this problem, early methods use priors obtained

from the statistical rule on haze-free images to estimate the

atmospheric light and transmission map, then dehaze images

via the atmospheric scattering model, including dark channel

prior (DCP) (He et al., 2011), color-lines prior (CLP) (Fattal,

2014), color attenuation prior (CAP) (Zhu et al., 2015), and

non-local dehazing (NLD) (Berman et al., 2016). These methods

dehaze favorably in special scenes but tend to over enhance

images since unilateral assumptions cannot fit in all situations.

With the development of deep learning, some methods (Cai

et al., 2016; Ren et al., 2016; Li et al., 2017; Zhang and Patel,

2018) adopt convolutional neural network (CNN) to estimate

the atmospheric light and transmission map more accurately

and obtain better dehazed images based on the atmospheric

scattering model. However, the atmospheric scattering model

is an ideal equation, which cannot sufficiently represent the

formation of hazy images. Hence, these methods still cause some

halos and color distortions.

To solve the problem, some end-to-end dehazing networks

(Chen et al., 2019; Liu X. et al., 2019; Qu et al., 2019; Dong

et al., 2020; Qin et al., 2020; Zhao et al., 2020) are proposed,

which directly restore dehazed images by establishing the

mapping between hazy and haze-free images instead of using

the atmospheric scattering model. These model-free methods

can produce dehazed images with better color fidelity. However,

due to trained on synthetic datasets, these model-free methods

FIGURE 1

Comparative results on a real-world image. (A) High contrast result with some color distortion generated by DCP. (B) High contrast result with

some illumination distortion generated by DCPDN. (C) Under-dehazed result with better color fidelity generated by MSBDN. (D) Our result,

which combines their merits.

can perform well on synthetic images but always acquire under-

dehazed results when applied to real scenes since synthetic

images cannot represent uneven haze distribution and complex

illumination condition existing in real scenes. To this end, some

novel end-to-end methods (Hong et al., 2020; Shao et al., 2020;

Chen et al., 2021; Zhao et al., 2021) combine with model-

based methods and achieve better dehazing effects in real scenes.

However, these methods cannot exploit features from different

depths to improve the guidance efficiency of extra knowledge.

According to the above analyses, we summarize that the

existing model-based dehazing methods can effectively restore

image texture details but tend to cause color changes and

artifacts. By contrast, model-free dehazing methods directly

obtain dehazed images with good color fidelity by supervised

training. But the dehazing effect is often limited in natural

scenes since the training samples are synthetic images. Thus,

to improve the dehazing effect, we merge the merits of these

two categories via self-distillation and propose a physical-model

guided self-distillation network for single image dehazing.

Moreover, we compare the dehazing effect of the above

algorithms on a real-world image. The experimental results are

shown in Figure 1. The model-based methods [DCP (He et al.,

2011) andDCPDN (Zhang and Patel, 2018)] can restore dehazed

images with discriminative textures but suffer from some color

and illumination overenhancement. The model-free method

MSBDN (Dong et al., 2020) can maintain color fidelity but

acquire an under-dehazed image. Better than the other methods,

the proposed PMGSDN combines the complementary merits

of model-free methods and model-based methods, and obtains

high quality dehazed results with natural color and rich details.

As shown in Figure 2, we first build a deep feature extraction

network (DFEN) constructed with four attention guided feature

extraction blocks (AGFEBs) to effectively extract features from

different depths. Moreover, we add three early-exit branches to

acquire intermediate dehazed images and optimize the network

by a two-stage training strategy. In the first stage, we obtain

the preliminary transmission map t0 and atmospheric light

A0 by two early-exit branches and embed dark channel prior

(DCP) into the network to acquire the preliminarily dehazed
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FIGURE 2

The general network structure of PMGSDN. TNet, the network adopted to estimate transmission map. ANet, the network adopted to estimate

atmospheric light.

images JDCP base on the hazy input Iin. Hence, reconstructed

hazy images IDCP can be obtained by substituting the JDCP ,

A0, and t0 into the atmospheric scattering model. In the

second stage, we feed the IDCP into the network and obtain

the final dehazed images Out, the intermediate model-free

dehazed images Jfree, and model-based dehazed images J mod

(produced by substituting the intermediate transmissionmap t1,

atmospheric lightA1, and the IDCP into themodel). Considering

that these intermediate dehazed images have complementary

advantages in terms of image contrast and color fidelity,

we combine the merits of them by a one-stage knowledge

distillation (see Figure 4), which transfers the knowledge from

deeper layers (performs as a teacher) to shallow layers (performs

as a student) within the network. We call this distillation

strategy as self-distillation, which achieves the joint training and

optimization of both teacher and students. For this article, the

main contributions are as follows:

1. To improve the dehazing effect, we merge the merits

of both model-based dehazing methods and model-

free dehazing methods, and propose a physical-model

guided self-distillation network for single image dehazing

named PMGSDN.

2. In order to improve the feature extraction ability of the

network for different depths, we propose an attention guided

feature extraction blocks (AGFEB) to construct the deep

feature extraction network.

3. To reduce the dependence of the student network on the

pretrained teacher model and improve the efficiency of

knowledge distillation, we propose a self-distillation strategy

and embed the dark channel prior information to the network

to further improve the dehazing effect.

Related work

Model-based methods

Model-based methods restore haze-free images using

the atmospheric scattering model, where the estimation of

transmission map and atmospheric light is a key prerequisite.

Early model-based methods (also called prior-based methods)

explore various priors concluded from the statistic rule to

estimate transmission map and atmospheric light, and then

dehaze images via the atmospheric scattering model. For

example, the dark channel prior (DCP) (He et al., 2011)

estimate transmission map based on the observation that clear

images have low intensity in at least one of the RGB channels.

The color-lines prior (CLP) (Fattal, 2014) constructs a model

based on the color lines and estimates the transmission map

using the lines’ offset. Differently, the color attenuation prior

(CAP) (Zhu et al., 2015) builds a linear model to estimate

the scene depth and transmission map based on the difference

between the brightness and saturation of hazy images. Another

method no-local dehazing (NLD) (Berman et al., 2016) estimates

the transmission map and acquires dehazed images via the

hundreds of distinct colors. These prior-based methods achieve

favorable dehazing effects but suffer from severe distortion

and artifacts.

Recently, some methods estimate transmission map and

atmospheric light more accurately by data driving and acquire

dehazed images with fewer artifacts. For instance, Ren et al.

propose a multi-scale convolution neural network (MSCNN)

(Ren et al., 2016) to estimate the transmission map in a

coarse-to-fine way. Another method DehazeNet (Cai et al.,

2016) adopts Maxout units to effectively extract features
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and estimate the transmission map. Differently, AODNet

(Li et al., 2017) combines these two parameters into one

parameter to restore dehazed images. DCPDN (Zhang and

Patel, 2018) embeds the atmospheric scattering model into

CNN to estimate the atmospheric light and transmission

map. These two methods estimate the transmission map and

atmospheric light simultaneously and alleviate the cumulative

error of two parameter estimations. However, due to the

atmospheric scattering model being a simplified model, which

cannot sufficiently represent the formation of hazy images, the

above two model-based methods still suffer from color and

illumination changes.

Model-free methods

Model-free methods directly restore dehazed images via an

end-to-end network without using the atmospheric scattering

model. Due to a huge gap between the features of hazy

images and haze-free images, these methods usually increase

the network scales and depths to enhance feature extraction

ability. For example, the MSBDN (Dong et al., 2020) constructs

a multi-scale boosting dehazing network to combine the features

from different scales by a dense feature fusion module. FFA

(Qin et al., 2020) effectively extracts features and restores

dehazed images using a deep network constructed with feature

attention blocks. Moreover, GridDehazeNet (Liu X. et al.,

2019) and GCANet (Chen et al., 2019), respectively adopt

attention mechanisms and gated fusion networks to effectively

fuse multi-scale features. Differently, the EPDN (Qu et al.,

2019) builds a generative adversarial network to improve the

dehazing effect by the adversarial learning between a multi-

scale generator and discriminator. Another dehazing method

(Zhao et al., 2020) adopts the cycle generative adversarial

network to alleviate the paired training constraint. These

methods perform well on synthetic images but tend to

fail to deal with real-world images due to being trained

on synthetic datasets. To address this problem, DA (Shao

et al., 2020) builds a bidirectional network to reduce the

gap between real-word and synthetic images. PSD (Chen

et al., 2021) adopts a committee consists of multi priors to

guide the network training and acquire high contrast images

but suffer from illumination changes, and RefineDNet (Zhao

et al., 2021) embeds DCP and the atmospheric scattering

model to reconstruct hazy images and then improves the

model’s generalization ability via unpaired adversarial training.

Moreover, some methods also improve deep learning-based

algorithms in other computer vision tasks by introducing

additional knowledge. For example, Xia et al. (2022) improved

the Kernel Correlation Filter algorithm to address the problem

that the object tracking algorithm fails to track under the

influence of occlusion conditions. Chen et al. (2021c) proposed

an image completion algorithm based on an improved total

variation minimization method.

Knowledge distillation

Knowledge distillation is first proposed by Hinton (Hinton

et al., 2015) to compress the model by transferring the

knowledge from a cumbersome teacher network to a compact

student network. Recently, knowledge distillation is also applied

to the model enhancement through improved learning strategy

[including self-learning (Ji et al., 2021; Zheng and Peng, 2022)

and mutual learning (Li et al., 2021)]. For example, Hong

et al. (2020) applies knowledge distillation to heterogeneous

task imitation and guides the student network training using

the features extracted from the image reconstruction task.

Liu Y. et al. (2019) adopts structure knowledge distillation

to transfer the knowledge from a large network to a small

semantic segmentation network since semantic segmentation is

a structured prediction problem. These two distillation methods

both start with a powerful but cumbersome teacher network (a

pretrained network) and perform one-way knowledge transfer

to a compact student network (a network to be trained).

However, two shortcomings exist in them: a powerful teacher

network is not always available; a two-stage training process

is not efficient. Hence, online distillation and self-distillation

are proposed to implement the joint training and optimization

of both teacher and student (one-stage training process) by

improved learning strategies. Typically, Li et al. (2021) builds

a multi-branch network and acquires predicted heatmaps from

each branch, which are then assembled (performs as a teacher) to

teach each branch (performs as a student) in reverse. However,

this method simply aggregates students to form an assembled

teacher, which restrains the diversity of students and cannot

exploit features from different depths of the network. Hence, we

applied self-distillation (Zhang et al., 2021) into our PMGSDN

to enhance the generalization ability in real scenes.

Proposed method

Overall structure

As shown in Figure 2, the PMGSDN contains three parts:

preprocessing model, a deep feature extraction network, and

early-exit branches. In the preprocessing model, we first adopt

two 3 × 3 convolutions to preprocess the hazy input Fin and

change its shape to 32 × 256 × 256, where each convolution

is followed by an instance normalization and ReLU function.

Moreover, these two convolutions have different parameter

settings, the input channel, output channel, kernel size, stride,

and padding of the first convolution are 3, 32, 3, 1, and 1,

respectively, and the corresponding parameters of the second

convolution are set to 32, 32, 3, 1, and 1.

Deep feature extraction network

To effectively extract features from different depths, we

feed the preprocessed features into the deep feature extraction
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FIGURE 3

The structure of AGFEB. Cat, channel-wise concatenation.

network (DFEN) constructed with four attention guided feature

extraction blocks (AGFEBs). After that, a convolution followed

by an instance normalization and the Tanh function is utilized

to produce the final dehazed imagesOut. The parameter settings

of the convolution used here are set to 32, 3, 3, 1, and

1, respectively.

As shown in Figure 3, the proposed AGFEB first extracts

features using four convolutions. These convolutions are all

point-wise convolutions (1 × 1 convolution) (Zhang and Tao,

2020), where the first three convolutions with pooling layers

form different receptive fields and the fourth convolution

is utilized for dimension reduction. Note that we replace

traditional convolutions with the kernel size of 3 × 3, 5 × 5,

and 7 × 7 to point-wise convolutions with 3 × 3, 5 × 5, and

7 × 7 pooling layer, and thus the AGFEB is computationally

efficient since no large convolutional kernel is used. Moreover,

the first three convolutions combine the features of the current

convolution with the features of the last one by channel-wise

concatenation to obtain more abundant features. After that, we

introduce an attention block consisting of channel attention,

pixel attention, and a point-wise convolution to make the

network pay more attention to improve feature representation.

During the channel attention, an adaptive average pooling is

firstly used to generate a channel vector with the shape of 1 ×

1 × C and then a 1 × 1 convolution followed by a sigmoid

function is utilized to produce channel attention maps, which

are used to weigh these inputs via element-wise multiplication.

After the channel attention, the enhanced features can concern

different channel maps unequally and effectively alleviate the

global color distortions. Different from the channel attention,

the pixel attention first adopts a 3 × 3 convolution followed

by a sigmoid function to generate spatial attention maps and

then weights the input by element-wise multiplication to pay

more attention to high frequency regions, such as textures

and structures. Finally, we adopt the point-wise convolution to

change the shape to 32 × 256 × 256 and get the output. The

parameter settings of the proposed AGFEB are shown in Table 1.

Early-exit branches

To combine both model-based methods and model-free

methods, we add three early-exit branches after each AGFEB.

The first two branches are named as TNet and ANet to estimate

the transmission map and atmospheric light respectively

and then acquire the intermediate dehazed images by the

atmospheric scattering model. The details of the TNet and ANet

can be seen in article (Zhang and Patel, 2018). Moreover, the

third branch is constructed with a convolution, an instance

normalization, and the Tanh function, which directly acquires

intermediate dehazed images in a model-free way, and the

parameter settings of the convolution used here are set to 32,

3, 3, 1, and 1, respectively.

Forward prediction and self-distillation

To effectively combine the complementary merits of model-

based methods and model-free dehazing methods, we divide

the training process into two parts: forward prediction and self-

distillation.

Forward prediction

As shown in Figure 2, we divide the forward prediction into

two stages. In the first stage, we send the input hazy images

Iin into the PMGSDN, and obtain the preliminary transmission
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TABLE 1 The parameter settings of the proposed AGFEB.

Conv1 Pool1 Conv2 Pool2 Conv3 Pool3 Conv4 Adaptive Avgpool Conv5 Conv6 Conv7

Input channel 32 – 64 – 96 – 128 – 32 32 32

Output channel 32 – 32 – 32 – 32 – 32 1 32

Kernel size 1 3 1 5 1 7 1 1 1 3 1

Stride 1 1 1 1 1 1 1 – 1 1 1

Padding 0 1 0 2 0 3 0 – 0 1 0

The convolution and pooling used in AGFEB are expressed as Conv 1 to Conv 7 and Pool 1 to Pool 3 from left to right and top to bottom. Notice that the kernel size of the adaptive average

pooling represents the target output size of the feature.

FIGURE 4

Self-distillation.

map t0 and atmospheric light A0 by the first two early-exit

branches. Meanwhile, we embed dark channel prior (DCP) (He

et al., 2011) into a network to acquire the preliminary dehazed

images JDCP. Hence, based on the atmospheric scatteringmodel,

reconstructed hazy images IDCP can be produced, which can be

expressed as Equation 2:

IDCP = JDCPt0 + A0 (1− t0) (2)

Compared with the synthetic hazy images Fin, the

reconstructed hazy images IDCP are more similar to real-world

hazy images since the DCP is a statistical rule based on the

observation of haze-free images. Hence, in the second stage,

we regard the reconstructed hazy images IDCP as the input of

PMGSDN and acquire the final dehazed images Out by the deep

feature extraction network (DFEN). Similar to the first stage, the

intermediate transmission map t1 and atmospheric light A1 are

generated to acquire the model-based dehazed images J mod .

Differently, the model-free dehazed images Jfree are generated

simultaneously by the third early-exit branch.

Self-distillation

The intermediate dehazed images J mod and Jfree are

generated by the features from different depths and have

complementary advantages in terms of image contrast

and color fidelity in local regions. Hence, we adopt a

one-stage knowledge distillation called self-distillation

to effectively combine the merits of them. As shown in

Figure 4, we propose a self-distillation strategy, which

builds extra distillation loss among intermediate model-

based dehazed images J mod , model-free dehazed images

Jfree, and the final dehazed images Out. In this way, the

final dehazed images Out combine the features from

different depths and improve the generalization ability of

a model.

Loss function

Several experiments (Liu et al., 2020; Fu et al., 2021) have

proven that the combination of pixel-wise and feature-wise loss

can effectively improve training efficiency. Hence, the overall
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loss consists of reconstruct loss and distillation loss, which can

be expressed as Equation 3:

Lloss = Lrec + Ldist (3)

where Lloss represents the overall loss, Lrec represents the

reconstruct loss, and Ldist represents the distillation loss.

Reconstruct loss

Previous work (Qin et al., 2020) has shown that pixel-wise

loss can rapidly match the feature distribution between the

dehazed images and ground truths. Different from L2 loss (mean

square error), L1 loss (standard deviation error) can make the

network training more stable. Moreover, as a feature-wise loss,

the negative structural similarity loss (SSIM) (Wang et al., 2004)

can effectively match the luminance, contrast, and structure

between two images. Hence, we combine the L1 loss and the

negative SSIM as reconstruct loss to train our network, which

can be expressed as Eqaution 4:

Lrec =

3
∑

i=1

(

‖GT − Ji‖1 − SSIM (GT, Ji)
)

(4)

where Lrec represents the reconstruct loss andGT represents

the ground truths. As shown in Figure 4, J1, J2, and J3

represents the final dehazed images Out, intermediate model-

based dehazed images J mod , and the model-free dehazed

images Jfree, respectively.

Distillation loss

In our PMGSDN, the dehazed images obtained from deeper

layers play a role of teacher and transfer the knowledge to the

shallow early-exit branches (performs as a student) within the

network. Hence, the Distillation loss Ldist can be expressed as

Eqaution 5:

Ldist =

∥

∥

∥
Out − Jfree

∥

∥

∥

1
+

∥

∥Out − J mod

∥

∥

1

+

∥

∥

∥
Jfree − J mod

∥

∥

∥

1
(5)

where ‖·‖1 represents the L1 loss.

Training and inference

During the training, the deeper AGFEBs are regarded as the

teacher and they are utilized to guide the training of shallow

AGFEB (student) by a distillation loss among the final dehazed

images Out, intermediate model-based dehazed images J mod ,

TABLE 2 The proposed algorithm.

Training:

Input: Hazy input image Iin , Corresponding haze-free image

(Ground Truth, GT), PMGSDN

Output: The trained PMGSDN

Step 1 Start the training

Step 2 Iin ,→ PMGSDN get A0 , t0 , and, JDCP

Step 3 A0 , t0 , and, JDCP → atmospheric scattering model, get IDCP

Step 4 IDCP → PMGSDN, get A1 , t1 , Jfree , and, Out

Step 5 A1 , t1 , and, IDCP → atmospheric scattering model, get Jmod

Step 6 GT, Out, Jmod , and, Jfree → Equation (4), get Lrec

Step 7 Out, Jmod , and, Jfree → Equation (5), get Ldist

Step 8 Lrec and Ldist → Equation (6), get Lloss

Step 9 Back Propagation and update the PMGSDN

Step 10 Repeat the above steps until the end of the training

Inference:

Input: Hazy input image Iin , The trained PMGSDN

Output: The final output Out

and the model-free dehazed images Jfree. After the training, the

whole PMGSND is optimized by model-based methods and

model-free methods, which makes the PMGSDN to combine

their merits. During the inference process, all of the early-exit

branches are dropped so they do not bring additional parameters

and computation.

Moreover, to make our manuscript readable, we list out the

training process of the proposed algorithm and add it to the

manuscript as a pseudocode (Table 2).

Experiments

To verify the effectiveness of the proposed PMGSDN, we

quantitatively and qualitatively compare it with existing state-

of-the-art methods, including DCP (He et al., 2011), DCPDN

(Zhang and Patel, 2018), PSD (Chen et al., 2021),MSBDN (Dong

et al., 2020), RefineD (Zhao et al., 2021), FFA (Qin et al., 2020),

and DA (Shao et al., 2020). Moreover, we conduct an ablation

study to verify the effectiveness of each part in PMGSDN.

Datasets

In this article, we adopt the Indoor Training Set (ITS)

in RESIDE (Li B. et al., 2019) to train our network, which

contains 13990 synthetic hazy images and the corresponding

clear images. During the training of the network, we adopt the

Synthetic Objective Testing Set (SOTS) indoor datasets as the

validation set, which contains 500 synthetic hazy images and the

corresponding clear images. For testing, we use three synthetic
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datasets [I-HAZE (Ancuti C. et al., 2018), O-HAZE (Ancuti C.

O. et al., 2018), and HazeRD (Zhang et al., 2017)] to evaluate

the performance of the PMGSDN. Among them, the I-HAZE

and O-HAZE contain 35 pairs of indoor and 45 pairs of outdoor

hazy images. The HazeRD includes 75 pairs of hazy images

degraded by different levels of haze. Considering the discrepancy

that exists between synthetic and real-world hazy images, we

further adopt real-world images from paper (Fattal, 2014) and

Unannotated Real Hazy Images (URHI) (Shao et al., 2020) to

evaluate the dehazing effect in real scenes.

Implementation details

The proposed method is trained and tested in the Pytorch

framework on a PC with the NIVIDIA GeForce RTX 3080 Ti.

During the training, we resize input images to 256× 256, set the

batch size to 4, and train the network for 30 epochs. To effectively

train the PMGSDN, we adopt the Adam optimizer with a default

value for the attenuation coefficient to accelerate the training

process (β1 = 0.9, β2 = 0.999). Moreover, we set the initial

learning rate to 0.001 and reduce it by half every five epochs.

Comparisons with state-of-the-art
methods

Results on synthetic datasets

Compared with indoor hazy images, outdoor hazy images

have different scene depths and transmission maps. Hence,

we pay more attention to the comparison results of outdoor

images since the proposed PMGSDN is trained on indoor

images. As shown in Figure 5, DCP effectively dehaze images

but darken the results. Another model-based DCPDN estimates

the transmission map and atmospheric light by CNN and

generates better dehazed images but suffers from illumination

distortion. By contrast, the model-freeMSBDN restores dehazed

images with better color fidelity but leads to a large amount of

residual haze due to the over-fitting on training datasets. The

FFA constructs a feature fusion attention network to effectively

dehaze images but dims the brightness of results. Another

method PSD can generate high contrast images but tend to

overenhance the results due to simply guiding the pretrained

network by priors. Compared with the above methods, the

DA can restore dehazed images with satisfactory visual effect

due to the use of domain adaption, and the RefineD restores

dehazed images with vivid color but causes residual haze.

Only our PMGSDN (see Figure 5I) acquires dehazed images

with distinctive textures and abundant details, which verify the

effectiveness of our method.

To further validate the performance of the proposed

method, two metrics [peak signal-to-noise ratio (PSNR) and

structural similarity (SSIM)] are adopted for quantitative

comparison. As shown in Table 3, for I-HAZE, the DCP,

DCPDN, and PSD perform poorly, which means that the

abnormal illuminance and unwanted artifacts degrade the

quality of dehazed images. By contrast, the end-to-end MSBDN

and DA acquire a high value of PSNR and SSIM. Compared with

other methods, the proposed PMGSDN achieves the highest

value of these twometrics being 17.41 dB and 0.813, respectively.

For O-HAZE, compared with the second-best method DA, the

proposed PMGSDN improves the PSNR from 18.37 dB to 18.48

dB and improves the SSIM from 0.712 to 0.802, which validates

its generalization ability. For HazeRD, the proposed PMGSDN

achieves the PSNR and SSIM being 16.94dB and 0.867, which

are slightly lower than that of RefineD.

Results on real-world datasets

Considering the discrepancy between synthetic and real-

world hazy images, we further validate the performance of our

method on real-world images in Unannotated Real Hazy Images

(URHI). As shown in Figure 6, DCP can produce dehazed

images with distinct textures but inevitably causes halos and

color distortions, which degrade the visual effect of results.

Another model-based method DCPDN improves the brightness

and contrast of dehazed images but simultaneously introduces

some color changes since the atmospheric scattering model is

a simplified model. By contrast, the model-free methods can

restore dehazed images with better color fidelity but fail to

deal with dense haze due to the lacking of extra knowledge

as guidance. For example, MSBDN cannot effectively dehaze

images due to over-fitting in synthetic datasets. Due to the

feature fusion mechanism, FFA can effectively remove the

haze in the local area of the image. However, due to the

insufficient generalization ability of this method, it still causes

residual haze and color changes in some regions. By building a

bidirectional network to reduce the gap between synthetic and

real-world hazy images, DA dehazes most haze and restores high

quality results. Unfortunately, the sky regions are still degraded.

Moreover, PSD simply guides the pretrained network by using

multi priors, and the results are degraded by a large amount of

residual haze. Another method RefineD embeds the DCP into

the network and restores high quality images. Better than the

above methods, the proposed PMGSDN (see Figure 6I) acquires

dehazed images with distinctive textures and vivid color, which

verify that it sufficiently exploits the features from different

depths by self-distillation and combines the merits of model-

based and model-free methods.

To further validate the generalization ability of our

PMGSDN, we compare these methods on real-world images

(Fattal, 2014). As shown in Figure 7, the DCP still effectively

restores the textures but causes obvious color distortion in some

regions. Another model-based DCPDN dehazes most haze but

suffers from illumination oversaturation. By contrast, MSBDN

cannot dehaze effectively in the real scene due to the lacking
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FIGURE 5

Qualitative comparisons on synthetic images from O-HAZE and HazeRD. The above two rows are images in O-HAZE and the others are images

in HazeRD. (A) Haze. (B) DCP. (C) DCPDN. (D) MSBDN. (E) FFA. (F) DA. (G) PSD. (H) RefineD. (I) Ours. (J) GT.

TABLE 3 Qualitative comparisons on I-HAZE, O-HAZE, and HazeRD.

Datasets Metric DCP DCPDN MSBDN FFA DA PSD RefineD Ours

I-Haze PSNR 12.31 dB 14.27 dB 16.73 dB 13.10 dB 17.10 dB 12.92 dB 16.02 dB 17.41 dB

SSIM 0.676 0.826 0.798 0.657 0.807 0.712 0.777 0.813

O-Haze PSNR 14.94 dB 13.79 dB 18.08 dB 14.66 dB 18.37 dB 14.46 dB 17.71 dB 18.48 dB

SSI 0.672 0.726 0.765 0.713 0.712 0.677 0.692 0.802

HazeRD PSNR 13.26 dB 15.76 dB 15.23 dB 15.24 dB 16.88 dB 13.56 dB 17.81 dB 16.94 dB

SSIM 0.795 0.781 0.839 0.745 0.818 0.742 0.850 0.867

Number in red and blue indicate the best and second-best results, respectively.

of knowledge guiding. Another model-free method FFA restores

dehazed images with good color fidelity. However, this method

neglects the generalization ability in the training process, which

leads to the insufficient ability of the model. By contrast, DA

removes most haze but suffers from slight color distortion. PSD

suffers from illumination oversaturation and the sky regions

contain some residual haze. Another method RefineD dehazes

effectively and restores visually pleasing dehazed images. Better

than the above methods, the proposed PMGSDN acquires high

quality images with natural color and discriminative textures,

which further shows that it conducts better generalization in

real scenes.

In order to objectively evaluate the performance of the

algorithm on real world datasets, we further select non-reference

criteria that are widely used in image quality assessment

for quantitative comparison. These criteria are Natural Image

Quality Evaluator (NIQE) and Blind/Referenceless Image

Spatial Quality Evaluator (BRISQUE), which can be used to

evaluate the effect of haze, color shifts, illumination changes,

and other image degraded phenomena. Table 4 gives the

quantitative comparison results on the real-world images

from paper (Fattal, 2014) and URHI datasets. For images

in paper (Fattal, 2014), the proposed method achieves the

best values of NIQE (Mittal et al., 2013) and BRISQUE

(Mittal et al., 2012) being 2.891 and 13.56, respectively. For

URHI datasets, the proposed method also achieves good

dehazing results, with NIQE and BRISQUE of 3.705 and

21.38, respectively.

Discussion

To verify the effectiveness of each part of the proposed

PMGSDN, we conduct ablation studies to evaluate the

performance of the following four key modules: the AGFEB,

the guidance of preliminary dehazed images JDCP generated

by DCP, the guidance of intermediate dehazed images J mod

generated in a model-based way, and the guidance of

intermediate dehazed images Jfree generated in a model-free

way. Hence, we construct the following variants: Variant A,

the proposed method without the AGFEB, Variant B, the

proposed method without the guidance of JDCP, Variant
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FIGURE 6

Qualitative comparisons on real-world images in URHI. (A) Hazy. (B) DCP. (C) DCPDN. (D) MSBDN. (E) FFA. (F) DA. (G) PSD. (H) RefineD. (I) Ours.

FIGURE 7

Qualitative comparisons on real-world images from Fattal (2014). (A) Hazy. (B) DCP. (C) DCPDN. (D) MSBDN. (E) FFA. (F) DA. (G) PSD. (H)

RefineD. (I) Ours.

C, the proposed method without the guidance of J mod ,

Variant D, the proposed method without the guidance of

Jfree, and Variant E, the proposed PMGSDN. We train

these variants on ITS for 30 epochs and test them on

I-HAZE and O-HAZE to evaluate the performance of each

variant. As shown in Table 5, the proposed method achieves
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TABLE 4 Quantitative comparison results on the images in paper (Fattal, 2014) and URHI datasets.

Datasets Metric Haze DCP DCPDN MSBDN FFA DA PSD RefineD Ours

Images in paeper (Fattal, 2014) NIQE 3.783 3.521 4.201 4.003 3.671 4.499 3.835 3.047 2.891

BRISQUE 18.96 13.74 18.97 15.36 16.88 14.47 16.59 14.70 13.56

URHI NIQE 4.715 3.982 4.058 4.605 3.707 4.388 3.822 3.511 3.705

BRISQUE 33.73 27.62 27.89 27.36 27.53 21.79 24.26 22.64 21.38

The numbers in red, blue indicate the first and second-best results, respectively. Lower values of NIQE and BRISQUE represent better performance.

TABLE 5 Results of ablation study.

Variant A Variant B Variant C Variant D Variant E

IHAZE 15.85 dB 16.05 dB 16.72 dB 17.27 dB 17.41 dB

0.728 0.719 0.738 0.759 0.813

OHAZE 16.24 dB 16.51 dB 16.33 dB 17.09 dB 18.48 dB

0.702 0.647 0.692 0.697 0.802

superior performance with PSNR and SSIM both on I-HAZE

and O-HAZE, which validates that each part contributes to

the PMGSDN.

Conclusion

In this article, we propose a physical-model guided self-

distillation network for single image dehazing named PMGSDN.

First, we extract abundant features by the deep feature extraction

network and acquire two intermediate dehazed images based on

themodel-basedmethods andmodel-free methods, respectively.

Second, we embed the dark channel prior information to the

network to combine the merits of both model-based methods

and model-free methods to improve the dehazing effect. Finally,

we adopt self-distillation strategy to improve the dehazing

effect. For I-HAZE and O-HAZE datasets, the proposed method

achieves the highest values of PSNR and SSIM being 17.41dB,

0.813, 18.48dB, and 0.802, respectively. For real-world images

in URHI datasets, the proposed method also achieves the best

value of BRISQUE being 21.38. The experimental results on

both synthetic and real-world images show that the proposed

PMGSDN dehazes more effectively and causes less distortions

when compared with the state-of-the-art methods.
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A multi-scale robotic tool
grasping method for robot state
segmentation masks

Tao Xue, Deshuai Zheng, Jin Yan and Yong Liu*

School of Computer Science and Engineering, Nanjing University of Science and Technology,

Nanjing, Jiangsu, China

As robots begin to collaborate with humans in their daily work spaces, they

need to have a deeper understanding of the tasks of using tools. In response

to the problem of using tools in collaboration between humans and robots,

we propose a modular system based on collaborative tasks. The first part of

the system is designed to find task-related operating areas, and a multi-layer

instance segmentation network is used to find the tools needed for the task,

and classify the object itself based on the state of the robot in the collaborative

task. Thus, we generate the state semantic region with the “leader-assistant”

state. In the second part, in order to predict the optimal grasp and handover

configuration, a multi-scale grasping network (MGR-Net) based on the mask

of state semantic area is proposed, it can better adapt to the change of

the receptive field caused by the state semantic region. Compared with the

traditional method, our method has higher accuracy. The whole system also

achieves good results on untrained real-world tool dataset we constructed.

To further verify the e�ectiveness of our generated grasp representations, A

robot platform based on Sawyer is used to prove the high performance of our

system.

KEYWORDS

human-robot collaboration, instance segmentation, robotic grasping, grasp

detection, robotic grasp platform

1. Introduction

With the increasingly serious aging of the population, how to provide effective

homecare for the growing elderly population has ushered in new challenges and changes,

especially the COVID-19 epidemic, which makes the need for homecare for the elderly

extremely urgent. In order to prevent the elderly from using tools incorrectly and to

ensure the safety of tools when using them, we effortlessly draw on our understanding

of the functions that tools and their parts provide. Using vision, we can identify the

function of the part, so we can find the right tool part for our operation. As robots

like PR2, Asimo, and Baxter begin to collaborate with humans in homecare industry,

they will also need us to have a more detailed understanding of the tools involved in

the task.

When completing tasks through human-robot collaboration, robots are

designed to provide more assistance to humans, rather than let the robot

perform all tasks autonomously. There are two reasons for this. Firstly, the

Frontiers inNeurorobotics 01 frontiersin.org

81

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://doi.org/10.3389/fnbot.2022.1082550
http://crossmark.crossref.org/dialog/?doi=10.3389/fnbot.2022.1082550&domain=pdf&date_stamp=2023-01-10
mailto:liuy1602@njust.edu.cn
https://doi.org/10.3389/fnbot.2022.1082550
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnbot.2022.1082550/full
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Xue et al. 10.3389/fnbot.2022.1082550

type and level of knowledge and the training required for

robots to complete tasks on their own are difficult to establish

and collect. Secondly, despite the significant progress made in

robotics such as manipulation (Kroemer et al., 2015; Fu et al.,

2016), robots are still far from having the fine manipulation

capabilities required for tasks such as furniture assembly (for

example, using a screwdriver on small screws). Therefore,

we hope that the robot can choose the behavior suitable

for the robot, while letting the human worker perform the

action more suitable for the human. For example, robots may

provide supportive or transmit behaviors, such as stabilizing

components or bringing heavy components required for

assembly (Mangin et al., 2017), while human workers can

perform operations that require more adaptability to tasks, such

as screwing screws. Therefore, in the task of using various tools

through human-robot collaboration, how to understand the task

requirements and assign them to different states of robots and

humans to grasp tools is a very critical issue.

Brahmbhatt et al. (2019) used thermal camera to study

human grasping contacts on 50 household objects textured

with contact maps for two tasks. Fang et al. (2020) developed

a learning-based approach for task-oriented grasping in

simulation with reinforcement learning. Liu et al. (2020)

considered a broad sense of context and proposed a data-

driven approach to learn suitable semantic grasps. These

methods are able to solve the problem of understanding

task requirements related to grasp tools through pixel-level

enlightening segmentation of a small group of known object

categories (Do et al., 2018). However, for collaborative tasks,

there is still a lack of consideration for different states that lead

to different tool grasping representation. In order to realize the

understanding of tools according to different state definitions

of robots, we constructed a tool classification dataset used to

analyze the different states played by robots when grasping

various tools.

We recruited some volunteers to take on different states

in grasping the tools in the dataset. And we recorded the

grasping areas corresponding to different states and counted

these positions. We borrowed the idea of region classification

and proposed the state semantics (grasp and handover) region,

that is, different states often make people grasp different

position of tools. Based on the knowledge of this region, we

define two types of robot states: active operator and assisting

passer, corresponding to the previous semantics “grasp” and

“handover.”

The main contributions of our work mainly include the

following four points:

1. We proposed a modular system for multi-states tool grasping

task under human-robot interaction, which can realize the

collaborative grasping and interaction of humans and robots

based on tasks.

2. A multi-layer instance segmentation network is proposed to

complete the classification of operating areas for task-related

tools. Therefore, in different tasks, we can find the most

suitable grasping area for humans or robots in different states.

3. Considering that grasping based on the local semantic region

of the tool will increase the variation range of the receptive

field, we propose a multi-scale grasping convolutional

network MGR-Net based on state semantics to improve the

prediction accuracy of the network.

4. We collected real-world tool images through “realsense”

camera as a test set, and the experimental results show

that our method performs well on untrained real-world tool

images. Furthermore, we used robotic platform based on

Sawyer to validate our grasping representation.

The other chapters of this article are arranged as follows.

In Section 2, we briefly review related literature. In Section 3,

we detail the proposed grasping framework based on semantic

state area. In Section 4, Our experimental results are presented.

Finally, we conclude this work in Section 5.

2. Related work

Learning to use an item as a tool requires an understanding

of what it helps to achieve, the properties of the tool that make it

useful, and how the tool must bemanipulated in order to achieve

the goal. In order to further meet the operational requirements

of our robots based on different states, the tool grasping tasks

under different states can be divided into the following three

aspects:

1. Detection of tools related to different tasks.

2. Research on the properties of the tool itself.

3. Robotic grasping detection of tools.

2.1. Task-related tool detection

The earliest classification of tasks is mostly to find

corresponding task objects in multiple objects. With the great

power of machine learning in classification, researchers find that

novel objects grasp detection can be classified into two parts,

which is graspable or ungraspable. SVM has been widely used

in grasp feature classification (Fischinger et al., 2015; Ten Pas

and Platt, 2018). Ten Pas and Platt (2018) used knowledge of

the geometry of a good grasp to improve detection. Through

sampling lots of hand configuration as the input features, they

used the notion of an antipodal grasp to classify these grasp

hypotheses. Deep learning methods are also been applied in

grasp detection. Lenz et al. (2015) presented a two-step cascaded

system with two deep networks and ran at 13.5 s per frame with

an accuracy of 93.7%.
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In order to better identify task-related tools among

multiple types of tools and avoid the interference of irrelevant

tools, instance segmentation methods are introduced to

achieve more accurate tool detection accuracy. Top-down

methods (He et al., 2017; Chen et al., 2020) solve the

problem from the perspective of object detection. For

example, first detecting an object, then segmenting it in

the box. Recently, the anchor-free object detectors were

used by some researchers and got good results (Tian

et al., 2019). Bottom-up methods (Liu et al., 2017; Gao

et al., 2019) view the task as a label-then-cluster problem.

These method learn the per-pixel embeddings and then

cluster them into groups. The latest direct method

(SOLO) (Wang et al., 2020a) no longer relies on box

detection or embedding learning, and deals with instance

segmentation directly. Wang et al. (2020b) appreciate the

basic concept of SOLO and further explore the direct instance

segmentation solutions.

2.2. Tool attribute classification

The above methods can identify objects of known classes

very well. However, in the case of using a spoon, the

robot needs to know which part of the spoon to grasp and

which part to hold the soup. Work on grasp affordances

tends to focus on robust interactions between objects and

the autonomous agent. It is typically limited to a single

affordance per object. Moreover, affordance labels tend to be

assigned arbitrarily instead of through data-driven techniques

to collect human-acceptable interactions about grasping. Krüger

et al. (2011) focus on relating abstractions of sensory-motor

processes with object structures [e.g., object-action complexes

(OACs)], and capture the interaction between objects and

associated actions through an object affordance. Others use

purely visual input to learn affordances to relate objects

and actions through deep learning or supervised learning

techniques (Hart et al., 2015). Chu et al. (2019) presented

a novel framework to predict the affordance of objects via

semantic segmentation.

It is worth considering that in the interactive use of tools,

robots not only need to find the task-related tools and operating

areas, but also clarify the state of the robot at this time, whether

it is the “leader” or the “assistant” of the task. However, the

previous classification of tool attributes at this time is not

sufficient to meet this goal, they only consider the case where

the robot is a single operator. In order to solve this problem,

based on the attributes generated by the classification of tool

functions, we focus on the grasping operation during interactive

tasks. Through data-driven technology, the functional attributes

of the tool are combined with the state of the robot to find

the optimal grasping area of the tool for the robot under

different states.

2.3. Robotic grasping detection

Deep learning has been a hot topic of research since the

advent of ImageNet success and the use of GPU’s and other

fast computational techniques. Also, the availability of affordable

RGB-D sensors enabled the use of deep learning techniques to

learn the features of objects directly from image data. Recent

experimentations using deep neural networks (Schmidt et al.,

2018; Zeng et al., 2018) proved that they were quite efficient

when calculating stable grasp configurations. Guo et al. (2017)

fused tactile and visual data to train hybrid deep architectures.

Mahler et al. (2017) trained a Grasp Quality Convolutional

Neural Network (GQ-CNN) with only synthetic data from Dex-

Net 2.0 grasp planner dataset. Levine et al. (2018) presented a

method for learning hand-eye coordination for robotic grasping

from monocular images. They use a CNN for grasp success

prediction, and a continuous servoing mechanism used this

network to continuously control the manipulator. Antanas et al.

(2019) proposed a probabilistic logic framework that is said

to improve the grasping capability of a robot with the help

of semantic object parts. This framework combines high-level

reasoning with low-level grasping. The high-level reasoning

leverages symbolic world knowledge through comprising object-

task affordances, categories, and task-based information while

low-level reasoning depends on visual shape features.

Most of these grasp synthesis approaches are enabled by

representing the grasp as an oriented rectangle in the image

(Dong et al., 2021). Kumra et al. (2020) used an improved

version of grasp representation, complemented by a novel

convolutional network, which improves the accuracy of robotic

grasping. Depierre et al. (2021) introduced a new loss function,

which associates the regression of the grab parameters with the

score of the grabability. Dong et al. (2022) used the transformer

network as an encoder to obtain global context information.

Shukla et al. (2022) proposedGI-NNetmodel based on inception

module, it can achieve better results under limited data sets,

but it is less adaptable to big data. These grasping methods

tend to focus on the tool itself, ignoring the impact of different

tasks on grasping. Especially in human-computer interaction

tasks, different states prompt the robot to grasp different parts

of the tool. In order to solve the problem of robot grasping

under human-computer interaction, we modified the grasping

representation of the tool based on the different state semantic

regions of the tool. Through an improved grasping neural

network, the accuracy of grasping detection is improved.

3. Method

In this human-robot collaboration work, we consider the

operating area of the tool when people are in the two different

states of leader and assistant. And let our network learn this

selection rule, so that when the robot assists the human or
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FIGURE 1

Our MGR-Net based on state semantic regions.

the robot operates under the guidance of the human, it can

find the relevant task position as much as possible. In this

paper, in order to study how to generate the robot grasp

detection problem under different states, the following state

semantic region classification and grasping detection framework

of collaborative task are proposed, as shown in the Figure 1.

Our grasping detection networkmainly consists of two parts.

First, finding the task-related state semantic region of object.

Second, finding the most suitable grasp configuration for robots

or humans based on different state semantic regions.

3.1. Grasp representation

In this work, we define the robot grasping detection problem

as predicting unknown objects from the n-channel image of the

scene and assigning states based on the task according to the

provided task description, so as to carry out the corresponding

grasping and execute it on the robot. Instead of the five-

dimensional grip representation used in Kumra and Kanan

(2017), we use an improved version similar to the grasp

representation proposed by Morrison et al. (2020). Considering

that the optimal grasping configuration of the robot will change

in different state states, we incorporate the attribute of the state

semantic area into the robot frame, and change the grasping

posture to be expressed as:

G = (P, θ ,W,Q|Rs) (1)

Among them, P = (x, y, z) is the center position of the tool

tip, θ is the rotation of the tool around the z-axis, W is the

required width of the tool, Rs represents the state semantic area,

and Q|Rs represents the grasp score of the corresponding state

area.

The grasp quality score Q is the grasp quality of each point

in the image, and is expressed as a fractional value between 0

and 1, with values closer to 1 indicating a greater chance of

successful grasping. θ represents a measure of the amount of

angular rotation at each point required to grasp the object of

interest, expressed as a value in the range [−π
2 , π

2 ]. W is the

desired width, expressed as a measure of uniform depth, and

expressed as a value in the range [0, Wmax] pixels. Wmax is the

maximum width of the gripper.

3.2. Grasp detection network

3.2.1. State semantic region

We input image Foverall to the first layer of tool segmentation

network. Through the generated mask, we construct the input

image Fpart of the second layer of state semantic segmentation
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FIGURE 2

State semantic region segmentation.

network. Based on the state that the robot assumes in the task,

the second layer finally generates semantic regions related to

the robot state. More descriptions of the tool datasets will be

introduced in Section 4.1. The modules in the segmentation

layer are shown in Figure 2.

Two segmentation layers is designed to achieve different

purposes. The first layer of the overall segmentation layer finds

out the mask of the task-related object in the multi-object

environment, which includes two branches: (1) Category Branch

is responsible for predicting the semantic category of the object.

(2) Mask Branch is responsible for predicting the mask region

of the object. The second layer further divides the task object

based on the state to obtain the state semantic area of the

object. The state semantic area mainly contained in this layer

is the “grasp” area as the state of leader and the “handover”

area as the state of assistant. The difference between this layer

and the first layer is: (1) Category Branch is responsible for

predicting the state semantic category of the task area of the

object. (2) Mask Branch is responsible for predicting the mask of

the semantic area of different states of the object. Each layer uses

FPN behind the backbone network to cope with the size. After

each layer of FPN, the above two parallel branches are connected

to predict the category and position. The number of grids in each

branch is correspondingly different. Small examples correspond

to more grids.

Category Branch is responsible for predicting the semantic

category of each task area of the object. Each grid predicts the

category S×S×C. The mask branch is decomposed into mask

kernel branch andmask feature branch, which correspond to the

learning of the convolution kernel and the learning of features,

respectively. The output of the two branches is finally combined

into the output of the entire mask branch. For each grid,

the kernel branch predicts the D-dimensional output, which

represents the predicted weight of the convolution kernel, and

D is the number of parameters. So for the number of grids of

S×S, the output is S×S×D. Mask feature branch is used to learn

the expression of features. Its input is the features of different

levels extracted by backbone+FPN, and the output is the mask

feature of H×W×E, denoted by F.

3.2.2. Grasp detection

Feature output is similar to Kumra et al. (2020), and also

contains three different prediction maps (Q|R, angle, width)

represented by the grasping posture, as shown in the Figure 1.

But the difference is that since our grasping posture contains the

content of the state assignment area, our grasping score is also

closely related to the character area.

The input image and the state semantic region mask

corresponding to the task are sent to the convolutional layer

together. The convolutional layer consists of conv2d layer, batch

normalization (BN) layer and relu layer. The output of the

convolutional layer is fed to 3 GB-Block layers (C1–C3), the

first two GR-Block layer contains a Block and Downsampling,

as shown in the Figure 1. We designed this Block from Liu et al.

(2022). Three conv2d layers are used in Block with different

kernel functions, and Layer Norm replaces Batch Norm for

better effect. Since we focus on the semantic area above the

object rather than the object itself, the change in the size of the

object will increase the difficulty of detection.We use three Block

of different sizes to obtain different receptive fields to improve

the detection accuracy. A downsampling module is to connect

two Block of different sizes, as shown in the Figure 1. After

that, in order to more easily interpret and preserve the spatial
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FIGURE 3

Segmentation results based on “leader” and “assistant” state.

characteristics of the image after the convolution operation,

we use five deconvolutional layers to upsample the image.

Therefore, we get the same size image at the output as the input.

Grasp representation is generated as network output from the

deconvolutional layer.

3.2.3. Loss function

For each input image p, combined with the local attribute

region image pk generated by its different state semantic regions

M, our grasping network is optimized by the following loss

function:

loss(Gk, Ĝk) =
1

n

n
∑

i=1

si (2)

where si is given by:

si =

{

0.5 · (Ĝki − f (Gki))
2, if |Ĝki − f (Gki)| < 1

|Ĝki − f (Gki)| − 0.5 otherwise
(3)

Gk is the grasp generated by the network corresponding to

pk and Ĝk is the ground truth grasp.

4. Experiment

We implemented our detection network in PyTorch and

the computer configuration used in the experiment is intel

core I7-8700 CPU and NVIDIA 2080ti GPU. The following

experimental part mainly contains three pieces.
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TABLE 1 Performance on IIT-AFF dataset.

DeepLab (Chen
et al., 2017)

A�ordance-net
(Do et al., 2018)

RAN-ResNet50 (Zhao
et al., 2020)

Our method

Contain 68.84 79.61 80.20 87.10

Cut 55.23 75.68 78.04 72.80

Display 61.00 77.81 79.14 91.20

Engine 63.05 77.50 81.22 85.50

Grasp#1 54.31 68.48 71.59 82.60

Hit 58.43 70.75 88.52 91.00

Pound 54.25 69.57 76.91 81.90

Support 54.28 69.81 80.12 78.90

Grasp#2 – – 79.27 88.86

Handover#2 – – 77.96 80.08

4.1. Dataset

In order to meet the image input required by our

network, we constructed a dataset of collaboration tools.

We selected 6,000 tool images from IIT-AFF Dataset

(Nguyen et al., 2017), UMD Dataset (Myers et al., 2014),

Cornell Grasp Dataset and Jacquard Grasping Dataset

(Depierre et al., 2018). We resize the images in the tool

dataset to the same size. This tool dataset is used for

two networks. One is mainly used for the classification

of the object task area. At this time, 90% of the images

in the dataset are used as the training set, and the rest

are the test set. Another use is tool grasp detection based

on the robot’s state. The training set at this time comes

from the jacquard part of the tool dataset, there are 4,000

images, and the remaining jacquard images are used

as the test set together with other parts of the dataset.

The extended version of Cornell Grasp Dataset comprises

of 1,035 RGB-D images with a resolution of 640 × 480

pixels of 240 different real objects with 5,110 positive

and 2,909 negative grasps. The annotated ground truth

consists of several grasp rectangles representing grasping

possibilities per object. The Jacquard Grasping Dataset is

built on a subset of ShapeNet which is a large CAD models

dataset. It consists of 54 k RGB-D images and annotations

of successful grasping positions based on grasp attempts

performed in a simulated environment. In total, it has 1.1 M

grasp examples.

4.2. Task area

In this section, we mainly discuss the results of semantic

region classification. Different states are given to the robot

according to the task, and the robot has a more specific

functional area classification for the tool. As shown in Figure 3,

when the robot acts as the “leader,” the tools are classified

according to their affordance. Such classification enables the

robot to grasp more accurately, and avoids damage to the object

or the gripper caused by the wrong grasping position. When

the robot acts as an “assistant,” it always expects the human

to grasp the most suitable position for grasping. Therefore, the

robot needs to avoid this grasping area as much as possible and

find a suitable area for handover. Through the delivery of the

robot, human can always grasp the tool most efficiently and

safely. For example, when passing scissors, such classification

can avoid being accidentally injured by scissors due to people’s

carelessness.

To further test the effectiveness of our two-layer

segmentation network, we compare it with other methods

on the IIF-AFF Dataset, as shown in the Table 1. Among them,

grasp#2 and handover#2 represent the classification results

when the robot is “assistant.” It can be seen that our network

still has high accuracy.

4.3. Grasp detection metric

In order to better compare our results with the results of

previous researchers, we refer to the comparison scale in Jiang

et al. (2011) and make some optimizations. Since our grasp is

aimed at a smaller task area, we set the iou value between ground

truth grasp rectangle and the predicted grasp rectangle to two

types: (1) The iou value is >25% for rough grasping. (2) The

iou value is >50% for stable and accurate grasping. In addition,

The offset between the grasp orientation of the predicted grasp

rectangle and the ground truth rectangle is <30◦.
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FIGURE 4

Qualitative results on di�erent datasets.

4.4. Grasp detection

We discuss the results of our experiments here. We evaluate

MGR-Net on our tools datasets, and demonstrate that ourmodel

is able to adapt to various types of tool objects. In addition, our

method can not only grasp the whole object, but also understand

the robot operation information contained in the task and grasp

a certain area of the tool, so as to help people safely grasp the

target tool. Figure 4 shows the qualitative results obtained on

previously unseen tools.

The Table 2 shows the changes in the overall grasp due

to the improvement of the network module. After obtaining
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the grasping representation of the tool through our detection

network. Based on the robot platform, we use Sawyer robot

to verify the grasping representation. Since the coordinate

relationship between the camera and the robot is known,

we transform the grasp representation from the image space

to the robot coordinate system. Figure 5 shows the process

of our verification through Sawyer robot, where Figures 5A,

D are the result graphs generated by our capture of the

detection network. After the camera space is converted to

the robot space, Sawyer reaches the designated position and

closes the gripper, as shown in Figures 5B, E. Figures 5C, F

lift the object upward to prove whether our grasp is successful

or not. We used 20 unseen real tools. Each test object

contains five different positions and directions and the grasp

accuracy is 92%. The experiment proves the effectiveness of our

method.

TABLE 2 Ablation study.

Network
structure

Accuracy (25%) Accuracy (50%)

Residual block 0.95 0.83

Only block 0.95 0.84

GR-block 0.96 0.87

4.5. Comparison of di�erent approaches

Considering that the traditional method does not involve

the content of the state task area, we regard the entire object

as an area with a grasp attribute, that is, the mask is the entire

tool. We compared the accuracy of our network with the results

of previous experiments on the Jacquard dataset (as shown in

Table 3). It can be seen that the more accurate what needs to be

captured, the more obvious the superiority of our method is. To

further test the effectiveness of our grasping network, we tested

it on a dataset of tools constructed by ourselves. Tool images

are captured by a realsense camera. It is worth mentioning that

our training set does not contain images from our homemade

TABLE 3 We compared our grasp network with other work.

References Accuracy (25%) Accuracy (50%)

Depierre et al. (2018) 0.74 –

Zhou et al. (2018) 0.92 –

Kumra et al. (2020) 0.94 0.72

Depierre et al. (2021) 0.86 –

Shukla et al. (2022) 0.90 0.69

Ours 0.95 0.77

FIGURE 5

Verification through robot platform. (A, D) The results of grasp detection. (B, E) The robot grasping tools. (C, F) The robot lifting tools to indicate

whether the grasping is successful or not.
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FIGURE 6

Untrained single tool images.

FIGURE 7

Untrained multi-tools images.

dataset. We have compared with Kumra et al. (2020) and Shukla

et al. (2022), as shown in Figures 6, 7. It can be seen from the

Figure 6 that in the untrained real images with uneven lighting,

our method can more accurately find the grasp configuration of

objects, and adopt a suitable size of the grasp box. For example,

when grasping a cup, a small frame is generated at the handle

of the cup to avoid the collision between the gripper and the

rest of the cup. Figure 7 shows the strong anti-interference

ability of our method and proves the necessity of generating

object mask.

5. Conclusion

We presented a modular solution for tool usage issues in

the context of human-robot interaction. A multi-layer instance
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segmentation network helps robots understand the regional

attributes and semantics of objects under different states. Based

on the state assigned to the robot based on the task, it is able to

grasp or handover novel objects using our convolutional neural

network MGR-Net that uses n-channel input data to generate

images that can be used to infer grasp rectangles for each pixel

in an image.

We validate our proposed system on our robotics platform.

The results demonstrate that our system can perform accurate

grasps for previously unseen objects with different state, even

our method is able to adapt to changes in lighting conditions

to a certain extent.

We hope to extend our solution to more complex object

environments, such as where tools overlap and occlude each

other. Besides, combining multiple visual angles to improve

the success rate of grasping should also be considered in our

later work.
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Big data facial image is an important identity information for people.

However, facial image inpainting using existing deep learning methods has

some problems such as insu�cient feature mining and incomplete semantic

expression, leading to output image artifacts or fuzzy textures. Therefore, it

is of practical significance to study how to e�ectively restore an incomplete

facial image. In this study, we proposed a facial image inpainting method using

a multistage generative adversarial network (GAN) and the global attention

mechanism (GAM). For the overall network structure, we used the GAN as

the main body, then we established skip connections to optimize the network

structure, and used the encoder–decoder structure to better capture the

semantic information of the missing part of a facial image. A local refinement

network has been proposed to enhance the local restoration e�ect and to

weaken the influence of unsatisfactory results. Moreover, GAM is added to

the network to magnify the interactive features of the global dimension while

reducing information dispersion, which is more suitable for restoring human

facial information. Comparative experiments on CelebA and CelebA-HQ big

datasets show that the proposed method generates realistic inpainting results

in both regular and irregular masks and achieves peak signal-to-noise ratio

(PSNR) and structural similarity (SSIM), as well as other evaluation indicators

that illustrate the performance and e�ciency of the proposed model.

KEYWORDS

big data artificial intelligence (AI), deep learning algorithm, deep learning-based facial

image inpainting, generative adversarial network, convolutional neural networks

1. Introduction

With the rapid development of computer vision technology, digital images (Singh

and Goel, 2020) have become the mainstream of facial image acquisition. Normally,

people usually rely on electronic devices to obtain facial images; however, watermark

occlusion, smear, part of the area missing, and other problems often appear in the

transmission process of digital images (Baeza et al., 2009), preservation (Meyers and

Scott, 1994), and post-processing (Shen and Kuo, 1997), damaging the quality of

the facial image and resulting in poor visual feeling (Parmar, 2011). To solve the

abovementioned problems, related scholars began to study these kinds of problems and

proposed a series of novel inpainting approaches.
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Image inpainting is a very challenging task in image

processing (Elharrouss et al., 2020), and its purpose is to restore

and complete the missing or defaced image part. A new image

needs to be inferred and constructed according to the contextual

information of the damaged image and the overall image

structure (Jin et al., 2021). The restored image should have clear

textures and natural boundary pixels and conform to human

visual perception. Compared to other image inpainting tasks,

some similar image blocks cannot be found in other facial image

areas (Yang et al., 2020). For example, it is difficult to infer a

reasonable nose image based on the surrounding areas when the

nose part is missing, which may lead to an imbalance proportion

of facial images. For this problem, it is necessary to reconstruct

images that satisfy human visual perception according to a

large amount of prior information and contextual semantics

(Yeh et al., 2017).

Before deep learning methods were proposed, there were

two kinds of theoretical research in image inpainting, including

partial differential equations- and texture-based methods.

Bertalmio et al. (2000) used partial differential equations to

diffuse neighborhood pixel information to the missing area

using an isograd direction field. For images with small missing

areas, satisfactory results can be achieved. However, it is not ideal

for images with largemissing areas because this method does not

consider the semantic information of the image context. Efros

and Leung (1999) first proposed the generation of patch blocks

with similar textures using the extracted texture information of

the missing regions and then the use of the generated patch

blocks to fill in the missing regions. The disadvantage of this

method is that, although the missing area is filled, the filled

area is compact overall from the content level but not from

the pixel level. In other words, the repair result is not smooth

enough, with many traces of artificial processing. Criminisi et al.

(2004) established a block image restoration method based on

texture synthesis. In this method, a pixel randomly selected on

the image’s missing area boundary is taken as the center to

choose a certain size image texture block, which is then used to

repair the missing area. This image inpainting method can fill

in more appropriate texture information for the missing areas,

but because the contextual semantic information of an image is

ignored and contextual semantics of the repaired image becomes

incoherent, the complex facial image inpainting task cannot

be completed.

Deep-learning-based facial image inpainting technology

(Qin et al., 2021) is more suitable for a variety of restoration

scenarios than traditional image restoration methods. The

feature distribution dataset learned by a neural network is more

suitable for facial image restoration with a large missing area and

random damage. Not only are the texture details accurate but

also are the contours harmonized, and the facial image conforms

to the contextual semantics (Wei et al., 2019). After ongoing in-

depth research by relevant scholars, deep learning-based image

repair methods have produced a number of results.

Pathak et al. (2016) used a context encoder to complete an

image repair task, which was the first image inpainting method

based on a generative adversarial network (GAN). The generator

is divided into an encoder and a decoder (Sun et al., 2018). The

encoder is responsible for compressing and extracting feature

information from an incomplete image, and the decoder is

responsible for restoring an input-compressed feature to the

image. In this method, the context encoder can achieve a good

repair effect, but the generation antagonism losses adopted

by the context encoder considers only local information of

an incomplete region and not the overall semantic coherence

of the image. Iizuka et al. (2017) adopted a global–local

double discriminator to improve the context encoder. A local

discriminator was applied to the repair result of an incomplete

area, and a global discriminator was applied to the overall

repair result. This design ensured not only the accuracy of the

repair area but also the integrity of the final result. However,

the prediction results of this method are still inaccurate when

the large area facial image is missing. Yang et al. (2017)

proposed the use of content and texture generation networks

to complete the image repair task. The content generation

network is responsible for inferring the semantics and global

structure of an image, while the texture generation network is

responsible for generating high-frequency details of an image.

Compared to previous methods, this method solves the problem

of high-resolution image repair. Yan et al. (2018) added a shift-

connection layer on the basis of the U-Net network. In this

method, pixel information from known regions is transferred

to the corresponding missing regions to assist the image repair

generated in the process of guided loss minimization, which

encodes and decodes the distance between the distribution and

the true distribution. However, due to the shortcomings of a

simple structure of the algorithm, it is not effective in restoring

facial images, which have problems such as blurred edges.

Although GANs are widely used in the field of image

inpainting, they still rely too much on the self-generation ability

of generative networks and have many problems to solve. For

example, when the texture structure of a facial image is more

complex, it is easy to appear fuzzy, semantic incoherence and

other phenomena. When the local feature of the facial image is

not clear, the information stored in the model is too large and

network training is prone to information overload.

To solve these problems, based on the normalization of

the feature layer output in the GAN and the guiding role of

the attention mechanism in image detail inpainting, this study

proposes a facial image inpainting method using a multistage

GAN based on a global attention mechanism (GAM) named

CLGN, where a generative network can accelerate the training

speed and improve training stability through feature layer

output normalization. By using step coiling instead of up-

sampling and full-connection layers, convolution can play a

good role in extracting image features. Meanwhile, GAM (Liu

et al., 2021) was introduced to enhance the guiding role of
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FIGURE 1

The model of generative adversarial networks (GANs).

important features during the image inpainting process. In

addition, a U-Net skip-connection (Ronneberger et al., 2015)

was introduced between the encoder and the decoder to reduce

information loss due to down-sampling and to optimize texture

consistency. The loss function is used as an important factor to

measure the generated image quality and loss (Gao and Fang,

2011), weighted reconstruction loss, perceptual loss, style loss,

and total variation (TV) loss, which were combined to optimize

the total loss of the generated network for model training.

Our study provides the following contributions:

• Building a multistage (crude-local-global) generative

network CLGN to capture feature information

from receptive fields of different sizes and enhance

presentation capabilities.

• Adding GAM to magnify the interactive features of

the global dimension while reducing information

dispersion, which is more suitable for restoring human

facial information.

• The proposed CLGN produces photorealistic and plausible

inpainting results on two datasets, CelebA and CelebA-HQ.

The remainder of this paper is organized as follows: Section

2 introduces the relevant theories used in our proposed

method. Section 3 shows the observation and motivation,

the network architecture, and loss functions. Section 4

focuses on comparative and ablation experiments of our

methods. Section 5 concludes and discusses future research.

2. Related theory

2.1. Generative adversarial networks

A generative adversarial network was proposed by

Goodfellow et al. (2014). In recent years, GANs have been

extensively studied in combination with other machine

learning algorithms in some specific applications, such as

semi-supervised learning (Odena, 2016), transfer learning

(Cho et al., 2017), and reinforcement learning (Wang et al.,

2020), and are widely used in image inpainting. GAN has

made a considerable breakthrough in image inpainting by

producing realistic images. The core idea of GAN comes the

“two-player zero-sum game” in game theory (Ge et al., 2018), in

which networks are optimized by cheating each other between

generators and discriminators, resulting in a Nash equilibrium.

The GAN consists of a generative network G and a discriminant

network D, and its structure is shown in Figure 1.

By learning the probability distributionmapping Pdata of the

real data, the generative networkG is expected to output content

G(z) close to the real data. The discriminant network D needs to

identify the source of the input data as much as possible, i.e.,

classify x and G(z). When the discriminant network D cannot

distinguish data sources, network performance is optimal. Its

objective function is as follows:

min
G

max
D

V (D,G) = Ex∼Pdata

[

log (D (x))
]

+Ez∼Pg

[

log (1− D (G (z)))
]

,

where G represents a generative network, D represents

a discriminant network, E(•) represents the mathematical

expectation, V represents the objective function, x represents

the sample, z represents random noise, and Pdata represents the

distribution of the real sample.

2.2. Visual geometry group network

The visual geometry group network (VGGNet) was

proposed by Karen Simonyan and Andrew Zisserman of the

Visual Geometry Group at the University of Oxford (Simonyan

and Zisserman, 2015). An outstanding contribution of VGGNet

is to demonstrate that small convolutions can effectively

improve performance by increasing network depth. VGG

expertly inherits the mantle of Alexnet while also exhibiting the

characteristics of a deeper network layer.

The structure of VGGNet is shown in Figure 2 (Noh

et al., 2015) and consists of five convolutional layers, three

fully connected layers, and softmax output layers. These layers

are separated by max-pooling (maximization pool), and the

activation units of all hidden layers adopt the ReLU function.

VGG uses multiple convolution layers with smaller convolution

kernels (3 × 3) to replace one convolution layer with a larger

convolution kernel. On the one hand, parameters can be

reduced. On the other hand, it is equivalent to perform more

non-linear mapping, which can increase the network’s ability to

fit and express.

2.3. Global attention mechanism

In recent years, attentionmechanisms have been widely used

in many applications (Zn et al., 2021). The convolutional block

attention module (CBAM) (Woo et al., 2018) sequentially places
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FIGURE 2

The structure of a VGG16 module. The face images are adapted from the celeba-HQ dataset, which comes from Karras et al. (2017).

FIGURE 3

The model of convolutional block attention module (CBAM).

the channel and spatial attention operation, while the bottleneck

attention module (BAM) (Park et al., 2018) does it in parallel.

However, both of them ignore channel-spatial interactions and

consequently lose cross-dimensional information.

Therefore, GAM that boosts network performance by

keeping the amount of information to a minimum and zooming

in on the global interaction representation has been proposed.

GAM (Liu et al., 2021) is a simple yet effective attention

module that reserves information to magnify the “global”

cross-dimensional interactions. The GAM adopts the sequential

channel-spatial attention mechanism from CBAM (Woo et al.,

2018), which is an elementary yet practical attention module

for feed-forward convolutional neural networks. CBAM can

be regarded as a dynamic selection process for inputting

important information into an image, which significantly

improves the performance level of many computer vision tasks

and plays an important part in image inpainting with complex

image structures.

The internal structure of CBAM is shown in Figure 3. We

set the intermediate feature map F ∈ R
C×H×W as input. CBAM

deduces an attention map in two separate dimensions, channel

and space, which are shown as a one-dimensional (1D) channel

attention map Mc ∈ R
C×1×1 and a two-dimensional (2D)

spatial attentionmapMs ∈ R
1×H×W . In conclusion, the general

process of the attention module can be represented as:

{

F
′ = Mc(F)⊗ F,

F
′′ = Ms(F

′)⊗ F
′,

where ⊗ indicates an element-wise multiplication and F′′ is

named as the final refined output. The detailed operations for

each module are described as follows.

For the channel attention module, first, we applied

both average pool and max pool operations to gather

spatial information, producing two disparate spatial context

descriptors: F
c
avg and F

c
max representing the max-pooling

features. Then, we sent two descriptors to a shared network to

produce a channel attention mapMc ∈ R
C×1×1.

To cut down parameter overhead, we set the hidden

activation size R
C/r×1×1, where r is the reduction ratio.
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Finally, the output feature vectors are conflated by element-

wise summation after we applied the shared network to

each descriptor. In conclusion, the channel attention is

represented by:

Mc(F) = σ (MLP(AvgPool(F))+MLP(MaxPool(F)))

= σ (W1(W0(F
c
avg))+W1(W0(F

c
max))),

where σ indicates the sigmoid function, W0 ∈ R
C/r×C ,

andW1 ∈ R
C×C/r .

For the spatial attention module, firstly, we introduce the

average and maximum pools on the canal axis and connect

them to establish an adequate feature description so that spatial

attention can be calculated. In cascaded feature descriptors,

we used the convolution layers to create a spatial attention

pattern Ms (F) ∈ RH×W in which positions of emphasis or

suppression can be encoded. In particular, we created two 2D

maps: Fsavg ∈ R
1×H×W and Fsmax ∈ R

1×H×W , which reflect

the average characteristics of swimming pools in the canal and

theirmaximum characteristics. Then, a 2D spatial attention table

is output after being connected to the standard convolution

layer and convoluted at its end. Spatial attention is calculated

as follows:

Ms (F) = σ (f 7×7([AvgPool(F);MaxPool(F)]))

= σ (f 7×7([Fsavg; F
s
max])),

where σ represents the sigmoid function and f 7×7 denotes a

convolution operation with the filter size of 7× 7.

3. Proposed method

3.1. Observation and motivation

Traditional image inpainting methods are based on texture

extension (Bertalmio et al., 2000) or similar block matching

(Criminisi et al., 2004). These methods do not repair some

damaged images with large missing areas and complex

structures of missing areas. Especially, in facial image inpainting,

the big challenge is how to ensure the overall consistency

of the inpainting results and restore the missing details and

textural features.

In this study, we put forward a facial image inpainting

method using an attention-based multistage GAN followed

by a crude-local-global framework. Considering that missing

areas of different sizes can be solved, the proposed network

contains a three-stage network for image inpainting to combine

the networks with different receptive fields. The network

structure and the corresponding loss functions are described

in Section 3.2.

3.2. Network architecture

3.2.1. Crude inpainting network

Our crude inpainting network NetC employs an encoder–

decoder framework with the addition of a skip connection,

consisting of eight down- and up-sampling operations. We

used long skip connections to transmit information from the

encoder to the decoder to restore information lost during down-

sampling. The receptive field resolution is 766×766 and is nearly

three times larger than the input image resolution with a size

of 256× 256.

For a convolutional neural network, a large receptive field

is helpful to the whole image inpainting. At the input end, the

network receives an input image Iin and a binary maskM, which

describe the missing areas. Note that the missing pixel is equal to

1 and the valid pixel is equal to 0. Meanwhile, at the output end,

the network exports an inpainting image ICout .

To weaken the blur effect and improve the restoration effect

of inpainting images, a patch-based discriminator with spectral

normalization was also applied. The inputs for the discriminator

were a ground truth image and the inpainting image ICout , while

the output was a 2D feature map where the shape is R32×32.

The function of the discriminator is to determine whether each

element in the feature map is true or false.

3.2.2. Local development network

To further optimize the local refinement, we designed a

surface-deep network called the local refinement network NetL,

which includes two down-sampling operations, four residual

blocks, and two up-sampling operation, as shown in the middle

row of Figure 4.

Due to its surface nature, this network has a small receptive

field with the size of 109 × 109 for each output neuron. The

local area of the above-mentioned rough inpainting results was

then processed in a sliding window manner. Because of this

design, some missing areas, such as the local structures and

the textures, can be properly repaired by the surrounding local

image information. Moreover, this process is not affected by the

long distances and content not being filled. In addition, more

residual blocks are introduced into this network, which can

gradually make the receptive field larger and significantly reduce

the model generalization error.

3.2.3. Global attention-based network

After the local refinement network process, some unresolved

visual artifacts are properly removed with the help of

surrounding local areas. Nevertheless, some missing areas (e.g.,

facial features such as the eyes or the mouth that are easily

mismatched) still need to be better refined when capturing

information from the corresponding large surrounding areas. In

view of this fact, a global attention-based network is established,
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FIGURE 4

The network architecture of our proposed method CLGN. The purple block in the local development network indicates a two-layer residual

block (He et al., 2016). The three yellow blocks represent the GAM attention modules with resolutions of 16 × 16, 32 × 32, and 64 × 64,

respectively. The green blocks represent the convolutional layer and the blue blocks represent the decoder. The face images are adapted from

the celeba-HQ dataset, which comes from Karras et al. (2017).

which can expand the scope of access to information for a

neuron in two ways, i.e., the attention mechanism and a large

receptive field.

Considering that a crude inpainting network has enough

receptive fields to cover the whole image area, we exploited

the basic structure of GAM. Based on this, three CBAMs

are added in front of the decoder, aiming to attain a global

attention-based network NetG (see the three yellow blocks in

the third row of Figure 4). Moreover, considering that the local

development network can already provide relatively correct

image restoration results, there is a major trend for a novel

network NetG based on the attention mechanism to become

more stable and robust. Some existing studies (Yu et al., 2018,

2019) used the attention mechanisms to calculate the correlation

between contextual information and the missing areas. In this

study, a lightweight and powerful GAM attention module along

two separate dimensions (i.e., channel and spatial) was used.

A feature map F ∈ R
C×HW is given, and the affinity si,j ∈

R
HW×HW of Fi and Fj is computed by:

si,j =
exp(̂si,j)

∑

k exp(̂si,j)
,̂ si,j =<

Fi

||Fi||
,

Fj

||Fj||
> .

Note that the weighted average version F is ˜F = F ∗ S ∈

R
C×HW in terms of matrix multiplication.

In the end, we connected F and ˜F. Then, we introduced a

1 × 1 convolutional layer to maintain the number of inchoative

channels F.

3.3. Loss functions

3.3.1. Reconstruction loss

In terms of pixel-level supervision, we used weighted

l1 loss as the reconstruction loss to measure the distance

between the ground truth Igt and the generated image

Iout , let:

Lvalid
C = 1

sum(1A−M)
||(ICout − Igt)⊙ (1A −M)||1,

Lhole
C = 1

sum(M)
||(ICout − Igt)⊙M||1,

where 1A means the indicator function, Igt is the ground

truth image, ⊙ is the element-wise product operation, and

sum(M) is the number of non-zero elements in M. Then, the

pixel-wise reconstruction loss is formulated as:

L
C
r = L

C
valid + λh · L

C
hole.

In addition, the first training target of the local refinement

network (NetL) is the weighted reconstruction loss LL
r , which is
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the same as Equation (7) except for replacing Icout with ILout in

Equation (6).

3.3.2. Adversarial loss

In this study, we used the least square loss function for

GAN loss. Least square loss (Mao et al., 2017) not only enhances

stability during the training process but also develops generator

performance with the aid of more gradients. Then, we define the

corresponding loss functions for the crude inpainting network

and discriminator as:

ICmer = Iin ⊙ (1A −M)+ ICout ⊙M,

LCG = EImer ∼ pImer(Imer)
[

(D(ICmer)− 1)
2
]

,

LD =
1

2
EI−pdata(I)[(D(Igt)− 1)2]

+
1

2
EImer∼pImer(Imer)[(D(I

c
mer))

2],

where 1A represents the indicator function, E means

mathematical expectation, ICmer is the merged image, and Igt is

the ground truth image.

3.3.3. Total variation loss

In signal processing, TV denoising is a noise-removal

process (Liu et al., 2018). It is based on the principle that signals

with excessive and possibly spurious detail have high TV, that

is, the integral of the absolute image gradient is high. Following

Liu et al. (2018), we used TV loss as a smoothing penalty. The

formula is as follows:

L
L
tv = ||ILmer(i, j+ 1)− ILmer(i, j)||1

+||ILmer(i+ 1, j)− ILmer(i, j)||1.

where the calculation process is precisely the same as that of

ICmer, i.e., Equation (8).

3.3.4. Perceptual loss

To better renovate the structural and textual information,

we apply the perceptual loss (Johnson et al., 2016) based on

VGG-16 (Simonyan and Zisserman, 2015), which is trained in

ImageNet beforehand. Unlike the pixel-level reconstruction loss

and TV loss mentioned above, which are done in pixel space,

the perceptual loss is calculated in feature space. Furthermore,

perceptual loss is shown by:

L
L
per =

∑

i

||Fi(I
C
out)− Fi(Igt)||1

+||Fi(I
L
mer)− Fi(Igt)||1

,

where is the feature map of the ith layer in the VGG-

16 network (Simonyan and Zisserman, 2015), which is

pretrained, i ∈ {5, 10, 17}.

3.3.5. Style loss

Style loss represents the difference in the Gram matrix

between the features of the synthesized image and the features

of the style image, ensuring that the style of the generated image

matches the style image. Here, we define style loss as follows:

L
L
sty =

∑

i

||Gi(I
L
out)− Gii(Igt)||1

+||Gi(I
L
mer)− Gii(Igt)||1

,

where Gi(·) = Fi(·)Fi(·)
T is the Gram matrix.

3.3.6. Style loss

For a crude inpainting network, we summarized the total

loss of NetC :LC = LC
valid

+ λh.L
C
hole

+ λg · LC
G. It should be

noted that we set λh = 6 and λg = 0.1 in all experiments.

For the local development network, the target for the local

refinement network NetL is defined as:

LL = L
L
valid + λh · L

L
hole + λTV · LL

TV + λper · L
L
per

+λsty · L
L
sty

In our experiments, we discovered that weight losses in Liu

et al. (2018) were correspondingly balanced in the order of

magnitude, so the weight setting was adopted. We set λh =

6,λtv = 0.1,λper = 0.05, and λsty = 120 in a special way.

For a GAM attention-based global refinement network, we

found that the training target LG of NetG is almost consistent

with LL of NetL, and we only need to replace ILout with IGout in

the corresponding positions of LL.

In this connection, the novel inpainting network CLGN is

trained using an “end-to-end” method, and the overall CLGN

output becomes the final image inpainting result. The sum total

of three subnetworks and a discriminator is the final training

loss, i.e., LC + LL + LG + LD.

4. Experiments

4.1. Experimental settings

4.1.1. Experimental platform and parameters

For network training, the hardware platform is an AMD

EPYC 7302 16-Core Processor CPU, a single GeForce RTX

3090 (31GB), and the software platform is PyTorch1.3.0. During

training, each image and mask were resized to 256 × 256 by

bicubic interpolation, and there are no data arguments. The
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Adam optimizer is used with an initial learning rate of 0.0002

for the first 100 epochs and later decays the learning rate to 0

for the next 100 epochs to fine-tune the model. In addition, the

first-order momentum was set as β1 = 0.5 and the second-order

momentum was set as β2 = 0.999.

4.1.2. Data sets

The proposedmethod is evaluated on two datasets of CelebA

(Liu et al., 2015) and CelebA-HQ (Karras et al., 2017). The

CelebA (Liu et al., 2015) face dataset is an open dataset from

the Chinese University of Hong Kong, which contains 202,599

facial images of 10,177 celebrity identities, and all of them are

well-labeled. It is a very useful dataset for face-related training.

We randomly selected 40,000 of these faces for our experiment.

The 40,000 images are divided into a training set of 36,000

images and a test set of 4,000 images. The CelebA-HQ (Karras

et al., 2017) dataset is a high-quality version of CelebA. It is a

celebrity face attribute dataset containing 30,000 face images.

We randomly select 27,000 images as the training sample and

3,000 images as the testing sample.

To train our network, we used irregular masks based

on the quick draw irregular mask data set (QD-IMD)

(Iskakov, 2021). Moreover, when testing the network,

the irregular mask data provided by Liu et al. (2018)

was used to assess our training result. Note that the

irregular mask set includes 12,000 masks, which were

divided into six categories with different coverage rates,

i.e., (0.01, 0.1],(0.1, 0.2],(0.2, 0.3],(0.3, 0.4],(0.4, 0.5](0.5, 0.6].

4.2. Performance comparison

To show the inpainting performance of the proposed

method, we first introduced our evaluation indicators and then

compared quantitative measurements, visual comparisons, and

subjective evaluations separately.

The following six mainstream image inpainting methods

are used to compare with the proposed network: CA (Yu

et al., 2018): A model trained in two stages of coarse and fine

precision, which used a contextual attention mechanism in a

fine precision network in the form of two codecs in series.

GMCNN (Wang et al., 2018): A generative multicolumn neural

network architecture in the form of three codecs in parallel.

MEDFE (Liu et al., 2020): A mutual encoder–decoder CNN

with feature equalizations for joint recovery of architecture and

texture. RFR (Li et al., 2020): An advanced image inpainting

method in feature space with recurrent feature reasoning and

knowledge-continued attention. MADF (Zhu et al., 2021): A U-

shaped framework with mask-aware dynamic filtering for image

inpainting with a point-wise normalization. LG-net (Quan et al.,

2022): A multilayer network architecture for image inpainting

to combine networks with different receptive fields, considering

the complexity of missing regions.

4.2.1. Evaluation methods

To objectively evaluate the inpainting performance of

different inpainting methods, the following objective indicators

are used to evaluate the inpainting quality under the same

experimental conditions:

l1 loss function (Gao and Fang, 2011): By calculating the sum

of the absolute difference between the inpainting image and the

original image, the similarity between the two images at the pixel

level can be evaluated.

l1 =
1

n

n
∑

i=1

∣

∣yi − ŷi
∣

∣.

Peak signal-to-noise ratio (PSNR) (Hore and Ziou, 2010):

It is defined by the maximum possible pixel value Z and mean

square error (MSE) between images.











MSE = 1
n

n
∑

i=1

(

yi − ŷi
)2

PSNR = 10log10

(

Z2

MSE

)

,

where Z is equal to 255. The value of PSNR is usually

between 20 and 40. The higher the value, the better the quality.

Structural similarity (SSIM) (Wang et al., 2004): This index

compares the SSIM between images based on a comparison of

the brightness and contrast characteristics of the images, and it

can be shown by:

SSIM
(

yi, ŷi
)

=

(

2µyiµŷi + C1
)

(

σyi ŷi
+ C2

)

(

µyi
2 + µŷi

2 + C1
) (

σyi
2 + σŷi

2 + C2
) ,

where µ and σ represent the mean and variance of image

pixels, respectively.

Frechet inception distance (FID) (Heusel et al., 2017): It is

a performance index for calculating the distance between a real

image and a modified image feature vector. The lower the FID

score, the better the image quality generated, and the higher the

similarity to the original image.

4.2.2. Quantitative comparison results

For quantitative evaluation, l1 loss function (Gao and Fang,

2011), PSNR (Hore and Ziou, 2010), SSIM (Wang et al., 2004),

and FID (Heusel et al., 2017) are evaluation metrics. The results

are shown in Tables 1, 2.

Tables 1, 2 compare the parameters of the seven methods

used in the CelebA and CelebA-HQ data sets under four
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TABLE 1 Quantitative comparisons of ours with the other six methods in CelebA.

Masks CA GMCNN MEDFE RFR LG-net Ours

ℓ1(%)† 1–10% 1.77 1.54 1.43 1.57 0.44 0.39

20–30% 5.28 3.01 3.72 3.74 2.45 2.19

40–50% 7.92 4.63 7.64 6.51 5.31 5.11

AVG 4.99 3.06 4.26 3.94 2.73 2.56

PSNR‡ 1–10% 33.12 36.29 36.21 37.26 40.72 42.25

20–30% 24.07 28.33 27.85 29.14 30.67 31.66

40–50% 21.11 26.08 23.50 25.23 26.09 26.56

AVG 26.10 30.23 29.19 30.54 32.49 33.49

SSIM‡ 1–10% 0.971 0.977 0.990 0.990 0.995 0.996

20–30% 0.901 0.928 0.945 0.952 0.962 0.986

40–50% 0.853 0.895 0.844 0.899 0.911 0.913

AVG 0.908 0.933 0.926 0.947 0.956 0.965

FID† 1–10% 2.14 0.82 0.79 0.85 0.40 0.41

20–30% 6.82 2.26 3.21 2.73 2.11 2.07

40–50% 12.39 4.51 7.19 5.22 4.60 5.02

AVG 7.11 2.53 3.73 2.93 2.37 2.50

‡Higher is better.
†Lower is better.

TABLE 2 Quantitative comparisons of ours with the other six methods in CelebA-HQ.

Masks CA GMCNN MEDFE RFR LG-net Ours

ℓ1(%)† 1–10% 1.86 1.14 1.02 1.59 0.46 0.39

20–30% 5.33 3.05 3.68 3.58 2.38 2.11

40–50% 7.84 4.51 7.65 6.44 5.27 5.03

AVG 5.01 2.90 4.12 3.87 2.70 2.51

PSNR‡ 1–10% 32.66 35.96 36.13 36.39 40.04 41.53

20–30% 23.94 28.52 27.75 29.07 30.54 31.33

40–50% 21.98 25.89 23.47 25.09 26.01 26.55

AVG 26.19 30.12 29.12 30.18 32.19 33.14

SSIM‡ 1–10% 0.971 0.984 0.990 0.991 0.995 0.997

20–30% 0.903 0.933 0.943 0.957 0.968 0.987

40–50% 0.853 0.897 0.865 0.902 0.917 0.921

AVG 0.909 0.938 0.932 0.950 0.960 0.968

FID† 1–10% 2.06 0.85 0.84 0.86 0.39 0.37

20–30% 6.97 2.24 3.17 2.67 2.08 2.11

40–50% 12.42 4.56 7.12 5.21 4.61 4.47

AVG 7.15 2.55 3.17 2.91 2.36 2.31

‡Higher is better.
†Lower is better.

different indexes. The smaller the l1 and FID index values,

the better the quality of figures, and the larger the PSNR and

SSIM index values, the better the quality of figures. Through

quantitative analysis, we can see that, under different coverage

and indicators, our method generally outperforms the others.

Only when the GMCNN image inpainting method deals with
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facial images with large area coverage (more than 40% coverage),

some evaluation indexes are better than our method. A possible

FIGURE 5

Visual comparison of di�erent image inpainting methods on

CelebA-HQ and ParisView datasets with regular masks. Obvious

di�erences on the faces are highlighted by red boxes. The face

images are adapted from the celeba-HQ dataset, which comes

from Karras et al. (2017).

reason is that the jump connection between the residual

blocks in our network pays too much attention to the shallow

feature information of the image and neglects the processing of

the global semantics. In addition, our performance on PSNR

and SSIM assessment was significantly better than the other

methods, showing that the facial image recovered by ourmethod

was of high quality and had a high SSIM with the original image.

4.2.3. Visual comparison

To better illustrate the inpainting effect, we compared the

visual results from different image inpainting methods. As

shown in Figure 5, the results of three different methods under

the regular mask of CelebA are shown in the first and second

lines, while the results of CelebA-HQ datasets are shown in the

third and fourth lines. The hole size of the square mask was set

as 128× 128, and the radii of the circle mask was set as 64. From

Figure 5, we found that facial images with rectangular masks

restored by CA (Yu et al., 2018) and MADF (Zhu et al., 2021)

tend to be fuzzy, and problems such as chromatic aberration

and excessive discontinuity appear at the edges of the restored

areas in the lips and eyeballs. However, facial images restored by

the proposed method have clear facial features and good color

consistency, making it difficult to distinguish the original image

FIGURE 6

The comparison of di�erent image inpainting methods on CelebA-HQ and ParisView with irregular masks. The face images are adapted from

the celeba-HQ dataset, which comes from Karras et al. (2017).
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FIGURE 7

Statistical results from a user study on the CelebA data set. The value shows the percentage of each method chosen as the better one.

FIGURE 8

Statistical results of a user study on the CelebA-HQ data set. The value shows the percentage of each method chosen as the better one.

from the restored image with the naked eye. All these verify the

effectiveness of the proposed method.

To further verify the inpainting effect of our method, we

compared the inpainting performance of our method with other

competitors on irregular masks.

The corresponding results are shown in Figure 6. The output

images from the six different image inpainting methods of

CelebA are shown in the first three lines, while the results from

the CelebA-HQ dataset are shown in the last three lines.

Compared to the results generated with CA (Yu et al.,

2018) and GMCNN (Wang et al., 2018), CLGN eliminated the

phenomenon of blurring and distortion in the repair region,

and the generation results was smoother and achieved a perfect

transition from the damaged region to the undamaged region.

MEDFE (Liu et al., 2020) and RFR (Li et al., 2020) offer

excellent inpainting performance when the area to be repaired

is small. However, for a large area of masks, they showed a

wavy visual blur of water, which affects the overall observation

effect of the inpainting image. Compared with MADF (Zhu

et al., 2021), our GAM attention module-based method is more

robust and stable depending on the good results of the local

refinement network.
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4.2.4. User study

Because the evaluation metrics are not exactly fit human

perception, we performed a user study on the Google Forms

platform to further compare the visual quality of our method

with six other mainstream image inpainting methods. For

comparison, we randomly selected 10 pairs of CelebA (Liu

et al., 2015) and CelebA-HQ (Karras et al., 2017), where each

pair contains two inpainting images, one by a comparable

method and another by our method. Note that the input images

are covered by the same masked region. Then, we invited 24

volunteers for choosing the more natural and realistic images

from each pair. In the end, we totally collected 2,880 votes. From

Figures 7, 8, it can be concluded that our method is significantly

more likely to be chosen than the other six methods, indicating

that the visual quality of inpainting images of our method

is superior.

4.3. Ablation studies

To verify the effectiveness of the loss function and a

multistage network in our proposed method, ablation studies

were performed on CelebA (Liu et al., 2015) and CelebA-HQ

FIGURE 9

The output images of three subnetworks.

(Karras et al., 2017). The ablation experiment in this study

as divided into three parts, which analyze the weighted loss

network design, and GAM, respectively.

4.3.1. Network design

There are three subnetworks in our method: crude

inpainting work NetC , local development network NetL, and a

global attention-based network NetG. By comparing different

variants of CLGN, the effectiveness of our network design can

be verified and evaluated. Figure 9 shows the visual comparison,

and Table 3 presents the corresponding numerical results. Note

that we used incomplete images with one central square hole size

of 128× 128.

By comparing the results of “NetC” (C), “NetC +NetL” (C+

L), “NetC +NetG” (C + G), “NetC +NetL +NetG” (C + L+ G)

in Table 4, we conclude that our proposed a multistage network,

especially the global attention-based network, has a great effect

on the inpainting results. This is probably because different types

of networks can handle different types of visual artifacts. Hence,

the more types and number of networks, the better the image

processing effect.

In addition, we analyzed our proposed method by

comparing the inpainting results of three subnetworks and drew

a conclusion from Figure 9 that the visual quality of the output

images is getting better.

As shown in the first row of Figure 9, since the role of NetC

is to repair the image initially, the output image has a small

range of blur. Moreover, NetL removes local blur, especially

those in the face by using the local information and NetG,

finally, recovers complete semantic information and the image

is restored to a maximum extent.

TABLE 4 The ablation of attention mechanism on CelebA.

Strategy PSNR SSIM FID LPIPS

w/o GAM 21.43 0.892 11.28 0.203

w/one CBAM 21.68 0.907 7.90 0.169

w/one GAM 21.79 0.923 8.12 0.178

w/three CBAM 22.98 0.976 7.13 0.126

TABLE 3 The ablation of network design on CelebA and CelebA-HQ data sets.

CelebA data set CelebA-HQ data set

Network C C + L C + G C + L + G Network C C + L C + G C + L + G

ℓ1(%)† 7.16 6.98 7.03 6.82 ℓ1(%)† 4.29 4.54 4.57 4.42

PSNR‡ 23.01 23.05 23.08 23.14 PSNR‡ 26.03 26.37 26.35 26.48

SSIM‡ 0.948 0.971 0.969 0.980 SSIM‡ 0.948 0.977 0.974 0.988

‡Higher is better.
†Lower is better.
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FIGURE 10

The outputs of di�erent network frameworks with di�erent attention mechanisms. Here “C” indicates a crude inpainting network, “L” means a

local refinement network, and “G” means a global refinement network without any attention mechanism. “G_CBAM” means a global refinement

network based on CBAM, while “G_GAM” means a GAM-based global refinement network. Obvious di�erences on the faces are highlighted by

red boxes. The face images are adapted from the celeba-HQ dataset, which comes from Karras et al. (2017).

TABLE 5 The ablation of loss functions on the CelebA data set.

Strategy PSNR SSIM FID LPIPS

w/o reconstruction loss 23.01 0.958 7.62 0.128

w/o adversarial loss 22.93 0.931 7.27 0.134

w/o TV loss 23.04 0.943 7.31 0.151

w/o perceptual loss 22.73 0.907 7.18 0.133

w/o style loss 22.98 0.972 7.23 0.136

All 23.14 0.980 7.11 0.124

4.3.2. Attention mechanism

To study the key role of GAM in the network, we conducted

an ablation experiment on it. We attempted the following

situations: remove the attention mechanism, place CBAM, and

deploy GAM. The experimental results are presented in Table 4.

From Table 4, it can be concluded that FID is greatly affected.

while others are only a little affected by the attentionmechanism.

Moreover, compared to CBAM, GAM has an excellent effect on

facial image inpainting.

Next, we analyzed and compared the visual results of the

different networks in Figure 10. From Figure 10, the results of

“NetC+NetL” can only roughly repair the whole image, but there

are artifacts or mismatches in the eyes, the mouth, and other

parts. In contrast, attention mechanism-based network is more

coordinated in global semantics and has a high similarity with

the original image.

4.3.3. Loss functions

In our study, we introduced five loss functions, namely

reconstruction loss, adversarial loss, TV loss, perceptual loss,

and style loss. Then, we conducted ablation experiments on the

CelebA-HQ (Karras et al., 2017) dataset by removing these five

loss functions from the network and analyzing the PSNR, SSIM,

FID, and learned perceptual image patch similarity (LPIPS)

values of the inpainting images. Note that we used incomplete

images with one center square hole size of 128 × 128. From

Table 5, it can be concluded that reconstruction loss plays

the most critical role in performance optimization and that

perceptual loss and style loss have the least impact on the

performance of image inpainting.

5. Conclusions and future works

Facial image inpainting technology has practical significance

in many fields. In this study, we proposed a multistage GAN

(CLGN) for GAM-based facial image inpainting. This method

combined the normalization of feature layer output in a deep

convolutional GAN with the guidance of GAM to improve the

robustness and accuracy of image detail recovery. As human
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faces have a common structure with different features such as

the nose, the mouth, and the eyes, a multistage (crude-local-

global) network can play the complete restoration role in distinct

parts. Moreover, a skip connection was introduced using an

encoder-decoder network to compensate for the loss of features

due to down-sampling. The proposed method was compared

with several inpainting methods on CelebA (Liu et al., 2015) and

CelebA-HQ (Karras et al., 2017), and it had better performance

than the mainstream traditional image inpainting method in

both qualitative and quantitative analyses.

However, from the perspective of inpainting results,

although our methods can predict a reasonable result according

to the incomplete image, there are still some inevitable

differences in color and texture details compared to the actual

values. The guidance of structural information ensures its overall

structure to some extent, but it is difficult to approach the true

value for high-level semantic repairs such as the human eyes

and mouths. From the perspective of the training process, large

datasets can ensure that network training fits the model better,

but at the same time, the long training time of the network

becomes a thorny problem. Therefore, in subsequent study, we

should focus on the facial image inpainting of higher semantics,

which can ensure the credibility of the results and bring them

closer to their actual value. At the same time, when designing

a network for large data sets, network performance should be

guaranteed and network training time should be minimized.
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Music therapy is a common method to relieve anxiety and pain in cancer patients

after surgery in recent years, but due to the lack of technical and algorithmic support,

this therapy is not particularly stable and the therapeutic effect is not good. In this

study, a neural network robotic system based on breast cancer patients was designed

to analyze the effect of music relaxation training on alleviating adverse reactions after

chemotherapy in breast cancer patients. Firstly, this paper introduces the necessity of

neural network robot system research under the background of music therapy, and

then summarizes the positive effect of music relaxation therapy on alleviating adverse

reactions after chemotherapy in breast cancer patients, finally, uses neural network

robot system to construct music therapy system. The experimental results show that

the new music therapy proposed in this study has a good effect in alleviating the

adverse reactions of breast cancer patients after chemotherapy, and the cure rate is

increased by 7.84%. The research results of this paper provide reference for the next

development of neural network robot system in the medical field.

KEYWORDS

breast cancer patients, alleviate adverse reactions, music therapy, neural network robot
system, breast cancer

1. Introduction

Breast cancer patients have to give up or interrupt chemotherapy because they cannot
tolerate the adverse reactions brought by chemotherapy, which ultimately affects the therapeutic
effect. The purpose of this manuscript is to use music relaxation training to alleviate adverse
reactions during chemotherapy, promote muscle and nerve relaxation of patients, reduce anxiety
and pain of patients, and provide reference value for improving the quality of life of patients and
formulating cure measures.
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Alleviating the adverse reactions of patients during treatment
is the focus of treatment work, and also the research focus of the
medical community. Fu Yali evaluated the adverse effects of multi-
target tyrosine kinase inhibitors in the treatment of gastrointestinal
tumors. Finally, it was concluded that multi target tyrosine kinase
inhibitors have a good effect in the treatment of mild or moderate
adverse reactions (Fu et al., 2018). Ji Jing analyzed the effect of
high-quality nursing on relieving adverse reactions of liver cancer
treatment. Finally, high-quality nursing intervention in the treatment
of liver cancer can reduce the incidence of surgical pain and
postoperative adverse reactions (Jing, 2020). Deshmukh Vineeta
applied the nano particle system to the adverse reactions during
cancer chemotherapy. Practice showed that this system cannot
only explore the delivery effect of drugs, but also reduce the
systemic toxicity of patients (Vineeta, 2021). Yang Qian explored
the role of chemical photothermal combination therapy in inhibiting
adverse reactions of cancer chemotherapy by constructing a porous
nano particle system. The research showed that this therapeutic
approach showed a strong anti-cancer therapeutic effect (Qian
et al., 2018). Giavina-Bianchi Pedro reviewed the common adverse
reactions caused by cancer chemotherapy drugs - hypersensitivity
reactions. It was concluded that rapid drug desensitization can
minimize allergic reaction when hypersensitivity occurs (Giavina-
Bianchi et al., 2017). Demaria Marco believed that many genotoxic
chemotherapy would produce adverse reactions, and pointed out
that aging cells would cause some side effects of chemotherapy,
and provide a new target for reducing the toxicity of anti-cancer
therapy (Marco, 2017). Singh Kanchanlata discussed the effects
of different antioxidants and their analogues on adverse reactions
during chemotherapy. Comprehensive data showed that antioxidant
supplementation during chemotherapy can improve the therapeutic
effect and improve the quality of life of patients (Singh et al., 2018).
These researches on relieving adverse reactions of patients are still of
reference value, but they have not been applied to music relaxation
training.

With the continuous updating of therapeutic techniques, music
relaxation training (music therapy) has achieved good results in
recent years. Sandler Hubertus analyzed the role of compact disc
music in the treatment of patients with depression or anxiety
disorder, and finally found that some excellent music can induce
patients to have a relaxed state and subjective well-being (Hubertus,
2017). Ghezeljeh T. Najafi studied the effects of massage and music
on pain intensity and anxiety intensity of burn patients. The research
results showed that music, massage and the combination of these
two interventions are effective in reducing pain and anxiety intensity
(Najafi Ghezeljeh et al., 2017). Nelson Kirsten analyzed the effect
of introducing music to adolescents before surgery to reduce pain
and anxiety. Practice showed that during the operation, the pain
and anxiety of teenagers have been significantly reduced (Nelson
et al., 2017). Liao Juan summarized the current situation of the
application of the five elements music therapy in the depression
psychology of cancer patients. The study found that, as a simple and
effective intervention, this treatment method reduced the anxiety and
depression of cancer patients, and provided an effective way for better
self-management in cancer treatment (Liao et al., 2018). Bradt Joke
applied music relaxation training to dental treatment, and finally
found that the anti-anxiety effect of music can reduce the anxiety
state and pain of patients to a certain extent (Bradt and Teague,
2018). Pradopo Seno combined aromatherapy and music therapy
for dental treatment of pediatric patients. Practice showed that

aromatherapy and music therapy can divert children’s attention and
reduce their anxiety (Pradop et al., 2017). Golino Amanda J studied
the effect of active music therapy intervention on physiological
parameters of patients in intensive care unit. The study found that
the sleep quality of patients was significantly improved after music
intervention (Golino et al., 2019). The above application of music
therapy in the medical field is more detailed, but it does not involve
the alleviation of adverse reactions of chemotherapy in breast cancer
patients.

During the treatment of breast cancer, many patients are troubled
by the adverse reactions caused by chemotherapy all the time, and
what people can do now is to alleviate these adverse reactions.
Conventional treatment methods have certain defects, and it is
inevitable that patients’ psychological and physiological problems
would not be taken into account. Music relaxation training is used to
alleviate adverse reactions of patients, which is conducive to reducing
anxiety and pain. In this manuscript, neural network robot system
is applied to music therapy to improve the relief effect of music
relaxation training and change the postoperative quality of life of
patients. Experimental results show that the music therapy method
proposed in this manuscript has a good effect in alleviating the
adverse reactions of breast cancer patients during chemotherapy,
reducing the anxiety and pain of patients.

2. Music therapy in the context of
neural network robot system

In recent years, robot system has become an important research
and application field. Many robots are used to complete complex and
even dangerous tasks. With the progress of computer science and
technology such as sensor technology, medical imaging technology,
artificial neural network technology, and modern information
processing, robot technology has been applied to the medical
field, resulting in medical robots. Medical robots are mainly used
for analyzing patients’ conditions, assisting in surgery, therapeutic
training, rehabilitation treatment, etc. Because medical data needs
to be stored in large quantities, medical robots must perform
a large amount of calculations to complete complex tasks, and
neural networks can calculate and integrate large amounts of data,
which is why neural network robot systems are gradually entering
the medical field.

With the increasing emphasis on music therapy in the medical
community, its development space has been greatly improved.
As shown in Figure 1, music therapy is a relatively complex
discipline, which includes not only medicine, but also psychology
and neural network robot system. AI is a very broad science, which
consists of different fields, such as machine learning, computer
vision, etc. In general, one of the main goals of AI research
is to enable machines to be competent for some complex tasks
that usually require human intelligence. Under the background of
neural network robot system, music therapy is used for various
diseases, such as mental disease, nervous system, cardiovascular
disease, etc. As a new therapeutic approach, music therapy is
not mature enough, and problems such as untimely monitoring
of the treatment process and difficult evaluation of the treatment
effect often occur. The emergence of neural network robot system
has brought a development opportunity for the innovation of
treatment methods. The application of neural network and robot
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FIGURE 1

Scope of music therapy.

technology to music therapy can further improve the monitoring
effect and the accuracy of information acquisition. In addition,
relevant evaluation models and music recommendation systems
can also be established by using relevant machine learning
algorithms.

3. Necessity of music relaxation
training

Relaxation training can offset the negative effects of physiological
and psychological stress, restore the balance and coordination
of human body, psychology and spirit, help individuals to face
the challenges of life in a healthier way, and make the human
body’s involuntary reactions, such as heartbeat, respiration, blood
pressure, and adrenaline secretion under autonomous control. At
present, relaxation training has been widely used in patients with
bronchial asthma, coronary heart disease, hypertension, diabetes,
cancer, surgery, childbirth and chemotherapy, and has achieved
relatively positive results. During chemotherapy for cancer patients,
relaxation training can improve their anxiety, depression and other
negative emotions by reducing nerve stimulation. When patients
have a positive and good attitude, it would increase their resistance,
and would also have a certain role in reducing the spread of
cancer cells. To sum up, breast cancer patients need chemotherapy
after surgery, which would cause psychological and physiological
discomfort. Music relaxation training can reduce the stress response
of tumor patients, regulate the emotion of tumor patients, reduce
anxiety and depression, improve physical symptoms, alleviate pain,
and enhance immune function.

4. Positive role of music relaxation
training in alleviating the adverse
reactions of chemotherapy in breast
cancer patients

4.1. Alleviating adverse reactions of
chemotherapy

The patient has just undergone the treatment of breast cancer
surgery and is still in a state of serious psychological and physiological
stress. The ongoing chemotherapy would further weaken the immune
system of the body, reduce the body’s resistance, and produce
various forms of adverse reactions. Playing some gentle music during
relaxation training can create a comfortable and calm treatment
environment for patients, eliminate the negative impact of physical
and mental pressure, restore physical and mental balance and
harmony, and help patients better cope with the pain caused by
cancer. In this way, the patient’s heart rate, respiration, blood
pressure, adrenaline secretion, etc., would become stable, and the
adverse reactions during chemotherapy would also be reduced.

4.2. Reducing the anxiety of patients
during chemotherapy

Anxiety is a complex emotional state of fear of adverse
consequences. A certain amount of anxiety helps to improve the
psychological tension of the body and enhance the adaptability to
stressors. If it is too strong, it would weaken this ability, and if it
is too weak, it would lack an objective evaluation of threatening
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FIGURE 2

Overall framework of music therapy system.
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FIGURE 3

Application process of recommendation algorithm in music
recommendation.

situations. Relaxation training combined with music can make the
whole body of the patient enter a relaxed state, and keep the heart,
brain and other important organs in a stable state. Anxiety would
decrease with the gradual relaxation of the body functions. The mood
of the patient would become better, and the anxiety state would
become weaker, which is conducive to improving the treatment effect
during chemotherapy.

5. Methods and techniques of music
relaxation training

5.1. Music therapy system

Combined with the neural network robot system, this manuscript
proposes a new music therapy system. As shown in Figure 2, the
specific functions of the system are divided into three parts: emotional
evaluation, intelligent selection and real-time monitoring.

Affective assessment is the emotional assessment of breast cancer
patients in the form of voice. The voice recorder or other intelligent
voice equipment is used to collect the patient’s words, and then stored
in the voice data center. Finally, the emotional state of the patient
is divided into three levels: relaxed, normal, and excited by voice
analysis equipment.

5.1.1. Intelligent selection
According to the evaluation results, different types of music are

matched for patients with different emotional states through music
recommendation algorithms, that is, the first stage of music therapy.

5.1.2. Real time monitoring
This part mainly uses machine learning technology and

physiological sensors to monitor the heart rate indicators of
breast cancer patients in real time, and then analyzes the current
psychological status of patients according to specific indicators.
When the patient’s heart rate index changes constantly, the index
information would be transmitted to the computer in time, and
then the computer would judge the heart rate index in the form of
machine learning.

5.2. Establishment of music therapy music
library

As the emotional state is divided into three levels: relaxed,
normal and excited, the music therapy music library is also mainly
composed of relaxed, normal and excited music. In addition, digital
signal processing technology is used to describe the characteristics of
different types of music, quantify the characteristics, and classify the
types of music. The music library selects thousands of different styles
of music works, and then extracts sound features from their music
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FIGURE 4

Number of adverse reactions of patients under two chemotherapy methods.
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FIGURE 5

Anxiety score of breast cancer patients within 5 weeks under two treatment methods.

signals. Special diagnosis extraction includes melody speed, rhythm,
frequency, length of time, melody, timbre, lyrics features, etc.

5.3. Feedback regulation system of music
therapy based on biosensor

Biosensors are sensitive devices to biological reactions, which
can convert the concentration of biological reactions into electrical
signals (Sopan and Patil, 2022). The biosensor has the advantages
of good selectivity, high sensitivity, fast analysis speed and low
cost, and it can conduct online continuous monitoring in complex
systems. This system uses the biosensor module that can be used
for ECG monitoring to collect the heart rate information of breast
cancer patients in real time. Heart rate information can reflect
the psychological state of patients in real time. When patients are
excited, normal and relaxed, their heart rate signals would change
to varying degrees. The feedback regulation system would have a
set threshold value, and then automatically adjust the music type
and level according to the threshold value and heart rate signal
value. The specific adjustment mechanism is that when the heart
rate signal is greater than the threshold value, the system would

play highly soothing music; when the heart rate signal is lower than
the threshold value, the system would play gently soothing music to
adjust the patient’s emotional state; when the heart rate signal value
is between two thresholds, the system would play moderate soothing
music.

5.4. Music recommendation algorithm for
alleviating adverse reactions of
chemotherapy in breast cancer patients

In order to make the recommendation effect more
comprehensive, the music recommendation algorithm proposed in
this manuscript to alleviate the adverse reactions of chemotherapy
in breast cancer patients includes content-based recommendation
algorithm, collaborative filtering based recommendation algorithm,
Item based Collaborative Filtering (Item-CF) recommendation
algorithm and recommendation algorithm based on the weighted
fusion of content and collaborative filtering. The application process
of the recommendation algorithm is shown in Figure 3. First,
data preprocessing and recommendation algorithm processing are
performed on the music dataset, and then the corresponding song
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FIGURE 6

Pain score of breast cancer patients within 5 weeks under two treatment methods.

list would be generated after the operation, and finally recommended
to breast cancer patients.

5.4.1. Content based recommendation algorithm
According to the text information of music content, the

preference matrix of breast cancer patients is obtained by using the
Term Frequency - Inverse Document Frequency (TF-IDF) method.
Assuming that the set of given music is O =

{
O1,O2,O3, · · · ,Oq

}
,

the characteristic (key) phrase is I = {x1, x2, x3, · · · xm}, and Oy
represents the fourth music, the formula of word frequency is:

GTF
(
x, y

)
=

f
(
x, y

)∑
k∈y fk,y

(1)

Among them, f
(
x, y

)
is the number of occurrences of word x in

music y;
∑

k∈y fk,y is the total number of occurrences of all words in
music y; k ∈ y is the number of occurrences of words in music y. The
anti document frequency formula is:

GIDF (x) = log
Q

q (x)
(2)

Among them, Q refers to the number of all music, and q (x) refers
to the number of music that has appeared in the feature word x of q.
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Cure rate under two treatment methods.

The combined TF-IDF weight of feature word x in music y is
calculated as:

GTF−IDF
(
x, y

)
= GTF

(
x, y

)
× GIDF (x) (3)

Among them, GTF−IDF
(
x, y

)
represents the word corresponding

to the characteristic word x in the y music. It is normalized:

Zyx =
GTF−IDF

(
x, y

)√∑|I|
x=1 GTF−IDF

(
x, y

)2
(4)

Among them, Zyx refers to the normalization of the x word of the
y music, so the music preference matrix of breast cancer patients can
be obtained:

Gu =


Z11 Z12 · · · Z1q

Z21 Z22 · · · Z2q
...
...

...

Zq1 Zq2 · · · Zqq

 (5)

5.4.2. Collaborative filtering recommendation
algorithm

Collaborative filtering algorithm is a more famous and commonly
used recommendation algorithm, which is based on the mining of
user historical behavior data to find user preferences, and predict the
products that users may like to recommend. It must first find “similar
breast cancer patients”, and then look for “similar items that breast
cancer patients like”. First, cosine similarity is used:

Zuv =

∣∣Q (u)⋂Q (v)
∣∣

√
|Q (u)| |Q (v)|

(6)

Formula (6) is improved, including:

Zuv =

∑
a∈Q(u)

⋂
Q(v)

1
lg(1+|Q(a)|)

√
|Q (u)| |Q (v)|

(7)

The reciprocal part of the molecule in Formula (7) is used to
punish the popular music in the common preference list of breast
cancer patients u and v, and reduce the impact of popular songs on
the similarity of breast cancer patients. The formula of breast cancer
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TABLE 1 Satisfaction of four categories of personnel with new music therapy.

Very satisfied Satisfied Dissatisfied

Number of
people

Proportion (%) Number of
people

Proportion
(%)

Number of
people

Proportion (%)

Patient 89 59.3 43 28.7 18 12

Family members 85 57.7 41 27.3 24 16

Therapist 78 52 47 31.3 25 16.7

Hospital leaders 69 46 52 34.7 29 19.3

According to the data in this table, most of the four types of people were very satisfied with the new music therapy, and very few were dissatisfied, which means that the new music therapy is
recognized by everyone.

patients’ preference for songs is:

G
(
u, y

)
=

∑
v∈S(u,K)

⋂
Q(y)

ZuvRvy (8)

Among them, G
(
u, y

)
refers to the preference degree of breast

cancer patients u for song y; S (u,K) refers to the first K breast
cancer patients with the most similar interest to breast cancer patients
u; Q

(
y
)

refers to the collection of breast cancer patients’ behavior
history for song y; Zuv refers to the preference similarity between
breast cancer patients u and v; Rvy refers to the preference score
matrix of breast cancer patients for song j.

5.4.3. Item-CF based recommendation algorithm
Item-CF recommendation algorithm is to find similar items

through interest items and recommend similar items to breast cancer
patients. The similarity between songs is:

Zhy =

∣∣Q (h)⋂Q
(
y
)∣∣∣∣Q (h)∣∣ (9)

Among them,
∣∣Q (h)∣∣ indicates the number of songs h loved

by multiple breast cancer patients, and the molecule indicates the
number of songs h and y loved by multiple breast cancer patients.
After punishing popular music, the similarity is calculated as:

Zhy =

∣∣Q (h) ∣∣⋂∣∣Q (y)∣∣√∣∣Q (h)∣∣ ∣∣Q (y)∣∣ (10)

Formula (10) reduces the weight of song y and reduces the
possibility that any song is similar to a popular song.

The Item-CF recommendation algorithm is to first establish
an inverted list of breast cancer patients to songs to get the
corresponding relationship between breast cancer patients and songs;
secondly, a co-occurrence matrix is constructed through the inverted
list, and the similarity between the two music is calculated according
to Formula (10) to obtain the similarity matrix between each music;
finally, the preference of breast cancer patients for songs is calculated.
The formula for calculating the preference of breast cancer patients
for songs is:

G
(
u, y

)
=

∑
y∈S(h,K)

⋂
Q(u)

ZhyRuy (11)

Among them, Q (u) refers to the collection of songs loved by
breast cancer patients u; S

(
h,K

)
refers to the collection of the top

K songs most similar to song h; Zhy refers to the similarity between
music h and music y; Ruy refers to the preference score of breast
cancer patients u for music y.

D. Music recommendation algorithm based on weighted fusion
of content and collaborative filtering.

The algorithm preference formula is:

G = βPu + (1− β) P
(
u, y

)
, β ∈ R, 0 ≤ β ≤ 1 (12)

Among them, β refers to the weight of breast cancer patients’
preference matrix, and (1− β) refers to the weight of breast cancer
patients’ preference for songs in the collaborative filtering algorithm.
The lower the value of β , the greater the impact of similar preferences
between breast cancer patients or items on recommendations. With
the increase of the value of β , the impact of music content on
recommendations is also increasing. The first K values are taken,
and K types of music lists are obtained, which are recommended to
corresponding breast cancer patients u.

6. Evaluation of experimental results
of new music therapy in alleviating
adverse reactions of chemotherapy in
breast cancer patients

In order to better alleviate the adverse reactions of chemotherapy
in breast cancer patients, this manuscript applies the neural network
robot system to music training, forming a new music therapy. The
following experiments are designed for the practical effect of the
new music therapy. This manuscript first investigates the number of
adverse reactions of breast cancer patients during chemotherapy in
a large tumor hospital under the application of new music therapy.
Among them, chemotherapy method 1 represents conventional
treatment techniques, and chemotherapy method 2 represents new
music therapy. The specific time is divided into 1, 2, 3, 4, and 5
months. The investigation results are shown in Figure 4.

It can be seen from the histogram in Figure 4 that during the
5-month chemotherapy period, the number of adverse reactions of
breast cancer patients using chemotherapy method 1 exceeded 10
times per month, and did not decrease gradually with the increase
of chemotherapy time. In the application of chemotherapy method
2, although the number of adverse reactions was 10 or more 1 and
2 months later, the number of adverse reactions in the following
3 months was significantly reduced, and the overall trend was
gradually reduced with the increase of chemotherapy time.

Anxiety and pain are the most common physical phenomena
in breast cancer patients during chemotherapy. If the treatment
can reduce the anxiety and pain of patients, then the treatment
is undoubtedly successful. In order to test whether the new music
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therapy can reduce the anxiety and pain of patients, the anxiety
scores and pain scores of breast cancer patients within 5 weeks were
investigated using the new music therapy and conventional therapy.
Among them, patients in Group A applied conventional therapy,
while patients in Group B applied new music therapy. The higher the
score, the stronger the sense of anxiety and pain. The specific findings
are shown in Figures 5, 6.

In the above histogram, the first represents the score of anxiety
within 5 weeks, and the second represents the score of pain within
5 weeks. From the weekly score, with the increase of treatment
time, the anxiety and pain of patients in Group A did not decrease
significantly, and the score basically remained between 75 and 80. In
contrast, although the anxiety and pain of patients in Group B were
more than 70 points in the first week, they gradually decreased from
the second week, and the scores were lower than 70 points. Obviously,
with the increase of treatment time, the anxiety and pain of patients in
Group B decreased, which indicates that the application of new music
therapy is effective.

As a common malignant tumor, breast cancer also has a certain
cure rate. This manuscript proposes that the main purpose of the new
music therapy is to alleviate the adverse reactions of chemotherapy in
breast cancer patients, but whether it can make a contribution to the
cure rate of breast cancer still needs practice. In the case of music
therapy and conventional therapy, the cure rate of breast cancer
patients in a large tumor hospital within 48 courses of treatment
was investigated. Every four courses of treatment were a stage. The
investigation results are shown in Figure 7.

It can be concluded from the trend of the curve that the cure
rate of breast cancer patients under conventional treatment did not
increase gradually with the increase of the course of treatment, and
the cure rate at each stage fluctuated greatly, but the overall cure
rate was below 25%. The cure rate of breast cancer patients under
music therapy was lower than that of conventional therapy in 4,
8, and 12 courses of treatment, because the application of new
treatment methods is not very suitable. From the 16th course of
treatment, the cure rate showed a steady rise, but the overall cure
rate was also below 30%. In contrast, the overall cure rate of music
therapy was significantly higher than that of conventional therapy,
about 7.84% higher.

It is common for breast cancer patients to have adverse reactions
during chemotherapy, and the relevant treatment methods must be
able to alleviate them. The above surveys showed the effect of the new
music therapy. In order to have a more comprehensive and objective
understanding of the practical results of this treatment method, this
manuscript investigated the satisfaction of patients, family members,
therapists and hospital leaders in a large cancer hospital with the new
music therapy. The specific samples were 150 patients, 150 family
members, 150 therapists and 150 hospital leaders. The degree of
satisfaction was divided into three levels: very satisfied, satisfied and
dissatisfied. The survey results are shown in Table 1.

7. Conclusion

Breast cancer is a common malignant tumor disease among
many cancers, and many patients are troubled by adverse reactions
during chemotherapy. During routine chemotherapy, anxiety and
pain have always been the “nightmare” that patients are difficult
to get rid of. With the progress of science and technology and the
continuous updating of therapeutic techniques, music therapy has
gradually entered the field of chemotherapy. In this manuscript, the
neural network robot system is applied to music relaxation training,
forming a new type of music therapy, and it is used to alleviate the
adverse reactions of chemotherapy in breast cancer patients. The
research showed that the new music therapy is effective, and it also
provided reference value for the development of disease diagnosis
and examination technology in the future.
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Filter pruning is widely used for inference acceleration and compatibility with

o�-the-shelf hardware devices. Some filter pruning methods have proposed

various criteria to approximate the importance of filters, and then sort the filters

globally or locally to prune the redundant parameters. However, the current

criterion-based methods have problems: (1) parameters with smaller criterion

values for extracting edge features are easily ignored, and (2) there is a strong

correlation between di�erent criteria, resulting in similar pruning structures. In

this article, we propose a novel simple but e�ective pruning method based on

filter similarity, which is used to evaluate the similarity between filters instead

of the importance of a single filter. The proposed method first calculates the

similarity of the filters pairwise in one convolutional layer and then obtains the

similarity distribution. Finally, the filters with high similarity to others are deleted

from the distribution or set to zero. In addition, the proposed algorithm does

not need to specify the pruning rate for each layer, and only needs to set the

desired FLOPs or parameter reduction to obtain the final compression model.

We also provide iterative pruning strategies for hard pruning and soft pruning to

satisfy the tradeo� requirements of accuracy and memory in di�erent scenarios.

Extensive experiments on various representative benchmark datasets across

di�erent network architectures demonstrate the e�ectiveness of our proposed

method. For example, on CIFAR10, the proposed algorithm achieves 61.1% FLOPs

reduction by removing 58.3% of the parameters, with no loss in Top-1 accuracy

on ResNet-56; and reduces 53.05% FLOPs on ResNet-50 with only 0.29% Top-1

accuracy degradation on ILSVRC-2012.

KEYWORDS

network acceleration, filter pruning, edge intelligence, network compression,

convolutional neural networks

1. Introduction

Deep neural networks(DNNs) have become one of the most widely used algorithms

in image classification (Krizhevsky et al., 2012), object detection (Ren et al., 2015), video

analysis (Graves et al., 2013), and other fields with far surpassing accuracy than traditional

algorithms. However, the high computing power and memory requirements of DNNs make

it difficult for edge devices to deploy them with low latency, low power consumption,

and high precision (Uddin and Nilsson, 2020; Veeramanikandan et al., 2020; Zhang et al.,

2020; Fortino et al., 2021). To address this problem, various methods have been proposed

for network compression and inference acceleration, including lightweight architecture

design (Howard et al., 2017; Zhang X. et al., 2018), network pruning (LeCun et al., 1990;

Hassibi and Stork, 1993; Li et al., 2016), weight quantization (Courbariaux et al., 2015;

Hubara et al., 2017), matrix factorization (Denton et al., 2014), and knowledge distillation
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(Hinton et al., 2015; Gou et al., 2021). Quantization compresses the

model by reducing the size of the weights or activations. Matrix

factorization is to approximate the large number of redundant

filters of a layer using a linear combination of fewer filters. And

knowledge distillation trains another simple network by using the

output of a pre-trained complex network as a supervisory signal.

Among them, network pruning compresses the existing network

to reduce the requirements for space and computing power, to

achieve real-time operation on portable devices. According to

the granularity of pruning, network pruning methods can be

divided into structured and unstructured pruning. Unstructured

pruning requires specialized hardware and software for effective

reasoning, and random connections will lead to poor cache locality

and memory jump access, which makes acceleration very limited.

Among structured pruning methods, filter pruning has received

widespread attention because of its advantages of being directly

compatible with current general-purpose hardware and highly

efficient basic linear algebra subprogram (BLAS) libraries. The

research in this paper belongs to the category of structured pruning,

that is, the pruning granularity is at the level of convolution kernels.

Formally, for a CNN with weights of W and L convolutional

layers, and Ni filters in each layer, determining which filter needs

to be pruned is a combinatorial optimization problem, that can be

expressed as follows (Zhou et al., 2019):

{

minM C(D;M ◦W)

minM
∑L

i=1 ‖Mi‖1
(1)

where M is the mask of the filter, and C is the cost function of the

CNN on dataset D. If there is a subset of convolution kernels such

that the network can be pruned without performance degradation,

it will be required to perform 2
∑L

i=1 Ni search and evaluation

steps. For the current large network structure, this is an NP-hard

problem, which is difficult to accurately solve by searching all

possible subsets.

Among the simplest methods is the greedy method, or saliency-

based method, which sorts weights by importance. The core

problem is how to measure the importance of the filters. Recently

a variety of filter pruning methods have been proposed to design

more effective pruning guidelines. Hu et al. (2016) proposed

using the average percentage of zero values (APoZ) to measure

the importance of the activation value, which is defined as the

proportion of zeroes in the activation values. Li et al. (2016) put

forward a hypothesis based on the absolute value: the smaller

the l1 − norm of the filter is, the less its influence on the final

result. Molchanov et al. (2016) utilized the absolute value of

the first-order term in the expansion of the objective function

relative to the activation function as the criterion for pruning. Liu

et al. (2017) introduced a channel scaling factor to the BN layer,

added l1 regularization to make it sparse, and then pruned the

filters with a smaller scaling factor. He et al. (2019) developed

a pruning method based on a geometric median to remove

redundant filters.

Although the above works have achieved notable achievements,

there are still many limitations: (1) Due to the different

distributions of the values of the convolution kernels in different

layers, the abovementioned pruning methods based on global or

local criteria for sorting filters may ignore filters with smaller

values in the sorting but extract edge features. Huang et al. (2020)

compared different pruning standards and found that they have

strong similarities, and that the importance of the obtained filters is

almost the same, resulting in similar pruning structures. (2) Recent

work (Liu et al., 2018) shows that the pruning structure is the

key to determining the performance of the pruning model rather

than the inheritance weight. Manually setting the pruning rate of

each convolutional layer is equivalent to redesigning the network

structure completely, and improper pruning rate settings will result

in insufficient pruning or excessive pruning. In addition, for large

networks, it is very expensive to accurately calculate the importance

of the filters and set the pruning rate of each layer. (3) For special

network structures such as residual blocks, most works only prune

the channels of the middle layer of the block, which limits the space

available for pruning. (4) The pruning process and the large number

of fine-tuning required to restore the pruning performance lead to

an excessively long pruning cycle, which is also the direction that

needs to be optimized at present.

This paper focuses on the above problems and aims to improve

the network performance under the same compression ratio.

Therefore, we propose a channel pruning framework based on

filter similarity, and optimize the pruning redundancy criterion,

pruning strategy, pruning structure and pruning process, as shown

in Figure 1. Specifically, in the pruning criteria, different from

previous works which used precise rules to sort filters, we consider

the problem from another perspective, focusing on the correlation

of filters in one layer, and propose that two filters with high

similarity extract similar features, and the extracted features can

replace each other. In the pruning strategy, we do not need to

specify the pruning rate of each layer, and automatically determine

the pruning rate of each layer after determining the filter to be

deleted according to the redundancy condition. In the pruning

structure, we propose fine-grained pruning for special structures,

in which the input and output channels of each block are calculated

according to the redundancy condition constraints and then

pruned in units of groups, thus increasing the reliability selection

space for pruning channels. In addition, in the pruning process, for

the situation that a lot of fine tuning is needed in the existing works,

we perform a small amount of fine-tuning after each pruning of

the whole network, which improves the efficiency of pruning. To

summarize, our main contributions are as follows:

• We propose a novel method for estimating filter redundancy

based on filter similarity, which does not rely on precise

criteria to evaluate the importance of filters.

• The algorithm adaptively obtains the pruning rate of the layers

according to the redundancy degree of each layer, which is

difficult to determine in previous methods.

• The algorithm optimizes the channel pruning strategy of

the special network structure, allowing the input and output

channels of the residual block to be removed, further

increasing the pruning space.

• The algorithm prunes the filters of the entire network at

one time, and adopts two different pruning processes, hard

pruning and soft pruning, which greatly reduces the large

amount of fine-tuning caused by layer-by-layer pruning.
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FIGURE 1

The pruning diagram of a convolutional layer. First, we compare all the filters in pairs, and then we count the distance set obtained, and put the filters

corresponding to the distance value below the soft threshold into the set to be pruned. Finally, the filters with a higher frequency are considered

redundant. The two methods of soft pruning and hard pruning are used to deal with redundant filters.

2. Related work

The typical work of network pruning is weight pruning

and filter pruning. Weight pruning prunes individual parameter

in the network to obtain a sparse weight matrix. Different

from weight pruning, filter pruning removes the entire filter

according to a certain measure. Filter pruning significantly reduces

storage usage and decreases the computational cost of online

inference. The key to filter pruning is the selection of filters,

which should yield the highest compression ratio with the lowest

compromise in accuracy. Based on the design of the filter

importance criterion, we empirically divide the filter pruning into

the following categories.

2.1. Based on magnitude

The simplest heuristic is to evaluate importance according

to the absolute value of the parameter (or feature output) and

then prune the part below the threshold by the greedy method,

which is called amplitude-based weight pruning. Li et al. (2016)

proposed using the absolute value of the weight as a measure of

its importance (Zhang H. et al., 2018; Zhang et al., 2022). For

structured pruning, group LASSO is often used to obtain structured

sparse weights, such as in Liu et al. (2015) and Wen et al. (2016).

Liu et al. (2017) introduced a channel scaling factor in the BN

layer and pruned the corresponding weights with small scaling

factors. In addition, the importance evaluation can also focus on

the activation value. Hu et al. (2016) proposed using the average

percentage of zero value (APoZ) to measure the importance of the

activation value.

2.2. Based on loss function

The assumption based on absolute value judgment is that

the smaller the absolute value of a parameter is, the smaller the

influence on the final result. We call this the “smaller-norm/less-

important” criterion, but this assumption is not necessarily true

(as discussed in Ye et al., 2018). Another method is to consider

the impact of parameter pruning on loss. LeCun et al. (1990) and

Hassibi and Stork (1993) proposed the OBD and OBS methods,

respectively, whichmeasure the importance of weights in a network

based on the second derivative of the loss function relative to the

weight (the Hessian matrix for the weight vector). The method of

Molchanov et al. (2016) was also based on Taylor expansion, but it

utilized the absolute value of the first-order term in the expansion

of the objective function relative to the activation function as the

criterion for pruning. This avoids the calculation of second-order

terms (i.e., the Hessian matrix). Lee et al. (2018) regarded the

absolute value of the derivative of the normalized objective function

with respect to the parameter as a measure of importance.

2.3. Based on the reconstructability of the
feature output

The thirdmethod is to consider the impact on the rebuildability

of the feature output, that is, minimizing the reconstruction error of

the pruned network for the feature output. Typically, methods such

as those of Luo et al. (2017) and He et al. (2017) identify channels

that need to be pruned byminimizing feature reconstruction errors.

Yu et al. (2018) proposed the NISP algorithm by minimizing

the reconstruction error of the penultimate layer of the network,
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and back-propagating the importance information to the front to

determine the channel to be pruned. Zhuang et al. (2018) proposed

the DCP method. On the one hand, additional discriminative

perception loss is added to the middle layer (to strengthen the

discriminative ability of the middle layer), and on the other hand,

the loss function of the error is also considered. The gradient

information of the two losses is synthesized for the parameters, and

the channels that need to be pruned are determined.

2.4. Other criteria

There are also other criteria based on the weights of the

importance of ranking. He et al. (2019) proposed a filter pruning

via geometric median (FPGM) method, the basic idea of which was

to remove redundant parameters based on the geometric median.

Lin et al. (2020) developed a method that was mathematically

formulated to prune filters with low-rank feature maps. Wang

et al. (2021) statistically modeled the network pruning problem

in a redundancy reduction perspective and finded that pruning

in the layer with the most structural redundancy outperforms

pruning the least important filters across all layers. Cai et al. (2022)

utilized a variant of the pruning mask as a prior gradient mask

to guide fine-tuning. The disadvantage of the greedy algorithm

is that it can only find local optimal solutions and ignores the

relationship between the parameters. Some studies have aimed

to consider the interrelationships among parameters to find a

better global solution. Peng et al. (2019) proposed the CCP

method, which considers the dependence between channels and

formalizes the channel selection problem as a constrained quadratic

programming problem. Wang et al. (2018) and Zhuo et al. (2018)

used spectral clustering and subspace clustering to explore the

relevant information in the channels and featuremaps, respectively.

With the development of AutoML research, such as AMC (He

et al., 2018b), RNP (Lin et al., 2017), and N2N learning (Ashok

et al., 2017), these tasks are all attempts to automate part of the

pruning process.

3. Methodology

In this section, we introduce in detail the pruning algorithm

based on the similarity of filters. The algorithm uses the similarity

between the convolution filters in the convolutional layer to obtain

network compression recommendations.

3.1. Motivation

Unlike current views of parameter importance-based pruning,

we show that the removal of any one of the channels will not

significantly impair the representational power of the network

as long as there are two sufficiently similar channels. We derive

theoretical support to justify the reasonability of our similarity-

based pruning approach. Assuming that the neural network has L

convolutional layers, Nl and Nl+1 represent the number of input

channels and output channels of the lth layer convolution layer,

respectively. F(l,i) represents the ith filter of the lth layer, and the

corresponding input feature map can be expressed as F (l,i) ∈

R
H×W×B, where H,W,B represent the height and width of the

feature maps, and the batch size, respectively. The tensor of the

connections of the lth and l+ 1th layers can be parameterized by

W ∈ R
Nl×Nl+1×K×K , 1 ≤ l ≤ L.

Considering two consecutive convolutional layers and using

non-linear activation h(•) after each linear convolution, then:

F(l+1,nl+1) =
∑

nl∈{1,...,Nl}

h
(

F(l,nl)
)

∗W(nl ,nl+1) (2)

whereW(nl ,nl+1) ∈ R
K×K is the nl-dimensional weight of the nl+1-

th convolution kernel, corresponding to the nl+1-th input feature

map. We explore and analyze the loss of representational power

brought about by removing one of two similar feature channels

and its filter. Suppose that F (l,i) and F (l,j) are two similar channels,

deleting the F (l,i), then for the pruned F
(l+1,nl+1)
p we have:

F
(l+1,nl+1)
p = h

(

F
(l,j)

)

∗

(

W(i,nl+1) +W(j,nl+1)
)

+
∑

nl 6=i,j

h
(

F(l,nl)
)

∗W(nl ,nl+1)
(3)

We use mean squared error (MSE) to quantify the loss of the

two feature maps before and after pruning:

L

(

F(l+1,nl+1),F
(l+1,nl+1)
p

)

=
(

Hl+1 ×Wl+1 × B
)−1
×

∥

∥

∥
F(l+1,nl+1) − F

(l+1,nl+1)
p

∥

∥

∥

2

2

=
1

al+1

∥

∥

∥

(

h
(

F
(l,i)

)

− h
(

F
(l,j)

))

∗W(i,nl+1)
∥

∥

∥

2

2

(4)

where al+1 = Hl+1 ×Wl+1 × B. For each feature map F
(l+1,nl+1)
p

in the l+ 1-th convolutional layer, the loss caused by removing the

feature map F (l,i) from the l-th convolutional layer, as defined in

Equation (4), admits the following upper bound:

L

(

F(l+1,nl+1),F
(l+1,nl+1)
p

)

≤ ε × min
j∈{1,...,Nl}

L

(

F
(l,i),F (l,j)

)

(5)

where ε =
al
al+1

K2
∥

∥

∥
W(i,nl+1)

∥

∥

∥

2

2
and K2 corresponds to the size

of each filter W(nl ,nl+1). Detailed derivation can be found in

Appendix.We can conclude fromEquation (5) that E is determined

by the size of the feature maps, the L2-norm of the convolution

kernel and its weights. In experiments, E is usually a value of the

order of 10−2, which means that the loss of removing one of the

similar channels is negligible, as long as there are sufficiently similar

channels to replace it.

In practice, our goal is to find similar channels and remove one

of them. However, computing the similarity of channels directly has

two apparent limitations. First, the activations of feature maps are

affected differently by different batches of data. Second, calculating

the similarity between all channels is inefficient for current large

CNN architectures. To solve these issues, we use the convolution

kernel as a unit for comparison. It can be seen from Equation

(2) that when the input feature maps are the same, the feature

maps obtained by similar convolution kernels are also identical,

and the parameters of the kernels are not affected by the data batch.
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FIGURE 2

The distance distributions of each layer of the network model parameters trained by VGG16 on the CIFAR10 and CIFAR100 datasets are shown in

(A, B). (C) The distance distribution of all convolutional layers in the third stage of ResNet-32/CIFAR10. (D) The third layer of ResNet-34/ILSVRC-2012.

Intuitively, we quantify the similarity of two kernels by Euclidean

distance, which is more commonly used in the analyses that

need to reflect a difference in dimensions. In addition, Euclidean

distance measures the distance between points in multidimensional

space and can remember the absolute difference of characteristics.

Therefore, for the lth convolutional layer:

D(l) = dist
(

Fl,j, Fl,k
)

, 0 ≤ j ≤ Nl+1, j ≤ k ≤ Nl+1

=
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(6)

where

dj,k =

√

√

√

√

√

Nl
∑

n=1

K
∑

k1

K
∑

k2=1

∣

∣W j
(

n, k1, k2
)

−Wk
(

n, k1, k2
)∣

∣

2
(7)

W j(n, k1, k2) is each weight in the filter F
(l,j). For the lth convolution

layer, we obtain a set of distances D(l), which contains the distances

between the jth filter and all other filters. The smaller the distance

is, the more significant the similarity between the two filters,

indicating that the filter has extracted features similar to those of

other filters.

We remove the repeated distance with the same subscript in

D(l), and perform statistical analysis on all values in the set. Statistics

show an interesting phenomenon that the distance distribution

of each layer is an approximately Gaussian distribution in the

trained network, as shown in Figure 2. The distance sets D(l) of

different layers in the network are distributed differently, and the

mean value even differs by an order of magnitude. However, the

distance distribution between the filters has partial jitters since the

convolutional layers, such as conv1 and conv2 of the VGG16, are

affected by the input data.

3.2. Filter pruning based on similarity

After the distance distribution of each convolutional layer is

obtained, how great can the distance between the two filters be
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determined to be similar? One of the methods is to get a minimum

distance value min[D(l)] each time, that is, to remove one filter

each time until the set requirement is reached. That is inefficient

and laborious for network structures with thousands of convolution

kernels. To obtain a set of redundant filters simultaneously, we first

need to set a threshold λ, and a pair of filters corresponding to

a distance less than this threshold are judged to be similar. Since

the distance distribution of each convolutional layer is different,

simply specifying the threshold of each layer will bring more

hyperparameter problems. How can a reasonable threshold be set

for each layer more efficiently with fewer hyperparameters?

Inspired by the empirical rule (3σ ) of a Gaussian distribution,

the probability of falling within [µ− σ ,µ+ σ ] is 0.68:

P(i)(µ− σ ≤ x ≤ µ+ σ ) = 0.68, x ∈ D(l) (8)

we set a scaling factor α such that λ = µ − ασ ∈ (−∞,µ], and

then α ∈ [0,+∞),

P(l)
(

d
(l)
j,k
≤ λ

)

=
1

√
2πσ

∫ λ

−∞

exp

(

−
(x− µ)2

2σ 2

)

dx

t= x−µ
σ

HHHHHH
1
√
2π

∫
λ−µ

σ

−∞

exp

(

−
t2

2

)

dt

=
1
√
2π

∫ −α

−∞

exp

(

−
t2

2

)

dt

= 8(−α) = 1−8(α)

(9)

where 8(•) is the distribution function of the standard normal

distribution, it can be obtained from checking the Standard normal

distribution table: when α = 0, λ = µ, P = 0.5; and α →

+∞, λ→−∞, P→ 0. If d
(l)
j,k

< µ−α∗σ , the filters corresponding

to d
(l)
j,k

in the shaded part of Figure 1 are judged to be similar, and

then d
(l)
j,k

is selected as the candidate set D
(l)
select

:

d
(l)
j,k
∈ D

(l)
select

j, k ∈ F
(l)
select

(10)

F
(l)
select

is the set of indexes of the corresponding filters in D
(l)
select

. We

use a hyperparameter α to get equal-probability candidate sets in

different layers for different distance distributions in each layer.

It can be seen in the experiment that a filter satisfies similar

conditions simultaneously with multiple filters, but how can we

determine the final deleted filters in the candidate set. For the

lth layer, we count the number of times of the jth appears in

F
(l)
select

, denoted by C
(l)
j . Under extreme circumstances, if d

(l)
j,k

<

λ
(

0 ≤ k ≤ Nl+1 − 1, k 6= j
)

holds for the distance between the jth

filter and all other filters, then C
(l)
j = Nl+1 − 1. We use the

proportional factor r ∈ [0, 1] to represent the frequency of the

jth filter,

r =
C
(l)
j

Nl+1 − 1
(11)

If C
(l)
j > r∗(Nl+1 − 1), then j ∈ F

(l)
pruned

, F
(l)
pruned

is the set of final

pruning filters. The above algorithm obtains a set of redundant

filters for one convolution layer in the network structure, and the

schematic diagram of the pruning process of each layer is shown in

Figure 1.

3.3. Compression recipes

In addition to the judgment method of network parameter

redundancy, the pruning strategy, implementation and network

structure are also essential factors that affect the compression

performance. As the pruning rate increases, network performance

loss increases, and the redundant judgment of parameters is also

prone to deviation when the network parameters deviate from

the optimal point. Previous work uses layer-by-layer pruning and

fine-tuning strategies or retraining to reduce the judgment error

caused by performance loss and iterates this process until the

target compression rate is achieved. However, when the iteration

parameter setting is small and the target compression rate is

significant, the pruning period will greatly increase, and the

training time cost will be very high. Therefore, we prune all

layers at once instead of layer-by-layer pruning and fine-tuning,

significantly reducing the pruning cost. After complete pruning,

the computation and parameter quantity of the whole network are

calculated. If the set pruning requirements are met, the pruning

is completed; otherwise, the redundant filters will continue to be

searched for further pruning on the network structure of the last

pruning until the set pruning requirements are met (computational

cost reduction or parameter reduction), as shown in Algorithm 1.

In the implementation of pruning, He et al. (2018a) proposed

not to directly delete the pruned parameters in the pruning process,

which increases the fault tolerance of judgment. Many current

works are based on soft pruning implementations, and for a fair

comparison, we propose an iteration pruning strategy based on soft

pruning. In the experiment, it is found that although the filters

set to zero in the previous iteration are not deleted, they will not

change in the subsequent fine-tuning no matter how the network

Require: Training dataset D; the model with W, and

each layer with W (l) ∈ R
Nl×Nl+1×K×K , 1 ≤ l ≤ L; FLOPs

or params pruning rate: rate = rateFLOPs/rateparams.

Ensure: The pruned model W(τ )

1: W ← train(W, D)

2: while pruned_rate = 0 to rate do

3: for i = 1 to L do

4: for j, k = 0 to Ni+1 − 1 do

5: D
(i)
j,k
= dist(Fi,j , Fi,k)

6: if D
(i)
j,k

< µ− α∗σ then

7: D
(i)
j,k
∈ D

(i)
select

8: j, k ∈ F
(i)
select

9: end if

10: if C
(i)
j > r∗Ni+1 − 1 then

11: j ∈ F
(i)
pruned

12: end if

13: F(i) ← F(i) − F
(i)
pruned

14: end for

15: end for

16: W ← update_params(W ,D)

17: end while

18: W ← finetune(W ,D)

Algorithm 1. Iterative pruning algorithm.
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FIGURE 3

(A) The plain structure in VGG, and the number of output channel pruning in each layer is directly calculated by the algorithm. (B) The dense block,

the number of output channels of each layer is fixed (gr), and the number of input channels is calculated by the algorithm. (C, D) Residual block and

inverted residual block, respectively. The pruning rate of all layers in the block is the same, and the number of input channels and output channels of

each block is guaranteed to be the same.

is updated, which affects the distance calculation and redundant

judgment. To solve this problem, we set a mask for each filter, the

pruned filters are 0, and the others are 1, and the mask is updated

by the algorithm in real-time in each iteration. When calculating

the distance between the filters in one layer, the distance will be

multiplied by the mask value corresponding to the two filters at the

same time,

d
(l)
j,k
= dist

(

Fl,j, Fl,k
)

∗maskj ∗maskk

=

{

0, maskj = 0 or maskk = 0

dist
(

Fl,j, Fl,k
)

,maskj 6= 0 and maskk 6= 0

(12)

In the distance set D(l), the distance d
(l)
j,k

between a filter with

a mask of zero and any other filter is zero. Before the next step

of obtaining the distance statistics, the algorithm ignores a value

of zero for d
(l)
j,k
, which is equivalent to allowing only the unpruned

filters to participate in the subsequent pruning.

In pruning structure, some networks with special structures,

such as ResNet and DenseNet, improve the efficiency and

performance, but also make pruning more challenging. Only

pruning the middle layer in the block is currently the most used

strategy, but the filters between blocks are not easily pruned due to

excessive constraints. We propose a more flexible pruning strategy,

which is pruned in units of blocks, increasing the selection space

of pruned filters under the guarantee rules. First, we calculate the

pruning rate of the middle layers of all blocks in a group according

to the filter redundancy determination algorithm proposed in the

previous section, and then take the minimum value as the group’s

pruning rate rategroup. And then, the number of filters card(F
(l)
pruned

)

to be pruned at any lth layer in the group can be obtained:

card
(

F
(l)
pruned

)

= rategroup ∗ Nl+1 (13)

For the lth layer, F
(l)
selected

can be obtained by Equation (10), and the

number of occurrences C
(l)
j of the jth filter in F

(l)
selected

can be sorted.

The final pruned filters F
(l)
pruned

intercept the top card(F
(l)
pruned

) filters

from F
(l)
selected

. The specific pruning mode of the different structures

is shown in Figure 3.

The algorithm calculates the redundant filters of the whole

network at one time instead of layer-by-layer, and then prunes or

sets them to zero. The FLOPs and parameters reduction for the

entire network is calculated after one iteration. If the set pruning

rate is reached, the pruning is completed; otherwise, the parameters

are updated to find more similar filters for further pruning. Then

pruning is performed again until the set pruning rate is reached.

After all pruning is completed, only a small amount of fine-tuning

is required, as shown in Algorithm 1. In addition, we compare

the current works with our proposed method from the aspects

of criteria, whether to manually set the pruning rate of each

layer, whether to process the residual structure, and the pruning

method, as shown in Table 1. The proposed method optimizes

and improves the pruning criterion, pruning rate setting, special

structure processing, and pruning method.

4. Experiments

We evaluate the effectiveness of our algorithm on CIFAR-

10 (Krizhevsky et al., 2009), CIFAR-100 (Krizhevsky et al.,

2009), and ILSVRC-2012 (Russakovsky et al., 2015) datasets

using representative CNN architectures: VGGNet (Simonyan and

Zisserman, 2014), ResNet (He et al., 2016), andDenseNet. CIFAR10

contains 50,000 training images and 10,000 testing images of size 32

× 32, which are categorized into 10 different classes. CIFAR100 is

similar to CIFAR-10 but has 100 classes. ImageNet contains 1.28

million training images and 50 k validation images of 1,000 classes.

VGGNet and ResNet represent two typical network structures with

single branch and multiple branches respectively, and DenseNet

prunes the input channels.

We calculate the size and computational complexity of the

network through the number of network parameters and floating

point operations (FLOPs) for one forward propagation. For the lth
convolutional layer,

FLOPs = HW
(

CinK
2 + 1

)

Cout

params =
(

CinK
2 + 1

)

Cout

(14)
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TABLE 1 Comparison of our proposed method with current works.

Method Criterion Manually specify
the pruning rate?

Residual structure
processing?

Pruning method

L1 L1-norm Yes No Hrad

Taylor Taylor expansion Yes No Hrad

ThiNet Reconstruction error Yes No Hrad

SFP L2-norm Yes No Soft

FPGM Geometric median Yes No Soft

HRank Feature maps’ average rank Yes No Hrad

SRR-GR L1-norm No No Hrad

PGMPF L2-norm Yes No Soft

Ours Filter similarity No Yes Hrad/Soft

H and W are the length and width of the input feature map,

respectively, and Cin,Cout are the number of input and output

channels of the lth convolutional layer, which correspond to the

number of filters Nl and Nl+1.

We evaluate the performance of the convolution kernel pruning

method by using the method of parameter quantity or the drop rate

of computation, and different performance indicators can be used

according to the requirements of different scenarios:

rateFLOPs = 1−
FLOPsoriginal

FLOPscompressed

rateparams = 1−
paramsoriginal

paramscompressed

(15)

Different pruning methods use pre-trained models or self-

trained models as the baseline network. Due to the different

training parameters (e.g., different learning rates, training times,

data augmentations, etc.) and different experimental frameworks

(TensorFlow, PyTorch, etc.), the Top-1 and Top-5 accuracies of the

baseline network reported in the original papers are different. To

make a fair comparison, we evaluate the effectiveness of pruning

using the drop rate of Top-1 and Top-5 accuracy on the test set,

which is the accuracy difference between the baseline network

and the compressed network. Under the same compression rate,

the smaller the difference, the better the pruning effect. All

the comparison results in this paper are directly quoted from

the original paper of the related method or the official code

reproduction. All experiments are implemented on four NVIDIA

TITAN Xp GPUs using PyTorch.

4.1. Results on the CIFAR-10/100 datasets

We analyze the performance on the CIFAR datasets with

VGG16, DenseNet-40, and ResNet-32/56/110. All the networks are

trained using SGD with Nesterov momentum (Sutskever et al.,

2013) 0.9, a weight decay parameter of 10−4, and an initial learning

rate of 0.1. The learning rate is set to 0.001 when updating

parameters or fine-tuning. For VGG16 and DenseNet-40, the

baseline network is trained for 300 epochs with a batch size of 256.

And for ResNet, the baseline network is trained for 200 epochs with

a batch size of 256.

4.1.1. CIFAR10
We make a comparison with methods using hard pruning

strategies, such as L1 (Li et al., 2016), the method of Molchanov

et al. (2016), and with some current soft pruning methods, such

as SFP (He et al., 2018a), FPGM (He et al., 2019), and HRank

(Lin et al., 2020), and SRR-GR (Wang et al., 2021). In the

VGG16/DenseNet experiment, α is set to 1, r is set to 0.35. And in

ResNet, α is set to 1, r is set to 0.3. We adopt rateFLOPs as constraints

and report rateparams at the same time.

Results on CIFAR10 dataset are shown in Table 2. It can

be observed that our proposed algorithm outperforms other

methods under different networks and with similar or even

higher compression ratios. In VGG16 with a plain structure, the

performance of the similarity-based redundancy determination

method far exceeds the other pre-defined determination methods,

which indicates that the similarity-based determination method

can effectively identify redundant parameters. On pruning strategy,

soft pruning and hard pruning have little difference in performance

under the same FLOPs pruning rate constraint. For example,

at a pruning rate of 42.5%, the pruning performance of soft

pruning is even worse than hard pruning. Moreover, there is

little difference in performance between the evaluation criteria

at a low pruning rate, but as the pruning rate increases,

the judgment criteria have a more significant impact on the

pruning performance.

In ResNet, the processing of the pruning structure and

the pruning strategy also have an impact on the compression

performance in addition to the criterion. The performance of

hard pruning for L1 and ours is slightly worse than that

of the soft pruning strategy. SFP uses the pruning principle

with a small absolute value and does not prune the channels

between the residual blocks, thus the performance is the worst.

FPGM and HRank employ more effective criteria and a lot

of fine-tuning, and the performance is improved. We achieve

superior compression performance over existing work using a
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TABLE 2 Comparison of the results of di�erent network structures on the CIFAR10 dataset.

Model Method Prune Top-1
(↓) (%)

FLOPs
(↓) (%)

Params
(↓) (%)

VGG16 L1 (Li et al., 2016) ✓ 0.15 34.20 64.00

Ours ✓ 0.17 42.47 43.95

L1 (Li et al., 2016) ✓ 3.66 83.51 83.46

(Molchanov et al., 2016) ✓ 2.78 78.03 84.56

Ours ✓ 1.74 81.62 82.33

FPGM (He et al., 2019) ✗ 0.34 34.20 64.0

Ours ✗ 0.17 42.48 43.96

HRank (Lin et al., 2020) ✗ 2.73 76.50 92.0

Ours ✗ 1.56 79.68 81.64

Ours ✗ 1.93 88.99 92.70

ResNet-32 L1 (Li et al., 2016) ✓ 11.81 43.76 44.72

Ours ✓ 0.31 43.47 43.61

SFP (He et al., 2018a) ✗ 0.55 41.50 –

FPGM (He et al., 2019) ✗ 0.70 53.2 –

Ours ✗ −0.29 50.36 55.71

ResNet-56 L1 (Li et al., 2016) ✓ 1.75 27.60 –

SFP (He et al., 2018a) ✗ 1.33 52.60 –

FPGM (He et al., 2019) ✗ 0.66 52.60 –

HRank (Lin et al., 2020) ✗ 0.09 50.00 42.40

SRR-GR (Wang et al., 2021) ✗ −0.37 53.8 –

Ours ✗ −0.64 61.10 58.31

ResNet-110 L1 (Li et al., 2016) ✓ 0.61 38.60 –

Ours ✓ 1.65 60.70 60.80

SFP (He et al., 2018a) ✗ 0.30 40.80 –

FPGM (He et al., 2019) ✗ −0.05 52.30 –

HRank (Lin et al., 2020) ✗ 0.85 68.60 42.40

Ours ✗ 0.53 71.69 76.06

DenseNet-40 HRank (Lin et al., 2020) ✗ 0.57 40.80 36.5

Ours ✗ 0.37 45.24 41.04

HRank (Lin et al., 2020) ✗ 1.13 61.00 53.80

Ours ✗ 0.90 62.22 62.02

The "✓" indicates hard-pruning and "✗" indicates soft-pruning. The "(↓)" denotes the drop between baseline and the pruned model. A negative value in "Top-1(↓)(%)" indicates an improve

model accuracy over the baseline model. The "-" denotes results are not reported in original papers. Other tables follow the same convention. The bold values indicate that experimental results

are better than other methods.

similarity-based determination method and fewer fine-tuning

epochs with the same soft-tuning implementation strategy.

For DenseNet, where the input channels need to be pruned,

we more effectively identify the redundant input channels

while achieving excellent compression performance. Overall, soft

pruning achieves higher pruning rates with similar accuracy

than hard pruning. The criterion has a greater impact on the

plain structure, in which the number of channels between layers

is not constrained. The pruning performance of models with

unique structures is affected by the judging criteria and the

pruning strategy.

4.1.2. CIFAR100
The results on the CIFAR100 dataset are shown in Table 3.

Compared to the CIFAR10 dataset, CIFAR100 is more challenging

for pruning due to more categories. We compare with L1 (Li et al.,

2016), themethod ofMolchanov et al. (2016), SFP (He et al., 2018a),

FPGM (He et al., 2019), and PGMPF (Cai et al., 2022) on VGG16

and ResNet32/56/110. In the VGG16 experiment, α is set to 1, r

is set to 0.35, and in ResNet, α is set to 1, r is set to 0.3. All the

data in the table are obtained under the same number of fine-

tuning according to the public code. The parameters not given

in the table are because the code or the paper does not give the
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TABLE 3 Comparison of pruned ResNet on CIFAR100.

Depth Method Prune Top-1
(↓) (%)

Top-5 (↓)
acc (%)

FLOPs
(↓) (%)

Params
(↓) (%)

VGG16 L1 (Li et al., 2016) ✓ 2.24 1.27 50.44 50.23

(Molchanov et al., 2016) ✓ 2.36 1.42 40.25 47.36

Ours ✓ 1.69 1.72 51.99 68.79

FPGM (He et al., 2019) ✗ 2.06 1.73 48.93 –

PGMPF (Cai et al., 2022) ✗ 0.35 – 48.20 –

Ours ✗ 0.34 1.25 52.80 62.97

ResNet-32 L1 (Li et al., 2016) ✓ 18.37 11.47 43.76 44.16

Ours ✓ 2.74 1.73 43.45 43.38

SFP (He et al., 2018a) ✗ 2.21 1.12 53.16 –

FPGM (He et al., 2019) ✗ 0.16 -0.63 53.16 –

Ours ✗ −0.59 −0.07 50.51 53.25

ResNet-56 SFP (He et al., 2018a) ✗ 1.05 −0.16 63.16 –

FPGM (He et al., 2019) ✗ 1.33 −0.10 63.16 –

PGMPF (Cai et al., 2022) ✗ 2.71 – 52.6 –

Ours ✗ 0.71 1.03 64.98 61.45

ResNet-110 Ours ✗ 0.98 0.65 59.23 56.70

The bold values indicate that experimental results are better than other methods.

specific calculation process. It can be observed that our method

still outperforms other existing methods when reaching similar or

higher pruning rates. Compared with the CIFAR10 dataset, the gap

between different judgment criteria methods is more prominent,

and even the accuracy gain brought by the increased number of

fine-tuning still cannot compensate for the performance loss of the

network due to inaccurate pruning. For example, SFP reduces the

accuracy by 2.21% under half the FLOPs compression on ResNet32.

FPGM still has an accuracy loss of 0.16%with the increased number

of fine-tuning. However, the accuracy of our method has not

decreased but increased, which can reflect the differences between

different evaluation criteria. At the same time, the network is more

sensitive to pruning on larger datasets, and the redundancy of the

network does not increase with the depth of the network, which

brings more difficulty to the judgment of parameter redundancy.

For ResNet110, while the pruning rate is reduced compared to

ResNet56, the network performance also drops significantly.

4.2. Results on ILSVRC-2012

In the experiments, we use ResNet-18/34/50 to demonstrate the

proposed pruning performance on a large-scale dataset, ILSVRC-

2012 (Russakovsky et al., 2015). All the baseline networks are

obtained by training 100 epochs with a batch size of 256. We

follow the same parameter settings as [16] and [56], where the

hyperparameter α is set to 1 and r is set to 0.35. We compare

the proposed method with ThiNet (Luo et al., 2018), FPGM (He

et al., 2019), MIL (Dong et al., 2017), PFEC (Li et al., 2016),

CP (He et al., 2017), SFP (He et al., 2018a), HRank (Lin et al.,

2020), PGMPF (Cai et al., 2022), and SRR-GR (Wang et al.,

2021) and present the results in Table 4. All the results of the

other methods in the table are directly from their reports in the

literature. For ResNet with different depths, the hard pruning and

soft pruning strategies are tested to make a fair comparison with

other methods of different implementations. From the previous

experiments on the CIFAR10/100 datasets, we conclude that the

network performance is more sensitive to pruning in underfitted

network structures. For ResNet18/34, our algorithm achieves the

same FLOPs drop rate under the hard pruning strategy and achieves

a smaller Top-1 accuracy drop rate than other methods using

soft pruning strategies; in soft pruning, a better performance is

still obtained with more pruned FLOPs than other methods. For

ResNet50, the performance of the pruning algorithms is not very

different, but our algorithm still achieves a better performance.

For example, it reduces the computation by nearly half (53.05%),

while the Top-1 accuracy loss is only 0.29%. Similarly, the final

performance of the soft pruning strategy is still significantly better

than that of the hard pruning strategy.

4.3. Ablation study

4.3.1. Influence of hyperparameters
There are two hyperparameters α and r in the algorithm

proposed in this paper. These two parameters together determine

the pruning rate of each layer. From the introduction of the

algorithm in Section 3, we only need to specify a set of α and r

values for each network structure, to avoid manually specifying the

pruning rate of each layer in the network. Next, we will discuss

how to select the hyperparameters in the experiment and how

their values affect the pruning rate. To explore the relationship

more clearly, we choose to use the VGG16 to experiment on the

CIFAR100 datasets.
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TABLE 4 Comparison of pruned ResNet on ILSVRC-2012.

Model/ Data Method P.F. Base
top-1
acc(%)

Pruned
top-1
acc(%)

Top-1
(↓)(%)

Base
top-5
acc(%)

Pruned
top-5
acc(%)

Top-5
(↓)(%)

FLOPs
(↓)(%)

ResNet18 MIL (Dong et al., 2017) ✓ 69.98 66.33 3.65 86.94 89.24 2.30 34.6

Ours ✓ 70.48 68.58 1.90 89.60 88.44 1.16 50.1

SFP (He et al., 2018a) ✗ 70.28 67.10 3.18 89.63 87.78 1.85 41.8

FPGM (He et al., 2019) ✗ 70.28 67.81 2.47 89.63 88.11 1.52 41.8

PGMPF (Cai et al., 2022) ✗ 70.23 66.67 3.56 89.51 87.36 2.15 53.5

Ours ✗ 70.48 68.96 1.52 89.60 88.55 1.05 52.85

ResNet34 MIL (Dong et al., 2017) ✓ 73.42 72.99 0.43 91.36 91.19 0.17 24.8

PFEC (Li et al., 2016) ✓ 73.23 72.17 1.06 - - - 24.2

Ours ✓ 73.90 72.30 1.60 91.59 90.79 0.80 53.1

SFP (He et al., 2018a) ✗ 73.92 71.83 2.09 91.62 90.33 1.29 41.1

FPGM (He et al., 2019) ✗ 73.92 72.11 1.81 91.62 90.69 0.93 41.1

PGMPF (Cai et al., 2022) ✗ 73.27 70.64 2.63 91.43 89.87 1.56 52.7

Ours ✗ 73.90 72.80 1.10 91.59 91.04 0.55 52.07

ResNet50 ThiNet (Luo et al., 2018) ✓ 75.30 74.03 1.27 92.20 92.11 0.09 36.79

CP (He et al., 2017) ✓ - - - 92.20 90.80 1.40 50.0

Ours ✓ 75.82 74.74 1.08 92.95 92.28 0.67 40.78

SFP (He et al., 2018a) ✗ 76.15 74.61 1.54 92.87 92.06 0.81 41.8

FPGM (He et al., 2019) ✗ 76.15 75.03 1.12 92.87 92.40 0.47 42.2

HRank (Lin et al., 2020) ✗ 76.15 74.98 1.17 92.87 92.33 0.54 43.76

SRR-GR (Wang et al., 2021) ✗ 76.13 75.76 0.37 92.86 92.60 0.19 44.10

PGMPF (Cai et al., 2022) ✗ 76.01 75.11 0.90 92.93 92.41 0.52 53.5

Ours ✗ 75.82 75.53 0.29 92.95 92.83 0.12 53.05

The bold values indicate that experimental results are better than other methods.

For different α values, the algorithm can obtain different

candidate sets. This value determines how large the distance value

of two filters should be if they will be selected to be pruned. The

larger α is, the more filters are finally pruned. For a fixed value

of r, the pruning rate of different layers obtained by different

α is shown in Figure 4A. For different r values, different sets of

final pruned channels can be obtained. For a convolution kernel,

r determines how many other convolution kernels it is similar to,

and it is regarded as a redundant convolution kernel. The larger r

is, the fewer pruned filters are obtained. For a fixed α, the pruning

rate of different layers obtained by different r values are shown in

Figure 4B.

It can be inferred from the above figures that the values of r and

α are correlated roughly linearly with the final pruning rate. These

two hyperparameters together determine the pruning rate of each

layer. According to the rules obtained from the experiments in the

figure, we can take the appropriate r and α for different networks in

later experiments. The algorithm does not need to precisely specify

the exact values of r and α. Excellent experimental performance

can be obtained when α is between 0.8 and 1.1 and r between 0.25

and 0.4, and the settings of α and r have a certain influence on the

number of iterations. Once they are set, there is no need to specify

the pruning rate of each layer, and the algorithm directly derives the

filters that need to be pruned for each layer.

4.3.2. Pruning rate change during iteration
The proposed algorithm determines the pruning rate of each

layer adaptively without manual specification. After setting the

FLOPs or parameters constraints, the algorithm automatically

prunes the redundancies in each layer and calculates the FLOPs

and parameters after each iteration. After several iterations, the set

target is reached, and pruning is completed, thereby avoiding layer-

by-layer pruning and much fine-tuning. As shown in Figure 4,

pruning becomes increasingly difficult with increasing numbers

of iterations, and the network performance becomes increasingly

sensitive to pruning. In the last few iterations, only a small

number of filters are pruned, which results in a significant

decrease in accuracy. For different datasets, the redundancy of each

convolutional layer for the same network structure is different. On

the CIFAR10 datasets, the redundancy of the first few convolutional

layers is higher, and the pruning rate is between 50 and 80%.

However, the pruning rates of the first few layers on the CIFAR100

datasets are all below 40%.

4.3.3. Feature map visualization and actual
speedup

To verify whether the filters identified by our proposed

algorithm are truly redundant, we visualize the first layer of
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FIGURE 4

(A) The pruning rate of each convolutional layer with di�erent values of α for the VGG16 on the CIFAR100 datasets at r = 0.35. (B) The pruning rate of

di�erent layers with di�erent values of r when α = 1. (C, D) The pruning process of the VGG16 on the CIFAR10/100 datasets when rateFLOPs is set to

0.8 and 0.6, respectively. On CIFAR10, the algorithm meets the pruning requirement after 10 iterations, while CIFAR100 exceeds 6 iterations. The

pruning rate of each layer and the change process of rateFLOPs and rateparams are also shown in the figure.

FIGURE 5

Visualization of the weights and feature maps of the first convolutional layer of the VGG16 on the CIFAR100 datasets. The first convolutional layer has

64 filters, and the filters with red bounding boxes are to be pruned. The green boxes are similar channels artificially determined according to the

feature map and the convolution kernel, while the green boxes and red boxes are the channels identified and pruned by the algorithm.
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TABLE 5 Speedups of compressed network models on di�erent datasets.

Model/Dataset Original
time
(ms)

Pruned
time
(ms)

Speedup

CIFAR10 VGG16 (11.01%) 16.92 4.69 3.61×

ResNet-32 (49.64%) 6.78 3.83 1.77×

ResNet-56 (38.90%) 9.60 4.15 2.31×

ResNet-110 (23.94%) 15.12 4.28 3.53×

DenseNet-40 (37.98%) 23.26 9.78 2.38×

ImageNet ResNet18 (47.15%) 45.15 23.39 1.93×

ResNet34 (47.93%) 73.82 45.38 1.63×

ResNet50 (46.95%) 165.31 97.61 1.69×

the convolution kernel and the corresponding feature map of

the VGG16 on the CIFAR100 datasets. The part marked in red

in the figure contains the pruned filters and the corresponding

feature maps. We analyze the filters and the corresponding feature

maps and find that there are multiple similar filters in the same

convolution layer, and their corresponding feature maps are also

quite similar. For example, comparing their weights and feature

maps, the filters (7, 12, 22, 24, 37, 56) all extract the overall outline

of the cat. Our algorithm prunes the filters (7, 12, 24, 37) and keeps

the other two similar filters (22, 56), as shown in Figure 5.

We evaluate the actual speedup of our proposed method

on the intelligent edge accelerator Jeston nano, as shown in

Table 5. Since previous works used different GPUs and libraries,

and pruned models are not readily available, we only report

the inference time and speedup of the original model and the

pruned model using our proposed method. It can be seen from

the table that on edge devices, the inference speed of our

proposed compression model is faster than that of the original

model, but the actual speedup ratio cannot reach the theoretical

reduction of calculation. The actual acceleration ratio of VGG is

much smaller than the theoretical acceleration ratio, while the

acceleration ratio of ResNet and DenseNet is comparable to the

theoretical acceleration ratio. We believe that the gap between

theoretical and actual speedup is mainly caused by the cache

effect and memory accessing pattern in GPU, which is affected

by the hardware itself, the network architecture, and Pytorch

library implementation.

5. Conclusion

In this article, we propose a novel strategy for judging the

redundancy of filters based on similarity. To obtain the redundant

filters, we analyze the similarity distribution law for filters in

a convolution layer, and obtain a compact network by pruning

the redundant filters with certain strategies. A large number of

experiments proved the effectiveness and flexibility of the method

under the same experimental parameters and the performance does

not depend on a large number of fine-tunings.

Although the pruning method we proposed does not need to

specify the pruning rate of each layer, it still relies on the values of

two hyperparameters. If different hyperparameters are specified for

each layer according to the redundancy of each layer, the network

will be further compressed. We plan to combine this method

with reinforcement learning to automatically adjust the required

parameters and improve the performance to a higher level. We

performed simple statistical tests on similar filters to provide a basis

for further pruning, which is far insufficient for complex CNNs.

We will further analyze the filters’ similarity data and combine the

visual analysis of each layer to provide guidance for pruning.
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Appendix

Proof of the equation 5

For the ith feature map F (l, i) of the lth layer, let δ
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Applying Cauchy-Schwarz inequality, then:
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Actually δ
(l)
i,j appears at most K2 times in the

convolution operation, except for the border. For activation

functions commonly used in CNN such as ReLU or

sigmoid, maxx∈R

(

dh(x)
dx
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≥ 0,
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Since F (l,i) is an arbitrary channel of the lth layer, we can further

narrow the upper bound:
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and al = Hl ×Wl × B.
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Introduction: Boxing as a sport is growing on Chinese campuses, resulting in a

coaching shortage. The human pose estimation technology can be employed to

estimate boxing poses and teach interns to relieve the shortage. Currently, 3D

cameras can provide more depth information than 2D cameras. It can potentially

improve the estimation. However, the input channels are inconsistent between 2D

and 3D images, and there is a lack of detailed analysis about the key point location,

which indicates the network design for improving the human pose estimation

technology.

Method: Therefore, a model transfer with channel patching was implemented

to solve the problems of channel inconsistency. The differences between the

key points were analyzed. Three popular and highly structured 2D models of

OpenPose (OP), stacked Hourglass (HG), and High Resolution (HR) networks were

employed. Ways of reusing RGB channels were investigated to fill up the depth

channel. Then, their performances were investigated to find out the limitations of

each network structure.

Results and discussion: The results show that model transfer learning by the

mean way of RGB channels patching the lacking channel can improve the average

accuracies of pose key points from 1 to 20% than without transfer. 3D accuracies

are 0.3 to 0.5% higher than 2D baselines. The stacked structure of the network

shows better on hip and knee points than the parallel structure, although the

parallel design shows much better on the residue points. As a result, the model

transfer can practically fulfill boxing pose estimation from 2D to 3D.

KEYWORDS

boxing robot, computer vision, human pose estimation, 3D model transfer, negative
transfer

1. Introduction

Boxing as a strenuous exercise is gradually being accepted by the general public in China.
It has been promoted in many universities and has relevant professional courses (Xu, 2018; Li
L., 2019; Li X., 2019; Logan et al., 2019). It can improve citizens’ and students’ physical and
mental health (Tjønndal, 2019), and even enhances the self-protection abilities of women
(Hu, 2018; Fuerniss and Jacobs, 2020). However, this results in a new problem of a coach
shortage. Many researchers have tried to employ computer vision and robot technology to
solve the shortage problem of coaches (Huang et al., 2019; Li et al., 2021; Lin et al., 2021, 2022;
Mendez et al., 2022). The human pose estimation technology can predict boxing elements for
better teaching, which can reduce reliance on coaches and increase entertainment in boxing
training.
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Currently, the 3D camera can provide more depth information
than the traditional 2D RGB camera. This advantage can help in
the advancement of many tasks of image processing, such as MRI
images (Chen et al., 2019; Wu G. et al., 2022), robots (Song et al.,
2020), 3D faces (Ning et al., 2020; Wu H. et al., 2022), and so on.
3D human pose estimation becomes a cutting-edge and interesting
direction. Many researchers have attempted to reconstruct a
3D human pose estimation with 2D or 3D cameras. Since 2D
estimation has been researched comprehensively and wholistically
(Wang et al., 2021), it will be crucial to determine whether 2D
estimation is compatible with 3D estimation. Adapting the existing
2D models to the application with 3D cameras and studying the
advantages of these models is essential to boxing applications and
promoting the technology of human pose estimation.

In the field of artificial intelligence, there are two main ways
for human pose estimation: bottom-up and top-down (Xiao et al.,
2018; Wang et al., 2021). For instance, the top-down method
detects each person first, and then directly detects the key points
of each person. It is a two-stage method. Most research is based on
2D imagery and shows brightness design and theoretical structures
that achieve SOTA results, such as Hourglass (HG) models (Newell
et al., 2016; Xiao et al., 2018; Hua et al., 2020; Xu and Takano,
2021), and High Resolution (HR) networks (Sun et al., 2019; Yu
et al., 2021; Xu et al., 2022). In contrast, the bottom-up method
recognizes the limbs of people at the beginning and groups these
limbs for each person, such as in the OpenPose(OP) models (Cao
et al., 2017) and Hourglass(HG) models (Nie et al., 2018). Three
mainstream models of the OP, HG, and HR networks are suitable
for our boxing application. However, the problem of channel
inconsistency directly affects the transfer of a 2D model to a 3D
image. The basic popular methods need to be investigated deeply,
and it is important to reveal their performance differences in detail
for better improvement.

Model transfer technology is employed to help improve the
application of human pose estimation by transferring their models
and parameters. The performance of estimation of boxing poses is
evaluated on RGBD image. The main contributions of this paper
are:

• The depth channel is patched by different strategies
when data input is inconsistent, which illustrates that
the negative transfer can happen in this step, and it
implies that the machine learning method can further
improve the strategy.
• A detailed analysis of human pose estimation technology

reveals the advantages and disadvantages of mainstream
models used in boxing pose estimation, indicating the new
improving direction of this technology.
• The model transfer from 2D to 3D images is studied

for boxing practice, which shows that 2D models can be
compatible with the 3D inputs of 3D cameras.

In this manner, the three mainstream models of the OP, HG,
and HR networks are studied. The following sections are mainly
divided into three parts: (1) Related work. Research work about
human pose estimation is presented and analyzed. The important
structures of neural networks are discussed; (2) Method. The
model-transfer technology is employed to study the transfer of

relative top-down and bottom-up models, respectively. 2D inputs
are transferred to adaptive 3D inputs. This section also describes
different ways for model transfer. (3) Results and discussion.
The previously mentioned approaches are carried out after model
transfer, and 3D and 2D transfer results are analyzed in detail. Three
basic methods are discussed to analyze their existing problems.

2. Related work

2.1. Top-down way

Newell et al. (2016) proposed the HG method, which expanded
the ResNet structure to realize the extraction of pose information.
To improve the joint position regression, Xiao et al. (2018)
added a few deconvolutional layers over the last convolution stage
in the ResNet, which generated heatmaps from deep and low-
resolution features. Considering Xiao’s architecture, Moon et al.
(2019) designed a PoseFix network to refine the estimation, which
applies to a model-agnostic pose refinement method. Hua et al.
(2020) took a multipath affinage way to improve HG networks.
Furthermore, Graph stacked HG network was developed by Xu
and Takano (2021). It has an HG shape consisting of a chain of
convolution and up-convolution layers followed by a regression
part for generating a 3D pose. However, this estimation is based
on 2D image inputs.

Chen et al. (2018) proposed a cascaded pyramid network (CPN)
for human pose estimation. It has GloableNet and RefineNet as
two parts, and each layer was parallel to exchange information.
But for a better exchange of information between different scale
features, Sun et al. (2019) further proposed a high-resolution (HR)
network method for information exchange at the base of a huge
pyramid structure. HigherHRNet was proposed (Cheng et al.,
2020) to use the high-resolution feature pyramid for prediction
by a 1 × 1 convolution to heatmaps based on the HR network.
It can solve the scale variation challenge in bottom-up multi-
person pose estimation. To reduce the parameters and improve
speed, Yu et al. (2021) refined the HR network called the Lite-
HR network, which applies shuffle blocks to the HR network. The
accuracy got a slight drop. Xu et al. (2022) applied the transformer
model to human pose estimation. This simple structure can
be the backbone to extract features for the HR network. This
improvement is based on longer training, and it has challenges
for patch embedding when there is less information around key
points.

2.2. Bottom-up way

The OP network model (Cao et al., 2017) based on the affinity
field could simultaneously locate multiple people and get wild
applications (Nakai et al., 2018; Viswakumar et al., 2019; Chen
et al., 2020; Nakano et al., 2020). The key points are detected
in each joint class and grouped into limbs between each joint
point. With a part association field (PAF) restriction, the limbs
are gathered at a minimum cost. Nie et al. (2018) proposed a
pose partition network (PPN) to detect joints and regression for
multi-persons, which is based on the HG network. Since a PAF
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FIGURE 1

OP network model with a parallel steam structure of heatmaps and PAFs.

FIGURE 2

Stacked HG network with local and global contexts.

was used to associate body parts with each other, a part intensity
field (PIF) was proposed to localize body parts (Kreiss et al., 2019)
and help form full human poses. Osokin (2018) proposed a
lightweight OP network, which only remained in one refinement
stage and replaced the VGG network with the MobileNet in the
backbone. Wu et al. (2021) proposed a rapid OP network for
astronaut operation attitude detection. They changed the original
two-branch structure to a single-branch structure, which improved
the calculation speed. Geng et al. (2021) proposed disentangled
key point regression (DEKR), which uses a multi-branch structure
for separate regressions to get the key points in the bottom-
up paradigm. For multi-person pose estimation, Jin et al. (2020)
reformulated the task of multi-person pose estimation as a graph-
clustering problem. The OP networks rely on the backbone network
for feature extraction.

According to the above analysis, studies based on the OP, HG,
and HR networks are very extensive, and the HR and HG networks
can be used both in the top-down and bottom-up way. The study

of these three methods can be better at comprehensively finding
problems in our boxing sport application.

3. Materials and methods

3.1. Device and dataset

The image data collecting tool was a 3D Intel Realsense D455
camera with a 640 × 480 resolution. It was placed approximately
185 cm above the ground, with a depression angle of 10 degrees
around. RGBD data was collected in various indoor environments
such as classrooms and research labs. Five basic boxing poses,
including punch, swing, hook, backward, and side slide were
recorded in left and right ways. More than 100 students contributed
to the collection. After data cleaning, 280 images were selected to
form a dataset for this research. The dataset was randomly divided
into three parts: a training set (120 images), a validation set (40
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FIGURE 3

HR model with an inverse pyramid parallel structure and information exchange fuse.

FIGURE 4

The RGB-D model transfer based on the RGB model.

images), and a test set (120 images). These three sets didn’t have
the same person.

3.2. Model transfer learning

After testing, three SOTA models of the OP, HG, and HR
networks were studied. They were transferred as source models
since these three basic models have been researched extensively
and achieve each best performance. All the models are 2D inputs.
The boxing pose estimation was the target learning task. The
640 × 480 boxing image is estimated directly because three

models are studied under the same size of the input, feature
maps, and heatmaps.

3.2.1. OP network model
There are two primary parallel branches in the OP network.

One branch is trained to predict the heatmap of human pose key
points, and the other branch is trained to predict the PAF that
can help organize the components of body limbs in a bottom-
up way. The model repeats the basic branches several times
as stages as displayed in Figure 1. This design can be easy
for multi-person estimation as it estimates every person’s key
point at one computation, but the heatmap branch is simple for
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TABLE 1 The average accuracy of different key points.

Network Key point Head Shoulder Elbow Wrist Hip Knee Ankle Total average

Without 82.3 89.9 80.2 72.6 71.7 91.4 92.8 83.0

2D 98.9 95.2 91.7 91.3 88.2 97.1 97.4 95.3

OP (%) 3D-R 98.6 96.2 89.7 88.9 85.7 95.8 97.4 93.2

3D-G 97.9 94.7 85.2 86.3 86.7 95.3 97.6 92.0

3D-B 97.3 96.4 86.8 90.6 85 97.2 97.4 93.0

3D-Mean 99.4 96.9 92.2 92.1 92.1 97.5 97.9 95.8

Without 95.8 89.9 80.2 72.6 87.6 90.2 94.6 90.7

2D 99.7 95.2 91.7 91.3 92.9 99.2 97.5 96.1

HG (%) 3D-R 99.8 96.2 89.7 88.9 93.4 98.0 97.2 96.3

3D-G 99.6 94.7 85.2 86.3 92.5 98.7 96.8 95.9

3D-B 99.6 96.4 86.8 90.6 92.3 98.6 96.9 96

3D-Mean 99.8 96.9 92.2 92.1 93.8 99.5 98.9 96.5

Without 94.5 98.7 91.6 81.2 79.5 97.5 98.7 91.7

2D 99.8 98.6 94.0 95.9 90.5 97.9 99.8 96.6

HR (%) 3D-R 99.5 97.5 85.0 91.7 85.4 93.1 96.1 92.6

3D-G 99.6 97.9 91.4 93.6 86.5 97.2 97.4 96.9

3D-B 96.2 98.3 85.0 93.5 86.4 93.5 96.7 92.8

3D-Mean 99.8 98.6 94.6 96.8 91.8 97.9 99.8 97.0

Bold values represent the best results of 2D and 3D model transfer.

FIGURE 5

The average results of different transfer way by OP, HG, and HR models.

extracting complex features and structures since it only depends on
convolution layers.

3.2.2. Stacked HG network model
In Figure 2, the HG network is inspired by the pyramid

structure to deal with the local and global context. In each stack,
there is a pyramid structure integrated inside, and the heatmaps

are generated to predict key points, and each stack is repeated
to group a complex network. It can be seen that the learning
ability is improved by its pyramid structure. The stack is very
similar to the OP stage, so it can be used in both top-down
and bottom-up ways, but there is less information exchange
for each stack. This may cause limited learning in the local
context.

Frontiers in Neurorobotics 05 frontiersin.org137

https://doi.org/10.3389/fnbot.2023.1148545
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org/


fnbot-17-1148545 March 14, 2023 Time: 15:22 # 6

Lin et al. 10.3389/fnbot.2023.1148545

FIGURE 6

The average accuracy on each kind of key point in a 2D way.

3.2.3. HR network model
As shown in Figure 3, the HR network has an inverse pyramid

parallel structure compared to the HG network. It can be seen that
there are 4 parallel channels in different image scales, which can get
local and global information. Besides, this separates 3 or 4 stages
to make the model better exchange information between different
scale feature maps. The parallel branches in each stage are usually
repeated a few times to make a better extraction. Therefore, features
can be combined in multiple ways. Compared with the above two
networks, the HR network in each stage doesn’t keep the same
size, which means it may have less learning ability for symmetry
structures.

The above three source models (Model2D) were transferred
as shown in Figure 4. The input data in a source learning task
can be described asXS = {xn

1 , xn
2 , xn

3 , · · · , xn
k }, n is the input data

dimension, and k is the instance number. In the target learning
task, the input data isXT = {xn+1

1 , xn+1
2 , xn+1

3 , · · · , xn+1
k }, and the

instance number m is far less than k. Therefore, the posterior
distribution of the source domain PS(y|xn) needs to change to the
target domain posterior distribution PT(y|xn+1). The fine-tuning
method can be used to adapt the source posterior distribution to
the target domain. To solve the problem of lacking depth channel in
source models, an additional channel of the parameter was patched
based on RGB channels as in formula (1):

Model3D = Model2D (R, G, B)+Paramchannel (1)

Where the channel parameters can be chosen from R, G, and
B channels or the mean combination of these three channels.
When transferring parameters from source models, the different
channel effects should be examined, and the best way to improve
the depth channel effects on predicting posture points should be

determined. Boxing pose data were used to fine-tune the models to
generate new models.

4. Results and discussion

The performance of transferred models was studied in four
ways: (1) the average accuracy was obtained about boxing pose key
point positions, and the corresponding accuracy of each model after
the transfer of different channels was compared to baselines of 2D
transfer; (2) the impact of fine-tuning instance amount on model
transfer improvement; (3) the Flops and parameter number of each
model were shown for evaluating model complex, and average cost
times of models per image were compared; (4) a direct comparison
of the pose estimation of boxing basic actions among different
models, along with pose estimation display.

4.1. The average prediction accuracies of
key points

There are seven distinct critical points for estimating human
poses including the head, shoulder, elbow, wrist, hip, knee, and
ankle. To keep the comparison of points consistent, the neck
point of OP does not show here. Table 1 shows the average
accuracy of 10 times repeat on each point recorded without fine-
tuning, 2D transfer with fine-tuning, and 3D transfer with a
different kind of channel. The source models of the OP, HR,
and HG networks were pretrained and released publicly by their
developers.
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FIGURE 7

The detailed performance of different networks comparing
2D and mean of 3D.

Table 1 shows that three models are listed in each column, and
in each row, the average accuracy of each key point is compared.
The 2D rows can be chosen as baselines for 3D transfer. In 3D
transfers, the R, G, and B channels were examined, respectively. In
addition, the mean of the three channels was also examined.

Each network in Table 1 includes 6 different methods of fine-
tuning; 2D, and 3D are displayed in Figure 5. There are 6 groups
for three networks. The accuracies of the first group are lower than
those of the second group after finetuning in 2D transfer, and the
HR network achieves the highest average accuracy of 96.6%. The
HG network achieves a similar performance at 96.1%, while the
OP network achieves 95.3%, which is increased by 12.3%. After
fine-tuning, both networks perform slightly better than the OP
network. When in 3D transfer, the third to sixth groups in Figure 5
show different channel parameters that are chosen or combined to

patch the lacking depth channel. The R and B channels affect the
OP and HG networks the most, whereas the G channel affects the
HR network the most, and the R and B channels even can cause
a negative transfer on the HR network (from 96.6 to 92.8%). The
mean strategy of R, G, and B channels get the best estimation than
in a single one-channel way. This situation shows that the three
networks learn different patterns in different channels. The OP and
HG network extracts features from three channels equally, while
the HR network gets features from the G channel, which is highly
related to depth information. Features from B and R channels are
less related to depth information.

Figure 6 shows the detailed results of 2D. The HR network can
get the best estimation on the head, shoulder, elbow, wrist, and
ankle points. However, the HG network estimates hip and knee
points better than the HG network. Both the OP and HR networks
are worse in hip point estimation. This phenomenon might be
caused by the lower learning ability of the OP network and the
lower symmetric ability of the HR network than the HG network
since these two kinds of points have fewer texture features in the
image. The HG model has a lower feature extraction than the HR
network.

Finally, compared with the second group of 2D transfer, the
mean 3D group average accuracies are all higher than that of the
2D group as shown in Figure 7. The OP network is improved by
3.3% on hip points, which is higher than other networks. This may
be caused because of the previous imbalance training by authors.
In Figure 8, the 3D transfer also shows a similar result as the 2D
transfer. The HR network performs better on the head, shoulder,
elbow, wrist, and ankle points, but the HG network performs better
on hip and knee points. It means that the HR network has a
deficiency on the hip and knee points when there is less texture
information around. The depth channel shows less help to the
estimation. This may be the bottleneck of transfer learning when
lacking depth training data.

4.2. The fine-tuning effect of different
training data set size

The average accuracy curves of the OP, HR, and HG networks
are drawn under the different training dataset sizes from 40 to 120,
which increases by 20 each step.

As shown in Figure 9, the horizontal axis indicates the amount
of training dataset size. The vertical axis indicates the average
accuracy on the test set. The results show the HR model still
performs better than others. But when the data size is small, from
40 to 80, it is almost the same as the HG network. With an
increase in the training dataset size, the HR network becomes better
than the HG network. It means the HR network might get much
better results when the dataset size becomes large. The OP network
performance increases a bit slower than the other two networks and
it tends to be plain.

4.3. The FLOPs and average cost time

The Floating-Point Operations (FLOPs) and average cost time
on the test set are shown in Table 2. The same resolution images
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FIGURE 8

The average accuracy on each key point in the mean 3D way.

FIGURE 9

The total average accuracy of different networks after model transfer.

TABLE 2 FLOPs and average time cost on each model.

Method Input size #Params GFLOPs Average cost
time (s)

OP 640× 480 52.3M 308.5 0.57

HG 640× 480 53.1M 359.8 0.68

HR 640× 480 28.5 M 48.08 0.34

were fed into the three networks. The parameter number of each
kind of network is displayed. It can be seen that the numbers of
HG and OP’s parameters and average cost times are almost equal,

and they are both nearly twice that of HR. As the parameters are
reduced by half, the GFLOPs can be reduced largely.

4.4. Comparison of the pose estimation
on boxing basic movements

Five postures of punch, swing, hook, backward, and side sliding
are estimated in both left and right ways as displayed in Figure 10.
The figure shows two different scenes, and the results are listed in a
sequence of without fine-tuning, after the 3D transfer, and ground
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FIGURE 10

The pose estimation of the OP network (left), HG network (middle), and HR network (right) after model transfer.

truth. It also displays the results of the OP, HG, and HR networks,
respectively.

In the first column of each figure, there are many errors in
five poses. The head and wrist points are wrongly located. The
estimation results are littered randomly since the left and right
results of both the OP and HG networks have a big difference.
This phenomenon may be caused by the background. The edge of
curtains or chairs might be like the human edge. The HR network’s
left and right results are more symmetric than other methods.
Besides, the obscuring from the boxing helmet and the camera’s
inconsistent view also result in locating the wrong place such as the
ankle, hip, and elbow.

The second columns of the left and right poses show the
estimations are improved. It is much closer to the third column
of ground truth. So, fine-tuning can correct the errors from
background interference, obscuring, and view inconsistency. In
addition, it can be seen that the HR network’s estimation of hip
and knee joints is compelled in a line, which is quite different
from the HG’s estimation. That means the HR network can be
further improved.

5. Conclusion

With the popularization of boxing in China, the lack of
coaches and amusement impedes the promotion of this sport.
The research on intelligent humanoid boxing robots becomes
hotter, and the problem of insufficient coaches can be solved.
Through the application of human pose estimation technology,
the actions of boxing athletes can be analyzed, guided, and
taught. The inconsistent inputs between the current image-based
2D human pose estimation technology and the 3D data of
RGBD prevent our study because of the shortage of boxing
data. The model transfer method is adopted to improve the
technology application by patching the lack of channel. Three
SOTA models of this technology were studied and transferred
for experiments. Different strategies of transfer were examined

to patch the lack of depth channel. The results show that the
mean combination of RGB channel parameters is suitable to patch
the depth channel. This strategy can improve models’ estimation
performance stability. In addition, model transfer learning can
efficiently reduce the dependence on collecting new data. The
three SOTA models of the OP, HR, and HG networks exhibit
competitive ability, and each model achieves a better performance
after a mixture of depth channel information. Based on this
research, the technical problems existing in the application of
boxing can be revealed further, such as the HR network needing
to improve the estimation of hip and knee joints and integrating
these basic models into a small platform for the different kinds
of applications. A machine learning method to optimize this
combination can be researched further. Nonetheless, transfer
learning with the channel patching method has been successfully
studied for boxing pose estimation, and the 2D model performance
can be improved by a 3D camera. Data can be collected to enhance
the model’s application.
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Introduction: Facial expression recognition has always been a hot topic in

computer vision and artificial intelligence. In recent years, deep learning models

have achieved good results in accurately recognizing facial expressions. BILSTM

network is such a model. However, the BILSTM network’s performance depends

largely on its hyperparameters, which is a challenge for optimization.

Methods: In this paper, a Northern Goshawk optimization (NGO) algorithm

is proposed to optimize the hyperparameters of BILSTM network for facial

expression recognition. The proposed methods were evaluated and compared

with other methods on the FER2013, FERplus and RAF-DB datasets, taking into

account factors such as cultural background, race and gender.

Results: The results show that the recognition accuracy of the model on

FER2013 and FERPlus data sets is much higher than that of the traditional VGG16

network. The recognition accuracy is 89.72% on the RAF-DB dataset, which is

5.45, 9.63, 7.36, and 3.18% higher than that of the proposed facial expression

recognition algorithms DLP-CNN, gACNN, pACNN, and LDL-ALSG in recent 2

years, respectively.

Discussion: In conclusion, NGO algorithm e�ectively optimized the

hyperparameters of BILSTM network, improved the performance of facial

expression recognition, and provided a new method for the hyperparameter

optimization of BILSTM network for facial expression recognition.

KEYWORDS

northern goshawk algorithm, NGO-BILSTM model, face recognition, facial expression,

hyperparameter optimization

1. Introduction

The change of facial expression can reflect the change of human emotions and

psychology, which plays an indispensable role in daily life (Li and Deng, 2020; Revina and

Emmanuel, 2021). Human beings express their emotions mainly through language, voice

tone, body movements and facial expressions, and facial expressions contain a large amount

of effective information, which can convey the real emotions of human hearts and are more

accurate than the information conveyed by language expressions (Li et al., 2018; Minaee

et al., 2021; Yang et al., 2021).

In recent years, a variety of AI devices have come into the public eye, and Artificial

intelligence algorithms are developing rapidly (Prajapati et al., 2021; Ramachandran and

Rajagopal, 2022; Ravinder et al.). The public hopes that computers can understand and

express their own emotions through facial expression recognition like humans do, and also

give correct feedback according to users’ emotional needs (Li et al., 2020; Zhang, 2020).

Exploring face expression recognition technology can provide technical support for

artificial intelligence emotional expression. The literature (Han et al., 2022) proposes a

new HRL model, which uses the universal matching measure to dynamically display the

discriminant learning constraint features in facial expression recognition, and develops an

example demonstration. The literature (Gao et al., 2020) proposes a face recognition method

based on plural data enhancement, which uses the information provided by the original face
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image for feature extraction and then fuses the original image

with the new feature image to obtain a synthetic plural image that

can perform face image recognition under non-ideal conditions.

The literature (Gurukumar et al., 2021) plans the facial expression

recognitionmodel with the help of artificial intelligence techniques,

which mainly includes the steps of data acquisition, face

detection, optimal feature extraction and emotion recognition,

and uses the optimal scale-invariant feature transform for face

expression feature extraction and hybrid metaheuristic algorithm

for optimizing the key points that give unique information, which

in turn performs facial expression recognition.

In addition, in literature (Zhao et al., 2020), a new deep neural

network is constructed to deeply encode the face region and a new

face alignment algorithm is proposed. The Literature (Lu, 2021)

proposes amulti-angle facial expression recognitionmethod, which

is based on generative adversarial network for feature mapping

and CNN for classification and learning. The literature (Cao

et al., 2021) proposed a method of facial expression recognition

by Fourier frequency transform, and obtained the correct facial

expression information by adjusting the frequency band of the

wrong expression. The Literature (Liao and Gu, 2020) proposes

a face recognition method based on subspace extended sparse,

which uses subspace extended sparse representation classifier

for recognition.

In the latest research on facial expression recognition, the

Literature (Li et al., 2017) propose a new DLP-CNN (Deep

Locality-Preserving CNN) method, which aims to enhance

the discriminative power of deep features by preserving the

locality closeness while maximizing the inter-class scatters. In

the Literature (Li et al., 2018), a convolutional neural network

(CNN) with an attentional mechanism (ACNN) is proposed for

facial expression recognition in the field, which can perceive the

obscured area of the face and focus on the most discriminating

unobscured area. Two versions of ACNN have been introduced:

the patch-based ACNN (pACNN) and the global-local ACNN

(gACNN). pACNN only focuses on partial facial patches. gACNN

combines a local representation at the patch level with a global

representation at the image level. The Literature (Chen et al.,

2020) propose a novel approach named Label Distribution

Learning on Auxiliary Label Space Graphs (LDL-ALSG) that

leverages the topological information of the labels from related

but more distinct tasks, such as action unit recognition and

facial landmark detection. The underlying assumption is that

facial images should have similar expression distributions to their

neighbors in the label space of action unit recognition and facial

landmark detection.

In order to explore the application of NGO-BILSTM model

in facial expression recognition, this paper analyzes the debate in

three parts. The first part introduces the basic principles of NGO

algorithm. In the second part, LSTM neural network is introduced,

pointing out that LSTM can not obtain reverse information, and

a BILSTM neural network combining forward LSTM and reverse

LSTM is introduced. The network can form two independent

networks with opposite data flows, and can simultaneously process

data with positive and negative flows. Then, according to the NGO

algorithm, the hyperparameters of BILSTMwere optimized to build

the NGO-BILSTM model for facial expression recognition. The

third part is the result analysis. According to the constructed NGO-

BILSTM facial expression recognition model and the accuracy

evaluation index of confusion matrix, three facial expression data

sets of FER2013, FERPlus and RAF-DB are provided to evaluate

the performance of this model. The validity and feasibility of the

proposed model in face expression recognition are measured by

the accuracy.

2. NGO-BILSTM model

Based on the NGO algorithm and BILSTM neural network,

combining the advantages of the two algorithms, this paper builds

a NGO-BILSTM model to provide a better technical basis for

artificial intelligence emotional expression.

2.1. NGO algorithm

2.1.1. Initializing the NGO algorithm
In the NGO algorithm, the population number and location

of the northern goshawk can be represented by the following

population matrix, namely:

X =
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In the NGO algorithm, the objective function value of the

northern eagle population is represented by a vector, i.e.:

F =
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2.1.2. NGO’s prey identification
In the first stage, the prey selection and aggressive behavior

of the northern goshawk is represented by the following

mathematical formula:

Pi = Xk (1)

xnew,P1i,j =

{

xi,j + r(pi,j − Ixi,j), Fpi < Fi
xi,j + r(xi,j − pi,j), Fpi ≥ Fi

(2)

Xi =

{

Xnew,P1
i , Fnew,P1i < Fi
Xi , F

new,P1
i ≥ Fi

(3)

Where Pi is the prey position, Fpi is the objective function value of

Pi, k is a random integer in the range of [1,N]. xnew,P1i,j is the new
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position of the jth dimension of the ith northern goshawk, Fnew,P1i

is the objective function value of the ith northern goshawk based on

the first stage update. r belongs to [0, 1], I is 1 or 2.

2.1.3. NGO chase and escape
In the second stage, prey escape and the northern

goshawk chasing prey are represented by the following

mathematical formula:

Xnew,P2
i,j = xi,j + R(2r − 1)xi,j (4)

R = 0.02

(

1−
t

T

)

(5)

Xi =

{

Xnew,P2
i , Fnew,P2i < Fi
Xi , F

new,P2
i ≥ Fi

(6)

Where t is the current iteration number, is the maximum iteration

number (Dehghani et al., 2021).

2.2. BILSTM neural network algorithm

2.2.1. LSTM neural network
LSTM is more efficient because the long-termmemory network

retains important in-formation for long-term memory and forgets

other information to some extent, and sequential data processing

is more efficient than recurrent neural networks. The neuron

structure of LSTM is shown in Figure 1 (Bao et al., 2021; Zhou et al.,

2022).

LSTM and RNN explore the dependencies between sequence

elements through internal state transfer. However, LSTM

introduces a gating mechanism to solve the short-comings of the

RNN gradient update. The gating link of LSTM is divided into

FIGURE 1

Neuronal structure of the LSTM.

forgetting, input and output, and the state unit is introduced to

regulate the operation of the whole network.

2.2.1.1. Oblivious gating

ft is the forgetting gate, which has the role of determining the

degree of retention of the incoming information at the previous

moment. The forgetting gate is obtained by linearly transforming

the input at moment t with the output at moment t − 1 and then

applying an activation function, which is calculated as:

ft = σ (Wf xt + Uf ht−1 + bf ) (7)

Where σ denotes the sigmoid activation function, Wf and Uf

denote the weight matrix of the forgetting gate, xt is the input,

ht−1 is the implicit layer output, bf denotes the bias value of the

forgetting gate.

2.2.1.2. Input gate

it is the input gate, it is mainly to decide the retention Chengdu

of the information input at t moments. The input gate is calculated

in a similar way to the forgetting gate, and its expression is:

it = σ (Wixt + Uiht−1 + bi) (8)

Where Wi and Ui denote the input gate weight matrix, bi denotes

the input gate bias value.

gt is the input state, which is obtained from the implied layer

output at moment t − 1 and the input at moment t by applying a

tanh function through a linear transformation, whose expression is:

gt = tanh(Wgxt + Ught−1 + bg) (9)

Where Wg and Ug denote the temporary cell state weight matrix,

denotes the temporary cell state bias value.

2.2.1.3. State unit

The state unit of the LSTM is mainly used to update the internal

state of the LSTM at the previous time to the internal state at this

time. The formula calculates the internal state at this moment:

Ct = Ct−1 · ft + gt · it (10)

2.2.1.4. Output gate

ot is the output gate, the output control of the output gate

depends on the degree of the state unit, which is calculated as:

ot = σ (Woxt + Uoht−1 + bo) (11)

Where Wo and Uo denote the weight matrix of the output gate, bo
denotes the bias value of the output gate.

The implied state output ht at the final moment, which is

determined by both the internal state and the output gate, is

calculated as:

ht = ot · tanh(Ct) (12)
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2.2.2. BILSTM neural network
BILSTM neural network is proposed based on the LSTM

network. BILSTM is composed of forward LSTM and reverse

LSTM. The forward LSTM processes input data in the forward

direction, while the reverse LSTM processes input data in the

reverse direction. After processing, the output of the two LSTMS

is joined together, namely, the output of BILSTM. BILSTM can

transfer between past and future implied layer states and perform

a feedback neural network, which can well uncover the implied

connections between time series data. The BILSTM network can

find the intrinsic links between the current moment data and the

past and future data, which can improve the model testing accuracy

and the data utilization efficiency.

Structurally, compared with the one-way LSTM network, the

BILSTM neural network is a two-way cyclic structure with forward

and backward propagation. In terms of temporal structure, the flow

of LSTM data is from the past to the future. In contrast, the flow of

BILSTM data is added to the flow of data that will come to the past

on top of the flow from the past to the future. The implied layers in

the past and the implied layers in the future are independent of each

other, so BILSTM can better explore the temporal characteristics of

the data. BILSTM structure diagram is shown in Figure 2 (Gong

et al., 2021; Hou and Zhu, 2021).

The above figure indicates no interaction between the positive

and negative implicit layers, forming two independent networks

with opposite data flow directions, which can handle models with

both positive and negative flow directions.

The forward LSTM network computational expression is:

Eht = LSTM(xt , Eht−1) (13)

The inverse LSTM network computational expression is:

Eht = LSTM(xt , Eht−1) (14)

2.3. Face expression recognition model
based on NGO-BILSTM

Based on the algorithmic advantages of the NGO algorithm and

BILSTM neural network introduced in the previous section, this

section combines the research characteristics of face recognition

FIGURE 2

BILSTM structure diagram.

technology and constructs a facial expression recognition model

based on NGO-BILSTM.

2.3.1. Fairness in facial expression recognition
Facial expression recognition technology has become

increasingly prevalent in recent years, with applications ranging

from security and surveillance to emotion detection in marketing

and healthcare. However, concerns about the fairness and accuracy

of these systems have also emerged, particularly with respect to

their impact on marginalized groups (Buolamwini and Gebru,

2018; Datta and Joshua Swamidass, 2021).

The issue of fairness in facial expression recognition technology

is rooted in the fact that these systems are often trained on biased

data sets, which can result in the perpetuation of existing societal

biases. For example, if a data set used to train a facial recognition

system is predominantly composed of images of white individuals,

the system may perform poorly when trying to recognize the facial

expressions of individuals with darker skin tones. This can result in

inaccurate and unfair outcomes, such as misidentifying individuals

of color as potential threats or suspects.

Another issue with facial expression recognition technology is

that it may not be able to accurately detect or recognize expressions

in individuals from certain cultures or backgrounds. For instance,

some cultures may have different facial expressions for emotions

such as happiness or sadness, and a facial recognition system

trained on a data set with limited cultural diversity may struggle

to accurately detect or recognize these expressions.

There are ongoing efforts to address the issue of fairness

in facial expression recognition technology. One approach is to

use more diverse and representative data sets to train these

systems, in order to mitigate the impact of biases in the training

data. Additionally, there have been calls for greater transparency

and accountability in the development and deployment of these

systems, including the use of third-party audits and evaluations to

ensure that they are accurate and fair for all individuals, regardless

of their race, ethnicity, gender, or other factors.

Overall, the issue of fairness in facial expression recognition

technology is complex and multifaceted, and requires ongoing

attention and effort to address. By working to ensure that these

systems are accurate, transparent, and equitable for all individuals,

we can help to mitigate the potential harms of biased and unfair

technology, and create a more just and equitable society for all.

2.3.2. Face expression data pre-processing
The BILSTM network is used to process the input image and

crop out the face region, after which the face region is aligned to

reduce the interference of noise. Since the training of the network

requires a large amount of data, some datasets with a small number

of images, such as the SFEW dataset, cannot be supported for

training. Therefore, during the training process, data enhancement,

such as random cropping, rotation angle, flipping, etc., is needed

for the input data. The data enhancement techniques can effectively

enrich the diversity of images in many datasets.

The images obtained after the preprocessing is completed

are fed into the BILSTM network for feature extraction. During

the training, NGO algorithms were used to optimize the
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hyperparameters. The input image is passed through the implicit

layer for feature extraction and output feature map for feature

recognition and classification, and finally, the expression category

and recognition accuracy corresponding to the input image are

output. The trained network model is loaded and tested using the

test set in the network testing phase. The data can be enhanced

in the testing phase to improve the robustness of the network

model. For the facial expression recognition task, the recognition

accuracy is usually used as a criterion to measure a good or

bad network model, and the higher the recognition accuracy, the

better the performance of the network model and the better the

recognition classification.

As fairness is crucial in facial expression recognition, the

selection of facial expression data sets should consider whether the

data sets include factors such as race, gender, skin color and cultural

background. In order to ensure the fairness of face recognition,

three data sets FER2013, FERPlus and RAF-DB are selected in this

paper. The three data sets are described below:

2.3.2.1. FER2013 dataset

FER2013 is a dataset containing 35,887 images of facial

expressions labeled with seven basic emotions (anger, disgust, fear,

happiness, sadness, surprise, and neutral). The data set contains

facial images of people from different countries and regions, so

it covers people of different races, genders, ages and cultural

backgrounds. The data distribution of this dataset is shown in

Table 1.

2.3.2.2. FERPlus dataset

FERPlus is an expanded version of FER2013 that includes

images from FER2013, but for each image, provides more accurate

emotional labels, including “uncertain” labels. FERPlus’s emotional

tags were collected by collecting human tagger tags on Amazon

Mechanical Turk and applying model-based methods to filter and

clean up. The data distribution of the FERPlus dataset is shown in

Table 2.

2.3.2.3. RAF-DB dataset

The RAF-DB dataset contains about 30,000 images of various

expressions downloaded from the Web. All the images in the

RAFDB dataset differ between subjects in multiple aspects, such as

masking of the face, lighting conditions, age, head posture, ethnic

skin color, and racial gender. Each faces facial expression image was

independently labeled by∼ 30 to 40 trained coders, so the RAF-DB

dataset is rich in images not only in terms of number but also in

terms of expression images in various states. The data distribution

of the RAF-DB dataset is shown in Table 3.

2.3.3. Optimization of BILSTM network
parameters based on the NGO algorithm

The BILSTMnetwork hasmore parameters, and the parameters

that have a greater impact on the facial expression recognition

results are the number of LSTM hidden layers, batch size, learning

rate, number of iterations, and the parameter selection of Adam

optimizer. Before training, the parameters of BILSTM that have

a great influence are optimized by using the northern hawk

optimization algorithm, and the optimal parameters of the BILSTM

network are obtained, and the parameter settings after optimization

are shown in Table 4.

2.3.4. NGO-BILSTM model training process
The NGO-BILSTM face expression recognition model is

trained by pre-processing the face expression dataset and the

BILSTM network after the optimization algorithm of the northern

hawk, and the model training process uses the neural network

backpropagation algorithm. The flow chart of the facial expression

recognition model based on NGO-BILSTM is shown in Figure 3.

Firstly, the face expression dataset is divided into the training

set and a test set, and the training set is normalized to the data.

Secondly, the combined output values of forward and backward

LSTM neurons are calculated according to the forward propagation

algorithm. The error terms of the LSTM output layer are calculated

according to the loss function, and then back propagated to the

forward and backward LSTM implicit layers. The error terms of

each LSTM neuron at the end of the implicit layer are calculated.

Finally, the gradient of each weight is calculated based on the

corresponding error term (Li et al., 2022), and the gradient descent-

based optimization algorithm of the Adam optimizer is used to

perform the weight update of the LSTM.

The Adam optimizer is an adaptive learning mechanism

improved based on SGD architecture, which has the advantage of

TABLE 1 Distribution of expression categories in the FER2013 dataset.

Expression category Happy Sadness Fear Surprise Disgust Anger Neutral Total

Training set 3,274 4,286 4,154 3,274 415 4,021 5,032 24,456

Public test set 405 610 532 405 62 489 631 3,134

Private test set 398 647 504 398 64 457 612 3,080

TABLE 2 Distribution of expression categories in the FERPlus dataset.

Expression category Happy Sadness Fear Surprise Anger Disgust Disdain Neutrality Total

Training set 7,246 2,961 501 3,014 1,998 106 112 8,482 24,420

Public test set 854 326 60 405 279 26 18 1,198 3,166

Private test set 892 378 78 394 265 15 18 1,087 3,127
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TABLE 3 Distribution of expression categories in the RAF-DB dataset.

Expresion category Happy Sadness Fear Suprise Disgust Anger Neutral Total

Training set 4,768 1,991 283 1,288 721 708 2,520 12,279

Test set 1,188 482 78 732 163 165 183 2,991

TABLE 4 Parameter setting after optimization search.

Parameters Value

LSTM implied layers 128

Batch size 4

Learning rate 0.0005

Number of iterations 300

Adam β1 = 0.99,β2 = 0.999

low dependence on the adaptive learning rate and the assignment

of hyperparameters. The loss function is used to measure the

difference between the predicted value and the real value. The

smaller the value, the better the robustness of the model.

By setting the minimum value of the loss function as the

optimization objective, the Adam optimizer updates the BILSTM

weights continuously until the optimal face expression recognition

model is obtained.

3. Analysis of facial expression
recognition results based on the
NGO-BILSTM model

Based on the previous design of the facial expression

recognition process of NGO-BILSTM, this chapter mainly develops

the experimental analysis to clarify the application of the NGO-

BILSTMmodel in facial expression recognition.

3.1. Experimental preparation

3.1.1. Experimental environment and data set
The experimental environment configuration of this chapter for

facial expression recognition results is shown in Table 5.

In this chapter, face expression recognition experiments will

be conducted on the FER2013 dataset, FERPlus dataset and RAF-

DB dataset. The cross-entropy loss is used to optimize the network

together with the Adam. The initial learning rate is set to 0.001, the

momentum is set to 0.99, and 300 iterations are performed on both

the FER2013 dataset, the FERPlus dataset and RAF-DB dataset, and

the batch size is set to 15.

3.1.2. Evaluation indicators of the NGO-BILSTM
model

In the classification task of machine learning, we often use

many metrics to measure the model’s performance, such as ROC

curve, PSI, recall, accuracy, F1 value, AUC value and confusion

matrix. In this paper, we choose the confusion matrix to evaluate

the performance of the NGO-BILSTM-based face expression

recognition model.

The confusion matrix is the error matrix from which the

recognition accuracy can be calculated. The confusion matrix in

the classification task is used to reflect the probability that one of

the total samples is predicted to be the remaining other samples,

and its matrix size is generally n× n, n is the number of categories,

and the confusion matrix is shown in Table 6.

Accuracy is the ratio of the classification model’s accurate

prediction of a certain category of a given test set or the correct

proportion of the whole sample predicted by the classification

model, which is calculated by the formula:

Accuaracy =
TP + TN

TP + TN + FP + FN
(15)

3.2. Comparison and analysis of
experimental results

To verify the effectiveness of the proposed model for facial

expression recognition, this section tests and compares three types

of face expression datasets, namely, the FER2013 dataset, FERPlus

dataset and RAF-DB dataset, to validate the application of this

paper’s NGO-BILSTMmodel for facial expression recognition.

3.2.1. FER2013 dataset
To verify the effectiveness of the facial expression recognition

model proposed in this paper, the recognition accuracy of the

NGO-BILSTM face recognition model constructed in this paper is

compared with the traditional VGG16 network on the FER2013

dataset. The confusion matrix of face recognition using the two

methods is used as the experimental results, and the comparison

results are shown in Figure 4.

The average recognition accuracy of this model in the

FER2013 dataset is 51.29%, and the recognition accuracy of the

VGG16 network is 45.14%. Compared with the VGG16 network,

the recognition accuracy of the proposed NGO-BILSTM face

recognition model has improved by 6.15%. The facial expression

of “happy” is recognized very well, and the accuracy of “fear”

is enhanced by 24% compared with the VGG16 network. The

accuracy of “disgust” and “sadness” is still very low, although the

accuracy of these two expression categories is slightly improved

compared with the VGG16 network because the number of images

of these two expression categories in the FER2013 dataset is small,

and the network cannot This is because the number of pictures of

these two categories of facial expressions in the FER2013 dataset is

small, and the network is not fully trained for these two categories
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FIGURE 3

Flowchart of facial expression recognition based on NGO-BILSTM.

TABLE 5 Experimental environment configuration.

Environment configuration Parameter configuration

Operating systems Windows 10 professional edition

GPU Intel(R) Core(TM) i3-10100

Memory 8.00 GB

Accelerated libraries CUDA 9.0

Programming languages Python 3.8

of facial expressions, so the accuracy of these two categories is

relatively low.

This also shows that the model proposed in this paper has

a high recognition accuracy and verifies the reliability of the

proposed model.

3.2.2. FERPlus dataset
To further verify the effectiveness of the method proposed in

this chapter, the recognition accuracy of the NGO-BILSTM face

recognition model constructed in this paper is compared with that

of the traditional VGG16 network on the FERPlus dataset. The

confusion matrix of face recognition using the two methods is used

as the experimental results, and the comparison results are shown

in Figure 5.

The average recognition accuracy of this model on the FERPlus

dataset is 78.75%, and the recognition accuracy of the VGG16

network is 66.63%. Compared with the VGG16 network, the

recognition accuracy of the NGO-BILSTM face recognition model

proposed in this paper has improved by 12.12%. The accuracy of

all the eight expression categories is improved, and the accuracy

of “neutral” face expression recognition is the highest, reaching

96%, while the accuracy of “fear” face expression recognition is the
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TABLE 6 Confusion matrix.

True value Predicted value

Positive example Negative example

Positive example TP FN

Negative example FP TN

FIGURE 4

Confusion matrix on the FER2013 dataset. (A) Confusion matrix of

VGG16 network. (B) The confusion matrix of the model in this paper.

highest, increasing by 26%. This shows that the proposed NGO-

BILSTM-based face expression recognition model has better face

expression recognition results on the FERPlus dataset.

3.2.3. RAF-DB dataset
To further verify the effectiveness of the method proposed in

this chapter, the recognition accuracy of the NGO-BILSTM face

recognition model constructed in this paper is compared with that

FIGURE 5

Confusion matrix on the FERPlus dataset. (A) Confusion matrix of

VGG16 network. (B) The confusion matrix of the model in this paper.

of DLP-CNN, GACNN, PACNN, and LDL-ALSG on the RAF-DB

dataset, and the comparison results are shown in Table 7.

The recognition accuracy of the NGO-BILSTM face expression

recognition model proposed in this paper is 89.72% on the

RAF-DB dataset, which is 5.45, 9.63, 7.36, and 3.18% higher

than those of the four methods DLP-CNN, gACNN, pACNN,

and LDL-ALSG on the RAF-DB dataset, respectively. This

indicates that the facial expression recognition model based

on NGO-BILSTM in this paper has higher recognition

accuracy and verifies the reliability of the proposed model in

this paper.

4. Conclusion

To explore the application of the NGO-BILSTM model in

facial expression recognition, this paper constructs the NGO-

BILSTM face expression recognition model based on the NGO
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TABLE 7 Accuracy of di�erent models on the RAF-DB dataset.

Network model Accuracy rate (%)

DLP-CNN 84.27

GACNN 80.09

PACNN 82.36

LDL-ALSG 86.54

NGO-BILSTM 89.72

algorithm and BILSTM neural network and uses the loss function

with Adam optimizer for weight update. For the effectiveness of

the model in this paper, the three face expression datasets of

FER2013, FERPlus and RAF-DB are evaluated by the accuracy

of the confusion matrix, and the experimental results are

as follows:

(1) The average recognition accuracy of this paper’s model on

the FER2013 dataset is 51.29%, and the recognition accuracy

of the VGG16 network is 45.14%. Compared with the VGG16

network, the recognition accuracy of the model proposed in

this paper is improved by 6.15%.

(2) The average recognition accuracy of the NGO-BILSTM

model proposed in this paper on the FERPlus dataset is

78.75%, and the recognition accuracy of the VGG16 network is

66.63%. Compared with the VGG16 network, the recognition

accuracy of the proposed model in this paper is improved

by 12.12%.

(3) The identification accuracy of the NGO-BILSTM model

proposed in this paper is 89.72% on the RAF-DB dataset,

which is 5.45, 9.63, 7.36, and 3.18% higher than the

recognition accuracy of the four methods DLP-CNN, gACNN,

pACNN, and LDL-ALSG on the RAF-DB dataset, respectively.

This shows that the NGO-BILSTM-based facial expression

recognition model proposed in this paper has high recognition

accuracy and can be effectively used in facial expression

recognition applications.
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