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Construction of a focal adhesion
signaling pathway-related ceRNA
network in pelvic organ prolapse
by transcriptome analysis

Xia Yu1†, Li He2†, Ying Chen2, Wenyi Lin3, Hong Liu4, Xiu Yang4,
Ying Ye4, Xuemei Zheng2, Zhenglin Yang5* and Yonghong Lin2*
1Department of Clinical Laboratory, Chengdu Women’s and Children’s Central Hospital, Sichuan
Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of
China, Chengdu, Sichuan, China, 2Department of Obstetrics and Gynecology, Chengdu Women’s and
Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of
China, Chengdu, Sichuan, China, 3Department of Medical Pathology, Chengdu Women’s and
Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of
China, Chengdu, Sichuan, China, 4Department of Surgical, Chengdu Women’s and Children’s Central
Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu,
Sichuan, China, 5Sichuan Provincial Key Laboratory for Human Disease Gene Study and Institute of
Laboratory Medicine, Sichuan Provincial People’s Hospital, University of Electronic Science and
Technology of China, Chengdu, China

Objective: Pelvic organ prolapse (POP) affects a large proportion of adult

women, but the pathogenesis of POP remains unclear. The increase in

global population aging will impose a substantial medical burden. Herein, we

aimed to explore the related RNAs regulating the occurrence of POP and

provide potential therapeutic targets.

Method: Tissue biopsies were collected from the anterior vaginal wall of six

women with POP and six matched subjects without POP. The profiles of

mRNAs, circRNAs, lncRNAs, and miRNAs were obtained by whole

transcriptome RNA sequencing.

Result: The findings revealed that 71 circRNAs, 76 known lncRNAs, 84 miRNAs,

and 931 mRNAs were significantly altered (p < 0.05 and |log2FC| > 1). GO and

KEGG enrichment analyses indicated that the differentially expressed genes

(DEGs) were mainly enriched in the focal adhesion signaling pathway. FLT,

ITGA9, VEGFD, PPP1R12B, and ROCK2 were identified as focal adhesion

signaling pathway-related hub genes by protein–protein interaction network

analysis. Based on the relationships between the DEGs and miRNA, lncRNA and

circRNA targets, we constructed a focal adhesion signaling pathway-related

ceRNA network. The ceRNA network includes hsa_circ_0002190/

hsa_circ_0046843/lnc-CARMN -miR-23a-3p - ROCK2 and

hsa_circ_0001326/hsa_circ_0007733/lnc-AC107959/lnc-TPM1-AS - miR-

205-5p - ROCK2/PPP1R12B/VEGFD. Moreover, abnormalities in the

cytoskeleton in fibroblasts from individuals with POP were observed.

Conclusion: In this study, a focal adhesion signaling pathway-related ceRNA

network was constructed, and this network may serve as a target for finding

suitable drugs for the treatment of POP.
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Introduction

Pelvic organ prolapse (POP) is a weakening of the pelvic floor

support structure that causes the pelvic internal organs, including

the bladder, rectum, and uterus, to localize into or outside the

vagina, which results in a decline in quality of life and serious

psychosocial problems (Collins et al., 2021; Harvey et al., 2021).

According to epidemiological data, the prevalence of POP in

women over the age of 60 years is as high as 50%, and the number

of POP cases with clinical symptoms is expected to increase by

more than 46% by 2050 (Wu et al., 2011). Anterior vaginal

prolapse (AVP) is the most common form of POP. Several

studies have found that vaginal wall weakness can be

considered a possible cause of prolapse (Li et al., 2021).

Surgery is the main treatment. However, because the

pathogenesis of POP has not been fully elucidated, a

possibility of reprolapse after surgery remains (Nussler et al.,

2022), which results in certain difficulties in the treatment

of POP.

In recent years, transcriptomics has become an important

tool for exploring the pathogenesis of diseases (Wu et al., 2021).

Song et al. performed RNA-seq analysis to identify the POP

signatures of 81 genes in uterosacral ligament (USL) samples as

well as a number of extracellular matrix (ECM)-related genes

(Xie et al., 2016); but the study only examined differentially

expressed (DE) genes (DEGs). In addition, many studies have

examined the role of microRNAs (miRNAs) in the pathogenesis

of POP. The overexpression of miRNA-30d and miRNA-181a

regulates the expression of HOXA11 and collagen (Lin et al.,

2020), and miRNA-92 expression may be associated with

reduced estrogen receptor β1 mRNA levels in the USL of

women with POP (He et al., 2016). Moreover, miR-19-3p

targets IGF-1 to promote autophagy and apoptosis through

the AKT/mTOR/p70s6k pathway in vaginal fibroblasts in POP

(Yin et al., 2021). However, the roles of long noncoding RNAs

(lncRNAs) and circular RNAs (circRNAs) in the pathogenesis of

POP have not been reported. Increasing evidence shows that

competing endogenous RNA (ceRNA) networks play important

roles in many disease processes (Zhao et al., 2021; Liu et al.,

2022). The potential roles of the circRNA/lncRNA‒

miRNA–mRNA ceRNA network in the pathogenesis of POP

remain unclear and have not been characterized.

Prolonged stretching andmechanical stress cause progressive

deterioration of the pelvic organ support (Deng et al., 2021). Four

mechanoresponsive genes are responsible for the regulation of

actin cytoskeleton remodeling in fibroblasts under stretching,

and investigations of the cytoskeleton phenotype in POP samples

revealed an abnormal F-actin configuration (Ewies et al., 2008;

Wang et al., 2015). Focal adhesion is the cell-extracellular matrix

contact point that bundles actin filaments and is linked to

transmembrane receptors of the integrin family via a

multimolecular complex of junctional plaque proteins. Some

focal adhesion constituents are structurally involved in the

link between membrane receptors and the actin cytoskeleton,

and others are signaling molecules, such as various protein

kinases and phosphatases, their substrates, and adaptor

proteins. These signaling events result in actin cytoskeleton

reorganization. As a result, the development of a focal

adhesion signaling-related ceRNA network is critical for

understanding the mechanism of cytoskeletal remodeling

in POP.

In this study, the schematic workflow is shown in Figure 1.

We designed a whole transcriptome RNA sequencing study to

uncover the profiles of DE mRNAs, DEGs and ncRNAs between

a POP group and a control group. Subsequently, the DEGs were

evaluated by Gene Ontology (GO) and Kyoto Encyclopedia of

Genes and Genomes (KEGG) pathway enrichment analyses to

reveal the associated functions. Furthermore, a focal adhesion

signaling pathway-related ceRNA network was constructed to

explore the underlying molecular mechanisms of the ncRNAs.

This study may serve as a target for finding suitable drugs to

treat POP.

Materials and methods

Tissue sample collection

The study included 12 patients who underwent complete

hysterectomy at Chengdu Women’s and Children’s Central

Hospital’s Department of Obstetrics and Gynecology. The

patients were screened using the following inclusion criteria:

diagnosis of POP at stage 3 or higher according to the pelvic

organ prolapse quantification (POP-Q) exam; patients with

benign diseases (uterus myoma, adenomyosis) who did not

have POP. A patient was excluded from the study if any of

the following criteria applied: collagen metabolic disease or a

history of hormone therapy (including vaginal estrogen therapy).

Six of these patients were enrolled in the POP group, and six

patients were enrolled in the control group. There were no

significant differences in clinical characteristics such as age,

BMI, menopausal status, gravidity, or parity between the two

groups (Supplementary Table S1). The Ethics Committee of

Chengdu Women’s and Children’s Central Hospital reviewed

and approved this study (serial number: 2021-65), and all

subjects signed informed consent forms.

After hysterectomy, 1.0 × 1.0-cm full-thickness vaginal wall

tissue biopsies were obtained from the pericervical region of the
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anterior vaginal cuff in the controls, and from the prolapsed

vaginal wall in the POP samples. Fresh tissue samples were

collected aseptically, immediately frozen in liquid nitrogen,

and stored at−80°C until analysis.

Total RNA extraction

Total RNA was extracted using TRIzol reagent

(Invitrogen, CA, United States) according to the

manufacturer’s instructions. The RNA quantity and purity

were determined using a NanoDrop ND-1000 (NanoDrop,

Wilmington, DE, United States) and Bioanalyzer 2100

(Agilent, CA, United States). A small RNA library was

prepared using approximately 1 µg of total RNA according

to the TruSeq Small RNA Sample Prep Kit protocol

(Illumina, San Diego, CA, United States). We then

performed single-end sequencing (36 or 50 bp) on an

Illumina HiSeq 2500 system (Illumina, San Diego, CA,

United States) at LC-Bio (Hangzhou, China).

Ribosomal RNA was removed from approximately 2 µg of

total RNA using the Epicenter Ribo-Zero Gold Kit (Illumina,

San Diego, CA, United States) according to the

manufacturer’s instructions. The purified ribosomal RNA

was fragmented into small pieces using divalent cations at

elevated temperatures. The cleaved RNA fragments were

then reverse-transcribed to generate the final cDNA

library in accordance with the mRNA-Seq sample

preparation kit protocol (Invitrogen, CA, United States).

The final cDNA library had an average insert size of 300 ±

50 bp. We then performed 2 × 150-bp paired-end sequencing

(PE150) using an Illumina NovaSeq™ 6000 system (LC-Bio

Technology Co., Ltd., Hangzhou, China).

Bioinformatics analysis

As shown in Figure 2A, the raw data were cleaned and

verified by fastp (Chen et al., 2018), and the remaining reads

were mapped to the Homo sapiens GRCh38 genome using

Bowtie2 (Langmead and Salzberg, 2012) and Tophat2 (Kim

et al., 2013) and assembled using StringTie (Pertea et al.,

2015). Additionally, StringTie was used to estimate the

expression levels of all transcripts. The transcripts were

then annotated with known mRNAs, known lncRNAs and

transcripts shorter than 200 nt were discarded, and transcripts

with coding potential were predicted using CPC (Kong et al.,

2007) and CNCI (Sun et al., 2013). FPKM (FPKM =

[total_exon_fragments/mapped_reads (millions) ×

exon_length (kB)]) values showed the expression levelsof

mRNAs and lncRNAs, |log2FC|>1 and p < 0.05 obtained

using a nonpaired test comparing nested linear models

were identified as DE mRNAs and lncRNAs. TopHat fusion

(Kim and Salzberg, 2011) and CIRCExplorer (Zhang et al.,

2014; Zhang et al., 2016) were used to identify the circRNAs.

The expression of circRNAs was calculated by SRPBM =

(number of back-spliced junction reads)/(number of

mapped reads) × 1,000,000,000. p < 0.05 obtained using the

R package DESeq was regarded as indicating differential

expression (Anders and Huber, 2010).

The process of miRNA identification is shown in

Figure 2B. A BLAST search was performed to map unique

sequences of 18–26 nucleotides in length to specific species

precursors in miRBase 22.0 and therefore identify known

miRNAs. RNAfold software (http://rna.tbi.univie.ac.at/cgi-

bin/RNAWebSuite/RNAfold.cgi) was used to predict the

secondary structures of all the obtained miRNAs. A

nonpaired analysis was then conducted to calculate the

FIGURE 1
Research strategy employed in the present study.
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differential expression of miRNAs based on normalized

deep-sequencing counts, and a significance threshold of 0.

05 was chosen.

RNA functional enrichment analysis

The functions of DEGs were determined through GO and

KEGG analyses using the R package (v3.6.3), and p <
0.05 indicated a significant difference.

Protein-protein interaction network

STRING (https://www.string-db.org) was used to build the

PPI network based on the DEGs involved in the selected KEGG

pathways between the POP and control groups. The extraction

cutoff was set to an interaction score >0.4.

CeRNA network

TargetScan and miRanda were used to examine the targeting

relationships between DEGs, DE miRNAs (DEMs), DE lncRNAs

(DELs), and DE circRNAs (DECs). The circRNA/lncRNA‒miRNA-

mRNA ceRNA network was visualized using R package v3.6.3 and

hub prognostic genes as the core. In the ceRNAnetwork, this network

displayed competitive binding.

Quantitative real-time PCR analysis

qRT‒PCR analyses were performed using gene-specific

primers (Supplementary Table S2). Total RNA was extracted

using TRIzol reagent (TaKaRa, Kusatsu, Japan), and qRT‒

PCR was performed with an Applied Biosystems

StepOnePlus Real-Time PCR system (Applied Biosystems,

Foster City, CA, United States) using TB Green™ Premix EX

Taq™ II (TaKaRa, Kusatsu, Japan) according to the

manufacturer’s instructions. Each reaction was conducted

in triplicate, and the relative fold change values were

measured in terms of the threshold cycle (Ct) and

calculated using the formula 2−ΔΔCt (Pfaffl, 2001).

Cell culture and identification

Fibroblasts were isolated from the anterior vaginal wall.

Tissues removed during hysterectomy were washed with

phosphate-buffered saline (PBS) containing 1% antibiotics,

cut into slices with a diameter of less than 0.1 cm, and evenly

distributed in the bottom of a 25-cm bottle. To avoid floating

tissue blocks, upside-down containers were used in this

study, and the bottle was carefully turned over after 4–6 h.

The medium contained 15% FBS (Gibco, Waltham, MA,

United States), 1% penicillin/streptomycin (Gibco,

Waltham, MA, United States), and DMEM (Gibco,

Waltham, MA, United States). The cells were passaged

FIGURE 2
Procedure for preparing and analyzing an RNA library. (A) Process of preparing and analyzing circRNA, lncRNA, and mRNA libraries. (B) Process
of preparing and analyzing miRNA libraries. CPC, coding potential calculator; CNCI, coding-noncoding index.
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after approximately 15 days. The derived cells were identified

by positive immunofluorescence staining for vimentin (1:

200; Bioss, Shanghai, China) and negative

immunofluorescence staining for pancytokeratin (1:200;

Bioss, Shanghai, China) (Supplementary Figure S1).

Fluorescence staining of F-actin

Microscopy was used to image the fluorescently labeled

F-actin network. Cells were grown on a glass coverslip in

500 µl of cell culture media to a density of 3.0 × 104 cells/ml.

FIGURE 3
Whole transcriptome RNA sequencing results comparing the POP and control groups. (A–D) Venn diagrams depicting the profiles of circRNAs,
lncRNAs, miRNAs, andmRNAs. (E) RNA expression ratio in a chromosome (number of RNAs in a related chromosome divided by the total number of
RNAs). (F)Differentially expressed circRNAs, lncRNAs, miRNAs andmRNAs between the POP and control groups. (G) qRT‒PCR validation of the RNA
sequencing results using 3 DECs, 3 DELs, 3 DEMs, and 3 DEGs chosen at random. The log2-fold change from the q-RT‒PCR analysis is plotted
on the X-axis, and the log2-fold change from the RNA sequencing analysis is plotted on the Y-axis. POP, pelvic organ prolapse; DECs, differentially
expressed circRNAs; DELs, differentially expressed lncRNAs; DEMs, differentially expressed miRNAs; DEGs, differentially expressed genes.
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The cells were incubated at 37°C for 48 h and then stained with

TRITC phalloidin to reveal the actin cytoskeleton. The cells were

fixed with 4% paraformaldehyde for 10 min, washed three times

with PBS, and incubated with 0.5% Triton-X for 5 min. The cells

were blocked for 30 min at room temperature in 1% BSA and

then incubated for 30 min with TRITC phalloidin (1:250;

Solarbio, Beijing, China) in 3% BSA. The nuclei were sealed

and counterstained with DAPI. All photographs were taken with

a fluorescence microscope (Shunyu, Ningbo, China) at an

excitation wavelength of 540–546 nm.

Results

Differences in transcription files

The expression profiles of circRNAs, lncRNAs, and mRNAs

were determined using an Illumina NovaSeq™ 6000 system, and

miRNAs were identified using an IlluminaHiSeq 2500 system. After

the removal of low-quality reads, the RNA-seq results revealed

22,834 circRNAs, 321,572 lncRNAs, 1,492 miRNAs, and

17,624 mRNAs (Figures 3A–D). Figure 3E depicts the

chromosomal locations. Compared with the control group,

71 circRNAs, 76 known lncRNAs, 84 miRNAs, and 931 mRNAs

were significantly altered in the POP group (p < 0.05 and |log2FC| >
1) (Figure 3F). Upregulated expression of 17 circRNAs, 30 known

lncRNAs, 53 miRNAs, and 433 mRNAs and downregulated

expression of 54 circRNAs, 46 known lncRNAs, 34 miRNAs,

and 498 mRNAs were observed (Figures 4A–H). To validate the

accuracy of our whole transcriptome data, we chose three DECs,

three DELs, three DEMs, and three DEGs at random for qRT‒PCR

analysis (Figure 3G). The correlation between the whole

transcriptomic data and qRT‒PCR data was 0.791, indicating

that our sequencing results were repeatable and dependable. The

raw data can be found at https://www.ncbi.nlm.nih.gov/geo/query/

acc.cgi?acc=GSE208271. The transcription levels in the anterior

vaginal wall tissue differed between the POP and control groups.

Focal adhesion is the main enrichment
pathway

GO and KEGG enrichment analyses were performed to

annotate the functional and pathway roles of the DEGs. The

results showed that the GO terms ‘“cell-substrate adhesion”,

“collagen-containing extracellular matrix”, and “cell adhesion

FIGURE 4
circRNA, lncRNA,miRNA, andmRNA expression profiles. (A–D)Heatmaps of DECs, DELs, DEMs, and DEGs in the anterior vaginal wall in the POP
and control groups. (E–H) Volcano plots of DECs, DELs, DEMs, and DEGs in the anterior vaginal wall in the POP and control groups. POP, pelvic organ
prolapse; circRNA, circular RNA; lncRNAs, long noncoding RNAs; miRNA, microRNA; DECs, differentially expressed circRNAs; DELs, differentially
expressed lncRNAs; DEMs, differentially expressed miRNAs; DEGs, differentially expressed genes.
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molecule binding” were significantly enriched in the POP group

compared with the control group (Figure 5A). Figure 5B depicts

the top ten enriched KEGG pathways, which included the cGMP-

PKG signaling pathway, focal adhesin, vascular smooth muscle

contraction and hippo signaling pathway. Furthermore, to better

analyze these pathways, Figure 5C depicts the DEGs involved in

the pathways. Focal adhesion is an important structure for the

transmission of mechanical signals from outside to inside cells,

and the KEGG enrichment analysis showed that the DEGs were

significantly enriched in focal adhesion. Thus, we mainly focus

on focal adhesion in the subsequent analysis.

Hub genes that are closely related to focal
adhesion signaling pathway

A PPI network was built using STRING online tools based on

the DEGs associated with the focal adhesion signaling pathway

(Figure 5D). Table 1 lists the enriched genes in this PPI network.

We ultimately selected ITGA7, LAMA4, ROCK2, PPP1R12B,

ITGA9, COL4A6, FLT4, COL4A5, COL4A2, ITGA2, VEGFD,

FN1, ITGA8, and COL4A1 as hub genes because their interaction

scores were >0.9.

Establishment of ROCK2-, PPP1R12B-,
and VEGFD-related ceRNA networks

To investigate the potential regulatory involvement of DE

ncRNAs, including circRNAs and lncRNAs, in targeting

miRNAs in the focal adhesion signaling pathway in POP, we

screened coexpressed genes from hub genes and then constructed

and visualized the circRNA/lncRNA‒miRNA–mRNA ceRNA

network using R package v3.6.3. We selected miRNAs and

circRNAs with TargetScan scores >95 to obtain more reliable

results. The core miRNAs were determined to be miR-23a-3p

FIGURE 5
Functional enrichment analysis of DEGs using GO and KEGG and the PPI network. (A) Analysis of DEGs using GO and KEGG. (B) Top ten KEGG
pathways. (C) Top ten KEGG pathways related to DEGs. (D) PPI network of focal adhesion pathway hub genes in the KEGG pathway.
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and miR-205-5p. Furthermore, hsa_circ_0002190,

hsa_circ_0046843, and lnc-CARMN sponge miR-23a-3p with

ROCK2 as the target gene. In addition, hsa_circ_0001326,

hsa_circ_0007733, lnc-AC107959, and lnc-TPM1-AS regulate

miR-205-5p, and hub genes such as ROCK2, PPP1R12B, and

VEGFD were identified (Figure 6). Therefore, we have

established ROCK2-, PPP1R12B-, and VEGFD-related ceRNA

networks.

Abnormal cytoskeleton of vaginal
fibroblasts in patients with pelvic organ
prolapse

The action of focal adhesion on the cytoskeleton is the main

mechanism for the transmission of a mechanical stimulation

signal from the cell membrane to the intracellular space.

Therefore, to analyze the changes in the cytoskeleton of

fibroblasts in patients with POP, F-actin was stained with

phalloidin. The results revealed that actin fibroblast filaments

from the anterior vaginal wall were disrupted (Figure 7). An

abnormal actin phenotype was observed in the POP group, and

this phenotype involved decomposition of the stretched

component of the filament. Thus, the cytoskeleton of vaginal

fibroblasts in patients with POP is abnormal.

Discussion

POP is primarily characterized by the weakening of support

tissue and can be caused by pelvic floor connective tissue

extracellular matrix remodeling, activation of oxidative stress,

genetic susceptibility, denervation of pelvic floor innervation,

and reduced estrogen infiltration (Deng et al., 2021), however,

the underlying mechanism, including the vital molecules and

signaling pathways, is unknown. Furthermore, the role of

regulatory ncRNAs in the pathogenesis of POP remains

unclear. In this study, we performed whole transcriptome

RNA sequencing to examine circRNAs, lncRNAs, miRNAs,

and mRNAs in the anterior vaginal wall and identified

71 DECs, 76 DELs, 84 DEMs, and 931 DEGs. To test the

accuracy of the whole transcriptomic data in this experiment,

we chose 3 DECs, 3 DELs, 3 DEMs, and 3 DEGs at random for

qRT‒PCR verification. The results showed the same trend

TABLE 1 The enriched genes in the KEGG pathway of focal adhesion signaling pathway.

KEGG pathway Enriched genes

Focal adhesion COMP, PPP1R12B, LAMA4, ITGA9, MYLK, COL4A6, FLT4, TLN2, ITGA7, COL4A5, COL4A2, SHC2, PARVA, ROCK2,
ITGA2, VEGFD, FN1, FLNA, PDGFRB, ITGA8, COL4A1

FIGURE 6
ceRNA network of differentially expressed circRNAs, lncRNAs, miRNAs, andmRNAs. The navy-blue circular nodes represent circRNAs, the light
blue circular nodes represent lncRNAs, the square nodes represent miRNAs, and the triangular nodes represent mRNAs.
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between the two analyses and supported the high reliability of our

data (R2 = 0.791).

GO and KEGG enrichment analyses were then performed to

analyze the function of DEGs and demonstrated that the

pathways were mainly associated with focal adhesion. In vivo,

cells are in contact with the extracellular matrix, bind to ECM

proteins through integrins on the membrane and recruit force-

sensitive proteins, such as vinculin, talin, paxillin, and focal

adhesion kinase, to form a focal adhesion, which further

mediates the connection between the cell membrane and the

cytoskeleton, is then converted into biochemical signals, and

thereby ultimately affect gene expression (Hoffmann et al., 2019).

Therefore, changes in the extracellular matrix play an important

role in the regulation of cell adhesion, proliferation, migration,

and apoptosis through mechanical signal transduction

(Fiorentino et al., 2022). It is well known that remodeling of

the ECM in the pelvic floor connective tissue is one of the reasons

for the occurrence of POP (Deng et al., 2021), particularly the

proportions of collagen Ⅰ and Ⅲ (Deprest et al., 2022). Ruiz-

Zapata et al. (2016) demonstrated that matrices increase stiffness

in postmenopausal women with POP compared with controls.

Therefore, the mechanical microenvironment of fibroblasts

surrounded by extracellular matrix is also altered. The “focal

adhesion - cytoskeleton system” is considered the main

mechanism through which force stimulation signals are

transmitted through the cell membrane to the intracellular

cell. In our study, we found that patients with POP have a

disorder of the cytoskeleton structure compared with the control

group. Therefore, the focal adhesion signaling pathway was the

focus of this study. Kufaishi et al. (2016). revealed that the

transcript levels of integrins (ITGA1, ITGA4, ITGAV, and

ITGB1) are downregulated in control vaginal fibroblasts

during mechanical stretching, whereas ITGA2, ITGA4,

ITGA6, ITGB1, contactin (CNTN1), catenins (A1 and B1),

and laminins (A3 and C1) are significantly upregulated in

vaginal fibroblasts from POP patients. Cecati et al. (2018)

demonstrated a significant upregulation of extracellular matrix

protein 1 (ECM1) and integrin beta 3 (ITGB3) and

downregulation of FBLN5 in the POP group by real-time

PCR and PCR array. The upregulation of ECM1 avoids

collagen degradation and extracellular matrix remodeling by

inhibiting matrix metalloproteinase-9 (MMP-9) activity

(Fujimoto et al., 2006; Rapisarda et al., 2017). Furthermore,

ITGB3 could cause a significant increase in transforming

growth factor beta 1 (TGF-β1) activity, which could stimulate

fibroblasts to increase FBLN-5 expression (Asano et al., 2005).

Therefore, the reduced expression of FBLN5 may be the starting

point. The pelvic tissue then increases the expression of both

ITGB3 and ECM1 to compensate for a lack of FBLN5. In our

study, integrins (ITGA2, ITGA7, ITGA8, and ITGA9) also

showed differences in the anterior vaginal wall between the

control and POP groups.

We chose 14 DEGs as hub genes and studied the interactions

of ncRNAs, including circRNAs, lncRNAs, and miRNAs, using

the PPI network. This analysis showed that hsa_circ_0002190,

hsa_circ_0046843, and lnc-CARMN sponge miR-23a-3p with

ROCK2 as the target gene. Furthermore, hsa_circ_0001326,

hsa_circ_0007733, lnc-AC107959, and lnc-TPM1-AS regulate

miR-205-5p, and hub genes such as ROCK2, PPP1R12B, and

VEGFD were identified. A previous study showed that

hsa_circ_0002190 expression is decreased in gastric cancer

and that hsa_circ_0002190 accumulates preferentially in the

cytoplasm (Dong et al., 2021). By regulating KIT and LAMC3,

lnc-AC107959 may play a role in the mechanism of non-muscle

invasive bladder cancer (He et al., 2018). Our study found that

miR-23a-3p regulates ROCK2 expression. miR-23a-3p plays a

FIGURE 7
Cytoskeleton of fibroblasts from the POP and control groups. (400×).
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role in tumor pathology by regulating proliferation, invasion, and

glycolysis (Shi et al., 2021). However, the biological role of miR-

23a-3p in POP has not been investigated. We found that miR-

23a-3p plays a regulatory role by targeting ROCK2. ROCK2 is a

serine/threonine kinase that regulates actin-mediated

cytoskeleton contractility and is a member of the AGC family

of serine/threonine kinases (Weber and Herskowitz, 2021).

ROCK2 is also targeted by miR-205-5p in our ceRNA

network. miR-205-5p, similar to miR-23a-3p, is involved in

modulating the proliferation and invasion of gastric cancer

cells as part of the mechanism through which the lncRNA

AFAP1-AS1 regulates AFAP1 (Dang et al., 2021).

Furthermore, our findings indicate that PPP1R12B and

VEGFD are involved in the regulation of miR-205-5p. Liang

et al. (Tao et al., 2022) showed that inhibition of the PI3K/Akt

signaling pathway can upregulate the expression of miR-205-5p

and that miR-205-5p can inhibit the production of VEGF-A in

breast cancer cells as well as tumor angiogenesis and metastasis.

The present study found that miR-205-5p targets VEGFD to

participate in the focal adhesion signaling pathway. We

hypothesize that miR-205-5p inhibits fibroblast proliferation

via the focal adhesion signaling pathway by targeting VEGFD

because cell adhesion molecules also regulate angiogenesis via

their involvement in cell proliferation, migration, and survival.

More research is needed to confirm this theory. Furthermore,

hsa_circ_0001326, hsa_circ_0007733, lnc-AC107959, and lnc-

TPM1-AS sponge miR-205-5p. In preeclampsia,

hsa_circ_0001326 increases IL16 expression to regulate

proliferation, migration, invasion, and EMT (Liu et al., 2021).

However, no information is available regarding the biological

roles of hsa_circ_0007733, lnc-AC107959, and lnc-TPM1-AS.

Even though many previous studies have investigated

proliferation, apoptosis, and cytoskeleton morphology and

confirmed that many molecules are associated with the

pathological process in POP, they did not focus on the focal

adhesion signaling pathway and did not construct a ceRNA

network.

The current study provided a transcription database of POP

and constructed a focal adhesion signaling pathway-related

ceRNA network to uncover the pathogenesis of POP.

Furthermore, this dataset can be used as a useful public

resource for the identification of new biomarkers and may

also provide new insights into elucidating the pathology of

POP. However, this study has some limitations. First, the

sample sizes of the control and POP groups were insufficient

and need to be increased in future studies. Second, our findings

are based on bioinformatics analysis, and more samples will be

needed for confirmation via qRT–PCR, Western blot, and other

methods. Furthermore, the different grades of POP may have an

impact on whole transcriptome RNA sequencing. The whole

transcriptome RNA sequencing results provide only a

preliminary screening study result. Multiple experimental

studies are needed to validate the regulatory mechanism of

circRNA/lncRNA/miRNA/mRNA in POP.

In summary, we built a ceRNA network for the focal

adhesion signaling pathway in POP pathogenesis, which

included hsa_circ_0002190/hsa_circ_0046843/lnc-CARMN

- miR-23a-3p - ROCK2 and hsa_circ_0001326/

hsa_circ_0007733/lnc-AC107959/lnc-TPM1-AS - miR-205-

5p - ROCK2/PPP1R12B/VEGFD. Furthermore, we

discovered abnormal changes in the cytoskeleton, which are

the final target of focal adhesion signaling events. This study

not only contributes to the understanding of POP

pathogenesis, but the findings can also be used to target

molecular interventions for POP using drug-available gene

databases.
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Hepatocellular carcinoma (HCC) is the most common primary malignancy of

the liver with a very high fatality rate. Our goal in this study is to find a reliable

lipid metabolism-related signature associated with prognostic significance

for HCC. In this study, HCC lipid metabolism-related molecular subtype

analysis was conducted based on the 243 lipid metabolism genes collected

from the Molecular Signatures Database. Several significant disparities in

prognosis, clinicopathological characteristics, and immune and ferroptosis-

related status were found across the three subtypes, especially between

C1 and C3 subgroups. Differential expression analysis yielded 57 differentially

expressed genes (DEGs) between C1 and C3 subtypes. GO and KEGG analysis

was employed for functional annotation. Three of 21 prognostic DEGs

(CXCL8, SLC10A1, and ADH4) were finally selected through machine-

learning-based discovery and validation strategy. The risk score =

(0.103) × expression value of CXCL8 + (−0.0333) × expression value of

SLC10A1 + (−0.0812) × expression value of ADH4. We used these three to

construct a HCC prognostic risk model, which stratified the patients of the

validation cohort into two risk subtypes with significantly different overall

survival. Our work provides possible significance of the lipid metabolism-

associated model in stratifying patient prognosis and its feasibility to guide

therapeutic selection.
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lipid metabolism, hepatocellular carcinoma, machine learning, prognostic risk model,
biomarkers

OPEN ACCESS

EDITED BY

Yuan Liu,
Shanghai Jiao Tong University, China

REVIEWED BY

Lin Wang,
University of California, San Francisco,
United States
Cong Li,
Zhongshan School of Medicine, Sun
Yat-sen University, China
Zao Zhang,
Queen’s Medical Center, United States

*CORRESPONDENCE

Guohua Yang,
seawander@hotmail.com
Shunfang Liu,
liushunfang28@163.com

†These authors have contributed equally
to this work

SPECIALTY SECTION

This article was submitted to RNA,
a section of the journal
Frontiers in Genetics

RECEIVED 28 July 2022
ACCEPTED 30 August 2022
PUBLISHED 28 September 2022

CITATION

Xiong R, Wang H, Li Y, Zheng J, Cheng Y,
Liu S and Yang G (2022), Machine
learning-based transcriptome analysis
of lipid metabolism biomarkers for the
survival prediction in
hepatocellular carcinoma.
Front. Genet. 13:1005271.
doi: 10.3389/fgene.2022.1005271

COPYRIGHT

© 2022 Xiong, Wang, Li, Zheng, Cheng,
Liu and Yang. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

Frontiers in Genetics frontiersin.org01

TYPE Original Research
PUBLISHED 28 September 2022
DOI 10.3389/fgene.2022.1005271

17

https://www.frontiersin.org/articles/10.3389/fgene.2022.1005271/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.1005271/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.1005271/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.1005271/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.1005271/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2022.1005271&domain=pdf&date_stamp=2022-09-28
mailto:seawander@hotmail.com
mailto:liushunfang28@163.com
https://doi.org/10.3389/fgene.2022.1005271
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2022.1005271


Introduction

As a leading cause of cancer-related death worldwide,

hepatocellular carcinoma (HCC) is the most prevalent type of

primary liver malignancy (Balogh et al., 2016). Patients with

HCC have a wide range in overall survival rates from region to

region (Sung et al., 2021), with a 5-years survival rate of only 18%

in the United States (Jemal et al., 2017). The most major risk

factors for the development of HCC are chronic liver disease and

cirrhosis, with viral hepatitis and excessive alcohol consumption

being the primary well-known etiologies (Bruix et al., 2004).

Therefore, it is vital and urgent to identify the prognostic value of

novel markers that can aid in selecting patients who will benefit

from patient-specific strategies.

The tumor microenvironment (TME) facilitates tumor

metastasis, proliferation, and survival, which leads to

abnormal metabolisms for tumor cells and those adjacent

stromal cells. The TME in HCC might indicate a variety of

metabolic disturbances, with lipid metabolic anomaly being a

fresh subject that has sparked a lot of interest in recent years

(Beloribi-Djefaflia et al., 2016). Lipid metabolic disturbance,

particularly for fatty acid (FA) metabolism, is associated with

altered lipid-metabolizing enzyme expression and activity due to

aberrantly activated oncogenic signaling pathways (Hu et al.,

2020). Lipid metabolism has been increasingly recognized as a

critical phenomenon of metabolic rewiring within immune cells

and cancer cells, which may be involved in the development of

HCC. Furthermore, evidence from various solid tumor research

suggests that tumor immune-metabolic reprogramming is

significant, and it has been designated as a new critical subject

for future HCC studies (Zhang et al., 2018). According to prior

research, immune cells play an important role in the TME of

HCC, and aberrant lipid metabolismmay have amajor impact on

their activities and recruitment (Gajewski et al., 2013). Although

growing studies have explored the genetic, cellular, and

environmental mechanisms involved in the development of

tumors (Chen et al., 2020; Zhang et al., 2020; Cao et al.,

2021a; Zhong et al., 2021), clinicians currently have few

choices for slowing HCC progression and extending patients’

lives. Therefore, integrated lipid metabolism and liver cancer

progression to build an effective prediction model is needed and

is the focus of this investigation.

In this study, our goal is to identify a robust lipid

metabolism-related signature associated with the HCC

microenvironment to improve the prognostic prediction of

HCC patients. Genes related to energy metabolism were

collected from the Molecular Signatures Database. Gene

expression data from The Cancer Genome Atlas (TCGA)

were used in constructing HCC molecular subtypes based on

genes related to energy metabolism. The relationship between

molecular subtypes and prognosis was further evaluated. After

differential expression analysis and machine-learning-based

selection, three lipid metabolism-driven signatures were

chosen from the 576 differentially expressed genes (DEGs) for

establishing a prognostic risk model. Then, we validated the risk

model, which may be used to assess the prognosis of HCC

patients. Overall, this 3-signature prognostic risk model

(CXCL8, SERPINC1, and ADH4) we built can be used as an

independent prognostic evaluation index for HCC patients.

Materials and methods

Data collection and preprocessing

RNA-sequencing expression (level 3) profiles and

corresponding clinical information for 371 HCC as well as

50 healthy subjects were derived from the TCGA dataset

(https://portal.gdc.com). The raw data were preprocessed with

the criteria which have been described elsewhere (Cao et al., 2020;

Mao et al., 2020; Cao et al., 2021b; Mao et al., 2021). A total of

243 lipid metabolism-associated genes were gathered based on

the Molecular Signatures Database v7.5.1 (c2: curated gene sets),

including Fatty acid metabolism M699, Glycerophospholipid

metabolism M9131, Glycerolipid metabolism M15902,

Sphingolipid metabolism M15955, Ether lipid metabolism

M2130, Glycosphingolipid biosynthesis-ganglio series M8535,

Biosynthesis of unsaturated FAs M11673, Glycosphingolipid

biosynthesis-globo series M12899, Glycosphingolipid

biosynthesis-lacto, and neolacto series M17377 (http://www.

broadinstitute.org/gsea/msigdb/index.jsp).

Identification and validation of the lipid-
related subtypes

Consensus clustering was applied to identify a robust cluster

of HCC patients based on the expression profile of The Cancer

Genome Atlas Liver Hepatocellular Carcinoma (TCGA-LIHC)

data (Cao et al., 2020). The 1,000 bootstraps with 80% item

resampling and a range of K from 2 to 10 were selected for

clustering analysis. Partition around the medoids classifier was

trained in the discovery cohort. By calculating the in-group

proportion and Euclidean correlation in the centroid of gene

module scores, we quantitatively acquired and verified the

consistency of immune subtypes among populations. The

expression value for lipid metabolism-associated gene within

each subtype was used for Principal component analysis

(PCA) by the “prcomp” function in R.

Immune status and ferroptosis-related
estimation

We used the CIBERSORT method (Chen et al., 2018) to

assess the immune composition of a tumor biopsy and get
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reliable results of immune score evaluation. The relative

abundance enrichment score of 22 Tumor infiltrating

leukocytes (TILs) was measured and standardized from 0 to 1.

Moreover, potential immune checkpoint blockade (ICB)

response was predicted with Tumor Immune Dysfunction and

Exclusion (TIDE) algorithm (Jiang et al., 2018). Twenty-four

Ferroptosis-related genes were collected from the previous study

(Liu et al., 2020). The expression distribution of ferroptosis-

related mRNA in tumor and normal tissues was implemented by

the R program v4.0.3.

DEG identification and functional
enrichment analysis

The differentially expressed genes (DEGs) of the subtypes

were identified using the “limma” algorithm for subsequent

analyses (FDR adjusted p-value < 0.05 and |log2FC| > 3; FC,

fold change, FDR, False Discovery Rate) (Ritchie et al., 2015).

Afterward, Gene Ontology (GO) terms and Kyoto Encyclopedia

of Genes and Genomes (KEGG) functional enrichment analyses

were conducted based on the DEGs (Wu et al., 2021). The GO

terms and KEGG pathways with a p-value of < 0.05 were

considered significantly enriched function annotations.

Development and validation of the
prognostic signature

To identify overall survival (OS)-related genes from DEGs

and detect lipid metabolism-driven prognostic signature

(LMSig), we randomly divided the mRNA expression profile

of 371 HCC patients into two parts as the discovery

(186 samples) and validation data (185 samples). Then,

machine-learning-based variable selection was carried out on

the discovery data using likelihood-based boosting in the Cox

model as implemented in the R package “CoxBoost” [30]. The

machine-learning algorithm has been as described previously in

detail (Hou et al., 2021). For the CoxBoost model, the number of

boosting iterations was then optimized through cross-validation

after the optimal penalty had been determined through ten cross-

validations using the R package “CoxBoost” (De Bin, 2016). The

CoxBoost algorithm was used to automatically estimate the

optimal number of LMSig.

In addition, we used the validation data to further confirm

the relationship between LMSigs and clinical/prognostic features

of HCC. The p-values and hazard ratio (HR) with 95%

confidence interval (CI) were generated by log-rank tests and

univariate cox proportional hazards regression in Kaplan–Meier

curves analysis using the R package “survival” (Therneau and

Lumley, 2015; Zhou et al., 2019). The concordance statistic

(C-statistic index) was used to measure the goodness of fit of

the prognostic model. The time-dependent receiver operating

characteristic (ROC) curve was used to appraise the prognostic

performance of the risk model for survival prediction, and the

area under the ROC curve (AUC) values were calculated with the

R package “timeROC” (Blanche and Blanche, 2019).

Statistical analysis

The statistical difference between the two groups was

compared through the Wilcox test, the significant difference

between the three groups was tested with the Kruskal–Wallis

test. All statistical tests were two-sided, p-value < 0.05 was

considered statistically significant. All the data were processed

and analyzed by R program v4.0.3.

Results

Lipid metabolic molecular subtypes of
HCC identification

An expression profile of 243 common lipid-related genes in

371 HCC patients from the TCGA database was used to

implement the consensus clustering. The analysis clustered the

patients with HCC into three subgroups C1, C2, and C3

(Figure 1A). These three conceivable subclusters were

respectively distinguished via first and second principal

components (PCs) (Figure 1B). As shown in Figure 1C, the

expression levels of lipid metabolism-related genes seem to differ

among the three subtypes. Prognosis signature among them was

further analyzed. The Kaplan–Meier method was used to

investigate the overall (OS) of the three subgroups, and we

observed that the patients in the C3 subtype had the worst

prognosis, while the C2 subgroup had significantly best OS

(Figure 1D, p-value = 0.0043).

Clinicopathological and immune
infiltration characteristics in three
subgroups

The clinicopathological characteristics of the three subtypes

were then compared. Tumor T stage, Gleason grade, and type of

treatment among subtypes reached statistical significance

(Figure 2A). The results manifested that those patients

diagnosed with differential T stage and grade were clustered

unevenly. T3 stage and G3 accounted for the major proportion of

C3 while T1 and G2 were in the majority in C1 (Figure 2A).

The results of CIBERSORT showed significant differences in

infiltrating immune cell types between the three subgroups.

There were more abundant proportions of T cell CD8+and

T cell regulatory (Tregs) in the C1 subgroup than in the

C3 subgroup. On the other hand, Macrophage M0 was
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significantly enriched in C3 compared with C1 (p-value < 0.05;

Figure 2B). Moreover, eight ICPs-associated genes were

differentially expressed among C1-3. C3 showed significant

upregulation of CD274, CTLA4, HAVCR2, PDCD1,

PDCD1LG2, TIGIT, and SIGLEC15, while these genes were

down-expressed separately in the C1 tumors (Figure 2C).

To predict the ICB response of identified HCC subtypes, the

TIDE score was calculated. The findings showed that the TIDE

score was significantly lower in the C1 subtype than in the

C3 subtype (Kruskal–Wallis test, p-value = 4.9 × 10−11;

Figure 2D). These discoveries suggested that patients of the

C1 subtype may be more sensitive to ICB therapy as judged

by the TIDE score.

Ferroptosis-related estimation among
three distinct subgroups

Ferroptosis is known as an iron-dependent form of

regulated cell death (RCD) triggered by lipid peroxidation

FIGURE 1
Identification of potential lipid metabolism-related subtypes of HCC. (A) Consistency of clustering results in the heatmap (k = 3), rows and
columns represent samples, the different colors represent different types. (B) PCA analysis of different subgroups with PC1 and PC2. (C) The
expression heatmap of lipid metabolism-related genes in three subgroups, red represents high expression, and blue represents low expression. (D)
Kaplan–Meier survival analysis of the different groups of samples from TCGA dataset, comparison among different groups was made by log-
rank test. HR (95% Cl), the median survival time for different groups.
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accumulation (Aguilera et al., 2021). Recently, triggering

ferroptosis has emerged as a promising therapeutic option

for inducing cancer cell death, particularly for malignancies

that are resistant to traditional therapies (Liang et al., 2019). In

our study, the comprehensive landscapes of ferroptosis-

related gene interactions, connections, and their

prognostic significance for HCC patients in three subgroups

were depicted, respectively (Figure 3A). We found that

ferroptosis-related genes in distinct subgroups presented a

remarkably different correlation in expression. The

expression of each ferroptosis-related gene also

differed insignificantly among the three lipid subtypes. As

shown in Figure 3B, the expression levels of CDKN1A,

HSPA5, EMC2, SLC7A11, NFE2L2, FANCD2, SLC1A5, CS,

and CARS1 were highly accumulated in C3 compared to

C1 subgroups.

DEG identification and functional analysis

Transcriptome differential expression was performed

between C1 and C3 subgroups of HCC patients according

to the above difference among them. Fifty-seven genes were

identified as DEGs at FDR < 0.05 and log2FC > 3, of which

27 DEGs were up-regulated, and 30 DEGs were down-

regulated (Figures 4A,B). Then, GO functional and KEGG

pathway enrichment analyses were performed. The results of

KEGG analysis demonstrated that up-regulated DEGs majorly

FIGURE 2
The distribution of clinical and immune characteristics in the samples from different groups. (A)Distribution of clinical characteristics across C1-
C3 HCC patients. Association between three different subtypes and CIBERSORT immune infiltration (B), ICPs (C), and TIDE score (D). Asterisks (*)
stand for significance levels. * represents p < 0.05, ** represents p < 0.01,*** represents p < 0.001.
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participated in complement and coagulation cascades,

cholesterol metabolism, fatty acid degradation, and bile

secretion (Figure 4C). Meanwhile, down-regulated DEGs

were involved in Hepatitis B, proteoglycans in cancer,

and the PI3K−Akt signaling pathway. GO analysis revealed

that these DEGs were mostly enriched in steroid metabolic

FIGURE 3
Ferroptosis-related Estimation in three subgroups. (A) The circles represent the ferroptosis-related mRNA, and the line represents the
relationship between genes. Red represents positive correlation whereas blue represents negative correlation. The thicker the line, the higher the
correlation coefficient. The larger the circle the smaller the log-rank p value. Different colors of circles represent different types of clusters. (B) The
expression distribution of ferroptosis-related mRNA in tumor tissues and normal tissues. Asterisks (*) stand for significance levels. * represents
p < 0.05, ** represents p < 0.01, and *** represents p < 0.001.
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FIGURE 4
DEGs Identification and functional analysis between C1 and C3. (A) The volcano plot and heatmap (B) of differentially expressed gene analysis
between C1 and C3. Red represents up regulation whereas blue represents down regulation. (C) GO and KEGG enrichment analysis of up- and
down-regulated DEGs.

Frontiers in Genetics frontiersin.org07

Xiong et al. 10.3389/fgene.2022.1005271

23

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1005271


process, terpenoid metabolic process (up-regulated

DEGs), and regulation of small GTPase (down-

regulated DEGs), which were related to lipid metabolism

(Figure 4C).

Establishing a prognostic risk model

Integrated the differential gene expression and patient

survival data from the TCGA cohort, we screened DEGs to

discover the feasibility and reliability of a prognostic

signature for HCC. Among all 57 DEGs, 21 DEGs were

associated with the OS of HCC patients (p-value < 0.05).

Subsequently, a boosting machine learning algorithm was

performed for signature selection from these 21 DEGs and

identified three lipid metabolism-driven signatures (3LMSig).

Then, the 3LMSig was transformed into a risk scoring model

by linear combination of the expression of the 3LMSig as

follows: risk score of 3LMSig = (0.103) × expression value

of CXCL8 + (−0.0333) × expression value of SLC10A1 +

(−0.0812) × expression value of ADH4. Among them, the

expression value of CXCL8 was linked positively to HCC risk

score, while the expression value of SERPINC1 and

ADH4 showed a negative relationship with HCC risk score.

According to the risk score, the patients in validation cohort

were divided into the high-risk group and the low-risk

group. Low-risk patients had statistically significantly better

OS than those in the high-risk group (Log-rank p-value =

2.54 × 10−6, Figure 5). To compare the sensitivity and

specificity of survival prediction, a time-dependent ROC curve

analysis of this 3LMSig-based risk score model was performed.

The area under the curves (AUCs) of the nomogrammodel in 1-,

3-, and 5-years were 0.766, 0.707, and 0.68, respectively

(Figure 5), which suggested the good performance of the risk

score signature.

Discussion

Prognostic prediction of Hepatocellular carcinoma (HCC)

patients has been challenging due to the complicated etiologic

variables and high-level heterogeneity of HCC (Liang et al.,

2020). Therefore, there is an additional need for the

development of novel prognostic models, considering the

FIGURE 5
The validation of 3LMSig-associated prognostic risk model.
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limited treatment strategies for HCC. Emerging data suggest that

changes in tumor lipid metabolism, including metabolite

abundance and lipid metabolic product accumulation,

contribute to tumor formation and local immunosuppression

in the TME (Hao et al., 2019). As a result, we focused on learning

more about the link between tumor lipid metabolic genes and

prognosis in HCC. We seek to develop a panel of prognostic

markers using molecular markers derived from tumor metabolic

genes.

In this study, the public gene expression data from the TCGA-

LIHC database were utilized to classify HCC patients into three

molecular subtypes C1-3 based on 243 lipid metabolism-related

genes. Several significant disparities in prognosis,

clinicopathological characteristics, and immune and ferroptosis-

related status were found across the three subtypes, especially

between C1 and C3 subgroups. For example, a recently discovered

cell death mechanism called ferroptosis may serve as a therapeutic

biomarker for HCC.We observed C3 and C1 cluster can be classified

as ferroptosis-high and ferroptosis-low groups according to the

expression levels of ferroptosis-related genes. Previous research

inferred the ferroptosis-high group have a worse prognosis and

higher immune score (Deng et al., 2021), in line with our findings.

Then, 57 DEGs between these two subgroups were identified.

GO and KEGG enrichment analysis displayed that these DEGs

were closely associated functionally with lipid metabolism and

tumorigenesis. Selected by machine-learning- based feature

selection afterward, a prognostic risk model including 3LMSig

was established. The risk model consisting of CXCL8, SLC10A1,

and ADH4 was effective in predicting the prognosis of HCC

patients. Moreover, the risk score calculated from the established

risk model divided patients into high-risk and low-risk groups.

The risk model showed that high CXCL8 expression level was

associated with a bad prognosis, and high expression of

SERPINC1 and ADH4 was related to better overall survival.

The ROC curve analysis confirmed the moderate discriminatory

accuracy of the model. According to findings, the lipid

metabolism-related signature has prognostic significance for

HCC. Previous research reported that SLC10A1 (solute carrier

family 10 member 1) can inhibit the Warburg effect to suppress

HCC tumor growth (Lu et al., 2020). ADH4 (Alcohol

dehydrogenase 4), a member of the ADH family, metabolizes

a wide variety of substrates including ethanol and retinol (Wei

et al., 2012). CXCL8 is a promising prospective prognostic and

tumor TME-related cluster (Zhu et al., 2020).

The advantage of this study is that we have identified a

prognostic feature by 3LMSig that predicts 1-, 3-, and 5- year

survival with relatively high AUC. However, there are limitations

to this initial work. Some of the findings from this study could

not be explained satisfactorily given our current limited

knowledge of cancer biology. Moreover, independent studies

are warranted to replicate our findings.

In summary, our study divided HCC patients into three

lipid metabolism-related molecular subtypes with different

prognoses and other molecular features. Then, a risk

model with a good performance in prognostic prediction

was built using the TCGA dataset. This model can be used

as an independent prognostic evaluation index for HCC

patients. Our work shed lighter on the possible significance

of the lipid metabolism-associated model in stratifying

patient prognosis and its feasibility to guide therapeutic

selection.
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Aim: Myopia is a prevalent public health problem. The long noncoding RNA

(lncRNA) mechanisms for dysregulated retinal signaling in the myopic eye have

remained elusive. The aim of this study was to analyze the expression profiles

and possible pathogenic roles of lncRNAs in mouse form-deprived myopia

(FDM) retinas.

Methods: A mouse FDM model was induced and retinas from the FDM right

eyes and the contralateral eyes were collected for RNA sequencing. Gene

Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway

enrichment, and lncRNA-mRNA coexpression network analyses were

conducted to explore the biological functions of the differentially expressed

lncRNAs. In addition, the levels of differentially expressed lncRNAs in themyopic

retinas were validated by quantitative real-time PCR (qRT–PCR). Fluorescence

in situ hybridization (FISH) was used to detect the localization of lncRNAs in

mouse retinas.

Results: FDM eyes exhibited reduced refraction and increased ocular axial

length compared to control fellow eyes. RNA sequencing revealed that

there were 655 differentially expressed lncRNAs between the FDM and

control retinas. Functional enrichment analysis indicated that the

differentially expressed RNAs were mostly enriched in cellular processes,

cytokine-cytokine receptor interactions, retinol metabolism, and rhythmic

processes. Differentially expressed lncRNAs were validated by qRT–PCR.

Additionally, RNA FISH showed that XR_384718.4 (Gm35369) localized in the

ganglion cell (GCL) and inner nuclear layers (INL).

Conclusion: This study identified the differential expression profiles of lncRNAs

in myopic mouse retinas. Our results provide scientific evidence for

investigations of myopia and the development of putative interventions in

the future.
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Introduction

Myopia is themost prevalent refractive error and a leading cause

of visual impairment worldwide (Dolgin, 2015). In recent decades,

there has been a pandemic increase in myopia prevalence, and

uncorrected refractive error has become a major public health

concern, affecting a large proportion of the world population

(Lou et al., 2016; Cheng et al., 2020). Myopia is characterized by

excessive elongation in ocular axial length (AL) accompanied by

scleral thinning and stretching of other ocular tissues. High myopia

(−6.00 D or worse) can lead to severe visual impairments caused by

complications such as posterior staphyloma, glaucoma, choroidal

neovascularization, myopic retinal degeneration, and detachment

(Grossniklaus and Green, 1992; Wu et al., 2000). Multiple factors,

including genetic anomalies, intensive near work, insufficient

outdoor activities, etc., are involved in the development of

myopia (Zhao et al., 2020). Although previous studies have

implicated dopamine (Huang et al., 2020), nitric oxide (NO)

(Carr and Stell, 2016), retinoic acid (RA) (Wang et al., 2014),

glutamate (Guoping et al., 2017), the extracellular matrix (Liu

et al., 2017), and, recently, scleral hypoxia (Wu et al., 2018) in

the etiology of myopia, the mechanisms and pathogenesis of myopia

still require further investigation.

Long noncoding RNAs (lncRNAs) are a class of transcripts

greater than 200 nt in length that have little or no protein-coding

potential (Carninci et al., 2005; Guttman et al., 2013). LncRNAs

have been found to play important roles in a variety of biological

processes, including chromatin organization, transcriptional/

translational regulation, stem cell maintenance, differentiation,

and cell fate reprogramming (Brockdorff et al., 1991; Geisler and

Coller, 2013; Flynn and Chang, 2014).

Previous studies have shown that lncRNAs are associated

with diverse ocular diseases, including diabetic retinopathy,

retinal neovascularization, glaucoma (Zheng M. et al., 2020),

cataracts (Tu et al., 2020), proliferative vitreoretinopathy (Ni

et al., 2021) and retinoblastoma (Wang H. et al., 2021). RNA

sequencing (RNA-seq) of a guinea pig form-deprived myopia

(FDM) model and a lens-induced myopia (LIM) model has also

suggested that there is differential lncRNA expression in the

ocular posterior pole (Geng et al., 2020). lncRNA-associated

extracellular matrix (ECM), ECM-receptor interaction, kinase

activity, metabolism and multiple functional pathways are

involved in myopia pathogenesis (Geng et al., 2020). lncRNAs

can affect gene expression by functioning as competitive

endogenous RNAs (ceRNAs) with microRNAs (miRNAs),

competing with mRNAs for miRNA binding (Cesana et al.,

2011). Since miRNA profiling in LIM mice, LIM guinea pigs,

and highly myopic patients has suggested the existence of

differentially regulated miRNA patterns (Tanaka et al., 2019;

Guo et al., 2020; Zhu et al., 2020), lncRNAs might modulate gene

expression through RNA interactions and thus regulate myopia.

The retina is a thin layer of complex neural tissue that

receives light-stimuli and processes visual signal, and

transmitted signal to the sclera. Numerous studies have

suggested the retina playing important roles in the pathology

in myopia, such as circuiting electrical and chemical synapses

(Zhi et al., 2021). Moreover, lncRNAs play pathogenic roles in

several retinal diseases, such as the lncRNA XIST and nuclear

paraspeckle assembly transcript 1, which play roles in diabetic

retinopathy (Li, 2018; Dong et al., 2020). Nevertheless, the

detailed expression profiles and pathogenic mechanisms of

lncRNAs in myopic retina remain largely elusive. As there

were several sequencing studies focusing on the changes in

sclera of myopia, while the role of retinal structure in the

pathology of myopia remains unclear and complex, the

sequencing analysis here hope to lay a foundation for the

future study about the mechanisms (especially for the non-

coding RNAs) in myopic retina.

Previous myopia studies have built well-established

experimental myopic animal model, including FDM and lens-

induced myopia (LIM). The two models differ from each other in

the methods and behind mechanisms: FDM is induced by

deprivation of form vision, while LIM by wearing concave

lens to form image behind the retina and to induce excessive

accommodation and extension of axial length (Xiao et al., 2014).

Study with chicks indicated that the dopaminergic mechanisms

mediating the protective effects of brief periods of unrestricted

vision might differ for FDM vs. LIM, implying that the twomight

be different in the growth control mechanisms (Nickla and

Totonelly, 2011). Form-deprivation has been well-developed

and effective to induce myopia, and extensively used in

research into the mechanisms, pathology, sequencing analysis

of myopia, thus the current study applied FDMmodel to explore

the lncRNA and mRNA expression pattern in myopic retina.

Early study of experimental myopia has tested twomouse strains,

C57BL/6 and DBA/2, and concluded that DBA/2J were

unaffected by occlusion for 7 or 14 days; prolonged occlusion

produces a significant myopic shift in C57BL/6 mice, but not in

DBA/2J (Schaeffel et al., 2004). Thus, recent myopic mice studies

applied the C57BL/6 strains in the model building. Our process

of building the FDMmodel was almost the same to the procedure

of Wu’s report with the male C57BL/6, which was started at the

age of 3 weeks postnatal, and deprived for 4 weeks by wearing

monocular occlusion in the right eyes (Wu et al., 2015).

In the present study, a mouse FDM model was established

and characterized. RNA sequencing was applied to compare

lncRNA and mRNA expression patterns in retinal tissue

between FDM and control mice. Next, the differentially

expressed lncRNAs and mRNAs were utilized to conduct

pathway enrichment and coexpression network analyses by

bioinformatics methods. Furthermore, lncRNA expression was

validated by qRT–PCR and localized by RNA FISH. This study

aimed to provide experimental evidence of lncRNA profiles in

the retina in the context of myopia, which might enable further

investigation and the development of a therapy for this ocular

disease.
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Materials and methods

Animals

Male C57BL/6J mice (3 weeks of age, weight 10–15 g) from the

Animal Unit of Central South University were used in this study.

Mice were treated under the rules of the Association for Research in

Vision and Ophthalmology Statement for the Use of Animals in

Ophthalmic and Visual Research. They were housed in an indoor

environment with a 12 h light/12 h dark cycle, a temperature of 24 ±

2°C, a luminance of approximately 100–200 lux, and free access to

food and water. The animal procedures were approved by the

Institutional Animal Care and Use Committee of Central South

University (Approval No. 2020sydw0077).

Induction of mouse FDM

Induction of FDM in mice was performed following the

procedures described in previous studies (Schaeffel et al., 2004;

Wu et al., 2015) with minor modifications. Briefly, on the day of

the experiment (Postnatal Day 21–24, weight 10–15 g), male

C57BL/6J mice were anesthetized by an intraperitoneal injection

of ketamine (90 mg/kg) and xylazine (10 mg/kg), and diffuser eye

patches were attached to the skin surrounding the right eye. The

diffuser eye patch was made in the laboratory from a plastic tube

bottom (diameter: 7.5 mm) mounted on a matching soft latex ring.

The eye diffuser was first glued to the periorbital skin around the

right eye and then fixedwith six to eight stitches (Prolene suture; size

4–0). TobraDex ophthalmic ointment (Alcon, United States) was

applied to the eye to protect the cornea from drying. Collars made

from plastic foils (outer diameter: 5.5–6.5 cm, inner diameter:

1.0 cm) were fitted around the neck to prevent the mice from

removing their diffusers. Food pellets were placed on the floor of the

cage to make eating easier. Mice wearing the diffusers were housed

in groups of five to six in transparent plastic cages under 12:12 h

light-dark conditions (approximately 200 lux illuminance) for

28 days. They were checked every day to ensure the attachment

of the diffuser to the eye. A dropped or loose diffuser was reattached.

Mice with cataracts or corneal opacity were excluded from the

experiments.

Assessment of refraction and axial length

The diffusers were removed after 28 days of FDM treatment,

and both eyes were refracted within the same day. The mice were

intraperitoneally anesthetized as previously described. One drop of

compound tropicamide solution (Santen Pharmaceutical Co., Ltd.,

JP) was instilled into each eye to ensure a pupil diameter of 1.5 mm.

Full pupil dilatation took several minutes. To avoid cataract

formation during anesthetization, the mice were refracted

immediately (within minutes). The mice were examined using

cycloplegic streak retinoscopy by an experienced optometrist. An

interocular refractive difference greater than 5 diopters (D) was

considered an indicator of successful induction of FDM, and

successful models were used in the subsequent experiments.

The axial length of the mice was measured with spectral

domain-optical coherence tomography (SD-OCT) under light

anesthesia (Banerjee et al., 2020). The anesthetized mouse was

placed in front of the light source (Visante OCT 1000, Carl Zeiss

Meditec Inc., Dublin, California, United States). The cornea was

hydrated with normal saline. The reference arm and focus dial

were adjusted simultaneously to a point at which all structures of

the eye were in focus. Alignment was confirmed by viewing the

radial image of the surface of the eye and adjusting the light

source for the central reflection along the horizontal and vertical

optical meridians (Figure 1A). Each scan contained an average of

5 images. To measure AL, calipers were placed from the cornea to

the retinal pigment epithelium (RPE) border by ImageJ software.

RNA extraction and sequencing

High-throughput sequencing was performed on the mouse

retinas (Majorbio Bio-Pham Technology Co., Shanghai, China).

There were 12 samples (6 FDM and 6 fellow eye controls), and

each contained 3 retinas (total of 18mice) to ensure that enoughRNA

was collected (Supplementary Figure.S1). Retinas were collected after

4 weeks of FDM induction. Total RNAwas extracted from the retinas

using TRIzol® Reagent (Invitrogen, Carlsbad, CA, United States), and
genomic DNA was removed by DNase I RNase-free (Takara). The

contamination or degradation of RNA was examined by agarose gel

(1%) electrophoresis, and the concentration was measured using a

NanoDrop-2000 (Thermo Scientific,Wilmington, DE, United States).

RNA integrity was then assessed using a 2100 Bioanalyzer (Agilent

Technologies, Santa Clara, CA, United States). Only high-quality

RNA samples (OD260/280 = 1.8~2.2, OD260/230 ≥ 2.0, RIN≥7, 28S:
18S ≥ 1.0, >5 μg) were used to construct a sequencing library.

Ribosomal RNA depletion was performed using a Ribo-Zero

Magnetic Kit (Epicentre Biotechnologies, Madison, WI,

United States). A stranded RNA-seq transcriptome library was

prepared with a TruSeq™ Stranded Total RNA Kit (Illumina, San

Diego, CA, United States). In addition, 3 μg of total RNA was ligated

with sequencing adapters with a TruSeq™ Small RNA Sample Prep

Kit (Illumina, San Diego, CA, United States). Subsequently, cDNA

was synthesized by reverse transcription and amplified with 12 PCR

cycles to produce the library. After quantification, theRNA-seq library

was sequenced with the HiSeq X Ten (Illumina, San Diego, CA,

United States).

Analysis of sequencing data

The raw paired-end reads were trimmed and quality-

controlled with SeqPrep (https://github.com/jstjohn/SeqPrep)
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and Sickle (https://github.com/najoshi/sickle). The clean reads

were aligned to a mouse reference genome (GRCm38.p6) using

HISAT2 (V2.1.0) and using bowtie2 (V2.2.9). The mapped reads

of each sample were assembled by StringTie (V1.3.3b) in a

reference-based approach. Finally, assembled transcripts were

annotated by Cuffcompare program from the Cufflinks (V2.2.1).

Identification of lncRNAs

Known lncRNAs were identified by alignment of the

transcripts to the existing reference genome and reported

lncRNA sequences in lncRNA-related databases, including

NONCODE, Ensembl, NCBI, UCSC, LncRNAdb, GENCODE,

GREENC, and LncRNA Disease. Novel lncRNAs were selected

step-by-step with criteria. According to the definition and

features of lncRNAs, the exclusion criteria for the transcripts

were 1) overlapping with known protein-coding genes on the

same strand, 2) a fragment count ≤3, 3) a length shorter than

200 nt, 4) an open reading frame (ORF) longer than 300 nt, and

5) an exon number less than 2. Next, the Coding Potential

Calculator (CPC), Coding-Non-Coding index (CNCI), Coding

Potential Assessment Tool (CPAT), and Pfam Scan were used to

filter transcripts with coding potential. The remaining transcripts

were considered reliably expressed lncRNAs. Using Cuffcompare

in Cufflinks, lncRNAs were classified into intergenic, intronic,

and antisense lncRNAs.

Expression analysis of lncRNAs and
mRNAs

The quantitative expression of both lncRNAs and mRNAs in

each sample was calculated in transcripts per kilobase of exon

model per million mapped reads (TPM). lncRNAs with |

log2(FDM/ctrl)| >1 and FDR (Q value) < 0.05 as determined

FIGURE 1
Assessment of FDMmodel mice. (A) Representative SD-OCT images of the axial length (AL) in mice. The white line indicates the ocular AL. After
4 weeks of form deprivation, FDM eyes (OD-FD) display significant myopic refraction (B) and significant increases in AL (C) compared to fellow
controls (OS-Ctrl). Immunostaining for α-SMA (red, arrowhead) showed greater expression in the scleral and choroidal layers of FDMmouse eyes (E)
than in those of control eyes (D) on Day 28 of form deprivation induction. DAPI (blue).

Frontiers in Genetics frontiersin.org04

Li et al. 10.3389/fgene.2022.1014031

30

https://github.com/najoshi/sickle
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1014031


by EdgeR were considered significantly differentially expressed

(DE) transcripts. Volcano plots and hierarchical clustering were

used to analyze the DE lncRNAs and mRNAs identified between

FDM and fellow control retinas. The predicted potential target

genes whose loci were within a 10-kb window upstream or

downstream of the given aberrantly expressed lncRNA were

considered cis-regulated genes. Other genes in the co-

expression network were identified as trans-regulated

according to complementary base pairing by LncTar. Also the

intaRNA (V2.3.1), RNAplex, RIblast (V1.1.3) were used to

predict the target genes. The expressed correlation was

calculated between lncRNAs and target genes, and a Pearson

correlation coefficient >0.9 identified the target genes.

Quantitative real-time polymerase chain
reaction (qRT–PCR)

The expression of ten lncRNAs in the retinas of four mice

(control fellow retinas, n = 4; FDM retinas, n = 4) was assessed

using qRT–PCR to verify the accuracy of the high-throughput

sequencing results. Eyes were enucleated, and the retinas were

immediately dissected. Total RNA was extracted from samples by

using TRIzol® Reagent (Invitrogen, Carlsbad, CA, United States),

and cDNA was synthesized by using a miScript II RT Kit (Qiagen,

Hilden, Germany). Real-time PCR was performed with a miScript

SYBR® Green PCR Kit (Qiagen, Hilden, Germany) using a

7500 FAST real-time PCR system (Applied Biosystems, Foster

City, CA, United States). The expression of lncRNAs was

calculated by the 2−ΔΔCt method. A two-tailed Student’s t test

was used to compare lncRNA expression between samples from

the fellow eyes and those from the FDM eyes in 3 experimental

replicates. The forward and reverse primers for lncRNAs are

shown in Supplementary Table S1.

Immunofluorescence

Eyes were enucleated and fixed in FAS eyeball fixative

solution (G1109-100ML, Servicebio, Wuhan, China) at 4°C for

24 h. The tissues were cryoprotected in 20% sucrose in PBS and

embedded in optimal cutting temperature (O.C.T.) compound

(Tissue-Tek; Sakura Finetek, Torrance, CA, United States).

Twenty-micrometer cryosections were first blocked with

serum and immunolabeled with a primary rabbit IgG anti-

SMA mAb (1:200; Abcam, Temecula, CA, United States), a

primary rabbit IgG anti-RBMPS mAb (1:100;

GTX118619 GeneTex, CA, United States), or a primary rabbit

IgG anti-calbindin mAb (1:100; Bioworld, Nanjing, China) at 4°C

overnight. Then, the sections were reacted with the

corresponding fluorescein isothiocyanate-conjugated secondary

antibody and finally evaluated by fluorescence microscopy. The

slides were stained with DAPI (G1012, Servicebio) for mounting.

RNA fluorescence in situ hybridization
(FISH)

After 4 weeks of FDM induction, mice were killed, and the

eyes were enucleated. The eyes were fixed in FAS eyeball fixative

solution (G1109-100ML, Servicebio, Wuhan, China) for more

than 24 h. The eyes were dehydrated and embedded in paraffin.

The paraffin-embedded eyes were sectioned at 5-μm thickness

and baked on microscope slides in a hybridization oven at 62°C

for 2 h before in situ hybridization. The probes labeled with DIG

for lncRNA XR_384718.4 (Gm35369) are shown in

Supplementary Table S1. The sections were washed with PBS

and blocked with rabbit serum blocking buffer after

prehybridization and hybridization. Next, the sections were

incubated with mouse anti-DIG-HRP (Jackson

ImmunoResearch Labs Inc., United States) for 40 min. After

two washes with PBS for 5 min, fresh tyramide signal

amplification chromogenic reagent (G3025, Servicebio) was

used for the chromogenic reaction for 5 min. The sections

were stained with DAPI (G1012, Servicebio) for 8 min and

mounted. Photographs were obtained with a fluorescence

microscope (Nikon Eclipse CI, Japan).

Statistical analysis

The data are reported as the mean ± standard error of the

mean (SEM). Graphs were constructed using GraphPad Prism

9.0 software. Statistical Program for the Social Sciences

20.0 software (IBM SPSS Inc., New York, NY) was used for

statistical analysis of the biometric parameters and qRT–PCR

results. The ocular biometric parameters in the myopia-induced

right eyes (OD) and the untreated contralateral left fellows (OS)

were compared using the paired t test. The sample sizes are

reported in the results. Overall comparisons of these indices in

the right eyes among the experimental groups were performed

with two-way analysis of variance (ANOVA) or one-way

ANOVA, and pairwise comparisons were performed with

Tukey’s post hoc test. p values <0.05 were considered to

indicate significance.

Results

Establishment and analysis of FDM mice

Visual form deprivation in C57BL/6J mice was started at

approximately 3 weeks (P21, weight 12.82 ± 2.22 g, n = 18). After

28 days of form deprivation in photopic conditions, a myopic

shift in ocular measurements was observed compared to that in

the left control eyes (Figure 1B). The refraction (in diopters, D) in

deprived eyes (−0.17 ± 2.94 D) was shifted toward myopia

compared to that in the controls (+8.28 ± 3.48 D); the
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interocular differences in refraction between the right and left

eyes (OD-OS, −8.44 ± 4.93 D, p < 0.001) were statistically

significant. The axial length (mm) was also elongated in the

deprived eyes (3.46 ± 0.09 mm) relative to that in the controls

(3.39 ± 0.09 mm), with a significant interocular difference (OD-

OS, 0.07 ± 0.09 mm, p < 0.05) (Figure 1C). To further confirm the

characteristics of FDM eyes, the expression of alpha-smooth

muscle actin (α-SMA), a myofibroblast marker, was examined

with immunostaining in the retina and sclera. In accordance with

previous studies (Wu et al., 2015; Yuan et al., 2018), α-SMA was

more highly expressed in the FDM sclera and choroid areas than

in these areas in the control fellows after 4 weeks of induction

(Figures 1D,E). These results suggested the development of

significant FDM in the goggled mouse eyes.

Sequencing data summary

Libraries were constructed from retinal tissue samples from

FDM eyes (n = 6; each sample consisted of three retinas from

three FDM eyes to ensure that the RNA amount was sufficient)

and control fellows (n = 6; each sample consisted of three retinas

from the control fellow eyes of the FDM eyes) and subjected to

sequencing analysis. RNA-seq yielded 501,329,752 and

547,167,536 raw reads from the FDM and control groups,

respectively. Low-quality reads were filtered from the raw

reads, and high-quality clean reads and clean bases were

obtained. In total, 498,008,508 and 543,470,042 clean reads

were retained for the FDM and control groups, respectively.

The Q20 and Q30 quality scores of the clean data were higher

than 90%, indicating the reliability of the RNA sequencing

results. The clean reads were mapped to a mouse reference

genome (GRCm38. p6, Ensembl) with a total mapping

percentage ranging from 96.29 to 97.15%. Detailed data on

the quality results are shown in Supplementary Table S2.

Identification and classification of
lncRNAs in the retinas of mice

According to the mouse reference genome and related

databases (NONCODE, Ensembl, and NCBI), 19,443 known

lncRNAs were identified. Filtering and overlapping analyses in

four programs (PfamScan, CPC, CPAT, and CNCI) identified a

total of 561 novel lncRNAs (Supplementary Figure S2). Mapping

of the reads to genomic regions with RSeQC-2.3.6 revealed the

distributions of the lncRNAs from both FDM and control eyes in

five areas: the 5′UTR (0.81%), intergenic regions (1.97%), the

3′UTR (14.06%), introns (24.57%), and the coding sequence

(CDS, 58.58%) (Figure 2A). Based on the relative chromosomal

position of the coding gene, the novel lncRNAs were classified

into five categories: 5 were sense intronic overlapping lncRNAs

(0.6%), 234 were intergenic lncRNAs (27.0%), 160 were antisense

lncRNAs (18.5%), 416 were sense exonic overlapping lncRNAs

(48.0%), and 51 were bidirectional lncRNAs (5.9%) (Figure 2B).

Chromosomal distribution analysis of the lncRNAs showed that

chromosomes 12, 11, 2 and 9 contained relatively higher

amounts of lncRNAs than the other chromosomes (Figure 2C).

Differential expression patterns of
lncRNAs and mRNAs in FDM

Among the 20,309 lncRNAs (19,443 from reference

databases, 866 of novel) obtained from high-throughput

sequencing, hierarchical clustering analysis showed that there

were 655 differentially expressed lncRNAs between the FDM

and control retinas, of which 296 were upregulated and

359 were downregulated. The top 20 differentially

upregulated (Table 1) and downregulated lncRNAs (Table 2)

between the FDM and control retinas, such as XR_003956022.1,

NR_045075.1, and Oip5os1, are listed according to the

statistical significance (p value) and log2FC. Among the

19,137 mRNAs (18,580 from reference databases, 557 of

novel) obtained from RNA-seq, there were 478 differentially

expressed mRNAs (206 upregulated and 272 downregulated)

between the FDM and control. The top 20 differentially up- and

downregulated mRNAs with the largest fold changes are also

displayed (Tables 3, 4). Heatmaps and volcano plots were used

to visualize the differentially expressed lncRNAs and mRNAs

between the two groups (Figure 3).

Gene ontology and kyoto encyclopedia of
genes and genomes analysis

Target genes of the differential lncRNAs were predicted by

bioinformatics approaches, and the prediction results are

illustrated in Supplementary Table S3. The differentially

expressed mRNAs underwent GO and KEGG enrichment

analyses. GO enrichment analysis examined the gene

functions in three categories: the cellular component (CC),

biological process (BP), and molecular function (MF)

categories. The top 20 enriched GO terms of the significantly

upregulated mRNAs are presented and included the cellular

process (ontology: BP, GO: 0009987), cellular anatomical

entity (ontology: CC, GO: 0110165), and binding (ontology:

MF, GO: 0005488) terms (Figure 4A). The downregulated

mRNAs were related to some different terms, such as

rhythmic process (ontology: BP, GO: 0048511) and structural

molecule activity (ontology: MF, GO: 0005198) (Figure 4B).

GO enrichment analyses were performed on the differentially

expressed mRNAs. The top 20 GO and KEGG enrichment of the

mRNAs are shown in Figures 5A,B, respectively. The terms

“sensory perception of chemical stimulus” and “G-protein

coupled receptor signaling pathway” were among the top
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enriched in the GO enrichment analysis (Figure 5A). Multiple

pathways, such as cytokine-cytokine receptor interactions,

retinol metabolism, olfactory transduction, metabolism of

xenobiotics by cytochrome P450, chemical carcinogenesis,

tyrosine metabolism, and proteasome, are likely involved in

FDM (Figure 5B). The expression levels of altered genes and

their related enriched KEGG pathways are illustrated in the

KEGG chord plot (Supplementary Figure S3). For example,

Ccl21d, Epo, Ccl22, Tnfrsf17, Il22ra1, Pf4, Ccl27a, Cd70, and

Il21r were associated with cytokine-cytokine receptor interaction

(pathway ID: map04060), while Bco1, Cyp3a13, Rdh9, Cyp2a5,

and Adh7 were associated with retinol metabolism (pathway ID:

map00860). These results indicate that the differentially

expressed retinal lncRNAs participate in a variety of biological

mechanisms and are intrinsically associated with form-deprived

myopia.

LncRNA-mRNA coexpression network

To uncover the possible interactions between lncRNAs and

mRNAs in the FDM retina, the lncRNA-mRNA coexpression

relationship was identified based on the top differential lncRNAs

and mRNAs. After screening (correlation coefficient, Corr >0.95, p
value <0.05), a lncRNA-mRNA coexpression network, which

consisted of 117 nodes (lncRNAs and mRNAs) and 755 edges

connecting the nodes, was constructed (Figure 6). The interactive

mRNAs included Vcan, Cmip, Trem2, Dmtf1, Cd59b, Shcpb1,

Vmn2r89, and others, which might play regulatory roles in myopic

biological processes. In particular, the downregulated lncRNA

XR_869563.3 and the upregulated lncRNA NR_045075.1 were

connected by a large number of mRNAs, which suggests that these

dysregulated lncRNAs might be involved in additional functional

pathways and mechanisms in the myopic retina.

FIGURE 2
Expression characteristics of lncRNAs from both FDM and control eyes. (A) Percentages of reads mapped to genomic regions. (B) Percentages
of lncRNAs classified into different groups. (C) Chromosomal distribution of lncRNA numbers.
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TABLE 1 Top 20 Up-regulated LncRNAs (p < 0.05) Between FDM and Fellow Groups. Log2FC, Log2FC of (FDM retina/fellow control retina).

Transcript ID Gene ID Gene Name Gene description Log2FC p value

XR_003956022.1 ENSMUSG00000100783 2310047D07Rik RIKEN cDNA 2310047D07 gene 7.793 9.66E-03

NR_045075.1 ENSMUSG00000086363 A330102I10Rik RIKEN cDNA A330102I10 gene 7.379 1.76E-03

chr4:21834991-21837868 ENSMUSG00000040455 Usp45 ubiquitin specific petidase 45 7.182 2.96E-03

ENSMUST00000147425 ENSMUSG00000085438 Oip5os1 Opa interacting protein 5, opposite strand 1 6.852 6.60E-03

chr16:32388756-32392334 ENSMUSG00000053774 Ubxn7 UBX domain protein 7 6.666 1.29E-02

chr6:92167828-92169115 ENSMUSG00000005893 Nr2c2 nuclear receptor subfamily 2, group C, member 2 6.249 6.69E-03

XR_871884.3 ENSMUSG00000112110 Gm15608 predicted gene 15608 6.235 1.26E-03

ENSMUST00000181960 ENSMUSG00000097290 1300002E11Rik RIKEN cDNA 1300002E11 gene 6.172 4.21E-03

XR_004934313.1 ENSMUSG00000109233 Gm44866 predicted gene 44866 6.145 1.48E-02

chr7:101793411-101795506 ENSMUSG00000001829 Clpb ClpB caseinolytic peptidase B 6.026 1.58E-02

chr13:114155322-114157022 ENSMUSG00000042348 Arl15 ADP-ribosylation factor-like 15 5.933 3.65E-03

chr17:88487362-88490321 ENSMUSG00000034998 Foxn2 forkhead box N2 5.837 1.58E-02

XR_004941494.1 ENSMUSG00000104178 Gm9916 predicted gene 9916 5.645 4.91E-03

XR_004940873.1 ENSMUSG00000086405 9330198N18Rik RIKEN cDNA 9330198N18 gene 5.637 4.93E-03

chr1:34446795-34449308 ENSMUSG00000026127 Imp4 IMP4, U3 small nucleolar ribonucleoprotein 5.481 1.82E-02

ENSMUST00000128131 ENSMUSG00000086290 Snhg12 small nucleolar RNA host gene 12 5.464 9.49E-03

XR_381591.4 ENSMUSG00000112412 Gm35239 predicted gene, 35239 5.380 1.93E-02

ENSMUST00000152024 ENSMUSG00000086587 Gm11837 predicted gene 11837 5.352 2.69E-03

XR_001783522.3 ENSMUSG00000085317 Gssos2 glutathione synthase, opposite strand 2 5.169 5.48E-03

XR_880469.2 ENSMUSG00000090006 Gm16227 predicted gene 16227 5.166 2.14E-02

TABLE 2 Top 20 down-regulated LncRNAs (p < 0.05) between FDM and fellow groups.

Transcript ID Gene ID Gene Name Gene description Log2FC p value

chr6:13086757-13089260 ENSMUSG00000029571 Tmem106b transmembrane protein 106B −6.240 1.57E-02

XR_004935657.1 ENSMUSG00000103640 Gm31406 predicted gene, 31406 −6.161 7.98E-03

chr9:110981867-110984062 ENSMUSG00000032495 Lrrc2 leucine rich repeat containing 2 −6.031 4.86E-03

XR_003955073.1 ENSMUSG00000087366 Junos jun proto-oncogene, opposite strand −5.990 2.54E-04

XR_386631.3 ENSMUSG00000117692 Gm50114 predicted gene, 50114 −5.928 1.73E-02

ENSMUST00000126380 ENSMUSG00000086290 Snhg12 small nucleolar RNA host gene 12 −5.873 2.33E-03

NR_040262.1 ENSMUSG00000044471 Lncpint Trp53 induced transcript −5.825 8.89E-03

XR_881968.1 ENSMUSG00000108711 Gm38991 predicted gene, 38991 −5.806 1.40E-02

XR_871885.3 ENSMUSG00000112110 Gm15608 predicted gene 15608 −5.731 4.93E-03

XR_003948926.1 ENSMUSG00000112110 Gm15608 predicted gene 15608 −5.723 1.15E-03

ENSMUST00000179924 ENSMUSG00000079179 Rab10os RAB10, RAS oncogene family, opposite strand −5.656 4.90E-03

XR_004934966.1 ENSMUSG00000110559 Gm26843 predicted gene, 26843 −5.612 1.04E-02

chr8:61504964-61506681 ENSMUSG00000031641 Cbr4 carbonyl reductase 4 −5.567 4.08E-03

XR_004942277.1 ENSMUSG00000086953 Aknaos AT-hook transcription factor, opposite strand −5.489 1.98E-02

chr7:113928073-113932081 ENSMUSG00000038156 Spon1 spondin 1, (f-spondin) extracellular matrix protein −5.482 2.03E-02

ENSMUST00000238598 ENSMUSG00000097129 4930507D05Rik RIKEN cDNA 4930507D05 gene −5.468 6.20E-03

ENSMUST00000238778 ENSMUSG00000026736 4930426L09Rik RIKEN cDNA 4930426L09 gene −5.462 1.07E-02

chr1:15716879-15719068 ENSMUSG00000092083 Kcnb2 potassium voltage gated channel, Shab member 2 −5.370 1.19E-02

chr18:36299103-36299691 ENSMUSG00000110185 Igip IgA inducing protein −5.364 1.44E-02

XR_004941495.1 ENSMUSG00000104178 Gm9916 predicted gene 9916 −5.295 6.54E-03
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TABLE 3 Top 20 upregulated mRNA (p < 0.05) between FDM and fellow groups.

Transcript ID Gene ID Gene Name Gene description Log2FC p value

ENSMUST00000021662 ENSMUSG00000021236 Entpd5 ectonucleoside triphosphate diphosphohydrolase 5 9.540 4.56E-03

ENSMUST00000211820 ENSMUSG00000037270 4932438A13Rik RIKEN cDNA 4932438A13 gene 9.436 1.39E-02

ENSMUST00000101375 ENSMUSG00000057113 Npm1 nucleophosmin 1 9.386 9.60E-04

ENSMUST00000095172 ENSMUSG00000034390 Cmip c-Maf inducing protein 9.337 3.42E-03

ENSMUST00000097785 ENSMUSG00000026131 Dst dystonin 9.328 2.92E-03

ENSMUST00000228412 ENSMUSG00000002496 Tsc2 TSC complex subunit 2 9.061 2.79E-02

ENSMUST00000132158 ENSMUSG00000026696 Vamp4 vesicle-associated membrane protein 4 8.938 8.63E-03

ENSMUST00000082170 ENSMUSG00000074505 Fat3 FAT atypical cadherin 3 8.701 1.89E-03

ENSMUST00000117805 ENSMUSG00000048240 Gng7 guanine nucleotide binding protein, gamma 7 8.681 2.95E-02

ENSMUST00000068367 ENSMUSG00000032396 Dis3l DIS3 like exosome 3′–5′ exoribonuclease 8.422 3.03E-02

ENSMUST00000227200 ENSMUSG00000048038 Ccdc187 coiled-coil domain containing 187 8.308 3.35E-03

ENSMUST00000204198 ENSMUSG00000001632 Brpf1 bromodomain and PHD finger containing, 1 8.063 9.12E-03

ENSMUST00000238849 ENSMUSG00000068876 Cgn cingulin 7.970 3.14E-02

ENSMUST00000061970 ENSMUSG00000031337 Mtm1 X-linked myotubular myopathy gene 1 7.904 1.85E-02

ENSMUST00000125774 ENSMUSG00000026426 Arl8a ADP-ribosylation factor-like 8A 7.899 4.95E-03

ENSMUST00000233357 ENSMUSG00000117098 Gm49909 predicted gene, 49909 7.841 1.19E-02

ENSMUST00000111372 ENSMUSG00000040687 Madd MAP-kinase activating death domain 7.786 1.98E-02

ENSMUST00000163854 ENSMUSG00000026074 Map4k4 mitogen-activated protein 4 kinase 4 7.753 1.08E-02

ENSMUST00000144936 ENSMUSG00000079020 Slc45a4 solute carrier family 45, member 4 7.732 1.86E-02

ENSMUST00000166592 ENSMUSG00000031691 Tnpo2 transportin 2 (importin 3, karyopherin beta 2b) 7.729 1.01E-02

TABLE 4 Top 20 downregulated mRNA (p < 0.05) between FDM and fellow groups.

Transcript ID Gene ID Gene Name Gene description Log2FC p value

ENSMUST00000137823 ENSMUSG00000056342 Usp34 ubiquitin specific peptidase 34 −9.792 3.21E-03

ENSMUST00000085044 ENSMUSG00000006676 Usp19 ubiquitin specific peptidase 19 −9.352 5.12E-03

ENSMUST00000003191 ENSMUSG00000024070 Prkd3 protein kinase D3 −9.124 1.86E-02

ENSMUST00000234851 ENSMUSG00000061130 Ppm1b protein phosphatase 1B, beta isoform −8.760 1.08E-02

ENSMUST00000107417 ENSMUSG00000042626 Shc1 src homology 2 transforming protein C1 −8.704 3.18E-03

ENSMUST00000019246 ENSMUSG00000019102 Aldh3a1 aldehyde dehydrogenase family 3, A1 −8.484 9.23E-03

ENSMUST00000181981 ENSMUSG00000045659 Plekha7 pleckstrin homology family A member 7 −8.459 8.64E-04

ENSMUST00000084301 ENSMUSG00000028649 Macf1 microtubule-actin crosslinking factor 1 −8.457 3.38E-03

ENSMUST00000238066 ENSMUSG00000052387 Trpm3 transient receptor potential channel M3 −8.380 9.90E-03

ENSMUST00000212478 ENSMUSG00000036180 Gatad2a GATA zinc finger domain containing 2A −8.264 5.04E-03

ENSMUST00000099149 ENSMUSG00000025453 Nnt nicotinamide nucleotide transhydrogenase −8.218 2.02E-02

ENSMUST00000112990 ENSMUSG00000000266 Mid2 midline 2 −8.145 2.00E-02

ENSMUST00000076140 ENSMUSG00000033577 Myo6 myosin VI −8.088 2.07E-02

ENSMUST00000095012 ENSMUSG00000028883 Sema3a semaphorin 3A −7.839 2.08E-02

ENSMUST00000169854 ENSMUSG00000056917 Sipa1 signal-induced proliferation associated 1 Symbol; Acc:MGI:107576 −7.783 2.13E-02

ENSMUST00000224209 ENSMUSG00000037824 Tspan14 tetraspanin 14 −7.778 1.71E-03

ENSMUST00000113530 ENSMUSG00000030087 Klf15 Kruppel-like factor 15 −7.753 1.14E-03

ENSMUST00000001043 ENSMUSG00000001017 Chtop chromatin target of PRMT1 −7.696 3.60E-02

ENSMUST00000114617 ENSMUSG00000031337 Mtm1 X-linked myotubular myopathy gene 1 −7.648 1.21E-02

ENSMUST00000164039 ENSMUSG00000043531 Sorcs1 sortilin-related VPS10 domain containing receptor 1 −7.645 3.60E-02
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FIGURE 3
Heatmap for hierarchical clustering of lncRNAs (A) and mRNAs (B) from 12 samples (six for FDM and 6 for control). The colors in the panel
represent the relative expression levels: blue and red represent low and high expression levels, respectively. Volcano plot of lncRNAs (C) and mRNAs
(D). Red/blue dots represent significantly up//downregulated RNAs (FC ≥ 2.0, p < 0.05). Gray indicates no differential expression.
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FIGURE 4
GO pathway analysis in FDM retinas. (A) GO analysis of significantly upregulated mRNAs. The top 20 GO terms in the biological process (BP),
cellular component (CC) and molecular function (MF) categories are shown for the upregulated mRNAs. (B) GO analysis of significantly
downregulated mRNAs. Y-axis, number of genes included in a single annotation; X-axis, GO pathway terms. The circle size represents the gene
number. The FDR value is indicated by the color gradient. FDR <0.05 indicates significant enrichment of the functional pathway.
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Validation of the expression levels of
lncRNAs by qRT–PCR

To verify the expression levels of lncRNAs in myopic

retinas, we selected four lncRNAs for qRT–PCR based on

the following criteria: A p value <0.05 with top-ranked fold

change (FC). The LncRNAs were chose for qRT-PCR

validation not only based on their expression fold changes,

but also according to possible specific interesting correlations,

and the lncRNAs records in NCBI databases. For instance,

coexpression analysis of XR_377255.2 (log2FC = 5.028)

showed correlation with Vcan (Versican), a critical

extracellular matrix regulator of immunity and

inflammation (Figure 6); while CMIP, C-Maf-inducing

protein, was correlated with downregulation of the lncRNA

XR_866459.4 (log2FC = 3.430). The XR_003955073.1

(log2FC = −5.990) was in the top 20 down-regulated list.

The XR_384718.4 was a Mus musculus predicted gene

(ncRNA), 35369 (Gm35369), transcript variant X2 by NCBI

database. It is not in the top down-regulated list but still shows

FIGURE 5
The top 20 GO and KEGG enrichment of themRNAs. (A) Top 20 GO terms for the differentially expressedmRNAs. (B) Top KEGG enrichment for
the differentially expressed mRNAs. Dot color: towards blue, FDR towards 1.0; towards red, FDR toward 0.0. Dot size: the number of core genes
within the pathway.
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a log2FC of −2.316 (downregulated in myopic retinas as

compared to the control). We also hope to test the DE

lncRNA with moderate dysregulated expression level.

Among the four lncRNAs, XR_377255.2, XR_866459.4 were

upregulated, while XR_003955073.1, and XR_384718.4 were

downregulated in FDM retinas according to the RNA

sequencing data analysis (Supplementary Figure S4;

Supplementary Table S4). Increased expression levels of

XR_377255.2 (gene name: Gm15411) (p = 0.0149) and

reduced expression of XR_003955073.1 (gene name: Junos),

XR_384718.4 (gene name: Gm35369) and XR_866459.4 (gene

name: Gm39857) were observed in FDM mouse retinas (p =

0.0451, p = 0.0217, and p = 0.0423, respectively; Figure 7).

Among them, the changes in three (except for XR_866459.4)

were consistent with the sequencing results. Thus, we

validated the expression changes of XR_377255.2,

XR_003955073.1, and XR_384718.4 by qRT-PCR.

Localization of differentially expressed
lncRNAs in the retina by RNA FISH

LncRNAs act in different ways to interfere with cellular

physiology, depending on their subcellular locations. For the

retina, it is also important to identify the layers and cell types in

which the targets are located. To further investigate the newly

discovered targets in the retina, we conducted a preliminary

localization experiment to identify the retinal layers of lncRNAs

and their subcellular expression. FISH assay of the lncRNA

XR_384718.4 (gene name: Gm35369) in myopic mouse

eyecups showed that Gm35369 preferentially localized mostly

in the GCL and INL (Figure 8A). Although qRT–PCR showed

that it was downregulated in the myopic retina,

Gm35369 localized in similar patterns in the retinas of both

groups, as the difference between the myopia and control groups

was too subtle to be observed by in situ hybridization (data not

FIGURE 6
LncRNA-mRNA coexpression network. LncRNAs and mRNAs with Corr >0.95 and p value <0.05 were selected to construct the network. The
network shows the interactions among the lncRNAs and their potential regulated coding genes. Red, upregulated; blue, downregulated; cross,
lncRNA; circle, mRNA; gray dotted line, correlation relationship.
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shown). Further colocalization study revealed the overlap

between the signal of Gm35369 and the retinal ganglion cell

(RGC) marker RBPMS (Figure 8B) as well as the horizontal cell

marker calbindin (CaBP) (Figure 8C). The signal was apparent in

both the nucleus and cytoplasm. These data indicated that the

lncRNA Gm35369 was located mainly in RGCs and horizontal

cells.

Discussion

In this study, we analyzed the differential expression patterns

of lncRNAs andmRNAs in FDMmouse retinas. The results from

RNA FISH localized the target lncRNAs in specific retinal layers

and cell types. We hope that this evidence might lay a foundation

for future research on myopia. Previously, miRNA profiling of

the whole eyes, retinas, and sclerae of mice (Tkatchenko et al.,

2016; Mei et al., 2017) and lncRNA-mRNA sequencing of the

ocular posterior poles of guinea pigs with experimental myopia

have been reported (Geng et al., 2020). Our study focused on the

retina rather than the whole eyeball or posterior poles, which

reduced the possible heterogeneity from different tissues.

A mouse FDM model was induced for the sequencing

analysis in this study, similar to the previously reported

experimental myopia model. The Wu’s results showed a

myopic shift in the deprived eye with the refractive difference

(OD 1.341 ± 0.298 D–OS 6.440 ± 0.292 D) of −5.099 ± 0.239 D

(p < 0.001), which is slightly smaller than ours (−8.44 ± 4.93 D,

p < 0.001). In another mice study with shorter deprivation of

10 days, the deprived eyes were induced to myopia of −6.93 ±

2.44 D (p < 0.000001) compared to the contralateral control eyes

(Tkatchenko et al., 2016); and in a study of 2 weeks deprivation,

the refraction difference was about −7 D (Wu et al., 2018). Taken

together, these observations suggest a significant myopic shift in

the refractive error, even with some variations in each report

(possibly due to the animals, measuring method, or equipment),

would be induced after monocular visual form deprivation

ranging from 10 days to 4 weeks.

In sequencing analysis of eye, a sample size of three replicates

or more than three replicates could be justifiable, as the

differential gene expression from RNA-seq was successfully

validated by qRT-PCT. Moreover, due to the small volume

and low RNA content of ocular tissue, some studies pooled

samples to get enough RNA for sequencing. For instance,

Tkatchenko et al. analyzed the microRNA expression profiling

in the retina and sclera of FDM mice by microarray, with the

small sample size of only three replicates (3 eyes pooled together

per replicate) in parallel (Tkatchenko et al., 2016). Similarly, four

sclerae were pooled to form one sample in the bulk transcriptome

sequencing (Zhao et al., 2021). Vocale et al. identified ligand-

gated chloride efflux channels as a major pathway contributing to

chick FDM using RNA-seq and gene set enrichment analysis,

with four replicates (4 chicks) per condition (Vocale et al., 2021);

and sample size of three or four replicates (3 or 4 guinea pig eyes)

in the RNA-seq study to investigate the gene expression and

pathways in sclera was also reported (Srinivasalu et al., 2018;

Zeng et al., 2021). The current study included six replicates per

experimental condition (FDM or contralateral control, with

3 retinas pooled per replicate), much more than the previous

reported RNA-seq datasets, hoping to increase the confidence of

our RNA-seq data. Besides, the validation of expression level of

lncRNAs by qRT-PCR and sequencing showed a similar

direction between the two techniques.

After the induction of FDM, the refractive error was

measured by cycloplegic streak retinoscopy in the current

study, which would possibly produce measurement error.

Refraction in previous study was assessed by various methods,

including automated eccentric infrared photorefractor (Schaeffel

et al., 2004; Wu et al., 2018) and streak retinoscopy by

optometrist (Huang et al., 2019; Zeng et al., 2021). In our

study, the optometrist and the researchers who bled and built

the model were different, and optometrist was masked to the

FIGURE 7
Validation of differential lncRNA expression by qRT–PCR. The
relative expression of the lncRNAs XR_377255.2, XR_866459.4,
XR_003955073.1, and XR_384718.4 in the retinas from FDM eyes
and fellow control eyes is shown. For each group, n = 6. *, p <
0.05, Student t test.
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treatment status of the eyes during measurements of refractive

errors. Moreover, an interocular refractive difference greater than

5 D was considered as successful induction of FDM, which adds

to the confidence of the subsequent data. Axial length was

measured by SD-OCT (Wu et al., 2015; Wu et al., 2018), MRI

(Tkatchenko et al., 2010; Tkatchenko et al., 2013), or even digital

caliper and video imaging micrometer in the early days (Barathi

et al., 2008). The current study applied OCT to measure the

mouse axial length as previous described. Another limitation of

the generation of FDM model was that the ocular parameters

FIGURE 8
RNA FISH showing localization of the lncRNA Gm35369 in the retina. (A) RNA fluorescence in situ hybridization showing the localization of
Gm35369 in the retina, mostly in the GCL and INL. (B) Colocalization of the retinal ganglion cell markers RBPMS (red) and Gm35369 (green) in the
GCL. (C) Colocalization of the horizontal cell markers CaBP (red) and Gm35369 (green). Signals were apparent in both the nucleus and cytoplasm.
DAPI (blue).
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were only recorded in the end of the deprivation. Future

experiments could assess the parameters at different time

points (including before the deprivation) during the

generation of FDM, to describe the development of myopia in

a detailed way. Additionally, the age of initiation of the FDM and

its correlation with the outcome of myopia as well as the gene

expression profile would be an interesting direction to

investigate, since recent study suggest that the mouse retina

develops postnatally with dramatic changes from P10 to

P120 by using the Claudin5 (a vascular endothelium-specific

gene) eGFP transgenic mice and three-dimensional architecture

analysis (Rust et al., 2019).

Among the differentially expressed lncRNAs identified (Tables

1, 2), Oip5os1 (OIP5-AS1, transcript ID: ENSMUST00000147425,

FC = 115.55), UBXN7 (transcript ID: chr16: 32388756-32392334,

FC = 101.58), and Snhg12 (transcript ID: ENSMUST00000128131,

FC = 44.14) exhibited significantly increased expression levels, while

Junos (transcript ID: XR_003955073.1, FC = 0.016) and another

transcript of Snhg12 (transcript ID: ENSMUST00000126380, FC =

0.017) exhibited downregulated expression in FDM retinal tissue

samples. The lncRNAOIP5-AS1 is involved in the pathogenesis of a

variety of diseases, including colon cancer (Wang Y. et al., 2021),

prostate cancer (Zhang Y. et al., 2021), papillary thyroid cancer

(Zhang X. et al., 2021), and osteosarcoma (Li et al., 2021), as well as

heart failure (Zhuang et al., 2021). More importantly, previous

evidence has suggested that OIP5-AS1 might participate in the

mechanisms of primary open angle glaucoma (POAG) and cataracts

(Zhou et al., 2020) (Jing et al., 2020). Jing et al showed that by

regulating apoptosis of lens epithelial cells and aggravating lens

opacity, OIP5-AS1 can lead to the formation and development of

cataracts (Jing et al., 2020). In POAG, OIP5-AS1, as well as three

other lncRNAs, have been found to constitute a hub in a lncRNA-

miRNA-mRNA competing endogenous RNA (ceRNA) network

(Zhou et al., 2020). UBXN7 was upregulated in human epicardial

adipose tissue samples from patients with heart failure (Zheng M. L.

et al., 2020). Dysregulation of the lncRNA Snhg12 is involved in a

variety of pathogeneses, such as those of LDL-induced endothelial

cell injury in atherosclerosis (Mao et al., 2021) and endometrial (Cai

et al., 2021), gastric (Zhang T. et al., 2021), and hepatocellular cancer

(Zhang Q. et al., 2021). Junos is the opposite strand of the proto-

oncogene c-Jun, which is themost extensively studied component of

AP-1 and plays important roles in cellular physiology, including

proliferation, apoptosis, and tumorigenesis (Meng and Xia, 2011).

Therefore, the abnormally expressed lncRNAs in FDM retinas

might affect the formation and development of myopia.

Moreover, GO analysis of mRNAs revealed that the

differentially expressed mRNAs in the FDM retinas were

associated with the cellular process, biological regulation,

response to stimulus, metabolic process, developmental process,

multicellular organismal process, immune system process,

localization, locomotion, behavior, rhythmic process, cellular

anatomical entity, binding, and catalytic activity terms. Among

the top 20 enriched GO terms, the rhythmic process and the

structural molecule activity were shown in the down-regulated

but not in the up-regulated pattern. Consistent with recent

studies, the downregulation of rhythmic processes or circadian

processes might play an important role in the disruption of

retinal functions and thus lead to myopia formation (Stone et al.,

2013). For instance, the circadian rhythmic control of rod-cone

electrical coupling switches the receipt of light signals during day and

night (Ribelayga et al., 2008), and diurnal rhythms affect eye growth

and refractive error development (Chakraborty et al., 2018). Recent

ocular studies focusing on circadian clock genes have also identified

the close relationship between myopia formation and circadian

dysregulation. Retinal-specific knockout of the clock gene Bmal1

in mice can induce a myopia shift and elongation of the vitreous

chamber (Stone et al., 2019). Furthermore, both FDM and LIM in

chicks significantly alter the expression of intrinsic circadian clock

genes in the retina/RPE/choroid (Stone et al., 2020). In addition, the

synchronization of the local circadian rhythm in the retina with the

environmental light cycle requires an orphan opsin, OPN5, which

has been found to be involved in emmetropization (Jiang et al.,

2021). The term of structural molecule activity belongs to the MF

(molecular function) and represents the action of a molecule that

contributes to the structural integrity of a complex or its assembly

within or outside a cell (MouseGenomeDatabase, www.informatics.

jax.org). Annotated terms under the structural molecule activity

include extracellular matrix structural constituent (GO:0005201),

structural constituent of cytoskeleton (GO:0005200), structural

constituent of eye lens (GO:0005212), and relevant terms.

Alterations of extracellular matrix (ECM) remodeling and the

cytoskeleton constitution in retina and sclera participate in the

development of myopia, and it is generally accepted that the

vision guided ocular growth via a cascade that firstly from

chemical signals initiated in the retina and ultimately change the

scleral remodeling (Boote et al., 2020). Early genome-wide

association study on myopia in Europeans has revealed that

LAMA2, a gene involved in the extracellular matrix, associated

with themechanism behind the development ofmyopia (Kiefer et al.

, 2013). Recent transcriptomics analysis of retinas from wavelength-

induced myopic guinea pigs also suggest that the differentially

expressed genes were primarily enriched in the extracellular

matrix, and metabolism, receptor activity, and ion binding

processes (Wen et al., 2022). It is worthy to investigate the

mechanism of extracellular matrix in retina in myopia as well as

the visual development by experimental methods. Our GO results

also agree with previous evidence from chicks and guinea pigs.

Riddell et al showed that fatty acid, sphingolipid, citrate, and

mitochondrial metabolism pathways were strongly altered

(bidirectionally; up- or downregulated) in retina/RPE/choroid

samples from chicks with lens-induced myopia (Riddell et al.,

2016). In addition, the levels of retinoic acid and retinaldehyde

dehydrogenase-2 from retinoid acid metabolism are changed in the

retinas of guinea pigs with lens-induced myopia, with the latter

especially altered in the outer plexiform layer (Mao et al., 2012).

These signaling pathways exhibiting strong differential expression in
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the process of myopia might serve key functions in myopic retinas

and merit further study.

The G-protein coupled receptor (GPCR) family member

muscarinic acetylcholine receptor plays roles in mediating the

development of myopia. Early evidence from FDM Syrian

hamsters suggested that the muscarinic receptor M(3) might play

important roles in the pathogenesis of myopia (Lin et al., 2012). A

recent study involving experimental myopia with a mammalian

model demonstrated that inhibition of myopia by muscarinic

antagonists involved mainly M(1) and M(4) muscarinic receptor

signaling (Arumugam and McBrien, 2012). However, Carr et al

showed that muscarinic antagonist-mediated blockade of human

α2A-adrenergic receptor signaling seemed to be able to inhibit chick

FDM, but antagonists of theM(4) subtype did not (Carr et al., 2018).

In addition, α2A-adrenoceptor agonists have been shown to be

effective in inhibiting chick FDM, suggesting that adrenergic

receptors are involved in myopia and visual processes (Carr

et al., 2019). The KEGG enrichment pathway analysis showed

that the interacting genes were enriched in chemokine signaling,

GPCRs, intrinsic component of membrane, sensory perception, and

catalytic activity-related pathways (Figure 5), indicating the intrinsic

and complicated roles of GPCRs in myopia.

Coexpression analysis of the four qRT-PCR-validated lncRNAs

showed that XR_377255.2 was correlated with Vcan (Versican), a

critical extracellular matrix regulator of immunity and inflammation

(Wight et al., 2020). Accumulating studies have suggested the

important role of Vcan in cancer growth and metastasis in cancers

such as ovarian, breast, and pancreatic cancers (Salem et al., 2018;

Zhang et al., 2019; Gao et al., 2020). Although the samples in this

study were retinas and previous reports of extracellular matrix-related

genes, such as matrix metallopeptidase-2 and inhibitor of

metalloproteinase 2, were from sclerae (Geng et al., 2020), it can

be speculated that there might be a close relationship between the

alteration of Vcan in the retina and the abnormal regulation of the

scleral extracellular matrix. The coexpression analysis also revealed

that the lncRNA XR_003955073.1 was correlated with

downregulation of the mRNA TREM2, triggering receptor

expressed in myeloid cells/microglia-2, which is a transmembrane-

spanning sensor receptor critical for Aβ42-peptide clearance. In a

study by Bhattacharjee et al., TREM2 deficits in the retina and in

oxidatively stressed microglia promoted the pathogenesis of

amyloidogenesis in age-related macular degeneration (AMD)

(Bhattacharjee et al., 2016). However, the pathogenic roles of

TREM2 in myopic retinas remain unknown. In addition, CMIP,

C-Maf-inducing protein, was correlated with downregulation of the

lncRNAXR_866459.4 in the context of myopia. A previous study has

suggested that CMIP is expressed in the nervous system and interacts

with NF-κB, which is dysregulated in myopia (Lin et al., 2016; Ollero

and Sahali, 2021).

Noncoding RNAs can play essential regulatory roles in many

biological processes by acting as competing endogenous RNAs

(ceRNAs) to suppress miRNAs by preventing them from

interacting with target mRNAs (Grull and Masse, 2019). Several

ceRNA pairs have been discovered and studied in the contexts of

ocular diseases or pathogenesis. A previous report has shown that

the lncRNA-MALAT1/miRNA-204-5p ceRNA mechanism is

involved in the regulation of epithelial-mesenchymal transition of

lens epithelial cells (Peng et al., 2021). The lncRNAMIR7-3HG can

modulate miR-27a-3p/PEG10 and promote retinoblastoma

progression (Ding et al., 2020). An integrative analysis of the

lncRNA ceRNA network in human trabecular meshwork cells

under oxidative stress revealed that 70 lncRNAs and 558 mRNAs

were significantly dysregulated in HTMCs under oxidative stress

compared to the control conditions (Yao et al., 2020). Moreover,

ceRNA crosstalk between the lncRNA TUG1 and miRNA-145 has

been found to be involved in the suppression of retinal

microvascular endothelial cells under high-glucose conditions

(Shi et al., 2021). In profiling retinal lncRNAs during myopia

progression, we found dysregulation of lncRNAs and their

cellular localization, which lays a foundation for further study of

possible ceRNA crosstalk in the myopic eye.

Prior studies have suggested that the neurons of the inner

retina play an important role in that process (Chen et al., 2006).

RGCs and horizontal cells have been studied under the

conditions of emmetropization and myopia progression in

animal models. Altered cell-cell coupling by the gap junction

protein connexin 36 in horizontal cells in the inner plexiform

layer (IPL) has been found to play important roles in

emmetropization and FDM in guinea pigs, as the uncoupling

agent 18-β-GA induces myopic shifts and FDM decreases total

connexin 36 levels and phosphorylation (Zhi et al., 2021). In

addition, a recent study showed that stimulation of RGCs

expressing neuropsin (OPN5) with violet light prevented

experimental myopia in mice (Jiang et al., 2021). We found

here that the downregulated lncRNA Gm35369 was located

mainly in RGCs and horizontal cells. These results indicate

that dysregulation of lncRNAs in specific cellular backgrounds

is involved in myopia progression. However, the role of

Gm35369 in these cell types remains unclear. Further

knockdown or overexpression studies with RGCs or

horizontal cell lines would help elucidate the mechanisms.

As with all transcriptomic profiling analyses, there were

limitations to the present study. First, among the large

numbers of differentially expressed lncRNAs and mRNAs,

only 4 lncRNAs were verified by qRT–PCR, while the

expression levels of the others remained uncertain. The

predicted correlated mRNAs were not verified experimentally,

so it is worth testing the levels of these mRNAs in the future.

Second, some lncRNA levels verified by qRT-PCR were not

consistent with the RNA sequencing data. For instance, the

fold change (FC = FDM/ctrl) of the lncRNA XR_866459.4 in

qRT-PCR was 0.45 (suggesting decreased expression in the

myopic retina), while the FC from the sequencing data was

10.78 (data not shown). Thus, the RNA sequencing results

can only be regarded as a reference dataset, and further

experiments are needed to confirm the lncRNA targets of
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interest. Second, although the lncRNA alterations dynamically

changed over the course of visual development, we tested the

changes in lncRNA levels at only one time point (after FDM

induction for 4 weeks). Third, in vitro analysis of specific cultured

retinal cell lines is required to identify specific pathways and

targets for possible gene-based approaches or drugs to modulate

the pathogenesis of myopia. Finally, it is necessary to identify the

levels of these lncRNAs in patients with myopia.

Conclusion

Overall, this study analyzed the aberrant expression profiles

of lncRNAs and mRNAs in the retinas of FDM mouse models

with high-throughput sequencing. The potential roles of the

significantly differentially expressed lncRNAs might be related

to sensory perception of chemical stimuli, the G-protein coupled

receptor signaling pathway, cytokine-cytokine receptor

interactions, retinol metabolism, olfactory transduction,

metabolism of xenobiotics by cytochrome P450, chemical

carcinogenesis, tyrosine metabolism, and the proteasome,

which might contribute to retinal myopic pathogenesis. We

have preliminarily shown that the lncRNA Gm35369 is

mainly located in RGCs and horizontal cells. These findings

expand our understanding of lncRNAs in the myopic retina. By

revealing a number of candidate target genes and the localization

of lncRNAs in specific cell types, this study provides valuable

evidence and will support future in vitro/vivo studies to

investigate the potential mechanisms in myopia.
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Background: The mortality and disability rates of acute coronary syndrome

(ACS) are quite high. Circular RNA (circRNA) is a competitive endogenous RNA

(ceRNA) that plays an important role in the pathophysiology of ACS. Our goal is

to screen circRNA-associated ceRNA networks for biomarker genes that are

conducive to the diagnosis or exclusion of ACS, and better understand the

pathology of the disease through the analysis of immune cells.

Materials and methods: RNA expression profiles for circRNAs (GSE197137),

miRNAs (GSE31568), and mRNAs (GSE95368) were obtained from the GEO

database, and differentially expressed RNAs (DEcircRNAs, DEmiRNAs, and

DEmRNAs) were identified. The circRNA-miRNA and miRNA-mRNA

regulatory links were retrieved from the CircInteractome database and

TargetScan databases, respectively. As a final step, a regulatory network has

been designed for ceRNA.On the basis of the ceRNA network, hubmRNAswere

verified by quantitative RT-PCR. Hub genes were validated using a third

independent mRNA database GSE60993, and ROC curves were used to

evaluate their diagnostic values. The correlation between hub genes and

immune cells associated with ACS was then analyzed using single sample

gene set enrichment analysis (ssGSEA).

Results: A total of 17 DEcircRNAs, 229 DEmiRNAs, and 27 DEmRNAs were

found, as well as 52 circRNA-miRNA pairings and 10 miRNA-mRNA pairings

predicted. The ceRNA regulatory network (circRNA-miRNA-mRNA) was

constructed, which included 2 circRNA (hsa_circ_0082319 and

hsa_circ_0005654), 4 miRNA (hsa-miR-583, hsa-miR-661, hsa-miR-671-5p,

hsa-miR-578), and 5 mRNA (XPNPEP1, UCHL1, DBNL, GPC6, and RAD51). The

qRT-PCR analysis result showed that the XPNPEP1, UCHL1, GPC6 and RAD51

genes had a significantly decreased expression in ACS patients. Based on ROC

curve analysis, we found that XPNPEP1 has important significance in preventing

ACS occurrence and excluding ACS diagnosis. ACS immune infiltration analysis
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revealed significant correlations between the other 3 hub genes (UCHL1, GPC6,

RAD51) and the immune cells (Eosinophils, T folliculars, Type 2 T helper cells,

and Imumature dendritic cells).

Conclusion: Our study constructed a circRNA-related ceRNA network in ACS.

The XPNPEP1 gene could be a protective gene biomarker for ACS. The UCHL1,

GPC6 and RAD51 genes were significantly correlated with immune cells in ACS.

KEYWORDS

acute coronary syndrome, circular RNA, competitive endogenous RNA, protective
gene biomarkers, immune cells, XPNPEP1 gene

Introduction

One of themost serious, urgent, and lethal disorders in the clinic is

acute coronary syndrome (ACS), which includes unstable angina

pectoris (UA) and acute myocardial infarction (AMI). In high-

income nations, the incidence of ACS is 200–250 cases per

100,000 person-years, and ACS is responsible for one-third of all

mortality (Sanchis-Gomar et al., 2016; Ibanez et al., 2018; Collet et al.,

2021). The exact pathogenic mechanism of ACS has not yet been

extensively investigated. An early diagnosis, early intervention, and

early prevention are essential tools in reducing ACS’s harm and

improving its prognosis. Researchers are investigating ACS′
pathogenic process at the protein, molecular, and gene levels

simultaneously. (Sposito, 2022; van den Broek and Ten Berg, 2022).

Finding the genes that promote or protect ACS is critical since it can

fundamentally prevent disease and give a theoretical foundation for the

development of targeted medicine and precision therapy.

As a competitive endogenous RNA (ceRNA), circular RNA

(circRNA) plays a significant role in the pathogenesis of ACS.

CircRNA affects gene transcription and regulation by interacting

with miRNA, mRNA, or protein via the ceRNA mechanism

(Hansen et al., 2013; Zhao et al., 2018). In recent years, more

evidence has emerged demonstrating that circRNA expression

dysregulation plays a critical role in the ceRNA regulatory

network and is a fundamental etiology of atherosclerotic diseases

such as acute cerebral infarction and acute coronary syndrome

(Zhao et al., 2020). In order to further clarify how circRNA affects

the occurrence and development of ACS, we set up a circRNA-

associated ceRNA network to investigate the pathophysiology of

ACS at the molecular level. Through the analysis of the hub genes in

the ceRNA network, we will try to screen the biomarker genes that

are conducive to the diagnosis or exclusion of ACS, and explore its

pathological mechanism through immune cell analysis.

Materials and methods

Data collection

The Gene Expression Omnibus database (GEO, https://www.

ncbi.nlm.nih.gov/geo/) plays an important role in many fields,

including comparative genomic analysis, proteomics, non-

coding RNA, single nucleotide polymorphism genome and

gene methylation status analysis (Sayers et al., 2022). A search

was conducted from the GEO dataset for microarrays that met

the following requirements: using “acute coronary syndrome”

OR “unstable angina” OR “acute myocardial infarction” AND

“circRNA”.

FIGURE 1
Flow chart for the construction of the circRNA-associated
ceRNA regulatory network and analysis of the hub genes.
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Three datasets were downloaded from the GEO database

after a selection process. One circRNA expression profiling

dataset [GSE197137 (GPL21825 platform)], consisted of

3 ACS patients and 6 subjects without ACS as controls. One

miRNA expression profiling dataset [GSE31568

(GPL9040 platform)] included 20 ACS patients and

70 healthy controls, and one mRNA expression profiling

dataset [GSE95368 (GPL23119 platform)] included 12 ACS

patients and 6 healthy controls. Our research process is

shown in Figure 1.

Data processing

The genes used for constructing the ceRNA network must be

differentially expressed (DE) in ACS patient samples compared to

non-ACS subject samples. Perl software version 5.30.0.1 was used to

convert the probe matrix into an RNA matrix. DEcircRNA,

DEmiRNA, and DEmRNA were obtained using the “limma”

package in R version 4.0.3. The following screening criteria were

considered statistically significant: | log2 fold chang | > 2 and

adjusted p-value < 0.05. The pheatmap package, ggpubr package

and reshape2 package in R are used for the visual analysis of

differentially expressed RNA.

Construction of the competitive
endogenous RNA network

According to the theory that circRNAs act as miRNA

sponges in mammalian cells (Salmena et al., 2011), we

constructed a circRNA-miRNA-mRNA regulatory network.

The CircInteractome database (https://circinteractome.nia.nih.

gov/index.html) was used to predict miRNA binding sites

(MREs) (Dudekula et al., 2016). The circRNAs’ chromosomal

position, as well as the chromosomal location and length of the

RNA necessary for the investigation, were all provided by

CircBase. TargetScan databases were used to anticipate

interactions between intersection miRNAs and target mRNAs

(Xiong et al., 2018). Finally, the data for the regulatory network

(circRNA-miRNA-mRNA) was processed through Perl software,

and then a visual ceRNA regulatory network was established by

using Cytoscape 3.8.0 software.

KEGG and GO pathway enrichment
analysis

GO analysis (http://geneontology.org/) covers three areas,

cellular components (CC), molecular functions (MF) and

biological processes (BP). Each category explains the biological

function of genes at different levels (Zhang et al., 2019). The

Kyoto Encyclopedia of Genes and Genomes (KEGG) database

(https://www.kegg.jp/) is a popular public resource for learning

about the degree of enrichment of differential genes in pathway

terms (Kanehisa and Goto, 2000). We performed GO function

annotation and KEGG pathway analysis to further investigate the

pathway and mechanism of DEmRNA in the ceRNA network

affecting ACS by using the “cluster profiler” package in the R

software.

Quantitative RT-PCR verification

We obtained peripheral blood from the patients with ACS

who visited the emergency department within 12 h of the onset of

chest pain. Total RNA was isolated from blood using Trizol and

cDNA was synthesized using reverse transcription kits (Takara,

Beijing, China) according to the manufacturer’s instructions.

Quantitative reverse transcription PCR was performed using

SYBR Green Mix on an ABI7900HI (Thermo Fisher

Scientific). The program was set to be a two-step method,

95°C for 5 s, 60°C for 30 s, and 40 cycles. The gene expression

results were analyzed using the 2−̂ΔΔCT method, and GAPDH was

used as an endogenous control for mRNA expression. The

primer sequence information of the qRT-PCR experiment is

shown in Supplementary Table S1.

Predicting the protective value of
characteristic biomarkers in acute
coronary syndrome

In order to test the protective value of identified biomarkers,

receiver operating characteristic (ROC) curves were generated

using the mRNA expression data from the GSE95368 and

another independent mRNA database GSE60993. The

predicting protective values of the identified hub genes were

evaluated using the area under the ROC curve (AUC), which was

between 0.5 and 1. The closer the AUC is to 1, the better the

predictability of the protective effect. We obtained patient follow-

up data from the GSE95368 dataset and used logistic regression

analysis to investigate the relationship between the hub gene and

major adverse cardiovascular events (MACE).

Expression of XPNPEP1 in cardiomycytes
by immunofluorescence staining

We obtained human induced pluripotent stem cells (iPSC)

from skin fibroblasts of healthy human donor and ACS patients.

We referred to Chen’s scheme to differentiate the hiPSC to

cardiomyocytes (Chen et al., 2011). Cardiomyocytes derived

from human induced pluripotent stem cells (hiPSC-CM) were

fixed with 4% paraformaldehyde for 1 h. After permeabilization

(1% Triton X-100, 1 h), staining was performed with the primary
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antibody (anti-rabbit XPNPEP1 antibody, 1:50, Abcam),

appropriate secondary antibody (goat anti-rabbit IgG Alexa

Fluor 594, 1:100, Invitrogen) and DAPI (Invitrogen). The

stained cytoskeleton structure was observed under a laser

confocal microscope (LSM800; Carl Zeiss Meditec, Jena,

Germany).

Correlation analysis between acute
coronary syndrome hub genes and
immune infiltrating cells

The single sample gene set enrichment analysis (ssGSEA)

method was then used to evaluate the abundance of 23 immune

cells in ACS to further investigate the correlation. Then we

analyzed the correlation between hub genes and ACS related

immune cells. The heat map and the vioplpt were constructed by

the “ggplot2” package and the “ggpubr” package to visualize the

features.

Results

Extraction of DEcircRNA, DEmiRNA, and
DEmRNA

Human-derived RNA datasets (GSE197137, GSE31568, and

GSE95368) containing patients with ACS and subjects without

ACS were selected. The differential expression of the data set was

analysed with the “limma” package. In total, 17 DEcircRNAs

were obtained, of which 4 were downregulated and 13 were

FIGURE 2
Heatmap of differentially expressed circRNA, miRNA, and mRNA. Red represents upregulated expression, and blue means downregulated
expression. (A) 17 differentially expressed circRNAs in the GSE197137 dataset. (B) Top 50 of 229 differentially expressed miRNAs in the
GSE31568 dataset. (C) 27 differentially expressed mRNAs in the GSE95368 dataset (|log2 fold change|>2, adjusted p-value<0.05).

FIGURE 3
Venn diagram of RNAs involved in the ceRNA network. (A)
The predicted target miRNA and DEmiRNA intersected (B) The
target mRNA and DEmRNA intersected.
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upregulated. Of the 229 DEmiRNAs, 103 were downregulated

and 126 were upregulated. There were 27 DEmRNAs, 20 were

downregulated and 7 were upregulated. As shown in Figure 2, we

chose the top 50 downregulated and upregulated DERNAs for

heat map analysis.

Identification of target miRNA and mRNA
of circular RNA

Through the CircInteractome database, we predicted a total

of 395 target miRNAs that bind to 15 DEcircRNAs. Following

that, using the Venn diagram method, the predicted target

miRNA and DEmiRNA were intersected, and 52 intersection

miRNAs were obtained, as shown in Figure 3A. Next, genes

identified in the TargetScan database were selected as potential

target mRNAs. Then, the above-mentioned intersection miRNAs

were predicted to obtain target 9,607 mRNAs. By intersecting the

target mRNA and DEmRNA, 10 intersection mRNAs were

obtained, as shown in Figure 3B.

Construction of the regulatory network

Only genes that meet the following criteria will be selected for

inclusion in the ceRNA network: 1) All genes must be

differentially expressed; 2) circRNAs and mRNAs have a

binding relationship with miRNAs at the same time; 3) RNAs

(circRNA, mRNA) and miRNAs that meet the above binding

relationship must be negatively regulated. Then, through

Cytoscape software, a ceRNA regulatory network (circRNA-

miRNA-mRNA) was constructed (Figure 4), including

2 circRNAs (hsa_circ_0082319, hsa_circ_0005654), 4 miRNAs

(hsa-miR-583, hsa-miR-661, hsa-miR-671-5p, hsa-miR-578),

and 5 mRNAs (XPNPEP1, UCHL1, DBNL, GPC6, and

RAD51). Meanwhile, the “ggpubr” package and “reshape2”

package in R were used to visualize the circRNA, miRNA, and

mRNA in the ceRNA regulatory network (Figures 5A–C). The

structure pattern diagrams and basic characteristics of the

2 circRNAs, are shown in Supplementary Table S1;

Supplementary Figure S1.

GO function annotation and KEGG
pathway analysis

In the ceRNA regulatory network, GO analysis of 5 mRNAs

indicated a major enrichment in: cortical actin cytoskeleton,

protein C-terminus binding and adrenergic receptor binding.

The histogram is displayed in Figures 6A–C. The results of the

KEGG pathway analysis indicated that the main enrichment

occurred in homologous recombination. (Figure 6D).

FIGURE 4
The visualized ceRNA regulatory network was constructed by Cytoscape software. The diamond represents 2 downregulated circRNAs, the
triangle represents 4 upregulated miRNAs and the ellipse represents 5 downregulated mRNAs.
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Quantitative RT-PCR verification of hub
genes

The information of datasets and verification patient were shown

in the Supplementary Table S2. In order to keep consistency with

patients in the GEO datasets, our research objects included STEMI,

NSTEMI, and UA patients, and the collection time of samples was

limited to 12 h after the onset of symptoms. The expression of the

five hub genes (XPNPEP1, UCHL1, DBNL, GPC6, and RAD51) in

the ceRNA network was analyzed by quantitative RT-PCR. Between

the control and ACS groups, we found that the XPNPEP1, UCHL1,

GPC6, and RAD51 genes had significantly decreased expression in

ACS patients. The DBNL gene did not show any significant

difference (Figure 7).

Predicting the protective value of
characteristic biomarkers in acute
coronary syndrome

We compare the different expressions of XPNPEP1, UCHL1,

GPC6, and RAD51 in the GSE95368 and GSE60993 datasets

(Figure 8; Supplementary Figure S2). Furthermore, we used the

ROC curve to analyze the 4 mRNA from the GSE95368 and

GSE60993 datasets for predicting and verifying characteristic

biomarkers in ACS respectively. In the GSE95368 dataset, ROC

curve analysis discovered that the XPNPEP1, UCHL1, GPC6, and

RAD51 genes have important clinical significance in preventing the

occurrence and excluding diagnosis of ACS (Figures 9A–D). The

AUC values of XPNPEP1 in the GSE95368 dataset and the

GSE60993 dataset were 1.000 (95% CI: 1.000–1.000, p < 0.05)

and 0.777 (95% CI: 0.577–0.934, p < 0.05) dataset, respectively

(Figure 9D; Supplementary Figure S3D). Logistic regression

analysis showed that the XPNPEP1 gene was significantly related

to the occurrence of MACE in ACS patients [OR = 7.408 (95% CI:

0.762–72.009, p < 0.05)].

Expression of XPNPEP1 in cardiomyocytes

To explore the relationship between XPNPEP1 and ACS, we

performed immunofluorescence staining on hiPSC-CM from

patients with ACS and healthy human respectively. The

results of immunofluorescence staining indicated that

XPNPEP1 (red fluorescence) was expressed low in the

cardiomyocytes of ACS patients (Figure 10).

Correlation analysis between acute
coronary syndrome hub genes and
immune infiltrating cells

Considering that ACS has been shown to be infiltrated with a

large number of immune cells in previous studies (Kyaw et al., 2021).

We analyzed the infiltrating immune cells between the different

groups’ mRNA in ACS patients (Supplementary Figures S4, S5).

Moreover, we analyzed the relationship between the expression of the

four hub genes and immune cell infiltration inACS patients using the

ssGSEA method (Figure 11). The results were as follows: GPC6 was

positively correlated with Eosinophil. RAD51 was negatively

correlated with T follicular and positively correlated with Type

2 T helper cell. UCHL1 was positively correlated with Imumature

dendritic cell and Type 2 T helper cell. XPNPEP1 levels were not

statistically significantly correlated with immune cell infiltration.

FIGURE 5
Boxplot of circRNA, miRNA, and mRNA in the ceRNA
regulatory network. (A) 2 circRNAs. (B) 4 miRNAs. (C) 5 mRNAs.
*p < 0.05, **p < 0.01.
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Discussion

In community, the incidence of missed ACS cases is 3.8 per

1,000 person-years among people aged over 55 years (de Torbal

et al., 2006). Electrocardiogram and cardiac troponin I can provide

effective help for rapid diagnosis, but their time window, specificity,

and sensitivity have certain limitations (Lindahl, 2001; Chang et al.,

2008). Therefore, it is necessary to study new biomarkers for early

diagnosis or exclude ACS. The Gene chip microarray system has

been widely employed in heart disease research since the

development of gene chip technology (Chen et al., 2019).

CircRNAs have long been thought to be a critical regulator in

the pathogenesis of ACS, and their aberrant expression has been

shown to have a major impact on disease progression (Cai et al.,

2019; Si et al., 2020; Zhang et al., 2020).

CircRNA affects gene transcription and regulation by

interacting with miRNA, mRNA, or protein via the ceRNA

mechanism (Lasda and Parker, 2014). In our ceRNA networks, it

was found that the downregulation of circRNA

(hsa_circ_0082319 and hsa_circ_0005654) and downregulation of

mRNA (XPNPEP1, UCHL1, DBNL, GPC6, and RAD51) formed a

competitive relationship, which jointly led to the occurrence of ACS.

FIGURE 6
The GO and KEGG enrichment analysis of mRNA in the ceRNA network. (A) The top 15 GO terms of biological process. (B) The top 15 GO terms
of cellular component. (C) The top 15 GO terms of molecular function. (D) The 3 KEGG pathways.
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It indicates that the expression of UCHL1, DBNL, GPC6, RAD51,

and XPNPEP1 can protect against ACS.

Every physician knows that the typical symptom of ACS is

chest pain or pressure radiating across the chest and down the left

arm, but some ACS can also present as dyspnoea, isolated jaw or

arm pain, bilateral arm pain and back pain, or nausea and

vomiting without any pain (Brieger et al., 2004; Wu et al.,

2018; Chang et al., 2019; Kwok et al., 2021), which can lead

both patients and physicians to fail to recognize ACS. Because of

these factors, objective detection is critical for confirming or

excluding ACS. Our study found that the XPNPEP1 gene is the

protective gene of ACS. By further plotting and analyzing the

ROC curve, it can be utilized as a gene to exclude diagnosis.

Outpatient follow-up of ACS patients found that the XPNPEP1

gene was related to the occurrence of MACE in patients.

Immunofluorescence staining showed that XPNPEP1 was low

expressed in the control group compared with ACS patients. The

possible mechanism is that inhibition of XPNPEP1 expression

leads to the activation of CARD8 (caspase activation and

recruitment domain 8) (Rao et al., 2022), which regulates the

expression of cytokines and chemokines in endothelial cells and

atherosclerotic lesions (Paramel et al., 2020). We speculate that

the XPNPEP1 gene indirectly affects the occurrence and

development of atherosclerosis by participating in the function

and metabolic mechanism of vascular endothelial cells. It is an

FIGURE 7
The expression levels of five hub genes in the ceRNA network
analyzed by quantitative RT-PCR.*p < 0.05, **p < 0.01. Control
group: n = 5, ACS group: n = 8.

FIGURE 8
Validation of differentially expressed genes in ACS. (A–D) shows the expression of differentially expressed genes in the GSE95368 data set in
ACS and non-ACS patients. The red box represents gene expression in the ACS group, and the bule box represents gene expression in the healthy
control group.*p < 0.05, **p < 0.01, ***p < 0.01.
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important clue to clarify the regulatory mechanism of XPNPEP1

at gene and protein levels in the pathogenesis of ACS.

It is known that UCHL1 (Ubiquitin carboxyl-terminal

hydrolase L1) is highly expressed and plays an important role

in neurons, and it is usually used as a neuronal marker (Day and

Thompson, 2010; Matuszczak et al., 2020). In recent years, there

have also been some studies on the role of UCHL1 in the

cardiovascular system. Geng et al. (2022) compared the

ischemic heart injury group with the control group and found

the overexpression of UCHL1 has a protective effect on

myocardial injury after myocardial infarction. Upregulation of

UCHL1 can prevent cardiac remodeling and dysfunction after

myocardial infarction by supporting autophagy flow and protein

homeostasis (Wu et al., 2022). For the GPC6 gene, a previous

study found that compared to patients with heart failure after

myocardial infarction, patients without heart failure had

significantly lower glypican-6, suggesting that GPC6 may be a

protective gene for heart failure after myocardial infarction

(Ozturk et al., 2021). Previous studies have found that

RAD51 is a DNA damage repair molecule and it is involved

in the pathogenesis of atherosclerosis (Davies et al., 2001; Singh

et al., 2020). The conclusions of above studies are consistent with

our results: UCHL1, GPC6, and RAD51 indirectly inhibit the

occurrence of atherosclerosis or myocardial injury through

various molecular biological level regulatory mechanisms.

ACS is not only an obstructive vascular disease, but also

involves chronic vascular inflammation that causes

atherosclerosis (Zhao and Mallat, 2019). For example,

FIGURE 9
Receiver operating characteristic (ROC) curve of differentially gene’s ability to exclude ACS diagnosis in the GSE95368 dataset.
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monocytes and macrophages play a pivotal role in the initiation,

progression and instability of atherosclerotic plaque through

multiple mechanisms such as necrosis and subsequent release

of proinflammatory factors (Wei et al., 2018). It is not clear

whether the hub genes in our study influence in the pathogenesis

of ACS by immune cell infiltration. Therefore, we determined the

relationship between the expression of three hub genes and

immune cell infiltration by the ssGSEA method. The hub

genes were highly enriched in immune-related or

inflammation-related responses and pathways, which means

that immune infiltration may be closely involved in the

regulation of ACS pathogenesis.

FIGURE 10
Immunofluorescence stain images of cardiomyocytes derived from human induced pluripotent stem cells. XPNPEP1: red. DNA: blue.

FIGURE 11
Immune cell infiltration analysis. The correlation analysis between immune cells: The red square represents positively correlated with
upregulated immune cells. The bule square represents negatively correlated with decreased immune cells.
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The GO functional annotation revealed that hub mRNAs

implicated in cortical actin cytoskeleton, protein C-terminus

binding, and adrenergic receptor binding were

overrepresented. Previous study has shown that the cortical

actin cytoskeleton was involved in the pathogenesis of ACS

through inflammatory and oxidative stress mechanisms (Hill

et al., 2022). It is unknown how C-terminal protein plays a role in

the pathophysiology of ACS. We speculate that the C-terminal

protein may affect the pathogenesis of ACS as an inflammatory

mediator (Hansson, 2005). According to a previous study, the

adrenergic receptor blocker metoprolol has a special effect on

neutrophils when inflammation intensifies, which provides

cardiac protection (Clemente-Moragon et al., 2020).

Adrenergic receptors are one of the targets for promoting the

proliferation of adult cardiomyocytes and cardiac regeneration,

which opens up a possible avenue for myocardial repair after

myocardial infarction (Du et al., 2022). Through GO analysis of

key mRNA, we found that the inflammatory mechanism is the

basic pathological mechanism of ACS, and also explained that

the adrenergic receptors are involved in the mechanism of

myocardial damage repair after ACS.

The novelty of our study is that the results are based on the

circRNA-associated ceRNA network in ACS patients. At the same

time, the hub genes in the network were validated and analyzed by

ROC curve and immune cells infiltration. At the same time, our

research also has some deficiencies. On the one hand, because the

sample size of the circRNA dataset is relatively small, no upregulated

circRNA andmRNAwere found in the ceRNA network of our study.

On the other hand, detailed data for long-term follow-up to check for

prognosis-predicting mRNAs is lacking. However, our research

indirectly proves that the key RNAs may predict protective gene

biomarkers of ACS and lays a solid framework for future research.

Conclusion

Timely diagnosis and treatment of ACS can help to improve the

prognosis of patients and reduce the economic and social damage.

Our study constructed a circRNA-related ceRNA network in ACS.

We found that hsa_circ_0082319 and hsa_circ_0005654 were

involved in the regulation of XPNPEP1, UCHL1, DBNL, GPC6,

and RAD51 expression or activity through sponging hsa-miR-583,

hsa-miR-661, hsa-miR-671-5p and hsa-miR-578. The XPNPEP1

gene could be a protective gene biomarker for ACS. Three other hub

genes (UCHL1, GPC6, and RAD51) were significantly correlated

with immune cells (Eosinophil, T follicular, Type 2 T helper cell and

Imumature dendritic cell) in ACS.
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Background: Sepsis is one of the main causes of death in critically ill patients

with high morbidity and mortality. Circular RNAs (CircRNAs) are aberrantly

expressed, and play significant regulatory roles in many diseases. However,

the expression profiles and functions of circRNAs in sepsis have not yet been

fully clarified.

Methods:Our present study performed an RNA sequencing (RNA-seq) analysis

to assess the expression profiles of circRNAs in vitro. We applied the quantitative

real-time polymerase chain reaction (RT-qPCR) to verify the RNA-seq results.

The analyses of Gene Ontology (GO), Kyoto Encyclopedia of Genes and

Genomes (KEGG) pathway, the competitive endogenous RNA (ceRNA)

regulatory networks, were performed to explore the potential mechanism in

sepsis. And then, significantly up-regulated differentially expressed (DE)

circRNA, hsa_circ_0074158, was selected for further study.

Hsa_circ_0074158 was silenced to investigate its regulatory function in

sepsis, and the barrier function was also examined in vitro. Endothelial cell

junctions were valued using Vascular endothelial cadherin (VE-cadherin), which

was detected by immunofluorescence staining. We measured endothelial

permeability by transendothelial electrical resistance (TEER) and fluorescein

isothiocyanate (FITC)-dextran extravasation.

Results: In total, 203 significantly DE circRNAs, including 77 up-regulated and

126 down-regulated, were identified. In vitro, the RT-qPCR assay showed that

the expression pattern of hsa_circ_0074158, hsa_circ_RSBN1L_11059,

hsa_circ_0004188, and hsa_circ_0005564 were consistent with the results

from RNA-seq analysis. The expression of hsa_circ_0074158 detected by RT-
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qPCR in vivo was also consistent with the RNA-seq results. The ceRNA

networks, GO enrichment, and the KEGG pathway analyses revealed that

circRNAs may be related to the barrier function in sepsis. The

immunofluorescence assay showed that the suppression of

hsa_circ_0074158 expression significantly enhanced the expression of VE-

cadherin, which was suppressed in lipopolysaccharide (LPS)-induced sepsis.

Additionally, hsa_circ_0074158 knockdown could partially reverse the LPS-

induced TEER reduction and FITC-dextran extravasation elevation in sepsis.

Conclusion: In conclusion, we have found DE circRNAs could serve as potential

biomarkers and therapeutic targets for sepsis. Hsa_circ_0074158 plays a vital

role in sepsis and is related to the disruption of the endothelial barrier.

KEYWORDS

barrier function, RNA-seq, CircRNAs, adherens junction, sepsis

1 Introduction

1.1 Background

Sepsis is defined as “life-threatening organ dysfunction

caused by a dysregulated host response to infection” (Singer

et al., 2016). Sepsis is also considered one of the leading causes of

death in critically ill patients with high morbidity and mortality

(Vincent et al., 2014; Machado et al., 2017). Multiple factors are

involved in the complex pathophysiological process of sepsis,

including impaired vascular endothelial barrier, enhanced

vascular permeability, inflammatory response, immune

response, and coagulation dysfunction. Sepsis is a serious

threat to human health and the prevalence of sepsis is

considered a significant burden for health systems. Research

from 1979 to 2015 in seven high-income countries showed that

morbidity was 288 hospital-treated sepsis cases and 148 hospital-

treated severe sepsis cases per 100,000 person-years, while

morbidity was 437 sepsis and 270 severe sepsis cases per

100,000 person-years in the last decade, with hospital

mortality 17% for sepsis and 26% for severe sepsis

(Fleischmann et al., 2016).

The vascular endothelium is composed of a monolayer of

endothelial cells, a basement membrane, an extracellular matrix,

and endothelial glycocalyx, which lines the luminal surface of the

inner blood of vessels with extensive homeostasis functions

(Rajendran et al., 2013). Vascular endothelial cadherin (VE-

cadherin) is concentrated in adherent junctions and found

exclusively in the vascular endothelium in vertebrates,

additionally, it also plays an important role in stabilizing the

barrier function of the endothelium (Brasch et al., 2011). As a

dynamic and heterogeneous organ, the endothelium is involved

in many biological functions, such as the secretory, metabolic,

and immunologic functions (Rajendran et al., 2013; Godo and

Shimokawa, 2017). Through the synthesizing and release of

various relaxing factors, such as vasodilator prostaglandins,

nitric oxide, hyperpolarization factors, and contracting factors,

the endothelium is tightly involved in the regulation of vascular

tone (Nava and Llorens, 2019; Shimokawa and Godo, 2020; Godo

et al., 2021). Many pathological processes, including

microvascular tone dysfunction, vascular permeability,

inflammatory response, platelet adhesion and aggregation,

coagulation and fibrinolysis, and immunological response, are

significantly associated with endothelial dysfunction. The

endothelium is considered a critical physical barrier in

microcirculation, and in the physiopathological process of

sepsis, endothelial dysfunction is a central event (Lee and

Slutsky, 2010; Martin-Fernandez et al., 2021).

Circular RNAs (CircRNAs) were discovered for more than

40 years and also observed in the cytoplasmic fractions (Sanger

et al., 1976; Hsu and Coca-Prados, 1979). CircRNAs are

endogenous noncoding RNA in eukaryotic cell lines that are

mainly derived from the pre-mRNAs by back-splicing of exons

and are initially considered an aberrant splicing event during the

gene transcription (Nigro et al., 1991; Cocquerelle et al., 1992;

Cocquerelle et al., 1993; Pasman et al., 1996). Due to lacking

polyadenylation [poly(A)] and capping, the 5′ and 3′ splice sites
of circRNAs are covalently closed, and this structure determines

its highly conservative, specific, and stable properties (Chen,

2016; Kristensen et al., 2019; Chen, 2020). CircRNAs are

aberrantly expressed in many diseases and also act as miRNA

and protein sponges to be involved in the regulation of different

processes in sepsis (Ashwal-Fluss et al., 2014; Thomson and

Dinger, 2016; Abdelmohsen et al., 2017; Panda, 2018; Kristensen

et al., 2019; Beltran-Garcia et al., 2020; Chen, 2020). An

increasing number of studies revealed that circRNAs have

been significantly associated with the regulation of many

physiological and pathological processes, such as innate

immunity, cell proliferation and transformation, and neuronal

function (Chen, 2020; Chen et al., 2021). Dysregulation of

circRNAs was also observed in various human diseases,

including neurogenesis, myogenesis, osteogenesis, cancer,

cardiovascular disease, metabolic diseases, and other

metabolism-associated diseases (Huang et al., 2021; Verduci
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et al., 2021). Recent studies also demonstrated the potential

values of circRNAs as diagnostic biomarkers and/or

therapeutic targets in many diseases (Jiang et al., 2022; Wang

et al., 2022; Zhang et al., 2022). Additionally, circRNAs have been

reported to be used as new diagnostic biomarkers and molecular

therapeutic targets (Tian et al., 2021). However, whether

circRNAs are involved in the regulation of the endothelial

barrier in sepsis is not fully explored.

Many RNA sequencing (RNA-seq) studies have found that

differentially expressed (DE) circRNAs were involved in cellular

functions (Chen, 2020; Chen et al., 2021; Huang et al., 2021;

Verduci et al., 2021). In this study, we detected the expression

profiles of circRNAs in lipopolysaccharide (LPS)-induced sepsis.

Then we explored their value as biomarkers in sepsis and further

explored the effect of hsa_circ_0074158 on the endothelial barrier.

2 Materials and methods

2.1 Samples and patients

In order to investigate DE circRNAs in LPS-induced sepsis

in vitro, the human umbilical vein endothelial cells (HUVECs)

were divided into two groups: 1) control group, treated with

nothing; 2) LPS group, treated with 1 μg/ml LPS for 12 h. Each

sample was collected for three independent biological replicates.

The HUVECs came from the Institute of Immunology, Tsinghua

University, and were grown in Dulbecco’s modified Eagle’s

Medium (DMEM; Solarbio, China) supplemented with 10%

fetal bovine serum (FBS; TianHang, China) at 37°C in a

humidified atmosphere of 5% CO2. LPS was purchased from

Sigma-Aldrich (Cat No. L4516). After treatment, cells were

washed once with Phosphate buffer saline (PBS; Solarbio,

China). Subsequently, the samples were centrifuged at

1,500 rpm for 5 min and stored in a freezer at −80°C.

According to Sepsis −3, 44 patients with sepsis and 48 healthy

individuals were enrolled at Beijing Tsinghua Changgung Hospital

(Beijing, China) fromApril 2022 to June 2022.Whole blood samples

were collected and the quantitative real-time polymerase chain

reaction (RT-qPCR) was performed. The total RNA was

immediately extracted using Hipure Blood RNA Kits (Magen,

Guangzhou, China). All patients had no history of autoimmune

disorders, neoplastic diseases, or oral immunosuppressants. This

study was approved by the Ethics Committee (NCT05095324).

2.2 Construction of transcriptome libraries

The total RNA of HUVECs was extracted using the total

RNA kit (TaKaRa, Japan), followed by the manufacturer’s

instructions. The concentration and purity of the extracted

RNA were determined using Nanodrop One (Thermo Fisher,

United States). The integrity and contamination of RNA were

evaluated by agarose gel electrophoresis (Bio-RAD,

United States). And the integrity of the RNA was further

verified using an Agilent 2100 bioanalyzer (Agilent 2100,

United States). The preparation of specific transcriptome

libraries was performed by removing ribosomal RNA. RNA

was degraded using Ribonuclease (RNase) H (TaKaRa, Japan).

The first single-stranded cDNA was synthesized with reverse

transcription of RNA, followed by the second double-stranded

cDNA synthesized using dNTP (dUTP, dATP, dGTP, and

dCTP). Subsequently, RT-qPCR was performed to amplify the

sequences and then the preparation of the total RNA library was

completed. The RT-qPCR and the Agilent 2100 bioanalyzer were

used to control the quality and quantity of the library.

Transcriptome sequencing was performed with Illumina PE150.

2.3 Sequence alignments

The alignment of valid sequencing data (clean reads) with the

genome or transcriptome is the basis for subsequent analysis. We

used Hisat2 software (version 2.0.1-beta) to align the

transcriptome RNA-seq dataset. Hisat2 software is an upgrade

of Tophat2 software, with a high mapping rate and high accuracy

in finding Junction reads (Kim et al., 2015).

2.4 Differential expression analysis

The input data for the differential expression of circRNAs

was the read counts data set obtained from the analysis of

circRNA expression. For samples with biological duplications,

the DESeq2 package was used for the analysis of miRNAs and

circRNAs between the LPS and control groups (Love et al., 2014).

For samples without biological duplications, DEGseq provides a

TMM algorithm to standardize the read count data and then

performs a difference analysis.

2.5 Enrichment analysis of differentially
expressed circRNAs

After obtaining the DE circRNAs between the LPS and

control groups, the host genes in each group were analyzed by

enrichment of the Gene Ontology (GO) (version 1.1) and Kyoto

Encyclopedia of Genes and Genomes (KEGG) (version 94.0)

pathway, respectively. The GO is a major bioinformatics

initiative to unify the representation of gene and gene product

attributes across all species (Consortium, 2019). KEGG is a

collection of databases dealing with genomes, biological

pathways, diseases, drugs, and chemical substances (Kanehisa

and Goto, 2000). The KEGG PATHWAY database is the core of

the KEGG resource. The database is a collection of pathwaymaps

that integrate many entities, including genes, proteins, RNAs,
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chemical compounds, glycans, and chemical reactions, as well as

disease genes and drug targets, which are stored as individual

entries in the other KEGG databases. GO enrichment analysis

consists of biological process (BP), cellular component (CC), and

molecular function (MF), performed to construct gene

annotations. The enrichment of the KEGG pathway was

carried out to reveal the function and interactions among the

DE genes, providing annotation information on signal

transduction and disease pathways.

2.6 Construction of a regulatory network
for the competitive endogenous RNA

CircRNA is known as a miRNA sponge. Through binding to

target miRNA, circRNA can inhibit miRNA expression and

subsequently affect the ceRNA network. Thus, analysis and

identification of the binding sites of circRNAs and their target

miRNAs are necessary. In this study, Starbase software (version

2.0) andmiRanda software (version 3.3a) were used to predict target

miRNAs and potential binding sites with DE circRNAs, and the

target genes of predicted miRNAs were identified using miRWalk

(version 2.0) (Li et al., 2014; Agarwal et al., 2015; Sticht et al., 2018).

2.7 Real-time polymerase chain reaction

The validation of the results obtained from the RNA-seq and the

quantification of candidate circRNA expression were performed

using RT-qPCR. Specific convergent primers that span the circRNA

back-splice junction site were designed by the circPrimer (version

2.0) and Oligo 7 (version 7.37) software (Zhong et al., 2018). If there

were no suitable convergent primers, divergent primers were

designed similarly. The cDNA was synthesized using the

PrimeScript™ RT reagent kit (TaKaRa, Beijing, China). The RT-

qPCRwas performed using TBGreen Premix Ex Taq™ II (TaKaRa,

Beijing, China). GAPDH was employed as an internal control. RT-

qPCR was performed by three independent biological and technical

duplications. The relative expression of the circRNAs was analyzed

by the 2−ΔΔCT method.

2.8 Immunofluorescence staining

The HUVECs were seeded in 24-well plates and cultured for

24 h. After the indicated treatment, cells were washed with cold PBS

and fixed in 4% paraformaldehyde. The cells were then blocked with

5% BSA in PBS for 1 h and incubated with specific primary

antibodies (1:100; Abcam) at 4°C overnight. The cells were then

incubated with a fluorochrome-labeled anti-rabbit secondary

antibody (1:500; Beyotime) for 1 h at room temperature with

protection from light. The cells were then washed with cold PBS

three times and stained with DAPI (ready-to-use, Solarbio) for

nucleus staining. The expression of VE-cadherin was observed by

fluorescence microscopy (Olympus).

2.9 Transendothelial electrical resistance
and fluorescein isothiocyanate -dextran
assays

Cultivation of cell monolayers on the upper side of the

Transwell insert (Corning, United States) at 37°C, 5% CO2. In

the upper and lower chambers, 200 μL and 600 µL culture

medium were distributed, respectively. After treatment, the

Volt-Ohm Meter (Millipore, United States) was used to

measure TEER following the protocol. The values (Ω cm2) of

TEER were expressed by subtracting the resistance of the blank

insert and correcting for the surface area.

Culture HUVECs as previously described. After treatment,

FITC-dextran (1 mg/ml, Sigma-Aldrich, United States) was

added to the upper chambers and cultured for 45 min 100 µL

samples were collected from the upper and lower chambers for

fluorescence. The dextran permeability coefficient (Pd) was used

to evaluate the permeability of the endothelial monolayer.

Pd � [A]
t

×
1
A
×

V

[L]
[A] is the dextran concentration of the lower chamber, t is

time, A is the membrane area; V is the volume of the lower

chamber [L] is the dextran concentration of the upper chamber

(Wu et al., 2020).

2.10 Statistical analysis

SPSS software (version 26.0) was used to analyze all the data

collected from this study and the figures were produced using

GraphPad Prism (version 8.0.2). Comparisons between two

groups were analyzed using the student’s t-test and

comparisons between multiple groups were performed by one-

way ANOVA. All data are presented as mean ± standard

deviation (S.D.). The chi-square test or Fisher’s exact test was

applied to analyze the categorical variables. The

p-value <0.05 was considered statistically significant.

3 Results

3.1 RNA-seq identified features of
circRNAs and differentially expressed
profiles

A total of 8766 circRNAs were identified by RNA-seq. The

distribution of all cricRNAs on human chromosomes was analyzed

and the results were shown in Figure 1A. Meanwhile, the length of
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FIGURE 1
CircRNAs in LPS-induced sepsis. (A) The distribution of all cricRNAs in sepsis. The outermost layer was a chromosome map of the human
genome. The red dots in the inner circles represented the circRNAs. (B) The length of the circRNA of all samples and the source of the circRNAs were
represented. (C) The source of all circRNAs. (D) Representative volcano plot showing the up- and down-regulated circRNAs in the cells treated with
or without LPS. Red dots represent up-regulated transcripts, green dots represent down-regulated transcripts, and blue dots represent genes
without a significant change. (E) Cluster analysis of all differentially expressed transcripts. Up- and down-regulated circRNAs are colored red and
blue, respectively. (F) Distribution of DE circRNAs on chromosomes. (C) Control groups. LPS: LPS groups.
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the circRNAs of all samples and the source of these circRNAs were

shown in Figures 1B,C, respectively. According to Figure 1B, we

found that the length of most circRNAs in HUVECs is less than

500 nt. Figure 1C revealed that circRNAs can be derived from

exons, introns, and intergenic, but most of the circRNAs in

HUVECs are derived from the exon.

According to the filtering conditions of |log2
(FoldChange)| > 1 and the p-value <0.05, 203 circRNAs

were identified as significantly DE circRNAs (77 circRNAs

were up-regulated and 126 were down-regulated). Based on

the top dysregulated circRNAs, 20 circRNAs were selected

from those identified DE circRNAs (Table 1). To verify the

TABLE 1 The 20 DE circRNAs of the RNA-seq dataset.

CircRNA ID Chromosome Feature Gene symbol Regulation log2FoldChange p-value

hsa_circ_0002360 21 exon RUNX1 Up 5.0417 0.0001

hsa_circ_0069338 4 exon SEPSECS Up 4.9572 0.0002

hsa_circ_0007816 9 exon UHRF2 Up 4.6863 0.0006

hsa_circ_0074158 5 exon CTNNA1 Up 4.4764 0.0012

hsa_circ_TRAK1_8343 3 exon TRAK1 Up 4.2562 0.0026

hsa_circ_RSBN1L_11059 7 exon RSBN1L Up 4.2336 0.0028

hsa_circ_0051427 19 exon RELB Up 4.1916 0.0032

hsa_circ_0004188 18 intron PTPRM Up 3.6088 0.0135

hsa_circ_ACTN1_2453 14 exon ACTN1 Up 3.602 0.0137

hsa_circ_0063534 22 exon RANGAP1 Up 1.6825 0.0035

hsa_circ_0001860 9 exon ZCCHC7 Down −6.7445 0.0000

hsa_circ_0004539 5 exon LHFPL2 Down −5.6548 0.0000

hsa_circ_0008585 2 exon BIRC6 Down −5.3167 0.0000

hsa_circ_0004161 1 exon DPYD Down −4.8136 0.0003

hsa_circ_0002127 11 exon HIPK3 Down −4.7746 0.0004

hsa_circ_MAD1L1_10741 7 exon AC069288.1; MAD1L1 Down −4.7053 0.0005

hsa_circ_0005395 2 exon NBEAL1 Down −4.2523 0.0024

hsa_circ_0001491 5 exon IPO11 Down −4.2405 0.0025

hsa_circ_XPO7_11370 8 exon XPO7 Down −4.2344 0.0025

hsa_circ_0005564 8 exon FGFR1 Down −2.413 0.0250

FIGURE 2
GO and KEGG pathway enrichment analyses for DE circRNAs. (A) The top significantly enriched GO terms for DE circRNAs. The horizontal axis
represents the name of the GO term, and the vertical axis represents the number of genes. (B) The top 20 significantly enriched KEGG pathways. The
size of the dots represents the number of DE circRNAs enriched in the pathway, and the color of the dots represents the p-value. The horizontal axis
shows the rich factor (the degree of enrichment of DE circRNAs), and the vertical axis shows the pathway names.
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results of the RNA-Seq analysis, the expression of the

selected 20 DE circRNAs was verified using RT-qPCR.

The significant differences in DE circRNAs between LPS

and control groups were shown with a volcano plot

(Figure 1D) and cluster analysis (Figure 1E). As shown in

Figure 1F, sepsis-associated circRNAs were distributed on

each chromosome, while more DE circRNAs were located on

chromosome 2.

3.2 Enrichment analysis of the GO and
KEGG pathways for differentially
expressed circRNAs

The top significantly enriched GO terms of DE circRNAs

were shown in Figure 2A, the results showed that the primary

metabolic process and the organic substance metabolic

process were more enriched for BP, and the intracellular

and intracellular part had more enriched for CC, while

binding was more enriched for MF. According to the

analysis of KEGG pathway enrichment (Figure 2B), DE

circRNAs were mainly enriched at the adherens junction,

suggesting the significant associations of DE circRNAs with

the endothelial barrier in LPS-induced sepsis, RNA

degradation, and protein processing in the endoplasmic

reticulum, etc. The adherens junction pathway was

identified for our further study (Supplementary Figure 1S).

The circRNAs associated with the adherens junction pathway

were listed in Table 2, of which hsa_circ_0074158,

hsa_circ_0004188, hsa_circ_0005564, and

hsa_circ_ACTN1_2453 belonged to 203 DE circRNAs.

3.3 Analysis of the ceRNA regulatory
networks

We constructed the ceRNA regulatory networks analysis to

elucidate the relationship in sepsis using circRNA-miRNA-mRNA.

138 target miRNAs for 20 DE circRNAs and 21307 target mRNAs

for the miRNAs were predicted. We selected top target mRNAs of

the 20 DE circRNAs to conduct a circRNA-miRNA-mRNA

network (Figure 3A). The network showed that CDH5 (VE-

cadherin) is the target of hsa-miR-515-5p and hsa-miR-515-5p is

the target of hsa_circ_0074158. To select hsa_circ_0074158 for

further study, we also conducted a circRNA-miRNA-mRNA

network for hsa_circ_0074158 (Figure 3B).

3.4 Validation of the RNA-seq results and
demographic information of
hsa_circ_0074158

RT-qPCR was performed to verify the 20 DE circRNAs

identified by RNA-seq analysis above. Combined with

log2FoldChange in Table 1, the results showed that only the

expression patterns of hsa_circ_0074158,

hsa_circ_RSBN1L_11059, hsa_circ_0004188, and

hsa_circ_0005564 were highly consistent with the RNA-seq

results (Figure 4A). The hsa_circ_0074158 was selected for

our further study according to the expression level and KEGG

pathway enrichment analysis. To verify the splice site of

hsa_circ_0074158, the RT-qPCR amplification and Sanger

sequencing were performed and the results confirmed the

back splice junction site (Figure 4B). The linear RNAs were

TABLE 2 CircRNAs related to the adherens junction pathway.

CircRNA_ID Chromosome Feature Gene symbol Regulation log2FoldChange p-value DE circRNA

hsa_circ_0074158 5 exon CTNNA1 Up 4.4764 0.0012 Yes

hsa_circ_0004188 18 intron PTPRM Up 3.6088 0.0135 Yes

hsa_circ_ACTN1_2453 14 exon ACTN1 Up 3.602 0.0137 Yes

hsa_circ_0002872 18 exon PTPRM Up 1.8256 0.2126 No

hsa_circ_0074171 5 exon CTNNA1 Up 1.5502 0.2802 No

hsa_circ_0046813 18 exon PTPRM Up 1.0413 0.4253 No

hsa_circ_0002913 14 exon ACTN1 Up 0.85031 0.4615 No

hsa_circ_0032321 14 exon ACTN1 Up 0.43822 0.7609 No

hsa_circ_0008196 5 exon CTNNA1 Up 0.28868 0.8438 No

hsa_circ_0007440 5 exon CTNNA1 Up 0.031718 0.9676 No

hsa_circ_0006114 18 exon PTPRM Down −0.22938 0.7611 No

hsa_circ_0008016 8 exon FGFR1 Down −0.97928 0.1099 No

hsa_circ_PTPRM_4378 18 exon PTPRM Down −1.4552 0.3111 No

hsa_circ_ACTN1_2450 14 exon ACTN1 Down −1.4768 0.3018 No

hsa_circ_0007644 14 exon ACTN1 Down −1.7358 0.2436 No

hsa_circ_0005564 8 exon FGFR1 Down −2.413 0.0250 Yes
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removed using an RNase R treatment experiment (Epicentre

Technologies, United States) (Figure 4C). The RT-qPCR results

of 92 patients showed that the expression pattern of

hsa_circ_0074158 was highly consistent with the results of the

RNA-seq (Figure 4D). We also collected demographic

information on sepsis patients. Based on the median

expression of hsa_circ_0074158, we classified the 44 patients

into a low expression group (n = 22) and a high expression group

(n = 22). We found that the expression level of

hsa_circ_0074158 was significantly correlated with chronic

FIGURE 3
CeRNA regulatory networks. (A) CircRNA-miRNA-mRNA network of the 20 DE circRNAs. (B) CircRNA-miRNA-mRNA network of
hsa_circ_0074158. Red represents circRNA, pink represents miRNA, and blue represents mRNA.
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comorbidities (Table 3). Additionally, survival analyses were also

performed based on the expression levels of hsa_circ_0074158.

The Kaplan-Meier method with the log-rank test was used to

assess the survival rate of sepsis patients (Figure 4E). And the

analysis showed that the patients of the hsa_circ_0074158 high

expression group exhibited poor overall survival (p = 0.0342)

compared to those of the hsa_circ_0074158 low expression

group.

3.5 Role of hsa_circ_0074158 in sepsis-
induced endothelial barrier disruption

To illustrate the effects of hsa_circ_0074158 on the

endothelial barrier function in sepsis, siRNA was used to

confirm the role. Previous research has shown that LPS can

cause VE-cadherin disruption and lead to adherens junction

disruption (Chan et al., 2019). In this study, immunofluorescence

FIGURE 4
Candidate circRNAs. (A) Validation of 20 DE circRNAs expression by RT-qPCR. (B) Sanger sequencing confirmed the back splice junction site of
hsa_circ_0074158. Green stands for A, red stands for T, black stands for G, and blue stands for C .(C)RNase R treatment experiments. (D) Validation of
the hsa_circ_0074158 expression in the whole blood of 44 patients with sepsis and 48 healthy individuals. (E) Kaplan-Meier survival curve of patients
with sepsis. *p < 0.05, **p < 0.01, ***p < 0.001. Control: Control groups. LPS: LPS groups. RNase R: RNase R treatment groups. Sepsis: Sepsis
groups.
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staining demonstrated that hsa_circ_0074158 knockdown can

significantly enhance the expression of VE-cadherin, which was

down-regulated in LPS-induced sepsis (Figure 5A). Experiments

also showed that knockdown of hsa_circ_0074158 could increase

TEER (Figure 5B) and decrease the extravasation of FITC-

dextran (Figure 5C). In summary, these results fully

confirmed that si-circ_0074158 reversed LPS-induced

suppression of VE-cadherin and endothelial

hyperpermeability, mimicking barrier protection.

4 Discussion

With the development of bioinformatic techniques and

approaches, the associations of circRNA with diseases, such as

cancer, cardiovascular disease, nervous system disease, immune-

related disorders, and infections, were identified and verified

(Chen et al., 2018; Wang et al., 2018; He et al., 2019; Hosaka et al.,

2019; Wang et al., 2019). The differential expression of circRNA

plays an important role in the diagnosis, treatment, and

prognosis of the disease. Sepsis is characterized by complex

pathogenesis, atypical clinical manifestations, and a difficult

diagnosis. Despite the significant advances that have been

made in treatment technologies, sepsis remains a serious

clinical syndrome with substantial morbidity and mortality.

To further clarify the pathogenesis and provide a novel

approach for the diagnosis and treatment of sepsis, we

explored the transcriptome characteristics of LPS-induced

sepsis by RNA-seq.

Herein, 203 significantly DE circRNAs, including 77 up-

regulated and 126 down-regulated, were identified. Then 20 DE

circRNAs were selected for RT-qPCR validation. According to

the results from the RNA-seq analysis and filtering conditions,

only the expression of hsa_circ_0074158,

hsa_circ_RSBN1L_11059, hsa_circ_0004188, and

hsa_circ_0005564 were highly consistent with the results of

the RNA-seq, which indicated that these circRNAs were

potential biomarkers and drug targets for sepsis treatment.

However, more research is needed to validate the results.

We performed GO and KEGG pathway enrichment analyses

to explore the potential pathophysiological mechanism in sepsis.

The results of the GO enrichment analysis showed that the most

significantly enriched GO term in the BF was organic substance

metabolic process, the CC was intracellular, and in MF, binding.

The GO enrichment analysis indicated that circRNA functions

were highly associated with the metabolic process and GTPase,

which have been shown to have a relationship with sepsis and

endothelial barrier function in previous studies, respectively

(Mira et al., 2017; Aslam et al., 2019; Sanchez and Raja,

2022). The enrichment analysis of the KEGG pathway

revealed that circRNAs were mainly involved in adherens

junction, NF-kappa B signaling pathway, endocytosis,

regulation of actin cytoskeleton, bacterial invasion of epithelial

cells, antigen processing and presentation, and which also

predicted that circRNAs might be related to endothelial

barrier function in sepsis (Garcia et al., 2018; McRae et al.,

2018; Radeva and Waschke, 2018; Leonard et al., 2019;

Strauss and Gourdie, 2020).

We also constructed ceRNA regulatory networks to reveal

the regulatory mechanism in sepsis. According to the ceRNA

mechanism, there are 138 target miRNAs for 20 DE circRNAs

and 21307 target mRNAs for the miRNAs were identified. In

particular, CDH5 (VE-cadherin) is the target gene of hsa-miR-

515-5p and hsa-miR-515-5p is the target of hsa_circ_0074158.

The KEGG pathway analysis showed that hsa_circ_0074158 was

related to the adherens junction. As we know, adherens junctions

are specialized forms of adhesive contacts based on VE-cadherin,

and adherens junctions are mainly composed of VE-cadherin

(Dejana et al., 2008). Tight junctions, adherens junctions, and

gaps are more closely correlated with the function of the

endothelial barrier. The endothelial barrier function plays a

key role in the development of sepsis. Therefore, we

hypothesized that hsa_circ_0074158 regulated VE-cadherin

and endothelial barrier function in sepsis through hsa-miR-

515-5p. We also evaluated the adherens function of the

endothelial barrier using VE-cadherin expression.

The hsa_circ_0074158 in the KEGG pathway of the adherens

junction was selected for further study. High consistency of the in

vivo RT-qPCR results with the RNA-seq analysis was observed.

We used a combination of RNase R treatment and Sanger

sequencing to confirm the cyclization feature of

hsa_circ_0074158. Immunofluorescence assay and endothelial

permeability demonstrated that LPS-induced sepsis can disrupt

VE-cadherin expression and enhance endothelial permeability,

while knockdown of hsa_circ_0074158 can suppress the sepsis-

TABLE 3 Demographic information for sepsis patients according to
hsa_circ_0074158 expression.

Parameters Low expression High expression p-Value

Gender 0.540

Male 12 14

Female 10 8

Age (years) 0.093

≥ 60 17 21

< 60 5 1

Infection souce 0.793

Lung 13 10

Urinary tract 5 5

Skin or soft tissues 1 1

Other 3 6

Comorbidities 0.015

Yes 13 20

No 9 2
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caused aberrant regulation. Hence, we hypothesized that

hsa_circ_0074158 was potentially involved in endothelial

barrier dysfunction. However, these results are preliminary

and further confirmation with an expanded study is needed.

Recently, an increasing number of studies have investigated the

function of circRNAs. It is well known that circRNAs can act as

miRNA sponges, thus regulating the expression of miRNAs

(Thomson and Dinger, 2016; Panda, 2018). Many studies also

demonstrated that circRNAs might be used as potential

biomarkers and therapeutic targets for the treatment and therapy

of sepsis. A clinical study demonstrated that circ-PRKCI was an

independent factor to predict the mortality risk of sepsis patients

(Wei and Yu, 2020). Another clinical study that included 25 patients

with sepsis observed the differential expression of

hsa_circRNA_104484 and hsa_circRNA_104670 in serum

exosomes, indicating the potential of hsa_circRNA_104484 and

hsa_circRNA_104670 as a biomarker and potential therapeutic

target (Wei and Yu, 2020). A recent review analyzed the

biological characteristics of circRNAs in sepsis based on the

Medline database (Wei et al., 2022). In our study, survival

analyses showed that people with high

hsa_circ_0074158 expression have higher mortality, suggesting

that hsa_circ_0074158 could be used as a biomarker. To date,

more and more attention has been paid to the biomarkers of

sepsis, which can help to diagnose, evaluate the disease, and

judge the prognosis. However, the ideal biomarker for sepsis has

not yet been determined. To prevent, identify, diagnose, and treat

sepsis early, the combination of known biomarkers for sepsis may be

more effective. If there are biomarkers that can be used to predict

sepsis early, mortality and the use of unnecessary antibiotics can be

reduced. The identification of the biomarkers for the prediction of

sepsis has become one of the hotspots of research. In the future,

when searching for sepsis biomarkers, we should paymore attention

to early prevention of sepsis, which can reduce the morbidity and

mortality of sepsis more efficiently. Furthermore, our research also

showed that circRNA was potentially associated with endothelial

barrier function in sepsis, which may provide more possibilities for

the prevention of sepsis in advance.

5 Conclusion

In our present study, we clarified the differential expression

and potential functions of circRNAs in LPS-induced sepsis.

CirculaRNAs, including hsa_circ_0074158, hsa_circ_RSBN1L_

11059, hsa_circ_0004188, and hsa_circ_0005564, could serve as

potential biomarkers and therapeutic targets for sepsis

treatment and therapy. Meanwhile, we observed significant

associations of hsa_circ_0074158 with the endothelial barrier

function in sepsis. The results also showed that the knockdown

of hsa_circ_0074158 could significantly improved VE-cadherin

expression, reduced endothelial permeability, and subsequently

FIGURE 5
Hsa_circ_0074158 regulates the endothelial barrier function in sepsis. (A) The silencing of hsa_circ_0074158 enhanced the expression of VE-
cadherin, which was down-regulated in LPS-induced sepsis. Bar = 100 µm. (B) The endothelial permeability was measured by TEER assay and
showed. (C) The endothelial permeability was determined using the FITC-dextran assay and showed. *p < 0.05, **p < 0.01, ***p < 0.001. NC:
Negative control groups. LPS: LPS groups. Circ_0074158: Circ_0074158 groups. siRNA + LPS: si-circ_0074158 + LPS groups.
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protect the adherens junction in sepsis. Based on ceRNA

regulatory network, we hypothesized that

hsa_circ_0074158 regulated the endothelial barrier

disruption in sepsis through hsa-miR-515-5p. Collectively,

our data demonstrated that dysregulation of circRNAs was

significantly associated with sepsis and circRNAs played a

potential role in sepsis, suggesting the role of circRNA as a

promising biomarker and the significant clinical values for

sepsis treatment and therapy.
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Background: Tumormicroenvironment (TME) takes a non-negligible role in the

progression and metastasis of bladder urothelial carcinoma (BLCA) and tumor

development could be inhibited by macrophage M1 in TME. The role of

macrophage M1-related genes in BLCA adjuvant therapy has not been

studied well.

Methods: CIBERSOR algorithm was applied for identification tumor-infiltrating

immune cells (TICs) subtypes of subjects from The Cancer Genome Atlas

(TCGA) and Gene Expression Omnibus (GEO) data sets. We identified

potential modules of M1 macrophages by weighted gene co-expression

network analysis (WGCNA). Nomogram was determined by one-way Cox

regression and lasso regression analysis for M1 macrophage genes. The data

from GEO are taken to verify the models externally. Kaplan-Meier and receiver

operating characteristic (ROC) curves validated prognostic value of

M1 macrophage genes. Finally, we divided patients into the low-risk group

(LRG) and the high-risk group (HRG) based on the median risk score (RS), and

the predictive value of RS in patients with BLCA immunotherapy and

chemotherapy was investigated. Bladder cancer (T24, 5637, and BIU-87) and

bladder uroepithelial cell line (SV-HUC-1) were used for in vitro validation.

Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was

employed to validate the associated genes mRNA level.

Results: 111 macrophage M1-related genes were identified using WGCNA. RS

model containing three prognostically significant M1 macrophage-associated

genes (FBXO6, OAS1, and TMEM229B) was formed bymultiple Cox analysis, and

a polygenic risk model and a comprehensive prognostic line plot was

developed. The calibration curve clarified RS was a good predictor of

prognosis. Patients in the LRG were more suitable for programmed cell

death protein 1 (PD1) and cytotoxic T lymphocyte associate protein-4

(CTLA4) combination immunotherapy. Finally, chemotherapeutic drug

models showed patients in the LRG were more sensitive to gemcitabine and
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mitomycin. RT-qPCR result elucidated the upregulation of FBXO6, TMEM229B,

and downregulation of OAS1 in BLCA cell lines.

Conclusion: A predictive model based on M1 macrophage-related genes can

help guide us in the treatment of BLCA.

KEYWORDS

M1 macrophage, immunotherapy, chemotherapy, resistance, WGCNA

Introduction

Bladder urothelial carcinoma (BLCA) is a common

malignant tumor in the bladder system, which was listed as

one of the nine most common cancers by the World Health

Organization (WHO). Based on histopathology, BLCA can be

classified into two categories, muscle-invasive bladder cancer

(MIBC) takes most of the BLCA, which is prone to recurrence,

another type that accounts for 30% is non-muscle-invasive

bladder cancer (NMIBC) with rapid metastasize and low

survival rate (Xu et al., 2022a; Kubrak et al., 2022). Therefore,

we urgently need a prognostic risk model to provide guidance for

the treatment of BLCA.

Tumor microenvironment (TME) is constructed by

interacting closely with the extracellular matrix (ECM) and

stromal cells to evade detection and eradication by host

immune surveillance (Ge and Ding, 2020). Mounting studies

have indicated the composition of the TME correlates strongly

with immune response and chemotherapy, and regulations in

various immune cells from the TME effect the clinical outcome of

malignancies (Erbani et al., 2022; Friedrich et al., 2022; Pang

et al., 2022; Wang et al., 2022). Tumor-associated macrophages

(TAM) drive tumor progression, metastasis, and therapeutic

resistance (Larroquette et al., 2022)but heterogeneity is a

considerable factor in macrophages (Wu et al., 2020).

M1 macrophages inhibit solid tumorigenesis, progression,

metastasis, and drug resistance, while M2 macrophages act the

opposite. M1 macrophages phagocytose tumor cells via cell-

mediated cytotoxicity. M1 macrophages exert anti-tumor

effects through the production of pro-inflammatory factors

(TNF-α, I L-1β, and iNOS), chemokines (CXCL10, CXCL11,

and CCL2), antigen-presenting molecules (MHCII), co-

stimulatory molecules (CD86, CD80), and antigen-processing

peptidases (Jia et al., 2021). In addition, Zeng et al. found

M1 infiltration to be a reliable biomarker for predicting

prognosis of tumor patients and surpassed biomarkers such as

CD8 T cells (Zeng et al., 2020). However, the biological role of

M1 macrophages in the prognosis of BLCA has not been well

studied (Wu et al., 2022).

Currently, transurethral resection of bladder tumors remains

the first-line treatment for patients and is combined with

chemotherapeutic agents, but with poor efficacy (Kubrak

et al., 2022). Immune checkpoint inhibitors have been proven

as a proper option for surgical treatments, however, they merely

work in a few types of tumors (Garris et al., 2021; Groeneveld

et al., 2021; Barone et al., 2022). Programmed death ligand 1 (PD-

L1) expression is the main predictive biomarker for immune

checkpoint inhibitor (ICI). Furthermore, tumor mutational

burden (TMB) reflects an overall neoantigen load and has the

potential to be a predictive biomarker for ICI (Cao et al., 2021a).

In summary, we planned to evaluate the sensitivity of different

adjuvant treatment modalities for bladder cancer treatment.

Therefore, this study tried to establish an M1 macrophage-

based risk score (RS) to comprehensively investigate the

sensitivity of the tumor to clinical treatments.

Materials and methods

Information collection

We downloaded The Cancer Genome Atlas-Bladder Cancer

(TCGA-BLCA) (samples of bladder cancer, n = 414; normal

tissue, n = 19) and GSE31684 (n = 93) genetic expression data to

obtain sequencing profiles. Clinical data for TCGA-BLCA can

also be found in The Cancer Genome Atlas (TCGA) database. A

total of 407 tumor samples were uploaded after the missing

clinical signs samples were extracted from TCGA database. To

further analyze the variations in copy number of BLCA patients,

we also obtained somatic mutation data from the TCGA database

for BLCA patients to further analyze copy number

variation (CNV).

Distribution of TICs

We obtained the abundance of 22 infiltrating immune cells

(TICs) in the TME using the CIBERSORT algorithm on the

TCGA-BLCA data of the samples (Zhong et al., 2021).

Weighted gene co-expression network
analysis

The purpose of weighted gene co-expression network

analysis (WGCNA) was to find co-expressed gene modules

(Cao et al., 2021b). The expression of 16,394 genes in the

TCGA-BLCA queue will be used as data, and the result of

Frontiers in Genetics frontiersin.org02

Yu et al. 10.3389/fgene.2022.1047004

75

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1047004


CIBERSORT will be used as an explanation. To construct an

approximate matrix, the soft optimal power (β) value is selected

by using the pickSoftThreshold function, and the power level

with a soft threshold of 1–20 is selected as a candidate. To obtain

different gene modules, the tom matrix obtained from genetic

expression is used to regroup genes, set the minimum number of

modular genes, and cut the outcomes of gene synthesis. By using

the “dynamic tree cutting” algorithm, similar genes are

introduced into the same module at the same time. Our study

targeted “M1 macrophages”, so the modules of most significant

relevance to M1 macrophages were selected.

Construction of prognostic signature in
macrophage M1

Using the most important gene module to study the

prognosis of M1 macrophage related genes, a prognostic risk

signature was constructed in bladder cancer. In the first step,

univariate regression analysis was conducted to identify genes

that may be important for overall survival (OS). A multivariate

Cox regression model was used to determine the final genes to be

included after the lasso algorithm. Finally, threeM1macrophage-

associated genes were developed, and RS were calculated

according to the following equation:

riskscore � ∑
n

i�1
(coefi*Xi)

Here, coef was the regression coefficient in the multivariate

Cox regression analysis as described previously. X indicated the

expression of candidate genes. Where i indicated

M1 macrophage-associated gene.

Validation of M1 macrophage-related
prognostic features

Each BLCA sample was given a corresponding RS according to

the previous risk formula. The cut-off point was set at the median

RS. All samples were split into subgroups with low-risk group (LRG)

and high-risk group (HRG). First, Kaplan-Meier curves were made

to look for differences in prognosis. Moreover, the predictive value

was verified by analyzing the time dependence of the receiver

operating characteristic (ROC) curves (Xu et al., 2022a).

Creation and validation of nomogram

To predict overall survival at 1-, 3-, and 5-year, we developed

a nomogram combining RS and other clinicopathological

features. Finally, we plotted calibration curves capable of

showing the prognostic validity of the nomogram.

Gene Set Enrichment Analysis

The GSEA software was used to look into the function

annotation of the c2. cp.kegg.v7.4. symbols and c5. go.v7.4.

symbols collections (Cao et al., 2021c). Results with p-value <
0.05 were being considered statistically significant. A graph was

created based on the first eight outcomes.

Relationship between the TMB and RS

From the TCGA-BLCA cohort, we got information about

somatic mutations. The number of somatic non-synonymous

point mutations in each sample was found using the “maftools” R

package.

Correlation of RS with TME

To determine if there was a correlation between RS and

TICs, we measured immune cell infiltration in TME using

seven different methods including XCELL, TIMER,

QUANTISEQ, MCPcounter, EPIC, CIBERSORT, and

CIBERSORT-ABS to evaluate the immune infiltrating

situation (Xu et al., 2022b). Based on gene expression

data, the ESTIMATE algorithm determines how many

stromal cells and immune cells are present in a tumor

sample using the stromal score and immune score. When

you add up the two scores, you get the ESTIMATE score,

which can be used to estimate how pure a tumor is. Spearman

correlation analysis was used to find a link between RS

and TICs.

Gene set variation analysis

We used the GSVA to estimate the activity of pathways so

that we could compare the activity of pathways in different

samples, which are listed in the MSigDB database (Xu et al.,

2022c).

Prediction of patient response to
immunotherapy

Immune checkpoints have been identified as key places

where immune cells can be stopped from working (Zhang

et al., 2020). In this study, we looked at how many 47 genes

involved in blocking immune checkpoints were expressed in

HRG and LRG. Immunophenoscore (IPS) predicts how a

tumor will respond to immune checkpoint inhibitor

treatment based on how immune-friendly it is. Each
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immunophenotype (antigen-presenting, effector, suppressor,

and checkpoint) is scored by IPS.

Prediction of the effects of chemotherapy

We made a ridge regression model using the Genomics of

Drug Sensitivity in Cancer (GDSC) cell lines and the TCGA

gene expression profiles to determine how drug sensitivity is

different between HRG and LRG. The half-maximal

inhibitory concentrations (IC50) of four chemotherapeutic

agents in BLCA patients were calculated using the

pRRophetic algorithm.

Experimental validation

The National Infrastructure of Cells was used to obtain SV-

HUC-1 (a line of human bladder epithelial cells) and three lines of

human bladder cancer cells (BIU-87, 5637, and T24). F-12K

medium was used to grow the SV-HUC-1 cell line. In RPMI-

1640 medium, 3 cell lines from people with bladder cancer were

FIGURE 1
(A) Subpopulation of 22 immune cells. (B) The intrinsic correlation between 22 immune cells. (C)Heatmap of correlation betweenmodules and
TICs. Within every square, the number on the top refers to the coefficient between the cell infiltrating level and the corresponding module, and the
bottom is the p-value.
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grown. All cell lines were kept in an incubator that was set to

37°C and 5% CO2. 10% fetal bovine serum and 1% double

antibodies were added to all media. Four cell lines were put

through reverse transcription-quantitative polymerase chain

reaction (RT-qPCR). Three times, the experiment was done

the same way. Glyceraldehyde-3-phosphate dehydrogenase

(GAPDH) levels were used as an endogenous control. We

calculated the relative expression levels of genes FBXO6,

OAS1, and TMEM229B using the 2−ΔΔCt method. The

sequences of the primers are as follows： FBXO6, 5′-CCC
TACCGAGCTGTTGTCCA-3′ (forward) and 5′- GTTGAA

CCGGGGCAGGAGTC-3′ (reverse); OAS1, 5′-AGACAC
GTGTTTCCGCATGC-3′ (forward) and 5′-GAGCCACCC
TTTACCACCTT-3′ (reverse); TMEM229B, 5′-
GGAGAATGAGAGGAAGAA -3′ (forward) and 5′-
AGAACCAGAACTGATACC -3′ (reverse); and GADPH,

FIGURE 2
(A) Outcomes of univariate cox regression analysis. (B) LASSO coefficient profiles of 11 candidate genes. A vertical line is drawn at the value
chosen by 10-fold cross-validation. (C) The setting parameters selected in the regression process were cross checked ten times. The vertical line
represents the final three genes according to the best data.

FIGURE 3
(A) The enriched gene sets in GO collection by the high TMEM229 expression sample. (B) The enriched gene sets in GO collection by the high
FBXO6 expression sample. (C) The enriched gene sets in GO collection by the high OAS1 expression sample. (D) The enriched gene sets in KEGG
collection by the high TMEM229 expression sample. (E) The enriched gene sets in KEGG collection by the high FBXO6 expression sample. (F) The
enriched gene sets in KEGG collection by the high OAS1 expression sample.
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FIGURE 4
(A) The analysis of Kaplan-Meier curve shows that there is a difference in the overall survival rate between high-risk and low-risk groups. Kaplan-
Meier curve analysis showed that there were differences in the overall survival rates of FBXO6 (B), OAS1 (C), and tem229b (D) in high/low-risk groups.
In theGEO (E) and TCGA (H) cohorts, heatmaps of FBXO6, OAS1, and TME229 gene ratios were drawn for each BLCA sample. In theGEO cohort(F) as
well as in the TCGA cohort (I), the distribution of multi-genes model risk score. In the GEO cohort(G) as well as in the TCGA cohort(J), the
survival status and duration of BLAC patients.
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5′-CCTTCCGTGTTCCTACCC-3′ (forward) and 5′-CAA
CCTGGTCCTCAGTGTAG-3′ (reverse).

Statistical analysis

Two groups were compared using Wilcoxon test, and more

than two groups were compared using Kruskal Wallis test.

Survival curves were analyzed by the Kaplan-Meier log rank

test. Spearman analysis was used to determine the correlation

coefficient between RS subgroup and somatic mutation

frequency. A two-way p less than 0.05 was statistically

significant. R software was used for all statistical analyses.

Results

The TME of BLCA

BLCA’s TME situation is outlined using the CIBERSORT

algorithm (Supplementary file: Supplementary Table S1). The

22 TICs in 407 samples are shown in Figure 1A. Supplementary

Figure S1A depicts the relationship between the 22 TICs and the

clinical phenotype. The potential connections between TICs and

the associated relationships are further elucidated in Figure 1B.

WGCNA network establishment

16,394 permeating gene and TICs sequence documents were

analyzed to establish the WGCNA network. First, the optimal

soft threshold power (β) is set to 9 (Supplementary file:

Supplementary Figure S1B). We set the module size to 60,

and then inject genes with similar mappings into the same

module to construct a hierarchical clustering tree of classes

(Supplementary file: Supplementary Figure S1C). Based on the

established criteria, the 13 gene modules were grouped and

analyzed (using weighting and correlation). In Figure 1C, the

horizontal coordinates are shown. There are 22 TIC types, and

there are 13 modules in the vertical coordinate. There is a high

correlation between the Meroyalblue module and

M1 macrophages (cor = 0.39, p = 2e-16). In the present

FIGURE 5
(A) The heat map shows the distribution of clinical characteristics and the corresponding risk score proportion in each sample. Rate of clinical
variables subtypes in high or low risk score groups. (B) Grade, (C) M status, (D) N status, (E) Stage and (F) T status.
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study, we focused on M1 macrophages, so we selected the

Meroyalblue module (Supplementary file: Supplementary

Table S2) for the follow-up study.

Establishment of risk signature

We extracted clinical information related to bladder cancer

from the TCGA-BLCA. Eleven M1macrophage-associated genes

with prognostic value were identified based on univariate Cox

analysis (p less than 0.05, Supplementary file: Supplementary

Table S3), and gene-specific risk ratios are shown in Figure 2A.

To prevent overfitting, we performed lasso regression analysis on

the screened genes as well as cross-validation to find the optimal

values of the penalty parameters. (Figures 2B,C). We then

identified three M1 macrophage-associated genes (FBXO6,

OAS1, and TMEM229B) as hub genes (all HRs <1,
Supplementary file: Supplementary Table S4) by performing

multivariate cox regression analysis.

We included three hub genes in the risk profile of BLCA

patients and calculated risk scores (RS). Risk score = (−0.1255*

expression value of FBXO6) + (−0.1619* expression value of

OAS1) + (−0.1507* expression value of TMEM229B). A high-risk

group and a low-risk group were determined based on the

median cut-off value (0.983).

Subsequently, GSEA was used to determine the functional

enrichment of the hub gene based on the median expression of

the hub gene in all samples. Outcomes showed that TMEM229B

expression was primarily influenced by GRAFT VS. HOST

DISEASE, CELL ADHESION MOLECULES CAMS,

CHEMOKINE SIGNALING PATHWAY, HEMATOPOIETIC

CELL LINEAGE, etc. (Figures 3A,D). The elevated expression of

FBXO6 was mainly associated with ANTIGEN PROCESSING AND

PRESENTATION, CHEMOKINE SIGNALING PATHWAY, and so

on (Figure 3B,E). And the elevated expression of OAS1 was mainly

associated with CYTOSOLIC DNA SENSING PATHWAY,

REGULATION OF AUTOPHAGY, and so on (Figures 3C,F).

Validation of risk signature

Kaplan-Meier curves showed that OS was lower in the

HRG than in the LRG (p < 0.001) (Figure 4A), and OS was

lower in the FBXO6, OAS1, and TMEM229B low-expression

groups than in the high-expression group (p = 0.001, p < 0.001,

p < 0.001) (Figures 4B–D). In the TCGA cohort, the expression

of FBXO6, OAS1, and TMEM229B gradually decreased with

increasing RS. And the point distribution of RS and survival

status indicated that BLCA patients in the low-risk group

had a longer OS than the HRG, also in the GEO

FIGURE 6
(A) ROC analysis is utilized to estimate the prediction characteristics of the prediction. (B–D) The prediction area under the risk assessment
curve has other clinical characteristics of 1, 3, and 5-year total survival time. (E) Nomograms composed of clinical variables and risk characteristics
were used to predict the survival rate of BLCA patients. (F) Calibration curves of 1-, 3-, and 5-year nomograms.
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cohort (Figures 4E–J). Univariate Cox analysis showed that the

RS hazard ratios (HR) was 2.197 (95% of confidence interval

1.642–2.932) (Figure 4K), and the multivariate Cox regression

analysis showed that the RS was 1.865 (95% of confidence

interval 1.360–2.558) (Figure 4L).

To objectively evaluate the performance of our novel

M1 macrophage signature, our studied signature was compared

with traditionalM1macrophagemarkers (CD80, TNF-α, and iNOS)
(Supplementary Figures S2B, S2F). Further, we combined the novel

and traditional M1 macrophage signatures and found that the

integrated signature had comparable performance to the novel

signature we studied (Supplementary Figures S2A, S2F). T cells in

the tumor microenvironment are essential bladder cancer

immunotherapy-associated cells. We analyzed the correlation of

the gene expression of T cell marker signature (CD4, CD8A,

CCR4) and inhibitory molecule signature (CD279, CTLA4,

HAVCR2) in HRG/LRG, and the results were shown in

Supplementary Figure S2H. Our novel M1 macrophage marker

signature was also compared with T cell marker signature and

inhibitory molecule signature with ROC curves and C index at 1,

3 and 5 years as shown in Supplementary Figure S2C-E and

Supplementary Figure S2G. In conclusion, RS can be used as an

indicator to assess the prognosis of BLCA.

Risk signature and clinicopathological
variables

To explore the correlation of risk and clinicopathological

variables, we visualized a plot based on clinicopathological

features. Figure 5A displays the distribution of

clinical variables in HRG/LRG. There was different in grade,

stage, T stage, N stage, and M stage (Figures 5B–F). The results

were consistent with clinical practice. These findings, combined

with results of univariable and multivariable regression analysis,

emphasized that our risk score was indeed good

prognostic predictive indicator independent from other

clinical parameters.

FIGURE 7
(A) Kaplan-Meier curve of high-level TMB group and low-level TMB group. (B) Kaplan-Meier curve is used to classify the risk level according to
TMB. (C) The oncoPrint was constructed using a high risk score. (D) The oncoPrint was constructed using a low risk score.
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Creation and validation of nomogram

Area under the Curve (AUC) of ROC of BLCA patients is

0.659, 0.620, and 0.616, respectively, which indicates high

traceability for RS (Figure 6A). Next, we combined RS, age,

gender, tumor grade, and clinical stage were then combined to

analyze AUC for 1, 3, and 5 years. RS’s AUC value was higher

(Figures 6B–D), which further proved that RS had a better

prognostic value. There is a nomogram consisting of RS, age,

gender, tumor grade, clinical stage, T status, M category, and N

category for quantitative prediction (Figure 6E). A good

prediction performance is indicated by Figure 6F, indicating

that the prediction nomogram was accurate.

TMB and prognosis

Previous studies have shown that patients with high TMB

respond significantly better to immunotherapy (Samstein et al.,

2019). Due to this, TMB has become one of the most important

biological references for predicting tumor behavior and

immunotherapy response. In this study, we found that the

overall survival time was significantly lower for high TMB

values (p < 0.001, Figure 7A). TMB and RS data were used to

divide the patients into four subgroups. Patients with low TMB/

high RS had the worst prognosis according to the survival

analysis. (p less than 0.001, Figure 7B). The above outcomes

demonstrate that TMB has an impact on the prognosis of BLCA.

In addition, we further described the distribution of gene somatic

mutations in the HRG/LRG (Figures 7C,D).

Risk signature in tumor immune
microenvironment context of BLCA

Since M1 macrophages-based risk score and infiltration

immune cells had intrinsic and intimate connection, we

further explored the potential contribution of risk score in

complexity and diversity of tumor immune

microenvironment. Infiltration of immune cells and RS are

correlated, as is shown in Figure 8A. Outcomes can be found

in Supplementary file: Supplementary Table S5. Figures 8B–E

reveals the correlation between M1 macrophages and risk

score, suggesting a negative correlation between

M1 macrophages and RS. Figure 8F shows that the

immune score tends to be significantly higher in LRG.

FIGURE 8
(A) Patients in the high-risk group were more positively associated with tumor-infiltrating immune cells, as shown by Spearman correlation
analysis. (B–E) Correlation analysis of M1 macrophages and risk scores. (F) Correlation between TME score with risk scores.

Frontiers in Genetics frontiersin.org10

Yu et al. 10.3389/fgene.2022.1047004

83

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1047004


Signaling pathways in two different risk
groups

We further revealed the biological roles of signaling

pathways in tumorigenesis and development in different

risk groups by performing GSVA. Figure 9A shows that

TGF BETA SIGNALING PATHWAY, HEDGEHOG

SIGNALING PATHWAY, and CALCIUM SIGNALING

PATHWAY activities were enhanced in the HRG.

Predicting clinical outcomes of
immunotherapy in BLCA patients

Most genes associated with immune checkpoint blockade were

found to be significantly negatively associated with risk scores

(Figure 9B). According to the risk assessment system, LRG has a

high IPS score (PD1-positive, CTLA4-positive, Figure 9C). Thus,

PD1 and CTLA4 combined immunotherapy is suitable for LRG

patients. While patients with HRG were more suitable for novel

immunotherapies. The above outcomes suggest that RS correlates

with immunotherapy response and that RS helps predict prognosis.

Prediction of chemotherapy response

We estimated the IC50 of two chemotherapeutic agents

(gemcitabine and mitomycin C) in patients with BLCA according

to the pRRophetic algorithm, which exhibited a higher IC50 in patients

with HRG (both p < 0.05; Figures 9D,E). The results revealed that

patients with LRG were more sensitive to chemotherapeutic agents.

Detection of mRNA levels of hub genes by
RT-qPCR

To test the study hypothesis, in human bladder epithelial

cells, we detected the expression of FBXO6, OAS1, and

FIGURE 9
(A) Heatmap showing the correlation of representative pathway terms of KEGG with risk score. (B) Correlation of expression level of immune
checkpoint blockade genes with risk score. (C) IPS score distribution plot. Estimation of risk score of chemotherapeutic effect. (D) Sensitivity analysis
of Gemcitabine in patients with high and low risk score. (E) Sensitivity analysis of Mitomycin C in patients with high and low risk score.
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TMEM229B genes, as well as three different bladder cancer cell

lines by using RT-qPCR technique. OAS1 values were

significantly lower in normal bladder epithelial cells than in

bladder cancer cells (Figure 10B). Contrary to bladder

epithelial cells, bladder cancer cells expressed significantly

higher levels of FBXO6 and TMEM229B genes (Figures

Figure10A,C). RT-qPCR outcomes well supported our findings.

Discussion

BLCA is one of the most common and most aggressive

malignancies, the worried is that little progress has been made

in the treatment of BLCA in the last few decades (Kimura et al.,

2020; Lv et al., 2020). It is worth noticing that immunotherapy

has shown great potential to treat MIBC and metastatic bladder

cancer in the clinic (Nair et al., 2020; Pfail et al., 2021; Zhang

et al., 2022). Previous studies have found that macrophages exert

different effects on immunotherapeutic responses in advanced

cancers (Petty and Yang, 2017; DeNardo and Ruffell, 2019; Zeng

et al., 2020; Leblond et al., 2021). Sun et al. (Sun et al., 2022)

found that the infiltration and polarization status of TAMs can

predict outcomes of survival and chemotherapy benefits, as well

as immunotherapy sensitivity in MIBC. Another study reported

the value of M1 macrophages as a predictive biomarker for ICI

treatment in patients with metastatic uroepithelial carcinoma

(Zeng et al., 2020). These suggest that M1 macrophages take an

irreplaceable role in tumor development.

In the current work, we obtained a total of 407 BLCA

samples and 16,394 genes from the TCGA-BLCA and

GSE31684 datasets to further study. The abundances of

22 TICs were obtained from the CIBERSORT algorithm, and

the Meroyalblue module highly associated with M1 macrophages

was constructed by WGCNA. Subsequently, Cox regression

analysis was performed to identify three hub genes and took

three hub genes in the risk profile of BLCA patients to calculate

the RS. We also proved that RS can predict independently by

Kaplan-Meier analysis and regression analysis. The nomogram was

built and clinicopathological variables were investigated to

strengthen the model prognostic value.

FIGURE 10
(A) The mRNA level of FBXO6 in normal urothelial cell line (SV-HUC-1) and three BLCA cell lines (BIU-87, T24, and 5637) was analyzed by RT-
qPCR. (B) The mRNA level of OAS1 in normal urothelial cell line (SV-HUC-1) and three BLCA cell lines (BIU-87, T24, and 5637) was analyzed by RT-
qPCR. (C) ThemRNA level of TMEM229B in normal urothelial cell line (SV-HUC-1) and three BLCA cell lines (BIU-87, T24, and 5637) was analyzed by
RT-qPCR.
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Our prognostic model was built based on three novel

M1 macrophage-associated genes (FBXO6, OAS1, and

TMEM229B). FBXO6 is an important member of the F-box

protein family containing the FBA structural domain, which

targets the DNA damage checkpoint kinase Chk1 to destroy

S-phase arrest cells, phosphorylates during mitosis and

dephosphorylates cells upon entry into the G1 phase. OAS1 is

an interferon-induced protein that synthesizes adenosine

oligomers from ATP to prevent tumor growth and cell

differentiation (Piran et al., 2021). The TMEM is a family of

proteins that span biological membranes. Many studies showed

that the TMEM family can be described as tumor suppressors or

oncogenes, and TMEM229B was reported can be a potential

antigen for esophageal squamous cell carcinoma mRNA vaccines

(Lu et al., 2022).

GSEA functional enrichment indicated that high expression

of FBXO6 is related to immune response and chemokine

signaling pathway, the elevated expression of OAS1 was

associated with regulation of autophagy, and the elevated

expression of TMEM229B was associated with humoral

immune response. These outcomes suggest that the three hub

genes are widely involved in tumor immunity, which provides a

basis for our subsequent assessment of the efficacy of

immunotherapy for RS.

TMB can predict survival after immunotherapy in types of

cancer, especially when PD-1/PD-L1 is blocked. Moreover, TMB

is a promising biomarker of the immune response. TMB may be

an independent prognostic factor for multiple cancer immune

responses. Therefore, we selected TMB as a prognostic indicator

in this study and found patients with a high incidence rate of

bladder cancer fared better than before. Subsequent stratified

curves of survival showed that patients with low TMB/high RS

had the worst prognosis, as well as that risk scores had

independent prognostic predictive power.

Macrophages are important members of the innate

immune response, and the polarization of macrophages

allows them to have diverse functions. Their polarization

status depends on environmental changes (Locati et al., 2020;

Boutilier and SJIjoms, 2021). Direct metabolism of

metabolites or cytokines drives the plasticity and

heterogeneity of the tumor microenvironment (Mehla and

Singh, 2019). We found that risk score was negatively

associated with immune activating cell subpopulations

such as CD8 T cells, and M1 macrophages were also

negatively associated with RS. And immune scores were

relatively low in the HRG. In summary, we speculated that

the LRG group may be in immune activation state, which

suppresses tumor progression and improves prognosis. In

addition, TGFβ signaling pathway, HEDGEHOG

SIGNALING PATHWAY, and CALCIUM SIGNALING

PATHWAY were also activated in high-risk groups,

suggesting that the high-risk group has different molecular

mechanisms.

Finally, we explored the predictive value of RS in BLCA

immunotherapy and chemotherapy. The results show that

ICB-related genes had a significantly negative risk score,

which indicates a higher IPS score for LRG. This suggests

that LRG patients are suitable for PD1 and

CTLA4 combination with immune therapy, whereas HRG

patients prefer to novel immunotherapies.

There are still some limitations in our study, the functions of

M1 macrophage-related genes need to be further explored in

animal experiments. More importantly, we need to further

validate the prediction model in different cohorts collected by

multiple centers.

Conclusion

In conclusion, the RS model based on M1 macrophages can

be utilized to predict clinical outcomes, treatment outcomes, as

well as prognosis of BLCA patients and provide reference for the

treatment of BLCA somehow.
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Glossary

TME tumor microenvironment

BLCA bladder urothelial carcinoma

TICs tumor-infiltrating immune cells

TCGA Cancer Genome Atlas

GEO Gene Expression Omnibus

WGCNA weighted gene co-expression network analysis

ROC the receiver operating characteristic

LRG low-risk group

HRG high-risk group

RS risk score

RT-qPCR reverse transcription-quantitative polymerase chain

reaction

PD1 programmed cell death protein 1

CTLA4 cytotoxic T lymphocyte associate protein-4

WHO World Health Organization

MIBC muscle-invasive bladder cancer

NMIBC non-muscle invasive bladder cancer

PD-L1 programmed death ligand 1

ICIs immune checkpoint inhibitors

TMB tumor mutational burden

ECM extracellular matrix

TAM tumor-associated macrophages

TCGA-BLCA The Cancer Genome Atlas-Bladder Cancer

CNV copy number variation

OS overall survival

GSEA Gene Set Enrichment Analysis

GSVA Gene set variation analysis

IPS Immunophenoscore

GDSC Genomics of Drug Sensitivity in Cancer

IC50 half-maximal inhibitory concentrations

GAPDH Glyceraldehyde-3-phosphate dehydrogenase

HR hazard ratios

AUC Area under the Curve
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The cuproptosis related genes
signature predicts the prognosis
and correlates with the immune
status of clear cell renal cell
carcinoma
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Xingyuan Xia1, Xiaojuan Chen4, Guanghe Fei1*, Sijing Zhou5*
and Ran Wang1*
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University, Hefei, China, 2Department of Nursing, Hefei Second People’s Hospital, Hefei, China,
3Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China,
4Department of Infectious Diseases, Hefei Second People’s Hospital, Hefei, China, 5Department of
Occupational Disease, Hefei Third Clinical College of Anhui Medical University, Hefei, China

Background: Clear cell renal cell carcinoma (CCRCC) has a high incidence and

poor prognosis. Cuproptosis, an independent pattern of cell death associated

with copper, plays an important role in cancer proliferation and metastasis. The

role of cuproptosis-related genes (CRGs) in CCRCC is unclear.

Methods: Transcriptome and clinical information for CCRCC were downloaded

from The Cancer Genome Atlas (TCGA) database. After dividing the training and

testing cohort, a 4-CRGs risk signature (FDX1,DLD,DLAT, CDKN2A) was identified in

the training cohort using Least absolute shrinkageand selectionoperator (LASSO) and

Cox regression analysis. The effect of the 4-CRGs risk signature on prognosis was

assessed using Kaplan-Meier (KM) curves and time-dependent receiver operating

characteristic (ROC) curves and verified using the testing cohort. For different risk

groups, the immune statue was assessed using the CIBERSORT algorithm, the

ssGSEA method and immune checkpoint expression data. Finally, a competitive

endogenous RNA (ceRNA) network was constructed using miRTarbase and starBase

databases to identifymolecules thatmay have a regulatory relationship with CRCCC.

Results: There were significant changes in the overall survival (OS), immune

microenvironment, immune function, and checkpoint gene expression among

the different risk groups. A ceRNA network consisting of one mRNA, two

miRNAs, and 12 lncRNAs was constructed.

Conclusion: The 4-CRGs risk signature provides a new method to predict the

prognosis of patients with CCRCC and the effect of immunotherapy. We

propose a new cuproptosis-associated ceRNA network that can help to

further explore the molecular mechanisms of CCRCC.
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1 Introduction

Renal cell carcinoma (RCC) is one of the top ten most

common cancers in the world, ranking sixth and eighth in

new cases in men and women, respectively (Siegel et al.,

2020). Clear cell renal cell carcinoma (CCRCC), is the most

common type of RCC, accounting for about 75–80% of RCCs

(Nabi et al., 2018). Early diagnosis of RCC is difficult because

only 6–10% of patients present with typical symptoms, such

as hematuria, back pain, or abdominal mass (Patard et al.,

2003). Furthermore, the effect of chemotherapy and

radiation therapy in patients with CCRCC is not ideal,

and tumor removal is the best treatment option

(Sonpavde et al., 2012). Immunotherapy is an emerging

and promising therapeutic option, and some immune

checkpoint inhibitors (ICIs) have been approved for

metastatic CCRCC (nivolumab) after failed targeted

therapy or in combination with targeted drugs

(pembrolizumab + axitinib/avelumab + axitinib) as first-

line therapy (Motzer et al., 2015; Motzer et al., 2019; Rini

et al., 2019). However, in actual clinical practice, there are

still problems regarding which treatment methods can be

used for individual patients, especially advanced patients.

Therefore, it is necessary to establish a reliable predictive

model to predict patient survival and guide the choice of

different treatment options. We aimed to identify potential

targets with prognostic implications for CCRCC from the

perspective of cuproptosis, a newly discovered pattern of cell

death.

Copper accumulates within cells and can induce cell

death when a certain concentration is reached (Tsvetkov

et al., 2022). In tumors, copper is involved in cell

proliferation, epithelial-mesenchymal transition (EMT),

angiogenesis, immunity, inflammation, and metastasis of

tumors (De Luca et al., 2019; da Silva et al., 2022).

Copper chelation may inhibit these processes to exert

anti-tumor and anti-metastatic effects (Denoyer et al.,

2015; Shanbhag et al., 2021). Copper ionophores have

recently been shown to induce a novel mechanism of cell

death (cuproptosis) (Tsvetkov et al., 2022). There have been

studies on copper ion carriers that play a role in anti-tumor

activity. For example, disulfiram has a significant tumor

growth inhibition effect in patients with prostate (Safi

et al., 2014) and breast cancer (Zhang et al., 2010;

Allensworth et al., 2015). Disulfiram can improve the

survival rate of patients treated with cisplatin and

vinorelbine for non-small cell lung cancer (Nechushtan

et al., 2015). Cuproptosis-related genes may serve as new

targets for cancer treatment, but there are few studies on

copper ionophores and cuproptosis.

Here, we downloaded the TCGA-KIRC dataset to

identify differential genes associated with cuproptosis in

tumor tissue and normal samples and validated them

using the GSE53757 dataset. A risk score model

containing four cuproptosis-related genes was constructed

using LASSO and Cox regression, and the correlation

between the risk score model and immune function,

immune infiltrates, immune escape, and cancer treatment

drugs were analyzed. Finally, a possible ceRNA network was

constructed by searching for miRNAs and lncRNAs

associated with cuproptosis-related genes using TCGA,

miRTarbase, and starBase databases.

2 Materials and methods

2.1 Data collection

The RNA-sequencing TPM data and corresponding clinical

data of KIRC were retrieved from the TCGA database (https://

portal.gdc.cancer.gov/), including 541 KIRC samples with

complete survival data and 72 normal samples. The RNA-

sequencing TPM data and corresponding clinical data of LGG

were retrieved from the TCGA database (https://portal.gdc.

cancer.gov/), including 479 LGG samples. The

GSE22541 dataset was downloaded from GEO (http://www.

ncbi.nlm.nih.gov/geo) and included 68 CCRCC samples with

survival data. The GSE53757 dataset was downloaded from GEO

(http://www.ncbi.nlm.nih.gov/geo) and included 72 CCRCC

samples and 72 normal samples (von Roemeling et al., 2014).

FDX1, LIPT1, LIAS, DLD, DLAT, PDHA1, PDHB, MTF1, GLS,

and CDKN2A are thought to be cuproptosis-related genes and

are involved in two structurally distinct copper-loaded

ionophores (Tsvetkov et al., 2022).

2.2 Expression patterns of cuproptosis-
related genes in clear cell renal cell
carcinoma

RNA-sequencing TPM data from the TCGA database were

used to compare the expression of cuproptosis-related genes

in CCRCC specimens and normal specimens using the

Wilcoxon rank-sum test. Statistical significance was set at

p < 0.05. The GSE53757 dataset was used for further

validation.

2.3 Correlation analysis and GO and KEGG
analysis

For significant prognosis-related cuproptosis-related

genes, we performed gene co-expression analysis in

TCGA CCRCC patients and set the absolute value of the

correlation coefficient to greater than 0.4 with a p-value less

than 0.001 to obtain the co-expression genes. To further
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understand the potential role of cuproptosis-related genes in

CCRCC, GO and KEGG analyses were performed on co-

expressed copper death-related genes.

2.4 Construction and validation of the 4-
CRGs risk signature

We divided the training and testing cohorts into a ratio

of 7:3 for patients with CCRCC. Clinical statistical analysis

of the training and testing groups was performed using the

chi-square test. In the training cohort, a univariate Cox

regression analysis of cuproptosis-related genes was

performed to identify the significant prognostically related

genes. For significant prognosis-related cuproptosis-related

genes, we used LASSO regression analysis to obtain

independent prognostic genes in the training set. LASSO

regression improves the accuracy and interpretability of the

model and reduces the risk of overfitting (Tibshirani, 1997).

Multivariate Cox regression analysis was conducted to

obtain regression coefficients for independent prognostic

genes. Finally, a 4-CRGs risk signature was established based

on the multivariate Cox regression coefficient beta value,

and the formula was as follows: risk score = EXPgene1p β1 +
EXPgene2pβ2 + EXPgene3pβ3 + . . . + EXPgenenpβn, where
EXP is the expression level and β represents the regression

coefficient from the multivariate Cox. In both cohort, by

calculating the risk score for each sample, patients were

divided into low- and high-risk groups using the median cut-

off value. Furthermore, the KM curve was used to compare

FIGURE 1
(A) Identification of differentially cuproptosis-related expressed genes in TCGA cohort. (B) Identification of cuproptosis-related genes with
prognostic value.
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the overall survival (OS) between the two groups using the

log-rank test. A time-dependent ROC curve analysis was

used to assess the predictive power of the 4-CRGs risk

signature. Finally, we perform external validation with the

external validation cohort GSE22451 and TCGA-LGG. In

each independent external validation cohort, based on the

risk score, patients were classified into two groups.

Maximally selected rank statistics was applied by using an

R package “survival”, and “survminer” to identify the

optimal cutting point to divide patients.

2.5 Construction of nomogram

We screened for prognostic predictive factors including

clinical characteristics and risk scores. Specifically, the

univariate Cox proportional hazard model was employed

to analyze the correlation between the risk score and OS, and

multivariate Cox regression analysis was used to evaluate

whether the established risk score could serve as an

independent prognostic predictor. Further, to

comprehensively assess patient survival, we constructed a

nomogram integrating distinct clinicopathological

information, including age, stage, and risk score, using

the “rms” package. Additionally, the decision curve

analysis (DCA) of 1, 3, and 5 years was calculated to

evaluate whether the synthetic nomogram we established

was suitable for clinical application.

2.6 Immune function, immune infiltrates,
immunomodulatory, and drugs

We used the CIBERSORT algorithm to assess the degree of

infiltration of 22 immune cells in different CCRCC samples

(Newman et al., 2015). Single-sample gene set enrichment

analysis (ssGSEA) was applied to explore the different

infiltration degrees of immune-related functions in different

CCRCC samples of the TCGA database using the R package

“GSVA”.

TIMER is a website that can systematically analyze immune

infiltration in various malignancies (https://timer.cistrome.org/)

(Li et al., 2020). We investigated the relationship between gene

expression and gene markers of TILs in CCRCC.

TISIDB (http://cis.hku.hk/TISIDB/index.php) was used to

investigate the association of genes with immunostimulators in

CCRCC.

The “pRRophetic” R package was used to predict the half-

maximal inhibitory concentration (IC50) of some drugs in each

sample regarding tumor treatment.

2.7 ceRNA network

We used RNAseq data from the TCGA database and

miRNAseq data, including 541 KIRC samples and 72 normal

samples. The difference analysis was performed using the

DESeq2 package, and |logFC|>1 and adj. p < 0.05 were set as

TABLE 1 Characteristics of training, testing, and total cohort.

Clinical features Type Total
(N = 518)

Testing cohort
(N = 154)

Training cohort
(N = 364)

p-value

Age ≤65 329 (63.51%) 99 (64.29%) 230 (63.19%) 0.8905

Age >65 189 (36.49%) 55 (35.71%) 134 (36.81%)

Stage Stage I 261 (50.39%) 81 (52.6%) 180 (49.45%) 0.439

Stage Stage II 58 (11.2%) 20 (12.99%) 38 (10.44%)

Stage Stage III 116 (22.39%) 34 (22.08%) 82 (22.53%)

Stage Stage IV 83 (16.02%) 19 (12.34%) 64 (17.58%)

Gender Female 175 (33.78%) 45 (29.22%) 130 (35.71%) 0.1846

Gender Male 343 (66.22%) 109 (70.78%) 234 (64.29%)

T T1 267 (51.54%) 82 (53.25%) 185 (50.82%) 0.6336

T T2 70 (13.51%) 24 (15.58%) 46 (12.64%)

T T3 170 (32.82%) 45 (29.22%) 125 (34.34%)

T T4 11 (2.12%) 3 (1.95%) 8 (2.2%)

N N0 230 (44.4%) 69 (44.81%) 161 (44.23%) 1

N N1 15 (2.9%) 4 (2.6%) 11 (3.02%)

N Unknown 273 (52.7%) 81 (52.6%) 192 (52.75%)

M M0 414 (79.92%) 131 (85.06%) 283 (77.75%) 0.1085

M M1 78 (15.06%) 17 (11.04%) 61 (16.76%)

M Unknown 26 (5.02%) 6 (3.9%) 20 (5.49%)
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thresholds to obtain the differential expression of lncRNAs

(DElncRNAs) and miRNAs (DEmiRNAs) between CCRCC

patients and normal patients. Subsequently, cuproptose-

related miRNAs (CRMs) were predicted using the

miRTarBase database (Huang et al., 2020). DEmiRNAs

and CRMs were intersected to obtain cuproptosis-related

DEmiRNAs (CRDEMs). Cuproptosis-related lncRNAs

(CRLs) were predicted using the starBase database (Li

et al., 2014). CRLs and DElncRNAs were intersected to

obtain the cuproptosis-related DElncRNAs (CRDELs).

Subsequently, we integrated the interactions between

CRDEMs, CRDELs, and cuproptosis-related genes to

construct a ceRNA regulatory network. Finally, Cytoscape

(version 3.8.0) software was used to visualize the ceRNA

regulatory network.

2.8 Statistical analysis

All statistical analyses were conducted using R version

4.1.2 software (https://www.r-project.org/). Univariate Cox

hazard regression analyses were performed to identify the

independent prognostic cuproptosis-related genes. Survival

analysis was conducted by the Kaplan-Meier (K-M) method

with the log-rank test. We also compared the expression of

cuproptosis-related genes at different clinical stages by using

the Wilcoxon rank-sum test.

3 Results

3.1 Identification of differentially
expressed cuproptosis-related genes in
normal and tumor samples

We compared the expression of cuproptosis-related genes

between 541 CCRCC samples and 72 normal samples using the

Wilcoxon rank-sum test in the TCGA cohort. We found that

LIAS and CDKN2A were significantly upregulated in tumor

samples, and FDX1, DLD, DLAT, PDHA1, PDHB, MTF1, and

GLS were significantly downregulated in tumor samples

(Figure 1A).

3.2 Identification of cuproptosis-related
genes with prognostic value

To obtain reliable survival results for CCRCC, we first

excluded samples with a survival time of less than 30 days. In

total, 518 samples were obtained (Table 1). Nine differentially

expressed cuproptosis-related genes (FDX1, DLD, DLAT,

PDHA1, PDHB, MTF1, GLS, LIAS, and CDKN2A) were

identified. Through the KM curve, we found that 9 selected

genes all had an impact on the prognosis of CCRCC, including

FDX1 (hazard ratio, HR = 0.49; 95% confidence interval, 95%

CI = 0.36–0.67; p < 0.001), LIAS (HR = 0.61; 95%CI =

FIGURE 2
Results of GO and KEGG enrichment analysis of cuproptosis co-expression genes (A) FDX1; (B) LIAS (C)DLD; (D)DLAT; (E) PDHA1; (F) PDHB; (G)
MTF1; (H) GLS.
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0.45–0.83; p = 0.002), DLD (HR = 0.53; 95%CI = 0.39–0.72; p <
0.001), DLAT (HR = 0.46; 95%CI = 0.33–0.63; p < 0.001),

PDHA1 (HR = 0.63; 95%CI = 0.46–0.85; p = 0.003), PDHB

(HR = 0.57; 95%CI = 0.42–0.78; p < 0.001), MTF1 (HR = 0.59;

95%CI = 0.43–0.80; p = 0.001), GLS (HR = 0.65; 95%CI =

0.48–0.88; p = 0.005), and CDKN2A (HR = 1.49; 95%CI =

1.10–2.02; p = 0.011) (Figure 1B).

3.3 Clinicopathological features

We compared the expression of cuproptosis-related genes at

different clinical stages using the Wilcoxon rank-sum test. FDX1,

LIAS, DLD, DLAT, PDHA1, PDHB,MTF1, and GLS were highly

expressed in T1 compared with T3, and CDKN2A was expressed

at lower levels in T1 than in T3 (Supplementary Figure S1).

FIGURE 3
The 4-CRGs risk signature in the training cohort. (A) The CRGs with prognostic values were assessed by the univariate Cox proportional hazards
regressionmodel in the training cohort. (B,C) The selection of CRGs for risk signature by LASSO analysis in the training cohort. (D) K-M curves for OS
in the training cohort. (E–G) The risk score, survival status, and heatmap of 4 CRGs in the training cohort. (H) Time-dependent ROC curves for OS in
the training cohort.
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FIGURE 4
(A) K-M curves for OS in the testing cohort. (B–D) The risk score, survival status, and heatmap of 4 CRGs in the testing cohort. (E) Time-
dependent ROC curves for OS in the testing cohort. (F–I) Differential expression of FDX1, DLD, DLAT, and CDKN2A in the GSE53757 dataset. (J) K-M
curves for PFS in the GSE22541. (K) K-M curves for OS in the LGG.
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Compared to N1, FDX1 and LIAS were highly expressed in N0

(Supplementary Figure S2). FDX1, LIAS, DLD, DLAT, PDHA1,

PDHB, MTF1, and GLS were highly expressed in M0 compared

with M1, and CDKN2A was expressed at lower levels in M0 than

in M1 (Supplementary Figure S3). FDX1, LIAS, DLD, DLAT,

PDHA1, PDHB, and MTF1 were highly expressed in Stage

1 compared to Stage 3 and 4, and CDKN2A had lower

expression in Stage 1 compared to Stage 3 and 4

(Supplementary Figure S4).

3.4 GO and KEGG

For significant prognosis-related cuproptosis-related genes,

we performed gene co-expression analysis in TCGA tumor

patients and set the absolute value of the correlation

coefficient to greater than 0.4 with a p-value less than 0.001 to

obtain the co-expression genes. For co-expression genes, we

performed GO and KEGG enrichment analyses and sorted

them by p values (Figure 2). We found that co-expression

genes were significantly enriched in the mitochondria during

cell localization. The TCA cycle is thought to be associated with

cancer progression, the site of biological processes in the

mitochondria. This is consistent with Tsvetkov et al. (2022)’s

view that Cu causes cell death by influencing the TCA cycle. The

enrichment analysis results showed that co-expression of genes is

correlated with autophagy and ubiquitin-mediated proteolysis,

which provides a research direction for further exploration of the

mechanism of cuproptosis.

3.5 Construction of the 4-CRGs risk
signature

We found no significant differences between the training and

testing cohorts in terms of age, sex, or TNM staging (Table 1). In

the training cohort, univariate Cox regression analysis yielded

eight cuproptosis-related genes that were significantly associated

with prognosis (Figure 3A). Using lasso regression method, six

optimal variables were obtained from the above 8 cuproptosis-

prognostic-related gene (Figures 3B,C). By Cox regression

analysis, the signature was finally established: risk score =

EXP FDX1 p −0.499501220246694 + EXP DLD

p −0.59322127824406 + EXP DLAT p −0.659153532219121 +

EXP CDKN2A p 0.199116740963518. The KM curve showed

that the prognosis of the high-risk group was worse than that of

the low-risk group (Figure 3D, log-rank p < 0.001; HR = 2.55,

95%CI = 1.73–3.76). ROC curves were used to assess the accuracy

of the established models in predicting overall survival (OS) in

patients with CCRCC. As shown in Figure 3H, the AUC values at

1, 3, and 5 years were 0.684, 0.688, and 0.670, respectively,

indicating the robustness and accuracy of the model in

predicting patient prognosis.

3.6 Validation of the 4-CRGs risk signature
and validation of differential expression of
FDX1, DLD, DLAT, and CDKN2A in CCRCC

In the testing cohort, the KM curve showed that the

prognosis of the high-risk group was worse than that of the

low-risk group (Figure 4A, log-rank p = 0.006; HR = 2.31, 95%

CI = 1.28–4.17). ROC curves were used to assess the accuracy of

the established models in predicting OS in patients with CCRCC.

As shown in Figure 4E, the AUC values at 1, 3, and 5 years were

0.665, 0.632, and 0.666, respectively, indicating the robustness

and accuracy of the model in predicting patient prognosis.

We validated the differences in the expression of FDX1,DLD,

DLAT, and CDKN2A between CCRCC and normal samples

using GSE53757. The results showed that FDX1, DLD, and

DLAT exhibited low expression in CCRCC, whereas CDKN2A

was highly expressed in CCRCC (Figures 4F–I). This is consistent

with the results obtained from the TCGA dataset. We further

verify the above prediction method in external data cohorts”

GSE22541” and “TCGA-LGG”. In GSE22541 validation cohort,

we divided the CCRCC patients into high-risk and low-risk

groups based on the risk score. Survival comparison showed

that low-risk group had significantly better prognosis outcome

than high-risk group (Figure 4J). In addition, In TCGA-LGG

validation cohort, we also found that based on the high and low-

risk groups divided by risk score. Different groups have

significantly different prognostic outcomes (Figure 4K). This

demonstrates the generalization power of cuproptosis-related

signature and has some value for the prediction of other cancers.

3.7 Nomogram and decision curve analysis

Univariate and multivariate Cox regression analyses showed

that risk score, stage, and age were prognostic predictors of

TGGA-KIRC (Figures 5A,B). Nomograms are widely used for the

prognostic assessment of tumors. Various clinical features have

prognostic value in clinical practice. Therefore, we established a

nomogram containing multiple clinicopathological

characteristics and risk scores. The scores for each variable

were calculated and combined to predict the prognosis of

patients with CCRCC (Figure 5C). DCA (Figure 5E) also

proved that the nomogram combined with various clinical

features had a better clinical application value.

3.8 Immune function and immune
infiltrates

We used the CIBERSORT algorithm to estimate differences

between 22 tumor-infiltrating immune cells between the low-

and high-risk groups. Figure 6D shows that plasma cells, T cells

CD8, T cells, regulatory T cells (Tregs), and activated NK cells
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FIGURE 5
The construction of a nomogram for predicting survival. (A,B) Screening the independent predictors for OS in KIRC by univariate and
multivariate Cox proportional hazards regression model. (D) A nomogram including risk score and clinicopathological features was constructed to
predict 1/3/5-year OS. (C) The calibration plots for predicting 1/3/5-year OS are based on the CRGs nomogram. (E)Decision curve analysis (DCA) for
the evaluation of the net benefits of CRGs and nomogram.
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were more enriched in high-risk groups, while naive B cells,

T cells, CD4 memory monocytes, macrophages M0,

macrophages M1, and macrophages M2 were more enriched

in the low-risk group. This indicates that there are differences in

immune cell infiltration in different risk groups, suggesting that

cuproptosis -related genes are closely related to immune cell

infiltration.

The ssGSEA method was applied to KIRC patients in the

high- and low-risk groups to assess the differences in immune

function between the high- and low-risk groups. Figure 7A shows

that Type-I-IFN-Response, HLA, Cytolytic activity,

Inflammation-promoting, T-cell-co-inhibition, Checkpoint,

T-cell-co-stimulation, APC-co-stimulation, CCR, and

parainflammation were upregulated in the high-risk group,

suggesting that cuproptosis-related genes are involved in

immune regulation.

We further investigated the links between FDX1, DLD,

DLAT, and CDKN2A and the TIL gene markers in the TIMER

database (Supplementary Material S1). DLD was strongly

correlated with STAT3 (rho = 0.419), STAT5B (rho =

0.47), and CD4 (rho = −0.401) (Supplementary Figure S5).

There was a strong correlation between DLAT and TGFBR2

(rho = 0.49), STAT3 (rho = 0.501), AHR (rho = 0.449),

STAT5B (rho = 0.571), MRC1 (rho = 0.437), CD7

FIGURE 6
Correlation of CRGs signature with immunity. (A) Heatmap of the scores of immune-related functions between different risk groups. (B,C) The
association between risk score and expression of PDCD1 or CTLA4 (D)Boxplots comparing the scores of immune cells between different risk groups.
*p < 0.05; **p < 0.01, ***p < 0.001.
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(rho = −0.417), and TGFBR2 (rho = 0.49) (Supplementary

Figure S5). STAT3, STAT5B, and CD7 simultaneously show a

strong correlation with DLD and DLAT, suggesting that

STAT3, STAT5B, and CD7 may be associated with

cuproptosis genes in an important link with levels of

immune infiltration.

FIGURE 7
Construction of the ceRNA network. (A) Volcano plot of 255 differentially expressedmiRNAs. (B) Venn diagram of the intersection of DEmiRNAs
and CRMs. (C) Volcano plot of 1010 differentially expressed lncRNAs. (D) Venn diagram of the intersection of DElncRNAs and CRLs. (E) ceRNA
network associated with cuproptosis: red indicates up-regulation in CCRCC, blue indicates down-regulation in CCRCC.
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3.9 Immunomodulators and screening
drugs

We explored the relationship between cuproptosis-related genes

and immunomodulators associated with model building and found

that FDX1, DLD, DLAT, CDKN2A, and immunostimulants were

significantly associated. Specifically, high expression of FDX1 was

significantly associated with TNFRSF8 (Rho = −0.402), and high

expression of DLD was significantly correlated with TNFRSF4

(Rho = −0.648), TNFRSF18 (Rho = −0.435), and TNFRSF25

(Rho = −0.6). DLAT was significantly correlated with TNFRSF4

(Rho = −0.522), TNFRSF8 (Rho = −0.436), TNFRSF18

(Rho = −0.557), TNFRSF25 (Rho = −0.642), CDKN2A, and

TNFRSF18 (Rho = 0.398) (Supplementary Figure S6). Hence,

FDX1, DLD, DLAT, and CDKN2A may play important roles in

immune interactions and may be associated with tumor immune

evasion.

We found that PDCD1 and CTLA4 (immune checkpoints)

were elevated in patients with high-risk scores (Figures 6B,C).

These discoveries suggested that patients of high-risk scores may

be more sensitive to ICB therapy.

Finally, we predicted some drugs for tumor treatment using

the pRRophetic R package and obtained some drugs that may

show different sensitivities in patients in the high-risk and low-

risk groups. Specifically, the low-risk group was more sensitive to

AKT. inhibitor.VIII, AP.24534, AS601245, AUY922, axitinib,

and AZ628, and the high-risk group were more sensitive to

A.443654, ABT.888, AG.014699, AICAR, and AMG.706

(Supplementary Figure S7).

3.10 ceRNA

We analyzed DElncRNAs and DEmiRNAs between

541 KIRC samples and 72 normal samples and obtained a

total of 255 DEmiRNAs, of which 129 were upregulated,

126 were downregulated; and 1010 DElncRNAs, of these,

777 were upregulated and 233 were downregulated. Using the

miRTarBase database, 148 CRMs were identified. Thirteen

CRDEMs were obtained by intersecting the CRMs with the

DEmiRNAs. Subsequently, 795 CRLs were predicted using the

starBase database, and 31 CRDELs were obtained by intersecting

CRLs with DElncRNAs. Based on the existing theory that

lncRNA inhibits the degradation of mRNA by miRNA

through competitive binding of miRNA, we constructed a

ceRNA network containing one mRNA, two miRNAs, and

12 lncRNAs (Figure 7E).

4 Discussion

We screened 10 copper ion carrier genes that are thought

to be associated with cuproptosis. Nine out of 10 genes had

differences in expression in CCRCC patients and non-tumor

patients, and all 9 genes were valuable in assessing the

prognosis of patients with CCRCC. We then looked for

genes that were co-expressed with cuproptosis-related genes

and found that cuproptosis-related genes may be associated

with autophagy and ubiquitin-mediated proteolysis.

Autophagy is associated with the survival of tumor cells

but can either promote or inhibit apoptosis in different

cellular contexts (Levy et al., 2017). Such context-

dependent effects of autophagy are poorly understood;

therefore, studying the relationship between apoptosis and

autophagy may be a new research direction. Ubiquitin-

mediated proteolysis is closely associated with cell

proliferation. Studies have shown that the driving force of

the cell cycle is the activation of cyclin-dependent kinases

(CDKs), the activities of which are controlled by ubiquitin-

mediated proteolysis of key regulators such as cyclins and

CDK inhibitors (Nakayama and Nakayama, 2006). However,

the link between cuproptosis and ubiquitin-mediated

proteolysis needs to be experimentally confirmed. Using

LASSO and multivariate Cox regression, we included four

genes and constructed cuproptosis gene-related signatures

containing FDX1, DLD, DLAT, and CDKN2A, of which

FDX1, DLAT, and CDKN2A are correlated with CCRCC

prognosis (Bian et al., 2022). Because FDX1, DLD, DLAT,

and copper ion carriers are positively correlated, CDKN2A

and copper ionophores are negatively correlated (Tsvetkov

et al., 2022), which is consistent with the predictions. FDX1 is

a reductase that reduces cu2+ to cu1+ to promote cuproptosis

(Tsvetkov et al., 2022). FDX1 may modulate TP73 tumor

suppressor through IRP2 to regulate tumor suppression

(Zhang et al., 2020a), and FDX1 may be a gene related to

KIRC (Khouja et al., 2022). DLD is a homodimeric flavin-

dependent enzyme that catalyzes NAD+-dependent oxidation

of dihydrolipoamide and participates in the TCA cycle to

convert pyruvate to acetyl-CoA (Fleminger and Dayan, 2021).

DLD may destroy cancer cells by producing ROS and by

chelation with DNA (Dayan et al., 2019). DLAT is the

subunit E2 of the PDC complex in the TCA cycle (Goh

et al., 2015). DLAT may promote apoptosis by influencing

energy production. CDKN2A encodes the tumor suppressors

p15 INK4b and p16 INK4a to inhibit CDK4 and CDK6, which

prevent pRB phosphorylation and block cell cycle progression

(Hannou et al., 2015). CDKN2A mutations may play a role in

renal cancer metastasis by influencing the expression of p16/

p14 (Sun et al., 2021). In summary, cuproptosis-related genes

may play important roles in CCRCC.

CCRCC is an immunogenic tumor whose tumor immune

microenvironment has many different immune cells infiltrates

with various immunomodulatory molecules, which may have

a significant impact on the prognosis of patients, as well as the

effect of immunotherapy (Díaz-Montero et al., 2020). The

cytolytic activity index (CYT) in CCRCC is the highest among
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18 human cancers (Rooney et al., 2015), and spontaneous

regression in 1% of patients are considered immune-mediated

(Janiszewska et al., 2013). CD8+ T cells play an important role

in tumor immunity, and their anti-tumor activity is the basis

of ICI therapy (Şenbabaoğlu et al., 2016). Activated CD8+

T cells have a significant positive effect on the prognosis of

some tumor patients, such as those with early colon cancer

(Pagès et al., 2005; Galon et al., 2006). However, for CCRCC,

infiltration of CD8+ T cells is associated with a high tumor

grade and poor prognosis (Díaz-Montero et al., 2020). Our

study showed that the high-risk group divided by the

cuproptosis-related signature had a significant increase in

the infiltration of CD8+ T cells compared with the low-risk

group, which is consistent with most studies. TILs that do not

mediate anti-tumor function may be associated with Tregs

(Díaz-Montero et al., 2020; Hah and Koo, 2021). We found

that the Treg infiltration levels were significantly higher in the

high-risk group than in the low-risk group. STAT5B, a marker

gene for Tregs, is highly correlated with the DLD and DLAT

genes involved in signature construction and may be the key

gene mediating elevated Treg infiltration levels in the high-

risk group. In addition, immune checkpoint molecules are also

important factors that block CD8+ T cells from exerting anti-

tumor effects (Díaz-Montero et al., 2020). We found that both

the most important immune checkpoint molecules,

PDCD1 and CTLA-4, were positively correlated with the

risk scores. In addition, we also found that the high-risk

group had a higher TIDE value, which also suggested that

the high-risk group was more likely to develop immune

escape.

To make the cuproptosis-related signature more clinically

relevant, we screened some of the drugs with different

sensitivities in the high-risk and low-risk groups. Patients in

the low-risk group had greater sensitivity to axitinib, an anti-

VEGF-targeted drug used for the treatment of metastatic RCC

(Hsieh et al., 2017).

The ceRNA hypothesis proposes that lncRNAs, as

competing endogenous RNAs, regulate mRNA expression

by competing for shared miRNAs (Karreth and Pandolfi,

2013). Specifically, upregulated lncRNA can competitively

bind to miRNA, causing miRNA expression to be

downregulated to inhibit the degradation of mRNA by

miRNA and promote mRNA expression. We constructed a

ceRNA network containing one upregulated mRNA, two

down-regulated miRNAs, and 12 up-regulated lncRNAs. In

the ceRNA network, we constructed CDKN2A, an

upregulated mRNA whose high expression is thought to be

associated with poor prognosis in CCRCC. Hsa-mir-124-3p, a

downregulated miRNA predicted to bind to CDKN2A, is

considered a key miRNA in CCRCC, inhibiting tumor

migration, invasion, and proliferation (Butz et al., 2015).

XIST, MALAT1, NEAT1, and LINC00240 up-regulated

lncRNA were predicted to bind to hsa-mir-124-3p and

promoted the proliferation and metastasis of other cancers

by modulating hsa-mir-124-3p, but there are no related

studies in CCRCC (Feng et al., 2016; Liu et al., 2018a; Xiao

et al., 2019; Zhang et al., 2020b). In cervical cancer, Hsa-mir-

125b-5p expression was downregulated, and CDKN2A

expression was upregulated, suggesting that hsa-miR-125a-

5p-CDKN2A is a possible ceRNA network (Wang et al., 2021).

Hsa-mir-125b-5p was also found to be downregulated in

bladder (Canturk et al., 2014) and prostate cancer (Lin

et al., 2020). XIST, a lncRNA, has been shown to promote

the progression of various cancers through its high expression

(Liu et al., 2018b; Liu et al., 2019; Ning et al., 2021; Zheng et al.,

2021). We found that the upregulated lncRNA XIST targets

both hsa-mir-124-3p and hsa-miR-125b-5p and is positively

correlated with CDKN2A. A XIST-hsa-mir-124-3p/hsa-miR-

125b-5p-CDKN2A ceRNA network may exist in CCRCC and

play an important role in its prognosis and development.

However, this study has some limitations and deficiencies.

First, our study was retrospective, and prospective studies are

needed to confirm these findings. Second, our conclusions were

all obtained by data analysis and need to be further confirmed by

experiments.
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Oxidation is an essential factor during cataract development. Autophagy,

usually a cytoprotective process, is always found elevated in lens epithelial

cells under oxidation, yet its roles and associated molecular mechanisms under

such circumstances are rarely elucidated. Herein, we extracted and re-analyzed

the RNA sequencing data of the GSE161701 dataset from the Gene Expression

Omnibus database to identify the differentially expressed mRNAs and lncRNAs

by using the R package “DESeq2”. Further analyses of gene ontology and KEGG

enrichment were implemented via the packages “clusterProfiler” and

“enrichplot”. We found that after the knockout of ATG7, differentially

expressed genes were more associated with hemopoiesis, vasculature

development, axonogenesis, and hypoxia regulation. When stimulated with

H2O2, LECs displayed a gene expression profile correlating with apoptotic and

proliferative pathways, such as the MAPK signaling pathway and FoxO signaling

pathway. The differentially expressed gene profiles of the two types of LECs

(wild type and ATG7 deficient) under oxidation were distinct to a large extent.

Furthermore, 1,341 up-regulated and 1912 down-regulated differential mRNAs

and 263 up-regulated and 336 down-regulated differential lncRNAs between

these two types of LECs subjected to H2O2 were detected, among which

292 mRNAs and 24 lncRNAs possibly interacted with ten cataract-related

miRNAs. A competing endogenous lncRNA-miRNA-mRNA network based

on such interactions was finally constructed.
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Background

Cataract, a common cause of vision loss, results from the

gradual opacification of the lens, mostly at an elderly age. It has

been recognized that risk factors such as aging, diabetes mellitus,

ultraviolet B exposure, long-term use of corticosteroids, and

smoking can contribute to the development of cataract.

(Truscott, 2005). Physiologically, the lens epithelial cells

(LECs) residing under the anterior capsule of the lens

continuously proliferate and differentiate into the elongated

fiber cells to form the compacted nuclear mass of the lens

throughout its lifespan. These normal activities of LECs

guarantee the homeostasis and transparency of the lens. And

any disturbance to the LECs activities can result in

cataractogenesis. A marked reduction of the lens epithelial cell

density is observed in advanced senile cataract. (Tseng et al.,

1994). With the aging of the lens, the LECs demonstrate a

remarked increase of apoptosis in a time-dependent manner,

and the experimentally induced apoptosis of LECs can give rise to

the development of cataracts. (Li et al., 1995; Zhang et al., 2010).

Moreover, there is a relatively high level of apoptosis of LECs in

diabetes-induced cataracts. (Takamura et al., 2003; Xie et al.,

2022). However, the molecular mechanisms of cataract

development are not fully elucidated.

Oxidative stress is a prominent and critical factor for

cataractogenesis. Generally, the metabolically produced

reactive oxygen species (ROS), such as hydrogen peroxide

(H2O2) and hydroxyl radical, can be reduced by the

antioxidants like reduced glutathione (GGH), thus

maintaining a stable and balanced redox environment in

LECs. (Giblin, 2000). Any disturbance to this balance,

whether due to aging, ultraviolet exposure, or some other

factors, will result in redundancy of free radicals, which in

turn contribute to cataract development. (Yildirim et al., 2009;

Pescosolido et al., 2016; Hsueh and Chen, 2022). The lens

proteins, such as crystallins, are found oxidized and

aggregated in the nucleus of the lens and therefore scatter the

light during the development of cataract. (Cobb and Petrash,

2002; Vetter et al., 2020; Hanafy and Cave, 2021). Of note, the

most metabolically-active LECs are more susceptible to oxidative

radicals. Excessive ROS can incur the apoptosis of LECs by

targeting the DNA, membrane proteins, and many other

constitutive components (Long et al., 2004; Cui et al., 2012),

while antioxidants administration can ameliorate the H2O2-

induced apoptosis of LECs(Zhou et al., 2016; Bai et al., 2017).

Nevertheless, the exact and comprehensive molecular

mechanisms of LECs apoptosis and the ensuing cataract

under oxidative stress are, to our knowledge, not completely

elaborated.

Autophagy (here referred specifically to macroautophagy)

is an evolutionally conserved, catabolic process across a variety

of species, which can break down the dysfunctional or

unneeded macromolecules and membrane-coated organelles

in the cytoplasm to recycle the necessary building substrates. It

entails the formation of autophagosomes, their fusion with

lysosomes, and the degradation of the inside components, each

phase involving certain critical proteins, such as BECN1, LC3B,

and ATG7. Although it is controversial whether autophagy is

involved in the formation of the organelle-free zone during lens

development (Matsui et al., 2006; Nishida et al., 2009;

Morishita et al., 2013; Tu et al., 2021; Gheyas et al., 2022),

the development of cataract is closely associated with

dysfunctional autophagy. (Morishita, Eguchi, Kimura, Sasaki,

Sakamaki, Robinson, Sasaki and Mizushima, 2013; Ping et al.,

2021). A recent study revealed that rapamycin-induced

autophagy can alleviate the level of ROS in LECs cultured in

high glucose. (Liu J. et al., 2020). Furthermore, an elevated

autography accompanied reduced apoptosis in H2O2-treated

LECs(Han et al., 2021), and the overexpression of ATG4a in

LECs can mitigate the apoptosis of cells. (Yan et al., 2020). It

may suggest a cytoprotective role of autophagy toward LECs

under oxidative stress by regulating cell apoptosis, which is

quite contradictory to the findings of Huang J et al., whose

study revealed autophagy-facilitated apoptosis. (Huang et al.,

2022). Therefore, the detailed molecular mechanisms

concerning the roles of autophagy in oxidative stress need

further explored.

Non-coding RNAs (ncRNAs) refer to a considerable amount

of transcriptomes without protein-coding function, which can be

simply grouped into long non-coding RNAs (lncRNAs), small

RNAs like microRNAs (miRNAs), transfer RNAs (tRNAs) and

ribosomal RNAs (rRNAs) based on their length and function.

Over the past few years, ncRNAs, especially lncRNAs and

miRNAs, are found to play a vital role in the development of

a variety of diseases, including cataracts. Recent studies showed

that the elevated miR-23b-3p and miR-34a expressions could

promote the apoptosis of LECs under the oxidative stress state

while overexpression of miR-124 reduced the apoptosis of H2O2-

treated LECs. (Fan et al., 2017; Gu, 2018; Zhou et al., 2019; Zhang

et al., 2020). Moreover, lncRNA-H19 was up-regulated in

cataract tissue and its knockdown could accelerate apoptosis

of LECs under oxidative stress, and lncRNA TUG1 can promote

the apoptosis of H2O2-treated LECs via targeting the miR-196a-

5p. (Liu et al., 2018; Shen and Zhou, 2021). Although there is

growing evidence of ncRNAs involved in pathogenic processes

during cataract development, the comprehensive profile of

ncRNAs and the interaction network concerning

cataractogenesis have not been reported.
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Autophagy requires the elongation of the phagophore at the

beginning, during which ATG7 is critical for the formation and

activation of two important complexes, ATG12-ATG5 complex

and LC3-PE complex (Rubinsztein et al., 2012). Ablation of

ATG7 is thought to completely block the elongation of the

phagophore, thus abolishing the autophagy activity. Herein,

we selected the LECs knocked out of ATG7 to abolish the

autophagy process during oxidative stress, and conducted

detailed analyses of RNA sequencing data from the Gene

Expression Omnibus (GEO) database to explore the

expression profiles of mRNAs and lncRNAs of LECs under

the circumstance of oxidative stress and to try to construct

the possible molecular network of ATG7-associated

cataractogenic mechanisms, hoping to offer some clues to the

studies regarding the prevention and/or treatment of cataracts.

Materials and methods

RNA sequencing

Total RNA of human lens epithelial B3 (HLE-B3) cells

treated with or without H2O2 for 12 h was extracted by using

TRIzol (Thermo, United States) according to the manufactory’s

instructions. After being constructed by using NEBNext®

UltraTM RNA Library Prep Kit for Illumina® (NEB,

United States) and assessed by the Agilent Bioanalyzer

2,100 system, cDNA libraries were loaded on the Illumina

NovaSeq 6,000 platform (Illumina, United States). Each group

was sequenced in triplicate.

Data collection

Raw counts data of genes were extracted from the RNA-seq

dataset of GSE161701 in the NCBI’s GEO database (https://www.

ncbi.nlm.nih.gov/geo/). (Huang, Yu, He, He, Yang, Chen and

Han, 2022) Specifically, cultured HLE-B3 cells with or without

the knockout of the ATG7 gene were respectively treated with or

without 200 μM H2O2 for 12 h, thus making four groups of

samples for subsequent RNA sequencing (i.e., wild type cells for

0 h and 12 h of stimulation (WT-0h and WT-12 h), and ATG7

knockout cells for 0 h and 12 h of stimulation (KO-0h and KO-

12 h), each group with three biological replicates).

GO and KEGG enrichment analyses

Pearson correlation analysis was first applied to calculate the

correlation coefficient between samples and the result was

visualized through R package “pheatmap”. Gene expression

differences between groups (KO-0h vs. WT-0h, WT-12 h vs.

WT-0h, KO-12 h vs. KO-0h, KO-12 h vs. WT-12 h) were

detected by using R package “DESeq2” (Love et al., 2014) and

genes with adjusted p-value < 0.05 and absolute log2 (fold

change) > 1 were considered significantly differentially

expressed. R packages “ggplot2” (Wickham, 2009),

“clusterProfiler” (Wu et al., 2021), “enrichplot”, and

“org.Hs.eg.db” were applied for volcano plotting, gene set

enrichment analysis (GSEA), and enrichment analysis of gene

ontology (GO) (Ashburner et al., 2000; Mi et al., 2019;

Consortium, 2021) and Kyoto Encyclopedia of Genes and

Genomes (KEGG) (Kanehisa and Goto, 2000). A cutoff of

adjusted p-value = 0.05 was set for the significance of

enrichment analysis.

Constructions of PPI network and ceRNA
network

Protein-protein interaction (PPI) network among the

differentially expressed genes was constructed by using the

STING database (Szklarczyk et al., 2021) (http://string-db.org/)

and Cytoscape software (Shannon et al., 2003). A densely

connected region concerning 10 critical genes from the PPI

network was detected via the MCODE plugin (Bader and

Hogue, 2003) of Cytoscape (Degree cutoff = 2, Node score

cutoff = 0.2, K-score = 2, Max. depth = 100). Ten cataract-

related miRNAs were collected via literature review and the

predicted mRNAs and lncRNAs interacted with these

miRNAs were obtained by searching the databases of miRDB

(Chen and Wang, 2020) (http://www.mirdb.org/) and Targetscan

(McGeary and Lin, 2019) (http://www.targetscan.org/) and

databases of starBase(Li et al., 2014) (https://starbase.sysu.edu.

cn/) and miRnet (Chang et al., 2020) (https://www.mirnet.ca/),

respectively. Then these predicated mRNAs or lncRNAs that

were not differentially expressed between the groups

(p-adjusted<0.05) were filtered out and a competing

endogenouse RNA (ceRNA) network of lncRNA-miRNA-

mRNA was plotted via Cytoscape software.

Results

Gene expression profile of HLE-B3 cells
after knockout of ATG7

First, Pearson correlation analysis was applied to explore the

correlations between groups and the result showed that samples

treated with H2O2 were more mutually correlated (Figure 1B),

suggesting that H2O2 treatment exerted more influence on gene

expression than ATG7 knockout. To ascertain the effects of

ATG7 knockout on gene expression, we first performed

differential expression analysis of genes between KO-0h and

WT-0h groups, and 1,189 up-regulated and 965 down-

regulated genes in KO-0h group were found compared with
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WT-0h group (p-adjusted<0.05 and absolute

log2foldchange >1), as illustrated in the volcano plot

(Figure 1C). The two group samples can be well clustered by

the selected top 250 differentially expressed genes (shown in

Figure 1D). To further explore the impacts of ATG7 knockout,

we performed GO analysis for the up-regulated and down-

regulated genes, separately. The results showed that the top

30 enriched GO terms for up-regulated genes mainly resided

in branching differentiation activity factor, decreased hypoxia

oxygen levels, extracellular external encapsulating organization,

FIGURE 1
Gene expression profile of HLE-B3 cells after knockout of ATG7. (A) The flowchart showing the ways the study was carried out (B) Heatmap of
the sample correlation results. Numbers in the cells denote the corresponding sample correlation coefficients and the blue gradient indicates the
degree of coefficients. The darker the color is, the larger the coefficient is. Cells in red indicate the self-correlation. (C) Volcano plotting of
differentially expressed mRNAs in KO-0h vs. WT-0h groups. Red dots and green dots signify the up-regulated and down-regulated mRNAs.
Criteria of fold change >1.5 and adjusted p-value<0.05 were applied (D) Heatmap of clustered top 250 differentially expressed mRNAs in KO-0h vs.
WT-0h groups. The color scale indicates the degrees of expression levels with the blue signifies the most down-regulated and the red the most up-
regulated in KO-0h group. (E and F) GO enrichment analysis for the differentially up-regulated (E) and down-regulated (F) genes in KO-0h
group. The size of the dots indicates the number of clustered genes and the color of the dots signifies the adjusted p-value of enrichment. The
enriched GO terms were further clustered in different colors.
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angiogenesis migration vasculature development and

lipopolysaccharide molecule bacterial origin (Figure 1E), while

the top 30 GO terms for down-regulated genes were more

concerned with regulation GTPase development activity,

cilium axoneme assembly organization, axon axonogenesis

neuron guidance, cell-cell junction via molecules and

asymmetric postsynaptic density synapse. (Figure 1F).

Effects of H2O2 stimulation on gene
expression in HLE-B3 cells

H2O2 treatment was applied as a general approach to simulate

oxidative stress commonly detected during cataract development.

To investigate the biological changes of cultured cells under such

oxidative stress, we first analyzed the differential expressed genes

FIGURE 2
Gene expression profile of HLE-B3 cells after H2O2 treatment. (A) Top 250 differentially expressed mRNAs were clustered based on their
expression levels in WT-12 h vs. WT-0h group. The color scale from blue to red is parallel with the expression level from most down-regulated to
most up-regulated in WT-12 h group (B) Volcano plotting of the distribution of overall differentially expressed mRNAs in WT-12 h vs. WT-0h
group. Red dots are for the up-regulated and green dots for the down-regulated. Criteria of fold change >1.5 and adjusted p-value<0.05 were
applied. (C and D) Bubble charts of the top 10 enriched GO terms the up-regulated mRNAs (C) and the down-regulated mRNAs (D). The size and
color of the dot correspond to the clustered gene number and the related adjusted p-value of enrichment. (E and F) Ridgeline diagrams show the top
30 KEGG pathways of GSEA for the up-regulated (E) and the down-regulated (F)mRNAs. X-axis indicates the fold change of mRNA expressions. The
color of each ridgeline represents the adjusted p-value for the enrichment significance of each pathway. GSEA, gene set enrichment analysis.
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afterH2O2 treatment ofHLE-B3 cells. A total of 2,384 up-regulated

and 2,219 down-regulated genes were finally determined (adjusted

p-value < 0.05 and absolute fold change >1.5), as demonstrated in

the volcano plot (Figure 2B). The top 10 of the up-regulated and

down-regulated genes were shown in Table 1. The heatmap further

illustrated that these differentially expressed genes can clearly

distinguish the WT-12 h group from the WT-0h group

(Figure 2A). To further ascertain the possible biological

functions of these differentially expressed genes, we performed

GO analysis for the up-regulated and down-regulated genes,

separately. The results indicated that the top 10 GO terms for

up-regulated genes were cell differentiation, regulation of cell-cell

adhesion and cytokine production, reproductive associated

development, regulation of apoptotic signaling pathway, and

intrinsic and extrinsic apoptotic signaling pathway (Figure 2C),

while the top10 terms for the down-regulated concerned organelle

fission, nuclear division, chromosome segregation, cilium

assembly and mitosis related organization (Figure 2D).

We also performed KEGG analysis via GSEA for the up-

regulated and down-regulated genes separately to find out the

potential pathways these genes involved, and ridgeline plots

demonstrated separately the top 30 enriched pathways for the up-

regulated and down-regulated (Figures 2E,F). Among them,

pathways like hematopoietic cell lineage, NF-kappa B signaling

pathway, ErbB signaling pathway, MAPK signaling pathway, TNF

signaling pathway, and PI3K-Akt signaling pathway were enriched

for the up-regulated while pathways like protein processing in the

endoplasmic reticulum,MAPK signaling pathway, oxytocin signaling

pathway, rap1 signaling pathway, Ras signaling pathway, and FoxO

signaling pathway were enriched for the down-regulated, which

suggested these genes under oxidative stress may be involved in

cell proliferation and/or apoptosis activities.

Gene expression differences of two types
of HLE-B3 cells under oxidative stress

To explore whether H2O2 treatment has the same effects on

gene expressions of the two types of cells, we first analyzed the

differentially expressed genes in KO-12 h vs. KO-0h groups. Among

them, the up-regulated and down-regulated genes were intersected

respectively with the up-regulated and the down-regulated ones in

WT-12 h vs. WT-0h groups. Results showed that there were

1,282 and 1,032 differentially expressed mRNAs (DE-mRNAs)

intersected respectively in the up-regulated and down-regulated

groups. These shared genes may be regulated independent of

ATG7 expression under oxidative stress, whereas the genes

exclusive to WT-12 h vs. WT-0h group (1,102 in up-regulated

DE-mRNAs and 1,187 in down-regulated DE-mRNAs, denoted

as green part) may contain the candidates that regulated by ATG7

(Figures 3A,B). To better understand the functions of parted gene

groups, we further performed GO analysis separately for these gene

sets. Results indicated that the group-shared gene set of up-regulated

DE-mRNAs were enriched mainly in the extrinsic and intrinsic

apoptotic signaling pathway, regulation of cell-cell adhesion, and

regulation of apoptotic signaling pathway, while the shared gene set

of the down-regulated were more enriched in the structural

organization involved in mitosis. The enriched GO terms for the

up-regulated WT-specific group were mainly related to ribosome

biogenesis and ncRNA processing, while the terms for the down-

regulated WT-specific group involved cilium organization and

assembly, endosomal transport, lysosomal transport, and

membrane docking. The KO-specific gene set, however, enriched

the GO terms of regulation of GTPase activity, axonogenesis, and

regulation of cell morphogenesis for the up-regulated DE-genes and

the GO terms concerning ATP metabolic process, small molecule

catabolic process, and mitochondrial transport for the down-

regulated genes. (Figure 3C).

Expressions and functions of ATG7-
related genes in HLE-B3 cells challenged
by H2O2

As a critical gene of autophagy and vacuole transport activity,

ATG7 has been reported to be involved in mitophagy and axonal

homeostasis. To further investigate the roles of ATG7 under the

circumstances of H2O2-induced oxidative stress, we first

investigated the differential expressed mRNAs between the

TABLE 1 The top 10 up- and down-regulated mRNAs in WT 12 h vs.
WT 0 h.

mRNA Log2FC Padj Change

HSPA6 11.59 5.53E-56 UP

AREG 8.03 2.25E-153 UP

CSF3 7.93 4.34E-51 UP

GDF15 7.32 8.91E-256 UP

GREB1 6.64 2.17E-22 UP

LHX3 6.34 1.49E-12 UP

ANGPTL4 6.34 1.28E-113 UP

SH2D2A 6.12 2.16E-42 UP

BTG2 6.07 4.85E-261 UP

PLEKHA6 5.96 4.22E-50 UP

HLA-DRA −3.47 2.59E-04 DOWN

DACH1 −3.21 5.44E-05 DOWN

CYBB −3.17 7.82E-06 DOWN

C1QTNF3 −3.05 9.09E-04 DOWN

SIM1 −2.92 7.90E-51 DOWN

PDE7B −2.86 1.70E-19 DOWN

SORBS2 −2.83 5.36E-04 DOWN

ASPM −2.81 0.00E+00 DOWN

DIO2 −2.71 7.65E-99 DOWN

MUSK −2.61 3.86E-02 DOWN
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KO-12 h group and the WT-12 h group. A total of 1,341 up-

regulated and 1912 down-regulated mRNAs were detected based

on the criteria of absolute fold change>1.5 and adjusted p-value <
0.05, and the top 250 DE-mRNAs can distinctly differentiate the

two groups, as demonstrated by the heatmap (Figure 3D).

Considering the possible two-way regulations of ATG7 toward

its downstream genes and to narrow down the scope of the

downstream genes, the down-regulated genes in the KO-12 h vs.

WT-12 h group and the up-regulated genes in the WT-12 h vs.

WT-0h group were selected to mutually intersect while on the

other hand, the up-regulated genes in the KO-12 h vs. WT-12 h

group and the down-regulated genes in the WT-12 h vs. WT-0h

group were also selected for another mutual intersection. A Venn

diagrams showed that a total of 688 DE-mRNAs possibly

positively regulated by ATG7 and a total number of 419 DE-

mRNAs possibly negatively regulated by ATG7 were finally

determined (Figures 4A,B). Next, GO enrichment analysis was

performed separately on the above-selected DE-mRNAs. Results

showed that enriched GO annotations for the 688 DE-mRNAs

included but not limited to intrinsic apoptotic signaling pathway

in response to endoplasmic reticulum stress, positive regulation

of cytokine production, fat cell differentiation, and regulation of

hemopoiesis; while the enriched GO terms for the 419 DE-

mRNAs were more about GTPase regulator activity, cell

leading edge, cell projection membrane, and organ

morphogenesis. The top 10 enriched GO terms were shown in

Figure 4C,D. The respective chord diagrams further illustrated

the relationships between the five representative GO terms and

the annotated input genes (Figures 4E,F).

Competing endogenous lncRNA-miRNA-
mRNA network associated with ATG7

To further explore the functions of the differentially

expressed genes potentially regulated by ATG7, we conducted

the PPI network analysis via the STRING database by using the

aforementioned 1,107 (688 + 419) differentially expressed genes

FIGURE 3
Gene expression differences betweenwild type and ATG7 knockout HLE-B3 cells under oxidative stress. (A and B) The Venn diagrams show the
intersected, differentially up-regulated (A) and down-regulate (B)mRNAs inWT-12 h vs. WT-0h group and KO-12 h vs. KO-0h group, specifically. (C)
The top 10 GO terms of enrichment analysis for the separate gene parts of the above intersections are summarized in table (D) The heatmap of top
250 differentially expressed genes between KO-12 h vs. WT-12 h group. The red and the blue indicate the high and low levels of gene
expression, respectively.
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as an input list. The result visualized with Cytoscape showed that

most of these genes mutually interacted (red dots denote genes

from the 688 DE-mRNAs and blue dots represent genes from the

419 DE-mRNAs) (Figure 5A). To find out the downstream key

gene module of ATG7, we next calculated the interactions within

the genes and dug up two key gene modules, each consisting of

seven DE-genes via the plugin of MCODE (Figures 5B,C). Since

non-coding RNAs are emerging as important regulators during

cataract development, we also detected the differentially

expressed lncRNAs (DE-lncRNAs) in the KO-12 h vs. WT-

12 h groups (shown in Figure 5D). There were 263 up-

regulated and 336 down-regulated lncRNAs between the

groups. The heatmap showed that the top 250 DE-lncRNAs

were clustered well in a manner of expression levels between the

groups (Figure 5E). The top 10 differentiated mRNAs and

lncRNAs were shown in Table 2. Next, through literature

FIGURE 4
Genes regulated by the knockout of ATG7 and their associated GO terms under oxidative stress. (A and B)The down-regulated genes in 12 h
KO-WT group are intersected with the up-regulated genes in WT 12h–0 h group (A), while the up-regulated genes in 12 h KO-WT group are
intersected with the down-regulated genes in WT 12h–0 h group (B). (C and D) The bubble charts show the top 10 enriched GO terms of the above
overlapped parts of differentially expressed genes, separately. C and D correspond to A and B, respectively. Dot size denotes the number of
involved genes and color scale represents the adjusted p-value of enrichment results (E and F) The chord diagrams separately demonstrate the
correlations of five representative GO terms with their associated genes. Each color represents a single GO term and dot size signifies the involved
gene number.
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review, 10 miRNAs having been reported participating in

cataract development were selected and then input into the

databases of miRDB and Targetscan and the databases of

starBase and miRnet to predict the potential miRNA-mRNA

interactions and miRNA-lncRNA interactions, respectively.

Those predicted mRNAs and lncRNAs were then intersected

with the aforementioned DE-mRNAs and DE-lncRNAs

respectively to narrow their scope. Then the more

interconnected mRNAs were further selected by the Cytoscape

plugin with more strict criteria. Finally, 112 mRNAs and

24 lncRNAs were determined and these RNAs together with

the 10 miRNAs were selected to construct the lncRNA-miRNA-

mRNA network via Cytoscape (Figure 5F).

Discussion

Age-related cataract (ARC) is the most prominent type of

cataracts and oxidative stress is one of the well-established culprit

factors during cataract development, since there is a loss of

FIGURE 5
LncRNA-miRNA-mRNA network associated with ATG7. (A) PPI network of the intersected genes. Dots in orange represent the overlapped
genes in Figure 4A and dots in green for the overlapped genes in Figure 4B. The dot size is in proportion to the number of correlations (B and C) Two
critical gene modules are detected by the MCODE plugin of Cytoscape. (D) The volcano plot shows the differentially expressed lncRNAs in KO-12 h
vs. WT-12 h group. Red dots for the up-regulated genes and green for the down-regulated. Criterion include fold change>1.5 and adjusted
p-value > 0.05 (E) The heatmap shows the top 250 differentially expressed lncRNAs in KO-12 h vs. WT-12 h group. Color bar corresponds to the
relative expression levels of lncRNAs (F) The lncRNA-miRNA-mRNA network constructed via Cytoscape. The inner pink triangles represent the
selected 10 miRNAs reported involved in cataract development, the green rectangles for the possible competing lncRNAs and the outer blue circles
for the targeted genes from the PPI network. PPI, protein-protein interaction.
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antioxidants, such as reduced GSH, and increased protein

oxidation in the nuclear region of the lens prior to the

cataract development. (Giblin, 2000; Truscott, 2005; Vinson,

2006). Based on the location of opacity, ARC can be

subdivided into three main types: nuclear, cortical, and

posterior subcapsular cataracts. (Liu et al., 2017). Despite their

association with aging, the underlying pathological changes and

mechanisms seem somewhat different. Nuclear cataract, as the

most common type, is more subject to oxidative damage

compared with the other two types. (Truscott, 2005). In

contrast, the destruction of cell structure and precipitation of

soluble proteins are more likely observed in cortical cataract,

although it is also associated with some degree of oxidation. As

for the less common posterior subcapsular cataract, the failed

elongation of swollen fiber cells may be the main cause. When

considering the risk factors, there are also differences among the

three types of cataracts. Cortical cataract is closely associated with

high sunlight exposure and is more commonly seen in high-

latitude regions, such as northern Japan and northern China.

(Sasaki et al., 2002). Wearing sunglasses is verified as an effective

way for its prevention. (Taylor et al., 1988). The posterior

subcapsular cataract, however, is more associated with high

myopia, diabetes, steroid administration, and ionizing

radiation. (Beebe et al., 2010). Such discrepancies among age-

related cataracts suggest intricate or even distinct mechanisms

underlying cataractogenesis. Therefore, the cell line model

stimulated by H2O2, although commonly used to simulate the

factual oxidative stress, can only partly explain the possible

mechanisms with caution.

In this study, we detected several pathways and differentially

expressed genes that were associated with ATG7. Among them,

the intrinsic apoptotic signaling pathway was one of the most

enriched pathways for the differentially expressed genes between

the groups. As one of the two types of apoptosis signaling, the

intrinsic apoptotic signaling pathway is usually activated by

internal stimuli such as hypoxia and free radical-induced

oxidative stress. It has been found involved in tumor death

due to chemotherapy and thus has been investigated as the

therapeutic target for drug discovery. (Carneiro and El-Deiry,

2020; Kashyap et al., 2021). With the aging of the lens, lens

epithelial cells also underwent certain apoptosis induced by

oxidative stress from diabetes, ultraviolet exposure, or just

senescence. (Su et al., 2017; Xie et al., 2022). In our study, we

detected the intrinsic apoptosis signaling pathway as the

potential autophagy-associated mechanism underlying the

oxidative stress-induced injury toward LECs. The involved

differentially expressed genes in this enriched signaling

pathway, such as PMAIP1, BBC3, ENR1, and CHAC1, are

thus worthy of further investigation as potential therapeutic

targets for cataract development.

It is well recognized that autophagy can contribute to the

degradation of damaged or wasted molecules and organelles,

including oxidized proteins and lipids, which, if gradually

accumulated, could result in cell apoptosis or even necrosis.

TABLE 2 The top 10 up- and down-regulated mRNAs and lncRNAs in KO 12 h vs. WT 12 h.

mRNA Log2FC Padj lncRNA Log2FC Padj Change

AKR1C3 6.59 1.74E-38 AC006033.2 6.49 1.20E-05 UP

CPNE8 6.52 2.38E-21 AC005840.4 5.57 1.09E-03 UP

LUM 4.93 1.14E-38 CASC9 5.52 1.11E-03 UP

KYNU 4.83 5.92E-54 LINC02328 5.48 3.83E-04 UP

PARP8 4.53 1.06E-20 LINC01597 5.44 1.62E-05 UP

EXOC3L2 4.13 5.14E-17 AC010931.2 5.31 2.98E-03 UP

F2RL1 3.96 1.89E-47 AC006946.2 5.25 3.25E-03 UP

SOX5 3.83 4.21E-07 AC103808.3 5.20 1.05E-03 UP

IL24 3.67 4.53E-06 LINC01446 5.19 1.14E-03 UP

TLR4 3.65 4.21E-61 AC005838.2 4.99 2.20E-03 UP

BEX1 −7.38 5.05E-145 AL365181.3 −6.39 8.12E-06 DOWN

SLC7A5 −7.00 1.84E-67 AC092813.1 −5.85 6.97E-05 DOWN

FBLN1 −6.22 1.48E-15 AL360270.2 −5.82 1.70E-09 DOWN

HSPA6 −5.25 3.63E-161 LINC01315 −5.78 4.78E-04 DOWN

OVGP1 −5.13 6.99E-10 AC005921.4 −5.78 9.76E-05 DOWN

GRB7 −4.95 3.71E-05 AC138356.3 −5.76 3.16E-04 DOWN

FBLN2 −4.89 1.54E-30 AC009812.3 −5.73 3.83E-04 DOWN

H2AFY2 −4.81 6.80E-25 AC009108.3 −5.66 1.49E-04 DOWN

NUP210 −4.59 2.76E-86 TERC −5.59 6.50E-04 DOWN

DPYSL4 −4.59 8.00E-109 LINC01165 −5.48 1.02E-03 DOWN
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(Truscott, 2005). The overexpression of ATG4 can activate

autophagy and meanwhile inhibit apoptosis of the HLE-B3

cell line under H2O2-challenged circumstances. (Yan, Zhao,

Qin, Zhao, Ji, and Zhang, 2020). And the rapamycin-induced

autophagy can alleviate the ROS production in mice LECs

cultured in high glucose. (Liu X. et al, 2020). However, some

studies revealed the opposite results. The suppression of

autophagy by EphA2 can attenuate the apoptosis of SRA01/

04 cells induced by H2O2. (Han, Wang, Lv, Liu, Dong, Shi and Ji,

2021). Huang J et al. also found that autophagy facilitated the

apoptosis of HLE-B3 cells under H2O2 stimulation. (Huang, Yu,

He, He, Yang, Chen and Han, 2022). By mining the RNA

sequencing data, our results showed that the differentially

down-regulated genes in autophagy-deficient cells are mostly

enriched in GO terms related to cell proliferation and

differentiation, such as regulation of hemopoiesis, muscle

organ development, and fat cell differentiation, which may

suggest a pro-apoptotic function of autophagy. The

controversial functions of autophagy toward cell apoptosis

under oxidative stress may reside in the distinct cell lines and

different concentrations and times of H2O2 stimulation. Further

studies are warranted to clarify the relationship between

autophagy and apoptosis in a detailed manner.

ATG7, as one of the autophagy-related proteins, is a

ubiquitin-activating enzyme E1-like protein and participates,

along with ATG3, in the conjugation of ATG8 family proteins

to phosphatidylethanolamine (PE) during the phagophore

expansion. (Dooley et al., 2014). Although ATG7 is an

essential mediator in the canonical autophagy pathway, Atg7-

independent autophagy was found in Atg7-modified mice, where

knockout of Atg7 did not affect the formation of autophagosome

and the subsequent bulk degradation. (Nishida, Arakawa,

Fujitani, Yamaguchi, Mizuta, Kanaseki, Komatsu, Otsu,

Tsujimoto and Shimizu, 2009). The loss of Atg7 in Drosophila

did not prevent the occurrence of autophagy and the

accompanied cell size reduction. (Chang et al., 2013).

However, such ATG7-independent autophagy has not yet

been reported in human cells. Furthermore, ATG

components, including ATG7, have found to engage in non-

autophagic activities, such as phagocytosis (Sanjuan et al., 2007),

osteoclastic bone resorption (DeSelm et al., 2011) and antiviral

activity of IFNγ (Hwang et al., 2012). In this study, we found that

the DEGs shared by the two types of HLE-B3 cells (KO andWT)

under oxidative stress are enriched in apoptotic signaling

pathways (Figure 3C), which may suggest an ATG7-

independent autophagy involved in cell apoptosis.

miRNAs, the highly conserved small ncRNAs across species,

have long been found regulating substantial gene expressions by

targeting the microRNA response elements (MREs) of mRNAs.

(Thomas et al., 2010). Each miRNA can regulate many mRNAs

and one mRNA can be regulated by a number of miRNAs.

(Friedman et al., 2009). And lncRNA, a group of ncRNAs larger

than 200 nucleotides in length, has emerged as an important

regulator in a myriad of diseases, including cataract. (Liu, Liu,

Shan, Zhang, Lu, Yan, and Luo, 2018; Liu X. et al., 2020; Tu et al.,

2020; Shen and Zhou, 2021). On the one hand, they can directly

target miRNAs to regulate certain mRNA expressions (Ye and

Ma, 2020) while on the other, they can also be targeted by the

miRNAs (Chi et al., 2009). Such complicated interactions within

the ncRNAs and mRNAs suggest the mechanism of ceRNA.

(Salmena et al., 2011). In this article, we constructed a predicated

lncRNA-miRNA-mRNA ceRNA network based on the

differentially expressed lncRNAs and mRNAs and the

reported cataract-related miRNAs. Such a ceRNA network

may propose an ATG7-associated potential regulatory

mechanism underlying cataractogenesis, which warrants

further verification.

Conclusion

In all, this study reveals the differentially expressed gene

profiles of HLE-B3 cells with or without ATG7 knockout

subjected to oxidative stress. And by comparing the gene

expressions in these two types of cells under oxidative

stimulation, we eventually detected differentially expressed

292 mRNAs and 24 lncRNAs that also interacted with the

10 cataract-associated miRNAs. Thus a competing

endogenous lncRNA-miRNA-mRNA network was finally

constructed based on such interactions, which warrants

further investigations.
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Background: Prostate cancer (PCa) is one of the most common cancers in males
around the globe, and about one-third of patients with localized PCa will experience
biochemical recurrence (BCR) after radical prostatectomy or radiation therapy.
Reportedly, a proportion of patients with BCR had a poor prognosis. Cumulative
studies have shown that RNA modifications participate in the cancer-related
transcriptome, but the role of pseudouridylation occurring in lncRNAs in PCa
remains opaque.

Methods: Spearman correlation analysis and univariate Cox regression were utilized
to determine pseudouridylation-related lncRNAs with prognostic value in PCa.
Prognostic pseudouridylation-related lncRNAs were included in the LASSO (least
absolute shrinkage and selection operator) regression algorithm to develop a
predictive model. KM (Kaplan-Meier) survival analysis and ROC (receiver operating
characteristic) curves were applied to validate the constructed model. A battery of
biological cell assays was conducted to confirm the cancer-promoting effects of
RP11-468E2.5 in the model.

Results: A classifier containing five pseudouridine-related lncRNAs was developed to
stratify PCa patients on BCR and named the “ψ-lnc score.” KM survival analysis
showed patients in the high ψ-lnc score group experienced BCR more than those in
the low ψ-lnc score group. ROC curves demonstrated that ψ-lnc score
outperformed other clinical indicators in BCR prediction. An external dataset,
GSE54460, was utilized to validate the predictive model’s efficacy and
authenticity. A ceRNA (competitive endogenous RNA) network was constructed
to explore themodel’s potential molecular functions andwas annotated through GO
(Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway
analyses. RP11-468E2.5 was picked for further investigation, including pan-cancer
analysis and experimental validation. Preliminarily, RP11-468E2.5 was confirmed as a
tumor promoter.

Conclusion: We provide some evidence that pseudouridylation in lncRNA played a
role in the development of PCa and propose a novel prognostic classifier for clinical
practice.
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1 Introduction

According to the cancer statistics in the United States in 2022,
prostate cancer alone will account for 27% (268,490/983,160) of cancer
diagnoses in men, exceeding lung cancer to be the top one (Siegel et al.,
2022). On the other hand, PCa was the second most diagnosed
worldwide, only behind lung cancer (Siegel et al., 2021; Sung et al.,
2021). Generally, localized PCa patients can yield a favorable
prognosis after radical prostatectomy (RP) or radiation therapy
(RT). However, biochemical recurrence (BCR), recognized as a
detectable serum prostate-specific antigen (PSA) elevation within
10-year follow-ups, occurs in one-third of patients with RP or RT
(Pound et al., 1999; Freedland et al., 2007; Boorjian et al., 2011; Van
den Broeck et al., 2019). Furthermore, a long-term follow-up BCR
study reported that about 24% of patients with BCR developed clinical
progression, and the cancer-related mortality hit approximately 16%
(Boorjian et al., 2011; Van den Broeck et al., 2019). Therefore,
predicting the probability of developing BCR appears pivotal to the
prognosis of PCa patients with the increasing incidence rate of PCa.

Thanks to the general application of next-generation sequencing
to whole genomes and transcriptomes, numerous pieces of evidence
show that less than 2% of the human genome encodes proteins while
the rest is transcribed into non-coding RNAs (ncRNAs) (Djebali et al.,
2012). Genetic mutations are primarily responsible for cancer, and
most of the mutations reside inside the regions that transcribe ncRNAs
(Huarte, 2015). In particular, more-than-200-nucleotide long non-
coding RNAs (lncRNAs) take up a giant population of ncRNAs, and
remarkably, they are gaining more and more attention in the cancer
paradigm for exerting dual functions as both oncogenic and tumor-
suppressive factors (Sánchez and Huarte, 2013). Given that lncRNAs
are reportedly tissue-specific, it is likely that they may share some
specific connections with certain cancer subtypes, shedding light on
the development of novel biomarkers for the diagnosis, prognosis, or
therapeutic targets of cancers (Ling et al., 2015). For instance, prostate
cancer antigen 3 (PCA3), the first FDA-approved lncRNA, appears as
a promising and pragmatic biomarker for supporting PCa diagnosis
(Sartori and Chan, 2014; Sánchez-Salcedo et al., 2021).

RNA modifications are gradually coming into focus due to the
development of novel modification detection methods and the
realization that ncRNAs are no longer “junks” in the genome and
their expression links to complex physiological and pathological
processes (Ling et al., 2015; Barbieri and Kouzarides, 2020). Like
DNA and proteins, RNAs can be subject to over 170 post-
transcriptional modifications, catalyzed by highly conserved
enzymes whose dysregulation leads to a broad spectrum of
illnesses, including cancer (Jonkhout et al., 2017; Dinescu et al.,
2019; Wiener and Schwartz, 2021). Among all these RNA
modifications, seven kinds connect to cancer pathogenesis the
strongest, such as 7-methylguanosine modification (m7G), N6-
methyladenosine modification (m6A), N1-methyladenosine
modification (m1A), 5-methylcytosine modification (m5C),
pseudouridylation (ψ) and so forth but the underlying machinery
of these modifications except m6A in the cancer field, has remained
opaque (Barbieri and Kouzarides, 2020). Of the seven ones,
pseudouridylation was the first discovered in the 1950s, once called
the “fifth RNA nucleotide” (Davis and Allen, 1957) and the most
abundant modification in total RNA of human cells (Penzo et al., 2017;
Barbieri and Kouzarides, 2020). Pseudouridine used to be frequently
detected and studied in tRNA, rRNA, and snRNA (small nuclear

RNA); until recently, it was also discovered in mRNA and lncRNA,
especially cancer-related lncRNA (Song and Yi, 2017; Dinescu et al.,
2019). For example, ψ sites appeared in lncRNAs such as MALAT1
(metastasis-associated lung adenocarcinoma transcript one), XIST
(X-inactive specific transcript), TERC (telomerase RNA
component), SNHG1 (Small nucleolar RNA host gene one), ZFAS1
(Zinc finger antisense one), etc. Each of them is related to different
malignant processes. Unfortunately, there is no established
relationship between ψ modification and cancer events, and further
studies are required to confirm this correlation. No previous study has
revealed the value of ψ-related lncRNAs in PCa. As a result, in this
study, we attempted to develop a ψ-related lncRNA predictive model
to serve BCR-risk stratification in PCa patients, validate it internally
and externally, and investigate its effects on cancer progression using
preliminary experiments.

2 Materials and methods

2.1 Data processing

For bioinformatics analysis, TCGA (The Cancer Genome Atlas)
dataset for prostate adenocarcinoma (PRAD) with patients’ clinical
data (n = 547; tumor tissue = 495, normal tissues = 52) was obtained
from the TCGAwebsite (https://portal.gdc.cancer.gov/), and only patients
with biochemical recurrent time >1 month (n = 460) were included in the
survival analyses. Additionally, the GSE54460 dataset (n = 100) was
acquired from the Gene Expression Omnibus (GEO) database (http://
www.ncbi.nlm.nih.gov/geo/). The baseline information for both datasets
is deposited in Supplementary Table S1. And we processed the data
following the instructions in one article (Li et al., 2021). FPKM
(Fragments Per Kilobase Million) data was first transformed into TPM
(Transcript Per Million) form and then normalized through log2 (TPM
+1). We included R software (version: 4.1.0) and two website tools,
“Sangerbox 3.0” (http://vip.sangerbox.com/) and “GEPIA2” (http://
gepia2.cancer-pku.cn/), for analyses in the study.

2.2 Identification of pseudouridine-related
lncRNAs

From literature mining (Rong et al., 2021), 13 pseudouridine-related
genes were collected. Then, the expression data of these 13 genes and all
lncRNAs from the TCGA-PRAD dataset was extracted. In addition,
Spearman’s correlation analysis (de Winter et al., 2016) was employed to
look into the relationship between lncRNAs and the 13 Ψ-related genes
(criteria: |Spearman R| > .4 and p < .05). Eventually, 265 lncRNAs were
qualified (Supplementary Table S2). Next, univariate Cox regression
analysis (Cox, 1972) was performed on these 265 lncRNAs to evaluate
their prognostic values, and finally, 100 lncRNAs with p-value <.05 stood
out (Supplementary Table S2).

2.3 Construction and validation of the Ψ-
related predictive model

The LASSO (Least Absolute Shrinkage and Selection Operator)
regression (Tibshirani, 1996) algorithm with ten-fold cross validation
and penalty (R package “glmnet”) was applied to narrow down the
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number of genes for establishment of the predictive model. The
algorithm constructed different models by including various
numbers of Ψ-related lncRNAs (n = 100), and the minimum
criteria chose the penalty parameter (λ). Ultimately, a five-gene
model with the best performance was selected and named the “Ψ-
lnc score”. The Ψ-lnc score comes from the formula:

Ψ − lnc score � ΣN
i�1 Coef f icienti × Expression level of lncRNAi( )

Where “N” (N = 5) represents the total number of the lncRNAs in the
predictive model, “Coefficienti” denotes a specific lncRNA’s
coefficient, and “Expression level of lncRNAi” refers to the relative
expression level of a certain lncRNA.

The TCGA PCa patients were separated into two balanced
subsets (the training subset and the testing subset, each
number = 230) using the createDataPartition function in R, and
the specific Ψ-lnc score for every patient was calculated using the
formula above. Given the median scores in the subsets (.296 in the
training subset and .288 in the testing subset), the low- and high-Ψ-
lnc score subgroups were defined. The Kaplan–Meier (KM) survival
analysis (Kaplan and Meier, 1958; Kim et al., 2018; Bichindaritz,
2021; Bichindaritz et al., 2021) in the “survminer” package depicted
the BCR-free survival probability curves between the subgroups.
The “survivalROC” package drew the 12-, 36-, and 60-month ROC
(Receiver Operating Characteristic) curves (Mandrekar, 2010) to
evaluate the predictive power of Ψ-lnc score, and the AUCs (Area
Under the Curve) of Ψ-lnc score and typical clinicopathological
traits were calculated to compare their clinical value. The
GSE54460 dataset (N = 100) validated the predictive model
externally.

2.4 Construction of ceRNA network and
functional enrichment analysis

The “GDCRNAtools” package was introduced to help construct
the potential competitive endogenous RNA (ceRNA) network
(Salmena et al., 2011; Li et al., 2018), and the website tool,
“Sangerbox 3.0” (http://vip.sangerbox.com/), conducted the
functional enrichments of the mRNAs included in the ceRNA
network mentioned above.

2.5 Cell culture, RNA extraction, and RT-qPCR
assays

Two PCa cell lines, LNCaP and C4-2B, were acquired from the
BeNa Culture Collection. Subsequently, both cell lines were cultured in
RPMI-1640 media. In addition, 10% fetal bovine serum and 1%
Penicillin-Streptomycin solution are combined to make the culture
media. The cultivation temperature was 37°C, and the concentration of
CO2 was 5%. Total RNAs from LNCaP and C4-2B cells were extracted
using Trizol reagent (15596018, Takara), and they were then reverse-
transcribed into cDNA with the help of TransScript All-in-one First-
Strand cDNA Synthesis SuperMix for qPCR (AT341-01, TransGen).
RT-qPCR (Real-time quantitative PCR) assays were carried out using
the PerfectStart Green (AQ601-02, TransGen) on an Applied
Biosystems 7,500 Real-Time PCR System. Eventually, the relative
expression of RP11-468E2.5 and other four lncRNAs (GAS1RR,
RP11-400K9.4, RP11-400K9.3, and LINC02688) were calculated

using glyceraldehyde 3-phosphate dehydrogenase (GAPDH) as the
reference. All the experiments were equipped with three replicates.
Supplementary Table S7 shows the primers for RP11-468E2.5,
GAS1RR, RP11-400K9.4, RP11-400K9.3, and LINC02688.

2.6 Patient samples

Prostate cancer tissues (n = 10) and benign prostatic hyperplasia
tissues (n = 10) were collected, respectively, from patients of Zhujiang
Hospital, Southern Medical University. Fresh tissues were viewed and
approved by two pathologists, frozen immediately in liquid nitrogen,
and stored at −80°C.

2.7 RNA interference and loss of function
assays

GenePharm Company synthesized siRNAs targeting RP11-
468E2.5. RT-qPCR confirmed the transfection efficiency after the
transfection of siRNAs along with siRNA-Mate (GenePharm) for
72 h. The CCK-8 (Cell Counting Kit-8, MA0218-5, Meilunbio) cell
viability assay and colony formation assay inspected the proliferative
ability of PCa cell lines after knocking down RP11-468E2.5. The
transwell assay examined the change in the invasiveness of PCa
cells with downregulation of RP11-468E2.5. Detailed procedures for
the above assays are accessible in our previous study (Zhong et al.,
2021). All experiments were performed in triplicates. siRNAs targeting
sites in RP11-468E2.5 are in Supplementary Table S7.

2.8 Statistical analyses

All bioinformatics analyses were performed by R software version
4.1.0 (The R Project for Statistical Computing, Vienna, Austria). The
Spearman’s correlation analysis analyzed the correlation between the
Ψ-related regulators and lncRNAs. The “survival” package carried out
KM survival analysis, and the “survminer” package performed Cox
regression analysis. GraphPad Prism 7.0 (GraphPad, La Jolla, CA,
United States) analyzed the results of RT-qPCR and CCK-8 cell
viability assays. We displayed all statistical results in mean ± SD
(standard deviation) with a two-sided test and regarded the results
with a p-value of less than .05 as statistically significant.

3 Results

3.1 The landscape of pseudouridylation-
related modulators in PCa

The workflow diagram is displayed in Figure 1. Initially, a
pseudouridylation-related gene list (PUS1, RPUSD3, TRUB1, PUS3,
RPUSD4, RPUSD2, PUS10, PUS7, PUSL1, PUS7L, RPUSD1, DKC1,
and TRUB2) was generated via literature mining, and then their
expression profiling in the TCGA dataset for prostate
adenocarcinoma (TCGA-PRAD) was investigated. As shown in
Figure 2A, most of the pseudouridylation-related molecules (8 out
of 13) were significantly upregulated in tumor samples (n = 492)
compared to normal ones (n = 52). Then the CNV (copy number
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variation) mutation data in these genes was examined (Figure 2B).
Notably, CNV depletion exists in the majority of them (PUS1,
RPUSD3, TRUB1, PUS3, RPUSD4, RPUSD2, PUS10, PUS7,
PUSL1, and PUS7L), whereas CNV amplification is prevalent in
three of them (RPUSD1, DKC1, and TRUB2). Moreover, Figure 2C
depicted the locations of these genes with CNV mutations on
chromosomes. In line with this, the somatic mutations of these
molecules in PCa were determined using an R package called
“maftools.” As a result, only 8 (1.62%) of 495 samples experienced
genetic mutations of these genes (Figure 2D). The missense mutation
accounts for a giant proportion, followed by multi-hit mutation, in-
frame deletion, frame-shift deletion, and splice-site mutation.

3.2 Establishment of the prognostic model
with pseudouridylation-related LncRNAs and
its association with clinical characteristics
in PCa

The expression profile of all lncRNAs in TCGA-PRAD was
extracted to ascertain the lncRNAs associated with
pseudouridylation in PCa. Spearman’s correlation analysis then
defined the pseudouridylation-related lncRNAs as ones whose
correlation coefficients exceed |.4| with a p-value less than .05.
Consequently, we obtained 265 pseudouridylation-related lncRNAs
(Supplementary Table S1). Next, univariate Cox proportional hazards
regression was applied to figure out which lncRNAs presented
prognostic value in PCa among these 266 lncRNAs. Consequently,
100 out of 265 lncRNAs appeared to be the prognostic ones
(Supplementary Table S2). Subsequently, using the
createDataPartition function in R, the TCGA-PRAD dataset with
460 samples were divided into two balanced subsets: one training
subset and one testing subset, both of which contained 230 patients,
respectively. In the training set, the LASSO regression with ten-fold
cross validation and penalty was applied to determine the most
appropriate prognostic model, using the 100 pseudouridylation-
related lncRNAs above (Supplementary Figure S1A). And finally, a
five-gene model was considered the most suitable one based on the
LASSO results (Supplementary Figure S1B). Following that, the
relationship between clinical characteristics and the expression of
the five molecules was revealed in the form of a heatmap. Patients
with high expression of RP11-468E2.5 (ENSG00000259321) tended to
experience advanced T stage, high Gleason scores (GS), BCR, and
lymph node metastasis (Supplementary Figure S1C). To further
confirm our preliminary discovery, the samples were separated into
several binary subgroups based on the GS (GS <= 7; GS > 7), N stage
(N0; N1), T stage (T1/2; T3/4), etc. (Supplementary Figure S2). To
begin with, patients with GS > 7 expressed more RP11-468E2.5 than
those with GS <= 7 (p < .001); in contrast, patients with GS >
7 expressed the other four lncRNAs less (Supplementary Figure
S2B). Aside from GS, patients in the N-stage and T-stage
subgroups had the same expression patterns for RP11-468E2.5 (p <
.05) and the other four lncRNAs (Supplementary Figures S2C,D). Next
ten pairs of samples from local patients with PCa or benign prostatic
hyperplasia (BPH) corroborated the difference in expression of these
five lncRNAs between tumor (n = 10) and benign tissues (n = 10)
(Supplementary Figure S2E). The expression disparity of four
lncRNAs except for LINC02688 between tumor and benign
prostate tissues was consistent with the findings above.

3.3 Performance and validation of the
predictive model with the pseudouridylation-
related LncRNAs

After generating the predictive model, Spearman’s correlation
analysis confirmed the association between the 13 pseudouridylation-
related genes and the five pseudouridylation-related lncRNAs and it was
presented in the form of a correlation heatmap; generally, a strong
correlation showed up between these two subgroups of genes
(Figure 3A). Given the LASSO results, a scoring formula based on the
weighted expressions of the five chosen genes for scoring every PCa
patient’s prognosis was determined and named the “Ψ-lnc score.” The
weighted coefficients for each lncRNA were also displayed in a histogram
(Figure 3B). In addition, univariate Cox regression analysis confirmed the
prognostic value of these lncRNAs, and then the results were exhibited in
a forest plot (Figure 3C). Notably, RP11-468E2.5 appeared to be the only
risk factor with a hazard ratio (HR) of 2.36 (CI: 1.723–3.232), whereas the
others were all protective variables. Subsequently, KM survival curve
analysis were introduced to confirm the effects of their expression on PCa
prognosis (Supplementary Figures S3A–E). Consistent with the results
above, patients with high expression of RP11-468E2.5 had unfavorable
BCR-free survival (p < .001); in contrast, patients with high expression of
each of the other four lncRNAs experienced better BCR-free
survival (p < .05).

Initially, every patient in the training subset was scored using the
formula mentioned above; then, the median score served as the cutoff
point to define the high-score and low-score groups inside the training
subset. Consequently, Figure 3D depicts the distribution of the Ψ-lnc
score, BCR status, expression of the five genes for two subgroups, and
the survival analysis. Graphically, more patients who experienced BCR
and showed highly-expressed RP11-468E2.5 were in the high-score
group than those in the low-score group. In terms of survival, patients in
the high-score group had a lower rate of BCR-free survival than those in
the low-score group (p < .0001). Following that, ROC analysis was
employed to draw the 1-year, 3-year, and 5-year ROC curves, calculating
the corresponding AUCs to scrutinize the model’s clinically predictive
capability (Figure 3E). Remarkably, the five-gene predictive approach
showed promise in predicting BCR prognosis in PCa patients (1-year
AUC = .815; 3-year AUC = .804; 5-year AUC = .833). In parallel, a
multivariate ROC analysis confirmed the feasibility of the model in
clinical practice. Compared with some clinical traits like preoperative
PSA, age at diagnosis, GS and T stage in BCR prognosis, theΨ-lnc score
outperformed them with its AUC ranking first (.744; AUCGS = .671,
AUCPSA = .659, AUCT stage = .659, AUCAge = .516). Additionally, two
Cox regression models (the univariate and multivariate ones) were
employed to investigate the clinical value of Ψ-lnc score and the
aforementioned clinicopathological features (Supplementary Figure
S4). Consequently, Ψ-lnc score surpassed all other features with
the highest HR both in univariate and multivariate Cox regression
analysis.

Likewise, the established model was then internally validated with
the TCGA-PRAD testing subset. After separating the testing subset
into the high-score and low-score groups based on the median Ψ-lnc
score, the analyses above were repeated to verify the model’s
authenticity. Figure 4A displays the Ψ-lnc score distribution, BCR
status, and gene expression profiles in the two groups. Figure 4B shows
that patients in the low-score group yielded more favorable BCR-free
survival outcomes than those in the high-score group (p < .0001),
consistent with the previous results. In terms of predictive power, the
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model’s 12-month, 36-month, and 60-month AUCs in the testing
subset are .637, .715, and .775, respectively, harboring considerable
outcomes (Figure 4C). Finally, the GSE54460 dataset was introduced
to inspect the model’s external validity (Figures 4D,E). Patients in the
high-score and low-score groups showed a significant difference in
BCR-free survival; high-score patients yielded worse outcomes than
low-score ones.

3.4 Construction of the potential competing
endogenous RNA network and functional
enrichment analysis

Following a preliminary examination of the predictive model’s
performance, attention was drawn to the molecular functions that
these genes may possess. It is well known that lncRNAs are likely

FIGURE 1
The overall design and the flowchart of the study.
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involved in the ceRNA network to exert their effects. Thus, the
processed expression data from the TCGA-PRAD dataset was
utilized to explore the potential ceRNA network with the help of
an R package called “GDCRNAtools.” Given the results, all
the lncRNA-miRNA-mRNA pairs with their p-values and
correlation coefficients were obtained. The pairs
above were then filtered under the inclusive conditions (p <
.05 and |correlation coefficients| > .4) to form the ceRNA network.

As a result, a ceRNA network of 754 molecules (5 lncRNAs,
121 microRNAs, and 628 mRNAs) was identified and then
visualized using the software “Cytoscape” (Figure 5). Red circles
indicate the five lncRNAs, yellow lozenges represent the
121 microRNAs, and blue rectangles represent the 628 mRNAs in
the diagram. Detailed links among these three elements are available in
Supplementary Table S3. Later, the 628 mRNAs were put into
functional enrichment analysis to further investigate their potential

FIGURE 2
The landscape of Ψ-related regulators on expression, mutation, and chromosome location in PCa. (A) The differences of gene expression of the 13 Ψ-
related regulators between tumor tissues and adjacent normal tissues in the TCGA-PRAD cohort. Ns, no significance; **p < .01; ***p < .001; ****p < .0001. (B)
The CNV frequency diagram of the 13 Ψ-related regulators. The two endpoints of each column correspond to two CNV values of a specific Ψ-related gene,
with a blue point representing the depletion (Loss) frequency and a pink point denoting the amplification (Gain) frequency, respectively. (C) The exact
mutation locations of the 13 Ψ-related regulators on chromosomes. (D) Eight of 495 (1.62%) PCa patients appeared genetic alterations in the 13 Ψ-related
regulators, most of which were missense mutations. The percentages (0%) on the right indicate the mutation frequencies of each Ψ-related regulator,
respectively. Each column represents an Ψ gene-mutated individual.
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roles in biological processes. And the website tool called “Sangerbox
3.0” was applied to carry out the enrichment analyses, revealing the
gene ontology (GO) terms and KEGG (Kyoto Encyclopedia of Genes
and Genomes) pathways highly related to these genes. The GO terms
with p < .05 and FDR (false discovery rate) < .25 were considered
significant; the KEGG pathways with p < .05 were also considered
meaningful. On the one hand, the top 10 GO terms from each of the

three categories (BP, Biological Process; CC, Cellular Component; MF,
Molecular Function) were chosen to exhibit in Figures 6A,B. In
particular, attention was paid to the underlying biological
processes. The top 10 GO terms in BP are regulation of alkaline
phosphatase activity (GO:0010692), pigmentation (GO:0043473),
positive regulation of alkaline phosphatase activity (GO:0010694),
endosomal transport (GO:0016197), cell-substrate junction

FIGURE 3
Construction of the prognostic model with Ψ-related lncRNAs. (A) The heatmap demonstrates the correlation between the 13 Ψ genes and the five
lncRNAs included in the model. *p < .05; **p < .01; ***p < .001. (B) The coefficients of each selected lncRNA in the Ψ-lnc scoring formula. (C) The forest plot
shows the univariate Cox regression results of the five lncRNAs. (D) The first diagram depicts PCa patients’ profiles on three aspects, Ψ-lnc score, BCR status,
and the five genes’ expression levels, in the TCGA training subset. The second one shows the Kaplan-Meier BCR survival analysis between two Ψ-lnc
score subgroups in the training subset. (E) The ROC curves show the accuracy of the Ψ-lnc score in predicting BCR-free survival, and the Ψ-lnc score
outperforms other clinical indicators.
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assembly (GO:0007044), positive regulation of pseudopodium
assembly (GO:0031274), response to cadmium ion (GO:0046686),
atrial septum development (GO:0003283), regulation of
pseudopodium assembly (GO:0031272), and adherens junction
assembly (GO:0034333). On the other hand, the top 10 KEGG
pathways were also displayed in the form of a ring plot as shown
in Figure 6C, including axon guidance (hsa04360), dilated
cardiomyopathy (DCM) (hsa05414), phosphonate and phosphinate
metabolism (hsa00440), 2-oxocarboxylic acid metabolism (hsa01210),
hypertrophic cardiomyopathy (HCM) (hsa05410), TGF-beta
signaling pathway (hsa04350), necroptosis (hsa04217), regulation of
actin cytoskeleton (hsa04810), sulfur relay system (hsa04122), and
glutathione metabolism (hsa00480). The complete information about
the GO and KEGG analyses is in Supplementary Table S4.

3.5 Pan-cancer analysis and experimental
validation of RP11-468E2.5’s effects on PCa

RP11-468E2.5 was the only risk factor with an HR of 1.86 in the
established model (Figure 3C), indicating its cancer-promoting effects,
so we decided to study its role in cancer, especially PCa, further. At the
beginning, a pan-cancer analysis was performed to explore the
relationship between its expression and tissue type (normal, tumor)
and between its expression and cancer prognosis. Sangerbox 3.0 was
used with TCGA data to determine the expression difference of RP11-
468E2.5 between tumor-adjacent and tumor samples in each type of
tumor, and unpaired Wilcoxon Rank Sum and Signed Rank Tests was
implemented to analyze the significance of the difference.
Consequently, RP11-468E2.5 is up-regulated significantly (p < .05)

FIGURE 4
Validation of the prognostic model with Ψ-related lncRNAs. (A) The PCa patients’ profiles on three aspects, Ψ-lnc score, BCR status, and the five genes’
expression levels, in the TCGA testing subset. (B) The Kaplan-Meier BCR survival analysis between two Ψ-lnc score subgroups in the testing subset. (C) The
ROC curves show the accuracy of theΨ-lnc score in predicting BCR-free survival. (D) The PCa patients’ profiles on three aspects,Ψ-lnc score, BCR status, and
the five genes’ expression levels, in the GSE54460 validating dataset. (E) The Kaplan-Meier BCR survival analysis between two Ψ-lnc score subgroups in
the GSE54460 validating dataset.
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in fourteen types of tumors such as PRAD, LUAD (Lung
adenocarcinoma), COAD (Colon adenocarcinoma), COADREAD
(Colon adenocarcinoma/Rectum adenocarcinoma), ESCA
(Esophageal carcinoma), STES (Stomach and Esophageal
carcinoma), KIRP (Kidney renal papillary cell carcinoma), KIRC
(Kidney renal clear cell carcinoma), KIPAN (Pan-kidney cohort;
KICH, Kidney Chromophobe; KIRC; KIRP), STAD (Stomach
adenocarcinoma), HNSC(Head and Neck squamous cell
carcinoma), LIHC (Liver hepatocellular carcinoma), BLCA (Bladder
urothelial carcinoma), and CHOL (Cholangiocarcinoma), as shown in
Supplementary Figure S5A. Next, the Cox proportional hazards
regression model analyzed the relationship between RP11-468E2.5’s
expression and the prognosis of each tumor, one by one. Then the Log-
rank test was run to obtain prognostic significance. Finally, the high
expression of RP11-468E2.5 in the three types of tumors (PRAD;
LUSC, Lung squamous cell carcinoma; ACC, Adrenocortical
carcinoma) shows a poor prognosis while the low expression level
of RP11-468E2.5 in another four types of tumors (PAAD, Pancreatic
adenocarcinoma; SKCM, Skin Cutaneous Melanoma; BLCA; READ)
indicates a poor prognosis (Supplementary Figure S5B). Therefore,
RP11-468E2.5 is upregulated generally in tumors and its expression
demonstrates dual effects on cancer patients’ prognosis.

Then experiments were performed to confirm RP11-468E2.5’s
role in PCa. To begin with, detailed information on RP11-
468E2.5 was scrutinized (Figure 7A). RP11-468E2.5 is a lncRNA
of 1,000 bp, located on Chromosome 14: 24,139,445–24,140,444.
The basal expression of RP11-468E2.5 was checked in six PCa cell
lines and one normal prostate cell line (Figure 7B). As a result,

RP11-468E2.5 is highly-expressed in four out of six PCa cell lines
(LNCaP, C4-2, C4-2B, and 22Rv1) compared to the normal prostate
cell line, BPH-1. Thus, two cell lines with the highest expression
levels of RP11-468E2.5, LNCaP and C4-2B, were selected for
further research. As shown in Figure 7C, three si-RNAs (si-62,
si-122, and si-339) were designed to interrupt the expression of
RP11-468E2.5 in LNCaP and C4-2B; however, only si-62 and si-122
silenced RP11-468E2.5 significantly, compared to the control
group, si-NC. Fluorescence in situ hybridization (FISH) assays
showed that RP11-468E2.5 mainly exists in the cytoplasmic part
of LNCaP and C4-2B cell lines (Figure 7D). Furthermore, its
subcellular localization was confirmed in tissues collected from
patients with PCa or BPH (Figure 7E). Consistent with our previous
findings, RP11-468E2.5 appears highly expressed in the tumor
tissue compared to benign prostate tissue. Then the CCK-8
assay examined whether the two RP11-468E2.5-silenced cell
lines’ proliferative ability was attenuated. After the 5-day
observation, silencing RP11-468E2.5 slowed PCa cells’
proliferation significantly (Figure 7F). In another aspect, plate
colony formation assay was performed to investigate the
influence of knocking down RP11-468E2.5 on PCa cells’
proliferation ability. Consequently, knock-down of RP11-
468E2.5 imposed an attenuative effect on PCa cell viability, too
(Figure 7G). The transwell assay demonstrated the decreased
invasiveness of PCa cells after downregulating RP11-468E2.5
(Figure 7H). Silencing RP11-468E2.5 hindered PCa cells’
invasive ability. Taken together, RP11-468E2.5 was preliminarily
confirmed to act as a promoting factor in the development of PCa.

3.6 Functional enrichment analysis for RP11-
468E2.5

In spite of RP11-468E2.5’s cancer-promoting effects on PCa, the
underlying mechanism remains opaque. Thus, RP11-468E2.5 and its
top 1,000 similar genes (Supplementary Table S5) obtained from the
website GEPIA2 were used to perform functional enrichment
analysis. Likewise, the GO terms with p < .05 (FDR <.25) and the
KEGG pathways with p < .05 were considered significant. Figure 8
exhibited the 10 GO terms (except for the MF category) and the top
eight KEGG pathways. Specifically, the GO terms in the biological
process category are as follow: RNA splicing (GO:0008380), mRNA
processing (GO:0006397), RNA processing (GO:0006396), RNA
splicing, via transesterification reactions with bulged adenosine as
nucleophile (GO:0000377), mRNA splicing, via spliceosome (GO:
0000398), RNA splicing, via transesterification reactions (GO:
0000375), mRNA metabolic process (GO:0016071), cellular
response to DNA damage stimulus (GO:0006974), mRNA export
from nucleus (GO:0006406), and mRNA-containing
ribonucleoprotein complex export from nucleus (GO:0071427).
And the top eight KEGG pathways are as foloow: mRNA
surveillance pathway (hsa03015), Spliceosome (hsa03040), Ether
lipid metabolism (hsa00565), Fanconi anemia pathway
(hsa03460), Base excision repair (hsa03410), Other glycan
degradation (hsa00511), Glycerophospholipid metabolism
(hsa00564), and alpha-Linolenic acid metabolism (hsa00592).
These results may shed some light on the RP11-468E2.5’s
molecular functions. Detailed information about the functional
enrichment results is in Supplementary Table S6.

FIGURE 5
The ceRNA network of five lncRNAs with potential miRNAs and
mRNAs.
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4 Discussion

The “central dogma” has become the consensus in molecular
biology for a drastically long period; The biological diversity all comes
from the changes in the nucleotide sequences in DNA/RNA and the
64 codons together to determine the amino acid sequences (Boriack-
Sjodin et al., 2018). With techniques for sequencing RNA and DNA
pioneered by Fred Sanger in the 1960s and 1970s (Brownlee et al.,

1967; Sanger et al., 1977), scientists have been gradually gaining access
to the biological details inside these macromolecules. Simultaneously,
the effects of chemical modifications to DNA and post-translational
modifications to proteins on gene regulation and cancer biology have
gained incredible attention in the research community (Esteller, 2007;
Chen et al., 2017). Despite this, our understanding of an intermediate
layer of regulation between DNA and proteins is still relatively limited.
As numerous RNA modifications have come to light, they collectively

FIGURE 6
The functional enrichment analysis of 628mRNAs in the ceRNA network. (A,B) The diagrams show the top 10 terms in three parts (BP, CC, and MF) of the
GO analysis. (C) The top 10 pathways in the KEGG analysis.
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constitute the concept of “epitranscriptome” (Saletore et al., 2012).
These modifications regulate almost every aspect of RNA, such as
splicing, nuclear export, translation, degradation, and so on (Gilbert

et al., 2016; Peer et al., 2017). It is becoming clear that RNA
functioning depends on RNA modifications greatly. And with the
dysregulation of RNA epigenetic processes come common human

FIGURE 7
Experimental validation of RP11-468E2.5’s cancer-promoting effects on PCa. (A) The gene information of RP11-468E2.5. (B) The basal expressions of
RP11-468E2.5 in six PCa cell lines and one normal prostate cell line (BPH-1). (C) The gene-silencing efficiencies of three siRNAs in LNCaP and C4-2B PCa cell
lines. (D) The fluorescence in situ hybridization (FISH) assays illustrated that RP11-468E2.5 mainly exists in the cytoplasmic part of LNCaP and C4-2B cell lines.
(E) FISH assays confirmed that RP11-468E2.5 is highly expressed in tumor tissue compared to benign prostate tissue. (F) The proliferation (CCK-8) assays
showed silencing RP11-468E2.5 compromised cell viability in LNCaP and C4-2B cell lines. (G) The plate colony formation assays demonstrated
downregulating RP11-468E2.5 attenuated cell viability in LNCaP and C4-2B cell lines. (H) The transwell assay showed silencing RP11-468E2.5 hampered PCa
cells’ invasiveness.
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diseases, including cancer (Esteller and Pandolfi, 2017; Barbieri and
Kouzarides, 2020). Pseudouridylation is one kind of cancer-associated
internal RNA modification but is still rarely investigated in the cancer
field compared to two notable ones, m6A, and m5C chemical
modifications (Esteller and Pandolfi, 2017; Barbieri and Kouzarides,
2020; Nombela et al., 2021). Pseudouridylation is reportedly the most
abundant modification in ncRNAs, and previous studies confirmed its
existence in tRNA, rRNA, and snoRNAs. But with the birth of various

Ψ-Seq techniques, pseudouridine was also observed in lncRNAs such
as XIST and MALAT1, and among ncRNAs, lncRNAs possess the
highest abundance of pseudouridine (Li et al., 2015; Esteller and
Pandolfi, 2017). How pseudouridylation impacts cancer through
modulating lncRNA remains to be elucidated.

PCa is responsible for 7% of newly diagnosed malignancies in males
worldwide (2021). According to the GLOBOCAN 2020 estimates, Asia
accounted for 26.2% of the global PCa incidence rate and 32.1% of its

FIGURE 8
The functional enrichment analysis of a gene set including RP11-468E2.5 and its similar genes. (A) The diagrams show the top 10 terms in three parts (BP,
CC, and MF) of the GO analysis. (B) The top eight pathways in the KEGG analysis.
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mortality rate in 2020 (Sung et al., 2021). PCa is becoming an unaffordable
health issue and an economic burden for the public, even in low-
incidence-rate areas like Asia. And indeed, a deeper understanding of
PCa is urgent for improving prognosis prediction and offering therapeutic
vision. From the academic standpoint, no research on pseudouridine-
modified lncRNAs affecting PCa’s carcinogenesis or progression has
existed. Therefore, we aim to reveal some details about this novel
topic with bioinformatics and preliminary experiments.

Initially, 13 pseudouridine-related modulators (DKC1, PUS1, PUS7,
PUS10, TRUB1, TRUB2, PUSL1, RPUSD4, RPUSD3, RPUSD1,
RPUSD2, PUS3, and PUS7L) were confirmed for further analysis
(Penzo et al., 2017). Next, pseudouridine-related lncRNAs in PCa
were identified by performing Spearman’s correlation analysis between
the Ψ-related genes and all lncRNAs in the TCGA-PRAD dataset. And a
five-pseudouridine-related lncRNA scoring signature for predicting BCR
survival in PCa, named “Ψ-lnc score”, was developed by the LASSO
approach (Tibshirani, 1996), given that LASSO is broadly introduced to
the Cox proportional hazard regression model for survival analysis in the
bioscience arena (Tibshirani, 1997; Zhang and Lu, 2007). The LASSO
method generated a scoring formula based on the expression levels of the
five selected genes, of which RP11-468E2.5 tends to be a risk factor, and
the other four (GAS1RR, RP11-400K9.4, RP11-400K9.3, and LINC02688)
serve as favorable ones.

RP11-468E2.5 is a lncRNA with a length of 1,000 nucleotides,
and its influences on cancer are poorly understood. To date, only
one study showed that RP11-468E2.5 could negatively target
STAT5 and STAT6 to affect the JAK/STAT signaling pathway
indirectly (Darnell et al., 1994; Leonard and O’Shea, 1998).
Upregulating RP11-468E2.5 curtails the JAK/STAT signaling
pathway by targeting two molecules, STAT5 and STAT6, and
finally attenuates cell proliferation but boosts cell apoptosis in
colorectal cancer (Jiang et al., 2019). However, how RP11-
468E2.5 regulates STAT5 and STAT6 negatively remains to be
elucidated. In contrast, LINC02688, one of the protective
indicators in the constructed model, stays more poorly studied.
Only one study unprecedentedly revealed that LINC02688 was
expressed less in gastric cancer (GC) tissues compared to paired
adjacent normal tissues, and its expression further decreased when
GC developed into an advanced one (Fattahi et al., 2021).
Additionally, it preliminarily showed considerable prognostic
power in GC based on the AUC values of the ROC curve.
Nevertheless, more rigorous studies with more clinical samples
of different types of cancers and populations from different
genetic backgrounds are necessary to explore the exact role of
LINC02688 in cancer progression. Lastly, the other three novel
lncRNAs haven’t unveiled their roles in cancer yet.

After the model construction, the predictive accuracy of Ψ-lnc score
was then inspected using KM survival analysis and uni-/multi-variate
time-dependent ROC analysis (Heagerty et al., 2000). As a result, Ψ-lnc
score appeared to be a satisfactory indicator with the highest AUC value,
outperforming typical clinicopathological parameters such as PSA, GS,
pathological T stage, and so forth. Subsequently, a dataset (GSE54460)
was introduced for the model’s external validation; the outcomes were
consistent with the previous ones.

Increasing studies demonstrate that lncRNAs that harbor MREs
(miRNA-response elements) come up as natural miRNA decoys
(Karreth and Pandolfi, 2013). And they are bioinformatically
presumed to be broad miRNA targets, suggesting their functioning as
ceRNAs (competitive endogenous RNAs) (Griffiths-Jones et al., 2008;

Paraskevopoulou et al., 2013). With the ceRNA hypothesis, we asked
whether these five lncRNAs in the predictive model work as ceRNAs via
the R package “GDCRNAtools” and consequently obtained an interactive
ceRNA network. To better understand the ceRNA network’s functions,
functional annotation analysis (GO analysis and KEGGpathway analysis)
was performed. As mentioned before, RP11-468E2.5 was the only risk
factor with the highest coefficient in the scoring formula, suggesting its
dominant role in the model. Given the pan-cancer analysis, RP11-
468E2.5 is highly-expressed (p < .05) in fourteen types of tumors,
including PCa, compared to their correspondent normal tissues.
Additionally, its expression exerts tumor-suppressing or cancer-
promoting effects on seven kinds of malignancies. Then in vitro
experiments were implemented to validate its oncogenic role, and
consistent results were found in cell proliferation assays in two PCa
cell lines (C4-2B and LNCaP). Furthermore, its molecular functions were
annotated bioinformatically; annotation analysis using RP11-468E2.5 and
its 1,000 similar genes showed it might be involved in the RNA splicing
process.

The current study has its limitations, too. Firstly, more public
datasets are necessary for better external validation of the established
model. Secondly, more advanced experimental validation of RP11-
468E2.5 is meaningful for inspecting its molecular functions for the
sake of novel pseudouridine-related biomarker development. In
aggregate, the constructed model still has a long way to go before
it comes into practice.

5 Conclusion

A predictive model containing pseudouridine-related lncRNAs was
created to forecast BCR survival probabilities for PCa patients and
validated internally and externally. Furthermore, preliminary
experiments were performed to validate the cancer-promoting effects
of the dominant lncRNA, RP11-468E2.5, in the model. This work sheds
some insight into the influence of non-coding RNA modifications on
PCa. Still, in-depth studies need to explore how the novel modification,
pseudouridylation, functions in the cancer arena.
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Glossary

PCa prostate cancer

RP radical prostatectomy

RT radiation therapy

BCR biochemical recurrence

PSA prostate-specific antigen

ncRNA non-coding RNA

lncRNA long non-coding RNA

m7G 7-methylguanosine

m6A N6-methyladenosine

m1A N1-methyladenosine

m5C 5-methylcytosine

ψ pseudouridylation/pseudouridine

MALAT1 metastasis-associated lung adenocarcinoma transcript 1

XIST X-inactive specific transcript

TERC telomerase RNA component

SNHG1 small nucleolar RNA host gene 1

ZFAS1 zinc finger anti-sense 1

TCGA the cancer genome atlas project

TCGA-PRAD TCGAdataset for prostate adenocarcinoma (TCGA-PRAD)

GEO gene expression omnibus

FPKM fragments per kilobase million

TPM transcript per million

LASSO least absolute shrinkage and selection operator

KM Kaplan-Meier

ROC receiver operating characteristic

AUC area under the curve

ceRNA competitive endogenous RNA

GAPDH glyceraldehyde 3-phosphate dehydrogenase

CCK-8 cell counting kit-8

CNV copy number variation

GS Gleason score

BPH benign prostatic hyperplasia

HR hazard ratio

GO gene ontology

KEGG Kyoto encyclopedia of genes and genomes

BP biological process

CC cellular component

MF molecular function

FISH fluorescence in situ hybridization

GC gastric cancer

MRE MiRNA-response element
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YAP-mediated
mechanotransduction in urinary
bladder remodeling: Based on
RNA-seq and CUT&Tag

Xingpeng Di1†, Liyuan Xiang1,2† and Zhongyu Jian1*
1Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital,
Sichuan University, Chengdu, Sichuan, China, 2Department of Clinical Research Management, West China
Hospital, Sichuan University, Chengdu, Sichuan, China

Yes-associated protein (YAP) is an important transcriptional coactivator binding to
transcriptional factors that engage in many downstream gene transcription. Partial
bladder outlet obstruction (pBOO) causes a massive burden to patients and finally
leads to bladder fibrosis. Several cell types engage in the pBOOpathological process,
including urothelial cells, smoothmuscle cells, and fibroblasts. To clarify the function
of YAP in bladder fibrosis, we performed the RNA-seq and CUT&Tag of the bladder
smooth muscle cell to analyze the YAP ablation of human bladder smooth muscle
cells (hBdSMCs) and immunoprecipitation of YAP. 141 differentially expressed genes
(DEGs) were identified through RNA-seq between YAP-knockdown and nature
control. After matching with the results of CUT&Tag, 36 genes were regulated
directly by YAP. Then we identified the hub genes in the DEGs, including CDCA5,
CENPA, DTL, NCAPH, and NEIL3, that contribute to cell proliferation. Thus, our study
provides a regulatory network of YAP in smooth muscle proliferation. The possible
effects of YAP on hBdSMC might be a vital target for pBOO-associated bladder
fibrosis.

KEYWORDS

RNA-seq, CUT&Tag, YAP, bladder remodeling, mechanotransduction, fibrosis

Introduction

Fibrosis are characterized by excessive proliferation and transformation of fibroblast and
extracellular matrix (ECM) deposition. The annual incidence of fibrotic diseases is 4,968 per
100,000 person-years, resulting in a severe burden on patients (Zhao et al., 2020). Fibrotic
diseases include multiple organs, such as the liver, kidney, heart, lung, and urinary bladder
(Henderson et al., 2020). Moreover, the abnormal activation of myofibroblast triggered by
transforming growth factor, platelet-derived growth factor, and fibroblast growth factor is
identified as a major alteration in fibrosis (Zhao et al., 2022). Hence, a large number of patients
suffer from fibrotic diseases that need more effective therapies indeed.

The fibrotic process is initiated by tissue injury. Moderate injury often leads to a tissue
repair process. In contrast, severe or long-term wound-healing strategies can cause fibrotic
changes to tissue and organ. The etiologies vary in different situations, including hypertension,
myocardial infarction, acute or chronic infection, diabetes, alcohol damage, radiation, and
others (Rockey et al., 2015). In the urological system, fibrotic processes are triggered in the
kidney, ureter, and urinary bladder. Bladder fibrosis is often caused by partial bladder outlet
obstruction (pBOO), cystitis, and radiation (Di et al., 2022). We have investigated that
mechanical cues in pBOO, including hydrostatic pressure, fluid shear stress, stretching
force, and ECM stiffness, activate the bladder fibrosis process.
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Yes-associated protein (YAP) has long been recognized as an
intracellular mechanical transducer (Dupont et al., 2011). As an
important transcriptional co-activator, YAP is also a crucial
downstream effector of the Hippo signaling pathway (Moya and
Halder, 2019). YAP can respond to cell geometry, density, and
substrate adhesion to promote the progression of fibrotic diseases.
YAP has been commonly identified in cell renewal, cell differentiation,
epithelial-to-mesenchymal transition, and fibrosis (Tang et al., 2013;
Ohgushi et al., 2015; Lin et al., 2018). In addition, YAP has been
investigated in many mechanical cues-induced organ remodeling,
such as atherosclerosis (Wang et al., 2016), orthodontic tooth
movement (Deng et al., 2021), nerve regeneration (Li et al., 2021),
and others.

YAP can sense the change of stretch and ECM stiffness in the
urinary bladder to promote downstream gene expression. Besides
ECM deposition, bladder smooth muscle proliferation is an important
pathological change in the compensatory stage of bladder fibrosis (Lai
et al., 2019; Chen et al., 2020). Therefore, an RNA transcriptome
sequencing (RNA-seq) of YAP-knockdown (YAP-KD) and YAP
CUT&Tag of human bladder smooth muscle cell (hBdSMC) were
performed to investigate the key genes and regulatory network of
smooth muscle proliferation in bladder fibrosis. Chromatin
immunoprecipitation sequencing (ChIP-seq) is used to study
transcriptional factors and target DNA. The prediction through
DNA segments indicates the interaction between transcriptional
factors and downstream molecules. The CUT&Tag is an
improved ChIP-seq with higher quality and can be conducted
with only 105 cells (Kaya-Okur et al., 2019). In fibrosis research,
we aim to provide novel insights into YAP-associated smooth
muscle proliferation.

Materials and methods

Cell line and cell culture

hBdSMCs cell line was purchased from ScienCell, United States
(Cat No.4310), which was cultured with SMCMmedium (ScienCell,
United States, Cat No.1102) with fetal bovine serum (10%),
streptomycin (100 μg/mL), penicillin (100 U/mL), and growth
factor.

YAP adeno-associated virus (AAV) infection

For YAP knocking down, YAP-AAV with short hairpin RNAs
(shRNAs) was obtained from GeneChem (Shanghai). Cells were
infected by AAV and vector at a multiplicity of infection of 100 for
8 hours with minimal toxicity.

CUT&Tag sequencing

CUT&Tag sequencing was performed to analyze target genes of
YAP. The sequencing technology was supported by Jiayin Biomedical
Technology, Shanghai. The Raw Reads were sheltered by
Trimmomatic software for Clean Reads (Bolger et al., 2014). Q20,
Q30, and GC content parameters were used to assess the data quality
(Supplementary Table S1).

RNA sequencing

Transcriptome sequencing and analysis between the control and
YAP-KD group was carried out with the assistance of Bioprofile,
Shanghai. Total RNA was extracted with a standard protocol of
RaPure Total RNA Kit (Magen, Guangzhou, Cat No. R4011-02).
Q20, Q30, and GC content parameters were used to assess the data
quality (Supplementary Table S1).

Data analysis

The differentially expressed genes (DEGs) were clarified with the
standard of adjusted p < 0.05, |log2FoldChange| ≥ 1. We intersected
CUT&Tag sequencing with RNA-seq to obtain the common DEGs in
both two sequencing for further analysis. To identify the function of
DEGs, GO enrichment analysis and KEGG pathway enrichment
analysis were performed with R package clusterProfiler (The R
foundation; http://r-project.org; version, 4.2, United States). The
protein-protein interactive (PPI) analysis of all DEGs was
conducted with STRING (https://cn.string-db.org). The motif
matching was performed with HOMOR software. Cytoscape
software (version 3.9.1, JAVA version 11.0.6) was used to select
hub genes.

Results

RNA-seq analysis of total DEGs for YAP-KD
hBdSMC

To investigate whether YAP can regulate hBdSMC proliferation in
bladder fibrosis, RNA-seq on the YAP-KD and nature control (NC)
group with three duplicates. The results of RNA-seq indicated
141 DEGs in total, including 68 up-regulated DEGs and 73 down-
regulated DEGs, which were presented in the heatmap and a volcano
plot (Figures 1A, B). The top5 up-regulated and down-regulated DEGs
were listed separately in Table1. To identify the function of DEGs,
KEGG enrichment analysis was performed in Figure 1C showed that
YAP regulated cell cycle and base excision repair pathways in
hBdSMC. GO enrichment analysis was performed using all
141 DEGs. The results demonstrated that YAP engaged in DNA
structure binding, meiotic cell cycle, recombination, and other
proliferation-related cellular functions (Figure 1D). According to
the DEGs acquired from RNA-seq, PPI analysis showed the
interactions between proteins (Figure 1E).

The down-regulated DEGs regulatory
network and gene functions

Apart from the analysis of total DEGs, we further analyzed up-
regulated and down-regulated DEGs separately. Unfortunatey, we
did not enrich enough function and signaling pathways in up-
regulated genes via GO and KEGG analyses. Hence, we focused
on down-regulated genes along with YAP-KD functions most in cell
biology. GO results showed that YAP promoted the cell cycle, DNA
binding, and TGFβ binding process (Figure 2A). KEGG results
indicated that the DEGs enriched in base excision repair and cell
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process pathway (Figure 2B). The PPI network identified the
interactions between down-regulated proteins (Figure 2C). The
Maximum Climate Centrality (MCC) method was used to shelter

the hub genes (Chin et al., 2014); the top five hub genes were
RAD51AP1, CDCA5, EXO1, MCM10, and NCAPH, shown in
Figure 2D; Supplementary Table S2.

FIGURE 1
RNA-seq analysis of total DEGs for YAP-KD hBdSMC. (A). The heatmap of YAP-KD and NC hBdSMCs. (B). The volcano plot of DEGs. (C). KEGG analysis of
DEGs. (D). GO analysis of DEGs. (E). The PPI network of DEGs. hBdSMC: human bladder smooth muscle cell; KD: knock-down, NC: nature control, DEG:
differentially expressed genes, PPI: protein-protein interaction.
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CUT&Tag sequencing analysis

As YAP is identified as a transcriptional co-activator, it plays an
important role in the transcription regulatory process. To illustrate the
function of YAP, immunoprecipitation for YAP CUT&Tag
sequencing was performed. The Reads enrichment region is known
as Peak. The heatmap of the Peak central region showed that the
signals conversed near the enrichment location, indicating the data’s
satisfying quality (Supplementary Figure S1A). In addition, the
distribution of Peaks in functional gene regions is shown in
Supplementary Figure S1B. The predicted motifs were matched
with HOMOR. The top 10 known sequences of predicted motifs
are listed in Figure 3A. The GO annotation analysis showed that the
genes enriched in positive regulation of the cellular process,
metabolism, protein binding, signal transduction process, and
others (Figures 3B–D). In KEGG enrichment analysis, the genes
function in focal adhesion, MAPK signaling pathway, and PI3K/
Akt signaling pathway that is crucial in cell development and
proliferation processes (Figure 3E).

The cross-analysis of RNA-seq and CUT&Tag
sequencing to identify the potential
mechanism of the YAP target gene regulatory
network

Not all the DEGs in RNA-seq are YAP directly interacted with.
The DNA fragments that might directly interact with YAP were
analyzed to identify the regulatory mechanisms of YAP.
9,875 predicted genes are binding to YAP. After combining RNA-
seq and CUT&Tag sequencing, 36 DEGs were identified to bind to
YAP (Figure 4A). The interactive genes between RNA-seq and
CUT&Tag are listed in Supplementary Table S3. Among these
genes, 10 DEGs were up-regulated, and 26 were down-regulated.
The GO annotation indicated that the DEGs enriched the DNA
activity process, binding process, and chromosomal region
(Figure 4B). The KEGG annotation revealed that the DEGs
enriched in the base excision repair process (Figure 4C). Then, a
PPI analysis was conducted to clarify the interactions between the

proteins (Figure 4D). The network was further analyzed in Cytohubba,
and theMCC method selected the top five hub genes (Figure 4E). The
five hub genes were identified in Table 2.

Discussion

YAP engages in many biological processes, such as cell
proliferation, differentiation, apoptosis, and metabolism. In fibrotic
diseases, YAP engages in fibroblast activation (Liu et al., 2015), wound
healing process (Dey et al., 2020), and ECM remodeling (Zhang et al.,
2022). Importantly, YAP can respond to mechanical cues to promote
atherosclerosis, fibrosis, cardiac hypertrophy, muscular dystrophy,
and cancer (Panciera et al., 2017). For example, the CRISPR/Cas9-
mediated endothelial YAP knockdown attenuated the vascular plaque
formation in mice, which indicates the association between YAP and
atherosclerosis (Wang et al., 2016). The ECM stiffness triggered
TGFβ-YAP signaling to promote kidney fibrosis (Szeto et al.,
2016). In addition, ECM remodeling activated cardiac fibroblast
and cardiac hypertrophy (Perestrelo et al., 2021). Furthermore,
YAP also plays a pivotal role in mechanically sensing the urinary
bladder. However, inflammatory responses, epithelial cell responses,
smooth muscle cell hypertrophy, and ECM remodeling are all
included in bladder fibrosis. Whether YAP functions in these
processes are unclarified. Hence, the purpose of our study is to
elaborate on the function of YAP of smooth muscle in bladder
fibrosis progression.

We first infected the hBdSMCs with AAV in the current study to
knock down YAP gene expression. Then RNA-seq was performed to
illustrate YAP-regulated gene functions and pathways. The results
revealed that YAP might engage in cell cycle regulation. With the
highly development of high-throughput sequencing technologies,
there comes great attention on multiple omics analyses to clarify
human diseases (Yu et al., 2021). Hence, a CUT&Tag sequencing was
conducted to identify the genes that directly bind to YAP. In the top
10 predicted genes, Fra-1-regulated transcription was reported to
promote the proliferation process of breast cancer (Zhao et al.,
2014). Studies demonstrated that the BATF-Jun family interacted
with interferon regulatory factor 4 to promote lymphoid development

TABLE 1 List of top 5 up-regulated and down-regulated DEGs of RNA-seq.

Gene_id Gene_name Expression_KD Expression_NC log2FC(KD/NC) Adjusted P Regulate

ENSG00000100292 HMOX1 314.9083048 75.52983456 2.059668088 2.35E-102 up

ENSG00000170801 HTRA3 16.46288202 6.991509256 1.234355134 8.50E-57 up

ENSG00000037749 MFAP3 1.594140556 0.475530677 1.724166201 4.07E-28 up

ENSG00000134717 BTF3L4 11.20840461 5.428414978 1.044609376 3.49E-25 up

ENSG00000173391 OLR1 1.924046244 0.64330886 1.565785182 2.42E-22 up

ENSG00000138448 ITGAV 13.09954398 28.48548158 −1.120115672 1.70E-141 down

ENSG00000143799 PARP1 13.70361237 30.55700841 −1.156366713 8.54E-119 down

ENSG00000122376 SHLD2 7.049022041 16.39803251 −1.216862024 1.18E-92 down

ENSG00000120253 NUP43 4.053020293 10.27518947 −1.339943896 1.79E-70 down

ENSG00000148841 NUP43 1.787120312 9.528147362 −2.408022075 3.95E-64 down

DEG, differentially expressed genes; KD, knock down; NC, nature control; FC, foldchange.
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(Li et al., 2012). In the activator protein-1 (AP-1) transcription factor
family, JunB functions dually in the cell cycle. JunB was initially
recognized as a cell proliferation inhibitor. However, JunB also
promotes cell division (Piechaczyk and Farràs, 2008), i,e., JunB is
identified as pivotal in angiogenesis (Yoshitomi et al., 2021). Like JunB,
c-Jun also belongs to the AP-1 family, which involves many biological
processes, such as cell proliferation, survival, apoptosis, and tissue
morphogenesis (Meng and Xia, 2011). In kidney fibrosis, G2/
M-arrested proximal tubular cells facilitated c-Jun signaling to
promote the production of fibrotic cytokines (Yang et al., 2010).
YAP often binds to the TEA-binding domain (TEAD) family of
transcription enhancers to promote downstream gene expression
(Kaan et al., 2017). A recent study demonstrated that
TEAD1 promoted vascular smooth muscle cells (VSMCs) through
solute carrier family member 5 (SLC1A5), thereby activating

mTORC1 signaling to facilitate endothelium formation (Osman
et al., 2019).

After interactive matching, 36 DEGs were selected. The
sheltered hub genes enriched the cell cycle process, which
indicated that YAP promoted hBdSMCs proliferation in
response to mechanical stimuli. The PPI network stated the top
five hub genes through rankings. Coincidentally, the five hub genes
are all down-regulated. Cell division cycle-associated 5 (CDCA5)
has been widely studied in human cancer progression. In general,
CDCA5 is identified as an oncogene and has a poor prognosis for
cancers (Chang et al., 2015). For instance, CDCA5-knockdown
inhibited cell proliferation, migration, and clone formation in
breast cancer (Hu et al., 2022). The degradation of CDCA5 also
inhibits prostate cancer progression (Luo et al., 2021).
CDCA5 regulates cell proliferation through various signaling.

FIGURE 2
The down-regulated DEGs regulatory network and gene functions. (A). GO analysis of down-regulated DEGs. (B). KEGG analysis of DEGs. (C). The PPI
network of DEGs. (D). Top 10 hub genes of down-regulated genes. DEG: differentially expressed genes, PPI: protein-protein interaction.
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Recent research illustrated that CDCA5 activated prostate cancer
and colorectal cancer cell proliferation via ERK signaling pathway
(Shen et al., 2019; Ji et al., 2021). In addition, the ablation of
CDCA5 inhibited gastric cancer cell proliferation via
downregulating Cyclin E1 expression (Zhang et al., 2018).

Centromere Protein A (CENPA) is highly correlated with cell
proliferation. The centromere is a chromatin structure that
provides an assembly site for cell machinery, which is essential
in cell proliferation and survival (Fukagawa and Earnshaw, 2014).
Mechanistically, CENPA is assembled into the centromeric

FIGURE 3
CUT&Tag seq analysis. (A). The top 10 transcriptional factors binding to YAP. (B–D). GO analysis of genes related to peaks. (E). KEGG analysis of genes
related to peaks.
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chromatin in the cell cycle to the following cell cycle and
generation (Wong et al., 2020). Studies demonstrated that the
expression of CENPA in cardiac progenitor cells (CPCs) decreased
along with aging. The expression level of CENPA is relatively
higher in the early stage of life, thereby sustaining cell
proliferation, inhibiting senescence, and triggering CPCs
differentiation (McGregor et al., 2014). The ablation of CENPA
inhibited cell proliferation in ovarian cancer (Han et al., 2021).
Interestingly, circular RNAs (circRNAs), defined as crucial cancer
regulators, decreased the expression of FOXM1 and promoted the

expression of CENPA and CENPB to facilitate cell cycle
progression (Cheng et al., 2019).

DTL is identified as CUL4-DDB1 associated factors (DCAFs),
engaged in many tumorigenesis processes. Studies revealed that DTL
enhanced the proliferation and migration of cancer cells in nude mice
(Cui et al., 2019). In addition, the increase of DTL indicated a poor
prognosis in malignant manners of bladder cancer through the mTOR/
Akt signaling cascades (Luo et al., 2022). Similarly, the non-structural
maintenance of chromosomes condensing I complex subunit H
(NCAPH) also facilitated cell proliferation, migration, invasion, and

FIGURE 4
The cross-analysis of RNA-seq and CUT&Tag to identify the potential YAP target gene regulatory network mechanism. (A). The Venn diagram of
matching DEGs between RNA-seq and CUT&Tag seq. (B). GO analysis of matching DEGs. (C). KEGG analysis of matching DEGs. (D). The PPI network of
matching DEGs. (E). Top five hub genes of matching genes. DEG: differentially expressed genes, PPI: protein-protein interaction.
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epithelial-to-mesenchymal transition (EMT) of cancer (Kim et al., 2020;
Wang et al., 2020). And some microRNAs also target NCAPH to
promote the degradation of β-catenin to reduce cancer stem cell
maintenance (Wang et al., 2020). The fifth hub gene, the base
excision repair enzyme NEIL3, plays a vital role in many biological
processes, including fibrosis, lipid metabolism, tumorigenesis, and
neurogenesis. For instance, in NEIL3−/− heart ruptured mice, the
fibroblasts and myofibroblasts increased significantly, indicating that
NEIL3-dependent regulation of DNA methylation affected the
fibroblast proliferation and the ECM modulation (Olsen et al., 2017).
Interestingly, we have found that epigenetics alterations in cell-free
DNA genome were widely distributed in multiple diseases, which might
be critical in early diagnosis of fibrosis and cancer disease (Yu et al.,
2020). In the smooth muscle remodeling process, the depletion of DNA
glycosylase NEIL3 promoted differentiation of aortic VSMCs through
the Akt signaling pathway (Quiles-Jiménez et al., 2021). NEIL3 has also
been reported to mediate the lipid metabolism and macrophage
function in myocardial infarction (Skarpengland et al., 2016).

Collectively, the hub genes are enriched in the processes of cell
proliferation and cell survival. The question is how smooth muscle
proliferation behaves in bladder fibrosis. pBOO was caused by bladder
wall inflammation, hypertrophy, and fibrosis (Siregar et al., 2022).
Studies demonstrated that pBOO-induced bladder fibrosis was
attributed to fibrosis, smooth muscle cell proliferation and
hypertrophy, and urothelium proliferation (Qiao et al., 2018). In
female pBOO rats, the bladder smooth muscle progresses in
hematoxylin and eosin staining and is confirmed by increased
bladder mass and thickness increase (Metcalfe et al., 2010). The
bladder wall thickening functions in compensatory mechanisms
against pathological mechanical forces in the urinary bladder, which
ultimately results in a fibrotic bladder with low capacity and high
pressure. Therefore, early intervention of pBOO is necessary, and
knowing how to regulate these hub genes’ functions might provide
novel insights into preventing pBOO-induced fibrosis. In addition, a
recent study demonstrated that computational framework for analyzing
multi-omics profiles provided a novel direction for clinical diagnosis of
many diseases (Yu et al., 2019). Combined analyses based on well-
established tools may validate the results further.

Our study inevitably has some limitations. Although the
CUT&Tag sequencing is more reliable than the common ChIP-seq,
the low repeatability is still a common claw that cannot be solved
to date. Hence, only two samples (Experiment and IgG) were applied
for CUT&Tag sequencing. Furthermore, since bladder fibrosis is
associated with several cell types, including urothelial cells, smooth
muscle cells, and fibroblasts, the results from bladder smooth muscle

cells can partly reflect the possible therapeutic targets. Further research
on other cell types is needed.

Conclusion

The current study identified the potential mechanisms for YAP and
its interactive hub genes in urinary bladder remodeling. The role of YAP
in pBOO-induced bladder fibrosis is unclear. Our research confirmed
that YAP is important in bladder smooth muscle proliferation and
hypertrophy. Although pBOO-induced fibrosis is complex, the
therapies targeting YAP might be a potential treatment for pBOO.
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Rank Name Score Regulate

1 CDCA5 138 down

2 CENPA 134 down

2 DTL 134 down

4 NCAPH 132 down

5 NEIL3 122 down
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Purpose: Osteoarthritis (OA) is a common degenerative disease, which still lacks
specific therapeutic drugs. Synovitis is one of the most important pathological
process in OA. Therefore, we aim to identify and analyze the hub genes and their
related networks of OA synovium with bioinformatics tools to provide theoretical
basis for potential drugs.

Materials and methods: Two datasets were obtained from GEO. DEGs and hub
genes of OA synovial tissue were screened through GeneOntology (GO) annotation,
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment as well as
protein—protein interaction (PPI) network analysis. Subsequently, the correlation
between expression of hub genes and ferroptosis or pyroptosis was analyzed.
CeRNA regulatory network was constructed after predicting the upstream
miRNAs and lncRNAs. The validation of hub genes was undertook through RT-
qPCR and ELISA. Finally, potential drugs targeting pathways and hub genes were
identified, followed by the validation of the effect of two potential drugs on OA.

Results: A total of 161 commom DEGs were obtained, of which 8 genes were finally
identified as hub genes through GO and KEGG enrichment analysis as well as PPI
network analysis. Eight genes related to ferroptosis and pyroptosis respectively were
significantly correlated to the expression of hub genes. 24 miRNAs and 69 lncRNAs
were identified to construct the ceRNA regulatory network. The validation of EGR1,
JUN, MYC, FOSL1, and FOSL2 met the trend of bioinformatics analysis. Etanercept
and Iguratimod reduced the secretion of MMP-13 and ADAMTS5 of fibroblast-like
synoviocyte.

Conclusion: EGR1, JUN, MYC, FOSL1, and FOSL2 were identified as hub genes in the
development of OA after series of bioinformatics analysis and validation. Etanercept
and Iguratimod seemed to have opportunities to be novel drugs for OA.

KEYWORDS

osteoarthritis, hub genes, bioinformatics analysis, GEO, ferroptosis, pyroptosis

1 Background

Osteoarthritis (OA) is a common degenerative disease in middle-aged and elderly people all
over the world, of which the prevalence has gradually increased due to the aging population and
the trend of the overweight (Loeser et al., 2016; Roemer et al., 2022). According to the data from
World Health Organization (WHO) in 2019, about 250 million people worldwide suffered from
OA (Hunter and Bierma-Zeinstra, 2019). Synovitis is one of the most important pathological
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manifestations in the occurrence and development of OA, running
through the whole process (Sharma, 2021). Studies have shown that
synovial lesions usually occur earlier than cartilage, which can be
detected byMRI in several patients with small joint injury on X-ray. In
addition, low-grade synovitis contributes to radiographic and pain
progression (Sanchez-Lopez et al., 2022). The pathological changes of
synovitis are complex and diverse, leading to the lack of specific
treatment for OA. Therefore, it is necessary to explore the
pathogenesis and diagnostic markers of OA from the perspective of
synovium to find the therapeutic targets of OA, alleviate symptoms
and promote the prognosis.

Ferroptosis is a programmed cell death mode caused by abnormal
oxidation, which is regulated by glutathione peroxidase 4 (GPX4),
with characteristics of iron-dependent accumulation of lipid peroxide.
Kennish et al. (2014) showed that the iron level in serum of OA
patients was positively correlated with the severity of OA, suggesting
the existence of abnormal iron homeostasis, but its effect in synovium
has not been reported. Pyroptosis is another mode of programmed cell
death, which occurs when pattern recognition receptors (PRRS)
induce the activation of cystine aspartic protein 1 (caspase-1) or
caspase-11, which is characterized by the destruction of cell
membrane and the release of cytokines. Pyroptosis has been shown
to be involved in synovits, that is, Interleukin-1β (IL-1β) in the
inflammatory environment derives from synovium rather than
cartilage (Borgonio et al., 2014).

Bioinformatics tools have been widely used to process microarray
data to determine differentially expressed genes (DEGs) and conduct
various analysis. In this study, combining with bioinformatics analysis
and verification, we explored and screened the hub genes of OA
synovial tissue, and discussed the correlation between them and
ferroptosis or pyroptosisy, then constructed the upstream ceRNA
regulatory network to evaluate the reliability of these genes as the
prediction or treatment targets of OA. Finally, we identified and
validated potential drugs targeting pathways and hub genes
through Comparative Toxicogenomics Database (CTD), Drugbank
and Drugs-Genes interaction (DGI) database.

2 Materials and methods

2.1 Data collection

Gene Expression Omnibus (GEO) (https://www.ncbi.nlm.nih.
gov/geo/) was used as our data source (Barrett et al., 2013), where
“Osteoarthritis” was entered as the keyword in the search box for
detection. The selected data set included the gene expression array of
osteoarthritis and normal synovial tissue of human samples. Finally,
GSE55235 (GPL96 platform), GSE55457 (GPL96 platform) were
determined as the data sets of this study.

2.2 Data preprocessing and identification of
DEGs

The data of GSE55235, GSE55457 were downloaded with the
format of MINiML. The mRNA expression data of OA and normal
synovial tissue in each data set were analyzed by limma software
package of R software (Yu et al., 2012). P-value was analyzed in GEO
to correct false-positive results, which <0.05 and |log2 (fold change)| >

1 was defined as the threshold. DEGs were then obtained, and were
visualized by volcano map and heat map. common DEGs were
identified after the intersection of the two datasets.

2.3 Enrichment analysis of commonDEGs and
PPI network construction

Gene Ontology (GO) annotation of the common DEGs was
performed by the Database for Annotation, Visualization and
Integrated Discovery (DAVID, version 2021) (Sherman et al.,
2022), including biological process (BP), cellular component (CC),
and molecular function (MF). p < 0.05 was determined as a significant
margin for all analysis. Column chart was plotted by “http://www.
bioinformatics.com.cn,” a free online platform for data analysis and
visualization. The Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway enrichment analysis of the common DEGs was
carried out by R package “clusterprofiler” (Version 4).
Hypergeometric test was performed to evaluate the significance of
pathway–pathway association: phyper (k-1, M, N-M, n, lower. tail =
F). Metascape (http://metascape.org) was used for protein - protein
interaction (PPI) network analysis of common DEGs (Zhou et al.,
2019). PPI analysis was performed using the following databases:
STRING, BioGrid (Kondo et al., 2019), OmniPath and InWeb_IM (Li
et al., 2017). Physical score >0.132 was selected to be the standard of
gene screening. In addition, molecular complexity detection
(MCODE) was used to identify densely connected network
components and obtain the hub genes of OA (Bader and Hogue,
2003). The network was visualized using Cytoscape.

2.4 Correlation between OA hub genes and
ferroptosis and pyroptosis related genes

19 genes related to ferroptosis and 21 genes related to pyroptosis
contained in microarray data were selected for correlation analysis
with the hub genes (Liu et al., 2020a; Wu et al., 2021). Due to the small
sample size of the three groups of data related to ferroptosis, the
samples were combined and normalized (Zhang et al., 2019). The data
was standardized using “normalize.quantiles” function in the
preprocessCore package of R, and was evaluated through the box
diagram. The batch effect of data was evaluated by comparing the
visual PCA diagram before and after removal. The polygenic
correlation map was displayed by pheatmap package of R.
Spearman’s correlation analysis was used to describe the
correlation between quantitative variables without normal
distribution. p < 0.05 was considered statistically significant.

2.5 Analysis of ceRNA regulatory network of
hub genes

ENCORI (Li et al., 2014) (https://starbase.sysu.edu.cn) and
TargetScan (McGeary et al., 2019) (https://www. targetscan. org/
vert_80/) were used to predict miRNAs which regulated hub genes.
The first three reliable miRNAs were selected after the intersection
of the prediction. LncBase database v3.0 (Paraskevopoulou et al.,
2016) (https://diana.e-ce.uth.gr/lncbasev3/interactions) was used
to predict lncRNAs which regulated miRNAs above. The first
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three reliable lncRNAs were selected for each miRNA. Finally, the
ceRNA regulatory network of hub genes was constructed.

2.6 Extraction of human fibroblast-like
synoviocyte (FLS)

The study was designed according to the Declaration of
Helsinki, and was approved by Ethic Committee of the Second
Affiliated Hospital of Harbin Medical University (KY 2021-256).
Informed consent was obtained from each donor. Synovium of
3 OA patients (age 54–70 years, Kellgren-Lawrence grade 4) that
underwent total joint arthroplasty (TKA) and 3 patients (age
56–68 years) that underwent meniscectomy without OA were
obtained at the time after surgery. All patients were confirmed
without Rheumatoid Arthritis, acute trauma, tumor or infection of
knee joint. Briefly, synovium was cut into pieces at the final size
about 0.5 mm*0.5 mm, and put into 0.1% type I collagenase
(Biosharp, China, BS163). α-MEM medium (Cytiva,
United States, SH30265.01) was added with 10% foetal bovine
serum (ExCell Bio, China, FSD500) after 2 h. Primary cells could
be seen climbing out after about 3–5 days. FLS of passage 6-8 (P6-8)
were used in this study. 10 ng/ml of IL-1β (PEPROTECH,
United States, 200-01B) were used to stimulate FLS of OA
groups for 48 h in order to imitate the environment of OA,
while complete medium was added into the FLS of control
group. 10 μg/ml of Etanercept and Iguratimod (MedChem
Express, China, HY-108847, HY-17009) were added along with
IL-1β to FLS for the following test.

2.7 Screening of potential drugs for OA

CTD database (version 16766M) was used to search drugs
targeting the KEGG pathways above. Drugs targeting hub genes
were searched and compared using Drugbank (version 5.1.8)
database and DGI database (version 4.2.0).

2.8 RT q-PCR

Trizol (Beyotime, China, R0016) was used to extract total RNA
from FLS. After determining the concentration, 2 µg of total RNA was
used to synthesize cDNA through cDNA synthesis kit. SYBR Green
(ES Science, China, QP002) was used for qRT-PCR according to the
instructions. The primer sequence of 8 hub genes and GAPDH were
listed in Table 1. The mRNA level of a specific gene was calculated as
2-ΔΔ Ct and normalized to GAPDH.

2.9 Elisa analysis

The supernatant was collected and centrifuged at 1,000 × g at 4°C for
10 min, then was added to 96-well plates coverd by the antibody of each
protein (Elabscience, United States). After incubated for 90 min at 37°C,
Biotinylated Detection Abwas added to each well. After 60 min, the plates
were washed for 3 times. HRPConjugate was then added to each well and
incubated for 30 min at 37°C in the dark. 90 μL of Substrate Reagent and
50 μL Stop Solution were then added. The optical density (OD value) of
each well were determined at once by microplate reader at 450 nm.

2.10 Detection of intracellular ROS

FLSs of each group were seeded at a density about 2000 cells per well
in 96-well plates. The medium was replaced by H2DCFDA (Biosharp,
China, BL714A) working solution with the concentration of 10 μM. FLSs
were then incubated at 37°C for 2 h in the dark and washed twice to fully
remove the probes outside the cells. OD value of eachwell was determined
at once by microplate reader at 525 nm.

2.11 Detection of lipid peroxidation

FLSs of each group were broken by ultrasonic cell crusher and
centrifuged at 3,500 xg for 10 min at 4°C. MDA standard solution
(Solarbio, China, BC0025) and the supernatant to be tested with
chromogenic agent were boiled, centrifuged, and added to a 96-
well plate respectively. The absorbance was measured at 450 nm,
520 nm, and 600 nm for detection by microplate reader. Then the
concentration of MDA was calculated according to the instruction.

2.12 Cell viability assay

FLSs were seeded in 96-well plates at a density at about 2000 cells per
well. After adding 10 ul of CCK-8 reagent (Beyotime, China, C0037) at
24 h or 48 h respectively, the plates were put into the incubator for 30 min
away from light. The absorbance of each well was measured at 450 nm by
microplate reader.

TABLE 1 Primers used for RT-qPCR amplification.

Gene Primers Sequence

ATF3 Forward CCTCTGCGCTGGAATCAGTC

Reverse TTCTTTCTCGTCGCCTCTTTTT

EGR1 Forward GGTCAGTGGCCTAGTGAGC

Reverse GTGCCGCTGAGTAAATGGGA

FOSB Forward GCTGCAAGATCCCCTACGAAG

Reverse ACGAAGAAGTGTACGAAGGGTT

FOSL1 Forward CAGGCGGAGACTGACAAACTG

Reverse TCCTTCCGGGATTTTGCAGAT

FOSL2 Forward CAGAAATTCCGGGTAGATATGCC

Reverse GGTATGGGTTGGACATGGAGG

JUN Forward TCCAAGTGCCGAAAAAGGAAG

Reverse CGAGTTCTGAGCTTTCAAGGT

JUNB Forward ACGACTCATACACAGCTACGG

Reverse GCTCGGTTTCAGGAGTTTGTAGT

MYC Forward GGCTCCTGGCAAAAGGTCA

Reverse CTGCGTAGTTGTGCTGATGT

GAPDH Forward CACTCAGACCCCCACCACAC

Reverse GATACATGACAAGGTGCGGCT
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2.13 Statistical analysis

All the data of validation was presented as the means ± standard
deviation (SD). Statistical analysis was performed using GraphPad
Prism version 6.02. Differences in numerical data between two groups
were determined by t-test, while four groups were determined by One-
way ANOVA followed by a Bonferroni post-hoc test. p < 0.05 was
defined as statistically significant.

3 Results

3.1 Data collection and identification of DEGs

The flow chart of the study design was showed in Figure 1. A
total of 20 OA synovium samples and 20 normal synovium samples
were obtained from two GEO database, including 10 OA
samples and 10 normal samples from GSE55235 dataset and

10 OA samples and 10 normal samples from GSE55457 dataset.
Relevant clinical data were not provided in the two datasets
above. After screening the differential expression of mRNA
between OA and normal synovium samples, 595 up-regulated
DEGs and 346 down-regulated DEGs from GSE55235 as well
as 175 up-regulated DEGs and 385 down-regulated DEGs
from GSE55457 were obtained (Figures 2A, B). After the
intersection, a total of 161 common DEGs were obtained
(Figure 2C; Table 2).

3.2 Enrichment analysis and protein-protein
interaction analysis of DEGs in OA

In order to further explore the function of DEGs in OA, GO
annotation and KEGG enrichment analysis were performed
subsequently. As the results, 156 GO terms with p < 0.05 were
screened out (S1). Top 5 BP, 5 CC and 4 MF terms were showed in

FIGURE 1
Flow chart of the study design. GSE55235, GSE55457were determined as the data sets of this study, fromwherewe screenedDEGs by the standard of p <
0.05 and log2|FC| ≥ 1. After the intersection, 71 up-regulated DEGs and 88 down-regulated DEGs were obtained, followed by GO analysis, PPI network
construction and KEGG pathway analysis. The correlation between hub genes and ferroptosis or pyroptosis and the construction of ceRNA were undertaken.
Moreover, the expression of 8 hub genes was validated. Finally, potential drugs targeting pathways and hub genes were identified and validated. DEGs =
differentially expressed genes; FC = fold change; GO = gene ontology; PPI = protein - protein interaction; KEGG = Kyoto Encyclopedia of Genes and
Genomes; ceRNA = competing endogenous RNA.
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Figure 3A. It showed that the most significant BP of 161 commom
DEGs was “positive regulation of transcription fromRNA polymerase II
promoter”, the most significant CC was “extracellular space”, and the
most significant MF was “transcriptional activator activity, RNA
polymerase II transcription regulatory region sequence-specific

binding”. As the result of KEGG enrichment analysis, 38 pathways
with p < 0.05 were found (S2), and top 15 pathways were showed in
Figure 3B. It showed that these genes were involved in pathways
including tumor necrosis factor (TNF) signaling pathway, osteoclast
differentiation, IL-17 signaling pathway, nuclear factor kappa-B (NF-

FIGURE 2
Data collection and identification of DEGs. (A) Volcano plot of DEGs in two datasets (p < 0.05 and log2|FC| ≥ 1). The red nodes represent up-regulated
genes, and the blue nodes represent down-regulated genes. (B) Heat map of DEGs in two datasets, in which different colors represent different expression
trend. Due to the large number of DEGs, the top 50 up-regulated and down-regulated genes with the largest FC were shown. (C) Venn diagram of two
datasets which showed up-regulated and down-regulated genes respectively. DEGs = differentially expressed genes; FC = fold change.

TABLE 2 161 common DEGs of GSE 55235 and GSE 55457.

Regulation 161 common DEGs

Up (73) CX3CR1 LTC4S WNT5B ANOS1 TNFSF11 LRRC17 SCRG1 EPYC MGAT4C TLR7

C1QTNF3 COPZ2 TREM2 NAP1L3 LTA4H TRIL SLC5A3 SLC18A2 GUCA1A LRRC15

TDO2 OGN RTN1 LIPC PNMA8A ANKH CAPG RTP4 PTN MTUS2

PTHLH CBR3 PTGS1 POU2AF1 NELL1 GPR1 DPT HTR2B DPYS TMEM106C

ZNF668 GPM6A RPE65 TAC1 RGS13 NUDT11 FANCF LCK ZKSCAN4 MYOM2

FGGY GPR88 NDUFA4L2 ST8SIA1 RRAS TNFRSF11B MSTN NUDT1 SIL1 TNIP3

GLRB STMN2 GSTZ1 CACNA2D3 ERMAP WIF1 CLIC3 ERAP2 HSD11B2 MS4A1

PDZRN4 APOC4 ZIC1

Down (88) SLC19A2 FOSL2 SIK1 NFIL3 KLF4 MAFF GADD45B MYC TIPARP APOLD1

ZFP36 PPP1R15A DUSP2 CDKN1A ATF3 SOD2 BTG2 CXCL2 ADAMTS1 CCNL1

SLC16A7 TNFAIP3 CCN1 NEDD9 ETS2 NAMPT FOSB SLC2A3 GRB10 NPAS2

VEGFA DUSP5 NR4A2 PTGS2 ZFP36L2 CXCL3 CRISPLD2 EDNRB KLF6 STC1

JUN RND1 EGR1 IL1R1 JUNB INHBB SPRY1 HAS1 SLC2A14 FOXO3B

IRAK3 DUSP1 SOCS3 LAMA3 NR4A1 IL6 RGS16 FKBP5 VEGFD PFKFB3

PHACTR1 LRCH1 ZMYM2 RGS1 ARNTL FOXC2 SLC7A5 EFNB2 NR4A3 MCF2L

RPS4Y1 SNAI1 CCL20 LGALSL DDX3Y ACACB THBD CCL25 DUSP4 KDM5D

SELE NAA15 FOSL1 USP9Y SBNO2 KLF13 ANKRD11 NLGN4Y
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κB) signaling pathway and so on. In addition, as the result of PPI
analysis combined with MCODE component algorithm, top 3 modules
with highestMCODE score were showed in Figures 4A, B. Finally, 8 hub
genes in the biggest module were identified as hub genes, which
were ATF3, EGR1, FOSB, FOSL1, FOSL2, JUN, JUNB, and MYC
(Table 3).

3.3 Correlation analysis between OA hub
genes and ferroptosis related genes

We combined and normalized the data of 2 groups as described
above, then evaluated the data standardization and batch effect through
the box diagram (Figure 5A) and visual PCA diagram (Figure 5B),
respectively. 19 ferroptosis related genes and 21 pyroptosis related
genes were selected for correlation analysis and displayed by heat
map. It showed that in the analysis of ferroptosis, ALOX15, CISD1,
SAT1, and TFRC were positively correlated to hub genes, while
ATP5MC3, GPX4, HSPB1, and MT1G were negatively correlated
(Figure 5C). In the analysis of pyroptosis, Caspase-6, ELANE,
GSDMB, IL-6 and NLRP1 were positively correlated to hub genes,
while GPX4, NOD1 and PYCARD were negatively correlated
(Figure 5D).

3.4 Analysis of ceRNA regulatory network of
OA hub genes

A total of 24 reliable miRNAs that regulated mRNA of 8 hub genes
were obtained, after the intersection of the prediction, using ENCORI
and TargetScan database. Then, a total of 69 reliable lncRNAs were
obtained after the analysis under LncBase v3.0 database and selection,
which regulated miRNAs above. Finally, we constructed the ceRNA
regulatory network of hub genes (Figure 6).

3.5 Validation of hub genes

qRT-PCR and ELISA were used to evaluate the mRNA and protein
expression level of hub genes in FLS of control group and OA group. The
results showed that the mRNA expression levels of JUN, MYC, EGR1,
FOSL1, and FOSL2 of FLS in OA group was significantly lower than that
in normal FLS (p < 0.001, p < 0.01, p < 0.01, p < 0.05, p < 0.05,
respectively), meeting the trend of bioinformatics analysis (Figures 7A–E).
The expression of JUNB and FOSB had no significant difference with
control group (Figures 7F, G), while the expression of ATF3 was higher
than that in normal FLS (p < 0.001, Figure 7H), which was opposite to
bioinformatics analysis. The result of ELISA showed that the expression of

FIGURE 3
Enrichment of GO and KEGG of 161 common DEGs. (A) Go annotation categories of 161 common DEGs including top 5 of BP, top 5 of CC and top 4 of
MF. The horizontal axis represents counts of enriched genes. (B) Top 15 KEGG pathway categories after enrichment analysis of 161 common DEGs. The
horizontal axis represents counts of enriched genes. GO = gene ontology; BP = biological processes; CC = cellular components; MF = molecular function;
KEGG = Kyoto Encyclopedia of Genes and Genomes. (*represents “RNA polymerase II transcription regulatory region sequence-specific binding”, which
was hided due to the space).
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EGR1, JUN,MYCwere all significantly lower in the supernatant of FLS in
OA group, same to the result of qRT-PCR (p < 0.0001, Figure 7I).

3.6 Identification of potential drugs for OA

Drugs targeting 8 hub genes and top 4 KEGG pathways were
identified by CTD, DrugBank and DGI database. As the result,
85 drugs targeting 4 of hub genes were obtained, among which
Quinapril targeted MYC and JUN at the same time (Figure 8A).
285 drugs were found targeting KEGG pathways, among which
Elsubrutinib, Lenalidomide, Lenercept, Mifamurtide, Opinercept,
Rebimastat, Tasonermin, Thalidomide and Tibulizumab targeted
two pathways. Etanercept and Iguratimod targeted three pathways,
which were selected for following validation (Table 4; Figure 8B).

3.7 Etanercept and Iguratimod protect FLS of
OA from inflammation and cartilage
degeneration

To verify the effect of Etanercept and Iguratimod on FLS, we co-
treated FLS with IL-1β. By the test of cell viability, we found that
Etanercept can significantly inhibit the growth rate of FLS compared
with OA group (p < 0.01, Figure 9A). The results of intracellular ROS
and MDA detection showed that the levels of these two species in
Etanercept and Iguratimod groups were significantly lower than those
of OA group (p < 0.01, p < 0.05, Figures 9B, C). At the same time, the
mRNA expression of EGR1, JUN and MYC in Etanercept and
Iguratimod group were significantly higher than those in OA group
(p < 0.001, p < 0.01 for EGR1, p < 0.001, p < 0.05 for JUN and MYC,
Figures 9D–F). Moreover, the level of MMP-13 and ADAMTS5 in the

FIGURE 4
PPI analysis of 161 DEGs and screening of key modules. (A)
Overview of the PPI network of 161 DEGs throughmetascape. The larger
size of the points, the higher degree of the genes. (B) Genes in three key
modules with the highest MCODE value.

TABLE 3 Features and functions of 8 hub genes in OA screened from DEGs.

Gene Full name Function Regulation in OA
synovium

ATF3 Activating transcription
factor 3

ATF3 suppresses cyclin D1 expression in chondrocytes James et al. (2006) Down

EGR1 Early growth response 1 EGR1 in chondrocytes could accelerate chondrocyte hypertrophy, prevent COl2A1 Down

expression, and promote the release of inflammatory factors Sun et al. (2019)

FOSB FBJ murine osteosarcoma viral FOSB promotes cell proliferation and inhibit apoptosis as a kind of proto Down

oncogene homolog B oncogene Papoudou-Bai et al. (2017)

FOSL1 FOS-like antigen 1 FOSL1 plays an oncogenic role by modulating various cellular processes Dhillon and Tulchinsky
(2015)

Down

FOSL2 FOS-like antigen 2 The leucine chain encoded by FOSL2 dimerizes with the protein encoded by JUN Down

family to synthesize into AP1 Guo et al. (2019)

JUN Jun proto-oncogene JUN family includes v-Jun, c-Jun, Jun B and Jun D.c-Jun transactivates Puma gene Down

expression to promote OA Lu et al. (2014)

JUNB Jun B proto-oncogene Jun B positively regulates the expression of IL-4 in Th2 cells and regulates MMP13 Down

expression Licht et al. (2006); Tanel et al. (2009)

MYC MYC proto-oncogene MYC encodes transcription factors to regulate transcriptional activity and cell Down

proliferation, growth, and apoptosis O’Donnell et al. (2005)
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supernatant of FLS was significantly lower in Etanercept and
Iguratimod group than those in OA group (p < 0.01 for MMP-13,
p < 0.001, p < 0.01 for ADAMTS5, Figures 9G, H).

4 Discussion

As one of the major chronic diseases endangering the middle-aged
and elderly, the affected population of OA is also showing a trend of
younger age (Mahmoudian et al., 2021). The compliance of non-drug

treatment such as kinesitherapy and physiotherapy is usually inexact.
The operations for KOA mainly includes arthroscopic debridement,
high tibial osteotomy (HTO), unicondylar knee arthroplasty (UKA)
and TKA (Zhang et al., 2020), which still have the problems of high
risk and cost. The gathered evidence suggests that mononuclear
infiltration and over expression of inflammatory mediators in
synovium are seen in early OA and predate radiographic damage
in OA (Sokolove and Lepus, 2013). Synovium and synovial fluid are
the main contributors to inflammation that can secrete key cytokines,
most of which are the main regulators of matrix metalloproteinases

FIGURE 5
Correlation between OA hub genes and ferroptosis or pyroptosis related genes. (A) The data standardization evaluated by box diagram after the
combination and normalization of 2 groups. (B, C) The visual PCA diagram before (B) and after (C) removal of the batch. (D, E) The heat map of the correlation
between hub genes and genes related to ferroptosis and pyroptosis. The horizontal and vertical coordinates represent genes. Different colors represent the
correlation coefficient (red represents positive correlation, blue represents negative correlation). PC = Principal Component.
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FIGURE 6
The ceRNA regulatory network of hub genes. The red circles represent hub genes, the blue squares represent miRNAs that targeted hub genes, and the
green V-shapes represent lncRNAs that targeted miRNAs.

FIGURE 7
Validation of hub genes through qRT-PCR and ELISA of FLS. (A–H) mRNA expression of JUN, MYC, EGR1, FOSL2, FOSL1, JUNB, FOSB and ATF3. JUN,
MYC, EGR1, FOSL2 and FOSL1 showed the same trend as the results of bioinformatics analysis. JUNB and FOSB showed no significant difference between two
groups, while MYC showed the opposite trend. (I) The result of ELISA analysis of EGR1, JUN and MYC in the supernatant of FLS. OA = osteoarthritis. *p < 0.05,
**p < 0.01, ***p < 0.001, ****p < 0.0001. Error bars represent SD.
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FIGURE 8
Identification of potential drugs for OA. (A) Drugs targeting hub genes. Red circles represent genes, blue circles represent drugs. (B) Drugs targeting top
four KEGG pathways. Red circles represent pathways, blue circles represent drugs. Green circles represent drugs which have three targets.

TABLE 4 Drugs targeting KEGG pathways ≥2.

Drug Target pathways Functions or applications

Etanercept Osteoclast differentiation Fusion protein that binds TNF-α

NF-kappa B signaling pathway Treatment for severe rheumatoid arthritis

TNF signaling pathway Treatment for moderate to severe plaque psoriasis

Iguratimod Osteoclast differentiation Under investigation in rheumatoid arthritis

NF-kappa B signaling pathway

TNF signaling pathway

Elsubrutinib Osteoclast differentiation Bruton’s tyrosine kinase inhibitor

NF-kappa B signaling pathway

Lenalidomide NF-kappa B signaling pathway Anti multiple myeloma and anemia

TNF signaling pathway

Lenercept NF-kappa B signaling pathway TNF receptor fusion protein

TNF signaling pathway Under investigation in multiple sclerosis

Mifamurtide NF-kappa B signaling pathway Antineoplasitc

TNF signaling pathway

Opinercept NF-kappa B signaling pathway TNF-α inhibitor

TNF signaling pathway Under investigation in rheumatoid arthritis

Rebimastat IL-17 signaling pathway Under investigation treatment in lung cancer and prostate cancer

TNF signaling pathway

Tasonermin NF-kappa B signaling pathway Recombinant soluble form of TNF-α

TNF signaling pathway An adjunt to surgery to remove soft tissue sarcomas of the limbs

Thalidomide NF-kappa B signaling pathway Antineoplasitc

TNF signaling pathway

Tibulizumab IL-17 signaling pathway Bispecific antibody targeting BAFF and IL-17A

NF-kappa B signaling pathway
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(MMP), resulting in the loss of cartilage (Kulkarni et al., 2021).
Therefore, in-depth study of the molecular mechanism of synovitis
is of great significance to the prevention and treatment for OA.

In this study, we screened out 8 hub genes in synovim that may be
involved in the progression of OA through a series of bioinformatics
methods. EGR1 is potentially involved in postnatal bone biology and
implicated in the regulation of osteoblastic cell growth and
differentiation. Studies have shown that when EGR1 was inhibited,
the bone mass of the limbs decreased in mice, with lower bone volume
fraction and mineral density, same to our study (Reumann et al.,
2011). However, over-expression of EGR1 regulated the expression of
KLF5 and β-catenin signaling pathway, leading to the acceleration of
cartilage hypertrophy and degeneration (Sun et al., 2019). MYC
encodes transcription factors to regulate transcriptional activity and
cell proliferation, growth, and had also been found to regulate OA
process through multiple pathways. Wu et al. (O’Donnell et al., 2005)
found that the effects of miR-24 on OA chondrocytes may be achieved
by targeting MYC and further regulating the MAPK signaling
pathway. The silence of c-MYC could promote proliferation of rat

chondrocyte (Zou et al., 2018). ATF3 deficiency in chondrocytes had
been reported to alleviates OA development (Iezaki et al., 2016). This
effect may be achieved by ATF3 directly affecting the expression of
MMP-13 thus reducing cartilage loss (Chan et al., 2017). However,
There is little study on the mechanism of ATF3 in OA synoviocyte,
except for the bioinformatics analysis.

The rest five hub genes, which were FOSB, FOSL1, FOSL2, JUN
and JUNB, belonged to the AP-1 family. AP-1 was thought to be
critically involved in the pathogenesis of arthritis due to the binding
activity for its cognate recognition sites in the promoters of
inflammatory cytokines and matrix-degrading enzymes (Huber
et al., 2019). Study showed that mitochondrial dysfunction
triggered a catabolic response in chondrocytes via activation of the
JNK/AP1 pathway (Ansari et al., 2020). On the other hand, JUNB-
FBXO21-ERK axis promoted cartilage degeneration in OA by
inhibiting autophagy (Lin et al., 2021).

As independent forms of programmed death, ferroptosis and
pyroptosis have been shown to play essential roles in the
pathological processes of tumor, Alzheimer’s disease, cerebral

FIGURE 9
Validation of the effect of Etanercept and Iguratimod on FLS. (A) Cell viability of FLS at 24 and 48 h. (B) Relative Intracellular ROS concentration of FLS.
(C) MDA concentration of FLS of different groups. (D–F) mRNA expression of EGR1, JUN and MYC of the four groups. (G, H) The level of MMP-13 and
ADAMTS5 in the supernatant of FLS in different groups. OA = osteoarthritis; Etan = Etanercept; Igu = Iguratimod; ROS = reactive oxygen species; MDA =
Malonic dialdehyde; MMP-13 = matrix metalloproteinase 13; ADAMTS5 = a disintegrin and metalloproteinase with thrombospondin motifs-5. *p < 0.05,
**p < 0.01, ***p < 0.001, ****p < 0.0001. Error bars represent SD.
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hemorrhage, ischemia-reperfusion injury, OA and so on (Kenny et al.,
2019; Liang et al., 2019; Liu et al., 2020b). In this study, we selected
several ferroptosis and pyroptosis related genes. Although these genes
were not differentially expressed in the two datasets, analyzing their
relationship with hub genes will be still beneficial to explore the
mechanism of FLS participating in OA. We found that FOSL1 and
JUNB were associated with 3 of the 19 ferroptosis related genes.
Overexpression of c-JUN inhibits ferroptosis induced by erastin in
Schwann cells to promotes the rehabilitation of facial nerve function
(Gao et al., 2022). Vertically, the strongest two genes related to hub
genes were CISD1 and HSPB1. CISD1, an iron-containing outer
mitochondrial membrane protein, inhibits ferroptosis by protection
against mitochondrial lipid peroxidation (Yuan et al., 2016). The
phosphorylation of HSPB1 at the Ser-15 site induced by Erastin is
the key of the protective response to ferroptosis stress (Wang et al.,
2022). In addition, over-expression of HSPB1 attenuates ferroptosis in
rats through promoting G6PD expression (Dai and Hu, 2022).
Therefore, we believe that CISD1 and HSPB1 are worth studying
in the future to explore the mechanism of ferroptosis in OA synovium.
In addition, we found that JUN was related to the most pyroptosis
related genes. Study had showed that the Jun N-terminal kinases
(JNK) pathway is largely upstream of the NLRP3 inflammasome,
which exerts a crucial regulatory impact on microglia pyroptosis and
inflammatory responses (He et al., 2021). However, the relationship
between JUN and pyroptosis of FLS still needs further study. As a key
regulator of innate immunity and inflammasome activation, caspase-6
promotes the activation of pyroptosis (Zheng et al., 2020).

Studies have found the significance of miRNAs and lncRNAs on
OA. Xu et al. (2021) showed that SNHG7 ameliorated the
development of OA by suppressing apoptosis through miR-214-5p-
PPARGC1B-PPARγ axis. Wang et al. (2019) found that lncRNA
FOXD2 Adjacent Opposite Strand RNA 1 (FOXD2-AS1) served as
the protector for OA patients by inducing chondrocyte proliferation.
The downregulation of lncRNA LOC101928134, which acts as a
promoter of OA, can block the process of OA (Yang et al., 2019).
Here, we built a ceRNA network after predicting the upstream
miRNAs and lncRNAs, in order to provide more possible early
biomarkers for diagnosis, or targeting drugs for OA patients.

Among the 11 drugs targeting two or more than two KEGG
pathways, 10 acted on NF-κB signaling pathway, 9 acted on TNF
signaling pathway, 3 acted on Osteoclast differentiation pathway, and
2 acted on IL-17 signaling pathway, suggesting that NF-κB was still the
key point for OA treatment. Moreover, Etanercept and Iguratimod
related to three pathways. Etanercept, a soluble fusion protein that
binds TNF-α, has been proved to be an effective choice targeting
several inflammatory diseases, especially rheumatoid arthritis
(Graudal et al., 2015). Recent study showed that Etanercept lead to
the repairment of cartilage with a special scaffold (Campos et al.,
2022), and the reduction of MMP-3 (Kroon et al., 2020), suggesting
the potential effect on OA. The effect of Iguratimod on OA still needs
further study. Our study proved that both Etanercept and Iguratimod
could reduce level of intracellular ROS andMDA of FLS as well as level
of MMP-13 and ADAMTS5 in the supernatant. In addition,
Etanercept could significantly alleviate the abnormal proliferation
of FLS under OA environment. Drugs targeted to the hub genes
can be divided into antineoplastic, antipsychotic, anti-inflammatory,
anti-hyperglycemia, anti-hyperlipidemia, etc. Their roles in OA still
needs to be explored.

Our study still had some limitations. First, we obtained gene arrays
in synovial tissues of OA patients from GEO database. However, due
to the lack of information of patients, it was hard to correlate the DEGs
and hub genes obtained in this study with the severity or grade of OA.
Second, the sample size of each group was not so large, which was
needed for further research.

In summary, our study aimed to identify key genes involved in the
pathophysiology of OA. 161 common DEGs and 8 hub genes were
screened through GO analysis, KEGG pathway analysis, PPI network
construction as well as MCODE, which may become potential
targeting clinical diagnosis and treatment of OA. Furthermore, 5 of
8 genes met the similar expression trend with our result through the
validation. Subsequently, we discussed the relationship between hub
genes and key genes of ferroptosis and pyroptosis. Moreover, miRNAs
and lncRNAs were identified to construct the ceRNA regulatory
network of hub genes. Finally, we found that Etanercept and
Iguratimod, as top two of potential drugs targeting KEGG
pathways, had the protective effect on FLS in the OA environment.

5 Conclusion

EGR1, JUN, MYC, FOSL1, and FOSL2 were identified and
validated as hub genes in the development of OA after series of
bioinformatics analysis. They may have effect on OA development
through different kinds of pathways, including the process of
ferroptosis and pyroptosis. Etanercept and Iguratimod seemed to
have stronger opportunities to be novel drugs for OA.
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Rheumatoid arthritis (RA) and osteoarthritis (OA) are the most common joint
disorders. Although they have shown analogous clinical manifestations, the
pathogenesis of RA and OA are different. In this study, we used the online Gene
Expression Omnibus (GEO) microarray expression profiling dataset GSE153015 to
identify gene signatures between RA and OA joints. The relevant data on 8 subjects
obtained from large joints of RA patients (RA-LJ), 8 subjects obtained from small
joints of RA patients (RA-SJ), and 4 subjects with OA were investigated. Differentially
expressed genes (DEGs) were screened. Functional enrichment analysis of DEGs
including the Gene Ontology terms and Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathways were identified, which weremainly associated with T cell activation
or chemokine activity. Besides, protein-protein interaction (PPI) network analysis was
performed, and key modules were identified. Hub genes of RA-LJ and OA groups
were screened, they were CD8A, GZMB, CCL5, CD2, and CXCL9, whereas CD8A,
CD2, IL7R, CD27, and GZMB were hub genes of RA-SJ and OA group. The novel
DEGs and functional pathways between RA and OA identified in this study may
provide new insight into the underlying molecular mechanisms and therapeutic
strategies of RA and OA.

KEYWORDS

rheumatoid arthritis, osteoarthritis, microarray expression profiling dataset, differentially
expressed genes, protein-protein interaction network

Introduction

According to recent studies, rheumatoid arthritis (RA) and osteoarthritis (OA) are considered to
be themost prevalent rheumatic diseases, affecting 1% and 10%world’s population, respectively (van
der Woude and van der Helm-van Mil, 2018). RA is an autoimmune disorder presented with
chronic aggressive multiple arthritis and systemic manifestation. Metacarpophalangeal joints and
wrists are the most commonly involved joints, followed by large joints like the knee (Smolen et al.,
2016). The pathogenesis of RA has not yet been completely understood. However, it is generally
acknowledged that genetic and environmental factors play important roles in this disease (McInnes
and Schett, 2011). The majority of patients with RA suffer damage to their small joints in the
inchoate stage (Nakajima et al., 2016). Recent treatment-to-target strategies using classical or
biological disease-modifying anti-rheumatic drugs (bDMARDs) have allowed patients to achieve
remission and have delayed progressive damage to their small joints (Smolen and Aletaha, 2015). A
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large joint (shoulder, elbow, hip, and knee) is usually destroyed during an
advanced stage of RA. A patient with RA is not routinely monitored for
progressive damage to large joints, even though damage to large joints has
a considerably greater impact on functional ability than damage to smaller
joints (Nakajima et al., 2016).

As the most common arthritis throughout the world,
osteoarthritis is the leading cause of disability in the elderly
(Abramoff and Caldera, 2020). OA destroys articular cartilage
and stimulates the hyperplasia of the margin of bones as well as
lesions in synovium and tissue of joints, which can lead to a series
of biochemical and morphological changes in overused or weight-
bearing joints unilaterally or bilaterally (Xia et al., 2014; Abramoff
and Caldera, 2020). The pathogenesis of OA remains unclear. It is
known that factors promoting inflammation, especially IL-1β and
TNF-α play key roles in the development of OA. Several factors
such as genetic predisposition, ageing, obesity, and joint
misalignment have been implicated as contributing to the
development of OA. A recent study by Butterfield et al.
identified 14 genes involved in osteoarthritis pathogenesis,
including Pitx1, and functionally characterize 6 candidate
human osteoarthritis genes (Unk, Josd1, Gsdme, Arhgap30,
Ccdc6, and Col4a2) in mouse models (Butterfield et al., 2021),
revealing the genetic basis for osteoarthritis.

Although RA and OA share some clinical manifestations, they are two
distinct arthritic disorders with RA being an autoimmune disease and OA

being a degenerative disease (Vina and Kwoh, 2018). For identifying
biomarkers for the diagnosis and prognosis of diseases, microarrays
have become a promising and efficient tool for exploring significant
genetic or epigenetic changes in disease (Cao et al., 2021b). RA patients
and normal individuals, OA patients, and normal individuals as well as RA
patients andOA patients, were found to have differentially expressed genes
(DEGs) utilizing bioinformatic analysis (Lin et al., 2020; Triaille et al., 2020;
Liu and Chen, 2021). Therefore, in this study, we compared gene
expression profiles in synovial tissue between large and small joints of
RA and joints ofOA via bioinformatic analysis of an online dataset, seeking
to identify possible key genes that involve the pathogenesis of joints of RA
from joints of OA.

Materials and methods

Microarray data

The gene expression profile dataset GSE153015, deposited by
Triaille C et al., was obtained from the Gene Expression Omnibus
(GEO, https://www.ncbi.nlm.nih.gov/geo/) and was based on the
platform of GPL570 Affymetrix Human Genome U133 Plus 2.
0 Array [HGU133_Plus_2]. We collected samples from 24 subjects,
including 10 small joints (metacarpophalangeal joints or wrists) from
10 RA patients, 10 large joints (knees) from the same 10 RA patients,

TABLE 1 Characteristics of the samples in this study.

Sample id Diagnosis Joint size Age (year) Gender ACPA/RF positive DAS28-CRP CRP (mg/L)

GSM4633117 RA LJ 36 F Y 5.99 77

GSM4633119 RA LJ 40 F Y 6.22 44

GSM4633121 RA LJ 60 F Y 3.05 5

GSM4633123 RA LJ 62 F Y 4.54 1

GSM4633125 RA LJ 78 F Y 4.49 4

GSM4633127 RA LJ 38 F N 5.69 17

GSM4633129 RA LJ 66 F Y 4.27 14

GSM4633134 RA LJ 30 F Y 5.57 10

GSM4633116 RA SJ 36 F Y 5.99 77

GSM4633118 RA SJ 40 F Y 6.22 44

GSM4633120 RA SJ 60 F Y 3.05 5

GSM4633122 RA SJ 62 F Y 4.54 1

GSM4633124 RA SJ 78 F Y 4.49 4

GSM4633126 RA SJ 38 F N 5.69 17

GSM4633128 RA SJ 66 F Y 4.27 14

GSM4633132 RA SJ 55 F N 5.55 38

GSM4633136 OA LJ 71 F NA NA NA

GSM4633137 OA LJ 77 F NA NA NA

GSM4633138 OA LJ 69 M NA NA NA

GSM4633139 OA LJ 66 F NA NA NA
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and 4 OA subjects. The type of biological material used for gene
expression quantification can be found in the study of Triaille C et al.
(Triaille et al., 2020) Before the analysis, we did a principal component
analysis (PCA) and found that two samples of large joints (LJ) of RA
(GSM4633131, GSM4633133) and two samples of small joints (SJ) of
RA group (GSM4633130, GSM4633135) were mixed with OA
samples, respectively. As a result, we excluded the 4 samples to
improve the quality of the samples. We obtained from the GEO
dataset the age, gender, ACPA/RF status, DAS 28-CRP scores, and C
reaction protein (CRP) levels of the individuals, as well as the
annotation file for GPL570 and displayed in Table 1.

Differential expression analysis

To screen for DEGs, we compared expression profiles of large and
small joints of RA patients and OA patients using the online analysis
tool GEO2R. p-values and adjusted p-values were calculated via t-tests
and statistically significant DEGs were defined with the criteria of 1) a |
log2 (fold-change)| >1 and 2) an adjusted p < 0.05. Patients were
divided according to their joint size. RA patients with large joints were
compared with RA patients with small joints. R software was used to
draw the volcano plot and PCA, HTML software was used to create the
heatmap for the DEGs, and Venn diagrams of DEGs were drawn using
Venny 2.1 (https://bioinfogp.cnb.csic.es/tools/venny/index.html), and
uniform manifold approximation and projection (UMAP) were
performed via R’s “umap” package (Mao et al., 2020).

Functional enrichment analysis of DEGs

Using Enrichr (https://amp.pharm.mssm.edu/Enrichr/), functional
enrichment analyses of DEGs were conducted, including Gene
Ontology (GO) terms and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathways. A GO analysis consists of three
biological processes (BP), a cellular component (CC), and a molecular
function (MF), which provide a framework for describing the functions of
gene products in all organisms. We assigned DEGs to specific pathways
using KEGG pathway analysis (15). The threshold for significance was set
at Benjamini-adjusted p < 0.05 and an enriched gene count of at least five
genes enriched in the pathway.

Protein-protein interaction (PPI) network
construction

The PPI network analysis was carried out using Search Tool for the
Retrieval of Interacting Genes (STRING, https://string-db.org/), a web-
based database dedicated to predicting protein-protein interactions
consisting of both physical and functional relations. We used
Cytoscape v3.8.2 software to visualize and build the PPI network
simultaneously while mapping the DEGs onto the PPI network with a
medium confidence score of 0.4. Using ClusterOne from Cytoscape’s
software suite, the gene network clustering analysis was conducted to
refine the key PPI network modules. An R software package with the
“ggplot2” package was used to analyze the expression levels of key PPI

FIGURE 1
DEGs were identified from the online GEO dataset. (A)–(D) RA-LJ and RA-SJ samples are separated from OA samples in PCA and UMAP analyses. (E) (F)
Heatmaps showed the top 20 upregulated and downregulated genes between RA and OA. (G) (H) Genes in RA samples and OA samples were significantly
separated in the volcano plot. Red represents upregulated genes, and blue represents downregulated genes (I) Venn diagram of differentially expressed genes
between RA-LJ and RA-SJ samples compared with OA samples.

Frontiers in Genetics frontiersin.org03

Huang et al. 10.3389/fgene.2023.1083615

159

https://bioinfogp.cnb.csic.es/tools/venny/index.html
https://amp.pharm.mssm.edu/Enrichr/
https://string-db.org/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1083615


network modules (Cao et al., 2021a). The degree topological algorithm of
Cytohubba was used to determine which nodes had the greatest number
of interactions with neighboring nodes as hub genes.

Immunohistochemistry

Paraffin joint tissue sections were cut into five mm-thick
sections in the department of bone and joint surgery, at Renji
hospital. Following deparaffinization and hydration, sections were
treated with primary anti-CD8A antibodies (PA5-114369,
Invitrogen), anti-CD2 antibodies (PA5-32312, Invitrogen), anti-
GZMB antibodies (ab255598, Abcam), anti-CCL5 antibodies
(ab52562, Abcam), anti-CXCL9 antibodies (ab290643, Abcam),
anti-IL7R antibodies (ab259806, Abcam), and anti-CD27
antibodies (ab131254, Abcam). Incubation at room temperature
for 30 min was followed by diluted biotinylated secondary
antibodies. After incubation in Street Avidin-Biotin Complex for
20 min, sections were treated with diaminobenzidine (DAB)
substrate solution until the desired color intensity was achieved
(He et al., 2021; Mao et al., 2021). Images were taken under a light
microscope (Nikon).

Statistical analysis

To correct the p-value, the Benjamini–Hochberg FDR (false
discovery rate) was used. Hypergeometric tests were used to
distinguish significantly enriched GO terms and KEGG pathways.
Statistical analysis of significant differences was conducted using one-
way ANOVA by Prism 7 software. A p-value less than 0.05 was
considered statistically significant.

Results

DEGs between RA and OA joints

The characteristics of the samples were listed in Table 1.
The microarray expression dataset GSE153015 was downloaded
from the GEO database, and DEGs were obtained between RA-
LJ and OA (Supplementary Tables 1, 2). Based on the
established criteria, we found that 59 genes were upregulated and
50 genes were downregulated between RA-LJ and OA, and 127 genes
were upregulated and 158 genes were downregulated between RA-SJ
and OA. According to the PCA and UMAP analyses in Figures 1A–D,

FIGURE 2
Representative enriched functional terms of RA samples compared with OA samples. (A)Most significantly enriched terms of GO-BP, MF, CC categories,
and KEGG pathways in RA-LJ samples versusOA samples (B) Significantly enriched terms of GO-BP, MF, CC categories, and KEGG pathways in RA-SJ samples
compared with OA samples. The x-axis represents the value of [-log (Adjusted p-value)].
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the clusters of the two comparison groups were found in relatively
independent quadrants, indicating that there was a significant
difference in the RA-LJ and OA samples, as well as the RA-SJ and
OA samples; Figures 1E, F show heatmaps for DEGs that show the top
20 upregulated genes in RA-LJ versus OA and RA-SJ versus OA,
respectively; Figures 1G, H show volcano plots of compared groups.
Our Venn diagram of the DEGs (Figure 1I) made it easier for the
audience to understand the intersection and independence of the two
DEG groups. According to the Venn diagram, 47 upregulated genes
and 31 downregulated genes are shared by RA’s large and small joints.
The overlapped genes made up 79.67% of upregulated genes in the
RA-LJ group versus the OA group and 62% of downregulated genes in
the RA-LJ group versus the OA group.

Functional and pathway enrichment of DEGs

To take a further step in the investigation of the biological
functions of DEGs, a functional enrichment analysis was conducted
and the results are presented in Figure 2. As a result, the DEGs in RA-
LJ versus OA groups are mainly T cell receptor complexes in the CC
category, chemokine receptor binding in the MF category, and T cell
activation in the BP category. The T cell receptor signaling pathway is

the most enriched KEGG pathway. The DEGs in RA-SJ compared to
OA groups include collagen-containing extracellular matrix
components, protein homodimerization activity in MF, and
positive regulation of B cell activation and cytokine-mediated
signaling pathways in BP. Pathways associated with hematopoietic
cells were identified as the most significantly altered pathways in RA-
SJ compared to OA.

PPI network analysis of DEGs

In accordance with the STRING web-based database, two PPI
networks were built with an interaction score >0.4 (Figure 3A). In
order to identify the key PPI network modules, we performed network
gene clustering in Cytoscape using ClusterOne, which corresponds to
gene nodes and edges. In Figures 3B–E, a comparison between RA-LJ
and OA reveals two key modules with 14 upregulated genes (CST7,
CD8A, GEMK, GZMH, GZMA, GZMB, PRF1, CD3D, CXCL9, NKG7,
CD2, CD247, ITGAL, CCL5) and three downregulated genes (SOX8,
ZIC1, and POU3F3). While in Figures 3F–R, we identified 13 key
modules with 33 upregulated genes (ITGAL, IL-7, CD27, CD38,
GZMK, GZMA, GZMB, NKG7, KLRB1, CD247, CD2, CCL5,
CD3D, CD3G, CXCL9, CXCL13, CD8A, IL7R, CCR2, ITK,

FIGURE 3
PPI network analysis of DEGs between RA-LJ/RA-SJ samples and OA samples. (A) Cytoscape network visualization of RA-LJ and OA samples that were
obtainedwith interaction scores >0.4 according to the STRINGonline database (B–E) Four keymodules were identified by ClusterOne. (F)Cytoscape network
visualization of RA-SJ and OA samples (G)–(R) 12 key modules were identified by ClusterOne. The nodes represent genes, and the edges represent links
between genes. Red represents upregulated genes, and blue represents downregulated genes.
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GATA3, IL2RB, ITGA4, EOMES, BATF, RUNX3, ISG20, OAS2,
GBP5, LAP3, SPCS2, SCPS3, SEC11C) and 22 downregulated genes
(ADAMTSL1, ADAMTS3, ADAMTS16, SBSPON, GABRB1,
GABRB2, BTC, EREG, HOXC6, HOXC9, HOXC10, DISP1, GAS1,
SCUBE2, FAH, ADH1C, PLN, CASQ2, RYR2, ANKH, MGP, ENPP1)
in RA-SJ versus OA.

Based on their degree value, which represents the number of
interactions among the genes, the hub genes were sorted. Figure 4A

shows that the hub genes of the RA-LJ and OA groups are CD8A,
GZMB, CCL5, CD2, and CXCL9, whereas Figure 4B shows the hub
genes of RA-SJ and OA groups as CD8A, CD2, IL7R, CD27, and
GZMB. Among them, CD8A, GZMB, and CD2 are hub genes in both
groups. In Figure 5A, the expression levels of these seven genes (CD8A,
CD2, GZMB, CCL5, CXCL9, IL7R, CD27) were shown. In RA joints,
CD8A, CD2, GZMB, CCL5, CXCL9, IL7R, and CD27 levels were
significantly higher than in OA joints. Further, IHC was used to
determine the expression levels of seven different hub genes in large
and small joints of RA and OA joints. As shown in Figures 5B, C, we
found the protein expressions of CD8A, GZMB, CCL5, CD2, and
CXCL9 were significantly higher in RA-LJ than that in OA, while the
protein levels of CD8A, CD2, IL7R, CD27, and GZMB in RA-SJ were
significantly higher than in OA joint (Figures 5D–F).

Discussion

Rheumatoid arthritis and osteoarthritis are two of themost common of
the more than 100 different types of arthritis. As a result of chronic
inflammation and autoimmunity associated with RA disease, synovial fluid
is produced by the membrane lining, causing synovitis, joint pain, and
eventually chronic and progressive erosion (Imas et al., 2020). As a whole-
joint disease, OA causes increased remodeling of cartilage, subchondral
bone, bone marrow, and synovium, as well as the joint (Hügle and Geurts,
2017). For proper treatment, it is necessary to understand the different
mechanisms of the two diseases. As part of this study, we compared gene
expression profiles in synovial tissue between large and small RA joints and
OA joints using bioinformatic analysis. By using the online tool GEO2R,
differentially expressed genes were screened. In addition, we identified
5 DEGs that have the most interactions in the two PPI networks as hub
genes of two comparison groups. In RA-LJ versus OA groups, CD8A,
GZMB, CCL5, CD2, and CXCL9 are the hub genes, while CD8A, CD2,
IL7R, CD27, and GZMB are the hub genes in RA-SJ versus OA groups.
Lastly, immunohistochemistry was used to validate the protein expression
levels of the 7 hub genes in RA and OA joint tissues.

Based on our analysis, we found that GO enrichments were mainly
related to T cell activation, B cell activation, chemokine activity, and
collagen-containing extracellularmatrix in large and small joints of RA. In
RA joints, T cell receptor signaling pathways and cytokine-cytokine
receptor interactions were the main signaling pathways. It is easy to
understand from these results for that rheumatoid arthritis is an
autoimmune and inflammatory disease, which also suggests different
treatment strategies for RA and OA. Rituximab, a kind of anti-CD20
chimeric monoclonal antibody that can inhibit the proliferation of
stimulated human B cells, has long been a choice for refractory
rheumatoid arthritis (Tavakolpour et al., 2019). Moreover, bDMARDS
are now widely used to treat RA. The majority of bDMARDS are anti-
cytokine or anti-chemokine molecules, but some patients do not respond
to existing bDMARDs. Therefore, new bDMARDs for RA need to be
developed.

Hub genes CCL5, also known as RANTES, its protein is a
chemoattractant for blood monocytes, memory T helper cells, and
eosinophils. It causes the release of histamine from basophils and
activates eosinophils and plays an active role in the chemotactic
activity of T cells in RA by facilitating leukocyte infiltration
(Luterek-Puszyńska et al., 2017). Solomon A. et al. have
demonstrated that CCL5 induced a positive inflammatory response
in RA by activating synovial fibroblasts, thereby facilitating matrix

FIGURE 4
Detection of hub genes from the PPIs network of DEGs between RA
and OA according to their degree value. (A) The highlighted five genes
are CD8A, GZMB, CCL5, CD2, and CXCL9 in RA-LJ samples compared
with OA samples (B) The highlighted five genes are CD8A, CD2,
IL7R, CD27, and GZMB in RA-SJ samples compared with OA samples.
Red, orange and yellow modules represent hub genes, and the degree
values of hub genes decrease from red to yellowmodules. Bluemodules
refer to the genes which can interact with hub genes.
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metalloproteinase-1 (MMP-1) and MMP-13-mediated destruction of
the extracellular matrix (Agere et al., 2017). The pathological process
of arthritis is also mediated by another gene, CXCL9, whose protein is
detected in sera, synovial fluid, and synovial tissue (Lee et al., 2011;
Yoshida et al., 2012; Pandya et al., 2017). By binding to CXCR3 on
synovial tissue, inflammatory chemokines attract Th1 cells and
macrophages, thereby contributing to arthritis accumulation. These

findings suggest potential bDMARDS targets for treating RA in the
future.

T cells participate in multiple pathways driving the disease process in
rheumatoid arthritis. Naive CD4+ T cells from patients with RA transition
into highly proliferative, tissue-invasive and proinflammatory effector
cells (Weyand and Goronzy, 2017). Equipped with tissue-invasive
features, RA CD4+ T cells rapidly induce synovitis in a human

FIGURE 5
Expressions of hub genes in different groups in the microarray datasets and validations by immunohistochemical staining using joint biopsy sections. (A)
Expressions of hub gene CD8A, CD2, GZMB, CCL5, CXCL9, IL7R, and CD27 in RA-LJ, RA-SJ, and OA samples (B)–(F) The protein expressions of the 7 hub
genes were determined by immunohistochemical staining using joint samples from patients. *p-value <0.05.**p-value <0.01. ***p-value <0.001.
****p-value <0.0001. Ns, no significance.
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synovium mouse chimera model (Weyand and Goronzy, 2021). It was
found that synovial T cells, together with synovial macrophages, are the
cellular origin of TNF (Zhang et al., 2019). To date, however, anti-T cell
therapy has not been one of themajor success stories of RA. Because there
is still a lack of a highly selected target for anti-T cell therapy, completely
blocking T cell activity is not feasible. F Zhang et al. defined distinct
subsets of CD8+ T cells characterized by GZMK+, GZMB+, and GNLY +
phenotypes in RA joint synovial tissues by integrating single-cell
transcriptomics and mass cytometry (Zhang et al., 2019), indicating an
important role of hub gene GZMB in the classification of CD8+ T cells in
RA. It has already been found for decades that there was a remarkable
increase in GAMB concentrations in plasma and synovial fluid of patients
with established rheumatoid arthritis compared with disease controls
(Tak et al., 1999). Besides, IL-7/IL-7R physiologically promotes T cell
proliferation and prolonged survival as well as pathologically influencing
Th1/Th17 cell differentiation, potentiated glycolysis, and expansion of
osteoclast maturation, which contributes to the neovascularization in RA
synovial tissue (Meyer et al., 2022). In addition, CD27, also known as
TNFRSF7, is constitutively expressed on most T cells, and the interaction
with its ligand CD70, can provide signals to T cells to control their
accumulation and reactivity (Croft and Siegel, 2017). It has been found for
a long time that in the synovial fluid of patients with RA, soluble
CD27 levels and CD27+ T cell numbers are elevated and correlate
with the levels of rheumatoid factor, supporting a role for CD27 in
human RA (Tak et al., 1996). Blocking CD27−CD70 interactions with
anti-CD70 antibody reduces bone and cartilage erosion and inflammatory
infiltrates in the joints of mice with collagen-induced arthritis, moreover,
decreases collagen-specific antibody production (Oflazoglu et al., 2009). In
summary, molecules like GZMB, IL-7R, and CD27 offer the possibility of
highly targeted and sophisticated therapies for RA.

Conclusion

In conclusion, we screened differentially expressed genes between
large and small joints of RA between OA joints in this study. Several
functional and pathway enrichments were also found between RA and
OA joints, primarily related to T cell activation or chemokine activity.
It was determined whether RA and OA joint samples expressed hub
genes such as CD8A, CD2, GZMB, CCL5, CXCL9, IL7R, and CD27. As
a result of our study, we may be able to identify new diagnostic
markers and therapeutic targets for RA and OA.
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Co-expression and interaction
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dysregulated neutrophil and
T-cell activation as the core
mechanism associated with septic
shock
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Septic shock as a subset of sepsis, has a much higher mortality, while the
mechanism is still elusive. This study was aimed at identifying core
mechanisms associated with septic shock and its high mortality by
investigating transcriptome data. We screened 72 septic-shock-associated
genes (SSAGs) with differential expression between septic shock and sepsis in
the discovery dataset. Further gene set enrichment analysis identified upregulated
neutrophil activation and impaired T-cell activation in septic shock. Co-
expression analysis revealed nine co-expressed gene modules. In addition, we
determined twenty-one prognostic SSAGs using cox regression analysis in an
independent dataset. Moreover, protein–protein interaction (PPI) network
revealed two clusters. Among these neutrophil activation was enriched in the
most positively-related modules and the cluster2 PPI network, while T-cell
activation was enriched in both the most negatively-related module and one
of the most positively-related modules as well as the cluster1 PPI network. ELANE,
LCN2 and IFI44 were identified as hub genes with CytoHubba methods and
semantic similarity analysis. Notably, ELANEwas the only prognostic gene andwas
further validated in an external dataset. Blood neutrophil count was demonstrated
to increase in septic shock and be a risky factor of prognosis based on clinical data.
In conclusions, septic shock is associated with upregulated neutrophil activation
and dysregulated T-cell activation. Three hub genes might have potentials as
sensitive markers for the further translational research and ELANE could be a
robust prognostic biomarker and effective therapeutic target.
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1 Introduction

Sepsis is known as life-threatening organ dysfunction due to a
dysregulated host response to infection (Singer et al., 2016), which
has been a major global health concern because of high mortality
and unacceptable hospital costs (Reinhart et al., 2017). A recent
study reported a total of 11.0 million sepsis-related deaths in an
estimated 48.9 million incident cases of sepsis worldwide in 2017
(Rudd et al., 2020). More importantly, the incidence of sepsis has
still steadily increased over the past several decades (Esposito et al.,
2017). Meanwhile, sepsis has been the most expensive condition for
hospital stays in the United States, and the costs continue to increase
(Liang et al., 2006; Torio and Andrews, 2006; Torio and Moore,
2006). In particular, septic shock, as a subset of sepsis with
underlying circulatory and cellular/metabolic abnormalities
(Singer et al., 2016), has a much higher mortality approaching
40%–60% than 10% of sepsis (Cecconi et al., 2018; Napolitano,
2018).

However, the significant biological and clinical heterogeneity of
sepsis remains a major challenge, which has led to the failure of
clinical sepsis trials of immunotherapy (Rubio et al., 2019). The
understanding of sepsis and septic shock is still limited and keeps
evolving over time. The Third International Consensus Definitions
for Sepsis and Septic Shock (Sepsis-3) was developed in 2016 (Singer
et al., 2016), reflecting improved knowledge on the pathophysiology
of sepsis and septic shock. Importantly, Sepsis-3 led to the new
definition of septic shock by a more restrictive and unambiguous
criteria that the criteria of sepsis and vasopressor therapy needed to
elevate mean arterial pressure ≥65 mmHg and lactate >2 mmol/L
(18 mg/dL) despite adequate fluid resuscitation (Shankar-Hari et al.,
2016; Singer et al., 2016; Napolitano, 2018), which means
distinguishing septic shock from sepsis more clearly than ever
before. In this context, it could be necessary to determine core
mechanisms under the new definition for a more accurate
interpretation of septic shock.

Previous studies of septic shock based on different definitions
have shown several important mechanisms. Tissue hypoxia has been
discussed as an important pathophysiological mechanism under the
action of microbial endotoxins during septic shock (Pavez et al.,
2020). From an immunological perspective, the activation of
monocytes, macrophages and neutrophils was considered to
participate in the intimate mechanism of septic shock (Gorecki
et al., 2021). In particular, polymorphonuclear neutrophils (PMNs)
have been shown to lose their direct antimicrobial functions and
acquire an immunosuppressive action and participate in the
generation of disseminated intravascular coagulation (DIC) when
septic shock develops (Stiel et al., 2018). However, few studies have
focused on the difference between septic shock and sepsis without
shock syndromes. The mechanism of septic shock is not yet fully
understood, and the identification of the core mechanism is still
needed.

In this study, we analyzed the gene expression profiles of patients
between septic shock and sepsis from public databases to identify
core mechanisms associated with septic shock and its high mortality.
Weighted gene co-expression network analysis (WGCNA) was
conducted to identify septic-shock-associated gene modules.
Prognostic genes among septic-shock-associated genes (SSAGs)
were identified to explain the higher mortality at the molecular

level. Combining the protein–protein interaction (PPI) network and
semantic similarity network based on gene annotation, hub genes
were identified with the most connectivity among SSAGs. The main
goal of the present study was to better understand the molecular
changes and screen core mechanisms responsible for the
development from sepsis to septic shock under the new Sepsis-3
definition. For more accurate interpretation, the “sepsis” declared
after in this study refers specifically to sepsis without shock
diagnosis.

2 Materials and methods

2.1 Data source

The included transcriptome data were downloaded from gene
expression omnibus (GEO) databases (http://www.ncbi.nlm.nih.
gov/geo/) (Barrett et al., 2013). Only peripheral blood samples
collected within 24 h of diagnosis or ICU admission were
included. The RNA sequencing data of 91 adult samples
(including 19 septic shock, 20 sepsis, 12 uncomplicated infection
and 40 healthy controls) in the GSE154918 dataset, which were pre-
processed using the DESeq2 package by the contributors (Love et al.,
2014; Herwanto et al., 2021), were used as discovery dataset to
explore genes, modules and mechanisms associated with septic
shock. Additionally, the array data and survival information of
479 adult sepsis samples with a 28-day cumulative death rate
about 23.80% in the GSE65682 dataset were read in R language
to determine the prognostic significance of interested genes in sepsis
patients. The gene expression profiles of GSE65682 were
background-subtracted and normalized by a robust multi-array
average algorithm using the affy package. The row count matrix
of 345 adult sepsis samples including 52 dead and 293 survival
samples in the GSE185263 dataset was downloaded to validate
survival significance of the hub gene.

Clinical blood laboratory examinations data of sepsis and septic
shock patients were extracted from the MIMIC-IV (version 2.0)
database in the physionet (https://physionet.org/content/mimiciv/2.
0/) for the further validation (Goldberger et al., 2000; Johnson et al.,
2022). One of the authors who has finished the required
Collaborative Institutional Training Initiative examination
(Certification number 53459610 for Zhao) can access the
database. The adult ICU stay samples meeting the sepsis-3
definition at the first day of ICU admission were included
(Singer et al., 2016). The patients’ parameters including absolute
neutrophil count, absolute CD3 count (i.e., T cell count), absolute
CD4 count and absolute CD8 count from blood specimens and
survival data were extracted for further analysis. Specifically, we
extracted the max values of neutrophil counts of each ICU stay
within 6 h before ICU admission and 24 h after; while the chart time
requirements of the other three items were limited to 6 h before ICU
admission and 48 h after, concerning their more time costs waiting
for the reports. In our study, the data about neutrophil counts of
8250 ICU stays containing 40.5% septic shock samples and with a
28-day cumulative mortality rate (CMR) about 22.3% were
extracted. However, among them only 69 had the time-limited
data about CD3 counts and 68 had desirable CD4 counts and
CD8 counts due to their less clinical applications. More details
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were shown in Supplementary Table S1. The code used for data
extraction can be available on GitHub (https://github.com/MIT-
LCP/mimic-iv).

2.2 Differential gene expression analysis

Differential expression analysis was conducted using moderated
t-test by the limma R package (Ritchie et al., 2015). The differential
expression cutoff values were set to |log2 fold change (logFC)|≥
1 and adjusted p-value (adj.P) < 0.05. p values were adjusted by the
Benjamini–Hochberg (BH) method.

2.3 Functional enrichment analysis

Functional enrichment analysis was conducted using the
clusterProfiler R package (Yu et al., 2012). Gene set enrichment
analysis (GSEA) based on the rankings of logFC of all genes and
over-representation analysis was utilized to determine enriched
biological process (BP) GO terms and KEGG pathways. The
cutoff of the adjusted p-value by the BH method was set to 0.05.

2.4 Weighted gene co-expression network
analysis (WGCNA)

The weighted co-expression network was constructed using the
WGCNApackage (Zhang andHorvath, 2005; Langfelder andHorvath,
2008). The minimum module size was set to 30, the dendrogram cut
height for module merging was set to 0.2 and the desired minimum
scale free topology fitting index R2 was set to 0.8 to screen optimal soft-
thresholding power. Module eigengene (ME) was defined as the first
principal component of the gene expression matrix of the
corresponding module. The relationships between model eigengenes
and phenotypes were assessed using the Spearman correlation.

2.5 Survival analysis

A univariate Cox proportional hazard regression model was
conducted by the survival R package to screen prognostic factors
from septic-shock-associated DEGs in an independent dataset
(GSE65682), and p values were corrected by the BH method.

2.6 Protein-protein interaction (PPI) network
analysis

The PPI network were constructed based on the DEGs of septic
shock online in the STRING database (http://string-db.org/) (version
11.5) (Szklarczyk et al., 2021). Specifically, the gene list was input into
the multiple protein mode with default parameters. The credibility
was set to 0.40. Disconnected nodes were hidden. Then, the output
table was input into Cytoscape software. CytoHubba, a Cytoscape
plugin, was used to screen potential hub genes by providing
12 topological analysis algorithms (i.e., MCC, DMNC, MNC,
Degree, EPC, Bottleneck, Eccentricity, Closeness, Radiality,

Betweenness, Stress, and Clustering Coefficient) (Chin et al., 2014).
In this research, genes appearing at least 5 times in the top 10 results of
each algorithm were considered as potential hub genes.

2.7 Semantic similarity analysis

Semantic similarities were measured using the GOSemSim
package (Yu et al., 2010; Yu, 2020). The pairwise semantic
similarities were calculated by Wang’s measure algorithm (Wang
et al., 2007) from three aspects, including biological processes (BP),
molecular function (MF) and cellular component (CC). The final
adjacency matrix of semantic similarities between genes was
identified as the geometric means of the similarities from these
three aspects. The candidate hub genes were screened according to
the decreasing order of average semantic similarities of each gene.

2.8 Immune cell correlation estimation

To estimate the immune cell fractions, CIBERSORTx, a suite of
machine learning tools (https://cibersortx.stanford.edu/), was used
to perform a deconvolution algorithm based on bulk expression
profiles (Newman et al., 2019). The correlation between hub genes
and cell fractions in the GSE65682 dataset was estimated using the
Spearman rank correlation coefficient.

2.9 Clinical investigation of neutrophil and
T-cell counts

To further validate the associations of neutrophils and T-cells with
septic shock, the differences of the neutrophil counts, CD3 counts,
CD4 counts and CD8 counts between septic shock and sepsis were
accessed using two-sample Wilcoxon rank sum test, where the criteria
of the statistical significance was set to p < 0.05 (two-sided). The
prognostic associations were accessed using the univariate Cox
proportional hazard regression model by the survival R package.
Kaplan-Meier (KM) curves were further performed by the
survminer R package to evaluate prognostic association in different
subgroups of sepsis. The optimized cut-off values of each group were
identified using X-tile tool respectively (Camp et al., 2004).

2.10 Software and version

R (version x64 3.6.2) and Cytoscape (version 3.8.2) were used
through the analysis. The artworks were created by Adobe Illustrator
CC (version 64-bit 22.1).

3 Results

3.1 Identification of differentially expressed
genes

As shown in the flowchart in Figure 1, we first analyzed genes
differentially expressed between septic shock (n = 19) and sepsis (n =
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20) groups in the discovery (GSE154918) dataset. A total of
72 septic-shock-associated DEGs were identified as septic-shock-
associated genes (SSAGs) with |logFC>1| and adj.p < 0.05
(Figure 2A), among which 47 genes were upregulated and
25 genes were downregulated in septic shock. The heatmap
showed the overall trend among the course from healthy to
septic shock of the top 25 upregulated and 25 downregulated
genes (Figure 2B). Of note, most of the DEGs showed significant
increases from healthy to infection group, reflecting their possible
participation in the infection-driven mechanisms.

3.2 Septic shock showed excessive
neutrophil activation and impaired T Cell
activation

To explore the mechanism of the development of septic shock,
gene set enrichment analysis (GSEA) was used to provide global
insight to assess the gene expression patterns of septic shock
(Figures 2C, D).

Compared with sepsis group, we found that in septic shock,
significant upregulation of the biological processed related to
neutrophil activation, and those related to T cell activation were
significantly downregulated (Figure 2C). Pathways related to energy
metabolism were significantly upregulated, while the pathways
including antigen presentation, T cell receptor (TCR) signaling
pathways and NK cell mediated cytotoxity were downregulated
(Figure 2D). Excessive neutrophil activation and impaired T cell
activation could be the major characteristics of septic shock.

3.3 Identification of septic-shock-
associated co-expression gene module

After excluding two outliers and setting soft-thresholding power
to 14 (Figures 3A, B), a total of nine co-expression modules were
identified based on the expression profiles of 5,000 genes with most
median absolute deviation (Figure 3C). Correlational analysis
between modules and phenotypes revealed positive correlations
with septic shock of M4, M5, M6 and M7 and negative
correlations of M1, M2 and M3. Moreover, M4 and M6 were
shown to be the most positively related module to septic shock,
while M2 showed the most negative correlation (Figure 3D).

Further over-representation analysis showed M4 and
M6 enriched in processes and pathways about neutrophil
activation while M2 and M6 enriched in those about T cell
activation, suggesting the activation of neutrophil and T cell
activation as key mechanism of septic shock (Figures 3E, F). In
addition, M5 and M7, which showed nearly the highest positive
correlations, were enriched in cell-division-related processes and
RNA-metabolism-related processes, respectively.

Of note, we found modules correlated with neutrophil and T cell
activation in part showed different trend among the step course
from healthy to septic shock (Figure 3D), especially M2 related to
T cell activation showed the most negative correlation with septic
shock and infection as well as the most positive correlation with
sepsis, meanwhile M6 both related to neutrophil and T cell
activation as one of the most positively correlated modules with
septic shock and infection showed the most negative correlation
with sepsis. M4 module, which was related to neutrophil activation
especially neutrophil extracellular trap (NET) formation, showed
positive correlation with infection and septic shock while
unsignificant correlation with sepsis. These findings further
validate the specific transcriptomic changes from sepsis to septic
shock.

However, T-cell-related modules were observed more
perplexing associations that M6 was positively related and
M2 was negatively related to septic shock, meanwhile M6 was
also related to neutrophil activation. To further understand the
functions of M6 in T cell activation, the gene-concept networks were
constructed based on the enrichment analysis of M6 genes and their
gene significances for septic shock (Supplementary Figures S1, S2).
We found neutrophil-related genes showing highly consistent up-
regulations while T-cell-related genes showed correlations in
different directions and no obvious distribution tendency was
observed. Interestingly, several HLA (Human leukocyte antigen)
Class-II molecules, specifically HLA-DPA1 (Major
Histocompatibility Complex, Class II, DP Alpha 1), HLA-DQA1
(Major Histocompatibility Complex, Class II, DQ Alpha 1), HLA-
DRB1 (Major Histocompatibility Complex, Class II, DR Beta 1),
HLA-DMB1 (Major Histocompatibility Complex, Class II, DM Beta
1) and HLA-DPB1 (Major Histocompatibility Complex, Class II, DP
Beta 1), were all downregulated. On the other hand, the
downregulated TCR signalling pathway were inferred based on
the results of GSEA and the enrichment analysis for M2 genes
(Figures 2C, D; Figure 3F). Combining these two findings, the
suppression of the interaction of TCR and HLA-II might be an
important part of the mechanism. Beyond that, the mechanism of
dysregulation of T cell activation was still seemed more complicated.

FIGURE 1
Study workflow. Bioinformatics analysis to screen core
molecular mechanisms associated with septic shock and its high
mortality. PPI, protein-protein interaction networks; GSEA, gene set
enrichment analysis; WGCNA, weighted gene co-expression
network analysis; DEG, Differential expressed gene; PG, prognostic
gene.
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3.4 Identification of septic-shock-
associated prognostic genes

To identify important genes associated with high mortality of
septic shock. Septic-shock-associated DEGs with adjusted
p-value <0.05 using univariate Cox analysis were further screened
as septic-shock-associated prognostic genes. As a result, 21 genes
were screened with significant correlations with 28-day cumulative
death (Figure 4). Among them, 18 genes were identified as risky
factors (log2HR > 0) and three genes were identified as protective
factors. Notably, most of the risky factors belonged to M2, M4 and

M6, which were identified as modules mainly related to neutrophil
and T cell activation. Moreover, M2 showed the most negative
correlation, and M4/M6 were two of the most positively correlated
modules, reflecting their major association with septic shock and its
high mortality.

3.5 Construction of PPI network

The PPI network based on 72 DEGs was distinctly separated into
two clusters, and each of them showed high consistency of the trend

FIGURE 2
Differential gene expression between septic shock and sepsis patients. (A) Differently expressed genes in septic shock (n = 19) vs. sepsis (n = 20)
group. (B) The expression heatmap of 25 top upregulated DEGs and 25 top downregulated DEGs. Hlty, healthy control; ucInf, uncomplicated infection;
Seps, sepsis; Shock, septic shock. (C) Biological processes enriched in septic shock vs sepsis groups. (D) KEGG pathways enriched in septic shock vs.
sepsis groups.
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of expression differences (Figure 5). All of the cluster1 genes were
downregulated in septic shock, while almost all of the cluster2 genes
were upregulated. Interestingly, most of the prognostic genes were
concentrated in cluster2. We also found that most cluster1 genes did

not show significant difference compared with healthy
group. Functional over-representation analysis revealed the
significant enrichment of response to virus and NOD-like
receptor signaling pathway for the cluster1 genes, while

FIGURE 3
Co-expression network construction. (A) Hierarchical clustering dendrogram of adopted samples to detect outliers. (B) Determination of optimal
soft-thresholding power. (C) Hierarchical clustering dendrogram and corresponding modules of involved genes. (D) Correlation heatmap of module
eigengenes and phenotypes. The color of the squares gradually from blue to red represents the Spearman correlation coefficients. (E) Biological
processes enriched in eachmodule, the color and the size of the dots corresponded to the significance of enrichment and the ratio of enriched gene
numbers in the corresponding terms respectively. (F) KEGG pathways enriched in each module, the color and the size of the dots corresponded to the
significance of enrichment and the ratio of enriched gene numbers in the corresponding terms respectively.
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neutrophil-related processes and pathways such as neutrophil
degranulation process and neutrophil extracellular trap (NET)
formation pathway enriched in the cluster2 genes.

3.6 Identification of septic-shock-
associated hub genes

Combining the results of 12 algorithms of cytoHubba app, a
total of nine hub genes, including DEFA4 (Defensin Alpha 4),
IFIT1 (Interferon Induced Protein With Tetratricopeptide
Repeats 1), MMP8 (Matrix Metallopeptidase 8), MPO
(Myeloperoxidase), MX1 (MX Dynamin Like GTPase 1),
RSAD2 (Radical S-Adenosyl Methionine Domain Containing
2), ELANE (Elastase, Neutrophil Expressed), IFI44 (Interferon
Induced Protein 44) and LCN2 (Lipocalin 2), were identified with
at least five appearances in the top 10 results of each algorithm
(Figure 6A).

On the other hand, based on the functional similarity among
SSAGs calculated by the GOSemSim method, the hub genes
including ELANE, IFI44, LCN2, S100A12 (S100 Calcium
Binding Protein A12), CTSG (Cathepsin G), PRTN3
(Proteinase 3), OAS3 (2′-5′-Oligoadenylate Synthetase 3),
IFIT3 (Interferon Induced Protein With Tetratricopeptide
Repeats 3), AZU1 (Azurocidin 1) and GBP1 (Guanylate
Binding Protein 1) with top 10 highest average semantic
similarities were screened (Figure 6A).

We then considered the intersection of the two results above,
specifically ELANE, IFI44 and LCN2, as hub genes with higher
credibility (Figure 6A). ELANE and LCN2 were involved in
neutrophil activation and IFI44 was involved in the response to

the virus (Figure 5). Besides, ELANE and LCN2 showed persistent
increase except for the period from uncomplicated infection to
sepsis and were associated with increased classical monocyte as
well as decreased neutrophils and memory T cells, while IFI44 was
only downregulated in septic shock and showed roughly the
opposite correlations with immune cell fractions (Figures 6B, C).
We noticed ELANE was the only prognostic gene therein, and
further validate its correlation with worse prognosis in an external
dataset (GSE185263) (Figure 6D). According to the results of GSEA,
upregulated neutrophil-related processes were enriched in ELANE-high
group (Figure 6E). Meanwhile, downregulated TCR signaling pathway,
NK cell mediated cytotoxicity and TLR signaling pathway were
enriched (Figures 6E, F).

3.7 Neutrophil count was associated with
septic shock and prognosis

A significant difference of neutrophil counts between septic
shock and sepsis patients was validated (Figure 7A). Neutrophil
counts were higher in septic shock than sepsis (13.70 vs. 10.80,
p < 0.001). Further univariate Cox analysis demonstrated the
prognostic significance of neutrophil count (Figure 7B).
Moreover, KM curves showed the prognostic associations of
neutrophil counts as a risky factor were not only significant for
overall sepsis, but also significant for septic shock and non-shock
sepsis (Figures 7C–E). However, we did not obtain any statistically
different distribution or prognostic association of CD3 count,
CD4 count and CD8 count (Figures 7A, B), which could be
explained by the complicated mechanism of T cell activation or
might be affected by the smaller sample sizes.

FIGURE 4
Prognostic SSAGs. The forest plots of prognostic SSAGs with adjusted p-value less than 0.05 by univariate cox analysis in the GSE65682 dataset. Red
forest plots represent risky factors and green forest plots represent protective factors.
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4 Discussion

Sepsis causes life-threatening organ dysfunction (Singer et al.,
2016), which places a great burden on human society (Fleischmann
et al., 2016). Septic shock, as a subtype of sepsis, has a much higher
mortality approaching 40%–60% than 10% of sepsis alone (Singer
et al., 2016; Cecconi et al., 2018; Napolitano, 2018). It remains a big
challenge to improve early and effective detection and management
as well as the understanding of the mechanisms of septic shock. As
Sepsis-3 revised in 2016 prompted new interests in sepsis
immunobiology (Bermejo-Martin et al., 2016; Singer et al., 2016),
further exploration of related molecular changes and underlying
mechanisms could be helpful for better understanding and targeted
therapy of septic shock. Most of the previous peripheral blood
studies of sepsis were focused on identifying potential

biomarkers, signatures, or endotypes (Scicluna et al., 2017;
Baghela et al., 2022). However, since septic shock is characterized
by circulatory and cellular metabolism abnormalities (Singer et al.,
2016), peripheral leukocytes could be responsible for the
development of septic shock.

Therefore, in the present study, we analyzed differences at the
transcriptome level of peripheral blood between septic shock and
sepsis. We found a significantly upregulated neutrophil activation
and a dysregulated T cell activation at septic shock. The former was
more likely to be associated with hyperinflammation and the latter
could partially be related to suppressed interaction process of TCR
and HLA-II. Interestingly, it could be inferred from the trends of
module eigengenes among the step course from healthy to septic
shock that neutrophils were activated when initially stimulated by
infection, partially suppressed when sepsis (organ dysfunction)

FIGURE 5
PPI network construction and over-representation analysis of cluster genes. PPI network constructed by SSAGs from STRING database, were clearly
divided into 2 clusters. The color of gene nodes indicated log2 fold change. V-shape represented the prognostic genes. The diamond shaped nodes and
the triangle shaped nodes represented enriched biological processes and KEGG pathways correspondingly.
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FIGURE 6
The identification of hub genes in SSAGs. (A) The genes appearing at least 5 times in top 10 results of each algorithmusing cytoHubbawere extracted
(marked in red) and shown in the upset plot, below the SSAGs with top 10 functional similarities estimated by Semantic similarity analysis were shown in
box plots. Three genes were identified as hub genes by overlapping the two results. The gene namesmarkedwith an asterisk indicated them as prognostic
genes. (B) Correlations between hub genes and immune cell fractions. (C) Expression values of hub genes among the course from healthy to septic
shock. (D) ELANEwas significantly upregulated in death (n = 52) vs. survival (n = 293) group of the GSE185263 dataset. (E) Biological processes enriched in
ELANE-high group. (F) KEGG pathways enriched in ELANE-high group.
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FIGURE 7
Associations of neutrophils and T cells with septic shock and prognosis of overall sepsis. (A)Comparisons using two-sample Wilcoxon rank sum test
of neutrophil counts between sepsis (n = 4,905) and septic shock (n = 3,345) samples, CD3 count between sepsis (n = 46) and septic shock (n = 23)
samples, CD4 and CD8 counts between sepsis (n = 46) and septic shock (n = 22) samples. ns, non-sense; ****, p < 0.0001. (B) The forrest plots of 4 cell
counts for overall sepsis samples (n = 8,250 for neutrophil count, n = 69 for CD3 count and n = 68 for CD4 and CD8 count). Red forest plots
represent risky factors and green forest plots represent protective factors. (C) The KM curves accessing the prognostic association of absolute neutrophil
count (ANC) in overall sepsis samples. Samples with ANC>18.35 K/uL (n = 1,301) had higher 28-day cumulativemortality than samples with ANC≤18.35 K/
µL (n = 6,949) (31.59% vs. 20.56%, p < 0.0001). (D) The KM curves accessing the prognostic association of ANC in septic shock samples. Samples with
ANC>19.55 K/µL (n = 640) had higher 28-day cumulativemortality than samples with ANC≤19.55 K/µL (n = 2,705) (39.38% vs. 26.84%, p < 0.0001). (E) The
KM curves accessing the prognostic association of ANC in non-shock sepsis samples. Samples with ANC>11.41 K/µL (n = 1827) had higher 28-day
cumulative mortality than samples with ANC≤11.41 K/µL (n = 3,078) (20.63% vs 15.76%, p < 0.0001).
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develops and finally abnormally reactivated involving the NETs
formation under the situation of septic shock, while T cell activation
showed more complicated changes involving modules with different
trends. These could explain the phenotypic change patterns of these
2 cells at the different status from healthy to septic shock. A
retrospective cross-sectional study has identified the neutrophil
lymphocyte ratio (NLR) as a predictor of mortality and antibiotic
responsiveness in ICU patients with septic shock and sepsis (Sari
et al., 2019), suggesting both disorders as an important part of the
mechanism of septic shock.

Neutrophils has been considered to play important and central
roles during the early development of septic shock (Stiel et al., 2018).
Neutrophils are known to acquire an immunosuppressive action
during septic shock and participate in the generation of DIC where
NETs exceed the regulatory and take an essential part (McDonald
et al., 2017; Stiel et al., 2018). On the other hand, neutrophil
activation was also significantly enriched in upregulated DEGs of
septic shock compared with non-septic shock (Martinez-Paz et al.,
2021), indicating the specific participation of excessive neutrophil
activation in septic shock. We further demonstrated its most
correlation with septic shock at the transcriptome level, and we
found most of the prognostic SSAGs were concentrated in the
neutrophil-related modules and cluster, which further revealed
the major association of neutrophil with the high mortality of
septic shock. Moreover, we validated the association of
neutrophil count with the development and prognosis of septic
shock based on the clinical data, indicating the great potential of
neutrophil to help recognizing high-risk patients, and the prospect
as an important line of the further target therapy research.

Septic shock is a time-dependent disease (Peltan et al., 2017).
Early recognition of septic shock and effective targeted therapy in
time could make sense to the practice of precision medicine thus
is helpful to decrease the mortality of septic shock patients.
Therefore, we identified ELANE, IFI44 and LCN2 as hub genes
with the most connectivity, which have the potential to be more
sensitive biomarkers for the detection of septic shock. ELANE
and LCN2 were enriched in neutrophil related processes, while
IFI44 was involved in adaptive-immune-response-related PPI
cluster. As one of the prognostic genes, we noticed that
ELANE was included in M4, enriched in the NET formation
pathway and significantly correlated with neutrophil fractions,
which could be the core part responsible for the high mortality. It
encodes neutrophil elastase (NE), which is a serine protease and
plays a critical role in innate host defense such as microbial killing
(Horwitz et al., 1999; Voynow and Shinbashi, 2021). Under
pathological conditions, NE, as one of the components of
NETs, is released out of control during septic shock and has
been proven to participate in multiple important mechanisms,
such as chromatin decondensation and fibrinogenesis promotion
(Massberg et al., 2010; Papayannopoulos et al., 2010). Besides,
ELANE has been discussed to be involved specifically in the
pyroptosis of neutrophil through mediating the cleavage and
activation of GSDMD (Kambara et al., 2018), consistent with
our findings about the correlation of upregulated ELANE with
increased neutrophil activation and decreased neutrophil
fraction. It has been proven that inhibition of NE synthesis
can inhibit NET formation, reduce lipopolysaccharide (LPS)-
induced acute lung injury in rats (Hagiwara et al., 2008; Okeke

et al., 2020) and can significantly improve the survival rate of
post-CLP septic rats (Kitamura et al., 1994), suggesting the great
translational potential of ELANE as an important therapeutic
target of septic shock. Moreover, previous transcriptomic studies
have been published about identifying ELANE as an important
signature related to the severity (SOFA score) (Baghela et al.,
2022), and prognosis (Ding et al., 2022; Zhang et al., 2022), of
sepsis patients. We further demonstrated the correlation of
ELANE with septic shock and its vital participation in the core
mechanism of septic shock. As for the other two, LCN2 encodes a
secreted protein called neutrophil gelatinase-associated lipocalin
(NGAL). It can be stimulated by Toll-like receptors and is pivotal
in the innate immune response to bacterial infection through
binding bacterial siderophores (Flo et al., 2004). LCN2 has been
proven to differentially expressed between septic shock and sepsis
in surgical patients (Martin-Fernandez et al., 2020), and has been
reported as a potential biomarker of septic-shock-associated
acute kidney injury (Tang et al., 2021). IFI44 is an interferon-
alpha inducible protein associated with infection by several
viruses (Power et al., 2015). The downregulation of
IFI44 could in a way represent the suppressed adaptive
immune response in septic shock. The specific roles of
IFI44 in septic shock have not been defined yet. In summary,
ELANE and LCN2 were enriched in neutrophil activation and
correlated with infection and septic shock, especially ELANE as
the only prognostic gene could participate through NETs
formation and pyroptosis pathways. IFI44 was associated with
adaptive immune response and specifically downregulated in
septic shock. All three hub genes did not show any significant
change between sepsis and uncomplicated infection.

Our study is the first in our knowledge to focus on the
mechanisms about the contribution of peripheral leukocyte to
the development of septic shock under the new Sepsis-3 definition
since 2016. The roles of neutrophil activation and NETs in septic
shock have been reported in previous studies. We further
demonstrated their most correlation with septic shock
combining the WGCNA and PPI network analysis. We
highlighted septic shock as a subset of sepsis with much
higher mortality showing different expression profiles in
peripheral blood. The distinct distribution bias that most of
the septic-shock-associated prognostic genes were concentrated
in neutrophil-related modules and PPI cluster may be worthy of
note. However, there are still some limitations of the study. The
relatively small sample size of GSE154918 could partially limit the
universal implication of our findings, however the consistency
between the results of co-expression network and PPI network
analysis could up to a point improve the credibility and represent
an important endotype of septic shock. More importantly, the
specific phenotypic changes of neutrophil and T cells, for
example, whether ELANE was actually or only upregulated in
neutrophil, and whether or how ELANE-mediated pyroptosis of
neutrophil take part in were still unclear. The underlying cellular
heterogenicity might partially reduce the credibility of our
findings and the further well-designed research with directed
focus is still needed.

Overall, septic shock showed an excessive neutrophil
activation and a dysregulated T cell activation, of which the
former was associated with hyperinflammation and the latter
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could partially be related to suppressed interaction process
of TCR and HLA-II. Neutrophil activation may play a core
role during septic shock. ELANE, LCN2 and
IFI44 were identified as hub genes during septic shock, among
which ELANE as a neutrophil-related gene might have the
greatest potential to be a clinical biomarker and therapeutic
target. This study highlighted an important perspective about
septic shock under the new definition and would help in
designing further translational research to improve diagnosis
and treatment.
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Glossary
DEG Differentially expressed gene

SSAG Septic-shock-associated gene

BH Benjamini–Hochberg method

WGCNA weighted gene co-expression network analysis

PPI protein–protein interaction network

CMR cumulative mortality rate

adj.P adjusted p-value

BH Benjamini–Hochberg method

GSEA gene set enrichment analysis

GEO gene expression omnibus

logFC log2 fold change

BP biological process

TCR T cell receptor

HLA Human leukocyte antigen

HLA-DPA1 Major Histocompatibility Complex, Class II, DP
Alpha 1

HLA-DQA1Major Histocompatibility Complex, Class II, DQAlpha 1)

HLA-DRB1Major Histocompatibility Complex, Class II, DR Beta 1

HLA-DMB1Major Histocompatibility Complex, Class II, DMBeta 1

HLA-DPB1 Major Histocompatibility Complex, Class II, DP Beta

ELANE Elastase, Neutrophil Expressed

IFI44 Interferon Induced Protein 44

LCN2 Lipocalin 2

DEFA4 Defensin Alpha 4

IFIT1 Interferon Induced Protein With Tetratricopeptide Repeats 1

MMP8 Matrix Metallopeptidase 8

MPO Myeloperoxidase

MX1 MX Dynamin Like GTPase 1

RSAD2 Radical S-Adenosyl Methionine Domain Containing 2

S100A12 S100 Calcium Binding Protein A12

CTSG Cathepsin G

PRTN3 Proteinase 3

OAS3 2′-5′-Oligoadenylate Synthetase 3

IFIT3 Interferon Induced Protein With Tetratricopeptide Repeats 3

AZU1 Azurocidin 1

GBP1 Guanylate Binding Protein 1

DIC disseminated intravascular coagulation

NET neutrophil extracellular trap

NE neutrophil elastase.
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Gene profiling reveals the role of
inflammation, abnormal uterine
muscle contraction and
vascularity in recurrent
implantation failure
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1Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University,
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Shanghai, China

Objective: Recurrent implantation failure (RIF) is now disturbing numerous
infertile couples accepting assisted reproductive technology (ART). And the
endometrial factors are crucial causes of recurrent implantation failure.
However, its mechanism is still unclear. Thus, the aim of this study is to
identify altered biologic processes in endometrium that may contribute to
recurrent implantation failure.

Methods: We recruited two microarray datasets (GSE103465, GSE111974) from
Gene Expression Omnibus database (GEO), which contain endometrium from RIF
and normal women during implantation period. Using the online tools GEO2R and
Venny, we identified Differentially Expressed Genes (DEGs) of selected datasets,
and obtained common DEGs. Gene Ontology (GO) terms, Kyoto Encyclopedia of
Genes and Genomes (KEGG) and BioCatar pathway enrichment were conducted
with Enrichr platform, “ssgsea” and “ggplot2” package of RStudio. PPI networks
and hub gene related TF-gene interaction and TF-miRNA co-regulation networks
were built via online tools STRING and NetworkAnalyst. Immune infiltration
analysis was performed by CIBERSORT platform. Recurrent implantation failure
subgroup identification was achieved through “ConsensusClusterPlus,” “tsne,”
“ssgsea”, and “ggpubr” package in RStudio. Diagnostic characteristic ROC
curves were constructed via “pROC” and “ggplot2” package of RStudio. Enrichr
platform was utilized to find drugs targeting hub genes.

Results: 26 common DEGs were confirmed. Gene Ontology and Kyoto
Encyclopedia of Genes and Genomes/BioCarta analysis determined common
DEGs were mainly enriched in inflammation associated pathways including TNF,
NF-κB, IL-4, IL-10, IL-6, and TGF-β signaling pathways. Five hub genes (PTGS2,
VCAM1, EDNRB, ACTA2, and LIF) and related TF-gene and TF-miRNA interactions
were identified. Immune infiltration analysis indicated the importance of
macrophage M2 in recurrent implantation failure patients. Importantly,
subgroup identification analysis highlighted that recurrent implantation failure
patients can be divided into two subgroups with different phenotypes. Moreover,
the ROC curves and drugs may provide new diagnostic and therapeutic thought
for recurrent implantation failure.
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Introduction

Nowadays, infertility depresses 8–12% of couples in
reproductive age worldwide, and the boom of assisted
reproductive technology (ART) has allowed numerous infertile
couples to achieve feasible pregnancy (INHORN AND
PATRIZIO, 2015). However, a challenging problem arising in
this domain is recurrent implantation failure (RIF) (Bashiri et al.,
2018) As far as we know, there is still lacking a world-wide
acknowledged formal definition of RIF, but a relatively
recognized definition is that RIF is failure in three in vitro
fertilization-embryo transfer (IVF-ET) cycles after transferring
good quality embryos (Orvieto et al., 2015; Bashiri et al., 2018).
Among patients under infertility treatment, 15% suffer from RIF
(Busnelli et al., 2020; Mrozikiewicz et al., 2021).

Implantation is a complex process requiring precise embryo-
uterine cross-talk, which is still not well understood (Mrozikiewicz
et al., 2021). The window of implantation (WOI) is a strict time span
when blastocyst is overlain on the receptive state of the
endometrium. Abnormality of each link in implantation can lead
to RIF (Mrozikiewicz et al., 2021).

Risk factors of RIF include maternal age, smoking, stress and so
on (Orvieto et al., 2015; Bashiri et al., 2018). Immunological factors
including peripheral and uterine natural killer cells, Th1/Th2 ratio,
tumor necrosis factor alpha (TNF-α) levels, auto-antibodies,
antiphospholipid syndrome, hereditary thrombophilia as well as
infection are considered to participated in the pathogenesis of RIF
(Bashiri et al., 2018). Endometrium is the place of embryo to locate,
adhere, penetrate and develop in. Abnormal status of endometrium,
such as chronic endometritis, embryo-endometrial asynchrony,
endometrial injuries (e.g., pipelle catheter, hysteroscopy and
saline infusion) are factors to explain the origin of RIF (Bellver
and Simón, 2018). Previous studies have reported that two-thirds of
the RIF are caused by the abnormality of endometrial receptivity, so
it is of great importance to focus on the role of endometrium in RIF
(Margalioth et al., 2006). Various therapies are now being explored
to treat RIF including different types and methods of embryo
transfer, ovulation induction protocol, progesterone support,
antithrombotic agents, immunotherapy, anti-infection, anatomical
intervention and so on (Bashiri et al., 2018). However, the problem
isn’t fully resolved by the above-mentioned therapies, and we still
dont have an ideal method to detect the causes of every RIF
individual. Therefore, it is urgent to conduct bioinformatic
analysis aiming to find potential mechanism and effective
treatment of RIF.

Accumulating evidence has demonstrated that many genes have
been proposed as potential receptivity markers, however,
considering heterogeneity among those independent experiments
as an outcome of variations in specimens or tissue and different data
processing methods, the identification of those Differentially
Expressed Genes (DEGs) is inconsistent. Therefore, in this
research, we attempt to find more effective and reliable biological
pathways and potential biomarkers contributing to the pathogenesis
and development of RIF via integrating different studies. We
downloaded two microarray datasets GSE103465 and

GSE111974 from Gene Expression Omnibus database (GEO),
which contain gene expression profiling from endometrial tissues
of women with RIF and fertile women during WOI. We then
performed further bioinformatic analysis, including common
DEGs identification, gene ontology (GO), Kyoto Encyclopedia of
Genes and Genomes (KEGG)/BioCarta pathway enrichment,
protein-protein interaction (PPI) network analysis, TF-genes and
TF-miRNA interaction analysis, subgroup identification, immune
infiltration analysis, characteristic (ROC) curve analysis and drug
searching The workflow of our analysis is displayed in Figure 1.

Materials and methods

Original data collection

We input “recurrent implantation failure” and “expression
profile” as two keywords to the GEO database, then two datasets
GSE103465 and GSE111974 were selected for analysis, and
GSE26787 was chosen for validation. Both GSE103465 and
GSE111974 contain expression profiles of endometrial tissue
obtained from RIF and control women during WOI. GSE103465,
in GPL16043 platform, contains whole-genome expression profiles
of endometrial tissue from three women divided to the control group
and RIF group (Guo et al., 2018). In GSE103465, RIF is defined as no
pregnancy after ≥3 embryo transfers including a total of ≥4 good-
quality embryos, and inclusion criteria of control group is infertile
women with tubal factors who achieved a clinical pregnancy after
the first embryo transfer (Guo et al., 2018). GSE111974, in
GPL17077 platform, consists of 24 individuals with RIF and
24 fertile control patients, in which RIF is determined as failure
of pregnancy in three consecutive IVF cycles with at least one
transfer of good quality embryo in each cycle, while the fertile
control refers to patients who had a history of at least one live birth
with no related comorbidities (Bastu et al., 2019). The platform and
series matrix files were all downloaded.

Analysis for DEGs

Using the online analysis tool GEO2R (https://www.ncbi.
nlm.nih.gov/geo/geo2r/), the expression profiles of
endometrium from RIF patients and fertile women were
compared to screen the DEGs of the two datasets,
independently. p values were calculated through t-tests and
genes with the criteria of a |log2 (fold-change)| >1 and
p-value < 0.05 were considered as DEGs. The volcano plot
and box diagram were both created via the “ggplot2” package
of RStudio software, and the heatmap for the DEGs was drawn
using the “ComplexHeatmap” package of RStudio software (Gu
et al., 2016; Wickham, 2016). Overlapping DEGs from two
databases were defined as common DEGs and were displayed
with Venn diagrams, which was drawn by utilizing the online
platform Venny 2.1 (http://bioinfogp.cnb.csic.es/tools/venny/
index.html).
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Gene set enrichment analysis for GO terms,
KEGG and BIOCARTA pathway finding

The GO terms of common DEGs were conducted with online
tool Enrichr (https://amp.pharm.mssm.edu/Enrichr/). Significantly
enriched function annotations were defined as GO terms and KEGG
pathways with p values of <0.05 (Zhou et al., 2019). The GO analysis,
including biological process (BP), cellular component (CC) and
molecular function (MF), provides a set of concepts for describing
molecular activity and the location where the genes execute their
functions (Ashburner et al., 2000). The bubble plot of KEGG
pathways used to understand specific metabolic pathways of
common DEGs, were visualized via “ggplot2” package of RStudio
software (Kanehisa and Goto, 2000; Wickham, 2016). To take a
further step on gene enrichment in individual samples, we
performed a single sample version of gene set enrichment
analysis (ssGSEA) by “GSVA” package of RStudio software,
which rules an enrichment score as the degree of absolute
enrichment of a gene dataset in each sample with a designated
database called BioCarta (Hänzelmann et al., 2013). The differences
of enrichment scores were identified via wilcoxon test, and were
visualized by “ggpubr” package in RStudio software (Kassambara,
2020).

Construction of PPI networks and
identification of hub genes

Common DEGs are inserted into an online database called
Search Tool for the Retrieval of Interacting Genes (STRING)
(https://string-db.org/) to generate Protein-Protein Interaction
(PPI) network. Those with a high level of confidence were
regarded as valid interactions, and we set a convincing
confidence score as 0.25 (Cao et al., 2021b). The obtained PPI
network was then analyzed by Cytoscape 3.8.2 for a better
visualization. The app Molecular Complex Detection
(MCODE) on Cytoscape was applied to conduct the gene
network clustering analysis to refine key modules, with a p <
0.05. The app Cytohubba on Cytoscape was used to compute the
degrees of nodes in PPI work, proteins with high degree might
have key physiological regulatory functions, so the ones having
the most interactions were considered as hub genes (Cao et al.,
2021a). Additionally, we used a web-based tool GeneMANIA
(http://genemania.org) to further visualize the interactions and
roles of hub genes.

Analysis of TF-gene interactions and TF-
miRNA co-regulation

TF-gene interactions with the identified hub genes point out the
outcome of TF on functional pathways and expression levels of the
genes (Ye et al., 2019). NetworkAnalyst (https://www.
networkanalyst.ca/), a comprehensive online platform for
analyzing gene expression, was used to identify TF-gene
interaction and TF-miRNA co-regulation of identified hub genes.
Then the two networks were mapped on Cytoscaope 3.8.2 for
beautifying.

Immune infiltration analysis

With the help of Cell-type Identification By Estimating Relative
Subsets Of RNA Transcripts (CIBERSORT) (https://cibersort.
stanford.edu/), a web-based stool able to describe cell
composition of complex tissues via their gene expression levels,
we deconvoluted and compared the cellular composition of the two
groups in our analysis. Then the box plots, bar charts, heat maps and
scatter diagrams revealing the association of input datasets and
immune pathways and cells were all drawn through “ggpubr”
packages of RStudio software (Kassambara, 2020).

Identification of RIF subgroups

Consensus matrix of RIF subgroups identification in
GSE111974 was obtained through “ConsensusClusterPlus”
package of RStudio software, aiming to figure out if the five hub
gene can distinguish the different subtypes of RIF(Wilkerson and
Hayes, 2010). Optimal number of clusters was calculated via
k-medoids clustering, indicating that k = 2. In order to verify the
sample clustering condition of the 2 clusters we discerned, we
conducted a diminished reduction analysis via “tsne” package of
RStudio software (Donaldson, 2022). After clustering, we tried to
find out the functional differences of the clusters. We used “ggpubr”
package in RStudio software for visualizing the expression of hub
genes in the 2 clusters, and subsequently utilized BioCarta database
and “GSVA” package of RStudio software to identify the concerned
pathways in the 2 clusters (Hänzelmann et al., 2013; Kassambara,
2020).

ROC curve analysis

For the purpose of identifying the role of the five hub genes in
prediction of RIF, we conducted the characteristic ROC curves of the
diagnostic model in the GSE111974, via “pROC” and “ggplot2”
package of RStudio software (Robin et al., 2011;Wickham, 2016). To
validate the results, we repeated the process in GSE26787, another
dataset including RIF and control group.

Identification of potential drugs

Drug molecule identification is a pivotal component of the
present study. We input five hub genes into the Drug Signatures
database (DSigDB) on Enrichr (https://amp.pharm.mssm.edu/
Enrichr/), thus obtained the candidate drugs interacting with hub
genes, which may contribute to the treatment of RIF.

Results

Identification of DEGs using integrated
bioinformatic analysis

The particulars of selected three datasets were presented in
Table 1, and we finally chose GSE103465 and GSE111974 for
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analysis. As GSE26787 is originally aimed to identify the difference
of endometrium from RIF and recurrent miscarriages, and didn’t
provide the specific list of individuals accepting IVF or ICSI, we used
it for validation instead of analysis. 1,406 DEGs were obtained
including 373 upregulated and 1,033 downregulated genes in
GSE103465, while in GSE111974, 553 DEGs were collected,
among which 326 genes were elevated and 227 were suppressed.
The box plots shown in Figure 2 revealed the satisfying
standardization of the samples. The expression of the top
20 DEGs for both two datasets were visualized on heatmaps
(Figure 2). The volcano plots in Figure 2 highlighted the DEGs
of the two datasets.

GO terms and KEGG/BioCarta pathway
enrichment of common DEGs

Subsequently, venn diagrams were presented in Figure 3 to
illustrate the overlap of DEGs from the two datasets. As presented in
Figure 3, we finally identified 26 common DEGs containing
12 upregulated and 14 downregulated genes. The details of the
common DEGs were displayed in Table 2. We visualized the GO
terms and KEGG/BioCarta pathways of common DEGs in Figure 3,
for the further understanding of biological functions. The biological
processes analysis suggested that common DEGs mainly
participated in vascular associated smooth muscle contraction
and vasoconstriction (Figure 3C). Molecular function subsection
indicated that common DEGs were associated with potassium
channel regulator activity (Figure 3D). Predominate cellular
components consisting of products by common DEGs were
filopodium and caveola (Figure 3E). According to KEGG
pathway database in Figure 3F, common DEGs mainly took a
part in TNF and nuclear factor kappa B (NF-κB) signaling
pathway. As pointed out by BioCarta pathway enrichment in
Figure 3G, the inflammation associated pathways including
interleukin (IL)-4, inerferon (IFN)-γ, IL-2 receptor β chain
(IL2RB), IL-2, tumor growth factor (TGF) -β, tumor necrosis
factor receptor (TNFR)-1, TNFR-2, and IL-12 pathways were
dramatically downregulated in RIF group. Although the levels of
IL-6 and IL-10 pathways didn’t have a significant difference in two
groups, we could still find a decreasing trend in RIF group. The

specific data of pathway enrichment was displayed in
Supplementary Table S1.

PPI network and hub genes analysis

The PPI networks of common DEGs built by STRING database
and Cytoscape software, which contained 15 nodes and 32 edges, as
picturized in Figure 4A. In Figure 4B, we displayed the key PPI
network via network gene clustering analysis. It was exhibited in
Figure 4C that hub genes we identified were Prostaglandin-
endoperoxide synthase (PTGS) 2, Vascular cell adhesion molecule
1 (VCAM1), Endothelin receptor type B (EDNRB), Actin alpha 2
(ACTA2), and Leukaemia inhibitory factor (LIF). The networks of
hub genes and their relative genes from GeneMANIA (Figure 4D)
indicated that those hub genes had a strong relationship with
Leukemia inhibitory factor receptor (LIFR), endothelin (EDN) 3,
integrin subunit alpha (ITGA) 9, EDN2, prostacyclin synthase
(PTGIS), solute carrier family nine isoform 3 (SLC9A3),
Thromboxane synthase (TBXAS1), prostaglandin D2 synthase
(PTGDS), PTGS1, oncostatin M (OSM), GC, ITGA4, interleukin
six cytokine family signal transducer (IL6ST), EDN1, myosin light
chain 12A (MYL12A), Serotonin receptor 1B (HTR1B), myocardin
(MYOCD), integrin alpha D (ITGAD), Myosin heavy chain 11
(MYH11) and mesoporous silica nanoparticle (MSN). The specific
interaction patterns could be obtained from Supplementary
Table S2.

TF-gene interaction and TF-miRNA
coregulatory network

TF-gene interaction and TF-miRNA coregulatory network of
common DEGs were identified with the aid of NetworkAnalyst, and
were processed via Cytoscape. As shown in Figure 4E, the TF-gene
interaction network consisted of 25 nodes and 24 edges. LIF was
regulated by 19 TF-genes, while ACTA2 was regulated by four TF-
genes, and the two hub genes shared a TF-gene called AT-rich
interaction domain (ARID4B) (Figure 4E; Supplementary Table S3).
TF-miRNA coregulatory network, as displayed in Figure 4F,
contained 131 nodes and 151 edges, with 74 miRNAs and 52 TF-

TABLE 1 Characteristics of the three GEO datasets selected.

GSE GPL Experiment type Citation Samples Character

103,465 16,043 Expression profiling
by array

Guo et al.
(2018)

Group: RIF (n = 3), fertile
controls (n = 3). Sampling time:
WOI (LH+7)

Women recruited in the RIF group
had a history of implantation failure
from at least three consecutive IVF
attempts (including a total
of ≥4 good-quality embryos)

The two datasets both contain
the expression profile of
endometrial tissue from RIF after
IVF and control patients during
WOI. Therefore, we chose them
for analysis

111,974 17,077 Expression profiling
by array

Bastu et al.
(2019)

Group: RIF (n = 24), fertile
controls (n = 24). Sampling time:
WOI (LH+7–10)

RIF was determined as failure of
pregnancy in ≥3 consecutive IVF
cycles with ≥1 transfer(s) of good
quality embryo in each cycle

26,787 570 Expression profiling
by array

Lédée et al.
(2011)

Group: RIF (n = 5), fertile
controls (n = 5), recurrent
miscarriage (n = 5). Sampling
time: 7–9 days after ovulation

It is originally aimed to identify the difference of endometrium from RIF
and recurrent miscarriages, and did not provide the specific list of
individuals accepting IVF or ICSI. Considering above mentioned reasons,
we used it for the verification of ROC curves in our context
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genes being collected. Among the most interacted TF-genes in TF-
miRNA coregulatory network, NF-κB1 had the highest degree value
of 4, CCCTC-binding factor (CTCF), E26 transformation specific-1

(ETS1), RelA and NF-κB2 had eminent degree values of 3, specificity
protein 1 (SP1), Jun and CCAAT/enhancer-binding protein beta
(CEBPB) have relatively higher degree values of 2 (Figure 4F;

FIGURE 1
Methodical workflow for the current investigation.
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Supplementary Table S4). Among the most interacted TF-miRNAs
in TF-miRNA coregulatory network, hsa-miR-181b and hsa-miR-
181d had relatively higher degrees values of 3, and the degree values
of hsa-miR-181a, hsa-miR-340, hsa-miR-590-3p, hsa-miR-26a, hsa-
miR-29a, hsa-miR-29b and hsa-miR-29c were 2 (Figure 4F;
Supplementary Table S4). Considering the role of aforementioned
TF-genes and TF-miRNAs, especially NF-κB, Jun, CEBPB, hsa-miR-
181 and miR-miR-29 in inflammation, we believed that the
inflammation could affect RIF also in a transcription level.

Immune infiltration analysis

As presented in Figure 5, the percentage of macrophage M2,
γδT cell and dendritic cells activated in RIF group were less than that
in control group. The percentage of macrophage M2 in two groups
was individually shown in Figure 5D. Although the levels of NK cells
activated didn’t have significant differences in two groups, we could
still find a decreasing trend of NK cells activated in RIF group, and
larger scale of samples are required (Figure 5C). The result might be
significant if there was a larger sample size. Subsequently, we
executed the relationships between hub genes and hub genes,
hub genes and infiltrated immune cells, infiltrated immune cells
and immune cells (Figure 5). The results showed that hub genes have

a tight relationship with the amount of macrophage M2 and NK cell
activated. Therefore, we then excavated the association of hub genes
expression and above mentioned two immune cells. As exhibited in
Figure 5, the expression of PTGS2 had a negative correlation with
macrophage M2 and NK cell activated (p < 0.05), while EDNRB,
ACTA2 and LIF were positively correlated with macrophageM2 and
NK cell activated (p < 0.05). VCAM1 had a positive relationship with
NK cells activated (p < 0.05), although it did not have a significant
relationship with macrophage M2 (p = 0.094), we could still observe
a positive trend.

Identification of RIF subgroups

The RIF individuals in GSE111974 could be grouped into
2 clusters via hub genes, which was displayed in Figure 6A, with
a relatively larger cluster two and smaller cluster 1. Then the sample
clustering condition in Figure 6B showed that the 2 clusters could be
divided to two separate sections in the quadrant, which meant that
there were remarkable differences between the two clusters. As
shown in Figure 6C, the expression of PTGS2 was significantly
higher in cluster 2, while the expression levels of EDNRB, ACTA2,
LIF, and VCAM1 were markedly decreased in cluster 2. The
pathways which exhibited anti-inflammatory effect, such as IL-2,

FIGURE 2
Box plots, Heatmaps and Volcano plots of DEGs between RIF and control group. (A, B) Box plots of GSE103465 (A) and GSE111974 (B). Red refers to
RIF group, while blue represents control group. (C, D) Heatmaps of 10 DEGs who have the highest log FC and 10 DEGs with the lowest log FC from
GSE103465 (C) and GSE11194 (D). Red refers to the elevated genes, and blue directs to the downregulated genes. (E, F) Volcano plots of DEGs in
GSE103465 (E) and GSE111974 (F). Red refers to the increased DEGs, and blue points to the reduced DEGs.

Frontiers in Genetics frontiersin.org06

Dong et al. 10.3389/fgene.2023.1108805

185

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1108805


IL-4, IL-6, IL-10, TGF-β, TNFR2, and extracellular signal-regulated
kinase 5 (ERK5) pathways were dramatically downregulated in
cluster 2 (Figure 6D). Besides, Wnt pathway, mainly exerted pro-
inflammatory effect, was significantly activated in cluster two
compared with cluster 1 (Figure 6D). And other pathways like
IL-12, IL-22 binding protein (IL-22 BP), Toll, extracellular signal-
regulated kinase (ERK), IL-17, TNFR1, chemokine C-X-C motif
ligand 4 (CXCR4), mitogen-activated protein kinases (MAPK),
p38 MAPK, NF-κB, signal transducer and activator of
transcription 3 (STAT3), Notch, vascular endothelial growth
factor (VEGF) and Inflam pathways also had remarkable
downregulations in cluster 2 (Figure 6D). Therefore, it was clear
that the five hub genes could separate RIF patients into 2 clusters,
with one presented a typical inflammatory environment in uterus
(cluster 2) and another had atypical inflammatory responses (cluster
1) (Figure 6). Inflammatory alteration may contribute to RIF, but
this cant explain all the patients, especially individuals in cluster 1,
whose pathogenesis has been rarely discussed up to now. In future
work, RIF individuals can be grouped by the five hub genes, and we
can investigate specific etiology and accurate treatment methods for
each group.

ROC curve analysis

In GSE111974, we found that the five hub genes showed important
values in the diagnosis of RIF independently, especially VCAM1 and
ACTA2, which had an AUC of 0.852 and 0.821, respectively
(Figure 7A). The results were verified in GSE26787, with a high
AUC (AUC>0.7) in each hub genes (Figure 7B). Combined the five
hub genes, theAUC reached 0.976when combined the five hub genes in
GSE111974 (Figure 7C), while in GSE26787, the AUC was 1.0
(Figure 7D). Combined VCAM1 with ACTA2, the AUC achieved
0.875 in GSE11974 (Figure 7E) and 0.88 in GSE26787 (Figure 7F). To
sum up, the hub genes we identified the five hub genes had good
diagnostic values in RIF.

Identification of potential drugs

From DSigDB database, we selected 10 drugs who had the
minimal adjust p-value, they were: Simvastatin CTD 00007319,
nimesulide CTD 00000666, probucol CTD 00006616, hesperidin
CTD 00006087, Nebivolol CTD 00002249, progesterone CTD

FIGURE 3
(A, B) Venn diagram of upregulated DEGs (A) and downregulated DEGs (B) from two datasets. (C–E) Bar graphs reflecting GO terms identification
including Biological process (C), molecular function (D) and cellular component (E) of common DEGs. The width represent the values of [−log (Adjusted
p-value)], which are listed beside the bars. (F) Bubble chart visualizing KEGG pathway analysis of common DEGs. (G) Box plot of BioCarta and KEGG
pathway analysis via ssGESA.
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00006624, Sphingosine 1-phosphate CTD 00002508,
Hydroxytyrosol CTD 00000267, Ici 118,551 CTD 00001255,
bisindolylmaleimide IX CTD 00002617 (Table 3). Among the
10 candidate drugs, progesterone CTD 00006624 could interact
with all the five hub genes, and simvastatin CTD 00007319 had an
interaction with the five hub genes except EDNRB.

Discussion

In the current study, we tried to find biological changes contributing
to the pathogenesis of RIF via gene profiling. Benefited from the
combination of two microarray datasets GSE103465 and
GSE111974, our results are more effective and reliable. We found
that the disturbed inflammation regulation plays a key role in the

pathogenesis of RIF, and abnormal uterine muscle contraction and
vascularity also contribute to RIF. Although the five hub genes we
identified have been discussed in previous studies, the molecular
mechanism isn’t fully understood. We first revealed the interaction
existed among the five hub genes, which associated with the disturbed
inflammation regulation, uterine muscle contraction and vascularity in
RIF. Of importance, the subgroup identification revealed that a small
number of patients have atypical phenotypes (cluster 1), which may be
the reason for the poor prognosis of RIF. It hints us that RIF individuals
can be grouped by the five hub genes, and we can investigate specific
etiology and accurate treatment methods for each group in future work.
Additionally, the drug prediction revealed the potential drug molecules,
which sheds new light on the treatment of RIF.

Inflammation is essential in various pathophysiological
processes and diseases including cancer, allergic diseases,

TABLE 2 Log FC and p-value of common DEGs.

Upregulated genes

Gene.Symbol Log FC p.Value

GSE103465 GSE111974 GSE103465 GSE111974

C20orf96 3.01 1.35 6.50E-04 4.16E-07

EHF 2.53 1.76 9.91E-03 1.44E-10

HOXA6 2.42 1.20 4.52E-02 5.96E-08

KLHL31 1.07 1.34 4.63E-02 1.84E-04

LGR5 1.62 1.14 2.22E-02 3.51E-05

LRRC26 1.02 1.58 3.50E-02 1.51E-02

MTL5 1.43 1.08 4.85E-02 2.50E-03

PTGS2 1.23 1.40 2.01E-02 3.57E-04

SLC4A7 2.11 1.14 4.85E-02 3.35E-03

SNORD89 3.89 1.04 8.99E-04 2.74E-06

SP9 1.31 1.00 2.96E-02 2.02E-14

WNK4 1.46 2.15 1.21E-02 5.76E-06

Downregulated genes

Gene.Symbol Log FC p.Value

GSE103465 GSE111974 GSE103465 GSE111974

ACTA2 −2.62 −1.35 1.19E-03 2.98E-05

C20orf3 −1.67 −1.05 4.96E-02 3.51E-09

CAV2 −1.95 −1.20 1.92E-02 4.21E-08

CDH13 −3.01 −1.13 3.14E-04 5.57E-04

EDNRB −1.63 −1.17 3.76E-02 4.46E-03

EFEMP1 −2.17 −1.12 4.91E-03 5.40E-03

FUS −1.23 −1.38 1.48E-02 2.69E-10

GAS1 −2.08 −1.46 1.07E-03 3.87E-05

LIF −1.36 −1.35 2.64E-02 1.82E-02

LPCAT1 −1.99 −1.25 5.85E-03 1.07E-10

MLPH −2.07 −1.22 3.68E-02 2.72E-03

PAPSS2 −1.57 −1.62 1.58E-02 5.62E-06

SRSF7 −1.51 −1.01 9.72E-03 1.06E-08

VCAM1 −1.77 −1.37 2.24E-02 2.11E-06
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FIGURE 4
(A–D) PPI networks. (A) PPI network of 26 common DEGs. (B) Key modules of common DEGs. Larger nodes means higher degree scores. Thicker
lines represent higher combined scores. Red nodes refer to upregulated genes, while blue ones are downregulated genes. (C) Display of hub genes,
which are in orange nodes. (D) Interactions of hub genes and related genes. Pink lines represent physical interactions, purple lines refer to co-expression,
orange lines direct to predicted interactions, blue lines mean co-localization, and green lines point to genetic interaction, cyan lines illustrate
pathways, and yellow lines are shared protein domains. (E) Network for TF-gene interaction with hub genes. The highlighted red color node represents
the hub genes and other blue nodes represent TF-genes. The TF-miRNA coregulatory network. The nodes red color are the hub genes, a yellow node
represents miRNA and other blue nodes indicate TF-genes.
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congenital diseases and so on (Gao et al., 2021). The role of
inflammation in pregnancy has been argued for decades, of
which importance is beyond doubt (Mor et al., 2011). Although a
specific local pro-inflammatory environment is necessary for
embryo implantation, excessive inflammatory response can also
be harmful (Mor et al., 2011; Mekinian et al., 2016). Anti-
inflammatory cytokines and cells perform multiple functions
during normal pregnancies, such as promoting placental
formation and angiogenesis, and modulating trophoblast
differentiation and invasion (Chatterjee et al., 2014). Combining
with results of current study, we believe that the ruined balance of
pro-inflammatory and anti-inflammatory factors can ultimately lead
to implantation failure.

KEGG pathway enrichment of common DEGs indicates that
TNF and NF-κB signaling pathways play a major part in RIF.
Canonical NF-κB pathway activation responds to a diversity of
external stimuli involved in inflammatory and immune response, via
inducing the expression of pro-inflammatory cytokines including
TNF-α (Yu et al., 2020). Disturbed expression of NF-κB has been
reported in women suffering from infertility, and gene
polymorphism of NF-κB is noted to be related to RIF (Luo et al.,

2016). Detectable TNF-α and NF-κB from feto-maternal surface are
vital characters of successful implantation (Mor et al., 2011; Ersahin
et al., 2016), but the overexpression of TNF-α and NF-κB also has
adverse effect on implantation and lead to RIF (Ersahin et al., 2016;
Mekinian et al., 2016). Moreover, Duan and colleagues found that
TNF was the cytokine having the strongest correlation with all hub
genes in their research on RIF (Duan et al., 2022). The afore-
mentioned evidences suggest that NF-κB and TNF signaling
pathways are essential in implantation, and should be cautiously
controlled in an appropriate range. KEGG pathway calculated by
ssGESA suggests that cytokine-cytokine receptor interaction
pathway has a significant downregulation in RIF group. KEGG
pathway calculated by ssGESA suggests that IL-2, IL-2 receptor beta
(IL-2RB), IL-4, IL-12, IFN-γ, TGF-β, TNFR1, TNFR2, cytokine-
cytokine receptor interaction, chemokine signaling pathway and cell
adhesion molecules cams had significant downregulation in RIF
group. Among the aforementioned pathways, IL-2RB, IL-4 and IFN-
γ pathways showed themost remarkable decline (p < 0.001). IL-2 RB
can induces growth potential for endometrial glandular epithelial
cells, and its hypermethylation and downregulation has been found
in ovarian endometriosis (Kusakabe et al., 2009; Zhang et al., 2022).

FIGURE 5
The immune infiltration analysis. (A, B) Immune infiltration analysis for 21 types of immune cell composition of endometrial tissue from RIF versues
control group. (C) Box plot reveals the composition of eight types of immune cells in RIF and control group. (D) Box plot refers to the amount of
M2macrophages in RIF and control group. (E)Heat map exhibit the association of hub genes between hub genes and hub genes between immune cells.
(F)Heat map reveals the relation of immune cells enriched. (G,I,K,M,O) Correlation scatter plots between expression of PTGS2/EDNRB/ACTA2/LIF/
VCAM1 and Macrophages M2. (H,J,L,N,P) Correlation scatter plots between expression of PTGS2/EDNRB/ACTA2/LIF/VCAM1 and NK cells activated.
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IL-4 is always considered as a cytokine involved in anti-
inflammatory effect, and is also a vital mediator of fetal tolerance
in successful implantation and pregnancy (Feghali and Wright,
1997; Liang et al., 2015; Mekinian et al., 2016). IFN-γ, as a pro-
inflammatory cytokine, has been reported to participate in uterine
vascular modification and successful implantation (Feghali and
Wright, 1997). The high ratios of IFN-γ/IL-4, IFN-γ/IL-10 and
IFN-γ/TGF-β have been observed in the RIF and associated with
adverse outcome of implantation (Liang et al., 2015). As pointed out
by BioCarta pathway enrichment, the cytokine associated pathways,
such as IL-2, IL-4, IL-6, CXCR4, and VEGF pathways, are
dramatically downregulated (p < 0.001) in cluster 2, which
contains the majority of RIF patients. Therefore, appropriate
inflammatory activation is the crux of successful implantation.

Cytokines participating in implantation can be secreted by the
endometrial cells and immune cells recruited to the position of
implantation, 65%–70% of these cells are uterine-specific NK cells,
and 10%–20% are macrophages (Mor et al., 2011). Depletion of
these immune cells has deleterious effects on implantation,

deciduation and placental development (Mor et al., 2011). In
current immune infiltration analysis of cell composition,
M2 macrophages and NK cells are memorably lower in RIF
group than that in control group. Uterine NK cells have long
been acknowledged to be essential in deciduation for its role in
endometrial vascularity (Mor et al., 2011). M2 macrophages can be
polarized by anti-inflammatory cytokines such as IL-4, IL-10, and
TGF-β, conversely, they can produce large quantities of IL-10 and
TGF-β to suppress the inflammation, for the purpose of tissue
repair, remodeling and vasculogenesis (Shapouri-Moghaddam
et al., 2018). The depletion of M2 macrophages in mice has
been demonstrated to be a cause of implantation failure (Ono
et al., 2020).

Consistent with previous studies, we find that the imbalance of
pro-inflammatory and protective factors leads to a disordered
immune environment in uterus, results in abnormal vascularity
andmuscle contraction, and finally bring about RIF. But our analysis
revealed a more comprehensive inflammatory pathway spectrum in
RIF. The function of identified hub genes (PTGS2,VCAM1, EDNRB,

FIGURE 6
Identification of RIF subgroup in GSE111974. (A) Reordered consensus matrix on RIF compendium, by applying k-medoids with k = 2. (B)
t-distributed Stochastic Neighbor Embedding (t-SNE) reduces the dimensions of a multivariate dataset. (C) Box plot reveals the expression of five hub
genes in the two clusters. (D) Box plot of BioCarta pathway analysis in the two clusters via ssGESA.
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ACTA2, and LIF) also highlights the importance of inflammation,
uterine muscle contraction and vascularity in RIF.

PTGS2 is synthesized at very low levels under normal
conditions, but can be stimulated by specific events and is
responsible for the prostanoid biosynthesis under inflammation

(Vane et al., 1998). Most of the stimuli that induce PTGS2 are
those associated with inflammation, such as TNF-α, while IL-4
presented an inhibitory impact on PTGS2 (Vane et al., 1998).
For decades, PTGS2 has been widely considered to be an
indispensable molecule in female reproductive process including

FIGURE 7
The ROC curves of the diagnostic model. (A, B) The diagnostic ROC curves of independent five hub genes in GSE111974 (A) and GSE26787 (B). (C, D)
The diagnostic ROC curves of combined five hub genes in GSE111974 (C) and GSE26787 (D). (E, F) The diagnostic ROC curves of combined VCAM1 and
ACTA2 in GSE111974 (E) and GSE26787 (F).

TABLE 3 Suggested top drug compounds for RIF.

Term p.Value Adjusted p.Value Genes

simvastatin CTD 00007319 2.59E-07 1.64E-04 ACTA2; VCAM1; LIF; PTGS2

nimesulide CTD 00000666 4.64E-07 1.64E-04 VCAM1; EDNRB; PTGS2

probucol CTD 00006616 3.30E-06 7.78E-04 ACTA2; VCAM1

hesperidin CTD 00006087 7.64E-06 9.45E-04 VCAM1; PTGS2

Nebivolol CTD 00002249 7.64E-06 9.45E-04 VCAM1; PTGS2

progesterone CTD 00006624 8.01E-06 9.45E-04 ACTA2; VCAM1; EDNRB; LIF; PTGS2

Sphingosine 1-phosphate CTD 00002508 1.50E-05 1.19E-03 VCAM1; PTGS2

Hydroxytyrosol CTD 00000267 1.50E-05 1.19E-03 VCAM1; PTGS2

Ici 118,551 CTD 00001255 1.75E-05 1.19E-03 ACTA2; PTGS2

bisindolylmaleimide IX CTD 00002617 1.75E-05 1.19E-03 ACTA2; PTGS2
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ovulation, fertilization, implantation and embryo development
(Anamthathmakula and Winuthayanon, 2021). However, our
analysis showed that there was a significant increase of PTGS2 in
RIF, suggesting that the over expression of PTGS2 may also be
unfavorable for implantation. Rodent and simian models have
revealed that premature uterine contraction may be associated
with the activation of prostaglandin signaling, since
PTGS2 inhibitors can dampen cytokine induced uterine
contractility (Sadowsky et al., 2000; Mackler et al., 2003; Cirillo
et al., 2007; Orsi and Tribe, 2008). Additionally, high-frequency
uterine contraction at the time of embryo transfer had an adverse
impact on implantation rates in IVF-ET (Fanchin et al., 1998). Our
analysis provided a new sight that the overexpression of PTGS2 may
also impair the endometrial receptivity during WOI, via leading to
activated inflammatory cascade and uterine muscle contraction. As
a consequence, the level of PTGS2 in endometrium needs a more
precise regulation.

VCAM1 is a downregulated hub gene in our analysis. VCAM1 is
a NF-κB target gene induced by TNF-TNFR1 signaling pathway and
IL-4 (Kong et al., 2018). As an adhesion molecule, VCAM1 is
associated with epithelial cells activation, neutrophil recruitment
and aggravated creatine kinase (He et al., 2021; Mao et al., 2021). In
reproductive system, VCAM1 is known to appear in endometrial
side of decidual stromal cells (Bai et al., 2014). Significantly lower
expression of VCAM1 in endometrium at the peri-implantation
stage is associated with unexplained infertility and implantation
failure after IVF(Konac et al., 2009). Uterine VCAM1 expression is
essential for conceptus-uterine endometrium adhesion and early
placental development, so mutations or deficiencies of the VCAM1
may contribute to a series of human placental insufficiencies.
(Gurtner et al., 1995; Bai et al., 2014). In Shang and colleague’s
research,VCAM1was also regarded as a key gene in miRNA-mRNA
interaction network of RIF (Shang et al., 2022). Result of our analysis
is tied well with the previous studies, so we believe that VCAM1 is a
vital molecule in implantation and has the potential to be a
biomarker in RIF.

EDNRB widely locates in vascular endothelium of many
human tissues including placenta (Gram et al., 2017). The
expression of EDNRB was increased in the perivascular and
vascular cells of branching vessels during the late secretory
phase (Keator et al., 2011). And EDNRB was constantly
expressed during pregnancy including peri-implantation phase
(Gram et al., 2017). What intrigues us is that during prepartum
luteolysis, elevated expression of the EDN receptors in placenta
strongly resembles the placental localization of PGs family
members (e.g., PTGS2) in dogs (Kowalewski et al., 2010; Gram
et al., 2014). In addition, the elevation of EDN1 during normal
prepartum luteolysis and antigestagen-induced parturition/
abortion is associated with increased PGs output in dogs
(Kowalewski et al., 2010; Gram et al., 2014). In brief, EDNRB is
strongly associated with all stages of pregnancy including
implantation and involved in the signaling cascade of leukocyte
recruitment and PGs synthesis, loss of EDNRB has the probability
to lead to implantation failure.

Actin alpha 2 (ACTA2) is a smooth muscle actin
predominately participated in vascular contractility and blood
pressure homeostasis (Maglott et al., 2011). Expressed in uterine
myocytes, ACTA2 is associated with uterine muscle contraction

and uterine remodeling in pregnancy (Cooper and Brown,
2017). Women with ACTA2 mutations may be more likely to
suffer from uterine muscle dysfunction and hemorrhage,
according to a case report by Kylie and colleagues (Cooper
and Brown, 2017). Our study revealed the potential and
indispensable role of ACTA2 in implantation via impacting
the function of uterine muscle.

As a member of IL-6 cytokine family, LIF has been reported to
exhibit both pro-inflammatory and anti-inflammatory effects
(Gadient and Patterson, 1999). Like PTGS2, LIF is also strongly
elevated by TNF and downregulated by IL-4 (Gadient and Patterson,
1999). Conversely, LIF induces the production of pro-inflammatory
cytokines (Gadient and Patterson, 1999). LIF is viewed as a potential
predictor of fertility after IVF, considering that high expression
levels of LIF in endometrium during the mid-luteal phase are
relevant to a higher rate of pregnancy success in women
underwent IVF (Serafini et al., 2008). The mechanisms of LIF in
modulating implantation have been well discussed. LIF influences
endometrial receptivity through inducing decidualization, elevating
IL-6 and IL-15 levels in decidual cells, and recruiting leukocytes
during WOI (Kimber, 2005; Shuya et al., 2011). LIF also has the
ability to accelerate the transformation of endometrial macrophages
into an anti-inflammatory phenotype via LIF-signal transducer and
activator of transcription (STAT) pathways (Brinsden et al., 2009;
Dallagi et al., 2015).

TF-genes are reactors for the gene expression regulation,
through binding with targeted genes and miRNAs (Zhang et al.,
2015). Among the regulators, ARID4B has a significant
interaction, which has been demonstrated to be a regulator of
male fertility (Wu et al., 2013). Regulatory biomolecules work as
potential biomarkers in plenty of complex diseases. As shown in
TF-genes and TF-miRNA coregulatory network, NF-κB1, NF-
κB2, RelA, CEBPB, miR-181, and miR-29 are important in RIF.
NF-κB, RelA (a subunit of NF-κB) and CEBPB are both key
regulators in inflammation (Zahid et al., 2020; Zhao et al., 2020).
MiRNAs can regulate various target genes in numerous
biological processes and diseases, such as endometrial cancer
(Ni et al., 2022). It has been reported that miR-181 family
present a central role in vascular inflammation (Sun et al.,
2014). MiR-181b inhibits expression of VCAM1, and serves
as an inhibitor of downstream NF-κB signaling pathway (Sun
et al., 2012; Sun et al., 2014). MiR-181d has the responsibility to
regulate the acute stress response in thymocytes via targeting
LIF (Sun et al., 2014). Combing mRNA microarray
GSE111974 with miRNA microarray GSE71332, Ahmadi and
colleagues constructed a circRNA-miRNA-mRNA network in
RIF, and found that miR-29c might be a crucial miRNA, which is
consistent with our analysis (Ahmadi et al., 2022). In addition,
overexpression of miR-29 has been reported to impair
endometrial receptivity by inhibiting the differentiation of
endometrial stromal cells and regulating decidualization
(Zhou et al., 2021).

We then used cluster analysis, ROC analysis and DSigDB
database, in order to the identify the clinical diagnostic and
therapeutic value of the five hub genes in RIF. Considering the
results of RIF subgroup identification, the patients with RIF can be
divided into two subgroups. Most patients (cluster2) have similar
characteristics with RIF we previously believed, but there are still
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some patients have atypical phenotypes (cluster 1), which may be
one of the reasons for the poor therapeutic effect of RIF. Therefore,
our future research should investigate specific etiology and accurate
treatment methods for each group. The ROC curve in
GSE111974 shows that the five genes do make sense in diagnosis
of RIF, and the result was furtherly verified in RIF group with
another GEO datasets GSE26787. According to DSigDB database,
the current study highlights the progesterone CTD 00006624 and
simvastatin CTD 00007319 as two drug molecules that most hub
genes interacted with. Progesterone is a necessary hormone for
pregnancy, and its supplementation can prevent recurrent
miscarriage and reduce implantation failure in IVT cycles (Nardo
and Sallam, 2006). Simvastatin, a lipid regulating agent, also shows
impact on polycystic ovary syndrome (PCOS), endometriosis and
uterine fibrosis (Banaszewska et al., 2011; Taylor et al., 2017; Ali
et al., 2018). Simvastatin has been reported to reduce the expression
of neopterin in endometriosis, which is a marker of inflammation
and immune system activation (Taylor et al., 2017). Simvastatin
can also inhibit C-reactive protein in PCOS and
suppress fibroid proliferation and extracellular matrix
production in uterine fibrosis (Banaszewska et al., 2011; Ali et al.,
2018).

However, this study also has limitations. The sample size of
our study is still insufficient and our research lacks of
experimental validation. Non-etheless, we believe
that the inflammatory regulation network as well as
uterine muscle contraction and vascularity play an essential
role in RIF.

Conclusion

In present context, we accomplished DEGs analysis of
endometrial tissue between RIF and control women in two
datasets and identified 26 common DEGs. KEGG/BioCarta
pathway and immune infiltration analysis determined
inflammation associated pathways and cells might contribute to
RIF. GO terms, five hub genes (PTGS2, VCAM1, EDNRB, ACTA2,
and LIF) and related TF-gene and TF-miRNA interactions were
identified, suggesting that inflammation, uterine muscle
contraction and vascularity were key pathophysiological changes
in RIF. Of interest, subgroup identification revealed that the
patients with RIF can be divided into two subgroups, and a
small number of patients have atypical phenotypes (cluster 1),
which may be the reason for the poor prognosis of RIF. ROC curves
and drugs affirmed the diagnostic and therapeutic values of hub
genes. Those results may help us expand the understanding of RIF
and may provide evidences for the treatment of RIF. Further
researches should consider the underlying mechanisms of the
inflammatory regulation as well as uterine muscle contraction
and vascularity in RIF, and find meaningful diagnostic and
treatment methods.
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Ferroptosis is a recently established type of iron-dependent programmed cell
death. Growing studies have focused on the function of ferroptosis in cancers,
including lung adenocarcinoma (LUAD). However, the factors involved in the
regulation of ferroptosis-related genes are not fully understood. In this study, we
collected data from lung adenocarcinoma datasets of the Cancer Genome Atlas
(TCGA-LUAD). The expression profiles of 60 ferroptosis-related genes were
screened, and two differentially expressed ferroptosis subtypes were identified.
We found the two ferroptosis subtypes can predict clinical outcomes and
therapeutic responses in LUAD patients. Furthermore, key long non-coding
RNAs (lncRNAs) were screened by single factor Cox and least absolute
shrinkage and selection operator (LASSO) based on which co-expressed with
the 60 ferroptosis-related genes. We then established a risk score model which
included 13 LUAD ferroptosis-related lncRNAs with a multi-factor Cox regression.
The risk score model showed a good performance in evaluating the outcome of
LUAD. What’s more, we divided TCGA-LUAD tumor samples into two groups with
high- and low-risk scores and further explored the differences in clinical
characteristics, tumor mutation burden, and tumor immune cell infiltration
among different LUAD tumor risk score groups and evaluate the predictive
ability of risk score for immunotherapy benefit. Our findings provide good
support for immunotherapy in LUAD in the future.

KEYWORDS

ferroptosis, lncRNA, lung adenocarcinoma, risk scores model, immunotherapy

Introduction

Lung cancer is one of the most common malignant tumors and the leading cause of
cancer-related deaths worldwide. Despite the continuous emergence of new treatments, the
prognosis of lung cancer is still very poor (Siegel et al., 2020). Non-small-cell lung cancer
(NSCLC) is the main histologic subtype of lung cancer, it can be classified as lung
adenocarcinoma (LUAD), lung squamous cell carcinoma (LUSC), and large-cell
carcinoma, of which LUAD is the most common subtype (Relli et al., 2019). It is
important to identify effective biomarkers for the prognosis of LUAD because, even
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though there are a variety of treatment plans for this cancer, the
average 5-year survival rate is only about 15% (Spella and
Stathopoulos, 2021).

Ferroptosis is a new type of iron-dependent programmed cell
death that differs from apoptosis, necrosis, and autophagy. It
induces cell injury or death via the iron-dependent lipid
peroxidation process (Latunde-Dada, 2017; Xu et al., 2023).
Ferroptosis is characterized by increased mitochondrial
membrane density and cell volume contraction, which is different
from other morphological, biochemical, and genetically regulated
cell deaths (Hassannia et al., 2019; Li et al., 2020). Studies have
shown that ferroptosis inhibits tumor growth, kills tumor cells, and
prevents tumor migration (Mou et al., 2019). Accumulating
evidence has suggested that ferroptosis is associated with several
biological processes in LUAD. For example, CAMP-responsive
element binding protein 1 (CREB) can directly bind to the
promoter region of glutathione peroxidase 4 (GPX4) to promote
its expression, thereby inhibiting potential ferroptosis and
promoting the growth of LUAD (Wang Z. et al., 2021). Besides,
the novel 15-gene signature of ferroptosis provides a basis for an
accurate prediction of the prognosis of LUAD, allowing for the
development of new therapies and personalized outcome prediction
in this population (Zhang A. et al., 2021). Therefore, it is necessary to
find new treatment strategies to improve the prognosis of LUAD by
regulating ferroptosis.

Recent advances in sequencing technologies have shown that
90% of RNAs do not encode proteins, which are called non-coding
RNA (ncRNA) (Matsui and Corey, 2017). Long ncRNA (LncRNA)
is a type of ncRNA. It has a length of more than 200 nucleotides and
is mainly involved in regulating gene promoters and enhancers as
well as RNA splicing (Ali and Grote, 2020). Several studies have
indicated that RNA plays an important role in the development of
cancer, its metastatic and genital development, and so it is now an
important candidate for cancer treatment (Li et al., 2016; Liu S.
J. et al., 2021). What’s more, lncRNAs are increasingly recognized as
crucial mediators in the regulation of ferroptosis (Gibb et al., 2011).
For example, Chao Mao et al. demonstrated that the cytosolic
lncRNA P53RRA promotes ferroptosis and apoptosis in lung
cancer via nuclear sequestration of p53 (Jiang et al., 2015). In
addition, it was demonstrated that lncRNA LINC00336, which is
associated with ferroptosis, is highly expressed in lung cancer, and
acts as a competitive endogenous RNA to function as an oncogene
(Wang et al., 2020). However, the full role of ferroptosis-related
lncRNAs in LUAD is still not completely understood. For new
therapeutic strategies for patients with LUAD, ferroptosis-related
lncRNAs must be identified to predict their outcome.

Anti-tumor immune response has long been a fundamental
strategy in cancer immunotherapy (Liang et al., 2021). While
ferroptosis plays a key role in tumor immunity. Therefore, it is
important to explore biomarkers associated with tumor immunity
and ferroptosis for immunotherapy of lung cancer. In this study, a
ferroptosis-related lncRNA signature associated with LUAD
prognosis is being explored based on the LUAD dataset of
TCGA. To predict the survival of LUAD patients, a ferroptosis-
related lncRNA risk score model was established by univariate and
multivariate Cox regression analysis. In addition, the acting
mechanism of ferroptosis-related lncRNAs in tumor progression
was further mined by functional analysis and immune infiltration

analysis to provide new insights into the prognosis and
immunotherapy of LUAD. Our study provides insights into the
mechanisms underlying ferroptosis in the treatment of LUAD,
which may improve individualized therapy and the assessment of
prognosis for LUAD.

Materials and methods

Acquisition of gene expression and clinical
data

The process flow of this study is shown in Figure 1. Briefly, the
LUAD expression profiles and clinical follow-up information were
downloaded from the TCGA database (https://portal.gdc.cancer.
gov/). The RNA-Seq data of TCGA-LUAD was processed in the
following steps. Samples without clinical follow-up information
and survival time were removed. We also excluded patients who
survived less than 30 days and with no survival status. We
converted probes to Gene Symbol, with one probe
corresponding to multiple genes. Besides, we used the median
value for the expression of multiple Gene Symbols. Finally,
489 tumor samples were included from the pre-processed
TCGA-LUAD, as shown in Supplementary Table S1.

Consensus clustering of tumor ferroptosis-
related gene expression

Ferroptosis is a new type of programmed cell death that differs
from apoptosis, necrosis, and autophagy. As a result of divalent iron
or ester oxygenase action, it causes unsaturated fatty acids highly
expressed on the cell membrane to undergo lipid peroxidation, thus
leading to cell death. Aside from this, it also acts as an antioxidant
system (glutathione), which reduces the GPX4 enzyme. To ensure
the stability of the classification, we used the ConsensuClusterPlus
package in R and the Pam method based on Euclid and Ward
linkages.

Differentially expressed genes among tumor
ferroptosis subtypes (Fer_DEGs)

Two groups of samples of Fer-1 and Fer-2 were acquired based
on the expression of tumor ferroptosis-related genes and consistent
clustering results. The screening threshold was set as adjusted. P <
0.05 and | log2 (Fold Change) | > 1. A differentially expressed gene
was analyzed between two subtypes using the “limma” package in R
software. In addition, the Ensemble display was used to extract
lncRNAs from differentially expressed genes.

Gene ontology and kyoto encyclopedia of
genes and genomes pathway enrichment
analyses

The co-expression genes of differential ferroptosis-related genes
between high- and low-risk LUAD patients were chosen to perform
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Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) analyses, which was conducted by using the
clusterProfifiler package. Enrichment significance thresholds were
set at p < 0.05 and false discovery rate (FDR) < 0.05 (Guo X. H. et al.,
2021; Cao et al., 2021b). GO analysis was used to map all DEGs to
GO terms in the GO database (http://www.geneontology.org/) to
analyze the main functions of the DEGs. The KEGG pathway
database (http://www.geneontology.org/) is a synthetic database,
which was used to analyze the biochemical pathways of the
DEGs of interest (Zhong H. et al., 2021).

Construction of ferroptosis-related lncRNA
risk score model

To calculate the risk score for LUAD, we constructed a model
based on the lncRNAs associated with ferroptosis subtypes. To
reduce noise or redundant genes, a univariate Cox algorithm was
applied to narrow the lncRNA set associated with immune cell
infiltration subtypes. The best prognostic signature was identified
by using the Lasso method [Least absolute shrinkage and

selection operator, Tibshirani (1996)] A multi-factor Cox
regression analysis contributed to the development of a risk
score model for tumor immune cell infiltration. The formula
was as follows:

Risk scores � ∑Coef i( )*Exp i( )

Gene set enrichment analysis (GSEA)

GSEA was published in 2005 based on gene set enrichment
analysis. Genome-wide expression profiles can be interpreted using
this knowledge-based approach. Using MSigDB (gene matrix
transposition file format *.gmt) we selected one or more
functional gene sets to analyze gene expression data (Guo Y.
et al., 2021). We then sorted the gene expression data by
correlation degree of phenotype (also known as a change in
expression amount). To evaluate the influence of synergistic
changes in genes on phenotypic changes, we sorted by
phenotypic relevance the genes enriched in the upper and lower
parts of the gene list.

FIGURE 1
The flow chart of this study.
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Independent prognostic factors analysis of
risk score and construction of a nomogram
prediction model

After the extraction of clinical information (including age,
gender, smoking, and TNM stage) of LUAD patients in the
TCGA, univariate and multivariate prognostic analyses were used
to demonstrate whether the risk score could be an independent
prognostic factor. Based on the multivariate Cox regression analysis
for risk score and other clinicopathological factors by the rms R
package, a clinically adaptable nomogram prediction model was
established to predict the survival probability of 489 LUAD
individuals in 1-, 3-, and 5- years from the TCGA group. Then,
the calibration analysis and time-dependent ROC curve were used to
evaluate the prognostic value of the nomogram for LUAD patients
(Sun et al., 2022).

Analysis of the tumormutation burden in the
high- and low-tumor risk score groups

Tumor mutational burden (TMB) is broadly defined as the
number of somatic mutations per megabase of interrogated
genomic sequence (Bravaccini et al., 2021). To inquire about the
association between the TMB and tumor risk score, we compared the
tumor mutation status between the low- and high-risk score groups.
The somatic mutation file *.maf of TCGA-LUAD was downloaded
from the GDC Data Portal (https://portal.gdc.cancer.gov) to calculate
the TMB values. Significantly mutated genes (p < 0.05) between the
low- and high-risk groups and the interaction effect of genemutations
were analyzed bymaftools; only genesmutatingmore than 50 times in
at least one group will be considered. The statistical significance test
for the proportion of mutation was evaluated by Pearson correlation
coefficient, student t test, Chi-square test, and survival analysis.

Relationship between tumor risk score and
tumor microenvironment

Based on the LM22 signature and 1,000 permutations, themutations
of 22 different immune cells in TCGA-LUAD (B.cells.naive,
B.cells.memory, Plasma.cells, T.cells.CD8, T.cells.CD4.naive,
T.cells.CD4.memory.resting, T.cells.CD4.memory.activated,
T.cells.follicular.helper, T.cells.regulatory.Tregs, T.cells.gamma.delta,
NK.cells.resting, NK.cells.activated, Monocytes, Macrophages.M0,
Macrophages.M1, Macrophages.M2, Dendritic.cells.resting,
Dendritic.cells.activated, Mast.cells.resting, Mast.cells.activated,
Eosinophils, Neutrophils) infiltration levels were quantified by using
the CIBERSORT package in R. Besides, differences in the degree of
immune cell infiltration between high- and low-risk groups were
compared.

Correlation analyses between tumor risk
score and immunotherapy response

The correlation between tumor risk score and immunotherapy
response can evaluate the effect of the tumor risk score in predicting

the benefit of immunotherapy in treating LUAD patients. In this
study, we compared the immunotherapy response between the high-
and low-risk groups based on expression profile data and clinical
information in the IMvigor210 cohort (http://research-pub.gene.
com/IMvigor210CoreBiologies/).

Reverse transcription-quantitative PCR (RT-
qPCR)

Five paired LUAD tissues and corresponding adjacent non-
tumorous tissues were obtained from patients who underwent
radical resection of lung cancer in Renji hospital, Total RNA was
extracted with TRIzol™ Reagent (Invitrogen). Reverse transcription
of RNA was performed using PrimeScript™ RT Master Mix
(Takara). In this study, Takara’s TB Green™ Premix EX Taq™ II
was used to perform the qPCR. GAPDH was used as an internal
control (Cao et al., 2021a; Fei et al., 2021). The primer sequence of
the tested genes is shown in Supplementary Table S6. The relative
lncRNA expression level was quantified using the 2−ΔΔCt method.

Statistical analysis and hypothesis testing

All statistical comparisons involved in this study, as well as
hypothesis testing of the significance of differences between groups,
were based on the statistical analysis method in R 3.6.

Results

Molecular characteristics of ferroptosis-
related genes in LUAD

The flow chart of this study was shown in Figure 1. Based on the
expression values of 60 ferroptosis-related genes in each sample of
the TCGA-LUAD dataset, the genes were divided into a high-
expression group and a low-expression group according to the
optimal density algorithm. The high expressions of GLS2,
PHKG2, ACACA, GPX4, DPP4, NCOA4, ACO1, PEBP1, NOX1,
ZEB1, ALOX15, ALOX5, CRYAB, SAT1, and ACSF2 are
significantly associated with better OS prognosis. While the low
expressions of GCLM, GCLC, EMC2, SQLE, IREB2, FANCD2,
AKR1C3, AKR1C2, TFRC, PGD, G6PD, ACSL4, CISD1,
SLC7A11, ACSL3, and GOT1 have great significance with better
OS prognosis (Figure 2).

Subsequently, the statistics of gene mutations in the TCGA-
LUAD showed that 88.95% of tumor samples had gene mutations,
including 47% of TP53 mutations, 41% of TTN mutations, 40% of
MUC16 mutations, and 34% of RYR2 mutations (Supplementary
Figure S1).

Furthermore, we conducted a hypothesis test on whether
TP53 and TTN affect the expression of 60 ferroptosis-related
genes. We found that the mutation of the TP53 gene was
significantly associated with the high expression of CBS, GCLM,
FANCD2, GSS, HSPB1, MT1G, TFRC, SQLE, FADS2, and
NFS1 genes, while it has a remarkable correlation with the low
expression of PEBP1, TP53, FDFT1, SLC7A11, CRYAB, NCOA4,
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SAT1, GLS2, AKR1C1, and AKR1C3 (Supplementary Figure S2).
Among the mutation groups with TTN, ATP5G3, CARS, CBS,
GPX4, GCLM, GCLC, FANCD2, CS, CISD1, CHAC1, GSS,
HSPB1, RPL8, ACO1, EMC2, TFRC, NFS1, ZEB1, SQLE, FADS2,
IREB2, PGD, and SLC1A5 were significantly highly expressed, while
ALOX5, CD44, CRYAB, and SAT1 showed a significantly low
expression status (Supplementary Figure S3). At the same time,
we observed that most of the expressions of 60 ferroptosis-related
genes were mutually promoting, as shown in Supplementary
Figure S4.

Identification of ferroptosis subtypes and
differentially expressed genes in LUAD

Consensus clustering was performed based on the expression of
60 ferroptosis-related genes in the TCGA-LUAD, and we
determined two independent ferroptosis subtypes with a
significant difference in survival. Among the two ferroptosis
subtypes, Fer-1 has a significantly better prognosis than Fer-2,
with a median survival time of 898 days. While Fer-2 indicated a
worse disease prognosis, with a median survival time of 685 days
(Figure 3).

In order to reveal the potential biological characteristics of
different ferroptosis states, we used the “limma” package of R

software to analyze differentially expressed genes between the
subtypes. 882 genes were identified with an adjusted p <
0.05 and | log2 (Fold Change) | >1 (Supplementary Table S2).
Among them, 511 genes were highly expressed in Fer-1 subtypes,
while 371 genes were upregulated in Fer-2 (Figure 4A).
Subsequently, we performed the Gene Ontology (GO) functional
enrichment analysis on highly expressed genes. The first
10 pathways enriched in the three functional categories (BP, CC,
and MF) were displayed with bubble diagrams (Figures 4B, C). Most
of the pathways in Fer-1 were correlated with biological processes
such as response to xenobiotic stimulus, hormone metabolic
process, and antibiotic metabolic process. While in Fer-2, most of
the enrichments were related to viral entry into the host cell,
leukotriene metabolic process, and fluid transport.

Then, we performed Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway enrichment analysis on the DEGs, and the first
12 enriched pathways were determined. As shown in Figure 4D, they
were allograft rejection, graft versus host disease, asthma, intestinal
immune network for iga production, hematopoietic cell lineage,
metabolism of xenobiotics by cytochrome p450, ascorbate and
aldarate metabolism, pentose and glucuronate interconversions,
folate biosynthesis, phenylalanine metabolism, glutathione
metabolism, porphyrin metabolism, and porphyrin metabolism,
porphyrin metabolism. To further explore the relationship
between tumor ferroptosis subtypes and tumor immune cells,

FIGURE 2
Survival curve of 60 ferroptosis-related genes and overall survival in the TCGA-LUAD data set.
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firstly, we used principal component analysis (PCA) algorithm to
visualize the expression profiles related to ferroptosis subtypes. As
shown in Figure 4E, it is found that the samples in the first
dimension and the second dimension have a good aggregation
form, which indicates that the classification method of ferroptosis
subtypes is reasonable. Secondly, as shown in Figure 4F, by
comparing the immune cells infiltrating the difference between
ferroptosis subtypes, it was found that mast cells, immature
B cells, eosinophil, activated B cells, activated dendritic cells, and
immature dendritic cells were significantly infiltrated at a high level
in Fer-1 compared with Fer-2. In summary, the expression profile of
ferroptosis-related genes in LUAD is consistent with the prognosis
profile, indicating that it was a viable method to classify ferroptosis
subtypes.

The construction of LUAD ferroptosis-
related lncRNA risk score model

To explore the expression of ferroptosis-related lncRNAs and
their role in the evaluation of OS of LUAD, we used the Pearson
correlation coefficient to identify lncRNAs that co-expressed with
ferroptosis-related genes (P-value <0.001 and |R| > 0.5). As a result,
558 lncRNAs were screened which have a significant co-expression
relationship with at least one ferroptosis gene (Supplementary Table
S3). In this study, we constructed a risk score model of tumor
immune cell infiltration based on the ferroptosis-related lncRNAs.

Firstly, according to an approximate 2:1 ratio, the TCGA-LUAD
overall set (n = 489) was divided into a training set (n = 326) and a
test set (n = 163). In the training set, we displayed univariate Cox
analysis to analyze 558 candidate lncRNAs. As shown in Figure 5A,
39 lncRNAs were retained with a meaningful threshold of p.value <
0.05 (Supplementary Table S4). For the convenience of clinical
application, 13 lncRNAs were identified by LASSO regression
(Figures 5B, C). Multivariate Cox regression was used to
construct the lncRNA risk score model based on the
13 lncRNAs, The final 13-lncRNA gene signature formula is as
follows:

Risk score � −0.041( ) × AC008278.2 + −0.098( ) × AC093911.1

+ −0.132( ) × ADPGK − AS1 + −0.060( )× APTR

+ −0.074( ) × CBR3 − AS1 + −0.122( ) × CRNDE

+ −0.072( ) × LINC00324 + −0.088( ) × LINC00526

+ −0.041( )× LINC00892 + −0.109( ) × LINC01352

+ 0.454( ) × OGFRP1 + −0.021( ) × PAN3 − AS1

+ −0.088( ) × ZNF674 − AS1

An R package called “ggrisk” was used to evaluate the power of
the risk score model in predicting OS. Based on the optimal density
gradient algorithm, patients were divided into high-risk and low-risk
groups. The high-risk group had a higher mortality rate, as shown in
Figure 5D. Kaplan-Meier survival analysis showed that the high-risk

FIGURE 3
Consensus clustering of tumor ferroptosis-related genes expression profiles. (A–C) The clustering results when consensus matrix k = 2, k = 3, and
k = 4. (D) Distribution of CDF curve of consensus clustering. (E–G) Survival curve when consensus matrix k = 2, k = 3, and k = 4, respectively. (H)
Distribution of area under the CDF curve of consensus clustering.
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group has a significantly lower OS than the low-risk group
(Figure 5E). The receiver operating characteristic curve (ROC)
curves in Figure 5F indicated that the area under the curve
(AUC) at TCGA-LUAD data sets was 0.7566, 0.7128, 0.7028 at
1-, 3-, and 5- years, respectively, indicating that the risk score is
capable of predicting overall survival.

Subsequently, we used the test set and the overall set of TCGA-
LUAD to access the predictive ability of risk score on OS. Based on

the optimal density gradient algorithm, we assigned the patients to
high-risk groups and low-risk groups. As shown in Figures 6A, D,
the proportion of death samples in the high-risk group was relatively
high. As Kaplan-Meier analyzed, the high-risk group has a
significantly lower OS than the low-risk group (Figures 6B, E),
suggesting that in the test set, the risk score model has a good
predictive value. Its 1-, 3-, and 5- year AUC reached 0.6908, 0.6858,
and 0.8546, respectively (Figure 6C). Similarly, in the overall dataset

FIGURE 4
Identification and functional analysis of differentially expressed genes among different tumor ferroptosis subtypes. (A) Volcano map of differential
expressed genes. (B,C) Bubble chart of GO enrichment analysis of upregulated and downregulated genes. (D) KEGG enrichment analysis of gene set. (E)
PCA analysis of expression profile. (F) Tumor immune cell infiltration analysis of the gene dataset.
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of TCGA-LUAD, the risk score model also has a good predictive
value, with the 1-, 3-, and 5- year’s AUC of 0.7400, 0.7125, and
0.7115, respectively (Figure 6F).

To evaluate the robustness of the risk score model in predicting
OS of LUAD, the risk score model was validated by the external
dataset GSE31210. By using the ggrisk software package in R, the
samples were divided into high-risk and low-risk groups based on
the optimal density gradient algorithm. We found that the
proportion of death in the high-risk group was higher compared

with the low-risk group (Figure 7A). In addition, Kaplan-Meier
analysis showed that the OS of patients in the high-risk group was
significantly lower than that in the low-risk group (Figure 7B).
Therefore, the risk score model was also robust in predicting OS in
the GSE31210 dataset (Figure 7C). The 1-, 3-, and 5- year’s AUCwas
0.7381, 0.7071, and 0.7296, respectively.

To better estimated the above bioinformatics results obtained
from the public databases, we detected the levels of 13 key lncRNAs
by using 5 paired LUAD tissues and corresponding adjacent non-

FIGURE 5
Screening of lncRNAs and the construction of risk scoremodel. (A)Univariate Cox regression analysis was used to identify 558 candidate lncRNAs in
the training set, and 39 lncRNAs were retained. The meaningful threshold was set as p-value < 0.05. (B) The changing trajectory of each independent
variable. The horizontal axis represents the log value of the independent variable lambda, and the vertical axis represents the coefficient of the
independent variable. (C) The confidence interval under each lambda. (D) The risk score distribution diagram; (E) Survival curve of LUAD patients with
high- and low-risk scores. (F) ROC curve at 1-, 3-, and 5- years.
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tumorous tissues. The quantitative RT-qPCR array in LUAD tissues
shows enhanced expression of upregulated lncRNAs including
APTR, CRNDE, LINC00324, OGFRP1, and LINC00526, as
shown in Figure 7D. In contrast, LINC00892, LINC01352,
PAN3-AS1, ZNF674-AS1, and ADPGK-AS1 have significantly
diminished in non-tumorous tissues. Because of limited samples,
we did not observe a significant difference in the expression of
AC008278.2 and AC093911.1 in LUAD and non-tumorous tissues.

The relationship between risk score and
clinical characteristics

It is necessary to clarify the relationship between tumor risk score
and clinical characteristics, including age, smoke, and tumor grade.
Firstly, multivariate Cox analysis determined that the lncRNA risk score
was independent of other prognostic factors, such as age, gender, smoke
and tumor stage,M-sage, N-stage, and T-stage (Figure 8A). Next, for the

convenience of clinical evaluation, we construct a nomogram by using
the risk score, T-stage, andN-stage (Figure 8B). The calibration curves of
the nomogram 1-, 3-, and 5- years showed good stability. Notably, the
ROC curve suggested that the predictive ability of the nomogram was
higher than other factors (Figures 8C, D), with the AUC values reaching
a high level above 0.75 (Figures 8E–G). Therefore, the lncRNA-based
risk score was a relatively independent prognostic indicator in LUAD.

The relationship between lncRNA risk score
and tumor mutation burden

Growing evidence suggests that tumor mutation burden (TMB)
may determine the individual response to cancer immunotherapy
(Bravaccini et al., 2021). It is important to explore the relationship
between TMB and risk score to clarify the genetic characteristics of
each ferroptosis subgroup. Correlation analysis (Figure 9A) showed
that risk score was positively associated with TMB (R = 0.22, p =

FIGURE 6
Test set and overall set to verify the risk model. (A) The distribution diagram of the risk score of the test set. (B) The survival curve of the test set. (C)
The 1-, 3-, and 5- year’s ROC curves of the test set. (D)Distribution chart of the risk score of the overall set. (E) Survival curve of the overall set. (F) The 1-,
3-, and 5- year’s ROC curve of the overall set.
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7.2 × 10−7). By comparing the TMB of patients in subgroups (Figures
9B, C), we found that TMB in the high-risk score group was higher
than in the low-risk score group. Furtherly, we used the Survminer
package in R to calculate the optimal density gradient threshold

associated with TMB and survival, and divided tumor samples in
TCGA-LUAD into two groups with high- and low- TMB scores. As
a result, we found a remarkable difference in survival between the
two groups, as shown in Figure 9D.

FIGURE 7
The risk score model was validated by the external dataset GSE31210. (A) The distribution of risk scores. (B) The survival probability was higher in the
high-risk group compared with the low-risk group. (C) The 1-, 3-, and 5-year ROC curves of the external dataset. (D) Relative expressions of 13 key
lncRNAs in LUAD tissues (LUAD) and corresponding adjacent non-tumorous tissues (normal).N= 5 in each group. *p < 0.05, **p < 0.01, ***p < 0.001, ns =
no significance.

Frontiers in Genetics frontiersin.org10

Mao et al. 10.3389/fgene.2023.1118273

205

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1118273


In addition, we quantified the distribution of somatic variation
in LUAD driver genes between low-risk and high-risk score groups,
meanwhile, the top 30 driver genes with the highest mutation

frequency were compared (Figures 9E, F). By analyzing the
mutation annotation files of the TCGA-LUAD cohort, we found
that there were noteworthy differences in mutation profiles between

FIGURE 8
Relationship between tumor risk score and clinical characteristics. (A) Multivariate cox analysis of clinical characteristics and risk score. (B)
Nomograms of clinical characteristics and risk score. (C) Calibration charts of nomograms in 1-, 3-, and 5-year. (D) DCA distribution map of nomograms
in 1-, 3-, and 5-year. (E–G) ROC curves in 1-, 3-, and 5-year.
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the low- and high-risk subgroups. These results may provide insight
into understanding the mechanisms of LUAD ferroptosis status and
gene mutations in immune checkpoints.

LncRNA risk score and immune cell
infiltration (ICI)

To investigate the relationship between risk score and tumor
immune microenvironment, we used GSEA to assess the state of
infiltration of 28 different immune cells from the TCGA-LUAD
dataset (Supplementary Table S5). As a whole, LUAD patients
had a high infiltration ratio of CD56+ dim natural killer cells,
central memory CD4+ T cells, central memory CD8+ T cells,

immature dendritic cells, myeloid-derived suppressor cell
(MDSC), monocytes, natural killer cells, plasmacytoid
dendritic cells, and regulatory T cells. LUAD tissues were less
infiltrated by neutrophils, eosinophils, and type 17 T helpers
(Figure 10A).

According to our hypotheses test, the infiltration level of active
CD4+ T cells was significantly higher in the group with high-risk
score than in the group with low-risk score. In contrast, the
infiltration of activated B cell, activated CD8+ T cell, central
memory CD4+ T cell, eosinophil, γδ-T cell, immature B cell,
immature dendritic cell, mast cell, monocyte, natural killer cells,
T follicular helper cells, and type 2 T helper cells in high-risk score
group were significantly lower than in the low-risk score group
(Figure 10B).

FIGURE 9
The relationship between tumor risk score and tumor mutation burden. (A) The risk score was positively correlated to TMB. (B,C) Violin chart and
proportional distribution bar chart showed that TMB was higher in the high-risk score group than in the low-risk score group. (D) The survival curve
showed patients in the high TMB have a better survival probability than the low TMB group. (E)High-risk group genemutation waterfall chart. (F) Low-risk
group gene mutation waterfall chart.
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The lncRNA risk score had a good predictive
ability in evaluating the response of
immunotherapy

To explore the predictive ability of risk score in predicting the
benefit of immunotherapy, we analyzed the immunophenoscore
(IPS) of samples from the TCIA database and the
IMvigor210 cohort of immunotherapy patients (http://
researchpub.gene.com/IMvigor210CoreBiologies). Multiple
tumors can be predicted to respond to immunotherapy based
on IPS, which can determine whether they are immunogenic. In
Figures 11A–D, we found four types of low-risk score, namely, ips_

ctla4_neg_pd1_neg, ips_ctla4_pos_pd1_neg, ips_ctla4_neg_pd1_
pos, and ips_ctla4_pos_pd1_pos. IPS scores of patients in the low-
risk group were significantly higher than those in the high-risk
group, suggesting that immunotherapy was more likely to be
effective. Patients who received anti-PD-L1 immunotherapy in
the IMvigor210 cohort were divided into high- and low-risk
groups. As a result, the group with low-risk scores showed a
higher objective response to anti-PD-L1 therapy (Figure 11E).
Moreover, patients with low-risk scores lived signifificantly longer
than patients with high-risk scores (Figure 11F), and the increased
risk in the IMvigor210 cohort correlated with the higher objective
response rate (Figure 11G). In summary, these results suggest that

FIGURE 10
The relationship between tumor risk score and immune cells infiltration. (A)Heat map of the distribution of the immune cells infiltration. (B) Box plot
of the difference in immune cells infiltration between high- and low-risk score group. *p < 0.05, **p < 0.01, ***p < 0.001, ns = no significance.
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the ferroptosis-related lncRNAs-based risk score may indicate the
response to immunotherapy in LUAD.

Discussion

As the most common histological type of lung cancer, LUAD
accounts for 40%–50% of all lung cancer cases (Bray et al., 2018). It
severely affects human health and possesses both extremely high
morbidity and mortality (Cheng et al., 2021). Despite great efforts
having been made in developing novel treatments, however, LUAD
still received a poor prognosis (Hirsch et al., 2017). In recent years,
studies have demonstrated that ferroptosis is an important
regulatory mechanism for tumor growth and is important for
chemoradiotherapy and immunotherapy of tumors (Chen et al.,
2021). In addition, lncRNAs have been amajor focus of research into
ferroptosis. However, the underlying relationship between
ferroptosis-associated lncRNAs and the prognosis of LUAD
patients remains quite limited. In this study, the expression
profiles of ferroptosis-related genes in TCGA-LUAD dataset
showed individual heterogeneity. Moreover, the expression

profiles were correlated with the overall survival (OS) of LUAD
patients. We also found that gene mutations could affect the
expression of ferroptosis-related genes. Our results were then
used to construct the risk score model with 13 ferroptosis-related
lncRNAs. In univariate and multivariate Cox regression analysis, the
risk score model was found to be a relatively independent prognostic
indicator of the clinical features of LUAD patients. In addition, this
study indicated the risk score model can well evaluate the benefit of
LUAD patients receiving immunotherapy.

Liu et al. established the ferroptosis potential index (FPI) to
reveal the functional roles of ferroptosis and found high FPI
predicted poor prognosis in several tumors, highlighting the
potential value of cancer classification based on ferroptosis-
related genes expression (Liu et al., 2020). As a result of the
expression of tumor ferroptosis-related genes and consensus
clustering, we divided the samples into Fer-1 and Fer-2 groups. It
was interesting to note that patients in the Fer-1 group had a median
survival time of 898 days, significantly longer than Fer-2 group
patients, who had a median survival time of 685 days. The
differences in survival time between the two ferroptosis subtypes
were probably determined by differences in biological functions and

FIGURE 11
The relationship between tumor risk score and the response of immunotherapy. (A–D) Immunophenoscore was significantly higher in the low-risk
group than in the high-risk score group. (E–G) Low-risk score patients who received anti-PD-L1 treatment had better responses to immunotherapy and
significantly longer survival time than high-risk score patients. CR = complete response, PR = partial response, PD = progressive disease, SD = stable
disease. *p < 0.05, **p < 0.01, ***p < 0.001.
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signaling pathways as well as differences in immune cell infiltration.
There seems to be a close relationship between Fer-1-enriched
pathways and biological processes related to xenobiotic stimulus,
hormone metabolism, and antibiotic metabolism. While Fer-2 was
mostly enriched in viral entry into the host cell, leukotriene
metabolism, and fluid transport. In addition, we discovered
samples from Fer-1 were significantly more infiltrated with mast
cells, immature B cells, eosinophils, activated B cells, activated
dendritic cells, and immature dendritic cells than samples from
Fer-2. In early-stage LUAD patients, mast cell abundance was
associated with prolonged survival (Bao et al., 2020). Also, Han
et al. found that upregulated glucose-6-phosphate isomerase (GPI)
was associated with poorer survival, clinical stage, N stage, and
primary therapy outcomes in LUAD. While GPI expression was
negatively correlated with infiltrating levels of CD8+ T cells, central
memory T cells, dendritic cells, macrophages, mast cells, and
eosinophils (Han et al., 2021), which is consistent with our study
findings. Thus, this result showed the value of the classification of
Fer-1 and Fer-2 in predicting the survival of LUAD patients.

A total of 13 ferroptosis-related key lncRNAs were identified by
LASSO regression. What’s more, a risk score model associated with
tumor immune cell invasionwas constructed based on these 13 lncRNAs.
Interestingly, the risk score not only showed the ability to predict the
overall survival of LUAD patients but was also associated with tumor
mutation burden and evaluating the response of immunotherapy.
Among the 13 key lncRNAs, LINC01352 is an important prognostic
risk assessment factor for LUAD (Lu et al., 2021). By down-regulating
miR-423-3p and inducing tumor suppressor protein p21, ZNF674-AS1
inhibits NSCLC growth. As a result, the low survival rate of NSCLC
patients is significantly correlated with ZNF674-AS1 downregulation (Liu
Y. et al., 2021). Linc00324 is over-expressed in a variety of cancer cell lines
and tumoral tissues. Some researchers believe LINC00324 can be
regarded as a promising candidate for the development of diagnostic
and prognostic panels, what’smore, can be used as a therapeutic target for
a wide range of cancers (Ghafouri-Fard et al., 2022). A study suggested
that Linc00324 overexpression accelerated the proliferation, migration,
and invasion of LUAD cells by activatingmiR-615-5p/AKT1 axis (Zhang
L. et al., 2021). CRNDE is a long non-coding RNA that has been
demonstrated to be involved in multiple biological processes of
different cancers as well as a potential diagnostic biomarker and
prognostic predictor (Lu et al., 2020). Among the downstream targets
of CRNDE, miR-641, CDK6, and miR-338-3p promote lung cancer cell
proliferation and inhibit cell apoptosis (Fan et al., 2019; Jing et al., 2019).
There have been reports that plncRNA-1, also known as CBR3-AS1, has
different effects on different kinds of tumors. As an example, CBR3-AS1
modulates JNK1/MEK4 and enhancesMAPK signaling by binding miR-
25-3p competitively, suggesting it is a breast cancer prognosis marker
(ZhangM. et al., 2021). Further, CBR3-AS1 is a poor prognosticmolecule
for osteosarcomas and colorectal cancer. Accordingly, high levels of
CBR3-AS1 inhibit colorectal cancer metastasis by targeting the PI3K/
Akt pathway (Zhang et al., 2018). MinHou et al. found that CBR3-AS1 is
associated with the prognoses of LUAD by activating the signal from the
Wnt/β-catenin. (Hou et al., 2021). Despite its antisense lncRNA gene
status, little is known about the role of ADPGK-AS1 in lung cancer.
However, it has been reported to contribute to cervical, gastric, and
colorectal cancer (Nagasaki et al., 2012; Jiang andWang, 2020; Zhong Q.
et al., 2021). ADPGK-AS1 has been shown to inhibit miR-205-5p
downregulation in pancreatic cancer, which is negatively correlated

with cancer cell proliferation, migration, and invasion, and positively
correlated with apoptosis rates. The EMT process can thus be strongly
induced in vivo by it (Song et al., 2018). Liu et al. demonstrated that
downregulation ofOGFRP1 inhibited the progression ofNSCLC through
miR-4640-5p/eIF5A axis (Liu X. et al., 2021). Furthermore, it has been
reported that OGFRP1 is highly expressed in NSCLC tissues and
significantly correlated with the prognosis of LUAD patients (Cui
et al., 2021). As another core ferroptosis-related lncRNA noted in this
study, APTR has been shown to reduce miR-132-3p and enhance
YAP1 expression, which in turn promotes osteosarcoma progression
(Guan et al., 2019). However, no study to date had demonstrated the
relationship between APTR and lung cancer. It showed that
AC008278.2 was a protective lncRNA was one of 19 genomic
instability-related lncRNAs that correlated with somatic mutation
pattern, immune microenvironment infiltration, immunotherapeutic
response, drug sensitivity, and survival of NSCLC patients (Zhang
et al., 2022). While as for PAN3-AS1 and AC093911.1, little has been
studied in current diseases or molecular mechanisms. Further excavation
is required to understand the role of these lncRNAs in lung cancer
development.

TMB has emerged as a promising novel biomarker in predicting
the prognosis and immune response in cancers, although the effect
and the prognostic role of the TMB on outcomes varied dramatically
across cancer types (Hellmann et al., 2018; Wang Z. M. et al., 2021).
There are researches showed that higher TMB tends to form more
new antigens, making tumors more immunogenic, improving clinical
response to immunotherapy, and prolonging the overall survival (Lv
et al., 2020; Wu et al., 2020). This is consistent with that patient in the
high TMB scores group has better OS in our study. However, there are
also studies showing the opposite. A study by Wang et al. found high
TMB had a significantly poor prognosis in thymic epithelial tumors
patients (Wang Z. M. et al., 2021). While Gao et al. discovered that
higher TMB had a negative correlation with the prognosis of
pancreatic ductal adenocarcinoma (Gao et al., 2020). The results of
this study showed risk score had a modest positive correlation with
TMB score, however, the risk score was negatively correlated with
patients’ OS, indicating an independent role of the risk score in
predicting the response to immunotherapy in LUAD patients.

Harnessing an anti-tumor immune response has long been a
fundamental strategy in cancer immunotherapy. According to the
previously proposed tumor immunoediting hypothesis, tumor cells
entering the immune escape phase can create an immunosuppressive
state within the tumor microenvironment by subverting the same
mechanisms that under normal conditions help regulate the immune
response and prevent damage to healthy tissue (Carbone et al., 2015). In
the last decade, higher objective response rates have been observed by
targeting the PD-L1/PD-1 immune checkpoint pathway. This stems
from distinct mechanisms of action that restore tumor-induced
immunity deficiency selectively in a tumor microenvironment (TME)
(Sanmamed and Chen, 2018). The therapeutic efficacy of these anti-PD1
therapies relies on endogenous tumor-antigen-specific T cells that are
functionally held in check in the TME due to PD-L1 inhibitory signaling
through PD-1. Anti-PD therapy results in the adaptive increase of
functional T cells, which translates into tumor regression (Herbst
et al., 2022). Until now, immunotherapy has shown considerable
clinical success in the treatment response of many LUAD patients.
Using T cells, monoclonal antibodies, or immune checkpoint inhibitors,
immunotherapy stimulates the immune system to attack tumor cells
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(Forde et al., 2018; Passiglia et al., 2018). What’s more, growing studies
have reported that the immune-related features of cancers such as the
intensity of CD4+ T cells and CD8+ T cell infiltrates, macrophages, and
natural killer (NK) cells, different B cell sub-populations were correlated
with immunotherapeutic responsiveness in lung cancer (Stankovic et al.,
2018). In this present study, we found a functional enrichment analysis
that suggested that ferroptosis-related lncRNAs were mainly involved in
immune pathways. Besides, immature dendritic cells, myeloid
suppressive cells, monocytes, and regulatory T cells displayed a high
level of LUAD. However, neutrophils, eosinophils, and type 17 T helper
cells were the major low-level infiltrating cells. Additionally, our results
revealed the relationship between immune cell infiltration (ICI) and the
survival of LUAD patients. Based on these findings, these ferroptosis-
related lncRNAs provide potential targets for combined treatments with
immune checkpoint inhibitors.

There are some limitations of our study. Firstly, only data
obtained from TCGA was used to construct a ferroptosis-related
lncRNA prognostic model and to evaluate its validity. Secondly, the
number of lung samples used on detecting the expression levels of the
identified 13 key ferroptosis-associated lncRNAs was limited.
Therefore, more work is needed to fully elucidate the mechanisms
underlying the effects of ferroptosis-related lncRNAs on LUAD.

Conclusion

In conclusion, our study identified two ferroptosis subtypes to
predict clinical outcomes and therapeutic responses in LUAD
patients. The construction of a new risk score model with
13 ferroptosis-associated lncRNAs provides a candidate model for
the evaluation of the LUAD prognosis. Our results demonstrate that
LUAD patients in the high-risk score group presented worse OS,
higher TMB, and lower immune activity. This study might contribute
to the optimization of risk stratification for survival and personalized
management of LUAD patients.
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lncRNA–miRNA‒mRNA
regulatory network for middle
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Stroke known as a neurological disease has significant rates of disability and
mortality. Middle cerebral artery occlusion (MCAO) models in rodents is crucial in
stroke research tomimic human stroke. Building themRNA and non-conding RNA
network is essential for preventing MCAO-induced ischemic stroke occurrence.
Herein, genome-wide mRNA, miRNA, and lncRNA expression profiles among the
MCAOgroup at 3 h, 6 h, and 12 h after surgery and controls using high-throughput
RNA sequencing. We detected differentially expressed mRNAs (DE-mRNAs),
miRNAs (DE-miRNAs), and lncRNAs (DE-lncRNAs) between the MCAO and
control groups. In addition, biological functional analyses were conducted,
including GO/KEGG enrichment analysis, and protein-protein interaction
analysis (PPI). GO analysis indicated that the DE-mRNAs were mainly enriched
in several important biological processes as lipopolysaccharide, inflammatory
response, and response to biotic stimulus. The PPI network analysis revealed
that the 12 DE-mRNA target proteins showed more than 30° with other proteins,
and the top three proteins with the highest node degreewere Alb, IL-6, and TNF. In
the DE-mRNAs, we found the mRNA of Gp6 and Elane interacting with two
miRNAs (novel_miR_879 and novel_miR_528) and two lncRNAs
(MSTRG.348134.3 and MSTRG.258402.19). As a result of this study, a new
perspective can be gained into the molecular pathophysiology leading to the
formation of MCAO. The mRNA-miRNA‒lncRNA regulatory networks play an
important role in MCAO-induced ischemic stroke pathogenesis and could be
applied to the treatment and prevention of ischemic stroke in the future.

KEYWORDS

MCAO, mRNA, miRNA, lncRNA, ischemic stroke

1 Introduction

As an acute cerebral vascular disease, stroke is a leading cause of hospitalization for
neurologic disease and long-term disability, with the majority (>80%) being ischemic stroke
(an abrupt blockage of an artery) (Stegner et al., 2019; Shekhar et al., 2021; Fang et al., 2022).
During an ischemic stroke, blood flow to the brain is decreased, triggering cascading events
that eventually result in cell death (Mehta et al., 2007; Lai et al., 2011; Chen et al., 2022). Since
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more than 80% of ischemic strokes occur in the territory of middle
cerebral artery (MCA), experimental focal cerebral ischemia models
including middle cerebral artery occlusion (MCAO) modelsare
crucial in stroke research to mimic human stroke, which causes
focal cerebral hypoperfusion and leads to ischemic stroke. The main
therapeutic approach for MCAO-induced ischemic stroke is to
restore or supply enough fresh blood flow to the brain by
reperfusion. However, due to excitotoxicity and oxidative
damage, side effects such as ischemic/reperfusion (I/R) may
happen after cerebral ischemia and cerebral I/R, leading to brain
injury (Lakhan et al., 2009; Enzmann et al., 2018). Therefore, there is
still a substantial need for the development of therapeutic agents and
the elucidation of the pathogenesis and molecular mechanisms of
ischemic stroke to improve the functional outcome and prevent
recurrence.

Previous research has demonstrated that gene mutation, DNA
damage and oxidative stress contribute to the MCAO-induced
ischemic stroke (Poudel et al., 2020; Liu et al., 2021; Liu et al.,
2022). Recently, an increasing number of studies have indicated that
non-coding RNAs (ncRNAs) cause functional alterations in
ischemic stroke (Wang et al., 2018; Duan et al., 2019) Non-
coding RNAs mainly including miRNAs, long non-coding RNAs
(lncRNAs), and circular RNAs (circRNAs) participate in
transcriptional regulation at different levels and play vital roles in
various physiological and pathological processes(Panni et al., 2020).
MiRNAs are small RNA molecules composed of 18–24 nucleotides,
functioning in regulation of the expression of the target messenger
RNAs (mRNAs), they bind to a short complementary sequence
located at the 3’ UTR region of the mRNA and lead to the target
mRNA degradation(Ambros, 2004; Lu and Rothenberg, 2018). In an
MCAO mice model, it is found that electroacupuncture (EA, a kind
of stroke therapy) can reduce neuroinflammation and act in a
neuroprotective manner by blocking the miR-223/
NLRP3 pathway (Sha et al., 2019). In addition, lncRNAs are
defined as transcripts of more than 200 nucleotides which cannot
be translated to proteins, they play crucial roles in gene
transcription(Ulitsky and Bartel, 2013; Kopp and Mendell, 2018).
LncRNA MEG3 promotes cerebral I/R injury through increasing
pyroptosis by targeting miR-485/AIM2 axis(Liang et al., 2020)
(Chen et al., 2018). The RNA-RNA interplay emerges as a rising
star in medical research now, the competing endogenous RNA
(ceRNA) are the endogenous RNA transcripts that share the
mutual miRNA response elements by competing for the same
miRNA pools(Xiao et al., 2020). The ceRNA links different RNA
species including mRNA, miRNA, and lncRNA together and
enriching our understanding of molecular mechanism of various
disease including ischemic stroke.

Thus, we hypothesized that the endogenous RNA regulatory
network may be crucial in the emergence of MCAO-induced
ischemic stroke. However, there is a lack of integrative analysis
of mRNA-miRNA-lncRNA regulatory network in MCAO-induced
Ischemic Stroke. To exploit the regulatory mechanism of ischemic
stroke formation in this study, we conducted a high-throughput
mRNA, miRNA, and lncRNA sequencing among the MCAO group
at 3 h, 6h, and 12 h after surgery and the control group. We next
explored differentially expressed lncRNA, miRNA and mRNA
between these MCAO and control groups. Afterward, the
mRNA-miRNA-lncRNA networks were developed to further

understand the pathophysiology and underlying molecular
mechanisms of MCAO-induced ischemic stroke.

2 Materials and methods

2.1 Animal experiments

A barrier system houses 10- to 12-week-old C57BL/6J mice with
free access to food and water. Zunyi Medical University’s Animal
Experimentation Ethics Committee approved all procedures. Based
on our previous research (Yao et al., 2016), we occluded the MCA in
mice to perform transient MCAO. Anesthesia was induced in mice
with sodium pentobarbital (40 mg/kg). There was exposure of the
left common artery and the left external carotid artery. Through the
right internal carotid artery, a 3 cm long MCAO suture (0.23/
0.02 mm head/0.0104 mm body, RWD Life Science,
MSMC23B104PK50) was inserted into the middle cerebral artery.
Reperfusion was performed after 90 min of occlusion and removal of
MCAO sutures. Similar operations were performed on sham control
animals to expose the carotid arteries without occluding the middle
cerebral artery.

2.2 Library preparation for ceRNA
sequencing

Each sample contained 1.5 g RNA for removal of rRNA using
the Ribo-Zero rRNA Removal Kit (Epicentre, Madison, WI, USA).
In order to attribute sequences to each sample, NEBNextR UltraTM
Directional RNA Library Prep Kit for IlluminaR (NEB, USA) was
used to prepare sequencing libraries. NEBNext First Strand
Synthesis Reaction Buffer (5X) was used to carry out
fragmentation using divalent cations under elevated temperature.
With the assistance of random hexamer primers and reverse
transcriptase, first strand cDNA was synthesized (Mao et al.,
2021a). DNA Polymerase I and RNase H were then used to
synthesize second-strand cDNA. Exonuclease/polymerase activity
was used to clear remaining overhangs. For hybridization, NEBNext
Adaptor with hairpin loop structure was ligated after adenylation of
3′ ends of DNA fragments. By using AMPure XP beads (Beckman
Coulter, Beverly, USA), library fragments were screened for
preferred insert fragments that were 150–200 base pairs in length
(Cao et al., 2020). Following that, 3 mL of USER Enzyme (NEB,
USA) was used with cDNA that was adaptor ligated and size-
selected before PCR. After that, PCR was performed with
Phusion High-Fidelity DNA polymerase, Universal PCR primers,
and Index(X) primers. Finally, the Agilent Bioanalyzer 2,100 and
qPCR were used to assess library quality and purify PCR products
(AMPure XP system).

2.3 Quality control

In-house Perl scripts were used to process raw reads in fastq
format. We obtained clean data (clean reads) by removing adapter,
ploy-N, and low quality reads from raw data. Sequences longer than
35 nt or smaller than 15 nt were removed from reads before
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trimming and cleaning. Also, Q20, Q30, and GC-content of the
clean data were calculated. By using Cutadapt software (v1.9.1), low-
quality reads for base quality under 20 were eliminated. All the
downstream analyses were based on clean data with high quality.

2.4 mRNA identification

Ensembl database was used to obtain gene annotations and
reference genome files. HISAT2 software (v2.0.1) aligned the clean
data with the reference genome (Kim et al., 2015). Expression
analysis was performed by annotating and indexing the
transcripts. RSEM software (v1.2.15) was used to estimate the
expression of related genes using an annotated file as a reference
gene set.

2.5 lncRNA identification

StringTie was used to assemble the transcriptome using reads
mapped to the reference genome (Pertea et al., 2015). We
annotated the assembled transcripts using the gffcompare
program. We differentiated known lncRNAs from assembled
transcripts if the sequencing species has lncRNA annotations.
Putative lncRNAs were sought for using the remaining unknown
transcripts. CPC/CNCI/Pfam/CPAT were combined to sort non-
protein codingRNA candidates from putative protein-
codingRNAs in the unknown transcripts. Aminimum lengths
and exon number thresholds were used to filter out potential
protein-coding RNAs. lncRNA candidates with a length of at
least 200 nt and more than two exons were selected and further
screened using the CPC/CNCI/Pfam/CPAT that differentiate
protein-coding and non-coding genes. Additionally, lncRNAs
were selected based on their types, such as lincRNA, intronic
lncRNA, anti-sense lncRNA, and sense lncRNA.

2.6 miRNA identification

Utilizing Bowtie tools software, the Clean Reads database and
Rfam database for sequence alignments, filtering out ribosomal
RNAs (rRNAs), transfer RNAs (tRNAs), small nuclear RNAs
(snRNAs), small nucleolar RNAs (snoRNAs) and repeats, and
converting these to ncRNAs. By comparing the reads with
known miRNAs from miRBase, we detected known miRNA and
novel miRNA predictions(Ni et al., 2022). A novel miRNA
secondary structure prediction was performed using Randfold
tools software.

2.7 DE-ceRNA analysis

We used the R package ‘DESeq2′ to analyze differential
expression of ceRNA as well as mRNA, miRNA, and
lncRNA(Zhu X. et al., 2022). The ceRNA with p-value <
0.05 and log2|fold change| ≥ 2 were identified as DE-ceRNAs.
Volcano plots and heatmaps were constructed using the pheatmap
package and ggplot2 R package(Mao et al., 2021b).

2.8 Functional analysis of DE-mRNA

DE-mRNA functions were revealed through Gene Ontology
(GO) analysis, including biological processes (BP), cellular
components (CC), and molecular functions (MF), along with
KEGG pathway enrichment analysis. The R package
‘clusterProfiler’ was used to analyze GO enrichment and KEGG
pathway enrichment analyses (Zhang et al., 2020). Those GO
categories with adjust. p-value<0.05 and KEGG pathways with
p-value<0.05 were considered as significantly enriched (Mao
et al., 2020).

2.9 Protein‒Protein interaction (PPI) analysis

DE-mRNA PPI network analysis was carried out based on
STRING v11.5 database (https://string-db.org/) (Cao et al.,
2021b). Direct interactions between DE-mRNAs were selected. In
the PPI network, proteins associated with similar biological
processes were grouped according to their attributes (event,
betweenness, and degree) (Cao et al., 2021a).

2.10 Construction of lncRNA–miRNA‒
mRNA regulatory networks

TargetScan (http://www.targetscan.org/vert_72/) and miRanda
algorithm were used to establish the lncRNA-miRNA-mRNA
networks.

3 Results

3.1 DE-mRNA screening

We identified 31,011 mRNAs via high-throughput sequencing
in at least one treatment (at 3h, 6h, and 12 h after MCAO surgery
and control) (Supplementary Table S1). A total of 606, 685, and
799 DE-mRNAs were deemed to be significantly differentially
expressed in 3 h vs. control, 6 h vs. control, and 12 h vs. control
comparisons, respectively. Differences in mRNA expression in each
treatment were evaluated by volcano plot analysis (Figure 1A).
Among them, 188 common DE-mRNAs were overlapped in all
three treatments which included 86 known mRNAs and 102 novel
mRNAs detected in this study (Figure 1B). The commonDE-mRNA
expression patterns were visualized in a heatmap using hierarchical
clustering analysis. (Figure 1C).

3.2 Functional analysis of DE-mRNA

GO and KEGG analyses were used to reveal the underlying roles of
188 common DE-mRNAs. The top enriched biological process (BP)
GO terms included cellular response to lipopolysaccharide (GO:
0071222), inflammatory response (GO:0006954), and response to
biotic stimulus (GO:0009607) (Figures 2A, B). The main enriched
CCs included extracellular space (GO:0005615) and endomembrane
system (GO:0012505) (Supplementary Figure S1). The main enriched
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MFs included cytokine activity (GO:0005125), chemokine activity (GO:
0008009), and endopeptidase inhibitor activity (GO:0004866)
(Supplementary Figure S2). The top 25 KEGG pathways of
common DE-mRNAs were shown in Figure 2C. The DE-mRNAs
were primarily enriched in the following pathways: cytokine‒cytokine
receptor interaction, tumour necrosis factor (TNF) signaling pathway,
JAK-STAT signaling pathway, and complement and coagulation
cascades. The main KEGG annotation of common DE-mRNAs
were enriched in metabolism global and overview maps, signal
transduction, and immune system (Figure 2D).

3.3 PPI network analysis

The PPI network of DE-mRNA target proteins was established. As
shown in Figure 3, this interaction network revealed that the 12 DE-
mRNAtarget proteins showedmore than 30° with other proteins. Among

them, Albumin had the highest node degree (n = 55) in the network
followed by IL-6 and TNF (with node degree of 42 and 41, separately).

3.4 Identification of DE-lncRNA and DE-
miRNA

To explore the potential MCAO-related ncRNAs, we sequenced and
detected lncRNA and miRNA expression profiles of MCAO using high-
throughput sequencing (Figures 4A, B).We detected 4,509 lncRNAs in at
least one treatment (at 3h, 6h, and 12 h afterMCAO surgery and control)
(Supplementary Table S2). A total of 803, 847, and 893 DE-lncRNAs
were identified to be significantly differentially expressed with |log2(fold
change) |≥2 and p < 0.05 in 3 h vs. control, 6 h vs. control, and 12 h vs.
control comparisons, respectively. Among them, 186 common DE-
lncRNAs were overlapped in all three treatments which included
26 known and 160 novel lncRNA (Figure 4C). Meanwhile,

FIGURE 1
Identification of DE-mRNA in MCAO. (A) Volcano plots of DE-mRNAs for 3 h after MCAO treatments. Red and blue dots showed up- and down-
regulated DE-mRNAs. (B) Heatmap of DE-mRNAs in MCAO and control groups. (C) Venn plot of potential DE-mRNA candidates with T1 vs. CON, T2 vs.
CON, and T3 vs. CON. T1: 3 h after MCAO, T2: 6 h after MCAO, T3:12 h after MCAO, and CON: control.
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3,751 miRNAs were identified in at least one treatment (at 3h, 6h, and
12 h afterMCAO surgery and control) (Supplementary Table S3). A total
of 56, 142, and 155 DE-miRNAs were identified to be prominently
differentially expressed in 3 h vs. control, 6 h vs. control, and 12 h vs.
control comparisons, respectively. Twenty common DE-miRNA were
overlapped in all three treatments which included 2 known miRNAs
(mmu-miR-466m-3p andmmu-let-7j) and 18 novelmiRNAs detected in
this study (Figure 4D).

3.5 Construction of the lncRNA–miRNA‒
mRNA regulatory network

The lncRNA–miRNA‒mRNA regulatory network was analyzed
by miRanda algorithm and visualized in the network. We identified
three DE-ceRNA networks consisting of DE-lncRNA–DE-miRNA‒
DE-mRNA. Among them, one network included one new Gene
(Mouese_newGene_161645) and six novel miRNAs identified in

FIGURE 2
GO and KEGG enrichment analysis of DE-mRNA. (A) Top 25 BP GO enrichment analysis results of DE-mRNA. (B) GOplot of enriched GO terms (C)
Top 25 KEGG pathway analysis results of DE-mRNA. (D) KEGG pathway annotation results of DE-mRNA. The color of bars represented different KEGG
categories.
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this sutdy. Moreover, two networks contained known DE-ceRNA as
Gp6 (mRNA)-novel_miR_879 (miRNA)-MSTRG.258402.19
(lncRNA) and Elane (mRNA)-novel_miR_528 (miRNA)-
MSTRG.348134.31 (lncRNA) (Figure 5).

4 Discussion

An ischemic stroke occurs when a blood vessel in the neck or
brain is blocked, which is currently a serious threat to human health
and life. It is mainly characterized by the blockade of blood flow by
an occlusive thrombus. The pathogenesis and molecular mechanism
of MCAO remain elusive. Past studies have focused on the key
mRNAs and ncRNAs which are essential in the development and
curing of MCAO(Hou and Cheng, 2018; Duan et al., 2019). Hereby,
we parsed out the mechanisms from another perspective, which
focuses on the interactions among different RNAs.

We found DE-mRNAs and built their PPI network, among
which Alb, IL-6, and Tnf have the highest node degree. Alb is the
abbreviation of albumin, which is the main content of human blood.
Several rodent models of ischemic stroke have demonstrated
remarkable efficacy with human serum albumin (Huang and
Xiao, 2021), it is a potential predictor of pneumonia after an
acute ischemic stroke(Bath, 2013). Inflammation is a hallmark of
stroke pathology. The interleukin-6 (Il6 or IL-6) is one of the
interleukins and a major cytokine, produced by microglia under
stroke (Zhu H. et al., 2022). Ischemic stroke pathogenesis is heavily
influenced by IL-6 and has been demonstrated as the early marker of
acute ischemic stroke(Li et al., 2022; Papadopoulos et al., 2022).
Tumour necrosis factor (TNF or Tnf) is best known as a
proinflammatory cytokine. After MCAO occurred, microglia
produce IL-6 and TNF-α and the microglia-derived TNF-α
mediate endothelial necroptosis aggravating blood brain-barrier
disruption (Chen et al., 2019).

FIGURE 3
PPI network of DE-mRNAs. Red and blue dots showed up- and down-regulated DE-mRNAs.
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The top enriched BP GO analysis includes cellular response to
lipopolysaccharide (GO:0071222) and inflammatory response (GO:
0006954). It has been verified that bacterial lipopolysaccharide is
associated with stroke (Hakoupian et al., 2021). Poststroke cognitive
impairment is common among stroke patients, and gut microbiota
can contribute to it by influencing lipopolysaccharide levels (Wang
et al., 2022). In recent years, the post-stroke immune response has
emerged as a new breakthrough target in the treatment strategy for
ischemic stroke pathobiology and outcome(Xu et al., 2020).

In this study, two ceRNA networks were identified, which
contained known DE-ceRNA as Gp6(mRNA)-novel_miR_
879(miRNA)-MSTRG.258402.19 (lncRNA) and Elane(mRNA)-
novel_miR_528(miRNA)-MSTRG.348134.31 (lncRNA). Gp6, the
membrane glycoprotein 6, is a platelet-specific collagen receptor
exclusively expressed in the megakaryocytic lineage. Gp6 stimulates
platelet activation and adhesion by interacting with collagen which
is essential for thrombus formation, causing ischemic stroke (Jung
and Moroi, 2008; Gao et al., 2021). A recent study has demonstrated
that Gp6 contributes to atherosclerotic cerebral ischemic stroke
development by activating the FYN-PKA-pPTK2/FAK1 signaling
pathway, indicating the critical roles of Gp6 in ischemic stroke (Gu
et al., 2021). Gp6 deficiency or inhibition suppresses thrombus
formation and may still not cause a significant bleeding
tendency, antibodies such as Abciximab, Glenzobimab and small

molecule inhibitors as anti-thrombotic agents have been used for
curing stroke clinically (Akkerhuis et al., 2001; Matsumoto et al.,
2006; Wichaiyo et al., 2022). Therefore, Gp6 has been verified as a
potential target for MCAO-induced ischemic stroke.

In addition, Elane is a neutrophil-expressed gene encoding
Elastase. It is well known that neutrophils fight infection by
phagocytosis and degranulation. Neutrophils release catalytically
active Elane to kill cancer cells instead of non-cancer cells (Cui et al.,
2021). Neutrophil extracellular traps (NETs) have been
demonstrated to promote thrombus formation (Martinod and
Wagner, 2014) and the elevated plasma NET biomarkers
correlated with worse stroke outcomes (Denorme et al., 2022).
Nets also impair revascularization and vascular remodeling after
stroke (Kang et al., 2020). In acute ischemic stroke mice, the Elane
inhibitor agaphelin reduces thrombosis, inflammation, and damage
to the blood-brain barrier, indicating that Elane is a promising target
for ischemic stroke (Leinweber et al., 2021).

In summary, we identified DE-mRNA, DE-miRNAs, and DE-
lncRNAs in MCAO using high-throughput sequencing and then
established an interplaying regulatory network. We found they
work together to regulate MCAO-induced ischemic stroke
development. Moreover, our study provided valuable and
high-quality ceRNA sequencing data for ischemic stroke
research as a reference. On the other hand, there were also

FIGURE 4
Identification of DE-lncRNA and DE-miRNA. (A) Chromosomal distribution of sequenced lncRNA. (B) Venn plot of potential DE-lncRNA candidates
with T1 vs. CON, T2 vs. CON, and T3 vs. CON. (C) Length distribution of sequenced miRNA. (D) Venn plot of potential DE-miRNA candidates with T1 vs.
CON, T2 vs. CON, and T3 vs. CON. T1: 3 h after MCAO, T2: 6 h after MCAO, T3:12 h after MCAO, and CON: control.
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several limitations. Firstly, the sample size was limited, which
may affect the statistical power of subsequent analyses. Thus, we
will further obtain a large number of sample data to validate our
results. Secondly, the biological roles of the identified ceRNAs
especially novel ceRNAs were not comprehensively explored. In
the future, we will verify the regulatory functions through more
bioinformatics analysis and experiments to facilitate elucidation
of the underlying molecular mechanisms in ischemic stroke
occurrence and development.
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