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Editorial on the Research Topic
Novel therapeutic approaches for biliary tract cancer and hepatocellular
carcinoma

Background

Hepatocellular carcinoma (HCC) and biliary tract cancers (BTC) represent the two
major forms of primary liver cancers. Despite the growing efforts to translate the
increasing knowledge on molecular alterations of these cancers into treatment options
for patients, the actual clinical outcomes remain unsatisfying (Llovet et al., 2021; Valle
et al., 2021).

BTCs are fatal gastrointestinal cancers with very poor 5-year survival rates (Zhu et al.,
2010). The incidence rates vary across geographic regions: in the Western World, the
incidence ranges from 0.5 to 2 per 100,000 population, while in the Eastern World, the
incidence is higher at 60 per 100,000 population (Valle et al., 2021). The molecular
background of BTC development and progression is complex and remains only partially
understood, although it is clear that besides mutational events and dysregulated signaling
pathways, aberrant epigenetics also play a role (Mayr et al., 2015; Mayr et al., 2021; Bekric
et al., 2023). Possible explanations for the low survival rates include diagnosis at an advanced
stage and the development of resistance to, and ineffectiveness of current therapies as well as
not standardized second-line therapies for advanced BTC (Rakic et al., 2014; Moik et al.,
2019). Non-specific symptoms such as abdominal pain, unexplained weight loss and painless
jaundice can lead to late diagnosis and ineffective clinical management (Nagorney et al.,
1993). In addition, current therapies, which include radiotherapy, FGFR inhibitors,
immunotherapies, combination chemotherapies such as cisplatin and gemcitabine and
palliative care, are not able to significantly improve the low median survival (Valle et al.,
2010; Rakic et al., 2014).
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HCC is the most common form of liver cancer (Sung et al.,
2021). This deadly malignancy was responsible for more than
830,000 deaths around the world in 2020 (Sung et al., 2021). HCC
is therefore the second leading cause of cancer related mortality
globally (McGlynn et al., 2021). Similar to BTC, patients with
HCC are usually diagnosed in mid-to-late stages due to
unspecified symptoms such as fatigue, nausea, vomiting and
abdominal pain, which make successful surgical treatment
difficult (Llovet et al., 2021). Patients with advanced-stage
HCC are currently treated with immunotherapy in
combination with bevaciuzumab, adjuvant chemotherapy after
surgery or multikinase/tyrosinkinase inhibitors such as sorafenib
and regorafenib (Llovet et al., 2008; Bruix et al., 2015). Although
sorafenib treatment improves survival in HCC patients, recent
studies report increasing resistance to this multikinase inhibitor
(Chen et al., 2015; Keating, 2017). Therefore, differential
combinatorial treatment strategies using signaling, epigenetic
and immune targets in HCC will be a promising approach to
increase therapeutic success in the future (Neureiter et al., 2019;
Ocker et al., 2021).

Due to the ineffectiveness and development of resistance to
current therapies, the need to identify and provide alternative
therapeutic approaches is of paramount importance to alleviate
the suffering of BTC and HCC patients. Therefore, the current
Research Topic provided a structural platform to identify
mechanisms of resistance, novel relevant therapeutic targets
and prognostic/predictive markers as well as to demonstrate
promising innovative treatment options. The call for papers
attracted an astonishing number of 10 highly interesting
publications and over 65 authors contributed to this Research
Topic in the form of three structured reviews (Guo et al.; Shen
et al.; Yang et al.) and seven original research papers (Liu et al.;
Wu et al.; Jansson et al.; Liang et al.; Nagashima et al.; Yang et al.;
Tang et al.).

This Research Topic covers a variety of subject areas: promising
new survival markers after surgery for BTC patients (Jansson et al.),
non-invasive preoperative prediction of angiogenesis related
markers in BTC (Liu et al.), optimizing strategies for
immunotherapy and the current status of adjuvant therapies in
HCC are discussed (Liang et al.; Tang et al.; Shen et al.; Guo et al.),
characteristics of extrahepatic cholangiocarcinoma (eCCA) are
analyzed (Yang et al.; Nagashima et al.), and novel therapeutic
strategies for BTC are demonstrated. (Wu et al.; Yang et al.).

We will discuss the highlights of these published manuscripts in
short:

Prognosis and prediction factors in BTC

Improving patient outcomes in BTC requires identifying
predictive and prognostic factors.

High levels of vascular endothelial growth factor (VEGF)
expression and microvessel density (MVD) correlate with tumor

progression and poor prognosis in eCCA patients (Möbius et al.,
2007; Thelen et al., 2008; Dongqing et al., 2019). However, current
methods for detecting these factors are invasive and challenging to
replicate. Liu et al. developed a machine learning tool using
regression and classification models for predicting VEGF
expression and MVD in eCCA. The MRI-based tool accurately
predicted these markers non-invasively in a cohort of 100 BTC
patients (Liu et al.).

BTC patients typically experience cancer recurrence within
5 years of surgery, but prognostic factors such as lymph node
metastasis and tumor grading can only be observed after tumor
resection (Mavros et al., 2014; Koerkamp et al., 2015; Margonis
et al., 2016; Bird et al., 2018; Vega et al., 2021). In Jansson et al.’s
study, three preoperative immunologic plasma markers were
identified - CSF1, TIE2, and TRAIL - that predict survival after
surgery in a cohort of 102 BTC patients utilizing high-
throughput multiplex immunoassay. CSF1 and TIE2 were
found to be negative prognostic factors in BTC, while TRAIL
was demonstrated to be a positive prognostic factor (Jansson
et al.).

Immunotherapy in HCC

Immunotherapy is a therapeutic option for HCC patients;
however, the immune microenvironment of many tumors
suppresses the effectiveness of this treatment (Shen et al.).

To address this Research Topic, Shen et al. provide a valuable
review article on HDAC inhibitors in HCC. This article
demonstrates the ability of HDACs to improve the effectiveness
of immunotherapies in cancer treatment. This can be achieved
through increased expression of PD-L1 or the recruitment of NK
cells and T cells (Shen et al.).

Liang et al. also identified an efficacy enhancement of
immunotherapy in HCC by combining anti-PD-1 antibodies with
Abrine, an inhibitor of indoleamine 2,3-dioxygenase 1 (IDO1). In
their study, Liang et al. showed that IDO1 is upregulated in HCC
cells and can lead to tumor immune escape. They found that using
Abrine along with anti-PD-1 antibodies can inhibit immune escape
and increase CD8+ T cell infiltration, leading to a stronger immune
response and anti-tumor effect (Liang et al.).

Taken together, this Research Topic provides insight into the
latest efforts to overcome resistance mechanisms of current
therapies, discover novel prognostic and predictive markers, and
identify alternative anti-BTC/HCC strategies.

We sincerely thank all the authors for their valuable
contributions to this Research Topic.

Author contributions

DB: Conceptualization, Writing–original draft. MT:
Conceptualization, Writing–original draft. MO: Writing–review
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Long-term outcomes of anatomic
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intrahepatic cholangiocarcinoma
with hepatolithiasis: A multicenter
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Jia-Hui Lv4 and Fu-Nan Qiu1,2*

1Shengli Clinical Medical College, Fujian Medical University, Fuzhou, China, 2Department of

Hepatobiliary Pancreatic Surgery, Fujian Provincial Hospital, Fuzhou, China, 3Department of Surgical

Intensive Care Unit, First A�liated Hospital of Fujian Medical University, Fuzhou, China, 4Department of

Hepatobiliary Surgery, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China

Background: The benefits of anatomic resection (AR) vs. non-anatomic resection

(NAR) in patients with primary intrahepatic cholangiocarcinoma (ICC) with

hepatolithiasis (HICC) are unclear. This study aimed to compare the long-term

outcomes of AR vs. NAR in patients with HICC.

Methods: A total of 147 consecutive patients with HICC who underwent R0

hepatectomy were included. Overall survival (OS) and recurrence-free survival

(RFS) following AR vs. NARs were compared using a 1:1 propensity scorematching

(PSM) analysis. A subgroup analysis was also conducted according to whether

there are lymph node metastases (LNM).

Results: In a multivariate analysis, CA 19-9 (>39 U/L), microvascular invasion,

LNM, and NAR were independent risk factors for poor RFS and OS rates, whereas

multiple tumors were independent risk factors for OS. AR had better 1-, 3-, and

5-year RFS and OS rates than NAR (OS: 78.7, 58.9, and 28.5%, respectively, vs.

61.2, 25.4, and 8.8%, respectively; RFS: 59.5, 36.5, and 20.5%, respectively, vs. 38.2,

12.1, and 6.9%, respectively). After PSM, 100 patients were enrolled. TheNAR group

also had significantly poorer OS and RFS (OS: 0.016; RFS: p = 0.010) than the AR

group. The subgroup analysis demonstrated that in HICCwithout LNM,OS and RFS

were significantly poorer in the NAR group than the AR group, while no significant

di�erences were observed in HICC with LNM before or after PSM.

Conclusion: Anatomic resection was associated with better long-term survival

outcomes than NAR in patients with HICC, except for patients with LNM.

KEYWORDS

intrahepatic cholangiocarcinoma with hepatolithiasis, anatomic resections, overall

survival, recurrence-free survival, lymph node metastases (LNM)

Background

Intrahepatic cholangiocarcinoma (ICC) is the second most common primary hepatic

malignancy (1, 2). The incidence of ICC has been reported to be increasing worldwide over

the past decades (3). Hepatolithiasis is one of the multifactorial etiologies of ICC, which

have a high prevalence in Asian countries (4). Several studies have indicated hepatolithiasis

as an independent risk factor for patients with ICC, and the total incidence of ICC caused by

hepatolithiasis is∼ 5–13% in Asian populations (5–7).
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Liver resection is the first-line therapeutic option for patients

with ICC, including those with ICC with hepatolithiasis (HICC), to

achieve a possible long-term survival (8). Although many studies

have focused on therapy methods for patients with ICC, the

prognosis of these patients is dismal owing to high incidences of

post-operative recurrence and metastasis (9, 10). Several studies

have indicated that the 5-year overall survival (OS) of patients

with ICC after curative resection was only 20–35% (9, 10). More

importantly, patients with HICC had worse outcomes than those

without hepatolithiasis (6, 11).

Anatomic resection (AR) has been recommended to be

superior to liver resection in reducing the risk of post-operative

intrahepatic recurrence in patients with hepatocellular carcinoma

(HCC) (12, 13). However, the number of studies investigating

post-hepatectomy OS between AR and non-anatomic resection

(NAR) for ICC is limited (14, 15), and the conclusions are still

controversial. To the best of our knowledge, no studies have

investigated the long-term outcomes of AR and NAR for HICC. In

this study, we aimed to compare the clinical outcomes of patients

withHICCwho underwent AR andNARusing the propensity score

matching (PSM) analysis.

Methods

Patients

We retrospectively reviewed the data of patients with HICC

who underwent R0 resection between October 2012 and December

2021 at the following three high-volume institutions: Fujian

Provincial Hospital (Fuzhou, China), Mengchao Hepatobiliary

Hospital of Fujian Medical University (Fuzhou, China), and

the First Affiliated Hospital of Fujian Medical University

(Fuzhou, China). The diagnosis of HICC was confirmed by

two experienced pathologists who were dependent on the post-

operative histopathological examination at each participating

hospital. R0 resection was defined as complete tumor removal with

a free microscopic margin. Data, including standard demographics,

perioperative clinicopathological, and post-operative outcomes,

were retrospectively collected. This study was approved by the

Institutional Ethics Committee of Fujian Provincial Hospital. The

ethical license number was K2022-07-011. All the participants

provided written informed consent for the use of their data.

The inclusion criteria were as follows: (1) patients with HICC

who underwent R0 resection, (2) with primary ICC lesions without

contiguous organ invasion or extrahepatic metastasis, and (3) age

of 18–75 years with good operative tolerance. The exclusion criteria

were as follows: (1) combined with other serious malignant diseases

(n= 3), (2) Child–Pugh class C liver function (n=1 ), (3) combined

with macrovascular invasion (n = 16), (4) receiving pre-operative

Abbreviations: AR, Anatomic resection; NAR, non-anatomic resection; ICC,

intrahepatic cholangiocarcinoma; HICC, intrahepatic cholangiocarcinoma

with hepatolithiasis; RFS, recurrence-free survival; PSM, propensity score

matching; LNM, lymph node metastases; MVI, microvascular invasion; HCC,

hepatocellular carcinoma; TBil, total bilirubin; AFP. serum a-fetoprotein;

CA19-9, carbohydrate antigen 19-9; CEA, carcinoembryonic antigen; HBsAg,

hepatitis B surface antigen.

anticancer treatment (n = 4), (5) combined HCC and ICC (n

= 28), (6) patients who died within 90 days of surgery (n = 3),

(7) patients who died of other disease-related causes (n = 2), (9)

non-R0 resection (n= 14), and (10) incomplete data (n= 8).

Liver resection

Patients with obstructive jaundice (total bilirubin (TBil) level

>200 µmol/L) or acute cholangitis were treated with percutaneous

transhepatic biliary drainage that was placed in their contralateral

intrahepatic bile duct to reduce the TBil level pre-operatively. The

TBil criteria for surgery after PTCD was TBil level <50 µmol/L

or cure for acute cholangitis. It was generally not more than 2

weeks. AR was classified as a liver resection based on the systematic

removal of the Couinaud segment(s), which include the tumor

together with the tumor-bearing portal vein and hepatic territory,

and NAR was classified as all other resections that were not in

accordance with the anatomical distribution of the portal vein

branches. Regional lymphadenectomy was performed if lymph

node metastasis was suspected or diagnosed either pre-operatively

or intraoperatively. A choledochoscope was routinely used for

exploration in all cases.

Follow-up

Follow-up occurred once every 3 months for the first 2

years after the initial surgery and every 6 months thereafter.

At each visit, tests for liver function (TBil, serum albumin,

alanine aminotransferase, and aspartate aminotransferase), serum

alpha-fetoprotein level (AFP), carbohydrate antigen 19-9 (CA

19-9), and carcinoembryonic antigen (CEA), as well as imaging

examinations (contrast-enhanced computed tomography or

magnetic resonance imaging) were performed. When recurrence

was diagnosed, the treatment was decided based on the pattern

of recurrence, liver functional reserve, and general condition of

the patient.

The OS rate was calculated from the date of the first liver

resection to the date of the patient’s death or last follow-up. The

recurrence-free survival (RFS) rate was the interval between the

date of surgery and the date of diagnosis of the first recurrence or

last follow-up.

Statistical analyses

Data were analyzed using the SPSS software (version 17.0;

SPSS, Inc., Chicago, IL, USA). Categorical variables were compared

using the chi-square test or Fisher’s exact test. Continuous

variables were compared using the t-test or Mann–WhitneyU-test.

Univariate and multivariate comparisons of survival distributions

were performed using Cox proportional hazard models, and factors

with a p < 0.05 in the univariate analysis were then incorporated

into the multivariate analysis. The OS and RFS rates between AR

and NAR were calculated using the Kaplan–Meier method, and the

significance of differences between the two groups was compared
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using the log-rank test. All p-values were two-sided and considered

significant at a p-value of <0.05.

A PSM analysis was performed to eliminate selection bias. The

variables used in the PSM analysis included the following: tumor

size, sex, age, hepatitis B surface antigen status (HBsAg), liver

cirrhosis, Child–Pugh class, CEA, CA 19-9, tumor size, and tumor

number. The PSM was performed via 1:1 matching with a caliper

width of 0.02 of the standard deviation.

Results

Patient clinicopathological characteristics

Altogether, 147 patients with HICC who underwent R0

hepatectomy without macrovascular invasion, direct invasion to

contiguous organs, or extrahepatic metastasis between October

2012 and December 2021 in the three institutions were included in

our study. Of these patients, 80 (54.42%) and 67 (45.58%) patients

underwent AR and NAR, respectively. The clinicopathological

baseline characteristics of the patients with HICC are presented

in Table 1. Of the 147 patients, 55 (37.41%) patients had LNM, 99

(67.35%) had tumors >5 cm in diameter, 32 (21.77%) had multiple

tumors, and 49 (33.33%) presented with liver cirrhosis. Before PSM,

the two groups showed a significant difference in liver cirrhosis.

After PSM, there were no significant differences in cirrhosis.

In terms of post-operative characteristics, although the AR

group had a slightly longer operative time than the NAR group,

there were no significant differences in the operative time (Table 1).

Post-operative hospital stay and operative blood loss were also

not significantly different between both groups. Meanwhile, the

incidence of grades I–II and III–IV surgical complications in the

AR and NAR groups was similar (Table 1). More importantly,

the AR could significantly reduce the rate of stone recurrence

(P = 0.039). The long-term outcomes of stone recurrence after

PSM (P = 0.059) did not significantly differ between the two

groups, and this may be because of the small number of cases.

Independent predictors of RFS and OS

Univariate analysis revealed that CA 19-9 (>39 U/L), tumor

number (multiple), microvascular invasion (MVI; positive), LNM

(positive), and AR (yes) were independent risk factors for OS

and RFS rates. Maximum tumor size (>5.0 cm) was independently

associated with RFS (Supplementary Table 1). Multivariate analysis

revealed that CA 19-9 (>39 U/L), MVI (positive), LNM (positive),

and AR (positive) were independent risk factors for OS and RFS

rates, whereas tumor number (multiple) was an independent risk

factor for OS (Table 2).

Long-term outcomes

Before PSM, the 1-, 3-, and 5-year OS rates for patients with

HICC were 78.7, 58.9, and 28.5%, respectively, in the AR group,

and 61.2, 25.4, and 8.8%, respectively, in the NAR group (p< 0.001)

(Figure 1A). The 1-, 3-, and 5-year RFS rates were 59.5, 36.5, and

20.5%, respectively, in the AR group, and 38.2, 12.1, and 6.9%,

respectively, in the NAR group (p < 0.001) (Figure 1B). After PSM,

AR was associated with better 1-, 3-, and 5-year RFS (Figure 1C;

1 year, 49.2 vs. 28.0%; 3 years, 24.7 vs. 11.2%; and 5 years, 16.5

vs. 4.5%; p = 0.010) and OS rates (Figure 1D; OS, 65.8 vs. 52.0%;

3 years, 50.1 vs. 16.5%; and 5 years, 22.5 vs. 6.3%; p = 0.016)

than NAR.

Subgroup analysis of survival according to
lymph node metastases

Patients with HICC were sub-categorized according to LNM

(Figure 2). Among 92 patients without LNM, the AR group

demonstrated better OS and RFS rates than the NAR group before

and after PSM. However, no significant difference was observed

between both groups among HICC patients with LNM (Figure 3;

before PSM, OS: p = 0.571, RFS: p = 0.383; after PSM, OS:

p= 0.627, RFS: p= 0.275, respectively).

Discussion

To date, a series of studies have indicated that patients with

ICC who underwent partial hepatectomy still had a low 5-year

OS rate (2, 3). As for those with HICC, their prognosis was

poorer than patients with ICC without hepatolithiasis (16, 17).

Hepatolithiasis frequently results in the development of atypical

epithelium, oncogene activation, and inflammation, leading to the

high occurrence of periductal invasion and LNM, which leads to

a poor prognosis (18, 19). However, the early symptoms of HICC

are not typical and can be easily concealed by intrahepatic bile duct

stones and cholangitis. The sensitivity and specificity of laboratory

tests and imaging studies for HICC are relatively low, which leads to

a delay in diagnosing HICC and the advanced tumor stage (19). In

our data, 42 (28.57%) of the patients with HICC were diagnosed by

pathological testing after partial hepatectomy. Therefore, surgeons

should consider the possibility of co-existing ICC when performing

surgery on patients with hepatolithiasis.

Although patients with HICC had a very poor prognosis,

curative resection remains the best curative treatment for HICC

(20). Previous studies have demonstrated that AR was associated

with better survival outcomes than NAR for HCC lesions, with

AR considered theoretically effective in reducing intrahepatic

recurrence (21, 22). Although both HCC and ICC arise in the

hepatic parenchyma, the impact of AR on the prognosis for ICC

remains unclear. Moreover, studies on the benefit of AR for ICC

are limited, and their conclusions are inconsistent (14, 15). Li

et al. concluded that NAR was not inferior to AR in improving

the survival outcomes of patients with ICC. In contrast, Si et al.

have reported that AR was associated with a better prognosis than

NAR in patients with ICC with stage IB or II without vascular

invasion. However, no prospective studies have compared the

clinical outcomes of patients with HICC who underwent AR and

NAR, and the surgical method of operation for patients with HICC

has not been extensively researched. Previous studies have reported

that AR was effective for treating hepatolithiasis and was associated
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TABLE 1 Patient demographics and tumor characteristics.

Variables Before PSM (n = 147) After PSM (n = 100)

NAR (n = 67) AR (n = 80) P-value NAR (n = 50) AR (n = 50) P-value

Sex 0.278 0.689

Male 30 43 24 26

Female 37 37 26 24

Age (years) 0.827 0.373

≤65 48 56 34 38

>65 19 24 16 12

HBsAg 0.468 0.517

Yes 23 23 17 14

No 44 57 33 36

Anti-HCV 0.510 1.000

Yes 3 2 2 2

No 64 78 48 48

Liver cirrhosis 0.047 0.826

Yes 28 21 15 14

No 39 59 35 36

Tbil 0.324 0.603

≤23 µmol/L 57 63 42 40

>23 µmol/L 10 17 8 10

ALB 0.172 0.542

≤40 g/L 30 27 19 22

>40 g/L 37 53 31 28

ALT 0.224 0.668

≤40 U/L 49 51 35 33

>40 U/L 18 29 15 17

AST 0.797 0.260

≤40 U/L 49 60 39 34

>40 U/L 18 29 11 16

ALP 0.429 1.000

≤125 U/L 35 47 28 28

>125 U/L 32 33 22 22

GGT 0.787 0.840

≤60 U/L 27 34 21 22

>60 U/L 49 46 29 28

AFP 0.535 0.695

≤20 ng/mL 62 76 46 47

>20 ng/mL 5 4 4 3

(Continued)
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TABLE 1 (Continued)

Variables Before PSM (n = 147) After PSM (n = 100)

NAR (n = 67) AR (n = 80) P-value NAR (n = 50) AR (n = 50) P-value

CA19-9 0.329 0.529

≤39 U/L 24 35 19 16

>39 U/L 43 45 31 34

CEA 0.948 1.000

≤10 µg/L 55 66 40 40

>10 µg/L 12 14 10 10

Tumor number 0.539 0.617

Single 50 65 41 39

Multiple 17 15 9 11

Tumor diameter 0.244 0.683

≤5 23 35 21 19

>5 44 45 29 31

MVI 0.646 1.000

Yes 19 20 16 16

No 48 60 34 34

Nodal metastasis 0.508 0.545

Yes 27 28 20 23

No 40 52 30 27

Macroscopic type 0.345 0.275

MF 52 67 40 44

Non-MF 15 13 10 6

Tumor differentiation 0.771 0.817

Well/moderate 50 58 37 38

Poor 17 22 13 12

Operation time, min 206.5± 93.0 234.7± 82.4 0.053 208.9± 91.6 227.1± 83.3 0.300

Blood loss, mL median (range) 300 (50–2,450) 300 (50–2,500) 0.505 200 (50–2,450) 300 (100–2,500) 0.763

Post-operative hospital stays, days 13.7± 7.7 13.9± 7.2 0.913 13.3± 7.7 13.1± 5.9 0.840

Adjuvant chemoradiotherapy 0.580 0.305

Yes 23 31 17 22

No 44 49 33 28

Grade of complications 0.943 1.000

Non 35 44 23 23

I–II 26 29 22 22

III–IV 6 7 5 5

Long-term outcome of stone recurrence 0.039 0.059

Yes 9 3 7 1

No 58 77 43 49

The bold values indicate P < 0.05, which had a significant difference between the two group.
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TABLE 2 Multivariate analysis of factors related to the RFS and OS before PSM.

Variables RFS OS

HR (95%CI) P-value HR (95%CI) P-value

ALP (>125 U/L) 0.899 0.595–1.357 0.612

CA19-9 (>39 U/L) 1.858 1.210–2.854 0.005 1.996 1.249–3.189 0.004

Tumor number (multiple) 1.611 0.987–2.628 0.056 2.654 1.591–4.427 <0.001

Tumor size (>5 cm) 1.254 0.817–1.925 0.301 1.076 0.689–1.681 0.748

MVI (positive) 2.282 1.484–3.510 <0.001 1.874 1.187–2.959 0.007

Nodal metastasis (positive) 1.849 1.194–2.863 0.006 2.432 1.536–3.852 <0.001

AR (yes) 2.008 1.370–2.943 <0.001 2.237 1.477–3.390 <0.001

The bold values indicate P < 0.05, which had a significant difference between the two group.

FIGURE 1

OS and RFS rates after AR vs. NAR for patients with HICC before (A, B) and after PSM (C, D).

with a low rate of recurrence (23, 24). Thus, patients with HICC

may benefit from AR.

In the present study, AR conferred better OS and RFS

outcomes than NAR in patients with HICC who underwent R0

hepatectomy without macrovascular invasion, direct invasion to

contiguous organs, or extrahepatic metastasis. In addition, AR

could significantly reduce the rate of stone recurrence before PSM.

Multivariate analyses revealed AR as an independent favorable
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FIGURE 2

OS and RFS rates after AR vs. NAR for HICC patients without LNM before (A, B) and after PSM (C, D).

prognostic factor for OS and RFS. Subgroup analyses further

demonstrated that HICC patients without LNM would receive

more benefits from AR than that from NAR. Meanwhile, no

significant difference between AR and NAR was observed in HICC

patients with LNM.

Several studies have indicated that NAR is generally suitable

for patients with poor liver function or liver cirrhosis (25, 26).

Poor liver function and liver cirrhosis are limiting factors for

extensive liver resection in patients with ICC. The use of AR in

patients with poor liver function or liver cirrhosis should still

be assessed carefully to avoid liver failure post-operatively. In

our study, the AR group comprised a few patients with liver

cirrhosis. The different proportions of liver cirrhosis may be

attributable to inconsistent results. Therefore, we used PSM to

minimize the selection bias between the two groups. Moreover,

our study demonstrated that the intraoperative bleeding, operative

time, post-operative hospital stays, and grade of complications

did not differ significantly between the AR and NAR groups.

This may be due to the technological advances in hepatectomy

and the selection of the most appropriate treatment for patients

with ICC.

The relationship between LNM and the prognosis of ICC has

been indicated in previous studies (27, 28). Nodal metastasis is

generally believed to greatly influence the prognosis of patients

with ICC compared with other risk factors (27). ICC patients

with LNM had a significantly worse prognosis than those without

LNM (27, 28). In the present study, the data demonstrated that

the LNM of HICC, rather than the resection type, influenced

long-term outcomes.

This study has several limitations. First, this was a retrospective

study. Although we used PSM, biases in patient selection

may still exist. Second, some patients who had normal lymph

nodes that were not identified in the pre-operative imaging

or surgical exploration did not undergo lymphadenectomy.

Nevertheless, all patients with ICC were recommended to undergo

lymphadenectomy. Third, the sample size was small. Thus, more
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FIGURE 3

OS and RFS rates after AR vs. NAR for HICC patients with LNM before (A, B) and after PSM (C, D).

randomized controlled trials with a large sample size are necessary

to confirm our results.

Conclusion

In conclusion, our study indicated that AR was associated

with better survival outcomes than NAR in HICC patients

without LNM.
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Adjuvant therapy following
curative treatments for
hepatocellular carcinoma:
current dilemmas and prospects

Bin Guo1†, Qian Chen1,2†, Zhicheng Liu1, Xiaoping Chen1

and Peng Zhu1*

1Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science
and Technology, Wuhan, Hubei, China, 2Hepatobiliary Surgery Department, The First Affiliated
Hospital of Shihezi University, Shihezi, Xinjiang, China
Curative surgical treatments, mainly liver resection, are still one of the optimal

options for patients with early-, mid-, and even progression-stage

hepatocellular carcinoma (HCC). However, the recurrence rate within 5

years after surgery is as high as 70%, especially in patients with high risk

factors for recurrence, most of whom experience early recurrence within 2

years. Effective adjuvant therapy may improve prognosis, previous studies

found that adjuvant transarterial chemoembolization, antiviral, and traditional

Chinese medicine et al. were helpful in preventing HCC recurrence.

Nevertheless, due to controversial results or lack of high-level evidence,

there is no standardized postoperative management protocol worldwide at

present. Continued exploration of effective postoperative adjuvant

treatments to improve surgical prognosis is necessary.

KEYWORDS

hepatocellular carcinoma, curative surgery, tumor recurrence, disease-free survival,
adjuvant therapy
Abbreviations: HCC, hepatocellular carcinoma; LR, liver resection; LT, liver transplantation; OS, overall

survival; BCLC, Barcelona Clinical Liver Cancer; PVTT, portal vein tumor thrombosis; MVI, microvascular

invasion; TACE, transarterial chemoembolization; ICIs, immune checkpoint inhibitors; RCT, randomized

controlled trials; HBV, hepatitis B virus; HCV, hepatitis C virus; DAAs, direct-acting antivirals; DFS, disease-

free survival; PD-1, programmed death protein 1; TKIs, tyrosine kinase inhibitors; TCM, traditional Chinese

medicine; THM, traditional herbal medicine; HAIC, hepatic artery infusion chemotherapy; RT, radiotherapy;

IMRT, intensity modulated radiotherapy; SBRT, stereotactic body radiotherapy; AEs, adverse effects; CIK,

cytokine induced killer cells.
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1 Introduction

Hepatocellular carcinoma (HCC) is one of the most common

malignancies worldwide, the number of HCC-related death ranking

second among all types of cancers (1, 2). Curative surgery is the

ideal treatment protocol for patients with HCC (3, 4), and the

choice of surgical indications for liver resection (LR) varies between

regions based on different administrative medical evidence.

According to the recently updated European guidelines for the

treatment of HCC (4), only patients with Barcelona Clinical Liver

Cancer (BCLC) stage 0-A HCC are suitable for radical surgery

including ablation, LR and liver transplantation (LT), and some

patients with stage B HCC are appropriate candidates for LT if they

meet extended LT criteria. Strict adherence to BCLC guidelines for

surgical indications may prevent many patients from undergoing

radical surgical treatment. In contrast, some procedures that exceed

BCLC guidelines are often performed in the Asia-Pacific region,

including some stage B and stage C patients (5, 6), and some studies

have confirmed that surgery has more favorable outcomes than

other modalities (7–9). However, a wider range of surgical

indications also means a higher probability of accompanying

high-risk factors for recurrence.

There are two types of postoperative recurrence, one is early

recurrence which is thought to be associated with intrahepatic

metastasis from the initial tumor within 2 years after the surgery;

the other is late recurrence, which usually occurs after two years due

to underlying liver disease like cirrhosis or active hepatitis. Previous

studies have shown that portal vein tumor thrombosis(PVTT),

microvascular invasion (MVI), and multiple tumors et al. are

high-risk factors for early recurrence (10–13), while PVTT and

MVI are also high-risk factors for late recurrence (14, 15). Patients

with high risk factors are more likely to experience early recurrence,

which severely affects the overall outcome of surgical treatment and

compromises the patient’s quality of life.

Regarding the management of postoperative adjuvant therapy,

there is no standardized strategies worldwide due to unsatisfactory

results, controversial findings or lack of high-level evidence (16, 17).

Although there are some regimens that may be helpful in reducing

postoperative recurrence, such as sorafenib (18, 19), lenvatinib (20),

transarterial chemoembolization (TACE) (21), antiviral for

hepatitis B-related HCC (22), and Huaier granule (23). However,

more well-designed RCTs are required to validate their value. In

recent years, the combination of immune checkpoint inhibitors

(ICIs) with systemic agents or locoregional therapy has shown

excellent anti-tumor effects in the treatment of advanced HCC. This

has also led to more options and directions in the study of

postoperative adjuvant therapy for HCC, and some relevant

studies have recently been preliminarily reported, with overall

encouraging results. Here we summarize the current status and

recent advances in postoperative adjuvant therapy for HCC.
Frontiers in Oncology 0218
2 The current options and recent
advances of adjuvant therapy

2.1 Antiviral therapy

2.1.1 Oral antiviral drugs
In Asia, Africa, etc. Hepatitis B virus (HBV) is a major risk

factor for the occurrence and progression of HCC. Anti-HBV is an

essential basic treatment for HCC, which not only improves liver

function and prevents liver fibrosis, but also reduces the recurrence

of cured HCC (24). Common oral antiviral drugs include entecavir,

tenofovir, adefovir and telbivudine. Huang et al. conducted 2

randomized controlled trials (RCT) confirmed that adjuvant

antiviral therapy (telbivudine and adefovir) is helpful in reducing

late recurrence for HBV-related HCC after LR, and the OS was also

improved (22, 25). Besides, a recent cohort study found that

tenofovir maybe a more suitable adjuvant agents for patients

received LR than entecavir, which was associated with lower risk

of HCC recurrence and better OS (26). For patients with hepatitis C

virus (HCV)-associated HCC, the necessity of postoperative

adjuvant antiviral therapy remains controversial. A multicenter

study which included 47 tertiary care centers in 25 states on the

effect of direct-acting antivirals (DAAs) on HCC recurrence did not

reach a consistent conclusion (27), 48% responded that DAAs

reduce risk, 36% responded that DAAs do not change risk, and

16% responded that DAAs increase risk of HCC recurrence.

Similarly, a meta-analysis including 21 studies found no

statistically significant difference in the relative risk of DAAs

exposure versus no DAAs exposure in preventing HCC

recurrence (28). Therefore, postoperative adjuvant antivirals are

essential for HBV-related HCC, whereas for HCV-related HCC,

there is no high-level evidence to support the necessity of their use.

2.1.2 Interferon
More than a decade ago, many RCTs have explored the value of

interferon as an adjuvant therapy due to its antiviral,

immunomodulatory, anti-proliferative and anti-angiogenic effects.

However, these studies did not obtain consistent conclusions. Two

RCTs found adjuvant interferon can’t improve the prognosis for

hepatitis viral-related HCC after LR (29, 30); while a RCT found

adjuvant interferon improved OS for HBV-related HCC (31), and 2

RCTs found adjuvant interferon improved disease-free survival

(DFS) for HCV-related HCC (32, 33). A meta-analysis

incorporating only RCTs concluded that adjuvant interferon can

improved OS for hepatitis viral-related HCC, but the influence of

DFS was modest (34). This may explain why interferon is currently

used less frequently. Nevertheless, the immunomodulatory effects of

interferon have attracted the interest of researchers. Hu et al. (35)

found interferon can release the cytotoxic capacity of T cells by

reprogramming glucose metabolism in the HCC tumor
frontiersin.org
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microenvironment to enhances the immune response induced by

programmed death protein 1 (PD-1) inhibitors. Besides, in a study

based on subcutaneous and orthotopic mouse models of HCC, Zhu

et al. (36) found a possible synergistic effect of interferon and PD-

1inhibitors. The combination of PD-1 inhibitors and interferon is

promising both in the treatment of advanced HCC and in adjuvant

therapy after radical surgery, and more clinical studies are needed to

confirm this conjecture.
2.2 Tyrosine kinase inhibitors

Sorafenib is one of the TKIs, which is the first Food and Drug

Administrations-approved anti-angiogenic drug for first-line

treatment of advanced HCC (3, 37). STORM trial is a large RCT

conducted in multiple countries which evaluated the value of

adjuvant sorafenib for patients with HCC following LR or

ablation, however, the median DFS was 8.5 months in the

sorafenib group which was not significantly improved compared

with 8.4 months in the placebo group (38). Some subsequent studies

have made different findings. Two small sample studies from China

found that adjuvant sorafenib following LR significantly improved

DFS and OS for patients with BCLC C stage HCC (18, 39). Another

propensity score-matched (PSM) study including 718 patients with

MVI from China found that adjuvant sorafenib significantly

improved DFS and OS compared to LR alone (The 5-years DFS

and OS rate was 39% and 57% vs. 19% and 37%) (19). In addition, a

recent meta-analysis of 9 studies also concluded that sorafenib is

valuable as adjuvant therapy (40). Lenvatinib is another approved

TKIs for advanced HCC, which was proved non-inferior to

sorafenib, with comparable OS and longer progression-free

survival (41). A retrospective study confirmed a similar adjuvant

effect of Lenvatinib following LR for patients with MVI (42), which

prolong both DFS and OS. Another retrospective study found

adjuvant lenvatinib is helpful in improving the prognosis for

patients with high residual alpha-fetoprotein following resection

or ablation (20). Expanding the indications for surgical treatment in

the Chinese region may be an important factor that could explain

the inconsistent results with the STROM trial. Patients with high-

risk recurrence factors are more deserving of adjuvant therapy and

are more likely to benefit from adjuvant TKIs. Of course, this would

need to be confirmed by more regional, well-designed RCTs.
2.3 Traditional Chinese medicine

Mild medicinal properties and well-tolerance is the major

advantage of TCM. TCM has a history of thousands of years, but

research on the treatment of HCC and adjuvant therapy is scarce.

So far, only 2 RCTs have evaluated the adjuvant therapeutic value of

Huaier granules and traditional herbal medicine (THM). Huaier

granules plays an anti-tumor role by inhibiting cell proliferation,

inducing apoptosis and inhibiting tumor angiogenesis (43, 44). A

multicenter RCT including 1,044 patients led by our center

explored the postoperative adjuvant value of Huaier granules.
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Patients with BCLC A or B stage HCC who received adjuvant

Huaier granules following radical LR had better DFS and OS than

those received LR alone (the 96 weeks DFS and OS rates was 62.39%

and 95.19% vs. 42.09% and 91.46%), and the extrahepatic

recurrence rate was significantly lower in the Huaier granules

group (8.6% vs. 13.1%) (23). Wang et al (45). in a cohort study

found that adjuvant Huaier granules was also helpful in improving

OS for patients with early-stage HCC after thermal ablation

compared with no intervention (The median OS was 35 months

vs. 31 months). A recent PSM analysis also confirmed that adjuvant

Huaier granules after curative resection were helpful in improving

prognosis, especially for patients with tumor diameter >3 cm (after

PSM, the 5-years DFS was 42.18% vs. 27.14%) (46). Another RCT

conducted by Zhai et al. (47, 48) evaluated the effectiveness of

adjuvant THM for patients with small HCC, patients’ DFS and OS

were significantly prolonged when receiving adjuvant THM

compared with TACE (the median DFS was 85.83 months vs. 26

months). Many active ingredients and mechanisms of action of

TCM for the treatment of malignant tumors are still unclear,

limiting its widespread clinical use, and application in countries

other than China. Continued in-depth exploration is necessary;

besides, it is also worth investigating whether the combination of

TCM with TKIs or ICIs will produce better anti-tumor effects.
2.4 Transarterial interventions

2.4.1 TACE
With more than 40 years of development, TACE is a very

mature technique and the standard treatment for intermediate stage

(BCLC-B) HCC (4). Postoperative angiography allows timely

detection of residual lesions and embolization of the blood supply

vessels, which determines the value of TACE as an adjunctive

therapy. As early as 1994, an RCT evaluated the value of TACE

as adjuvant therapy, patients had significantly longer DFS after

receiving 1 postoperative TACE compared to no intervention, but

no significant difference in OS (49). Five RCTs were subsequently

explored in the next 15 years, but the results were controversial.

Two studies found that adjuvant TACE significantly improved DFS

and OS (50, 51), one study found that TACE only contributed to OS

(52), and one study found that TACE had no significant effect on

prognosis (53). Research was stalled for nearly a decade due to

controversial results, until the last few years, two RCTs have

explored TACE adjuvant therapy in depth and have reached

consistent conclusions (54). One was conducted by Wei. et al.

evaluated the effect of postoperative adjuvant TACE for patients

with MVI and tumor diameter ≥ 5cm, patients who received

adjuvant TACE had significantly longer DFS and OS (the median

DFS and OS was 14.45 months and 44.29months vs. 9.27 months

and 22.37 months) (55). The other RCT which including 280

patients conducted by Wang et al. obtained similarly results,

adjuvant TACE effectively reduces postoperative recurrence for

patients with high-risk factors (tumor diameter ≥5cm with MVI,

or multiple tumors) for recurrence, the median DFS was 25.7

months longer than the control group (49.5 months vs. 23.8
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months) (21). Based on these results, TACE was included in the

recommended postoperative adjuvant regimen in the Chinese liver

cancer treatment guidelines (9). A recent meta-analysis involving 40

studies (10 RCTs and 30 non-RCTs) of postoperative adjuvant

TACE noted that patients with high-risk factors for recurrence

(MVI, multinodular tumors, and tumor diameter ≥5cm) were more

likely to benefit from adjuvant TACE, with longer OS and DFS

compared with LR alone; conversely, this study found no

improvement in OS, and even worse DFS in patients without

MVI (56). Studies in recent years have pointed to the possibility

that TACE may help reduce early recurrence for patients with high-

risk factors for recurrence, and whether those at low risk of

recurrence will benefit from adjuvant TACE is debatable.

2.4.2 Hepatic artery infusion chemotherapy
Identification of suspicious lesions by angiography and

continuous infusion of chemotherapy is the modus operandi of

HAIC. Izumi et al. (49) first evaluated the effect of HAIC as an

adjuvant therapy for patients with MVI and/or intrahepatic

metastases after LR in an RCT conducted in 1994, and found that

HAIC can effectively prevent postoperative recurrence. A small

sample RCT from China obtained similar results in 2015, patients

who received adjuvant HAIC had significantly better OS and DFS

than surgery alone (57). However, two recently published RCT

studies did yield inconsistent results. Li et al. (58) found adjuvant

HAIC significantly prolonged the DFS and OS compared without

any adjuvant therapy for patients with MVI (the 18 months OS and

DFS rate was 97.7% and 58.7% vs. 78.5% and 38.6%). Another RCT

found that postoperative adjuvant HAIC having little effect on DFS

and OS (59), and this RCT did not specifically select patients with

high-risk recurrence factors maybe one reason. Hsiao et al. (60) also

found that postoperative adjuvant HAIC did not improve OS and

DFS compared with LR alone in a recent retrospective study; while

in the subgroup analysis, patients with multiple tumors or MVI

were more likely benefited from adjuvant HAIC. A recent meta-

analysis confirmed that postoperative adjuvant HAIC is effective in

improving prognosis and found that patients with MVI and PVTT

are more likely to benefit from it (61). Similar to TACE, the

available evidence supports that patients with high-risk relapse

factors may be better suited to receive this type of adjuvant therapy.
2.5 Radiotherapy

2.5.1 External RT
Narrow pathological margins (< 1 cm), residual tumor tissue/

cells or microscopic lesions in the liver that are temporarily

undetectable by examination may lead to early recurrence. RT

may be helpful in removing these undetectable tumors. In 2014,

Yu et al. (62) published the results of the first RCT to assess the

effectiveness of postoperative adjuvant RT for patients with narrow

margin (< 1 cm), and found that adjuvant RT did not significantly

influence the DFS and OS. However, inconsistent conclusions were

reached by Gou et al. (63) in a recent retrospective multicenter

study that adjuvant RT work a lot in prolonging DFS and OS for
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patients with narrow or positive surgical margins (the median OS

and DFS was 72.5 months and 37.3 months vs. 52.5 months and

24.0 months). With the development of precision RT techniques

and the application of new radioisotopes, a variety of external RT

modalities have proven to be highly effective for patients with

advanced HCC, including intensity modulated RT (IMRT) and

stereotactic body RT (SBRT) (64). Recently, Sun et al. (65) found

that adjuvant IMRT significantly reduce the postoperative

recurrence and prolong the OS for patients with PVTT compared

with LR alone (the median DFS and OS was 9.1 months and 18.9

months vs. 4.1 months and 10.8 months). Another single-arm,

phase II study also confirmed that postoperative adjuvant IMRT is

safe, well tolerated by patients and has a favorable survival

prognosis (the 5-year OS and DFS rates were 72.2% and 51.6%)

(66). Shi et al. (67) conducted an RCT investigated the prognostic

imaging of adjuvant SBRT in patients with MVI who underwent

marginal resection, and found that SBRT plays an important role in

improving patient’s postoperative prognosis (the 5-years DFS and

OS rates in the SBRT group were 56.1% and 75% vs. 26.3% and

53.7% in the control group); besides, most patients were well

tolerated with no grade 3 or high adverse effects (AEs) occurred.

2.5.2 Internal RT
Localized implantation with radioactive seeds such as iodine-

125 and iodine-131 is a form of internal RT. Between 1999 to 2014,

a total of 4 RCTs evaluated the value of iodine-125 or iodine-131 as

an adjuvant treatment after radical surgery for HCC, however, these

studies did not reach consistent conclusions as well. Two studies

concluded that adjuvant iodine-125 and iodine-131 was helpful in

improving DFS and OS (68–70), one study concluded that adjuvant

iodine-131 was effective in preventing postoperative recurrence but

did not prolong OS (71), and one concluded that adjuvant iodine-

131 did not influence the survival prognosis (72). Because of the

controversial results, iodine-125 and iodine-131 have also been used

less frequently in recent years, and relevant studies are lacking.

Iodine-131-labelled metuximab is a radiolabeled monoclonal

antibody block the CD147 antigen which is associated with a

greater susceptibility to metastasis and a worse prognosis for

patients with HCC. Li et al. (73) explored its role as an adjuvant

therapy for patients with CD147 expression after LR, patients who

received adjuvant Iodine-131-labelled metuximab had significantly

better DFS and OS compared LR alone (the 5-years DFS and OS

rates were 43.4% and 61.3% vs. 21.7% and 35.9%). In the subgroup

analysis of this study, patients with high-risk recurrence factors (a

solitary tumor of any size with microvascular invasion, satellite

nodules, poor differentiation, or two to three nodules) had a

significantly better survival prognosis in the adjuvant group than

in the control group, whereas no difference in survival prognosis

was observed in the intermediate-risk group.
2.6 Immunotherapy

Immunotherapies, including lymphocyte infusions,

cytokineinduced killer cells (CIK), natural killer cells, tumor
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vaccines, and ICIs et al. can recognize and kill immune escape

tumor cells by regulating or enhancing autoimmune function (74).

Immunotherapy has changed the paradigm of human cancer

treatment with potent and durable anti-tumor activity in a subset

of patients. Many RCTs have evaluated the effectiveness of adjuvant

immunotherapy for HCC following LR. In 2000, the first RCT to

evaluate immunotherapy as an adjuvant treatment for postoperative

HCC released the results, patients who received adjuvant

lymphocyte infusions had significant longer DFS compared with

placebo (75). Since then, adjuvant immunotherapy was once a hope.

A total of 4 RCTs between 2009 and 2016 explored the effectiveness

of CIK as an adjuvant treatment after LR, however, these studies did

not reach consistent conclusions. Three studies found that adjuvant

CIK was helpful in improving postoperative prognosis (76–78); one

study, however, discovered that CIK did not prolong postoperative

DFS and OS (79).

In recent years, ICIs have made a breakthrough in the treatment of

advanced-stage HCC (80, 81). Theoretically, restoring the body’s

antitumor cellular immune function is helpful in reducing recurrence

after surgery and prolonging the survival time (82). Masatoshi Kudo

et al. (83) evaluated the efficacy and safety of adjuvant nivolumab after

LR or ablation for HCC in a single-arm study, the median DFS was

26.3 months and the AEs was manageable. And Chen et al. (84)

revealed the value of PD-1 inhibitors as adjuvant therapy in a recent

cohort study, where patients had significantly better DFS than controls

(After PSM, the 2-year DFS was 44.1% vs 21.3%). Similarly, some

studies found that adjuvant PD-1 inhibitors also helpful in prolonging

DFS for other cancers following surgery such asmelanoma, esophageal,

and gastroesophageal tumors (85, 86). No relevant RCT study data

have been reported on adjuvant PD-1 inhibitors following curative

surgery. Besides, the low response rate to PD-1 inhibitors is an

important issue to be addressed, and gene sequencing or biomarkers

that can predict patient response to PD-1 inhibitors may help identify

those patients who are better suited for adjuvant therapy. In addition,

there are two issues that should be noted. One is that ICIs may lead to

HBV reactivation (87), if ICIs is assisted, regular monitoring for

hepatitis B virus and concomitant antiviral treatment is necessary.

The other is that ICIs are not commonly used in the perioperative

period of LT due to concerns about increased immune rejection. Xie

et al. (88) considered that ICIs are not ideal for controlling disease

recurrence or de novo carcinoma after LT; the immune rejection

occurred in 31.9% of patients, with a median OS of only 6.5 months

and a mortality rate of 61.7%. In contrast, a meta-analysis of ICIs

treatment in solid organ transplant recipients found that approximately

35% of patients faced immune rejection after LT, but this was not the

most common cause of death (89). Therefore, adjuvant ICIs after LT

should be approached with caution due to the lack of enough evidence.
2.7 Combined adjuvant therapy

Postoperative prophylactic TACE or HAIC through angiography

can sometimes detect suspicious residual lesions, but it is often

powerless for tumor cells shed by intraoperative manipulation and

residual tumor cells in the cut edge or blood vessels. This is the reason

for carrying out combined adjuvant therapy. Chen et al. (90) explored
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the feasibility of TACE plus lenvatinib in a multicenter prospective

cohort study that screened patients with high risk factors for recurrence

to compared the prognosis of receiving combined adjuvant therapy

with TACE alone, and the preliminary results are satisfactory (the

median DFS was 17.1 months vs. 9 months). There are several well-

designed RCTs underway to explore the effectiveness of TACE

combined with anti-angiogenic drugs to prevent tumor

recurrence (Table 1).

ICIs is the dawn of malignancy treatment in recent years, but

has failed successively in phase III trials in advanced HCC (91, 92).

Some recent studies found that anti-angiogenic drugs such as TKIs

may have synergistic effects with PD-1 inhibitors. TKIs can not only

improve antitumor immune responses by modulating macrophages

and myeloid-derived suppressor cells to enhance effector T cell

responses, but also help to increase the expression of PD-1 on T

cells, thus promoting the action of PD-1 inhibitors (93, 94).

Atezolizumab plus bevacizumab (95), Lenvatinib plus

Pembrolizumab (81), and Lenvatinib plus Nivolumab (96) et al.

have demonstrated stronger anti-tumor effects than single agents in

advanced HCC. Xia et al. conducted a single-arm phase 2 study

exploring the efficacy and safety of perioperative adjuvant

camrelizumab plus apatinib for resectable HCC (97), the 1-year

DFS rate of the enrolled patients was 53.85%. In addition, a small

RCT including 32 patients conducted buy Zhao et al. (98) published

preliminary results in 2021, which confirmed the superiority of

camrelizumab plus apatinib compared with HAIC as adjuvant

therapy in patients with high-risk recurrence factors following LR

(the median DFS was not reached vs. 10.5 months). There are a

number of ongoing trials that will more fully evaluate the feasibility

of combined adjuvant therapy, such as IMbrave 050 trial, which

evaluate atezolizumab plus bevacizumab as adjuvant therapy for

high-risk HCC after curative resection or ablation (Table 1).
3 Discussion

The high early recurrence rate greatly affects the overall outcome

of surgical treatment of HCC, forcing scholars from various countries

to continuously explore effective adjuvant treatment strategies.

Unfortunately, the currently available regimens are either

unsatisfactory in terms of efficacy, controversial in terms of study

results, or lack of high-grade evidence. There is still no standard

adjuvant treatment protocol worldwide. In reviewing published

studies on various adjuvant treatment strategies, it is easy to see that

people with high-risk recurrence factors may be better suited for

adjuvant therapy, and that combined adjuvant therapy may be more

effective than monotherapy. Based on the stratification of risk factors

for recurrence, we summarized the improvement of prognosis with

current adjuvant treatment options and the sources of evidence

(Table 2), and a picture was drawn to guide the rapid search for

appropriate adjuvant treatment strategies (Figure 1). However, two

issues are worth noting, one is what exactly is a “high-risk” recurrence

factor, and the other is whether the safety of combined adjuvant

therapy is acceptable.

Although many studies have used “high-risk factors” or

“intermediate-risk factors” to select appropriate candidates for
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TABLE 1 Summary of important ongoing trials on PD-1, and various combination therapies as adjuvant therapy following LR or ablation.

Study ID/Type Clinicaltrials.gov
ID

Eligible patients Interventions Primary
endpoint

CheckMate9DX
(RCT)

NCT03383458 Received LR or ablation and with high-risk factors for
recurrence

Nivolumab vs. placebo DFS

KEYNOTE-937
(RCT)

NCT03867084 Received curative LR or ablation Pembrolizumab vs. placebo DFS and
OS

JUPITER 04
(RCT)

NCT03859128 Received R0 resection and with high-risk factors for
recurrence

Toripalimab vs. placebo DFS

None
(RCT)

NCT05489289 Received LR and with high-risk factors for recurrence AK104 (anti PD-1/CTLA-4) vs. placebo DFS

None
(RCT)

NCT05240404 Recurrent HCC and received thermal ablation Toripalimab vs. placebo DFS

EMERALD-2
(RCT)

NCT03847428 Received curative LR or ablation Durvalumab + bevacizumab vs. durvalumab +
placebo vs. placebo

DFS

IMbrave050
(RCT)

NCT04102098 Received LR or ablation and with high-risk factors for
recurrence

Atezolizumab + bevacizumab vs. no intervention DFS

A-TACE/S-HCC
(RCT)

NCT02436902 Received curative LR and with MVI Sorafenib + TACE vs.
no intervention

OS

SOURCE
(RCT)

NCT04143191 Received curative LR with resectable advanced HCC Sorafenib + TACE vs. sorafenib DFS

DaDaLi
(RCT)

NCT04682210 Received curative LR and with high-risk factors for
recurrence

Sintilimab + bevacizumab vs.
no intervention

DFS

None
(RCT)

NCT04639180 Received LR or ablation and with high-risk factors for
recurrence

Camrelizumab + apatinib vs.
no intervention

DFS

None
(RCT)

NCT05367687 Received curative LR or ablation and with high-risk
factors for recurrence

Camrelizumab + apatinib vs.
camrelizumab

DFS

None
(RCT)

NCT05161143 Received LR and with high-risk factors for recurrence Donafenib + TACE vs. donafenib DFS

None
(RCT)

NCT03839550 Received LR and with high-risk factors for recurrence Camrelizumab + apatinib vs.
HAIC

DFS

None
(RCT)

NCT05564338 Received LR and with high-risk factors for recurrence Sitravatinib + tislelizumab or Placebo +
Tislelizumab vs. Placebo

DFS

LANCE
(Non-RCT)

NCT03838796 Received LR and with high-risk factors for recurrence Lenvatinib + TACE vs.
TACE

DFS

Y-D202001-0289
(Non-RCT)

NCT05307926 Received curative LR and with high-risk factors for
recurrence

Sintilimab + Lenvatinib or sintilimab vs. TACE DFS

None
(Single arm)

NCT04962958 Received LR and with high-risk factors for recurrence Donafenib + HAIC DFS

None
(Single arm)

NCT05161143 Received LR and with high-risk factors for recurrence Donafenib + TACE DFS

ICMJE A
(Single arm)

NCT04981665 Received curative LR and with high-risk factors for
recurrence

Tislelizumab + TACE DFS

EMPHASIS
(Single arm)

NCT05516628 Received R0 resection and with high-risk factors for
recurrence

Atezolizumab + bevacizumab DFS

CISLD-8
(Single arm)

NCT04418401 Received curative LR and with high-risk factors for
recurrence

Donafenib + anti-PD-1 antibody DFS

ALTER-H006
(Single arm)

NCT05111366 Received R0 resection and with high-risk factors for
recurrence

TQB2450(PD L-1) + Anlotinib DFS

None
(Single arm)

NCT05545124 Received R0 resection and with high-risk factors for
recurrence

Donafenib + Tislelizumab DFS

None
(Single arm)

NCT05311319 Received curative LR and with high-risk factors for
recurrence

Anlotinib + HAIC+ TQB2450 DFS
F
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LR, liver resection; OS, overall survival; DFS, disease-free survival; BCLC, Barcelona Liver Cancer Clinic; PD-1, programmed death protein 1 inhibitors; TACE, transarterial chemoembolization;
RCT, randomized controlled trials; HAIC, hepatic artery infusion chemotherapy.
tiersin.org

https://doi.org/10.3389/fonc.2023.1098958
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Guo et al. 10.3389/fonc.2023.1098958
TABLE 2 Current adjuvant therapy options, improvement in prognosis, and the level of evidence.

Adjuvant therapy options Eligible patients Interventions Improvement
of prognosis

Evidence

Antiviral
therapy

Oral
antiviral
drugs

Telbivudine HBV-related HCC (LR) Telbivudine vs. no DFS and OS RCT (25)

Adefovir HBV-related HCC (LR) Adefovir vs. no DFS and OS RCT (22)

Tenofovir HBV-related HCC (LR) Tenofovir vs.
entecavir

DFS and OS R-Cohort
(26)

Interferon Interferon
alpha

HBV-related HCC (LR) Interferon alpha vs.
no

OS RCT (31)

Interferon
alpha

HCV-related HCC (LR) Interferon alpha vs.
no

DFS RCTs
(32, 33)

Anti-angiogenic
drugs

Sorafenib BCLC-C stage (LR) Sorafenib vs. no DFS and OS R-Cohort
(18, 39)

Sorafenib MVI-positive (LR) Sorafenib vs. no DFS and OS R-Cohort
(19)

Lenvatinib HBV-related HCC and MVI-positive (LR) Lenvatinib vs. no DFS and OS R-Cohort
(42)

Lenvatinib High residual alpha-fetoprotein (LR or ablation) Lenvatinib vs.
TACE vs.no

DFS R-Cohort
(20)

Traditional
Chinese
medicine

Huaier granules BCLC stage A or B (LR) Huaier granules vs.
no

DFS and OS RCT (23)

Huaier granules Early-stage HCC (ablation) Huaier granules vs.
no

DFS R-Cohort
(45)

Huaier granules BCLC stage A or B (LR) Huaier granules vs.
no

DFS and OS R-Cohort
(46)

THM Solitary HCC <5 cm (LR) THMvs. TACE DFS and OS RCT (48)

Locoregional
therapy

TACE MVI and tumor diameter ≥5cm (LR) TACE vs. no DFS and OS RCT (55)

TACE Tumor diameter ≥5cm with MVI, or multiple tumors
(LR)

TACE vs. no DFS and OS RCT (21)

HAIC MVI and/or intrahepatic metastases (LR) HAIC vs. no DFS RCT (49)

HAIC MVI-positive (LR) HAIC vs. no DFS and OS RCT (58)

Radiotherapy External
RT

RT Narrow or positive surgical margins (LR) RT vs. no DFS and OS R-Cohort
(63)

IMRT PVTT (LR) IMRT vs. no DFS and OS RCT (65)

SBRT MVI-positive (LR) SBRT vs.no DFS and OS RCT (67)

Internal
RT

Iodine-131 Grades I–III according to Okuda staging system (LR) Iodine-131 vs. no DFS and OS RCT (68,
69)

Iodine-131 Curative surgery (LR or ablation) Iodine-131 vs.
unlabeled lipiodol

DFS RCT (71)

Iodine-125 Without vascular/bile duct invasion, tumor nodules ≤
3(LR)

Iodine-125 vs. no DFS and OS RCT (70)

Iodine-131-
labelled
metuximab

No macroscopic vascular invasion or extrahepatic
distant metastasis and positive CD147 expression (LR)

Iodine-131-labelled
metuximab vs.no

DFS and OS RCT (73)

Immunotherapy Lymphocyte
infusions

Stage I, II, IIIA, or IVA according to UICC TNM
staging system (LR)

lymphocyte
infusions vs. no

DFS RCT (75)

CIK Received curative treatment (LR or ablation or
percutaneous ethanol injection)

CIK vs. no DFS and OS RCT (76)

CIK Resection margin >1 cm, no tumor fracture and
hemorrhage, and no tumor distant metastases (LR)

CIK vs. no DFS RCT (77)

(Continued)
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adjuvant therapy, there is also a lack of standardized criteria for

stratifying the risk of recurrence. The STORM trial incorporated

tumor characteristics and pathology reports into the risk level

assessment, with high risk recurrence factors including one

tumor of any size plus microvascular invasion, satellite tumors,

poorly differentiated, or two or three tumors each 3 cm or smaller

in size (38). However, many patients with BCLC-stage B or C

HCC also underwent radical surgery in some regions, so multiple

tumors larger than 3 cm (BCLC-B) and PVTT(BCLC-C) should

also been included in high-risk factors. The presence of high-risk

recurrence factors means a higher probability of residual tumor

in the liver, which is a key factor leading to early recurrence.

Effective elimination of residual tumor or prevention of

intrahepatic metastasis through postoperative adjuvant therapy

will help to reduce early recurrence, which may be one of the

reasons why adjuvant therapy is more appropriate for patients

with high-risk recurrence factors.
Frontiers in Oncology 0824
Since the breakthrough of combination therapy in advanced

HCC, investigators have not stopped exploring postoperative

combined adjuvant therapy. However, the safety of adjuvant

therapy cannot be ignored, and whether the remaining liver after

LR can withstand the AEs of combined adjuvant therapy also needs

to be taken into consideration. In reports of camrelizumab in

combination with apatinib for advanced HCC, 77.4% of patients

experienced grade ≥ 3 AEs, 28.9% experienced serious AEs, and 2

died (99). In reports of lenvatinib plus pembrolizumab for advanced

HCC, 67% of patients experienced grade ≥ 3 AEs, and 3%

experienced grade 5 AEs (81). And in the IMbrave 150 study that

atezolizumab-bevacizumab caused 56.5% of patients to experience

grade 3 or 4 AEs (80). Hypertension and hepatic impairment are the

most common AEs. A recent meta-analysis concluded that fatigue,

hypertension, and hyperbilirubinemia were more common after

combination therapy (100). Triple therapy such as TACE or HAIC

combined with TKIs and ICIs has also achieved promising results in
TABLE 2 Continued

Adjuvant therapy options Eligible patients Interventions Improvement
of prognosis

Evidence

CIK BCLC stage A, B or C (LR) CIK vs. no DFS RCT (78)

Nivolumab Received curative treatment (LR or ablation) Nivolumab / Single-arm
(83)

PD-1 inhibitors MVI, PVTT, satellite nodules, multiple tumors et al.
(LR)

PD-1 inhibitors vs.
no

DFS and OS P-Cohort
(84)

Combined
adjuvant
therapy

TACE plus
Lenvatinib

With macrovascular or bile duct invasion, or MVI
alone with multiple tumors et al. (LR)

TACE plus
Lenvatinib vs.
TACE

DFS and OS P-Cohort
(90)

Camrelizumab
plus apatinib

With PVTT, MVI, or microsatellites (LR) Camrelizumab plus
apatinib vs. HAIC

DFS and OS RCT (98)
fr
LR, liver resection; OS, overall survival; DFS, disease-free survival; BCLC, Barcelona Liver Cancer Clinic; MVI, microvascular invasion; TACE, transarterial chemoembolization; RCT,
randomized controlled trials; HBV, hepatitis B virus; HCV, hepatitis C virus; THM, traditional herbal medicine; HAIC, hepatic artery infusion chemotherapy; RT, radiotherapy; IMRT, intensity
modulated radiotherapy; PVTT, portal vein tumor thrombosis; SBRT, stereotactic body radiotherapy; CIK, cytokine induced killer cells; PD-1, programmed death protein 1 inhibitors; R-Cohort,
retrospective cohort study; P-Cohort, prospective cohort study.
FIGURE 1

A quick overview of available adjuvant treatment strategies for populations with different risk factors for recurrence. *There are no standardized
criteria for high-risk recurrence factors which generally determined by tumor characteristics and highly aggressive pathological features, and highly
aggressive pathological features generally refer to poor differentiation, satellite lesions, and microvascular invasion. TACE, transarterial
chemoembolization; HAIC, hepatic artery infusion chemotherapy; IMRT, intensity modulated radiotherapy; SBRT, stereotactic body radiotherapy;
Sora, sorafenib; PD-1, programmed death protein 1 inhibitors; Len, Lenvatinib; Cam, camrelizumab; Apa, apatinib; NAFLD, non-alcoholic fatty liver
disease; THM, traditional herbal medicine; Huaier, huaier granules; CIK, cytokine induced killer cells; LYMPH, lymphocyte infusions.
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the treatment of advanced HCC, but AEs is a more important issue to

be aware of. A recent meata analysis of triple therapy suggests that

triple therapy is more likely to cause liver function abnormalities and

that some potential AEs cannot be evaluated (101). Patients who have

undergone surgical trauma have fragile liver function, especially for

patients with severe cirrhosis, postoperative adjuvant therapy should

not be used blindly as combination therapy or interventional therapy

in pursuit of efficacy alone. Tolerability should be assessed more

thoroughly when trying new combination regimens, and more

regular follow-up is needed. Low response rate is also an urgent

issue to be tackled, it makes sense to look for markers that can

differentiate the responding population. Previous studies have found

that PD-L1 expression, tumor mutation burden and lymphocyte-

neutrophil ratio have potential value in differentiating responding

populations (102, 103). In addition, extra attention needs to be paid

to the fact that drug abuse may cause drug resistance, and resistance

to systemic drugs such as sorafenib is now widespread (104).

Overall, the indications for adjuvant therapy should be strictly

grasped, and appropriate adjuvant treatment measures should be

taken for those with high-risk factors for recurrence. Reasonable

stratification of recurrence factors still requires ongoing

exploration, and uniform criteria will help in the management of

postoperative adjuvant therapy in different regions. Many

important ongoing studies are presented in Table 2, so keep an

eye on the results of these studies and look forward to taking

postoperative adjuvant therapy to the next level.
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Extrahepatic cholangiocarcinoma (eCCA) contains perihilar cholangiocarcinoma

and distal cholangiocarcinoma both of which can arise at any point of the biliary

tree and originate from disparate anatomical sites. Generally, the incidence of

eCCA is increasing globally. Though surgical resection is the principal treatment

of choice for the early stages of eCCA, optimal survival remains restricted by the

high risk of recurrence whenmost patients are present with unresectable disease

or distant metastasis. Furthermore, both intra- and intertumoral heterogeneity

make it laborious to determine molecularly targeted therapies. In this review, we

mainly focused on current findings in the field of eCCA, mostly including

epidemiology, genomic abnormalities, molecular pathogenesis, tumor

microenvironment, and other details while a summary of the biological

mechanisms driving eCCA may shed light on intricate tumorigenesis and

feasible treatment strategies.

KEYWORDS

extrahepatic cholangiocarcinoma, pathogenesis, tumorigenesis, genomics, tumor
microenvironment
1 Introduction

Cholangiocarcinoma (CCA) usually refers to a range of invasive adenocarcinomas

including intrahepatic cholangiocarcinoma (iCCA), perihilar cholangiocarcinoma (pCCA)

and distal cholangiocarcinoma (dCCA) based on dissimilarly anatomical locations while

the latter two are also collectively termed as extrahepatic cholangiocarcinoma (eCCA).

Anatomically, pCCA and dCCA can be discriminated by whether the tumor originates

between the second-order ducts and the insertion of the cystic duct or from epithelium

distal to the insertion of the cystic duct whereas dCCA implicates the common bile duct

typically (1). Moreover, pCCA and dCCA also diverge in pathogenesis, cells of origin,

genome aberrations, molecular profiles, and risk factors. Although distinct from iCCA,

eCCA should be cautiously termed to cover pCCA and dCCA due to the ambiguous origins

of pCCA (2). Histologically, pCCA and dCCA are mainly common mucin-producing

adenocarcinomas or papillary tumors, unlike more heterogeneous iCCA which can be

classified into perihilar large duct type and peripheral small duct type with S100P and SPP1

expressed, respectively, in term of the size or level of the bile duct affected by malignant
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cells (3–5). Interestingly, the perihilar large duct type of iCCA is

more similar to pCCA and dCCA whereas those subtypes can

derive from columnar mucin-producing cholangiocytes or

peribiliary glands (4). In term of patterns of growth, iCCA tends

to be mass-forming while its large duct type and eCCA can be

periductal infiltrating or intraductal growing. Besides, several

precancerous lesions including mucinous, cystic neoplasm, biliary

epithelial neoplasia, intraductal tubulopapillary neoplasm and

intraductal papillary neoplasm of the bile duct can be related to

iCCA large duct type and eCCA, not iCCA small duct type (4).

Furthermore, viral and cirrhosis are usually underlying in iCCA

whereas cholangitis and liver flukes are more common in eCCA.

Regarding frequent mutations, IDH1 mutations and FGFR2 fusions

with targeted drugs are more frequent in iCCA but nearly absent in

eCCA which may be inclined to ERBB alterations (4). eCCA is a

rare cancer, but its incidence and mortality have been increasing

which menace human health severely (6). Regarding the treatment

of eCCA, surgical resection with negative margins is the curative

and available treatment strategy for patients present with the early-

stage or resectable disease when recurrence is still prevalent (7).

Moreover, multidisciplinary treatment of advanced eCCA is also

crucial. For instance, adjuvant therapy with S-1 encompassing a

mixture of tegafu, gimeracil, and oteracil potassium could improve

survival among patients with CCA resected according to a phase 3

randomized clinical trial (8). However, effective molecularly

targeted therapy for eCCA is still an urgent enigma to be unveiled.

Here, we summarize current advances in the oncogenic

mechanisms and treatment strategies of eCCA, mainly concerning

epidemiology, genomic abnormalities, molecular pathogenesis,

tumor microenvironment, and other pertinent details to provide a

comprehensive panorama of eCCA and highlight the importance of

personalized and multidisciplinary considerations.
2 Epidemiology and risk factors, past
and current

The global Incidence of eCCA increased worldwide during the

period 1993-2012 spanning two decades according to the CI5plus
Abbreviations: CAFs, Cancer-associated fibroblasts; CCA, cholangiocarcinoma;

CfDNA, cel l - free DNA; CSCs, cancer stem cells ; dCCA, dista l

cholangiocarcinoma; eCCA, extrahepatic cholangiocarcinoma; EGFR,

epidermal growth factor receptor; EMT, epithelial mesenchymal transition;

ERCP, endoscopic retrograde cholangiopancreatography; EUS, endoscopic

ultrasound; FDA, Food and Drug Administration; FLR, fibrinogen-to-

lymphocyte ratio; HR, hazard ratio; iCCA, intrahepatic cholangiocarcinoma;

ICD, International Classification of Diseases; LT, liver transplantation; LncRNAs,

long non-coding RNAs; MMR, DNA mismatch repair; MRCP, magnetic

resonance cholangiopancreatography; MSI, microsatellite instability; NICD1,

notch intracellular domain 1; NK, natural killer; pCCA, perihilar

cholangiocarcinoma; PSC, primary sclerosing cholangitis; SEER, Surveillance,

Epidemiology, and End Results; TANs, tumor-associated neutrophils; TILs,

tumor-infiltrating lymphocytes; TME, tumor microenvironment; Tregs,

regulatory T cells.
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database for 33 inclusive countries (9). More accurately, the age-

standardized incidence for eCCA indeed increased with

geographical variation and most evidently in Thailand and

Colombia in the 20 years examined. Mortality rates for eCCA

have also increased, but more slowly than iCCA in Western

countries (6). Summarizing gallbladder carcinoma and other

biliary carcinomas including eCCA, an estimated 12,130 new

cases, and 4,400 deaths were reported in the United States, in

2022 with a minute difference by gender (10). However, it was also

reported that the age-standardized incidence of eCCA has been

descending over the past few decades (11, 12). Of note, these trends

need conservative assessment given that International Classification

of Diseases (ICD) codes for cholangiocarcinoma have been updated

several times. Separate codes for iCCA, pCCA, and dCCA were not

available until the new ICD-11 classification came into effect which

may influence epidemiological estimation (13). Thus,

epidemiological trends reported for eCCA need to be evaluated

meticulously whereas data is more reliable when ample and new. In

addition, pCCA and dCCA have different prognoses and distinctive

epidemiological trends. Surveillance, Epidemiology, and End

Results (SEER) database have shown better survival in dCCA

when compared with pCCA from 2000 to 2018 (14). Regarding

dCCA, a recent Swedish cohort study disclosed that incidence rates

elevated principally among those patients aged more than 55 during

the consecutive calendar periods. Contrastively, the increase in both

intrahepatic and perihilar cholangiocarcinoma was more evident in

younger adults (15).

In general, several common risk factors including obesity,

alcohol consumption, and cigarette smoking could be linked to

eCCA (16). Furthermore, metabolic diseases, such as type 2

diabetes, nonalcoholic fatty liver disease, and hypertension are

also risk factors for eCCA which are also shared by iCCA (17,

18). Remarkably, dose-dependent alcohol consumption

increased the risk of CCA for patients with prediabetes and

diabetes, but not normoglycemic, which indicated a synergistic

effect, and alcohol abstinence might humiliate the risk of CCA

for those patients (19). A large pan-European cohort showed

that pCCA was featured with primary sclerosing cholangitis

(PSC) and dCCA with choledocholithiasis (20). Though viral

infections including hepatitis B virus and hepatitis C virus have

been associated with incremental CCA risk previously, they seem

to influence iCCA mainly, not eCCA in Europe while a similar

situation could be adequate for primary biliary cholangitis (16,

20). Several studies also evaluated the role of drugs such as

statins and aspirin in the prevention of eCCA. Statin usage has

been noticed to be associated with a reduced risk for eCCA

whose users with dCCA had better overall survival than statin-

free patients (HR=0.53) (21). Notably, multiple cohorts have

revealed that aspirin was associated with a decreased risk of CCA

(22, 23). Even so, low-dose aspirin was not associated with eCCA

risk significantly but non-steroidal anti-inflammatory drugs with

aspirin excluded could increase the risk of eCCA (HR=1.32) as

reported by Marcano-Bonilla L et al. (24). Besides, proton pump

inhibitors with extended duration may also increase eCCA risk

(25). Those evidence indicated that drug usage should be

cautious for patients with eCCA.
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3 Clinical symptoms and diagnosis,
early to arise

eCCA can be asymptomatic or non-specific during early stages

which makes it tough to diagnose early. The most common

symptom of eCCA is obstructive jaundice whereas it is less

frequent in iCCA (26). Besides, some constitutional symptoms

such as fatigue, anorexia, weight loss, and abdominal pain could

be noticed in patients with either benign or malignant diseases (27).

Generally, diagnosis of eCCA can benefit from imaging, endoscopy

and histology. Imaging techniques including CT and MRI are

important for diagnosis and staging of CCA. Owing to direct

compression, dCCA shows abrupt biliary tree cutoff from CT

scanning while pCCA can be obvious only when dilated

segmental bile ducts emerge (28). MRI can delineate the biliary

tree with its lesions in detail and allow accurate ducts depicted by

magnetic resonance cholangiopancreatography (MRCP) which is

critical for the diagnosis, staging, and treatment planning of pCCA

(29). MRI illustrates CCA as hypointense lesions and

heterogeneously hyperintense lesions on T1-weighted images and

T2-weighted images, respectively (30). Remarkably, Endoscopic

retrograde cholangiopancreatography (ERCP) is a robust mode

for the biliary tree assessment and acquirement of brush cytology

and biopsies with high specificity but low sensitivity (31). In

addition to the primary modalities including MRCP and ERCP,

endoscopic ultrasound (EUS) can be complemental and helpful for

the evaluation of biliary strictures and assessment of eCCA or

regional lymph nodes (32). It also allows tissue acquisition via

needle aspiration and may detect small bile duct masses (33).

Furthermore, cholangioscopy covering bile duct mucosa and

targeted biopsies could enhance the diagnostic accuracy of

malignant biliary strictures (34). Recently, Ishii T et al. reported

that cholangioscopy enhanced by image systems is very useful for

diagnosing eCCA (35). Histologically, eCCA can be flat, nodular

sclerosing, or intraductal papillary type whose growth patterns are

periductal infiltrating or intraductal growing. eCCA derives from

mucous cells and/or columnar cholangiocytes which also concern

precancerous lesions including intraductal epithelial neoplasia.

Several tissue markers such as MUC5AC, MUC6, S100P, and

BAP1 contribute to differentiating eCCA from diverse CCA types

(4). In total, early diagnosis is still challenging for eCCA and a

combination of clinical, imaging, endoscopy and histologic data is

usually necessary.
4 Surgical resection and adjuvant
therapy, two rocks and one bird

Surgical resection maintains a momentous tactic for pCCA and

dCCA therapy while adequate assessment and preoperative

consideration are necessary to be priorly executed which restricts

candidates for curative-intent surgical resection therapy (36, 37).

General ly speaking, pancreaticoduodenectomy and

lymphadenectomy are involved in surgery for dCCA (Table 1).

Achieving a margin negative (R0) resection is crucial for dCCA and
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pCCA management while negative margin assessment and complete

resection may benefit from the intraoperative frozen section (43).

Curative and eligible surgical resections for eCCA patients depend on

multiple clinical conditions. A study based on a cohort in the

Netherlands determined an overall survival predictive model for

patients after pancreatoduodenectomy for dCCA. Five independent

prognostic factors covering age at diagnosis, pT category, pN category,

resection margin status, and tumor differentiation were included in the

model which was also robust for inferring prognosis (44). Furthermore,

both tumor budding and tumor invasive thickness were associated with

adverse postoperative prognosis in eCCA (45, 46). Interestingly, nerve

fiber density invaded by tumors could be related to unfavorable

outcomes of pCCA patients undergoing curative-intent surgery (47).

Regarding preoperative evaluation, preoperative biliary drainage is still

debated but needed when obstructive symptoms are present for eCCA

patients whereas endoscopic biliary drainage seems to be more suitable

for dCCA than percutaneous transhepatic biliary drainage which had

lower rates of complications for pCCA (48–50). Moreover, laboratory

assessment on peripheral blood revealed that neutrophil count,

fibrinogen-to-lymphocyte ratio (FLR), and FLR-neutrophil score

could predict the prognosis of patients with resected eCCA (51).

Historically, adjuvant therapy after curative resection of biliary

tract cancer is commendatory whose decisions need to be based on

adequate and robust data from clinical trials. Previously, no

difference was settled between the gemcitabine adjuvant

chemotherapy group and the control group in eCCA patients

who underwent curative resection from a randomized phase 3

trial (52). Recently, another randomized phase 3 trial confirmed

adjuvant therapy with S-1 (a mixture of tegafu, gimeracil, and

oteracil) could improve survival among patients with resected

eCCA, iCCA, gallbladder carcinoma (GBC), and ampullary

carcinoma involved versus surgery alone (8). A prospective study

(SWOG 0809) focusing on adjuvant chemotherapy (gemcitabine

and capecitabine) followed by chemoradiation in patients with

eCCA and GBC showed that adjuvant therapy could benefit

patients with lymph node-positive (53). Similarly, adjuvant

therapy could improve the long-term survival of patients with

perineural invasion and lymph node metastasis after curative-

intent resection for dCCA (38). Although phase 3 studies

evaluating adjuvant radiotherapy are lacking, there are shreds of

evidence that adjuvant radiotherapy should be considered for

patients after resection of dCCA (39). To sum up, the role of
TABLE 1 Effective therapeutical procedures for extrahepatic
cholangiocarcinoma.

Procedures Details Reference

Surgical resection Pancreaticoduodenectomy,
lymphadenectomy

(36, 37)

Adjuvant
therapy

Radiotherapy, chemotherapy (38, 39)

Endoscopy Radiofrequency ablation, stent (40)

Targeted
therapies

EGFR/ERBB2 inhibitors (41)

Immunotherapy Anti-PD1 and/or anti-PD-L1 (42)
f
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neoadjuvant and adjuvant therapies for eCCA should be optimized

with more comprehensive investigations (Table 2).

For patients with unresectable disease, the FDA has approved

pembrolizumab for patients with unresectable or metastatic

microsatellite instability-high or mismatch repair deficient solid

tumors (including CCA) (37). However, as shown in results from

the KEYNOTE-158 and KEYNOTE-028 studies, pembrolizumab

treatment achieved a low objective response rate of 6–13% and an

inferior survival of less than 2 months in patients (61). Remarkably,

liver transplantation (LT) is a therapeutic option in patients with

unresectable malignant tumors including CCA (37). However, early

experience showed high recurrence rates with transplant (64).

Despite poor outcomes after LT for CCA, recent studies have

fluctuated this premise since neoadjuvant therapy including

chemotherapy and/or radiotherapy fol lowed by l iver

transplantation offers a potentially curative strategy for patients

with unresectable disease (65). For instance, a recent meta-analysis

indicated that LT with neoadjuvant chemoradiation completed

achieved higher overall survival rates than LT alone in patients

with unresectable pCCA (82.8%, 65.5%, and 65.7% at 1 year, 3

years, and 5 years, respectively, vs. 71.2%, 48%, and 31.6%,

respectively; p < 0.001) (66). It further supports the curative

possibility of neoadjuvant chemoradiation therapy followed by

liver transplantation for unresectable CCA patients.

Regarding the management of complications including

obstructive jaundice and biliary infection for unresectable eCCA,

endoscopic biliary stent placement is effective partially, but limited

in improving the overall survival of patients (67). Endoscopic

radiofrequency ablation (RFA) has been an accessible technique

for alleviating malignant biliary stenosis since first reported (40),

although it may be inclined to treat patients without distant

metastasis (68, 69) (Table 1). Several randomized controlled trials

showed that additional endoscopic RFA could improve the overall

survival of patients with unresectable eCCA than those with stent

placement alone (54, 55). Furthermore, endoscopic RFA combined

with S-1 administered orally for unresectable eCCA patients
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achieved significantly longer survival (16 months vs. 11 months,

p<0.01) and stent patency time (6.6 months vs. 5.6 months,

p=0.014) than RFA sole (56). Evidence from retrospective studies

also indicated that patients with locally advanced eCCA could

benefit from the combination of endobiliary RFA and

gemcitabine plus cisplatin treatments (70, 71).
5 Tumor microenvironment of eCCA,
no cell is alone

The tumor microenvironment (TME) is composed of diverse

cellular types and extracellular components, supporting and

maintaining tumor progression while deciphering the complexity

of TME is more feasible in the single-cell era (72).

Among innate immune cells, activated M2 macrophages induce

tumor progression with anti-inflammatory and immunosuppressive

effects which could stimulate the canonical Wnt/b-catenin pathway

driving CCA growth (73). A high density of tumor-associated

macrophages was associated with incremental recurrence of pCCA

in a retrospective study (74). Furthermore, elevated PD-L1+ M2

tumor-associated macrophages (CD45+ CSF1R+ CD68+ CD163+)

also correlated with inferior outcomes in dCCA and higher

expression of IL6, IL10, and ARG1, contributing to effector T cell

suppression (Figure 1) (75). Though natural killer (NK) cells may

comprise a considerable proportion across immune ingredients of

eCCA and seem to be lower in tumors compared to para-tumor tissues

and peripheral blood (76), they were insufficiently studied in eCCA. A

previous study reported that a mouse xenograft model induced by

HuCCT-1 cells, an iCCA cell line, and then infused with ex vivo

expanded human NK cells showed significant tumor inhibition (77).

Tumor-associated neutrophils (TANs, CD66b+) could predict poor

prognosis in eCCA patients (78). Similarly, the systemic immune-

inflammation index calculated by neutrophil, platelet, and lymphocyte

counts from serum was an independent prognostic factor for patients

under resection of eCCA (79). Interestingly, neutrophils recruited by
TABLE 2 Robust clinical trials of extrahepatic cholangiocarcinoma.

Approach Sample size Agents Clinical trial ID Reference

Adjuvant chemotherapy 225 Gemcitabine UMIN 000000820 (52)

Adjuvant chemotherapy 69 Gemcitabine and Capecitabine SWOG 0809 (53)

Endoscopic radiofrequency ablation 65 NA NCT02592538 (54)

Endoscopic radiofrequency ablation 174 NA NCT01844245 (55)

Endoscopic radiofrequency ablation 75 S-1 NCT02592538 (56)

Chemotherapy plus targeted therapy 133 Gemcitabine and Oxaliplatin plus Erlotinib NCT01149122 (57)

Chemotherapy plus targeted therapy 122 Gemcitabine and Oxaliplatin plus Cetuximab NCT01267344 (58)

Chemotherapy plus targeted therapy 90 Cisplatin and Gemcitabine plus Panitumumab NCT01320254 (59)

Chemotherapy plus targeted therapy 85 Gemcitabine and Oxaliplatin plus Panitumumab NCT01389414 (60)

Immunotherapy 104 Pembrolizumab NCT02628067 (61)

Immunotherapy 54 Nivolumab NCT02829918 (62)

Immunotherapy 77 Atezolizumab plus Cobimetinib NCT03201458 (63)
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tumor-cell-derived microvesicles loading methotrexate and subsequent

macrophage repolarization could alleviate biliary obstructions of

patients with eCCA and execute tumor cells with reactive oxygen

species and nitric oxide levels elevated, displaying an antitumor N1

phenotype (80). However, neutrophils heterogeneity in eCCA is still

poorly understood. Remarkably, immunosuppressive functions

including recruiting macrophages and suppressing T cell cytotoxicity

of TANs have been elucidated adequately in liver cancer at the single

cell resolution recently (81).

Regarding the adaptive immune system, tumor-infiltrating

lymphocytes (TILs) mainly include CD4+ T lymphocytes and CD8

+ T lymphocytes which consist of diverse subsets in eCCA (82).

FOXP3+ regulatory T cells (Tregs) characterized by TGF-b and IL-10
secretion are noticed to infiltrate into the tumors with an

immunosuppressive profile. Several studies have elevated Tregs in

eCCA based on immunohistochemical results for FOXP3 while

increased Tregs are significantly associated with worse OS in

patients with p/dCCA (78, 83, 84). Experiments in vitro showed

that FOXP3+ Tregs could be recruited by FOXM1 which bound to

the FOXP3 promoter region and thus promoted its transcription in

pCCA cell lines (85). Similarly, single-cell RNA sequencing on tissues

derived from patients with dCCA also revealed that tumor infiltrating

Tregs were abundant in dCCA tumors with immunosuppressive

genes such as TIGIT, CTLA4, and TNFRSF18 highly expressed

(Figure 1) (86). Furthermore, several genes related to

immunotherapy including ACP5, MAGEH1, TNFRSF9, and CCR8

could be specially expressed in tumor infiltrating Tregs in eCCA as

shown in the single-cell landscape from another research (76). For

CD8+ T cells, some studies concluded that higher numbers of them

were associated with better OS for eCCA (78, 82) while heterogeneity

of CD8+ T cells may be neglected. As reported recently, cytotoxic

CD8+ T cells could function as effectors in dCCA while exhausted
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CD8+ T cells were also enriched with PDCD1, CTLA4, LAG3, and

HAVCR2 expressed (76, 86). Notably, mucosal-associated invariant

T cells possessing cytotoxicity and innateness were absent in the

pCCA tumor microenvironment (87). Histologically, canonical

tertiary lymphoid structures were associated with favorable survival

in pCCA (88).

Cancer-associated fibroblasts (CAFs) are a heterogeneous cell

population of fibroblasts and myofibroblast-like cells and constitute

CCA stroma chiefly with typical phenotypic markers such as a-
SMA, PDGFRb, FAP, and so on (89). In CCA, CAFs likely derive

from a variety of cell types including hepatic stellate cells, portal

fibroblasts, fibrocytes, or epithelial mesenchymal transition (EMT)

(90). CAFs can mediate crosstalk with CCA cells or TME which

pave the road for tumorigenesis. Extrahepatic TFK-1 cells co-

cultured with CAFs showed incremental activation of STAT3,

JNK, ERK, and AKT pathways (91). Admittedly, recent studies

focused on CAFs and iCCA more while some evidence was also not

special for eCCA (92, 93).
6 Genomic landscape of eCCA,
common and maverick

Molecular heterogeneity across eCCA has been unveiled at the

genomic level whereas pCCA and dCCA do bear dissimilar

genomic alterations (94). DNA mismatch repair (MMR)

deficiency could be found in about 5% of pCCA and dCCA,

lower than iCCA as reported previously (95). Conventional

mutations in TP53, KRAS, ARID1A, SMAD4, and GNAS were

commonly shared in eCCA whereas CCA subtypes do carry diverse

genomic profiles (96, 97). PRKACA and PRKACB fusions and ELF3

mutations could be inclined to occur in pCCA/dCCA (98).

According to Simbolo M et al, KRAS mutations may be more

prevalent in dCCA when compared to pCCA (99). Paradoxically,

KRAS mutations were more common in pCCA than dCCA in

another cohort (94). Furthermore, ERBB2 amplifications could

occur more frequently in eCCA (100). ERBB2 mutations or

amplifications were also linked to a proliferation class of eCCA

where patients with dCCA predominate (96). Several driver genes

involved in post-transcriptional modification such as RBM10 and

METTL14 mutation were more enriched in pCCA than iCCA.

Conversely, both tumor mutation burden and copy number

alteration burden of pCCA were lower than iCCA (101).

Intriguingly, aristolochic acid exposure which could induce TP53

mutation in iCCA was superior to eCCA in a Chinese cohort where

high mutational frequencies of THAP9, SEC24B, and CAND1 were

noticed in eCCA (102). Actually, canonical FGFR2 fusion events

were nearly absent in eCCA whereas AXL-HNRNPUL1 gene

fusions could be detected in a few cases with eCCA (98, 100). Of

note, cell-free DNA (cfDNA) analysis excels at shedding light on

tumor heterogeneity and provides an unbiased genomic profiling

for patients. cfDNA analysis on advanced cholangiocarcinoma

(both iCCA and eCAA, subtype was not specified) revealed that

three targetable alterations including FGFR2 fusion, IDH1

mutations, and BRAF V600E were clonal in the generality of the

cohort. Besides, discordance and concordance between cfDNA and
FIGURE 1

The tumor microenvironment in extrahepatic cholangiocarcinoma.
The immunosuppressive environment is mainly composed of
tumor-associated macrophage (TAMs), tumor-associated
neutrophils (TANs), regulatory T cells (Tregs), exhausted CD8+
T cells and cancer-associated fibroblasts (CAFs) which are all
associated with worse outcomes. Cytotoxic CD8+ T cells,
neutrophils with N1 phenotype, and natural killer (NK) cells can have
antitumor effects in extrahepatic cholangiocarcinoma.
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tissue for mutation detection could be noticed in the former one and

the latter two, respectively (103). The high heterogeneity of eCCA

can be likely attributed to genomics aberrations, highlighting the

demand for characterizing the molecular basis of sensitivity and

resistance to available treatments (Figure 2).
7 Pathogenesis of eCCA, classical
but complex

To elaborate pathogenesis of eCCA is insurmountable while it is

challenging to catch the “Achilles’ Heel” of eCCA which can be

related to signaling pathways to some extent. According to bulk

transcriptomic profiles, ‘metabolic’, ‘proliferation’, ‘mesenchymal’,

and ‘immune’ subtypes of eCCA were previously identified with

disparate oncogenic pathways activated respectively (96). Indeed,

several developmental pathways can be linked to eCCA (Figure 3).

The Notch signaling pathway counts on ligands attaching to Notch

receptors and subsequent release of Notch intracellular domain 1

(NICD1) which is then shifted to the nucleus where target genes

regulating cell proliferation, migration, and invasion are activated

(2). Although recent research mainly focused on the mechanism of

the Notch pathway and iCCA (104), the Notch receptors were

indeed overexpressed in pCCA and dCCA (105). The Wnt/b-
catenin pathway is commonly activated in CCA and partially

mutated in dCCA (73, 106). The Wnt/b-catenin pathway could

be inhibited through ClC-5 inhibition in eCCA cells (107). TTYH3

could facilitate cell proliferation, migration, and invasion via the

Wnt/b-catenin pathway in the QBC939 cell line (108). lncRNA

PCAT1 was also involved in the positive regulation of pCCA and

dCCA progression through miR-122 (109). Remarkably, SOX17

which is the WNT/b-catenin pathway promoter inhibitor was

hypermethylated and thus repressed in patients with CCA (110).

Apart from its seeming tumor suppression effect, SOX17 could

sensitize tumors to chemotherapy with MRP3 suppressed in EGI-1

and TFK-1 cell lines (111). Alteration of classic oncogenic pathways

is also involved in the pathogenesis of eCCA with genomic

instability (96). For instance, transcription factor HOXA5 could

augment MXD1 expression by binding to its promoter region

directly which then activated the p53 signaling pathway, thus

inhibiting eCCA cell proliferation (112). Notably, the MYC-

oncogene pathways can drive tumorigenesis and be related to

immune evasion in cancer (Figure 3) (113). HMGA1 inducing

TRIP13 expression which suppressed FBXW7 transcription could

stabilize c-Myc which expedited their transcription in a positive

feedback, thus promoting EMT and stemness of pCCA (114). TCF7

inducing c-Myc transcription could impel pCCA progression (115).

Besides, WDR5 could boost HIF-1a accumulation and then drive

EMT and metastasis of eCCA in a Myc-dependent way (116).

Interestingly, the depletion of glutamine could offset hypoxia-

induced chemoresistance in eCCA cells with c-Myc restraint

(117). Regarding metabolism pathways, lipid metabolism, and

fatty acid oxidation were strikingly enhanced in the EGI1 cell line

with intracellular lipids accumulation and increased cell stemness

(118). Compared with iCCA, FABP5 functioning as a fatty acid

transport protein is highly expressed and associated with poor
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survival in eCCA (119). Moreover, JNK/c-Jun pathways could

also be associated with both iCCA and eCCA (120, 121).

Proinflammatory cytokines, such as IL-6, IL-8. can be involved in

augmenting tumorigenesis of eCCA. IL-6 in serum was a prognostic

factor in eCCA patients (122). Likewise, the Genetic variant of

CXCR1 (also termed IL-8RA) could predict inferior outcomes for

pCCA patients (123). Angiogenesis is also essential for eCCA. High

levels of VEGF have been noticed in eCCA cell lines and tissues

previously (124). Recently, Li T et al. reported that VEGF was

regulated by Gab1 via SHP2/ERK1/2 which could be inhibited by

apatinibin in pCCA cells (125).

Cancer stem cells (CSCs) are a characteristic subpopulation of

tumor cells and harbor the ability to maintain renewal which can be

involved in recurrence, metastasis, and drug resistance (126). As

shown in accumulative shreds of evidence, CSCs are interrelated

with EMT intimately (4). Not only does TGFb contribute to EMT,

but it also facilitates stemness in extrahepatic TFK-1 cells in vitro

(127). Besides, CSCs from iCCA and eCCA can be identified with

ALDH expressed (127). Remarkably, though cell proliferation and

invasion were more increased in iCCA than in eCCA cell lines, stem

cell surface markers (CD13, CD24, CD44, CD90, and EPCAM)

were similarly expressed for both sides (128).
8 Biomarkers of eCCA,
novel or clinical

Non-invasive and robust biomarkers of eCCA with diagnostic and

prognostic significance have been urgent for execution. Novel

biomarkers of eCCA have been emerging with advanced test tools

and abundant specimens available (Figure 4). Squamous cell carcinoma
FIGURE 2

Common genomic alterations in extrahepatic cholangiocarcinoma.
The genetic alterations and locations in human chromosomes
(hg38) were depicted in the circos plot executed by R language
package criclize.
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antigen (SCCA) detected in bile samples was found to be increased in

patients with eCCA and could be a special biomarker for eCCA (129).

Similarly, microRNA (miR-31-5p, miR-378d, miR-182-5p, and miR-

92a-3p) derived from bile cytologic samples were also increased in

eCCA cases compared with control cases (130). Anti-apoptotic protein

Bcl-xL encoded by BCL2L1 was identified as a prognostic marker in

cholangiocarcinoma depending on anatomical subtypes when it

indicated beneficial prognosis, especially for pCCA (131). The

preoperative serum is also an accessible and robust source for

biomarkers in biofluids. Preoperative serum carbohydrate antigen

19-9 could be related to regional lymph node metastases and the

prognosis of both pCCA and dCCA with a cutoff of 37 U/ml (132–
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134). A recent study reported that elevated serum CA242 (>20 IU/ml)

was associated with vascular invasion and lymph node metastasis of

pCCA (135). Furthermore, inflammatory markers including

neutrophils, fibrinogen-to-prealbumin ratio, and fibrinogen-to-

lymphocyte-to-neutrophil ratio from preoperative peripheral blood

were all independent factors for overall survival of eCCA according

to the recent multivariate Cox analyses (51).

Moreover, long non-coding RNAs (lncRNAs) are characterized

as non-coding RNAs whose transcripts are longer than 200

nucleotides lacking the ability to code for proteins but influencing

tumorigenesis, which are also implicated in the molecular

biomarkers of CCA (136, 137). For instance, lncRNA PCAT1 was
FIGURE 4

Potential biomarkers of extrahepatic cholangiocarcinoma. Novel biomarkers of extrahepatic cholangiocarcinoma have been discovered with
abundant specimens including tissues, bile, and serum available.
FIGURE 3

Oncogenic pathways involved in extrahepatic cholangiocarcinoma. Some canonical pathways can be related to tumorigenesis in extrahepatic
cholangiocarcinoma such as the Notch signaling pathway, the WNT/b-catenin pathway, the MYC-oncogene pathways, lipid metabolism, and
angiogenesis. Several regulatory mechanisms concerning those pathways are recapitulated in the illustrator.
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remarkably upregulated in both eCCA tissues and cell lines (109).

MALAT1 could be involved in the pathogenesis of pCCA and

predict poor overall survival (138). Some studies have also evaluated

the role of lncRNAs in eCCA cell lines. AFAP1-AS1 was relevant to

cell growth and metastasis in TFK-1 cell line (139). LINC00184

increased cell growth in QBC939 cell line (140). However, effective

tissue markers related to lncRNA for identify eCCA are yet to

be discovered.
9 Rare histological subtypes related to
eCCA, less is more

Histologically, pCCA and dCCA mainly cover mucinous

adenocarcinomas or papillary tumors beyond which several

additional histological subtypes could be also noticed in eCCA,

rarely but factually (141). Adenosquamous carcinoma featured with

concomitant adenocarcinoma and squamous carcinoma accounts for

2% of eCCA as previously reported (142). Though it occurs

predominantly among the rare subtypes of eCCA, adenosquamous

carcinoma can carry different molecular profiles (143). A recent case

report showed that an adenosquamous carcinoma patient with

distant lymph node metastases carried Her-2 amplification and

preserved a stable state after receiving several lines of trastuzumab

treatment combined with chemotherapy and radiotherapy (144).

Besides, another rare type related to eCCA is signet ring cell

carcinoma. Signet ring cell carcinoma is characterized by abundant

mucus in the cytoplasm extruding nucleus from center to margin of

cell. Generally, a few cases with signet ring cell carcinoma of eCCA

were reported up to now (145). Previous studies also described two

separable types containing intestinal type and pancreatobiliary type

with CK7 negative plus CK20/MUC2 positive and CK7 positive plus

CK20/MUC2 negative, respectively (146, 147). That signet ring cell

carcinoma of eCCAwith distant lymph nodemetastasis has also been

noticed recently (145). Distant metastases always lead to a poor

prognosis in eCCA patients. A SEER-based study reported that the

liver and distant lymph were the most common sites for metastases

and multiple sites (at least two) occurred in some cases (148).

Particularly, patients with unresectable advanced eCCA and liver

metastases may benefit from chemotherapy combining gemcitabine

and cisplatin or pembrolizumab and nab-paclitaxel (149, 150). About

the gastrointestinal tracts, several studies also reported colonic

metastasis of eCCA (151, 152). Rarely, distal skeletal muscle

metastasis could appear in a few eCCA patients as reported (153).

Those evidence suggested that adequate follow-up periods should be

considered for eCCA since sporadic metastasis could occur.
10 Targeted therapies
and immunotherapy

Molecularly in-depth understanding of CCA contributes to

confirming achievable drug targets. Although IDH1 mutations and

FGFR2 fusions do provide new treatment tactics, they are more
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frequent in iCCA and nearly absent in eCCA (100, 154, 155).

Moreover, several randomized controlled trials concerning the

epidermal growth factor receptor (EGFR) inhibitors (erlotinib,

cetuximab, lapatinib, or panitumumab) did not achieve effective

outcomes in advanced CCA (57–60, 156) (Table 2). A previous

meta-analysis has also shown that first-line chemotherapy with the

addition of anti-EGFR monoclonal antibodies does not improve the

overall and progression-free survival of patients with advanced CCA

(157). Alternatively, targeting abnormal ERBB2 which is more

common in eCCA may be a favorable approach. A case report

suggested a combination of Trastuzumab and pertuzumab was

curative for the patient with ERBB2-amplified eCCA (41). Immune

checkpoint blockade can reinforce antitumor immunity by hindering

intrinsic suppressors (e.g. CTLA4, PD1, or PDL1) from the

immunosuppressive microenvironment where the tumor locates

while several checkpoint inhibitors have been approved for clinical

application (158). Regarding eCCA, four novel transcriptome-based

subtypes have been suggested (96). Tumors in the “immune” class

not only overexpressed PD-1/PD-L1 but also had a higher

lymphocyte infiltration which implies a better response to immune

checkpoint inhibitors. Furthermore, the ratio of PD1 positive to CD8

+ TILs could be linked to worse outcomes for eCCA patients (159). A

subset of CD8+RORgt+ T cells with PD1 expressed lowly was noticed

to be associated with reduced survival in dCCA as reported

previously (160). Actually, pembrolizumab seems to be more

effective in CCA patients with microsatellite instability (MSI) or

mismatch repair deficiency (dMMR) whose incidence is low in CCA

while it is also reported that the number of ECC patients with PDL1

positive could be small (161, 162). Indeed, the TOPAZ-1 trial has

improved our understanding of CCA and immunotherapy (42).

Several immunotherapy agents such as Pembrolizumab,

Nivolumab and Atezolizumab have shown low response rates in

patients with advanced stages of CCA (61–63).

Up to now, more clinical trials are still requisite for eCCA.
11 Conclusion

CCA is heterogeneous and comprised of diverse subtypes. Not only

do those subtypes arise from different locations, but iCCA and eCCA

also carry disparate risk factors, diverse cells of origin, and individual

genome aberrations. Sophisticated interactions between eCCA cells or

CSCs, and the TME make it laborious to elaborate the biological

mechanisms underpinning tumorigenesis where high-resolution single

cell multi-omics may shed light on. Now, there is still a lack of

therapeutic approaches for eCCA since not all patients with eCCA

can benefit from accessible treatments including surgery, adjuvant

therapy, targeted therapies, and immunotherapy, emphasizing the

importance of personalized and multidisciplinary considerations.

However, improved understanding of the specific TME and

pathogenesis in eCCA, along with accumulating data from single cell

resolution will indisputably bring more efficient therapeutic options for

patients in the future. Furthermore, considering that several benign

diseases are risk factors of eCCA, it is also crucial for patients with
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eCCA to prevent early, diagnose accurately, and treat timely. That is,

better to batten down the hatches before the storm comes.
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Purpose: Reliable noninvasive method to preoperative prediction of extrahepatic

cholangiocarcinoma (eCCA) angiogenesis are needed. This study aims to

develop and validate machine learning models based on magnetic resonance

imaging (MRI) for predicting vascular endothelial growth factor (VEGF)

expression and the microvessel density (MVD) of eCCA.

Materials and methods: In this retrospective study from August 2011 to May

2020, eCCA patients with pathological confirmation were selected. Features

were extracted from T1-weighted, T2-weighted, and diffusion-weighted images

using the MaZda software. After reliability testing and feature screening, retained

features were used to establish classification models for predicting VEGF

expression and regression models for predicting MVD. The performance of

both models was evaluated respectively using area under the curve (AUC) and

Adjusted R-Squared (Adjusted R2).

Results: The machine learning models were developed in 100 patients. A total of

900 features were extracted and 77 features with intraclass correlation

coefficient (ICC) < 0.75 were eliminated. Among all the combinations of data

preprocessing methods and classification algorithms, Z-score standardization +

logistic regression exhibited excellent ability both in the training cohort (average

AUC = 0.912) and the testing cohort (average AUC = 0.884). For regression

model, Z-score standardization + stochastic gradient descent-based linear

regression performed well in the training cohort (average Adjusted R2 = 0.975),

and was also better than the mean model in the test cohort (average Adjusted

R2 = 0.781).

Conclusion: Two machine learning models based on MRI can accurately predict

VEGF expression and the MVD of eCCA respectively.

KEYWORDS

cholangiocarcinoma, magnetic resonance imaging, machine learning, vascular
endothelial growth factor, microvessel density
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1 Introduction

Cholangiocarcinoma (CCA) is a group of highly heterogeneous

malignancies. CCA can be divided into three subtypes: intrahepatic

cholangiocarcinoma (iCCA), perihilar cholangiocarcinoma (pCCA)

and distal cholangiocarcinoma (dCCA). pCCA and dCCA are

collectively referred to as extrahepatic cholangiocarcinoma

(eCCA), accounting for 80–90% of all types of CCA (1).

Improvements in diagnosis and treatment have stabilized or

decreased the morbidity and mortality of eCCA in most areas (1,

2). Although surgery has played an essential role, more oncologists

have emphasized the necessity for neoadjuvant therapy, including

vascular‐targeted therapy.

CCA is traditionally regarded as a lymphovascular tumor with a

rich polymorphic tumor microenvironment , and the

overexpression of microvessels has a strong correlation with

tumors (3). Vascular‐targeted therapy mainly inhibits tumor-

associated angiogenesis through drugs (e.g. bevacizumab).

Angiogenesis is an important factor for maintain the rapid

growth and metastasis of malignant tumors, providing necessary

oxygen and nutrients to tumor cells (4, 5). Vascular endothelial

growth factor (VEGF), a kind of homodimeric heparin-binding

protein, can enhance the division capability of vascular endothelial

cells and promote tumor-associated angiogenesis (6). Poor T cell

infiltration and high M2-TAM in eCCA are correlated with elevated

VEGF levels (7). In addition, the 5-year survival rate of eCCA

patients with high microvessel density MVD (2.2%) was

significantly worse than low MVD patients (42.1%) (8, 9). It is

undeniable that VEGF and MVD are indeed related to the

prognosis and progression of almost all tumors, and this is also

true in eCCA (10), and about 59% of eCCA patients overexpress

VEGF (11). Currently, immunohistochemical stains and microarray

analysis are most commonly used to detect VEGF expression and

MVD. However, this method is invasive and difficult to repeat.

Magnetic resonance imaging (MRI) can clearly visualize various

biliary diseases (12). However, naked-eye evaluation of the tumor

VEGF level and MVD still remains extremely challenging. Machine

learning, which can deeply mine images and analyze them objectively

and quantitatively, has become a commonly used method in clinical

oncology research (13–15). One study showed that six pathological

features of iCCA, including VEGF, can be evaluated accurately by

machine learning of ultrasound images before operation. The area
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under the curve (AUC) for the VEGF group was 0.86 (16). However,

carcinogenesis, diagnosis, and treatment markedly differ between

iCCA and eCCA (1, 17). Additionally, the ultrasound has great

variability according to the level of the operators. Additionally,

MVD belongs to continuous numerical data, and there is no exact

cut-off value. Thus, most related studies use the mean or median

value of MVD as cut-off (1, 8). However, this method is controversial

for the clinical interpretation of different patient samples. In this

study, we constructed a classification model for prediction of VEGF

expression and a regression model for quantitative prediction of

MVD based on multi-sequence MR images, using machine learning

for objective and non-invasive preoperative evaluation of VEGF

expression and MVD of eCCA.
2 Materials and methods

2.1 Patients’ enrollment

This retrospective study was approved by the institutional

review board, and the human-related procedures followed the

“Helsinki Declaration”. Since the study was retrospective, written

informed consent of patients was not required. We collected

patients treated in our hospital from January 2011 to December

2020 and met the following inclusion and exclusion criteria.

Inclusion criteria included: (I) had complete medical records; (II)

had complete preoperative multiparametric MR images; (III)

pathologically confirmed eCCA. Exclusion criteria included: (I)

the patient had received any treatment before MR scan, such as

surgery, and targeted treatment; (II) the image quality was too poor

or the focus was too small (< 5 mm) to outline the focus target area.

The flow diagram of patient enrollment is displayed in Figure 1.
2.2 Pathological specimen processing

All enrolled patients underwent surgical resection. Tumor

specimens obtained during surgery were used for pathological

analysis to determine VEGF expression and MVD count.

Immunohistochemical staining and microarray analysis of VEGF

and MVD were performed according to relevant standard methods

by a pathologist with more than 10 years of clinical experience.
FIGURE 1

Flow chart of inclusion and exclusion criteria of patients. MRI, magnetic resonance imaging; eCCA, extrahepatic cholangiocarcinoma.
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2.3 MR image acquisition

Preoperative evaluation included standard upper abdominal

scanning with 3.0T MRI scanner (Achieva, Philips, Netherlands)

and 16-channel trunk coil. MRI acquisition sequence included but

was not limited to transverse T1-weighted imaging (T1WI), T2-

weighted imaging (T2WI), and diffusion-weighted imaging (DWI).

The parameters of these three acquisition sequences are detailed in

Table 1. All MR images were retrieved and analyzed by the Picture

Archiving and Communication Systems. In addition, all MR images

applied voxel size normalization and voxel intensity normalization.
2.4 Image segmentation and
features extraction

Region of interest (ROI) segmentation and feature extraction

were performed by an experienced radiologist using the software

MaZda (version 4.6, http://www.eletel.p.lodz.pl/programy/mazda/)

(18–20). The ROI margins were strictly defined to always be 1–2

mm from the tumor margin. In addition, the “± 3 sigma” option in

the MaZda software was selected for image standardization.
2.5 Intra-observer and inter-observer
agreement

To assess the stability of features, two radiologists jointly

selected T1WI, T2WI, and DWI images of 20 patients at random

for repeated segmentation. One radiologist re-outlined the ROI

twice at different times of the week. Another radiologist

independently outlined the ROI once. The extracted features were

used for ICC calculation using Python programming language

(version 3.7, https://www.python.org) to evaluate the intra-

observer and inter-observer agreement of each feature. ICC > 0.75

indicated good reliability, and this feature was retained.
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2.6 Feature processing and model building

Feature processing and model building were performed with

the uAI Research Portal (United Imaging Intelligence, China).

First, 80% of the samples were randomly selected as the training

cohort and the other 20% as the test cohort. Then, Z-score

standardization was used to eliminate errors caused by different

dimensions. The least absolute shrinkage and selection operator

(Lasso) regression method was used for feature selection. When

constructing both models, eight data preprocessing methods were

tried: Box-cox transform, L1-norm regularization, L2-norm

regularization, max abs normalization, min-max normalization,

Quantile transform, YeoJohnson transform, and Z-score

standardization. Finally, when constructing the classification

model for predicting VEGF expression, nine machine learning

algorithms were tried: Gaussian process regression, K-nearest

neighbors, logistic regression, partial least squares-discriminant

analysis, quadratic discriminant analysis, random forest,

stochastic gradient descent based linear regression, support

vector machine, and XGboost. In addition to logistic regression,

part ia l least squares-discriminant analysis , quadrat ic

discriminant analysis, the other six algorithms were also used

to construct the regression model for predicting MVD. The above

steps were repeated 20 times to ensure good reliability of the

models. An overview of the machine learning workflow is shown

in Figure 2.

AUC of the subject ROC and the Adjusted R-Squared

(Adjusted R2) were used to evaluate the effectiveness of the

classification model and the regression model, respectively.

Other auxiliary evaluation indices including F1 score, recall,

precision, sensitivity, specificity, accuracy, mean square error

(MSE), mean absolute error (MAE), and Pearson correlation

coefficient (PCC) were also calculated. Finally, the bias and

variance of both models were calculated to evaluate their fitting

and generalization. The models with the highest average AUC or

Adjusted R2 in the test cohort were identified as the best models

for classification or regression.
2.7 Statistical analysis

Statistical analysis of the data on clinical and pathological

characteristics of patients was performed using Statistical Product

and Service Solutions (SPSS, version 25.0, IBM). Continuous

variables were expressed as mean ± standard deviation (SD)

when they followed a normal distribution, and median value

was used for non-normally distributed data. The correlation

between VEGF expression and age, gender, tumor location, and

MVD was evaluated using binary multivariate logistic regression.

The evaluation indices of both machine learning models were

calculated using the uAI Research Portal. All statistical tests were

two-sided, and P values < 0.05 were considered significant.
TABLE 1 MRI sequences and parameters.

Parameter T1WI T2WI DWI

TR (msec) 3.1 1610 934

TE (msec) 1.44 70 52

Section thickness (mm) 3 7 7

Section gap (mm) 1.5 1 1

FOV (mm2) 280 × 305 280 × 305 280 × 305

Matrix size 244 × 186 176 × 201 100 × 124

Flip angle (°) 10 90 90

b values (s/mm2) – – 0 and 800
MRI, magnetic resonance imaging; T1WI, T1-weighted imaging; T2WI, T2-weighted imaging;
DWI, diffusion-weighted imaging; TR, repetition time; TE, echo time; FOV, field of view.
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3 Results

3.1 Patient characteristics

There are 105 patients were in accordance with the inclusive

criteria. No patients were excluded as the reason that they received

any treatment before MRI. However, 5 patients were excluded

because the image quality was too poor or the lesion was too

small. Finally, we identified 100 eligible patients based on the

inclusion and exclusion criteria. The mean age of all eCCA

patients was 57.38 years. The ratio of male to female and pCCA

patients to dCCA patients was close to 50%. Additionally, there

were more patients with positive VEGF expression than negative.

The detailed results are shown in Table 2.

In addition, in the multivariable logistic regression analysis of

the related factors of VEGF expression, age (P = 0.125, OR = 0.461),
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gender (P = 0.059, OR = 0.952), and tumor (P = 0.583, OR = 0.764)

location did not affect the expression of VEGF, while there was a

significant positive relationship (P = 0.008, OR = 1.014) between

MVD and VEGF expression. Likelihood ratio test (c² (4) = 16.670,

P = 0.002) and Hosmer–Lemeshow test (c² (8) = 13.278, p = 0.103)

showed the validity and goodness offit of the multivariable logistical

regression analysis model.
3.2 Features extraction

More than 300 image features were extracted from each ROI

using MaZda. Then, the features with missing values were deleted.

Finally, each sequence image uniformly retained 300 features. These

features were classified into six feature families including histogram

(12), gradient (6), co-occurrence matrix (20), run length matrix

(240), autoregressive model (6), and wavelet (16). Finally, the

features extracted from T1WI, T2WI, and DWI images of each

patient were mixed, and a total of 900 features were obtained.
3.3 Intra-observer and inter-observer
agreement

Through ICC consistency analysis, 823 features with both intra-

and inter-observer ICC values greater than 0.75 were identified among

the 900 features. The removed features included 30 T1WI image

features, 29 T2WI image features, and 18 DWI image features. Figure 3

shows the results of the ICC consistency analysis for each feature.
3.4 Feature selection and models
construction

In the classification model for predicting VEGF expression, the

nine best features were obtained by selection using Lasso with an
TABLE 2 Clinical and histologic characteristics of all eCCA patients.

Variable Whole (n = 100)

Age, mean ± SD, years 57.38 ± 10.06

Gender

Female, n
Male, n

46
54

Localization

pCCA, n
dCCA, n

47
53

MVD, mean ± SD 101.16 ± 58.11

VEGF

Positive, n
Negative, n

71
29
SD, standard deviation; pCCA, perihilar cholangiocarcinoma; dCCA, distal
cholangiocarcinoma; VEGF, vascular endothelial growth factor; MVD, microvessel density.
*, P < 0.05.
FIGURE 2

Workflow of machine learning process in the current study.
frontiersin.org

https://doi.org/10.3389/fonc.2023.1048311
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Liu et al. 10.3389/fonc.2023.1048311
alpha value of 0.075. Five of them were DWI image features, namely

DWI-sigma, DWI-s(3_0)sumofsqs, DWI-s(3_0)sumvarnc, DWI-s

(5_-5)invdfmom, and DWI-wavenll_s-2. The other four features

were T1WI-s(3_0)difentrp, T1WI-wavenll_s-3, T2WI-s(5_-5)

sumofsqs, and T2WI-kurtosis (Figure 4A). Based on the nine

features, 72 different combinations of machine learning

classification models were constructed. Finally, the combination

with the highest average AUC value in the test cohort was the Z-

score standardization + logistic regression. The average AUCs of the

training and test cohorts were 0.912 (range, 0.876–0.963) and 0.884

(range, 0.631–1), respectively (Figures 4B, C). The average accuracy

and sensitivity of the model in the test cohort were also excellent,

0.84 (range, 0.65–0.952) and 0.926 (range, 0.786–1), respectively.

The average specificity in the test cohort was relatively poor, at only

0.633 (range, 0.333–0.833).
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In the regression model for predicting MVD, 66 features were

retained using Lasso with an alpha value of 1.000. Of these, the

number of T1WI, T2WI, and DWI image features were 22, 25, and

19, respectively (Figure 5A). Using these 66 features, 48 machine

learning regression models were constructed. Lastly, the model of

the Z-score standardization + stochastic gradient descent based

linear regression showed good performance and was chosen as the

best model. The average Adjusted R2 of its training and test cohorts

were 0.975 (range, 0.964–0.984) and 0.781 (range, 0.233–0.896),

respectively. The results of the average Adjusted R2 in both the

training and test cohorts were acceptable, and their values were

greater than the mean model. The scatter plots (Figures 5B, C) and

prediction curves (Figures 5D, E) display the prediction results and

trends for each sample. Table 3 shows the results of all evaluation

indices for the two models predicting VEGF expression and MVD.
4 Discussion

In this study, we established two machine learning models

based on MR images to predict VEGF expression and MVD in

eCCA. When constructing the machine learning model for

predicting MVD, we used the regression model, which is rarely

used in medical research machine learning, and obtained

satisfactory results. The classification model successfully predicted

the expression of VEGF in eCCA. The regression model for

predicting MVD also exhibited excellent performance. This

demonstrates that machine learning is promising for the clinical

evaluation of tumor-associated angiogenesis in eCCA.

Recent studies have shown that VEGF overexpression and MVD

are related to tumor progression, metastasis, and prognosis in eCCA

(8, 9, 21). For unresectable middle and advanced eCCA patients, the
FIGURE 3

ICC consistency analysis boxplot. Blue represents inter-observer
agreement, and red represents intra-observer agreement.
A

B C

FIGURE 4

The performance of the classification model. (A) The bar graph shows the weight coefficient of each predictive feature in the model of Z-score
standardization + logistic regression. (B, C) The ROC curves for training and test cohorts of different combinations (Three combinations with the
best results are listed).
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effect of conventional chemotherapy is not satisfactory (22, 23).

Therefore, researchers are exploring new treatment protocols for the

molecular pathways (such as tumor-associated angiogenesis) in the

occurrence and development of CCA. Currently, the application of

purely vascular targeted therapies in CCA patients is limited.

However, studies have shown that combining vascular targeted

therapies with immunotherapies will bring significant benefits to

patients (24–26). In addition, in clinical practice, invasive
Frontiers in Oncology 0645
histopathological examinations for monitoring angiogenesis within

tumors still presents many problems and inconvenience. Some

scholars have used conventional imaging methods to study the

angiogenesis of CCA. Park et al. retrospectively analyzed the CT

images of 147 patients with iCCA. They found that high blood supply

on CT images was related to higher relapse-free survival and better

prognosis, and the vascular distribution on CT images could be used

as a non-invasive prognostic index for iCCA (27). Furthermore,
D

A B

E

C

FIGURE 5

The performance of the Z-score standardization + stochastic gradient descent based linear regression. (A) The bar graph shows the weight coefficient of
top 50 predictive feature. (B, C) The scatter plots for training and test cohorts. (D, E) The prediction curves for training and test cohorts.
TABLE 3 Performance evaluation of two models for predicting VEGF expression and MVD.

Evaluation
metrics

Classification model Regression model

Training cohorts (80
patients)

Testing cohorts (20
patients)

Training cohorts (80
patients)

Testing cohorts (20
patients)

AUC 0.912 0.884

F1-score 0.923 0.891

Precision 0.887 0.864

Sensitivity 0.961 0.926

Specificity 0.701 0.633

Accuracy 0.886 0.84

R2 0.927 0.434

MAE 11.409 34.374

MSE 245 1891.407

PCC 0.963 0.725

Bias 0.129 2327.009

Variance 0.062 2902.103
VEGF, vascular endothelial growth factor; MVD, microvessel density; AUC, area under the curve; R2, coefficient of determination; MAE, mean absolute error; MSE, mean square error; PCC,
Pearson correlation coefficient.
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Yugawa et al. confirmed that MVD in CCA tumors was closely related

to radiological characteristics of the hepatic arterial phase on enhanced

CT, which may be a potential prognostic indicator (28).

In the research studied to date, the number of molecular or

pathological studies of CCA using machine learning is still relatively

rare, and most of the research subjects are iCCA. Studies by Sadot

et al. indicated that quantitative imaging phenotypes in CT images

correlated with the expression of specific hypoxic markers in iCCA,

including VEGF (29). Recently, Zhou and his team established a

machine learning model based on dynamic contrast-enhanced MR

images whose features can be used to preoperatively predict

microvascular invasion in patients with mass-forming iCCA (30).

Prior studies have shown, the pathological features of eCCA

(including pathological grading, lymph node metastasis, T stage,

perineural infiltration, and microvascular infiltration) can also be

predicted by several machine learning models with excellent results

(31, 32).

In the present work, our machine learning models, based on

MR images and used to predict the VEGF expression and MVD of

eCCA, further enriched the knowledge in the field of eCCA

machine learning and provides credible aid for the treatment and

prognosis of patients with eCCA. In addition, our exploration of

regression-based machine learning for continuous variables in

which optimal cut-off values are not clinically available was

effective. More interestingly, we found that the DWI image

features accounted for a relatively large number (5/9) of the

classification model features, while the number of T2WI image

features was larger (25/66) in the regression model. The reasons for

this result may be varied, such as correlation between different types

of images and predicted objects or systematic error caused by

inconsistent algorithms in the process of machine learning. In

addition, in both the classification and regression models, the

feature with the largest weight coefficient was the wavelet

transform feature in the DWI image. This is in agreement with

the previous research results of several other scholars (30, 33, 34),

indicating that wavelet transform features may be able to

characterize tumor biology on multiple scales.

There are scenarios in which the present studies fall short. First,

this is a retrospective case-control study with a small sample size and

all patients were from a single institution, so selection bias may be

present. To increase the universality of the model application, it is

necessary to carry out prospective multicenter studies with larger

samples. Second, this study only included conventional non-enhanced

MRI sequences and did not include enhancement sequences and other

special sequences. On the one hand, almost all patients underwent

conventional sequence scans, which is conducive to increasing the

applicability of the model. On the other hand, adding sequence types

would further reduce the number of patient samples included in the

study. Last but not least, radiomics mines the deep feature information

hidden in the image, which can not be recognized by the naked eye,

and may be related to the disease itself, regardless of whether it is

enhanced or not. Some studies have shown that enhanced images may

not significantly improve the efficiency of radiomics models compared

with non-enhanced images (35). Third, tumors smaller than 5 mm

were excluded during this study, making it difficult for the machine

learning models to predict tumors of smaller size. Finally, the number
Frontiers in Oncology 0746
of features in the regression model was relatively large. In future work,

we will test further methods and algorithms to obtain the minimum

number of features and the best model efficiency.

In this study, we constructed and internally validated MRI-

based machine learning models to predict VEGF expression and

MVD in eCCA. Both models provide powerful guidance for

monitoring eCCA angiogenesis, may assist in clinical decision-

making, and ultimately improve the prognosis of patients.
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Abrine, an IDO1 inhibitor,
suppresses the immune
escape and enhances
the immunotherapy of
anti-PD-1 antibody in
hepatocellular carcinoma

Xiaowei Liang1,2†, Hongwei Gao1,2†, Jian Xiao2, Shan Han1,2,
Jia He1,2, Renyikun Yuan1,2*, Shilin Yang1,2 and Chun Yao2*

1College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China,
2Engineering Research Center in Ministry of Education for Innovative Drugs of Traditional Chinese
Medicine and Zhuang Yao Medicine, Nanning, China
Background: Indoleamine-2,3-dioxygenase 1 (IDO1) is responsible for tumor

immune escape by regulating T cell-associated immune responses and promoting

the activation of immunosuppressive. Given the vital role of IDO1 in immune

response, further investigation on the regulation of IDO1 in tumors is needed.

Methods: Herein, we used ELISA kit to detect the interferon-gamma (IFN-g),
Tryptophan (Trp), and kynurenic acid (Kyn) levels; western blot, Flow cytometry,

and immunofluorescence assays detected the expression of the proteins;

Molecular docking assay, SPR assay and Cellular Thermal Shift Assay (CETSA)

were used to detect the interaction between IDO1 and Abrine; nano live label-

free system was used to detect the phagocytosis activity; tumor xenografts

animal experiments were used to explore the anti-tumor effect of Abrine; flow

cytometry detected the immune cells changes.

Results: The important immune and inflammatory response cytokine interferon-

gamma (IFN-g) up-regulated the IDO1 expression in cancer cells through the

methylation of 6-methyladenosine (m6A) m6A modification of RNA, metabolism

of Trp into Kyn, and JAK1/STAT1 signaling pathway, which could be inhibited by

IDO1 inhibitor Abrine. CD47 is IFN-g-stimulated genes (ISGs) and prevents the

phagocytosis of macrophages, leading to the cancer immune escape, and this

effect could be inhibited by Abrine both in vivo and in vitro. The PD-1/PD-L1 axis

is an important immune checkpoint in regulating immune response,

overexpression of PD-1 or PD-L1 promotes immune suppression, while in this

study Abrine could inhibit the expression of PD-L1 in cancer cells or tumor tissue.

The combination treatment of Abrine and anti-PD-1 antibody has a synergistic

effect on suppressing the tumor growth through up-regulating CD4+ or CD8+ T
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cells, down-regulating the Foxp3+ Treg cells, and inhibiting the expression of IDO1,

CD47, and PD-L1.

Conclusion: Overall, this study reveals that Abrine as an IDO1 inhibitor has an

inhibition effect on immune escape and has a synergistic effect with the anti-PD-1

antibody on the treatment of HCC.
KEYWORDS

IDO1, Abr ine , CD47 , PD-L1 , m6A RNA modificat ion , immune escape ,
hepatocellular carcinoma
1 Introduction

Epigenetics is the stable inheritance that changes gene

expression or function by regulating the interaction between the

genome and the environment without changing the basic sequence

of DNA, mainly including DNA methylation, histone modification,

chromatin reorganization, and RNA modification (1). The

methylation of 6-methyladenosine (m6A) is the most abundant

epitranscriptomic modification in eukaryotic mRNA, which plays

an important role in affecting oncogenic and tumor suppressor

networks and regulating tumor immunogenicity (2).

Primary liver cancer is a high-incidence and malignant tumor

in the world and the second leading cause of cancer deaths

worldwide (3). Hepatocellular carcinoma (HCC) is the most

common type of primary liver cancer and most commonly occurs

in patients with chronic liver disease, such as cirrhosis caused by

hepatitis B or C infection (4). The updates of HCC treatment

methods mainly include surgical resection, liver transplantation,

local ablative therapy, systemic therapy, etc (5). Indoleamine-2,3-

dioxygenase 1 (IDO1) is an intracellular enzyme expressed by HCC

and is the rate-limiting enzyme that catalyzes the metabolism of

Tryptophan (Trp) along the kynurenic acid (Kyn) pathway, which

leads to the inhibition of T cells and is responsible for tumor cells to

escape monitoring and clearance of the immune system (6). IDO1

could be up-regulated by some cytokines and immune checkpoint

molecules, such as interferon-g (IFN-g), Toll-like receptor (TLR) 3,
TLR4, immune checkpoint (including PD-1, CTLA4, CD47) to

escape the immunosuppressive environment through the Janus

kinase1/signal transducers and activators of transcription1 (JAK1/

STAT1) pathway (7, 8). IFN-g is one of the most essential cytokines
; Interferon-gamma, IFN-
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in regulating the immune system, through up-regulating inhibitory

immune checkpoints such as PD-L1 and CD47 (9). CD47 is a

transmembrane protein of the immunoglobulin (Ig) superfamily

and is overexpressed in several cancers, which could directly bind

with SIRPa to deliver the “don’t eat me” signal that exerts anti-

phagocytosis function (10, 11). Studies have shown that IFN-g-
induced CD47 upregulation is a common phenomenon in human

cancers, and the JAK1-STAT1 axis is the main pathway (12).

Abrine is the dominant alkaloid extracted from Abrus

cantoniensis and Abrus precatorius Linn with significant functions

of protecting the liver and is a specific IDO inhibitor (13). In this

study, we evaluated the effect of Abrine on anti-HCC and immune

response and determined that Abrine as an IDO1 inhibitor could

inhibit IFN-g, PBMCs, or IDO1-induced IDO1-JAK1-STAT1

signaling pathway, enhanced the phagocytosis of macrophages

through inhibiting CD47 expression, and decreased the PD-L1

expression in HCC cells. In the HCC xenograft mice model,

Abrine suppressed the tumor growth, and promote the anti-HCC

effect of anti-PD-1 antibody through increasing the infiltration of

CD8+ T cells, decreasing Treg cells, and inhibiting PD-L1, and

CD47 expression. In addition, we found that Abrine could

significantly decrease the m6A RNA methylation in IFN-g-
induced HepG2 cells, which meant that m6A RNA methylation

may play a role in Abrine suppression HCC.

2 Materials and methods

2.1 Cell culture

HepG2 (Human liver cancer) cells were from American Type

Culture Collection (ATCC, USA), and were cultured in DMEM

(Gibco, USA) medium complemented with 10% fetal bovine serum

(FBS) (Gibco, USA) and 1% penicillin/streptomycin (Gibco, USA).

Human peripheral blood mononuclear cells (PBMCs) were isolated

from whole blood through Human Peripheral Blood Mononuclear

Cell Isolation Kit (Solarbio, China) and cultured in RPMI-1640 with

15% FBS and 1% penicillin/streptomycin. The mentioned cells were

maintained in 37°C incubator filled with 5% CO2. PBMC was

cultured in 10% human serum RPMI-1640. The PBMC was

extracted from healthy volunteers, which was approved by the

Ethics Committee of Guangxi University of Chinese Medicine.
frontiersin.org
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2.2 Cell viability assay

The cell viability was detected by MTT assay. HepG2 cells were

seeded into 96-well plates and cultured over 16 hours. Then, Abrine

(Chengdu Pufei De Biotech Co., Ltd, China, the purity is over 98%) at

different concentrations from 5 to 40 mMwas added to the HepG2 cells

for 24 hours. After which 100 mL 1mg/mL MTT (Solarbio, China)

reagent was added and incubated for another 4 hours at 37°C. After

incubation, cells were treated with DMSO for 15 minutes at room

temperature. Absorbance was measured at OD = 490 nm by a

MicroplateReader (BioTeK, USA).
2.3 Enzyme-linked immunosorbent assay

HepG2 Cells were plated into 6 cm dishes overnight.

Consequently, cells were pretreated with Abrine (0, 10, 20, and 40

µM) for 1 h, following co-incubation with IFN-g (20 ng/mL),

PBMC, or IDO1(30 ng/mL) for 24 h. The medium was collected

for the determination of IFN-g or Kyn by the ELISA Kits (Fankew,

China) following the manufacturer’s instructions.
2.4 m6A modification of mRNA analysis

Buffer, S1 nuclease (Takara, Japan), phosphodiesterase (Sigma-

Aldrich, USA), and alkaline phosphatase (Takara, Japan) were

added into 1 µg of total RNA to completely digest RNA into

nucleic acid at 37°C, then extracted with chloroform (Sinopharm

Chemical Reagent co., Ltd. China) and took the upper layer water

sample for subsequent LC-ESI-MS/MS analysis. The liquid phase

conditions are as follows: Chromatographic column: Waters

ACQUITY UPLC HSS T3 C18 column (1.8 µm, 100 mm × 2.1

mm i.d.); gradient elution program: 0 min A/B is 95:5 (V/V), 1.0

min A/B is 95:5 (V/V), 9.0 min A/B is 5:95 (V/V), 11.0 min A/B is

95:5 (V/V), 11.1 min A/B is 95:5 (V/V), 14.0 min A/B is 95:5 (V/V)

(phase A is ultrapure water (2mM ammonium bicarbonate), phase

B is methanol (2mM ammonium bicarbonate); flow rate was at 0.3

mL/min; column temperature is 40°C; the injection volume is 10 µL.

Then the MS/MS analysis conditions are as follows: Electrospray

Ionization (ESI) temperature is 550°C, mass spectrometer voltage is

5500v under the positive ion mode, and Curtain Gas (CUR) is 35

psi. In Q-Trap 6500+ (SCIEX, USA), each ion pair is scanned

according to optimized Declustering Potential (DP) and Collision

Energy (CE). Finally, build an MWDB (Metware Database)

database based on the standard, and perform qualitative analysis

on the data detected by mass spectrometry.
2.5 Western blot

The process of western blot was described before (14). Antibodies

for GAPDH (#8884), IDO1 (#86630S), PD-L1 (#13684T), p-STAT1

(#9167S), STAT1 (# 14994S), JAK1 (#3332S) and the secondary

antibodies including horseradish peroxidase (HRP)-conjugated goat

anti-rabbit IgG (#7074) were purchased from Cell Signaling
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Technology (Beverly, MA, USA). CD47 (#ab284132) was obtained

from Abcam (Cambridge, MA, USA).
2.6 Fluorescence assay

HepG2 cells were pretreated with or without 20 mM Abrine

followed by IFN-g (20 ng/mL), PBMCs or IDO1 treatment for 24 h.

Then cells were washed with PBS for 2 times and fixed with 4% PFA

for 20 min at room temperature. Cells were permeabilized with

0.5% Triton X-100 and subsequently blocked with 5% BSA for 30

min. After that, the cell samples were incubated with the primary

antibody against IDO1, PD-L1, STAT1, or CD47 (1:100 dilution,

100 mL) at 4 °C overnight. Cells were then incubated with the

Coralite 488 Goat Anti-Rabbit lgG (1:200 dilution, 100 mL)
(SA00013-2, proteintech, China) or Coralite594 Goat Anti-Rabbit

lgG (SA0001d-4, proteintech, China) for 2 h at room temperature.

Immunofluorescence images were captured by the confocal laser

scanning microscope (Leica TCS SP8, Solms, Germany) after

staining with Hoechst 33342 for 5 min.
2.7 Flow cytometry

The HepG2 cells were collected after Abrine and IFN-g, PBMC,

or IDO1 treatment for 24 h. Resuspend cells (5×105) in 100 mL of

diluted primary antibody including IDO1, PD-L1, and CD47

respectively incubated for 0.5 h on ice and protect from light.

Afterward, cells were washed with PBS and resuspended cells in

200-500 mL of PBS and analyzed by FACSMelody™ Cell Sorter (BD

bioscience, USA).
2.8 Cellular thermal shift assay

The HEK293T cells were lysed with RIPA Lysis Buffer (1%

PMSF and 1% cocktail). The respective cell lysates were co-

incubated with vehicle control (DMSO) or Abrine (20 mM) for

0.5 h on ice and then centrifuged at 15,000 rpm for 20 minutes at 4°

C. After which the supernatant was divided into 6 parts on average

and heated respectively at different temperatures (44, 48, 52, 56, 60,

and 64 °C) for 3 minutes followed by cooling for 30 s at room

temperature, then detected by western blot assay (15).
2.9 Molecular Docking

The 2D structure of Abrine in sdf format was obtained from the

PubChem database and transformed into a three-dimensional

structure using ChemBio3D energy minimization saved as mol2

format. Next, the PDB number of IDO was got from the RCSB PDB

database, download the 3D structure of IDO and use PyMol

software to delete the water molecule and the original ligand.

Hereafter, Using IDO protein as receptor and Abrine molecule as

ligand, the active sites of molecular docking were determined

according to the coordinates of the ligands in the target protein
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complex, and AutoDock Vina was used for molecular docking, then

PyMol was used for correlation mapping.
2.10 Molecular interaction analysis

Biacore X100 (Cytiva, United States) was used for the

measurement of the interaction of Abrine with IDO1. Using HBS-

EP buffer (Cytiva, United States) as the working buffer, dilute the IDO

recombinant protein (Sino Biological, China) to a final concentration

of 20 mg/ml. Next, The surface of the CM5 chip was activated with a

mixture of 0.2 mol/L EDC and 50 mmol/L NHS at a ratio of 1:1

injected continuously at a flow rate of 10 ml/min for 7 minutes, and

then injected 20 ug/mL IDO recombinant protein to be coupled to

CM5 chip by amino coupling method, after which 1 mol/L

ethanolamine hydrochloride (pH 8.5) blocking solution was

injected for 7 min to block the activated chip surface. What’s more,

Abrine was diluted with HBS-EP buffer to 100, 50, 25, 12.5, 6.25,

3.125, and 1.5625 nmol/L, kinetic experiments were performed using

the kinetic and affinity methods in the template of the Kinetic

Analysis Wizard to analyze the interaction between the ligand and

the receptor. The obtained data were fitted according to the analysis

software, with time as the abscissa and the response value as the

ordinate to calculate the binding kinetics between Abrine and IDO1.
2.11 Phagocytosis assay

The macrophages were labeled with Calcein-AM (5 mM) and

incubated at 37°C in the dark for 20 min, then co-cultured with

HepG2 cells labeled with pHrodo Red (120 ng/mL) at the ratio of

1:2, then added 20 mMAbrine and incubated at 37°C in the dark for

2 h. The phagocytosis of macrophages was detected by fluorescence

microscope. HepG2 cells were co-cultured with macrophage cells at

a ratio of 1:2 (HepG2: macrophages) and treated with or without

Abrine. After 2 h, the nanolive label-free system was used to in real

time observe the effect of Abrine on macrophage cells engulfing

tumor cells. The videos were processed with image J.
2.12 Gene expression profiling

To further reveal the role of IFN-g in hepatic carcinoma, the

correlations between IFN-g and CD47, IDO1, and PD-L1 were

analyzed by calculating Pearson correlation coefficients through

The Cancer Genome Atlas (TCGA) database, the cBioPortal

website (https://www.cbioportal.org/) and UCSC Xena (https://

xena.ucsc.edu/) website. The correlation between IFN-g and

CD47, IDO1, and PD-L1 was analyzed by calculating Pearson

correlation coefficients in GraphPad Prism 9.
2.13 Tumor xenografts animal experiments

Animal experiments were approved by the Ethics Committee

on Laboratory Animal Management of Guangxi University of
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Chinese Medicine (Approval Document No. SYXK-2019–0001).

Healthy C57BL/6J mice (SPF degree, 6-8 weeks old, male, weight

18-22 g) were purchased from Vital River Laboratory (Guangdong,

China, animal license #: SCXK-2022-0063). All animals were

housed under specific pathogen-free (SPF) conditions at 25°C

with 50% humidity and free access to food and water. After three

days of adaptive feeding, Hepa1-6 cells in 0.1 mL basic DMEMwere

inoculated in the right hind leg of the mice at a density of 1 × 106

cells/mice apart from those in the control group (16, 17). After 7

days, the tumor volume reached almost 100 mm3 in mice. The

tumor-bearing mice were randomly divided into 4 groups (n = 6 for

each group): the model group, the anti-PD-1 Ab group, the Abrine

group (15 mg/kg) (18), and the combination of Abrine and anti-

PD-1 Ab group. The unvaccinated mice served as a control group

(n=6). On day 7, Abrine was dissolved with saline and administered

into mice by intraperitoneal injection (i.p.) for 14 days, once a day.

At the same time, anti-PD-1 Ab (Purity>95%, InVivoMab anti-

mouse PD-1 (CD279), BioXCell, USA) was freshly prepared by PBS

and intraperitoneally injected into mice (200 mg/mice), once every 3

days (19). Besides, the mice in the control and model groups were

injected with an equal volume of saline. The mice’s tumor volume

was measured every two days. On day 21, the blood, tumor, and

organ tissues of mice were collected after the mice were anesthetized

with isoflurane and sacrificed.
2.14 Flow cytometry of tumor tissues

The single cell suspension from tumor tissues was filtered after

subsequently resuspended for counting and concentration

adjustment, labeled with biomarkers CD45-PerCP-Cy™5.5 rat

anti-mouse (#550994, BD Biosciences, USA), CD3-BV510

hamster anti-mouse (#740113, BD Biosciences, USA), CD4-PE-

Cy™7 rat anti-mouse (#552775, BD Biosciences, USA) and CD8a-

BV786 rat anti-mouse (#563332, BD Biosciences, USA) for

subsequent flow cytometry detection.
2.15 Hematoxylin and eosin staining,
single- and multiplex immunofluorescence

After the mice were anesthetized, the heart, liver, spleen, lung,

kidney, brain tissue, and part of tumor tissue specimens were

isolated, and fixed in 4% Paraformaldehyde Fix Solution for HE

staining, single- and multiplex immunofluorescence for CD47,

IDO1, CD8, PD-L1, and Foxp3. The rest of the tumor was frozen

in liquid nitrogen for other studies.
2.16 Statistics

Student’s unpaired t-test and one-way ANOVA in GraphPad Prism

were used for statistical analysis in GraphPad Prism 9 (GraphPad

Software, USA). P < 0.05 were considered statistically significant.
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3 Results
3.1 Abrine inhibits m6A RNA methylation
and IDO1/JAK1/STAT1 signal pathway in
IFN-g-induced HepG2 cells

Abrine is a natural product extracted from Traditional Chinese

Medicine (Figure 1A). To explore the relationship between IFN-g
and the expression of immune checkpoints, the correlation between

IFN-g and CD47, IDO1, and PD-L1 was detected from the TCGA

database, and it was found that IFN-g had positive correlation

responses with all of them in HCC (Figures 1B–D). The m6A RNA

methylation modification plays an important role in the occurrence

and progression of cancers, in this study, we found that IFN-g
treatment increased the m6A RNA methylation in HepG2 cells,

while Abrine inhibits IFN-g-induced RNA m6A methylation

(Figure 1E). At the same time, Abrine at 5, 10, 20, and 40 mM has

no cytotoxic in HepG2 cells. (Figure 1F). In addition, Abrine

inhibited Kynurenine (Kyn) level, which was produced by the

metabolism of tryptophan through the activation of the key

metabolic enzyme IDO1 (Figure 1G). Abrine decreased the

protein expression of IDO1, JAK1, p-STAT1, and STAT1

(Figures 1H, I, L) in IFN-g-induced HepG2 cells. Moreover,

Abrine inhibited the translocation of STAT1 from the cytoplasm

into nuclear (Figures 1J, K, M). These data indicated that Abrine has

an epigenetic regulatory role and inhibits IDO1/JAK1/STAT1

signaling pathway in IFN-g-induced HepG2 cells.
3.2 Abrine inhibits IDO-1/JAK1/STAT1
signal pathway in PBMC-induced
HepG2 cells

The co-culture model of immune cells and tumor cells is the most

widely used model of tumor immunity research in vitro. In this study,

PBMCs were co-cultured with HepG2 cells to imitate the interaction

between immune cells and tumor cells, and to better explore the

effectiveness and internal mechanism of tumor immunity research

strategies (Figure 2A). As shown in Figures 2B, C, PBMCs treatment

increased the IFN-g and Kyn level, which was suppressed by Abrine.

What’s more, the expression of IDO1, JAK1, p-STAT1, and STAT1

was determined by western blot. The results showed that the

expressions of IDO-1, JAK1, p-STAT1, and STAT1 proteins were

increased in PBMCs co-cultured HepG2 cells, while Abrine inhibited

the protein expression (Figures 2D–F). Besides, Abrine suppressed the

STAT1 translocation from the cytoplasm into the nuclear (Figure 2G),

these data indicated that PBMC increased the IFN-g and Kyn level in

HepG2 cells, therefore increasing the IDO1/JAK1/STAT1 signaling

pathway proteins expression, which was suppressed by Abrine.
3.3 Abrine targets on IDO1 to inhibit
IDO1/JAK1/STAT1 signaling pathway

IDO1, the first rate-limiting enzyme of tryptophan catabolism,

is continuously highly expressed in a variety of solid tumor tissues

and is closely related to poor prognosis. The inhibition of IDO1 can
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promote the efficacy of immunization and chemotherapy (20).

Therefore, IDO1 inhibitors have a prospect for development as

potential drugs for tumor immunotherapy. Abrine has been

reported to be a specific IDO1 inhibitor. In the present study,

Abrine suppressed the increased IFN-g and Kyn levels in IDO1

recombinant protein-treated HepG2 cells (Figures 3A, B), and

increased the expression of IDO1, JAK1, p-STAT1, and STAT1 in

HepG2 cells, while all of which were decreased by Abrine

(Figures 3C, D). What’s more, flow cytometry results further

indicated that increased IDO1 expression was inhibited by Abrine

in IDO1-induced HepG2 cells (Figures 3E, F). Afterward, the

molecular docking assay was used to examine the interaction

between Abrine and IDO1. The results showed that Abrine

interacts with IDO1 at the sites of SER:167, VAL:170, PHE:214,

LEU:342, VAL:269, PHE:270, and ARG:343 (Figures 3H, I). Biacore

X100 SPR assay was used to detect the Kinetics/Affinity of Abrine

and IDO1, results showed that the KD value was 64.5 mM, which

indicated that Abrine has a strong interaction ability with IDO1

(Figures 3J, K). CETSA assay further confirmed that IDO1 protein

was more stable under the action of Abrine at a series of

temperatures (Figure 3G). These data indicated that Abrine

interacts with IDO1 and as an inhibitor of IDO1 to inhibit IDO1/

JAK1/STAT1 signaling pathway in IDO-1-induced HepG2 cells.
3.4 Abrine inhibits CD47 and promotes the
phagocytosis of macrophages

CD47 is an important anti-phagocytosis signal, which can

prevent the phagocytosis of tumor cells by macrophages via

binding to ligand signal regulatory protein a (SIRPa) on

macrophages (21). We found a positive correlation between

interferon-g (IFN-g) and CD47 in HCC cells (Figure 1B), IFN-g,
PBMCs, and IDO1 could increase the expression of CD47 in HepG2

cells, while Abrine decreased the expression of CD47 (Figures 4A–

C). The CD47 expression was further detected by flow cytometry

and immunofluorescence, results indicated that Abrine could

decrease the expression of CD47 in IFN-g, PBMCs, and IDO1-

induced cells (Figures 4D–I). Then, Calcein-AM-labeled

macrophages derived from PBMC, and pHrodo Red-labeled

HepG2 cells were co-cultured to detect the phagocytosis of

macrophages to tumor cells. Results showed that Abrine

treatment in either HepG2 or macrophages both increased the

phagocytosis effect of macrophages on HepG2 cells and could

recruit more macrophages to the cancer cells (Figures 4J, K and

Video1, 2). Collectively, these data suggested that Abrine could

promote the phagocytosis of tumor cells by macrophages and

prevent the immune escape of tumor cells by inhibiting the

expression of CD47.

3.5 Abrine inhibits PD-L1 in IDO1
overexpression HepG2 cells

PD-L1/PD-1 axis is an important immune checkpoint, which

can promote the tumor cell escape from immune monitoring, and

the PD-L1/PD-1 inhibitors as ICIs are widely used in clinical for the
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treatment of varieties of cancers (22). In this study, we found a

positive correlation between interferon-g (IFN-g) and PD-L1 in

HCC cells (Figure 1B), and this study found that Abrine could

decrease the PD-L1 expression in IFN-g, PBMCs, and IDO1-

induced IDO1 overexpression HepG2 cells (Figures 5A–C). The
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flow cytometry results indicated that IDO1 increased the expression

of PD-L1, Abrine could decrease the expression of PD-L1

(Figures 5D, E). The immunofluorescence results showed that

PBMC or IFN-g increased the expression of PD-L1, and Abrine

suppressed its expression (Figures 5F, G). These data indicated that
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FIGURE 1

Abrine inhibits m6A RNA methylation and IDO1/JAK1/STAT1 signal pathway in IFN-g-induced HepG2 cells. (A) The structure of Abrine; (B–E) The
correlations between IFN-g and CD47, IDO, and PD-L1 in HCC cells were analyzed by calculating the Pearson correlation coefficient; (E) The RNA
m6A methylation analysis based on LC-MS/MS, ##p < 0.01 versus the control group; *p < 0.05 versus the IFN-g group; (F) HepG2 cells were treated
with the Abrine for 24 h The cytotoxicity was determined by MTT assay; (G) The effect of Abrine on the Kyn levels in IFN-g-induced HepG2 cells by
ELISA assay, ###p < 0.001 versus the control group; **p < 0.01, ***p < 0.001 versus the IFN-g group; (H, I) Western blot analysis detects the effect of
Abrine on the expression of the proteins including IDO1, p-STAT1, STAT1, and JAK1. The relative protein band intensities were counted, #p < 0.001
versus the control group; *p < 0.001 versus the IFN-g group; (J, K) The localization of STAT1 in the cytoplasm and nucleus of HepG2 cells was
detected by western blotting, #p < 0.05 versus the control group; ***p < 0.001 versus the IFN-g group; (L, M) The immunofluorescence detected
the effect of Abrine on the expression of IDO1 and STAT1 translocation in IFN-g-induced HepG2 cells (Scale bar = 20 mm).
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IDO1 overexpression may lead to the increased expression of PD-

L1, which could be inhibited by the IDO1 inhibitor Abrine.
3.6 Abrine and anti-PD-1 antibody
treatment has a synergistic effect on
Hepa1-6 xenograft mice model

Although anti-PD-1 immunotherapy has great progress in

tumor treatment, there are still problems such as low response

rate and adverse reactions in the treatment of many solid tumors.

The high expression of IDO1 is also the main cause of resistance to

PD-1/PD-L1 inhibitors. Based on this, we combined Abrine with

anti-PD-1 antibody to treat the Hepa1-6 xenograft mice model.

Results showed that Abrine, anti-PD-1 antibody, and the
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combination treatment groups could suppress the tumor growth

and tumor volume, and Abrine co-treated with anti-PD-1 antibody

has a synergistic effect on inhibiting the tumor growth than Abrine

or anti-PD-1 antibody-treated groups (Figures 6A–D). And HE

staining of the heart, liver, spleen, lung, kidney, and brain showed

the safety of Abrine (Figure 6E). Flow cytometry detected the

CD3+CD4+ T cells and CD3+CD8+ T cells, results indicated that

Abrine co-treated with anti-PD-1 antibody increased the

CD3+CD8+ T cells obviously than Abrine or anti-PD-1 antibody-

treated groups, which means that the infiltration of CD8+T cells was

increased in tumor cells and promotes immune responses

(Figures 7A, B). As shown in Figure 7C, CD47 expression

increased in model mice, while Abrine, anti-PD-1 antibody, and

the combination treatment groups could suppress the expression of

CD47, and the combination treatment groups has a better
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FIGURE 2

Abrine inhibits IDO-1/JAK1/STAT1 signal pathway in PBMC-induced HepG2 cells. (A) The schedule of PBMC co-culture with HepG2 cells; (B, C) The
effect of Abrine on the level of IFN-g and Kyn in PBMC-induced HepG2 cells; #p < 0.05, ###p < 0.001 versus the control group; ***p < 0.001 versus
the HepG2+PBMC group; (D, E) The effect of Abrine on the proteins expressions in PBMC-induced HepG2 cells as indicated; #p < 0.001 versus the
control group; *p < 0.001 versus the HepG2+PBMC group; (F, G) Immunofluorescence detected the effect of Abrine on the expression of IDO1 and
STAT1 in PBMC-induced HepG2 cells (Scale bar = 20 mm).
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suppression effect than Abrine or anti-PD-1 antibody-treated

groups. mIHC results showed that Abrine co-treated with anti-

PD-1 antibody increased CD8+ cytotoxic T cells infiltration in

tumor cells, decreased Foxp3+ Treg cells, and inhibited IDO1 and

PD-L1 expression (Figure 7D). These data indicated that Abrine has

a synergistic effect with the anti-PD-1 antibody on the treatment of

HCC through regulating immune responses.
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4 Discussion

Due to the complex pathogenesis, high molecular heterogeneity

and immune tolerance microenvironment, the systemic treatment

of advanced liver cancer has always been a difficult research point

(23–25). In recent years, immunotherapy especially immune

checkpoint inhibitors (ICIs) have brought a new opportunity to
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FIGURE 3

Abrine targets on IDO1 to inhibit IDO1/JAK1/STAT1 signaling pathway. (A, B) The effect of Abrine on the level of IFN-g and Kyn in IDO1-induced
HepG2 cells, #p < 0.05, ###p < 0.001 versus the control, *p < 0.05, **p < 0.01versus the IDO1 group; (C, D) The effect of Abrine on the expression of
the proteins in IDO1-induced HepG2 cells as indicated, #p < 0.001 versus the control, *p < 0.001 versus the IDO1 group; (E, F) Flow cytometry
detected the level of IDO-1 in IDO-1-induced HepG2 cells, ###p < 0.001 versus the control, ***p < 0.001 versus the IDO1 group; (G) CETSA
detected the interaction of Abrine with IDO1; (H, I) Molecular docking results of Abrine with IDO1, **p < 0.01, ***p < 0.001; (J, K) Biacore X100
detected the kinetics/Affinity of Abrine with IDO-1.
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improve the survival rate of patients with advanced liver cancer

(26). However, the related therapeutic drugs and mechanisms still

need more research. In this study, we found that Abrine as an IDO1

inhibitor has an inhibition effect on immune escape, and its

combination therapy with immune checkpoint inhibitor anti-PD-

1 antibody exerted a better anti-tumor effect.

IDO1 expression is present not only in tumor cells but also in

endothelial cells, fibroblasts, and immune cells that infiltrate the TME

(27). The main function of IDO1 is to decompose Trp into Kyn and its

downstream metabolites, which are responsible for tumor immune

escape by regulating T cell-associated immune responses and

promoting the activation of immunosuppressive cells (28). Studies
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have shown that most tumor cells are positive for IDO1, and the strong

expression of IDO1 in tumor tissue has also been identified as an

independent negative prognostic factor for many cancers (29–32).

IDO1 expression of tumor cells correlates with tumor-infiltrating

Foxp3+ Tregs and other immunosuppressive molecules such as PD-1

and its ligand PD-L1 (33). IFN-g is widely considered to be the major

inducer of IDO1. As HepG2 cells hardly express IDO1, co-cultured

with IFN-g or PBMCs could be upregulated (34). Our data showed that

Abrine significantly reduced the expression of IDO1 and Kyn level in

IFN-g, PBMCs, or exogenous IDO1-induced HepG2 cells.

IFN-g is one of the most important cytokines in inflammatory

and immune responses, mainly produced by natural killer (NK)
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FIGURE 4

Abrine inhibits CD47 and promotes the phagocytosis of macrophages. (A–C) Western blot detected the expression of CD47 in IFN-g, IDO1, and
PBMC-induced HepG2 cells; (D–G) Flow cytometry detected the level of CD47 in IFN-g and IDO1-induced HepG2 cells; (H, I) Immunofluorescence
detected the expression of CD47 in IFN-g and PBMC-induced HepG2 cells (Scale bar = 20 mm); (J) The phagocytosis effect of Abrine on
macrophages engulf the HepG2 cells (Scale bar = 20 mm). (K) Images from Video 1 and 2, HepG2 cells were co-cultured with macrophages at a
ratio of 1:2, and the phagocytosis effect of Abrine on macrophages engulf the HepG2 cells after co-culture 2 h was detected by the nanolive label-
free system (Scale bar = 10 mm). ###p < 0.001 versus the control, ***p < 0.005 versus the model group.
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cells in the innate immune system and T cells in the adaptive

immune sys tem, which p lays an impor tant ro le in

immunopathology and immune response (35). The JAKs/STAT1

pathway is critical for IFN-g to generate signal transduction.

Binding of IFN-g to its receptor IFNGR activates JAKs, which

subsequently lead to phosphorylation, activation, and dimerization

of the transcription factor STAT1. The newly formed STAT1

homodimers subsequently translocate to the nucleus where they

initiate the transcription of some IFN-g-stimulated genes (ISGs)
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(36, 37). Our data showed that Abrine could reduce the level of IFN-

g elevated by PBMCs or IDO1, significantly decrease the expression

of JAK1 and the phosphorylation of STAT1, besides, prevent IFN-g
or PBMCs-induced nuclear translocation of STAT1.

IFN-g regulates immune escape correlated with the

overexpression of immune checkpoint receptors including PD-L1

and IDO1, which eliminates T cell activity in tumor tissues (38, 39).

The combination of highly expressed PD-L1 on tumor cells and the

receptor PD-1 on T cells transmit negative regulatory signals,
B C

D E F

G

A

FIGURE 5

Abrine inhibits PD-L1 in IDO1 overexpression HepG2 cells. (A–C) Western blot detected the expression of PD-L1 in IFN-g, IDO1, and PBMC-induced
HepG2 cells; (D, E) Flow cytometry detected the level of PD-L1 in IDO1-induced HepG2 cells; (F, G) Immunofluorescence detected the expression
of PD-L1 in PBMC and IFN-g-induced HepG2 cells (Scale bar = 20 mm). ###p < 0.001 versus the control, ***p < 0.005 versus the model group.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1185985
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Liang et al. 10.3389/fimmu.2023.1185985
induce T cell apoptosis, or lead to immune incompetence, therefore,

tumor cells can escape from the immune monitoring and killing

(40). At the same time, the activation of the PD-1/PD-L1 axis can

also change the differentiation of T cells, impair the differentiation

of effector T cells (Teff), memory T cells (Tm), regulatory T

lymphocytes (Treg) and exhausted T cells (Tex), thereby

significantly inhibiting T cell immune effects (41, 42). In addition,

Ye et al. found that IFN-g-induced increased CD47 expression

through the JAK1-STAT1 axis might be a common phenomenon in

cancer, which would increase the affinity between CD47 and SIRPa,
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amplify the “don’t eat me” signal, reduce the phagocytosis ability of

macrophages, and mediate immune escape (43). TCGA database

statistic results showed that IFN-g was positively correlated with

both CD47 and PD-L1 in HCC. Our further experiments found that

IFN-g or PBMCs up-regulated the levels of PD-L1 and CD47 in

HepG2 cells obviously, which could be inhibited by Abrine.

Moreover, the Abrine treatment also promoted the phagocytosis

of HepG2 cells by macrophages, which might be related to the

inhibitory effect of Abrine on CD47. However, the effect of Abrine

on CD47-SIRPa signal needs further study.
B C

D

E

A

FIGURE 6

Abrine and anti-PD-1 antibody treatment has a synergistic effect on Hepa1-6 xenograft mice model. (A–C) The effect of Abrine, anti-PD-1 antibody,
and Abrine co-culture with anti-PD-1 antibody on tumor size, tumor volume, and pathological changes; (D) The HE staining of tumor tissues (Scale
bar = 20 mm). (E) The HE staining of heart, liver, spleen, lung, kidney, and brain (Scale bar = 20 mm). ***p < 0.005 versus the model group, ##p < 0.01
versus the anti-PD-1 Ab group.
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PD-1/PD-L1 monoclonal antibodies have made breakthroughs

in the treatment of many cancers in clinical, but there are still

problems such as a high incidence of adverse reactions and a large

range of treatment tolerance (44, 45). Previous studies found that

the high expression of IDO1 is the main cause of resistance to PD-1/

PD-L1 inhibitors (46). Therefore, IDO1 inhibitors not only exert

anti-tumor activity but also may enhance the therapeutic effect of

PD-1/PD-L1 inhibitors when combined with PD-1/PD-L1

inhibitors. In this study, Abrine and anti-PD-1 antibody were

used to treat Hepa1-6 xenograft mice, results showed that both
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inhibited the expression of CD47 and PD-L1 in tumor tissues of

mice, increased the levels of CD4+ and CD8+ T cells, decreased the

level of Foxp3+ Treg cells. The combination of Abrine and anti-PD-

1 antibody obtained a better tumor inhibitory effect than the two

used alone, indicating that there is a synergistic effect of Abrine with

anti-PD-1 antibody on the treatment of HCC.

m6A modification is an RNA-associated epigenetic regulation

similar to DNA and histone modifications. Among which, m6A

methylation is the most abundant epitranscriptomic modification in

eukaryotic mRNA, participates in the complex and fine biological
A

B

D

C

FIGURE 7

Abrine and anti-PD-1 antibody treatment has a synergistic effect on Hepa1-6 xenograft mice model. (A, B) Flow cytometry detected the effect of
Abrine, amti-PD-1 antibody, and Abrine co-culture with anti-PD-1 antibody on CD4+ T cells and CD8+ T cells; (C) The IHC staining of CD47
expression (Scale bar = 20 mm); (D) The mIHC staining detect the expression of CD8+ T cells, PD-L1, IDO1, Foxp3 expression in tumor tissues (Scale
bar = 10 mm). ***p < 0.005 versus the model group, ###p < 0.001 versus anti-PD-1 Ab group.
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regulation of important functional genes in many cellular activities,

and may promote carcinogenesis by up-regulating or down-

regulating important components of cell signal transduction in the

occurrence and development of cancer (47–50). Studies have shown

that JAKs-STAT1 signaling pathway may be regulated by m6A at the

transcriptional level, resulting in aberrant signaling in cancer

progression. Suppressors of cytokine signaling (SOCS) are negative

regulators of the JAKs-STAT1 signaling pathway, inhibiting the

activation of this pathway under normal physiological conditions

(51, 52). In HCC, SOCS is recognized and degraded as a target of

m6A writer methyltransferase-like 3 (METTL3)-mediated m6A

modification, thereby abrogating its inhibitory effect on the JAKs-

STAT1 pathway (53, 54). These findings show that m6A methylation

modification has a regulatory effect on the JAKs-STAT1 pathway in

HCC progression. In the study, we found that IFN-g can induce the

increase of m6Amodification in HepG2 cells, and this increased m6A

methylation level was significantly inhibited by Abrine, indicating

that abrine has a role in regulating abnormal m6A modification in

tumor cells, therefore affecting the JAK1/STAT1 signal pathway.

Collectively, we found that Abrine has an anti-tumor immune

escape and promote immune response effect by inhibiting IDO1.

Abrine targets IDO1 to down-regulate the level of IFN-g and the

accumulation of metabolite Kyn, inhibiting the expression of PD-L1

and CD47 through the JAK1-STAT1 signaling pathway. In

addition, Abrine synergizes with immune checkpoint inhibitor

anti-PD-1 antibody to enhance tumor suppression, increases the

infiltration of CD8+ T cells in the tumor cells, decreases the

expression of CD47 and PD-L1 in tumor tissues, and down-

regulate the Foxp3+ Treg cells to exert anti-tumor immune escape.
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HDAC inhibitors enhance the
anti-tumor effect of
immunotherapies in
hepatocellular carcinoma
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Xiaoming Hou1, Fulai Xue1, Yinan Zhang2* and Yao Luo1*
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Regulatory Research and Evaluation Center, West China Hospital, Sichuan University,
Chengdu, China, 2School of Chemical Science and Engineering, Tongji University, Shanghai, China,
3School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, China
Hepatocellular carcinoma (HCC), the most common liver malignancy with a

poor prognosis and increasing incidence, remains a serious health problem

worldwide. Immunotherapy has been described as one of the ideal ways to

treat HCC and is transforming patient management. However, the occurrence of

immunotherapy resistance still prevents some patients from benefiting from

current immunotherapies. Recent studies have shown that histone deacetylase

inhibitors (HDACis) can enhance the efficacy of immunotherapy in a variety of

tumors, including HCC. In this review, we present current knowledge and recent

advances in immunotherapy-based and HDACi-based therapies for HCC. We

highlight the fundamental dynamics of synergies between immunotherapies and

HDACis, further detailing current efforts to translate this knowledge into clinical

benefits. In addition, we explored the possibility of nano-based drug delivery

system (NDDS) as a novel strategy to enhance HCC treatment.

KEYWORDS

hepatocellular carcinoma, tumor immunemicroenvironment, immunotherapy, immune
checkpoint inhibitors, HDAC inhibitors, nano-based drug delivery system
1 Introduction

Primary liver cancer is currently the sixth most commonly diagnosed cancer and the

third leading cause of cancer-related death worldwide, hepatocellular carcinoma (HCC)

accounts for approximately 75%-85% of liver cancer cases (1, 2). Due to the tumor

heterogeneity, tumor metastasis, and resistance to traditional chemotherapeutic agents,

current treatment options such as surgical resection, radiofrequency ablation, neoadjuvant

chemoradiotherapy, and liver transplantation for HCC will only benefit a few percentages

of patients, novel therapeutic modalities are urgently needed for patients with advanced or

unresectable HCC (3).
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The crucial role of the immune system in suppressing the

growth, proliferation, and progression of tumors is widely

accepted (4). The immunotherapy of tumors mainly utilizes the

host immune system to fight the tumor by regulating the host’s own

immune function or enhancing the immunogenicity of the

tumors (5). HCC is considered to be inflammation-induced

cancer, showing good sensitivity to immunotherapies (6).

Immunotherapy strategies for HCC mainly include immune

checkpoint inhibitors (ICIs), cell-based therapies, and tumor

immune vaccines. Cytokines such as interferon also show certain

anti-HCC effects (7). Checkpoint inhibitors are typically

monoclonal antibodies that target programmed cell death protein

1 (PD-1), programmed death-ligand 1 (PD-L1) or cytotoxic T

lymphocyte-associated antigen 4 (CTLA-4). PD-1 is a surface

receptor highly expressed by activated T cells, B cells, dendritic

cells (DC), and natural killer cells (NK) which provides inhibitory

signals to the immune system to modulate the activity of immune

cells in peripheral tissues and keep T-cells from attacking normal

cells in the body. The interaction between PD-L1 expressed on

cancer cells and PD-1 is a key mediator of cancer immune escape,

which leads to the suppression of anticancer immunity and the

promotion of tumor progression (8). Immune checkpoints blockade

with anti-PD-1/PD-L1 antibodies have been successfully utilized in

the treatment of various cancers such as melanoma (9), non–small

cell lung cancer (10), bladder carcinoma (11), Hodgkin’s lymphoma

(12), and Merkel cell carcinoma (13). CTLA-4, another important

ICIs target, competitively inhibits the binding of the B7 ligand to the

costimulatory receptor CD28, resulting in decreased peripheral T-

cell activity. Specific blocking of CTLA-4 can increase the T-cell

infiltration of tumors and enhance the killing effect of the

immune system on tumors (14, 15). In addition, chimeric

antigen receptor T cells (CAR-T) and other cell therapies as well

as HCC tumor immune vaccines also show good effects and

application prospects. However, the unique inhibitory tumor

microenvironment (TME) of HCC and the genetic differences of

the host make existing immunotherapies challenges. Compared to

unprecedented and durable responses in these T cell-inflamed

cancers, the objective response rates (ORRs) of PD-1 and PD-L1

blockade in HCC remain relatively low (16–18). It was proved that

TME, specific receptors, and signaling pathways can affect the

clinical outcome of PD-1/PD-L1 treatment (19), Combining

different immunotherapies or combining immunotherapies with

other modalities may provide synergistic effects and facilitate the

development of the treatment of HCC (20).

Regulated by related histone-modifying enzymes (HMEs),

various post-translational modifications (PTMs) of histone

substrates, such as acetylation, methylation, phosphorylation,

ubiquitination, and ADP ribosylation, play a crucial role in

chromatin dynamics, relative gene regulation and many other

biological functions (21). Increasing evidence indicates that

abnormal epigenetic regulation of gene transcription associated

with histone modifications plays a crucial role in cancer initiation,

progression, and metastasis (22). In contrast to direct mutations or

deletions in the main DNA sequence, aberrant epigenetic

modifications are potentially reversible by epigenetic therapies

(23). Several small-molecule inhibitors of HME, such as histone
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methylation inhibitors, histone demethylation inhibitors, histone

deacetylation inhibitors, and DNA methylation inhibitors, can lead

to the programmed death of tumor cells by affecting the cell cycle,

angiogenesis, proliferation, and migration (24–26). To date, histone

deacetylation inhibitors (HDACis) including vorinostat,

romidepsin, belinostat, and panobinostat have been approved by

FDA for the treatment of hematological malignancies such as

cutaneous T-cell lymphoma (CTCL) and multiple myeloma (27–

29). Despite promising results in the treatment of blood cancers, the

therapeutic efficacy of several HDACis as a single therapeutic agent

in solid tumors such as HCC has been unsatisfactory, and the

prevalence of drug-induced side effects was relatively high (30). Till

now, numerous combination therapies involving HDACis in

synergy with chemotherapy, radiotherapy, phototherapy, targeted

therapy, and immunotherapy have been efficiently developed to

enhance therapeutic efficacy (31).

HDACis can regulate gene expression by regulating host

epigenetic modification, thereby overcoming the tolerance of

HCC patients to immunotherapy and enhancing the therapeutic

effect. HDACis have been shown to promote immunotherapies in

a variety of tumors (32). This effect is mainly achieved by

enhancing the immunogenicity of the tumor and regulating the

tumor immune microenvironment. Studies have shown that

HDACis can increase the expression of PD-1/PD-L1, thereby

increasing the sensitivity of tumors to ICIs treatment (33). In

some tumors, HDACis also increase the expression of MHC

molecules that assist the host immune system in recognizing

tumor antigens (34). The regulation of HDACis on TME can

promote the recruitment of T cells and NK cells and exert the

function of tumor inhibition by increasing the expression of

chemokines, cytokines and NK cell-related receptors. Similar

mechanisms were also found in HCC. Moreover, these

mechanisms work together to promote the effect of

immunotherapies. The effect of HDACis on immunotherapy

also allows these drugs to work without high doses. This reduces

the possible cytotoxicity and adverse reactions of immune drugs,

and also creates chances for wider research and application (35).

In the past few years, the rapid development of nanotechnology

and its application in many fields have had a profound impact on

the development of biomedicine (36). Nano-based drug delivery

system (NDDS) constructed on the basis of nanomaterials provides

an effective and powerful new strategy for enhancing the efficacy of

immunotherapy drugs for HCC (37). NDDS specifically targets

tumor cells through advanced delivery systems, overcoming

inhibitory TME while effectively reducing the damage to normal

cells. Currently, a large number of nanomedicine-based therapies

are being developed for HCC (38).

Combined multidrug approaches for cancer treatment could

overcome the limitations of single therapies, increase antitumor

effects, and reduce drug resistance. In this review, we describe

immunotherapies and HDACis in detail, explain the mechanism

of their therapeutic effects in HCC respectively, and discuss

current progress in the combination of novel immunotherapies

with HDACis. In addition, concerned that the nano-based drug

delivery system (NDDS) exhibits outstanding properties such as

targeted delivery, TME response, and site-specific release in the
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delivery of multi-drug combination, we further discuss the

potential clinical applications of NDDS in dual-therapy for

HCC briefly.
2 Immunotherapy for HCC

2.1 The immune microenvironment of HCC

The TME is the environment around a tumor mass that consists

not only of a heterogeneous population of cancer cells but also of

stromal cells, neovessels, immune cells, and extracellular matrix

(ECM). Considering the close relationship and constant interaction

between tumors and their surrounding microenvironment, it is

becoming increasingly apparent that TME has a significant impact

on tumorigenesis, immune evasion, recurrence, as well as drug

resistance (39).

The immunosuppressive microenvironment in HCC is thought

to be counterbalanced by cells that generate antitumor immune

responses and/or clear tumor cells. Liver cells are normally exposed

to a significant number of bacterial antigens from portal circulation,

leading to constant immune stimulation and antigen exposure.

As a result, the liver has developed intrinsic tolerogenic

mechanisms in the innate and adaptive immune responses to

prevent autoimmune responses and unnecessary tissue

damage, which makes it considered an immune-tolerant tissue

(40). The immune microenvironment in the liver is dominated by

immunosuppressive cells and signals. The key immune suppressor

cells implicated in HCC immune escape comprise tissue-resident

macrophages (mostly Kupffer cells), regulatory T (Treg) cells, and

myeloid suppressor cells (MDSCs) (41, 42). Known as specialized

macrophages located in the liver, Kupffer cells remove bacteria and

produce immunosuppressive cytokines, such as IL-10 and

prostaglandins. Additionally, they are capable of negatively

regulating immune response by expressing the inhibitory immune

checkpoint ligand PD-L1, recruiting Treg cells, and IL-17-expressing

CD4+ T helper 17 (TH17) cells, as well as downregulating major

histocompatibility complex class II (MHC II) and costimulatory

molecules (41–43). Treg cells and monocyte-derived tumor-

associated macrophages (TAMs) can suppress innate and

adaptive immunity against HCC through the cooperation with

dysfunctional DCs, dysfunctional CD8+PD-1+ T cells, neutrophils,

and regulatory B (Breg) cells (43–45). The high numbers of MDSCs

in the liver produce vascular endothelial growth factor (VEGF),

transforming growth factor-b (TGF-b), and arginase, which also

suppress T cell activation (41). There is a higher abundance of Treg

cells and MDSCs in peripheral blood among HCC patients than in

normal individuals (46, 47).

The deepening of research and the development of

technology have improved our understanding of the complexity

and heterogeneity of the tumor immune microenvironment

and its components, and their effects on response to tumor

immunotherapy. Tumor immunotherapy is considered to be a

novel and promising therapy for tumors and it has recently

become a hot research topic.
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2.2 Immunotherapies and immune
checkpoint inhibitors for HCC

HCC is usually developed from chronic liver disease, such as

chronic hepatitis B, and is therefore considered to be inflammatory

cancer. This inflammation promotes the transformation of liver

cells and contributes to cancer (48). As inflammatory cancer,

patients with high lymphocyte density in HCC tumors tend to

have a better prognosis (6). Therefore, immunotherapies are

considered as ideal treatment for HCC. Existing treatment

options for HCC, such as surgery, adjuvant chemoradiotherapy,

liver transplantation and radiofrequency ablation, do not benefit all

patients, and a more comprehensive approach is needed.

Immunotherapies have been shown to be effective and safe in the

treatment of a large number of solid tumors (e.g., malignant

melanoma and non-small cell lung cancer), extending the overall

survival (OS) and providing tolerable toxicity, which are

revolutionizing the management of cancer (49). Existing HCC

immunotherapy strategies include ICIs, cytokine-based therapies,

cell-based therapies, and tumor vaccines (Figure 1). However, due

to the low tumor mutation load (TML) and the special

immunosuppressive microenvironment, the application of HCC

immunotherapies is facing challenges and further optimization

strategies are needed (50).

2.2.1 Immune checkpoint inhibitors
ICIs are monoclonal antibodies that block immune checkpoint

molecules that inhibit the anti-tumor immune response. Immune

checkpoint molecules are key modulators of anti-tumor T cell

responses and can be expressed not only by T cells, but also by

antigen-presenting cells (such as DC and macrophages) and tumor

cells. Major inhibitory immune checkpoint receptors naturally

inhibit T cell activity and play a critical role in maintaining self-

tolerance, also mediating immune-escape of cancer cells (7).

Currently, the targeted therapies of PD-1, its ligand PD-L1 and

CTLA-4 have been fully studied and have become the pillar of

immunotherapy for solid tumors (51).

The interaction between PD-L1 and PD-1 leads to widespread

dephosphorylation of T-cell-activated kinases, resulting in T-cell

inactivation. This effect mediates the immune tolerance of tumors

(52). Studies have shown that PD-L1 is expressed in 82% of HCC

samples, and the expression rate in HBV-positive patients is higher

than that in HBV-negative patients (53). Therefore, blocking PD-1

or PD-L1 can restore the function of CD8+ T cells and exert anti-

tumor function in HCC patients. Currently, the clinical value of

PD-1 or PD-L1 inhibitors has been widely demonstrated and

approved for use in several countries. Existing drugs include

nivolumab, pembrolizumab and atezolizumab. Nivolumab is a

human anti-PD-1 IgG4 monoclonal antibody that blocks PD-1

and was approved by the FDA in 2017 for second-line advanced

HCC patients with sorafenib progression. Clinical studies have

shown that nivolumab has a manageable safety profile and shows

sustained antitumor activity in patients with advanced HCC (17). In

a study of 743 HCC patients, first-line nivolumab and sorafenib-

treated patients had comparable overall survival (15.2 vs 13.4
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months) and showed a good safety profile (54). An Asian cohort

study showed a response rate of 15% for nivolumab in HCC patients

who had already been treated with sorafenib (55). Nivolumab

combined with ipilimumab (an antibody against CTLA-4)

showed better efficacy and safety in the treatment of advanced

HCC patients. The objective response rate was 32% (95% CI, 20%-

47%) in 148 subjects using a combination regimen (4 doses of

nivolumab 1 mg/kg + ipilimumab 3 mg/kg every 3 weeks, then

nivolumab 240 mg every 2 weeks) (56). In addition, atezolizumab,

an IgG1 monoclonal antibody targeting PD-L1, and the anti-

VEGFA antibody bevacizumab have produced better outcomes in

advanced HCC patients than sorafenib and have become the new

standard treatment for patients with unresectable HCC.

Atezolizumab in combination with bevacizumab (AtezoBev) has

been shown to be repeatable safe and effective in routine clinical

practice (57). In a phase Ib trial, of 104 unresectable HCC patients

treated with atezolizumab in combination with bevacizumab, 37

(36%; 95% CI 26%-46%) patients achieved a confirmed objective

response (58). In a comparative trial, atezolizumab combined with

bevacizumab showed better 12-month survival (67.2% vs 54.6%)
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and progression-free survival (6.8 vs 4.3 months) than sorafenib

(59). Further molecular mechanism studies have also confirmed

that anti-VEGF can act synergically with anti-PD-L1 to target

angiogenesis, Treg proliferation and myeloid cell inflammation

(60). Pembrolizumab, an anti-PD-1 IgG4 monoclonal antibody,

also demonstrated high efficacy and tolerability in patients with

advanced HCC. In a Phase III study, pembrolizumab had a median

OS of 13.9 months for advanced HCC (61). In 2020, atezolizumab

plus bevacizumab became the standard first-line systemic therapy

for advanced HCC, and the monotherapies pembrolizumab and

nivolumab plus ipilimumab are currently approved as second-line

therapy for patients with disease progression in first-line tyrosine

kinase inhibitors (TKI) (49). It is important to note that some

experimental and clinical studies of solid tumors seem to favor anti-

PD-1 over anti-PD-L1 therapy. A meta-analysis of 19 randomized

clinical trials showed that anti-PD-1 therapy resulted in better

survival outcomes than anti-PD-L1 treatment (62). This finding

may be partly attributed to the poor pharmacokinetic properties of

anti-PD-L1 antibodies and the additional blocking effect of anti-

PD-1 antibodies on PD-L2 (62).
FIGURE 1

Immunotherapies for HCC. Current HCC immunotherapy strategies include immune checkpoint inhibitors (ICIs), cytokine-based therapies, adoptive
cell transfer (ACT), and therapeutic vaccines. Anti-PD-1 and anti-PD-L1 treatments are examples of ICIs therapy. By blocking PD-1 and PD-L1, the
anti-tumor activity of CD8+ T cells can be restored. An example of ACT therapy is CAR-T therapy. CAR-T therapy is derived from immune cells
extracted from patients’ peripheral blood and genetically engineered to express chimeric antigen receptors (CARs). These CARs can recognize
specific cancer antigens and stimulate the immune destruction of tumor cells. Therapeutic vaccines include peptides, DCs, whole-cell vaccines,
oncolytic viruses, mRNAs, and DNA preparations to increase or achieve a specific immune response to tumor antigens.
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CTLA-4 competitively inhibits the binding of the B7 ligand to

the costimulatory receptor CD28, resulting in decreased

peripheral T-cell activity. Inhibition of CTLA-4 can promote the

increased activation of infantile CD4+ and CD8+ T cells, as well as

the rebalancing of endogenous effector and regulatory regions in

the TME (15). Anti-CTLA-4 treatment can activate and increase

the abundance of CD4+ and CD8+ T cells, and reduce the

clonability of peripheral T cells in HCC patients (63). Studies

have shown that the expression of CTLA-4 in CD8+ and CD4+ T

cells isolated from HCC tissues is significantly higher than that in

tumor-free tissues or blood (64). Therefore, inhibition of CTLA-4

can play an antitumor role by enhancing T-cell activity in HCC

patients. Ipilimumab, a CTLA-4 inhibitor, has been shown to be

effective in combination with nivolumab for advanced HCC. This

strategy has been approved in many countries for second-line

advanced HCC patients with sorafenib progression (49).

Tremelimumab is a fully human IgG2 monoclonal antibody that

binds to CTLA-4 on the surface of activated T cells, thereby

blocking its binding to CD28 (65). Current studies have proved

that Tremelimumab combined with tumor ablation is feasible in

the treatment of advanced HCC patients, with a partial response

rate of 26.3%. This combination therapy resulted in the

accumulation of CD8+ T cells in the tumor and decreased viral

load in HCV patients (66). Although CTLA-4 inhibitors have

achieved promising results in clinical trials to date, researches on

the mechanisms of CTLA-4 blocking from HCC preclinical

models are limited, and further studies are needed (15).

In addition to PD-1/PD-L1 and CTLA-4, blocking other co-

inhibitory checkpoints such as LAG-3 or TIM-3 is also currently

the focus of extensive clinical research. Treg and CD8+ T cells

isolated from HCC TME expressed more PD-1, LAG-3 and TIM-3

than those isolated from non-tumor microenvironment (NTME)

by proteomics and transcriptomic analysis, and showed T cell

inhibition (67). Lymphocyte activation gene 3 (LAG-3) is a

membrane protein closely related to CD4. It is expressed by a

variety of T cells, such as CD4+, CD8+, and Treg, as well as NK

cells, DCs, and B cells. LAG-3 binds to MHC II of APC and

prevents recognition of T cell receptors (TCRs), thereby inhibiting

T-cell-mediated immune responses (50, 68). The density of LAG-3

positive cells increased significantly in HCC tumor tissues.

Increased density of LAG-3+ cells and decreased level of CD8+

T cells were associated with poor prognosis (69). Studies have

demonstrated the potential predictive and prognostic effects of

LAG-3 as a serum biomarker in HCC patients undergoing

transarterial chemoembolization (TACE) therapy. High LAG-3

levels before TACE are associated with poor disease outcomes and

reduce overall survival (70). The expression of LAG-3 in tumor

tissues is usually accompanied by an increased level of PD-L1 (71).

Therefore, the development of LAG-3 inhibitors and their

combination with anti-PD-1/PD-L1 may have significant

synergistic clinical benefits. However, there are few clinical trials

using these targets for HCC, and their efficacy has yet to be

proven. T-cell immunoglobulin and mucin domain 3 (TIM-3) is

an immunomodulatory receptor that binds to ligands on tumor

cells and the microenvironment and inhibits antitumor immunity

in a variety of cancers, including HCC. TIM-3 is one of the main
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inhibitory receptors on NK cells, which can mediate the reduction

of anti-tumor ability (72, 73). At present, there are relatively few

studies on how TIM-3 inhibits NK cells in HCC. This may be

related to an endogenous ligand called phosphatidylserine

(PtdSer). PtdSer is involved in promoting the phosphorylation

of TIM-3, which then competes with PI3K p110 to bind p85 and

inhibit the downstream Akt/mTORC1 signaling pathway, leading

to NK cell dysfunction. Gene ablation, antibody-based functional

blocking and lentivirus-mediated TIM-3 inhibition can inhibit

HCC growth by restoring cytokine secretion and cytotoxicity of

NK cells (74).

Overall, ICIs have several advantages over other types of

immunotherapies, such as cell-based therapies, in terms of

commercial availability, suitability, and not being limited by

human leukocyte antigen (HLA) status. Although many trials

showed promising results with ICIs in patients with advanced

HCC, more trials are needed to show efficacy as a first-line

treatment and in combination with other immunotoxic or

cytotoxic therapies. Moreover, some new immune checkpoint

inhibition therapeutic strategies need further mechanism studies

and clinical validation (65).

2.2.2 Vaccine therapy and cell-based therapy
Measurable T-cell responses to tumor-associated antigens

expressed by HCC cells, such as AFP, GCP3, and MUC1, have

guided the development of antigen-specific therapeutic vaccines

and cell therapies (75). These strategies play a therapeutic role by

activating or enhancing tumor immunity in HCC patients through

the introduction of tumor antigens or tumor-associated antigen

(TAA) sensitive immune cells in vitro. HCC vaccine therapy utilizes

similar immune recognition principles and promotes an adaptive

immune response to specific antigens. This method can not only be

used for cancer prevention, but also for cancer treatment (49).

Classical tumor vaccines involve exogenous antigens or antigen

pulsed DCs. One strategy is to transfect DCs with a pulse of tumor

cell lysate or with a TAA-expressing vector. Adoptive transfer of

these modified DCs into patients was used to optimize the

immunogenicity of secreted cancer antigens (including AFP) in

response to weakened natural immune responses or functional

abnormalities in HCC patients (76). Therapeutic vaccines include

peptides, DCs, whole-cell vaccines, oncolytic viruses, mRNAs and

DNA preparations to increase or achieve a specific immune

response to tumor antigens (77). The key to vaccine therapy is

that tumor antigens should provide sufficient immunogenicity to

break the tolerance imposed by the many self-molecules expressed

by tumor cells. At the same time, the antigen should confer

specificity on tumor cells and avoid unnecessary recognition of

non-tumor cells. So, screening for the right antigens is challenging.

Due to the special immunosuppressive environment of HCC, it is

also unknown whether antigen input can induce a strong enough

immune response (78). Combination therapy and new vaccine

synthesis strategies can overcome these challenges. For example,

the combination of ICIs and tumor vaccine treatment can enhance

the activity of T cells by blocking immunosuppressive factors, thus

enhancing the function of the vaccine (79). The development of new

tumor vaccines using nanotechnology has also contributed to the
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advancement of this therapeutic approach (80). For example, one

study tried to use DC-derived exosomes (DEX) as a non-cellular

vaccine for tumor immunotherapy. By anchoring HCC targeting

peptide p47 (P) and an alpha-fetal protein epitope (AFP212-A2) to

DEX, the researchers produced a novel vaccine, DEXP&A2&N.

DEXP&A2&N achieves tumor-targeted delivery of high-mobility

group nucleosome binding protein 1 (HMGN1; N1ND-N) and

promotes N1ND-mediated endogenous DC recruitment and

activation in tumors in the presence of HCC antigens. To achieve

cross-presentation of tumor antigens and induce tumor-specific T-

cell responses (81).

Another strategy for immune regulation of antitumor

responses is adoptive cell transfer (ACT). ACT is a highly

personalized form of cancer immunotherapy involving the

metastasis of host-derived amplified immune cells (82). ACT

therapy for HCC includes tumor infiltrating lymphocytes (TILs),

cytokine induced killer cells (CIKs), and CAR-T (50). Adoptive

metastasis of TIL has been shown to produce complete and lasting

tumor regression in patients with metastatic melanoma, and its

efficacy in HCC remains to be demonstrated (83). Another ACT

strategy tried in adjuvant therapy for HCC is the use of CIK. CIK

cells are autologous cells amplified in vitro from peripheral blood

mononuclear cells of patients cultured with cytokine cocktails and

anti-CD3 antibodies. CIK cells consist of a variety of

subpopulations: CD3+/CD56+ cells, CD3−/CD56+ NK cells, and

CD3+/CD56− cytotoxic T cells. Therefore, CIK cells have the dual

function of T cells and NK cells, with a strong anti-tumor effect

(84). Current studies have proved that CIK is an effective

adjunctive therapy in early HCC. For advanced HCC, CIK can

also show a good therapeutic effect by targeting MDSCs to reduce

their immunosuppressive function (85). CAR-T therapy, as a new

ACT, has made considerable progress in the treatment of HCC.

CAR-T therapy takes immune cells from patients’ peripheral

blood and genetically engineers them to express chimeric

antigen receptors (CARs). These cell membrane proteins bind to

specific cancer antigens and stimulate the immune destruction of

tumor cells (86, 87). It was shown that CAR-T therapy inhibited

tumors through multiple mechanisms. For example, a CAR-T

therapy targeting Glypican 3 (GPC3) has been shown to be

effective against HCC in mice. The mechanisms involved

include inducing perforin and granulozyme-mediated apoptosis

and reducing the level of active b-catenin in HCC cells. This is

because GPC3 is a cancerous fetal antigen involved in Wnt-

dependent cell proliferation (88).

2.2.3 Cytokine-based therapy
For patients with HCC, cytokine-based therapies have met

limited benefits. The use of interferon (IFN) seems to be a

reasonable first choice for HCC treatment, which may have both

antiviral and antitumor functions. It has been demonstrated that the

combination of IFN-a and IL-24 can inhibit HCC by promoting

tumor apoptosis and reducing angiogenesis (89). However, patients

with cirrhosis and HCC have poor tolerance to IFN therapy,

resulting in nearly half of the patients discontinuing treatment

due to intolerance or adverse events (90).
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2.3 Resistance to immunotherapies

Due to the microenvironmental specificity of the liver, the TME

in HCC exhibits high immunosuppression and drug resistance,

resulting in excessive or insufficient responses to immunotherapies

(91). Recent studies have revealed the underlying mechanisms of

immunotherapy resistance, which can be divided into primary

resistance and adaptive or acquired resistance. Primary resistance

is characterized by tumor failure to respond to immunotherapy,

which may be due to T cells’ lack of tumor antigen recognition.

When the patient’s immune system is able to recognize tumor

antigens, the tumor can also protect itself from immune attack

through adaptive or acquired resistance. The occurrence of drug

resistance may be due to intrinsic characteristics of the tumor, such

as low tumor mutation load and high PD-L1 expression, or extrinsic

characteristics of the tumor, such as the absence of T cells with

antigen-specific TCRs and high immunosuppressive TME (92).

Specific to each type of immunotherapy, their resistance

mechanisms are very complex and involve many factors. Take

ICIs, for example. Although some ICIs (such as anti-PD-1

antibodies and anti-CTLA-4 antibodies) have been approved for

first-line or second-line treatment of HCC in some countries, some

advanced HCC patients do not respond to therapy, and the overall

response rate remains low (93). This may be related to immune-

regulatory metabolite production in HCC TME. In one HCC

model, the use of ICIs led to an increase in IFN-g-dependent
expression of indoleamine 2, 3-dioxygenase (IDO) in tumor cells.

Among them, an increase in tumor-derived IDO1 promotes

resistance to ICIs therapy. The combination of IDO inhibitors

can enhance the efficacy of ICIs (94). Another potential cause of

ICIs resistance is the production of anti-drug antibodies (ADAs),

which can alter the clearance of these drugs or neutralize their

activity. It is not clear whether ADAs cause resistance to HCC.

However, ADAs were detected in up to 36% of Non-small cell lung

cancer (NSCLC) patients treated with atezolizumab, which has a

negative impact on systemic exposure to the drug and has

detrimental effects on anti-tumor efficacy (7). In addition to the

effects of TME, genetic and epigenetic defects in patients themselves

can induce immune evasion of tumor cells, further affecting the

response to ICIs. For example, genetic and epigenetic aberrations

that lead to defective antigen presentation can promote primary and

acquired resistance to ICIs (95). Some studies have also

demonstrated the role of signal-related mutations in tumor

resistance to ICIs. For example, some mutations can activate the

Wnt/b-catenin pathway, thus leading to changes in tumor PD-L1

and triggering the occurrence of ICIs resistance (96).

Although some resistance mechanisms have not been

demonstrated in HCC, further optimization of HCC

immunotherapy strategies is imperative. New directions have

been opened for the development of immunotherapy by

combining different treatments or by using new technologies to

synthesize new immunotherapy drugs. Recent studies have shown

the value of combination immunotherapy and epigenetic therapy.

Among them, HDACis combined with immunotherapy has

achieved better results in HCC treatment. Moreover, nano-based
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drug delivery systems (NNDS) built using nanotechnology further

optimize existing treatment options.
3 HDACs and HDACis treatment for
HCC

3.1 Histone deacetylation modification and
HDAC inhibitors

The nucleosome is the basic unit of chromatin and is made up

of DNA and histones. Histones are a group of small, positively

charged proteins that include H1, H2A, H2B, H3 and H4. Histones

are essential in packaging DNA into cells, chromatin and

chromosomes. The histone core octamer is composed of H2A,

H2B, H3, and H4. They are wrapped in a 147-base pair DNA band

and linked by H1 (97). Covalent modifications of histones are

central to the regulation of chromatin dynamics which comprise

methylation, phosphorylation, acetylation, ubiquitylation,

sumoylation, glycosylation, and ADP-ribosylation (98). Many

biological processes involving chromatin, such as transcription,

DNA repair, replication, and genome stability, are regulated by

chromatin and its modifications. Nϵ-acetylation of lysine residues is

a major histone modification involved in transcription, chromatin

structure and DNA repair. Acetylation neutralizes the positive

charge of lysine and weakens the electrostatic interaction between

histones and negatively charged DNA. Thus, histone acetylation is

often associated with a more “open” chromatin conformation (99).

Acetylation is highly dynamic and regulated by the competitive

activity of two enzyme families, histone acetyltransferases (HATs)

and histone deacetylases (HDACs). These two enzymes alter the

state of chromatin, which in turn affects gene transcription and

genome stability. Abnormalities in the functioning of these two

enzymes have also been shown to play a role in the development of

cancer. In contrast to DNAmutations, epigenetic changes represent

reversible changes that offer the possibility of truly “restorative”

therapeutic interventions. Great progress has been made in the

therapeutic strategies targeting HDACs (100).

HDACs reverse lysine acetylation and restore positive the

charge on the side chain, causing chromatin to contract. HDACs

consist of 18 enzymes from two families and can be divided into 4

groups based on their sequence homology and domain

organization. Class I HDACs (HDAC-1, HDAC-2, HDAC-3,

HDAC-8) are located in the nucleus, widely expressed in various

tissues and involved in gene expression. Class II HDACs are divided

into two subgroups, Class IIa (HDAC-4, HDAC-5, HDAC-7, and

HDAC-9) and Class IIb (HDAC-6 and HDAC-10), which are

involved in cell differentiation. Class IIa HDACs shuttle between

cytoplasm and nucleus. Class IIb HDACs are located in the

cytoplasm. Class I HDACs and Class II HDACs represent the

HDACs most closely associated with yeast scRpd3 and scHda1,

respectively. Class IV HDACs include only one enzyme, HDAC-11.

Class I, II, and IV HDACs share related catalytic mechanisms that

require Zn+ but do not involve the use of cofactors. In contrast,

Class III HDACs (sirtuin 1-7) are homologous to yeast scSir2 and
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employ a unique NAD+-dependent catalytic mechanism (99, 101,

102). In addition, HDACs are known to regulate a variety of non-

histone targets, such as tubulin, heat shock protein 90 (HSP-90),

and p53, thereby affecting cell growth, apoptosis, invasion, and

angiogenesis (103). It has been found that HDAC-6 is involved in

a-tubulin deacetylation, affecting mitosis and other processes

dependent on microtubule network acetylation patterns (104).

Abnormal HDACs are involved in the occurrence and

development of many tumors, including cell proliferation, cell

migration, cell death, and angiogenesis. HDACs shrink chromatin

through deacetylation, resulting in transcriptional silencing of

tumor suppressor and apoptosis genes, disrupting the balance

between oncogenes and oncosuppressor genes. Many non-histone

transcription factors, such as HSP-90 and tubulin, are also

substrates for HDACs (101). Chimeric fusion proteins in

leukemia, such as PML-RARa, PLZF-RARa, and AML1-ETO,

have been shown to recruit HDACs to mediate abnormal gene

silencing, which contributes to the development of leukemia (105).

HDACs have also been found to be overexpressed or overactive in

various solid tumors and inhibit the expression of tumor suppressor

genes, leading to uncontrolled proliferation and inhibiting cell

repair and apoptosis (102). Studies have shown that HDAC-5 can

directly interact with T-box3 (a transcriptional suppressor) to

jointly inhibit the expression of E-cadherin and promote the

metastasis of tumor cells (106). Therefore, HDACs may be

promising drug targets for cancer treatment. Currently, HDACis

have been shown to be powerful in the treatment of cancer

(107, 108).

HDACi reverses some abnormal gene inhibition in malignant

tumors and induces growth arrest, differentiation, and apoptosis of

cancer cells (Table 1). There are currently four HDACis approved

by the FDA for cancers (99). The first approved HDACi is

suberoylanilide hydroxamic acid (SAHA) or vorinostat for the

treatment of refractory CTCL. The second is romidepsin for

CTCL and peripheral T-cell lymphoma (PTCL). The third drug

approved as an HDACi was panobinostat for oral use, in

combination with bortezomib and dexamethasone for the

treatment of relapsed multiple myeloma. The fourth, belinostat, is

used for the treatment of PTCL. In addition, another HDACi

chidamide was approved in China for the treatment of

hematologic malignancies (101, 109). These drugs have produced

impressive clinical data. In a Phase II trial, chidamide showed

significant single-agent activity and controlled toxicity in relapsed

or refractory PTCL. 79 patients with PTCL histology who received

chidamide had an overall survival of 21.4 months. Patients with

vascular immunoblastic T-cell lymphoma (AITL) had a higher ORR

(50%) and a 40% complete response/unconfirmed complete

response (CR/CRu) on chidamide, as well as a more durable

response (110). Microarray experiments show that < 10% of the

genome showed significant changes in expression after HDACis

treatment. In cancer cells, these perturbations appear to disrupt

their metastases and lead cells to non-proliferative destinies,

including differentiation, immune regulation, chromatin

instability, reduced DNA damage repair, reactive oxygen species

production, cell cycle arrest, apoptosis, autophagy, and reduced

angiogenesis and cell migration. For example, HDACis can restore
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p53 protein transcription and thus induce apoptosis of drug-

resistant cancer cells (30, 109, 111). Some of the newer HDACis

are now being shown to work in a wide range of tumors. For

example, one study demonstrated the ability of a modified novel

highly selective HDAC I/IIb inhibitor, Purinostat Mesylate (PMF),

to treat chronic myelogenous leukemia (CML). PMF can

significantly prevent the progression of BCR-ABL(T315I) induced

CML by inhibiting leukemia stem cells (LSCs). This may provide a

new treatment strategy for TKI-resistant CML patients in the future

(112). Thailandepsin A (TDP-A) is another novel HDACi with

extensive anti-proliferative activity. It has been proved that TDP-A

can inhibit proliferation and induce apoptosis of breast cancer cells

at low nanomolar concentrations. Furthermore, TDP-A has strong

selective inhibition on Class I HDACs, such as HDAC-1, HDAC-2

and HDAC-3, and weak inhibitory activity on HDAC-4 and

HDAC-8. This selectivity makes TDP-A a promising epigenetic

drug for cancer treatment (113).

However, HDACis also face some challenges in treating

cancer. One concern is the multipotency of drugs and their

targets. Currently used HDACis are mostly non-selective pan-

HDACis, whose relatively low specificity may alter the expression

of thousands of important genes, leading to adverse consequences

and hindering the wide clinical application of HDACis (99, 114).

It is also challenging to determine the dosage of HDACis. Doctors

need to find a treatment window that allows higher doses to be

administered to more aggressive cancers, taking into account

patients ’ tolerance (105). HDACis resistance is another

challenge. Studies have shown that tumor cells can develop

resistance through compensatory changes in HAT/HDAC

expression levels, induction of p21 and thioredoxin, and drug
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effluence by ATP-binding cassette transporters (109). Combining

HDACis with other drugs is a credible way to address these

challenges. However, combination therapy still faces many

problems, such as different drug solubility, resulting in physical

incompatibility, which leads to formula precipitation or drug

inactivation, requiring reformulation. In addition, there is an

increased risk of drug-drug interactions and an increased

tendency for adverse reactions (101). Chimeric HDACis

synthesized by molecular hybridization (MH) strategy is a new

development direction of HDACis. By combining drugs with

different therapeutic effects, such as TKI and HDACi, in a single

molecule, new drugs with better affinity and efficacy can be

created. A highly effective dual inhibitor targeting bromodomain

and extra-terminal (BET) and HDACs for pancreatic cancer has

been reported. The antitumor activity of this dual inhibitor was

higher in vivo and in vitro than that of BET inhibitor and HDACis

alone or in combination (115).
3.2 HDAC inhibitors for HCC treatment

The dysregulation of HDACs and their roles in HCC

development are being actively studied (Table 2). At present,

there have been many reports indicating that HDACs are over-

expressed or over-activated in HCC patients. Some of these studies

have demonstrated the relationship between the overexpression of

Class I HDACs such as HDAC-1 and HDAC-2 in HCC tissues and

the increased mortality and poor prognosis of patients (124).

Currently, many molecular classifications and prognostic gene

markers for HCC patients have been established based on
TABLE 1 HDAC inhibitors for tumors.

HDAC inhibitors HDAC specificity Tumors

Vorinostat Class I, II, IV CTCL

Romidepsin Class I CTCL, PTCL

Panobinostat Class I, II, IV MM

Belinostat Class I, II, IV PTCL, HCC

Chidamide Class I, IIb Hematologic malignancy

Trichostatin A Class I, II, IV Broad cancers

Givinostat Class I, II, IV Leukemia

Entinostat Class I Hematologic malignancy, breast cancer

Mocetinostat Class I, IV (HDAC-1, HDAC-2, HDAC-3, HDAC-11) Hematologic malignancy, lung cancer

Rocilinostat Class IIb (HDAC-6) MM, lymphoma, lung cancer, breast cancer

Nicotinamide Class III (SIRT-3) Skin cancer

Cambinol Class III (SIRT-1, SIRT-2) Lymphoma, breast cancer

Quisinostat Class I, II, IV (HDAC-1, HDAC-2, HDAC-4, HDAC-10, HDAC-11) MM, multiple solid tumors

Purinostat Mesylate Class I, IIb CML

Thailandepsin A Class I (HDAC-1, HDAC-2, HDAC-3) Breast cancer
HDAC, histone deacetylase; SIRT, sirtuin; CTCL, cutaneous T-cell lymphoma; PTCL, peripheral T cell lymphoma; HCC, Hepatocellular carcinoma; MM, multiple myeloma; CML, Chronic
myelogenous leukemia.
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genome-wide gene expression profi les. A recent study

systematically assessed the effect of these genetic characteristics

on prognosis and identified valuable prognostic biomarkers by

integrating these genetic characteristics. Tissue microarray

analysis of 60 HCC patients showed that the expression level of

HDAC-2 was negatively correlated with OS in HCC patients. The

expression level of HDAC-2 in tumor tissues is significantly higher

than that in adjacent normal tissues, and is associated with poor

survival in HCC patients (125). Class II and III HDACs, such as

HDAC-4, HDAC-5, SIRT-1, SIRT-2, and SIRT-7, have also been

found to be up-regulated in HCC, and their correlation with tumor

progression has been demonstrated in some cases (126). A large

number of mechanism studies have shown that HDACs are

involved in the pathogenesis of HCC. When overexpressed, these

epigenetic modification factors exhibit various cancer-promoting

effects, including inhibiting the expression of tumor suppressor

genes, activating cell cycle progression, escaping apoptosis, adapting

to hypoxia, and metabolic reprogramming. The interactions

between HDACs and other carcinogenic molecules are also quite

complex (125). In contrast, some HDACs appear to play a role in

tumor inhibition in HCC. For example, HDAC-6 is a unique tumor

suppressor in HCC. Inhibition or inactivation of HDAC-6 can

promote the development of the tumor (127). The discovery of

these mechanisms not only explains the role of HDACs in HCC, but

also provides targets for targeted therapy. For example, existing

studies have demonstrated that HDAC-2 is associated with poor

prognosis in HCC, suggesting that inhibiting HDAC-2 may be a

potential strategy to improve prognosis in HCC patients. In fact, in

HCC cells, inhibition of HDAC-2 disrupts the G1/S phase of the cell

cycle and ultimately leads to apoptosis by upregulating total p21,

p27 and acetylated p53 and reducing the expression levels of some

oncogenes (125, 128). These results are consistent with the

above conjecture.
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The role of HDACs in the development of HCC is related to the

regulation of acetylation of oncogenes (e.g., c-Met and c-Myc) and

oncosuppressor genes (e.g., p53). Trichostatin A has previously

been shown to effectively inhibit c-Met expression and promote

apoptosis of HCC tumor cells (116). A recent study found that

HDAC-3 and tumor necrosis factor receptor-associated factor 6

(TRAF6), an E3 ubiquitin ligase, are jointly involved in significant

upregulation of the oncogene c-Myc in HCC, thereby promoting

malignant transformation and progression of tumors. TRAF6

disrupts the binding of HDAC-3 and c-Myc promoters, resulting

in histone acetylation and epigenetic enhancement of c-MycmRNA

expression. This process also ultimately leads to increased stability

of the c-Myc protein (129). In addition, a long non-coding RNA

(lncRNA) that can be trans-activated by the p53 gene, lnc-Ip53, can

block p53 acetylation by inhibiting the degradation of HDAC-1.

This mechanism can lead to the loss of p53 activity and the

subsequent generation of tumor cell proliferation and apoptosis

resistance (130).

Recent studies have also indicated the effects of HDACs on

HCC cancer stem cells (CSCs), including maintaining cancer cell

dryness and promoting self-renewal and proliferation. CSCs can

cause tumor recurrence and metastasis, and play an important role

in the generation of multi-drug resistant cancers (131). The

promotion of HDACs on CSCs is achieved by affecting multiple

signaling pathways. Recent studies have pointed to the key role of

HDAC-11 in maintaining the dryness of HCC CSCs, while

inhibition of HDAC-11 can promote apoptosis of cancer cells.

HDAC-11 overexpression also reduced the sensitivity of HCC to

sorafenib. This may be related to the regulation of HDAC-11 on the

enhancement of glycolysis of HCC CSCs. CSCs require glycolysis

and lipid metabolism for energy, and give priority to glycolysis for

homeostasis (132). Further studies have shown that knockout of

HDAC-11 in mice can promote histone acetylation of liver kinase
TABLE 2 HDAC inhibitors for HCC treatment.

Treatment strategies HDAC specificity Mechanisms References

Trichostatin A Class I, II, IV
• Decrease the expression of oncogene c-Met and increase the level of
MicroRNA-449

(116)

Trichostatine A + curcumin Class I, II, IV
• Inhibition of NF-kB signaling pathway
• sensitize resistant tumor cells to the curcumin treatment.

(117)

Belinostat Class I, II, IV
• Inhibit histone deacetylase and reverse the up-regulation of
oncogenes

(118)

Resminostat + sorafenib
Class I, IIb (HDAC-1, HDAC-3,
HDAC-6, HDAC-8)

• Inhibition of histone acetylation associated with sensitivity and
tolerance to sorafenib

(119)

TMP269 + lenvatinib Class IIa
• Down-regulate FGFR4 and block FGFR signaling in FGFR4-positive
HCC cell lines

(120)

Panobinostat + radiotherapy Class I, II, IV
• Inhibit nuclear translocation and dissociate the HDAC4/Ubc9/Rad51
complex to impair DNA repair

(121)

AR42 + telomerase-specific oncolytic
adenoviral therapy

Class I, II, IV
• Decrease telomerase-induced phosphorylated Akt activation and
enhance telomerase-induced apoptosis

(122)

SAHA+ FOXO1
inhibitor AS1842856

Class I, II, IV
• Inhibition of autophagy mediated by AMPK-FOXO1-ULK1 signaling
axis
• Preventing EMT induced cancer cells metastasis

(123)
HDAC, histone deacetylase; FGFR, fibroblast growth factor receptor 4; Ubc9, ubiquitin-conjugating enzyme 9; SAHA, suberoylanilide hydroxamic acid, vorinostat; AMPK, AMP-activated
protein kinase; FOXO1, forkhead box o1; ULK1, Unc-51-like kinase 1; EMT, epithelial-mesenchymal transition.
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B1 (LKB1) promoter region to increase LKB1 transcription, thus

activating adenosine 5’-monophosphate (AMP)-activated protein

kinase (AMPK) signaling pathway and inhibiting glycolysis

pathway, thus inhibiting cancer dryness and HCC progression

(133). In addition, HDAC-2 also promotes the proliferation and

renewal of HCC CSCs by activating the Hedgehog (Hh) pathway. In

this process, HDAC-2 and lnHDAC -2 (a lncRNA highly expressed

in HCC and related to HDAC-2) co-inhibit the expression of

patched 1 (PTCH1), thus activating Hedgehog signaling pathway

and maintenance of hepatic CSCs dryness (134). The discovery of

the mechanism of HDACs on CSCs provides a new target for

combination therapy to overcome drug resistance in HCC tumors.

For example, a recent study found that combined with Class I/II

HDACis trichostatine can effectively improve the efficacy of

inhibitor of kappa B kinase (IKK) in the treatment of drug-

resistant HCC. Curcumin inhibits class I and II HDACs by

inhibiting the NF-kB signaling pathway, which is enhanced by

trichostatine combination therapy, sensitizing resistant tumor cells

to curcumin therapy (117).

Currently, the mechanism of HDACis monotherapy for HCC is

still in the stage of exploration, and its clinical effect remains to be

proved. A Phase II trial previously demonstrated tolerable

cytotoxicity of belinostat in HCC (118). Further pharmacokinetic

studies demonstrated that belinostat was mainly metabolized

through the glucoaldehyde pathway (135). In addition, HDACis

have demonstrated excellent adjunctive therapeutic capabilities to

enhance the efficacy of multiple HCC therapies. In terms of

chemotherapy, HDACis have shown better adjuvant effect in

many studies. HDACis can improve the efficacy of some

traditional chemotherapy drugs (e.g., Fluoropyrimidines) against

HCC and overcome resistance by targeting specific genes or

proteins (35, 136). A phase I/II trial validated the combination of

resminostat and sorafenib in the treatment of HCC. The results

showed better safety and early signs of efficacy (119). Additionally, a

new study has demonstrated that a selective class IIa HDACi

(TMP269) enhances the efficacy of lenvatinib in fibroblast growth

factor receptor 4 (FGFR4) positive HCC in mice (120, 135).

Notably, the synergistic effect of HDACis allows these

chemotherapeutic agents to exert their antitumor power without

the need to reach very high doses. This effect greatly reduces the

cytotoxicity of chemotherapy drugs, enabling them to be more

widely used in the treatment of HCC, bringing a new development

direction for the development of traditional drugs (35). For

radiotherapy, it has shown that the use of HDAC-4 inhibitors can

effectively enhance the killing efficiency of radiation on HCC tumor

cells. Interruption of the HDAC-4 signaling pathway enhanced the

radiation-induced mortality of cancer cells (121). In addition to

traditional treatments, HDACis and several new treatments have

shown good synergies. For example, Lin et al. demonstrated a

synergistic therapeutic effect of pan-HDACi AR42 and

telomerase-specific oncolytic adenovirus therapy. AR42

significantly enhanced telomerase-induced apoptosis in HCC

tumor cells (122). These studies all showed the strong potential of

HDACis in the field of HCC therapy.

Combination therapy can also overcome the occurrence of

HDACi resistance and reduce the risk of drug use. Recently,
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studies have demonstrated that HDACis therapy can promote the

epithelial-mesenchymal transition (EMT) of HCC through

autophagy mediated by the AMPK-FOXO1-ULK1 signaling axis

(123). EMT is a key step in tumor invasion and metastasis (137).

This mechanism increases the risk of HDACis therapy, which leads

to a limited therapeutic role in epithelial cell-derived cancers,

including HCC. The combination of HDACis and FOXO1

inhibitors can effectively reduce this risk and increase the efficacy

of treatment (123). Another example of combination therapy for

HCC is the use of HDACis to enhance the efficacy of

immunotherapy, which will be discussed in detail below. In

general, HDACs play an important role in the development of

HCC and provide new targets for more accurate treatment.

HDACis have shown great value in the treatment and adjuvant

therapy of HCC.
4 HDACis enhance the efficacy of
HCC immunotherapy

4.1 HDACis enhance tumor
immunotherapy

Immunotherapy has been successfully used in preclinical

models or clinical settings to treat a variety of tumors, including

HCC. However, the emergence of immunotherapy resistance is

currently a major challenge. Although immunotherapy, such as

immune checkpoint suppression therapy, has shown impressive

clinical results, only some patients have achieved a lasting response

(92). To overcome this problem, combination therapy strategies

have been sought to achieve better efficacy. One strategy is to

combine immunotherapy with HDACis. HDACis can potentially

increase tumor immunogenicity, promote anti-tumor immune

responses, or reverse immunosuppressive TME. Recently,

HDACis combined immunotherapy has attracted much attention

in cancer treatment (32) (Table 3).

HDACis increase the expression of PD-L1 and other immune

checkpoints in tumor cells, which is an important mechanism to

enhance the immunogenicity of tumor cells, and can improve the

applicability and efficacy of ICIs. Abnormal expression of PD-L1

observed on the surface of human cancer cells mediates the

inactivation of anti-tumor T cells and tumor immune escape

(147). This mechanism also provides a target for PD-1/PD-L1

blockers to treat tumors. Studies have shown that the high

expression of PD-L1 in tumors is one of the biomarkers to

improve the sensitivity to PD-1/PD-L1 block (148). HDACis have

been shown to increase PD-L1 expression in several tumors,

including breast cancer, melanoma, HCC, soft tissue sarcoma,

and B-cell lymphoma, thereby improving the efficacy of

immunotherapy (33, 149, 150). Pan-HDACis, such as vorinostat

and panobinostat, induce PD-L1 expression in B-cell lymphoma

(33). Selective HDAC-3 inhibitors have also been shown to up-

regulate the expression of PD-L1 in B-cell lymphoma, suggesting

that HDAC-3 may be one of the key inhibitors mediating PD-L1

transcription in B-cell lymphoma (138). A similar mechanism has
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been found in soft tissue sarcomas (STS). Recent studies have

shown that class I HDACi chidamide can increase histone

acetylation of PD-L1 gene promoter in STS cancer cells and

stimulate PD-L1 expression through activation of transcription

factor STAT1. Further studies also demonstrated better efficacy of

chidamide in combination with the anti-PD-1 antibody toripalimab

in patients with advanced and metastatic sarcoma. Combination

therapy also reduced the number of MDSCs in the TME, a key

immunosuppressive cell population that mediates resistance to ICIs

(139). HDACis’ increased PD-L1 expression and increased PD-1

blocking efficiency may be related to more drug therapeutic targets.

Recently, it has been found in breast cancer that the highly

expressed membrane PD-L1 can translocate into the nucleus

mediated by HDAC-2, thereby regulating tumor gene expression.

The effects of this mechanism are multiple (151). On the one hand,

nuclear PD-L1 can regulate the expression of pro-inflammatory and

immune response-related genes, promoting immune inflammation

in the local TME and thus making tumors more sensitive to

immunotherapy. On the other hand, this gene regulation also

promotes distant metastasis of cancer and enhances tumor

aggressiveness. In addition, nuclear PD-L1 also triggers the

expression of other immune checkpoint molecules, leading to

possible acquired immunotherapy resistance. Blocking nuclear

translocation of PD-L1 using HDAC-2 inhibitors can reduce

transcription of these immune checkpoint genes, leading to

increased infiltration of CD8+ T cells and decreased levels of

TNF-a in tumors (151, 152).

HDACis have also been shown to enhance tumor

immunogenicity by promoting tumor antigen processing and

presentation. The expression of MHC I in cancer is usually

decreased due to epigenetic mechanisms, and HDACis can up-

regulate the expression of MHC I in various types of cancer (34).
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Histone deacetylation usually induces chromatin shutdown of

MHC II promoters, leading to MHC II downregulation in

tumors, and HDACis can reverse this process (153). The effect of

HDACis on tumor antigen processing and presentation enhances

immunotherapy efficacy. Recently, a Class I HDACi CXD101 with

selective activity was shown to enhance the efficacy of anti-PD-1 ICI

in colorectal cancer. CXD101 induces the expression of molecules

associated with antigen presentation, including MHC I, which

increases antigen presentation and helps improve cytotoxic T cell

conjugation and tumor cell killing. Anti-PD-1 antibodies release T

cells by inhibiting immune checkpoints, which can then bind to

MHC I with increased expression levels on tumor cells via T cell

receptors, leading to increased cytotoxicity and tumor cell killing

levels (140).

The regulation of the TME by HDACis is another important

mechanism that enhances the efficacy of ant i tumor

immunotherapy. Insufficient infiltration or abnormal function of

anti-tumor immune cells, such as T cells and NK cells, is an

important mechanism that causes tumor immune escape.

HDACis can overcome this mechanism by recruiting more T and

NK cells and enhancing their antitumor activity. HDACis enhance

tumor immunogenicity essentially by activating more T cells to

enhance the immune system’s ability to recognize and kill tumor

cells. In addition, HDACi can also play an immune-enhancing role

by inducing chemokine production and regulating the expression of

activation or apoptosis-related ligands. Increased expression of T

cell chemokines (e.g. CXCL10, CXCL10 and CCL5) in tumors is

associated with better response to immunotherapy and improved

patient outcomes (154, 155). In a mouse model, HDACi romidepsin

significantly increased CXCL10 expression in lung cancer and

induced a strong T-cell-dependent antitumor response (141).

HDACis can induce tumor regression or rejection in various lung
TABLE 3 HDACi enhances the efficacy of immunotherapy.

HDAC inhibitors HDAC specificity Mechanisms References

Vorinostat Class I, II, IV

• Increase immunogenicity of tumor cells by increasing the expression of PD-1/
PD-L1

(33)

Panobinostat Class I, II, IV (33)

OKI-179 Class I (HDAC-3) (138)

Chidamide Class I, IIb (139)

Zabadinostat (CXD101)
Class I (HDAC-1, HDAC-2,
HDAC3)

• Increase immunogenicity of tumor cells by increasing the expression of MHC
molecule

(140)

Romidepsin Class I
• Modulate the tumor microenvironment by increasing chemokine expression
• Enhance the expression of NKG2D ligands and enhance the tumor killing
ability

(141, 142)

PCI-34051 (for HCC) Class I (HDAC-8)
• Reactivate the production of T-cell chemokines
• Increase tumor infiltrating CD8+ T cells and enhance anti-PD-L1 therapy

(143)

HDAC-10 inhibitor (for
HCC)

Class IIb (HDAC-10)
• Modulate the tumor microenvironment by increasing chemokine (CXCL10)
expression

(144)

Tubacin (for HCC) Class IIb (HDAC-6)
• Increase IL-17A in the tumor microenvironment
• Increasing the expression of PD-1

(145)

Sodium valproate Class I (HDAC-1, HDAC-2) • Increase the expression of NKG2D ligand MICB by down-regulating miR-889 (146)
HDAC, histone deacetylase; PD-1/PD-L1, programmed death receptor-1/programmed death receptor-ligand 1; MHC, major histocompatibility complex; NKG2D, natural killer group 2D;
CXCL10, C-X-C motif chemokine 10; IL-17A, interleukin-17A; MICB, major histocompatibility complex class I chain-related gene B; miR-889, microRNA 889.
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tumor models by promoting T cell recruitment and enhancing T

cell function in combination with anti-PD-1 therapy. However,

treatment with HDACis alone can lead to the overexpression of PD-

L1 in tumor cells and the restriction of T cell function (150).

Combined anti-PD-1 therapy can overcome this limitation by

releasing IFN-g and increasing the sensitivity of tumor cells to

immunotherapy (141). This suggests that HDACis combined

immunotherapy is a mutually reinforcing process that ultimately

leads to a stronger synergistic therapeutic effect.

In addition to anti-tumor T cells, NK cells are also important

immune components in the fight against tumors. HDACis can

significantly enhance the expression of natural killer group 2D

(NKG2D) ligands and activate NKG2D expressed in NK cells, thus

enhancing the killing function of NK cells on tumors (142).

Mechanistically, HDACis may enhance the expression of major

histocompatibility complex class I-related chain A and B (MICA

andMICB) and UL16 binding protein (ULBp) in tumor cells, which

are key NKG2D ligands (156–158). This mechanism activates

endogenous NK cells and enhances the toxicity of chimeric

antigen receptor NK cell therapy (CAR-NK) to tumor cells. CAR-

NK therapy refers to adding a chimeric antibody that can recognize

tumor antigens and activate NK cells at the same time to enhance

the anti-tumor ability of NK cells through genetic engineering

(159). CAR-NK cells possess the dual intrinsic ability of natural

receptors to recognize and target tumor cells. HDACis can increase

the expression of NKG2D ligands to enhance the ability of CAR-NK

cells to recognize tumors through natural receptors (32). Although

many studies have demonstrated that HDACis enhance the anti-

tumor response of NK cells by upregulating NKG2D, the results of a

recent study suggest that HDACis may down-regulate another

activating ligand, B7-H6, thereby inhibiting NK cell-mediated
Frontiers in Immunology 1273
tumor cell recognition (160). This finding was confirmed in

primary lymphoma and HCC samples and was associated with

the inhibition of HDAC-3 (160). This suggests that combining

HDACis with immunotherapy requires a rational strategy

design, and that using non-selective HDACis may lead to

unpredictable outcomes.
4.2 HDAC is combined with
immunotherapy for HCC

HCC is a tumor with insufficient T-cell infiltration, which limits

the effectiveness of immunotherapy in some patients (143).

Therefore, additional mechanisms are needed to overcome HCC-

induced immune tolerance and enhance the effectiveness of existing

immunotherapy strategies. At present, many studies have shown

that the combination of immunotherapies (such as ICIs) and

HDACis may have a better therapeutic effect on HCC. For

example, Belinostat has recently been shown to improve the

efficacy of anti-CTLA-4 monotherapy and anti-CTLA-4

combined with anti-PD-1/PD-L1 in HCC patients, leading to

complete tumor rejection (161). Mechanically, HDACis also

improves the efficacy of immunotherapy by enhancing the

immunogenicity of HCC cancer cells and regulating the TME.

Specific mechanisms include up-regulation of PD-L1 expression,

induction of chemokines, recruitment of T cells and NK cells, and

enhancement of the anti-tumor function of immune cells (Figure 2)

(143–146).

Zeste homolog 2 enhancer (EZH2) inhibition is one of

the important mechanisms of HDACis enhancing HCC

immunotherapy. EZH2, a histone H3 lysine methyltransferase,
FIGURE 2

HDACi enhances the anti-tumor effect of immunotherapies in HCC. HDACi can enhance the efficacy of immunotherapy by enhancing the
immunogenicity of tumor cells and modulating the tumor immune microenvironment. HDACi can increase the expression of PD-1 and PD-L1,
thereby enhancing the sensitivity of HCC to ICIs. HDACi also facilitates the processing and presentation of tumor antigens by increasing the
expression of MHC I and MHC II. HDACi can induce the expression of chemokines (CXCL10, CXCL9 and CCL5) in the microenvironment, increase
the infiltration of T cells and enhance their antitumor activity. In addition, HDACi can increase the expression of NKG2D ligands in tumor cells, and
activate and enhance the anti-tumor activity of NK cells.
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is a proven oncogene (162). HDAC-10 can induce EZH2

recruitment at the CXCL10 promoter of the chemokine and

ultimately inhibit CXCL10 transcription (144). HDAC-10 is

necessary for this process to occur and provides a target for

treatment. By inhibiting the recruitment of EZH2 on the

CXCL10 promoter, knockdown of HDAC-10 can promote the

increase of CXCL10 expression in HCC, inducing the recruitment

of T cells and NK cells, and regulating and controlling the anti-

tumor response in the TME (144). In addition to inhibiting the

expression of CXCL10, EZH2 has also been shown to inhibit the

expression of PD-L1 and reduce the effect of anti-CTLA-4 therapy

(163, 164). HDAC-8 inhibition has also recently been shown to

promote chemokine production. Down-regulation of HDAC-8

increases global acetylation and enhancer acetylation of histone

H3 lysine 27 (H3K27), thereby reactivating the production of

HCC T cell chemokines and alleviating tumor T cell rejection. In

the preclinical model of HCC, selective inhibition of HDAC-8

increased tumor inhibition of CD8+ T cells, and enhanced

eradication of HCC by anti-PD-L1 therapy, with good safety

(143). Additionally, recent have shown that HDAC-6 inhibits

helper T 17 cells (Th17) that produce interleukin-17 (IL-17),

thereby inhibiting the antitumor immune response. Adoptive

transfer of HDAC-6-deficient Th17 cells can increase IL-17A in

the HCC TME, thereby enhancing the anti-tumor response

mediated by CD8+ T cells. This suggests that HDAC-6

inhibitors can enhance the effect of immunotherapy in an IL-

17A-dependent manner. Interestingly, this process also increased

the expression of PD-1, making advanced HCC sensitive to ICIs

and showing a strong synergistic effect (145). In addition to

cytokines, microRNAs (miRNAs) are also important regulatory

factors in the HCC microenvironment. It has been mentioned that

HDACis may activate NK cells by increasing the expression of

NKG2D ligand MICB and exerting antitumor effects. Recent

studies have shown that HDACis also facilitates this process in

HCC by inhibiting a miRNA called miR-889. miR-889 is

considered to be a new MICB-targeting miRNA. Overexpression

of miR-889 can significantly inhibit the mRNA and protein

expression of MICB in HCC cells, and reduce the cytotoxicity

mediated by NK cells. After the use of sodium valproate to inhibit

HDACs, HCC cells showed down-regulation of miR-889 and

increased sensitivity to NK cells (146).

Most HDACi drugs are approved for the treatment of

hematologic tumors, such as PTCL, with a low mutation rate.

HCC has been described as having a higher mutation load than

most hematological malignancies, suggesting that HDACis have

great potential to overcome the immune evasion of HCC.

Given the significant obstacles to the development of novel anti-

tumor drugs, combining HDACis with immunotherapy is an

excellent option to enhance the effectiveness of existing

treatment strategies. HDACis can regulate the immunogenicity

and TME of HCC tumor cells in a variety of ways, and cope with

tumor heterogeneity. Moreover, the effects of HDACis on

immunotherapy result in a lower dose, which reduces

cytotoxicity and adverse drug reactions (35). Generally, the use

of HDACis to synergistically enhance HCC immunotherapy is a

multi-mechanism strategy with good application prospects.
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5 The potential applications of nano-
based drug delivery system in HCC
Extensive research has been carried out to find mechanisms

involved in the pathogenesis of HCC to develop novel strategies for

diagnostic and therapeutic for the past few years. Nanotechnology

has significantly affected the medical field by applying

nanostructure to achieve specific therapeutic functions and

improve medical limitations (165, 166). In this respect,

nanotechnology provides huge opportunities in the diagnosis and

treatment of HCC, which can target selectivity and specificity, and

effectively achieve sufficient dosage in targeted tumor areas without

adverse effects or minimal damage to normal cells (167). HCC has

the characteristics of hypoxia, vascular leakage, specific receptors

and acidic micro-environment, which can be recruited as targeting

agents or by designing controlled delivery systems (168).

Nanomedicine-based therapeutics have shown the potential to

tackle the dilemma of the side effects of conventional

chemotherapeutics, and a large number of nanomedicine-based

therapeutics are under development for the treatment of HCC (38).

Generally, the therapeutic agent and a delivery system

containing nano-carriers, targeting moiety, and stimuli-responsive

units are the key components of designing a novel therapeutic (169,

170). As nano-carriers, organic nanoparticles (NPs) like

dendrimers, polymeric NPs, Lipid-based NPs, Nanogels, and

inorganic NPs such as hollow copper sulfide NPs, AgNPs, Bi2S3

NPs, quantum dots (QDs), carbon nanotubes, graphene-based

nanomaterials have been proved to be feasible in HCC treatment

(168). In the drug delivery system, molecularly targeted strategies

for nano-drug mainly comprise passive targeting and active

targeting. Passive targeting generally contributes to the EPR effect

which allows the NPs to selectively accumulate in the tumor. While,

active targeting enables therapeutic agents to be delivered to tumors

in a highly specific and efficient manner using different targeting

moieties. It mainly works based on recognition between the

targeting agent immobilized on the NP surface and the over-

expressed targeting agent receptor on the tumor cell’s surface.

Large amounts of targeting agents such as small molecule

targeting ligands (glycyrrhetinic acid (171), folate, etc.), proteins

(transferrin, GPC3 (172), etc.), antibodies (anti-GPC3 antibody,

anti-VEGFR antibody, etc.), aptamers (TLS 9a aptamer, EpCAM-

specific aptamer, etc.) and peptides (SP94 oligopeptide, etc.) had

been reported for HCC therapy. Li et al. designed 5dual-ligand

glycyrrhetinic acid and galactose-modified chitosan NPs by using

the ionic gelation method as novel hepatoma-targeted drug delivery

systems to further improve the targeting capability to HCC

(Figure 3A). The dual-targeted NPs conquered the unsatisfactory

targeting capacity and uptake efficiency of the single-ligand

modified drug delivery system and represented an effective and

safe drug delivery system for targeted therapy of HCC (171).

Further, Xiang et al. developed a facile yet efficient strategy

toward dual-targeting ligand-functionalized NPs for precise HCC

therapy and potential clinical translation to solve the problems of

sophisticated chemical design, multi-step synthesis and purification

procedures of most reported NPs with dual-targeted properties
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(Figure 3B). Folate (FA) was introduced as a hydrophobic and

targeting component to a hydrophilic macromolecular prodrug

(galactosylated chitosan-5-fluorouracil acetic acid (GC-FU)) to

afford FA-GC-FU formulation that can self-assemble into NPs

without the necessity of physical cross-linking. The FA-GC-FU

NPs can target the over-expressed folate receptors (FRs) and

asialoglycoprotein receptors (ASGPRs) on the surface of HCC

cells, leading to greater targeting efficiency for enhanced

therapeutic efficiency of HCC in vitro and in vivo (173). To

provide a potent and low-toxic treatment modality for HCC,

transferrin-guided polymersomal doxorubicin (Tf-Ps-Dox) was

fabricated with controlled transferrin density, small size, and high

drug loading through ligand postmodification strategy by Wei et al.

(Figure 3C). The Tf-Ps-Dox NPs resulted in up to three-fold more

accumulation and longer survival time than non-targeted Ps-Dox

and clinically viable liposomal Dox (Lipo-Dox) (174). Biomimetic

NPs coated with cell membranes have been widely concerned in

targeted anti-tumor therapy due to the enhanced biocompatibility

and specificity for homotypic cells. Ji et al. constructed cancer cell-

macrophage hybrid membrane-coated hollow CuS NPs

encapsulating sorafenib and surface modified with anti-VEGFR

antibodies (CuS-SF@CMV) (Figure 3D). The CuS-SF@CMV NPs

enhanced synergistic photothermal therapy (PTT) and

chemotherapy against HCC owing to their immune evasion,

tumor cell targeting and drug loading capacities, along with an

inherent photo-thermal conversion ability (175). Compared with
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antibodies, aptamers with the advantages of low molecular weights

and lack of immunogenicity show more stability, low cost and equal

binding affinities, making them be used as promising targeting

moiety candidates. Chakraborty et al. compared the therapeutic

potential of phosphorothioate-modified TLS 9a aptamer (L5)-

functionalized drug nano-carrier (PTX-NPL5) with other nano-

carrier formulas, including previously reported HCC cell-targeting

aptamers and non-aptamer ligands functionalized NPs. The results

indicated that PTX-NPL5 had the highest potency in inducing

selective apoptosis in neoplastic hepatocytes via a mitochondrial-

dependent apoptotic pathway and did not produce any notable

toxic effects in healthy hepatocytes, thus unveiling a new and safer

option in targeted therapy for HCC (176).

Although ICIs have shown significant promise for cancer

treatment, there are still challenges with efficacy, patient

variability and off-target effects when immunomodulators are

used (177). Immunomodulators like proteins have limited

delivery potential when administered freely. Study has

indicated that NPs have the potential to significantly improve

delivery by protecting immunomodulators and enhancing their

interaction with immune cells (178). Thus, nanomedicines-based

immunotherapy has recently received widespread attention as a

newly introduced strategy for tumor treatment (179–181). As an

anticancer immune-boosting strategy, checkpoint inhibitors are

typically monoclonal antibodies that target PD-1, PD-L1 or

CTLA4. However, the usage of free antibodies is limited by
B

C D

A

FIGURE 3

Applications of nano-based drug delivery systems in HCC. (A) Schematic representation of the dual-ligand glycyrrhetinic acid and galactose-
modified chitosan nanoparticles with dual-ligand targeting hepatoma cells after intravenous administration in tumor-bearing mice model, through
enhanced permeability and retention effect and active targeting between lactobionic acid and glycyrrhetinic acid on the nanoparticles and their
receptors on hepatoma cells. Adapted with permission from ref (171). Copyright 2020, Future Medicine Ltd. (B) Schematic illustration of the facile
synthesis of FA-GC-FU and its self-assembled micelle NPs with dual-targeting ligands of FA and LA for hepatoma-targeted delivery of 5-FU. Adapted
with permission from ref (173). Copyright 2020, American Chemical Society. (C) Schematic illustration of the preparation of transferrin-guided,
reduction-responsive and reversibly cross-linked polymersomal doxorubicin (Tf-Ps-Dox), and the targeted therapy of orthotopic hepatocellular
carcinoma of Tf-Ps-Dox in vivo. Adapted with permission from ref (174). Copyright 2019, Elsevier. (D) Schematic illustration of the generation of
macrophage−cancer hybrid membrane-coated, sorafenib-loaded and anti-VEGFR-modified CuS NPs for PTT against hepatocellular carcinoma.
Adapted with permission from ref (175). Copyright 2020, Elsevier.
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stability concerns. To improve these therapies by enhancing efficacy

and reducing side effects, NPs have been utilized for both

monoclonal antibody (anti-PD-1) and small interfering RNAs

(siRNAs) delivery, which disrupt immune checkpoints (182, 183).

Immunogenic cell death (ICD) is one type of cell death that causes

an activation of the immune response (184). Many studies have

revealed that drugs that are able to induce ICD are of great

significance for cancer therapy (184). Metallic material-derived

NPs usually have photothermal therapy (PTT) and photodynamic

therapy (PDT) effects, which not only can be used as

photosensitizer, but also have great potential for cancer

immunotherapy due to ICD. For example, Dong et al. designed

a multifunctional FA-CuS/DTX@PEI-CpG NPs (FA-CD@PP-

CpG) for synergistic PDT, PTT and docetaxel (DTX)-

enhanced immunotherapy (185). FA-CD@PP-CpG can improve

immunotherapy effects, such as promoting infiltration of CTLs,

suppressing myeloidderived suppressor cells (MDSCs) and

enhancing antitumor efficacy on 4T1-tumor-bearing mice.

Chemotherapeutic agents such as platinum-based drugs and Dox

were identified that not only induce cell apoptosis, but also trigger

ICD in tumor cells, leading to activated cytotoxic T cells mediating

the anti-cancer immune responses (186). Zhu et al. (180)

encapsulated Dox and PD-L1 siRNA (siPD-L1) into block

copolymer PEG-PLA (NPDox/siPD L1) to evaluate the effects of

Dox on the ICD in the PD-L1 knockdown tumor cells and tumor-

bearing animal models. The results demonstrated that the treatment

of NPDox/siPD-L1 significantly increased the ICD induction in the

HCC cells, supporting the adjunctive role of blocking PD-L1 in the

augment of ICD. Additionally, in vivo study supported that

treatment of NPDox/siPD-L1 significantly inhibited tumor growth.

Epigenetic changes alter the TME by changing gene expressions

and silencing tumor-suppressor genes. Hence, DNA methylation

and histone modifications are the potential therapeutic targets in

cancer therapy (187). However, current epigenetic drugs in cancer

therapy are restricted by poor bioavailability, undesired side effects

and cytotoxicity to normal tissues (188). Drug delivery system

provides the opportunity to overcome the above limitations and

improve therapeutic efficacy, owing to delivering high

concentration of drugs to the tumor tissue with minimal side

effects to healthy tissue. Meanwhile, the integration of two or

more anti-tumor therapeutic methods has been proven to

improve the therapeutic efficacy compared to the mono-therapy

approaches (189, 190). Ruttala et al. developed a transferrin-

anchored albumin nanoplatform with PEGylated lipid bilayers

(Tf-L-APVN) for the targeted co-delivery of paclitaxel and

vorinostat in solid tumors (191). Paclitaxel is an important

chemotherapeutic drug with a broad spectrum of activity against

multiple solid tumors. However, high toxicity, poor aqueous

solubility and poor biodistribution restricted its therapeutic

efficacy (192). As an HDACi, vorinostat plays a crucial role in

epigenetic transcriptional regulation. The co-loading of paclitaxel

and vorinostat could effectively modify the pharmacokinetics and

toxicity profiles, control the release of drugs and maintain

synergistic drug ratios for maximum therapeutic benefits. The Tf-

L-APVN significantly enhanced the synergistic effects of paclitaxel

and vorinostat on the proliferation of HepG2 cancer cells and
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displayed excellent anti-tumor efficacy in HepG2 tumor-bearing

mice, making it great potential for HCC therapy.

The above-mentioned researches proved that nanomedicine is

one of the novel strategies to help the generation of new therapeutic

procedures for HCC. However, challenges and drawbacks in

different nanostructures have restricted their applications in the

clinic, resulting only a few nano-carriers have successfully entered

clinical trials for HCC therapy. Physicochemical characteristics of

nanomaterials including size, composition, structure, surface

modifications, charge, porosity and aggregation behavior are one

of the main challenges, and so, reproducible standards are necessary

for improving the quality assessment of nanomaterials. Safety and

biocompatibility concerns are also challenges in the translation of

nanomedicine products to the clinic due to triggering adverse

responses . Although the biomimet ic mult i funct ional

nanostructures using different biological compartments such as

cell membranes or whole cells have been utilized to overcome the

limitation, refining and standardizing requirements for the approval

of nanomaterials are also necessary. Additionally, the complexity of

the TME brings challenges for drug delivery. To introduce

nanomedicine as an extraordinary tool for HCC therapy, more

efforts should be made to investigate the easy routes to synthesize

therapeutic nanomaterials and ensure their biosafety, cytotoxicity

and drug efficiency, besides, multidisciplinary collaboration of

different scientific areas is still needed to fully address all challenges.
6 Conclusion and perspectives

HCC is a malignant tumor with high morbidity and mortality,

which seriously threatens the health of people all over the world.

Immunotherapy has opened a new direction for HCC treatment

and is gradually transforming the management of HCC patients.

However, due to the suppressed tumor immune microenvironment

of HCC, some patients are not sensitive to immunotherapy, which

hinders the application and development of HCC immunotherapy.

Here, we summarize the roles of HDACis, a class of epigenetic

regulatory drugs, in enhancing HCC immunotherapy. HDACis

have been shown to exhibit superior immunomodulatory capacity

in a variety of tumors, including HCC, and have strong tumor

suppressor function in conjunction with immunotherapies such as

ICIs. The specific mechanisms include enhancing tumor

immunogenicity and regulating TME. These results indicate that

HDACis are an excellent adjunct drug for immunotherapy, and the

two drugs have a stronger synergistic effect while playing their

respective anti-tumor functions. However, the choice of drugs for

HDACis is a challenge that combination therapy has to face, which

is related to the multipotency of HDACi. On the one hand, HDACs

can regulate a variety of non-histone targets, and inhibition of one

HDAC may lead to multiple outcomes. On the other hand, some

HDACis lack selectivity (pan-HDACis) and can inhibit multiple

HDACs, which may lead to toxicity to healthy cells. Furthermore,

the dosage of HDACis and the interaction between drugs in

combination therapy must be carefully considered. Further

studies should focus on synthesizing more selective HDACis and

trying better combination therapies to reduce possible adverse
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effects. In addition to drug combination therapy strategies,

nanomaterial-based drug delivery systems also open up new

directions for improving the therapeutic efficacy of HCC. Based

on its advantages of good stability, good targeting, special

physicochemical properties and biological effects, NDDS can

effectively overcome the drug resistance mechanisms of some

tumors, and has achieved impressive results. How to ensure the

biosafety of the drug delivery systems, effectively control the cost,

and develop uniform nanomedicine application standards will be

the main challenges faced by NDDS in HCC treatment.
Author contributions

YL and YZ designed this study. CS, ML and YD drafted the

manuscript. CS performed drawing and organization of figures. YL,

YZ, CS, ML, YD, XJ, XH and FX revised the manuscript. All authors

read and approved the final manuscript. All authors contributed to

the article and approved the submitted version.
Funding

This work was funded by the National Natural Science

Foundation of China, No. 82003262; China Postdoctoral Science

Foundation, No. 2019TQ0221 and No. 2019M663517; Post-Doctor

Research Project, West China Hospital, Sichuan University, No.

2019HXBH059; Key R&D Program of Sichuan Provincial

Department of Science and Technology (Major Science and
Frontiers in Immunology 1677
Technology Project) 2022YFS0095; Sichuan University

postdoctoral interdisciplinary Innovation Fund.
Acknowledgments

The authors would like to gratefully acknowledge Prof.

Chunhai Fan (Shanghai Jiao Tong University), Prof. Nan

Chen and Assistant Prof. Min Yin (Shanghai Normal

University) for their instructive suggestions to refine the

manuscript. Figures 1, 2 were created with Biorender.com

(https://biorender.com/).
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
References
1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global
cancer statistics 2020: globocan estimates of incidence and mortality worldwide for 36
cancers in 185 countries. CA Cancer J Clin (2021) 71(3):209–49. doi: 10.3322/
caac.21660

2. Llovet JM, Kelley RK, Villanueva A, Singal AG, Pikarsky E, Roayaie S, et al.
Hepatocellular carcinoma. Nat Rev Dis Primers (2021) 7(1):6. doi: 10.1038/s41572-020-
00240-3

3. Forner A, Reig M, Bruix J. Hepatocellular carcinoma. Lancet (2018) 391
(10127):1301–14. doi: 10.1016/s0140-6736(18)30010-2

4. Wang ZJ, Liu WH, Shi JY, Chen N, Fan CH. Nanoscale delivery systems for
cancer immunotherapy. Mater Horiz (2018) 5(3):344–62. doi: 10.1039/c7mh00991g

5. Kennedy LB, Salama AKS. A review of cancer immunotherapy toxicity. CA
Cancer J Clin (2020) 70(2):86–104. doi: 10.3322/caac.21596

6. Leone V, Ali A, Weber A, Tschaharganeh DF, Heikenwalder M. Liver
inflammation and hepatobiliary cancers. Trends Cancer (2021) 7(7):606–23.
doi: 10.1016/j.trecan.2021.01.012

7. Sangro B, Sarobe P, Hervás-Stubbs S, Melero I. Advances in immunotherapy for
hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol (2021) 18(8):525–43.
doi: 10.1038/s41575-021-00438-0

8. Dermani FK, Samadi P, Rahmani G, Kohlan AK, Najafi R. Pd-1/Pd-L1 immune
checkpoint: potential target for cancer therapy. J Cell Physiol (2019) 234(2):1313–25.
doi: 10.1002/jcp.27172

9. Vanella V, Festino L, Vitale MG, Alfano B, Ascierto PA. Emerging pd-1/Pd-L1
antagonists for the treatment of malignant melanoma. Expert Opin Emerg Drugs (2021)
26(2):79–92. doi: 10.1080/14728214.2021.1901884

10. Wang J, Ye Y, Yu J, Kahkoska AR, Zhang X, Wang C, et al. Core-shell
microneedle gel for self-regulated insulin delivery. ACS Nano (2018) 12(3):2466–73.
doi: 10.1021/acsnano.7b08152
11. Bellmunt J, Powles T, Vogelzang NJ. A review on the evolution of pd-1/Pd-L1
immunotherapy for bladder cancer: the future is now. Cancer Treat Rev (2017) 54:58–
67. doi: 10.1016/j.ctrv.2017.01.007

12. Ansell SM, Lesokhin AM, Borrello I, Halwani A, Scott EC, Gutierrez M, et al.
Pd-1 blockade with nivolumab in relapsed or refractory hodgkin's lymphoma. N Engl J
Med (2015) 372(4):311–9. doi: 10.1056/NEJMoa1411087

13. Baker H. Pd-1 inhibition in advanced merkel-cell carcinoma. Lancet Oncol
(2016) 17(6):e225. doi: 10.1016/s1470-2045(16)30112-7

14. Havel JJ, Chowell D, Chan TA. The evolving landscape of biomarkers for
checkpoint inhibitor immunotherapy. Nat Rev Cancer (2019) 19(3):133–50.
doi: 10.1038/s41568-019-0116-x

15. Hato T, Goyal L, Greten TF, Duda DG, Zhu AX. Immune checkpoint blockade
in hepatocellular carcinoma: current progress and future directions. Hepatology (2014)
60(5):1776–82. doi: 10.1002/hep.27246

16. Trujillo JA, Sweis RF, Bao R, Luke JJ. T Cell-inflamed versus non-T cell-inflamed
tumors: a conceptual framework for cancer immunotherapy drug development and
combination therapy selection. Cancer Immunol Res (2018) 6(9):990–1000.
doi: 10.1158/2326-6066.Cir-18-0277

17. El-Khoueiry AB, Sangro B, Yau T, Crocenzi TS, Kudo M, Hsu C, et al.
Nivolumab in patients with advanced hepatocellular carcinoma (Checkmate 040): an
open-label, non-comparative, phase 1/2 dose escalation and expansion trial. Lancet
(2017) 389(10088):2492–502. doi: 10.1016/s0140-6736(17)31046-2

18. Zhu AX, Finn RS, Edeline J, Cattan S, Ogasawara S, Palmer D, et al.
Pembrolizumab in patients with advanced hepatocellular carcinoma previously
treated with sorafenib (Keynote-224): a non-randomised, open-label phase 2 trial.
Lancet Oncol (2018) 19(7):940–52. doi: 10.1016/s1470-2045(18)30351-6

19. Wang J, Li J, Tang G, Tian Y, Su S, Li Y. Clinical outcomes and influencing
factors of pd-1/Pd-L1 in hepatocellular carcinoma. Oncol Lett (2021) 21(4):279.
doi: 10.3892/ol.2021.12540
frontiersin.org

https://biorender.com/
https://doi.org/10.3322/caac.21660
https://doi.org/10.3322/caac.21660
https://doi.org/10.1038/s41572-020-00240-3
https://doi.org/10.1038/s41572-020-00240-3
https://doi.org/10.1016/s0140-6736(18)30010-2
https://doi.org/10.1039/c7mh00991g
https://doi.org/10.3322/caac.21596
https://doi.org/10.1016/j.trecan.2021.01.012
https://doi.org/10.1038/s41575-021-00438-0
https://doi.org/10.1002/jcp.27172
https://doi.org/10.1080/14728214.2021.1901884
https://doi.org/10.1021/acsnano.7b08152
https://doi.org/10.1016/j.ctrv.2017.01.007
https://doi.org/10.1056/NEJMoa1411087
https://doi.org/10.1016/s1470-2045(16)30112-7
https://doi.org/10.1038/s41568-019-0116-x
https://doi.org/10.1002/hep.27246
https://doi.org/10.1158/2326-6066.Cir-18-0277
https://doi.org/10.1016/s0140-6736(17)31046-2
https://doi.org/10.1016/s1470-2045(18)30351-6
https://doi.org/10.3892/ol.2021.12540
https://doi.org/10.3389/fimmu.2023.1170207
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Shen et al. 10.3389/fimmu.2023.1170207
20. Zongyi Y, Xiaowu L. Immunotherapy for hepatocellular carcinoma. Cancer Lett
(2020) 470:8–17. doi: 10.1016/j.canlet.2019.12.002

21. Tolsma TO, Hansen JC. Post-translational modifications and chromatin
dynamics. Essays Biochem (2019) 63(1):89–96. doi: 10.1042/ebc20180067

22. Neganova ME, Klochkov SG, Aleksandrova YR, Aliev G. Histone modifications
in epigenetic regulation of cancer: perspectives and achieved progress. Semin Cancer
Biol (2020) 83:452–71. doi: 10.1016/j.semcancer.2020.07.015

23. Bates SE. Epigenetic therapies for cancer. N Engl J Med (2020) 383(7):650–63.
doi: 10.1056/NEJMra1805035

24. Hauser AT, Robaa D, Jung M. Epigenetic small molecule modulators of histone
and DNA methylation. Curr Opin Chem Biol (2018) 45:73–85. doi: 10.1016/
j.cbpa.2018.03.003

25. Yang G-J, Wang W, Mok SWF, Wu C, Law BYK, Miao X-M, et al. Selective
inhibition of lysine-specific demethylase 5a (Kdm5a) using a Rhodium(Iii) complex for
triple-negative breast cancer therapy. Angew Chem Int Ed Engl (2018) 57(40):13091–5.
doi: 10.1002/anie.201807305

26. Yang G-J, Zhong H-J, Ko C-N, Wong S-Y, Vellaisamy K, Ye M, et al.
Identification of a Rhodium(Iii) complex as a Wee1 inhibitor against Tp53-mutated
triple-negative breast cancer cells. Chem Commun (Camb) (2018) 54(20):2463–6.
doi: 10.1039/c7cc09384e

27. Zhao C, Dong H, Xu Q, Zhang Y. Histone deacetylase (Hdac) inhibitors in
cancer: a patent review (2017-present). Expert Opin Ther Pat (2020) 30(4):263–74.
doi: 10.1080/13543776.2020.1725470

28. Poole RM. Belinostat: first global approval. Drugs (2014) 74(13):1543–54.
doi: 10.1007/s40265-014-0275-8

29. Eleutherakis-Papaiakovou E, Kanellias N, Kastritis E, Gavriatopoulou M, Terpos
E, Dimopoulos MA. Efficacy of panobinostat for the treatment of multiple myeloma. J
Oncol (2020) 2020:7131802. doi: 10.1155/2020/7131802

30. Eckschlager T, Plch J, Stiborova M, Hrabeta J. Histone deacetylase inhibitors as
anticancer drugs. Int J Mol Sci (2017) 18(7):1414. doi: 10.3390/ijms18071414

31. Zhou M, Yuan M, Zhang M, Lei C, Aras O, Zhang X, et al. Combining histone
deacetylase inhibitors (Hdacis) with other therapies for cancer therapy. Eur J Med
Chem (2021) 226:113825. doi: 10.1016/j.ejmech.2021.113825

32. Wang X, Waschke BC, Woolaver RA, Chen SMY, Chen Z, Wang JH. Hdac
inhibitors overcome immunotherapy resistance in b-cell lymphoma. Protein Cell
(2020) 11(7):472–82. doi: 10.1007/s13238-020-00694-x

33. Deng S, Hu Q, Zhang H, Yang F, Peng C, Huang C. Hdac3 inhibition
upregulates pd-L1 expression in b-cell lymphomas and augments the efficacy of anti-
Pd-L1 therapy.Mol Cancer Ther (2019) 18(5):900–8. doi: 10.1158/1535-7163.MCT-18-
1068

34. Grunewald CM, Schulz WA, Skowron MA, Hoffmann MJ, Niegisch G. Tumor
immunotherapy-the potential of epigenetic drugs to overcome resistance. Trans Cancer
Res (2018) 7(4):1151–60. doi: 10.21037/tcr.2018.06.24

35. Grumetti L, Lombardi R, Iannelli F, Pucci B, Avallone A, Di Gennaro E, et al.
Epigenetic approaches to overcome fluoropyrimidines resistance in solid tumors.
Cancers (Basel) (2022) 14(3):695. doi: 10.3390/cancers14030695

36. Luo Y, Yin M, Mu C, Hu X, Xie H, Li J, et al. Engineering female germline stem
cells with exocytotic polymer dots. Adv Mater (2023):e2210458. doi: 10.1002/
adma.202210458

37. Mitchell MJ, Billingsley MM, Haley RM, Wechsler ME, Peppas NA, Langer R.
Engineering precision nanoparticles for drug delivery. Nat Rev Drug Discov (2021) 20
(2):101–24. doi: 10.1038/s41573-020-0090-8

38. Ma P, Sun Y, Chen J, Li H, Zhu H, Gao X, et al. Enhanced anti-hepatocarcinoma
efficacy by Glut1 targeting and cellular microenvironment-responsive pamam-
camptothecin conjugate. Drug Deliv (2018) 25(1):153–65. doi: 10.1080/
10717544.2017.1419511

39. Wang M, Zhao J, Zhang L, Wei F, Lian Y, Wu Y, et al. Role of tumor
microenvironment in tumorigenesis. J Cancer (2017) 8(5):761–73. doi: 10.7150/
jca.17648

40. Jenne CN, Kubes P. Immune surveillance by the liver. Nat Immunol (2013) 14
(10):996–1006. doi: 10.1038/ni.2691

41. Ringelhan M, Pfister D, O'Connor T, Pikarsky E, Heikenwalder M. The
immunology of hepatocellular carcinoma. Nat Immunol (2018) 19(3):222–32.
doi: 10.1038/s41590-018-0044-z

42. Heymann F, Peusquens J, Ludwig-Portugall I, Kohlhepp M, Ergen C, Niemietz
P, et al. Liver inflammation abrogates immunological tolerance induced by kupffer cells.
Hepatology (2015) 62(1):279–91. doi: 10.1002/hep.27793

43. Hou J, Zhang H, Sun B, Karin M. The immunobiology of hepatocellular
carcinoma in humans and mice: basic concepts and therapeutic implications. J
Hepatol (2020) 72(1):167–82. doi: 10.1016/j.jhep.2019.08.014
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successful anticancer immunotherapy. Sci Transl Med (2018) 10(459):eaat7807.
doi: 10.1126/scitranslmed.aat7807

149. Li T, Zhang C, Hassan S, Liu X, Song F, Chen K, et al. Histone deacetylase 6 in
cancer. J Hematol Oncol (2018) 11(1):111. doi: 10.1186/s13045-018-0654-9
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Preoperative immunological
plasma markers TRAIL, CSF1 and
TIE2 predict survival after
resection for biliary tract cancer

Hannes Jansson1*, Martin Cornillet2, Dan Sun2, Iva Filipovic2,
Christian Sturesson1, Colm J. O’Rourke3, Jesper B. Andersen3,
Niklas K. Björkström2† and Ernesto Sparrelid1†

1Division of Surgery and Oncology, Department of Clinical Science, Intervention and Technology,
Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden, 2Center for Infectious
Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital,
Stockholm, Sweden, 3Biotech Research and Innovation Centre (BRIC), Department of Health and
Medical Sciences, University of Copenhagen, Copenhagen, Denmark
Introduction: Systemic inflammatory markers have been validated as prognostic

factors for patients with biliary tract cancer (BTC). The aim of this study was to

evaluate specific immunologic prognostic markers and immune responses

by analyzing preoperative plasma samples from a large prospectively

collected biobank.

Methods: Expression of 92 proteins representing adaptive and innate immune

responses was investigated in plasma from 102 patients undergoing resection for

BTC 2009-2017 (perihilar cholangiocarcinoma n=46, intrahepatic

cholangiocarcinoma n=27, gallbladder cancer n=29), by means of a high-

throughput multiplexed immunoassay. Association with overall survival was

analyzed by Cox regression, with internal validation and calibration. Tumor

tissue bulk and single-cell gene expression of identified markers and

receptors/ligands was analyzed in external cohorts.

Results: Three preoperative plasmamarkers were independently associated with

survival: TRAIL, TIE2 and CSF1, with hazard ratios (95% confidence intervals) 0.30

(0.16-0.56), 2.78 (1.20-6.48) and 4.02 (1.40-11.59) respectively. The

discrimination of a preoperative prognostic model with the three plasma

markers was assessed with concordance-index 0.70, while the concordance-

index of a postoperative model with histopathological staging was 0.66.

Accounting for subgroup differences, prognostic factors were assessed for

each type of BTC. TRAIL and CSF1 were prognostic factors in intrahepatic

cholangiocarcinoma. In independent cohorts, TRAIL-receptor expression was

higher in tumor tissue and seen in malignant cells, with TRAIL and CSF1

expressed by intra- and peritumoral immune cells. Intratumoral TRAIL-activity

was decreased compared to peritumoral immune cells, while CSF1-activity was

increased. The highest CSF1 activity was seen in intratumoral macrophages,

while the highest TRAIL-activity was seen in peritumoral T-cells.
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Discussion: In conclusion, three preoperative immunological plasma markers

were prognostic for survival after surgery for BTC, providing good discrimination,

even compared to postoperative pathology. TRAIL and CSF1, prognostic factors

in intrahepatic cholangiocarcinoma, showed marked differences in expression

and activity between intra- and peritumoral immune cells.
KEYWORDS

cholangiocarcinoma (CCA), gallbladder cancer (GBC), prognostic biomarkers, tumor
associated macrophage (TAM), biliary tract cancer (BTC)
1 Introduction

Patients with biliary tract cancer (cholangiocarcinoma and

gallbladder cancer) have a high risk of tumor recurrence after

curative intent surgery, with poor long-term survival outcomes. A

majority of patients are diagnosed with cancer recurrence within

five years after surgery for cholangiocarcinoma or oncological

resection for gallbladder cancer (1–4), and a median overall

survival of approximately two to four years has been reported in

reviews, meta-analyses and multicenter cohorts (2, 5–7).

Established prognostic factors such as histopathological tumor

extension, tumor grade and lymph node metastasis (2, 8, 9) are

only available after tumor resection, impeding a preoperative risk

stratification. Prognostic value of a systemic inflammatory response

(as assessed by markers such as C-reactive protein [CRP], albumin

or white cell counts) for overall survival has been indicated in

several types of malignancies (e.g. colorectal cancer, pancreatic

cancer, breast cancer and prostate cancer) (10), including biliary

tract cancer (11). Previously, general inflammatory markers in

plasma (CRP, albumin) were validated as independent negative

prognostic factors for overall survival for patients with resectable

biliary tract cancer (BTC) (12). The aim of this study was to identify

new candidate preoperative prognostic markers and to further

characterize the immune response in BTC.
2 Materials and methods

2.1 Study design

Patients undergoing primary resection for perihilar

cholangiocarcinoma (pCCA), intrahepatic cholangiocarcinoma

(iCCA) or gallbladder cancer (GBC) at Karolinska University

Hospital, a tertiary referral center (Stockholm, Sweden), in the

period January 2009 to January 2017 were assessed for inclusion in

the development and internal validation cohort of this study.

Patients undergoing resection for suspected BTC with benign

tumors on postoperative histopathology, as well as patients with

confirmed BTC found unresectable at surgical exploration, were

also included as controls. The study was approved by the Regional

Ethical Review Board of Stockholm and conducted in accordance
0283
with Good Clinical Practice and the Declaration of Helsinki. All

patients included in the biobank provided written informed

consent. The study was reported in accordance with the

REMARK guidelines for prognostic studies (13), with the

REMARK checklist presented in Supplementary Table 1. Analysis

of tumor tissue expression of candidate prognostic markers and

corresponding receptors/ligands was performed with gene

expression data from independent and public cohorts of BTC

patients, including patients from different geographic regions.
2.2 Sample size calculation

With two-sided p<0.05 and a power of 80%, a minimal sample

size of n=88 was estimated as necessary to identify a prognostic

marker with a hazard ratio of 2.0, assuming a median follow-up of 4

years, a yearly censoring ratio of 10 percent and a median overall

survival of 24 months for unexposed patients (12, 14).
2.3 Patient inclusion

One-hundred and seven patients operated with primary

resection for BTC were selected for inclusion in the development

and internal validation cohort: all resected pCCA patients with

plasma samples available in biobank (resected confirmed pCCA

n=47), and random samples from all patients operated for iCCA

(resected confirmed iCCA n=28) and GBC (resected confirmed

GBC n=32). Furthermore, 29 patients with confirmed BTC found

unresectable on exploration and 32 patients resected on suspicion of

BTC with a benign lesion on final postoperative histopathology

were included. Two patients not operated with primary resection

(one case of re-resection and one patient undergoing

transplantation) were excluded from analysis, as well as seven

patients where samples did not pass internal quality control for

the proximity extension assay (resectable BTC n=5, unresectable

BTC n=2). Finally, 102 resected patients with confirmed BTC, 27

patients with confirmed BTC found unresectable and 32 patients

resected with a benign lesion on final postoperative histopathology

were included for analysis. The study flow chart for BTC patients is

presented in Figure 1.
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2.4 Sample preparation and multiplex
immunoassay analysis

EDTA plasma samples were collected preoperatively at the day

of surgery, centrifuged, aliquoted, frozen and stored at -80° Celsius.

For Proximity Extension Assay-analysis (PEA), plasma samples

were thawed on ice, and 20 microliters transferred to 96 well plates.

PEA employs paired oligonucleotide coupled antibodies for

detection of each analyte, with relative quantification of protein

expression by polymerase chain reaction (PCR) (15). The full panel

of analytes for the PEA (Immuno-Oncology I) is presented in

Supplementary Table 2. Internal quality control of the

immunoassay, extension and detection steps in each sample was

performed with assay-specific protein-, antibody- and double

stranded oligonucleotide controls respectively, while interplate

control was performed with a set of 92 oligonucleotide duplexes.

Relative quantification for each analyte by PEA was expressed as

Normalized Protein Expression units (NPX) in Log2 scale, after

normalization of PCR quantification cycle values for intra- and

interassay variation using the detection and interplate controls. PEA

analysis was performed at an institutional core facility (SciLifeLab,

Clinical Biomarker Facility, Uppsala University, Uppsala, Sweden)

blinded to all outcome data. The PEA has been validated for

preserved analytical precision with hyperlipidemia and

hyperbilirubinemia corresponding to 8-10 times upper reference

values (16). No patient in the development and internal validation

cohort underwent surgery with a bilirubin >190 micromoles/litre.

The Immuno-Oncology I-panel has also been validated for

interference of hemolysate in plasma, allowing up to 5-10%

hemolysis of a sample for reliable detection of 84 of 92 proteins,

while eight proteins in the panel were identified as more sensitive

for interference by hemolysate (Adenosine deaminase, Arginase-1,

Caspase-8, C-X-C-motif chemokine 11, Galectin-9, Granzyme-B,

Granzyme-H and Interleukin-18) (16).
Frontiers in Oncology 0384
2.5 Outcome variables and
clinicopathological data

The primary outcome was overall survival calculated from the

date of surgery. Clinical data were retrospectively collected from

quality registries and the electronic health record. Last follow-up

was 11 Aug 2019. Demographic and clinicopathological variables

collected were: age, sex, preoperative physical status classification

according to the American Society of Anesthesiologists, diagnosis of

primary sclerosing cholangitis, cirrhosis or diabetes, tumor

extension stage, lymph node metastasis (N1), lymphovascular-

and perineural invasion, microscopically tumor-positive resection

margin (R1) and tumor differentiation (grade). Histopathological

staging was reported according to the 7th edition of the AJCC/TNM

guidelines and tumor grade according to the College of American

Pathologists (17, 18).
2.6 Gene expression analyses

The following gene expression datasets were analyzed:

GSE107943 (19), GSE138709 (20), GSE89749 (21), GSE26566

(22) (Gene Expression Omnibus), EGAD00001001693 (23)

( E u r o p e a n Genome -Ph enome A r c h i v e , s t u d y ID :

EGAS00001000950), E-MTAB-6389 (24) (ArrayExpress),

OEP001105 (25) (Biosino), phs001404.v1.p1 (26) (dbGaP) and

HRA000863 (27) (Genome Sequence Archive). Differential

expression was analyzed using limma 3.50.0 (28) for microarray

data and DESeq2 1.34.0 (29) for sequencing data. For single-cell

RNA-sequencing data from HRA000863, raw BAM files were

converted back to FASTQ format using the CellRanger 6.1.2 (30)

bamtofastq command and read counts per gene per cell were

obtained by CellRanger count (30). For processed expression data

from GSE138709 and HRA000863, analysis was performed in R

4.1.1 with the Seurat 4.0.4 package (31). Data were normalized and

scaled after filtering out cells with gene counts below 500 or greater

than 3 000, as well as cells with a percentage of mitochondrial genes

above 5. Data from different samples were then integrated by

Harmony (32). For HRA000863 (27) and GES138709 (20)

datasets, a total of 239 760 and 28 261 cells were clustered by

principal component analysis and visualized with uniform manifold

approximation and projection (UMAP), respectively. Clusters were

annotated by mapping to references for immune cells according to

CITE-seq data (31), annotation of malignant cells according to copy

number variation (CNV) scores (with a cut off score of 3 for

malignancy) calculated using InferCNV 1.8.1 (33), and by using

cell markers for hepatocytes (not present in HRA000863),

cholangiocytes, fibroblasts and endothelial cells (20). Differential

expression of biomarkers between different cell types or between

cells from tumor and periphery were tested using FindMarkers()

with logfc.threshold and min.pct set to 0. Modelling of cytokine

activities from single-cell transcriptome profiles were performed

using the Cytokine Signaling Analyzer (CytoSig) v0.1 (34).

Specifically, counts per gene were first converted to transcripts

per million (TPM) and log2-transformed, and expression values
FIGURE 1

Study flow chart for the inclusion of patients with BTC. BTC, biliary
tract cancer; GBC, galibladder cancer; iCCA, intrahepatic
cholangiocarcinoma; pCCA, perihilar cholangiocarcinoma.
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across all cells were mean centralized. Permutation tests were used

to compare activity Z-scores obtained from Cytosig between tumor

and periphery samples. That is, after obtaining the mean of Z-scores

of a particular cell type for either tumor or periphery samples; that

mean was compared to the mean of same number of cells randomly

chosen (with replacement) from that cell type regardless of sample

location. This process was repeated 10 000 times, and an empirical

p-value was calculated as [10 000 - NMean_real >Mean_permutation]/

10 000.
2.7 Statistical analysis

Statistical analyses were performed in R (R 3.5.3 and 4.1.1, R

Foundation for Statistical Computing; RStudio 1.1.463, 1.4.1717

and 2021.09.0, RStudio Inc, Boston, USA), SPSS Statistics v25 and

v28 (IBM, New York, USA) and Olink Insights Stat Analysis (Olink

Proteomics, Uppsala, Sweden). Inclusion of iCCA and GBC patients

was performed with random sampling from all consecutively

operated iCCA and GBC patients respectively in SPSS.

Imputation of missing data was used for independent variables

included in regression analysis. For proteomics data, values below

the limit of detection were imputed as left-censored data missing

not at random by a quantile regression method (35). For other

variables, multivariate imputation was performed (36).

Demographic and clinicopathological characteristics at baseline

were reported with unimputed data. Correlations among variables

were assessed with Spearman’s rank correlation, and visualized with

heatmaps after hierarchical clustering according to the degree of

correlation (37). For Cox regression analysis, the proportionality of

hazards assumption was tested with scaled Schoenfeld residuals

(38). To account for multiple comparisons in evaluation

of univariable prognostic value, the Bonferroni-Holm corrected

p-values were calculated and variables with an adjusted
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univariable p-value <0.20 were included in multivariable models.

For variable selection in Cox regression modelling, backward

elimination was applied with stopping criterion unadjusted

p=0.157, equivalent to the Akaike information criterion (39).

Differential protein expression between patient subgroups was

analyzed by independent t-test, with corrected p-values according

to the Benjamini-Hochberg method and illustrated with volcano

plots. Additionally, non-parametric analysis was performed by

Mann-Whitney U test.

The discriminatory ability of multivariable prognostic models

was assessed with concordance indices (c-index) where a c-index of

0.50 would indicate no predictive ability and a c-index of 1.00 would

indicate perfect predictive ability (40). The calibration of

predictions for specified time points was assessed with calibration

curves (40). To account for overfitting, internal validation of

multivariable models by bootstrap resampling was performed

(resamples n=600) (40). For survival analysis with Kaplan-Meier

curves and Cox regression, SPSS and in R the survival and rms

packages were used (38, 40). Survival curves were compared using

the log-rank test. For survival analyses with gene expression data,

patients were stratified into groups according to marker expression

above/below the median. Significance tests were all two-sided and

p-values <0.05 were considered statistically significant.
3 Results

Baseline characteristics and clinicopathological variables for the

102 included patients resected for BTC and 27 patients with

unresectable BTC are presented in Table 1. There were 75 deaths

during a median follow-up of 67 months (95% CI 55-79 months)

among the 102 resected BTC patients, while all 27 patients found

unresectable at exploration were followed to death. No patients

were censored before 24 months after surgery. Median overall
TABLE 1 Demographic and clinicopathological characteristics of BTC patients.

Variable BTC resected
n=102

Missing data BTC
resected

BTC unresectable
n=27

Missing data BTC
unresectable

p-value

Age Y, md (IQR) 66 (54-71) – 65 (60-70) – 0.81$

Sex F, n (%) 52 (51) – 14 (52) – 0.94

BMI, md (IQR) 25 (23-29) – 24 (23-30) – 0.94$

Diabetes, n (%) 13 (13) – 5 (19) – 0.53&

Cirrhosis, n (%) 5 (5) – 2 (7) – 0.64&

ASA≥3, n (%) 30 (29) – 8 (30) – 0.98

GPS≥1, n (%) 55 (54) 17 20 (74) 6 0.007*

PSC, n (%) 12 (12) – 1 (4) – 0.30&

PVE, n (%) 18 (18) – 3 (11) – 0.56&

BTC subgroup: 0.68

pCCA, n (%) 46 (45) – 13 (48) –

(Continued)
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survival was 20 months (95% CI 16-24 months) for all BTC

patients, 23 months for resected patients (95% CI 17-29 months)

and 7 months for unresectable patients (95% CI 0-14 months).
3.1 Analysis of plasma protein expression

Of the 92 proteins analyzed by PEA, 14 proteins were not

detected in >75% of samples. A list of the 78 proteins included for

further analysis is presented in Supplementary Table 3. No proteins

were differentially expressed between resected and unresectable

BTC patients (Supplementary Table 4).

To illustrate correlation of expression and identify non-

redundant candidate markers, all proteins analyzed in BTC

patients were grouped by hierarchical clustering, according to the

degree of correlation. Two main clusters were formed (Figure 2;

Supplementary Table 5), with the larger cluster subdivided into

three subgroups. The smaller main cluster (cluster 1) contained

three proteins related to the external induction of apoptosis,

together with VEGFR2. The larger main cluster (cluster 2)

contained proteins including effector molecules, chemokines,

mitogens and other regulators of immune cell proliferation

and differentiation.

The correlation of the plasma proteins with other

clinicopathological variables and established prognostic factors

was also evaluated and is illustrated in Supplementary Figure 1.

Demographic and clinicopathological variables (age, sex, tumor

stage, lymph node metastasis, perineural invasion, lympho-vascular

invasion, tumor grade) were not internally strongly correlated, with

the strongest correlation found between tumor stage and tumor
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grade (r = 0.37) and between lympho-vascular and perineural

invasion (r = 0.27). The strongest correlation between

demographic/clinicopathological variables and plasma proteins

analyzed by PEA was seen between age and Pleiotrophin (PTN, r

= 0.59).
3.2 Uni- and multivariable survival analysis

Association of the 78 proteins with overall survival after

resection surgery was investigated by univariable Cox regression

analysis (Supplementary Table 6). Six proteins were found to be

associated to overall survival with univariable adjusted p-value

<0.20 (unadjusted p-value <0.005) and are presented in Table 2

and with Kaplan-Meier curves in Supplementary Figure 2.

The protein with a positive association to survival was located in

cluster 1 (TRAIL/TNFSF10, death receptor ligand, one of the

effector mechanisms of macrophages and NK-cells), and five

proteins with a negative association were located in two

subgroups of cluster 2 (TNFSF14, an effector and regulator of T-

cell activity; CSF1/M-CSF, a regulator of monocyte proliferation,

differentiation and function; IL6, inducer of acute phase response

and regulator of lymphocyte and monocyte differentiation; IL8,

chemotactic for neutrophils, basophils and T-cells; and TIE2/TEK,

angiopoietin receptor and a regulator of angiogenesis). The six

proteins associated with overall survival were included in

multivariable analysis (events per variable 75/6 = 12.5) with three

proteins selected by backward elimination (Table 2), representing

separate clusters/subgroups in the hierarchical clustering analysis

(TRAIL: cluster 1, CSF and TIE2: separate subgroups cluster 2).
TABLE 1 Continued

Variable BTC resected
n=102

Missing data BTC
resected

BTC unresectable
n=27

Missing data BTC
unresectable

p-value

iCCA, n (%) 27 (27) – 5 (19) –

GBC, n (%) 29 (28) – 9 (33) –

Major resection, n (%)# 73 (72) –

CD≥3, n (%)# 47 (46) –

Postoperative mortality,
n (%)#

10 (10) –

T≥3, n (%)# 45 (44) 1

N1, n (%)# 49 (48) 12

Pn1, n (%)# 73 (72) 7

LV1, n (%)# 77 (75) 7

R1, n (%)# 65 (64) 2

Grade≥2, n (%)# 79 (77) 9
ASA, American Society of Anesthesiologists; BMI, body mass index; BTC, biliary tract cancer; CD, Clavien-Dindo complication grade; F, female; GBC, gallbladder cancer; GPS, Glasgow
prognostic score; iCCA, intrahepatic cholangiocarcinoma; IQR, interquartile range; LV1, lymphovascular invasion; md, median; N1, lymph node metastasis; pCCA, perihilar
cholangiocarcinoma; Pn1, perineural invasion; Postoperative mortality, in-hospital postoperative mortality (not limited to 90 days). PSC, primary sclerosing cholangitis; PVE, portal vein
embolization; R1, microscopically tumor positive resection margin; T, tumor extension; Y, years.
#: Reported for resected patients; $: Mann-Whitney U; &: Fisher Exact test; * p<0.05.
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3.3 Discrimination of pre- and
postoperative prognostic models

The discriminatory ability of the three preoperative candidate

markers TRAIL, CSF1 and TIE2 for overall survival after resection

was assessed with a c-index of 0.71 for the three markers combined.

C-indices for the separate markers were 0.61, 0.65 and 0.63 for

TRAIL, CSF1 and TIE2 respectively. The prognostic ability of

postoperative pathology (T-stage, N-status, perineural invasion,

lympho-vascular invasion, tumor grade, resection margin) was

assessed with a c-index of 0.70. Adding the three preoperative

candidate markers to a combined model with postoperative

pathology increased the c-index to 0.74. Internal validation of the
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prognostic value was performed with bootstrap correction, where the

corrected c-index for the three preoperative candidate markers was

0.70, while the corrected c-index for postoperative pathology was

0.66. The corrected c-index for a model with the three preoperative

candidate markers added to postoperative pathology was 0.72.

A validated preoperative prognostic factor, Glasgow prognostic

score (GPS, calculated from albumin and CRP concentrations:

CRP>10 mg/L or albumin<35 g/L = 1 point each), was analyzed

with a corrected c-index of 0.65. In the analysis of correlation of

plasma protein expression and other clinicopathological/prognostic

variables, there was a moderate correlation between GPS and CSF1

(r=0.49) and between GPS and TIE2 (r=0.42), where GPS and TIE2

grouped together in hierarchical clustering (Supplementary Figure 1).
FIGURE 2

Correlation matrix for the expression of 78 proteins in plasma of patients with BTC, hierarchically clustered. BTC, biliary tract cancer; rs: Spearman's
rank correlation coefficient.
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A preoperative prognostic model including the three candidate

markers together with the GPS was assessed with a c-index of 0.71,

and a bootstrap corrected c-index of 0.69. A postoperative

prognostic model including pathological variables together with

GPS was assessed with c-index 0.75, and corrected c-index of 0.71.

Multivariable models including both pre- and postoperative factors

are presented in Supplementary Table 7.
3.4 Calibration of preoperative
prognostic markers

The calibration of a preoperative prognostic model with the

three candidate markers TRAIL, CSF1 and TIE2 was assessed for

one-, three- and five-year overall survival, as illustrated with

calibration plots in Supplementary Figure 3 (bootstrap corrected

preoperative models indicated by the blue lines, uncorrected models

indicated by the black lines). Actual survival at one year was lower

than predicted by the preoperative model (Supplementary

Figure 3A), while at three years and five years the model

underestimated survival predicted below 60% and 40%

respectively (Supplementary Figures 3B, C).
3.5 Subgroup analyses and internal
validation of disease specific
prognostic models

The prognostic value of the three identified plasma markers

within each BTC subgroup (iCCA, pCCA and GBC) was further

analyzed (Supplementary Table 8). For the iCCA group, TRAIL and

CSF1 retained prognostic value while TIE2 (p=0.52) did not. For the

pCCA group, TRAIL was a significant prognostic factor while TIE2

(p=0.05) and CSF1 (p=0.17) were not. For gallbladder cancer, CSF1

and TIE2 but not TRAIL (p=0.15), remained prognostic.
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The prognostic performance of three disease-specific

preoperative prognostic models including GPS was evaluated with

bootstrap correction to account for overfitting. The corrected c-

indices for models specific for iCCA (TRAIL, CSF1, GPS), pCCA

(TRAIL, TIE2, GPS) and GBC (CSF1, TIE2) were 0.78 (uncorrected

0.80), 0.65 (uncorrected 0.68) and 0.74 (uncorrected 0.75)

respectively. A cholangiocarcinoma-specific (iCCA + pCCA)

prognostic model with only TRAIL and GPS had a c-index of

0.69 (uncorrected 0.69).
3.6 Comparison of plasma protein
expression in BTC and benign controls

The differential expression of plasma proteins between BTC

patients and patients with benign histopathology after resection for

suspected BTC was analyzed, with expression levels of 25 proteins

significantly higher and with no proteins showing lower expression

in patients with BTC (Supplementary Table 9; Supplementary

Figure 4). CSF1 and TIE2, but not TRAIL, was higher in patients

with malignancy. Excluding TRAIL from the preoperative

prognostic model for patients with BTC did not improve

discrimination (c-index 0.65, bootstrap corrected c-index 0.64).

The five proteins found with higher levels of expression in

malignancy and with the most statistically significant difference

compared to patients with benign lesions were IL6, PGF, CSF1,

MMP12 and HGF, with a significant difference also on non-

parametric testing (PGF, CSF1, MMP12: p<0.001; IL6, HGF:

p=0.004). There was a considerable overlap in expression levels

for these proteins between the benign group and the BTC group

(Supplementary Figure 5A). CSF1, PGF and MMP12 had the

highest area under the receiver operating curve values for

predicting malignancy (all: AUROC=0.69), with CSF1 and PGF

showing slightly better performance according to precision-recall

curve analysis (Supplementary Figure 5B).
TABLE 2 Uni- and multivariable Cox regression analyses (resected BTC n=102).

Variable Univariable HR
(95% CI)

p-value unadjusted
(adjusted)

Multivariable HR
(95% CI)

p-value all Multivariable HR (95% CI)
selected

p-value selected

TRAIL 0.35
(0.18-0.67)

<0.001*
(0.096)§

0.29
(0.14-0.59)

<0.001* 0.30
(0.16-0.56)

<0.001*

TNFSF14 1.84
(1.33-2.54)

<0.001*
(0.015)*

1.13
(0.71-1.78)

0.61

CSF1 6.52
(2.42-17.54)

<0.001*
(0.013)*

4.04
(1.03-15.81)

0.045* 4.02
(1.40-11.59)

0.010*

IL6 1.31
(1.10-1.56)

0.003*
(0.15)§

0.92
(0.72-1.20)

0.55

IL8 1.34
(1.13-1.59)

<0.001*
(0.056)§

1.00
(0.77-1.30)

0.98

TIE2 4.33
(1.97-9.51)

<0.001*
(0.016)*

2.82
(1.09-7.32)

0.033* 2.78
(1.20-6.48)

0.018*
BTC, biliary tract cancer; CSF1, colony-stimulating factor 1; IL6, interleukin 6; IL8, interleukin 8; CI, confidence interval; HR, hazard ratio; TIE2, tyrosine kinase with immunoglobulin-like and
EGF-like domains 2; TRAIL, TNF-related apoptosis-inducing ligand.
* p<0.05; § p<0.20.
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3.7 Analysis of tumor tissue-specific
expression of plasma markers and
receptors/ligands

The tumor tissue-specific expression of the three identified

plasma markers and their respective receptors (CSF1: CSF1-R;

TRAIL: TRAIL-R1/TNFRSF10A, TRAIL-R2/TNFRSF10B, TRAIL-

R3/TNFRSF10C and TRAIL-R4/TNFRSF10D) or ligands (TIE2/

TEK: ANGPT1, ANGPT2 and ANGPT4) was then analyzed with

gene expression data from two external surgical CCA cohorts with

samples included from both tumor and normal surrounding liver:

GSE107943 published by Ahn et al. (19) (Korea, sequencing, n=30,

iCCA, hepatitis B/C 13%, recurrence and survival data with median

follow-up 30.5 months) and GSE26566 published by Andersen et al.

(22) (USA, Belgium and Australia, microarray, matched samples

n=58, iCCA and pCCA) (Figure 3).

Seven out of the 11 genes analyzed were differentially expressed

in tumor compared to surrounding liver in the GSE107943 dataset,

and expression levels of three of the same seven proteins were

likewise higher (TRAIL-R1/TNFRSF10A, ANGPT2) or lower (TIE2/

TEK) in tumors in the GSE26566 dataset (Figure 3).
3.8 Cell type-specific expression of
markers and receptors/ligands in
tumor tissue

By interrogation of single-cell gene expression data for iCCA in

two datasets, published by Song et al. (27) (China, tumor samples

n=14 [from patients n=14]/surrounding non-tumor liver samples

n=14, hepatitis B 29%) and Zhang et al. (20) (China, tumor samples

n=5 [from patients n=4]/surrounding non-tumor liver samples

n=3, hepatitis B 50%), the cell type-specific expression of markers

and their receptors or ligands was examined (Figure 4;

Supplementary Tables 10–14).
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In both datasets, expression of TRAIL and TRAIL-R1/

TNFRSF10A was higher in malignant cells, compared to the

average of other cell types in tumor and surrounding liver tissue

(Supplementary Tables 11, 12). TRAIL was similarly highly expressed

by monocytes, T-cells, cholangiocytes and endothelial cells

(Figure 4A; Supplementary Table 10). Expression of TRAIL-R2/

TNFRSF10B and TRAIL-R4/TNFRSF10D was significantly higher in

endothelial cells compared to the average of other cell types

(Figure 4A; Supplementary Tables 10–12). TRAIL-R2/TNFRSF10B

was expressed by a large fraction of the malignant cells (Song et al:

26.3%, Zhang et al: 26.1%), and at higher average levels than the other

TRAIL receptors (Supplementary Tables 10–12).

TIE2/TEK was mainly expressed by endothelial cells and TIE2/

TEK ligands ANGPT1 and ANGPT2 were mainly expressed by

fibroblasts (Supplementary Tables 10–12). CSF1 was most highly

expressed by T-cells, NK-cells, fibroblasts and endothelial cells.

When comparing intratumoral immune cells to the same immune

cell type in surrounding liver, TRAIL expression was higher in

intratumoral CD8+ T-cells, but significantly lower in intratumoral

macrophages compared to macrophages outside of the tumor

(Figure 5; Supplementary Tables 13, 14). Expression of CSF1 was

significantly higher in intratumoral CD8+/CD4+ T-cells and NK-

cells compared with T-cells and NK-cells in surrounding liver.

Comparing the cytokine activities of intra- and peritumoral

immune cells in the larger Song et al. dataset, CSF1 activity was

generally increased intratumorally, while TRAIL activity was

generally decreased (Figure 4B). The highest immune cell CSF1

activity was seen in intratumoral macrophages, while the highest

TRAIL activity was seen in peritumoral T-cells. The TRAIL activity

in tumor cells and intratumoral cholangiocytes was higher

compared to peritumoral cholangiocytes.

Similarly, in the Zhang et al. dataset, the highest immune cell

CSF1 activity was seen in intratumoral macrophages, while the

highest TRAIL activity in immune cells was seen in peritumoral T-

cells (Supplementary Figure 6). In both single-cell datasets, the
FIGURE 3

Differential gene expression of markers and ligands/receptors in CCA tissue, tumor tissue (red) and surrounding liver (blue). NS, not significant;
* adjusted p<0.05; ** adjusted p<0.01; *** adjusted p<0.001.
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highest non-immune cell tumor stroma TRAIL activity was seen in

endothelial cells.
3.9 Prognostic influence of tumor
tissue expression of markers and
receptors/ligands

The prognostic influence of tumor tissue expression of the

identified markers and their receptors or ligands was analyzed
Frontiers in Oncology 0990
using recurrence and survival data available for the GSE107943

dataset (19) (Figure 6, disease-free survival 6A, overall survival 6B;

Supplementary Figure 7). Expression levels of three receptors

(CSF1-R p=0.02, TRAIL-R2/TNRFRSF10B p=0.02, TRAIL-R4/

TNFRSF10D p=0.02) were associated to disease-free survival,

while no significant association was seen to overall survival for

these genes (CSF1-R p=0.19, TRAIL-R2/TNRFRSF10B p=0.52,

TRAIL-R4/TNFRSF10D p=0.08). Survival analyses according to

expression of the remaining receptors and ligands are presented

in Supplementary Figure 7 (disease-free survival 7A, overall survival
A

B

FIGURE 4

(A, B) Single-cell gene expression of markers and receptors/ligands in iCCA (Song et al. (27)), clusters by cell type (right top panel B). (B) Cytokine
activity intratumorally vs. peritumorally. Activity Z-scores trimmed to [-3, 3] to facilitate visualization. P-values in balloon plots calculated by
permutation tests (see Patients and methods).
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7B). The disease-free and overall survival curves stratified according

to expression of TRAIL-R1/TNFRSF10A did not reach statistical

significance (disease-free survival p=0.08, overall survival 0.07).

While CSF1-R was negatively associated to disease-free survival,

expression of TRAIL-R2/TNFRSF10B and TRAIL-R4/TNFRSF10D

was positively associated to disease-free survival.

For further investigation of BTC tumor tissue expression and

the possible prognostic influence in a wider setting, gene expression

data from six additional cohorts was interrogated. Three datasets

represented diverse iCCA cohorts, from Japan (23) (Nakamura

et al, RNA sequencing, n=112, hepatitis B 5%, hepatitis C 3%),

France (24) (Job et al, n=72, microarray, hepatitis B 5%, hepatitis C

3%) and China (25) (Dong et al, RNA sequencing, n=224, alpha-

fetoprotein [AFP] ≥21ng/ml 10%, hepatitis B 27%). Two datasets

represented multinational mixed cholangiocarcinoma cohorts:
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Jusakul et al. (21) (Singapore, Thailand, South Korea, Romania,

France, Brazil; microarray, iCCA/pCCA/distal CCA/extrahepatic

CCA, n=115, fluke positive 43%, hepatitis B 8%, hepatitis C 3%) and

Andersen et al. (22) (Australia, Belgium, France, Germany, Italy,

USA, microarray, iCCA/pCCA, expanded cohort n=178, hepatitis C

4%). One dataset, from Nepal et al. (26), represented a

multinational GBC cohort (China, Chile; RNA sequencing, n=44,

hepatitis B 4%). While the indicated positive prognostic value for

disease-free survival of TRAIL-R expression in iCCA tumor tissue in

the Ahn et al. cohort was supported by overall survival data from

the Job et al. cohort (TRAIL-R1/TNFSFR10A p=0.03, TRAIL-R2/

TNFSFR10B p=0.16, TRAIL-R4/TNFSFR10D p=0.006), such an

association was not seen in the cohorts from Nakamura et al. or

Dong et al. (Supplementary Figure 8). In the later cohort instead, a

negative association to overall survival was seen for TRAIL-R1/
A

B

FIGURE 5

Differences in gene expression of markers and receptors/ligands between intratumoral and peritumoral immune cells in iCCA. (A) Song et al. (27)
(B) Zhang et al. (20).
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TNFSFR10A (p=0.005) and TRAIL-R4/TNFSFR10D (p=0.04). A

negative prognostic value was seen for tumor tissue CSF1

expression only in the cohort from Nakamura et al. (p=0.047).

No other associations to survival were seen.
4 Discussion

Long term survival outcomes for patients undergoing resection

for BTC remain poor, with a median overall survival of

approximately two to four years. While multimodal therapy is

under current development, prognostic factors to allow

preoperative risk stratification and development of better tailored

treatments remain ill-defined.

In a previous study, general inflammatory markers were

validated as preoperative prognostic factors (12). The present

analysis, of samples from a unique prospectively collected

biobank, was therefore aimed at identifying more specific

immunologic prognostic markers and to better characterize

immune responses in BTC.
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By means of a high-throughput multiplexed immunoassay three

candidate preoperative plasma markers were identified, with a

combined prognostic value for survival similar to that of

established postoperative pathology. TRAIL/TNFSF10 was

identified as a positive prognostic factor in both iCCA and pCCA.

CSF1/M-CSF was identified as a negative prognostic factor in iCCA

and GBC. TIE2/TEK was identified as a significant negative

prognostic factor in GBC.

To clarify the tumor-specific expression of the identified

prognostic markers and receptors or ligands, analyses were

performed across four separate datasets investigating BTC tissues

and surrounding liver by means of microarray, next-generation

sequencing and single-cell sequencing. Over all three platforms and

in demographically diverse cohorts, higher TRAIL-R1/TNFSFR10A

was seen in tumor tissue/cholangiocarcinoma cells. With single-cell

analysis of iCCA tissues from two separate cohorts, higher TRAIL-

R1/TNFRSF10A expression was seen specifically in malignant cells.

The ligand TRAIL/TNFSF10 was expressed by intratumoral T-cells,

B-cells , NK-cells , monocytes, malignant cells , normal

cholangiocytes and endothelial cells. The expression of TRAIL/

TNFSF10 was higher in intratumoral CD8+ T-cells as compared to
A

B

FIGURE 6

Prognostic influence of iCCA tumor tissue gene expression of markers and receptors/ligands, for disease-free survival (A) and overall survival
(B) (Ahn et al. (19)).
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CD8+ T-cells in surrounding tissue, but decreased in intratumoral

macrophages. CSF1/M-CSF was expressed by T-cells, NK-cells,

fibroblasts and endothelial cells. This altogether suggests a

possible important role of a T-cell-/NK-cell/monocyte-mediated

TRAIL-R1/TNFRSF10A-dependent anti-tumor activity in

cholangiocarcinoma. While tumor infiltrating monocytes

exhibited higher CSF1/M-CSF activity compared to peritumoral

monocytes, they had lower TRAIL/TNFSF10 expression. The strong

negative prognostic value of the macrophage colony-stimulating

factor CSF1/M-CSF in iCCA, with higher expression shown

specifically in iCCA tumor-infiltrating T-cells, furthermore,

implicates tumor associated macrophages as important actors in

the promotion of tumor progression (24, 41). Additionally, an

interplay between inflammatory factors and a local tumor

promoting environment has been described in BTC (42, 43), with

a role of myeloid-derived suppressor cells (41, 43). Finally, an anti-

tumor activity of TRAIL/TNFSF10 in cholangiocarcinoma can also

rely on additional mechanisms, namely activation of other TRAIL

receptors than TRAIL-R1/TNFRSF10A, and targeting of other

tumor promoting cells than just the tumor cells (44). In single

cell analysis of iCCA, TRAIL-R2/TNFRSF10B was most highly

expressed by endothelial cells but also expressed by tumor cells,

immune cells, fibroblasts and cholangiocytes. A recent investigation

of the iCCA T-cell and myeloid compartments exhibited agonistic

TRAIL/TNFSF10 signaling as one significant interaction between

regulatory T-cells and myeloid cells, where the TRAIL/TNFSF10-

TRAIL-R2/TNFRSF10B interaction was most pronounced for

dendritic cells (45). TRAIL-stimulation via TRAIL-R2/

TNFRSF10B has been proposed to induce dendritic cell

maturation rather than apoptosis (46). In both of the single-cell

cohorts reported here, dendritic cells were the immune cells with

the highest expression of TRAIL-R2/TNFRSF10B.

Further investigating the role of TRAIL in cholangiocarcinoma

tumor tissue, there was an indication of a positive prognostic value

in tissue expression of both TRAIL-R2/TNFRSF10B and TRAIL-R4/

TNFRSF10D with a significant association to disease-free survival in

the cohort from Ahn et al. (19) (GSE107943). This was furthermore

supported by analysis of the cohort from Job et al. (24) (E-MTAB-

6389) where TRAIL-R1/TNFRSF10A and TRAIL-R4/TNFRSF10D

were significantly associated to overall survival. No association of

TRAIL-R expression with survival was seen in the third iCCA

cohort from Nakamura et al. (23), or in the mixed CCA cohorts

from Andersen et al. (22) (GSE26566) and Jusakul et al. (21)

(GSE89749). While disease-free survival was better for patients

with high TRAIL-R2/TNFRSF10B and TRAIL-R4/TNFRSF10D, no

significant association was seen between TRAIL-R expression and

overall survival in the GSE107943 cohort from Ahn et al, possibly

reflecting the low number of events and limited follow-up for the

overall survival outcome (deaths = 17, median follow-up 30.5

months) (19).

In one iCCA cohort, the OEP001105 dataset reported by Dong

et al. (25), TRAIL-R expression was instead negatively associated

with survival. It has been established that cancer cells including

CCA cell lines can develop resistance to TRAIL-induced apoptosis

(47), with TRAIL-signaling instead contrarily inducing a tumor

promoting inflammatory secretome, suggested to affect the tumor
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microenvironment (48). Underlying differences in tumor etiology

and biology between the different investigated iCCA cohorts could

also be one explanation to discrepancies in prognostic implications.

Notably, in the Dong et al. cohort, the prevalence of underlying viral

hepatitis was above 25% and approximately 10 percent of patients

had a preoperative plasma AFP above 20 ng/mL (25). This AFP

level has been used by a previous study as a cut off to exclude

patients with possible mixed hepatocellular carcinoma-

cholangiocarcinoma (HCC-CCA) (49). In the cohorts reported by

Ahn et al. (19) (GSE107943) and Job et al. (24) (E-MTAB-6389)

patients with HCC-CCA were excluded. It has been suggested that

HCC cells can show considerable resistance to TRAIL-induced

apoptosis (50), whereas no reports on this matter specific for

HCC-CCA were found.

TRAIL-R4/TNFSRF10D, with a truncated intracellular death

domain, can act as a decoy and antagonistic TRAIL receptor.

However, in data from three cohorts, tumor tissue expression of

TRAIL-R4/TNFRSF10D showed a similar prognostic influence as

expression of the agonistic TRAIL receptors TRAIL-R1/

TNFRSF10A and TRAIL-R2/TNFRSF10B: a congruent positive

association to disease-free survival or overall survival in two

cohorts, and to negative survival in one cohort. Distinctive

TRAIL-signal responses in different cell types could be one

possible explanation to such associations. As was the case with

TRAIL-R2/TNFRSF10B, the highest TRAIL-R4/TNFRSF10D

expression in iCCA was noted in endothelial cells.

Plasma TIE2/TEK, the angiopoietin receptor, was a strong

negative prognostic factor for survival specifically in the GBC

subgroup. Plasma TIE2 has been investigated as a biomarker

during treatment with VEGFR inhibitor in advanced BTC (51).

In the tumor micro-environment of several cancers, a subset of

TIE2-expressing tumor associated macrophages has been described,

with proangiogenic activity and negative prognostic value (52),

implicating the interplay between tumor associated macrophages

and angiogenesis as a possible therapeutic target (53). In an analysis

of TIE2-expressing tumor associated macrophages in pCCA, a

positive association to survival was instead found (54). As

opposed to some other types of highly vascularized malignancies,

CCA tissues can be characterized by a dense fibrous stroma (4, 54).

Whereas VEGFR inhibition alone has failed to show improved

outcomes in BTC, a targeted combined inhibition of VEGFR and

TIE2 recently showed a significant effect on progression-free

survival of BTC in a phase two randomized control trial (55).

Importantly, the vascular endothelium can have several roles, not

only with regards to tumor angiogenesis but also in the regulation of

immune cell infiltration and itself acting as a regulator of immune

cell function (56).

While prognostic associations of soluble factors in plasma may

reflect mechanistic processes in tumor and peritumoral tissue, it is

also possible that the plasma protein profile reflects a systemic host

response to malignancy or concurrent inflammatory conditions.

Two of the identified prognostic markers, CSF1/M-CSF and TIE2/

TEK, were differentially expressed in malignancy compared to

benign controls. This was also the case with IL6, which in this

study showed a univariable association to survival in resected

patients and previously has been validated as a prognostic factor
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in advanced BTC (11), with mixed previous reports on possible

diagnostic value (57, 58). Levels of differentially expressed proteins

overlapped between the malignant and benign groups, with

predictive value for the highest expression levels, but low

sensitivity. While beyond the scope of this study, the possible

diagnostic value of CSF1/M-CSF and PGF in combination with

other factors should be investigated in specialized diagnostic

studies. To clarify the role of infiltrating immune cells and the

tumor microenvironment on one hand, and the systemic

inflammatory response in BTC on the other, further analyses of

CCA and GBC tissue, including single-cell and spatial

transcriptomics and histopathology, are motivated. That no

proteins were significantly differentially expressed between

patients undergoing resection and patients with unresectable

tumors could reflect that patients with resectable (localized) and

unresectable (advanced/metastasized) tumors represent a spectrum

of disease rather than clear-cut separated categories. Indeed, in

pancreatic cancer, a malignancy with similarly poor long-term

prognosis, patients with localized tumors undergoing resection

have been found to harbor distant micrometastases (59, 60).

Secondly, the small sample-size with only 27 patients with

unresectable tumors limited the statistical power of this study to

detect a significant difference in expression between patients with

resectable and unresectable BTC.

An important strength of the current study was a dedicated

prospective research biobank allowing the inclusion of a

comparatively large cohort of patients resected for BTC, a group

of rare cancers most often diagnosed at an unresectable stage.

Furthermore, patients were followed for a median time of more

than five years after surgery, allowing an accurate analysis of long-

term survival. Other strengths include the method for relative

quantification of protein expression by multiplexed immunoassay

with strong internal quality controls minimizing variability. Finally,

the findings from the plasma biomarker screening were put in a

comprehensive context with analysis of tissue gene expression for

markers and receptors/ligands in both tumor and surrounding liver

tissue from patients with BTC in demographically varied cohorts.

The study also had several important limitations. Firstly, the

sample size was limited and calculated to allow the identification of

a prognostic marker for patients with BTC of any subtype. With

differences in prognostic value seen between BTC subgroups, most

importantly for TIE2, a larger sample size would have permitted

further analyses and reduced the risk of error and overfitting. While

inclusion and sample collection in the biobank were prospective,

collection of clinical follow-up data was retrospective, and no

further postoperative biobank samples were included in the

protocol precluding analysis of temporal dynamics in biomarker

expression. Furthermore, while prognostic associations for the bulk

tissue expression of markers and receptors/ligands in external

cohorts was studied in all subgroups of BTC, single cell analysis

was limited to the iCCA subgroup.

In conclusion, with this analysis of a unique prospectively

collected biobank three preoperative prognostic factors could be

identified in plasma from patients with BTC, with plasma TRAIL/

TNFSF10 determined as a novel positive prognostic factor in both
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iCCA and pCCA. With subgroup analyses and interrogation of

external cohorts, the heterogeneity both between and within BTC

subgroups was underscored, a factor of vital importance when

developing future targeted treatments. A negative prognostic

value of plasma CSF1/M-CSF was seen in iCCA and GBC, further

implicating tumor-associated macrophages and the interplay

between inflammatory activity and tumor progression as a

possible therapeutic target in BTC. TRAIL and CSF1, both

prognostic factors in iCCA, exhibited marked differences in

expression and activity between intratumoral and peritumoral

immune cells on single-cell analysis. The negative prognostic

value of plasma TIE2/TEK in GBC mandates further investigation

of proangiogenic and inflammatory activity in GBC tumor tissue.

Validation of predictive value in external and prospective cohorts

will be the next step in the development of disease-specific

preoperative prognostic models for patients with BTC.
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Novel insights into the
intraepithelial spread
of extrahepatic
cholangiocarcinoma:
clinicopathological study
of 382 cases on extrahepatic
cholangiocarcinoma

Daisuke Nagashima1,2,3,4, Minoru Esaki2, Satoshi Nara2,
Daisuke Ban2, Takeshi Takamoto2, Takahiro Mizui2,
Kazuaki Shimada2 and Nobuyoshi Hiraoka1,3,4*

1Division of Molecular Pathology, National Cancer Center Research Institute, Tokyo, Japan,
2Department of Hepatobiliary and Pancreatic Surgery, National Cancer Center Hospital, Tokyo, Japan,
3Department of Molecular Oncology, Jikei University Graduate School of Medicine, Tokyo, Japan,
4Division of Innovative Pathology and Laboratory Medicine, National Cancer Center Exploratory
Oncology Research & Clinical Trial Center (EPOC), Tokyo, Japan
Background: Extrahepatic cholangiocarcinoma (eCCA) is a rare and aggressive

disease and consisted of conventional eCCA and intraductal papillary neoplasm

of the bile duct (IPNB). Intraepithelial spread (IES) of cancer cells beyond the

invasive area is often observed in IPNBs; however, the prevalence of IES remains

to be examined in conventional eCCAs. Here, we evaluated the

clinicopathological features of eCCAs according to tumor location, with a

focus on the presence of IES. The IES extension was also compared among

biliary tract cancers (BTCs).

Methods: We examined the prevalence and clinicopathological significance of

IES in eCCAs (n=382) and the IES extension of BTCs, including gallbladder

(n=172), cystic duct (n=20), and ampullary cancers (n=102).

Results: Among the invasive eCCAs, IPNB had a higher rate of IES (89.2%) than

conventional eCCAs (57.0%). Among conventional eCCAs, distal eCCAs (75.4%)

had a significantly higher prevalence of IES than perihilar eCCAs (41.3%). The

presence of IES was associated with a significantly higher survival rate in patients

with distal eCCAs (P=0.030). Extension of the IES into the cystic duct (CyD) in

distal eCCAs that cancer cells reached the junction of the CyD was a favorable

prognostic factor (P<0.001). The association of survival with IES, either on the

extrahepatic bile duct or on the CyD, differed depending on the tumor location

and type of eCCA. The extension properties of IES were also dependent on

different types of tumors among BTCs; usually, the IES incidence became higher
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than 50% in the tissues that the tumor developed, whereas IES extension to other

tissues decreased the incidence.

Conclusion: Thus, eCCAs have different clinicopathological characteristics

depending on the tumor location and type.
KEYWORDS

intraepithelial spread, extrahepatic cholangiocarcinoma, biliary tract cancer, tumor
location, patient outcome
Introduction

The biliary tract comprises the intrahepatic bile duct (IHBD),

extrahepatic bile duct (EHBD), cystic duct (CyD), gallbladder, and

ampulla of Vater. Biliary tract cancers (BTCs) are rare and

aggressive, and because of limited treatment options, they are

assoc ia ted with poor outcomes (1 , 2) . Extrahepat ic

cholangiocarcinoma (eCCA) accounts for approximately one-

third of BTCs (3). The incidence of eCCA varies geographically,

with a high incidence in east Asia, although it has increased

worldwide (4, 5). Owing to the differences of clinicopathological

characteristics of eCCAs dependent on anatomical location, eCCAs

are currently categorized as perihilar and distal eCCAs to be

evaluated in different tumor-node-metastas is (TNM)

classifications (6). The accumulated findings suggest that the

differences of eCCAs characteristics may be based on not only

simply location differences but also biological properties of cancer

cells raised in different anatomical locations (7–10). Thus, further

clinicopathological characterization and exploration of molecular

alterations in eCCA are needed.

Intraepithelial spread (IES) of cancer cells beyond the invasive

area is found in several cancers, including BTCs (11–16). Extensive

IES may represent a less aggressive behavior of the tumor and is

associated with better patient outcome in eCCA (11, 13, 15) and

pancreatic ductal adenocarcinoma (PDAC) (12, 16). Recent reports

also indicated that the presence of IES without invasive cancer cells

in the bile duct margin is not an unfavorable factor (14, 17–19). The

previous studies have characterized eCCAs with extensive IES as

unique eCCAs that show macroscopic papillary type and

histological papillary adenocarcinoma with a high incidence and

long-term prognosis. These features of tumors with extensive IES

are very similar to those of intraductal papillary neoplasms of the

bile duct (IPNBs) and its derived invasive cancers, entities that first

appeared in the 2010 World Health Organization (WHO)

classification after published reports. IPNBs are grossly visible

premalignant neoplasms with intraductal papillary or villous

growth of epithelial neoplastic cells, and intrahepatic IPNBs show

better outcome compared to extrahepatic IPNBs (20). Since

previous IES studies analyzed eCCAs without dividing IPNBs

from the conventional eCCAs (11, 13, 15), it remains to be

investigated if reported characteristics of IES are also relevant to

conventional eCCAs. In addition, the extensive properties of the IES
0298
have not been characterized, especially the extension of the IES

beyond the borders among different tissues. The EHBD connects

continuously to different tissues, such as the CyD and ampullary

ducts, and through them to the gallbladder and duodenum.

In this study, we investigated the clinicopathological features of

eCCAs (n=382) in terms of tumor location, with a focus on the

presence of IES. We also compared the incidence and extension

properties of IES among BTCs, including eCCAs, gallbladder

cancers (GBCs, n=172), cystic duct cancers (CyDCs, n=20), and

ampullary cancers (AVCs, n=102).
Materials and methods

Patients of eCCAs

We retrospectively evaluated 382 eCCA patients who

underwent surgical resection at the National Cancer Center

Hospital between January 2002 and March 2022. All the patients

included in this study underwent macroscopic curative resection of

conventional eCCAs or IPNBs that developed during EHBD. We

excluded patients who had received any therapy before surgery and

those with inadequate IES data. In addition, cases of hospital death

after surgical resection, cases with unknown causes of death, or

early death not due to eCCAs within 12 months after surgical

resection were excluded. Finally, 305 patients were included in this

study. For survival analyses, cases of carcinoma in situ of

conventional eCCA were excluded. Supplementary Figure 1

describes the details of patient selection.

Surgical procedures were performed based on the location of

the primary tumor. Among 305 patients, 140 (45.9%) underwent

hepatectomy with extrahepatic bile duct resection, 124 (40.7%)

underwent pancreaticoduodenectomy, 17 (5.6%) underwent

combined hepatectomy and pancreaticoduodenectomy, and 24

(7.9%) underwent extrahepatic bile duct resection. Para-aortic

lymph node sampling was performed when lymph node

metastasis was suspected. In our hospital, adjuvant therapy is not

routinely performed after surgery, although adjuvant S-1 therapy

has become a standard of care according to the results of the

JCOG1202 study since October 2021 (21). Only four patients

underwent adjuvant chemotherapy with S-1 during the study

period. Clinical and radiological follow-ups were scheduled on a
frontiersin.org
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3-month basis for a few years after resection. The median follow-up

period was 41.0 months for all 305 patients. Recurrence was

confirmed by radiological examination and elevation of tumor

markers. The date of recurrence was defined as the date on which

clinicians confirmed recurrence in medical records. The census date

was December 31, 2022. According to previous studies, early

recurrence is defined as any recurrence within 12 months after

surgery (22, 23).
Patients with GBCs, CyDCs, or AVCs

To assess the incidence and extent of IES in BTCs, 102 cases of

AVC, 174 cases of GBC, and 20 cases of CyDC were included, all of

which were surgically resected at the National Cancer Center

Hospital between January 2002 and March 2022. Supplementary

Table 1 shows the demographics of the patients with GBC, AVC,

and CyDC. AVCs raised in the common, bile, or pancreatic ducts of

the ampulla of Vater were selected for this assessment.
Pathological examination

All of the BTCs were examined pathologically and classified

according to the WHO classification (2, 24, 25) and the

International Union against Cancer (UICC) TNM classification

8th edition (6). We had some modification about tumor location as

mentioned later. Macroscopic types of eCCA and the following

histopathological variables were evaluated following the Japanese

Society of Biliary Surgery (JSBS) classification (26): lymphatic,

venous, and perineural invasions that were classified into negative

(–), slightly positive (1+), moderately positive (2+), and markedly

positive (3+) based on their event frequencies. For the survival and

correlation analyses, “high” and “low” grades were determined

based on these values; high grade to be combined with 2+ and 3+

and low grade to be - and 1+. According to the JSBS classification

(27), the right and left hepatic ducts and their confluence were

defined as the (peri)hilar duct (Bph), common hepatic duct, and

common bile duct, and were divided into three portions as follows:

superior (Bs), middle (Bm), and inferior (Bi) portions of the EHBD.

Bs and Bm were defined as the respective portions in the upper and

lower halves of the bile duct length from the confluence of the right

and left hepatic ducts to the upper margin of the pancreas, and Bi

was defined as the portion from the upper margin of the pancreas to

the ampulla of Vater. In some analyses, we combined Bph and Bs

eCCAs as perihilar eCCAs, and Bm and Bi eCCAs as distal eCCAs.

IHBD was defined as the hepatic side of the bile duct from the third

branch (e.g., segmental ducts 5 and 8) of the hepatic duct in this

study. All patients with stage IV disease were diagnosed on the basis

of para-aortic lymph node involvement. Surgically resected

specimens were fixed in 10% formalin and cut into serial slices

5 mm thick. All sections were stained with hematoxylin and eosin

for pathological examination. IES was defined as the intraepithelial

spread of cancer cells beyond the invasive area. IES contained

lesions corresponded to biliary intraepithelial neoplasia, high

grade (BilIN-3), intraductal papillary neoplasm of the bile duct
Frontiers in Oncology 0399
(IPNB), intracholecyst ic papi l lary neoplasm (ICPN),

intraampullary papillary tubular neoplasm (IAPN), and cancerous

duct. IES was diagnosed only when the cancer cells extended along

the biliary tract. IES was not applied when cancer cells had stromal

invasion beyond the biliary tract structure without extension along

the biliary tract and the cancer cells re-entered the biliary tract

mucosal epithelial layer. We defined that “intraepithelial extension

of cancer cells on duodenum” was present when intraepithelial

extension of cancer cells on ampullary common duct continued to

extend to the duodenum epithelial layer. The length of the IES was

described using a 5 mm scale in general.
Statistical analysis

Statistical analyses were performed using JMP version 12.2 (SAS

Institute, Cary, NC, USA) and the StatView-J software version 5.0

(Abacus Concepts, Berkeley, CA, USA). Continuous data were

expressed as median (range) and compared using the Mann–

Whitney U test. Categorical variables were compared between

groups using Pearson’s chi-square test or Fisher’s exact test, as

appropriate. Relapse-free survival (RFS) was defined as the interval

between the date of surgery and time of recurrence. Overall survival

(OS) was calculated based on the time from surgery to death from any

cause or last follow-up. Survival data were estimated using the Kaplan–

Meier method and examined using the log-rank test. Factors found to

be significant in the univariate analysis were subjected to multivariate

analysis using the Cox proportional hazards model. Differences at P <

0.05 were considered statistically significant.
Results

Clinicopathological characteristics
of eCCAs

Details of the surgical and clinicopathological features are presented

in Table 1. Among 284 patients with invasive eCCAs, those with Bph

eCCAs were significantly younger than those with other conventional

eCCAs.The female ratio inBpheCCAswas significantlyhigher than that

in Bs and Bi eCCAs, and similar tendencies were found in Bm eCCAs

and invasive IPNBs. The total tumor sizes of Bph eCCAs were

significantly smaller than those of Bs and Bm eCCAs, whereas the

sizes of the tumor area with stromal invasion of cancer cells (invasive

tumor sizes) of Bi eCCAs and invasive IPNBs were significantly smaller

than those of the other conventional eCCAs.

Approximately 80% of conventional invasive eCCAs belong

to the nodular-infiltrating macroscopic type. In contrast, more

than 85% of invasive IPNB cases were papillary types. The

incidence of poorly differentiated adenocarcinomas in Bph eCCAs

was significantly lower than that in other conventional eCCAs.

Invasive IPNBs predominantly include papillary adenocarcinomas.

The invasion depth tended to be lower in invasive IPNBs than in

conventional eCCAs. The frequencies of portal vein or artery

invasion of cancer cells were much higher in Bph and Bs eCCAs,

as the portal vein or artery exists nearer to the EHBD in these
frontiersin.org
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TABLE 1A Clinicopathological variables of invasive extrahepatic cholangiocarcinomas (n = 284).

Bph eCCA
n= 96

Bs eCCA
n= 42

Bm eCCA
n= 59

Bi eCCA
n= 59

IPNB
n= 28

Age, year [range] 65 [19-83] 70 [39-87] 68 [44-82] 71 [41-83] 74.5 [33-82]

Female/Male 29/67 5/37 12/47 10/49 4/24

Macroscopic type

nodular-infiltrating 78 (81.3) 33 (78.6) 47 (79.7) 40 (67.8) 2 (7.1)

nodular-expanding 1 (1.0) 0 (0) 1 (1.7) 3 (5.1) 1 (3.6)

papillary-infiltrating 3 (3.1) 4 (9.5) 4 (6.8) 8 (13.6) 17 (60.7)

papillary-expanding 0 (0) 1 (2.4) 1 (1.7) 0 (0) 8 (28.6)

flat-infiltrating 13 (13.5) 4 (9.5) 6 (10.2) 8 (13.6) 0 (0)

flat-expanding 1 (1.0) 0 (0) 0 (0) 0 (0) 0 (0)

Total tumor size, mm [range] 40 [15-150] 50 [20-90] 55 [15-120] 50 [20-100] 57.5 [15-120]

Invasive tumor size, mm [range] 35 [15-120] 35 [20-90] 40 [15-70] 30 [15-70] 22.5 [5-50]

Histology (histological grade)

Tub1 (G1) 19 (19.8) 9 (21.4) 10 (17.0) 10 (17.0) 3 (10.7)

Tub2 (G2) 71 (74.0) 23 (54.8) 37 (62.7) 30 (50.8) 6 (21.4)

Por (G3) 4 (4.2) 8 (19.1) 10 (17.0) 15 (25.4) 1 (3.6)

Pap (G1) 0 (0) 1 (2.4) 2 (3.4) 2 (3.4) 18 (64.3)

AS (G3) 2 (2.1) 1 (2.4) 0 (0) 2 (3.4) 0 (0)

Depth of invasion

fm 0 (0) 1 (2.4) 1 (1.7) 0 (0) 7 (25.0)

ss 88 (91.7) 38 (90.5) 58 (98.3) 59 (100) 20 (71.4)

se 7 (7.3) 2 (4.8) 0 (0) 0 (0) 1 (3.6)

si 1 (1.0) 1 (2.4) 0 (0) 0 (0) 0 (0)

Portal vein invasion

presence 39 (40.6) 2 (4.8) 5 (8.5) 1 (1.7) 1 (3.6)

absence 57 (59.4) 40 (95.2) 54 (91.5) 58 (98.3) 27 (96.4)

Artery invasion

presence 12 (12.5) 7 (16.7) 0 (0) 0 (0) 0 (0)

absence 84 (87.5) 35 (83.3) 59 (100) 59 (100) 28 (100)

Lymphatic invasion

high 46 (47.9) 15 (35.7) 31 (52.5) 29 (49.2) 8 (28.6)

low 50 (52.1) 27 (64.3) 28 (47.5) 30 (50.8) 20 (71.4)

Venous invasion

high 64 (66.7) 20 (47.6) 25 (42.4) 27 (45.8) 6 (21.4)

low 32 (33.3) 22 (52.4) 34 (57.6) 32 (54.2) 22 (78.6)

Perineural invasion

high 72 (75.0) 38 (90.5) 52 (88.1) 44 (74.6) 8 (28.6)

low 24 (25.0) 4 (9.5) 7 (11.9) 15 (25.4) 20 (71.4)

Surgical procedure

(Continued)
F
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regions compared to other sites. The lymphatic, vascular, and

perineural invasion of tumor cells tended to be lower in invasive

IPNBs than in conventional eCCAs. Venous invasion was

significantly higher in Bph eCCAs than in other conventional

eCCAs and invasive IPNBs. Perineural invasion was significantly

lower in Bi eCCAs than in Bs and Bm eCCAs. The rates of residual

tumor-free tumors (R0) were significantly higher in Bi eCCAs than

in other conventional eCCAs. The rates of positive bile duct

margins with invasive cancers and positive residual tumor status

with invasive cancers were significantly higher in Bph and Bs

eCCAs than in Bi eCCA and invasive IPNBs.

Patients with noninvasive IPNBs had significantly better

survival than those with invasive eCCAs, including invasive

IPNBs (Supplementary Figure 2). The survival outcomes of

invasive IPNBs were significantly better than those of Bm or Bph

eCCAs, but not significantly different from those of Bs or Bi eCCAs.

The survival curve of Bi eCCAs was similar to that of invasive

IPNBs for both RFS and OS, and the 5-year and 10-year survival

rates were similar. The survival outcomes of patients with Bi eCCAs
Frontiers in Oncology 05101
were significantly better than those of patients with Bph and Bm

eCCAs in terms of both RFS and OS.
Clinicopathological characteristics of
invasive eCCAs with IES along EHBD

IES was observed in 60.2% of invasive eCCAs (Figure 1). The

incidence of IES in Bph or Bs eCCAs was significantly lower than in

Bm or Bi eCCAs or invasive IPNBs (Figure 1D). Table 2A

summarizes the extent and distribution of IES in invasive eCCAs.

Invasive IPNBs had the highest incidence (P <0.001) and longer

duration of IES than invasive conventional eCCAs. The incidence

peak of IES was at lengths of ≥10 and <20 mm in conventional

eCCAs and at lengths of ≥20 and <30 mm in invasive IPNBs. The

IES extended further to the liver-side in invasive eCCAs.

Patients with invasive eCCAs and IES showed significantly

longer survival times than those without IES (P = 0.039)

(Figure 2A). Similar survival associations were found in patients
TABLE 1A Continued

Bph eCCA
n= 96

Bs eCCA
n= 42

Bm eCCA
n= 59

Bi eCCA
n= 59

IPNB
n= 28

EBDR 2 (2.1) 7 (16.7) 7 (11.9) 1 (1.7) 6 (21.4)

PD 0 (0) 6 (14.3) 41 (69.5) 57 (96.6) 17 (60.7)

Hepatectomy 87 (90.6) 28 (66.7) 5 (8.5) 0 (0) 4 (14.3)

HPD 7 (7.3) 1 (2.4) 6 (10.2) 1 (1.7) 1 (3.6)

Major vessel resection

PVR 15 (15.6) 2 (4.8) 10 (17.0) 2 (3.4) 0 (0)

HAR 5 (5.4) 3 (7.1) 1 (1.7) 1 (1.7) 0 (0)

PVR+HAR 7 (7.5) 0 (0) 1 (1.7) 0 (0) 0 (0)

Bile duct margin status

presence with invasive cancer 24 (25.0) 12 (28.6) 8 (13.6) 2 (3.4) 0 (0)

presence with non-invasive cancer 14 (14.6) 11 (26.2) 18 (30.5) 11 (18.6) 8 (28.6)

absence 58 (60.4) 19 (45.2) 33 (55.9) 46 (78.0) 20 (71.4)

Residual tumor status

microscopic residual tumor 40 (41.7) 24 (57.1) 32 (54.2) 16 (27.1) 10 (35.7)

no residual tumor 56 (58.3) 18 (42.9) 27 (45.8) 43 (72.9) 18 (64.3)

Recurrence

presence 71 (74.0) 27 (64.3) 41 (69.5) 30 (50.8) 15 (53.6)

absence 25 (26.0) 15 (35.7) 18 (30.5) 29 (49.2) 13 (46.4)

Early recurrence

presence 29 (30.2) 10 (23.8) 22 (37.3) 15 (25.4) 5 (17.9)

absence 67 (69.8) 32 (76.2) 37 (62.7) 44 (74.6) 23 (82.1)
Values given are the number of patients (percentage) unless otherwise indicated.
AS, adenosquamous carcinoma; Bi, inferior portion of EHBD; Bm, middle portion of EHBD; Bph, (peri)hilar bile duct; Bs, superior portion of EHBD; eCCA, extrahepatic cholangiocarcinoma;
EHBD, extrahepatic bile duct; EBDR, extrahepatic bile duct resection; fm, fibromusclar layer; HAR, hepatic artery resection; HPD, hepatopancreatoduodenectomy; IPNB, intraductal papillary
neoplasm of the bile duct; Pap, papillary adenocarcinoma; Por, poorly differentiated adenocarcinoma; PD, pancreaticoduodenectomy; PVR, Portal vein resection; se, exposed on serosal surface;
si, infiltration beyond the serosa to other tissues; ss, subserosal tissue; Tub1, well differentiated tubular adenocarcinoma; Tub2, moderately differentiated tubular adenocarcinoma.
frontiersin.org

https://doi.org/10.3389/fonc.2023.1216097
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Nagashima et al. 10.3389/fonc.2023.1216097
with invasive conventional eCCAs, but without statistical

significance (Figure 2B). IES was not associated with outcomes in

perihilar eCCAs (Figure 2C), although patients with IES showed

significantly longer OS in distal eCCAs (P = 0.030) (Figure 2D).

When survival was evaluated at each location in invasive

conventional eCCAs and invasive IPNBs, significant differences in

RFS (P = 0.039) and OS (P = 0.025) were observed in Bm eCCAs

(Supplementary Figure 3). Multivariate analyses of patients with

distal eCCAs (Table 3) revealed that the IES was not a significant

predictor of RFS or OS. In distal eCCAs, the presence of IES

significantly correlated with a lower female-to-male ratio, larger

total tumor size, higher positive bile duct margins, and a higher

positive residual tumor status (Supplementary Table 2).
Clinicopathological characteristics of
invasive eCCAs with IES along CyD

The IES on the EHBD reached the junction of the CyD and

often extended beyond the junction and continuously into both the
Frontiers in Oncology 06102
CyD and the other side of the EHBD. When invasive eCCAs in

which cancer cells reached the junction of the CyD were selected

and assessed, the incidence of IES along with CyD (CyD-IES) was

lower than that of IES on EHBD in all locations of the conventional

and invasive eCCAs (Figure 1D and Table 2B). 60.0% of Bi eCCAs

had CyD-IES and 30% of the other conventional eCCAs had CyD-

IES, and their CyD-IES extended rarely to the gallbladder

(Table 2B). In contrast, 75.0% of IPNBs had CyD-IES, and 57.1%

had IES on the gallbladder when IPNBs reached the border between

the CyD and the gallbladder.

In patients with invasive eCCAs, as well as those with invasive

conventional eCCAs, patients with CyD-IES showed significantly

longer survival times for both RFS (P = 0.037 and P = 0.016) and OS

(P = 0.006 and P = 0.004, respectively) than patients without CyD-

IES (Figures 3A, B). Perihilar eCCAs had a low incidence of CyD-

IES, and there were no associations between CyD-IES and patient

outcomes (Figure 3C). Patients with CyD-IES in distal eCCAs had

significantly longer survival than those without CyD-IES for both

RFS (P = 0.043) and OS (P = 0.018) (Figure 3). Multivariate survival

analysis of patients with invasive conventional eCCAs revealed that
TABLE 1B Clinicopathological variables of invasive extrahepatic cholangiocarcinomas (n = 284).

Bph eCCA
n= 96

Bs eCCA
n= 42

IPNB-perihilar
n= 8

Bm eCCA
n= 59

Bi eCCA
n= 59

IPNB-distal
n= 20

TMN classification

T category

T1 0 (0) 11 (26.2) 5 (62.5) T1 19 (32.2) 7 (11.9) 11 (55.0)

T2a 19 (19.8) 25 (59.5) 2 (25.0) T2 30 (50.8) 42 (71.2) 6 (30.0)

T2b 36 (37.5) 2 (4.8) 1 (12.5) T3 10 (17.0) 10 (17.0) 3 (15.0)

T3 31 (32.3) 4 (9.5) 0 (0) T4 0 (0) 0 (0) 0 (0)

T4 10 (10.4) 0 (0) 0 (0)

N category

N0 49 (51.0) 17 (40.5) 7 (87.5) N0 26 (44.1) 35 (59.3) 13 (65.0)

N1 33 (34.4) 19 (45.2) 1 (12.5) N1 24 (40.7) 15 (25.4) 2 (10.0)

N2 14 (14.6) 6 (14.3) 0 (0) N2 9 (15.3) 9 (15.3) 5 (25.0)

M category

M0 91 (94.8) 38 (90.5) 8 (100) M0 57 (96.6) 55 (93.2) 18 (90.0)

M1 5 (5.2) 4 (9.5) 0 (0) M1 2 (3.4) 4 (6.8) 2 (10.0)

Stage

I 0 (0) 6 (14.3) 5 (62.5) I 9 (15.3) 7 (11.9) 9 (45.0)

II 35 (36.5) 9 (21.4) 2 (25.0) IIA 22 (37.3) 24 (40.7) 5 (25.0)

IIIA 10 (10.4) 2 (4.8) 0 (0) IIB 17 (28.8) 18 (30.5) 1 (5.0)

IIIB 3 (3.1) 0 (0) 0 (0) IIIA 9 (15.3) 6 (10.2) 3 (15.0)

IIIC 31 (32.3) 17 (40.5) 1 (12.5) IIIB 0 (0) 0 (0) 0 (0)

IVA 12 (12.5) 4 (9.5) 0 (0) IV 2 (3.4) 4 (6.8) 2 (10.0)

IVB 5 (5.2) 4 (9.5) 0 (0)
Values given are the number of patients (percentage) unless otherwise indicated.
IPNB was not classified by tumor location due to small number of cases.
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the CyD-IES was not a significant predictor of RFS or OS (Table 3).

Multivariate survival analysis of patients with distal eCCAs also

revealed that the CyD-IES was not a significant predictor of RFS or

OS (Supplementary Table 3). CyD-IES closely correlated with

tumor location, perineural invasion, and early recurrence of distal

eCCAs (Supplementary Table 4).

Distal eCCA cases reaching the junction of the CyD were

divided into three groups according to IES patterns: eCCAs with

CyD-IES as group A, eCCAs with only IES as group B, and eCCAs
Frontiers in Oncology 07103
without any IES or CyD-IES as group C (Supplementary Figure 4).

Group A contained 5 eCCAs with only CyD-IES and 42 cases with

both CyD-IES and IES. Survival analyses revealed that group A had

longer survival and group C had shorter survival, with significant

differences in both RFS (P = 0.002) and OS (P < 0.001)

(Supplementary Figure 5). Group B also showed longer survival

compared with that of group C for both RFS (P = 0.024) and OS (P

= 0.034) (Supplementary Figure 5). All survival rates were higher in

group A than in group B.
FIGURE 1

(A-C) Histology of intraepithelial spread (IES) of cancer cells in extrahepatic cholangiocarcinomas (eCCAs). (A) Main tumor mass with stromal
invasion of cancer cells at right and IES extended along epithelial layers of the bile duct in very low-power view. (B) Histology of cancer area with
stromal invasion in middle power view, corresponding to white square in A. (C) Histology of IES showing proliferation of cancer cells in epithelial
layer with a low papillary structure in middle power view, corresponding to black square in A. (D, E) Comparison of incidence of intraepithelial
spread in invasive eCCAs. (D) Bar graph shows incidence of IES along extrahepatic bile duct in invasive eCCAs. (E) Bar graph shows incidence of IES
along with cystic duct (CyD) in invasive eCCAs that cancer cells reached the junction of CyD. Differences are examined by chi-square test. IPNB is
not classified by tumor location because of small number of cases. *P< 0.05; **P< 0.01; ***P< 0.001.
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Incidence and profiles of IES in BTCs; IES
in eCCAs extended into IHBD and
ampullary area

Some properties of the IES on the EHBD of the eCCAs are

described above and depicted in Figure 4. Liver-side IES was ended

on the IHBD in 60.4%, on the bile ducts of the borderline area between

the IHBD and EHBD (i.e., hepatic ducts and the second branches) in

37.5%, and on the confluence of the right and left hepatic ducts in 2.1%

of conventional eCCA cases who underwent hepatectomy with liver-

side IES (Table 4A). In perihilar eCCAs, IES on EHBD was mostly

ended on the EHBD in front of the IHBD, and extension of IES into the

IHBD from the EHBD was very rare, whereas 95.5% of cases with IES

on IHBD had stromal invasion in the IHBD area. In distal eCCAs,

cases of IES on IHBD were rare, with longer IES. Liver-side IES ended

on the IHBD in 12.5% of patients, on the confluence of the right and

left hepatic ducts in 25.0%, and on EHBD distal to the confluence of the

hepatic ducts in 37.5% of patients with IPNB who underwent

hepatectomy with liver-side IES. When cancer cells reached the

EHBD in front of the IHBD, IES on the IHBD was found in 61.7%

of patients. Thus, the liver-side IES from the EHBD often ended in

front of the IHBD and extended to the IHBD in a limited conventional

eCCAs with a long length of IES or in a part of perihilar eCCAs with

stromal invasion of the IHBD.

Duodenal-side IES ended in the ampullary common duct in

20.3%, in the ampullary bile duct in 42.2%, and in 37.5% of patients

with conventional eCCA who underwent pancreatoduodenectomy

with duodenal-side IES (Table 4B). Duodenal-side IES ended in the

ampullary common duct in 30.8%, in the ampullary bile duct in

46.2%, and in 23.1% of patients with IPNB who underwent

pancreatoduodenectomy with duodenal-side IES. Thus, the

duodenal-side IES on EHBD and the ampullary duct were similar
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to one tissue without barriers, although it did not reach

the duodenum.
IES in CyDCs

The incidence of IES in CyDCs was 80.0%; IES on CyD was

found in 25.0% of cases; IES on the gallbladder in 65.0%; IES on

EHBD in 40.0% (liver-side in 30.0% and duodenal-side in 15.0%);

and no IES on the IHBD, ampullary common duct, or duodenum.

The IES from CyDCs extended in both directions of the gallbladder

and EHBD in 40.0% of the cases. The incidence of IES in

conventional CyDCs and ICPNs is shown in Figure 4 and

Supplementary Table 5. CyDCs had a high frequency of IES on

both the gallbladder and EHBD, especially in ICPN showing a very

high frequency of IES; their incidences were 53% and 27% in

conventional CyDCs and 100% and 80% in ICPNs, respectively.
IES of GBCs

IES on the gallbladder was often observed in GBCs, although

IES extending into the CyD and EHBD was not observed, which

was found in 8.1% and 1.2% of GBCs, respectively. This series

contained 30.2% ICPN cases, and ICPNs showed a similar

incidence of IES on CyD as conventional GBCs, as shown in

Figure 4A and Supplementary Table 5. However, in conventional

GBCs and ICPNs that reached the borders between the CyD and the

gallbladder, IES on the CyD was found in 62.5% and 100% of cases,

respectively (Figure 4B). Thus, GBCs often have an IES, although

the IES extension is usually limited to the gallbladder. The low

incidence of IES on the CyD in both conventional GBCs and ICPNs
TABLE 2A Intraepithelial spread of extrahepatic cholangiocarcinomas along with extrahepatic bile duct.

Bph eCCA
n= 96

Bs eCCA
n= 42

Bm eCCA
n= 59

Bi eCCA
n= 59

invasive IPNB
n= 28

IES, mm

0 62 (64.6) 19 (45.2) 13 (22.0) 16 (27.1) 3 (10.7)

0 <, < 10 12 (12.5) 6 (14.3) 10 (16.9) 6 (10.2) 3 (10.7)

10 ≤, < 20 12 (12.5) 9 (21.4) 19 (32.2) 22 (37.3) 7 (25.0)

20 ≤, < 30 5 (5.2) 5 (11.9) 8 (13.6) 7 (11.9) 9 (32.1)

30 ≤, < 40 3 (3.1) 2 (4.8) 5 (8.5) 6 (10.2) 3 (10.7)

40 ≤, < 50 1 (1.0) 0 (0) 3 (5.1) 1 (1.7) 0 (0)

50 ≤, < 60 1 (1.0) 1 (2.4) 0 (0) 0 (0) 3 (10.7)

60 ≤ 0 (0) 0 (0) 1 (1.7) 1 (1.7) 0 (0)

Distribution of IES

liver-side dominant 17 (50.0) 12 (52.2) 18 (39.1) 30 (69.8) 13 (52.0)

duodenal-side dominant 14 (41.2) 10 (43.5) 24 (52.2) 10 (23.3) 8 (32.0)

equivalent 3 (8.8) 1 (4.3) 4 (8.7) 3 (7.0) 4 (16.0)
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was presumed to be because the tumor cells did not reach the border

between the gallbladder and the CyD.
IES of AVCs

The incidence of IES was investigated in AVCs raised in the

ampulla of Vater, except for the ampullary duodenum, which was
Frontiers in Oncology 09105
60.8%, 54.0%, and 76.9% in total AVCs, conventional AVCs, and

IAPNs, respectively. Three directions of the IES beyond the ampulla

of Vater were found: the EHBD, main pancreatic duct (MPD), and

duodenum. The incidences of these IES are shown in Figure 4B and

Supplementary Table 5. These IESs beyond the ampulla of Vater

were usually of short length (Supplementary Table 6); IES on EHBD

with ≤5 mm in length was in 54.5% of conventional AVCs and in
B

C

D

A

FIGURE 2

Kaplan–Meier survival curves. (A) Left and right panels show recurrence-free survival (RFS) and overall survival (OS), respectively. Kaplan–Meier
curves of total invasive extrahepatic cholangiocarcinomas (eCCAs) with intraepithelial spread (IES) (red) and without IES (blue) are compared.
(B) Kaplan–Meier curves of invasive conventional eCCAs with IES (red) and without IES (blue) are compared. (C) Kaplan–Meier curves of perihilar
eCCAs with IES (red) and without IES (blue) are compared. (D) Kaplan–Meier curves of distal eCCAs with IES (red) and without IES (blue) are
compared. Differences are examined by a log-rank test.
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58.3% of IAPNs; IES onMPD with ≤5 mm in length was in 57.1% of

conventional AVCs and in 70.0% of IAPNs. In 98.0% of

conventional AVCs, the extension of the IES ended at the border

between the ampullary common duct and the duodenum (Figure 5),

whereas 30.8% of IAPN cases had the IES extending beyond the

border into the duodenum (Figure 4B). There was no IES reaching

the IHBD, CyD, or gallbladder, except in one case of IAPN that

spread to the CyD. Thus, IES extensions into the EHBD and MPD

were found in approximately 20% and 15% of cases, respectively,

and short length in both conventional AVCs and IAPNs, although

intraepithelial spread on the duodenum was found in

approximately 1/3 of IAPNs but not in conventional AVCs.
Discussion

eCCAs are rare and show aggressive behaviors (2), and their

clinicopathological characteristics vary depending on their

anatomical location (7–10). IES may be a hallmark of one type of

extension in cancer biology, in which intraepithelial extension of

cancer cells may be predominant over stromal invasion. Hence,

stromal invasion is relatively weak in case of IES. This study

revealed that the presence of IES was associated with favorable

outcomes in eCCAs, although this was dependent on tumor

location and type. The incidence and extension properties of IES

are also characterized by the tumor location and type. Compared to

conventional eCCAs, invasive IPNBs showed a high incidence and a

longer extension of IES, often spreading beyond the tissue borders.

Invasive IPNBs with IES were also associated with good prognosis.

In conventional eCCAs, the incidence of IES was significantly

higher in distal eCCAs than in perihilar eCCAs, although the

length of the IES extension was comparable (Figure 1). The

presence of IES was associated with better outcomes in

conventional eCCAs and a significantly longer survival time for

OS in distal eCCAs (Figure 2). The presence of CyD-IESs was
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significantly associated with better outcomes in total invasive

eCCAs, invasive conventional eCCAs, and distal eCCAs. The

incidence of CyD-IES was higher in distal eCCAs than in

perihilar eCCAs, which was reduced to 35–80% of that of IES in

each conventional eCCAs. CyD-IES and IES often overlap in the

same eCCA cases, and the CyD-IES could more effectively stratify

eCCAs to predict patient outcomes. When invasive eCCAs reach

the junction of the CyD, CyD-IES is a more useful prognostic factor

than IES. It is implied that clinicopathological characteristics are

apparently different between perihilar eCCAs and distal eCCAs,

and further among Bph, Bs, Bm, and Bi eCCAs, the differences may

be due to not only simple location differences but also the biological

properties of cancer cells.

The incidence and extension properties of IES also differ

depending on the different types of BTCs. All BTCs showed

common characteristics in that the incidence of IES was more

than a half in tissues that the tumor raised, although IES extension

to other tissues beyond the borders decreased the incidence. In

addition to these common rules, the incidence and properties of IES

differed depending on the tumor location and type (Figure 4). These

properties may be useful for determining the primary sites of BTCs.

The presence of IES was a favorable prognostic factor in

patients with conventional eCCA in this series. The extensive IES

defined as more than 20 mm in length beyond the invasive area, is

associated with better patient outcome in eCCAs in the previous

reports (11, 13, 15). The extensive IES (≥ 20 mm) was not

prognostic in our series, even if the cohort was combined with

conventional eCCAs and invasive IPNBs, or was divided by

anatomical locations. This discrepancy may be due to the cohort

used in the present study. In previous studies (11, 13), researchers

have analyzed invasive eCCAs combined with conventional eCCAs

and invasive IPNBs, and such cohorts had much higher rates of

patients with perihilar eCCAs (74.5% and 82.6%, respectively) than

those in this study (51.4%). Since the incidence of IES-positive cases

in perihilar eCCAs was low, most of the IES-positive cases in
TABLE 2B Intraepithelial spread of extrahepatic cholangiocarcinomas along with cystic duct.

Bph eCCA
n= 45

Bs eCCA
n= 41

Bm eCCA
n= 59

Bi eCCA
n= 45

invasive IPNB
n= 24

CyD-IES, mm

0 31 (68.9) 33 (80.5) 39 (66.1) 18 (40.0) 6 (25.0)

0 <, < 10 7 (15.6) 1 (2.4) 5 (8.5) 4 (8.9) 5 (20.8)

10 ≤, < 20 6 (13.3) 3 (7.3) 8 (13.6) 10 (22.2) 6 (25.0)

20 ≤, < 30 1 (2.2) 3 (7.3) 2 (3.4) 7 (15.6) 4 (16.7)

30 ≤ 0 (0) 1 (2.4) 5 (8.5) 6 (13.3) 3 (12.5)

Status of IES-CyD

a part of CyD 11 (78.6) 3 (37.5) 12 (60.0) 19 (70.4) 11 (61.1)

entire CyD 2 (14.3) 4 (50.0) 5 (25.0) 7 (25.9) 3 (16.7)

GB and entire CyD 1 (7.1) 1 (12.5) 3 (15.0) 1 (3.7) 4 (22.2)
Values given are the number of patients (percentage) unless otherwise indicated.
Bi, inferior portion of EHBD; Bm, middle portion of EHBD; Bph, (peri)hilar bile duct; Bs, superior portion of EHBD; CyD, cystic duct; CyD-IES, IES along with CyD; eCCA, extrahepatic
cholangiocarcinoma; EHBD, extrahepatic bile duct; GB, gallbladder; IES, intraepithelial spread; IPNB, intraductal papillary neoplasm of the bile duct
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previous studies were invasive IPNBs, and IES-negative cases were

conventional perihilar eCCAs; therefore, the differences in patient

outcomes might be significant.

In this study, Bph eCCAs showed unique clinicopathological

characteristics compared to other eCCAs. Patients with Bph eCCAs

tended to be younger females. Compared to eCCAs, intrahepatic

cholangiocarcinoma (iCCA) develops predominantly in males but

is more common in females, and the peak incidence age in iCCA is

approximately ten years younger than that in eCCAs (28). It is
Frontiers in Oncology 11107
suggested that Bph eCCAs might be similar to iCCAs. Bph eCCAs

had much more venous invasion, together with a low incidence of

IES in perihilar eCCAs, which is consistent with the aggressive

behavior and poor outcomes of perihilar eCCAs. In addition, Bph

eCCAs showed unique features in the incidence and properties of

IES, especially IES on IHBD, compared to other conventional

eCCAs. In contrast, Bi eCCAs showed lower perineural invasion

and a higher incidence of IES and CyD-IES, with a better prognosis,

similar to that of invasive IPNBs (Supplementary Figure 1).
B
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FIGURE 3

Kaplan–Meier survival curves. (A) Left and right panels show recurrence-free survival (RFS) and overall survival (OS), respectively. Kaplan–Meier
curves of total invasive extrahepatic cholangiocarcinomas (eCCAs) with intraepithelial spread along with cystic duct (CyD-IES) (red) and without
CyD-IES (blue) are compared. (B) Kaplan–Meier curves of invasive conventional eCCAs with CyD-IES (red) and without CyD-IES (blue) are compared.
(C) Kaplan–Meier curves of perihilar eCCAs with CyD-IES (red) and without CyD-IES (blue) are compared. (D) Kaplan–Meier curves of distal eCCAs
with CyD-IES (red) and without CyD-IES (blue) are compared. Differences are examined by a log-rank test.
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The biliary tree differentiates from a few different anlagen raised

in the hepatic diverticulum during embryonic development; the

proximal part of the hepatic ducts and intrahepatic bile ducts are

developed from the ductal plate that appears in the hepatic hilus in

the developing liver; the distal part of hepatic ducts, common hepatic

duct, and common bile duct are formed from the caudal part of the

liver bud, and the gallbladder with the cystic duct is formed from the

gallbladder anlage (29–31). These tissue borders based on embryonic

development almost correspond to the extension of IES in BTCs, with

some tissue-dependent modifications.

The border between the IHBD and EHBD is sometimes difficult

to determine because there are many variations in bile duct

branching, including in this area. Certain IHBD are the liver side

of the third branch of the bile duct (e.g., segmental ducts 5 and 8),

and certain EHBD are the duodenal side of the common hepatic

duct, while it is possible that the border between the IHBD and

EHBD might vary by individual within the perihilar bile ducts

between them. Most endpoints of the liver-side IES were found in

this area (Table 4A). It was assumed that the endpoints of the liver-

side IES represented the border. The incidence of IES in perihilar

eCCAs was lower, and IES in IHBD was rare when IES extended

from the EHBD to the IHBD in conventional eCCAs. In contrast,
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most perihilar eCCA with IES on IHBD had stromal invasion of the

IHBD area without IES on EHBD. It is possible that some of these

perihilar eCCAs developed from the IHBD and extended from the

IES to the IHBD.

The duodenal-side IES extended on the EHBD and ampullary

ducts, as they are one tissue without potential extension barriers.

This might be reasonable because both ducts develop into one tube

in the embryonic developmental stage. The actual duodenal-side

tissue border should be at the border between the ampullary

common duct and the duodenum. The IES of conventional AVCs

that develop in the common duct or ampullary bile duct usually

ends at the common duct-duodenal border, and in 30% of IAPNs,

the intraepithelial spread extends beyond the border into

the duodenum.

CyD develops from the gallbladder anlage during the

embryonic stage, and the histological structure of CyD is the

same as that of EHBD, but different from that of the gallbladder,

suggesting that CyD is similar to a zone of brackish water. CyD may

overlap biologically (i.e., molecular expression) with EHBD and the

gallbladder. The incidence of IES in the gallbladder from

conventional CyDCs that reached the border between the

gallbladder and CyD and the incidence of IES in the CyD from
TABLE 3 Univariate and multivariate analysis of conventional extrahepatic cholangiocarcinomas reached to junction of cystic duct (n = 190).

Recurrence-free survival Overall survival

Variables Univariate Multivariate Univariate Multivariate

HR (95%
CI)

P
value

HR (95% CI) P
value

HR (95%
CI)

P
value

HR (95% CI) P
value

Age (>69/≤69 years) 0.979 (0.689-
1.388)

0.903 0.922 (0.619-
1.365)

0.687

Gender (female/male) 1.293 (0.829-
1.948)

0.249 1.498 (0.929-
2.329)

0.095

Tumor location (perihilar/distal) 1.253 (0.881-
1.780)

0.208 1.315 (0.889-
1.945)

0.170

Total tumor size (>55/≤55 mm) 1.325 (0.932-
1.878)

0.117 1.143 (0.771-
1.685)

0.503

Invasive tumor size (>40/≤40 mm) 1.673 (1.175-
2.375)

0.004 1.139 (0.778-
1.666)

0.501 1.523 (1.026-
2.250)

0.037 1.028 (0.665-
1.582)

0.902

CyD-IES (absence/presence) 1.571
(1.085-2.317)

0.016 1.275 (0.869-
1.905)

0.217 1.824
(1.198-2.853)

0.005 1.500 (0.970-
2.380)

0.068

Histological grade (G2+G3/G1) 2.153 (1.328-
3.722)

0.001 1.893 (1.157-
3.295)

0.010 1.982 (1.167-
3.639)

0.010 1.767 (1.023-
3.285)

0.041

Lymphatic invasion (high/low) 2.288 (1.608-
3.272)

<0.001 1.799 (1.180-
2.752)

0.006 2.824 (1.900-
4.237)

<0.001 1.987 (1.235-
3.220)

0.005

Venous invasion (high/low) 2.031 (1.430-
2.898)

<0.001 1.243 (0.819-
1.894)

0.307 2.558 (1.724-
3.835)

<0.001 1.477 (0.930-
2.367)

0.997

Perineural invasion (high/low) 2.237 (1.342-
4.012)

0.001 1.422 (0.816-
2.643)

0.222 2.027 (1.180-
3.760)

0.009 1.193 (0.663-
2.302)

0.570

Residual tumor status (microscopic residual tumor/
no residual tumor)

1.941 (1.357-
2.804)

<0.001 1.764 (1.194-
2.629)

0.004 1.612 (1.090-
2.405)

0.017 1.487 (0.960-
2.318)

0.076

Lymph node metastasis (presence/absence) 2.272 (1.591-
3.272)

<0.001 1.321 (0.878-
2.000)

0.182 2.527 (1.698-
3.809)

<0.001 1.117 (0.913-
2.308)

0.117
frontie
CyD, cystic duct; CyD-IES, IES along with CyD; IES, intraepithelial spread.
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conventional GBCs that reached the border were almost the same

(62% and 63%, respectively) (Figure 4B). Similarly, the incidence of

IES in the gallbladder from the ICPNs of the CyD and that of IES in

CyD from the ICPNs of the gallbladder were both 100%. It is

suggested that the CyD and the gallbladder might be recognized as

similar tissues by GBCs and CyDCs with respect to IES extension, as

represented by the developmental event in which these tissues

develop from the gallbladder anlage. Fifty percent of conventional

CyDCs that reached the junction of the CyD had an IES on the
Frontiers in Oncology 13109
EHBD, and 36% of conventional eCCAs reached the junction of the

CyD with the CyD-IES. This difference in incidence might be

attributed to the difference in distances from the invasive cancers

to the junction of the CyD.

IPNB, ICPN, and IAPN are thought to be counterpart entities of

pancreatic intraductal papillary mucinous neoplasms. The extension

property of IES from ICPNs is similar to that of IPNBs, in which IES

often extends beyond tissue borders compared to conventional types of

cancers and has a relatively longer length. However, ICPNs spread
B

A

FIGURE 4

Incidence and profiles of intraepithelial spread (IES) of bile tract cancers (BTCs). Values indicate percentages of IES in each tissue and each
direction on biliary tract. Values represent incidence that ratio of positive case among total cases in (A) and values represent incidence ratio of
positive case to cases in which cancer cells reach tissue border closest to the assessed IES (e.g., the junction of CyD for assessing IES on EHBD
in CyDCs) in (B). (A) The incidence and profiles of IES in conventional (conv.) extrahepatic cholangiocarcinomas (eCCAs) and intraductal papillary
neoplasms of the bile duct (IPNBs) are shown in upper line. Incidence of IES in liver- or duodenal-side on extrahepatic bile duct (EHBD) is shown
on right side in each panel. Incidences of IES on intrahepatic bile duct (IHBD), IES on gallbladder (GB), and IES on cystic duct (CyD) are shown on
the left side in each panel. Incidence of IES in the gallbladder and EHBD in conventional (conv.) cystic duct cancers (CyDCs) or intracholecystic
papillary neoplasms (ICPNs) arising from CyD are depicted in the lower line. Incidence of IES in CyD and EHBD in the conventional (conv.)
gallbladder cancers (GBCs) or ICPNs arising in gallbladder are also found on the lower line. (B) The incidence of IES extended to various tissues
other than the tissue in which the tumors developed in BTCs. The incidence values of IES beyond the ampullary area, including IES on the EHBD,
IES on main pancreatic duct (MPD), intraepithelial spread into the duodenum in conventional ampullary cancers (conv. AVCs), and intraampullary
papillary tubular neoplasms (IAPNs) are shown in the lower right panels.
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more frequently beyond the border between the gallbladder and CyD

compared to IPNBs. This difference may be explained by the distance

from the main tumor. Similarly, both IPNBs and ICPNs of the CyD

extended the IES frequently via the junction of the CyD, although the

ICPNs of the gallbladder did not reach the junction. In contrast, IAPNs

revealed different characteristics from IPNBs and ICPNs in the

incidence and extension properties of IES, which did not have a

longer IES. IAPNs had similar properties to conventional AVCs in

IES for EHBD and MPD. However, IAPNs showed an apparently

higher frequency of intraepithelial spread into the duodenum

compared to conventional AVCs. It is necessary to characterize these

similar entities to establish their positions.

From a clinical standpoint, perioperative chemotherapy is a

standard strategy, even for resectable eCCAs and PDACs. The

presence of IES revealed by pathological investigation may be an
Frontiers in Oncology 14110
indicator of the postoperative treatment strategy. More importantly,

the different incidences of IES and related outcomes suggest

biological differences between perihilar and distal eCCAs. Along

with integrative molecular profiling analyses, targeted therapies

have been developed for advanced eCCAs and iCCAs (32–34).

Genetic or molecular alterations in CCAs related to tumor

localization and the presence of IES are still limited. Investigating

molecular or genetic differences is imperative for identifying clinical

features and establishing targeted therapeutic options.

This study has several limitations. First, this was a retrospective

study conducted in a single-center cohort. Second, differences in the

adapted surgical procedures, including lymph node dissection,

could affect survival outcomes. However, this study included a

relatively large number of eCCAs, and the therapeutic strategy did

not change significantly during the study period. Additionally, a
TABLE 4A Intraepithelial spread of extrahepatic cholangiocarcinomas directed to intrahepatic bile ducts.

perihilar eCCA cases under-
taken hepatectomy with

liver-side IES (n=39)

distal eCCA cases under-
taken hepatectomy with

liver-side IES (n=9)

invasive IPNB cases under-
taken hepatectomy with

liver-side IES (n=8)

liver-side end
position of IES

at IHBD 22* 7 1

at EHBD in front
of IHBD

around the confluence
of and on the second
branches ** 8 2 0

hepatic ducts 8 0 2

at confluence of
right and left
hepatic ducts 1 0 1

at EHBD distal to
the confluence of
hepatic ducts Bs 0 0 4

*containing 21 cases with stromal invasion reached to IHBD area and one case with IES extended from Bs. **right posterior or anterior sectoral ducts or segmental ducts of 2, 3, or 4. Bs, superior
portion of EHBD; eCCA, extrahepatic cholangiocarcinoma; EHBD, extrahepatic bile duct; IES, intraepithelial spread; IHBD, intrahepatic bile duct; IPNB, intraductal papillary neoplasm of the
bile duct.
TABLE 4B Intraepithelial spread of extrahepatic cholangiocarcinomas directed to ampullary area.

perihilar eCCA cases undertaken
pancreatoduodenectomy with

duodenal-side IES (n=8)

distal eCCA cases undertaken
pancreatoduodenectomy with

duodenal-side IES (n=56)

IPNB cases undertaken
pancreatoduodenectomy with

duodenal-side IES (n=13)

duodenal-
side end
position of
IES

at
duodenum 0 0 0

at ampullary
area

ampullary
common
duct 0 13 4

ampullary
bile duct 2 25 6

at EHBD Bi 6 18 3

Bi, inferior portion of EHBD; eCCA, extrahepatic cholangiocarcinoma; EHBD, extrahepatic bile duct; IES, intraepithelial spread; IHBD, intrahepatic bile duct; IPNB, intraductal papillary
neoplasm of the bile duct.
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pathological diagnosis was made based on a detailed pathological

examination in each case. This consistency in the treatment and

diagnosis is an advantage of this study. As there are still few studies

investigating IES in eCCAs, further investigation is required to

identify IES and their characteristics.

In conclusion, the IES was a favorable factor in patients with

eCCA, although it was not as strongly favorable as previously
Frontiers in Oncology 15111
reported. CyD-IES is also a favorable factor and may be more

useful for IES when eCCAs reach the CyD junction. The

clinicopathological characteristics of eCCAs vary depending on

their anatomical location and type, especially between perihilar

and distal eCCAs. The incidence and extension properties of IES

also differ depending on the different types of BTCs. We

hypothesize that the extension profiles of the IES may represent
FIGURE 5

Histology of intraepithelial spread of cancer cells from ampullary common duct to duodenum in ampullary cancer. At an opening of ampullary
common duct surrounded by Oddi sphincter, Oddi sphincter anastomoses to muscularis mucosa in duodenal mucosal layer (*). An opening of
common duct is covered by epithelial cells of common duct that continue to the duodenal covering epithelium on the border of *. The Brunner’s
glands are found in the duodenum. Right and left side borders are indicated by blue-colored * and green-colored *. Cancer cells with papillary
growth extend along common duct and replace the existing covering epithelium beyond the borders (*). (A) is loupe figure; (B, C) are in low power
view corresponded to left and right squares in (A) respectively; (D, E) are in middle power view.
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the tumor cell origin as well as the biological characteristics

of cancer.
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Background: Systemic chemotherapy (SC) remains the only first-line treatment
for unresectable intrahepatic cholangiocarcinoma (iCCA). Hepatic arterial infusion
chemotherapy (HAIC) has been recently proven to be effective in managing
hepatocellular carcinoma (HCC). Hence, our study aims to investigate the
safety and efficacy of HAIC in treating unresectable iCCA patients.

Methods: We reviewed 146 patients with unresectable iCCA who had received
HAIC or SC between March 2016 and March 2022 in a retrospective manner.
Outcomes of patients and safety were compared between the HAIC and SC
groups.

Results: There were 75 and 71 patients in the HAIC and SC groups, respectively.
The median OS in the HAIC and SC groups was 18.0 and 17.8 months (p = 0.84),
respectively. Themedian PFS in the HAIC and SC groups was 10.8 and 11.4 months
(p = 0.59), respectively. However, the HAIC group had significantly longer
intrahepatic progression-free survival (IPFS) than the SC group (p = 0.035). The
median IPFS in the HAIC and SC groups was 13.7 and 11.4 months, respectively.
According to the OS (p = 0.047) and PFS (p = 0.009), single-tumor patients in the
HAIC group appeared to benefit more. In addition, the overall incidence of adverse
events (AEs) was lower in the HAIC group than that in the SC group.

Conclusion: Our study revealed that HAIC was a safe and effective therapeutic
regimen for unresectable iCCA with better intrahepatic tumor control when
compared to SC. Meanwhile, patients with single tumor were more likely to
benefit from HAIC than SC.

KEYWORDS

intrahepatic cholangiocarcinoma, hepatic arterial infusion chemotherapy, systemic
chemotherapy, overall survival, progression-free survival, adverse events
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Introduction

Intrahepatic cholangiocarcinoma (iCCA) is the second most
frequent primary liver cancer with a poor prognosis and high level of
malignancy (Bridgewater et al., 2014; Sirica et al., 2019; Valle et al.,
2021). The incidence of iCCA is higher in Thailand and China (6 per
100,000 people) than that in Western Europe and North America
(0·35 to 2 per 100,000 people) (Banales et al., 2016; Oh et al., 2022).
Over the next 20–30 years, the incidence of iCCA will increase ten-
fold worldwide (Rodriguez and Pennington, 2018; Dong et al.,
2022). Surgical resection is currently the first-line and curative
therapy for iCCA management. However, most iCCA patients
are diagnosed at a late stage as a result of the absence of specific
clinical symptoms and limited treatment modalities for iCCA (Rizvi
and Gores, 2013; Bupathi et al., 2017; Rizvi et al., 2018).

Currently, the first-line systemic chemotherapy (SC) for biliary
tract cancer is gemcitabine plus cisplatin (GEMCIS), with a median
overall survival (OS) of 11.7 months (Valle et al., 2010). Oxaliplatin
plus gemcitabine (GEMOX) is also a common treatment regimen
for biliary tract cancer patients in Asia, with a similar median OS
compared to GEMCIS (Fiteni et al., 2014; Kim et al., 2019). The
FOLFOX regimen may be an option for the palliative treatment of
advanced cholangiocarcinoma (Nehls et al., 2002; Caparica et al.,
2019; Lamarca et al., 2021).

Hepatic arterial infusion chemotherapy (HAIC) enables the
delivery of chemotherapy drugs directly into the liver. Tumors
derive most of their nutrients from the arteries, whereas the liver
derives nutrients from the portal vein, which may reduce systemic
adverse events (AEs) from systemic chemotherapy (Kemeny et al.,
1984; Cercek et al., 2020). Meanwhile, previous studies have clarified
that HAIC is useful for advanced iCCA and has shown higher tumor
control rates compared to systemic chemotherapy (Kasai et al., 2014;
Cercek et al., 2020). However, there was no study comparing HAIC
with FOLFOX and first-line systemic chemotherapy in relation to
patients’ outcomes and AEs.

Herein, the current study compares the clinical outcomes and
tumor response of patients with unresectable iCCA treated with
HAIC and SC. In addition, the assessment of safety and AEs were
also vital in this retrospective study.

Materials and methods

Patients’ recruitment and selection criteria

This is a retrospective study, and the study subjects consisted of
146 patients diagnosed with iCCA who were initially treated with
HAIC or first-line SC between March 2016 and March 2022 at Sun
Yat-sen University Cancer Center, China. Participants were
included if they conformed to the following criteria: (Bridgewater
et al., 2014) age 18 years old or elder; (Sirica et al., 2019)
histopathological evidence confirmation of iCCA; (Valle et al.,
2021) confirmed records of primary HAIC or first-line SC; (Oh
et al., 2022) an Eastern Cooperative Oncology Group (ECOG) score
of 2 or below; and (Banales et al., 2016) complete medical follow-up
data. Patients were excluded based on the following exclusion
criteria: (Bridgewater et al., 2014) patients with any other

malignant tumor and (Sirica et al., 2019) patients who had
contraindications to HAIC and SC.

Treatment procedures

HAIC was performed according to our previously reported
protocol (Li et al., 2022). Femoral artery puncture and
catheterization were performed on day 1 of the HAIC cycle, and
the patient was transferred to the inpatient ward for drug infusion
through the hepatic artery. Oxaliplatin was administered at 130 mg/
m2 from 0 to 2 h on day 1; leucovorin was administered at 400 mg/
m2 from 2 to 3 h on day 1; fluorouracil was administered at 400 mg/
m2 from hour 3 on day 1. Infusional fluorouracil was given at
2400 mg/m2 over 23 h or 46 h. HAIC cycles were performed every
3 weeks. In the GEMCIS group, each cycle comprised cisplatin
(25 mg per square meter of body-surface area), followed by
gemcitabine (1,000 mg per square meter), which was
administered on days 1 and 8 every 3 weeks. In the GEMOX
group, each cycle comprised oxaliplatin (85 mg/m2) on day
1 and gemcitabine (1,000 mg per square meter) between days
1 and 8 every 3 weeks. HAIC or SC was suspended at 24 weeks
or because of disease progression, unacceptable toxic effects, or
patient’s own choice. As a part of treatment, HAIC or SC may be
combined with the PD-1 inhibitor or tyrosine kinase inhibitor
according to the needs of the condition and patient’s own choice.

Data collection

All clinical data were obtained from the medical records of the
Sun Yat-sen University Cancer Center. Demographic and clinical
characteristics included age, sex, hepatitis infection status, ECOG,
aspartate aminotransferase (AST), alanine transaminase (ALT),
albumin (ALB), total bilirubin (TBIL), carcinoembryonic antigen
(CEA), carbohydrate antigen 19–9 (CA19–9), white blood cell count
(WBC), platelet count (PLT), creatinine (CRE), largest tumor size,
tumor number, macroscopic vascular invasion, lymph node
metastasis, extra-hepatic metastasis, and tumor–node–metastasis
(TNM) stages. A summary of demographic and clinical
characteristics is presented in Table 1. The blood tests and tumor
burdens were measured within 5 days before the treatment. After
treatment had been initiated, the radiological response was
evaluated by magnetic resonance imaging (MRI) or computed
tomography (CT) performed at baseline and every 6 weeks.
Response Evaluation Criteria in Solid Tumors (RECIST)1.1 and
modified RECIST (mRECIST) were used for evaluating the tumor
response (Eisenhauer et al., 2009; Llovet and Lencioni, 2020).

Overall survival (OS) was defined as the time interval from first-
line treatment to cancer-related death. Progression-free survival
(PFS) was defined as the interval from first-line treatment to
disease progression, iCCA relapse, or the date of death from
iCCA or the date of the last follow-up. Intrahepatic progression-
free survival (IPFS) was defined as the interval from the first-line
treatment to intrahepatic tumor progression, iCCA relapse, or the
date of death from iCCA or the date of the last follow-up, regardless
of extrahepatic metastasis.
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Statistical analysis

Non-normally distributed data were expressed as medians
and ranges. Continuous parametric variables were analyzed by
the unpaired Student’s t-test, and continuous non-parametric
variables were analyzed by the Mann–Whitney U test.
Categorical data were analyzed by Pearson’s correlation
coefficient, chi-squared test with continuity corrections, or
Fisher’s exact probability method. Forward LR-based
univariate and multivariate Cox regression analyses were
conducted to identify independent predictive variables. The
OS and PFS were shown by Kaplan–Meier curves, and
differences between the groups were compared using the
results of the log-rank test. The p-value <0.05 was
considered statistically significant. All the analyses were
performed using SPSS 25.0 software (SPSS Inc., Chicago, IL)
and R version 4.0.1.

Results

Patient characteristics

Between March 2016 and March 2022, 146 patients diagnosed
with iCCA who initially received HAIC or first-line SC were selected
at Sun Yat-sen University Cancer Center, China. There were
75 patients in the HAIC group and 71 patients in the SC group
(Figure 1). Detailed characteristics of each group are shown in
Table 1. No significant baseline differences existed between the
HAIC and SC groups.

In the HAIC group, the median age was 54 years old, 52 patients
were male subjects, the largest tumor size of 25 (33.3%) patients was
longer than 10 cm, a majority of patients had multiple tumors
(66.7%), a total of 23 (30.7%) patients had macrovascular
invasion, 51 (68%) patients had lymph node metastasis, and 17
(22.7%) patients had extra-hepatic metastasis. In the SC group, the

TABLE 1 Baseline characteristics of two group patients.

Variable HAIC group (n = 75) SC group (n = 71) p-value

Age (years) 54 (28–78) 57 (32–80) 0.152

Gender (men/women) 52/23 (69.3/30.7) 40/31 (56.3/43.7) 0.104

Hepatitis (yes/no) 34/41 (45.3/54.7) 25/46 (35.2/64.8) 0.213

ECOG (1–2/0) 45/30 (60/40) 40/31 (56.3/43.7) 0.654

Preoperative blood tests

AST (IU/L) 35.8 (14.8–169.1) 30.5 (11.8–174) 0.311

ALT (IU/L) 27.6 (7.4–179.4) 23.7 (8.5–209.2) 0.999

ALB (g/L) 41.5 (25.9–53.5) 41.4 (30.6–48) 0.316

TBIL (umol/L) 12.5 (5.4–69.5) 11.6 (3.8–256) 0.492

CEA (ng/mL) 4.2 (0.3–6,395) 4.6 (0.5–8,952) 0.945

CA19–9(U/mL) 90.1 (1.0–200000) 152 (0.6–200000) 0.531

WBC(109/L) 8.0 (4.4–26.6) 8.4 (4.7–14.8) 0.177

PLT (109/L) 272 (66–490) 232 (81–578) 0.302

CRE(umol/L) 66.4 (30.6–133) 62.5 (30.6–133) 0.683

Tumor burden

Largest tumor size, cm (>10/≤10) 25/50 (33.3/66.7) 14/57 (19.7/80.3) 0.063

Tumor numbers (single/multiple) 25/50 (33.3/66.7) 22/49 (31/69) 0.762

Macrovascular invasion (yes/no) 23/52 (30.7/69.3) 18/53 (25.4/74.6) 0.475

Lymph node metastasis (yes/no) 51/24 (68/32) 47/24 (66.2/33.8) 0.817

Extrahepatic metastasis (yes/no) 17/58 (22.7/77.3) 24/47 (33.8/66.2) 0.135

TNM stage (III-IV/II) 56/19 (74.7/25.3) 56/15 (78.9/21.1) 0.548

Cycle times 4 (2–8) 3 (2–7) 0.628

Combination therapy (yes/no) 32/43 (42.6/57.3) 26/45 (36.6/63.4) 0.455

Values are presented as the median (range) or n (%).

Abbreviations: HAIC, hepatic arterial infusion chemotherapy; SC, systemic chemotherapy; ECOG, Eastern Cooperative Oncology Group; AST, aspartate transaminase; ALT, alanine

transaminase; ALB, albumin; TBIL, total bilirubin; CEA, carcinoembryonic antigen; CA19–9, carbohydrate antigen 19–9; WBC, white blood cell; PLT, platelet count; CRE, creatinine; TNM,

tumor–node–metastasis.
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median age was 57 years old, and 40 patients were male subjects, the
largest tumor size of 14 (19.7%) patients was longer than 10 cm, a
majority of patients had multiple tumors (69%), a total of 18 (25.4%)
patients had macrovascular invasion, 47 (66.2%) patients had lymph
node metastasis, and 24 (33.8%) patients had extra-hepatic
metastasis. According to characteristics of a tumor, most patients
in this study had large tumor burden and advanced iCCA.

Univariate and multivariate Cox regression
analyses in the cohorts

Prognostic factors of all clinical variables were analyzed in
univariate analysis. Univariate analyses showed that ECOG,
tumor number, extra-hepatic metastasis, and TNM stages were
significant risk factors for patients’ OS. Univariate analysis for
PFS showed that ECOG, CA19–9, and extra-hepatic metastasis
were significant risk factors. More details are described in
Table 2. The multivariate Cox proportional analysis revealed
that ECOG (p < 0.001) and extra-hepatic metastasis (p = 0.026)
were significant and independent prognostic factors of OS
(Table 2). The multivariate Cox proportional analysis revealed
that ECOG (p < 0.001), CA19–9 (p = 0.02), macrovascular
invasion (p = 0.02), and extra-hepatic metastasis (p = 0.001)
were significant and independent prognostic factors of PFS
(Table 2).

Tumor response and patient survival

The median OS in the HAIC and SC groups was 18.0 and
17.8 months, respectively. Meanwhile, the median PFS times in the
HAIC and SC groups were 10.8 and 11.4 months, respectively. There
was no significant difference between the two groups in OS (p = 0.84;
Figure 2A) and PFS (p = 0.59; Figure 2B). However, patients in the
HAIC group had significantly longer IPFS than patients in the SC
group (p = 0.035; Figure 2C). The median IPFS in the HAIC and SC
groups was 13.7 and 11.4 months, respectively. The median follow-
up in the HAIC and SC group was 16.8 and 17.7 months,
respectively (Supplementary Figure S1). Patients in the SC group
were divided into two subgroups (GEMCIS and GEMOX). GEMCIS
and GEMOX were compared with HAIC in OS and PFS
(Supplementary Figure S2).

The subgroup analyses of OS and PFS are shown in Figure 3.
HAIC provided a clinical benefit for OS and PFS in tumor number
subgroups. Single-tumor patients appeared to benefit more from it
in terms of OS (p = 0.047; Supplementary Figure S3A) and PFS (p =
0.009; Supplementary Figure S3B). The intrahepatic tumor
responses of the patients are shown in Table 3. On the basis of
RECIST1.1 and mRECIST criteria, HAIC showed an ORR two times
higher than SC (40% vs. 16.9%, p = 0.002, RECIST1.1; 45.3% vs.
21.2%, p = 0.002, mRECIST). The optimal response for intrahepatic
target lesions by patients according to RECIST1.1 criteria is shown
in the waterfall plot in Figure 4.

FIGURE 1
Flowchart for patient inclusion. Abbreviations: iCCA, intrahepatic cholangiocarcinoma; HAIC, hepatic arterial infusion chemotherapy; SC, systemic
chemotherapy.
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Adverse events and safety

In general, the SC resulted in more AEs than those in HAIC
(Table 4). The frequencies of rash (3 [4%] vs. 20 [28.2%]; p <
0.001), vomiting (27 [36%] vs. 51 [71.8%]; p < 0.001), fatigue
(19 [25.3%] vs. 35 [49.3%]; p < 0.001), leukopenia (9 [12%] vs.
20 [28.2%]; p = 0.014), anemia (13 [17.3%] vs. 33 [46.5%]; p <
0.001), and sensory neuropathy (9 [12%] vs. 18 [25.4%]; p =
0.038) were lower in the HAIC group. Meanwhile, the overall

incidence of serious AEs was higher in the SC group than that in
the HAIC group. The frequencies of grades 3–4 vomiting
(1 [1.3%] vs. 8 [11.2%]; p = 0.032), leukopenia (0 [0] vs.
5 [7%]; p = 0.025), and anemia (0 [0] vs. 6 [8.5%]; p = 0.012)
were significantly higher in the SC group than those in the HAIC
group. There were no significant differences in the frequencies of
fever (15 [20%] vs. 10 [14.1%]; p = 0.343), abdominal pain
(19 [25.3%] vs. 13 [18.3%]; p = 0.305), diarrhea (2 [2.7%] vs.
2 [2.8%]; p = 1.000), neutropenia (6 [8%] vs. 9 [12.7%]; p = 0.352),

TABLE 2 Univariate and multivariate Cox regression analyses of risk factors for overall survival and progression-free survival.

Variable OS PFS

Univariate Multivariate Univariate Multivariate

HR (95% CI) p-value HR (95% CI) p-value HR (95% CI) p-value HR (95% CI) p-value

Age, y (>/≤50) 0.99 (0.59–1.67) 0.96 0.78 (0.51–1.22) 0.28

Gender (men/women) 1.05 (0.65–1.67) 0.85 1.17 (0.74–1.86) 0.5

Hepatitis (yes/no) 1.29 (0.82–2.03) 0.27 1.29 (0.82–2.00) 0.27

ECOG (≥1/0) 13.48 (5.83–31.17) <0.001 13.18 (5.7–30.5) <0.001 4.22 (2.39–7.44) <0.001 4.52 (2.53–8.06) <0.001

ALB, g/L, (>/≤35) 0.60 (0.29–1.21) 0.16 0.68 (0.35–1.33) 0.26

TBIL, umol/L, (>/≤17.1) 1.21 (0.70–2.11) 0.49 1.62 (0.94–2.78) 0.08

CA19–9,U/mL, (>/≤100) 0.98 (0.62–1.54) 0.92 1.68 (1.08–2.59) 0.02 1.69 (1.09–2.62) 0.02

CEA, ng/mL (>5/≤5) 1.54 (0.76–3.10) 0.23 1.21 (0.58–2.51) 0.61

Largest tumor size (>/≤10 cm) 1.49 (0.93–2.39) 0.09 0.81 (0.51–1.3) 0.39

Tumor numbers (>1/1) 1.65 (1.05–2.61) 0.03 1.28 (0.81–2.02) 0.29

Macrovascular invasion (yes/no) 0.77 (0.46–1.29) 0.33 1.55 (0.94–2.56) 0.08 1.79 (1.08–2.99) 0.02

Lymph node metastasis (yes/no) 0.83 (0.51–1.33) 0.43 1.19 (0.75–1.89) 0.47

Extrahepatic metastasis (yes/no) 1.86 (1.17–2.95) 0.008 1.69 (1.01–2.67) 0.026 2.12 (1.37–3.29) 0.001 2.12 (1.35–3.32) 0.001

TNM stage (III-IV/II) 1.76 (1.0–3.1) 0.05 1.70 (0.97–2.97) 0.06

Therapy (SC/HAIC) 0.95 (0.61–1.51) 0.84 1.13 (0.72–1.77) 0.59

p-value <0.05 is statistically significant in both univariate and multivariate analyses.

Abbreviations: ECOG, Eastern Cooperative Oncology Group; ALB, albumin; TBIL, total bilirubin; CA19–9 carbohydrate antigen 19–9; CEA, carcinoembryonic antigen; TNM,

tumor–node–metastasis; SC, systemic chemotherapy; HAIC, hepatic artery infusion chemotherapy.

FIGURE 2
Overall survival and progression-free survival of the two groups of patients. Kaplan–Meier curves of (A) overall survival, (B) progression-free survival,
and (C) intrahepatic progression-free survival for patients in the HAIC and SC groups.
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thrombocytopenia (8 [10.7%] vs. 16 [22.5%]; p = 0.053), elevated
ALT (20 [26.7%] vs. 16 [22.5%]; p = 0.563), elevated AST
(30 [40%] vs. 24 [33.8%]; p = 0.438), hyperbilirubinemia
(12 [16%] vs. 10 [14.1%]; p = 0.746), hypoalbuminemia
(37 [49.3%] vs. 34 [47.9%]; p = 0.861), and elevated creatinine
(8 [10.7%] vs. 6 [8.5%]; p = 0.649). In the HAIC group, three (4%)
patients delayed and discontinued treatment because of AEs. In
the SC group, seven (9.86%) patients delayed and discontinued
the treatment because of AEs.

Discussion

It is widely acknowledged that iCCA is a gastrointestinal
adenocarcinoma with a high level of malignancy and poor
prognosis. In addition, most of the patients with iCCA cannot
receive surgery because of advanced disease in iCCA, and these
patients with unresectable iCCA undergo chemotherapy to control
tumor development. Over the past years, GEMCIS and GEMOX
have become the standard first-line chemotherapy regimen

FIGURE 3
Forest plots of (A) overall survival and (B) progression-free survival in different patient subgroups. Abbreviations: HR, hazard ratio; CI, confidence
interval; ECOG, Eastern Cooperative Oncology Group; ALB, albumin; TBIL, total bilirubin; CA19–9, carbohydrate antigen 19–9; CEA, carcinoembryonic
antigen; TNM, tumor–node–metastasis.

TABLE 3 Intra-hepatic tumor responses evaluated by RECIST1.1 and mRECIST criteria.

Response RECIST1.1 mRECIST

HAIC group (n = 75) SC group (n = 71) p-value HAIC group (n = 75) SC group (n = 71) p-value

CR 0 0 – 2 (2.7%) 0 -

PR 30 (40%) 12 (16.9%) – 32 (42.6%) 15 (21.1%) -

SD 36 (48%) 51 (71.8%) – 32 (42.6%) 48 (67.6%) -

PD 9 (12%) 8 (11.2%) – 9 (26.7%) 8 (31%) -

ORR 30 (40%) 12 (16.9%) 0.002 34 (45.3%) 15 (21.1%) 0.002

DCR 66 (88%) 63 (88.7%) 0.89 66 (88%) 63 (88.7%) 0.89

Abbreviations: HAIC, hepatic arterial infusion chemotherapy; SC, systemic chemotherapy; CR, complete response; PR, partial response; SD, stable disease; PD, progressive disease; ORR,

objective response rate; DCR, disease control rate.
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(Okusaka et al., 2010; Valle et al., 2010; Fiteni et al., 2014; Grenader
et al., 2015). However, the occurrence of AEs is an urgent problem to
be solved for SC. There is also an urgent need to find a regimen to
reduce the occurrence of AEs while achieving similar survival
benefits. Localized arterial treatment such as HAIC, TACE, and
transarterial radioembolization (TARE) might be important

treatment options for advanced cholangiocarcinoma (Mosconi
et al., 2021; Ishii et al., 2022; Schaarschmidt et al., 2023). A
previous study clarified that patients receiving TARE as first-line
therapy had a 68.6% disease control rate and a median OS of
12 months (Schaarschmidt et al., 2023). In addition, a systemic
review and meta-analysis demonstrated that the median OS after

FIGURE 4
Waterfall plot for tumor size changes in intrahepatic target lesions. Abbreviations: PD, progressive disease; PR, partial response.

TABLE 4 Objective treatment-related adverse events.

Any grade Grades 3–4

Adverse event HAIC group (n = 75) SC group (n = 71) p-value HAIC group (n = 75) SC group (n = 71) p-value

Rash 3 (4%) 20 (28.2%) <0.001 0 0 –

Fever 15 (20%) 10 (14.1%) 0.343 0 0 –

Abdominal pain 19 (25.3%) 13 (18.3%) 0.305 3 (4%) 0 0.245

Vomiting 27 (36%) 51 (71.8%) <0.001 1 (1.3%) 8 (11.2%) 0.032

Fatigue 19 (25.3%) 35 (49.3%) 0.003 0 0 –

Diarrhea 2 (2.7%) 2 (2.8%) 1.000 0 0 –

Leukopenia 9 (12%)) 20 (28.2%) 0.014 0 5 (7.0%) 0.025

Neutropenia 6 (8%) 9 (12.7%) 0.352 1 (1.3%) 4 (5.6%) 0.331

Anemia 13 (17.3%) 33 (46.5%) <0.001 0 6 (8.5%) 0.012

Thrombocytopenia 8 (10.7%) 16 (22.5%) 0.053 0 3 (4.2%) 0.112

Elevated ALT 20 (26.7%) 16 (22.5%) 0.563 1 (1.3%) 1 (1.4%) 1.000

Elevated AST 30 (40%) 24 (33.8%) 0.438 2 (2.7%) 2 (2.8%) 1.000

Hyperbilirubinemia 12 (16%) 10 (14.1%) 0.746 2 (2.7%) 1 (1.4%) 1.000

Hypoalbuminemia 37 (49.3%) 34 (47.9%) 0.861 0 1 (1.4%) 0.486

Elevated creatinine 8 (10.7%) 6 (8.5%) 0.649 0 0 –

Sensory neuropathy 9 (12%) 18 (25.4%) 0.038 0 0 –

Some patients may have multiple immune-related adverse events.

Abbreviations: HAIC, hepatic arterial infusion chemotherapy; SC, systemic chemotherapy; ALT, alanine aminotransferase; AST, aspartate aminotransferase.
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TACE was 14.2 months, while after TARE, it was 13.5 months for
advanced iCCA (Mosconi et al., 2021). Meanwhile, few previous
studies indicated that HAIC combined with systemic gemcitabine
(GEM) and oxaliplatin may be an effective therapy for patients with
advanced iCCA (Marumoto et al., 2014; Cercek et al., 2020). A
retrospective study indicated the mFOLFOX regimen used in HAIC
could be a new option for patients with iCCA (Cai et al., 2021). Some
prospective studies demonstrated that HAIC with mFOLFOX had
relatively low toxicity for hepatocellular carcinoma (HCC) (He et al.,
2019; Li et al., 2022; Lyu et al., 2022; Li et al., 2023). Although these
studies focused on HCC patients, the safety of HAIC with
mFOLFOX was still of clinical significance for patients with
iCCA, and HAIC with FOLFOX might be a feasible and
promising regimen for treating iCCA patients.

In the current study of 146 patients, we compared HAIC with
the first-line SC (GEMCIS and GEMOX) and found that patients in
the HAIC group had significantly longer IPFS than patients in the
SC group and that HAIC showed an ORR higher than SC. In
subgroup analyses, single-tumor patients appeared to benefit
from considering HAIC in terms of OS and PFS, indicating that
HAIC might have a better efficacy than SC in relatively early-stage
unresectable iCCA patients and that HAIC could control liver
lesions better than SC. One potential explanation for this is that
HAIC can provide higher concentrations of the chemotherapeutic
agents in the liver than SC, therefore contributing to control tumor
in the liver. As is known to all, the liver possesses a dual blood
supply. In detail, the hepatic artery provides nearly all of the tumor’s
blood flow, and the portal vein supplies blood to the non-neoplastic
liver parenchyma. HAIC could preferentially deliver more
chemotherapeutic agents to the hepatic artery, which contributes
to controlling tumors in the liver.

We also found that patients with unresectable iCCA had similar
OS and PFS after HAIC or SC treatment, suggesting that HAIC had a
similar clinical efficiency to SC in the outcomes of patients. Although
HAIC could better control intrahepatic tumors compared to SC, there
were no significant differences in the outcome of patients. It could be
explained by the fact that in this study, most patients were at the
advanced stage and had extrahepatic metastases. The progression of
extrahepatic lesions resulted in the death of patients, and HAIC had a
poor control effect on extrahepatic lesions. Therefore, it would be an
excellent clinical treatment strategy to add immune therapy and
targeted therapy or SC on the basis of HAIC for those patients
with extrahepatic metastasis.

Safety and the incidence of AEs are also important indicators for
evaluating the chemotherapy regimen apart from the therapeutic
effect. The common objective treatment-related AEs observed in this
study were rash, fever, abdominal pain, vomiting, fatigue, diarrhea,
leukopenia, neutropenia, anemia, thrombocytopenia, elevated ALT,
elevated AST, hyperbilirubinemia, hypoalbuminemia, elevated
creatinine, and sensory neuropathy. In general, the ratio of AEs
in the HAIC group was lower than that in the SC group. The
frequencies of rash, vomiting, fatigue, leukopenia, anemia, and
sensory neuropathy were also lower in the HAIC
group. Hematologic toxicity and liver function damage were the
main grade 3-4 AEs in this study. In addition, the frequencies of
grade 3–4 AEs were lower in the HAIC group. One possible reason
for this is that HAIC enables the delivery of chemotherapy drugs
directly into the liver, causing a relatively low systemic blood

concentration of drugs. However, SC is the intravenous
administration of chemotherapy drugs. In order to achieve the
effect of killing liver tumors, the systemic blood concentration of
the drug must be at a high level to cause damage to various systems
in the body. It is also possible that the liver could clear the drugs via
first-pass metabolism to approach diminish systemic toxic effects
(Ensminger and Gyves, 1983; Cohen and Kemeny, 2003; Cercek
et al., 2020). Meanwhile, most of these AEs were controlled after
symptomatic treatment for the HAIC group and would not affect the
next session. Therefore, HAIC may be a safe and effective
therapeutic regimen for treating patients with unresectable iCCA.

This study also had few limitations. First, it was a retrospective
study, and all of the patients came from a single center; thus, further
prospective, large-sample, and randomized studies are needed to
confirm our findings. Second, the relatively small sample size was
limited by the generalizability of our results, and there was a risk of
type II error. Finally, more bench-scale research studies are needed
to determine the intrinsic mechanism guiding HAIC for patients
with iCCA.

In conclusion, this study demonstrated that HAIC was a safe and
effective therapeutic regimen in the cohort of 146 patients with
unresectable iCCA. Meanwhile, our study indicated that patients
with single tumor are most likely to benefit from HAIC than SC.
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Oncology, Bishan Hospital of Chongqing Medical University, Chongqing, China, 5Department of
Gastroenterology and Hepatology, Bishan Hospital of Chongqing Medical University, Chongqing,
China
Background: This study aimed to evaluate the efficacy and safety of sequential

immune checkpoint inhibitors (ICIs) plus bevacizumab therapy after radiotherapy

for portal vein tumour thrombosis (PVTT) in patients with hepatocellular

carcinoma (HCC).

Methods: Retrospective data were collected from 113 patients with HCC with

PVTT. Patients in the PVTT radiotherapy (radiotherapy + ICIs + bevacizumab) and

control groups (ICIs + bevacizumab) were enrolled according to propensity

score matching (PSM) analysis (1:1). The differences in progression-free survival

(PFS), objective response rate (ORR), disease control rate (DCR), and potential

factors affecting PFS between the groups were analysed. The adverse events

(AEs) were compared between the two groups.

Results: There were 47 patients in the two groups after PSM (1:1). The differences

in neutrophil and lymphocyte counts, neutrophil-to-lymphocyte ratio (NLR),

CRP, and CD4, CD8, and CD4-to-CD8 ratio before and after radiotherapy for

PVTT (P < 0.05) in the PVTT radiotherapy group were significant. The patients in

the PVTT radiotherapy group had a longer PFS (median, 9.6 vs. 5.4 months, P <

0.001), and the PFS rates of 3, 6, 9, and 12 months were 97.87% vs. 94.19%,
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80.85% vs. 44.68%, 53.19% vs. 6.38%, and 23.40% vs. 0.00%, respectively (P <

0.001). There were also significant differences in the ORR (48.94% vs. 27.66%, P =

0.0339) and DCR (97.87% vs. 82.98%, P = 0.0141) between the two groups, and

no serious AEs were observed. Multivariate Cox analysis showed that AFP

expression, gross classification of HCC, PVTT type, extrahepatic metastasis,

PVTT radiotherapy, and reduction in PVTT were independent factors

influencing PFS (P < 0.05).

Conclusions: Sequential ICIs plus bevacizumab therapy after radiotherapy for PVTT

in patients with HCC is safe and feasible andmay further prolong the PFS of patients.
KEYWORDS

hepatocellular carcinoma, portal vein tumour thrombosis, radiotherapy, immune
checkpoint inhibitors, bevacizumab
1 Introduction

Hepatocellular carcinoma (HCC) has the clinical characteristics

of insidious onset, rapid progression, early recurrence, poor

prognosis, and high morbidity and mortality (1). Approximately

three in four liver blood samples come from the portal vein system,

and HCC is prone to invade the portal vein system to form portal

vein tumour thrombosis (PVTT), with an incidence of ~44–66.2%

(2). Patients with HCC and PVTT often had liver reserve damage,

tumour invasion, and portal hypertension manifestations. PVTT is

one of the most severe prognostic factors of HCC, and the median

survival time of the patients without treatment was 2.7–4.0 months

(2). Percutaneous portal vein stenting can open the portal vein to

protect liver function and reduce portal hypertension; however, it

cannot prevent the progression of PVTT. However, there is no

international consensus on the diagnostic and treatment criteria for

PVTT complicated by HCC, which causes great difficulties in the

selection of treatment and prediction of efficacy. Transhepatic

arterial chemotherapy and embolisation (TACE) is the standard

treatment for patients with unresectable HCC. However, TACE has
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lower efficacy and safety than hepatectomy for patients with HCC

and PVTT (3). The current Barcelona clinic liver cancer (BCLC)

classification of HCC with PVTT is at an advanced stage; therefore,

sorafenib or lenvatinib is generally recommended as first-line

therapy for these patients (2). Although evidence for the efficacy

of systemic therapy for advanced HCC is expanding, data on

treatment guidance for a subgroup of patients with HCC with

PVTT remain limited.

The liver is the “immune preferential organ”, the immune

system in the liver is not sensitive to foreign bodies for its

functional needs, resulting in the escape of primary liver tumour

cells from the immune system’s surveillance and attack, also known

as “immune escape”. Immunocheckpoint inhibitors (ICIs) such as

programmed death-1/programmed death ligand 1 (PD-1/PD-L1)

enable autoimmune cells to play an anti-tumour role by relieving

the inhibition of immune cells. The FDA approved nivolumab as a

second-line treatment for patients with HCC after sorafenib

treatment in 2017, marking the official entry into the

immunological era of HCC treatment. With the release of clinical

results, CheckMate040 (4), KEYNOTE-240 (5), KEYNOTE-224 (6),

SHR-1210 (7), pembrolizumab (PD-1), and atezolizumab (PD-L1)

have been recommended as treatment options for HCC in multiple

clinical guidelines, both domestically and overseas. Clinical research

IMbrave 150 (8) and ORIENT-32 (9) showed better progression-

free survival (PFS) and overall survival (OS) when ICIs plus

bevacizumab were used as the first-line treatment for patients

with advanced-stage HCC. However, the results of current clinical

trials showed that the objective response rate (ORR) of ICIs plus

bevacizumab treatment was still low. Therefore, there is an urgent

need to explore combination treatments to improve treatment

response rates.

The release of tumour antigens is an initial factor in the seven

key links of immunotherapy. Tumour cells become necrotic after

radiotherapy, and the immune system is fully activated, releasing

tumour antigens (10). Therefore, PVTT radiotherapy combined

with ICIs is theoretically feasible for the treatment of HCC.

However, no relevant clinical studies have been conducted thus
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far. Our study aimed to investigate the changes in immune-related

indicators after radiotherapy for PVTT in patients with HCC, to

evaluate the efficacy and safety of sequential ICIs plus bevacizumab

therapy after radiotherapy for PVTT, and to preliminarily explore

the factors affecting the efficacy in these patients.
2 Methods

2.1 Inclusion and exclusion criteria

Inclusion criteria: HCC was diagnosed clinically or

pathologically according to the diagnostic criteria of the

American Liver Association. All patients were found with PVTT

by ultrasound B, computerized tomography (CT), magnetic

resonance imaging (MRI) or digital subtraction angiography

(DSA). Patients had no history of anti-tumour therapy and met

the indications of medical and local treatments. None of them had

received chemotherapy, targeted molecular drugs, PD-1/PD-L1

immunotherpay, et al. The control group was treated with ICIs

plus bevacizumab as the first-line treatment, and the PVTT

radiotherapy group was treated with radiotherapy of PVTT

followed by ICIs plus bevacizumab. The interval between

radiotherapy of PVTT and systemic treatment must less than 1

month; Eastern Cooperative Oncology Group performance status

score (ECOG-PS score) 0-1; Child-Pugh class A or B; Complete

follow-up data were available.

Exclusion criteria: Suspected non-PVTT formation, PVTT

intervention and other treatment history, combined with severe

heart, liver and renal insufficiency, unable to complete treatment,

bleeding tendency, significantly prolonged coagulation time,

international normalized ratio (INR) >1.5, ECOG-PS score ≥2,

Child-Pugh class C or D, systemic treatment after more than 1

month of PVTT radiotherapy, accompanied by other primary

tumour or serious disease. Patients with red-color sign, severe

esophagogastric fundus varices, history of hematemesis, aggressive

tumour which had struck a major blood vessel were excluded. Rigor

criteria including blinding, randomization of groups, and power

analysis are not relevant to the study.
2.2 Clinical data

According to the inclusion and exclusion criteria, patients with

PVTT diagnosed in the Second Affiliated Hospital of Chongqing

Medical University, Sichuan Mianyang 404 Hospital and Bishan

Hospital Affiliated to Chongqing Medical University from January

1, 2020 to June 31, 2022 were collected and selected. The sex, age,

smoking history, alcohol consumption, diabetes, hypertension,

cardiovascular disease, China liver cancer staging (CNCL), Child-

Pugh class, ECOG-PS score Cause of hepatitis, liver cirrhosis,

Quantity of hepatitis B virus deoxyribonucleic acid (HBV-DNA),

serum alpha fetoprotein (AFP) expression, tumour gross

classification of primary liver cancer (giant, massive, nodular,
Frontiers in Immunology 03126
diffuse), Classification of PVTT, tumour metastasis and ICIs

treatment of every patients were recorded.
2.3 Treatment

2.3.1 Radiotherapy
Intensity-modulated radiation therapy (IMRT) was used as

external radiotherapy for PVTT. The radiotherapy target volume

was delineated by a radiologist under CT guidance with a total dose

of 45 Gy (3 Gy ×15 fractions) for planning target volume (PTV),

and radiotherapy was performed weekly from Monday to Friday.

2.3.2 ICIs + bevacizumab therapy
PD-1 inhibitors Sintilimab (injection, 100 mg/bottle, Xinda

Biopharmaceutical (Suzhou) Co. Ltd) 200 mg every 3 weeks,

Camrelizumab (injection, 200 mg/bottle, Suzhou Shengdia

Biomedicine Co. Ltd) 200 mg every 3 weeks, or PD-L1 inhibitor

Atezolizumab (injection, 1200 mg/bottle, Roche Diagnostics GmbH)

1200 mg every 3 weeks, plus bevacizumab (injection, 100 mg/bottle,

Roche Pharma (Switzerland) Ltd. or Qilu Pharmaceutical Co. Ltd) 15

mg/kg every 3 weeks therapy was continued within 1–2 weeks after

the end of PVTT radiotherapy. The control group received PD-1/PD-

L1 inhibitors plus bevacizumab as first-line treatment. PD-1/PD-L1

inhibitors and bevacizumab were administered every 21 d until

discontinuation, delay in intolerable side effects, or serious

treatment-related adverse events (AEs).
2.4 Observe indicators

PVTT radiotherapy group: Hematological indicators including

Albumin, total bilirubin (TBIL), Alamine aminotransferase (ALT),

Aspartate aminotransferase (AST), prothrombin time (PT),

hemoglobin, neutrophils, lymphocytes, C-reactive protein (CRP)

within 3 days before radiotherapy and before systemic treatment (or

within 2 weeks after the end of radiotherapy), and neutrophils-to-

lymphocytes ratio (NLR) and CD4-to-CD8 lymphocytes ratio

were calculated.

Follow-up: All patients underwent liver-enhanced CT or MRI

every 6-8 weeks during the treatment. All patients were evaluated

according to RECIST1.1 criteria and divided into complete response

(CR), partial response (PR), stable disease (SD), and progressive

disease (PD). Survival analysis: Progression-free survival (PFS) was

defined as the time from initial treatment to first tumour progression,

death, or the end of follow-up. The concept of PFS in our study refers

to disease progression regardless of local (liver), distant (metastasis),

or NVPT progression. The ORR was defined as the proportion of

patients whose tumour volume reduced to a prespecified value and

maintained a minimum duration and was calculated as the sum of

CR and PR (CR+PR), whereas the disease control rate (DCR) was

defined as the proportion of patients whose tumours had shrunk or

remained stable for a certain period of time, including CR, PR, and

SD cases (CR+PR+SD). PFS and AEs were analysed in both groups.
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2.5 Statistical analysis

Propensity score matching (PSM) analysis was used to

minimise potential confounders and selection bias and to balance

the patient baseline characteristics between groups. The propensity

score was estimated for each patient using a multivariate logistic

regression model, and 1:1 group matching was performed using the

nearest-neighbour matching method without replacement.

Variables including sex, age, smoking history, alcohol

consumption, diabetes, hypertension, cardiovascular disease,

CNCL staging, Child-Pugh class, ECOG performance status score,

cause of hepatitis, liver cirrhosis, quantity of HBV DNA, AFP

expression, gross classification of primary liver cancer,

classification of PVTT, tumour metastasis, and ICIs were

matched. A calliper width of 0.2 standard deviations was set to

prevent poor matching.

The primary endpoints of this study were PFS, ORR, and DCR,

and the secondary endpoints were adverse events. Descriptive

statistical methods were used to summarise the baseline

characteristics of the patients. SPSS version 26.0 (RRID:

SCR_002865, IBM, Armonk, New York, USA) (https://

www.ibm.com/spss), and GraphPad Prism (version 9.0; RRID:

SCR_ 0 0 2 7 9 8 , G r a p hP a d S o f t w a r e , CA ) ( h t t p s : / /

www.graphpad.com) were used to analyse the data. Statistical

Tests and measurement data were analysed using t-tests.

Enumeration data were analysed by c2 test, Cox regression model

was used for survival analysis, and P < 0.05 was considered

statistically significant.
Frontiers in Immunology 04127
3 Results

3.1 General information

A total of 113 patients with complete data were screened according

to the inclusion and exclusion criteria, of whom 55 were treated with

ICIs plus bevacizumab after PVTT radiotherapy (PVTT radiotherapy

group) and 58 were treated with ICIs plus bevacizumab therapy

(control group). Overall, 47 patients in the PVTT radiotherapy

group and 47 in the control group were enrolled in the PSM analysis

(1:1), whereas eight patients in the PVTT radiotherapy group and 9 in

the control group (17 patients) were excluded by PSM.

Characteristics including sex, age, smoking history, smoking

history, drinking, diabetes, hypertension, cardiovascular disease,

CNCL staging, Child–Pugh class, ECOG performance status

score, cause of hepatitis, liver cirrhosis, quantity of HBV DNA,

AFP expression, gross classification of primary liver cancer,

classification of PVTT, tumour metastasis, and ICIs were matched

and are shown in Table 1. There were no significant differences in

the baseline characteristics between the two groups (P > 0.05).
3.2 Analysis of indicators before and after
radiotherapy of PVTT in patients with HCC

A total of 55 patients with PVTT radiotherapy and ICIs plus

bevacizumab therapy group, the hemoglobin, neutrophils,

lymphocytes, CRP, albumin, total bilirubin, ALT, AST,
TABLE 1 Characteristics of all patients in the two groups.

Total group
(n=113)

P
value

PSM group (1:1)
(n=96)

P
value

PVTT
radiotherapy
group(n=55)

Control group
(n=58)

PVTT
radiotherapy
group
(n=47)

Control
group
(n=47)

Sex 0.91 0.77

Male 47 (85.45) 50 (86.21) 41 (87.23) 40 (85.11)

Female 8 (14.55) 8 (13.79) 6 (12.77) 7 (14.89)

Age(years) – –

Median 52 54 50 56

Range 32-72 16-79 32-70 16-79

Smoking history 0.92 0.53

Former 26 (47.27) 28 (48.28) 23 (48.94) 20 (42.55)

Never 29 (52.73) 30 (51.72) 24 (51.06) 27 (57.45)

Alcohol consumption 0.85 0.51

Yes 17 (30.91) 17 (29.31) 17 (36.17) 14 (29.79)

(Continued)
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TABLE 1 Continued

Total group
(n=113)

P
value

PSM group (1:1)
(n=96)

P
value

PVTT
radiotherapy
group(n=55)

Control group
(n=58)

PVTT
radiotherapy
group
(n=47)

Control
group
(n=47)

No 38 (69.09) 41 (70.69) 30 (63.83) 33 (70.21)

Diabetes 0.50 > 0.99

Yes 8 (14.55) 6 (10.34) 6 (12.77) 6 (12.77)

No 47 (85.45) 52 (89.66) 41 (87.23) 41 (87.23)

Hypertension 0.92 0.46

Yes 7 (12.73) 7 (12.07) 3 (6.38) 5 (10.64)

No 48 (87.27) 51 (87.93) 44 (93.62) 42 (89.36)

Cardiovascular disease 0.28 > 0.99

Yes 3 (5.45) 1 (1.72) 1 (2.13) 1 (2.13)

No 52 (94.55) 57 (98.28) 46 (97.87) 46 (97.87)

CNCLstaging 0.32 0.67

IIIa stage 34 (61.82) 41 (70.69) 28 (59.57) 30 (63.83)

IIIb stage 21 (38.18) 17 (29.31) 19 (40.43) 17 (36.17)

Child-Pugh class 0.30 0.37

A(5-6 score) 50 (90.91) 49 (84.48) 42 (89.36) 39 (82.98)

B(7-9 score) 5 (9.09) 9 (15.52) 5 (10.63) 8 (17.02)

ECOG performance status score 0.55 0.65

0 18 (32.73) 16 (27.59) 15 (31.91) 13 (27.66)

1 37 (67.27) 42 (72.41) 32 (68.09) 34 (72.34)

Cause of hepatitis 0.74 0.22

Hepatitis B(HBeAg/Carrier) 4 9(23/26) (89.09) 49 (15/34) (84.48) 43 (22/21) (91.49) 39 (12/27) (82.98)

Hepatitis C 1 (1.82) 1 (1.83) 0 (0.00) 0 (0.00)

NAFLD 5 (9.09) 8 (13.79) 4 (8.51) 8 (17.02)

Liver cirrhosis 0.63 > 0.99

Yes 30 (54.55) 29 (50.00) 26 (55.32) 26 (55.32)

No 25 (45.45) 29 (50.00) 21 (44.68) 21 (44.68)

Quantity of HBV-DNA 0.42 0.81

0~1×103 24 (48.98) 28 (57.14) 22 (51.46) 21 (53.85)

>1×103 25 (51.02) 21 (42.86) 21 (48.84) 18 (46.15)

AFP expression (ng/ml) 0.92 0.97

≥400 22 (40.00) 25 (43.10) 18 (38.30) 19 (40.43)

20~399 16 (29.09) 15 (25.86) 13 (27.66) 13 (27.66)

<20 17 (30.91) 18 (31.04) 16 (34.04) 15 (31.91)

Gross classification of primary liver
cancer

0.45 0.52

Giant 17 (39.91) 16 (27.59) 16 (34.04) 13 (27.66)

(Continued)
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prothrombin time, CD4, CD8 in routine analysis of blood, liver

function and coagulation were collected within 1 week before and 2

weeks after PVTT radiotherapy, NLR and CD4/CD8 lymphocyte

ratio were calculated (Table 2). All the indexes mentioned above were

tested by paired t-test, and the immune-related indexes including

neutrophil (3.09 ± 1.39 vs. 4.97 ± 1.65, t = 12.68, P < 0.05),

lymphocyte (0.96 ± 0.43 vs. 0.45 ± 0.27, t = 8.27, P < 0.05), CRP

(25.30 ± 38.35 vs. 41.87 ± 41.88, t = 3.18, P < 0.05), CD4 (490.33 ±

54.57 vs. 295.96 ± 35.26, t = 45.34, P < 0.05) and CD8 (270.93 ± 31.24

vs. 186.47 ± 24.30, t = 8.27, P < 0.05) before and after PVTT

radiotherapy were statistically significant (P < 0.05). NLR increased

from 3.57 ± 1.73 to 14.98 ± 10.74 (t = 8.24, P < 0.05), CD4/CD8 ratio

decreased from 1.81 ± 0.10 to 1.59 ± 0.11 (t = 17.23, P < 0.05). Shown

in Table 2.
3.3 Survival analysis (PFS, ORR, and DCR)

The median PFS of patients in PVTT radiotherapy group was

9.6 months, and the PFS rates at 3, 6, 9, and 12 months were 46
Frontiers in Immunology 06129
(97.87%), 38 (80.85%), 25 (53.19%), and 11 (23.40%), respectively.

The median survival PFS was 5.4 months in the control group, and

the PFS rates at 3, 6, 9, and 12 months were 43 (91.49%), 21

(44.68%), 3 (6.38%), and 0 (0.00%), respectively (Table 3). PFS rates

(Figure 1A) and stage IIIa (Figure 1B) and IIIb (Figure 1C) PFS

rates of the PVTT radiotherapy group were better than those of the

control group (P < 0.001), as shown in Figure 1.

Compared with the control group, the patients in PVTT

radiotherapy group with CR were five cases vs. two cases (10.64%

vs. 4.26%), PR were 18 cases vs. 11 cases (38.30% vs. 23.40%), SD

patients were 23 cases vs. 26 cases (48.94% vs. 55.32%), PD patients

were one case vs. eight cases (2.13% vs. 27.66%), including one patient

with hyper-progression in the control group, ORR were 23 cases vs.

13 cases (48.94% vs. 27.66%), and DCR were 46 cases vs. 39 cases

(97.87% vs. 82.98%). There were significant differences in the best

response between the two groups (P = 0.0351), ORR (P = 0.0339) and

DCR (P = 0.0141) (Table 3). Based on RECISIT1.1, the waterfall plot

showed optimal tumour regression in the PVTT radiotherapy

combined with systemic therapy group (Figure 2A) and systemic

therapy-only groups (Figure 2a), and there were no significant
TABLE 1 Continued

Total group
(n=113)

P
value

PSM group (1:1)
(n=96)

P
value

PVTT
radiotherapy
group(n=55)

Control group
(n=58)

PVTT
radiotherapy
group
(n=47)

Control
group
(n=47)

Massive 19 (34.55) 15 (25.86) 14 (29.79) 11 (23.40)

Nodular 15 (27.27) 24 (41.38) 14 (29.79) 21 (44.68)

Diffuse 4 (7.27) 3 (5.17) 3 (6.38) 2 (4.26)

Classification of PVTT 0.57 0.65

Type I 6 (10.91) 7 (12.07) 4 (8.51) 5 (10.64)

Type II 26 (47.27) 20 (34.48) 21 (44.68) 15 (31.91)

Type III 19 (34.55) 25 (43.10) 18 (38.30) 22 (46.81)

Type IV 4 (7.27) 6 (10.35) 4 (8.51) 5 (10.64)

Tumour metastasis 0.72 0.90

Intrahepatic 36 (65.45) 42 (72.41) 29 (61.70) 33 (70.21)

Lung 12 (21.82) 8 (13.79) 11 (23.40) 8 (17.02)

Lymphonodi coeliaci 18 (32.73) 12 (20.69) 13 (27.66) 11 (23.40)

Bone 2 (3.64) 1 (1.72) 2 (4.26) 1 (2.13)

Kidney 1 (1.82) 1 (1.72) 1 (2.13) 1 (2.13)

Spleen 1 (1.82) 1 (1.72) 1 (2.13) 1 (2.13)

Omentum 0 (0.00) 1 (1.72) 0 (0.00) 1 (2.13)

ICIs 0.95 > 0.99

PD-L1 inhibitor 3 (5.45) 3 (5.17) 2 (4.26) 2 (4.26)

PD-1 inhibitor 52 (94.55) 55 (94.83) 45 (95.74) 45 (95.74)
fron
PVTT radiotherapy group, Radiotherapy+ICIs+Bevacizumab; Control group, ICIs+Bevacizumab; ICIs, immuno-checkpoint inhibitors; CNCL, China Liver Cancer Staging; ECOG, Eastern
Cooperative Oncology Group; NAFLD, non-alcoholic fatty liver disease; APF, alpha-fetoprotein; PVTT, portal vein tumour thrombosis; PD-L1, programmed cell death-ligand1; PD-1,
programmed cell death-1.
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differences in optimal tumour regression between the two groups at

stage IIIa (Figure 2B, b) and IIIb (Figure 2C, c). The spider plot shows

regression or growth in the PVTT radiotherapy combined with

systemic therapy group (Figure 3A), and systemic therapy-only

groups (Figure 3a) at each follow-up, and there were no significant
Frontiers in Immunology 07130
differences between the two groups in terms of stage IIIa (Figure 3B,

b) and IIIb (Figure 3C, c). A total of 42 patients experienced OS

events by the end of data collection in June 2022 of this research, and

the maturity of the current OS data reached 37.17%. Continued

follow-up of OS data will be presented in further research.
TABLE 2 Comparison of the index before and after radiotherapy for PVTT in the PVTT radiotherapy group (Radiotherapy + ICIs + Antiangiogenic) (n=55).

Before radiotherapy
(x±s)

After radiotherapy
(x±s)

t P

Hemoglobin(g/L) 129.69 ± 20.78 127.78 ± 20.90 0.96 0.34

Neutrophil(109/L) 3.09 ± 1.39 4.97 ± 1.65 12.68 < 0.05

Lymphocyte(109/L) 0.96 ± 0.43 0.45 ± 0.27 8.27 < 0.05

NLR 3.57 ± 1.73 14.98 ± 10.74 8.24 < 0.05

CRP (mg/L) 25.30 ± 38.35 41.87 ± 41.88 3.18 < 0.05

Albumin (g/dL) 38.85 ± 4.54 44.28 ± 45.78 0.89 0.38

TBIL (mmol/L) 18.35 ± 12.77 25.83 ± 59.43 1.10 0.28

ALT (U/L) 52.55 ± 46.98 40.27 ± 24.27 1.80 0.07

AST (U/L) 65.27 ± 48.75 56.13 ± 38.65 1.30 0.20

PT (s) 14.00 ± 1.23 13.88 ± 1.29 0.98 0.33

CD4(a/uL) 490.33 ± 54.57 295.96 ± 35.26 45.34 < 0.05

CD8(a/uL) 270.93 ± 31.24 186.47 ± 24.30 31.43 < 0.05

CD4/CD8 ratio 1.81 ± 0.10 1.59 ± 0.11 17.23 < 0.05
frontie
PVTT, portal vein tumour thrombosis; ICIs, immuno-checkpoint inhibitors; NLR, Neutrophil-to-Lymphocyte Ratio; CRP, C-reactive protein; TBIL, Total bilirubin; ALT, Alamine
aminotransferase; AST, Aspartate aminotransferase; PT, Prothrombin time.
TABLE 3 Survival analysis and response evaluation of patients in the two groups after PSM (1:1) (RECIST 1.1 version).

PVTT radiotherapy group
(Radiotherapy+ICIs+ Bevacizumab)

Control group
(ICIs+Bevacizumab)

P
Total
(n=47)

IIIa stage
(n=28)

IIIb stage
(n=19)

Total
(n=47)

IIIa stage
(n=30)

IIIb stage
(n=17)

mPFS
[months (95% CI)]

9.6
(1.187-2.664)

10.5
(1.004-2.812)

6.8
(0.8416-3.115)

5.4
(0.3754-0.8428)

6.25
(0.3556-0.9962)

4.2
(0.3210-1.188)

< 0.001

PFS Rate [n (%)] < 0.001

3 Months 46 (97.87) 28 (100.00) 18 (94.74) 43 (91.49) 29 (96.67) 14 (82.35)

6 Months 38 (80.85) 25 (89.29) 13 (68.42) 21 (44.68) 19 (63.33) 2 (11.76)

9 Months 25 (53.19) 19 (67.86) 6 (31.58) 3 (6.38) 3 (10.00) 0 (0.00)

12 Months 11 (23.40) 9 (32.14) 2 (10.53) 0 (0.00) 0 (0.00) 0 (0.00)

Best response [n (%)] 0.0351

CR 5 (10.64) 3 (10.71) 2 (10.53) 2 (4.26) 1 (3.33) 1 (5.88)

PR 18 (38.30) 12 (42.86) 6 (31.58) 11 (23.40) 9 (30.00) 2 (11.76)

SD 23 (48.94) 13 (46.43) 10 (52.63) 26 (55.32) 18 (60.00) 8 (47.06)

PD 1 (2.13) 0 (0.00) 1 (5.26) 8 (17.02) 2 (6.67) 6 (35.29)

ORR [n (%)] 23 (48.94) 15 (53.57) 8 (42.11) 13 (27.66) 10 (33.33) 3 (17.65) 0.0339

DCR [n (%)] 46 (97.87) 28 (100.00) 18 (94.74) 39 (82.98) 28 (93.33) 11 (64.71) 0.0141
PSM, propensity score matching; RECIST, Response Evaluation Criteria in Solid Tumors; ICIs, immuno-checkpoint inhibitors; mPFS, Median progression-free survival; CR, complete response;
PR, partial response; SD, stable disease; PD, progression disease; ORR (objective response rate)= CR+PR; DCR (disease control rate)= CR+PR+SD.
The italic values means that the data were statistically significant.
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3.4 Analysis of risk factors of PFS

Sex, age, smoking, alcohol consumption, diabetes, hypertension,

cardiovascular disease, child-pugh grade, ECOG-PS score, whether B

viral hepatitis, whether cirrhosis, AFP lever before treatment (<

400ng/ml or ≥400 ng/ml), HBV-DNA lever (0-1×103 or >1×103),

whether giant HCC, PVTT type (I-II or III-IV), whether extrahepatic
Frontiers in Immunology 08131
metastasis, whether PVTT was treated with radiotherapy, and

whether there was reduction of PVTT were analyzed by univariate

Cox analysis. The results suggested that the expression of AFP before

treatment (HR 1.950, 95%CI 1.271-2.992, P = 0.002), giant HCC (HR

2.211, 95%CI 1.397-3.499, P = 0.001), PVTT type (HR 2.211, 95%CI

1.859-4.788, P < 0.001), extrahepatic metastasis (HR 1.921, 95%CI

1.177-3.133, P = 0.009), radiotherapy for PVTT (HR 0.227, 95%CI
B

C

A

FIGURE 1

Progress-free survival rate of patients in this study. (A) All patients in the two groups. (B) patients with IIIa stage in the two groups. (C) patients with
IIIb stage in the two groups. The results show that the PVTT radiotherapy group had a better FPS rate than the control group.
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0.135-0.328, P < 0.001), and reduction of PVTT (HR 0.107, 95%CI

0.049-0.233, P < 0.001) were the influencing factors of PFS (Table 4).

The P value equal to 0.2 was used as the boundary to screen out the

factors with significant differences in P < 0.2 of factors mentioned

above, multivariate Cox regression analysis was conducted to further

analyze the influencing factors of PFS. The results has showed that:

the level of AFP before treatment (HR 1.702, 95%CI 1.081-2.681, P =

0.022), giant HCC (HR 1.753, 95%CI 1.064-2.889, P = 0.028), PVTT

type (HR 1.796, 95%CI 1.061-3.041, P = 0.029), extrahepatic

metastasis (HR 2.105, 95%CI 1.240-3.572, P = 0.006), radiotherapy

for PVTT (HR 0.231, 95%CI 0.133-0.401, P < 0.001), and the

reduction of PVTT (HR 0.175, 95%CI 0.073-0.416, P < 0.001) were

the independent influencing factors for PFS (Table 4).
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3.5 Toxicity

There were no significant differences in AEs between the PVTT

radiotherapy and control groups (P > 0.05). The main AEs of any

grade in the two groups included weight loss (70.21% and 65.96%),

hypertension (48.94% and 51.06%), decreased appetite (46.81% and

53.19%), proteinuria (46.81% and 48.94%), hand-foot syndrome

(42.55% and 38.20%), fatigue (40.43% and 42.55%), hypothyroidism

(29.79% and 31.91%), pruritus (29.79% and 34.04%), et al. (Table 5).

No significant increase in cTn, electrocardiographic (ECG) changes,

or clinical symptoms of cardiac dysfunction were found in either

group. Patients of AEs Grade ≥ 3 in PVTT radiotherapy group

compared with the control group, there were 6 cases vs. 7 cases
B CA

b ca

FIGURE 2

Waterfall plot showing the best percentage change from baseline in the sum of the target lesions in patients. (A–C) All patients, patients with IIIa
stage, and patients with IIIb stage in the PVTT radiotherapy group, respectively. (a, b, c) All patients, patients with IIIa stage, and patients with IIIb
stage in the control group, respectively. Assessed using RECIST1.1 with image measurements before and after treatment. There were no statistically
significant differences between the two groups in both subgroups.
B CA

b ca

FIGURE 3

Spider plot showing the regression or growth changing from baseline in the sum of the target lesions of patients. (A–C): All patients, patients with
IIIa stage, and patients with IIIb stage in the PVTT radiotherapy group, respectively. (a, b, c) All patients, patients with IIIa stage, and patients with IIIb
stage in the control group, respectively. Assessed using RECIST1.1 with image measurements before and after treatment. There were no statistically
significant differences between the two groups in both subgroups.
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TABLE 5 Treatment-related adverse events in the two groups following PSM (1:1).

Adverse Event

Any Grade Grade ≥ 3

PVTT radiother-
apy
group (n=47)

Control group
(n=47)

P
value

PVTT radiother-
apy
group (n=47)

Control group
(n=47)

P
value

Weight loss 33 (70.21) 31 (65.96) 0.658 6 (12.77) 7 (14.89) 0.765

Hypertension 23 (48.94) 24 (51.06) 0.837 11 (23.40) 9 (19.15) 0.614

Decreased appetite 22 (46.81) 25 (53.19) 0.536 3 (6.38) 6 (12.77) 0.293

Proteinuria 22 (46.81) 23 (48.94) 0.836 5(10.64) 6 (12.77) 0.748

Hand-foot
syndrome

20 (42.55) 18 (38.20) 0.674 5 (10.64) 6 (12.77) 0.748

Fatigue 19 (40.43) 20 (42.55) 0.834 0 (0.00) 1 (2.13) 0.315

Hypothyroidism 14 (29.79) 16 (34.04) 0.658 0 (0.00) 0 (0.00) –

Pruritus 14 (29.79) 15 (31.91) 0.823 4 (8.51) 4 (8.51) 1.000

Hypoalbuminemia 13 (27.66) 12 (25.53) 0.815 0 (0.00) 1 (2.13) 0.315

Headache 12 (25.53) 10 (21.28) 0.626 0 (0.00) 0 (0.00) –

Rash 10 (21.28) 13 (27.66) 0.472 2 (4.26) 1 (2.13) 0.557

Increased AST 10 (21.28) 9 (19.15) 0.797 1 (2.13) 0 (0.00) 0.315

Increased ALT 9 (19.15) 11 (23.40) 0.614 1 (2.13) 0 (0.00) 0.315

(Continued)
F
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TABLE 4 Univariate and multivariate Cox regression analyses of risk factors for progression-free survival following PSM (1:1).

Variable
Univariate Cox Analysis Multivariate Cox analysis

HR 95% CI P value HR 95% CI P value

Sex (male vs. female) 1.103 0.612-1.989 0.745

Age (years) (≤ 60 vs. > 60) 1.105 0.672-1.643 0.827

Smoking (yes vs. no) 0.911 0.599-1.385 0.662

Alcohol consumption (yes vs. no) 0.902 0.581-1.400 0.645

Diabetes (yes vs. no) 0.757 0.445-1.286 0.303

Hypertension (yes vs. no) 1.177 0.563-2.462 0.666

Cardiovascular disease (yes vs. no) 1.641 0.401-6.720 0.491

Child-Pugh grading (A vs. B) 1.460 0.804-2.649 0.214

ECOG-PS (0 vs.1) 0.721 0.589-1.442 0.922

Hepatitis B (yes vs. no) 0.979 0.530-1.808 0.945

Liver cirrhosis (yes vs. no) 1.330 0.879-2.012 0.177

HBV-DNA (0~1×103 vs.>1×103) 1.153 0.758-1.754 0.506

AFP (<400 ng/ml vs. ≥ 400ng/ml) 1.950 1.271-2.992 0.002 1.702 1.081-2.681 0.022

Gross (giant vs. others) 2.211 1.397-3.499 0.001 1.753 1.064-2.889 0.028

Extrahepatic metastasis (yes vs. no) 1.921 1.177-3.133 0.009 2.105 1.240-3.572 0.006

PVTT (Type I-II vs.Type III-IV ) 2.984 1.859-4.788 <0.001 1.796 1.061-3.041 0.029

PVTT Radiotherapy (yes vs. no) 0.227 0.135-0.382 <0.001 0.231 0.133-0.401 <0.001

Reduction of PVTT (yes vs. no) 0.107 0.049-0.233 <0.001 0.175 0.073-0.416 <0.001
ECOG-PS, Eastern Cooperative Oncology Group performance status score; APF, alpha-fetoprotein; PVTT, portal vein tumour thrombosis.
The italic values means that the data were statistically significant.
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with weight loss (P = 0.765), 11 cases vs. 9 cases with hypertension (P =

0.614), 3 cases vs. 6 cases with decreased appetite (P = 0.293), and 5

cases vs. 6 cases with proteinuria (P = 0.748) in both groups, 5 cases vs.

6 cases of hand-foot syndrome (P = 0.748), and 4 cases vs. 4 cases of

pruritus (P = 1.000), respectively for grade ≥ 3 AEs (Table 5).
4 Discussion

The systemic therapy progress of advanced HCC is slow. As

sorafenib became the first approved system treatment in 2007,

breakthroughs in HCC treatment over the next 10 years have

been rare and long-term drugs are lacking. The efficiency of

sorafenib is low and limited to improving survival. Additionally,

notable adverse effects indicated the need to acquire more effective

therapies with lower toxicity against advanced HCC. In recent

years, ICIs have become a hot area of clinical research in

advanced HCC. Checkmate040 (4) (phase I/II) is a landmark

study in the history of HCC immunotherapy, and its results have

established nivolumab as a second-line therapy for advanced HCC.

The Checkmate-459 (11) study enrolled patients with advanced

HCC who were ineligible for surgery or local treatment and patients

who progressed after surgery or local treatment. The results have

shown clinically meaningful improvements in OS, ORR, and CR

rates, but they did not meet the primary endpoint of OS. This study

suggests that although monotherapy with ICIs has improved OS

and ORR compared to sorafenib, it does not have absolute

advantages, and ICIs combined therapy with other methods may
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be a better choice. Several studies conducted in the last 5 years have

reported that ICIs combined with anti-angiogenic therapy have a

good effect and can further improve the survival rate of patients.

GO30140 (12) and Imbrave150 (8) showed that atezolizumab

combined with bevacizumab as the first-line treatment in patients

with advanced HCC can improve the ORR and significantly

prolong the OS of patients to 17.1 and 19.2 months, respectively.

The subgroup data of 194 Chinese patients in the Imbrave150 study

showed that the median OS was 24 months (13), which has

advanced past the bottleneck of HCC treatment in the past

decade. The studies mentioned above indicate that ICIs are

feasible and safe for the treatment of advanced HCC; however,

these results also showed that the ORR of single-agent ICIs was low,

and the combination treatment of ICIs with other methods, such as

anti-angiogenic therapy, is promising for future HCC treatment.

Radiotherapy can change the microenvironment of tumour

cells, promote the production of T cells and immune infiltration,

and stimulate the body to produce anti-tumour immune effects.

Radiotherapy can induce immunogenicity of death in tumour cells,

release inflammatory factors and cytokines, and generate new

tumour antigens. Antigen-presenting cells (APCs) can enter the

tumour cells and access the tumour antigen, causing a systemic

anti-tumour effect mediated by the immune system, resulting in

“remote effects” (14). Abulimiti et al. confirmed that radiotherapy

combined with sorafenib improved the survival of patients with

HCC, with a median OS of 11.4 months and a median PFS of 6

months (15). Furthermore, another study (16) indicated that the

mPFS of patients with advanced HCC treated with IMRT combined
TABLE 5 Continued

Adverse Event

Any Grade Grade ≥ 3

PVTT radiother-
apy
group (n=47)

Control group
(n=47)

P
value

PVTT radiother-
apy
group (n=47)

Control group
(n=47)

P
value

Nausea 9 (19.15) 10 (21.28) 0.797 0 (0.00) 0 (0.00) –

Anemia 8 (17.02) 7 (14.89) 0.778 0 (0.00) 1 (21.3) 0.315

Increased TBi 7 (14.89) 7 (14.89) 1.000 0 (0.00) 1 (2.13) 0.315

Arthralgia 6 (12.77) 8 (17.02) 0.562 0 (0.00) 0 (0.00) –

Diarrhea 5 (10.64) 8(17.02) 0.370 1 (2.13) 0 (0.00) 0.315

Vomiting 5 (10.64) 6 (12.77) 0.748 0 (0.00) 0 (0.00) –

Edema 5 (10.64) 3 (6.38) 0.460 0 (0.00) 0 (0.00) –

Thrombocytopenia 4 (8.51) 3 (6.38) 0.694 1 (2.13) 1 (2.13) 1.000

Leukopenia 3 (6.38) 8 (17.02) 0.109 0 (0.00) 1 (2.13) 0.315

Gingival bleeding 3 (6.38) 4 (8.51.) 0.694 0 (0.00) 0 (0.00) –

Elevated uric acid 2 (4.26) 2 (4.26) 1.000 0 (0.00) 0 (0.00) –

Neutropenia 2 (4.26) 6 (12.77) 0.139 0 (0.00) 1 (2.13) 0.315

Dysphonia 2 (4.26) 1 (2.13) 0.557 0 (0.00) 0 (0.00) –

Hyperglycemia 1 (2.13) 2 (4.26) 0.557 0 (0.00) 0 (0.00) –

Pneumonitis 1 (2.13) 0 (0.00) 0.315 0 (0.00) 0 (0.00) –
fron
PVTT radiotherapy group: Radiotherapy+ICIs+ Bevacizumab; Control group: ICIs+ Bevacizumab. Data were presented as n (%). ICIs, immuno-checkpoint inhibitors; ALT, alanine
aminotransferase; AST, Aspartate aminotransferase; TBi, total bilirubin.
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with apatinib was 7.8 months and the ORR was 15%. All the studies

mentioned above indicate that radiotherapy has a synergistic effect

on systemic anti-tumour therapy. Anti-angiogenic therapy can

normalise the blood vessels of tumours and enhance the

infiltration of T cells simultaneously (17), providing a theoretical

basis for radiotherapy combined with immunotherapy and anti-

angiogenic therapy. HCC is a typical inflammation-related tumour

(18), and its microenvironment is primarily composed of cellular

components, such as tumour-associated macrophages, tumour-

associated neutrophils, tumour-infiltrating lymphocytes, tumour-

associated fibroblasts, non-cellular components, and extracellular

stromal cytokines. The immune-related microenvironment plays an

important role in HCC progression, immune escape, and treatment

resistance. As an evaluation index of the systemic inflammatory

response, the NLR is an independent prognostic factor for various

malignant tumours, such as gastric, lung, and colorectal cancers,

and studies have also confirmed that NLR can be used as an

indicator to evaluate the prognosis of patients with HCC (19).

Our study showed that the NLR of the peripheral venous blood

increased after radiotherapy in the PVTT radiotherapy group,

reflecting an obvious inflammatory reaction in the body after

radiotherapy. Moreover, although the CD4 and CD8 counts

decreased to a certain degree after radiotherapy for PVTT, the

CD4-to-CD8 ratio showed a statistically significant decrease,

indicating an increase in the proportion of cytotoxic T cells with

killing function and the enhancement of body immunity. ICIs and

anti-angiogenic therapies are theoretically feasible based on

inflammatory reactions and immune enhancement (20).

Tumour antigen release is a key link in immunotherapy, and

therapies that can increase tumour neoantigens should enhance the

effects of immunotherapy (11). In our study, radiotherapy with PVTT

caused necrosis of the tumour tissue, and the exposure to tumour

antigens promoted the inflammatory response of the body, which

changed some immune-related indicators of the body, thereby

improving the efficacy of ICIs treatment. The median PFS of the

PVTT radiotherapy group was 4.2 months longer than that of the

control group; the ORR was 48.94% vs. 27.66%, and the DCR was

97.87% vs. 82.98%, indicating the advantages of radiotherapy for PVTT

in the treatment of HCC. Subgroup analysis suggested that the

therapeutic effect was directly related to staging. The IMbrave150 study

indicated that themain factors affecting the long-term survival of patients

with PFS and OS after treatment with atezolizumab plus bevacizumab

included viral infection and AFP levels. In this retrospective study,

multivariate Cox analysis showed that AFP expression, PVTT type,

liver tumour size, and PVTT radiotherapy were independent prognostic

factors affecting PFS. Our retrospective study also indicated that the

highest incidences of AEs were weight loss, hypertension, and decreased

appetite, most of which were grade 1-2. Common immune-related AEs

(irAEs) were pruritus, rash, and hypothyroidism, and no serious irAEs

were observed in patients in either group.
5 Conclusion

Radiotherapy for PVTT in HCC can quickly eliminate the

tumour tissue and induce large quantities of neoplastic de novo
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antigens which activate immunity for the immunotherapy response.

Combined ICIs and anti-angiogenic therapy after radiotherapy for

PVTT can improve survival and is well-tolerated. Data from

prospective clinical studies with higher levels of evidence are

required to guide clinical applications, and relevant clinical

studies should be conducted in the future.
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