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Editorial on the Research Topic

Intelligent control and applications for robotics, volume II

1. Introduction

Robotic technologies have undergone decades of the development and has now entered

a highly intelligent stage, which is widely applied in various fields, including production and

manufacturing, medical care, education, service Industries (Liu et al., 2020; Omisore et al.,

2020). At present, the global robot market has exceeded $100 billion and is growing at a rate

of over 17% annually. Among them, the Asia Pacificmarket is in an absolute leading position,

with an estimated expenditure of 133 billion US dollars in 2020, accounting for 71% of the

global market.

According to their functions and application fields, the global robot market can be

divided into three categories: industrial robots, service robots, and special robots (Yang et al.,

2021; Keroglou et al., 2023). Currently, the robotic technologies are being developed with

the deep learning and artificial intelligence, where the deep learning technology can enable

robots to obtain more accurate artificial intelligence so as to simulate human behaviors.

2. Analysis of the Research Topic

“Perception-Decision-Action” is the fundamental framework of the robots. In the

perception phase, robots can perceive the environmental information via various sensors

such as cameras, LiDAR, and inertial measurement units (IMUs). High-quality perception is

crucial for the safe & efficient operation of the robots. The microelectromechanical system

(MEMS) IMUs are widely used for the self-localization in the autonomous robots due to

their small size and low power consumption. However, they are susceptible to random noise

and bias errors, leading to lower measurement accuracy. Liu et al. conducted research on a

low-cost MEMS IMU denoising method based on the deep learning. They proposed a hybrid

denoising network which can combine the Convolutional Neural Networks (CNN) and Long

Short-Term Memory (LSTM) to eliminate the random noise in the raw data and calibrate

IMU errors.
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With the rapid advancement of the artificial intelligence

technologies, vision has become one of the primary modalities

for the robot perception (Yang et al., 2020). Robots can use

image recognition techniques to extract positional and semantic

information from the ambient environment for further decision-

making. In practical application scenarios, complex and ambiguous

background environments could lead tomissed and false detections

of small targets. Pei et al. improved the perceptual capability of

YOLOv5 for small targets by enhancing input image resolution

and retaining more feature information. In addition to the target

identification and localization, in some scenarios, robots require to

extract more complex semantic information from the visual data.

Yang et al. utilized the human joint data, including joint positions,

bone vectors, joint motion and bone motion data, to predict

the human actions via a multi-scale attention spatiotemporal

graph convolutional network. Just as humans can observe and

identify objects from different perspectives, robots’ active object

recognition involves identifying targets through images captured

from different viewpoints. Sun et al. developed a sampling strategy

and training method for the viewpoint management during the

robot perspective transformation process, which can help to

determine the optimal planning for the active object recognition.

Planning and decision-making are crucial for the autonomy

of the robot systems. The Monte Carlo Tree Search algorithm

(MCTS) is a probabilistic search algorithm widely used in the

decision-making and path planning problems. MCTS, due to

its extensive random searches, is inherently inefficient when

addressing individual problems. Li W. et al. introduced a self-

learning MCTS (SL-MCTS) by combining MCTS with a dual-

branch neural network. Compared with the traditional MCTS,

the SL-MCTS is capable of finding better solutions with fewer

iterations, significantly enhancing the search efficiency and

quality of the path planning tasks. Zhang et al. applied the

MCTS in the autonomous decision-making tasks in the aerial

combat and incorporated deep reinforcement learning (DRL) to

guide the MCTS searching for maneuvers in continuous action

spaces, without relying on human knowledge to assist agents in

the decision-making.

While DRL demonstrates outstanding performance in the

planning and decision-making tasks due to its powerful self-

learning capabilities, it might lead to a waste of computational

resources when pursuing the maximization of long-term returns

in atypical Markov decision processes. Additionally, errors in

value function estimation can result in suboptimal policies.

Pan et al. addressed these limitations in the atypical MDPs

via the average reward method to form an unbiased, low-

variance target Q-value with a simplified network architecture.

Their approach showed significant advantages in terms of

learning efficiency, effective control and computational resource

utilization compared to the current methods. Meanwhile, Li

S. et al. discussed the estimation bias issue, suggesting that a

trade-off between the underestimation and overestimation can

enhance DRL sample efficiency. They also introduced an Actor-

Critic framework, which can learn values and policies within

the same network and balances between the underestimation

and overestimation.

In the case of multi-agent systems, besides individual

autonomous decision-making, the coordinated actions among

agents can improve the efficiency of the entire system. Hu et al.

explored the problem of minimizing transportation costs in an

automated guided vehicle cluster. They employed a hierarchical

planning approach to decompose the integrated problem into an

upper-level task allocation problem and a lower-level path planning

problem. Hence the sum of the request cost and conflict delay cost

of the entire system can be minimized via a hybrid discrete state

transition algorithm based on the elite solution sets and a taboo

list method.

In the execution phase, the robots heavily rely on the

control algorithms to perform specific actions (Zheng et al.,

2021). Tasks that involve extreme environmental conditions,

high workloads and complex operational procedures demand

the robots to have a particularly high-level of control precision.

Zhao et al. have developed a variable damping controller for

the end-effector of a space station robotic arm. With the

reinforcement learning to control the variable damping of the

robot limb, the resistance of the arm to the disturbance can be

greatly enhanced.

3. Discussion and conclusion

With the continuous development of mobile robots,

technologies such as multi-sensor fusion, control systems,

and intelligent software are constantly being upgraded to meet

the demands of more application scenarios. According to the

statistics analysis, the mobile robot market will be expected

to exceed $46 billion by 2025. The Mobile robots have been

applied in various fields such as manufacturing, healthcare

and military, with enormous potential and unlimited future

development space, where the most cutting-edge technologies

in the latest robotics field includes: flexible robot technology,

liquid metal control technology, electromyography control

technology, autonomous driving technology, virtual reality

(VR) robot technology, photogenetic technology, brain

computer interface (BCI) technology, machine learning (ML)

technology, natural language processing (NLP) technology

and blockchain technology. These technologies allows a

wider range of application scenarios for the development

of robots.

Overall, these technologies cover multiple aspects of the

robotics field, from robot perception, decision-making to

execution, from autonomous learning to interaction with humans,

from single perception mode to multimodal perception, from

hardware to software, from single decision-making to multi-

task collaboration etc. These technologies have all driven the

development of the robotics field. Some technologies have been

fully developed, such as robot vision technology and robot

grasping technology, while others are still rapidly developing,

such as robot voice technology and robot navigation technology.

Regardless of the technologies, they provide more potentials for

the application of the robots and are constantly changing our

way of life and work. At the same time, however, robots will

also bring new challenges and issues, such as robot ethics, robot

laws, robot safety, etc. These issues require us to jointly explore

and solve to ensure the health and sustainable development of

the robots.
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Autonomous maneuver
decision-making method based
on reinforcement learning and
Monte Carlo tree search

Hongpeng Zhang*, Huan Zhou, Yujie Wei and

Changqiang Huang

Aeronautics Engineering College, Air Force Engineering University, Xi’an, China

Autonomousmaneuver decision-makingmethods for air combat often rely on

human knowledge, such as advantage functions, objective functions, or dense

rewards in reinforcement learning, which limits the decision-making ability

of unmanned combat aerial vehicle to the scope of human experience and

result in slow progress in maneuver decision-making. Therefore, a maneuver

decision-making method based on deep reinforcement learning and Monte

Carlo tree search is proposed to investigate whether it is feasible for maneuver

decision-making without human knowledge or advantage function. To this

end, Monte Carlo tree search in continuous action space is proposed and

neural networks-guided Monte Carlo tree search with self-play is utilized to

improve the ability of air combat agents. It starts from random behaviors

and generates samples consisting of states, actions, and results of air combat

through self-play without using human knowledge. These samples are used

to train the neural network, and the neural network with a greater winning

rate is selected by simulations. Then, repeat the above process to gradually

improve the maneuver decision-making ability. Simulations are conducted to

verify the e�ectiveness of the proposed method, and the kinematic model of

the missile is used in simulations instead of the missile engagement zone to

test whether the maneuver decision-making method is e�ective or not. The

simulation results of the fixed initial state and random initial state show that

the proposed method is e�cient and can meet the real-time requirement.

KEYWORDS

autonomous air combat, maneuver decision-making, deep reinforcement learning,

Monte Carlo tree search, neural networks

Introduction

Autonomous air combat through unmanned combat aerial vehicles is the future

of air combat and maneuver decision-making is the core of autonomous air combat.

Therefore, it is urgent to build maneuver decision-making methods. Maneuver

decision-making means that the aircraft chooses the appropriate maneuver (e.g., normal

overload, tangential overload, and roll angle) to change its state according to the acquired

information of the target (e.g., azimuth, velocity, height, and distance), so as to defeat

the target.
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Air combat can be divided into within-visual-range

air combat and beyond-visual-range air combat. With the

development of science and technology, the detection distance

of airborne radar and the range of air-to-air missiles have been

increased to hundreds of kilometers. Therefore, both sides of

the air combat can discover each other and launch missiles

at beyond-visual-range. Besides, the process of beyond-visual-

range air combat is different from that of within-visual-range

air combat because the principle and operation method between

radar-guided missiles and infrared (IR) missiles are different.

Radar-guided missiles are supposed to be used for beyond-

visual-range and IR-guided missiles for within visual range,

because the detection range of the radar is longer than that of

the IR detector. The IR-guided missile does not need external

equipment to provide target information after it is launched. It

can obtain information about the target by means of its infrared

detector and then attack the target. Therefore, the aircraft can

retreat after launching missiles. However, after launching, there

are two stages in the attack of radar-guided missiles, which are

called the midcourse guidance stage and the terminal guidance

stage. In the intermediate guidance stage, the radar of the missile

is not activated. Thus, it is necessary for the aircraft radar to

continuously detect the target, providing the information for

the missile and guiding it to the target. During the terminal

phase, the missile continues to chase the target according to the

information provided by its radar until it hits the target or loses

the target.

Therefore, the decision-making method in within-visual-

range air combat cannot be used for beyond-visual-range air

combat directly, so we need to find a new decision-making

method for autonomous air combat. At the same time, the

existing maneuver decision-making methods rely on human

knowledge, which can also be regarded as a dense reward in

reinforcement learning. Thus, sparse reward means only using

the result of air combat (i.e., win or not), which does not rely

on human knowledge. Moreover, if the task is complex, it is

difficult to define and design human knowledge or dense reward.

Therefore, it is necessary to explore maneuver decision-making

methods using a sparse reward.

Recently, most of the research on maneuver decision-

making is focused on within-visual-range air combat (Mcgrew

et al., 2010; Guo et al., 2017; Du et al., 2018; Huang et al.,

2018; Li et al., 2019). You et al. (2019) proposed a constrained

parameter evolutionary learning algorithm for Bayesian network

parameters learning with scarce data, which can be applied to

unmanned aerial vehicle autonomous mission decision-making.

Wu et al. (2011) proposed the situation assessment method of

beyond-visual-range air combat based on missile attack area,

and introduced a new angle advantage function, speed advantage

function, and height advantage function into the situation

assessment model. Li et al. (2020) proposed a cooperative

occupation method for autonomous air combat of multiple

UAVs based onweapon attack area. They used the weapon attack

area and air combat geometric description for one-to-one air

combat situation assessment and established a multiple UAVs

cooperative occupationmodel based on the encircling advantage

function. Therefore, the cooperative occupation problem was

transformed into a mixed integer non-linear programming

problem and solved by an improved discrete particle swarm

optimization algorithm. However, the flight model in this study

is two-dimensional, that is, the height of both sides of air combat

is always the same in air combat, and the control quantities do

not include roll angle, so this study can be further improved.

Wei et al. (2015) proposed a cognitive control model with three-

layer structure for multi-UAVs cooperative search according

to the cognitive decision-making mode of humans performing

searching behavior. The mission area is carried on cognitive

match, reduction, and division based on this model and the

fuzzy cluster idea. The simulation experiments indicate the great

performance of the fuzzy cognitive decision-making method for

cooperative search. Zhang et al. (2018) proposed a maneuver

decision-making method based on the Q network and Nash

equilibrium strategy, and combined the missile attack area in

the reward function to improve the efficiency of reinforcement

learning. However, the maneuver library of this method only

contains five maneuvers, which cannot meet the needs of air

combat. Hu et al. (2021) proposed to use the improved deep

Q network (Mnih et al., 2015) for maneuver decisions in

autonomous air combat, constructed the relative motion model,

missile attack model, maneuver decision-making framework,

designed the reward function for training agents, and replaced

the strategy network in deep Q network with the perception

situation layer and value fitting layer. This method improves the

winning rate of air combat, but the maneuver library is relatively

simple and difficult to meet the needs of air combat.

It is worth noting that deep reinforcement learning has

achieved professional performance in video games (Watkins

and Dayan, 1992; Hado et al., 2016; Matteo et al., 2017), board

games such as GO (Silver et al., 2016, 2017; Schrittwieser et al.,

2020), real-time strategy games such as StarCraft (Oriol et al.,

2019), magnetic control of tokamak plasmas (Jonas et al., 2022),

data fusion (Zhou et al., 2020b), and intention prediction of

aerial targets under Uncertain and Incomplete Information

(Zhou et al., 2020a). Therefore, using deep reinforcement

learning to improve the level of air combat maneuver decision-

making is a feasible direction. AlphaStar is a multi-agent

reinforcement learning algorithm based on supervised learning.

It introduces league training: three pools of agents (the main

agents, the league exploiters, and the main exploiters), each

initialized by supervised learning, were subsequently trained

with reinforcement learning. In AlphaStar, each agent is initially

trained through supervised learning on replays to imitate human

actions. Concretely, it uses a dataset of 971,000 replays played

on StarCraft II from the top 22% of players. Therefore, it can

be concluded that two features of AlphaStar are multi-agent

reinforcement learning and human knowledge. However, we
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mainly focus on one-on-one air combat, which means that a

multi-agent algorithm is not suitable and we are supposed to use

a single-agent algorithm to address this problem. Meanwhile,

replays of games from top players are not difficult to obtain, but

it is difficult and expensive to obtain data from human pilots,

which means that we cannot use supervised learning as the first

phase of AlphaStar.

Ma et al. (2020) described the cooperative occupation

decision-making problem of multiple UAVs as a zero-sum

matrix game problem, and proposed a solution of double oracle

algorithm combined with neighborhood search. In maneuver

decision-making, at first, the position to be occupied by each

aircraft is determined, and then the target to be attacked by

each aircraft is determined, to reduce the threat and increase

the advantage. Yang et al. (2020) studied the evasive maneuver

strategy of unmanned combat aircraft in BVR air combat,

and the problem was solved by the hierarchical multi-objective

evolutionary algorithm. In this method, the decision variables

are classified according to the physical meanings and then coded

independently. Four escape maneuvers are designed, including

turning maneuver, vertical maneuver, horizontal maneuver, and

terminal maneuver. The evolutionary algorithm is used to

find approximate Pareto optimal solutions and reduce invalid

solutions, thus, the efficiency of the algorithm is improved. Ma

et al. (2018) built an air combat game environment and train the

agent with deep Q-learning.

Eloy et al. (2020) studied the attack against static high-value

targets in air combat. It analyzed the confrontation process with

game theory and put forward a differential game method of air

combat combined with the missile attack area (Wu and Nan,

2013; Li et al., 2015; Wang et al., 2019). In this method, the

air combat process is divided into the attack stage and retreat

stage, while the attacker is divided into leader and wingman. In

the attack stage, the leader enters the target area and launches

missiles, and the wingman flies in formation. In the retreat

stage, the wingman protects the leader from the missile attack

of the other party. However, the flight model of aircraft is

two-dimensional rather than three-dimensional. However, the

authenticity of the two-dimensional motion model is worse

than that of the three-dimensional motion model, so the three-

dimensional motion model should have been used. He et al.

(2017) proposed a maneuver decision-making method based on

Monte Carlo tree search (MCTS), and it uses MCTS to find the

action with the greatest air combat advantage among the seven

basic maneuvers. This method verifies the feasibility of MCTS in

maneuver decision-making.

While human knowledge or dense reward can make the

algorithm achieve the goal quickly, it also limits the diversity

and potential of the algorithm to the scope of human experience.

For example, AlphaGo with human knowledge is defeated by

AlphaGo Zero without human knowledge, and AlphaZero can

defeat the world champion without human knowledge and

has found several joseki that human players have never found

before. Meanwhile, AlphaGo with human knowledge was once

defeated by the world champion Lee Sedol, but AlphaGo Zero

without human knowledge has not been defeated by any human

players ever since. Thus, it is a reasonable conjecture that

human knowledge is not good enough for training purposes for

autonomous weapon deployment, and we propose a method in

this article for air combat to investigate whether it is feasible for

maneuver decision-making without human knowledge.

To this end, an air combat maneuver decision-making

method based on deep reinforcement learning and MCTS is

proposed, which aims at investigating whether it is feasible for

maneuver decision-making without human knowledge or dense

reward. First, different from existing methods, this method does

not use human knowledge to assist the agent in maneuvering

decision-making, but only uses the outcome of air combat

simulations. Second, existing methods often make maneuver

decisions in discrete and finite action space (e.g., maneuver

library consists of finite maneuvers), however, the proposed

method is based on continuous action space, which is more

reasonable than discrete action space. Third, to select actions

in continuous space, we proposed the method of MCTS in

continuous space which is different from MCTS of existing

decision-making methods. Moreover, existing methods often

use missile engagement zone in simulations, but the missile may

miss the target even if the target is in the missile engagement

zone, therefore, the kinematic model of the missile is used in

simulations instead of missile engagement zone to test whether it

can hit the target, which reflects whether the maneuver decision-

making method is effective (Li, 2010; Zhang et al., 2015). Our

research logic is: if it works well in simulations, we may consider

investigating it in the real world and modifying it if it does not

work well. However, if it does not work well even in simulations,

we do not consider transferring it to the real world. Therefore,

we do the first step here, that is, investigating the method in

simulations to make sure it works well in simulations at least

before transferring it to the real world.

The main contributions are as follows: (1) To investigate

whether it is feasible for maneuver decision-making without

human knowledge, we propose to use the algorithm of self-

play and MCTS which learns to search actions in continuous

action space. (2) We provide a method to address the

problem of MCTS in continuous space since MCTS cannot be

applied to continuous space directly. (3) The simulation results

demonstrate that although maneuver decision-making without

human knowledge cannot completely defeat that with human

knowledge, it is still feasible in air combat. The rest of this paper

is organized as follows: In Section Aircraft model and missile

model, the motion dynamics model of aircraft and missile

is established. In Section Maneuver decision-making method

based on deep reinforcement learning and MCTS, the process of

self-play and neural network training is described (Hinton and

Salakhutdinov, 2006; Goodfellow et al., 2017), and the role of

human knowledge in maneuver decision-making is interpreted.
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In Section Experiments and results, the training results of the

neural network and the simulation results of air combat are

given, and the decision-making ability of the proposed method

is discussed according to the simulation results. The method in

this article is summarized in Section Conclusion.

Aircraft model and missile model

The aircraft model adopts normal overload, tangential

overload, and roll angle as control parameters. To simplify the

complexity of the problem, the angle of attack and the angle of

side slip are regarded as zero and the ground coordinate system

is treated as the inertial system, meanwhile, the effects of the

rotation of the earth are overlooked. The kinematic and dynamic

model is shown as follows (Williams, 1990):







































ẋ = v cos γ cosψ

ẏ = v cos γ sinψ

ż = v sin γ

v̇ = g(nx − sin γ )

γ̇ =
g
v (nz cosµ− cos γ )

ψ̇ =
g

v cos γ nz sinµ

(1)

where x, y, and z indicate the positions of the aircraft in the

inertial coordinate system; γ is the pitch angle, ψ is the yaw

angle, v is the velocity, and g is the acceleration of gravity. Roll

angle µ, tangential overload nx, and normal overload nz are

control parameters. The kinematic model of the missile is Wang

et al. (2019):











ẋm = vm cos γm cosψm

ẏm = vm cos γm sinψm

żm = vm sin γm

(2)

where xm, ym, and zm indicate the positions of the missile in

the inertial coordinate system; vm is the velocity, γm is the pitch

angle, and ψm is the yaw angle. The dynamic model of the

missile is:











v̇m =
(Pm−Qm)g

Gm
− g sin γm

ψ̇m =
nmcg

vm cos γm
γ̇m =

nmhg
vm

−
g cos γm

vm

(3)

where Pm and Qm are thrust and air resistance, Gm is the mass

of the missile, and nmc and nmh are control overload in the yaw

direction and pitch direction. Pm,Qm, and Gm can be calculated

by the following formula (Fang et al., 2019):

Pm =

{

12000 t ≤ tw

0 t > tw
(4)

Qm =
1

2
ρv2mSmCDm (5)

Gm =

{

173.6− 8.2t t ≤ tw

108 t > tw
(6)

where tw = 8.0s, ρ = 0.607, Sm = 0.0324, and CDm = 0.9. It is

assumed that the guidance coefficient of proportional guidance

law is K in control planes. The two overloads in yaw and pitch

directions are defined as:

{

nmc = K ·
vm cos γt

g [β̇ + tan ε tan(ε + β)ε̇]

nmh = vm
g

K
cos(ε+β)

ε̇
(7)

{

β = arctan(ry/rx )

ε = arctan(rz/
√

r2x + r2y )
(8)











β̇ = (ṙyrx − ry ṙx)/(r
2
x + r2y )

ε̇ =
(r2x+r2y )ṙz−rz(ṙxrx+ṙyry)

R2
√

r2x+r2y

(9)

where β and ε are yaw angle and pitch angle of the line of

sight, and β̇ and ε̇ are the corresponding derivatives. The line

of sight vector is the distance vector Er, where rx = xt − xm, ry =

yt − ym, rz = zt − zm and R = ‖Er‖ =
√

r2x + r2y + r2z .

The maximum overload of the missile is 40. When the

minimum distance between the missile and the target is <12m,

the target is regarded as a hit; when missile flight time exceeds

120 s and it still fails to hit the target, the target is regarded

as missed; during the midcourse guidance stage, the target is

regarded as missed when its azimuth relative to the aircraft

exceeds 85◦; during the final guidance stage, the target is

regarded as missed when its azimuth relative to missile axis

exceeds 70◦.

Maneuver decision-making method
based on deep reinforcement
learning and MCTS

He et al. (2017) uses MCTS to find the maneuver that

makes the most air combat advantage among the seven basic

maneuvers, in which human knowledge is used to define the

air combat advantage. However, its action space is discrete

and only contains seven basic maneuvers. In this paper,

the search scope of maneuver is extended from seven basic

maneuvers to continuous action space, which contains countless

maneuvers theoretically, and human knowledge is not used

to assist maneuver decision-making, but only the outcome

of air combat simulations. The main idea of the proposed

reinforcement learning algorithm is to use neural networks to

generate the maneuver and value in each state and then use

the neural network-guided MCTS to search the maneuver in

the continuous action space. The maneuver selected by MCTS

is more effective than the maneuver directly generated by the

neural network. Then, repeat the above steps in the self-play

to generate training samples and update the neural network

with these training samples to make the neural network more

closely match the improved maneuver and self-play winner. The

repetition steps are stopped and the training is regarded as good
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enough usually when the rating of the agent (Silver et al., 2016,

2017; Schrittwieser et al., 2020) or the scores obtained by the

agent (Mnih et al., 2015; Hado et al., 2016) does not increase

visibly. The new network is used in the next iteration to make

MCTS more powerful.

AlphaGo with human knowledge is defeated by AlphaGo

Zero without human knowledge, and AlphaZero can defeat

the world champion without human knowledge and has found

several joseki that human players have never found before.

Meanwhile, AlphaGo with human knowledge was once defeated

by the world champion Lee Sedol, but AlphaGo Zero without

human knowledge has not been defeated by any human players

ever since. Therefore, we write “While human knowledge or

dense reward can make the algorithm achieve the goal quickly,

it also limit the diversity and potential of the algorithm to the

scope of human experience” in the introduction, which mainly

refers to the game of GO but not the autonomous weapon

deployment. However, it is a reasonable conjecture that human

knowledge is not good enough for the training purposes for

autonomous weapon deployment, thus we propose this method

for air combat to investigate whether it is feasible for maneuver

decision-making without human knowledge.

Our method is inspired by and built upon AlphaGo Zero.

However, AlphaGo Zero is not suitable for air combat because

of continuous action space, so we modified it to make it

able to handle continuous action space. Since AlphaGo with

human knowledge is defeated by AlphaGo Zero without human

knowledge, we want to know if the method without human

knowledge is feasible in air combat or even better than the

method with human knowledge; therefore, we investigate the

problem in this paper. It is true that human knowledge is

indeed useful, and we will study maneuver methods with

human knowledge in future. On the other hand, considering

the development of AlphaGo, although the AlphaStar approach

used human knowledge, a new approach called AlphaStar Zero

may appear just like AlphaGo Zero, which can defeat AlphaStar

and the world champion in the game of StarCraft II without

using any human knowledge.

MCTS in continuous space

MCTS is usually used for searching in discrete action space

(He et al., 2017; Silver et al., 2017; Hu et al., 2021). In this paper,

we use neural networks to guide MCTS as in Silver et al. (2017).

Since MCTS is typically used in discrete space and cannot be

used in continuous space directly, we propose the method of

MCTS in continuous space to address the problem of maneuver

decision-making in air combat. The generation and selection of

action in continuous space are shown in Figure 1.

The green rectangle in Figures 1, 2 is the continuous action

space, which contains countless actions theoretically. Therefore,

it cannot be searched by MCTS directly and we propose the

following method to make MCTS able to search in continuous

action space. First, a state is sent to neural networks as input

and the neural network outputs the action and value according

to the state, in which the action is regarded as the mean

of a Gaussian distribution, the action output by the neural

network is represented by the red rectangle in Figure 1. After

that, a Gaussian distribution is acquired as shown in the blue

shadow part in Figure 1. Then, N-1 actions are sampled from

the Gaussian distribution, which are represented by the black

rectangles in Figure 1, so N actions are acquired totally and

MCTS is used to search for these N actions. Figure 2 illustrates

the search process of MCTS in continuous space.

Each node s in the tree contains all actions of edges (s, a), and

each edge stores a set {N(s, a),W(s, a), Q(s, a), P(s, a)}, where N

represents the number of visits, W represents the total action

value, Q represents the average action value, and P is the a priori

probability of selecting this action, which can be computed by

the Gaussian probability density function.

MCTS repeats four operations to find the action: selection,

play, expansion, and backpropagation. Selection: take the

current state as the root node, start the simulation from the root

node, and stop until the simulation reaches the leaf node at time-

step L. Before time-step L, the action is selected according to the

a priori probability and average action value in the tree, at =

argmax [Q(st, a)+U(st, a)] (Rosin, 2011),

U(s, a) = P(s, a)

√

∑

b

N(s, b)

1+ N(s, a)

the probability of at is proportional to the maximum of

Q(st, a)+U(st, a), in which Q(st,at) = W(st,at)/N(st,at). Here,

W(st,at) is computed by the value head of neural networks, and

actions are generated by the acting head of neural networks,

which is different from the original MCTS used in He et al.

(2017) and Hu et al. (2021) since the original MCTS chooses

action randomly instead of using neural networks.

Play: when in the selection step an action is chosen, which

has not been stored in the tree, the play starts. Actions are

selected in self-play until the leaf node sL is reached, and the leaf

node sL means it has not been expanded.

Expansion: the neural network is used to evaluate the leaf

node sL added to the queue, expand the leaf node sL, and each

edge (sL, a) is initialized to {N(sL, a)= 0,W(sL, a)= 0, Q(sL, a)

= 0, P(sL, a) = pa} and pa is the priori probability of the action.

This part is another different part from the original MCTS used

in He et al. (2017) and Hu et al. (2021), since the original MCTS

evaluates the leaf node sL by rollouts. However, the proposed

method evaluates the leaf node sL by neural networks, that is,

the MCTS is guided by neural networks.

Backpropagation: update the number of visits and value

of each step t in turn, N(st,at) = N(st,at)+1, W(st,at) =

W(st,at)+v, Q(st,at)=W(st,at)/N(st,at).

Frontiers inNeurorobotics 05 frontiersin.org

11

https://doi.org/10.3389/fnbot.2022.996412
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Zhang et al. 10.3389/fnbot.2022.996412

FIGURE 1

Generation and selection of action in continuous space.

After several iterations, MCTS outputs the action

according to at = argmax[Q(st, a)+U(st, a)] among N

actions in continuous action space, as shown in the top right

of Figure 2.

Reinforcement learning from self-play

Self-play reinforcement learning method has achieved

professional performance in such games: chess (Baxter et al.,

2000), othello (Sheppard, 2002), and poker (Moravcík, 2017).

Therefore, this paper adopts self-play reinforcement learning

for maneuver decision-making, and does not use any human

knowledge. Starting from a completely random maneuver

strategy, the neural network is trained by the data generated

by self-play, so that the neural network can gradually produce

effective maneuver strategies during the training pipeline.

Figure 3 illustrates the self-play procedure.

As shown in Figure 3, at each time-step, the two sides of

air combat execute the maneuvers selected by MCTS and reach

the next time-step and a new state. In this state, the two sides

continue to execute the maneuver obtained by MCTS until the

final result of the simulation is obtained. The final result at the

end T is rT = {-1, 0, 1}, where −1 represents lose, 0 represents

draw, and 1 represents win. It can be seen that there is no

reward function in of self-play process except the final result

of air combat, that is, human knowledge is not added to self-

play, which is another feature of the proposed method. Self-

play uses MCTS to generate state-action pairs in each iteration

and takes these state-action pairs as samples to train the neural

network. As shown in Figure 3, the air combat data of each

time-step t is saved as (st, at, zt) in the experience pool, zt =

±rT is the winner from the perspective of the current aircraft

at time t. Uniform sampling (st, at, zt) from all time-steps of

the last iteration of self-play is used to train the network to

minimize the error of prediction value and winner and the

error of neural network output and MCTS output as shown in

Figure 4, and the loss function is the sum of mean square error

and L2 weight regularization.

To ensure the generalization ability of the neural network,

the initial state of each game is randomly selected from the

following scope: azimuth scope (-45◦, 45◦), speed scope (250,

400 m/s), and the distance between aircraft (40, 100 km). In self-

play, MCTS is used to search 90 times for each decision. The first

10 maneuvers are sampled according to the visit count of each

node and the subsequent maneuvers are those with the largest

Frontiers inNeurorobotics 06 frontiersin.org

12



Zhang et al. 10.3389/fnbot.2022.996412

FIGURE 2

MCTS in continuous space.

FIGURE 3

Air combat self-play.
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FIGURE 4

Training neural networks.

FIGURE 5

Training agent.

visit count, so as to balance the exploration and exploitation of

the algorithm.

Figure 5 indicates the whole procedure of agent training.

First, the agent generates air combat state-action pairs by MCTS

in self-play and stores these data in the experience pool. Then,

the neural network is trained with the data generated by 350

times of air combat self-play. During each training, 64 samples

are uniformly sampled from the experience pool. The optimizer

is stochastic gradient descent with a momentum of 0.9, and

the L2 regularization coefficient is 0.0001. After 1,000 times of
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Build neural networks with random weights

For iteration= 1,..., M do:

Randomly initialize state s0

For t= 0,..., max step do

State st

Red side selects action by MCTS

Blue side selects action by MCTS

Simulate and reach the next state

If find the winner:

Beak

Else:

Continue

t= t+1

Store the state-action pairs and the winner

If required amount of experience:

Beak

Else:

Continue

Sample data from experience pool and train the neural

networks

Save and evaluate the neural networks

If wins> 5+ failures:

Load it as the current best neural network

Algorithm 1. Training agent.

training, a new neural network is obtained and saved. To ensure

the quality of the data generated from self-play, the latest neural

network after each training is evaluated: use the latest neural

network to simulate air combat against the current best neural

network 100 times. If the number of wins of the latest network

is five more than failures, the latest neural network is loaded as

the current best neural network and it is used to generate data

in subsequent self-play, otherwise, the latest neural network is

only saved but not loaded as the current best neural network.

Algorithm 1 describes one iteration of agent training in Figure 5.

Air combat state and neural network
architecture

The input of the neural network is a one-dimensional

vector with 44 elements, which are composed of the state of

the current time-step and the state of the first three time-

steps. As shown in Table 1, each state contains 11 quantities:

ψ , γ , v, z, d, f1,ψ1, γ1, d1,β , f2, whereψ and γ are yaw angle and

pitch angle of velocity vector relative to the line of sight, v is the

velocity of the aircraft, z is the flight altitude, d is the distance

between the two sides in air combat, and r1 and r2 are the

coordinates of the two sides, respectively. f 1 represents whether

our side launched a missile. Where ψ1 and γ1 are yaw angle and

pitch angle of the missile’s velocity vector relative to line of sight.

TABLE 1 Air combat state.

State Symbol Formula

Yaw angle ψ ψ = ψ +
∫ g

v cos γ
nz sinµ dt

Pitch angle γ γ = γ0 +
∫ g

v
(nz cosµ− cos γ ) dt

Velocity v v = v0+
∫

g(nx − sin γ ) dt

Altitude z z = z0 +
∫

v sin γ dt

Distance between the two sides d d = ‖r1 − r2‖

Launch missile f 1 0 or 1

Yaw angle of missile ψ1 ψm = ψm0 +
∫ nmcg

vm cos γm
dt

Pitch angle of missile γ1 γm = γm0+
∫ nmhg

vm
−

g cos γm
vm

dt

Distance between the missile and

the other side

d1 d = ‖rm1 − r2‖

Heading crossing angle β β = arccos( v1 ·v2
‖v1‖‖v2‖

)

Launch missile of the other side f 2 0 or 1

d1 is the distance between the missile and the other side and rm1

is the coordinate of the missile of the side in air combat. β is

heading crossing angle, that is the angle between two velocity

vectors of the two sides, which is represented by v1 and v2 in

Table 1. f 2 represents whether the other side launched missile.

The input layer is followed by three hidden layers. The number

of neurons of the first two layers is 128 and the number of

neurons of the third layer is 64. Finally, it output five quantities.

The first three outputs are normal overload, tangential overload,

and roll angle, respectively. The fourth output is whether to

launch the missile and the fifth output is the value of the current

state. The activation function is tanh.

Experiments and results

Parameter setting

The maximum flight speed is 420 m/s, and the minimum

flight speed is 90 m/s; The maximum flight altitude is 20,000m

and the minimum flight altitude is 50m; the initial roll angle

is always zero; the decision interval is 1 s and the maximum

simulation time is 200 s. The outcome of the air combat

simulation is defined as follows: if the missile hit the target,

record it as a win; either the aircraft or the missile misses the

target, it is regarded asmissing the target; when the flight altitude

of one side is greater than the maximum altitude or less than

the minimum altitude, if the other side has launched missile and

does not miss the target, record it as lose, otherwise, record it

as a draw; when both sides miss the target, record it as a draw.

The decision interval is 1 s, because it is common in the field

since previous work (Guo et al., 2017; Du et al., 2018; Huang

et al., 2018) usually uses the decision interval of 1 s. Meanwhile,

a shorter decision interval requires more computational sources

and a longer time span is obviously irrational.
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FIGURE 6

Neural networks training result.

TABLE 2 Statistic results.

Initial state Win Lose Draw Average time(s)

Fixed 23 17 60 0.38

Random 22 21 57 0.37

It is true that maneuver decisions are not of any use if

decisions cannot be done in a reasonable time span. Here, the

rate for maneuver decision of 1 per 1 s does not mean that the

maneuver is static within 1 s. For example, the aircraft takes

the maneuver of changing the roll angle from 0 degrees to 45

degrees within 1 s (the case of 1 maneuver per second), thus, it

gradually increases its roll angle from 0 to 45 degrees, which is a

dynamic process. On the other hand, increasing the roll angle

from 0 to 45 degrees may be interpreted as three maneuvers

as well, for example, 0–15, 15–25, and 25–45 degrees. More

importantly, even if we send several different maneuvers to the

real aircraft within 1 s (such as changing the roll angle from 0

to 30 degrees, then changing it from 30 to −10 degrees, and

then changing it from −10 to 50 degrees), it may not be able to

realize it because of the limitations of the hardware (e.g., aircraft

servomechanism). On the other hand, even if the real aircraft

can realize it, it is unacceptable, because it is harmful to the

aircraft to change its maneuver several times within 1 s (lack of

aircraft strength). Minimum reaction time of the human brain is

∼0.1 s. Meanwhile, it takes much more than 0.1 s for a human

to decide what to do before the reaction, namely decision-

making time. Therefore, the time span of 1 s is appropriate for

a real-world application.

Results and analysis

Neural networks training result

In the process of self-play, record the net number of wins

of each latest neural network in 100 times air combat, that is,

subtract the number of failures from the number of wins. The

reason why 100 times is selected is that 100 times is enough to

distinguish the better one from both sides of the competition and

does not cause too much time consumption. The total training

time is about 84 h, and the change of net wins with time is shown

in Figure 6.

As can be seen from Figure 6, the number of net wins

is increasing along with the training. Although it sometimes

decreases in the training process, it generally shows an upward

trend, which indicates that the maneuvering decision-making

ability of the proposedmethod gradually becomesmore effective

during self-play.

Air combat simulation results

We verify the effectiveness of the method we proposed by

a fight against the MCTS method (He et al., 2017): (1) 100

simulations with a fixed initial state of the following simulation
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2, which is a fair initial state for both sides. (2) 100 simulations

with a random initial state. Table 2 indicates the win, lose, and

draw times and the average time consumed by each decision-

making of the proposedmethod. As shown in Table 2, on the one

hand, the proposed method won five more times than theMCTS

method, and 60 simulations is drawn. These results indicate that

the proposed method is feasible and effective, even though the

proposed method is just slightly better. On the other hand, when

simulations started from a random initial state, the proposed

method is almost the same as theMCTSmethod, which indicates

that the initial state has a significant influence on the decision-

making method. As can be seen from Table 2, for the proposed

method, the average time taken for each decision-making is

∼0.38 s. We also compute the average time of the original MCTS

method (He et al., 2017), which is 0.11 s, this means that the

proposed method is slower.

Next, we show the process of the MCTS maneuver decision-

making method in continuous action space, then we show the

process of the method we proposed by a fight against the MCTS

method. The initial position of aircraft 1 is (40,000, 40,000,

10,000), the pitch angle is 0◦, the yaw angle is 180◦, and the

initial velocity is 300 m/s. The initial position of aircraft 2 is

(0, 0, 10,000), the pitch angle is 0◦, the yaw angle is 0◦, and

the initial velocity is 300 m/s. Aircraft 1 moves at a constant

speed in a straight line, and aircraft 2maneuvers using theMCTS

method with human knowledge. The simulation result is shown

in Figure 7.

Figure 7A shows the trajectory of both sides, in which the

blue solid line represents the flight trajectory of aircraft 1 and

the orange solid line represents the flight trajectory of aircraft 2.

In Figure 7B, the solid blue line indicates the velocity change of

aircraft 1 and the orange solid line represents the velocity change

of aircraft 2. Figure 7C indicates the overload change of missiles

of aircraft 2. It can be seen that the MCTS method with human

knowledge can react to the aircraft with simple maneuver and at

the end of the simulation, the missile of aircraft 2 hit the target,

which suggests the effectiveness of the MCTS method.

In simulation 2, aircraft 1 uses the proposed method and

aircraft 2 uses the MCTS method (He et al., 2017), but the

action space of the two methods is the same. As described

in He et al. (2017), it combines the angle advantage function,

distance advantage function, velocity advantage function, and

height advantage function with MCTS, which means that

it makes maneuver decisions with human knowledge. These

advantage functions which stem from human knowledge can

guide the aircraft to approach the target. However, our method

uses only the final result rT = {-1, 0, 1}, as described in

Section Reinforcement learning from self-play, including no

human knowledge.

The initial position of aircraft 1 is (70,000, 70,000, 10,000),

the pitch angle is 0◦, the yaw angle is 180◦, and the initial velocity

is 300 m/s. The initial position of aircraft 2 is (0, 0, 10,000), the

pitch angle is 0◦, the yaw angle is 0◦, and the initial velocity is

300 m/s. As can be seen that the initial situation of both sides is

equal. The simulation result is shown in Figure 8.

Figure 8A shows the trajectory of both sides, in which the

blue solid line represents the flight trajectory of aircraft 1, the

orange solid line represents the flight trajectory of aircraft 2, the

green dotted line represents the flight trajectory of missile 1, and

the red dotted line represents the flight trajectory of missile 2.

In Figure 8B, the solid blue line indicates the velocity change

of aircraft 1 and the orange solid line represents the velocity

change of aircraft 2. Figure 8C indicates the overload change of

missiles of the two sides, and it can be seen from Figure 8C that

the missile overload is small when it is far from the target and

reaches the maximum when it hit the target.

As can be seen from Figure 8A, when the simulation begins,

both sides deflect toward each other and launch missiles,

but their decision-making principles are different: aircraft 1

concludes that deflecting to aircraft 2 is of high value according

to a large number of self-play data, while aircraft 2 chooses to

deflect to aircraft 1 because it can increase the value of the air

combat advantage function. In the end, the missile of aircraft 1

hit aircraft 2, and the distance between missile 2 and aircraft 1

is about 8 km. This suggests that the proposed method without

human knowledge is stronger.

The initial position of aircraft 1 is (80 000, 80 000, 10 000),

the pitch angle is 0◦, the yaw angle is 180◦, and the initial velocity

is 300 m/s. The initial position of aircraft 2 is (0, 0, 10 000), the

pitch angle is 0◦, the yaw angle is 45◦, and the initial velocity is

300 m/s. As can be seen that the initial situation of aircraft 2 is at

an advantage. The simulation result is shown in Figure 9.

The simulation ended because the altitude of aircraft 2

exceeded the maximum altitude. The air combat advantage

function of aircraft 2 includes the constraint on flight altitude

to keep the altitude difference between it and the target within a

certain range. However, although it used the advantage function

based on human knowledge to guide maneuver decision-

making, it failed to control the flight altitude properly because

of the randomness of MCTS. On the contrary, the proposed

method also based on MCTS can keep the flight altitude within

a reasonable range without human knowledge, which indicates

the effectiveness of the proposed method.

At the same time, according to Figures 7B, 8B, 9B, it can

be seen that decision-making guided by human knowledge

always increases the speed, while decision-making without

human knowledge accelerates and decelerates, which shows

that the method without human knowledge is more reasonable.

Because the maximum speed is set as 420 m/s, it can be seen

from the speed-increasing trend in Figures 7B, 8B, 9B that if

the maximum speed is not set, the decision-making method

guided by human knowledge will continue to increase the speed

and always maintain the maximum speed in the subsequent

air combat, which is not reasonable. Therefore, the method

proposed in this paper without human knowledge is more

reasonable and effective.
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FIGURE 7

Simulation result 1. (A) Air combat trajectory. (B) Velocity. (C) Missile overload.
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FIGURE 8

Simulation result 2. (A) Air combat trajectory. (B) Velocity. (C) Missile overload.
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FIGURE 9

Simulation result 3. (A) Air combat trajectory. (B) Velocity. (C) Missile overload.
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Conclusion

The maneuver decision-making method based on deep

reinforcement learning and Monte Carlo tree search without

human knowledge is proposed in this paper. According to the

simulation results, it can be concluded that a pure reinforcement

learning approach without human knowledge is feasible and

efficient for autonomous air combat maneuver decision-making.

On the one hand, the strengths of the proposed method are as

follows: (1) The method can achieve similar performance as the

method with human knowledge. (2) The method is simple to

implement since elaborately designed reward based on human

knowledge is not necessary. (3) The method can train neural

networks from scratch without using any data from human

pilots, which indicates that it can be used in the domains

where human data are deficient or expensive to acquire. On

the other hand, the weaknesses of the proposed method are as

follows: (1) The performance of the method is not as good as

its counterparts in board games, such as Go and chess. (2) The

time consumption of the method is more than some traditional

methods. (3) It takes plenty of time for training an agent using

this method.

We aim to investigate whether it is feasible for maneuver

decision-making without human knowledge by means of

simulations and using the results for a recommendation system

or pilots in manned aircraft is out of the scope of the article.

In future work, considering AlphaGo Zero without human

knowledge can defeat previous algorithms and human players

in Go, and it is necessary to improve the performance of the

method without human knowledge since the proposed method

does not completely defeat the methods with human knowledge.

Meanwhile, decreasing the time consumption of the method is

also another future work because the time consumption of the

proposed method is more than some traditional methods. And

the training procedure needs to be improved since it takes plenty

of time for training an agent.
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processes

Zebang Pan1, Guilin Wen1,2*, Zhao Tan1, Shan Yin1,2 and

Xiaoyan Hu1

1State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University,

Changsha, Hunan, China, 2School of Mechanical Engineering, Yanshan University, Qinhuangdao,
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The atypical Markov decision processes (MDPs) are decision-making for

maximizing the immediate returns in only one state transition. Many complex

dynamic problems can be regarded as the atypical MDPs, e.g., football

trajectory control, approximations of the compound Poincaré maps, and

parameter identification. However, existing deep reinforcement learning (RL)

algorithms are designed to maximize long-term returns, causing a waste

of computing resources when applied in the atypical MDPs. These existing

algorithms are also limited by the estimation error of the value function, leading

to a poor policy. To solve such limitations, this paper proposes an immediate-

return algorithm for the atypical MDPs with continuous action space by

designing an unbiased and low variance target Q-value and a simplified

network framework. Then, two examples of atypical MDPs considering the

uncertainty are presented to illustrate the performance of the proposed

algorithm, i.e., passing the football to amoving player and chipping the football

over the human wall. Compared with the existing deep RL algorithms, such

as deep deterministic policy gradient and proximal policy optimization, the

proposed algorithm shows significant advantages in learning e�ciency, the

e�ective rate of control, and computing resource usage.

KEYWORDS

reinforcement learning, atypical Markov decision process, flight trajectory control,

uncertain environments, continuous action space

Introduction

Inspired by the learning pattern of humans, i.e., learning by interacting with the

external environment, the concepts of reinforcement learning (RL) were first proposed

by Minsky (1954). Subsequently, Bellman (1957) presented a method to define an RL

problem using Markov decision processes (MDPs). As a result, an RL problem can

be described clearly in terms of states, actions, and rewards. In recent years, with

an in-depth combination of deep learning, traditional RL has evolved into deep RL.

Generally speaking, deep RL algorithms can be subdivided into value-based algorithms

and policy gradient algorithms. Deep Q Network (DQN) was the first exploration for
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value-based algorithms (Mnih et al., 2015). It solved the

dimension explosion problem. Subsequently, various improved

DQN algorithms were developed, such as Double DQN (Van

Hasselt et al., 2016), Dueling DQN (Wang et al., 2016), etc.

However, value-based algorithms could only be applied in

discrete rather than continuous action space. In contrast, policy

gradient algorithms could solve the RL problemwith continuous

action space, as an independent actor was constructed to output

actions. Note that policy gradient algorithms were generally

divided into stochastic policy algorithms and deterministic

policy algorithms. The stochastic policy algorithms could

output the probability distribution of the actions, such as the

asynchronous advantage actor-critic (A3C) (Mnih et al., 2016)

and proximal policy optimization (PPO) (Schulman et al.,

2017). The deterministic policy algorithms could output the

deterministic actions, such as deep deterministic policy gradient

(DDPG) (Lillicrap et al., 2015). Due to the advantages of

model-free, great self-learning ability, etc., the RL has shown

excellent performance in the application of complex control

processes. For example, the RL methods were applied to

robot manipulators to solve trajectory planning under complex

environments (Chen et al., 2022). Tutsoy and Brown studied

the RL in problems with Chaotic dynamics and proved that

a reasonable discount factor could avoid singular learning

problems (Tutsoy and Brown, 2016). Pan et al. (2023) designed

a controller for a three-link biped robot using the twin

delayed deep deterministic policy gradient algorithm (TD3).

Sharbafi et al. designed controllers based on the RL for

their football robots and won third place in the 2011 world

games (Sharbafi et al., 2011). Massi et al. (2022) increase the

learning speed of a navigating robot to improve its performance

using the RL method. Even in the financial sector, the RL

could be used to learn investment trading policy (Lee et al.,

2021). Such trading systems based on RL improved trading

performance effectively.

Indeed, the above application scenarios belong to the

standard MDPs, containing a series of state transitions.

However, the atypical MDP case, which involves only one state

transition in continuous action space, can also arise in the

engineering field, such as the stamping process (Wang and

Budiansky, 1978), directional blasting (Zhu et al., 2008), football

trajectory control (Myers and Mitchell, 2013), approximations

of the compound Poincaré maps (Li et al., 2020), etc. In

such atypical MDPs, the control goal is to maximize the

immediate returns rather than the long-term returns. Therefore,

compared to the standard MDPs, the atypical MDPs can

exhibit many new characteristics. Furthermore, to the best

knowledge of the authors, all existing RL algorithms are

designed for the standardMDPs to maximize long-term returns.

Applying the existing RL algorithms to the atypical MDPs

shall lead to the following problems. On the one hand,

the existing RL algorithms are also limited by their open

problem, i.e., the estimation error of the value function. For

example, the sampling errors caused by incomplete samplings

will lead to bias for the estimated state-value function (e.g.,

A3C and PPO) (Mnih et al., 2016; Schulman et al., 2017).

For the estimated action-value function, DQN and DDPG

can cause the overestimation due to the max operation in

off-policy temporal-difference (TD) learning (Mnih et al.,

2015; Van Hasselt et al., 2016). In comparison, the TD3

and double DQN may lead to underestimation as the

minimum output of two independent target critic networks is

selected to update the action-value function (Lillicrap et al.,

2015; Fujimoto et al., 2018). Furthermore, the uncertain

environment may bring a high variance for the estimated

value functions as the uncertainties can lead to entirely

different rewards for the same state-action pair. Since the

policy gradient formulation is directly related to the value

function, the estimation error of the value function can lead

to a poor policy and limit the performance of the existing

RL algorithms. On the other hand, as the atypical MDPs

focus only on immediate returns, the common designs for

calculating long-term returns are redundant in the existing RL

algorithms. It may result in a waste of computing resources.

Moreover, existing algorithms do not notice the difference

between estimating the state-value function and the action-

value function in atypical MDPs. Such difference determines

which approach is more suitable for dealing with atypical

MDPs. Thus, regarding the above problems of the existing

RL algorithms, this paper aims to propose an immediate-

return RL algorithm for atypical MDPs with continuous

action space.

On this basis, this paper further takes the football trajectory

control as the illustration example to present the superior

performance of the proposed algorithm. Indeed, the football

trajectory control shall be an ideal test case for the proposed

algorithm. The reasons are as follows. As the whole process

contains only one state transition from take-off to end and its

action, i.e., the football’s initial velocity, is continuous, football

flight is an atypical MDP case with continuous action space.

Meanwhile, the aerodynamic model of football is strongly non-

linear and has no analytical solutions (Myers and Mitchell,

2013; Javorova and Ivanov, 2018), which involves many complex

physical laws (Horowitz and Williamson, 2010; Norman and

McKeon, 2011; Javorova and Ivanov, 2018; Kiratidis and

Leinweber, 2018). It is difficult for the traditional control method

to control football flight (Hou andWang, 2013; Hou et al., 2016).

Thus, as a challenging task, football trajectory control is an ideal

example to test the proposed algorithm. In addition, related

researches also have practical application value. The accuracy

of the shot is a key of the football robot. Designing a high-

performance controller based on the proposed algorithm can

promote the development of high-level football robots in the

Robot world cup (Sharbafi et al., 2011).
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The main contents and contributions of this paper are

summarized as the following aspects. Firstly, the characteristics

of the atypical MDPs are analyzed systematically based on

the RL theory. The disadvantage of estimating the state-value

function in the atypical MDPs is explained qualitatively, i.e.,

the large samples requirement and the unavoidable sampling

error. These studies indicate the way to the development of

RL algorithms in the atypical MDPs. That is, the deterministic

policy has natural advantages in dealing with the atypical

MDPs in continuous action space. Secondly, based on the

deterministic policy and estimated action-value function, an

immediate-return RL algorithm is proposed for the atypical

MDPs. In the proposed algorithm, the average reward method

is developed to construct an unbiased and low variance target

Q-value. Compared with existing RL algorithms, e.g., DDPG

and PPO, the proposed algorithm reduces the estimation

error significantly. More details are introduced in following

Section Immediate-return RL algorithm for the atypical

MDPs. Meanwhile, a simplified network framework is also

designed for the proposed algorithm. Thus, the proposed

decreases both the space complexity and time complexity.

The comparison tests also demonstrate that the computing

resource consumed by the proposed algorithm is lower than

the DDPG and PPO. Thirdly, two challenging scenarios of

the football trajectory control, i.e., passing the football to a

moving player, and chipping the football over the human

wall (chip kick), are presented to test the feasibility of the

proposed algorithm. These scenarios can be used as the

benchmark to test the algorithms designed for the atypical

MDPs. Meanwhile, the controllers based on the proposed

algorithm in this paper can improve the football robot’s

shot accuracy in competitions, such as the Robot world cup

(Sharbafi et al., 2011). In the above scenarios, existing RL

algorithms (i.e., DDPG, PPO) are also tested as references.

Numerical results demonstrate that the immediate-return RL

algorithm has higher learning efficiency, a higher effective rate of

control, and lower computing resource usage than the reference

RL algorithms.

The rest of the present work is organized as follows.

In Section The atypical MDPs, the analysis of the atypical

MDPs is introduced. Then, the immediate-return RL

algorithm for the atypical MDPs is proposed in Section

Immediate-return RL algorithm for the atypical MDPs. In

Section Illustration examples: Football trajectory control

for different scenarios, two illustration examples in MDPs,

i.e., passing the football to a moving player and chipping

the football over the human wall, are designed. In Section

Comparison and discussion, the feasibility and high

performance of the RL controllers are demonstrated by

simulation tests. And the advantages of the immediate-return

RL algorithm are discussed by comparison with the existing

RL algorithms. Lastly, the conclusion of this paper is drawn in

Section Conclusion.

The atypical MDPs

Atypical MDPs: Definition and
characteristic analyses

For the standard MDP, it can be described by the states

st , actions at , and rewards rt (immediate return). Thus, the

trajectory of a standardMDP case contains a series of contiguous

state transitions, which can be expressed as follows.

(s0, a0, r0) → . . . → (st , at , rt) → (st+1, at+1, rt+1) →

. . . → ster (1)

where ster is the termination state. Based on RL theory, the state-

value function Vπ and action-value function Qπ in standard

MDPs is defined as follows (Watkins, 1989; Sutton and Barto,

2018).

Vπ (st) =
∑

at
π(at|st)

∑

st+1,rt
p
(

st+1, rt
∣

∣st , at
)

[

rt + γVπ

(

st+1
)]

(2)

Qπ (st , at) =
∑

st+1,rt
p
(

st+1, rt
∣

∣st , at
)

[

rt + γ
∑

at+1
π(at+1|st+1)Qπ

(

st+1, at+1
)

]

(3)

where p is the state transition probability and γ is the reward

discount factor (Sutton and Barto, 2018). As shown in Equations

(2), (3), both Vπ (st) and Qπ (st , at) are closely related to

the value of its possible successor states (or state-action pairs)

(Sutton and Barto, 2018). Then, the control goal in a standard

MDP case is achieving the optimal expected long-term returns.

The optimal policy π∗ can be written as follows (Sutton and

Barto, 2018).

π∗ (st) = argmaxatǫAQ π∗ (st , at) (4)

In contrast, the atypical MDP case considered in this

paper involves continuous action space and has only one state

transition from the initial state st (t = 0) to the termination state

ster . That is, for any state st , its next state st+1 is identical to the

termination state ster after a state transition, i.e., st+1 ≡ ster . Its

trajectory can be expressed as follows.

(st , at , rt) → ster (5)

As defined in Equation (5), due to st+1 ≡ ster , the

whole process of an atypical MDP case only contains one

reward rt (immediate return). Thus, in the atypical MDPs,

only the immediate return rather than the long-term return

should be considered. Note that the atypical MDP case

involving continuous action space is common in engineering

field, e.g., stamping process, directional blasting, football

trajectory control, approximations of the compound Poincaré

maps, etc.
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Then, the characteristics of atypical MDPs will be analyzed

by comparing the differences between the standard value

functions in Equations (2), (3) and the value functions of the

atypical MDPs. As defined by Sutton et al., both the state-value

and the Q-value at the termination state ster are identical to zero

(Sutton and Barto, 2018), i.e., Vπ (ster) ≡ 0 and Qπ (ster) ≡ 0.

Since st+1 ≡ ster in the atypical MDPs, the state-value function

VA
π in the atypical MDPs can be written as follows.

VA
π (st) =

∑

at
π (at|st)

∑

st+1,rt
p
(

st+1, rt
∣

∣st , at
)

rt

=
∑

at
π(at|st)R(st , at) (6)

In atypical MDPs, VA
π (st) denotes the expected immediate

return of the state st under the policy π . R(st , at) is the expected

immediate return for the state-action pairs. Compared to theVπ

in standard MDPs [see Equation (2)], although computing the

value of VA
π in the atypical MDPs is independent of its successor

state-valueVπ

(

st+1
)

, VA
π is still a function of the policyπ in the

atypical MDPs. Due to the operation
∑

at
π(at|st) in Equation

(6), estimating VA
π (st) should traverse the whole action space

A under the current policy π . It means that approximating the

VA
π (st) requires large amounts of samplings when the policy

π is stochastic. A finite number of samplings may ignore the

huge un-sampled action space and cause an enormous sampling

error. Here, suppose that the whole action space A consists of

the sampled action space As and the un-sampled action space

Aun, i.e., A = As + Aun. Based on Equation (6), there must

be a sampling error err(st) between the estimated state-value

function VE
π and true state-value function VA

π , i.e.,

VA
π (st) = VE

π (st) + err(st) (7)

where, VE
π (st) and err(st) can be expressed as follows:

VE
π (st) =

∑

at∈As
π(at|st)R(st , at) (8)

err(st) =
∑

at∈Aun
π(at|st)R(st , at) (9)

Actually, in standard MDPs, such sampling errors also exist

in the estimation of the Vπ and Qπ since they are also the

functions of the policy π . This sampling error introduces the

bias for the estimated VE
π (st) and further negatively affect

the stochastic policy update. Based on the actor-critic method

with baseline (Sutton and Barto, 2018; Levine et al., 2020),

the estimated stochastic policy gradient ĝE can be written as

follows when the biased estimate VE
π is used (Sutton et al., 1999;

Schulman, 2016).

ĝE = E

[

∞
∑

t=0

(rt + γVE
π

(

st+1
)

− VE
π (st))∇ω logπω(at| st)

]

= E

[

∞
∑

t=0

(

rt + γ

(

VA
π

(

st+1
)

− err
(

st+1
)

)

−
(

VA
π (st)

−err(st)))∇ω logπω(at| st)
]

= E

[

∞
∑

t=0

(

(rt + γVA
π

(

st+1
)

− VA
π (st))−

(

γerr
(

st+1
)

−err (st)))∇ω logπω(at| st)
]

= ĝ + E

[

∞
∑

t=0

(err (st) − γerr(st+1))∇ω logπω(at| st)

]

(10)

where ĝ is the true stochastic policy gradient. The biased estimate

VE
π causes an ineradicable policy gradient error ĝerr between the

estimated ĝE and true ĝ, i.e.,

ĝerr = E

[

∞
∑

t=0

(err (st) − γerr(st+1))∇ω logπω(at| st)

]

(11)

This error ĝerr may cause negative effects on policy updates.

Under the theory of RL, the action-value function QA in the

atypical MDPs can be written as follows.

QA (st , at) =
∑

st+1,rt
P

(

st+1, rt
∣

∣st , at
)

rt = R(st , at) (12)

In the atypical MDPs, QA (st , at) denotes the expected

immediate return of the state-action pairs (st , at). And the

action-value function QA is also unrelated to the value of its

successor state-action pairs as same as the VA
π in Equation (6).

However, it should be particularly stressed that the action-value

function QA in the atypical MDPs is a function independent of

policy π , which is different from the Vπ in Equation (2), Qπ

in Equation (3), and VA
π in Equation (6). Thus, it brings a set

of new characteristics for the QA as follows. Firstly, the value of

the QA (st , at) will not be changed in policy updating. However,

with the policy π updating, the state-value function VA
π in the

atypical MDPs will be changed accordingly. That is, compared

to approximating the QA, approximating the VA
π requires more

samples and more training steps. Meanwhile, since there is no
∑

at
π (at|st) operation in Equation (12), it is unnecessary for

estimating the action-value function QA to traverse the whole

action space. It also indicates that much more samples are

required to estimate VA
π (st) than to estimate QA (st , at) in

an atypical MDP case. This also indicates that estimating the

VA
π (st) in an atypical MDPs requires more samples than the Q-

function. Thus, estimating the state-value function can lead to

the low learning efficiency of the RL algorithms. Secondly, the

bias caused by sampling error will not exist in the estimated

action-value function QE as Equation (12) does not contain

operation
∑

at
π (at|st). In contrast, such bias is inevitable for
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the estimated state-value function VE
π , as discussed in Equation

(7). Based on the above analysis, estimating the QA (st , at)

is easier than estimating the VA
π (st) in the atypical MDPs.

Generally speaking, the stochastic policy algorithms rely on the

estimated state-value function VE
π , and the deterministic policy

algorithms rely on the estimated action-value function QE.

Thus, when dealing with the atypical MPD case, deterministic

policy algorithms can show more natural advantages than the

stochastic policy algorithms.

In addition, the new characteristic of the atypical MDP case

is also shown in its policy π∗. Based on the definition of the

action-value function QA in Equation (12), the optimal policy

π∗ under the atypical MDPs can be expressed as follows.

π∗ (st) = argmax
at∈A

∑

st+1,rt
P

(

st+1, rt
∣

∣st , at
)

rt

= argmax
at∈A

R (st , at) (13)

That is, in the atypical MDPs, the goal of the optimal policy π∗ is

achieving the maximal expected reward rather than the maximal

expected long-term returns. And the long-term returns can be

ignored for policy update in the atypical MDPs.

Limitations of existing RL algorithms in
the atypical MDPs

When dealing with the atypical MDP cases in continuous

action space, the existing RL algorithms are limited by their

open problems as well as by the special problems caused by the

characteristic of the atypical MDP case. Note that the value-

based algorithms will not be discussed here as they are only

applicable to discrete action space.

The estimation error of the estimated value function,

i.e., bias and variance, is an open problem that limits the

performance of RL algorithms. The bias may be introduced to

the estimated value function based on TD learning due to the

off-policy TD learning’s max operation, chosen imperfect policy,

and uncertainties (Sutton and Barto, 2018). TD learning method

is an important estimation method for the value function and

is widely used in existing RL algorithms, e.g., PPO, DDPG,

etc. Especially for deterministic policy algorithms, e.g., DDPG,

TD learning’s max operation may lead to an overestimated

Q-value (Van Hasselt et al., 2016), bringing negative effects

to the policy update. Although the TD3 (Fujimoto et al.,

2018) improves the overestimation, TD3 may lead to the

underestimated Q-value and increase the complexity of the

algorithm significantly. Additionally, as analyzed in Equation

(7), sampling error caused by incomplete samplings can further

increase the bias for the stochastic policy algorithms that rely on

the estimated state-value function VE
π , e.g., A3C, PPO, etc. Note

that some complex scenario involving uncertain environments

may generate completely different response results for the same

state-action pair. Such complex and uncertain responses can

bring a high variance for the estimated value functions, leading

low reliability of controller. However, existing RL algorithms do

not solve this problem very well.

As analyzed in Equation (13), a characteristic of the atypical

MDPs is that they focus only on the maximum immediate

return. And there is no focus on the long-term return. However,

there are many designs for estimating long-term returns in

existing RL algorithms. For example, based on Equations (2),

(3), many existing RL algorithms, such as PPO, DDPG, etc., have

an operation to calculate the successor state-value (or Q-value).

When dealing with an atypical MDP case, such an operation is

redundant and increases the time complexity of the algorithms,

e.g., PPO. Especially for deterministic policy algorithms, e.g.,

DDPG and TD3, they contain a set of complex target networks

to calculate the successor Q-value. It shall increase a great of

both time complexity and space complexity. Such limitations

can increase computing resource usage, which is not conducive

to applying RL algorithms to complex problems.

Immediate-return RL algorithm for
the atypical MDPs

The immediate-return RL algorithm

As analyzed in Section The atypical MDPs, deterministic

policy shows more advantages than stochastic policy in atypical

MDPs. Thus, the immediate-return RL algorithm is proposed

based on the deterministic policy method and actor-critic

framework for the problems in atypical MDPs. The new

equations involved in this algorithm are highlighted in “⇐”.

As shown in Figure 1, two networks, i.e., actor network with

weights θµ and critic network with weights θQ, are designed

to construct the actor-critic framework. Here the actor network

plays a role as the policy. It can output deterministic action

at = µ
(

st
∣

∣θµ
)

based on the inputted state st . The critic network

is used as the estimated action-value function. It can evaluate the

performance of the actor network by outputted the estimated Q-

value Q
(

st , at
∣

∣θQ
)

according to the inputted state-action pair

(st , at). Compared to other deterministic policy algorithms (e.g.,

DDPG), the proposed algorithm’s network framework has been

simplified significantly due to no target networks. It means less

computing resource usage.

As analyzed in Equation (12), the true action-value function

QA in atypical MDPs is equal to the expected reward R(st , at).

As shown in Equation (13), the immediate reward rt (i.e.,

immediate return) is the unbiased estimation for the expected

reward R(st , at).

Ert ,st+1 [rt] =
∑

st+1,rt
P

(

st+1, rt
∣

∣st , at
)

rt = R(st , at) ⇐ (14)

When the environment is deterministic, the generated next state

st+1 and immediate reward rt are also deterministic under
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FIGURE 1

The framework of the immediate-return RL algorithm. Yellow solid arrows: the actor network interacts with the environment. Blue solid arrow:

update for critic network. Blue hollow arrow: update for actor network.

the specified state-action pair (st , at). Under this condition,

the immediate reward rt is equal to its expectation, i.e.,

rt = R(st , at). Thus, rt is the ideal target Q-value y+t
of the estimated action-value function in an atypical MDP

with a deterministic environment. However, the uncertain

environments (e.g., dynamic systems with uncertainties) may

generate different immediate rewards rt even given the same

state-action pair (st , at). A randomly generated reward value

rt cannot represent the expected reward R(st , at) under the

specified state-action pair (st , at). Due to the complexity of the

uncertainties, the probability distribution of these generated

reward values is also unknown. Therefore, using rt as the critic

network’s target Q-value will result in a high estimation variance

when considering uncertainties. The high variance may lead to

instability in the learning process, making the policy less reliable

(Fujimoto et al., 2018; Sutton and Barto, 2018). Based on the

law of large numbers, the average reward r̂t is proposed as the

target Q-value to solve the problem of high variance caused by

uncertain environments. r̂t can be expressed as follows.

r̂t =
1

K

∑K

k=1
rkt ⇐ (15)

That is, a specified state-action pair (st , at) will be performed

multiple times K in the uncertain environment. And a set

including multiple immediate rewards
{

rkt

}

will be obtained.

This immediate reward set
{

rkt

}

can reflect the probabilistic

characteristics of the uncertain environment’s responses under

the state-action pair (st , at). Then, the average reward r̂t

is constructed by averaging the immediate reward set
{

rkt

}

.

According to the law of large numbers, the average reward r̂t

is closer to the expected reward R(st , at) than one randomly

generated reward rt . Thus, there will be minor variance, when

the average reward r̂t is used to estimate the expected reward

R(st , at). Note that the average reward r̂t is still the unbiased

estimation for the expected reward R(st , at) due to the average

operation. In practical application, the repetition number K is

suggested to be 3 based on experience. In the football trajectory

control problems considered in this paper, setting the repetition

number K to 3 can significantly improve the training results

compared to setting the number of repetitions to 1. When

K continues to increase, the algorithm’s performance cannot

be significantly improved. Based on the above analysis, these

improvements provide an unbiased and low variance target Q-

value for the critic network. It can make the proposed algorithm

more reliable in uncertain environments. The problem of

the estimation error in the existing RL algorithms, e.g.,

overestimation in DDPG, can also be overcome. The numerical

tests in Section Controller’s performance will prove this. Then,

the new target Q-value y+t of the immediate-return RL is

expressed as

y+t = r̂t ⇐ (16)

It should be noted that the average reward r̂t applies only to

the atypical MDP case, as the successor state st+1 relying on the

current state-action pair (st , at) does not exist.

The off-policy method (Levine et al., 2020) is also adopted

in the proposed algorithm. All training samples generated from

the trial and error should be stored in the experience memory. It

should be stressed that the atypical MDP case does not focus on

the successor state st+1, and its trajectory contains only one state
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transition. Hence, only the initial samples of each trajectory, i.e.,

(st , at , r̂t), t ≡ 0, should be stored. SamplingN training samples
∑N

i = 1

(

si, ai, r̂i
)

, the loss function for updating critic network is

expressed as follows.

LC =
1

N

∑N

i = 1
(y+i − Q(si, ai|θ

Q))
2

∣

∣

∣
y+i = r̂i (17)

where N is the size of the min-batch. Symbol i is the label

number of the sample. Byminimizing the loss function, the critic

network weights θQ can be updated. Meanwhile, as analyzed in

Equation (13), the policy should be updated in the direction of

maximizing the expected reward. Thus, the purpose of updating

the actor network µ is to maximize the estimated Q-value

outputted by the critic network. Referring to Lillicrap et al.

(2015), the gradient for updating actor network weights θµ is

expressed as follows.

∇θµ |si =
1

N

∑N

i=1
∇aiQ

(

si, ai = µ (si)
∣

∣

∣
θQ

)

∇θµµ
(

si
∣

∣θµ
)

(18)

Furthermore, the delaying policy update (Fujimoto et al., 2018)

is also introduced for the immediate-return RL algorithm. It

can reduce the frequent policy updates and further result in low

variance (Fujimoto et al., 2018). After successful training, the

actor network will be the RL controller.

In summary, due to the proposed average reward method,

the open problem of the estimation error can be improved

significantly in the proposed algorithm. Compared to existing

RL algorithms, the proposed algorithm will show high

performance. This point will be certified in two football

trajectory control scenarios (see Section Comparison and

discussion). Besides, based on the characteristics of atypical

MDPs, a simplified network framework is designed for the

proposed algorithm to reduce computing resource usage. Then,

the complete pseudocode of the immediate-return RL algorithm

is shown in Algorithm 1.

Complexity analysis

The computing complexity, i.e., space complexity and time

complexity, can reflect the requirement of the algorithm for

computing resources. To verify the low computing resource

requirement of the immediate-return RL algorithm, the

computing complexity of the proposed algorithm will be

analyzed in this section. Meanwhile, the representative of the

stochastic policy algorithms, i.e., PPO, and the representative

of the deterministic policy algorithms, i.e., DDPG, will also be

analyzed as references. For the details of DDPG and PPO, please

see Lillicrap et al. (2015), Schulman et al. (2017). In the following

analysis, the single network’s detailed architectures in Section

Training process will be used as an example for clarity.

1: Randomly initialize actor network µ with weights θµ

2: Randomly initialize critic network Q with weights θQ

3: Initialize the experience replay memory E

4: For step t= 1, T do

5: Generate initial state st in the environment

6: Output action at = µ
(

st
∣

∣θµ
)

+β based on current policy and

random noise

7: Initialize average reward r̂t = 0

8: For k= 1, K do

9: Running the state-action pair (st , at) in environment on the

kth times

10: Observe the reward rk
t
, and r̂t = r̂t + rk

t
⇐

End Loop K

11: Calculate average reward r̂t = r̂t/K⇐

12: Store the sample (st , at , r̂t) in E

13: Extract random a minibatch of N samples
∑N

i=1

(

si, ai, r̂i
)

from E

14: Obtain the target Q-value y+i = r̂i ⇐

15: Construct the loss function LC of the critic network:

LC = 1
N

∑N
i=1 (y

+
i − Q(si, ai|θ

Q))
2

16: Update the critic network weights θQ by minimizing the loss

LC

17: If t mod d then

18: Update the actor network weights θµ using the gradient:

∇θµ |si =
1
N

∑N
i=1 ∇aiQ

(

si, ai = µ (si)
∣

∣θQ
)

∇θµµ
(

si
∣

∣θµ
)

End IF

End Loop T

Algorithm 1 The immediate-return RL algorithm.

Since the algorithms mentioned above are composed of

networks, their space complexity depends on the total parameter

of all networks. According to Han et al. (2015), the whole space

complexity of a single network is:

space ∼ O

(

∑L−1

l = 1
NlNl+1+Nl+1

)

(19)

where L=5 is the total layer number of the networks. Nl

represents the total node number of the l layer. As shown

in Table 1, both the proposed algorithm and PPO have two

networks (Schulman et al., 2017), and the DDPG contains four

networks (Lillicrap et al., 2015). Thus, the space complexity of

the proposed algorithm is similar to PPO and is reduced by 50%

compared to DDPG.

The time complexity of the RL algorithms depends on

both the network framework and the calculation process (i.e.,

sampling process and update process). Generally, floating point

operations (FLOPs) is used to evaluate the algorithm’s time

complexity. Referring to He and Sun (2015), the time complexity

of a single network is:

time ∼ O(
∑L−1

l = 1
2NlNl+1) (20)
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TABLE 1 The space and time complexity analysis.

The proposed algorithm DDPG PPO

Space complexity Actor network 199,558 199,558 200,332

Critic network 200,449 200,449 198,913

Target networks \ 400,007 \

Total 400,007 800,014 399,245

Time complexity (FLOPs) Actor network 397,312 397,312 398,848

Critic network 399,104 399,104 396,032

Target networks \ 796,416 \

Once Sampling 397,312 397,312 398,848

Once network Update 796,416 1,592,832 (794,880∼1,190,912)

Then, the time complexity of one sampling and one network

update will be discussed separately (see Table 1). For the three

algorithms discussed in this article, only the actor network

is working when sampling. Thus, the time complexity of the

three discussed algorithms can be regarded as the same in one

sampling and is equal to the actor network’s time complexity (see

Table 1). Note that although the state-action pair (st , at) will be

performed many times in the environment (Algorithm 1 Line 8

to Line 10), the proposed algorithm’s time complexity will not

be increased in one sampling, as its actor network only runs

once. Regarding the time complexity of network updates, only

the network’s forward computation is considered according to

He and Sun (2015). When the proposed algorithm and DDPG

(Lillicrap et al., 2015) update their networks, all their networks

will be used once. Here, the proposed algorithm has 2 networks,

and DDPG has four (Lillicrap et al., 2015). Thus, the proposed

algorithm reduces the time complexity of each network update

by 50% than DDPG (see Table 1). In each network update, the

actor network and critic network of PPO should estimate π(st)

the V(st), respectively (Schulman et al., 2017). Besides, for the

same batch of samples that are trained multiple times, the critic

network should be used once to estimate V(st+1) due to the

TD learning method (Schulman et al., 2017). That is, the fewer

times the same batch of samples are trained, the greater the time

complexity of each network update. When a batch of samples

is used only once, the proposed algorithm can reduce the time

complexity of each network update by 33.1% than the PPO (see

Table 1). Thus, based on the above analysis, when the sampling

times and the network update times are constants, the time

complexity of the proposed algorithm is 40% lower than the

DDPG and 0–24.9% lower than the PPO.

It should be stressed that computing resources are

limited and precious. Especially for some actual complex

tasks involving vision, the usage of computing resources

is enormous. Based on the above analysis, the immediate-

return RL algorithm has lower computing complexity

than the existing RL algorithms, reducing computing

resource usage. Such statements will be verified in

the following Section Computing resource usage by

detailed comparisons.

Illustration examples: Football
trajectory control for di�erent
scenarios

The football flight is an atypical MDP case. To test

the immediate-return RL algorithm, two highly challenging

scenarios involving the flight control of the football, i.e., passing

the football to a moving player, and chipping the football over

the human wall, will be examined. These scenarios can be

used as the benchmark to test the algorithms designed for the

atypical MDPs. Meanwhile, regarding research results can be

used to develop high-level football robots in the Robot world

cup (Sharbafi et al., 2011). The controllers based on the proposed

algorithm in this paper can significantly increase the accuracy of

the football shot.

Under the above two scenarios, the proposed controllers will

be trained to output accurate initial velocities for the football

to achieve the specified flight purposes and reduce the time of

football flight. In the following sections, the experimental model

will be introduced in Section Experimental model: Aerodynamic

model of football with parameter uncertainties first. Then, other

detailed designs corresponding to the two different scenarios,

including the actions designs, states designs and constraints, the

termination events definitions, and the reward function designs,

will be introduced in Section Scenario 1: passing the football to a

moving player and Section Scenario 2: chipping the football over

the human wall.

Experimental model: Aerodynamic model
of football with parameter uncertainties

Here, an aerodynamic model of football under windless

conditions is directly reproduced here from Myers and Mitchell
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TABLE 2 The fitting coe�cients of the drag coe�cient function (Kiratidis and Leinweber, 2018).

Balls ac vc vs bmin bmax vmin vmax br

Tango12 0.5452 12.8600 1.3040 0.1657 0.1953 16.2200 35.0000 0.5332

Teamgeist 0.4927 12.5800 1.0710 0.1440 0.1540 23.1700 35.0000 0.5140

Brazuca 0.4740 12.9200 1.0000 0.1657 0.2112 14.6100 35.0000 0.5397

These fitting coefficients are derived from the actual wind tunnel data of famous footballs, including Tango12, Teamgeist and Brazuca.

(2013), Javorova and Ivanov (2018). On this basis, parameter

uncertainties are newly introduced into the aerodynamic model

of the football. Thus, the football flight process can be regarded

as an uncertain environment. This aerodynamic model will

be adopted directly as the simulation environment to further

generate the training data for the RL controllers.

The external forces acting on the ball include gravity G,

drag force FD, lift force FL, and drag moment MD. Thus, the

aerodynamic model of football can be expressed as follows

(Myers and Mitchell, 2013; Javorova and Ivanov, 2018).

m̃ẍ = −KDẋ

√

ẋ2 + ẏ2 + ż2 + KL

(

ẋ2 + ẏ2 + ż2
)

(

ωY ż − ωZ ẏ
)

(21)

m̃ÿ = −KDẏ

√

ẋ2 + ẏ2 + ż2 + KL

(

ẋ2 + ẏ2 + ż2
)

(ωZ ẋ− ωX ż) (22)

m̃z̈ = −KDż

√

ẋ2 + ẏ2 + ż2 + KL

(

ẋ2 + ẏ2 + ż2
)

(

ωX ẏ− ωY ẋ
)

− m̃g (23)

ω̇X = −ηωX (24)

ω̇Y = −ηωY (25)

ω̇Z = −ηωZ (26)

where parameters KD and KL are specified as follows.

KD = 0.5C̃dρ̃π r̃2 (27)

KL = 0.5CLρ̃π r̃2
1

|ω × v|
(28)

here, m̃ is the football’s mass, g is the gravitational acceleration,

ρ̃ is the air density, r̃ is the radius of the football, v=(ẋ, ẏ, ż) is the

linear velocity, andω= (ωX ,ωZ ,ωY ) is the angular velocity. The

attenuation coefficient η is assumed to be 0.05. Furthermore, the

dimensionless lift coefficient CL is adopted from Kiratidis and

Leinweber (2018) as follows.

CL =
(

1− ∂v2
)

Sp
β (29)

here, the parameter ∂ is chosen as 2.5 × 10−4, and β is 0.83

(Kiratidis and Leinweber, 2018). The spin parameter is Sp =
r̃ω
v , where ω = |ω| and v = |v|. The dimensionless drag

coefficient is expressed as C̃d, which is an important factor

for the sudden change of linear velocity of football in flight

(Horowitz and Williamson, 2010; Norman and McKeon, 2011).

TABLE 3 The range of the uncertain parameters.

Uncertainparameters Unit Minimum value Maximum value

Air density ρ̃ kg/m3 1.000 1.205

Mass m̃ kg 0.42 0.45

Radius r̃ m 0.1090 0.1106

Its fitting function is adopted from Kiratidis and Leinweber

(2018) as follows.

C̃d
(

v, sp
)

=
ac − bmin

1+ e
v−vc
vs

+ bmin +
v− vmin

1+ e
−v+vmin

vs

bmax − bmin

vmax − vmin

+brSp (30)

where ac, bmin, bmax, br , vmin, vmax, vc, and vs, are the fitting

coefficients of the above function (see Table 2).

Next, parameter uncertainties, i.e., air density ρ̃, mass m̃,

radius r̃, and drag coefficient C̃d, in the aerodynamic model

of football will be introduced. Here, m̃, ρ̃, r̃, and C̃d, are

internal parameters, and ρ̃ is external parameter. All parameters

with uncertainties are random and parametric. The following

parameters, i.e., ρ̃, m̃, and r̃, can change in very small intervals

according to the international federation of association football

(FIFA) standards, and these details are shown in Table 3. In

addition, the different fitting coefficients of the drag coefficient

functions (Kiratidis and Leinweber, 2018) corresponding to

three kinds of footballs, i.e., Tango12, Teamgeist, or Brazuca,

are considered in this paper (see Table 2). That is, when giving

specified initial conditions and simulating Equations (21)–(26)

in the training or testing procedures, values of the ρ̃, m̃, and

r̃ will be selected randomly from Table 3, and one set of the

fitting coefficients of the drag coefficient function will be selected

randomly from the Table 2. Note that slight changes in the

above parameters can significantly impact the flight trajectories,

although the football has the same initial condition. In order to

analyze the impact of the parameter uncertainties, 20 random

initial conditions are generated to test. Based on Equations (21)–

(26), each initial condition is simulated 100 times and produces

100 flight trajectories. In each initial condition, the average

landing position of these 100 flight trajectories is set as the target

position. Then, the average relative error of the 100 landing

positions relative to the target position can be calculated to assess
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FIGURE 2

The e�ect of parameter uncertainty on flight trajectory.

FIGURE 3

Passing the football to a moving player.

the impact of the parameter uncertainties. The results of 20 tests

are shown in Figure 2. Here, the maximum average relative error

is 66.97%. The average value of 20 average relative errors is

10.63%. Thus, parameter uncertainties can have a non-negligible

impact on the flight trajectory and pose a significant challenge to

the controller design.

Scenario 1: Passing the football to a
moving player

The schematic diagram of the first scenario is shown in

Figure 3. And this scenario simulates the dynamic passing

situation between the players in reality. That is, the moving

player moves when the football flies and stops when the football

lands. Here, two control targets, i.e., passing the football to a

moving player and reducing the time of the football flight, are

set for the RL controller.

The action outputted by the RL controller is the initial

velocities of the football, i.e., initial linear velocity and initial

angular velocity. This action is designed as follows.

A0 =
(

vx, vy, vz , ωx,ωy,ωz
)

(31)

It should be noted that both the linear and angular velocities

should be limited according to the practical data of the

professional players (Neilson, 2003), i.e., |v| ∈ [0, 34] m/s and

|ω| ∈ [0, 62.8] rad/s.

In this scenario, the initial position of the moving player

will be set at the coordinate origin for convenience, i.e.,

(xm, ym, zm) = (0, 0, 0). Thus, the conditions when the football

takes off, i.e., state S1, can be described as follows.

S1 =
(

x0, y0, z0, vmx, vmy
)

(32)

where (x0, y0, z0) is the football’s initial take-off position. The

(vmx, vmy) is the moving speed of the moving player. Then, the

constraints for the state S1 are set as follows. Firstly, according

to the player’s sprint speed (Djaoui et al., 2017), the maximum

speed of moving players is limited to 10 m/s, i.e.,

vm =
√

vmx
2 + vmy

2 ≤ 10 (33)

Secondly, considering the size of the sports field, the

constraint on the choice of the take-off position is defined

as follows.

dm =

√

(x0 − xm)
2 + (y0 − ym)

2 + (z0 − zm)
2 ≤ 30 (34)

Note that the destination
(

xd, yd, zd
)

of the football in this

scenario is defined as the end position of the moving player, i.e.,

(xm+ vmxtf , ym+ vmytf , zm). tf is the football’s flight time. That

is, the destination is not a constant pre-defined in the state S1

and unknown for the RL controller. Thus, passing the football to

a moving player is a challenging scenario.

To generate reasonable trajectories, some termination events

of the simulations should be set according to the constraints

required. Any of termination events are triggered, the flight

process will be stopped. In this scenario, the ground floor ZLB =

0 and maximum height ZLH = 12 are set as the constraints

for flight trajectories. Therefore, the termination events for

this scenario are defined as zf = ZLB or zf = ZLH . Here,

the
(

xf , yf , zf

)

denotes the football’s final position when the

termination event is triggered.

For the purpose of learning an excellent policy to predict

proper initial velocities, the RL controller needs to be guided

by an appropriate reward function. Here, a monotonic power

function (i.e., y = 1 − xb) is selected as the basic function to

design the reward function. For this basic function, the closer

x is to 0, the greater the change in the gradient
dy
dx
. Thus, the

reward function based on this power function can provide very

large positive rewards for a small number of correct samples in
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some complex scenarios. It may provide more precise guidance

for RL algorithms. Note that other function forms may also have

similar effects, and the proposed basic functions only offer an

effective solution. In this scenario, two sub-reward functions

based on this basic function are designed for two independent

control targets, i.e., passing the football to a moving player,

and reducing the time of football flight, respectively. Then, two

sub-reward functions will be combined into one united reward

function by reward shaping (Brys et al., 2017) to integrate these

two control targets.

For the first control target, i.e., passing the football to

a moving player, the relative error δ between the football’s

final position
(

xf , yf , zf

)

and the destination
(

xd, yd, zd
)

is a

reasonable parameter to evaluate the flight results. It can be

expressed as follows,

δ = 1d/dd (35)

where, 1d is the absolute error between the football’s final

position and the destination, i.e.,

1d =

√

(

xd−xf

)2
+

(

yd − yf

)2
+

(

zd − zf

)2
(36)

dd indicates the distance between the take-off position and the

destination, i.e.,

dd =

√

(

x0 − xd
)2

+
(

y0 − yd
)2

+
(

z0 − zd
)2

(37)

Then, the first sub-reward function is designed as follows,

r1,1 = 1− δ0.4 (38)

where constant-coefficient 0.4 is an empirical parameter by error

and trial. For the sub-reward function r1,1, the smaller the

relative error, the faster the reward increases. This character

will benefit the convergence of the networks in the proposed

algorithm. For the second control target, i.e., reducing the time

of football flight, the unit time cost index ts is defined as follows.

ts = tf /dm (39)

where tf is the football’s flight time and parameter dm can be

found in Equation (34). Then, the second sub-reward function

is defined as follows:

r1,2 = 1− (max(ts − t0, 0))
0.15 (40)

where symbol t0 = 0.055 s/m is the empirical value based

on simulations, which indicates the expected unit time cost. As

defined by the sub-reward function r1,2, the lower the unit time

cost index, the higher the value of the reward. Then, the united

reward function will be shaped as Equation (41).

R1 =
14

9
r1,1 +

4

9
r
1,2,

zf = ZLB or zf = ZLH (41)

FIGURE 4

Distribution of the value of the reward function R1 on the

parameter ts and parameter δ.

where the value of the reward function R1 is restricted from

0 to 2 according to the recommended value of the Henderson

et al. (2018). Considering the importance of the first control

target and the value limitation of the R1,
14
9 and 4

9 are

selected the shaping weights for r1,1 and r1,2, respectively.

Since the different control targets have different sensitivities

in reward value, reasonable shape weights are helpful to find

the optimal policy that can satisfy multiple control targets.

However, these weights in reward shaping usually originate in

practical experience. The pretest results also demonstrate that

changing the shaping weights value will decrease the proposed

controllers’ performance. After shaping, the distribution of the

reward function R1 on relative error δ and unit time cost index

ts is shown in Figure 4.

Scenario 2: Chipping the football over
the human wall

The schematic diagram of chipping the football over the

human wall is shown in Figure 5. In this scenario, the football

is required to fly over (rather than through) the human wall

and reach at the goal. Indeed, this scenario simulates the free

kick situation in the football game. Similar as the first scenario,

the action outputted by the RL controller is the football’s initial

velocities, which are defined in Equation (31). Here, two control

targets, i.e., chipping the football into the goal and reducing the

time of the football flight, are set for the RL controller.

In this scenario, the goal is defined as perpendicular to the

positive Y-axis and the projection of the goal’s central point

on the X-Y plane is set at the coordinate origin (0, 0, 0). Thus,

the central point of the goal will be always regarded as the

destination, i.e.,
(

xd, yd, zd
)

= (0, 0, 1.22) (The height of the goal
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FIGURE 5

Chipping the football over the human wall.

is 2.44m based on the FIFA standards). Then, a 2.4× 6m human

wall parallel to the goal is placed between the goal and take-off

position of football. Here, the projection points of the human

wall’s central point, the goal’s central point, and the football’s

take-off position on the X-Y plane are assumed to be collinear.

Thus, the conditions when the football takes off in this scenario,

i.e., state S2, can be described as follows.

S2 =
(

x0, y0, z0, dr, xw, yw, zw
)

(42)

where, the
(

x0, y0, z0
)

can be found in Equation (32). The
(

xw, yw, zw
)

represents the central point of the human wall. The

parameter dr represents the specified direction requirement for

flight trajectories. Namely, dr = 1 is left side of the human

wall, dr = 2 is top of the human wall, and dr = 3 is right side

of the human wall. Then, the constraints for the state S2 are

defined as follows. The constraints for take-off position are set as

x0 ∈ [−20, 20] and y0 ∈ [−15,−25]. Note that z0 ≡ 0. Based on

the free-kick rules, the constraint for the human wall’s position

is defined as follows,

√

(x0 − xw)
2 + (y0 − yw)

2 ≥ 9.15 (43)

Due to the human wall, the flight trajectories of footballs

are required to specified shapes. Meanwhile, multiple specified

direction requirements are considered, which means more

functional requirements. Thus, the complexity of this scenario

is significantly increased more than the first scenario.

In this scenario, another two termination events should be

defined, besides two termination events zf = ZLB or zf = ZLH

described in Section Scenario 1: Passing the football to a moving

player. Here, the third termination event triggered by the human

wall (yf = yw) is required. That is, the football bumps into the

human wall. Based on the parameter dr, the third termination

event has three triggering conditions, which can be expressed

as follows.















xf ≥ xw − 3 , when dr = 1 and yf = yw
∣

∣

∣
xf − xw

∣

∣

∣
> 3 or zf ≤ 2zw, when dr = 2 and yf = yw

xf ≤ xw + 3, when dr = 3 and yf = yw

(44)

Then, the fourth termination event indicates that the football

reaches at the two-dimensional surface corresponding to the

goal, which is written as yf = 0.

Since the complexity of the control requirements in the

second scenario, three independent reward functions, i.e., R2,1,

R2,2, and R2,3, are designed respectively depending on the

triggering four termination events. Note that triggering the

fourth termination event yf = 0 is the essential precondition for

chipping the football into the goal. Thus, only when the fourth

termination event is triggered, reducing the time of football

flight should be considered, and the relevant reward function

R2,3 is set from 0 to 2. And other reward functions R2,1 and

R2,2 are defined between −2 and 0 to ensure the coherence of

the reward’s guidance (see Figure 6). Since each reward function

only works on a specified termination event, a simple linear

function (i.e., y = kx + b) is also selected as the reward’s basic

function besides the power function.

When the first and second termination events are triggered,

i.e., zf = ZLB or zf = ZLH , the first reward function is designed

as follows to guide the football close to the destination.

R2,1 = −2δ, zf = ZLB or zf = ZLH (45)

where δ can be found in Equation (35). When the third
termination event takes effect, that is, the football hits the human
wall, the second reward function should guide the ball to fly over
the human wall. Based on the definition of the third termination
event’s triggering conditions in Equation (44), the second reward
function can be expressed as follows.

r2,2 =















−0.17
(

xf − xw + 3
)

,

−0.17
(
∣

∣xw − xf
∣

∣ − 3
)

− 0.5,

−0.21
(

2zw − zf
)

,

−0.17
(

xw + 3− xf
)

,

dr = 1, yf = yw, xf ≥ xw − 3

dr = 2, yf = yw,
∣

∣xf − xw
∣

∣ > 3

dr = 2, yf = yw, zf ≤ 2zw

dr = 3, yf = yw, xf ≤ xw + 3

(46)

When the fourth termination event is triggered yf = 0, two

independent sub-reward functions are designed for chipping the

football into the goal and reducing the time of the football flight,

respectively. The first sub-function r2,3a is used to guide the

football toward the goal, which is designed as follows.

r2,3a =















−0.068
∣

∣

∣
xf − xd

∣

∣

∣
+ 0.75,

−0.14
(

zf − zd

)

+ 1.1708,

−0.26d + 3,

yf = 0,
∣

∣

∣
xf − xd

∣

∣

∣
> 3.66

yf = 0, zf − zd > 1.22

yf = 0, else

(47)

here d can be found in Equation (36). The second sub-function

r2,3b is used to optimize the flight time. Referring to the Equation

(40), it can be expressed as follows.

r2,3b = 1− (max(ts − t0, 0))
0.15, yf = 0 (48)

where the unit time cost index ts is defined as ts = tf /dd.

The dd can be found in Equation (37). And t0 can be found
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FIGURE 6

Distributions of the value of the reward function R2 on the

sports field. (A) The specified direction dr = 1. (B) The specified

direction dr = 2. (C) The specified direction dr = 3.

in Equation (40). Then, the third reward function are shaped as

Equation (49).

R2,3 =
1

2
r2,3a +

1

2
r2,3b , yf = 0 (49)

where 1
2 and

1
2 are the shaping weights. Note that the value of the

third reward function is designed to be larger than the first and

second. This design can effectively guide the football reaching to

the goal. Under the requirements of three specified directions,

the distributions of the value of the reward function R2 on the

sports field are shown in Figure 6. Actually, reward function

design is an experienced-based work (Dewey, 2014; Henderson

et al., 2018; Silver et al., 2021). The constant-coefficients of

the Equation (38), Equation (40), Equation (41), and Equations

(45-49) are all determined by error and trial. And the pretest

results verify that the proposed reward functions have strong

guidance for optimizing control strategy under the effects of

these constant-coefficients.

Comparison and discussion

In this section, the advantages of the immediate-return

RL algorithm for atypical MDPs will be discussed and

demonstrated. Meanwhile, PPO (the representative of the

stochastic policy algorithms) and DDPG (the representative of

the deterministic policy algorithms) are chosen as the references

for the proposed algorithm. All these algorithms will train

corresponding controllers for two football flight scenarios. Then,

the advantages of the proposed algorithm will be discussed and

analyzed from the training process, training results (i.e., the

performance of the controllers), and computing resource usage

by comparing with these reference algorithms.

Training process

For the control problems of the football trajectory, the

proposed algorithm’s detailed network framework is designed

in Figure 7, including an independent actor network and an

independent critic network. Here, the proposed algorithm’s

actor network and critic network have the same hidden layers

and node numbers, i.e., the same network architectures. Indeed,

each independent network in the three discussed algorithms

shares the same network architectures to avoid the influence

of the network architectures on the test results. Similarly, all

discussed algorithms use the same reward function designed

in Section Illustration examples: Football trajectory control

for different scenarios. Furthermore, it should be noted that

different deep RL algorithms have different sensitivities to

hyperparameters (Henderson et al., 2018). Based on the trial

and error and the experience of Dewey (2014), Henderson et al.

(2018); and Silver et al. (2021), the detailed hyperparameters

of each algorithm are selected (see Table 4). Under the premise

of ensuring the algorithm’s performance, each algorithm’s

hyperparameters are set to the same value.

Then, all algorithms, i.e., the proposed algorithm, DDPG,

and PPO, will train the corresponding controllers for these two

scenarios. Here, the learning efficiency of the algorithm can

be evaluated by the consumption of the training steps. After

450,000 training steps, all reward curves in these two scenarios

are shown in Figure 8. In both scenarios, the reward curves of

the proposed algorithm (red line in Figure 8) converge to the
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FIGURE 7

Detailed network architectures of the proposed algorithm.

TABLE 4 The hyperparameters of the discussed deep RL algorithms.

Learning rate for actor Learning rate for critic Discount factor Soft target updates

The proposed algorithm 1e-4 1e-4 \ \

DDPG 1e-4 1e-4 0.9 0.01

PPO 5e-6 1e-5 0.9 \

high-level reward value after 300,000 training steps. Then, the

suitable controllers can be obtained. Although the reward value

of the DDPG algorithm also has risen during training (green

line in Figure 8), DDPG’s learning efficiency is worse than the

proposed algorithm from the perspective of convergence speed.

As shown in Figure 8, DDPG needs about 450,000 training steps

to converge the reward curves. That is, the learning efficiency

of the proposed algorithm is 1.5 times that of the DDPG.

And the convergency reward value of the DDPG is also less

than the proposed algorithm. As a stochastic policy algorithm,

PPO shows poor learning ability in football trajectory control.

As show in Figure 8, 450,000 training steps do not allow the

PPO to converge. Actually, PPO can also be converged after

consuming about 1,500,000 training steps. That is, the learning

efficiency of the proposed algorithm is 5 times that of the PPO.

Furthermore, the final convergency reward values of the PPO are

far less than the proposed algorithm. Note that themore training

steps, the more samples are required. Thus, the training process

confirms the analysis in Section Atypical MDPs: Definition

and characteristic analyses. That is, PPO’s learning efficiency is

low in the atypical MDPs, as estimating a state-value requires

more samples. The above training process demonstrates that

the proposed algorithm converges faster and consumes fewer

samples compared to DDPG and PPO. That is, the proposed

algorithm shows better learning efficiency. Actually, it is a

significant advantage for the proposed algorithm, as the samples

are difficult to obtain in many atypical MDP cases.

Controller’s performance

In this section, the performance of the controllers will

be analyzed from three aspects, i.e., accuracy, unit time cost,

and reliability. As described in Section Illustration examples:

Football trajectory control for different scenarios, two control

targets, i.e., shooting the football to the destination and reducing

the time of football flight, are considered for each scenario. Thus,

accuracy and unit time cost are the core index for evaluating

the control performance of the controllers. Actually, the control

performance is closely related to the value function’s estimation

bias. Besides, the considered aerodynamic model of football

is an uncertain environment. That is, the football trajectory

may be completely different under the same state-action pair,

bringing a high variance for the value function. To evaluate

the effect of variance caused by the uncertain environment on
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FIGURE 8

The reward curves of di�erent algorithms. (A) The first scenario.

(B) The second scenario.

the controller, the reliability is set as another index for the

controller’s performance.

Here, Monte Carlo tests are applied to analyze the

control performance of the controllers. In each scenario, 1,000

independent state will be chosen randomly and a set of initial

velocities will then be generated by the tested controller for each

chosen state. Then, only one flight trajectory will be generated

for the chosen state and the outputted initial velocities. Here, the

effective rate of control Re is defined as follows to evaluate the

accuracy of the RL controller.

Re = NRe/1000 (50)

where NRe is the number of the flight trajectories successfully

controlled in 1000 tests.

For the first passing scenario, if the relative error δ is less

than 5%, the flight control will be regarded as success. Here, the

relative error δ is defined as follows.

δ =

√

(xd − xf )
2 + (yd − yf )

2

√

(xd − x0)
2 + (yd − y0)

2
(51)

As shown in Figure 9A, the effective rate of control Re of

the proposed controller in the first scenario, i.e., passing the

football to a moving player, is 98.2%. In particular, there are

36.0% tests with relative error less than 1%, 56.6% tests with

relative error from 1 to 3%, and 5.6% tests with relative error

between 3 and 5%. Under the same tests, the DDPG controller’s

Re is 79.3%, and the PPO controller’s Re is 80.5%. For the second

scenario, scoring goals are regarded as the successful controls.

The effective rate of control Re of the proposed controller

for chipping the football over the human wall is 97.7% (see

Figure 9B). Meanwhile, the DDPG controller’s Re and PPO

controller’s Re are 91.1 and 24.1%, respectively. Compared to

DDPG and PPO, the good accuracy of the proposed controller is

verified in both two scenarios.

Based on 1,000 Monte Carlo tests, the average unit time cost

ta of 1,000 tests is used to evaluate the unit time cost, which can

be written as.

ta =
∑1000

1
ts/1000 (52)

here, ts is the unit time cost index, which can be found in

Equation (39). For the sake of comparison and evaluation, the

proposed controllers without the time cost optimization are also

trained for two scenarios. In the first scenario, the proposed

controller reduces the average unit time cost ta from 0.2080s

to 0.0483s, comparing to the proposed controller without the

time cost optimization (see Figure 10). Meanwhile, the DDPG

controller can reduces the unit time cost ta to 0.0484s. And

the PPO controller can reduce the unit time cost ta to 0.074.

In the second scenario, adding the time optimization has

little effect on flight time. However, the unit time cost of the

proposed controller is the lowest compared to the DDPG and

PPO controllers.

As analyzed in Section Limitations of existing RL algorithms

in the atypical MDPs, the estimated value functions in existing

RL algorithm, e.g., DDPG and PPO, is biased due to the

TD learning method. Meanwhile, the sampling error err(st)

can further increase the estimation bias of the state-value

function for the stochastic policy algorithms, as analyzed in

Section Atypical MDPs: Definition and characteristic analyses.

These estimation biases have adverse effects on the policy

update. However, due to the average reward method (see

Section The immediate-return RL algorithm), an unbiased

target Q-value is provided for the proposed algorithm. Thus,

the disadvantages of the estimation bias can be overcome.

According to the above test data, the effective rate of control

Re of the proposed controller in the first scenario is increased

by 18.9% than the DDPG controller and increased by 17.7%

than the PPO controller. In the second scenario, the effective

rate of control Re of the proposed controller is increased

by 6.6% than the DDPG controller and increased by 73.6%

than the PPO controller. The proposed algorithm also shows

better time cost optimization than DDPG and PPO in both
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FIGURE 9

The accuracy tests. (A) The accuracy test’s results in the first scenario. (B) The accuracy test’s results in the second scenario.

FIGURE 10

The average unit time cost in flights. (A) The first scenario. (B) The second scenario.

two scenarios. Thus, the high accuracy and low unit time

cost of the proposed controllers can be verified. This also

means that the immediate-return RL algorithm has better

performance than existing RL algorithms in deal with the

atypical MDPs.

In the reliability tests, several specified states will be chosen

for the tested controllers in each scenario (see Figure 11). For

each chosen state, the only set of definite initial velocities will

be outputted by the corresponding controller. Then, in the

uncertain environment, 200 different flight trajectories will be

generated based on the same chosen states and the same initial

velocities. To evaluate the reliability of the controllers, the

reliable rate Rr is defined as the effective rate of control of the

repeated 200 tests on the same chosen state, which is written as

Equation (53)

Rr = NRr/200 (53)

where NRr is the number of the flight trajectories controlled

successfully in 200 reliability tests.

In the first scenario, a point is selected as the initial position

of the moving player. The moving player is assumed to move

along the four directions marked by the orange arrows in

Figure 11A now. That is, four states are chosen for the tested

controllers. According to Figure 12, the average reliable rate

of the proposed controller for the first scenario is 100.00%.
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FIGURE 11

Reliability tests. (A) The first scenario. Blue circle is the allowed landing range. (B) The second scenario. Blue plane is the human wall. Black

wireframe is the goal.

FIGURE 12

The results of the reliability tests.

The average reliable rates of the DDPG controller and PPO

controller are 84.88 and 96.88% respectively. In the second

scenario, one point is selected as the initial take-off position of

the football (Figure 11B). In this initial take-off position, three

specified directions where the football flies over the human wall

are tested. That is, three states are constructed in the second

scenario to test controllers. In this scenario, only 4 trajectories

are not control in the total of 600 trajectories under the effect

of the proposed controller. The average reliable rate of the

proposed controller is 99.33%. The DDPG’s average reliable

rate in the second scenario is 96.17%. Notice that the PPO

controller do not finish the reliability tests due to its terrible

control policy.

The reliability in uncertain environments is also an

important index to evaluate the controller’s performance. In

this paper, the aerodynamic model of football with parameter

uncertainties is regarded as the uncertain environment. Due to

the strong non-linear of the football model, there may be more

than one set of initial velocities to meet the requirements of the

specified flight purpose. Meanwhile, the same initial velocities

may generate different trajectories due to the parameter

uncertainties. Thus, high reliability means that the expected

reward under the specified state-action pair can be estimated

accurately. And the controller can find a good set of initial

velocities from multiple possible initial velocities, reducing the

effects of the parameter uncertainties on the flight trajectories.
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TABLE 5 Computing resources usage tests.

CPU utilization Memory utilization (GB) Computing time (s) Size of the networks weights (KB)

The proposed algorithm 26% 1.4 2,359 4,682

DDPG 32% 1.9 3,342 6,243

PPO 30% 1.6 2,408 5,455

According to test data in Figure 12, the reliabilities of the

proposed controllers are approaching or equal to 100% in both

two football flight scenarios, which is significantly better than

DDPG and PPO controllers. The above results verify that the

proposed controllers have great reliability and can find the

best initial velocities to resist the adverse effects of uncertain

environments. As analyzed in Section The immediate-return

RL algorithm, the great reliability of the proposed controllers

come from the average operation for reward. For the sake of

comparison, two controllers based on the proposed algorithm

without using the average reward are also trained. As shown in

Figure 12, the reliable rate of the controller without the average

reward is reduced by 6.37% in the first scenario and reduced

by 3.83% in the second scenario. Numerical results indicate

that the average reward method can improve the reliability of

the controller.

Computing resource usage

As analyzed in Section Complexity analysis, compared

to existing RL algorithms, the network framework of

the immediate-return RL algorithm is greatly simplified,

and its complexity is reduced significantly. That is,

when solving the same problem in the atypical MDPs,

the immediate-return RL algorithm may consume

fewer computing resources than existing RL algorithms.

Therefore, taking the first scenario of the football

trajectory control as an example, the computational

resource requirements of different algorithms, i.e.,

immediate-return RL algorithm, DDPG, and PPO,

are analyzed.

In these tests, the hardware is a normal computer with Intel

I5 8600k processor and Nvidia GPU RTX2060. And all networks

are built by the Tensroflow. For unity, 300,000 training steps

are provided for each tested algorithm. Then, the computing

resources consumed by three tested algorithms are shown in

Table 5. As can be seen, the immediate-return RL algorithm

reduces the CPU utilization by 18.8%, the memory utilization

by 26.3%, computing time by 29.4%, and size of the networks

by 25.0% than the DDPG. Compared to PPO, the immediate-

return RL algorithm also reduces the CPU utilization by 13.3%,

the memory utilization by 12.5%, computing time by 2.0%,

and size of the networks by 14.2%. It should be noticed that

the number of training steps is limited to 300,000 in all tests.

However, the computing resource usage of the algorithms also

depends on the number of training steps required. Since the

convergence speed of both DDPG and PPO is slower than the

proposed algorithm, they require much more training steps

than the proposed algorithm in actuality (see Figure 8). As

analyzed in Section Training process, the number of training

steps used by the proposed algorithm is 66.7% of the DDPG and

20% of the PPO. That is, the advantage of proposed algorithm

in computing time is greater than that shown in the Table 5.

Thus, the test data demonstrates that, when dealing with the

same problem in the atypical MDPs, the immediate-return

RL algorithm trains faster, occupies less CPU and Memory,

and generates fewer networks than existing RL algorithms.

Furthermore, it should be noted that the transfer processes

of data between CPU and GPU also consumes computing

resources. The simulations of the football flight also affect the

usage of computing resources. Thus, the differences between

the comparison results and the theoretical analysis in Section

Complexity analysis are acceptable.

Conclusion

The atypical MDPs exist widely in the engineering field,

which involves one state transitionwith continuous action space.

The control goal of the atypical MDPs is to maximize the

immediate returns. However, the existing RL algorithms are

designed for standard MDPs to maximize long-term returns.

Thus, they can cause significant estimation errors for the value

function and a waste of computing resources when dealing

with the atypical MDPs. To solve such problems, this paper

analyzes the characteristics of the atypical MDPs systematically

and explains the differences between estimating the state-

value function and estimating the action-value function. On

this basis, the immediate-return RL algorithm was proposed

to deal with the atypical MDPs. In the proposed algorithm,

the method of average reward is developed to provide the

unbiased and low variance target Q-value. Thus, the problems

of large estimation errors can be overcome. And a newly

designed network framework is designed for the proposed

algorithm, which can significantly reduce computing resource

usage. Then, two scenarios of the football trajectory control,
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i.e., passing the football to a moving player, and chipping the

football over the human wall, are designed as the benchmark

to test the algorithms designed for the atypical MDPs.

Numerical results demonstrate that the learning efficiency of

the proposed algorithm is 1.5 times that of the DDPG and

5 times that of the PPO. For the controllers based on the

proposed algorithm, their effective rates of control are more

than 97.7%, and their reliabilities are approaching 100%. Such

performance is far superior to DDPG and PPO. As the proposed

controller increases the shot’s accuracy significantly, it can

promote the development of high-level football robots in the

Robot world cup. Furthermore, the proposed algorithm can

also consume fewer computing resources than existing RL

algorithms. Thus, the immediate-return RL algorithm has higher

learning efficiency, higher performance, and lower computing

resource usage than the existing RL algorithms, such as PPO

and DDPG.

It should be pointed out that the immediate-return RL

algorithm can output only one determined action. This

determined value can be seen as the best solution according

to the specified rewards function. However, a single best

solution based on the specified rewards function is impractical

for many complex engineering problems (e.g., strongly non-

linear dynamic system with parameter uncertainties). As one

focus of the future work, efforts will be made to improve

the algorithm to find a proper basin which corresponds to

the specified scenario. After that, the action output shall be

more practical. In the future, we will devote ourselves to

expand the use of the proposed immediate-return RL algorithm

and achieve more engineering applications, such as stamping

process, directional blasting, approximations of the compound

Poincaré maps, etc.
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Graph convolution networks (GCNs) have been widely used in the field

of skeleton-based human action recognition. However, it is still di�cult to

improve recognition performance and reduce parameter complexity. In this

paper, a novel multi-scale attention spatiotemporal GCN (MSA-STGCN) is

proposed for human violence action recognition by learning spatiotemporal

features from four di�erent skeleton modality variants. Firstly, the original

joint data are preprocessed to obtain joint position, bone vector, joint motion

and bone motion datas as inputs of recognition framework. Then, a spatial

multi-scale graph convolution network based on the attention mechanism is

constructed to obtain the spatial features from joint nodes, while a temporal

graph convolution network in the form of hybrid dilation convolution is

designed to enlarge the receptive field of the feature map and capture

multi-scale context information. Finally, the specific relationship in the di�erent

skeleton data is explored by fusing the information of multi-stream related

to human joints and bones. To evaluate the performance of the proposed

MSA-STGCN, a skeleton violence action dataset: Filtered NTU RGB+D was

constructed based on NTU RGB+D120. We conducted experiments on

constructed Filtered NTU RGB+D and Kinetics Skeleton 400 datasets to verify

the performance of the proposed recognition framework. The proposed

method achieves an accuracy of 95.3% on the Filtered NTU RGB+D with

the parameters 1.21M, and an accuracy of 36.2% (Top-1) and 58.5% (Top-5)

on the Kinetics Skeleton 400, respectively. The experimental results on these

two skeleton datasets show that the proposed recognition framework can

e�ectively recognize violence actions without adding parameters.

KEYWORDS

violence action recognition, skeleton sequence, multi-scale graph convolution

network, attention mechanism, spatiotemporal information
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1. Introduction

Recently, individual and group violence in public places

has seriously threatened the safety of people’s lives and

property. With the widespread deployment of video surveillance

equipment, video motion understanding and recognition based

on computer vision technology has become an effective public

security tool for identifying danger and preventing crime.

However, the detected targets in surveillance scenes are often

affected by background noise, light intensity changes, camera

views, and clothing, which requires not only improving the

accuracy of the model but also considering the computational

cost of the algorithm (Serrano et al., 2018; Ramzan et al.,

2019). The existing recognition methods mainly use different

modalities as inputs, and learn spatiotemporal features by

designing Convolutional Neural Networks (CNN) (Cheng et al.,

2021; Ji et al., 2021; Gadelkarim et al., 2022) and Recurrent

Neural Networks (RNN) (Liu et al., 2018; Song et al., 2018; Jiang

et al., 2020; Shu et al., 2021).

With the development of a graph convolution network

(GCN), the skeleton-based approaches have achieved success

in violent action recognition due to it can better reduce the

model complexity (Senst et al., 2017; Liu Z. et al., 2020; Li M.

et al., 2022). The skeleton data is essentially a topological graph,

where human joints are represented as vertices and bones are

represented as edges of the graph. Although skeleton sequences

has comparative advantages over RGB or depth modalities,

skeleton based recognition methods still face difficulties and

challenges in the following two aspects: (1) In the spatial space,

there is spatial information and a certain strong correlation

between the neighboring nodes in each frame, and it is necessary

to mine the action structure information. (2) In the temporal

space, the motion structure of the joint points is important for

characterizing the action, which needs to model the long-range

temporal information.

As existing work mainly considers a series of convolution

operations on a single feature map (Liu Z. et al., 2020; Li M.

et al., 2022), which to some extent fails to obtain larger receptive

field information. We use the design of a multi-scale approach

to obtain larger and more receptive field information, which

is beneficial for feature learning of the model and expression.

The attention mechanismmainly focuses the model on the main

joint points or skeletal edges where certain movements occur,

which helps to eliminate redundant dependency information

between joint point features, thus effectively capturing the

main association information between joint points. Meanwhile,

thanks to advanced pose estimation methods (Openpose,

Cao et al., 2021) the skeleton information may be extracted

from the RGB video easily and efficiently. To improve the

recognition accuracy and reduce the computational cost, this

paper proposes a multi-scale GCN with data preprocessing

and attention modules to extract spatiotemporal information

and combine multi-stream features for skeleton-based violent

action recognition. Firstly, the spatial GCN with the attention

module is constructed to extract the multi-scale spatial features

by learning the adjacency information between the multi-

order joints and build the channel-based dependencies with

a low number of parameters. And then, a temporal GCN in

the form of hybrid dilation convolution to obtain different

sizes of perceptual fields and extract the multiscale contextual

information by setting different dilation convolution rates.

Finally, the accuracy of recognition is further improved by fusing

the multi-stream features related to human joints and bones.

The main contributions of this paper are as follows:

(1) In the spatial space, we design a multi-scale spatial GCN

with a fused channel attention mechanism to extract spatial

information and the correlation features between channels.

(2) In the temporal space, we propose a temporal

convolution network in the form of hybrid dilation

convolution to extract the temporal features from skeleton

sequences, which can be used to capture multi-scale

contextual information and reduce the number of network

parameters.

(3) The model incorporates joint position, joint motion,

bone vector and bone motion information to further

improve the accuracy of violent action recognition.

2. Related works

In the field of computer vision, deep learning approaches

have become the dominant research direction in tasks such as

image classification and target detection since they have a better

ability to capture distinguishing features. In this paper, three

categories of deep learningmethods based on skeleton sequences

are briefly reviewed: CNN, RNN, and GCN.

2.1. CNN-based methods

Since CNNs can learn high-level semantic information

efficiently and effectively, they are usually widely used in image

processing tasks. However, it is difficult and challenging to

balance and make full use of spatiotemporal information for

human action recognition based on skeleton sequences (Kim

and Reiter, 2017). The mainstream approaches usually represent

skeleton sequences as pseudo images as the standard input

of CNNs (Cao et al., 2018; Hou et al., 2018; Xu et al.,

2018; Li C. et al., 2019). In these methods, the spatial

structure and temporal dynamic information of the skeleton

sequences are encoded as columns and rows of a tensor,

respectively. Caetano et al. (2019b) proposed a method to
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represent skeletal motion information based on convolution

neural networks, which first encoded the temporal dynamic

information by calculating the magnitude and direction values

of the joint motion, and then different time scales were used

to filter the noisy motion information for capturing long-

distance joint point dependence. In addition, Caetano et al.

(2019a) introduced reference nodes and tree structures to

represent the skeleton image through the framework of the

SkeleMotion method, the former incorporating different spatial

information among the articulations, but the latter preserving

important spatial relationships by traversing a skeleton tree

with a depth-first algorithm. By considering only adjacent joints

within the convolution kernel to learn co-occurring features,

some potentially associated joints are ignored. Therefore, Li

C. et al. (2018) used an end-to-end network framework

to learn co-occurrence features by a hierarchical approach

in which contextual information is gradually aggregated at

different layers. First, point-level information is encoded

independently for each node. Then, combining them into

semantic representations in the temporal and spatial domains,

respectively.

2.2. RNN-based methods

The RNN-based approaches essentially uses the output

of the previous frame as the input of the current frame,

which allows continuous sequential data to be processed

efficiently. To remedy the gradient disappearance and long-

range modeling problems of standard RNN, researchers have

proposed improved RNNs such as long short-term memory

neural network (LSTM) and gated neural unit (GRU), which

model the spatiotemporal dimension to capture the correlation

features between sequence data (Liu et al., 2018; Song et al.,

2018; Jiang et al., 2020; Shu et al., 2021). Wang andWang (2017)

proposed a two-stream recurrent neural network to model

spatiotemporal information by using 3D transforms-based

data enhancement techniques. To extract more distinguished

spatiotemporal features, Song et al. (2017) proposed two

spatiotemporal attention sub-modules based on LSTM networks

and designed a spatial attention sub-module based on the joint

selection gate, which can adaptively assign attention weights to

the skeleton nodes in each frame. Meanwhile, the temporal

attention sub-module based on the frame selection gate is

designed to assign different attention weights to different frames

for the extraction of keyframes. A longer and deeper RNN

network is proposed by Li S. et al. (2018) to solve the gradient

explosion and disappearance problem, which be constructed

to learn high-level semantic features with better robustness.

Furthermore, due to the strong capability of CNNs for spatial

feature extraction, Li C. et al. (2022) combined RNN and CNN

models to improves the spatiotemporal modeling capability in

complex scenes, as RNN is mainly used for temporal modeling

and CNN is mainly used for spatial modeling.

2.3. GCN-based methods

The human skeleton sequence is inherently a topological

graph, rather than a Euclidean spatial image based on CNNs or

a segment of sequence vectors based on RNNs methods. The

spatiotemporal dependencies between the associated vertices

cannot be fully expressed by simply transforming the sequence

into a two-dimensional pseudo-image or sequence vector. The

GCN is developed based on CNN (Gao et al., 2019; Si et al., 2019;

Wu et al., 2019; Degardin et al., 2021; Tu et al., 2022), which

can be used to efficiently capture spatial features information by

adjusting the convolution kernel size with different neighbors of

each vertex. Yan et al. (2018) proposed a spatiotemporal graph

convolutional neural network (ST-GCN) for human behavior

recognition, which consider human joints as vertices of a graph

and connections between joints and different frames of the same

joints as edges of the graph. By designing different convolutional

kernel strategies for modeling, the spatiotemporal features

between joints are captured and the action is predicted by a

Softmax classifier. As the skeleton graph used in ST-GCN, there

is an implicit problem of missing node-dependence. To obtain

richer inter-joint dependencies, Li M. et al. (2019) proposed

an action-structural graph convolutional neural network (AS-

GCN) with an actional-links module to extend the skeleton

graph to represent higher-order dependencies and capture the

potential dependencies of a specific action. Shi et al. (2019b)

proposed a two-stream adaptive graph convolution network

(2s-AGCN) for adaptive learning of spatiotemporal features

from skeleton sequences in end-to-end networks. Similarly, Li

B. et al. (2019) proposed a spatiotemporal graph routing (ST-

GR) approach to capture the intrinsic higher-order connectivity

relationships among the skeleton joints, which added additional

edges to the network skeleton graph through a global self-

attentivemechanism. Liu Z. et al. (2020) proposed a decomposed

multiscale aggregation method and a spatiotemporal graph

convolution operator (G3D) to implement a powerful feature

extractor. Zhang et al. (2020) proposed a simple effective

semantics-guided neural network (SGN) to obtain higher-order

semantic information of the nodes for skeleton-based action

recognition. To reduce the computational cost of the GCN,

Cheng et al. (2020) designed a Shift-GCN that employs a shift-

graph operation and a point-level convolution form instead of

using standard graph convolution. Along this line of research,

Song et al. (2022) proposed a multi-stream GCN model that

incorporates input branches including joint position, motion

velocity and skeletal features at an early stage, and utilizes

separable convolutional layers and a composite scaling strategy

to reduce significantly redundant trainable parameters while

increasing model capacity. Recently, Chen et al. (2021) proposed
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a channel-level topology refinement graph convolution (CTR-

GC) based on dynamic topology and multi-channel feature

modeling. Specifically, CTR-GC takes the shared topology

matrix as the entire prior for a channel and then refines it

by inferring channel-specific correlations to obtain a channel-

level topology. Li et al. (2021) proposed an Elastic Semantic

Network (Else-Net), which consists of a GCN backbone model

and multiple layers of elastic units for continuous human

behavior recognition. In particular, each flexible unit contains

several learning blocks to learn diverse knowledge from different

human behaviors, with a switch block to select the most

relevant block for the newly entered behavior. Chi et al. (2022)

proposed InfoGCN that includes an information bottleneck goal

to learn maximally informative action representations and an

attention-based graph convolution to infer contextually relevant

skeletal topology.

3. Proposed method

3.1. Overall framework

Inspired by the success of the two-stream framework and

graph convolution (Shi et al., 2019b, 2020), this paper proposes a

multi-scale attention spatiotemporal graph convolution network

(MSA-STGCN) to recognize violence human actions from

different perspectives, as shown in Figure 1. First, the original

joint data are preprocessed to obtain joint position, bone vector,

joint motion and bone motion information. Then, these four

categories of data are input into our designed MSA-STGCN,

respectively. Finally, the four-stream features are fused using a

weighted summation method to predict the action category.

3.2. The proposed MSA-STGCN

The proposed MSA-STGCN consists of nine spatiotemporal

feature extraction modules, as shown in Figure 2. Given a

skeleton sequence X ∈ R
C×T×V , where C, T, and V are the

number of channels, sequences and joint points of the input

data, respectively. Among them, the batch normalization layer

(BN) normalizes the input data X, the output feature size of

modules B1 to B3, B4 to B6, and B7 to B9 are B × C × T ×

V , B × C × T/2 × V , and B × C × T/4 × V , respectively,

where B is the number of batch size, and the number of

output channels of modules are 96, 96, 96, 192, 192, 192,

384, 384, and 384, respectively. Modules B1, B4, and B7 adopt

the multi-scale attention enhanced spatial graph convolution

network (MSA-SGCN) to extract the spatial features, while

modules B2, B3, B5, B6, B8, and B9 use multi-scale temporal

graph convolution networks (MS-TGCN) to obtain the temporal

feature from skeleton sequences. Then, global average pooling

(GAP) layer is applied to aggregate the spatiotemporal features

and unify the feature graph size of the samples. Finally, the

Softmax layer is used to obtain the classification probability and

prediction category.

3.2.1. Multi-scale attention enhanced spatial
graph convolution network

The effectiveness of the attention mechanism has been

demonstrated in tasks such as target detection and image

classification, which has been gradually introduced into the

field of action recognition. In this paper, we design a

channel attention module based on the Squeeze-and-Excitation

Networks (SE-Net) (Hu et al., 2020), named multi-scale

attention Spatial Graph Convolution Network (MSA-SGCN),

to automatically learn the correlation and significance between

feature map channels. The SE-Net improves the feature

description capability by modeling the dependencies of each

channel, which enhances useful features and suppress non-

useful features by adaptively adjusting the feature response

values of each channel. Motivated by these advantages, we insert

the Squeeze-and-Excitation module to a spatial graph of the

convolution neural network to obtain more contextual feature

through automatically learning the importance of different

channel features. The earliest application of GCNs to human

action recognition tasks is ST-GCN, where spatiotemporal

graph convolution and spatial division strategies are used

to model skeleton sequences to extract feature information

in the spatial space (Yan et al., 2018). In contrast, a

multi-scale spatial and motion graph convolution modules

are designed in STI-GCN (Huang et al., 2020) to extract

and merge features for topological graphs from multiple

perspectives.

Based on the success of these models, we design a multi-

scale attention spatial graph convolution network to learn spatial

features from skeleton sequences, as shown in Figure 3. The

feature extraction for each input layer is performed by

Xl+1
t

= ReLU(
∑

k

D
− 1

2
k

AkD
− 1

2
k

Xl
tW

l
k) (1)

where k controls the scale size of the whole network and also

represents the shortest distance between the nodes Vi and

Vj. Ak represents the relationship matrix between the current

node and the k-hop neighbors, which includes the self-loop

connections. It allows the model to learn information about the

neighbor’s features between each node. Dk denotes the square

root of the inverse of the degree matrix of the neighborhood

matrix Ak, which is used for symmetric normalization of the

neighborhood matrix Ak. In the calculation, the features of the

node itself have been calculated as well as the weighted sum

of the features of all neighbors. Xt represents the input of the

frame and denotes the number of layers of the network. Wk

is the current node, Wk is a learnable weight matrix between
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FIGURE 1

Multi-stream fusion violence action recognition framework.

FIGURE 2

Multi-scale attention spatiotemporal graph convolution network.

FIGURE 3

Multi-scale attention enhanced spatial graph convolution

network.

the k-hop neighbors of the current node, which implements

the edge importance weighting. Relu() represents the activation

function.

In the proposed MSA-SGCN, the scale of each model is

adjusted by k to obtain different scale feature information

in the spatial space, and the multi-order neighborhood

information is aggregated to obtain all the neighborhood

feature information of each joint. In addition, attention

operations are performed on each scale output feature

in the channel dimension to automatically learn the

correlation contextual information between feature map

channels.

3.2.2. Multi-scale temporal graph convolution
network

Existing methods usually use standard convolution with

fixed kernel size throughout the network module to model

the temporal information (Yan et al., 2018; Li M. et al.,

2019; Shi et al., 2019a,b). In this paper, we proposed a

multiscale aggregation learning method by introducing hybrid

dilation convolution to improve the traditional temporal

convolution module (Ople et al., 2020). Because of the

exponential expansion of the perceptual field with guaranteed
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coverage, the proposed MS-TGCN can effectively aggregate

multi-scale contextual information without loss of resolution

by using dilation convolution. However, the result of a

certain layer of null convolution is not dependent on the

information of the previous layer due to the grid effect

problem of the dilation convolution, and the information

obtained from the long-distance convolution lacks relevance.

Therefore, this model avoids the grid effect problem by

introducing a hybrid form of dilation convolution (Wang

et al., 2018). At the same time, the model takes the feature

map X as input without introducing additional parameters

and generates a feature map of the same size with the

same dimension, which is passed to the next network

module.

As shown in Figure 4, the number of model parameters

is reduced by adopting a multi-branch structure and passing

each branch through a convolution kernel of size 1 × 1. The

size of the convolution kernels in each branch is modified to

5× 1, which gives a larger perceptual field than the convolution

kernel size of 3 × 1. In addition, we also set the convolution

rate of different sizes of holes, 1, 2, and 3 to obtain different

scales of the same feature map for avoiding the problem of

gradient disappearance. Finally, the aggregation layer fuses the

multi-scale information and passes it to the next module of the

network. The proposedmodel can learn richer temporal features

and reduce the number of parameters after replacing the regular

temporal convolution method.

3.3. Representation of skeleton
sequences

The position of the joint points of the human skeleton is

defined as:

Vi,t =
(

xi,t , yi,t , zi,t
)

,∀i ∈ N, t ∈ T (2)

where N is the number of joints in the human skeleton, T is the

total number of sequences, and i represents the joints at time

t. In 3D skeleton sequences, the joint positions consist of three

position coordinates (x, y, z), which are usually captured directly

by a depth camera or extracted from RGB video data.

Bi,j,t = Vj,t − Vi,t = (xj,t − xi,t , yj,t − yi,t , zj,t − zi,t) (3)

In particular, the joint near the center of gravity of the

human skeleton is defined as the source node with coordinates

denoted as Vi,t , while the joint far from the center of gravity is

defined as the target node with coordinates denoted asVj,t . Since

each joint has no self-loop, each bone can be assigned a unique

joint point, forming a directed acyclic graph. In addition, since

the root node does not have any bones assigned to it, to simplify

the network design, the vector of bones assigned to the root node

is set to 0.

FIGURE 4

Multi-scale temporal graph convolution network.

The definition of human joint motion information is defined

as:

J−Mi,t+1 = Vi,t+1−Vi,t = (xi,t+1−xi,t , yi,t+1−yi,t , zi,t+1−zi,t)

(4)

where Vi,t represents the position coordinates of the ith joint

at time t :(xi,t , yi,t , zi,t), and Vi,t+1 represents the position

coordinates of the ith joint at time t + 1 :(xi,t+1, yi,t+1, zi,t+1),

and the position of the same joint in adjacent frames are

difference to obtain the sequence of joint motion information.

The definition of human bonemotion information is defined

as:

B−Mi,j,t,t+1 = Bi,j,t+1 − Bi,j,t (5)

where Bi,j,t represents the skeletal vector information at time t,

and Bi,j,t+1 represents the skeletal vector information at time

t + 1. We capture the skeletal motion information by the

difference of adjacent skeletal vectors. The fusion strategy is used

to gather the features of nodal position information, skeletal

vector information, nodal motion information, and skeleton

motion information streams.

3.4. Implementation details

The configuration information of the experimental platform

is Intel Xeon Silver 4210R CPU with 2.40GHz, 80G memory,

1TB SSD storage, and RTX3090. The number of samples

per training batch (Batch size) is set to 32, and the cross-

entropy function is used as the loss function for gradient back

propagation. The number of iterations (Epoch) is set to 80, and

the weight decay parameter is set to 0.0005.The initial learning

rate is set to 0.05, and the learning rate is adjusted at a given
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FIGURE 5

Visual representation of 10 types of human violence actions.

interval by dividing the learning rate by 10 when the 30th Epoch

and 40th Epoch are reached, respectively.

4. Experiments

4.1. Datasets

In this paper, we conducted experiments on two datasets:

Filtered NTU RGB+D and Kinetics Skeleton 400. The Filtered

NTU RGB+D dataset is based on the NTU RGB+D 120

dataset (Liu J. et al., 2020) by discarding other daily movements

and filtering out 10 types of movements to form a skeleton

dataset. The Kinetics Skeleton 400 dataset is based on

the Kinetics-400 dataset (Carreira and Zisserman, 2017) by

preprocessing each frame of the original RGB video with a pose

estimation algorithm to extract the skeleton sequence data to

form a 400 classes normal motion dataset.

4.1.1. Filtered NTU RGB+D

The NTU RGB+D 120 is the largest and most widely

used indoor motion dataset, containing 114,400 motion clips

in 120 categories. Each clip was performed by 40 volunteers

ranging in age from 10 to 35 years old, and each action was

filmed from different angles using three Kinect V2 cameras. The

previous violence dataset is mainly RGB, depth information,

and optical flow modality, while NTU RGB+D 120 is 3D

skeleton data, which contains 3-dimensional coordinates of

25 body joints in each frame. Meanwhile, to compare the

traditional graphical neural network in a violence recognition

task, this paper takes 120 classes of NTU RGB+D 120 dataset

for filtering, and finally selected 10 classes of skeleton data

about human interaction actions, and the final action types are

visualized as shown in Figure 5, including walking, pushing,

punching, pointing, slapping, shaking hands, touching, hugging,

giving and kicking, among which pushing, punching, kicking,

pointing and slapping are the five kinds of video the common

violent actions in surveillance. In this paper, we mainly study

the recognition of violent actions in surveillance video, and

the application scenario is usually the recognition of actions

from a certain viewpoint for different objects. Therefore, we

adopt a Cross-subject (X-Sub) protocol from the recommended

benchmark of the original paper and reports the Top-1 accuracy

in the experiment.

4.1.2. Kinetics Skeleton 400

Kinetics-400 is a large human action dataset with 300,000

video clips from the YouTube video site. It covers 400 human

action categories from daily life, sports scenes, and complex

human interactions. However, this dataset only provides raw

RGB video clips without skeleton data. In this work, since the

concentration is on skeleton-based action recognition, so we

use the OpenPose pose estimation method for preprocessing

to extract the coordinates of human joint positions for each

frame of each clip. For a multi-person action scene, the two

persons with the highest average nodal confidence are selected.

In this way, an RGB segment with T-frames is converted into

a skeleton sequences. The final dataset consists of a training set

of 240,000 segments and a validation set of 20,000 segments. In

this paper, we compare the models on the training set and report

the accuracy of the validation set. Referring to the evaluation

methods proposed in Yan et al. (2018) and Liu Z. et al. (2020),

Frontiers inNeurorobotics 07 frontiersin.org

49

https://doi.org/10.3389/fnbot.2022.1091361
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Yang et al. 10.3389/fnbot.2022.1091361

FIGURE 6

The accuracy and parameters of the proposed method compared to other methods on the Filter NTU RGB+D dataset.

we trains the model on the training set and reports the accuracy

of Top-1 and Top-5 on the validation set.

4.2. E�ectiveness of the proposed
method

On the Filtered NTU RGB+D dataset, we have done

comparison experiments on two CNN-based methods, namely

Two-Stream CNN and HCN model, and on four GCN based

methods, namely ST-GCN, AS-GCN, 2S-AGCN and Dynamic

GCN network, and the results are shown in Figure 6 and

Table 1. The major evaluation metrics taken include accuracy

and parameters, and the proposed model achieves relatively

great results for both in comparison, with an accuracy of 95.3%

and parameters of only 1.21M, which reflect the effectiveness

and efficiency of the proposed MSA-STGCN. Due to the

limited modeling capability of the compared baseline model,

it lacks consideration of the spatiotemporal dependencies

between skeleton sequences, whereas the proposed model can

obtain the long and short temporal dependencies between

each frame’s articulation points by combining multi-scale and

channel attention mechanisms in spatio-temporal modeling. As

a result, the proposed model shows a significant improvement

in recognition accuracy compared with existing GCNs, and it

improves by 2.1% compared with the best 2s-AGCN. Due to the

multi-branching structure of the model in both temporal and

spatial dimensions, and the eventual aggregation of multi-scale

information, the number of parameters of the proposed model

is substantially reduced. This effectively validates the accuracy

and computational cost advantages of the model proposed for

violent action recognition tasks.

TABLE 1 Comparison of di�erent algorithms on Filtered NTU RGB+D

dataset.

Methods Accuracy (%) Params (M)

Two-Stream CNN 93.4 1.53

HCN 92.7 1.03

ST-GCN 89.3 3.10

AS-GCN 89.1 9.50

J-AGCN 92.6 6.94

B-AGCN 91.1 6.94

2s-AGCN 93.2 6.94

Dynamic GCN 94.0 3.72

Ours 95.3 1.21

The bold values indicate the results of our proposed method (MSA-STGCN).

The main indicators of evaluation include accuracy and

the number of parameters. The compared baseline models

have limited modeling capability and lack the consideration of

spatiotemporal dependencies among skeleton sequences, while

the proposed model can obtain the long-term dependencies of

an active state by combining multi-scale and channel attention

mechanisms in the spatiotemporal modeling. Therefore, the

proposed model has a significant improvement in recognition

accuracy compared with the baseline model, which has

improved by 2.1% compared with the best 2s-AGCN (Shi et al.,

2019b). The proposed multi-information flow fusion method

could fully exploit the specific relationships of the original data

to further improves the recognition performance. The number

of parameters of the proposed model can be reduced to 1.21M

due to the multi-branch structure of the model in time and

space dimensions, which effectively validates the accuracy and

computational cost advantages.
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Meanwhile, the 10 types of actions on the Filtered NTU

RGB+D dataset: punching, kicking, pushing, slapping, pointing,

hugging, giving, touching, handshaking, and walking were

recognized, and the results are shown in Table 2. The recognition

accuracy of these 10 types of actions were 91.1, 96.5, 94.7, 91.0,

93.6, 96.8, 91.5, 90.2, 96.0, and 98.6%, respectively. Normalized

confusion matrix of 10 types of human action as shown in

Figure 7, which illustrates that the method can be applied to

violence recognition tasks in practical applications.

To further validate the generalization capability of

the proposed recognition framework, we further conduct

experiment on the Kinetics Skeleton 400 dataset, and Table 3

shown the results of the comparison experiments with ST-GCN,

AS-GCN, ST-GR and 2s-AGCN. It can be seen that the proposed

model achieves 36.2 and 58.5% accuracy in Top-1 and Top-5,

TABLE 2 Comparison of recognition results for 10 types of human

action on the Filtered NTU RGB+D dataset.

Classes Samples True Accuracy (%)

Punching 271 247 91.1

Kicking 260 251 96.5

Pushing 281 266 94.7

Slapping 278 253 91.0

Pointing 266 249 93.6

Hugging 278 269 96.8

Giving 281 257 91.5

Touching 287 259 90.2

Handshaking 273 262 96.0

Walking 277 273 98.6

respectively, which are still significant improvements compared

to some of the baseline models. The results demonstrate that

the proposed model can capture more features by combining

multi-scale attention mechanisms, which can effectively identify

more details in multi-frame skeleton sequences.

4.3. Ablation study and discussion

4.3.1. Attention mechanism

This part mainly verifies the effectiveness of the attention

mechanism proposed in the recognition framework by inserting

the attention mechanism in the spatial dimensional to graph

convolution network (ASGCN), and the experimental results

are shown in Table 4. Firstly, the input skeleton sequences were

tested for joints and bones in the spatial graph convolution

layer (SGCN) without the SE Block, which was represented

by J-ASGCN w/o SE and B-ASGCN w/o SE, respectively.

Then, the results of the two data streams are fused and

represented by ASGCN w/o SE. Finally, the SE Block attention

TABLE 3 Comparison of di�erent algorithms on Kinetics Skeleton 400

dataset.

Methods Top-1(%) Top-5(%)

ST-GCN 30.7 52.8

AS-GCN 34.8 56.5

ST-GR 33.6 56.1

2s-AGCN 36.1 58.7

Ours 36.2 58.5

The bold values indicate the best accuracy.

FIGURE 7

Normalized confusion matrix of 10 types of human action. (A) Confusion matrix of 2s-AGCN model. (B) Confusion matrix of our model.
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mechanism is introduced in SGCN, and the model with the

nodal position as input is represented by J-ASGCN, and the

model with the skeletal vector as input is represented by B-

ASGCN.

The variation accuracy of networks and the loss function

values during the whole training process is shown in Figure 8.

The recognition accuracy of J-ASGCN obtain 94.0% in the

joint position information stream (increase of 0.4%), the B-

ASGCN achieve 93.2% (increase of 0.1%) in the bone vector

information stream, and the ASGCN achieved 94.9% (increase

of 0.6%). Throughout the training process of the model, the

accuracy of the test was improved rapidly in the early stage

of the experiment, reaching about 85%, which is due to the

high optimization efficiency of the proposed multi-scale spatial

graph convolution. As the number of iterations increases, the

final test accuracy and loss function converge very well, and

the test accuracy and loss function curves are smoother in

TABLE 4 Comparison of spatial graph convolution layer with and

without SE block on the Filtered NTU RGB+D dataset.

Methods Accuracy (%)

J-ASGCN w/o SE 93.6

B-ASGCN w/o SE 93.1

ASGCN w/o SE 94.3

J-ASGCN 94.0

B-ASGCN 93.2

ASGCN 94.9

The bold values indicate the accuracy of the model incorporating the attention

mechanism.

the later stage. Therefore, the attention mechanism SE Block

does not play a significant role in this layer since the spatial

feature extraction performance of the spatial map convolution

layer itself is very robust. However, adding SE Block to our

model can optimize the learning content and obtain more

useful feature information, thus verifying the effectiveness of

the method.

4.3.2. Hybrid dilation convolution

Without pooling loss, the dilation convolution can increase

the perceptual field of the feature map so that the output of each

convolution contains a larger range of feature information. In

this paper, we consider obtaining different sizes of perceptual

fields in the temporal dimension to achieve a multi-scale fusion

training network. To verify this idea, firstly, we compare the

convolution rates of different sizes of voids, which are set to

1, 2, and 3, and the corresponding accuracy rates are 93.1,

93.2, and 93.5 respectively, as shown in Table 5. It is obvious

TABLE 5 Accuracy comparison of di�erent dilated convolution rates

used in temporal graph convolution layer on the Filtered NTU RGB+D

dataset.

Methods Accuracy (%)

MS-TCN(dilate rate = 1) 93.1

MS-TCN(dilate rate = 2) 93.2

MS-TCN(dilate rate = 3) 93.5

MS-TCN(HDC) 94.0

The bold values indicate the accuracy of the model using hybrid ablation convolution.

FIGURE 8

(A) Accuracy comparison of spatial graph convolution layer with or without SE block. (B) Loss function comparison of spatial graph convolution

layer with or without SE block.
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FIGURE 9

(A) Comparison of recognition accuracy with di�erent dilated convolution rates. (B) Comparison of loss function with di�erent dilated

convolution rates.

that the accuracy of the model recognition is in a stable state

with the increase of the hole convolution rate, which is not

a very good training effect. Considering that the increase in

the convolution rate of the dilation will bring about a grid

effect, which will lead to the loss of continuity of a certain part

of the feature information, and even, probably, the important

feature information as well. Therefore, this paper solves the

problem of discontinuity in the convolution kernel by designing

a hybrid dilation convolution (HDC) form of temporal map

convolution network, represented by MS-TCN(HDC). Finally,

the accuracy of the MS-TCN(HDC) model reached 94.0% by

fusing the hybrid dilation convolution form with different

dilation rates.

The variation in the test accuracy of each network and

the variation loss throughout the training process is shown

in Figure 9. In the early stage of the experiment, the speed

of convergence of the loss function increased slightly with

the increase of the hole convolution rate, and the speed

of test accuracy also increased. By adjusting the dilation

convolution rate, the scale of the model is increased and

the parameters of the network are changed, thus slightly

improving the optimization efficiency of the network in the

early stage of training. As the number of iterations increases,

the final validation accuracy increases with the increase of

the dilation convolution rate, and the training loss function

achieves good convergence and a smoother curve in the later

stages of training. The experimental results verify that the

graph convolution network model constructed in the form

of hybrid dilation convolution can learn more time-domain

feature information at multiple scales compared with single

dilation convolution.

TABLE 6 Accuracy comparison of di�erent data stream recognition

on the Filtered NTU RGB+D dataset.

Models Accuracy (%)

J-MSAGCN 94.0

B-MSAGCN 93.2

J-M-MSAGCN 92.1

B-M-MSAGCN 93.4

MS-AGCN(fusion) 95.3

The bold values indicate the accuracy using multi-stream fusion.

4.3.3. Multi-stream fusion

Finally, the proposed multi-stream model incorporating

joint position information, bone vector information, joint

motion information, and bone motion information was tested

and the experimental results are shown in Table 6. As for

the input models of node position information, bone vector

information, node motion information, and bone motion

information, the corresponding accuracy rates were 94.0, 93.2,

92.1, and 93.4% for J-MSAGCN, B-MSAGCN, J-M-MSAGCN,

and B-M-MSAGCN, respectively. The accuracy of MS-AGCN

with a multi-stream fusion model could reach 95.3%.

During the whole training process, the variation in the

accuracy of each network and the variation loss are shown in

Figure 10. As the number of experimental iterations increased,

the accuracy of the original joint position information stream

increased slightly faster than the other three data streams in

the early stage of the experiment, and the loss function also

converged faster. This indicates that the original joint position
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FIGURE 10

(A) Comparison of recognition accuracy of di�erent data streams. (B) Comparison of loss functions of di�erent data streams.

plays an important role in characterizing the movement state,

while the accuracy of the other streams is increased by 1.3%,

which suggests that by calculating the bone vector information,

joint point motion information, and bone motion information,

a higher weight is given to the more variable streams, thus

enhancing the overall model’s characterization of themovement.

The experimental results show that the accuracy of the multi-

stream fusion method is significantly higher than that of the

single-stream method. In particular, the accuracy of the multi-

stream fusion method has improved relative to the performance

of the joint point information stream method. This shows that

the skeleton sequence data can be extracted from different angles

and the final fusion output can be used to fully characterize the

action features.

5. Conclusion

In this paper, we design a novel spatiotemporal graph

convolution network with attention mechanism to combine

multi-stream skeleton features for human violence recognition.

The proposed MSA-STGCN utilizes MSA-SGCN and MS-

TGCN to learn spatial and temporal information from four

types of skeleton data, respectively, and then a average

features fusion mechnism is used to implement violence action

classification. Compared with other traditional GCNs, the

proposed MSA-STGCN achieves 95.3% accuracy on the Filtered

NTU RGB+D dataset with only 1.21M model parameters,

and the accuracy of Top-1 and Top-5 reached 36.2 and

58.5% on the Kinetics Skeleton 400 dataset, respectively.

The experimental results demonstrate that the effectiveness

of MSA-SGCN and MS-TGCN in the proposed MSA-

STGCN recognition framework. Compared with the other

state-of-the-arts, our framework consistently improves the

recognition performance on two large skeleton datasets. In

the future, more effective fusion and combining strategies

that can help to obtain more distinctive complementary

features from multimodal data such as RGB and depth

sequences. Another future work is to expand more challenging

datasets in order to enhance the generalization capability

of the model and design RNN skeleton-based framework

to learn the spatiotemporal features to improve recognition

performance.
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Low-cost inertial measurement units (IMUs) based onmicroelectromechanical

system (MEMS) have been widely used in self-localization for autonomous

robots due to their small size and low power consumption. However, the low-

costMEMS IMUs often su�er fromcomplex, non-linear, time-varying noise and

errors. In order to improve the low-cost MEMS IMU gyroscope performance,

a data-driven denoising method is proposed in this paper to reduce stochastic

errors. Specifically, an attention-based learning architecture of convolutional

neural network (CNN) and long short-term memory (LSTM) is employed

to extract the local features and learn the temporal correlation from the

MEMS IMU gyroscope raw signals. The attention mechanism is appropriately

designed to distinguish the importance of the features at di�erent times

by automatically assigning di�erent weights. Numerical real field, datasets

and ablation experiments are performed to evaluate the e�ectiveness of the

proposed algorithm. Compared to the raw gyroscope data, the experimental

results demonstrate that the average errors of bias instability and angle random

walk are reduced by 57.1 and 66.7%.

KEYWORDS

MEMS IMU, deep learning, noise reduction, inertial navigation, random noise

1. Introduction

Recently, with the development of the microelectromechanical system (MEMS)

and artificial intelligence (AI), the low-cost MEMS inertial measurement units

(IMUs) are essential for many applications, such as unmanned aerial vehicles,

autonomous driving, mobile robots, etc. IMUs consist of gyroscopes that measure

angular velocities and accelerometers that measure the accelerations of moving

vehicles. The IMUs can provide the entire attitude, velocity, and position information

through the integral operation. However, the measurement errors will accumulate

over time due to the bias error instability and stochastic noise in raw IMU data.
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Specifically, the position error of inertial navigation diverges

with the second power of accelerometer bias drift and time,

and diverges with the third power of gyroscope bias drift and

time. Therefore, modeling or denoising the low-cost MEMS

IMUs is crucial to improving the inertial navigation system

(INS) performance.

In inertial navigation, the errors contained in the MEMS

IMU raw signals can be divided into two parts: deterministic

and stochastic errors. The deterministic error part mainly

includes the scale factor error and axes misalignment error,

which can be calibrated or quantified by equipment such as

a 3-axis turntable. While the stochastic errors consist of bias

error and noise, they are hard to calibrate due to their time-

varying characteristic. Thus, the stochastic errors are also a vital

issue of the INS errors divergence. In order to identify and

model the stochastic error, researchers have proposed many

representative denoising techniques for MEMS IMUs, which

can be inclusively divided into conventional signal processing

methods and recent learning-based methods. Auto Regressive

Moving Average Method (ARMA) (Song et al., 2018), Allan

Variance (Zhang et al., 2018), Kalman Filter (Zhang et al.,

2016), and Wavelet Transformation (WT) (Yuan et al., 2015)

are the representative signal processing methods. The ARMA

method is mainly used to analyze and study a group of

stochastic data arranged in sequence. It establishes mathematical

models of various orders according to different error sequences.

However, this method cannot identify stochastic errors one

by one, and it is difficult to distinguish the error sources of

stochastic errors. Allan Variance can identify various stochastic

errors and separate them into five parts: quantization noise,

angular random walk, bias instability, rate random walk, and

rate ramp. Thus, the advantage of the Allan Variance is that

it can draw a double logarithmic curve to connect the time

and frequency domains and visually observe the stochastic

errors quantitatively. When the amount of data is large enough,

the drawn double logarithmic curve is more intuitive and

straightforward (El-Sheimy et al., 2007). Kalman Filter is an

efficient linear quadratic estimator which can estimate gyroscope

output angular velocity via a series of observed measurements

with noise (Cai et al., 2018). Since the natural MEMS IMU error

system is usually too complex to build an accurate mathematics

model, the Kalman filter has a poor performance in estimation

accuracy. Among the signal processing methods, the Wavelet

Transform method is currently most popular for reducing the

high-frequency part of the gyroscope error. However, it is hard

to remove the low-frequency errors (Ding et al., 2021). The the

signal processing algorithms can only reduce part of the MEMS

gyroscope stochastic error, and the unsatisfactory suppression of

the stochastic errors will cause the failure of inertial navigation

in a short time.

Other learning-based approaches are proposed to improve

the traditional statistical algorithms, such as support vector

machine (SVM) and neural networks, all of which obtain

better denoising results than conventional signal processing

methods (Leung et al., 2001; Shiau et al., 2011; Bhatt et al.,

2012). In Zhang and Yang (2012), the SVM is utilized to

model and compensate for the angular rate error of MEMS

gyroscope MG31-300, which indicates that the SVM model

has high precision and good generalization ability. A basis

function neural network is adopted to predict the noisy chaotic

time series due to its non-linear, adaptive, and self-learning

characteristics (Leung et al., 2001). Gonzalez and Catania (2019)

proposed a rigorous analysis of the viability of the Time Delayed

Multiple Linear regression techniques for reducing white noise

in the MEMS IMU. Their advantages rely on their ability to

identify complex patterns by learning high-level data features.

However, almost all of the above methods are based on a static

model, which models only the current and past one-step angular

velocity information and can not store more past gyroscope

dynamic information. It is known that gyroscope data is time

serial data in which the history error will affect the current

measurement value.

In recent years, deep learning has achieved outstanding

performances in computer vision (Han et al., 2020) and natural

language processing (Koroteev, 2021) due to their powerful non-

linear modeling and feature representation. Some researchers

have introduced deep learning into the inertial odometer, such

as OriNet (Esfahani et al., 2019), IONet (Chen et al., 2018), TLIO

(Liu et al., 2020), all of which obtained excellent localization

performance than traditional methods. However, the use of

deep learning technology to reduce MEMS IMU stochastic

noise has just begun, and the published research results are

still rare. In Jiang et al. (2018a), an recurrent neural network

(RNN) variant simple recurrent unit (SRU-RNN) is employed

in MEMS gyroscope raw signal denoising. The Allan variance

tool is also used to compute the major error factors, i.e.,

quantization noise, angle random walk, and bias instability.

However, RNN performs poorly in long sequences due to

gradient disappearance and gradient explosion. To solve such

problem, long short-term memory (LSTM) has been proposed

(Graves et al., 2005; Sherstinsky, 2020), which can be used to

denoise the MEMS gyroscope based on the current and previous

angular velocities. In Jiang et al. (2018b), the LSTM is employed

to filter the MEMS gyroscope outputs by treating the signals

as time series. The results indicated that the denoising scheme

effectively improves MEMS gyroscope accuracy. To further

explore the effect of LSTM in denoising the MEMS gyroscope,

some hybrid deep recurrent neural networks, including LSTM

and gated recurrent unit (GRU), are evaluated for MEMS IMU

with static and dynamic conditions (Han et al., 2021). The

LSTM is also combined with the Kalman filter to estimate and

compensate for the random drift of the MEMS gyroscope in

real-time (Li et al., 2021; Zhu et al., 2021). It is noted that

the RNN can learn the temporal correlation from the useful

signals of the original data, but it cannot learn from the noisy

components (Shiau et al., 2011). Thus, RNNs have a poor ability
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to extract the local features of MEMS gyroscope. To solve the

problems, a convolutional neural network (CNN) is applied to

reduce the attitude angle errors and achieve better denoising

performances (Brossard et al., 2020). However, we focus on

eliminating the stochastic noise in raw MEMS gyroscope data,

rather than calibrating IMU error by reducing the attitude

angle error.

As already discussed above, it can be seen that most

eliminating MEMS gyroscope stochastic noise works (90%) are

based on the RNNs; significantly, only one hybrid model with

LSTM and GRU. None of the above methods can simultaneously

extract the local features of the MEMS gyroscope and learn

the long-range dependence. In addition, they can not explore

different levels of the importance of gyroscope sequences at

different times.

Therefore, this paper aims to develop a hybrid MEMS

gyroscope denoising scheme based on Attention-CNN-LSTM

(ACL) to eliminate the stochastic noise for angular velocity.

Although there are similar hybrid models in other fields,

such as stock prediction, we focus on MEMS gyroscope

stochastic noise reduction, and there is no research on the

hybrid denoising model so far. Specially, a one-dimensional

CNN is adopted in the proposed ACL to extract local MEMS

gyroscope features. The features are fed to the LSTM layer

to mine the temporal features further and learn the long-

term historical dependence. In order to improve computing

efficiency, an attention mechanism is applied to distinguish

the importance of MEMS gyroscope sequences at different

times. The contributions of the paper are summarized

as follows:

1. We develop a hybrid denoising model based on Conv-

LSTM networks to capture the spatial-temporal feature of the

MEMS gyroscope sequence. Unlike the existing RNN-based

method for denoising gyroscopes, Conv-LSTM can capture

the sectional features and learn long-range dependencies

simultaneously, which is more efficient for mining the

inherent characteristic of the gyroscope sequence.

2. We embed an attention mechanism for the Conv-LSTM

model to automatically allocate different attention weights to

a gyroscope sequence at different times, which can further

improve the efficiency of the Conv-LSTMmodel.

3. A series of experiments are performed to verify the

effectiveness of the proposed method. The experimental

results demonstrate that the proposed model performs better

than other gyroscope denoising methods.

The remainder of the paper is organized as follows. Section

2 explains the mathematical model of low-cost MEMS IMU

in detail. Section 3 describes the process of establishing a

denoising model based on ACL. Real field, datasets and ablation

experiments and results analysis are discussed in Section 4. The

conclusion is provided in Section 5.

2. The mathematical models of
low-cost MEMS IMU

Low-cost MEMS IMUs are prone to various errors, which

get more complex as the sensor price decreases. The errors limit

the accuracy to which the observables can be measured. In this

section, the output models of the MEMS IMUs are presented to

analyze their error characteristics.

2.1. The errors of the low-cost MEMS
IMUs

MEMS IMU contains two orthogonal sensor triads, one

with three accelerometers and the other with three gyroscopes.

Accelerometers measure linear motion in three orthogonal

directions, whereas gyroscopes measure angular motion in three

orthogonal directions. However, owing to the limitation of

current MEMS manufacturing technology, the output of the

MEMS IMU is affected by many error sources.

The general terms of repeatability, stability, and drift are

usually considered to assess a MEMS IMU sensor for a

particular application. The repeatability term represents the

ability of a MEMS IMU to provide the same output for

repeated applications of the same input. It refers to the

maximum variation between repeated measurements in the

same conditions over multiple runs. The stability term illustrates

the ability of a MEMS IMU to provide the same output

when measuring a constant input over a while. The term

drift is often used to describe the change in the MEMS

IMU measurement when there is no change in the input.

Especially the MEMS IMU errors can be classified into

two broad categories of deterministic and stochastic errors.

Deterministic errors mainly include systematic bias offset,

scale factor error, non-linearity, non-orthogonality error, and

misalignment error. Most of the deterministic errors can only

be found in dynamic environments, and can be compensated

by laboratory calibration process. Low-cost MEMS IMUs suffer

from various stochastic errors, which are usually modeled

stochastically to mitigate their effects. In general, the stochastic

errors of Low-cost MEMS IMU can be divided into run-to-run

bias offset, bias drift, scale factor instability, and white noise.

Any above stochastic errors will cause the navigation results

(attitude, velocity, and position) to diverge rapidly in the inertial

navigation system. Therefore, it is fundamental to suppress the

stochastic errors of the low-cost MEMS IMUs.

The initial error of IMU is relatively tiny, but as time goes

on, the position and speed position calculated by the inertial

navigation algorithm will become larger and larger. The position

of inertial navigation can be expressed as follows,

δrN = δrN,0+ δvN,0 · t+
1

2
(g · δθ0+ baN )t

2+
1

6
(g · bgE)t

3 (1)
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where δrN is north position error, δrN,0, δvN,0, and δθ0

represent north position error, velocity error and yaw angle error

at initial time, respectively. baN and bgE are the bias error of the

accelerometer in the north direction and gyroscope in the east

direction. g is local gravity, and t is inertial navigation time. It

can be seen that the bias drift of the accelerometer will cause

position error to diverge with the second power of time, and the

bias drift of the gyroscope will cause position error to diverge

with the third power of time. If the MEMS IMU is not denoised

well, the position information calculated by theMEMS IMUwill

not be used for navigation.

2.2. The output model base on low-cost
MEMS IMUs

In the field of inertial navigation, the output model based on

low-cost MEMS IMUs includes the angular rate model and the

specific force model, i.e., the measurements of the gyroscope and

accelerometer, respectively.Measurements of angular rate can be

expressed as follows:

ω̃b
ib = ωb

ib + bg + Sgω
b
ib + Ngω

b
ib + εg (2)

where ωb
ib

is the real values of the angular velocity in the

body frame b relative to the inertial frame i, and ω̃b
ib

is the

output values of the gyroscope. Furthermore, bg , εg , Sg , and

Ng are the gyroscope instrument bias vector, noise vector, scale

factor matrix and non-orthogonality matrix, respectively. The

bias vector is defined as the gyroscope’s output when there is

zero input. The noise vector is white noise, which can be caused

by power sources but can also be intrinsic to semiconductor

devices. The scale factor matrix reflects the deviation of the

input-output gradient from unity. As the name suggests, non-

orthogonality errors occur when any of the axes of the gyroscope

triad depart frommutual orthogonality. The matrices Ng and Sg

are given as,

Ng =







1 θg,xy θg,xz

θg,yx 1 θg,yz

θg,zx θg,zy 1






, Sg =







sg,x 0 0

0 sg,y 0

0 0 sg,z






(3)

where θg,. are the small angles defining the misalignments

between the different gyroscope axes and sg,. are the scale factors

for the three gyroscopes.

The attitude angular increment is obtained by integrating

the measured value of the gyroscope, namely,

R(t) = R(t − 1) exp(θt)

θt = ω̃b
ib
(t)dt

exp(θt) = I + sin θt
θt

[θt×]+ 1−cos θt
θ2t

[θt×]2
(4)

where ω̃b
ib
(t) is the output of the gyroscope and is also the

angular velocity of the body frame b relative to the inertial frame

i, R(t) is the rotation matrix of the body frame b relative to the

inertial frame i, [θt×] is the antisymmetric matrix of θt , θt is

attitude angles.

From Equation (2), Sg and Ng can be reduced by the

calibration processing with a turntable. bg and εg are hard

to estimated by traditional method due to their time-varying

characteristic. If the errors cannot be reduced, the errors will be

transferred to the rotation matrix and they will accumulate over

time according to Equation (2). Thus, our goal is to establish

a denoising model based on deep learning to reduce bg and

εg . In other words, we use the deep learning model to denoise

the gyroscope, reducing the errors of bg and εg , so that the

gyroscopemeasurements ω̃b
ib
are closer to the true valueωb

ib
, and

the attitude angles θt can be estimated more accurately through

Equation (2).

The output error model of the accelerometer is similar

to those which characterize the gyroscope accuracy bias

uncertainty, scale factor stability, and random noise.

Measurement of the specific force can be modeled by the

observation equation,

f̃ b = f b + ba + S1f + S2f
2 + Naf + δg + εa (5)

where f̃ b, f b, ba, δg, and εa are the vectors of the

accelerometer measurement, the true specific force, the

accelerometer instrument bias, the anomalous gravity and noise,

respectively. Similar to the gyroscope, S1, S2, and Na are the

error matrices of linear scale factor, non-linear scale factor and

non-orthogonality. The matrices Na, S1, and S2 are defined as

follows,

Na =







1 θa,xy θa,xz

θa,yx 1 θa,yz

θa,zx θa,zy 1






, S1 =







s1,x 0 0

0 s1,y 0

0 0 s1,z






,

S2 =







s2,x 0 0

0 s2,y 0

0 0 s2,z






(6)

where θa,∗ are the small angles defining the misalignments

between the different accelerometer axes and s are the scale

factors for the three accelerometers.

3. MEMS IMU stochastic errors
reduction method based on deep
learning

In order to improve the accuracy of the low-cost MEMS

IMUs, a hybrid deep learning model with attention-based CNN-

LSTM networks is proposed to reduce stochastic errors. In this

section, the network architecture is illustrated and the principles

of CNN, LSTM and attention mechanism are also introduced.
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FIGURE 1

The architecture of the prediction model.

3.1. Network architecture

As illustrated in Figure 1, the deep learning model of

denoising low-cost MEMS IMU, namely ACL, mainly consists

of 1D-CNN layers, LSTM layers, and an attention mechanism.

Since the error characteristics of MEMS gyroscope and

accelerometer are similar, and gyroscope is essential for inertial

navigation, we will take gyroscope data as an example to analyze

the noise reduction process based on the proposed ACL model.

The raw angular rate signals from the MEMS gyroscope sensors

can be observed within the different time windows. Moreover,

the ith observed data Si is fed into the 1D-CNN layers, which act

as feature extractors to automatically obtain the local features

and provide abstract representations of the input sensor data

in the feature maps. So the noise reduction problem can be

formulated as follows,

Denoised_Gyro = ACL− NN(S1, S2, ..., Sk) (7)

LSTM layers can further learn the long-term historical

dependence from the results of the previous convolution output.

Meanwhile, an attention mechanism is designed to explore

different levels of the importance of gyroscope sequences

at different times. A dropout layer is also applied to avoid

overfitting. A linear layer is added to transform high dimension

data as the output data dimension shape to predict low noise

angular rate. Each module will be described in detail in the

following subsections.

3.2. One dimensional convolutional
neural network (1D-CNN)

1D-CNN is widely used in time series analysis, audio signal

data with fixed length periods, natural language processing,

etc. The angular velocities and accelerations of the vehicles

measured by MEMS IMUs can be regarded as a kind of time-

series sequence. For example, the gyroscope sequences of the ith
time window can be expressed,

Si = [x1, x2, ..., xl] (8)

where l is window size and xt represents the raw angular

velocities from the gyroscope at time t.

The 1D-CNN is used to extract local error features from

raw MEMS IMU data in our proposed method. The specific

convolution operation is,

ck = ReLU(ωk ∗ x+ b) (9)

where ck is the output feature map of the kth kernel, ωk and

b are weight and deviation parameters. As shown in Figure 2, the

convolution operator slides along the time direction and outputs

the feature map. Since the 3-axis gyroscope data is fed to 1D-

CNN in our model, the number of input channel is set 3. The

gyroscope records the angular velocity of the carrier at each time,

so the length of the gyroscope measurement sequence cannot be

changed. To ensure that the input sequence and output sequence

of the gyroscopes are the same length after 1D-CNN operation

and reduce the model parameters, the convolution kernel size

and the layer of 1D-CNN are set to 1. In order to improve the

representation ability of extracted features, the output channel

size of 1D-CNN is 256.

3.3. Long short term memory (LSTM)

RNN is a popular branch of the deep learningmethod, where

the connections among nodes can form a directed graph along a

sequence. Unlike feedforward neural networks, RNNs can use
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FIGURE 2

Illustration of the 1D convolution operation.

FIGURE 3

Illustration of the LSTM network.

their internal state (memory) to process sequences of inputs.

However, it has a vanishing gradient problem that is unable to

find an appropriate gradient in long-term memory (Gers et al.,

2000; Sutskever et al., 2014).

An RNN composed of LSTM units is often called an LSTM

network, which contains a cell, an input gate, an output gate, and

a forgetting gate to avoid the vanishing gradient problem. An

LSTM memory unit is shown in Figure 3. LSTM uses two gates

to control the contents of the unit state C. One is the forgetting

gate, which determines howmuch of the cell state in the previous

moment Ct−1 is retained in the current cell state Ct . The other

one is the input gate, which determines the level of input of the

current network Xt is saved to the cell state Ct . The LSTM NN

uses the output gate to control the level of the unit state Ct sent

to the current output ht (Sak et al., 2014). The current input cell

status C̃t can be calculated based on the previous output. The

final LSTM output is determined by both the output gate and

the unit state.

In our model, the LSTM input channel size is the same as the

previous 1D-CNN output channel size, i.e., 256, and the output

channel size is 128.

TABLE 1 The specifications of the AHRS380SA-200.

Range (◦/s) ± 180

Gyroscope Bias instability (◦/hr) <10

Angular random walk (◦/
√
hr) <0.75

Range (g) ± 4

Accelerometer Bias instability (mg) <0.02

Velocity random walk (m/s/
√
hr) <0.05

Physical
Size (mm) 41*48*22

Weight (gm) <30

Output data rate (Hz) 2 to 100

Electrical Input voltage (VDC) 9–32

Power consumption (mW) <350

3.4. Attention mechanism

The attention mechanism is a technique that mimics

human cognitive attention by selectively ignoring part of the

unimportant information and focusing on specific objects.

It lays the groundwork for variants of subsequent attention

mechanisms and has been successfully used in computer

vision, recommendation systems, and translation (Bahdanau

et al., 2014). In the context of neural networks, the attention

mechanism can be regarded as a weight matrix. In other words,

each input data have a corresponding weight value by assigning

the attention degree, and the stronger the attention, the greater

the weight.

As is known, the time sequence data of theMEMS gyroscope

contain more complex temporal information. The error features

information of the MEMS gyroscope computed by the LSTM at

different times may influence the angular velocities differently.

For example, the initial error at a time window will accumulate

over time and have a greater impact than the error at the end

of the time window. However, the standard LSTM cannot deal

with the different important parts of the gyroscope sequence

well. Therefore, soft attention (Zhao et al., 2020) is adopted to

automatically distinguish different levels of importance of the

error features at different times. The attention mechanism can

be expressed as,

αi =
exp(si)

∑t−1
i=1 exp(si)

(10)

where αi represents the importance of the ith time window

for MEMS gyroscope sequence prediction, and the score si is the

attention weight.

4. Experimental results and analysis

The real field, dataset and ablation tests are performed

in this section to evaluate the proposed algorithm. Allan

Frontiers inNeurorobotics 06 frontiersin.org

62

https://doi.org/10.3389/fnbot.2022.993936
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Liu et al. 10.3389/fnbot.2022.993936

TABLE 2 Network structure and training hyperparameters tuning.

Learning rate Epoch number Batch size Dropout CNN layer CNN output

channel size

LSTM layer LSTM output

channel size

100

Range 1e-4

1e-3

1e-2

150

200

250

64

128

256

0.1

0.2

0.3

1,2

3,4

64,128

256,512

1,2

3,4

64,128

256,512

Value 1e-4 150 64 0.2 1 256 1 128

FIGURE 4

The denoised and raw signals comparison for the 3-axis gyroscope of AHRS380SA.

variance is used to quantitatively analyze the stochastic noise

reduction effects.

4.1. Real field tests

In order to verify the performance of our method, a

popular low-cost MEMS IMU AHRS380SA-200 manufactured

by ACEINNA company is employed in this study. The IMU

is composed of 3-orthogonal gyroscopes and 3-orthogonal

accelerometers. As listed in Table 1, the full measurement

range, maximum bias instability and angle random walk of the

AHRS380SA-200 are±180◦/s, 10◦/h and 0.75◦/
√
hr.

During the raw signal collecting, the AHRS380SA-200 is

placed on the table statically, and the sampling frequency is

set to 100 Hz at room temperature. A computer-installed data

acquisition software retrieved the raw signals via a MOXA USB

to RS-232 data conversion cable. The Pytorch 1.8 is used as the

deep learning framework tool, and the computer used in the

experiment is configured as Intel Corei7-6700 3.4 GHz, 16GB

RAM, RTX2080ti GPU. Two hours of gyroscope output data is

used to train the model. In contrast, the same raw data length

is adopted to evaluate the model’s performance and tune the

model parameters. The Allan Variance method is selected to

analyze and describe the composition of the gyroscope noise

contained in the raw output signals, which is a time-domain

analysis technique originally designed for characterizing noise

and stability in clock systems (Woodman, 2007). For LSTM

networks, the sequence length can determine howmuch context

information is sent to the model each time. Considering the

IMU sampling rate, a window size of 100 is applied to the

IMU sequence data to reduce memory. In order to reduce
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FIGURE 5

Allan variance comparison between denoised and raw signals for the 3-axis gyroscope of AHRS380SA.

TABLE 3 Allan variance parameters of the AHRS380SA 3-axis gyroscope.

Error sources
X-axis Y-axis Z-axis

Raw WT LSTM ACL Raw WT LSTM ACL Raw WT LSTM ACL

Bias

instability

(deg/h)

9.77 8.76 5.31 4.07 8.14 6.05 5.59 3.76 8.06 6.96 5.29 3.31

Angle

random walk

(deg/
√
h)

0.75 0.55 0.45 0.25 0.75 0.55 0.45 0.25 0.74 0.56 0.45 0.26

the risk of overfitting and accelerate the training speed, the

Adam optimizer (Kingma and Ba, 2014) with cosines warning

restart scheduler (Loshchilov and Hutter, 2016) is adopted. To

achieve the best performance of the ACL in the experiment, the

parameters of the model are fully tuned. The hyperparameters

are list in Table 2, where the learning rate is initialized at 0.0001,

the batch size is set at 64, the dropout is 0.2, the number of CNN

layer is 1, the size of CNN output channel is 256, the number of

LSTM layer is 1, the size of LSTM output channel is 128, and 150

epochs of training are performed.

As illustrated in Figure 4, the X/Y/Z-axis raw data and

the denoised data of WT, LSTM, and ACL methods are

compared in blue, cyan, red, and green curves. LSTM and

ACL can achieve significant noise reduction results for static

signals better than traditional WT method, and the proposed

ACL method has a better denoising effect than LSTM. The

root means square error of them are 0.0022, 0.0016, 0.0013,

and 0.00073 rad/s, respectively. Further, the Allan Variance

curves comparison results are presented in Figure 5 and

the specific error parameters are summarized in Table 3 to

distinguish the differences between them. The results show

that the ACL method performs the best noise reduction.

Especially, the X-axis gyroscope has an improvement of 45.6

and 40.0% in bias instability and angle random walk using

the LSTM neural network, while 58.3 and 66.6% using the

ACL model. For the Y-axis gyroscope, the bias instability

and angle random walk have a 31.3 and 40.0% improvement

by the LSTM method, and 53.8 and 66.6% with the ACL

model, respectively. For the Z-axis gyroscope, the error of

bias instability and angle random walk are decreased by 34.4

and 39.2% using the LSTM method; meanwhile, the ACL

model with 58.9 and 64.9%. Thus, according to the analysis

of the static experiment, the proposed ACL method has good

capability to restrain the stochastic error of the low-cost MEMS

gyroscope compared with the application of the WT and LSTM

neural network.

We further test the denoising performances of the proposed

method in the dynamic condition. The AHRS380SA IMU is

fixed on a turntable, the three axes of which are aligned with

the three axes of the turntable. We set the turntable around

the Z-axis as the Equation (11), and the sampling frequency

is 100Hz.

ω = 2 ∗ sin(π t/500) (11)
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FIGURE 7

The denoised and raw signals comparison for the 3-axis gyroscope of XSENS MTI-G-700.

FIGURE 6

The results of dynamic tests for the AHRS380SA.

where ω is the angular velocity of the turntable.

Since Allan variance is generally used for static gyroscope

data error analysis, root means square error (RMSE) is adopted

as an accuracy evaluation index in dynamic experiments, which

can reflect the distance between the denoised values and the

actual ones. The smaller RMSE, the better the denoising effect,

calculated as,

RMSE(ŷ, y) =

√

√

√

√

1

m

m
∑

i=1

(ŷi − yi)
2 (12)

where y is the actual value and ŷ is the denoised value.

Figure 6 shows that three solutions have different effects

on the z-axis gyroscope dynamic results. It can be seen that

when the turntable angular velocity changes according to our

previous setting value, the three denoising methods can track

it well. Significantly, the ACL curve in green is closer to the

ground truth (GT) curve in black than the LSTM curve in red by

magnifying the period from 460 to 540 s. The raw data has the

largest RMSE, i.e., 0.0022 rad/s. The WT and LSTM methods

are better than the raw data results, and the RMSE are 0.0016

and 0.0013 rad/s, respectively. The ACL model has the best

performance, the RMSE of which is 0.0007 rad/s.

4.2. Dataset tests

In order to further validate the proposed method, we

conducted an open dataset test. Three MEMS IMU datasets with

different accuracy in the famous kalibr−allan toolbox (Kalibr-

Allan, 2017) are provided by the University of Delaware, i.e.,

XSENS MTI-G-700, Tango Yellowstone Tablet and ASL-ETH

VI-Sensor.

Since the XSENS MTI-G-700 is a classic low-cost MEMS

IMU in inertial navigation, we chose it as our test IMU. The

XSENS MTI-G-700 dataset is continuously collected for 3 h

at 400 Hz. Similar to real field tests, the results of raw, WT,

LSTM and ACL methods are compared in Figure 7. These three

noise reduction methods can reduce the peak and peak value

of raw data to a certain extent, among which ACL is the best,

LSTM is the second, and WT is the worst. The Allan variance

curves comparison results are also depicted in Figure 8 and

summarized in Table 4: (1) the raw data have the largest average
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FIGURE 8

Allan variance comparison between denoised and raw signals for the 3-axis gyroscope of XSENS MTI-G-700.

TABLE 4 Allan variance parameters of the XSENS MTI-G-700 3-axis gyroscope.

Error sources
X-axis Y-axis Z-axis

Raw WT LSTM ACL Raw WT LSTM ACL Raw WT LSTM ACL

Bias

instability

(deg/h)

20.11 13.62 11.73 7.10 25.30 14.92 12.89 8.14 21.9 13.39 10.90 7.23

Angle

random walk

(deg/
√
h)

0.51 0.42 0.37 0.23 0.71 0.43 0.38 0.29 0.49 0.42 0.37 0.26

FIGURE 9

The yaw angle error of the denoised and raw signals.

bias instability, i.e., 22.4 deg/h; (2) the WT is better than the raw

data, and the bias instability is reduced to 13.98 rad/s; (3) the

LSTM has an 11.84 rad/s bias instability; (4) the ACL method

performs best in the three solutions.

In order to further analyze the influence of stochastic error

on the inertial navigation, we compared the denoised yaw angle

errors in Figure 9. The yaw angle error gradually increased

with time, and the maximum accumulation error reached 12.2

degrees after 100 s. If the error is not corrected, such a large

yaw error cannot be used for inertial navigation. Compared with

the yaw angle error of raw data, the denoised yaw angle error

divergence over time is effectively improved, where the ACL

method basically controls themaximum yaw accumulation error

within 6 degrees. The WT and LSTM methods also reduce the

degree of yaw angle divergence.

4.3. Ablation study

We evaluate the stochastic noise eliminating performance

of removing the 1D-CNN and attention mechanism from the

ACL model to demonstrate the effectiveness of the proposed

ACL design choice of the 1D-CNN and attention mechanism.

The ablation study is consist of the AHRS380SA denoised
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FIGURE 10

The denoised and raw signals comparison for the ablation study.

FIGURE 11

Allan variance comparison between denoised and raw signals for the ablation study.

performance comparison between the LSTM, CONV-LSTM,

and ACL methods.

The denoised results for the AHRS380SA of all the ablation

experiments are shown in Figures 10, 11. The average bias

instability of the LSTM, CONV-LSTM and ACL are 5.40, 4.90,

and 3.71 deg/h, meanwhile, the average angle random walks are

0.45, 0.32, and 0.24 deg/
√
h, respectively. Applying 1DCNN and

attention mechanism in the ACL model has a lower stochastic

error than without any attention mechanism after the LSTM

layers. The ablation experiments show that all components in

the ACL are effective.

5. Conclusion

This paper proposes a hybrid denoising method based on

deep learning to reduce stochastic errors. The devised deep

neural network architecture can predict the gyroscope
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measurements from various noises. Furthermore, the

model combines 1D-CNN and LSTM to extract the local

feature representation from the input multivariable time

sequences and uses LSTM to correlate the current inputs and

historical model information automatically. The attention

mechanism is exploited to calculate the weight to improve

computing efficiency. In order to verify the performance

of the proposed method, numerical real field, dataset and

ablation experiments have been performed. Comparing our

algorithm with known work in this field, the evaluation results

show that our model has greater denoising performances.

However, there is still room for improvement, and further

research can focus on improving the real-time capability.

Furthermore, optimal deep learning based approaches (Reddy

et al., 2018) and quantum recurrent network (Gandhi

et al., 2013) will be explored for denoising gyroscope

in future.
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A dynamic integrated scheduling
method based on hierarchical
planning for heterogeneous
AGV fleets in warehouses

Enze Hu, Jianjun He* and Shuai Shen*

The School of Automation, Central South University, Changsha, China

In modern industrial warehouses, heterogeneous and flexible fleets of

automated guided vehicles (AGVs) are widely used to improve transport

e�ciency. However, as their scale and limit of battery capacity increase, the

complexity of dynamic scheduling also increases dramatically. The problem is

to assign tasks and determine detailed paths to AGVs to keep the multi-AGV

system running e�ciently and sustainedly. In this context, a mixed-integer

linear programming (MILP) model is formulated. A hierarchical planning

method is used, which decomposes the integrated problem into two levels:

the upper-level task-assignment problem and the lower-level path-planning

problem. A hybrid discrete state transition algorithm (HDSTA) based on an

elite solution set and the Tabu List method is proposed to solve the dynamic

scheduling problem to minimize the sum of the costs of requests and the

tardiness costs of conflicts for the overall system. The e�cacy of our method

is investigated by computational experiments using real-world data.

KEYWORDS

automated guided vehicles, dynamic integrated scheduling, task assignment, path

planning, hierarchical planning, hybrid discrete state transition algorithm

1. Introduction

With the development in automation technology, AGVs as an important component

of the modern warehouse logistics system is getting increased attention because of

their accuracy, flexibility, and efficiency. More recently, heterogeneous AGV fleets are

rapidly being adopted by industrial instances to perform different material handling

tasks, where each vehicle has specific capabilities (e.g., pallet truck AGVs can tow

loads, while backpack AGVs can lift loads). The minimization of travel costs is

the most important objective of dynamic scheduling pursued in practice, which is

affected by various decisions such as task assignment (i.e., assigning and sequencing

tasks to AGVs), path planning (i.e., selecting optimal paths taken by each vehicle

to reach the destination), and conflict management (i.e., avoiding conflicts between

AGVs). These subproblems are interdependent; therefore, optimizing scheduling

problems sequentially may yield a suboptimal performance of the overall AGV system

(Maza and Castagna, 2005).

An example of a warehouse trying to implement an automated material handling

system using a heterogeneous AGV fleet is Trucking Company (TC), which is a high-tech
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listed company in Changsha, China. Currently, the vehicle

management system used in TC relies on prepackaged software

provided by AGV manufacturers. However, such software

packages are not applicable to a heterogeneous AGV fleet and

cannot handle dynamic problems such as the addition of new

tasks and charging requests for AGVs. In addition, the optimal

task assignment schememay cause more traffic jams during path

planning, and an evaluation index needs to be quantified and

established for the delay time caused as a result of the waiting

and detour strategy of the AGVs. As the configuration cost

increases, a real-time and efficient integrated scheduling method

becomes important in improving the economic performance

of the warehouse. In this study, we focus on a dynamic

integrated scheduling problem for heterogeneous AGVs with

battery constraints.

Motivated by our collaboration with the TC, the main

novelty of our problem setting in contrast to the existing

literature is constituted by the combination of the following

features. First, we specifically focused on solving the scheduling

problems right on time, whereas the methods in most studies

consume unreasonable computational effort, in particular, some

exact methods (Schiffer andWalther, 2017;Ma et al., 2020; Singh

et al., 2022). Second, the AGVs considered in this study are

heterogeneous in terms of battery management, travel speed,

and capabilities to perform transportation of different types of

materials, which increases the complexity of the problem. Third,

we simultaneously considered joint task assignments, path

planning, and conflicts that reduce the problems of the AGV

system. We aimed to make decisions on optimizing the overall

AGV system performance rather than successively solving

each subproblem. Our main contributions are summarized

as follows:

First, we developed a mixed-integer linear programming

(MILP) model for analyzing the scheduling of multi-AGVs,

which combines both task assignment and path planning in

automated warehouses. The model captures conflicts between

a heterogeneous set of AGV fleets, allowing for scheduling

according to the uncertain environment. The objective is to

minimize the sum of the costs of requests and costs of conflicts.

Constraints are also formulated to cope with features of capacity

and battery management.

Second, the hierarchical planning method was used to

decompose the complex and integrated scheduling problem.We

propose a hybrid discrete state transition algorithm (HDSTA)

considering the two-layer problems based on incorporating

an elite solution set and the Tabu Search to find the

optimal solution for the overall system instead of optimal

solutions for each independent problem. Although our model

is stylized for warehouses, the method can be applied to

other applications such as flexible manufacturing systems and

automated container terminals.

Third, we present the concept of a path expert database

and its generation methods. The selection procedure based on a

preset database is established for real-time path planning, which

provides the foundation for dynamic scheduling.

Finally, numerical experiments are performed to validate

the model according to the real-world data of warehouses in

Changsha, China. Our approach is shown to yield approximate

optimal solutions for AGV scheduling and path planning within

a reasonable timeframe.

The remainder of this article is organized as follows.

Relevant literature on the scheduling of multi-AGVs is

discussed in the “Literature review” section. Problem

description and the MILP model are formally established

in the “Dynamic scheduling system and problem description”

section. The “Hierarchical planning method” section presents

the hierarchical planning method and introduces the proposed

HDSTA and the selection procedure based on the path expert

database. The “Computational experiments” section reports the

experiments conducted to test the proposed method. Finally,

conclusions and several future research directions are discussed

in the “Conclusion” section.

2. Literature review

AGV scheduling can directly determine the efficiency and

the cost of the overall transport system and therefore high

attention is paid by researchers or manufacturing enterprises.

Fazlollahtabar and Saidi-Mehrabad (2015) presented a literature

review and divided AGV scheduling into three subproblems,

task assignment, path planning, and collision avoidance. Many

studies applied various methods, such as exact methods,

heuristics, and meta-heuristics, to treat the subproblems

separately or simultaneously.

As for exact methods, Desaulniers et al. (2003) designed

an exact method including three algorithms (greedy search,

column generation, and branch cutting), which enables

solving the scheduling problem for four vehicles. Nishi et al.

(2011) addressed a Lagrangian relaxation and cut scheme

under the bilevel decomposition framework to optimize

simultaneous task assignments and conflict-free routing

problems. Fazlollahtabar and Hassanli (2018) presented a

modified network simplex algorithm for blocking a scheduling

problem in the manufacturing system. Nevertheless, because

of the non-deterministic polynomial-time (NP)-hard nature of

the scheduling problems, the exact method is only suitable for

instances of small-scale problems.

For large-scale complex real-world problems, heuristics or

metaheuristics are mainly adopted. Li et al. (2019) proposed

an improved harmony search algorithm to improve the AGV

scheduling rate, which can obtain the best harmony by

considering the rate change. Zhang et al. (2019) proposed a

genetic algorithm and a hybrid-load AGV scheduling model

to reduce the total cost of the logistics system, which was

successfully applied to a mixed-model automobile assembly
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line. Abderrahim et al. (2020) used a variable neighborhood

search algorithm to assign tasks in a manufacturing shop

based on a vehicle manufacturing facility to minimize the

maximum completion time. Zhang et al. (2022) proposed

an improved iterated greedy algorithm to solve the AGV

dispatching problem to minimize the total transportation cost

of the matrix manufacturing workshop. In addition, many other

meta-heuristics were also used in scheduling problems, such

as the simulated annealing algorithm (Lu and Wang, 2019),

the two-stage ant colony algorithm (Hamzeei et al., 2013), the

evolutionary algorithm (Saidi-Mehrabad et al., 2015), and the

particle swarm optimization algorithm (Gen et al., 2017). In

the above literature, a common feature of the problems studied

is that all the task information are stable and obtained in

advance, and then, an analytical model was established and the

problems are solved with a heuristic ormeta-heuristic algorithm.

Nevertheless, in a real-world instance, it is unrealistic to obtain

all the task information in advance, while many uncertainties

(e.g., urgent tasks and task rework) exist under dynamic and

complex environments (Zhang et al., 2017). Therefore, the static

scheduling method is insufficient for the complicated real-world

industrial environment.

In recent years, with the development of IoT technology,

many researchers focused on the dynamic scheduling problem.

Li et al. (2020) proposed a multi-vehicle AGV scheduling

mechanism for simulating multicustomer demands in an

intelligent warehouse system. Mourtzis et al. introduced a

cloud-based cyber-physical system with the help of IoT to

achieve adaptive shop floor scheduling and condition-based

maintenance. Umar et al. (2015) proposed an improved hybrid

genetic algorithmmethod for dynamic scheduling that considers

dispatching and conflict-free routing problems of AGVs under

a flexible workshop environment. Lyu et al. (2019) presented

an improved genetic algorithm combined with the Dijkstra

algorithm considering time windows to solve the problems of

optimal numbers, shortest transportation time, and conflict-

free routing in the path planning process. Qiuyun et al. (2021)

improved the particle swarm optimization algorithm to obtain

the shortest transportation time for the AGV path planning

problem of a one-line production line in manufacturing.

Guo et al. (2020) studied the acceleration control method

and the AGV priority determination method to improve the

negotiation of AGVs that implement conflict-free path planning.

Nevertheless, these researchers ignored the influence of not only

the case of AGV heterogeneity but also battery management.

Through the review of the above literature, there have been

no studies on dynamic integrated scheduling in warehouses

for a heterogeneous set of AGV fleets with battery constraints.

Therefore, a novel scheduling approach for AGVs is in high

demand. In this study, we propose an HDSTA under a

hierarchical planning framework to solve the complex problem,

which is a kind of intelligent optimization algorithm with good

global search capability and convergence property, considering

the solution as a state and the update of the solution as a state

transition process. Thus, we evaluated the proposed method

with an industrial case study finally.

3. Dynamic scheduling system and
problem description

In this section, a dynamic scheduling system for AGVs is

proposed, which is based on a control system using inertial

navigation guidance and QR codes. The information service is

implemented by network and wireless routers. The integrated

scheduling problems of heterogeneous AGVs with battery

constraints in the AGV system are described and formulated

while the conflict problem is highlighted.

3.1. Dynamic schedule system

The overall architecture of the dynamic scheduling system is

presented in Figure 1. The dynamic supervisory layer provides

real-time information about AGVs and the current schedule.

The AGV monitoring system is responsible for managing the

AGVs in terms of recognition, positioning, motor control, and

battery level. The schedule monitoring system is responsible

for receiving new tasks while monitoring the implementation

of the current schedule and requesting a new schedule as a

result of a change of tasks. The rescheduledmodule initialization

harmonizes additional parameters with the running schedule

that includes active AGVs, new tasks, completed tasks, and

in-process tasks.

The integrated scheduling layer is responsible for

determining the task assignment/sequence and path planning,

which is more complex because of the consideration of conflict

avoidance. AGVmovement on warehouse layout is a multigraph

problem, in that there are various parallel paths between the

presorting stations. The path expert database is established in

the offline stage, which can be regarded as a dataset containing

warehouse layout information and the candidate elite paths

sets between each presorting station. Accessory equipment

such as sensors are equipped which enables AGVs to detect

moving objects by hardware and avoid collision by preprocessed

combination strategies of traffic regulations (e.g., stop and wait

for the higher priority AGV to pass first or move around the

conflict location). Conflicts can also be reduced by combining

and changing the task assignment/sequence if it cannot be

solved separately by path selection. However, the delay time

as a result of the waiting and detour strategy of AGVs needs

to be quantified and reduced. The schedule contains task

assignment/sequence and path planning, which are generated

by the task scheme generator and the path planning generator.

The generated schedule is downloaded for execution by

the system.
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FIGURE 1

Dynamic scheduling system.

In a dynamic system, the assumptions considered are as

follows: (1) loading and unloading times are fixed; (2) the AGVs

move in four directions; and (3) the positioning deviation of the

AGVs is negligible.

3.2. Problem statement

This study considers a real-world industry case of the

TC where the goal is to have continuous material handling

without human interference. Each transport process of the

AGVs is composed of pickup travel, loading, delivery travel,

and unloading. The layout of the warehouse is modeled as a

multigraph, G = (N, E), where N = {1, 2, . . . , n} is a set of

all the nodes. Let C ⊂ N denote the set of charging stations

and X ⊂ N denote the set of presorting stations, respectively.

Moreover, E = {
(

i, j, p
)

: i, j ∈ N, i 6= j } denotes the set of

arcs between every node pair. The pth path between the nodes

i and j is represented by
(

i, j, p
)

∈ E. Parallel paths are stored

in the path expert database Ns which is established in the offline

stage. If there is a collision between a pair of current paths, a path

parallel to one of this pair of current paths can be used to replace

this path for avoiding conflict.

In our problem setting, a set of transport tasks T are serviced

by a set of heterogeneous AGVs K, and each task r ∈ T contains

a pickup node and a delivery node which are denoted by ur ∈ X

and dr ∈ X, respectively. Besides transport task requests, a set

of charging requests is denoted by B = {1, 2, . . . , |B|}, where

|B| = |C| • |K| is the upper bound which is sufficiently large

and C represents a set of charging stations. For each charging

request b ∈ B, the pickup node and the delivery node are the

same. The AGV makes a start instruction at the origin station s

and each request contains only one delivery node. A termination

instruction will be issued when the AGV reaches the terminal

station e. Multiple request sets are defined by R = T ∪ B,Rs =

R ∪ {s},Re = R ∪ {e}, and Rse = R ∪ {s} ∪ { e}.
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We considered battery constraints and the maximum and

minimum battery levels for each AGV, where k ∈ K are denoted

by bk
h
and bk

l
, respectively. Before performing a new task, the

battery level bk of each AGV needs to be above the minimum

threshold bk
l
. The AGV is not allowed to access the charging

facilities while traveling with a load. AGVs are required to

complete the current task with the first priority before going

to the charging station. The discharging rate of AGV k ∈ K is

represented by dk, while each AGV has a unit time travel cost

of ck.

As previously mentioned, AGVs are heterogeneous in terms

of their capabilities to perform the transportation of different

types of materials. Let CTr denote a set of capability requirements

for each task, and each AGV has a specific capability CK
k
. The

task r ∈ T is only able to be performed by AGV k ∈ K if

CTr ⊆ CK
k
holds to ensure that each task is performed by an AGV

with corresponding handling capacity. For example, the tasks of

lifting loads need to be performed by backpack AGVs while the

pallet truck AGVs are only able to tow loads.

The path from the pickup node to the delivery node r is

denoted by Pr , and the path from the delivery node of task r

to the pickup node of task r′ is denoted by P
rr
′ . The AGV has

its specific forward speed and velocity of rotation, respectively.

For each path p ∈ Pr , the travel time of AGV k is denoted by

Tk
rp, and for each path p ∈ P

rr
′ , the travel time of AGV k is

denoted by Tk
rr
′
p
. In addition, the conflict-free path is optional

during path planning because collisions can be prevented by

traffic regulations. A delay time returns when an AGV follows

a waiting and detour strategy to avoid a collision. When the

path p ∈ Pr of AGV k conflicts with the path q ∈ Pm of

AGV g, the delay time of AGV k on the path p ∈ Pr is defined

by 8
mgq
rkp

(zu
rk
, zumg ), where zu

rk
represents the time for AGV k

to arrive at the pickup node of request r and zumg represents

the time for AGV g to arrive at the pickup node of request m,

respectively. When the path p ∈ Pr of AGV k conflicts with

the path q ∈ P
mm
′ of AGV g, the delay time of AGV k on

the path p ∈ Pr is defined by 8
mm
′
gq

rkp
(zu
rk
, zdmg), where zdmg

represents the time for AGV g to arrive at the delivery node

of requestm.

3.3. Mixed-integer linear programming
model

In this section, we formulate a mathematical model based

on the problem description, which is an improvement from the

findings of Dang et al. (2021) and Singh et al. (2022). Decision

variables are introduced as follows:

x
p
rk
: binary variable equal to 1 if AGV k ∈ K travels from

the pickup node to the delivery node of request r ∈ R using

p ∈ Pr or 0 otherwise

y
p
rr′k

: binary variable equal to 1 if AGV k ∈ K travels from

the delivery node of request r ∈ Rs to the pickup node of

request r
′
∈ Re using p ∈ P

rr
′ or 0 otherwise

zu
rk
: time of AGV k at the pickup node ur of request r ∈ Re;

zu
ek

is the termination time of AGV k

zd
rk
: time of AGV k at the delivery node dr of request r ∈ Rs;

zd
sk
is the start time of AGV k

λu
rk
: percent amount of battery discharge of AGV k at the

pickup node ur of request r ∈ Re

λd
rk
: percent amount of battery discharge of AGV k at the

delivery node dr of request r ∈ Rs

The mathematical model of the described problem is

presented as follows:

The objective function f is to minimize the sum of the costs

of requests and the tardiness costs of conflicts as the cost of each

AGV is directly proportional to its travel time.

f = min
∑

k∈K

ck(z
u
ek − zdsk)

∑

k∈K

∑

p∈pr

xprk = 1 ∀r ∈ T (1)

∑

k∈K

∑

p∈pr

xprk ≤ 1 ∀r ∈ B (2)

xprk = 0 ∀p ∈ Pr , ∀r ∈ T,∀k ∈ K,CTr 6⊆ CKk (3)

yprrk = 0 ∀r ∈ R,∀k ∈ K (4)
∑

r∈Rs

∑

p∈prr′

yprr′k =
∑

p∈pr′

xpr′k ∀r′ ∈ R, ∀k ∈ K (5)

∑

p∈pr

xprk =
∑

r′∈Re

∑

p∈prr′

yprr′k ∀r ∈ R, ∀k ∈ K (6)

zurk + T
p
rk
+

∑

g∈K

∑

m∈T

∑

q∈pm

8
mgq
rkp

(zurk, z
u
mg)x

q
mg

+
∑

g∈K

∑

m∈Rs

∑

m′∈Re

∑

q∈pmm′

8
mm′gq
rkp

(zurk, z
d
mg)

∗yqmm′g −M(1− xprk) ≤ zdrk ∀p ∈ Pr ,

∀r ∈ T,∀k ∈ K (7)

zdrk + T
p
rr′k
+

∑

g∈K

∑

m∈T

∑

q∈pm

8
mgq
rr′kp

(zdrk, z
u
mg )x

q
mg

+
∑

g∈K

∑

m∈Rs

∑

m′∈Re

∑

q∈pmm′

8
mm′gq
rr′kp

(zdrk, z
d
mg)

∗yqmm′g −M(1− yprr′k) ≤ zur′k

∀p ∈ Prr′ , ∀r ∈ Rs,∀r
′ ∈ Re,∀k ∈ K (8)

Constraint (1) ensure that each transport request is assigned

only one time and can be followed by another request.

Constraint (2) makes sure that each charging request is

presented by at most one AGV. Each charging request r has

only one path. Constraint (3) ensures that the capabilities of the

requests and AGVs match. Constraint (4) ensures that self-visits
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are avoided. Constraints (5) and (6) make sure that the number

of entering paths of request, execution paths, and leaving paths

of each request are consistent. The time constraints are given by

(7) and (8), and Constraint (7) calculates the travel time from

the pickup node of request r to the delivery node. Constraint (8)

calculates the travel time between different requests. The travel

time includes transportation time and delay time, where M is a

large positive constant.

bkl ≤ λdrk ≤ bkh ∀r ∈ Rs,∀k ∈ K (9)

bkl ≤ λurk ≤ bkh ∀r ∈ Re,∀k ∈ K (10)

λurk + dk(z
d
rk − zurk)−M(1− xprk) ≤ λdrk

∀p ∈ Pr , ∀r ∈ T,∀k ∈ K (11)

λdrk + dk(z
u
r′k − zdrk)−M(1− yprr′k) ≤ λur′k ∀p ∈ Prr′ ,

∀r ∈ Rs,∀r
′ ∈ Re,∀k ∈ K (12)

The constraints related to power consumption are given by

(9) to (12). Constraints (9) and (10) set the lower and upper

bounds for an amount of battery discharge. Constraint (11)

calculates the amount of battery discharge due to the travels

between the source and destination of a request. Constraint

(12) calculates the amount of battery discharge due to the travel

between the destination and the source of two requests.

xprk ∈ {0, 1} ∀p ∈ Pr , ∀r ∈ R,∀k ∈ K (13)

yprr′k ∈ {0, 1}∀p ∈ Prr′ ∀r ∈ Rs,∀r
′ ∈ Re,∀k ∈ K (14)

zurk ≥ 0 ∀t ∈ Re,∀k ∈ K (15)

zdrk ≥ 0 ∀t ∈ Rs,∀k ∈ K (16)

The valid domains of the binary variables are given by

constraints (13)–(16), which guarantee valid domains for the

other decision variables.

4. Hierarchical planning method

In this section, a hierarchical planning method is proposed

to solve the joint task assignments, path planning, and

conflict problem for just-in-time scheduling. This method

is inspired by the work of Hooker and Ottosson (2003)

and decomposes the integrated optimization problems into

an aggregated upper-level master problem and a lower-level

subproblem. The upper-level problem is to make decisions for

AGV task assignment/sequence, which determines a candidate

elite solution set where the collision constraints for AGVs are

neglected. The lower-level subproblem is to solve the optimal

path planning problem with collision constraints under the

conditions of the tentative solution at the upper level. The

conflict problem is considered in both the master problem

and subproblem, the collision between AGVs can be reduced

by changing the detailed paths for vehicles or the scheme of

task assignment and sequence. In summary, the objective is

to minimize the AGV transportation time, which is the sum

of the total travel time and the delay time (waiting or detour

time for avoiding collisions). The detailed steps are described

as follows:

Step 1. The upper level: Task assignment and sequence to

AGVs where the collision constraints are removed from the

original problem, and the transportation time of each task for

each AGV is defined as the minimal time from the starting

node to the delivery node. The master problem is regarded as

the task assignment/sequence problem with constraints such as

heterogeneous AGVs and batteries. In this study, a tentative elite

solution set ϕi sorted in the ascending order of the objective

function value is generated by HDSTA where the solution in the

elite solution set is denoted by pn.

Step 2. The lower level: Select the specific paths to perform

the assigned tasks for the AGVs under the condition that a

tentative solution pn is derived from a master problem. For

each solution, pn ∈ ϕi selected in the ascending order, the

subproblem, which is concerned with the path planning problem

to select the optimal paths with collision constraints for AGVs, is

solved by the select procedure, while a list of conflict results with

memories is generated, called Tabu List 3i. If the result of the

selected procedure is conflict-free paths (termination criterion

1), the algorithm is completed; otherwise, recording conflict

results to 3i. In the iteration, the solution with the minimum

objective function values is recorded as the tentative optimal

solution pbest and its delay time is defined by tp.

Step 3. Algorithm termination criterion 2: The maximum

allowable delay time is defined by ε. If tp derived in Step 2 is

less than ε, the algorithm is completed.

Step 4. Regenerate the tentative elite solution set ϕi

considering the information is recorded in the tabu list 3i

by HDSTA. If there is no improvement in the objective

function value after five iterations, the algorithm is completed

(termination criterion 3); otherwise, updating 3i and returning

to Step 2.

The main scheme of hierarchical planning is illustrated in

Algorithm 1. The accurate information about all AGVs and tasks

are known, and the path expert database must be computed

offline in advance.

An HDSTA with a path-select procedure and tabu list is

proposed to find the optimal solution. The algorithm starts

with a dynamic serve framework by generating a reschedule

at the appropriate time interval methodology, based on the

concept of dynamic scheduling, when there is a requirement

for an additional task or AGV charging (lines 1–5). Then,

the initialization of the tentative elite solution set ϕi using

HDSTA (line 6) was carried out. For each solution pn ∈ ϕi,

detailed paths are generated using the path select procedure

Frontiers inNeurorobotics 06 frontiersin.org

75

https://doi.org/10.3389/fnbot.2022.1053067
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Hu et al. 10.3389/fnbot.2022.1053067

Require: set of AGVs K, set of tasks T,

path expert database Ns

1: if there is a change in transport or

charging requires begin

2: Extract finished tasks from the running

schedule

3: Combine the remaining tasks and new

tasks

4: Update K, T

5: end

6: Initialize tentative elite solution set

ϕi by HDSTA

7: while (y1 = 1 or y2 = 1or y3 = 1)

8: for each pn ∈ ϕi

9: [p,T, tp, Sp] ← SP (pn)

10: if tp = 0 then

11: D← pn; Pbest ← p; Tbest ← T; y1 ← 1

12: break for;

13: end if

14: if tp < tbest then

15: tbest ← tp;Pbest ← p;Tlist ← [pn, Sp];D←

pn;Tbest ← T

16: end if

17: end for

18: if tbest < ε then

19: y2 ← 1

20: end if

21: if y1 = 0 or y2 = 0 then

22: update the elite solution set ϕi by

HDSTA

23: update l

24: if l > 5

25: y3 ← 1

26: end if

27: end if

28: end while

29: S← (D, Pbest)

return S

Algorithm 1. Main scheme of hierarchical planning.

(SP). The transport time, delay time, and conflict points are

calculated, and a tabu list is generated (lines 8–17). If a solution

exists in the elite solution set that conflict-free paths can

be generated in path planning is marked as y1(lines 10–13).

The optimal solution in the elite solution set whose delay

time is less than ε is marked as y2 (lines 18–20). If the

objective function values showed no improvement after multiple

iterations are marked as y3 (lines 24–26), the iteration of the

elite solution set is updated by HDSTA by incorporating the

Tabu List constraints until one of the termination conditions

are met and generating an integrated scheduling solution

FIGURE 2

State space representation.

Require: path expert database Ns,

dispatching D

1: Tc ← 0

2: repeat

3: for each dk ∈ D

4: for each t ∈ Tk

5: rku ← Path(otu, 1); rku′ ← Path(ot
d
, 1)

6: rt ← rku; rt ← rku′; Rk ← rt

7: end for

8: R ← Rk

9: end for

10: [Tc, Ci] ← Con (R)

11: if Tc 6= 0

12: for each Ci

13: R′ ← Replace (Rk)

14: T
′

c ← Con (R′)

15: if T
′

c < Tc

16: Tc ← T
′

c

17: R ← R′

18: end if

19: end for

20: end if

21: return Tc, R

Algorithm 2. Select procedure for AGV routing.

containing the sequential assignment solution and the detail

path solution.

4.1. HDSTA

The state transition algorithm (STA) (Yang et al., 2013) is a

kind of intelligent optimization algorithm originally proposed

Frontiers inNeurorobotics 07 frontiersin.org

76

https://doi.org/10.3389/fnbot.2022.1053067
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Hu et al. 10.3389/fnbot.2022.1053067

Require: graph G, set of depots

X = {x1, x2, x3 . . . xs}

1: Initialize matrix Hs

2: repeat

3: CLOSE list ← 0; final ← 0; Mark = ∅

4: OPEN list ← start

5: while

6: while OPEN list 6= 0

7: if the number of the latest node in

OPEN list = 1

8: Current node ← the latest node in

OPEN list

9: else Current node ← the first node

10: Mark ← OPEN list; Mark ← CLOSE list

11: end if

12: if current node = end point

13: break final ← CLOSE list

14: end if

15: for each neighbor (Current node)

16: if neighbor /∈ Obstacle

17: new cost = f(neighbor)

18: if new cost < cost allel neighbor

/∈ CLOSE list

19: OPEN list ← neighbor

20: else CLOSE list ← neighbor

21: end if

22: CLOSE list ← current node

23: end if

24: end for

25: end

26: if Mark 6= ∅

27: OPEN list ← Mark (i); CLOSE list ←

Mark (j)

28: else break

29: end if

30: end

31: final = sort (final)

32: NS ← final

33: until the specified termination

criterion is met

34: return NS

Algorithm 3. Improved A
∗ algorithm for establishing the path expert

database.

by Zhou et al. (2012) with good global search capability and

convergence property. In our proposed HDSTA, the integrated

problem is decomposed into individual elements and the

individual S is defined by three “state spaces” related to its

tasks sequence, AGV dispatch, and the corresponding routes, as

depicted in Figure 2.

The task sequence state space Q registers for each task.

The space Q consists of some types of tasks, with the subspace

qd ∈ Q representing one type of task collection. The first type is

charging requirement, while the others depend on the number of

heterogeneous AGV types. It is worthmentioning that, to ensure

performing urgent tasks first, the sequence of the task in each

subspace must observe the rule of task priority. The dispatching

state space D contains the task assignment for all AGVs, and the

subspace dk ∈ D represents the dispatching of AGV k ∈ K.

Finally, the AGV routing R corresponds to all paths, while the

subspace r
uk
k
∈ R represents the path of the uth task of the kth

AGV, respectively.

The integrated scheduling state space of AGVs is decoded

for three subproblems, namely, task sequence, dispatching,

and routing. Regularly representing an individual solution

with appropriate random numbers is a very effective method

to solve combinatorial optimization problems. However, to

solve scheduling optimally in an integrated manner, intrinsic

connections and constraints between the subproblems must

be established.

An illustration of the integrated method is given in Figure 3.

A sequence space consists of three types of requirements: a

charging request (denoted in red), a piggyback transportation

requirement (denoted in yellow), and a pallet transportation

requirement (denoted in green). By randomly assigning tasks

in each subspace to the matching AGVs, the corresponding

dispatching space is generated. Each time the generated

dispatching space performs the routing procedure, that is, to

select the optimal path with the least collision in the path

expert database and generate the conflict result feedback C.

The optimization objective result S is the sum of total travel

time Cost based on the current solution of dispatching space

and conflict result C. The feasible solution of scheduling

consists of a dispatching scheme and a detailed routing

scheme. The role of sequence space is to define various

requirements with priority and increase the search range of

the algorithm.

In the task sequence state space Q, a candidate solution set

is generated by the three special operators, a swap operator,

shift operator, and symmetry operator (Yang et al., 2013),

which are very effective to solve discrete optimization problems.

Moreover, a candidate solution set is created by the times of

the transformation called the search enforcement (SE) and the

translation operator is performed only if a better new trail

is found.

In the AGV dispatching space, the same four operators are

applied to produce a candidate solution set, which is referred

to as self-learning. However, the search space of the basic

state transformation algorithm is normalized or specialized and

cannot directly solve the problem with multiple subspaces. In

the dispatching space, the communication strategy between the

subspace dk is necessary to exchange information for increasing

the search intensity. Thus, we employed two move operators,

Frontiers inNeurorobotics 08 frontiersin.org

77

https://doi.org/10.3389/fnbot.2022.1053067
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Hu et al. 10.3389/fnbot.2022.1053067

illustrated by Figure 4. (1)—the single insertion operator (SI):

displaces the last task element of one subspace of dispatching

to a random position in another subspace of dispatching and

(2) the position-based crossover operator (PBC): exchange

task elements of the same position randomly in two different

subspaces of dispatching.

4.2. Select procedure

The method of AGV routing based on the path expert

database is proposed for the first time. In the industrial context,

collisions can be avoided by hardware, and conflict-free path

planning is not our purpose as it takes a lot of computing

FIGURE 3

A description of the integrated scheduling problem.

FIGURE 4

A description of move operators.
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time and easily falls into locking in large-scale problems. The

proposed method is to select a detailed path with the least

conflicts from the path expert database according to the current

dispatching and recording of the information of the conflict.

In this section, we give a path expert database Ns and task

assignment for all AGVs, D = d1, d2, d3 . . . dk in this section.

Let Tc denote the punishment time of the conflict process. As

mentioned earlier, each task t consists of a pickup request otu and

a delivery request ot
d
. To represent a path-planning solution, we

assign to the route rt of each task two paths from the path expert

database. The rku and r
k
u′
are said to be traveling paths for pickup

and delivery, respectively, by AGV k, and the nth path of the

route rij from depot i to depot j in the path expert database is

defined as Path
(

i, j, n
)

∈ Ns. The selection procedure for AGV

routing to optimize path planning and obtain punishment time

is shown in Algorithm 2.

Set Tc to zero at the beginning (line 1). Then, a loop is

executed to assign paths to each subspace dk (lines 3–9). Each

task t ∈ Tk is assigned to the first path in the path expert

database by the loop (lines 4–7). The time coordinates and

punishment time of conflicts are calculated based on the time

window, referred to as “CON” (line 10). When the conflict time

is not zero, replace the best path with another path in the path

expert database, referred to as “Replace,” and update the routing

data if the new path is better than all the queried paths (lines

11–20). Finally, the procedure returns the best solution (line 21).

In the dispatching space, the computational procedure does

not consider the conflict situation. Thus, we establish a tabu

list to record the conflict situation and then feed it back to

dispatching and eliminate the unfeasible solutions in the next

state to reduce conflicts whenever possible.

For example, in the current dispatching space, subspace

d1{2, 1, 3, 5} and subspace d2{8, 7, 6, 4} have a conflict in

the routing procedure and the conflict situation is for AGV 1

in performing task 2 and AGV 2 in performing task 8. The

conflict results d1{2, x, x, x } and d2{8, x, x, x } are recorded

for infeasible solution domains, where x is an arbitrary task.

The result represents the infeasible solution that AGV 1 first

performs task 2 while AGV 2 first performs task 8. In the

following stage, the infeasible solutions are removed.

4.3. Path expert database

To the best of our knowledge, the establishment of the path

expert database in the offline state for path planning is proposed

for the first time. The optimal path between depots is several;

besides, there are many good paths as well.

The concept of a path expert database is a collection that

contains all optimal paths and good paths with sequences

between depots for path replacement in case of a conflict.

The path expert database can be established by manually

experience or algorithm programs depending on the different

specifications of the warehouse. In this section, we propose an

improved A∗ algorithm to generate a path expert database as

shown in Algorithm 3.

The initial matrix of depots is defined by Hs (line 1). The

algorithm loops over each route r ∈ Hs. A loop program

calculates the paths between each depot (lines 2–33). Let the

CLOSE list and the OPEN list denote a collection of nodes that

have already been estimated and the collection of nodes that

waiting for estimating. The path result is recorded in “final”

and the points of the same valuation are recorded in “mark”

(lines 3–4). The algorithm executes a loop that finds the optimal

path between the two depots based on the A∗ algorithm and

records the other points of the same valuation in each iteration

(lines 6–25). If the collection “mark” is not blank, remount the

information of points recorded successively to find all good

paths between two depots (lines 26–29)—a record of all the

path results (lines 31–32) and the procedure returns path expert

database NS finally (line 34).

5. Computational experiments

To evaluate the performance of the proposed method,

computational experiments are performed in a dynamic

scenario and under different scenarios with varying fleet sizes

and numbers of tasks. We implemented the proposed dynamic

scheduling method on a computer with an Intel (R) Core (Tm)

CPU i7-9700 4.8 GHz and 8 GB RAMwith a 64-bit Windows 10

operation system, while the scheduling rule is implemented in

Python v3.6. The study adopts the warehouse production data

located in Changsha, China. The layout of this warehouse is

illustrated in Figure 5, which consists of 12 buffer area depots,

12 shop depots, 15 automatic vertical warehouse depots, and 5

charging stations. From the feedback from the practitioners, the

average number of requests waiting for assigning is about 30 in

a horizon, a horizon with more than 60 requests is regarded as a

busy period.

The position of the depots (or stations) in the layout

is fixed. Therefore, we made use of a distance matrix to

compute the travel time of AGVs. We generated a path expert

database through the program while offline and also note again

that the collision-free trajectories are not considered in our

experiments, since those collisions between the AGVs can be

avoided by hardware.

5.1. Dynamic scheduling

A FlexSim-based digital simulation system is established

to dynamically analyze the operation of AGV systems
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FIGURE 5

Warehouse layout.

FIGURE 6

FlexSim-based digital simulation system.

under the industrial warehouse instances, as shown

in Figure 6.

The description of the dynamic scheduling problem is

shown in Table 1. The integrated scheduler algorithm processes

a total of 60 tasks arriving at three different random intervals

of time. Initially, 25 tasks are scheduled. While executing

the initial schedule, 15 new tasks are added to the system

at time t = 14min. This results in a dynamic rescheduling

of the system. While executing the current schedule, 20

more new tasks were added to the system at time t =

22 min.

As stated in the methodology, this is based on the concept of

scheduling and rescheduling under an appropriate time intervals

methodology of dynamic scheduling. Figure 7 shows the Gantt

chart of the initial schedule. The dashed line at time t = 14min

represents the interruption and rescheduling, the points when

new tasks are added to the system. The uncompleted tasks

currently at the execution stage at the interruption and the
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rescheduling points are task 1, task 8, task 7, and task 4. The

tasks in execution will continue with the preemption in the

next planning time horizon until the operation is completed.

Figure 8 shows the Gantt chart for the generated new schedule,

in which the new tasks are added after the interruption of the

previous schedule. The operations at tasks 1, 8, 7, and 4 marked

TABLE 1 The description of the dynamic scheduling problem.

Schedule Start time (min) New tasks

Initial 0 Task 1, Task 2, . . . , Task 25

Interrupt 1 14 Task 26, Task 27, . . . , Task 40

Interrupt 2 22 Task 41, Task 42, . . . , Task 60

by the parallel slanted lines are the remaining operation from

the previous schedule. On this schedule, all tasks in the system

are either completed or the last task is under execution before

the interrupt point in time t = 22min. Figure 9 shows the Gantt

chart for the generated new schedule. The tasks completed at the

current interrupt and the rescheduling point are tasks 28, 26, 31,

33, 29, 36, 27, 37, and 34. Dynamic path planning adjusts the

path without interrupting the current task execution process.

5.2. Analysis of the scheduling results

The efficacy of our method is verified by computational

experiments using real-world data with varying fleet sizes and

numbers of tasks. The number of AGVs to be dispatched is 5,

FIGURE 7

Gantt chart for dynamic scheduling 1.

FIGURE 8

Gantt chart for dynamic scheduling 2.
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10, and 15, respectively. The number of tasks to be allocated

in the case is 50, 60, 70, 80, 90, and 100, respectively. Each

case randomly generates five groups of tasks and runs them

10 times, for a total of 50 runs of the program. The average

value is taken as the result. At present, the advanced AGV

systems in industrial warehouses adopt the scheduling method

of sequential optimization, of which the method proposed by

Lian et al. (2020) is the most representative. Therefore, this

method is selected for comparative verification of the analyses of

real warehouse cases. Problems not considered in this method,

such as the heterogeneity of the AGVs and battery constraint,

are improved before the comparative verification in this study.

In the case study, the comparison results of the task completion

time and the delay time of the two methods are shown in

Figures 10–12.

The results show that the integrated scheduling method

proposed in this study has better performance and better

solutions are found in all cases. In particular, the average task

completion time is 13.62% less and the average delay time is

76.69% less than the sequential optimization of the scheduling

method. The average delay time difference between the two

methods is only 219 s when the number of tasks is 50 using

5 AGVs, but it increases to 3,591 s when the number of tasks

increases to 100 using 15 AGVs. With the increase in task

scale, the probability of conflicts between AGVs also increases

dramatically. The sequential optimization scheduling method

cannot avoid the impact of conflicts from the task allocation

process, while the proposed integrated scheduling can avoid

most conflicts by changing the task assignment and specific

execution path.

FIGURE 9

Gantt chart for dynamic scheduling 3.

FIGURE 10

Comparative analysis of task completion time and delay time with 5 AGVs.
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5.3. Comparison of algorithms

To verify the performance of HDSTA, a larger-scale

case template needs to be established. We generate 10

instances for each scenario with 50–150 tasks and AGVs

to be scheduled, ranging from 5 to 25; each instance

runs ten times to compute the mean. In each instance,

HDSTA with the adaptive large neighborhood search

algorithm (HALNS) (Dang et al., 2021) was compared

with the preplanning algorithm (PPA) (Maza and Castagna,

2005). HALNS is a hybrid algorithm of the adaptive large

neighborhood search algorithm and the linear programming

algorithm, which is proposed to solve the heterogeneous

AGV scheduling problem with charge capacity constraints.

However, this method does not consider the problem of

conflict and deadlock. For comparison, we developed

the conflict detection method to compute the delay time

of its optimal solution. PPA is a strategy to generate

conflict-free paths.

Table 2 compares the task completion time and scheduling

computation time for varying scenarios with different numbers

of AGVs and different numbers of tasks, where the task

completion time is directly proportional to the operation cost,

which can visually reflect the collaborative operation efficiency

of AGVs, and the computation time is an important index

of dynamic scheduling, which can reflect the computation

efficiency of AGV systems. Table 2 compares the performance

and computation time of PPA, HALNS, and HDSTA for

150 sets of tasks in 15 case types. For example, when the

task volume is 50 and the number of AGVs is 5, 9, and

11, respectively, the task completion times of the scenarios

calculated by optimal scheduling with the HDSTA algorithm

are 3,738, 3,811, and 3,845 s and the computation times are

2.23, 2.33, and 2.37 s, respectively. The results of 150 sets

FIGURE 11

Comparative analysis of task completion time and delay time with 10 AGVs.

FIGURE 12

Comparative analysis of task completion time and delay time with 15 AGVs.
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TABLE 2 Results of the varying scenarios.

NO. Number
of tasks

Number
of AGVs

PPA HALNS HDSTA

Computation
time (s)

Task
completion
time (s)

Computation
time (s)

Task
completion
time (s)

Computation
time (s)

Task
completion
time (s)

1 50 5 7.61 3,747 4.24 3,744 2.23 37,38

2 50 9 7.73 3,830 4.36 3,862 2.33 3,811

3 50 11 8.13 3,853 4.68 3,876 2.37 3,845

4 60 3 11.41 4,522 6.88 4,529 2.84 4,522

5 60 8 12.14 4,615 7.20 4,628 2.83 4,608

6 60 13 12.81 4,693 8.36 4,854 2.90 4,685

7 80 4 19.91 6,570 16.07 6,569 3.55 6,558

8 80 6 22.89 6,683 18.15 6,711 3.91 6,654

9 100 7 38.92 8,421 31.94 8,408 5.64 8,311

10 100 15 43.85 8,636 30.11 8,756 6.22 8,541

11 120 15 50.21 12,850 41.65 13,365 8.60 12,305

12 120 18 54.33 12,902 56.84 14,025 8.84 12,654

13 120 19 55.12 13,357 58.52 14,359 8.92 13,147

14 150 22 98.21 18,724 84.74 19,015 13.45 17,521

15 150 23 116.89 19,031 91.61 19,584 14.16 16,984

of tasks for 15 case types are analyzed and compared with

PPA and HALNS. The average task completion time of the

HDSTA solution proposed in this study is lower by 3.44

and 7.27% and the computation time is less by 84.15 and

81.92%.

6. Conclusion

This article studied the problem of scheduling a

heterogeneous fleet of AGVs. A MILP model was formulated

to minimize the sum of the costs of requests and the tardiness

costs of conflicts. The hierarchical planning method is

used to decompose the complex and integrated scheduling

problem. We propose that HDSTA combine select procedures.

The major novelty of this study is the ability to solve the

dynamic integrated scheduling problem for heterogeneous

AGV fleets with battery constraints. We performed

numerical experiments to validate our model according to

the real-world conditions of the automated warehouses in

Changsha, China.

In the future, we may extend our research

to improve our approach to multiple pickups

and deliveries along the same route (multi-load

AGVs) and the inclusion of path planning in the

scheduling process.

Data availability statement

The original contributions presented in the study are

included in the article/supplementary material, further inquiries

can be directed to the corresponding authors.

Author contributions

EH and SS: conceptualization and writing—original draft

preparation. EH: data curation. EH and JH: methodology,

validation, and formal analysis. JH: writing—review and editing

and funding acquisition. All authors contributed to the article

and approved the submitted version.

Funding

This study was supported by National Natural Science

Foundation of China under Grant No. 61873282.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Frontiers inNeurorobotics 15 frontiersin.org

84

https://doi.org/10.3389/fnbot.2022.1053067
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Hu et al. 10.3389/fnbot.2022.1053067

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.

References

Abderrahim, M., Bekrar, A., Trentesaux, D., Aissani, N., and Bouamrane,
K. (2020). Bi-local search based variable neighborhood search for job-shop
scheduling problem with transport constraints. Optimiz. Lett. 16, 255–280.
doi: 10.1007/s11590-020-01674-0

Dang, Q. V., Singh, N., Adan, I., Martagan, T., and van de Sande, D. (2021).
Scheduling heterogeneous multi-load AGVs with battery constraints. Comput.
Operat. Res. 136, 105517. doi: 10.1016/j.cor.2021.105517

Desaulniers, G., Langevin, A., Riopel, D., and Villeneuve, B. (2003). Dispatching
and conflict-free routing of automated guided vehicles: an exact approach. Int. J.
Flexible Manufact. Syst. 15, 309–331. doi: 10.1023/B:FLEX.0000036032.41757.3d

Fazlollahtabar, H., and Hassanli, S. (2018). Hybrid cost and time path
planning for multiple autonomous guided vehicles. Appl. Intellig. 48, 482–498.
doi: 10.1007/s10489-017-0997-x

Fazlollahtabar, H., and Saidi-Mehrabad, M. (2015). Methodologies to optimize
automated guided vehicle scheduling and routing problems: a review study. J.
Intell. Robotic Syst. 77, 525–545. doi: 10.1007/s10846-013-0003-8

Gen, M., Zhang, W., Lin, L., and Yun, Y. (2017). Recent advances in hybrid
evolutionary algorithms for multiobjective manufacturing scheduling. Comput.
Indus. Eng. 112, 616–633. doi: 10.1016/j.cie.2016.12.045

Guo, K., Zhu, J., and Shen, L. (2020). An improved acceleration method based on
multi-agent system for AGVs conflict-free path planning in automated terminals.
IEEE Access 9, 3326–3338. doi: 10.1109/ACCESS.2020.3047916

Hamzeei, M., Farahani, R. Z., and Rashidi-Bejgan, H. (2013). An exact and
a simulated annealing algorithm for simultaneously determining flow path and
the location of P/D stations in bidirectional path. J. Manufact. Syst. 32, 648–654.
doi: 10.1016/j.jmsy.2013.07.002

Hooker, J. N., and Ottosson, G. (2003). Logic-based Benders decomposition.
Mathe. Programm. 96, 33–60. doi: 10.1007/s10107-003-0375-9

Li, G., Li, X., Gao, L., and Zeng, B. (2019). Tasks assigning and sequencing
of multiple AGVs based on an improved harmony search algorithm. J.
Ambient Intell. Humaniz. Comput. 10, 4533–4546. doi: 10.1007/s12652-018-
1137-0

Li, Z., Barenji, A. V., Jiang, J., Zhong, R. Y., and Xu, G. (2020). A mechanism for
scheduling multi robot intelligent warehouse system face with dynamic demand. J.
Intell. Manuf. 31, 469–480. doi: 10.1007/s10845-018-1459-y

Lian, Y., Yang, Q., Xie, W., and Zhang, L (2020). Cyber-physical system-
based heuristic planning and scheduling method for multiple automatic guided
vehicles in logistics systems. IEEE Trans. Indus. Inform. 17, 7882–7893.
doi: 10.1109/TII.2020.3034280

Lu, H., and Wang, S. (2019). A study on multi-ASC scheduling method of
automated container terminals based on graph theory. Comput. Indus. Eng. 129,
404–416. doi: 10.1016/j.cie.2019.01.050

Lyu, X., Song, Y., He, C., Lei, Q., and Guo, W. (2019). Approach to integrated
scheduling problems considering optimal number of automated guided vehicles

and conflict-free routing in flexible manufacturing systems. IEEE Access 7,
74909–74924. doi: 10.1109/ACCESS.2019.2919109

Ma, X., Bian, Y., and Gao, F. (2020). An improved shuffled frog leaping algorithm
for multiload AGV dispatching in automated container terminals. Math. Probl.
Eng. 2020, 1260196. doi: 10.1155/2020/1260196

Maza, S., and Castagna, P. (2005). A performance-based structural policy for
conflict-free routing of bi-directional automated guided vehicles. Comput. Industry
56, 719–733. doi: 10.1016/j.compind.2005.03.003

Nishi, T., Hiranaka, Y., and Grossmann, I. E. (2011). A bilevel decomposition
algorithm for simultaneous production scheduling and conflict-free
routing for automated guided vehicles. Comput. Operat. Res. 38, 876–888.
doi: 10.1016/j.cor.2010.08.012

Qiuyun, T., Hongyan, S., Hengwei, G., and Ping, W. (2021). Improved
particle swarm optimization algorithm for AGV path planning. IEEE Access 9,
33522–33531. doi: 10.1109/ACCESS.2021.3061288

Saidi-Mehrabad, M., Dehnavi-Arani, S., Evazabadian, F., and Mahmoodian, V.
(2015). An Ant Colony Algorithm (ACA) for solving the new integrated model of
job shop scheduling and conflict-free routing of AGVs. Comput. Indus. Eng. 86,
2–13. doi: 10.1016/j.cie.2015.01.003

Schiffer, M., and Walther, G. (2017). The electric location routing problem
with time windows and partial recharging. Eur. J. Oper. Res. 260, 995–1013.
doi: 10.1016/j.ejor.2017.01.011

Singh, N., Dang, Q. V., Akcay, A., Adan, I., and Martagan, T. (2022). A
matheuristic for AGV scheduling with battery constraints. Eur. J. Oper. Res. 298,
855–873. doi: 10.1016/j.ejor.2021.08.008

Umar, U. A., Ariffin, M. K. A., Ismail, N., and Tang, S. H. (2015).
Hybrid multiobjective genetic algorithms for integrated dynamic scheduling and
routing of jobs and automated-guided vehicle (AGV) in flexible manufacturing
systems (FMS) environment. Int. J. Adv. Manuf. Technol. 81, 2123–2141.
doi: 10.1007/s00170-015-7329-2

Yang, C. H., Tang, X. L., Zhou, X. J., and Gui, W. H. (2013). A discrete state
transition algorithm for traveling salesman problem. Control Theory Applic. 30,
1040–1046. doi: 10.7641/CTA.2013.12167

Zhang, L., Hu, Y., and Guan, Y. (2019). Research on hybrid-load AGV
dispatching problem for mixed-model automobile assembly line. Proc. CIRP 81,
1059–1064. doi: 10.1016/j.procir.2019.03.251

Zhang, X., Sang, H., Li, J., Han, Y., and Duan, P. (2022). An effective multi-AGVs
dispatching method applied to matrix manufacturing workshop. Comput. Indus.
Eng. 163, 107791. doi: 10.1016/j.cie.2021.107791

Zhang, Y., Zhu, Z., and Lv, J. (2017). CPS-based smart control model
for shopfloor material handling. IEEE Trans. Indus. Inform. 14, 1764–1775.
doi: 10.1109/TII.2017.2759319

Zhou, X., Yang, C., and Gui, W. (2012). State transition algorithm. J. Ind. Manag.
Optim. (2012) 8, 1039–1056. doi: 10.3934/jimo.2012.8.1039

Frontiers inNeurorobotics 16 frontiersin.org

85

https://doi.org/10.3389/fnbot.2022.1053067
https://doi.org/10.1007/s11590-020-01674-0
https://doi.org/10.1016/j.cor.2021.105517
https://doi.org/10.1023/B:FLEX.0000036032.41757.3d
https://doi.org/10.1007/s10489-017-0997-x
https://doi.org/10.1007/s10846-013-0003-8
https://doi.org/10.1016/j.cie.2016.12.045
https://doi.org/10.1109/ACCESS.2020.3047916
https://doi.org/10.1016/j.jmsy.2013.07.002
https://doi.org/10.1007/s10107-003-0375-9
https://doi.org/10.1007/s12652-018-1137-0
https://doi.org/10.1007/s10845-018-1459-y
https://doi.org/10.1109/TII.2020.3034280
https://doi.org/10.1016/j.cie.2019.01.050
https://doi.org/10.1109/ACCESS.2019.2919109
https://doi.org/10.1155/2020/1260196
https://doi.org/10.1016/j.compind.2005.03.003
https://doi.org/10.1016/j.cor.2010.08.012
https://doi.org/10.1109/ACCESS.2021.3061288
https://doi.org/10.1016/j.cie.2015.01.003
https://doi.org/10.1016/j.ejor.2017.01.011
https://doi.org/10.1016/j.ejor.2021.08.008
https://doi.org/10.1007/s00170-015-7329-2
https://doi.org/10.7641/CTA.2013.12167
https://doi.org/10.1016/j.procir.2019.03.251
https://doi.org/10.1016/j.cie.2021.107791
https://doi.org/10.1109/TII.2017.2759319
https://doi.org/10.3934/jimo.2012.8.1039
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


TYPE Original Research

PUBLISHED 09 January 2023

DOI 10.3389/fnbot.2022.1081242

OPEN ACCESS

EDITED BY

Huiyu Zhou,

University of Leicester,

United Kingdom

REVIEWED BY

Amit Trivedi,

University of Illinois at Chicago,

United States

Changsheng Li,

Beijing Institute of Technology, China

Zhe Min,

University College London,

United Kingdom

Ning Tan,

Sun Yat-sen University, China

*CORRESPONDENCE

Gang Wang

wanggang@hrbeu.edu.cn

RECEIVED 27 October 2022

ACCEPTED 13 December 2022

PUBLISHED 09 January 2023

CITATION

Li S, Tang Q, Pang Y, Ma X and Wang G

(2023) Realistic Actor-Critic: A

framework for balance between value

overestimation and underestimation.

Front. Neurorobot. 16:1081242.

doi: 10.3389/fnbot.2022.1081242

COPYRIGHT

© 2023 Li, Tang, Pang, Ma and Wang.

This is an open-access article

distributed under the terms of the

Creative Commons Attribution License

(CC BY). The use, distribution or

reproduction in other forums is

permitted, provided the original

author(s) and the copyright owner(s)

are credited and that the original

publication in this journal is cited, in

accordance with accepted academic

practice. No use, distribution or

reproduction is permitted which does

not comply with these terms.

Realistic Actor-Critic: A
framework for balance between
value overestimation and
underestimation

Sicen Li1,2, Qinyun Tang1,2, Yiming Pang1,2, Xinmeng Ma1 and

Gang Wang2,3*

1College of Mechanical and Electrical Engineering, Harbin Engineering University, Harbin, China,
2Science and Technology on Underwater Vehicle Laboratory, Harbin Engineering University, Harbin,

China, 3College of Shipbuilding Engineering, Harbin Engineering University, Harbin, China

Introduction: The value approximation bias is known to lead to suboptimal

policies or catastrophic overestimation bias accumulation that prevent the

agent from making the right decisions between exploration and exploitation.

Algorithms have been proposed tomitigate the above contradiction. However,

we still lack an understanding of how the value bias impact performance and a

method for e�cient exploration while keeping stable updates. This study aims

to clarify the e�ect of the value bias and improve the reinforcement learning

algorithms to enhance sample e�ciency.

Methods: This study designs a simple episodic tabular MDP to research

value underestimation and overestimation in actor-critic methods. This study

proposes a unified framework called Realistic Actor-Critic (RAC), which

employs Universal Value Function Approximators (UVFA) to simultaneously

learn policies with di�erent value confidence-bound with the same neural

network, each with a di�erent under overestimation trade-o�.

Results: This study highlights that agents could over-explore low-value states

due to inflexible under-overestimation trade-o� in the fixed hyperparameters

setting, which is a particular form of the exploration-exploitation dilemma.

And RAC performs directed exploration without over-exploration using the

upper bounds while still avoiding overestimation using the lower bounds.

Through carefully designed experiments, this study empirically verifies that

RAC achieves 10x sample e�ciency and 25% performance improvement

compared to Soft Actor-Critic in themost challengingHumanoid environment.

All the source codes are available at https://github.com/ihuhuhu/RAC.

Discussion: This research not only provides valuable insights for research on

the exploration-exploitation trade-o� by studying the frequency of policies

access to low-value states under di�erent value confidence-bounds guidance,

but also proposes a new unified framework that can be combined with current

actor-critic methods to improve sample e�ciency in the continuous control

domain.

KEYWORDS

reinforcement learning (RL), robot control, estimation bias, exploration-exploitation

dilemma, uncertainty
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1. Introduction

Reinforcement learning is a major tool to realize intelligent

agents that can be autonomously adaptive to the environment

(Namiki and Yokosawa, 2021; Yu, 2018; Fukuda, 2020).

However, current reinforcement learning techniques still suffer

from requiring a huge amount of interaction data, which

could result in unbearable costs in real-world applications

(Karimpanal and Bouffanais, 2018; Levine et al., 2018; Sutton

and Barto, 2018; Dulac-Arnold et al., 2020). This study aims

to mitigate this problem by better balancing exploration

and exploitation.

Undesirable overestimation bias and accumulation of

function approximation errors in temporal difference methods

may lead to sub-optimal policy updates and divergent behaviors

(Thrun and Schwartz, 1993; Pendrith and Ryan, 1997; Fujimoto

et al., 2018; Chen et al., 2022). Most model-free off-policy

RL methods learn approximate lower confidence bound of

Q-function (Fujimoto et al., 2018; Kuznetsov et al., 2020;

Lan et al., 2020; Chen et al., 2021; Lee et al., 2021) to

avoid overestimation by introducing underestimation bias.

However, if the lower bound has a spurious maximum, it

will discourage policy to explore potentially higher uncertain

regions, resulting in stochastic local-maximum and causing

pessimistic underexploration (Ciosek et al., 2019). Moreover,

directionally uninformed (Ciosek et al., 2019) policies, such as

Gaussian policies, cannot avoid fully explored wasteful actions.

Optimistic explorationmethods (Brafman and Tennenholtz,

2002; Kim et al., 2019; Pathak et al., 2019) learn upper

confidence bounds of the Q-function from an epistemic

uncertainty estimate. These methods are directionally informed

and encourage policy to execute overestimated actions to help

agents escape local optimum. However, such upper confidence

bound might cause an agent to over-explore low-value regions.

In addition, it increases the risk of value overestimation since

transitions with high uncertainty may have higher function

approximation errors to make the value overestimated. To avoid

the above problems, one must carefully adjust hyperparameters

and control the bias to keep the value at a balance point

between lower and higher bounds: supporting stable learning

while providing good exploration behaviors. We highlight that

this balance is a particular form of the exploration–exploitation

dilemma (Sutton and Barto, 2018). Unfortunately, most

prior works have studied the overestimation and pessimistic

underexploration in isolation and have ignored the under-

/overestimation trade-off aspect.

We formulate the Realistic Actor-Critic (RAC), whose

main idea is to learn together values and policies with different

trade-offs between underestimation and overestimation

in the same network. Policies guided by lower bounds

control overestimation bias to provide consistency and

stable convergence. Each policy guided by different upper

bounds provides a unique exploration strategy to generate

overestimated actions, so that the policy family can directionally

explore overestimated state-action pairs uniformly and avoid

over-exploration. All transitions are stored in a shared replay

buffer, and all policies benefit from them to escape spurious

maximum. Such a family of policies is jointly parameterized

with the Universal Value Function Approximators (UVFA)

(Schaul et al., 2015). The learning process can be considered as

a set of auxiliary tasks (Badia et al., 2020b; Lyle et al., 2021) that

help build shared state representations and sills.

However, learning such policies with diverse behaviors in

a single network is challenging since policies vary widely

in behavior. We introduce punished Bellman backup,

which calculates uncertainty as punishment to correct value

estimations. Punished Bellman backup provides fine-granular

estimation control to make value approximation shift smoothly

between upper and lower bounds, allowing for more efficient

training. An ensemble of critics is learned to produce well-

calibrated uncertainty estimations (i.e., standard deviation) on

unseen samples (Amos et al., 2018; Pathak et al., 2019; Lee et al.,

2021). We show empirically that RAC controls the standard

deviation and the mean of value estimate bias to close to zero for

most of the training. Benefiting from well-bias control, critics

are trained with a high update-to-data (UTD) ratio (Chen et al.,

2021) to improve sample efficiency significantly.

Empirically, we implement RAC with SAC (Haarnoja et al.,

2018) and TD3 (Fujimoto et al., 2018) in continuous control

benchmarks (OpenAI Gym Brockman et al., 2016, MuJoCo

Todorov et al., 2012). Results demonstrate that RAC significantly

improves the performance and sample efficiency of SAC and

TD3. RAC outperforms the current state-of-the-art algorithms

(MBPO Janner et al., 2019, REDQ Chen et al., 2021, and

TQC Kuznetsov et al., 2020), achieving state-of-the-art sample

efficiency on the Humanoid benchmark. We perform ablations

and isolate the effect of the main components of RAC on

performance. Moreover, we perform hyperparameter ablations

and demonstrate that RAC is stable in practice. The higher

sample efficiency allows RAC to facilitate further applications of

the RL algorithm in automatic continuous control.

This study makes the following contributions:

(i) Highlighting that agents could over-explore low-value

states due to inflexible under-/overestimation trade-off in

the fixed hyperparameters setting, and it is a particular

form of the exploration–exploitation dilemma;

(ii) Defining a unified framework called Realistic Actor-

Critic (RAC), which employs Universal Value Function

Approximators (UVFA) to simultaneously learn policies

with different value confidence-bond with the same neural

network, each with a different under-/overestimation

trade-off;

(iii) Experimental evidence that the performance and sample

efficiency of the proposed method are better than state-of-

the-art methods on continuous control tasks.
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The study is organized as follows. Section 2 describes

related works and their results. Section 3 describes the

problem setting and preliminaries of RL. Section 4 explains

the under-/overestimation trade-off. Section 5 introduces the

punished Bellman backup and RAC algorithm. Section 6

presents experimental results that show the sample efficacy

and final performance of RAC. Finally, Section 7 presents

our conclusions.

2. Related works

2.1. Underestimation and overestimation
of Q-function

Themaximization update rule in Q-learning has been shown

to suffer from overestimation bias which is cited as the reason

for nonlinear function approximation fails in RL (Thrun and

Schwartz, 1993).

Minimizing the value ensemble is a standard method to

deal with overestimation bias. Double DQN (Van Hasselt et al.,

2016) was shown to be effective in alleviating this problem

for discrete action spaces. Clipped double Q-learning (CDQ)

(Fujimoto et al., 2018) took the minimum value between a pair

of critics to limit overestimation. Maxmin Q-learning (Lan et al.,

2020) mitigated the overestimation bias by using a minimization

over multiple action-value estimates. However, minimizing a Q-

function set cannot filter out abnormally small values, which

causes undesired pessimistic underexploration problem (Ciosek

et al., 2019). Using minimization to control overestimation is

coarse and wasteful as it ignores all estimates except the minimal

one (Kuznetsov et al., 2020).

REDQ (Chen et al., 2021) proposed in-target minimization,

which used a minimization across a random subset of Q-

functions from the ensemble to alleviate the above problems.

REDQ (Chen et al., 2021) showed that their method reduces

the standard deviation of the Q-function bias to close to

zero for most of the training. Truncated Quantile Critics

(TQC) (Kuznetsov et al., 2020) truncated the right tail of the

distributional value ensemble by dropping several of the topmost

atoms to control overestimation.Weighted bellman backup (Lee

et al., 2021) and uncertainty-weighted actor-critic (Wu et al.,

2021) prevent error propagation (Kumar et al., 2020) in Q-

learning by reweighing sample transitions based on uncertainty

estimations from the ensembles (Lee et al., 2021) orMonte Carlo

dropout (Wu et al., 2021). AdaTQC (Kuznetsov et al., 2021)

proposed an auto mechanism for controlling overestimation

bias. Unlike prior works, our work does not reweight sample

transitions but directly adds uncertainty estimations to punish

the target value.

The effect of underestimation bias on learning efficiency is

environment-dependent (Lan et al., 2020). Therefore, choosing

suitable parameters to balance under- and overestimating

for entirely different environments may be hard. This work

propose to solve this problem by learning about optimistic and

pessimistic policy families.

2.2. Ensemble methods

In deep learning, ensemble methods are often used to

solve the two key issues, uncertainty estimations (Wen et al.,

2020; Abdar et al., 2021) and out-of-distribution robustness

(Dusenberry et al., 2020; Havasi et al., 2020; Wenzel et al., 2020).

In reinforcement learning, using an ensemble to enhance value

function estimation was widely studied, such as averaging a Q-

ensemble (Anschel et al., 2017; Peer et al., 2021), bootstrapped

actor-critic architecture (Kalweit and Boedecker, 2017; Zheng

et al., 2018), calculating uncertainty to reweight sample

transitions (Lee et al., 2021), minimization over ensemble

estimates (Lan et al., 2020; Chen et al., 2021), and updating

the actor with a value ensemble (Kuznetsov et al., 2020; Chen

et al., 2021). MEPG (He et al., 2021) introduced a minimalist

ensemble consistent with Bellman update by utilizing a modified

dropout operator.

A high-level policy can be distilled from a policy ensemble

(Chen and Peng, 2019; Badia et al., 2020a) by density-based

selection (Saphal et al., 2020), selection through elimination

(Saphal et al., 2020), choosing the action that max all Q-

functions (Jung et al., 2020; Parker-Holder et al., 2020;

Lee et al., 2021), Thompson sampling (Parker-Holder et al.,

2020), and sliding-window UCBs (Badia et al., 2020a).

Leveraging uncertainty estimations of the ensemble (Osband

et al., 2016; Kalweit and Boedecker, 2017; Zheng et al.,

2018) simulated training different policies with a multi-head

architecture independently to generate diverse exploratory

behaviors. Ensemble methods were also used to learn joint

state presentation to improve sample efficiency. There were two

main methods: multi-heads (Osband et al., 2016; Kalweit and

Boedecker, 2017; Zheng et al., 2018; Goyal et al., 2019) and

UVFA (Schaul et al., 2015; Badia et al., 2020a,b). This study uses

uncertainty estimation to reduce value overestimation bias, a

simple max operator to get the best policy, and learning joint

state presentation with UVFA.

2.3. Optimistic exploration

Pessimistic initialization (Rashid et al., 2020) and a learning

policy that maximizes a lower confidence bound value could

suffer a pessimistic underexploration problem (Ciosek et al.,

2019). Optimistic exploration is a promising solution to ease

the above problem by applying the principle of optimism

in the face of uncertainty (Brafman and Tennenholtz, 2002).

Disagreement (Pathak et al., 2019) and EMI (Kim et al., 2019)

considered uncertainty as intrinsic motivation to encourage
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agents to explore the high-uncertainty areas of the environment.

Uncertainty punishment proposed in this study can also be a

particular intrinsic motivation. Different from studies of Pathak

et al. (2019) and Kim et al. (2019), which usually choose the

weight ≥ 0 to encourage exploration, punished Bellman backup

use the weight ≤ 0 to control value bias. SUNRISE (Lee et al.,

2021) proposed an optimistic exploration that chooses the action

that maximizes upper confidence bound (Chen et al., 2017)

of Q-functions. OAC (Ciosek et al., 2019) proposed an off-

policy exploration policy that is adjusted to a linear fit of upper

bounds to the critic with the maximum Kullback–Leibler (KL)

divergence constraining between the exploration policies and

the target policy. Most importantly, our work provides a unified

framework for the under-/overestimation trade-off.

3. Problem setting and preliminaries

In this section, we describe the notations and introduce the

concept of maximum entropy RL.

3.1. Notation

We consider the standard reinforcement learning notation,

with states s, actions a, reward r(s, a), and dynamics p(s′ | s, a).

The discounted return Rt =
∑∞

k=0γ
krk is the total accumulated

rewards from timestep t, γ ∈ [0, 1] is a discount factor

determining the priority of short-term rewards. The objective is

to find the optimal policy πφ(s | a) with parameters φ, which

maximizes the expected return J(φ) = Epπ [Rt].

3.2. Maximum entropy RL

The maximum entropy objective (Ziebart, 2010) encourages

the robustness to noise and exploration by maximizing a

weighted objective of the reward and the policy entropy:

π∗ = argmax
π

∑

t

Es∼p,a∼π
[

r(s, a)+ αH (π (· | s))
]

, (1)

where α is the temperature parameter used to determine the

relative importance of entropy and reward. Soft Actor-Critic

(SAC) (Haarnoja et al., 2018) seeks to optimize the maximum

entropy objective by alternating between a soft policy evaluation

and a soft policy improvement. A parameterized soft Q-function

Qθ (s, a), known as the critic in actor-critic methods, is trained

by minimizing the soft Bellman backup:

Lcritic(θ) = Eτ∼B[
(

Qθ (s, a)− y
)2
], y

= r − γEa′∼πφ

[

Qθ̄ (s
′, a′)− α logπφ(a

′ | s′)
]

, (2)

where τ = (s, a, r, s′) is a transition, B is a replay buffer, θ̄

are the delayed parameters which are updated by exponential

moving average θ̄ ← ρθ + (1 − ρ)θ̄ , ρ is the target smoothing

coefficient, and y is the target value. The target value Qθ̄ (s
′, a′)

is obtained by using two networks Q1
θ̄
(s′, a′) and Q2

θ̄
(s′, a′) with

minimum operator:

Qθ̄ (s
′, a′) = min(Q1

θ̄
(s′, a′),Q2

θ̄
(s′, a′)). (3)

The parameterized policy πφ , known as the actor, is updated

by minimizing the following object:

Lactor(φ) = E
s∼B,a∼πφ

[

α log
(

πφ (a | s)
)

− Qθ (a, s)
]

. (4)

SAC uses an automated entropy adjusting mechanism to

update α with the following objective:

Ltemp(α) = E
s∼B,a∼πφ

[

−α logπφ (a | s)− αH
]

, (5)

whereH is the target entropy.

4. Understanding
under-/overestimation trade-o�

This section briefly discusses the estimation bias issue and

empirically shows that a better under-/overestimation trade-off

may improve learning performance.

4.1. Under-/overestimation trade-o�

Under-/overestimation trade-off is a special form of the

exploration–exploitation dilemma. This is illustrated in Figure 1.

At first, the agent starts with a policy πpast , trained with lower

bound Q̂LB(s, a), becoming πLB. We divide the current action

space into four regions:

(i) High uncertainty, low-value. Highly stochastic regions also

have low values; overestimation bias might cause an agent

to over-explore a low-value area;

(ii) High uncertainty, excessive errors. This region has high

uncertainty but is full of unseen transitions that can have

excessive-high approximation errors, which may cause

catastrophic overestimation and need fewer samples;

(iii) High uncertainty, controllable errors. This region has high

uncertainty and is closer to the πLB, with controllable

approximation errors, and needs more samples;

(iv) Full explored. Since πpast is gradually updated to πLB, the

area is fully explored and needs less samples.

To prevent catastrophic overestimation bias accumulation,

SAC (Haarnoja et al., 2018), TD3 (Fujimoto et al., 2018),

and REDQ (Chen et al., 2021) introduce underestimation bias

to learn lower confidence bounds of Q-functions, similar to

Equation 3. However, directionally uninformed policies, such

as gaussian policies, will sample actions located in region
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FIGURE 1

Balance between value underestimation and overestimation in

actor-critic methods. The state s is fixed. The graph shows Qπ

(in black), which is unknown to the algorithm, estimated lower

bound Q̂LB (in blue), higher bound Q̂UB (in red), two policies, πLB
(in blue) and πpast (in black), at di�erent time steps of the

algorithm, and exploration policies πUB (in red) for optimistic

exploration.

4 with half probability. If the lower bound has a spurious

maximum and policies are directionally uninformed (Ciosek

et al., 2019), lower bound policyπLB may be stuck at the junction

of regions 3 and 4. This is wasteful and inefficient, causing

pessimistic underexploration.

πUB, which is used in optimistic exploration methods

(Brafman and Tennenholtz, 2002; Kim et al., 2019; Pathak et al.,

2019), can encourage agents to execute overestimated actions

and explore potential high-value regions with high uncertainty.

However, regions with high and overestimated actions, such as

region 2, may have excessive function approximation errors.

Alternatively, if highly uncertain regions also have low values

(like region 1), overestimation bias might cause an agent to

over-explore a low-value region.

Ideally, the exploration policies are located in region 3 to

provide better exploration behaviors and keep stable updates.

There are two ways to achieve this: (1) enforcing a KL constraint

between πUB and πLB (like OAC Ciosek et al., 2019); and (2)

balancing Q̂ between Q̂LB and Q̂UB, and we call it an under-

/overestimation trade-offs.

However, in practical applications, Qπ is unknown,

and it is not easy to tune to ideal conditions through

constant hyperparameters.

4.2. A simple MDP

We show this effect in a simple Markov decision process

(MDP), as shown in Figure 2. Any state’s optimal policy is the

left action. If the agent wants to go to state 9, it must go through

states 1–8 with high uncertainty and low values.

FIGURE 2

A simple episodic MDP (Lan et al., 2020), adapted from Figure

6.5 in the study of Sutton and Barto (2018). This MDP has two

terminal states: state 9 and state 0. Every episode starts from

state 1, which has two actions: Left and Right. The MDP is

deterministic. Once the agent takes into any states, the MDP will

reward back: r = 0.1 for terminal states 0, r = 1 for terminal

states 9, and a reward r ∼ U(−1, 1) for non-terminal states 1–8.

State 9 is the optimal state, state 0 is a local optimum, and states

1–8 are the high-uncertainty and low-value states.

In the experiment, we used a discount factor γ = 0.9;

a replay buffer with size 5, 000; a Boltzmann policy with

temperature = 0.1; tabular action values with uniform noisy

respect to a Uniform distribution U(−0.1, 0.1), initialized with

a Uniform distribution U(−5, 5); and a learning rate of 0.01 for

all algorithms.

The results in Figure 3 verify our hypotheses in Section 4.1.

All algorithms converge, but each has a different convergence

speed. Q̂LB underestimates too much and converges to a

suboptimal policy in the early learning stage, causing slow

convergence. For β = 0.5 and 1.0, optimistic exploration drives

the agent to escape the local optimum and learn faster. However,

Q̂ overestimates too much for β = 2.0, significantly impairing

the convergence speed of the policy. In addition, no matter what

parameter β takes, the agent still over-explores low-value states

at different time steps (see Figure 3).

RAC avoids over-exploration in low-value states and is

the fastest to converge to the optimal policy. Furthermore,

RAC maintains the Q bias close to zero without catastrophic

overestimation throughout the learning process, indicating that

RAC keeps an outstanding balance between underestimation

and overestimation.

5. Realistic Actor-Critic

We present Realistic Actor-Critic (RAC), which can be used

in conjunction with the most modern off-policy actor-critic RL

algorithms in principle, such as SAC (Haarnoja et al., 2018) and

TD3 (Fujimoto et al., 2018).We describe only the SAC version of

RAC (RAC-SAC) in the main body for the exposition. The TD3

version of RAC (RAC-TD3) follows the same principles and is

fully described in Appendix B.
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FIGURE 3

Results of the simple MDP. In-target minimization target from REDQ is used as Q̂LB. Q̂b = mean(Q̂′
LB
)+ βstandarddeviation(Q̂′

LB
) can perform

optimistic exploration. β is a key parameter to control value bias. If β = 0, Q̂b is equal to Q̂LB. As β increases, Q̂b gradually approaches Q̂UB. The

horizontal axis indicates the number of time steps. (A) Visit frequency of the optimal state is the ratio of the frequency of visiting the optimal

state among all termination states. The higher the value, the lower the probability that the agent is stuck in a local optimum. (B) Visit frequency

of low-value states is the ratio of the visit frequency of low-value state 2–8 and the optimal state 9. The lower the value, the fewer steps the

agent wastes in low-value states. This value has been subtracted by 7, as the minimum step size to reach the optimum state is seven. (C) Q bias

measures the di�erence between the estimated Q values and true Q values. All results are estimated by the Monte Carlo method and averaged

over eight seeds.

5.1. Punished Bellman backup

Punished Bellman backup is a variant of soft Bellman backup

(Equation 2). The idea is to maintain an ensemble of N soft

Q-functions Qθi (s, a), where θi denotes the parameters of the

i − th soft Q-function, which are initialized randomly and

independently for inducing an initial diversity in the models

(Osband et al., 2016), but updated with the same target.

Given a transition τt , punished Bellman backup considers

following punished target y:

y = rt + γEa′∼πφ [Q̄θ̄ (s
′, a′)− β ŝ(Qθ̄ (s

′, a′))

− α logπφ
(

a
′ | s′

)

],
(6)

where Q̄θ̄ (s, a) is the sample mean of the target Q-functions

and ŝ(Qθ̄ (s, a)) is the sample standard deviation of target

Q-functions with bessel’s correction (Warwick and Lininger,

1975). Punished Bellman backup uses ŝ(Qθ̄ (s, a)) as uncertainty

estimation to punish value estimation. β ≥ 0 is the weighting of

the punishment. Note that we do not propagate gradient through

the uncertainty ŝ(Qθ̄ (s, a)).

We write Qi
sa instead of Qθi (s, a) and Qi

s′a′
instead of

Qθi (s
′, a′) for compactness. Assuming each Q-function has

random approximation error eisa (Thrun and Schwartz, 1993;

Lan et al., 2020; Chen et al., 2021), which is a random variable

belonging to some distribution,

Qi
sa = Q∗sa + eisa, (7)

where Q∗sa is the ground truth of Q-functions. M is the number

of actions applicable at state s′. The estimation bias ZMN for a

transition τt is defined as

ZMN
def
=

[

r + γ max
a′

(Qmean
s′a′
− βQstd

s′a′
)

]

−

(

r + γ max
a′

Q∗
s′a′

)

=γ

[

max
a′

(Qmean
s′a′
− βQstd

s′a′
)−max

a′
Q∗
s′a′

]

,

(8)

where

Qmean
s′a′
≈

1

N

N
∑

i=1

Qi
s′a′
=

1

N

N
∑

i=1

(Q∗
s′a′
+ ei

s′a′
) = Q∗

s′a′

+
1

N

N
∑

i=1

ei
s′a′
= Q∗

s′a′
+ ēs′a′ ,

(9)

Qstd
s′a′
≈

√

√

√

√

1

N − 1

N
∑

i=1

(

Qi
s′a′
− Qmean

s′a′

)2

=

√

√

√

√

1

N − 1

N
∑

i=1

(

Q∗
s′a′
+ ei

s′a′
− Q∗

s′a′
+ ēs′a′

)2

=

√

√

√

√

1

N − 1

N
∑

i=1

(

ei
s′a′
− ēs′a′

)2
= ŝ(es′a′ ).

(10)

Then,

ZMN ≈ γ

[

max
a′

(Q∗
s′a′
+ ēs′a′ − β ŝ(es′a′ ))−max

a′
Q∗
s′a′

]

.

(11)

If one could choose β =
ē
s′a′

ŝ(e
s′a′ )

, Qi
sa will be resumed to Q∗sa,

then ZMN can be reduced to near 0. However, it’s hard to adjust

a suitable constant β for various state-action pairs actually. We
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1: Initialize actor network φ, N critic networks

θi, i = 1, . . . ,N, temperature network ψ, empty

replay buffer B, target network θ̄i ←− θi, for

i = 1, 2, . . . ,N, uniform distribution U1 and U2

2: for each iteration do

3: // OPTIMISTIC EXPLORATION

4: execute an action a ∼ πφ (· | s,β) ,β ∼ U2.

5: Observe reward rt, new state s′

6: Store transition tuple B← B ∪
{(

s, a, rt , s
′
)}

7: for G updates do

8: // UPDATE CRITICS via PUNISHED BELLMAN

BACKUP

9: Sample random minibatch:

10: {τj}
B
j=1 ∼ B, {βm}Bm=1 ∼ U1

11: Compute the Q target (Equation 13)

12: for i = 1, . . . ,N do

13: Update θi by minimize L
RAC
critic (Equation

13)

14: Update target networks:

15: θ̄i ← ρθ̄i + (1− ρ)θi

16: // UPDATE ACTORS AND TEMPERATURES ACCORDING

TO U1

17: Update φ by minimize L
RAC−SAC
actor (Equation 14)

18: Update ψ by minimize L
RAC
temp (Equation 12)

Algorithm 1. RAC: SAC version.

develop vanilla RAC, which uses a constant β Appendix B.3, to

research this problem.

For β = 0, the update is simple average Q-learning

which causes overestimation bias (Chen et al., 2021). As β

increases, increasing penalties Qstd
s′a′

decrease E[ZMN ] gradually

and encourage Q-functions to transit smoothly from higher

bounds to lower bounds.

5.2. Realistic Actor-Critic agent

We demonstrate how to use punished Bellman backup to

incorporate various bounds of value approximations into a

full agent that maintains diverse policies, each with a different

under-/overestimation trade-off. The pseudocode for RAC-SAC

is shown in Algorithm 1.

RAC uses UVFA (Schaul et al., 2015) to extend the critic and

actor as Qθi (s, a,β) and πφ
(

· | s′,β
)

, U1 is a uniform training

distribution U[0, a], a is a positive real number, and β ∼ U1 that

generates various bounds of value approximations.

An independent temperature network αψ parameterized by

ψ is used to accurately adjust the temperature with respect

to β , which can improve the performance of RAC. Then, the

objective (Equation 5) becomes:

L
RAC
temp(ψ) = E

s∼B,a∼πφ ,β∼U1
[−αψ (β) logπφ (a | s,β)

− αψ (β)H].
(12)

The extended Q-ensemble use punished Bellman backup to

simultaneously approximate a soft Q-function family:

L
RAC
critic(θi) = Eτ∼B,β∼U1

[
(

Qθi (s, a,β)− y
)2
],

y = r + γEa′∼πφ [Q̄θ̄ (s
′, a′,β)− β ŝ(Qθ̄ (s

′, a′,β))

− αψ (β) logπφ(a
′ | s′,β)] (13)

where Q̄θ̄ (s, a,β) is the sample mean of target Q-functions and

ŝ(Qθ̄ (s, a,β)) is the corrected sample standard deviation of target

Q-functions.

The extended policy πφ is updated by minimizing the

following object:

L
RAC−SAC
actor (φ) = E

s∼B,β∼U1
[Ea∼πφ [αψ (β) log

(

πφ (a | s,β)
)

− Q̄θ (a, s,β)]], (14)

where Q̄θ (a, s,β) is the sample mean of Q-functions.

A larger UTD ratio G improves sample utilization. We find

that a smaller replay buffer capacity slightly improves the sample

efficiency of RAC in Section 6.5.

Note that we find that applying different samples, which

are generated by binary masks from the Bernoulli distribution

(Osband et al., 2016; Lee et al., 2021), to train each Q-

function will not improve RAC performance in our experiments;

therefore, RAC does not apply this method.

5.2.1. RAC circumvents direct adjustment

RAC leaners with a distribution of β instead of a constant

β . One could evaluate the policy family to find the best β .

We employ a discrete number H of values {βi}
H
i=1 (see details

in Appendix A.1) to implement a distributed evaluation for

computational efficiency and apply the max operator to get

best β .

5.2.2. Optimistic exploration

When interacting with the environment, we propose to

sample β uniformly from a uniform explore distribution U2 =

U[0, b], where b < a is a positive real number, to get optimistic

exploratory behaviors to avoid pessimistic underexploration

(Ciosek et al., 2019).

5.3. How RAC solves the
under-/overestimation trade-o�

Similar to the idea of NGU (Badia et al., 2020b), RAC

decouples exploration and exploitation policies. RAC uses
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FIGURE 4

Visualization of RAC. The serial numbers in the figure

correspond to Section 4.1 and Figure 1. For better illustration, Q̂

is discretized. In fact, Q̂n learned by RAC is infinite and changes

continuously. Q⋆(s, a) is the optimal Q-function that is unknown.

Q-functions are distributed between Q̂UB and Q̂LB and their

policies are distributed between πUB and πLB. πUB, π1, and π2 are

used as exploration policies.

UVFA to simultaneously learn policies with the same

neural network, each with different trade-offs between

underestimation and overestimation. Using UVFA to learn

different degrees of confidence bounds allows us to learn

a powerful representation and set of skills that can be

quickly transferred to the expected policy. With punished

Bellman backup, RAC has a larger number of policies and

values that change smoothly, allowing for more efficient

training.

This is illustrated in Figure 4. Q-functions that

are close to Q̂LB (like Q̂n) control overestimation

bias to provide consistency and stable convergence.

Exploration policies (such as πUB, π1, and π2) are

far from the spurious maximum of Q̂LB and Q̂n, and

overestimated actions sampled from them located in

regions 1, 2, and 3 lead to a quick correction to the

critic estimate. All transitions are stored in a shared

replay buffer, and all policies benefit from them to escape

spurious maximums. Since exploration policies are not

symmetric to the mean of πLB and πn, RAC also avoids

directional uninformedness.

Although RAC cannot always keep the exploration policies

located in region 3, the policy family avoids all behaviors

concentrated in region 1 or 2. Exploration behaviors uniformly

distribute in regions 1, 2, and 3, preventing over-exploration in

any area.

Moreover, such policies could be quite different from

a behavior standpoint and generate varied action sequences

to visit unseen state-action pairs following the principle of

optimism in the face of uncertainty (Chen et al., 2017; Ciosek

et al., 2019; Lee et al., 2021).

6. Experiments

We designed our experiments to answer the following

questions:

• Can the Realistic Actor-Critic outperform state-of-the-art

algorithms in continuous control tasks?

• Can the Realistic Actor-Critic better balance between value

overestimation and underestimation?

• What is the contribution of each technique in the Realistic

Actor-Critic?

6.1. Setups

We implement RAC with SAC and TD3 as RAC-SAC and

RAC-TD3 (see Appendix B).

The baseline algorithms are REDQ (Chen et al., 2021),

MBPO (Janner et al., 2019), SAC (Haarnoja et al., 2018), TD3

(Fujimoto et al., 2018), and TQC (Kuznetsov et al., 2020). All

hyperparameters we used for evaluation are the same as those in

the original articles. For MBPO (https://github.com/JannerM/

mbpo), REDQ (https://github.com/watchernyu/REDQ), TD3

(https://github.com/sfujim/TD3), and TQC (https://github.

com/SamsungLabs/tqc_pytorch), we use the authors’ code. For

SAC, we implement it following the study of Haarnoja et al.

(2018), and the results we obtained are similar to previously

reported results. TQC20 is a variant of TQC with UTD G = 20

for a fair comparison.

We compare baselines on six challenging continuous control

tasks (Walker2d, HalfCheetah, Hopper, Swimmer, Ant, and

Humanoid) from MuJoCo environments (Todorov et al., 2012)

in the OpenAI gym benchmark (Brockman et al., 2016).

The time steps for training instances on Walker2d, Hopper,

and Ant are 3×105, and 1×106 for Humanoid andHalfCheetah.

All algorithms explore with a stochastic policy but use a

deterministic policy for evaluation similar to those in SAC. We

report the mean and standard deviation across eight seeds.

For all algorithms, we use a fully connected network with

two hidden layers and 256 units per layer, with Rectified Linear

Unit in each layer (Glorot et al., 2011), for both actor and critic.

All the parameters are updated by the Adam optimizer (Kingma

and Ba, 2014) with a fixed learning rate. All algorithms adopt

almost the same NN architecture and hyperparameter.

For all experiments, our learning curves show the total

undiscounted return.

Using the Monte Carlo method, we estimate the mean

and standard deviation of normalized Q-function bias (Chen

et al., 2021) as the main analysis indicators to analyze the
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TABLE 1 Performance on OpenAI gym.

RAC-SAC RAC-TD3 REDQ MBPO TQC20 TD3 SAC TQC

Humanoid 11,107 ± 475 9,321 ± 1,126 5,504 ± 120 5,162 ± 350 7,053 ± 857 7,014 ± 643 7,681 ± 1,118 10,731 ± 1,296

Ant 6,283 ± 549 6,470 ± 165 5,475 ± 890 5,281 ± 699 4,722 ± 567 6,796 ± 277 6,433± 332 6,402± 1,371

Walker 5,860 ± 440 5,114 ± 489 5,034 ± 711 4,864 ± 488 5,109 ± 696 4,419 ± 1,682 5,249 ± 554 5,821 ± 457

Hopper 3,421 ± 483 3,495 ± 672 3,563 ± 94 3,280 ± 455 3,208 ± 538 3,433 ± 321 2,815 ± 585 3,011 ± 866

HalfCheetah 15,717 ± 1,063 15,083 ± 1,113 10,802 ± 1,179 13,477 ± 443 12,123 ± 2,600 14,462 ± 1,982 16,330 ± 323 17,245 ± 293

Swimmer 143 ± 6.8 71 ± 83 98 ± 31 - 143 ± 9.6 53 ± 8.8 51 ± 4.2 65 ± 5.8

Themaximum value for each task is bolded.± corresponds to a single standard deviation over eight runs. The best results are indicated in bold. Results of SAC, TD3, and TQC are obtained

at 6× 106 time steps for Humanoid and HalfCheetah and 3× 106 time steps for other environments. Results of RAC, REDQ, and TQC20 are obtained at 1× 106 time steps for Humanoid

and HalfCheetah and 3 × 105 time steps for other environments. Results of MBPO are obtained at 3 × 105 time steps for Ant, Humanoid, and Walker2d, 4 × 105 for HalfCheetah and

1.25× 105 for Hopper.

TABLE 2 Sample-e�ciency comparison.

RAC-
SAC

REDQ MBPO TQC TQC20 REDQ/RAC-
SAC

MBPO/RAC-
SAC

TQC/RAC-
SAC

TQC20/RAC-
SAC

Humanoid at 2,000 63 K 109 K 154 K 145 K 147 K 1.73 2.44 2.30 2.33

Humanoid at 5,000 134 K 250 K 295 K 445 K 258 K 1.87 2.20 3.32 1.93

Humanoid at 10,000 552 K - - 3,260 K - - - 5.91 -

Ant at 1,000 21 K 28 K 62 K 185 K 42 K 1.33 2.95 8.81 2.00

Ant at 3,000 56 K 56 K 152 K 940 K 79K 1.00 2.71 16.79 1.41

Ant at 6,000 248 K - - 3,055 K - - - 12.31 -

Walker at 1,000 27 K 42 K 54 K 110 K 50 K 1.56 2.00 4.07 1.85

Walker at 3,000 53 K 79 K 86 K 270 K 89K 1.49 1.62 10.75 1.68

Walker at 5,000 147 K 272 K - 960 K 270 K 1.85 - 6.53 1.84

Sample efficiency (Chen et al., 2021; Dorner, 2021) is measured by the ratio of the number of samples collected when RAC and some algorithms reach the specified performance. The last

four rows show how many times RAC is more sample efficient than other algorithms in achieving that performance.

value approximation quality (described in Appendix A). The

average bias lets us know whether Qθ is overestimated or

underestimated, while standard deviation measures whether Qθ
is overfitting.

Sample efficiency (SE) (Chen et al., 2021; Dorner, 2021) is

measured by the ratio of the number of samples collected when

RAC and some algorithms reach the specified performance.

Hopper is not in the comparison object as the performance of

algorithms is almost indistinguishable.

6.2. Comparative evaluation

6.2.1. OpenAI gym

Figure 5 and Table 1 show learning curves and performance

comparison. RAC consistently improves the performance of

SAC and TD3 across all environments and performs better

than other algorithms. In particular, RAC learns significantly

faster for Humanoid and has better asymptotic performance for

Ant, Walker2d, and HalfCheetah. RAC yields a much smaller

variance than SAC and TQC, indicating that the optimistic

exploration helps the agents escape from bad local optima.

6.2.2. Sample-e�ciency comparison

Table 2 shows the sample-efficiency comparison with

baselines. Compared with TQC, RAC-SAC reaches 3,000 and

6,000 for Ant with 16.79x and 12.31x sample efficiency,

respectively. RAC-SAC performs 1.5x better than REDQhalfway

through training and 1.8x better at the end of training inWalker

and Humanoid. They show that a better under-/overestimation

trade-off can achieve better sample-efficiency performance than

the MuJoCo environments’ state-of-the-art algorithms.

6.2.3. Value approximation analysis

Figure 6 presents the results for Ant, Humanoid, and

Walker2d.
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FIGURE 5

Learning curves on six Mujoco environments. The horizontal axis indicates the number of time steps. The vertical axis shows the average

undiscounted return. The shaded areas denote one standard deviation over eight runs. (A) Humanold, (B) Ant, (C) HalfCheetah, (D) Hopper, (E)

Walker2d, and (F) Swimmer.

In Ant and Walker2d, TQC20 has a high normalized

mean of bias, indicating that TQC20 prevents catastrophic

overestimation failure accumulation. TQC20 also has a high

normalized standard deviation of bias, indicating that the

bias is highly non-uniform, which can be detrimental. Since

distributional RL is prone to overfitting with few samples, it

may not be appropriate to use a high UTD ratio for TQC. In

Humanoid, which has a high-dimensional state, overfitting still

exists but has been alleviated.

Relative to TQC and TQC20, REDQ and RAC-SAC have

a very low normalized standard deviation of bias for most of

the training, indicating the bias across different state-action

pairs is about the same. Thus, the Q-estimation of REDQ is

too conservative in Humanoid, and the large negative bias

makes REDQ trapped in a bad locally optimal policy, suffering

from pessimistic underexploration. For Ant and Walker2d,

although this poor exploration does not harm the performance

of the policy, it still slows down convergence speed compared

to RAC.

Relative to REDQ, RAC-SAC keeps the Q bias nearly

zero without overestimation accumulation; this benign

overestimation bias significantly improves performance. RAC-

SAC strikes a good balance between overestimation bias (good

performance without being trapped in a bad local optimum)

and underestimation bias (slight overestimation bias and

consistently small standard deviation of bias).

6.3. Why Humanoid is hard for most
baselines?

Figure 7 visualizes the performance with respect to various

value confidence bounds. Humanoid is extremely sensitive to

the value bias. The huge state-action space of Humanoid leads

to a large approximation error of the value function with

small samples. The approximate lower bound inevitably has

spurious maxima, while a small overestimated bias can seriously

destabilize updates. It is hard to choose appropriate confidence

bound for Humanoid by tuning the hyperparameters, resulting

in a difficult under-/overestimation trade-off.

Algorithms (like REDQ) that rely on constant

hyperparameters to control the value bias have to conservatively

introduce a large underestimation error (Figure 6) to

stabilize updates, leading the policy to fall into pessimistic

underexploration. In contrast, other algorithms (such as

TQC20) plagued by overestimation and overfitting require

more samples.

Compared to Humanoid, the state-action space of other

environments is much smaller. The approximate Q-functions

can easily fit the true Q values accurately, significantly

reducing the possibility of spurious maxima. Therefore,

optimistic exploration may not be a required component for

these environments. So, we can see that they are not very

sensitive to various value confidence bounds from Figure 7.
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FIGURE 6

Estimated mean and standard deviation of normalized Q bias of RAC-SAC, REDQ, TQC, and TQC20 for Ant and Humanoid with Monte Carlo

method. (A) Q bias of Ant, (B) Q bias of Humanold, (C) Q bias of Walker2d, (D) Q standard deviation of Ant, (E) Q standard deviation of

Humanold, and (F) Q standard deviation of Walker2d.

FIGURE 7

Performance of various value confidence bounds with respect to di�erent β. (A–D) Performance respect to di�erent β in Ant, Humanoid,

Walker2d, and Hopper. We visualize di�erent β belonging to training distribution U1 = U[0, a] during training processes.

An underestimated value is enough to guide the policy to

learn stably.

6.4. Variants of RAC

We evaluate the performance contributions of ingredients

of RAC (punished Bellman backup, policy family, optimistic

exploration, independent temperature network, and learning

rate warm-up) on a subset of four environments (see Figure 8).

6.4.1. Punished Bellman backup

When using the in-target minimization instead of

punished Bellman backup, RAC is stable, but the performance

is significantly worse in Humanoid. Punished Bellman

backup provides more finer-grained bias control than in-

target minimization, reducing the difficulty of learning

representations. Compared with other environments,

Humanoid has stronger requirements for state representation

learning (Chen et al., 2021). Thus, punished Bellman backup far

outperforms in-target minimization in Humanoid and is almost

the same in other environments.
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FIGURE 8

Performance of RAC and its variants. (A–D) Humanoid, Ant, Walker2d, and Hopper. The in-target minimization version of RAC is shown in

Appendix B.4. RAC without policy family is named Vanilla RAC (see Appendix B.3 for more details. In this case, OAC (Ciosek et al., 2019) is used

as optimistic exploration method).

FIGURE 9

Hyperparameter ablations of RAC. (A–E) Replay bu�er capacity, right side of exploitation distribution (a), right side of exploration distribution (b),

the UTD ratio and the ensemble size for ant. (F–J) Replay bu�er capacity, right side of exploitation distribution (a), right side of exploration

distribution (b), the UTD ratio and the Ensemble size for Humanoid.

6.4.2. Policy family

The policy family is paramount to performance. This

is consistent with Section 5.3’s conjecture. Even with OAC,

an agent can only converge to a local optimum without

the policy family in Humanoid, indicating that a single

optimistic exploration method cannot solve the pessimistic

underexploration well. In addition, the convergence speed of the

policy has decreased in Walker2d and Ant.

6.4.3. Optimistic exploration

Experimental results support the point in Section 6.3.

Optimistic exploration can help the agent escape from local

optima in Humanoid. However, in simple environments (like

Ant, Walker2d, and Hopper), optimistic exploration has little

impact on performance.

6.4.4. Independent temperature network

Except for Walker2d, the independent temperature

network has little effect on RAC performance. The learned

temperatures are shown in Appendix C. In practice,

we find that the independent temperature network

can control the entropy of the policy more quickly

and stably.

6.4.5. Learning rate warm-up

A high UTD ratio can easily lead to an excessive

accumulation of overestimation errors in the early stage

of learning. The learning rate warm-up can alleviate this

problem and stabilize the learning process. Without the learning

rate warm-up, RAC learns slower at the beginning of the

training process.
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6.5. Hyperparameter ablations

RAC introduces some hyperparameters: (1) replay buffer

capacity; (2) right side of exploitation distribution U1 (a); (3)

right side of exploration distribution U2 (b); (4) UTD ratio

G in Algorithm 1; and (5) Ensemble size. Figure 9 shows the

numerical results.

Replay buffer capacity (Figures 9A, F). RAC can benefit

from a smaller capacity but will be hurt when the capacity is

excessively small.

The right side of U1 (a) (Figures 9B, G). a is a key

hyperparameter of RAC. Because a controls the underestimation

bias of RAC, which determines the lower bound of Q-functions.

The learning process becomes stable with a increasing. However,

if a is too large, it will reduce the learning opportunity of

optimistic policies, thereby reducing the learning efficiency.

The right side of U2 (b) (Figures 9C, H). Exploration

policies become more conservative with b increasing, and the

performance of RAC gradually declines. The increasing standard

deviation means that more and more agents fall into local-

optimal policies. However, if b is too small, policies may over-

explore the overestimated state, resulting in a decrease in

learning efficiency.

The ensemble size (Figures 9E, J) and the UTD ratio

(Figures 9D, I). RAC appears to benefit greatly from the

ensemble size and UTD ratio. When the ensemble size and UTD

ratio are increased, we generally get a more stable average bias, a

lower standard deviation of bias, and stronger performance.

7. Conclusion

In this study, we empirically discussed under-/

overestimation trade-off on improving the sample efficiency

in DRL and proposed the Realistic Actor-Critic (RAC),

which learns together values and policies with different

trade-offs between underestimation and overestimation in

the same network. This study proposed Punished Bellman

backup that provides fine-granular estimation bias control

to make value approximation smoothly shift between upper

bounds and lower bounds. This study also discussed the

role of the various components of RAC. Experiments show

advantageous properties of RAC: low-value approximation

error and brilliant sample efficiency. Furthermore, continuous

control benchmarks suggest that RAC consistently improves

performances and sample efficiency of existing off-policy RL

algorithms, such as SAC and TD3. It is of great significance for

promoting reinforcement learning in the robot control domain.

Our results suggest that directly incorporating uncertainty

to value functions and learning a powerful policy family can

provide a promising avenue for improved sample efficiency

and performance. Further exploration of ensemble methods,

including high-level policies or more rich policy classes, is an

exciting avenue for future work.
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Introduction: Small target detection with remote sensing images is a challenging

topic due to the small size of the targets, complex, and fuzzy backgrounds.

Methods: In this study, a new detection algorithm is proposed based on the YOLOv5s

algorithm for small target detection. The data enhancement strategy based on the

mosaic operation is applied to expand the remote image training sets so as to diversify

the datasets. First, the lightweight and stable feature extraction module (LSM) and C3

modules are combined to form the feature extraction module, called as LCB module,

to extract more features in the remote sensing images. Multi-scale feature fusion is

realized based on the Res 2 unit, Dres 2, and Spatial Pyramid Pooling Small (SPPS)

models, so that the receptive field can be increased to obtain more multi-scale global

information based on Dres2 and retain the obtained feature information of the small

targets accordingly. Furthermore, the input size and output size of the network are

increased and set in di�erent scales considering the relatively less target features in

the remote images. Besides, the E�cient Intersection over Union (EIoU) loss is used

as the loss function to increase the training convergence velocity of the model and

improve the accurate regression of the model.

Results and discussion: The DIOR-VAS and Visdrone2019 datasets are selected in the

experiments, while the ablation and comparison experiments are performed with five

popular target detection algorithms to verify the e�ectiveness of the proposed small

target detection method.

KEYWORDS

small target detection, remote sensing images, YOLOv5s, deep learning, EIoU loss

1. Introduction

With the development of remote sensing technologies, a large amount of remote sensing

images can be obtained from video satellites and unmanned aerial vehicles (UAVs) (Hu et al.,

2019; Zhang et al., 2019; Hou et al., 2020; Lu et al., 2020; Wang et al., 2020; Pei and Lu, 2022).

Recently, remote sensing image processing has attracted widespread attention, such as target

detection, classification, tracking, and surveillance (Jia, 2000, 2003; Guo et al., 2017; Wang et al.,

2018; Yin et al., 2020; Zhong et al., 2020; Jiang et al., 2021; Dong et al., 2022; Habibzadeh et al.,

2022; Ma and Wang, 2022; Pei, 2022). Particularly, target detection is a hot topic with remote

sensing images (TDRSIs), where the TDRSI has been widely applied in the fields of military,

transportation, forest survey, security monitoring, disaster monitoring, and so on (Zhang et al.,

2016; Han et al., 2017; Zhu et al., 2017). Therefore, TDRSI is a significant and challenging task

due to the small size of the targets, high speed detection, and high accuracy requirements (Zhang

et al., 2017; Dong et al., 2022).

Target detection aims to find all interested objects in the images, which has been studied

with the development of computer vision technologies in recent decades. Numerous algorithms,

especially convolutional neural networks (CNNs), have been widely employed for general target
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detection, such as SSD, YOLO, R-CNN, and Faster R-CNN (He et al.,

2016; Li et al., 2019, 2021; Zhong et al., 2020; Fan et al., 2021; Tu

et al., 2021; Dong et al., 2022; Mikriukov et al., 2022). For instance,

Lawal (2021) have proposed a modified YOLOv3 model to detect

tomatoes in complex environments. Wu et al. (2018) presented a

different scaled algorithm based on the Faster R-CNN to solve small-

scaled face detection. YOLOv3 network can be used for blood cell

recognition (Shakarami et al., 2021) while a YOLOv4 algorithm can

be used for oil well detection (Shi et al., 2021).

Considering general target detection, small target detection in

remote sensing images is more difficult due to several reasons (refer

to Figure 1) (Meng, 2012; Li, 2016; Du et al., 2018; Chen et al., 2021;

Liu et al., 2022). First, the scales of the remote sensing images may be

relatively large compared to the small target size or clustered targets

in the images. Moreover, the background of the remote sensing

images could be complex and fuzzy, sometimes even similar to the

target features. Third, there is not enough feature information of the

targets in one image, i.e., vehicles, pedestrians, and others have only

few pixels for object detection in the optical remote sensing images

(DIOR) (Li et al., 2020) and Visdrone2019 (Zhu et al., 2019) datasets.

Hence, a lot of methods have been developed specifically to

achieve small target detection in remote sensing images. For instance,

Lu et al. (2021) have proposed a single shot detection (SSD) to detect

the small target with complex background and scale variations. An

improved YOLOv3 model has been designed for ship detection in

remote sensing images with high accuracy and robustness (Xu, 2020).

In Wang J. et al. (2020), an end-to-end feature-reflowing pyramid

network has been proposed for multi-scale and multi-class object

detection. Furthermore, a novel cascaded rotating-anchor-assisted

detection network has been presented in Yu et al. (2022) to improve

ship detection accuracy with aerial images. Moreover, Huang et al.

designed a lightweight target detector to rapidly and accurately detect

small targets (Huang et al., 2022). A detection algorithm based

on the feature balancing and refinement network is developed to

successfully detect ships (Fu et al., 2020). A squeeze-and-excitation

YOLOv3 algorithm has been designed for small target detection in

remote sensing images with low computation costs (Zhou et al.,

2021). Moreover, Ling et al. (2022) have developed a new time-delay

feedback model to detect small target motion in complex dynamic

backgrounds. An indoor small target detection algorithm is described

in Huang L. et al. (2022) based on multi-scale feature fusion to

improve the accuracy and speed of the target detection.

Based on the above analysis, this study presents an improved

LCB-YOLOv5s detection algorithm for remote sensing images.

First, a new module comprising the lightweight and stable module

FIGURE 1

Examples of targets in remote sensing images.

(LSM) and cross-stage partial networks with three convolutions (C3)

structure module where these modules are combined to form the

feature extraction module, called as LCB module, is designed to

extract numerous features of small targets. Then, the Spatial Pyramid

Pooling Small (SPPS) module is developed to increase the weight of

these features in the spatial dimension. Moreover, the Duble Res2Net

(Dres2) module is used in the head to increase the receptive field so

as to obtain more multi-scale global information and realize fine-

grained feature extraction. In order to overcome the difficulty of

relatively few features, the input size of the network is increased with

different output feature map sizes. In summary, the contributions of

the paper are summarized as follows:

1) An LCB-YOLOv5 algorithm has been developed for small target

detection with remote sensing images. In the feature extraction

module, the LCB module is configured based on the LSM and

C3 modules to extract more features. Moreover, the SPPS and

Dres2 modules are introduced to increase the weight of the

features in the receptive field and so as to extract more multi-scale

global information.

2) In order to improve the accuracy of the small target detection, the

input size of the network is increased from 640 × 640 to 1,024 ×

1,024, and the output feature map size is set as 32 × 32, 64 × 64,

and 128× 128, respectively.

3) The EIoU function is employed as the loss function to increase

the training convergence velocity of the model and the regression

accuracy for the target detection.

The remainder of the paper is organized as follows. Section 2

describes the proposed method in detail. Experiments of the small

target detection with the selected datasets are performed and the

results are analyzed in Section 3. The conclusion is provided in

Section 4.

2. The proposed method

This section presents the details of the proposed method. As

shown in Figure 2, except for the first layer, the 3 × 3 convolutional

layers in the backbone of the YOLOv5s detection algorithm are

replaced with the LSMmodule. Since small targets have fewer features

than those large targets in the images, the SPPS module is designed to

increase the weight of these features in the spatial dimension. The

Dres2 module is further introduced in the head with the strategy

of multi-scale feature fusion to enhance the small target detection

performance. The input size of the network is also increased with
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FIGURE 2

The architecture of the developed LCB-YOLOv5s.

various output feature map sizes, while the EIoU loss function is

designed to increase the convergence speed.

2.1. Data augmentation

In general, the original training data have to be pre-processed

to meet the training requirement; hence, many data enhancement

strategies are employed to expand and diversify the remote sensing

images so as to improve the generalization ability of the trainedmodel

and to minimize the irrelevant characteristic information in the

training data. As shown in Figure 3, the mosaic operation is applied

to enrich the datasets, where four original images can be randomly

selected from a batch in the datasets to perform a flip, translate,

change the color gamut, and stitch the images such operations. Based

on the above data enhancement operations, the size of the images is

relatively close to the small targets, and the number of small targets

can be increased in the remote sensing images. Therefore, the small

target datasets can be expanded, which can effectively improve the

small target detection ability of the model. Accordingly, the demand

for GPU memory can be reduced and the training speed can be also

improved greatly.

2.2. Feature extraction module

In the remote sensing images, the sizes of the targets may

be small and the edges of the targets may be blurred. Hence, a

LCB feature extraction module is designed to improve the target

detection performance, as shown in Figure 4. Specifically, numerous

features of the small targets can be extracted using the LSM module.

The standard 3×3 convolution is used for feature extraction, and

some significant features of the original feature map are preserved

using maximum pooling. Then, the output feature map is enriched

by concatenation. Moreover, the C3 module can perform feature

extraction and fusion, where 1 × 1 convolution is applied to reduce

the dimension of the original feature map, and the feature map after

convolutional extraction is spliced as the output.

It is known that the conv + batch normalization + silu (CBS)

and conv + batch normalization + relu (CBR) modules are two

types of standard convolution modules. As shown in Figures 5A, B,

CBS and CBR utilize the convolution operation, batch normalization

(BN), and activation function, where the SiLU and the ReLU

are employed as the activation functions, respectively. It is noted

that the CBR module with the ReLU can reduce the amount

of calculation and eliminate the gradient diminishing, where the

activating function with ReLu can learn faster than the sigmoid or

tanh functions.

Figure 6 displays the proposed LSM module, mainly composed

of convolution and pooling branches. First, the 1 × 1 standard

convolution and 3 × 3 convolution are used to reduce the data

dimension and extract features, respectively. Then, the 1×1 standard

convolution is used once again to increase the data dimension.

Furthermore, the feature map is subsampled by 2 × 2 max pooling

and the number of channels is adjusted based on the 1 × 1 standard

convolution. Finally, the output is obtained based on the Concat

module with the above features. Compared to the traditional 3 × 3

convolution, LSM can obtain more abundant features. On the other

hand, LSM can preserve some significant features of the original

featuremap based on themaximum pooling. On the other hand, LSM

can enrich the feature map and merge it as the output.

The Res unit is a standard residual module, which is depicted

in Figure 7. The 1 × 1 standard convolution is used to reduce
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FIGURE 3

The procedure of the mosaic data enhancement.

FIGURE 4

The structure of the LCB module.

FIGURE 5

The schematic diagram of the standard convolution: (A) CBS module, (B) CBR module.

FIGURE 6

LSM module configuration.

the dimension, and the 3 × 3 convolution is used to extract

features. Then, the original information and feature information

after convolution are added as the output. The C3 module is used

for feature extraction and feature fusion, as described in Figure 8.

Hence, the rich semantic information and features are obtained to

convolve the upper layer feature map based on the Res unit and

the 3 × 3 convolution is applied to extract features. Then, 1 × 1

convolution is applied to reduce the dimension of the original feature

map, which is spliced with the convolved feature maps and used as

the output.

2.3. Feature fusion module

In order to improve the accuracy of the small target detection, the

Res2 unit module is designed (refer to Figure 9), where multigroup

3 × 3 convolutions are cascaded to enlarge the receptive field of

the network and the features of each group are fused. The Dres2

module is further designed based on the C3 module (refer to

Figure 10), where the original residual block is replaced with two

Res2 modules. Compared to the C3 module, the Dres2 module

can increase the receptive field to obtain more multi-scale global
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FIGURE 7

Res unit module.

FIGURE 8

C3 module configuration.

FIGURE 9

The configuration of the Res2 unit module.

FIGURE 10

The configuration of the Dres2 module.
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FIGURE 11

The configuration of the SPPS module.

information. Therefore, the Dres2 module is applied here to realize

fine-grained feature extraction.

As depicted in Figure 11, the SPPS module is a modified version

of the Spatial Pyramid Pooling (SPP) module in the network, where

the three groups of maximum pooling are 1 × 1, 3×3, 5 × 5, and

7×7. Since small targets have a relatively small proportion of pixels

in the remote sensing images, the effective feature information may

be difficult to extract. In order to overcome the above difficulty, the

SPPS module applies different sizes of the max pooling kernels, and

thus, the feature information of the small targets can be retained

accordingly since SPPS not only has the advantages of SPP but also

can improve the detection performance for small targets.

2.4. Input size of the network

The input image size of the YOLOv5 network is 640 × 640 and

the output size is 80, 40, and 20 in the prediction head. Compared

to the YOLOv5 algorithm, the input size of the network and the

predicted feature map are maximized to 1,024 and 256, and 128

and 64, respectively. Consequently, the input size of the network is

enlarged to overcome the limitation of less small target features in the

remote sensing images.

2.5. Loss function

Here, the IoU and GIoU Loss functions of the original YOLOv5

algorithm are first presented to analyze the deficiencies in small target

detection. Then, the EIoU Loss is introduced (Zhang et al., 2021),

where the GIoU Loss function refers to an improved intersection-

over-union (IoU). The IoU is used to denote the intersection ratio

of the prediction box (PB) and ground truth box (GB), which is

described as follows:

IoU =
PB ∩ GB

PB ∪ GB
, (1)

Moreover, the IoU Loss function is calculated as follows:

LIoU = 1−
PB ∩ GB

PB ∪ GB
. (2)

However, if there is no intersection between PB and GB, IoU Loss

is nearly zero, which can hardly be used to reflect their distance.

Moreover, the IoU Loss has a relatively slow convergence rate; hence,

theGIoU is introduced to avoid such a problem, calculated as follows:

GIoU = IoU −
Ac − U

Ac
, (3)

where Ac is the area of the smallest rectangular box including

both PB and GB simultaneously and U is the union of PB and GB.

Furthermore, the GIoU Loss can be expressed as follows:

LGIoU = 1− GIoU = 1− IoU +
Ac − U

Ac
. (4)

It is noted that GIoU Loss can be optimized for situations where

the PB and GB are not overlapped. Nevertheless, if these two boxes

are positioned relatively close, the values of the GIoU and IoU Loss

are also approximately equal. In order to solve the above problem,

the EIoU Loss is used as the loss function of LCB-YOLOv5. The EIoU

and the EIoU loss functions are calculated as follows:

EIoU = IOU −
ρ2

(

b, bgt
)

c2
−

ρ2
(

w,wgt
)

c2w
−

ρ2
(

h, hgt
)

c2
h

, (5a)

LEIoU = LIoU + Ldis + Lasp = 1− IOU +
ρ2

(

b, bgt
)

c2
+

ρ2
(

w,wgt
)

c2w

+
ρ2

(

h, hgt
)

c2
h

, (5b)

where cw and ch are the minimum widths and heights of the

outer box covering two boxes, respectively. Compared with IoU and

GIoU Loss functions, the distance between the target and anchor, the

overlap rate and penalty items are considered based on the EIoU Loss

function. Therefore, the regression accuracy for detection is more

stable and the training convergence speed is faster.
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3. Experimental results and analysis

3.1. Experimental settings

The proposed LCB-YOLOv5s network is trained with the

RTX 3090, 24G memory, and Ubuntu 20.04.4 operating system,

while the proposed network and the comparison algorithms are

programmed in Python 3.8 and Cuda 11.3. The hyperparametric

configuration is displayed in Table 1. In total, two datasets are

selected for the experiments. The first is the VisDrone2019 dataset,

which was collected by the Aiskyeyee team in the Machine

Learning and Data Mining Laboratory of Tianjin University.

It includes 10 categories comprising more than 2.6 million

annotation boxes. The targets in the VisDrone2019 dataset are

pedestrians, people, bicycles, cars, vans, trucks, tricycles, awning-

tricycles, buses, and motors. Moreover, the training and validation

sets contain 6,471 and 548 remote sensing images, respectively.

The other dataset is the DIOR remote sensing dataset, which

contains 20 categories with 23,463 remote sensing images and

192,472 examples.

In the experiments, vehicles, ships, and airplanes are

selected as the targets from 1,673 remote sensing images.

Furthermore, a new dataset called the DIOR-VAS dataset

is reconfigured including three types of targets: vehicles,

airplanes, and ships. As shown in Table 2, the training

and verification sets contain 1,334 and 339 remote sensing

images, respectively.

3.2. Evaluation metrics of the experiments

During the experiments, three common evaluation metrics are

used to evaluate the effect of the proposed method, mean average

precision (mAP), precision (P), and recall (R). Specifically, P and R

are calculated as follows:

P =
TruePositives

TruePositives+ FalsePositives
, (6a)

R =
TruePositives

TruePositives+ FalseNegatives
, (6b)

where TruePositives denotes the targets correctly classified as

positive examples, FalsePositives denotes the targets incorrectly

TABLE 1 Hyperparametric configuration of the experiments.

Hyperparametric Epochs Batch size Learning rate Momentum Weight decay

Configuration 150 16 0.01 0.973 0.0005

TABLE 2 Details of the VisDrone2019 and DIOR datasets.

Datasets Categories Totaling images Training set Validation set

VisDrone2019 10 8,629 6,471 548

DIOR 20 23,463 5,862 5,863

DIOR-VAS 3 1,673 1,334 339

TABLE 3 Comparison of the proposed method and other approaches based on the Visdrone2019 dataset.

Models P (%) R (%) mAP (%) Car Bus Pedestrian

YOLOv5 42.2 31.5 30.5 0.72 0.38 0.39

PicoDet 35.7 30.5 28.2 0.75 0.33 0.38

YOLOv3 40.5 26.8 25.9 0.65 0.28 0.32

YOLOv3-SPP 42.5 25.1 25.4 0.65 0.26 0.32

YOLOv7 39.5 30.3 26.2 0.72 0.33 0.34

LCB-YOLOv5s 56.2 46.7 47.9 0.86 0.65 0.59

TABLE 4 Comparison of the proposed method with other approaches based on the DIOR-VAS dataset.

Models P (%) R (%) mAP (%) Vehicle Airplane Ship

YOLOv5 93.3 85.8 90.4 0.75 0.99 0.96

PicoDet 81.6 29.3 55.9 0.53 0.54 0.59

YOLOv3 92.7 84 88.6 0.74 0.99 0.93

YOLOv3-SPP 92.9 83.9 88.6 0.74 0.98 0.94

YOLOv7 92.5 85.8 90 0.74 0.99 0.96

LCB-YOLOv5s 93.4 88.6 93 0.84 0.99 0.96
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FIGURE 12

Comparison of the target detection of six di�erent models on the Visdrone2019 dataset.

classified as positive examples, and FalseNegatives denotes the targets

incorrectly classified as negative examples.

Additionally, AP is the average classification accuracy of a

category in the datasets. It is calculated as follows:

AP =

∫ 1

0
P (R) dt (7)

where P (R) is the P–R curve to be used to calculate the AP. Based

on the AP, themAP can be obtained as follows:

mAP =

∑N
n=0 APn

N
(8)

where N is the number of the detected target categories.

3.3. Experimental results and analysis

Table 3 displays the comparison results of our proposed method

with the other five approaches, Mets = {YOLOv5, YOLOv3,

YOLOv3-SPP, YOLOv7, PicoDet}, on the Visdrone2019 dataset. The

proposed method has achieved significantly higher performance

than the other methods, with P, R, and mAP as 56.2, 46.7, and

47.9, respectively. Particularly, the mAP of the proposed method

is 17.4, 19.7, 22, 22.5, and 21.7 higher than those of the methods

in Mets one by one. Furthermore, the P of the LCB-YOLOv5s is

higher by {14, 20.5, 15.7, 13.7, 16.7} in comparison to those of

methods in Mets. Moreover, the R of the LCB-YOLOv5s is higher

by {15.2, 16.2, 19.9, 21.6, 16.4} than those of the methods in Mets

in turn. However, the PicoDet method has a relatively weaker

performance in the DIOR-VAS dataset. Furthermore, in Table 3,

the LCB-YOLOv5s exhibits much better detection performance

than the other five methods for bus and pedestrian detection and

slightly better detection performance than the rest methods for

plane and ship detection. In general, LCB-YOLOv5s can achieve

higher small target detection performance with a reduced false

detection rate.

Table 4 illustrates the comparison results of the proposed

method with the other five methods on the DIOR-VAS dataset,

where vehicles, airplanes, and ships are selected as the small

targets. The proposed method exhibits a better performance

than the other methods, with mAP, P, and R of 93, 93.4, and

88.6, respectively. Particularly, the mAP, P, and R of YOLOv5s

and YOLOv7 are 90.4, 93.3, and 85.8 and 90, 92.5, and 85.8,

respectively. Thus, the mPA and R of the YOLOv3 and YOLOv3-

SPP are lower by 4.4, 4.6, 4.4, and 4.7, respectively. The R of

the YOLOv3 and YOLOv3-SPP is also relatively lower. Figure 12

displays the target detection results of the six algorithms on the

Visdrone2019 dataset, where the orange, green, and red boxes

indicate the detected targets of cars, buses, and pedestrians,

respectively. Compared to the other five algorithms, LCB-YOLOv5s

can accurately detect more targets, especially buses and pedestrians,

although the prediction boxes are densely distributed in the leftmost

subfigure of Figure 12. This demonstrates that the proposed LCB-

YOLOv5 algorithm has an advantage over the other algorithms

for small target detection. The target detection comparison of

the six algorithms on the DIOR-VAS dataset is illustrated in

Figure 13, where the orange, green, and red boxes are the

detection results of the ships, airplanes, and vehicles. It is clear

that more expected targets can be detected via LCB-YOLOv5s

compared to the other methods. Additionally, Figures 14, 15

display the mAP (threshold is 0.5) of the six algorithms on the

Visdrone2019 and DIOR-VAS datasets. The visual results of the

original YOLOv5s and the LCB-YOLOv5s are demonstrated in

Table 5. It can be intuitively seen that the proposed LCB-YOLOv5

algorithm has a better performance and higher robustness for
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FIGURE 13

Comparison of the target detection of six di�erent models on the DIOR-VAS dataset.

small target detection in remote sensing images. In particular,

the LCB-YOLOv5s have a stronger ability in dense small target

detection.

3.4. Results of ablation experiments

Ablation experiments are further performed to verify the

optimization performance of each improved module. The EIoU

loss function, LCB module, SPPS module, and Dres2 Module are

introduced in the original network to construct the improved Model

1, improved Model 2, improved Model 3, and improved Model 4,

respectively. In the improved model 5, the input size is 1,024, while

all the mentioned modifications above are applied in the improved

Model 6. The ablation results with the improved modules are listed

in Table 6.

Compared with the original YOLOv5s network, the mAP of the

model is improved by 1.3 percentage points in IM1, and the mAP of

the models with IM3 and IM4 is increased by 0.9 and 0.6 percentage

points, respectively. Moreover, the mAP of the model is improved

by 11.8 percentage points with IM2. Meanwhile, when the input

size is 1,024, the mAP of IM5 is also improved by 12.8 percentage

points. Furthermore, when these six improvements are combined in

IM6, the mAP is increased by 17.4 percentage points. The ablation

experimental results strongly demonstrate that the proposed LCB-

YOLOv5s model has a higher detection performance for small target

detection with remote sensing images.

4. Conclusion

In this paper, an improved detection algorithm, called LCB-

YOLOv5s, has been developed to detect small target objects in
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remote sensing images. The proposed algorithm comprises the LCB

module via the combination of LSM and C3 modules, the SPPS

module, and the Dres2 module in the feature extraction module to

achieve multi-scale feature fusion. Furthermore, the input size of

the network is increased and the output feature map size is set in

various scales to improve the small target detection performance.

Experiments have been performed on the DIOR and Visdrone2019

datasets to compare with other methods to verify the effectiveness

of the proposed method for small target detection. Future work

will continue to investigate small target detection and tracking

under special and harsh circumstances with more general remote

sensing datasets.

FIGURE 14

The mAP (threshold is 0.5) of the proposed method in comparison with the other five detection algorithms on the Visdrone2019 dataset.

FIGURE 15

The mAP (the threshold is 0.5) of the proposed method in comparison with the other five detection algorithms on the DIOR-VAS dataset.
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TABLE 5 Visual results of the small target detection on Visdrone2019 dataset.

Categories Visual results of YOLOv5s Visual results of LCB-YOLOv5s

The original images

Backbone

Prediction head 1

Prediction head 2

Prediction head 3

TABLE 6 Results of ablation experiments.

Model EIOU LCB SPPS Dres2 Input
1,024

mAP Improvement
(mAP)

LCB-YOLOv5s × × × × × 30.5 -

Improved Model 1 (IM1)
√

× × × × 31.8 +1.3

Improved Model 2 (IM2) ×
√

× × × 42.3 +11.8

Improved Model 3 (IM3) × ×
√

× × 31.4 +0.9

Improved Model 4 (IM4) × × ×
√

× 31.1 +0.6

Improved Model 5 (IM5) × × × ×
√

43.3 +12.8

Improved Model 6 (IM6)
√ √ √ √ √

47.9 +17.4
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Reinforcement learning based
variable damping control of
wearable robotic limbs for
maintaining astronaut pose during
extravehicular activity
Sikai Zhao, Tianjiao Zheng, Dongbao Sui, Jie Zhao and Yanhe Zhu*

State Key Laboratory of Robotics and Systems, Harbin Institute of Technology, Harbin, China

As astronauts perform on-orbit servicing of extravehicular activity (EVA) without

the help of the space station’s robotic arms, it will be rather difficult and labor-

consuming to maintain the appropriate position in case of impact. In order to solve

this problem, we propose the development of a wearable robotic limb system for

astronaut assistance and a variable damping control method for maintaining the

astronaut’s position. The requirements of the astronaut’s impact-resisting ability

during EVA were analyzed, including the capabilities of deviation resistance, fast

return, oscillation resistance, and accurate return. To meet these needs, the system

of the astronaut with robotic limbs was modeled and simplified. In combination with

this simplified model and a reinforcement learning algorithm, a variable damping

controller for the end of the robotic limb was obtained, which can regulate the

dynamic performance of the robot end to resist oscillation after impact. A weightless

simulation environment for the astronaut with robotic limbs was constructed.

The simulation results demonstrate that the proposed method can meet the

recommended requirements for maintaining an astronaut’s position during EVA. No

matter how the damping coefficient was set, the fixed damping control method failed

to meet all four requirements at the same time. In comparison to the fixed damping

control method, the variable damping controller proposed in this paper fully satisfied

all the impact-resisting requirements by itself. It could prevent excessive deviation

from the original position and was able to achieve a fast return to the starting point.

The maximum deviation displacement was reduced by 39.3% and the recovery time

was cut by 17.7%. Besides, it also had the ability to prevent reciprocating oscillation

and return to the original position accurately.

KEYWORDS

extravehicular activity, reinforcement learning, wearable robotic limbs, variable damping
control, modular robot

1. Introduction

With the progress of robot technology and artificial intelligence, space exploration has
ushered in rapid development (Chien and Wagstaff, 2017; Jacobstein et al., 2017; Lester et al.,
2017). The world’s space powers began to carry out manned space activities around the
International Space Station (ISS) (Flores-Abad et al., 2014; Jiang et al., 2017; Ruttley et al.,
2017). In addition, commercial space tourism has gradually become a new highlight of manned
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space development in recent years. Some private manned space
companies have successfully completed several commercial space
trips (Webber, 2013; Chang, 2015). It can be established that
manned space engineering will play an increasingly important role
in space exploration and on-orbit servicing. Therefore, there will be
higher requirements for astronauts’ operations in the outer space
environment.

Extravehicular activity (EVA) refers to when astronauts wear
spacesuits to perform tasks outside the spacecraft, which is the key
technology of manned space engineering. The environment of EVA is
extreme, work intensity is high, and the operation process is complex.
These issues greatly restrict the astronaut’s EVA time and success
rate. In recent years, various robot-intelligent technologies have been
applied to assist in the reduction of work intensity and improve
workability (Zhang et al., 2020a; Wang S. et al., 2022). However, they
have not been popularized and applied in the space field. For on-
orbit servicing of EVA, there are two main modes of extravehicular
movement. One is that astronauts move in vast space through the
robotic arm of the space station (Nokleby, 2007; McHenry et al.,
2020). The other is that astronauts climb by themselves with the
help of safety ropes. In the former scenario, astronauts’ lower limbs
are fixed to the robotic arm, which can provide a foot restrictor
and liberate the upper limbs to accomplish tasks. However, there
are some areas where the space station’s robotic manipulator cannot
reach. In these areas, with the lack of a space robotic manipulator,
astronauts will have to move and work by themselves under the
protection of safety ropes. When working in this situation, it is
significantly hard for them to maintain a suitable position when
they suffer some form of impact. In order to maintain stability, they
need to exert force with one or two hands, which not only increases
energy consumption but also greatly limits work efficiency. Thus,
astronauts need additional devices that assist them in resisting impact
and maintaining position during the process of EVA. There is much
research on trajectory planning and control of robotic manipulators
at home and abroad (Zhang et al., 2020b, 2022; Zhao et al., 2022).
However, these large dedicated robots and equipment have high
launch costs and low utilization rates. Several astronaut-assisting
robots have been developed, including humanoid robots (Diftler
et al., 2011; Ackerman, 2019), on-orbit modeling robots (Zykov et al.,
2007; Post et al., 2021), and wearable-assisting robots (Hall, 2013;
Zhao et al., 2021). The primary application purpose of these devices
is to provide astronauts with operation or strength enhancement
assistance for on-orbit servicing. In addition, they are either still in
the conceptual design stage or can only be used inside the cabins of
the ISS. Thus, none of them can provide astronauts with the ability to
withstand external impact. Although some impact-resisting methods
of the space station’s robotic arms have been studied (Su et al., 2020;
Liu et al., 2021; Olivieri et al., 2021; Raina et al., 2021; Wang X.
et al., 2022), they are only used for the robotic arms themselves or on
missions to capture free-flying objects, and not in helping astronauts.
In addition, the main problem is that large space manipulators cannot
be applied to all task scenes.

Wearable robotic limbs can provide a new method for assisting
astronauts in performing tasks, especially those carrying out
extravehicular work alone. The robotic limb can act as an extra limb
of the astronaut and improve the wearer’s abilities of perception and
operation. In this way, it has the potential to reduce the astronaut’s
physical exertion and consumption in extravehicular activities and
improve the success rate of on-orbit servicing tasks. Considering
the safe and comfortable operation requirements of astronauts, the

wearable robotic limb system is expected to have the following impact
resistance capabilities: (1) Deviation resistance: The deviation after
impact cannot be too large. It is very dangerous to deviate too far
from the operating position. In case of an emergency, astronauts
should have the ability to grasp the handrail; (2) Fast return: After
reaching the maximum deviation position, it can quickly return to
the initial position. It is helpful to extend the effective working time
of EVA; (3) Oscillation resistance: After the system quickly restores to
the initial position, it is necessary to prevent reciprocating oscillation
relative to the initial position, which will cause system instability
and physical discomfort; and (4) Accurate return: The system must
be able to return to the original position after impact. Otherwise,
astronauts need to make additional manual adjustments, which
indirectly increases the difficulty and physical exertion of the task.

As far as we know, no similar concepts of robots for assisting
astronauts have been proposed yet. The purpose of this paper
is to propose a variable damping control method based on a
reinforcement learning algorithm for wearable robotic limbs, in
which the virtual damping is trained to be adjustable to meet
the impact resistance requirements proposed above. The method
was verified in a simulation environment, which ensured that the
robotic limb system has the ideal impact-resisting ability. The rest
of the paper is organized as follows: Section 2 introduces the basic
composition of the wearable robotic limbs for astronauts and explains
the variable damping control method based on Reinforcement
Learning; Section 3 presents the simulation results and evaluation;
and Section 4 summarizes the whole work, analyzes the application
limitations, and outlines plans for future work.

2. Materials and methods

2.1. Wearable robotic limb system

Astronauts can work in orbit outside the cabin of the ISS in
two main ways. The first is that the astronaut’s feet are attached to
the end of the space station’s robotic arm. As shown in Figure 1A,
the space station’s robotic arm provides the astronaut with a foot
restrictor, so that the astronaut can maintain the desired position
through the lower limbs. Meanwhile, the upper limbs and hands are
free to perform tasks. The second is that the astronaut is connected to
the working area via a safety rope without using the space station’s
robotic arm. In this case, there is no reliable anchor point such
as the foot restrictor. If the astronaut wants to maintain a proper
working position, one hand is needed to maintain that position,
as shown in Figure 1B. In this situation, it is not suitable for
the astronaut to operate with both hands simultaneously, and the
astronaut cannot perform complex operational tasks that call for two-
handed cooperation. In addition, it will consume considerable energy
and reduce the EVA time.

In view of the above shortcomings, we proposed a wearable
robotic limb system that can be fixed onto the astronaut’s backpack as
additional arms to assist in moving and operating outside the ISS. The
system is named AstroLimbs (Zhao et al., 2021). Figures 1C,D show
the rendered views of the front and back sides of the AstroLimbs,
respectively. The wearing display of the robotic limb system is shown
in Figure 1E. Based on the modular design concept, each robotic limb
is composed of six identical basic modules connected in series. The
modular design concept is suitable for space engineering, with more
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FIGURE 1

Wearable robotic limbs for astronauts. (A) Performing EVA with the help of the space station’s robotic arm (Mohon, 2014). (B) Performing EVA without the
space station’s robotic arm (Garcia, 2019). (C) The rendered view of the front side of the wearable robotic limbs for astronauts. (D) The rendered view of
the back side of the wearable robotic limbs for astronauts. (E) Wearing display of the robotic limbs for astronauts.

convenient assembly, better interchangeability, and improved fault
tolerance. The end faces of both submodules are equipped with the
connection mechanism. Two basic modular units can be connected
in series via the connection mechanism. Each basic module serves as
a joint of the robotic limb. This means that each robotic limb has six
degrees of freedom. The AstroLimbs can be worn on the astronaut’s
backpack, moving and working with the wearer. It acts as a working
partner for the wearer during EVA, just like another astronaut. As the
outer space environment is almost weightless, the weight and mass of
the robotic system will not be applied to the astronaut.

2.2. Variable damping control

2.2.1. Model building
In order to achieve the robotic limb’s ability to maintain the

astronaut’s posture during EVA, the variable damping control method
based on the Q-learning algorithm was proposed. Prior to the
reinforcement learning training, it was necessary to model and
simplify the astronaut system with the robotic limbs, which could
function faster in the simulation environment, as shown in Figure 2.
While the astronaut works outside the ISS cabin, one robotic limb
holds the handrail to maintain the position in the working area.
Under this condition, the handrail was considered as a fixed end
and the end of the robotic limb was simplified to connect to that
fixed end. The astronaut and the other robotic limb were combined
and simplified into an end-load system, where the second robotic
limb mainly provides auxiliary functions, such as tool delivery and
operational support. As shown in Figure 2, they were reduced to
a green solid ball at the end of the robotic limb. The blue ellipses
represent the links of the robotic limb, and these links are connected
by rotating joints, which are represented by the solid blue points. Each

robotic limb had six degrees of spatial freedom. The fixed end was
equal to the handrail of the ISS. The Cartesian coordinate system,
which is the absolute coordinate system, was attached to the fixed end.
Combined with the forward kinematics of the robotic limb, the end-
load movement information for Cartesian space could be obtained in
real time.

In addition, this model could also be split into two systems.
One was the load system and the other was the robotic limb system
without the load. Based on the model, the variable virtual restoring
force was introduced to control the load for impact resistance
and maintenance of position. In combination with the Q-learning
algorithm, the variable damping controller was formed. The virtual
restoring force was taken as an external force of the robotic limb.
Finally, based on its dynamics, the virtual restoring force could be
transformed into the control torque of each joint. In this way, the
robotic limb could realize its position-maintaining control to help the
astronaut.

2.2.2. Variable damping control for end load
In order to achieve the optimum motion characteristics of the

robotic limb end after impact, the most straightforward method
was to determine the conversion relationship between the motion
characteristics of the joint space and the end Cartesian space. It
was necessary to discover the configuration changes of the limb
in real time and calculate the equivalent moment of each joint
inertia. The calculated quantity of the overall process was too high.
Thus, the variable damping control method based on the virtual
restoring force was introduced. For the load system, it was possible to
obtain its absolute movement information in relation to the Cartesian
space in real time. In this case, the load could be considered as an
unconstrained spatial load that was only controlled by the virtual
restoring force, so as to meet the proposed requirements for impact
resisting. As shown in Figure 3, the virtual restoring force acted on
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FIGURE 2

Simplified model of the astronaut and the robotic limb system.

the mass center of the load, so that the load tended to move back to its
original position. Its value varied in real time, which was related to the
motion state of the load (pt , vt). The mapping function fRL between
the virtual restoring force and the movement status could be achieved
by the Q-learning algorithm.

For the load in weightlessness, in order to reduce the deviation
and bring it back to the original position, a virtual restoring force
based on the spring damping model was proposed. Its virtual
damping coefficient could change adaptively, as shown in Figure 3.
The change between the real-time state of the load and the initial state
was used as the input of the virtual restoring force, and the virtual
restoring force was mainly composed of the virtual spring tension and
damping force, which can be shown as follows:

Fr = K · X (t)+ D (t) · Ẋ (t) (1)

where Fr represents the virtual restoring force, K is the virtual spring
stiffness coefficient, D(t) is the virtual damping coefficient, X(t) is the
displacement relative to the initial position after impact, and Ẋ (t)
is the velocity after impact. When the spatial load was impacted in
any direction, the corresponding state changes occurred in the three-
dimensional space, such as in Status B or C as shown in Figure 3.
The spring damping system was applicable. That is to say, the virtual
restoring force generated was always in a straight line with the
displacement of the load in relation to the initial state.

For the introduced spring damping system, the corresponding
impedance characteristics could be obtained by adjusting the
appropriate stiffness coefficient K and damping coefficient D(t)
according to the desired system characteristics. However, the fixed
stiffness and damping coefficient could not simultaneously satisfy
the overall impact resistance requirements. When the stiffness was
fixed, if the damping coefficient was too small, the load-displacement
was too large. If the damping coefficient was too large, the recovery
speed after impact was too slow. Therefore, the damping coefficient
was particularly critical for maximal deviation and recovery time.

Considering the practical application of wearable robotic limbs, it
was used to hold the handrail of the cabin to stabilize the position
of the astronaut when working in a fixed spot. In this case, it was
hoped that the equivalent system had a relatively large stiffness.
At this time, if the method of variable stiffness was adopted, the
stiffness of the system could be reduced, which was not conducive to
the astronaut maintaining position. Therefore, the variable damping
control method was selected in this paper. For the problem that
the virtual restoring force of the fixed damping method could not
fully meet the impact resistance requirements, the variable damping
controller could change the virtual damping value appropriately
depending on the real-time movement state, so as to meet the impact
resisting requirements in different states.

2.2.3. Reinforcement learning
When it comes to tackling serialized decision-making issues in

unknown contexts, reinforcement learning offers clear advantages.
Q-learning is one of the reinforcement learning algorithms and can
be used to adaptively learn the virtual damping of load movement
in a weightless environment. Therefore, the state of load was divided
based on the designed working environment, and the fundamental
action was planned. Moreover, the reward function in the task-
learning process was proposed.

Reinforcement learning is an overall process that refers to the
agent’s trial, evaluation, and action memory (Clifton and Laber, 2020;
Chen et al., 2022; Cong et al., 2022; Li et al., 2022). The agent’s
learning maps from environment state to action, causing it to reap
the greatest rewards after carrying out a particular action. This
learning process will make the agent perform best under some preset
evaluation rules. The Q-learning algorithm is one of the evaluation
rules for the agent to choose a specific action in the present state,
which is an action-utility function. Q is short for the word quality,
which serves as high-quality feedback for each action and provides
the agent with action memory (Ohnishi et al., 2019; Hutabarat
et al., 2020). The Q-learning algorithm is excellent for model-free

Frontiers in Neurorobotics 04 frontiersin.org118

https://doi.org/10.3389/fnbot.2023.1093718
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org/


fnbot-17-1093718 February 9, 2023 Time: 15:1 # 5

Zhao et al. 10.3389/fnbot.2023.1093718

FIGURE 3

Variable damping control principle for load in weightless space.

autonomous motion planning when the number of states and actions
in the learning process is limited (Clifton and Laber, 2020).

The following equation describes the agent’s corresponding
evaluation value after performing the action each time in a particular
state:

Val = maxaQ (s, a) (2)

Where s denotes the current state, a is the action that can be
taken in the current state, and Val is the evaluated maximum value
corresponding to this action under the circumstances of the current
state s and action a. In light of this value, the agent can determine the
action to execute in this step.

The core of the Q-learning algorithm is the process of constantly
updating the evaluation value Val in Equation 2 based on continuous
trial training:

Q′(s,a)⇐Q(s,a)+λ[R(s,a)+η·maxa′Q(s′,a′)−Q(s,a)] (3)

where R represents the reward value that can be obtained by
executing action a in the current state s, s’ is the new state of the
agent after executing action a, a’ is the possible action in state s’, λ is
the learning efficiency (λ = 0.01), and η serves as the discount factor
(η = 0.9).

First, the training was conducted in a single dimension, which
simplified the load movement process. Based on the position and
velocity information in relation to the Cartesian space, the motion
state of the load determined the state of the Q-learning. The following
equation provides the definition of the state value:

State=f (P,Flag_v) (4)

where State represents the load motion state, P is the displacement
compared to its initial position, Flag_v denotes the velocity direction

identification value depending on both the displacement and velocity
direction, which can be expressed as the following Equation 5:

Flag_v=

 1 EP · EV ≥ 0
0 EP · EV < 0

(5)

where EP is the real-time displacement vector, EV is the real-time
speed vector.

In order to improve the efficiency of reinforcement learning,
the displacement range was discretized. To guarantee applicability,
displacement values outside the valid range were incorporated into
adjacent state intervals. And the corresponding relationship between
the acquired state and the movement state of the load is shown in
Equation 6:

State=
(⌈
P/d

⌉
+sint

)
+n·Flag_ν

(6)

where d is the interval step size for displacement range, sint is the
state offset value designed to count state values from zero, and n
represents the total number of states regardless of velocity direction.⌈
P/d⌉ stands for the result of rounding up the ratio of P to d, which

is the smallest integer greater than the ratio.
As the load had no gravity in a weightless environment, the

control model could be equivalent to a spring-damping model. The
force generated by the virtual spring and damping directly acted on
the mass center of the load, so the virtual force generated by the
real-time virtual spring tension and damping force after impact could
be obtained. Thus, the load system’s stiffness-damping characteristics
were simulated to achieve optimal motion control. According to the
simplified model, the virtual stiffness was designed to be a fixed value,
so that the virtual restoring force of the load was proportional to its
displacement value.

To avoid excessive displacement, oscillation, and failure to return
to its original position after impact, it was necessary to change the
virtual damping according to different states. Using the same discrete
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design idea as the motion state, the maximum virtual damping value
was designed to be 600 and the interval step size was 150. Thus, the
damping value could be used as an optional action in the Q-learning
process in five cases, as shown in Equation 7:

Action={0,150,300,450,600} (7)

During the training process, the agent received a reward for
each episode in which they interacted with the environment. For
the process that the load suffered an impact in weightless space,
it deviated from the original position. Under the action of the
virtue spring tension and damping force, it could return to the
original position after reaching the maximum deviation. According
to the desired impact resistance requirements, the farther the load
deviated from the initial position, the weaker its ability was to prevent
oscillation, and fewer rewards were given. If the load got closer to the
initial position, it obtained more rewards. Therefore, it made sense to
take the negative value of the deviation distance as the reward, which
can be expressed by the following equation:

R=−dis=−
√

x2
t+y

2
t+z

2
t

(8)

where R is the reward value received for a particular action, dis is the
distance value in relation to the starting position, and xt , yt , and zt
are the components of the real-time position.

In the training process, when the robot was in the initial position,
the reward R obtained by the agent was zero. As the reward value R
was designed to be non-positive, it meant that the reward value of the
agent was the maximum in the initial state. After suffering an impact,
the robot generated a position deviation. The reward value decreased
as the deviation increased. It meant that the agent was punished.

2.2.4. Application on robotic limbs
The impact force applied on an astronaut outside the space

station is three-dimensional and can come from any direction. As
a result, the displacement and velocity directions of the load do
not lie in a uniform line with respect to its initial state. Then the
one-dimensional variable damping control method based on the
Q-learning algorithm could not completely solve the issue. As the
displacement and velocity directions were not in a straight line, a
velocity vector was generated in the direction perpendicular to the
displacement vector. The system eventually reached equilibrium as
a result of the virtual restoring force acting in the displacement
direction. The load then moved uniformly around the initial position,
and the virtual restoring force provided the load with centripetal
acceleration. However, the load was not able to return to the
initial position.

In order to solve the above issue, a speed-decoupling control
method based on one-dimensional control was purposed. The
improved control principle is shown in Figure 4. The overall concept
of this method was to carry out adaptive control in different
dimensions through orthogonal decoupling of velocity. In Figure 4,
the gray sphere represents the initial state of the load, and the green
sphere represents the real-time movement status after impact. The
line between the two states is the displacement direction, which was
recorded as the Y direction. The positive Y direction pointed to the
direction away from the initial position. The direction perpendicular
to the Y direction was marked as the X direction. The selection of
positive X direction is shown in Figure 4, which made no difference
to the outcome. Since the motion state of the load after impact

changed in real time, the X and Y directions also varied continuously.
However, the Y direction could be uniquely determined depending
on the displacement direction. When the Y direction was fixed, the
X direction then became uniquely determined. The two directions
could be determined at any time, even though they were constantly
varying in real time. These two real-time directions were the base
for orthogonal decoupling velocity. It can be seen from Figure 4
that the load speed V was orthogonally decoupled along the X
and Y directions to obtain the velocity component Vx and Vy,
respectively. The Y direction was the key direction for the load to
return to the original position after suffering an impact. It was hoped
that the load could resist impact in this direction. Therefore, the
variable damping controller based on the reinforcement learning
method was adopted in the Y direction. When Vx became zero, the
issue normally transformed into the fundamental problem of impact
resisting control for a single direction. Therefore, the control method
in this direction was relatively simple, that is to set a large fixed
damping coefficient. The velocity in this direction could be quickly
reduced to zero as soon as possible.

For the unconstrained load model, the real-time restoring force
was virtual and this hypothetical force in the simulation environment
had no actual force application object. The load model and the robotic
limb model were combined using this virtual force as a bridge. In
order to ensure the robotic limb end had the same impact resistance
performance as the load model, the force application object of the
virtual restoring force should be the robotic limb itself. Hence, the
problem was changed into the end force control issue of the series
manipulator with six degrees of freedom. In combination with the
dynamics of the robotic limb, the joint control torque for the real-
time virtual restoring force could be obtained, so as to realize the
impact resistance ability of the end load.

The magnitude of the virtual restoring force used to control the
end load was in relation to the real-time motion state of the end load,
as shown in Equation 9:

Fr=fRL(p0,v0,pt,vt) (9)

where Fr is the virtual restoring force acting on the rigid end of the
robotic limb, p0 is the initial displacement, v0 is the initial velocity,
pt is the real-time displacement after impact, and vt is the real-time
velocity after impact.

Finally, the virtual restoring force of the robotic limb end was
brought into the dynamic equation, so that the joint space control
torque could be obtained and the impact-resisting control of the
robotic limb end could be realized.

A framework of the variable damping control method to further
explain the control method is shown in Figure 5. The combined
system of an astronaut with a robot was modeled and simplified.
With the help of system dynamics and coordinate transformation, the
controller enabled the robotic limb end to resist impact. According
to Figure 5, Ft stands for the impact applied on the system. Fr is
the virtual restoring force originating from the variable damping
controller based on the reinforcement learning method. τ is a six-
dimensional vector, which stands for the torque of each joint. θ, θ̇, θ̈

is the motion information of each joint. pt and vt are the displacement
and velocity of the robotic limb end, respectively.

Considering the practical application of wearable robotic limbs,
they were used to hold the handrail of the cabins to stabilize the
position of the astronaut when working in a fixed spot. In this case,
it was hoped that the equivalent system of the robotic limbs and
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FIGURE 4

Schematic diagram of three-dimensional impact resistance of the load.

FIGURE 5

Framework of the variable-damping control method.

FIGURE 6

Reward value of each episode for the agent.

the astronaut had a relatively significant stiffness. At this time, if
the method of variable stiffness was adopted, the stiffness of the
system would be reduced, which would not be conducive to the
astronaut maintaining position. Therefore, the variable damping
control method was selected in this paper.

The core of the variable damping controller was that there was
always a damping term in the system, and the damping coefficient
could be appropriately changed according to the motion effect
produced by the external impact. In addition, as the system deviated
from its original position, the damping coefficient increased to
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FIGURE 7

Comparison of load recovery trajectories under different damping values after impact.

FIGURE 8

Three-dimensional displacement variance of the load subjected to three-dimensional impact in different damping cases. (A) Under damping case. (B)
Critical damping case. (C) Over damping case. (D) Variable damping case based on Q-learning algorithm.
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FIGURE 9

Comparison of spatial movement trajectories in different damping cases.

FIGURE 10

Comparison of motion trajectories of the robotic end in different damping cases.
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FIGURE 11

Three-dimensional displacement changes of the robotic end subjected to three-dimensional impact. (A) Under damping case. (B) Critical damping case.
(C) Over damping case. (D) Variable damping case based on Q-learning algorithm.

prevent the system from oscillating. This paper focused on the impact
force during a short period and recognized that the system was not
subjected to a continuous force. When the damping term of the
system persisted, the system eventually became stable.

3. Results

3.1. Reinforcement learning results

A simulation environment of the unconstrained load was built
using the program Virtual Reality Educational Pathfinders (VREP)
(Rohmer et al., 2013). The gravity acceleration in the vertical Z
direction was set to zero to simulate the outer space environment.
Taking the absolute coordinate system of the simulation environment
as the reference coordinate system of the load, the real-time
movement state could be obtained directly. In this simulation, the
load mass was set to 64 kg, the impact force was set to 100N, and its
duration time was 500 ms. The force was set to be along the positive
direction of the Y axis, which acted on the load centroid. The training
time for reinforcement learning was designed at 2.5 s so that the load
could complete the whole process. The initial moment of the load was
in a static state, then it moved in response to an external impact. The
corresponding motion state was recorded in real time to obtain the
current training state. The next action was selected according to the
present state. The agent received a reward according to Equation 8
after each step. The total reward accumulated was recorded in one
episode. The whole process was set at 3,000 training times.

The accumulated training reward of each episode is shown in
Figure 6. The abscissa is the episode number, and the ordinate
represents the total reward value obtained in each episode. According
to Equation 8, the reward mechanism adopts a non-positive value
so the total reward will be negative. Since the goal of reinforcement
learning was to find the optimal strategy to maximize the cumulative
reward value, the training performance improved as the cumulative
reward value approached zero. According to Figure 6, it can be
seen that the agent was an inexperienced individual during the first
750 training episodes. To learn the virtual restoring force control’s
damping coefficient and gain more experience, constant trial and
error was required. Although the cumulative reward of each episode
at this stage fluctuated significantly, it still showed an increasing
trend in general. It could be proved that the agent gained some
experience in training and the results moved in the right direction.
After 750 episodes, the robot gradually learned the task target and the
cumulative reward fluctuated slightly. Since the robot action selection
strategy adopted the ε-greedy strategy, it enabled the agent with a
certain degree of exploration ability. In this case, although the robot
learned the action sequence leading to the task target, it still chose
to explore a new action sequence with a certain small probability.
It converged in the later stage of training and the cumulative
reward value fluctuated slightly, which made no difference in the
convergence of the whole training process.

The variable-damping controller based on reinforcement
learning was tested and the results could be illustrated by the
trajectory of the load after impact. The results were compared with
fixed damping cases, as shown in Figure 7. The impact force was
set as 100N and the duration time was set at 500ms. The stiffness
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FIGURE 12

Distance from the initial point in different damping cases.

FIGURE 13

Comparisons of maximum displacement and recovery time for different experimental groups. (A) Comparison of maximum displacement.
(B) Comparison of recovery time.

coefficient K was set at 500, and the fixed damping coefficient D was
set at 100, 200, 290, 400, and 600, respectively. That is to say, there
were five experiment groups to compare with the reinforcement
learning result. As shown in Figure 7, when D was 290 as shown by
the green solid line, the maximum displacement was 0.11 m and it
could return to the initial position within 2.2 s. This value could be
seen as the critical virtual damping of the load system. When D was
100 or 200, the system was in an underdamped state. It was in the
overdamped state when D was 400 or 600. In the underdamped state,
taking D = 100 as an example, shown by the light blue dotted line,
the maximum displacement was 0.18 m, which was 0.07 m greater
than the maximum displacement of critical damping. It could return
to the initial position within 1.5 s. However, the load still had speed
and failed to stop. It moved to the reverse maximum position and
then moved back. In this way, the oscillation in relation to the initial
position occurred repeatedly. Furthermore, it was unable to return
to the initial position or stop within 2.5 s. When the load was in the
overdamping state, taking D = 600 as an example, shown by the black
dotted line, the maximum displacement after impact was 0.065 m,
which was less than the maximum displacement of critical damping

by 0.045 m and far less than the maximum displacement of under
damping by 0.115 m. The load recovered very slowly because of the
excessive damping. It moved towards the initial position during the
recovery phase, but could not stop at the initial point within the
specified time. There was still a position deviation of 0.015 m at 2.5 s.

The trajectory generated by the reinforcement learning algorithm
is shown by the red solid line. The portion of the trajectory where the
load started to deviate from its initial position after impact completely
coincided with the overdamping case (D = 600), which indicates that
the maximum damping was selected in the early stage to minimize
displacement. When the impact weared off, the load began to return
to its initial position after reaching maximum displacement under
the virtual restoring force. For this process, the damping coefficient
of reinforcement learning first decreased and then rose, so that the
load could move towards the initial position quickly and try to stop
at the initial point without overshooting. It can be seen from the
red solid line that the load returned to the initial position within
1.7 s and finally remained stable, indicating the rapidity, stability,
and recoverability of impact resistance. The variable damping control
method took advantage of the small displacement deviation of the
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large damping case and the fast return of the small damping case.
Compared with the critical damping case (D = 290) with better
control effect in fixed damping, the maximum displacement of the
reinforcement learning method reduced by 40.9% and the time to
return to the original position shortened by 22.7%. Therefore, the
variable damping control method met the requirements for impact
resistance and pose maintenance.

3.2. Variable damping control results of
end load

In order to evaluate the training results of reinforcement
learning and solve the impact resistance problem subjected to three-
dimensional impact, relative tests were carried out. According to
Figure 4, the variable damping control method based on Q-learning
was adopted for the dimension along the displacement direction,
recorded as controller Y. The fixed damping control method was
adopted for the dimension in vertical to displacement direction,
recorded as controllerX. Based on the orthogonal decoupling method
for three-dimensional impact, four simulation experiments were
designed. In these groups, the damping factor in the direction of
vertical displacement X was set to a fixed value (Dx = 600), and
the stiffness coefficient along the direction of displacement Y was
set to 500. The damping coefficients were selected depending on
the underdamping case, critical damping case, overdamping case,
and variable-damping case. The corresponding values were recorded
as 100, 290, 600, and Q-learning. The damping coefficient of the
Q-learning method was variable. In these experiments, the velocity
and displacement were not in the same straight line after the three-
dimensional impact. Three components of the impact along YZX
directions were continuously applied to the load within the first 1.5s.
Each magnitude of the impact force was set at 100N and the duration
time was 500ms. The results of different controllers were compared
and analyzed.

Figure 8 indicates the displacement variance in XYZ directions
after a three-dimensional impact. The solid red, blue, and green
lines represent the trajectory changes in YZX directions, respectively.
Taking Figure 8A as an example, only after the impact force
was exerted in the appropriate direction did the corresponding
displacement occur. At the starting time, the impact force was applied
in the Y direction and the corresponding solid red line rose. The
impact force in the Y direction disappeared after 0.5 s. At the
time of 0.5 s, the impact force in the Z direction was exerted and
disappeared after 0.5 s. The blue solid line kept rising. Similarly,
the impact force in the X direction was applied during 1.0–1.5s,
and the green solid line began to creep up. Comparing Figures 8A–
D, it can be seen that the displacement change in the Y direction
was the largest, of 0.18, 0.11, 0.065, and 0.065 m, respectively. They
were consistent with the displacement change of the load after the
unidirectional impact. The deviation from the initial position of the
variable damping method after suffering an impact was the smallest.
Comparing the X and Z directions, when in underdamping case
(D = 100), there was an oscillation in the X direction. When in
overdamping case (D = 600), it failed to return to the initial position
in both X and Z directions within 3.0 s. When in the critical damping
situation (D = 290), it took 3.0 s to return to the initial position.
When in the variable damping case (Q-learning), it returned to the
starting point within 2.3 s. The variable damping case took the least
time to return.

The space motion trajectories generated by four experimental
groups were compared, and the results are illustrated in Figure 9.
Point O denotes the initial position of the load. The green straight
line with an arrow represents the XYZ directions. The movement
trajectories of underdamping, critical damping, overdamping, and
variable damping control method are represented by green, yellow,
blue, and red solid lines, respectively. It can be seen that the load
was on point O at the initial time, and its motion trajectory was
an irregular curve in space. From the perspective of Figure 9, the
motion direction of the load was basically clockwise, according to the
green arrows of the curve. The load first moved along the direction of
increasing Y, then turned to the direction of increasing Z. After that
the load moved to the direction of increasing X. Finally, it moveD
back towards the origin point.

For each of the four motion trajectories, the maximum deviation
values in relation to the initial position during the whole process was
obtained. Taking this maximum displacement as the radius and the
initial position as the center point of a sphere, the spheres with the
maximal displacement under different controllers could be obtained.
The maximal displacement spheres of the four groups are shown
as the transparent surface, respectively, in Figure 9. The colors of
these spheres are the same as their motion trajectories. For better
comparison, only one-eighth of the maximal displacement sphere
for the main motion space is shown. Comparing these transparent-
colored surfaces, it could be observed that the smaller the damping
factor was selected, the larger the sphere was. The other three groups
of maximal displacement spheres were wrapped by the sphere (green
transparent sphere) with the underdamping case (D = 100). The
spheres of the overdamping case (D = 600) and variable damping case
(Q-learning) almost coincided.

For the motion on the underdamping condition (D = 600), it
could not stop immediately when the load returned to the initial
position, according to its motion trajectory formed by the green solid
line. However, it continued to move in the opposite direction through
the origin for a certain distance and then returned. It resulted in
oscillation in relation to the initial position. This corresponds to
the part of the green solid line formed before the original point O.
Combining the displacement curves in three directions in Figure 8A
further supports the existence of oscillation.

For the two conditions of overdamping (D = 600) and variable
damping (Q-learning), according to Figures 8C, D, the change
magnitude and trend of the load-displacement in three directions of
XYZ within 1.5s were basically the same. However, the load returned
to its original position faster on the condition of variable damping. It
could quickly return to the initial motion state within 2.3s and remain
stable. In contrast, on the condition of overdamping, the load could
not even return to the initial point within 3.0s. In terms of fast return,
the performance with fixed large damping was not ideal.

The maximal displacement of load and the time taken to return
to the original state after three-dimensional impact on four cases
were comprehensively compared. The maximum displacement can
serve as a good indicator of impact resistance stability. The impact
resistance and stability will be greater and better as this index’s
value decreases. The time taken to recover to the initial state can
be a good indicator of oscillation resistance. The less time required,
the more quickly it will return to the initial state and the stronger
its resilience will be. The maximal displacement on the variable
damping condition (Q-learning) was 0.089m, which was basically
consistent with the maximal displacement on the overdamping
condition (D = 600), which was less than the maximal displacement
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of 0.18 m and 0.11m in the underdamping case (D = 100) and
critical damping (D = 290) case. The values reduced by 50.6% and
19.1%, respectively, compared to the underdamping and critical
damping cases. The performance of the variable damping controller
was better. Moreover, the time taken to restore to the initial state
under the variable damping condition (Q-learning) was 2.3 s, which
was the least time consumed in the four groups. It was less than
the counterparts on the critical damping condition (D = 290) and
the overdamping condition (D = 600) with 3.1 and 5.2 s, which
reduced by 25.8% and 55.8%. On the condition of underdamping
(D = 100), the load could not return to its original position or remain
stable after impact. In this case, its recovery performance was the
worst. Therefore, according to the index comparison of the time
taken to return to the initial state, the variable damping controller
performed better in terms of a fast return. Based on the comparison
results, it can be seen that the system showed the best stability,
rapidity, and accuracy after suffering the impact under the variable
damping method based on Q-learning, which verifies the feasibility
and superiority of this method in impact resistance and position
maintenance.

3.3. Variable damping control results of
the robotic limbs

The simulation tests for the motion performance of the impact-
affected end of the load were carried out in combination with the
variable damping method and the dynamics of the robotic limb.
The load was the same as in the above tests and connected to the
robotic limb’s end to form a system of manipulating the load. The
load at the end of the robotic limb was subjected to external impact.
The force acted on the load centroid, whose components in the
XYZ axes were designed to be 30, 20, and 10 N. The duration time
was set at 300 ms. Based on the simulation conditions, the motion
performances of the robotic limb’s end under four different damping
controllers were compared. The experimental groups included three
fixed damping cases (D = 100, 290, and 600) and one variable
damping test based on the Q-learning algorithm. The four motion
trajectories and the projections in the XYZ directions of the end
load with respect to its initial position after impact are shown in
Figures 10, 11.

The trajectories corresponding to the four simulation conditions
were colored green, yellow, blue, and red. The origin O of the
coordinate system in the figure represents the initial position of the
end load, and the green straight lines with arrows represent the XYZ
directions. They were consistent with the directions of the spatial
absolute coordinate system. As shown in Figure 10, the end load
started to move in the impact direction of the green arrows after
the external impact force. Under the action of the restoring force,
it moved toward the initial position after reaching the maximum
displacement. Due to the underdamping case, the end load did not
directly stop at the initial position. However, it moved past the initial
position first and then returned, resulting in oscillation relative to the
initial position. Its movement sequence is shown as the serial number
from 1 to 5 in Figure 10. Yet on the other three conditions, the end
load did not oscillate when receiving the impact force.

The maximal displacement of the end load under different
conditions could be obtained in the same way as in section 3.2.
The envelope surface of the maximum displacement of the end load

is depicted in Figure 9 as the transparent surface. The maximal
displacement in the underdamping case (D = 100) was 0.042 m,
which was the largest. The counterpart in the variable damping case
(Q-learning) was 0.015 m and it was the smallest. By contrast, the
maximal displacement in the variable damping case was reduced by
64.3%. As shown in Figure 11, for the variable damping method, the
load could restore to the initial state faster without oscillation, in a
time of 1.65 s. However, for the condition of overdamping, the end
load could not return to the initial position within 1.65s and only
moved to point A. At this time, the distance between points O and
A was 0.006 m, accounting for 40.0% of the maximal displacement
in the whole process. Although the maximal displacement of the
end load for the overdamping test was the least, its ability to
return to the starting position was not strong. Compared with the
underdamping and overdamping cases, the maximal displacement
value and recovery time results of the critical damping case fell
somewhere in between. For the case of underdamping, oscillation
occurred and the load could not return to the initial position within
5 s, which was the maximal time designed for one single simulation
episode. Therefore, it was considered that the recovery time was too
long to meet the requirement for fast return, and the corresponding
indicators were not compared. Thus, comparing the recovery time
of the critical damping and variable damping cases, the former took
2.05 s and the latter only needed 1.65 s. The variable damping’s
recovery time was cut by 19.5%.

In order to compare the change of spatial distance with time
between the real-time position and its initial point. Distance from
the initial point under four different damping cases are shown in
Figure 12, whose values were calculated by Equation 8. The last
three conditions had a similar varying trend of distance, which first
increased and then reduced to zero. However, in the underdamping
case (D = 100), the trend changed periodically with amplitude
attenuation. The load oscillated relative to its initial position on this
condition. Compared to the other three cases, the variable damping
method had the minimal deviation distance and the shortest return
time. Furthermore, it could return directly to the initial position
without oscillation.

In terms of resistance to impact at the end of the robotic limb,
based on the above analysis, the end load with variable damping
controller based on the Q-learning algorithm could quickly return
to the initial position and stop after impact. During this process,
the variable damping case had the least maximal displacement and
minimal recovery time. It enabled the robotic limb to return fast and
prevent oscillation.

In order to further verify the effectiveness of the proposed
variable damping controller, experiments were carried out for
different external impacts. For experimental group I, the force
components in the XYZ axes were designed to be 30, 20, and 10 N.
The duration time was set as 300 ms. For experimental group II, the
force components in the XYZ axes were designed to be 50, 40, and
30 N. The duration time was set as 400 ms. For experimental group
III, the force components in the XYZ axes were designed to be 50, 50,
and 50 N. The duration time was set as 500 ms. Thus, the total impulse
of external impact in the three experiments was 11.2, 28.3, and
43.3 Ns. Four different damping control methods were tested in each
experimental group. The maximum displacement from the original
point and recovery time in each case were emphatically compared
and analyzed, as shown in Figure 13. As shown in Figure 13A, it can
be seen that the system’s maximum displacement was the least by the
variable damping method for the three different impacts. Compared
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with the maximum displacement values to the underdamping and
critical damping cases of all three experimental groups, the variable
damping system’s values were reduced by 39.3% and 62.1% on
average. The underdamping system oscillated and the overdamping
system could not stop within the specified time. Thus, for the recovery
time, only the critical damping and variable damping were compared,
as shown in Figure 13B. Compared with the critical damping method
for the three different impacts, the variable damping method’s return
time was cut by 17.7% on average.

4. Discussion

This paper studied the issue of providing impact-resisting
and position maintaining assistance for astronauts during EVA
without the help of the space station’s robotic arms. A wearable
robotic limb system was introduced to give astronauts extra arms,
which could help resist impact and maintain their position during
EVA. The impact-resisting requirements for astronauts during
EVA were analyzed. A variable damping controller based on the
reinforcement learning algorithm was proposed. The combination
system of an astronaut with robotic limbs was modeled and
simplified. Compared with the fixed damping control method,
the variable damping control method could meet all the impact-
resisting requirements well by itself. It had better performance
in preventing excessive deviation and exhibited fast return to the
starting point. Meanwhile, it also had the capability of preventing
oscillation and returning to the original position accurately. In
the end, the appropriate simulation environment was built, and
simulation experiments were conducted to confirm the method’s
rationality and viability.

However, there are still some limitations of the proposed method
that will affect the performance in real-world situation. First, the
weight of the astronaut and backpack was regarded as unchangeable
in the simulation process. However, the actual situation is that for
different astronauts, this value would slightly change. In order to
improve the applicability of the method, this parameter also needs
be taken as the input of the algorithm in further research. Second,
the simulation environment was used for method validation, which
is different from the real environment. It limits the experimental tests
of the proposed method in practical application. In the future, it is
necessary to set up a weightless experimental platform on the ground
to simulate the outer space environment. We should let wearers with
different weights carry out the relative tests to further verify the
feasibility of the proposed method.
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Active object recognition (AOR) provides a paradigm where an agent can capture

additional evidence by purposefully changing its viewpoint to improve the quality

of recognition. One of themost concerned problems in AOR is viewpoint planning

(VP) which refers to developing a policy to determine the next viewpoints of the

agent. A research trend is to solve the VP problem with reinforcement learning,

namely to use the viewpoint transitions explored by the agent to train the VP

policy. However, most research discards the trained transitions, which may lead to

an ine�cient use of the explored transitions. To solve this challenge, we present a

novel VP method with transition management based on reinforcement learning,

which can reuse the explored viewpoint transitions. To be specific, a learning

framework of the VP policy is first established via the deterministic policy gradient

theory, which provides an opportunity to reuse the explored transitions. Then, we

design a scheme of viewpoint transition management that can store the explored

transitions and decide which transitions are used for the policy learning. Finally,

within the framework, we develop an algorithm based on twin delayed deep

deterministic policy gradient and the designed scheme to train the VP policy.

Experiments on the public and challenging dataset GERMS show the e�ectiveness

of our method in comparison with several competing approaches.

KEYWORDS

active object recognition, viewpoint planning, deterministic policy gradient, twin delayed

deep deterministic policy gradient, viewpoint transition management, reinforcement

learning

1. Introduction

Visual object recognition has a wide range of applications e.g., automatic driving (Behl

et al., 2017), robotics (Stria and Hlavác, 2018), medical diagnostic (Duan et al., 2019),

environmental perception (Roynard et al., 2018), etc. Most recognition systemsmerely take a

single viewpoint image as input and produce a category label estimate as output (Jayaraman

and Grauman, 2019). It is prone to the recognition errors when the image can not provide

sufficient information. In contrast, the visual behavior of people is an active process so

as to more clearly perceive their surroundings. As shown in Figure 1, in daily life, people

can intelligently observe an object from different viewpoints to determine the identity of

the object. Similarly, if the viewpoint of an agent can be adjusted (e.g., mobile robots and
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FIGURE 1

An example illustrating the active preception process of people.

autonomous vehicles), more valuable information will be obtained

to boost the recognition performance.

As a branch of active vision (Parr et al., 2021), active object

recognition (AOR) (Patten et al., 2015; Wu et al., 2015; Potthast

et al., 2016; Van de Maele et al., 2022) is a typical technology

to realize the above idea, which aims to collect additional clues

by purposefully changing the viewpoint of an agent to improve

the quality of recognition. Andreopoulos and Tsotsos (2013) and

Zeng et al. (2020) review a series of classical AOR methods. One

of the most concerned problems in AOR is viewpoint planning

(VP) that refers to developing a policy to determine the next

viewpoints of the agent. In recent years, researchers mainly focus

on using reinforcement learning to solve the VP problem (Becerra

et al., 2014; Malmir et al., 2015; Malmir and Cottrell, 2017; Liu

et al., 2018a), namely to use the viewpoint transitions explored

by the agent to train the VP policy. Becerra et al. (2014) formally

define object recognition as a partially observable Markov decision

process problem and uses stochastic dynamic programming to

address the problem. As a pioneering work, Malmir et al. (2015)

provide a public AOR dataset called GERMS that includes 136

objects with different view images and develops a deep Q-learning

(DQL) system to learn to actively verify objects by using standard

back-propagation and Q-learning. In the same way, Liu et al.

(2018a) design a hierarchical local-receptive-field architecture to

predict object label and learns a VP policy by combining extreme

learning machine and Q-learning. Similar to Becerra et al. (2014),

AOR is also modeled as a partially observable Markov decision

process by Malmir and Cottrell (2017). The difference is that

a belief tree search is built to find near-optimal action values

which correspond to the next best viewpoints. These VP methods

explore discrete viewpoint space, which may introduce significant

quantization errors. Hence, Liu et al. (2018b) present a continuous

VP method based on trust region policy optimization (TRPO)

(Schulman et al., 2015) and adopts extreme learning machine

(Huang et al., 2006) to reduce computational complexity. It shows

a promising result on the GERMS dataset compared to the discrete

VPmethods. However, due to the on-policy characteristic of TRPO,

the trained viewpoint transitions will be discarded by the agent,

which may lead to an inefficient use of the explored transitions.

The deterministic policy gradient theory (Silver et al., 2014)

is proposed for reinforcement learning with continuous actions

and introduces an off-policy actor-critic algorithm (OPDAC-

Q) to learn a deterministic target policy. Lillicrap et al. (2015)

present a deep deterministic policy gradient (DDPG) approach

that combines deterministic policy gradient with DQN (Mnih

et al., 2013, 2015) to learn policies in high-dimensional continuous

action spaces. Fujimoto et al. (2018) contribute a mechanism

that takes the minimum value between a pair of critics in the

actor-critic algorithm of Silver et al. (2014) to tackle the function

approximation errors. The deterministic policy gradient theory has

been widely applied in various fields, such as electricity market

(Liang et al., 2020), vehicle speed tracking control (Hao et al., 2021),

fuzzy PID controller (Shi et al., 2020), quadrotor control (Wang

et al., 2020), energy efficiency (Zhang et al., 2020), and autonomous

underwater vehicles (Sun et al., 2020; Wu et al., 2022). However, to

our best knowledge, it has never been employed in the AOR task.

In this work, we present a novel continuous VP method

with transition management based on reinforcement learning.

This method can efficiently use the explored viewpoint transitions

to learn the continuous VP policy. Concretely, a learning

framework of the continuous VP policy is established using

the deterministic policy gradient theory, which provides an

opportunity to reuse the explored transitions owing to the off-

policy characteristic of the theory. Then, we design a scheme

of viewpoint transition management that can store the explored

transitions and decide which transitions are used for the

policy learning. The scheme is implemented by introducing and

improving the prioritized experience replay technology (Schaul

et al., 2016). The improvements include: (1) We improve the

estimation approach of temporal difference (TD) error with the

clipped double Q-learning algorithm (Fujimoto et al., 2018) so as to

adapt to our continuous VP framework. (2) We utilize importance-

sampling to correct the estimation bias of TD error produced by

the prioritized replay. Finally, within the framework, we develop an

algorithm based on twin delayed deep deterministic policy gradient

(TD3) (Fujimoto et al., 2018) and the designed scheme to train the

continuous VP policy. Experimental results on the public dataset

GERMS demonstrate the effectiveness of the proposed VP method.

Frontiers inNeurorobotics 02 frontiersin.org131

https://doi.org/10.3389/fnbot.2023.1093132
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Sun et al. 10.3389/fnbot.2023.1093132

The key contributions of this work are

• A novel continuous VP method with transition management

for AOR is presented to solve the problem of inefficient use of

the explored viewpoint transitions in the existing continuous

VP method.

• We establish a learning framework of the continuous VP

policy via the deterministic policy gradient theory.

• A scheme of viewpoint transition management is designed,

which is implemented by introducing and improving the

prioritized experience replay technology.

• We develop an algorithm based on twin delayed deep

deterministic policy gradient and the designed scheme to train

the continuous VP policy.

The rest of this paper is structured as follows: Section 2

formulates the VP problem. Section 3 details the proposed

framework for the solution of the problem. Finally, the

implementation and experimental results, as well as conclusions

are further provided in Sections 4, 5.

2. Problem definition

An AOR system mounted on an automatic mobile agent allows

the agent to identify an object by dealing with the images captured

from different viewpoints. Suppose at the initial time t = 0, an

object to be identified is given from an object library containing

M objects and the agent captures an image I80 from the initial

viewpoint 80. The classifier C(·) in the AOR system will give a

probability prediction C(I80 ) of the object according to the image

I80 . C(I80 ) is aM dimensional vector where every element denotes

recognition probability of different objects in the library. When the

prediction is uncertain [i.e., the maximum probability in C(I80 ) is

less than the preset threshold], the agent will move to explore more

viewpoints to improve recognition performance. This requires the

system plans a relative movement action at for the agent to obtain a

new viewpoint 8t+1 = 8t + at . The new image I8t+1 captured

from the viewpoint 8t+1 will be used for the recognition again.

This process is repeated several times until a stop condition (e.g.,

planning up to Tmax time steps or reaching the preset probability

threshold) is reached.

An undesirable planning action may make it difficult for the

agent to capture useful images for recognition. Therefore, we need

to find an effective VP policy for the AOR system. For this purpose,

the VP problem is considered as a reinforcement learning paradigm

which can be formulated as a Markov decision process. The process

is described with a six-element tuple < S,A, r,P , γ , u >.

• S represents a set of continuous states in which each state

s is produced by the predictions of corresponding images

captured from different viewpoints.

• A is a set of continuous actions which are determined by the

agent. Each action a in the set is used for the agent to get a new

viewpoint.

• r : S×A→R is a reward function designed to evaluate the

quality of selecting a viewpoint.

• P : S×A×S→[0, 1] denotes the transition probability. It

describes the possibility of transferring to the subsequent state

s, after the action a is selected in the state s.

• γ ∈ [0, 1] is a discount factor used to adjust the attention

between present and future rewards.

• u : S→A is a deterministic continuous VP policy [i.e., a =

u(s)] that can generate an action for the agent to get a new

viewpoint in a certain state.

The VP problem is transformed to solve the optimal policy u∗

in the setting of reinforcement learning.

3. Method

3.1. Overview

In reinforcement learning, the optimal policy u∗ can be

achieved by maximizing the expected return over all episodes. At

any time step t of each episode, with a given state st∈S, the agent

plans an action at∈A according to its current policy u (at = u(st)),

receiving a reward r(st , at) and the new state st+1∼P(st+1|st , at).

((st , at , rt , st+1) is called the viewpoint transition in the AOR

task.) The return is defined as the cumulative discounted reward
∑T

i=t γ
i−tr(si, ai) where T is the end time step of planning. Let

Qu(st , at) be the expected return when performing action at in state

st under the policy u. Q
u(st , at) is defined as

Qu(st , at) = E
st+1∼P(st+1|st ,at)

[

T
∑

i=t

γ i−tr(si, ai)|st , at] (1)

which is known as the action value function. u∗ can be solved by

maximizing the expected value of Equation (1) over the whole state

space

u∗ = max
u

Est∼d(·)[Q
u(st , at)|at = u(st)] (2)

where d(·) is the state probability density of Markov decision

process in steady state distribution (Bellemare et al., 2017).

We assume the deterministic continuous VP policy u is

parameterized by θ and denote it as u(s; θ). Naturally, Equation

(2) can be transformed to an optimization with respect to θ that

maximize the objective

J(θ) = Est∼d(·)[Q
u(st , at)|at = u(st; θ)]. (3)

To solve the optimization of Equation (3), the deterministic

policy gradient theory (Silver et al., 2014) is introduced to iteratively

update the parameters θ by taking the gradient of Equation (3)

▽θ J(θ) = Est∼d(·)[▽θu(st; θ)▽aQ
u(st , at)|at = u(st; θ)]. (4)

We utilize (Equation 4) as a framework to learn the optimal

deterministic continuous VP policy u(st; θ
∗) for AOR. The reason

why this framework can reuse the explored viewpoint transitions

is the off-policy characteristic of the deterministic policy gradient
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FIGURE 2

The pipeline of active object recognition based on deterministic continuous viewpoint planning. The deterministic policy gradient theory (Silver et al.,

2014) is introduced to build a framework of continuous viewpoint planning. We design a scheme of viewpoint transition management to store and

replay the explored viewpoint transitions. Within the framework, we develop an algorithm based on TD3 (Fujimoto et al., 2018) and the scheme to

train the VP policy network. During the training, the agent stores the explored viewpoint transition (st, at, rt, st+1) in the viewpoint transition bu�er and

samples a mini-batch transitions from it to train the VP policy network at each time step.

theory, i.e., the viewpoint transitions explored by any policy can be

used for the calculation of the gradient in Equation (4), because the

gradient is only related to the distribution of state st (Silver et al.,

2014). The pipeline of our AOR is shown in Figure 2 where the VP

policy u(st; θ) is represented by a three-layer fully-connected neural

network with the parameters θ . The policy network u(st; θ) takes a

state st as input and outputs a deterministic action at = u(st; θ).

In the following, the representations of state st and reward function

r(st , at) will be elaborated. Additionally, we will design a scheme of

viewpoint transitionmanagement and develop a training algorithm

based on twin delayed deep deterministic policy gradient (TD3)

(Fujimoto et al., 2018) and the scheme for the learning of u(st; θ
∗)

within the framework.

3.2. Recognition state

As shown in Figure 2, we first use a convolutional neural

network (CNN) model to extract features from the captured image

I8t and then recognize the concerned objects with a softmax layer

added the top of the CNNmodel. The CNNmodel and the softmax

layer constitute a classifier C(·) which is pre-trained with the images

from different viewpoints of the concerned objects. The parameters

of the classifier are fixed when training the VP policy network. The

classifier outputs a belief vector C(I8t ) where every element denotes

recognition probability of different objects. The oth element in

the vector is represented as P(o|I8t ) where o = 1, 2, ...,M is

the object label. The recognition state st is a posterior probability

distribution over different objects at time step t, which is produced

by the captured images. It is also expressed as a vector where the

oth element is P(o|I80 , I81 , ..., I8t ), o = 1, 2, ...,M. According to

naive Bayes (Paletta and Pinz, 2000), P(o|I80 , I81 , ..., I8t ) is given

as

ξtP(o|I8t )P(o|I80 , I81 , ..., I8t−1 ) (5)

where ξt is a normalizing coefficient.

3.3. Reward function

Reward function r(st , at) (denoted as rt for simplicity) is used

to evaluate the quality of selecting a viewpoint. As described

in Section 3.2, state is a posterior probability distribution over

different objects. The flatter the distribution is, the stronger

the recognition uncertainty is. To quantify the uncertainty,

information entropy (Zhao et al., 2016; Liu et al., 2018b) is

utilized and the uncertainty in state st is denoted as H(st) =

−
∑

o P(o|I80 , I81 , ..., I8t ) log P(o|I80 , I81 , ..., I8t ). The purpose of

AOR is to reduce the uncertainty of recognition through viewpoint

planning. Therefore, we can design the reward function according

to the change of uncertainty before and after viewpoint selection.

The resulting reward function is

rt =











−1, ôt+1 6= o∗

0, ôt+1 = o∗,H(st+1) ≥ H(st)

1, ôt+1 = o∗,H(st+1) < H(st)

(6)

where o∗ is the object label and ôt+1 =

argmaxoP(o|I80 , I81 , ..., I8t+1 ) is the predicted result. When

the predicted result is right (ôt+1 = o∗) and the uncertainty is

reduced (H(st+1) < H(st)), it indicates that this viewpoint selection
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FIGURE 3

The relationship between the six networks. The TD target ŷ is estimated with the target value function network 1 and 2 using our clipped double

Q-learning and bias correction based algorithm (Equation 12), which is used to update the value function network 1 and 2. With the gradient of

Q(st, at;ω1) to a, the policy network is updated with Equation (13). Three target networks (u(st; θ
−),Q(st, at;ω

−
1 ),Q(st, at;ω

−
2 )) adopt soft updates

according to their corresponding evaluation networks (u(st; θ ),Q(st, at;ω1),Q(st, at;ω2)).

is valuable for recognition. On the contrary, other situations mean

that this viewpoint selection is not good.

3.4. Viewpoint transition management

The agent can obtain a transition (st , at , rt , st+1) after a

viewpoint selection and use it for the learning of the continuous

VP policy. In the TRPO-based VP method (Liu et al., 2018b),

the obtained viewpoint transitions will be discarded after they are

trained due to the on-policy characteristic of TRPO. It leads to

a low efficient use of the obtained transitions. In our work, the

deterministic policy gradient theory (Silver et al., 2014) allows the

agent to reuse the obtained transitions. Therefore, to make full use

of the obtained viewpoint transitions, the experience replay (ER)

(Lin, 1992; Schaul et al., 2016) technology is adopted and improved

to implement a scheme of viewpoint transition management.

The scheme includes viewpoint transition storage and viewpoint

transition reuse.

3.4.1. Viewpoint transition storage
To store the obtained viewpoint transitions, we build a

viewpoint transition buffer with a capacity of K in the light of Lin

(1992) and Schaul et al. (2016). K is generally within 104 ∼ 106.

Once the buffer is full of transitions, the old ones will be replaced

by the newly generated transitions.

3.4.2. Viewpoint transition reuse
The key of viewpoint transition reuse is to decide which

transitions to reuse. Lin (1992) adopt a uniform sampling strategy

that means the sampling probability of each transition in the buffer

is the same. However, those transitions with greater temporal

difference (TD) errors are obviously more surprising to the agent

and should be sampled with a higher probability (Schaul et al.,

2016). Hence, Schaul et al. (2016) present a prioritized experience

replay (PER) technology that can quantify the surprising level

(priority) of each transition by the TD error and convert the priority

into the corresponding sampling probability. Here, we employ the

PER technology to sample the viewpoint transitions in the buffer.

Concretely, the probability of sampling the ith stored viewpoint

transition is given as

P(i) =
pλ
i

∑K
l=1 p

λ
l

(7)

where pλ
i > 0 is the priority of the ith transition. The exponent

λ indicates how much prioritization is used, with λ = 0
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corresponding to the uniform case. Proportional prioritization is

defined with

pi = |δ̂i| + ǫ (8)

where δ̂i is the TD error of the ith transition and ǫ is a small

positive value that prevents transitions with error of 0 from not

being sampled. The estimation of TD error in PER is based on the

double DQN algorithm (Mnih et al., 2015).

δ̂i = r
(i)
t + γQ(s

(i)
t+1, argmaxaQ(s

(i)
t+1, a;ω);ω

−)− Q(s
(i)
t , a

(i)
t ;ω)

(9)

where Q(st , at;ω) and Q(st , at;ω
−) are value function network

and target value function network respectively. However, it is only

applicable to discrete viewpoint planning, not to our continuous

case. Inspired by Fujimoto et al. (2018), we improve the estimation

method of TD error with the clipped double Q-learning algorithm

so as to adapt to our deterministic continuous VP framework. The

improved TD error is

δ̂i = |ŷ
(i)
t − Q(s

(i)
t , a

(i)
t ;ω1)| + |ŷ

(i)
t − Q(s

(i)
t , a

(i)
t ;ω2)| (10)

where ŷ
(i)
t = r

(i)
t +γ minj=1,2 Q(s

(i)
t+1, u(s

(i)
t+1; θ

−);ω−j ) is TD target.

Q(st , at;ω1) and Q(st , at;ω2) are two value function networks, and

Q(st , at;ω
−
1 ) and Q(st , at;ω

−
2 ) are their corresponding target value

function networks. u(st; θ
−) is the target policy network. These

networks will be elaborated in the next subsection.

In addition, we find that the estimation of TD error is

biased due to the prioritized sampling. It is known that Bellman

optimality equation (Sutton and Barto, 2018) is Q(st , at) =

Est+1∼P(st+1|st ,at)[rt + γ maxa Q(st+1, a)] where yt = rt +

γ maxa Q(st+1, a) is TD target. Obviously, the distribution st+1 ∼

P(st+1|st , at) is changed by using the prioritized sampling, which

introduces bias to the estimation of the expected value Q(st , at).

Thus, we correct the bias with importance-sampling weight

ρ = P

D
where D is the new distribution of st+1 generated

due to the use of prioritized sampling. Then Bellman optimality

equation is transformed to Q(st , at) = Est+1∼D(st+1|st ,at)[ρ(rt +

γ maxa Q(st+1, a)] where ρ(rt+γ maxa Q(st+1, a) is TD target with

bias correction denoted as ycorrt . And TD error is transformed to

δ = ycorrt − Q(st , at). Similar, in our scheme, the importance-

sampling weight of the ith viewpoint transition in the buffer is

ρi =
1

K · P(i)
(11)

whereK is the capacity of the buffer. Our clipped double Q-learning

based TD error and TD target are corrected as

δ̂corri = |ŷ
corr(i)
t − Q(s

(i)
t , a

(i)
t ;ω1)| + |ŷ

corr(i)
t − Q(s

(i)
t , a

(i)
t ;ω2)|

ŷ
corr(i)
t = ρi(r

(i)
t + γ min

j=1,2
Q(s

(i)
t+1, u(s

(i)
t+1; θ

−);ω−j )).

(12)

To avoid expensive sweeps over the entire viewpoint transition

buffer, priorities are only updated for the transitions that are

Input: Parameters: σ1,N, σ2, c,β , d,α, τ ,K

Output: θ

1 Initialize the value function networks

Q(st , at;ω1),Q(st , at;ω2), and the VP policy network

u(st; θ) with random parameters ω1,ω2, θ

2 Initialize the target networks

ω−1 ← ω1,ω
−
2 ← ω2, θ

− ← θ

3 Initialize the viewpoint transition buffer B

with the capacity K

4 for t = 1 to T do

5 Run a behavioral policy with exploration noise

to select an action ãt ∼ u(st; θ)+ ǫ1, ǫ1 ∼ N (0, σ1)

and receive a reward rt and a new state st+1

6 Store the transition tuple (st , ãt , rt , st+1) in B

with maximal priority

7 for i = 1 to N do

8 Sample transitions (s
(i)
t , ã

(i)
t , r

(i)
t , s

(i)
t+1) from the

buffer B: i ∼ P(i) =
pλ
i

∑K
l=1 p

λ
l

(Equation 7)

9 Compute importance-sampling weight ρi

(Equation 11)

10 Estimate the corrected TD targets ŷ
corr(i)
t

using Equation (12)

11 Compute ãt+1 = u(st+1; θ
−)+ ǫ2, ǫ2 ∼ clip(N (0, σ2),−c, c)

according to the smoothing regularization

of TD3 (Fujimoto et al., 2018)

12 Estimate the corrected TD error δ̂corri

(Equation 12)

13 Update transition priority using Equation

(8)

14 Update the value function networks by

optimizing the objective (Equation 14):

ωj = ωj − β▽ωj J(ωj)

15 if t%d == 0 then

16 Update the policy network using the gradient

(Equation 13):

θ = θ + α 1
N

∑N
i=1[ρi ·▽θu(s

(i)
t ; θ)▽aQ(s

(i)
t , u(s

(i)
t ; θ);ω1)]

17 Update the target networks:

18 ω−j = τωj + (1− τ )ω−j

19 θ− = τθ + (1− τ )θ−

20 return θ

Algorithm 1. Training the deterministic continuous VP policy

network.

sampled according to Schaul et al. (2016). In addition, the new

transitions will be put in the buffer with maximal priority in order

to guarantee that all transitions are seen at least once.

3.5. Training the policy network

In this section, we resort twin delayed deep deterministic

policy gradient (TD3) (Fujimoto et al., 2018) and the scheme

designed in Section 3.4 to develop a training algorithm for
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the solution of the optimal VP policy parameters θ∗. To this

end, we use the gradient (Equation 4) to iteratively update θ :

θ = θ + α▽θ J(θ). α is the learning rate. The core task

is to solve the gradient ▽θ J(θ). We therefore employ Monte

Carlo method to replace the expected operator in Equation

(4) in an approximate manner. Specifically, we sample N

transitions from the viewpoint transition buffer using Equation (7)

to calculate

▽θ J(θ) ≈
1

N

N
∑

i=1

[ρi · ▽θu(s
(i)
t ; θ)▽aQ

u(s
(i)
t , u(s

(i)
t ; θ))]. (13)

According to TD3, we approximately represent the value

function Qu(st , at) in Equation (13) by a three-layer fully-

connected neural network Q(st , at;ω) with the parameters ω.

The network takes the state st and the action at as input and

outputs the function value Q(st , at;ω). By updating the parameters

ω, the value function corresponding to the VP policy u can

be obtained.

In order to better train the policy network u(st; θ), we

follow TD3 to build six neural networks in total: policy network

u(st; θ), value function network 1 Q(st , at;ω1), value function

network 2 Q(st , at;ω2) and their corresponding target networks

[target policy network u(st; θ
−), target value function network 1

Q(st , at;ω
−
1 ), target value function network 2 Q(st , at;ω

−
2 )]. After

the training, the policy network u(st; θ) is the optimal deterministic

continuous VP policy we want. The other networks only serve

as auxiliary training. Figure 3 shows the relationship between the

six networks.

The value function networks can be updated with the

aforementioned N samples by minimizing the objective

L(ωj) =
1

2N

N
∑

i=1

(ŷ
corr(i)
t − Q(s

(i)
t , a

(i)
t ;ωj))

2 (14)

where j is 1 or 2. ŷcorrt is the corrected TD target proposed in

Equation (12).

Our whole algorithm to train the deterministic continuous VP

policy network is summarized in Algorithm 1. Once the optimal

parameters θ∗ are obtained after the training, we can use them

for the practical AOR task. Given a state st , the planned action

is a∗t = u(st; θ
∗), and the next best viewpoint of the agent is

8t+1 = 8t + a∗t .

4. Experiments

This section first provides details about the experimental

dataset and implementation, and then reports the experimental

results along with some analyzes.

4.1. Dataset and metric

We evaluate our proposed deterministic continuous VP

method on the public and challenging dataset GERMS (Malmir

et al., 2015) shown in Figure 4A which is collected in the context

of developing robots to interact with toddlers in early childhood

education environments. The dataset has 1,365 video tracks of

give-and-take trials using 136 different object instances. The

object instances are soft toys denoting a wide range of disease-

related organisms, microbes and human cell types. Each video

track records a robot grasping an object instance to its center

of view, rotating the object by 180◦ with its left or right arm,

and then returning it. All video tracks were recorded by a

head-mounted camera of the robot at 30 frames/s, as shown

in Figure 4B. At the same time, the joint position and object

label corresponding to each frame image were also recorded

in each track. These joint positions provide an opportunity

for verifying different VP methods in one dimensional action

space. The dataset authors specified the image subsets of all

tracks as train and test set, as shown in Table 1. The evaluation

metric used for different VP methods is recognition accuracy

that is the average value of the entire test set. The higher the

recognition accuracy is, the better the corresponding VP method

will be.

FIGURE 4

The GERMS dataset. (A) One hundred and thirty six object instances. (B) Recorded images of di�erent joint positions in each track.
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4.2. Implementation details

4.2.1. Network architecture
The Tensorflow platform is used to implement the proposed

method in this work. In the pre-trained classifier, we transform

every image in the GERMS dataset into a 4,096-dimensional

feature vector using an existing CNN model VGG-net provided

by Malmir et al. (2015). The softmax layer has 136 neurons.

For the policy network u(st; θ), the dimensions of each layer

are 136, 512, 512 and 1. The activation functions of the two

hidden layers are both relu. The output layer adopts tanh

activation function, which is multiplied by 512 so as to make

the planned relative VP action in [−45◦, 45◦]. For the two

value function networks (Q(st , at;ω1) and Q(st , at;ω2)), they

have the same network structure with the dimensions of each

layer are 137, 512, 512 and 1. The activation functions of

the two hidden layers are also relu. The configuration of

their corresponding target network is completely consistent

with theirs.

4.2.2. Viewpoint transition management
The capacity of the viewpoint transition buffer is 106. ǫ and

the exponent λ are set as 0.01 and 0.6 according to the original

setting of PER (Schaul et al., 2016). To efficiently sample from

distribution (Equation 7), we use a “sum-tree” (Schaul et al., 2016)

TABLE 1 GERMS dataset statistics (mean ± std).

Images/track Number
of tracks

Images/track Total
number
of images

Train 816 157± 12 76,722

Test 549 145± 19 51,561

in which every node is the sum of its children and the leaf nodes

are priorities. The sum-tree can be efficiently updated and sampled

from.

4.2.3. Training
The reward discount factor γ is 0.95. The minibatch size N

is 128. The maximum step Tmax for recognition is Tmax = 12

and the preset probability threshold is 0.99. The Adam optimizer

(Kingma and Ba, 2014) is utilized to optimize the policy network

and the value function networks. The learning rates are 0.0001,

0.001, and 0.001, respectively. The standard deviations (σ1 and σ2)

of the exploration noise and smoothing regularization are 128 and

32. c is 512. The delayed update cycle d and soft update τ are 2

and 0.01.

FIGURE 6

The average entropy over the whole test dataset. The experiment is

implemented with our VP model.

FIGURE 5

Performance comparison between our presented deterministic continuous VP approach and several competing methods. The shaded region

represents the standard deviation of the average evaluation over 10 trials.
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FIGURE 7

An example of actively identifying an object by our VP method. The recognition belief increases with the increase of the number of viewpoint

planning.

FIGURE 8

The performance comparison results of ablation experiments. K represents the capacity of the viewpoint transition bu�er. The shaded region

represents the standard deviation of the average evaluation over 10 trials.

4.3. Results and analyzes

4.3.1. Comparison with competing methods
To validate the effectiveness of our proposed deterministic

continuous VP method in this experiment, we compare

our proposed method with the following baseline and

competing methods.

4.3.1.1. Single viewpoint recognition

Single viewpoint recognition only allows the agent to recognize

an object from one viewpoint.

4.3.1.2. Blind VP policies

Random policy (Liu et al., 2018a) randomly selects an

action from the continuous action space [−45◦, 45◦] with

a uniform probability. Sequential policy (Liu et al., 2018a)

moves the agent to the next adjacent viewpoint in the

same direction. The reason why these two baseline policies

are called blind VP policies is that they do not use the

previous observation information for purposeful viewpoint

planning. The blind policies may produce worthless viewpoints

for recognition.

4.3.1.3. Purposeful discrete VP policy

DQL policy (Malmir et al., 2015; Malmir and Cottrell,

2017) develops an active discrete VP method with deep Q-

Learning algorithm, which explores in the discrete action space

{± π
64 ,±

π
32 ,±

π
16 ,±

π
8 ,±

π
4 }.
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FIGURE 9

Performance comparison between our sampling strategy and uniform sampling strategy. The capacity of the viewpoint transition bu�er is 106. The

shaded region represents the standard deviation of the average evaluation over 10 trials.

4.3.1.4. Purposeful continuous VP policy

TRPO policy (Liu et al., 2018b) utilizes trust region policy

optimization (Schulman et al., 2015) to learn a continuous VP

policy and adopts extreme learning machine (Huang et al., 2006)

to reduce computational complexity. This policy has on-policy

characteristic that means the agent can not reuse learned viewpoint

transitions for efficient training.

Since the main focus of this work is viewpoint planning, we do

not investigate the impact of classifiers on recognition performance.

Therefore, for a fair comparison, the classifiers in different

approaches are the same in the experiment. Figure 5 reports the

experimental results of our method against other approaches

over 10 random seeds of the policy network initialization.

Some observations from Figure 5 are presented as follows: (1)

Viewpoint planning can greatly improve recognition performance.

The number of VP is 0 that means the agent recognizes

the concerned object with a single viewpoint. Obviously, the

recognition accuracy of single viewpoint recognition policy is far

lower than that of the methods which perform multi viewpoint

recognition via VP. This is because more object information

with difference can be found through VP to reduce recognition

uncertainty, thus improving the recognition performance. As

shown in Figure 6, the uncertainty of recognition decreases as the

number of viewpoints increases. Figure 7 shows the process of

actively identifying an object. (2) The performance of the blind

VP policies is nowhere near as good as that of the purposeful VP

policies. The primary reason is that the purposeful VP policies

(i.e., DQL policy, TRPO policy and our policy) can purposefully

plan next viewpoints according to the observed information. (3)

The continuous VP policies have better performance than the

discrete VP policy. That is because the continuous VP policies

(i.e., TRPO policy and our policy) directly explore continuous

viewpoint space without sampling, so they will not miss some

important viewpoints. (4) The performance of our deterministic

continuous VP policy exceeds that of TRPO policy. This is mainly

because we design a scheme of viewpoint transition management

that can reuse the obtained viewpoint transitions to improve the

training effect.

4.3.2. Ablation studies
To verify the importance of different components in our

proposed VP model, we intend to conduct the variant experiments

with the ablation of different components, i.e., viewpoint transition

management (VTM) and bias correction (BC). Training the model

without VTM and BC are respectively denoted as Ours-woVTM

and Ours-woBC. From the presented results over 10 random seeds

in Figure 8, we can notice that: (1) The performance of Ours-

woVTM is the worst. It illustrates that our designed scheme of

viewpoint transition management indeed enhances the training

effect. (2) The performance of Ours-woBC is inferior to that of

Ours, especially when the capacity K of the viewpoint transition

buffer is large. This is because when the capacity is larger, the

distribution of st+1 in the buffer is closer to its true distribution.

In this case, the effect of our bias correction based on importance

sampling will be more obvious.

4.3.3. Sampling strategies investigations
To verify the superiority of our proposed sampling strategy

(i.e., prioritized experience replay based on clipped double Q-

learning and bias correction) in the scheme of viewpoint transition

management, we conduct comparison experiments with the

uniform sampling strategy (Lin, 1992) over 10 random seeds. As

shown in Figure 9, we observe that our sampling strategy achieves

a better performance, since the importance of each viewpoint

transition is ignored by the uniform sampling strategy.

5. Conclusions

In this paper, a continuous viewpoint planning method

with transition management is proposed for active object
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recognition based on reinforcement learning. Specifically, we

employ deterministic policy gradient theory to build a learning

framework of the viewpoint planning policy. We also design a

scheme of viewpoint transition management that can store and

reuse the obtained transitions. We develop an algorithm based on

twin delayed deep deterministic gradient and the designed scheme

to train the policy. Experiments on a public dataset demonstrate

the effectiveness of our method. In the future, we will integrate

the calibrated probabilistic classifiers in AOR research. As stated

in Popordanoska et al. (2022), the way the posterior probability

distribution is defined in our work assumes that the classifier is

properly calibrated, i.e. the softmax output represents the correct

error rate probabilities. In general, this is not necessarily the case.
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This paper proposes a self-learning Monte Carlo tree search algorithm (SL-MCTS),

which has the ability to continuously improve its problem-solving ability in single-

player scenarios. SL-MCTS combines the MCTS algorithm with a two-branch

neural network (PV-Network). The MCTS architecture can balance the search

for exploration and exploitation. PV-Network replaces the rollout process of

MCTS and predicts the promising search direction and the value of nodes, which

increases theMCTS convergence speed and search e�ciency. The paper proposes

an e�ective method to assess the trajectory of the current model during the self-

learning process by comparing the performance of the current model with that

of its best-performing historical model. Additionally, this method can encourage

SL-MCTS to generate optimal solutions during the self-learning process. We

evaluate the performance of SL-MCTS on the robot path planning scenario. The

experimental results show that the performance of SL-MCTS is far superior to

the traditional MCTS and single-player MCTS algorithms in terms of path quality

and time consumption, especially its time consumption is half less than that of

the traditional MCTS algorithms. SL-MCTS also performs comparably to other

iterative-based search algorithms designed specifically for path planning tasks.

KEYWORDS

Monte Carlo tree search (MCTS), path planning, neural network, Markov decision process

(MDP), collective intelligent algorithm

1. Introduction

Path planning is a critical problem in logistics and robotics and has been further applied

to many areas (Zhang et al., 2019; Aggarwal and Kumar, 2020; Li et al., 2021). The objective

of path planning is to obtain an optimal and collision-free path from the origin to the

destination. In recent years, collective intelligence algorithms have been widely used for

path planning. These algorithms solve path planning problems by simulating some natural

phenomenon or biological behaviors such as particle swarm optimization (Cheng et al.,

2021; Halder, 2021; Yu et al., 2022), ant colony optimization (ACO) (Xiong et al., 2021),

and genetic algorithm (Lee and Kim, 2016). The collective intelligence algorithm is based on

the iterative search to find the solution but typically suffers from poor solution quality, slow

convergence and inefficient search (Dai et al., 2019; Cheng et al., 2021).

Monte Carlo tree search (MCTS) is an iterative approach which executes random

sampling in the simulation and collects action statistics to enable educated choice in

subsequent iterations. Since the number of simulations in each iteration can be considered

the number of agents searching in the state space, it is also regarded as a collective intelligence

algorithm (Qi et al., 2018, 2021). Agents find a reasonable solution, and then refine it to

find an optimal one in the subsequent iteration. One of the most significant advantages
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of MCTS is that the algorithm does not require domain-specific

knowledge, with only search rules specifying which actions are

possible and which are terminated in each state. It allows MCTS

to be used in any task that can be modeled with decision trees

(although it may be helpful to add domain-specific knowledge).

Moreover, MCTS can run additional iterations to improve its

performance. In particular, MCTS is biased towardmore promising

states when adding nodes to the search tree. These properties

of MCTS make its search process faster than most collective

intelligence algorithms. However, with the increasing number of

simulations, its search speed also becomes slow. This work proposes

an algorithmic framework of self-learning MCTS to address this

problem.

MCTS is often adopted in applications, such as games (Crippa

et al., 2022), combinatorial optimization problems (Perez et al.,

2012), planning problems (Pellier et al., 2010; Dam et al., 2022),

and scheduling problems (Huang et al., 2022; Kung et al., 2022).

MCTS was initially proposed by Gelly and Wang (2006). Later,

Kocsis and Szepesvári (2006) developedMCTS as the first computer

Go program, and MCTS rapidly gained widespread attention due

to its significant success in playing Go. While some new work

applies MCTS and its variations on tasks such as two-player

games (Gelly et al., 2012) and multi-player games (Sturtevant,

2008; Scariot et al., 2022), so far there is only a little work about

single-player tasks (Schadd et al., 2012). For SameGame, Schadd

et al. (2012) proposed Single Player Monte Carlo Tree Search

(SP-MCTS) to improve the performance of MCTS on this single-

player game. SP-MCTS overperformed previous works in single-

player deterministic complete information games by adjusting the

selection and back-propagation strategies. Furthermore, Crippa

et al. (2022) improved the performance of SP-MCTS in SameGame

by solving the deadlock problems. Dam et al. (2022) tried to use

MCTS to find feasible solutions in robot path planning. This work

shows that a suitable sampling range, hyper-parameter of sampling

configuration and exploration strategies could substantially boost

the performance of MCTS significantly. In summary, the MCTS

algorithms mentioned above are based on the conventional MCTS

framework, i.e., they focus on solving a single problem through a

large number of random searches in the simulation process, which

is a greedy way to find a solution. It leads the search process to be

inefficient.

In recent years, the outstanding performance of AlphaGo Zero

in playing the gameGo (Silver et al., 2016, 2017) further highlighted

the capabilities of MCTS. The critical characteristic of AlphaGo

Zero is to assess each game’s trajectories based on the self-play

results. However, self-play in two-player zero-sum scenarios is

based on game relationships, and it is not directly transferable to

be used in single-player scenarios. The main challenge is evaluating

the current model’s solution quality in the environment without

the game relationship. In this paper, we construct a self-learning

approach for single-player tasks, which enables the single-player

MCTS to improve its problem-solving ability by learning from

its historical experience. The proposed self-learning MCTS (SL-

MCTS) combinesMCTS with a neural network (PV-Network). The

framework of MCTS can balance the exploration and exploitation

of search. PV-Network replaces the rollout process of the traditional

MCTS framework and predicts the search probability of each

subsequent move and the state value, which reduces the operational

time of SL-MCTS. This work presents a method to evaluate

the performance of the current model’s solution for the self-

learning process of SL-MCTS by comparing the current model’s

performance with the solution obtained from the best historical

model so far. The current solution is scored higher (lower) if

better (worse) than the previous optimal solution. This method

can guide PV-Network to make predictions accurately, increasing

the effectiveness of SL-MCTS search. SL-MCTS generates training

data based on the solutions of the current model and their

corresponding scores. In the self-learning process, PV-Network

improves its selection probability and score prediction accuracy by

learning the historical experience of SL-MCTS. The enhanced PV-

Network can, in turn, guide SL-MCTS to find a better solution. The

above process is repeated to gradually improve the problem-solving

ability of SL-MCTS. In this paper, we validated the effectiveness of

the proposed method in the classic and widely used path planning

scenario.

The main contributions of this paper are summarized as

follows:

1. We propose a self-learning framework to continuously improve

the problem-solving ability of SL-MCTS in a single-player

environment.

2. This study proposes a method to evaluate decision quality in

single-player scenarios, which utilizes the best historical models.

By utilizing this evaluation method, the SL-MCTS algorithm can

consistently and effectively enhance its decision-making capacity

in single-player scenarios.

3. We demonstrate that SL-MCTS effectively improves problem-

solving ability through self-learning process in robot path

planning scenario. Comparisons with other MCTS algorithms

and collective intelligence algorithms also confirm the superior

efficiency of SL-MCTS.

The rest of this paper is organized as the following. Section

2 presents the construction of environmental maps and the

definition of the path planning problem in this paper, the

procedure of conventional MCTS algorithms, and the detail

of SL-MCTS algorithm. Section 3 provides the experimental

setting and experimental results of SL-MCTS. We also compare

the performance of SL-MCTS with traditional MCTS SP-MCTS

algorithms and other collective intelligence algorithms in robot

path planning scenarios. The paper is concluded in Section 4, where

we also discuss ideas for future works.

2. Materials and methods

2.1. Problem formulation

2.1.1. Path planning problem
This paper utilizes the grid model to form the robot’s working

environment for path planning tasks. As shown in Figure 1A,

the space is partitioned into N × N blocks, whereby the black

grids represent obstacles (grids with barriers), and the white grids

represent free space (areas where the robot can move). To identify

obstacles, white grid cells are represented by 0, whereas back grid

units are represented by 1.
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A B

FIGURE 1

(A) Environment model. (B) An example of a two-dimensional path planning problem with eight directions.

Figure 1B is an example of a 6 × 6 grid map. The task

information includes a pair of origins and destinations. The set of

all nodes is denoted as X, where XO denotes the set of obstacles

and XE contains all the feasible. The origin and destination are

respectively denoted as ms and md. The relationship between all

feasible nodes (XE) is denoted as G = (M,E), where M ∈

XE and E is the edges to neighbor nodes of M. AE(m) =
{

m′ | (m,m′) ∈ E,m 6= m′
}

represents all feasible neighbors of

node m. N(AE(m)) is the number of the feasible nodes of m. The

cost of each edge is recorded as 1. Therefore the path planning

can be described as an agent starting from position xs at time

step t0 to position xd. At time step t1, the agent selects action

a1 and moves to the next state s1. After T steps, the agent

reaches the position xd in ST . The sequential solution is path =

((a0, a1, . . . , at , . . . , aT), a0 = xs, aT = xd, at ∈ AE(at−1)), and the

path length is
∑t=T−1

t=0 cost(at , at+1).

2.1.2. Markov decision process of path planning
We model the search process of path planning as a Markov

Decision Process (MDP). The process can be described as shown

in Figure 2. At each time step, the map is defined as state St(t =

0, 1, 2, 3, ...,T). The neural network predicts the state value vt and

the selection probabilities pt for each state St . The choice of action

at+1 is together determined by vt and pt , executing action at+1 and

transferring to the next state St+1. This process continues until the

agent reaches the end.

2.2. Monte Carlo tree search

To explicitly compare the differences between the framework

of traditional MCTS and that of SL-MCTS, we describe the flow

of the traditional MCTS algorithm in this part. For the family of

traditional MCTS algorithms, their steps are similar.

Two fundamental concepts guide the search process of MCTS

algorithms: (1) the true value of an action can be approached

by a large number of stochastic simulations; (2) these values

can be effectively used to adjust the policy to the best-preferred

strategy. MCTS builds a search tree to estimate the values of the

moves. These estimates (especially those of the most promising

directions) become more and more accurate as the iterative search

increases. Generally, the basic MCTS algorithm has four main

processes (as shown in Figure 3): selection, expansion, simulation,

and backpropagation. The tree policy is used to balance exploration

and exploitation in the search and also determines the search

direction. The Default Policy aims to calculate the action value

of the non-terminal state by rapidly exploring a certain depth of

the tree in the rollout. The rollout subtree provides the statistics

for MCTS decision-making. The general approach of the rollout

is to select actions based on uniform distribution. In the rollout

process, a quick search is performed according to the default policy

to produce a rollout subtree and find a result until the limits on

the maximum number of iterations and the maximum depth of

exploration are reached. In general, with a larger number of search

depths and iterations, MCTS performs well, but it also causes the

problem of inefficient search.

2.3. SL-MCTS algorithm

Algorithm 1 presents the pseudocode of SL-MCTS. SL-MCTS

combines MCTS with a two-branch neural network (PV-Network)

which guides the evaluation phase of SL-MCTS (Figure 4). The

search process of SL-MCTS is shown inAlgorithm 1, lines 3-12. PV-

Network has two branches that output the selection probabilities p

of all feasible nodes and a state value v, respectively (line 7). The

selection probability p of each node is output after the search (line

10). At the end of the task, the solution score z is evaluated by

comparing it with the optimal historical model (line 13), which

means the quality of paths. The training process is shown in lines

15–20. In the training process, the parameters of PV-Network are

updated, which makes the select probability p and state value v

closer to the search probability π and path quality score z of

previous SL-MCTS (line 16). Finally, these new network parameters

are used in the next iteration of self-learning to make the search

direction of SL-MCTS more accurate. The map and historical path

information are fused as input state St . The selection probability p is
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FIGURE 2

Modeling path planning problem as a Markov decision process.

FIGURE 3

The traditional MCTS in one iteration. This process starts from a root node. Tree Policy is used to select feasible nodes. Default Policy or Rollout

Policy is used to rapidly find the result in simulation. Finally, the result 1 is backpropagated to all nodes visited during this iteration.

a vector. It enables the quick search process of SL-MCTS to bemore

efficient than MCTS. The state value v is a scalar representing the

path quality in each direction predicted at this position. It guides

SL-MCTS toward the best-preferred strategy.

The pipeline of SL-MCTS is shown in Figure 4. It includes

four steps: Selection, Expansion, Evaluation and Backpropagation.

Suppose that at time step t, the agent is at node mt . Regard mt

as the root node. One iteration of SL-MCTS at time step t is as

follows:

1. Selection. Ifmt is not a leaf, the agent uses Tree Policy to descend

through the search tree until the most urgent expandable node

is found. The Tree Policy of SL-MCTS is represented by Eqs (1)

and (2). Equation (1) balances between exploitation (Q̄(x)) and

exploration (U(st , x)) of search.

mnext = argmax
x∈AE(mt)

(Q̄(x)+ U(st , x)) (1)

U(st , x) =
CpuctP(st , x)

√
ln N(mt)

1+ N(x)
(2)

where mt is the location of agent in the search tree; st is the

environment information atmt ; x is the child ofmt , x ∈ AE(mt);

P(st , x) is the selection probability of each child node x and is one

of the predictions of PV-Network; AE(mt) is a set of legal action

for mt ; N(mt) is the visit count of mt ; N(x) is the visit count of

x; Cpuct > 0 is a hyperparameter, which means the amount of

exploration performed; mnext is the branch selected for further

exploration.

2. Expansion. If mt is a leaf node, the available neighbor node(s)

AE(mt) are added to expand the search tree.

3. Evaluation. PV-Network predicts the state value v and the

selection probability p in the iteration.

4. Backpropagation. The visited count and action value Q are

backpropagated through the search tree to update nodes’
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Output: PV-Network model fθ

1: Initialization: Map information, PV-network fθ

and other parameters.

2: repeat

3: while termination-condition-not-met do

4: state′ ← state

5: for Iter ←0, MaxIteration do

6: vl ← TreePolicy

7: (p, v) ← PV-Network(statevl)

8: Backup the visited count N and the action

value Q

9: end for

10: action, searchprob ← Select-action-by-visited

-number (state′)

11: state ← Interact-with-the-environment (action)

12: end while

13: score z ← Evaluating-with- optimal-historical

-model (path)

14: Output Dataset (st , searchprob, z)

15: value, selectionprob ← Prediction-by-PV-network

(st)

16: loss ← Loss-function (searchprob, selectionprob,

z, value)

17: Updating PV-network parameters f ′θ

18: if f ′θ better than fθ in tournament then

19: Recording f ′θ as the optimal historical model.

20: end if

21: until end

Algorithm 1. SL-MCTS path planning algorithm.

statistics. The Q value corresponds to the aggregate reward of

all rollouts that pass through this state. The statistics are update

by Eqs 3) and (4):

N(mn)
′ = N(mn)+ 1 (3)

and

Q̄′ =
N(mn)× Q̄+ v

N(mn)′
(4)

where mn is one node in the search tree. Q̄ is the action value of

mn before it is updated; Q̄
′ is the value after it updates; N(mn) is

the visited number ofmn; The state value v is one of the outputs

of PV-network.

When the iteration limit has been reached, the next movemt+1

is selected from node mt based on the search probability π of

SL-MCTS:

π(a|st) = argmax
a

N(a)

N(mt)
, a ∈ AE(mt) (5)

where a is the child node ofmt ; N(a) is the visited count of node a.

SL-MCTS differs from the Simulation phase of the traditional

MCTS algorithm. PV-Network replaces the rollout process in

the traditional MCTS algorithm and can predict the selection

probability of the feasible nodes and the state value. SL-MCTS has a

more efficient search process and a more accurate search direction.

2.3.1. PV-network
The architecture of PV-Network is shown in Figure 5. PV-

network consists of a backbone and then is divided into a policy

branch and a value branch to output the selection probability p

and the state value v. The backbone consists of three convolutional

layers, and the kernel size is 3 × 3 with stride one and activated by

the ReLU function. This network utilizes the convolutional layers to

extract local information on the map, followed by fully connected

layers to extract global information. The number of channels of

these three convolutional layers in the backbone is 32, 64, and 128,

respectively. The output of the backbone is used as input to the

policy branch and value branch. The policy branch outputs a vector

p. The value branch outputs a scalar, v.

Figure 6 represents transforming from map information to the

input features of PV-Network. The size of input St is n × n × 4

where n × n is the map size. The input comprises four binary

feature matrices. The first matrix represents the start position of

the task (Figure 6, Layer 0); the second represents the end position

(Layer 1); the third represents the position of all obstacles on the

map (Layer 2); the fourth represents the position of the nodes on

the historical route (Layer 3). The four metrics are represented

by “1” for existence and “0” for non-existence. For example, in

Layer 3 in Figure 6, the node on the path is noted as “1” and

the other as “0.” p is a vector including the probability of the

feasible nodes at St . The state value is a scalar in the range

of (0, 1).

2.3.2. The framework of self-learning
Self-learning is the process of SL-MCTS generating data for

training and gradually improving its decision-making ability by

learning those data. Firstly, the initial model is recorded as the

optimal historical model. Then, the quality of SL-MCTS’s solutions

is evaluated using the optimal historical model. A higher score

is given to the solution of the current model if it is better than

the existing model. As a result, the current model is recorded as

the optimal historical model, and the optimal historical mode is

generally updated during the training. The data for model training

is generated based on the solutions and scores. Repeating the above

process, SL-MCTS improves its ability to find the optimal path and

generates better training data.

The detail of the self-learning framework is shown in Figure 7.

The beginning and destination of the task represent m0 and mE,

and the parameters of the PV-Network fθ are denoted by θ . The

initialization state of each task is noted as s0. The Evaluation process

of SL-MCTS makes sampling based on the predicted selection

probabilities p and the state value v by the network fθ . Then,

SL-MCTS selects a node m1 to move and transfer from s0 to s1.

The search finishes until the endpoint xd is reached. As shown

in Figure 7, SL-MCTS generates a path path. The quality of its

path is evaluated by the result of the optimal historical model

to get a score z. The optimal historical model is the best model

based on the evaluation method of the Elo rating system (details

in Section 3.2) during the training process. SL-MCTS with the

optimal historical model produces a result of pathb. The path

score is calculated depending on Eqs (7) and 8). path is split into

data of the format (st , pt , z) based on the number of nodes. These
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FIGURE 4

The pipeline of SL-MCTS. fθ is PV-Network. The state is the input of the neural network. The output is the selection probabilities p of each child node

and the state value v. The deep blue node indicates the endpoint, the red node indicates the historical route during the search, and the yellow node

indicates the feasible space under the current state.

FIGURE 5

The architecture of PV-Network. W is the width of the map and H is the height of the map. p is the output of the policy branch and v is the output of

the value branch.

FIGURE 6

Transformation process from map information to input features.

data are independent and are stored in the training data set. In

the training process, SL-MCTS solves many random tasks and

generates data. Lastly, PV-network is trained by randomly sampling

the training data set in a small batch. This method of splitting data
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FIGURE 7

Training pipeline of SL-MCTS algorithm. path is the result of SL-MCTS algorithm in the training process. pathb is the path planning result of SL-MCTS

with the optimal historical model, which is used to assess the path score of path. The outcome of the assessment is recorded as path score z. The

historical experiments are saved in the training data set. The beginning and destination positions of path and pathb are the same, but the path lengths

may di�er. m0 and mE are the beginning and destination of the example task in this figure. SL-MCTS generates training data by solving many tasks

with di�erent beginning and destination positions.

can significantly break the association between paths and improve

the algorithm’s stability.

The loss function of PV-Network is:

loss = (z − v)2 − π
T log p+ c ‖θ‖2 (6)

where c is a hyperparameter controlling the level of L2 weight

regularization, which is to prevent overfitting and controls the

contribution of the regularization term to the loss function. The

network parameters θ are adjusted based on the loss function

Eq. (6) to minimize the error between the predicted state value

v and path score z and to maximize the similarity between the

selection probability p and the search probability π .

To expand the range of exploration of SL-MCTS in the training

process and avoid falling into the local optimal trap, Dirichlet noise

is added to the selection probability p(s, a)← (1−ε1)p(s, a)+ε1ηa,

where s is the state, a is legal action, and p(s, a) is the predicted

selection probability of each a. ε1 is set to 0.5, and it is used to

encourage the exploration of different actions. Dirichlet noise is

also added into the search probability π ← (1−ε2)π+ε2ηa, where

ηa ∼ Dir(0.3) and ε2 is 0.25, to encourage SL-MCTS to explore

every feasible node during the training process. The higher ε2 is,

the more different states are explored and thus enhance the data

diversity of the PV-Network.

In the path planning task, the path evaluation is not only related

to whether the endpoint is reached but also considers the length

of the path. Using only Euclidean distance or Manhattan distance

is not reasonable to evaluate path quality. This method can not

reflect the existence of obstacles on the line between two points

and provides the agent with ambiguous feedback that does not

reflect changes in the quality of its solution. Therefore, SL-MCTS

generates a path score representing the current problem-solving

ability by comparing their results with the optimal historical model.

The path score is given by Eqs (7) and (8):

l = len(pathb)− len(path) (7)

z =
2

1+ e−γ l
− 1 (8)

where γ ∈ (0, 1]. If the result of Eq. (7) is <0, it denotes that

the solution of the optimal historical model is better than the

solution of the current model. path receives a score under zero,

which means that similar decisions are discouraged. In contrast,

if the result of Eq. (7) exceeds 0, indicating that the path length

of the optimal historical model is longer than that of the current

model, path receives a score above zero, which means that those

similar decisions are encouraged. Furthermore, if SL-MCTS with

the current model fails to reach the destination, this path receives

a score, −1. The evaluator of SL-MCTS is dynamically adjusted

according to the update of the optimal historical model during the

training process.

2.4. Computational complexity

As there are many different tasks in path planning, it is

difficult to assess the computational complexity accurately. The
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computational complexity of SL-MCTS is analyzed by referring

to the calculation method in Yonetani et al. (2021) and Qi et al.

(2021). The difference in computational complexity between SL-

MCTS and MCTS is mainly in the simulation phase at each time

step. Therefore, the analysis focuses on the differences in their

computational complexity during the simulation phase. Suppose

the length of the path is l, a is the feasible space for each node, and k

is the number of simulations per search process. For the traditional

MCTS algorithm, the maximum search depth in the rollout process

is d, and its computational complexity is denoted as O(lk(ad)).

The computational complexity of PV-Network is defined asO(|V|)

in the training process, according to Yonetani et al. (2021). After

training, the computational complexity of the SL-MCTS inference

phase isO(lka) andO(lk) for worst and best cases.

3. Experiments and analysis

This section provides detailed descriptions on the experimental

settings, parameter adjustments, and evaluation methods. We

conducted the training process of SL-MCTS on maps with

different scales and analyzed the variability of its problem-solving

capability. Additionally, we compared the performance of SL-

MCTS with other advanced single-player MCTS algorithms and

collective intelligence algorithms. Furthermore, we verified the

generalization of SL-MCTS on random layout maps with specific

obstacle densities and the dynamic environmental map. Finally,

we conducted ablation experiments to explore the impact of

different simulation times on SL-MCTS. The open-source code,

experimental data, and detailed visualizations of the experimental

data and results can be found in Liu (2023).

3.1. Experimental settings

These experiments were implemented in Python 3.7 using

PyTorch. They were executed on a high-performance computing

server, using two GeForce RTX 2080 SUPER GPUs for algorithm

training in parallel and CPUs that are 3.20 GHzwith 16GBmemory.

The number of simulations of SL-MCTS is set to 30 and Cpuct

is 1/
√
2. The Adam optimizer optimizes the neural network. The

learning rate is 10−3, and its initial multiplier (lrm) is 1.0. To avoid

updating the policy parameters too much at each training iteration,

the KL divergence (Nielsen, 2020) is used to adjust lrm to improve

the training stability. Referring to the Proximal Policy Optimization

algorithm (Schulman et al., 2017), the probability distributions

generated before and after policy updating (pold and pnew) are used

to calculate their KL divergence based on the result of Eq. (9). lrm is

adjusted by Eq. (10).

KL(pold ‖ pnew) =
∑

pold · log
pold
pnew

(9)

lrm =

{

1.5·lrm, if KL <
kltarg
2 and lrm < 10

lrm
1.5 , if KL > 2· kltarg and lrm > 0.1

(10)

where the parameter kltarg is 0.02.

In order to investigate the performance of SL-MCTS on

environmental maps of varying scales, we conducted experiments

on 6 × 6 and 16 × 16 maps, respectively. The size of the training

data set is 10,000. If the data set is completely full, older data is

automatically removed as newer data are added Positive samples

are defined as those paths that reach the destination and achieve

equal to or shorter lengths than the optimal historical model’s

results. To provide a high-quality training data set for the initial

training process of SL-MCTS and rapidly promote the ability of SL-

MCTS, the positive sample and negative sample is stored by a 1 : 1

ratio in the training data set at the initial stage of training.

In this paper, SL-MCTS algorithm compares with variants of

MCTS like UCB1 (Auer et al., 2002), MCTS (or UCT) (Kocsis and

Szepesvári, 2006) and the variations of SP-MCTS (such as those

presented in Schadd et al., 2012; Crippa et al., 2022), to verify its

performance. SP-MCTS-CRIPPA (Crippa et al., 2022) is one of

the best single-player MCTS algorithms. Additionally, this paper

compares SL-MCTS algorithm to prevailing collective intelligence

algorithms, including ACO algorithm (Dorigo et al., 2006) and

PPACO algorithm (Luo et al., 2020). PPACO is an improved ACO

algorithm for path planning problems, which is one of the best

ACO algorithms for solving path planning. It has domain-specific

knowledge.

3.2. Evaluation method

Elo rating system (Coulom, 2008) is used to evaluate the

variation of SL-MCTS’s problem-solving ability in the training

process. The initial Elo ratings of algorithms are 1,000. MCTS-

50 and MCTS-150 (Kocsis and Szepesvári, 2006) were chosen for

comparison with SL-MCTS, where the number of them denotes

the number of simulations. The solution of MCTS-150 is generally

better than that of MCTS-50 because the MCTS algorithm can

improve its problem-solving capabilities by increasing the number

of simulations and the depth of exploration. In this paper, we define

the case where SL-MCTS finds the destination, and the path is

shorter than the competitor as a win; the case where it finds the

destination but the path length is the same as the competitor as the

tie; otherwise, it is considered as the failure. The two algorithms

update their rating by a “shorter path finding” tournament, which

consists of 100 different random tasks. The details of updating the

rating are as follows. The expected score of player a is presented as

Ea =
1

1+ 10
Rb−Ra
400

(11)

and the expected score of player b is

Eb =
1

1+ 10
Ra−Rb
400

, (12)

where Ra is the rating of player a. After the tournament, if the actual

rating of player a (Sa) differs from its expectation of Ea, the level Ra
is adjusted as follows:

R
′

a = Ra + K(Sa − Ea), (13)

where K is the hyperparameter, which means the range of changes

in Elo rating. In this paper, the algorithm’s high rating means that it
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wins more times than its opponent in the tournament, i.e. most of

its path lengths are shorter than its opponent’s.

To assess the performance of SL-MCTS on the path

planning problem, we compared the average path length, time

consumption, the standard deviation of path lengths (SD-L) and

time consumption (SD-T), visited range and the percentage of

successfully solved tasks (Success rate). A smaller average path

length reflects a better solution quality of the algorithm. Average

time consumption reflects the algorithm’s efficiency in solving

problems. SD-L and SD-T reflect the variation of the algorithm in

the quality and efficiency of solutions. The visited range represents

the ratio between the number of visited nodes and the total number

of feasible nodes in the map. The success rate is defined as the

proportion of successfully completed tasks to the total number of

tasks and serves as one of the criteria of the algorithm’s problem-

solving performance. We also employed the Mann-Whitney U test

as a significance test to determine the mean difference between the

experimental results for algorithms. The significance level is set to

0.05.

3.3. Results and discussion

3.3.1. Performance of self-learning
SL-MCTS’s self-learning performances in two scale

environmental maps are respectly present. One hundred tasks

with different origins and destinations are randomly selected as

a tournament from each environment. We used the Elo rating to

illustrate the variation of SL-MCTS’s problem-solving ability. The

initial rating of the Elo rating system (Detailed in Section 3.2) is set

to 1,000.

Figure 8A shows the Elo rating curves of SL-MCTS, MCTS-

50 and MCTS-150 in an obstacle-free 6 × 6 environmental map.

Figure 8B shows the performance of SL-MCTS in the 16 × 16

map, which includes 211 feasible nodes and 45 obstacle nodes (as

shown in Figure 10). As traditional MCTS (Kocsis and Szepesvári,

2006) has no ability to learn the history experiment, its Elo rating

is not changed. As shown in Figure 8A, the Elo rating score of

MCTS-150 is 1,234, while that of MCTS-50 is 766. In contrast, SL-

MCTS algorithm has a considerably lower rating of 680 before any

training has taken place, in contrast to the other two traditional

MCTS algorithms. At the 1th evaluation in the training process of

the SL-MCT, the rating of SL-MCTS is 904, which is higher than

MCTS-50. At the 7th evaluation, its Elo rating is 1,240, which has

already exceeded MCTS-50 and MCTS-150. These results indicate

that the problem-solving capability of SL-MCTS in the 6 × 6 map

is better than MCTS algorithms at 7th evaluation. Eventually, the

Elo rating of SL-MCTS is 1,368. This value is approximately twice

the original Elo rating of the SL-MCTS. As shown in, Figure 8B,

the Elo rating of MCTS-50 is 712, and the Elo rating of MCTS-150

is 1,288. The Elo rating of the SL-MCTS algorithm is 576 before

the training process, much lower than MCTS. The Elo rating of

the SL-MCTS at the 1th evaluation exceeds the rating of MCTS-

50, which is 760. At the 3th evaluation, SL-MCTS’s Elo rating is

1,280, which is much similar to that of MCTS-150. The rating of

SL-MCTS exceeds that of MCTS-150 at the 6th evaluation. The Elo

rating of SL-MCTS finally reaches 1,632, which is almost triple the

initial rating of SL-MCTS. These results show that the performance

of SL-MCTS in the 16× 16 map is better than MCTS algorithms at

6th evaluation. In conclusion, the experimental results in Figure 8

indicate that SL-MCTS performs much worse than MCTS-50 in

the beginning (the maximum difference in their Elo rating is

136), which indicates SL-MCTS’s initialized PV-Network cannot

compete with the rollout process of conventional MCTS. Through

self-learning, the Elo rating of SL-MCTS exceeds that of MCTS-50

at the first evaluation in both size environmental maps and exceeds

that of MCTS-150 at about the seventh evaluation. Finally, after

several training iterations, the Elo rating of SL-MCTS increased

approximately three-fold from its initial Elo rating. This also

implies that the performance of SL-MCTS significantly enhanced

via the self-learning process. The experimental results suggest that

SL-MCTS, guided by the PV-Network, can navigate toward a more

efficient direction in comparison to the traditional MCTS’s rollout

process, ultimately leading to better solutions.

To further verify the variation of SL-MCTS’s path-finding

capability in the self-learning process, we randomly selected 50

tasks in the 6 × 6 map as a test set and compared the average

total path length of SL-MCTS at different training stages with

that of MCTS-50 (as shown in Figure 9). For each algorithm, the

experiments were conducted five times on the test set, using the

same parameters. The average of these experiments was used to

determine the average total path length (pathat) of algorithm, which

is calculated by:

pathat =
1

5

5
∑

i=1

50
∑

j=1

lenij, (14)

where i represents the times of repeated experiments, while j

denotes the number of tasks within the test set. pathat for MCTS-50

is 152. Figure 9 illustrates the pathat values generated by SL-MCTS

at various learning stages. During the second training iteration, SL-

MCTS generated an pathat value of 134, which is comparatively

shorter than that of MCTS-50. The pathat value of SL-MCTS shows

a decreasing trend as the number of training iterations increase.

In particular, the final pathat of SL-MCTS compared to that in

the second training iteration decreased by 26%. The evidence of

Figures 8, 9 implies that SL-MCTS has significantly improved its

path-finding capacity through the process of self-learning.

In order to further investigate the guiding role of the PV-

network during the reasoning process of SL-MCTS, the predicted

probability results of feasible action selection in each step of SL-

MCTS were analyzed in this section. As shown in Figure 10, the

number on the map means the predicted probability and guides

the search direction. “S” represents the start and “E” represents the

destination of the task. “C” represents the position of the agent in

that state. Figures 10A–C present the three states of the two tasks

in 6 × 6 map. Figures 10D–F present the three states of one task

in 16 × 16 map. Figure 10A shows that the probability of nodes

close to the side of node E is significantly higher than nodes far

from node E. The selection probability of node (3, 0) is 0.86, the

highest value at that state. Figures 10B, C are the two states of

another task which starts at (0,1) and ends at (2,4). The agent

starts from node S in Figure 10B, and the agent is at node C in

Figure 10C.
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A B

FIGURE 8

The Elo rating curves of SL-MCTS algorithm. (A) Represents the Elo rating curve for SL-MCTS in the 6× 6 map. (B) Represents the Elo rating curve for

SL-MCTS in the 16× 16 map.

In Figure 10B, the maximum probability value is 0.79 at the

node (1, 2). The agent executed action (1, 2) and transferred to the

next state, as shown in Figure 10C. The node (2, 3) has the highest

probability of 0.78 in this stage. The prediction results of SL-MCTS

(shown in Figures 10A–C) all present that the nearest node to the

destination has the highest selection probability. Figures 10D–F

show the three states of one task in the 16 × 16 map, which starts

at node (2, 6) and ends at node (14, 14). In Figure 10D, the agent

starts from node S. Node (3, 7) has the highest selection probability

of 0.5. The agent in Figure 10E is at point C, and the selection

probability of (10, 14), which is closest to (14, 14), is the highest,

and others are low; Figure 10F is the next state of Figure 10E,

where the selection probability of node (11, 15) is the highest. The

results in Figure 10 show that the well-trained PV-Network can

provide a reasonable selection probability for SL-MCTS based on

the global information of the map environment and the current

location.

3.3.2. Comparative experiments
SL-MCTS is compared with UCB1 (Auer et al., 2002), MCTS

(Kocsis and Szepesvári, 2006), SP-MCTS (Schadd et al., 2012), and

SP-MCTS-CRIPPA (Crippa et al., 2022) to show its performance

in path planning. The comparison algorithms include UCB1-50,

UCB1-150, MCTS-50, MCTS-150, SP-MCTS-50, SP-MCTS-150,

SP-MCTS-CRIPPA-50, SP-MCTS-CRIPPA-150 where the numbers

indicated the number of simulations. SL-MCTS is also compared

with the prevailing collective intelligence algorithm, ACO (Dorigo

et al., 2006) and PPACO (Luo et al., 2020). The comparison

algorithms included ACO-15-15, and ACO-30-30, where the

numbers indicate the number of populations and iterations of

ACO. The parameters of the ACO algorithms are set as follows:

α = 1, ρ = 0.3, β = 1. We chose three tasks with different

origins and destinations: (1, 0) to (8, 0), (2, 14) to (7, 3), and (14,

2) to (6, 15). The span of the tasks’ beginning and destination

is increasing, which means that the task’s difficulty is increasing.

This is because, for the algorithm, a larger task span means that

it needs to explore a wider area and potentially deal with more

obstacles, making it more challenging to search for the destination.

The algorithms’ shortest path length (Best) in the fifty times of

repeated testing, results of the average path length, the average

time consumption, the visited range, the standard deviation of path

length (SD-L) and time consumption (SD-T), the success rate of

finding the destination and p-value after executing the task 50 times

are shown in Table 1.

Table 1 shows that, for the traditional MCTS algorithms, in

Task 1, UCB1-50 have the shortest optimal path of 10, with

the shortest average path length of 14.1. In Task 2, SP-MCTS-

CRIPPA-150 obtained an optimal path length of 12 and a shortest

average path length of 15.5, but its success rate in solving problems

is 0.94. In Task 3, UCB1-150 has an optimal path of 26 than

other traditional MCTS algorithms and an average path length

of 48.08. It’s worth mentioning that the time consumption of the

traditional MCTS algorithm increases significantly as the iteration

times increase. For collective intelligence algorithms, ACO-30-

30 has the smallest optimal solution and average path length

for Task1, at 10 and 10.68 respectively. For Task 2 and Task 3,

PPACO-30-30 has the shortest average path length out of all ACO

algorithms, which is 15.22 and 17.68 respectively. Compared to

traditionalMCTS algorithms and collective intelligence algorithms,

SL-MCTS-30 only explored 14.69% of the environment in Task

1 and it takes an average of 2.99 s. The quality of SL-MCTS-

30’s path is only inferior to ACO-30-30 and ACO-15-15. Its time

consumption is the least. Its optimal path length is 10, with an

average path length of 11.08. Furthermore, the standard deviation

of SL-MCTS-30 in terms of path length and time consumption

is the lowest among other compared algorithms, at 1.59 and 0.04

respectively. This suggests that the performance of SL-MCTS-

30 is more stable. Mann–Whitney U-tests were performed to

obtain the results between the algorithm with the best Average

length (shown in bold italics) and other algorithms. In Task 1,

ACO-30-30 is determined to be the best method. The results of

the significance test show that there is no significant difference

between AS-30-30 and SL-MCTS-30. In Task 2, the optimal
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TABLE 1 Performance of UCB1, MCTS, SP-MCTS, SP-MCTS-CRIPPA, ACO, PPACO, and SL-MCTS algorithms on di�erent tasks.

Algorithm Best Average
length

Average
time(s)

Visited
range(%)

SD-L SD-T Success
ratio(%)

p-value

Task 1

UCB1-50 10 16.42 6.93 100 3.52 1.60 1 1.44×10−17

UCB1-150 10 14.1 19.00 100 2.22 3.50 1 1.03× 10−5

MCTS-50 12 16.92 4.16 100 3.43 0.90 1 2.26× 10−3

MCTS-150 10 14.41 18.33 100 2.59 3.59 0.99 2.12× 10−3

SP-MCTS-50 12 19.08 8.35 100 8.34 5.09 1 1.12×10−11

SP-MCTS-150 12 18.84 24.41 100 4.00 6.63 1 5.93×10−24

SP-MCTS-CRIPPA-50 11 15.3 6.54 100 3.22 1.45 0.92 8.33×10−15

SP-MCTS-CRIPPA-150 12 15.5 21.48 100 2.17 3.49 0.94 2.73×10−24

ACO-15-15 11 99.52 11.00 6.24 0.52 0.68 1 3.99× 10−5

ACO-30-30 10 10.68 10.05 98.10 0.69 0.94 1 –

PPACO-30-30 11 11.58 6.24 99.22 1.04 0.68 1 0.007

SL-MCTS-30 10 11.08 2.99 14.69 0.59 0.04 1 1.85× 10−1

Task 2

UCB1-50 17 28.2 13.04 100 5.96 2.92 1 1.60×10−26

UCB1-150 17 24.78 41.16 100 5.26 10.96 1 3.13×10−21

MCTS-50 16 39.08 17.59 100 11.04 6.67 1 2.92×10−27

MCTS-150 16 38.94 64.97 100 9.13 20.66 1 8.04×10−33

SP-MCTS-50 12 19.08 8.35 100 8.34 5.09 1 6.15× 10−4

SP-MCTS-150 12 18.84 24.41 100 4.00 6.63 1 7.03×10−10

SP-MCTS-CRIPPA-50 30 42.36 20.75 100 9.18 4.91 0.76 1.61×10−20

SP-MCTS-CRIPPA-150 12 15.5 21.48 100 2.17 3.49 0.94 2.82×10−22

ACO-15-15 15 17.66 10.46 99.52 1.19 0.48 1 3.39×10−12

ACO-30-30 14 16.46 61.57 99.52 0.98 0.69 1 9.16× 10−8

PPACO-30-30 13 15.22 60.84 99.52 1.86 2.24 1 –

SL-MCTS-30 13 16.20 5.34 19.90 3.12 1.17 1 2.08× 10−2

Task 3

UCB1-50 42 59.27 29.46 100 10.62 6.02 0.98 2.36×10−47

UCB1-150 26 48.08 94.42 100 9.74 23.47 1 2.65×10−39

MCTS-50 33 56.85 28.89 100 13.03 6.76 0.96 8.61×10−38

MCTS-150 26 47.24 65.84 100 9.18 12.71 1 2.26×10−40

SP-MCTS-50 42 73.16 42.66 100 19.97 17.76 1 3.66×10−44

SP-MCTS-150 42 73.16 42.66 100 19.97 17.76 1 1.30×10−35

SP-MCTS-CRIPPA-50 – – – – – – – –

SP-MCTS-CRIPPA-150 84 84 172.21 100 – – 0.04 –

ACO-15-15 17 20.70 16.62 90.05 1.75 1.08 1 1.65×10−14

ACO-30-30 16 18.9 82.97 98.52 1.45 3.09 1 5.67× 10−5

PPACO-30-30 16 17.68 69.46 99.60 1.55 2.19 1 –

SL-MCTS-30 18 42 24.48 28.90 21.89 14.13 0.92 2.82×10−14

The best value for each evaluation metric is marked in bold.
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FIGURE 9

The average total path length of SL-MCTS in di�erent training stages (as shown in columns 2, 3, 4, 5) compared with that of MCTS-50 (As shown in

column 1).

A B C

D E F

FIGURE 10

(A–F) The predicted selection probability of SL-MCTS for di�erent states. “S” represents the start and “E” represents the destination of the task. “C”

represents the position of the agent in the state. Where the value of the number represents the predicted selection probability value of SL-MCTS. The

number in red indicates the position with the highest value in the predicted result.
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FIGURE 11

Visualization of path planning results for ACO, MCTS, and SL-MCTS. Black nodes indicate obstacles. Blue nodes indicate origins, green nodes indicate

destinations and red lines indicate the found paths. The range visited by the algorithm is marked with light blue nodes.

solution of SL-MCTS-30 is 13, which is the same as PPACO-

30-30, second only to SP-MCTS and SP-MCTS-CRIPPA-150.

The average path length of SL-MCTS is 16.20, only 0.7 longer

than that of SP-MCTS-CRIPPA-150 and PPACO-30-30, but the

exploration space of SL-MCTS is only 19.9%, one fifth of other

algorithms. Additionally, the average consumption time for SL-

MCTS was the shortest amongst all algorithms, taking only 5.34s.

PPACO-30-30 is determined to be the best method. The results

of the significance test show that there is no significant difference

between PPACO-30-30 and SL-MCTS-30. In task 3, the optimal

solution of SL-MCTS-30 is 18, which is only second to the ant

colony algorithms. Moreover, SL-MCTS explores only 28.90% of

the environment space and solves the problem in just 25.48 s,

making it a highly efficient algorithm. In conclusion, SL-MCTS

with a simulation count of 30 performed significantly better than

traditionalMCTS and SP-MCTS algorithms with simulation counts

of 50 or 150. Its performance is comparable to that of ACO,

which is proficient at solving path planning tasks. The experimental

results show that under the guidance of the PV-Network, SL-

MCTS converges faster than other MCTS algorithms. However,

SL-MCTS is considerably more efficient than ACO in terms of

time consumption and search space for most tasks, with time

consumption of less than half and search space only one fifth that

of ACO. It is meaningful to mention that some MCTS algorithms

are unable to solve the complex path planning problem (such

as SP-MCTS-CRIPPA), mainly because most traditional MCTS

algorithms are designed for game scenarios and not proficient at

solving path planning tasks. However, with the proposed method

in this paper, SL-MCTS has made significant improvements over

MCTS algorithms

Figure 11 visualizes the planning results of SL-MCTS, MCTS-

50, MCTS-150, SP-MCTS-50, ACO-15-15, and ACO-30-30. Black

nodes indicate obstacles, blue nodes indicate origin, green nodes

indicate destinations and red lines indicate found paths. The range

visited by the algorithm is marked with light blue nodes. The

visualization of these algorithms’ path planning results presents

that the paths of SL-MCTS have fewer inflection points than other

traditional MCTS algorithms, and the number of visited nodes is

much less than others. This also indicates that the search of SL-

MCTS is efficient, and the path of SL-MCTS is reasonable and

competitive with other baselines.

3.3.3. Generalization of SL-MCTS
This section aims to evaluate the potential of SL-MCTS in

tackling tasks in previously unseen environmental maps. Two sets

of experimental maps, each with three different obstacle densities,

were constructed based on the two map sizes. Fifty tasks of random

starting and ending points were selected on each map to form the

test set of each map. The map size is 6 × 6, defined as MAP 1, and

16× 16, defined as MAP 2. The number of SL-MCTS’s simulations

is 30. Maps are named Sparse Map 1, Moderate Map 1, Dense Map

1, Sparse Map 2, Moderate Map 2 and Dense Map 2 according to

the density of obstacles in the maps (5%, 25%, and 55%). In Table 2,

we presented the performance of SL-MCTS by analyzing the ratio

of SL-MCTS to MCTS-50 in terms of path length (Ratiolength) and
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TABLE 2 Comparative analysis of path lengths and time consumption for

SL-MCTS and MCTS-50 in the test map sets.

Ratiolength Ratiotime Success rate(%)

Sparse-Map 1 0.92 0.59 100

Moderate-Map 1 0.94 0.67 100

Dense-Map 1 0.91 0.55 100

Sparse-Map 2 0.84 0.54 100

Moderate-Map 2 0.82 0.58 100

Dense-Map 2 0.64 0.42 100

time consumption (Ratiotime), which were calculated by:

Ratiolength =
1

50

50
∑

i=1

pathAi

pathBi
(15)

Ratiotime =
1

50

50
∑

i=1

timeAi

timeBi
(16)

where i is the number of the testing tasks. A represents SL-MCTS

and B represents MCTS-50. A lower ratio indicates that SL-MCTS

performs better than MCTS-50 in terms of path quality or time

consumption. The success rate is defined as the proportion of

successfully completed tasks to the total number of testing tasks.

In Table 2, the success rates of SL-MCTS in maps are 100%.

It means that SL-MCTS can successfully tackle the tasks in these

unseen environmental maps. The Ratiolength value is about 0.90

on the set of maps for MAP 1 and about 0.76 on that for

MAP 2. The Ratiotime value is about 0.5 both on maps 1 and 2.

These experiments indicate that SL-MCTS performs significantly

better than MCTS-50 in terms of path quality, particularly in

environments with a map size of 16. Furthermore, SL-MCTS

completes the same task using only half of the time computation

required by MCTS-50. SL-MCTS performs better on MAP2 than

on MAP1, which may be due to the larger search space and greater

number and variety of obstacles on MAP2, making tasks more

challenging and enabling SL-MCTS to demonstrate its superior

capabilities. In general, these experiments demonstrated that SL-

MCTS not only is able to find the tasks’ solutions on the new maps

but also completes them with half the time required by MCTS-50,

particularly for tasks with shorter lengths.

We conducted additional experiments on random maps

with different obstacle distributions. By comparing the proposed

algorithm’s performance in solving the same task in these diverse

environmental maps, we further assessed SL-MCTS’s ability to

adapt to novel environmentalmaps.We chose two test tasks: one on

a map with a size of 6, with a starting point at (0, 0) and an ending

point at (5, 5); the other on a map of size 16 with a starting point

at (3, 8) and an ending point at (14, 14). The considerable span of

both tasks on their respective maps allowed us to examine different

obstacle distributions. Tables 3, 4 display the results performed by

SL-MCTS on different-sized maps, and these results are compared

with those of MCTS-50. The “prior map” in these tables refers to

the environmental map utilized for SL-MCTS learning, while the

“random map” denotes an environment with a different obstacle

distribution compared with “prior map,” which SL-MCTS has

unseen before. We have provided more information about the

environmental map in the public code repository (Liu, 2023). The

test tasks were repeated 50 times per map. This section analyzed

the ability of SL-MCTS to handle tasks in new environments by

comparing its best and average path lengths, the standard deviation

of path lengths (SD-L), average time consumption (average time)

and standard deviation (SD-T) of time consumption, and success

rate with those of MCTS-50. We also employed the Mann-Whitney

U test as a significance test to determine the mean difference

between the experimental results for SL-MCTS and MCTS-50 (the

best Average length, shown in bold italics).

According to the results in Table 3, SL-MCTS outperforms

MCTS-50 in both the “prior map” and new “random map”

environments. Specifically, SL-MCTS had a much shorter average

path length thanMCTS-50, along with a smaller standard deviation

in path lengths. This indicates a higher solution quality and

lower fluctuation compared to MCTS-50. In addition, SL-MCTS

also consumed significantly less time on average than MCTS-50.

Furthermore, the results of the significance test in both “random

map1” and “random map2” show that there is a significant

difference between SL-MCTS and MCTS-50, with SL-MCTS being

the best method. Table 4 shows that SL-MCTS’s average path length

and SD-L in “random map” environments were similar to those

of MCTS-50. SL-MCTS’s success rate on “random maps” was 0.68

lower than that on the “prior map.” This could be attributed to the

excessive density of obstacle distribution between the start and end

points, including an obstacle corridor that blocks access between

the beginning and the destination. This significantly increases the

difficulty of the testing task on the “random map” compared to

that on the prior map. The results of the significance test in

the “random map” show that there is no significant difference

between SL-MCTS and MCTS-50. The results show that SL-

MCTS can solve the tasks on the new maps, indicating that the

problem-solving ability of SL-MCTS has generalization in unseen

environmental maps.

3.3.4. Ablation experiments
This section presents the effect of PV-Network on the SL-MCTS

algorithm with a different number of simulations. Thirty tasks

are randomly selected from the 16 × 16 map as a test set. The

variation of the total length and the total time consumption of SL-

MCTS-30 and MCTS-30 was compared on the test set. As shown

in Figure 12, five different simulations (10, 30, 50, 70, and 90) are

chosen. The total path lengths of SL-MCTS and MCTS decrease as

the number of simulations increases, which means that increasing

the number of simulations can improve the quality of MCTS’s

solution. However, for different simulation numbers, SL-MCTS

has significantly shorter path lengths than MCTS, being almost

half of MCTS’s lengths. Although the time consumption of both

algorithms increases with the number of simulation, traditional

MCTS algorithms become more time-consuming with higher

simulation numbers. And the time consumption of SL-MCTS is

consistently lower than MCTS, about two-fifths of MCTS’s total

time. Experiments show that PV-Network can provide accurate

guidance for the search process of SL-MCTS, and SL-MCTS is more
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TABLE 3 Results of SL-MCTS and MCTS on di�erent 6 × 6 maps.

Best Average length SD-L Average time SD-T Success rate(%) p-value

Prior map

SL-MCTS 6 8.42 2.43 0.51 0.35 0.95 –

MCTS-50 9 15.16 4.16 0.86 0.22 1 3.01× 10−11

Random map1

SL-MCTS 7 9.55 2.45 0.56 0.34 0.78 –

MCTS-50 16 26.60 12.85 0.78 0.22 1 0.017

Random map2

SL-MCTS 7 10.45 2.36 0.68 0.144 0.83 –

MCTS-50 8 13.8 3.42 0.94 0.27 1 1.69× 10−10

The best value is highlighted in italic bold.

TABLE 4 Results of SL-MCTS and MCTS on di�erent 16 × 16 maps.

Best Average length SD-L Average time SD-T Success rate(%) p-value

Prior map

SL-MCTS 12 20.16 13.61 7.12 5.19 0.74 –

MCTS-50 20 33.84 9.09 15.17 4.03 1 5.79× 10−8

Random map

SL-MCTS 15 32.5 15.63 5.11 7.06 0.68 0.07

MCTS-50 15 32.20 15.05 12.72 6.04 1 —

The best value is highlighted in italic bold.

FIGURE 12

Comparison of the variations in total path length and total time consumption of SL-MCTS and MCTS with di�erent numbers of simulations.

efficient in finding higher quality solutions than the traditional

MCTS algorithms.

3.3.5. Test on dynamic environmental map
Finally, we tested the performance of SL-MCTS in a dynamic

obstacle environment to deal with stochastic environments. In

addition to the eight actions shown in Figure 1B, the robot’s actions

included the “wait” action. As shown in Figure 13, there was a

dynamic obstacle in the environmental map, which is clockwise,

and its movement trajectory was shown as an orange line. The

trajectory has the starting point of (1, 2) and four turning points

at (4, 2), (4, 4), (0, 3), and (0, 2). The robot’s initial position was

(0, 0) and the endpoint was (5, 5). Figure 13 shows two trajectories
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A B

FIGURE 13

(A, B) The path planning results of the robot in a dynamic environment.

of the robot to deal with this dynamic obstacle. Figure 13A shows

the robot successfully reached the destination without colliding

with the dynamic obstacle. The robot chooses to bypass the area

of the dynamic obstacle to reach the endpoint. Figure 13B shows

the trajectory of the robot colliding with the dynamic obstacle at

position (3, 3). To avoid collision and task failure, the robot waits

in position (3, 2). These experiments demonstrated that SL-MCTS

can handle dynamic environments. More related animations have

been uploaded to the public repository (Liu, 2023).

4. Conclusion

Inspired by the idea of “self-player” for two-player zero-sum

games, this paper proposes a self-learning single-player MCTS,

named SL-MCTS, to continually enhance the problem-solving

ability of agents in single-player scenarios. The main contributions

of this paper include constructing the self-learning framework

for single-player scenarios and designing an efficient evaluation

method to assess the quality of the agent’s strategies in the learning

process. In the experiment section of this paper, a widely-renowned

robot path planning scenario was utilized to validate the efficacy

of SL-MCTS. In the self-learning process, the increasing Elo

ratings of SL-MCTS show that the “self-learning” method for the

single-player task is effective. The performance of SL-MCTS is

also compared with that of MCTS, SP-MCTS, SP-MCTS-CRIPPA,

and the currently popular collective intelligence algorithms in

many different tasks. The results demonstrate that SL-MCTS can

find better solutions with fewer iterations than other iteration-

based algorithms, which indicates the convergence speed of SL-

MCTS is faster. Additionally, in terms of time consumption,

the speed of SL-MCTS in solving problems is faster than other

comparative algorithms. It can solve problems in less than one-

third of the time required by other algorithms. These indicate

that the guidance of the PV-Network greatly improves the search

efficiency and the resulting quality of SL-MCTS in path planning

tasks. Furthermore, we validated the adaptability of SL-MCTS in

many new environmental maps. The results show that SL-MCTS

can find solutions with better quality in half the time required by

MCTS-50. This experiment demonstrates that the problem-solving

ability of SL-MCTS is universal across different environmental

maps. Finally, we validated SL-MCTS’s adaptability in a dynamic

environment. The experimental results show that it can successfully

solve tasks in dynamically complex scenes. In conclusion, this paper

demonstrates that the mechanism of “self-learning” can be applied

in single-player scenarios. It provides a new way for the agent with

learning capabilities to break through its ceiling of problem-solving

ability. Comparative experiments have confirmed that SL-MCTS

can alleviate the common issues of slow convergence, poor search

quality and inefficient search in traditional MCTS algorithms, while

also significantly improving search speed.

In the future, we will further explore applying self-learning with

other collective intelligence algorithms. We will also try to extend

self-learning to improve the performance of the robotic arms in the

continuous action space of the path planning problem.
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