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Editorial on the Research Topic

Characterization, effects, perception, and mitigation of air pollution in
Asia for better air quality management
s

Air pollution affects billions of people globally and is a critical developmental challenge. Its
presence is conspicuous and has a profound effect on people’s lives and livelihoods in Asia
(Maharjan et al., 2022), a major hotspot for air pollution. This has a large implications for
both the continent and the global burden of diseases. Understanding the origins, causes,
and ramifications of air pollution in this region is crucial for the present generation and
the sustainable development of future generations. It is essential to recognize that majority
of air pollution in Asia can be attributed to anthropogenic activities such as industrial
emissions, domestic practices, construction and infrastructure development, transportation
and others.

It is vital to address these anthropogenic factors to achieve on-ground air quality
improvements across the continent. A comprehensive strategy incorporating scientific
knowledge, thoughtful policymaking, readiness, and individual dimensions is required
to mitigate the issue effectively. However, sometimes, policies alone cannot bring about
the desired change without a basis of public awareness and individual responsibility.
Therefore, to spread knowledge, increase awareness, and provide citizens the ability to
make environmentally friendly decisions, governments, non-governmental organizations,
and community leaders must work together. An excellent illustration of this is the
introduction of “Mission LiFE” in India. Another crucial element in the fight against air
pollution is preparedness. In addition to supporting long-term planning, creating resilient
infrastructure, creating early warning systems, and putting emergency response plans into
place help reduce the short-term effects of sudden spikes in air pollution levels. India
implementing its Graded Response Action Plan (GRAP), Pakistan implementing its policy
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to use only improved brick kilns to reduce pollution in winter,
and Beijing issuing “red alert” closing schools, factories and
construction sites and ordering half of all private cars off the
road are some examples amongst many. Effective air quality
management in Asia is contingent upon strategic planning and
coordination at all levels—local, national, and international—due to
the diversity of air pollution sources, sizable developing economies,
the geography and landuse, population, and growth velocity, among
other factors. Overcoming boundaries and ideologies is necessary
for the joint effort to combat air pollution. One such initiative
includes comprehending the complex air pollution problem in
Pakistani and Indian Punjab (Shrestha et al., 2022). Implementing
focused reduction methods and having a sophisticated grasp of
risk assessment are necessary for mitigating the effects of air
pollution.

Therefore, we endeavored to compile scientific data on several
subjects pertaining to air quality in Asia for this Research Topic.
This information would serve as the cornerstone for constructing
reliable policy and future research and collaborations. A quick
summary of articles published under this Research Topic is
summarized here.

While COVID-19 did show the world what it needs to do for
blue skies, several researches thereafter have consolidated these
findings and supported mitigations efforts. In one of the research,
Liu et al. investigated the impact of the COVID-19 lockdown
on air quality in Lanzhou, a city in northwest China, using the
time series decomposition method. The lockdown provided an
opportunity to understand the changes in air pollution levels
and to test the effectiveness of previous environmental protection
measures.This study showed that temporary social closuremeasures
(such as lockdown during COVID) have a limited effect on
improving air quality in Lanzhou. In another study, Jethva et al.
assessed the predictability of post-monsoon crop residue fires in
Northwestern India which can support mitigation efforts in the
South-Asian region. This study demonstrated a robust relationship
between satellite measurements of vegetation index (a proxy for
crop amounts, and post-harvest fires—a precursor of air pollution
events), for predicting seasonal agricultural burning. Based on
the spatial autocorrelation and geographically and temporally
weighted regression model (GTWR), She et al. explored spatial-
temporal characteristics and driving factors of PM2.5 through 252
prefecture-level cities in China. Results demonstrated that PM2.5
concentrations showed a significant downward trend in North
and Central China, and the reason might be the transition from
a high environmental pollution-based industrial economy to a
resource-clean high-tech economy since the implementation of
the Air Pollution Prevention and Control Action Plan in 2013.
Singh et al. investigated the seasonal concentrations of particulate
and gaseous Polycyclic Hydrocarbons Carbon (PAHs) along with
carcinogenic health risk assessment in the urban atmosphere of
Delhi. The principal component and correlation were used to
identify the sources of particulate and gaseous PAHs during different
seasons. These studies could be used to focus mitigation efforts
as laid under the National Clean Air Programme of India. Guo
et al. measured the carbon emission efficiency of pig farming in
30 provinces of China by using the non-expected output SBM

model and analyzed the spatial and temporal characteristics and
the influencing factors by using the limited dependent variable
model. Yuan et al. investigated the ambient air pollution and
associated health risks and premature mortality in four functional
(urban, suburban, industrial and rural) areas of Jining, China.
The four functional areas exhibited the same seasonal variations
and diurnal patterns in air pollutants, with the highest exposure
excess risks (ERs) from ozone. Highest health-based air quality
index (HAQI) in industrial area influences the HAQI in urban and
suburban area through transport mechanism.Thus puts forward the
requirements of mitigation efforts to be concentrated for different
pollutants on a seasonal basis. Feng et al. explained the mechanism
of national development zone policy affecting carbon emissions
in China using the panel data of 285 cities in China from 2003
to 2020, and adopting the DID model to analyze its impact on
carbon emissions through tests such as placebo test, dynamic test,
endogeneity test, and parallel trend test. The findings show that
the development zone policy indeed significantly reduces carbon
emissions. From a large birth cohort (572,106 mother-infant pairs)
in Chongqing, China, Zhou et al. explored the relationship between
exposure to ambient air pollutants during pregnancy and the
risk of very low birth weight (VLBW). The Generalized Additive
Model were applied to estimate exposures for each participant
during each trimester and the entire pregnancy period. Findings
showed that the maternal exposure to high levels of PM2.5, PM10,
NO2, and O3 might increase the risk of very low birth weight,
especially for exposure on the first and second trimester. You
et al. conducted this time series study to explore the association
between ambient PM2.5 exposure and daily hospital admissions
for circulatory system diseases (CSD) from 2016 to 2020 based on
201,799 hospitalized cases in Ganzhou, China by using generalized
additive models (GAMs). Based on the panel data of 75 cities in
the Yellow River Basin, China, Lu et al. constructed an evaluation
index system and measured the environmental regulation efficiency
using a super-EBM hybrid distance model. Regional differences
and dynamic evolution characteristics of environmental regulation
efficiency with the help of Dagum’s Gini coefficient decomposition
and kernel density estimation methods was also analyzed. These
studies indicate the effects of air pollutants on health through
different routes.

In conclusion, the issues of air quality stand out as a unique
opportunity to put these concepts into practice, especially as
integration and interdisciplinary studies are still popular subjects
in many conversations. The complexity of air pollution in Asia,
from its definition and impact to the way it is perceived and
tackled, highlights the urgent need for a comprehensive and
collaborative approach.The region can pave a path towards better air
quality management by combining scientific knowledge, technical
breakthroughs, sustainable urban design and infrastructres,
policy frameworks, public awareness, behavioural change and
preparedness measures. Through the adoption of well-designed
and implementable solutions to combat air pollution, we can
concurrently address broader global challenges. By working
together, we can only hope to lessen the negative impacts of air
pollution and ensure a healthier tomorrow, and a more sustainable
future for the millions of people residing in Asia.
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Background: Fine particulate matter (PM2.5), one of the major atmospheric

pollutants, has a significant impact on human health. However, the

determinant power of natural and socioeconomic factors on the spatial-

temporal variation of PM2.5 pollution is controversial in China.

Methods: In this study, we explored spatial-temporal characteristics and

driving factors of PM2.5 through 252 prefecture-level cities in China from

2015 to 2019, based on the spatial autocorrelation and geographically and

temporally weighted regression model (GTWR).

Results: PM2.5 concentrations showed a significant downward trend, with a

decline rate of 3.58 µg m−3 a−1, and a 26.49% decrease in 2019 compared

to 2015, Eastern and Central China were the two regions with the highest

PM2.5 concentrations. The driving force of socioeconomic factors on PM2.5

concentrations was slightly higher than that of natural factors. Population

density had a positive significant driving e�ect on PM2.5 concentrations, and

precipitation was the negativemain driving factor. The twomain driving factors

(population density and precipitation) showed that the driving capability in

northern region was stronger than that in southern China. North China and

Central China were the regions of largest decline, and the reason for the

PM2.5 decline might be the transition from a high environmental pollution-

based industrial economy to a resource-clean high-tech economy since the

implementation the Air Pollution Prevention and Control Action Plan in 2013.

Conclusion: We need to fully consider the coordinated development of

population size and local environmental carrying capacity in terms of control of

PM2.5 concentrations in the future. This research is helpful for policy-makers to

understand the distribution characteristics of PM2.5 emission and put forward

e�ective policy to alleviate haze pollution.

KEYWORDS

PM2.5, spatial-temporal heterogeneity, natural and socioeconomic factors, driving

ability, GTWR
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1. Introduction

Rapid urbanization has resulted in serious air pollution,

such as haze, dust and other terrible weather frequently,

which bring a huge impact on people’s lives, industrial and

agricultural production (1–3). PM2.5 (particulate matter with

an aerodynamic diameter ≤2.5 µm), one of the major air

pollutants, has been a popular research topic for academics

in recent years (4–7). Many studies have shown that prenatal

exposure of pregnant women to PM2.5 increases the likelihood

of respiratory infection andmay even cause early-life respiratory

tract diseases to newborns (8), and children exposed to polluted

air for a long time may increase the possibility of hypertension,

asthma, obesity and metabolic disorders (9). Recent researches

have also shown that high concentrations of PM2.5 are associated

with high COVID-19 mortality (10). Thus, PM2.5 pollution

incidents have affected human and ecological health in the

course of rapid socioeconomic development.

Numerous scholars have done extensive research on PM2.5

in terms of components and sources, spatial variation and

impact factors, and have proposed many corresponding control

measures (11–16). Previous studies have shown that natural

and socioeconomic factors have a significant impact on

PM2.5 (2, 17–19). For example, the increase in temperature

is conducive to atmospheric flow, which enhances PM2.5

dispersion, alike the higher summer temperature (lower

heating energy consumption) are beneficial to the reduction

of PM2.5 concentrations (20). On the contrary, the higher

temperatures promote the formation of secondary aerosols

from gas precursors, thereby increasing PM2.5 concentrations

(21). The stronger air movement in areas with high levels of

surface fine particles was likely to increase PM2.5 concentrations,

and air movement also has a diffusion and transport effect

on PM2.5 concentrations (22, 23), Precipitation and relative

humidity played an important role in the deposition of PM2.5,

and increased relative humidity increases the water-soluble ion

content of the air (24).

Meanwhile, some researches have shown that there was an

inverted U-shaped relationship between PM2.5 concentrations

and the economic development in socioeconomic terms (25).

Extensive economic development relying on energy and

resource consumption will increase pollution sources and

cause deterioration of air quality. Yet, the residents will pay

attention to environmental conservation and health impacts

from pollutants with improving standards of living (26). The

Environmental Kuznets Curve (EKC) relationship was observed

between per capita GDP and air contaminant (27, 28). Industrial

structure is an important indicator of local social and economic

development. It is generally believed that secondary industry

generally refers to heavy industrial production, which is easy

to cause greater environmental pollution. The tertiary industry

mainly refers to business, finance, trust and service industries,

which are generally considered to have low environmental

pollution. The population density has a significant impact

on PM2.5 emissions across all sectors (3). For instance, the

increase in population density led to increased consumption,

increased travel and production activities, thereby increasing

PM2.5 emissions. However, the drivers of natural and social

factors on PM2.5 at different spatial and temporal scales are not

well understood. Therefore, it is necessary to further clarify the

effects of natural and social factors on PM2.5 drivers at different

scales.

China became the world’s second-largest economy in 2010

after only 30 years of rapid economic evolution since the reform

and opening up, and it has been one of the regions with the

highest PM2.5 concentrations in the world (13). There had

been many studies on the temporal and spatial distribution

characteristics and influencing factors of PM2.5 in China (29–

33). And yet, China is a country with a vast territory, a large

population, complex landforms and climate, and unbalanced

economic development. It poses major challenges for the

research and governance of PM2.5. Due to the differences

in spatial-temporal scale and methods, the research results

of dominant factors for spatial-temporal variation of PM2.5

concentrations are different. Many studies indicated that PM2.5

concentrations showed a spatial distribution characteristic of

high overall in the north and low in the south. The pollution

hotspots of PM2.5 were mainly concentrated in eastern and

central China, especially in the Beijing-Tianjin-Hebei region

and its surrounding area. The Chinese government has taken

a series of strategies to control air pollution such as the Air

Pollution Prevention and Control Action Plan (Action Plan)

from 2013. Since the implementation of the Action Plan, PM2.5

concentrations have been effectively controlled and have shown

a downward trend (34, 35). But there are few studies on the

driving forces of the temporal and spatial variation of PM2.5 in

China since the implementation of the Action Plan using natural

and socioeconomic factors.

Therefore, it is necessary to explore the driving of natural

and socioeconomic factors on PM2.5 concentrations in whole

China. The present study focuses on the following questions

by collecting the measured data of PM2.5, natural and

socioeconomic from 252 prefecture-level cities in China during

2015∼2019: 1) The ability of natural and socioeconomic factors

to drive the spatial distribution of PM2.5 concentrations. 2)

Whether natural or social factors dominate the main causes

of PM2.5 concentrations changes over time at different spatial

scales. The result of this study may be useful to the government

in the prevention and control of PM2.5 concentrations in

industrial restructuring and population development planning.
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2. Materials and methods

2.1. Study area and data source

The data in this study was primarily divided into PM2.5 data

from 252 prefecture-level cities in China from 2015 to 2019,

as well as related to urban natural and socioeconomic factors.

PM2.5 data were obtained from hourly PM2.5 monitoring

data by the China National Environmental Monitoring Centre

(CNEMC, http://www.cnemc.cn/). Hourly PM2.5 data were

compiled into the daily average data of 252 cities according

to the China Ambient Air Quality Standards (GB3095-

2012), the China Ambient Air Quality Assessment Technical

Regulations (HJ663-2013) and other relevant regulations. Cities

with multiple monitoring stations had their data averaged

and treated as daily urban average data. Based on previous

studies and the physical geographic features of the country,

252 cities in the country were divided into seven major zones

(Supplementary Figure S1 and Supplementary Table S1).

According to previous research (17, 20, 30, 36), eight main

influencing factors were finally selected from the twelve factors

preliminarily screened by the collinearity treatment. Natural

factors include relative humidity (RH), temperature (TEMP),

wind speed (WS) and precipitation (PCP), which were taken

from the National Weather Science Data Centre (NWSDC). The

annual-average values of RH, TEMP and WS were obtained on

the average daily data. PCP was the total annual precipitation

of the city. The secondary industry was selected as the driving

factor of industrial structure on PM2.5 in the majority of

previous research. With the increase of the proportion of

tertiary industry, its impact on PM2.5 concentrations needs to be

studied. Per capita GDP indicators generally represent the level

of local economic development. So the socioeconomic factors

included per capita GDP (GDPP), secondary industry share

(SI), tertiary industry share (TI) and population density (PD)

(year-end total population/total area of jurisdiction) from the

China Urban Statistical Yearbook, with the missing data was

interpolated by contemporaneous neighboring or around areas.

The statistical description and overall spatial distribution of the

eight selected driving factors from 2015 to 2019 are showed in

Table 1 and Supplementary Figures S2, S3.

2.2. Study methods

2.2.1. Spatial autocorrelation analysis

Spatial autocorrelation analysis is a model to explore

the similarity or correlation of spatial proximity observation

results. Global spatial autocorrelation analysis focused on the

correlation between observations in close proximity (37). Global

Moran’s I is the most widely known and used statistic to test for

the presence of spatial dependence in observations. The Moran’s

I can be calculated using Eq:

I =
∑n

i−1

∑n
j−1 wij(xi − x̄)(xj − x̄)

1
n

∑n
i−1(xi − x̄)2 ∗

∑n
i−1

∑n
j−1 wij

(1)

where x̄ = 1
n

∑n
i−1 xi, n is the number of spatial units (in

this study, n =252); xj and xj are the observations of spatial

units i and j, respectively; wij is an element of the spatial weight

matrix W which describes the spatial arrangement of all the

spatial units in the sample, where wij = 1 if spatial units i and

j share a common border and wij = 0 otherwise. Values of Global

Moran’s I range from –1 to 1; a positive (or negative) correlation

exists among the observations if 0 <I <1(or -1 <I <1), and the

observations are distributed randomly (no correlation) in the

space if I is close to or equals 0.

The significance of Global Moran’s I is commonly measured

by the standardized statistic Z as shown in Eq:

Z(I) = I − E(I)√
Var(I)

(2)

where E(I)and Var(I) are the expected value and variance of

Moran’s I, respectively; the methods used to calculate them are

listed in the Supplementary materials.

The specific location and distribution pattern of local

spatial clustering were further determined by a local spatial

autocorrelation. The local Moran’s I was represented by local

indicators of spatial association (LISA), which were calculated

as follows:

LISA = (xi − x̄)√
S2

∑

j

wij(xi − x̄) (3)

S2 = 1

n

n
∑

i=1

(xi − x̄) (4)

A local spatial autocorrelation analysis can detect four cluster

types with statistical significance: high-high clusters (high-

incidence areas enclosed by high incidence areas); high-

low clusters (high incidence areas enclosed by low-incidence

areas); low-high clusters (low-incidence areas enclosed by high-

incidence areas); and low-low clusters (low-incidence areas

enclosed by low-incidence areas). The results were visualized in

ArcGIS 10.6 software.

2.2.2. Geographically and temporally weighted
regression model

The geographically and temporally weighted regression

(GTWR) model (38) can effectively deal with Spatial-temporal

non-stationarity by introducing a temporal dimension based

on spatial heterogeneity. This model can simulate PM2.5

concentrations at a higher spatial resolution and accuracy across
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TABLE 1 Description of the data used in this study.

Indicators Data source Symbol Unit Mean SD Minimum Maximum

Relative humidity Resource and RH % 68.74 10.74 29.81 99.61

Temperature Environmental TEMP ◦C 14.43 5.31 –0.20 25.44

Wind speed Science data WS m/s 2.21 0.67 0.74 6.44

Precipitation Center PCP mm 1034.85 602.39 21.45 4102.50

Per capita GDP GDPP CNY 69110.59 36309.00 15356.00 217313.00

Secondary industry share China City SI % 42.41 10.08 10.68 72.90

Tertiary Industry share Statistical TI % 48.12 9.67 26.12 83.52

Population density Yearbook PD person/km2 408.73 347.95 1.66 2836.22

China than some previous models (39). The basic formula is as

follows (40):

Yi = β0(µi, νi, ti)+
∑

βk(µi, νi, ti)Xit + εi (5)

where (µi, νi, ti) is the spatial-temporal coordinate of the ith

sample; µi, νi, ti are the longitude, latitude and time of the ith

sample point, respectively; β0(µi, νi, ti) denotes the regression

constant at the ith sample point, i.e., the constant term in the

model; Xit is the value of the kth independent variable at the

ith point; εi is the residual; βk(µi, νi, ti) is the kth regression

parameter for the ith sample point, which is estimated as follows:

β̂(µi, νi, ti) = [XtW(µi, νi, ti)X]
−1XTW(µi, νi, ti)Y (6)

where β̂(µi, νi, ti) is the estimated value of βk(µi, νi, ti); X is

the matrix of independent variables; Xt is the transpose of

the matrix; Y is the matrix of composition in the sample;

W(µi, νi, ti) is the spatial-temporal weight matrix. W is chosen

as the Gaussian distance function, the spatial-temporal weight

matrix is obtained using the bi-square spatial weight function,

and the spatial-temporal distance between sample i and sample

j is:

dij =
√

δ[(Ui − µj)2 + (vi − µj)2 + µ(ti − tj)2] (7)

where the choice of bandwidth affects the establishment

of spatial-temporal weights, this paper adopts the Akaike

Information Criterion (AICc) law for adaptive bandwidth.

2.2.3. Stability estimation of coe�cients

To analyze the spatiotemporal heterogeneity of each

variable, we applied the Kernel function to check the stability of

the correlation coefficients, and use the coefficient distribution

to observe the spatiotemporal characteristics (41). The density

function of the variable x is as follows:

f (x) = 1

Nh

n
∑

i−1

k(
xi − x̄

h
) (8)

where xi is the coefficients subordinated to independent and

identical distributions. n, h, x̄ represent the number of x,

bandwidth and mean value, respectively. The Epanechnikov

function was adopted as the kernel function for estimation in

this work.

3. Results and analysis

3.1. Spatial-temporal characteristics of
PM2.5 concentrations

The Central, East, Northwest and North China were the

regions with high mean PM2.5 concentrations, which were 54.03

± 13.86, 44.71 ± 14.52, 40.38 ± 12.55, and 37.34 ± 18.53 µg

m−3, respectively, (Figures 1, 2). The mean concentrations of

PM2.5 in southwest China was lowest (26.50 ± 13.41 µg m−3),

followed by South China (33.98 ± 5.95 µg m−3). The area-

weighted mean concentrations of PM2.5 in China from 2015

to 2019 were 44.24 ± 17.68, 40.24 ± 15.76, 37.54 ± 14.66,

33.19 ± 12.60, 32.52 ± 13.77 µg m−3, respectively, and it was

37.55 ± 15.62 µg m−3 in 5 years. The mean concentrations

FIGURE 1

Variation characteristics of PM2.5 in di�erent regions from 2015

to 2019 (I) Northeast China, (II) North China, (III) East China, (IV)

Central China, (V) South China, (VI) Southwest China, and (VII)

Northwest China (Letters denote the result of One-way ANOVA).
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FIGURE 2

Spatial variation characteristics of PM2.5 concentrations during 2015-2019 [(A–E) denote the spatial distribution of PM2.5 concentrations in 2015,

2016, 2017, 2018, and 2019, respectively, and (F) denotes the slope of PM2.5 concentrations from 2015 to 2019, slope (5-year linear trend slope)].

of PM2.5 exceeded the annual PM2.5 grade II standard (35 µg

m−3) (GB3095 2012) in 2015, 2016 and 2017, which exceeded

26.4 % in 2015, and 5.2%, 7.1% below annual PM2.5 grade II

standard in 2018,2019, respectively. The downward trend of

PM2.5 concentrations was 3.58 µg m−3 from 2015 to 2019,

with a percentage decrease of 26.49% in 2019 compared to

2015. PM2.5 concentrations of 240 cities showed a decreasing

trend among the 252 cities, with the proportion of decreasing

cities reaching 95.24%, of which 42 cities had a decrease rate

of more than 5 µg m−3 a−1, accounting for 16.67% of the

total number of decreasing cities (Figures 1, 2). Although whole

regions presented a downward trend from 2015 to 2019, PM2.5

concentrations exhibited an obvious spatial heterogeneity in the

different regions. The largest decline occurred in North China

(–3.99 µg m−3 a−1), followed by central China (–3.41 µg m−3

a−1). The region with the smallest decline was North China

(-1.80 µg m−3 a−1). In this study, the slope of change was

divided into four classes according to the natural breakpoint

method [strong negative (-11.5∼ -6.21 µg m−3 a−1), mid

negative (-6.21∼ -3.49 µg m−3 a−1), weak negative (–3.49 µg

m−3 a−1) and weak positive (0∼5.03 µg m−3 a−1)]. It can

be found that the strong negative area was mainly located in

the Beijing-Tianjin-Hebei region and parts of the northeast,

the mid negative region was mainly located in Central China

and Cheng-Yu Region, East China, Northeast China and the

majority of the other areas were weak negative growth regions.

The weak positive area was scattered throughout the country

without obvious aggregation areas (Figure 2F).

To further detect local agglomeration of PM2.5

concentrations, we adopted a local Moran’s I test (Table 2).

From 2015 to 2019, the average value of the global Moran’s

I was 0.57(p <0.01), indicating that PM2.5 concentrations

showed a club convergence trend. In addition, we also

calculated local Moran’s I, the results of which revealed

a detailed local pattern of spatial clustering with changes

in PM2.5 concentrations. The Moran’s I value showed

a trend of decreasing and then increasing, with the

lowest value in 2017 and the highest values in 2018
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TABLE 2 Global spatial autocorrelation test.

Year Moran’I Z P

2015 0.57 26.55 0.001

2016 0.56 26.17 0.001

2017 0.52 22.83 0.001

2018 0.59 27.26 0.001

2019 0.59 26.35 0.001

FIGURE 3

Average of spatial clustering for PM2.5 concentrations from 2015

to 2019.

and 2019, which indicated that an overall trend toward

aggregation.

It was discovered that high-high clusters regions were

primarily distributed in China’s East-central region, including

Beijing, Tianjin, Hebei, Shaanxi, Shanxi, Henan, Hubei, Anhui,

and Shandong provinces through local spatial autocorrelation

analysis. In contrast, low-low clusters were mainly located

in the south and southwest provinces of China, including

Tibet, Sichuan, Yunan, Guangxi, Hainan, Guangdong, and

Fujian. In addition, low and low aggregation areas also

appeared in northeastern Inner Mongolia and northwestern

Heilongjiang. The high-low agglomeration area and the

low-high agglomeration area were small in scope and are

distributed near the high-high and low-low agglomeration areas

(Figure 3).

3.2. Driving forces of variation of PM2.5

concentrations

This study selected the GTWR model to analyze the driving

forces of temporal and spatial variation of PM2.5 concentrations.

In order to avoid the deviation of the estimation results caused

by the interaction between the indicators, eight driving factors

were determined by collinearity test. The results showed that

the variance inflation index of each factor was less than 10,

and the condition index was also less than 30, indicating that

the factor selected in this study does not have a collinear

relationship (Table 3). At the same time, in order to avoid

the influence of data on the magnitude, PM2.5 concentrations

and eight driving factors were standardized before modeling.

Then the temporal and spatial non-stationary relationships were

modeled using the plug-in for ArcGIS 10.6 (with automatic

optimal bandwidth settings) in GTWR produced by Huang

et al. (38). The AICc value of the GTWR model was -

2736.53. The determination coefficient (R2) and adjustment

determination coefficient (R2
adj

) of the GTWR model were

0.78. To evaluate the validity of GTWR results, ordinary

least squares regression (OLS) was chosen to compare with

geographically weighted regression (GWR), which describes the

relationship between variables by building a global model, while

GWR expresses the spatial non-stationarity of the relationship

between variables through a local model with spatial dependence

of parameters. The results showed that AICc values of the

GTWR model were lower than those of the OLS and GWR

models, and the R2 was significantly higher, indicating that

GTWR results were better than those of the OLS and GWR

models (Table 4). The GTWR model coefficients can reflect

the direction and intensity of PM2.5 driving capability. The

positive value indicates the positive driving effect of explanatory

variables on PM2.5 concentrations, and higher values indicate

higher drive capacity, while negative coefficients indicate the

opposite.

3.3. Stability analyzes of coe�cients

From the Kernel distribution of coefficients of different

variables (Figure 4), we can see that the coefficients of RH,

TEMP, WS and PCP in natural factors were concentrated at

approximately –0.01, 0.2, –0.1, and –0.7, respectively. This

result indicates that the increase in WS and PCP had a

opposite effect on PM2.5 concentrations in most cities, while

the increase in TEMP had the promotion effect. Among the

four socioeconomic factors we analyzed, the largest density of

coefficients of PD was distributed at 0.5 (almost no negative

values), which illustrates that with the increase in PD, PM2.5

concentrations in most cities were promoted. Simultaneously,

the coefficients of SI was distributed at 0.2, indicating that

the increase in SI will increase PM2.5 concentrations of

most cities. In contrast, the coefficients of GDPP was left-

distributed, and the peaks emerged at approximately –0.16,

indicating that the increase of GDPP is beneficial to reduce

the urban PM2.5 index in most cities during our study

period.
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TABLE 3 Co-linearity test and coe�cients statistic description of variables.

Factors Co-linearity test GTWR coefficients statistic description

Standardization coefficient Tolerances VIF Median Mean SD Minimum Maximum

Intercept - - - 0.38 0.42 0.23 –0.22 1.43

RH –0.04 0.60 1.68 –0.02 0.08 0.10 –0.44 0.29

TEMP –0.01 0.31 3.22 0.00 0.26 0.31 –0.69 0.81

WS –0.10 0.80 1.26 –0.11 0.13 0.12 –0.44 0.27

PCP –0.30 0.41 2.44 –0.42 0.43 0.34 -3.13 0.22

GDPP –0.19 0.66 1.51 –0.09 0.11 0.11 –0.29 0.49

SI 0.34 0.34 2.94 0.19 0.22 0.21 -1.47 0.62

TI 0.14 0.36 2.77 0.01 0.11 0.16 –0.91 0.47

PD 0.39 0.66 1.52 0.44 0.55 0.74 0.00 8.65

The mean value is the average of the absolute values of the coefficients.

TABLE 4 Result of accuracy evaluation of di�erent model.

Model AICc R2 R2adj

OLS –1606.03 0.34 –

GWR –2501.28 0.71 0.70

GTWR –2736.53 0.78 0.78

3.4. Spatial distribution characteristics of
the factor driving force

TheGTWRmodel demonstrated that the force of the driving

factor presented different driving distribution characteristics in

China (Figure 5). The coefficients of natural factors on PM2.5

concentrations were bidirectional at the national scale. RH, WS

and PCP showed predominantly negative correlations. Through

the analysis of the absolute value of the coefficient, influence

intensity of natural factors on the regional PM2.5 concentrations

was as follows: PCP (0.43) >TEMP (0.26) >WS (0.13) >RH

(0.08). The RH coefficient was between –0.13 and 0.17. The

proportion of cities with negative driving factors accounts for

about 66.67% of all cities. The core region with the strongest

negative impact of RH was the northeast, northwest and north

China, while central China, southwest and southern China were

dominated by weak positive regression coefficients. The TEMP

coefficient showed positive and negative equivalence (–0.56 ∼
0.66), and positive correlation regions (48.41%) were mainly

distributed in North China, Northeast China and Northwest

China. The WS coefficient was mainly negative, accounting for

86.11%, and it was mainly located in the eastern, northeastern

and southwestern, and the positive effect was mainly in the

northwest region. The PCP coefficient of most cities (95.24%)

was negative, and the high negative value area was mainly

distributed in northwest and north China.

In socioeconomic factors, except that PD was positively

correlated with the PM2.5 concentrations in each region, other

factors presented a two-way impact on PM2.5 concentrations.

The order of the absolute values of the driving factors for

PM2.5 was PD (0.55) >SI (0.22) >GDPP (0.11) >TI (0.11).

The coefficient of GDPP has a positive effect on PM2.5

concentrations in Southwest and Northwest China (21.03%),

while North, Northeast and East China showed a negative

driving relationship. The SI coefficient was mainly positive

(94.05% of the total number of cities), which was negatively

correlated only in the underdeveloped western region, while

positively correlated in the central and eastern regions. The

TI coefficient range from –0.63 to 0.26. Positively driven

cities (67.46% of the total) were mainly distributed in North,

Northeast and East China, but the number of cities is

significantly lower than that of SI (94.05%). In particular,

PD coefficient was positive throughout the region and vary

considerably (0.04 to 6.93).There was an increasing trend from

southeast to northwest. The lowest region was located in

Guangdong and Fujian, the highest region was distributed Tibet,

Inner Mongolia, Gansu and Xinjiang (Figure 5).

3.5. Temporal characteristics of driving
factors

The result of the GTWR model demonstrated that the

capability of driving factor was different in time scale (Figure 6).

The coefficient value of the eight driving factors was between –

0.50 and 0.71 in the whole region. PD (0.55) was highest average

positive driving factor, followed by SI. The highest negative

driving factor was PCP (–0.42), followed byWS, and the absolute

values of the average coefficient of the other factors were all

less than 0.05. From the analysis of the time trend, PD has the

obvious downward trend (slope = 0.07), WS has the significantly
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FIGURE 4

Kernel density distribution of each variable coe�cient.

upward trend (slope = 0.06), and the trends in other factors were

not significant (|slope| ≤ 0.04).

From 2015 to 2019, the coefficient ranges of driving factors

in Northeast and North China were –0.77 ∼ 0.75 and –0.76 ∼
0.91, respectively (Figure 6). Positive driving factors of highest

average value were PD (0.60, 0.67) in these two regions, followed

by SI (0.22, 0.29) and TEMP (0.21, 0.32). The highest negative

factor was PCP (–0.42, –0.76) in these two regions. Negative

driving factors included WS (–0.15), GDPP (–0.14) and RH (–

0.08) in Northeast China and included GDPP (–0.18) and RH

(–0.07) in North China, the slope of other factors tend to be

stable. From the analysis of the time change trend, the coefficient

of PD and SI has obvious downward trend in Northeast China

(slope = –0.04), PCP and WS has an upward trend (slope = 0.13,

0.06), and the annual trend of RH, TEMP, GDPP and SI were

no obvious (|slope| ≤ 0.02). In North China, PD and SI had

obvious downward trend (both slope = –0.04), PCP and WS had

an upward trend (slope = 0.13, 0.06), the annual trend of RH,

TEMP, GDPP, SI were no obvious (|slope| ≤ 0.02).

The coefficient ranges of driving factors in East, Central and

South China were –0.60 ∼ 0.44, –0.59 ∼ 0.53 and –0.63 ∼ 0.19

from 2015 to 2019 (Figure 6). The driving factor of the highest

positive coefficient was PD (0.31, 0.37, 0.10) in the three regions,

followed by SI. PCP (–0.51, –0.47) was the driving factor with

the highest negative coefficient in East and Central China. The

driving factor of the highest negative coefficient was TEMP (–

0.46) in South China. The coefficients of SI and PD decreased

significantly from 2015 to 2019 (slope = –0.04, –0.03) in East

China. The coefficients of PD in Central and South China had

a relatively obvious downward trend (slope = –0.06, –0.03). The

coefficients of WS and TEMP had an obvious upward trend in

East, Central and South China. The change trends of the other

driving factors were no obvious (
∣

∣slope
∣

∣ ≤ 0.03).

The coefficient ranges of driving factors were –0.32 ∼ 0.94

and –0.77∼1.70 in the southwest and northwest regions from

2015 to 2019 (Figures 6G,H and Supplementary Figure S2). The

driving factors of highest average positive coefficient were both

PD (0.66, 1.4) in these regions, followed by GDPP (0.06) and

TEMP (0.14,) respectively. The driving factor of the highest

negative was PCP (–0.15,–0.60) in both the southwest and

northwest, while other driving factors were no obvious (
∣

∣slope
∣

∣

≤ 0.08). The coefficient of PD decreased significantly in the

southwest and northwest from 2015 to 2019 (slope = –0.12, –

0.14). The coefficients of TEMP andWS in the southwest region

had an upward trend (slope = 0.07). The trends of the other

driving factors were insignificant (
∣

∣slope
∣

∣ ≤ 0.04).

The distribution characteristics of nuclear density of each

coefficient are given in Figure 7. The change of left-biased

peak distribution of RH was not obvious from 2015 to 2017,

and it was concentrated in positive values in 2018, whereafter

the largest density of coefficients of RH was distributed at

–0.4 in 2019. The temperature coefficient shown a bimodal

distribution, with a main peak of about 0.3, which indicates

that the rising temperature will increase the concentration of

PM2.5 in most cities. The coefficient of PCP was left-distributed

during 2015∼2019, but the peak has shifted significantly to

the right in 2019, indicating that the negative driving ability

was weakening. The coefficient of WS showed a multi-peak

distribution from 2015 to 2019, except that the peak distribution

was negative in 2018. Among the four socioeconomic factors, the

GDPP coefficient showed a multi-peak distribution from 2015

to 2019. The main peak was promotion effect in 2015, and then

turned negative. The coefficient of SI and TI showed a multi-

peak distribution from 2015 to 2019, compared with the TI, the

coefficient of SI showed a right distribution, and the coefficient

of TI showed a double distribution, which was close to zero,
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FIGURE 5

Spatial distribution of coe�cients for each driving factor (A) Relative humidity, (B) Temperature, (C) Wind speed, (D) Precipitation, (E) per capita

GDP, (F) Secondary industry share, (G) Tertiary Industry share, and (H) Population density; The white area represents no data.

indicating that the contribution of TI to PM2.5 is smaller than

that of SI. The coefficients of PD had almost no negative values

during 2015∼2019, and had a multi-peak distribution.

Generally, among the natural factors selected in this study,

except that temperature had obvious positive and negative

driving effects on PM2.5 concentrations, the driving effects of

PCP, WS and RH were mainly negative. In socioeconomic

factors, GDPP and PM2.5 concentrations was two-way driving,

PD, SI and TI had significant positive driving effects on

PM2.5. The order of driving capability was PD >PCP >TEMP

>SI >WS >TI >GDPP >RH. The coefficient of PD decreased

most obvious in the whole study period (slope=–0.07), and

the coefficients of SI and GDPP were decreased slightly, yet

the coefficients of WS and TEMP showed an upward trend

(0.06, 0.04; Supplementary Table S3). Using the global multiple

regression model, a similar conclusion was reached, namely PD
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FIGURE 6

Trends in driving capability of each factor in di�erent spaces from 2015 to 2019 (a) Whole region, (b) Northeast China, (c) North China, (d) East

China, (e) Central China, (f) South China, (g) Southwest China, and (h) Northwest China.

(positive) and PCP (negative) were the first two drivers of PM2.5

concentrations (p < 0.001; Supplementary Table S4).

4. Discussion

This research presented that the PM2.5 concentrations

in different areas decreased with varying degrees, with

an average decrease of 3.58 µg m−3 a−1. The series

actions of energy-saving, emission-reduction and clean air

proposed by the government in recent years have received

some achievement. Central and East China with the higher

mean PM2.5 concentrations have higher population densities,

developed industries, intensive human activities and particulate

matter emissions. The PM2.5 concentrations in North and

central China hugely dropped may because that the developed

industrial, agriculture and intensive human activities was

controlled by the above actions.

Many previous studies have concluded that the severely

polluted areas in China by PM2.5 were located in Beijing,

Tianjin and Hebei and the surrounding areas (35, 42, 43). Some

studies have also shown that Xinjiang has high concentrations

of PM2.5 in China (44–47). North China was not the region

with the highest PM2.5 concentrations in this study because it

included Inner Mongolia and other areas with relatively low

PM2.5 concentrations. The difference of these results may be

due to the spatial scale. In addition, the lack of data in parts

of Xinjiang also has some impact on the overall results of the

country.

We demonstrated that the capacity of driving factors was PD

>PCP >TEMP >SI >WS >TI >GDPP >RH. PD was the positive

main driving factor, indicating that the increase of population

density will lead to the rise of PM2.5 concentrations. The

higher population density is frequently accompanied by high

emissions from household activities (e.g., cooking, heating and

smoking) and local transportation (48, 49). Besides, the traffic

congestion caused by population agglomeration is unfavorable

for the complete combustion of motor fuel (50). In addition,

the region with higher population density is often accompanied

by dense buildings, which is not conducive to the diffusion of

PM2.5. The rational layout and design of urban buildings could

promote the dispersion of pollutants and improve air quality

(51), but the diffusion capacity of PM2.5 is rarely specified

in urban building design. Exposure risk of toxic pollutants in
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FIGURE 7

Kernel density distribution of each variable coe�cient in di�erent year.

densely populated areas is higher than that in sparsely populated

areas (46). Therefore,we should pay attention to the effect of

population density on PM2.5 concentrations.

PCP and RH were the negative main driving factors in

this study, possibly because that they can enhance airborne

PM2.5 condensation and deposition, thus reducing PM2.5

concentrations (52). SI had a positive driving effect on PM2.5

in most areas. It is well known that SI is dominated by heavy

industries such as machinery, chemicals, and energy, and that

it is the primary source of pollutants in the atmosphere. We

found that the driving coefficient of the TI (0.11) was obvious

small than that of the SI (0.22), which indicated that the TI

also had a positive driving effect on PM2.5, but its driving

capacity was equivalent to half of that of the SI. The nonlinear

relationship occurred betweenGDPP and PM2.5 concentrations,

such as PM2.5 concentrations in developed eastern regions was

being controlled by advances in science and technology, as

well as the optimization of industrial structure. Similar research

conclusion has previously been discovered (26). Therefore,

to ensure economic development while controlling pollution,

the government should formulate waste emission standards,

strengthen supervision and law enforcement, gradually optimize

the industry, transition from SI to TI, implement strict emission

standards, and compel polluting industrial enterprises to

improve production capacity. Furthermore, regional industrial

development should take into account the carrying capacity of

the local natural environment, particularly fragile areas like the

northwest.

The driving capability of PD was descending in space from

northwest to southeast, which was reverse with the spatial

distribution of population density. This might be because the

ecological environment in Northwest China was more fragile,

the environmental carrying capacity was lower, the available land

was limited, and the industrial and agricultural activities were

more concentrated. This study discovered that precipitation

driving capability was significantly stronger in the north than

that in the south, probably because the abundant rainfall in

the south and the PM2.5 condensed has reached the threshold.

Therefore, the precipitation appears to be more important for

PM2.5 deposition in the north of China compared to the south

China, due to the little rainfall, the dry climate, and the lower

vegetation cover. Similar findings have been found in previous

studies, which are subject to the law of diminishing marginal

effect (53, 54). The result in this study is generally consistent with

the that of previous studies (55).

In this study, the region of positive driving of temperature

was mainly distributed in the north China and the Qinghai-

Tibet Plateau with the lower annual-average temperature. The

possible reason was that the annual-average temperature in these

regions was relatively lower, and the increase in temperature

on the flow of the atmosphere was not enough to make PM2.5

diffusion, instead, promoting the flow of dry surface particulate

matter. On the contrary, even though the temperature was

high in the southern region, the diffusion ability was enhanced,

but the small surface dust is conducive to lower the PM2.5

concentrations. The driving capability of WS was stronger in the

north than that in the south (Figure 4), it may be caused by flat

terrain in the north which provides better diffusion conditions

for atmospheric pollutants, and the increase in wind speed is

more conducive to the diffusion of PM2.5, thereby improving

regional air pollution (56). It is worth noting that WS has

a stronger positive driving effect on PM2.5 concentrations in

central and western Inner Mongolia, Xinjiang, Shaanxi, Gansu,

and northeastern Sichuan. Due to these regions located on the

Loess Plateau or the edge of the desert, the soil is relatively

loose. When the wind speed reaches a certain level, it will also
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roll up loose dust on the ground, resulting in an increase in

the concentrations of PM2.5 in the downwind area (22). The

relationship of GDPP and PM2.5 concentrations were negative

correlation in the central and eastern regions of China, especially

in the Bohai Bay economic zone.While there was a weak positive

correlation in the central and western regions, indicating that

pollution may decrease as per capita GDP increases (57).

The two regions with the largest decrease in PM2.5

concentrations were North and Central China (slope = -3.99

µg m−3 a−1, slope = -3.41 µg m−3 a−1) (Figures 1, 2).

Central China was the region with the highest mean PM2.5

concentrations in this study, and many studies have shown

that Beijing-Tianjin-Hebei in North China has always been

a high-value area of PM2.5 in China (53, 54). The two

regions are located in mid-eastern region of China and are

more developed in industry and agriculture. There are slight

differences (relative humidity stabilized, temperature increased

slightly, and precipitation and wind speed slightly decreased)

in trends of four natural factors in North China. The trend

of GDPP was increased, the trends of SI and PD decreased

significantly, and the trend of TI was no significant. The main

negative driving factors (PCP, RH, WS) and positive driving

factors (PD, SI) showed a trend of decreasing in two regions,

which indicated that the decline reason of PM2.5 concentrations

might be due to the capability weakening of the positive driving

factors (PD, SI). However, trends of TEMP and WS in Central

China were opposite (weakly increased in North China and

weakly reduced in Central China) that in North China, and

the other factors were the similar (Supplementary Figure S4),

but the driving directions of TEMP and WS were different in

these regions, indicating that the causes of PM2.5 concentrations

decrease in Central and North China were similarly. This result

further shows that in the case of constant or even adverse natural

factors, a series of emission reduction measures introduced by

the state after 2013, such as increasing green area, limiting

vehicles, industrial emission purification, coal gasification in

heating facilities, and industrial transformation, can alleviate or

even cover up the impact of population density increase on the

increase of PM2.5 concentrations.

Overall, this study found that the annual-average values

of the main negative driving factors (PCP and RH) showed a

downward trend (-42.78mm·a−1, –0.39%· a−1), and the trends

of WS and TEMP did not change significantly (0.01m·s−1·
a−1) (Supplementary Figure S4), indicating that natural factors

were not particularly favorable for driving the decrease of

PM2.5 concentrations. Among the socioeconomic factors, except

Northeast China, the trend of PD in other regions was rise, the

trend of SI was decline significantly (-1.21%· a−1), while the

trend of TI was increase (0.78%· a−1) (Supplementary Table S2).

However, the positive main driving factor (PD) showed an

upward trend, but the driving force of PD showed a significantly

downward trend. The shift trend of industrial structure was

from the secondary industry to the tertiary industry (the

driving capacity of the secondary industry was higher that

of the tertiary industry). It further demonstrated that the

main reason for the decrease of PM2.5 concentrations may

be the weakening of the driving ability of positive driving

factor (PD) and the transfer from secondary industry to

tertiary industry.

5. Conclusions

We comprehensively analyzed the spatial-temporal

characteristic of PM2.5 and investigated the factors influencing

PM2.5 concentrations by natural and socioeconomic factors

in China. The results showed that 1) The mean PM2.5

concentrations was 37.55 ± 15.62 µg m−3 during 2015-2019,

the decreasing trend of PM2.5 concentrations was 3.58 µg

m−3 a−1, a decrease of 26.49% in 2019 compared to 2015, The

regions with higher concentrations were mainly distributed in

North China and South China, which were also the regions

with the greatest decline in 5 years. 2) The capability of driving

factors was PD >PCP >TEMP >SI >WS >TI >GDPP >RH,

and the driving capability of socioeconomic factors on PM2.5

was slightly higher than that of natural factors. The strongest

positive and negative driving factors were population density

and precipitation, respectively. 3) North China and Central

China were the two regions with the largest decreases in

PM2.5 in the country from 2015 to 2019. The decrease in PM2.5

concentrations is primarily due to the implementation of a series

of energy-saving and emission-reduction control measures after

the Action Plan, such as clean air action and the adjustment of

industrial structures by secondary and tertiary industries, which

effectively offsets the impact of rising population density on

PM2.5 concentrations.

The analysis above revealed that we should reduce

PM2.5 concentration by improving socio-economic factors

rather than waiting for natural factors to change. The

industrial structure should be actively regulated and gradually

changed from secondary to tertiary industry under the

condition of ensuring stable economic growth, which is

an important measure to ensure the socioeconomic effect

while reducing PM2.5 concentrations. In the future, we

must formulate a reasonable population policy so that

population growth can be adapted to regional development,

especially ecologically sensitive areas. In addition to we

must consider environmental carrying capacity in urban

planning and construction, balance population distribution,

and other factors. Government departments should continue

to develop and implement energy conservation and emission

reduction measures in China, particularly densely populated

areas, achieving win-win between economic development and

environmental management.
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Assessing predictability of
post-monsoon crop residue fires
in Northwestern India

Hiren Jethva1,2*
1Morgan State University, Goddard Earth Sciences Technology and Research (GESTAR) II, Baltimore,
MD, United States, 2NASA Goddard Space Flight Center, Greenbelt, MD, United States

Over the past five decades, the Green Revolution in India has been a great

success resulting in significantly increased crop yields and food grain

productivity. Northwestern India, also known as the country’s breadbasket,

alone produces two-thirds of the wheat and rice grains under the crop rotation

system. Our previous study has shown that the post-monsoon rice crop

production in the Punjab state of India has increased by 25%. The crop

yields produce proportionate amounts of residue, a large part of which is

subjected to burn in the open fields due to the near-absence of a wide-

scale, affordable, and environmentally sustainable removal mechanism. A

significant increase in crop productivity coincides with a 60% increase in

post-harvest crop residue burning during 2002–2016. The study also

demonstrated a robust relationship between satellite measurements of

vegetation index—a proxy for crop amounts, and post-harvest fires—a

precursor of air pollution events, for predicting seasonal agricultural burning.

In this report, the efficacy of the proposed prediction model is assessed by

comparing the forecasted seasonal fire activity against the actual detection of

active fires for the post-monsoon burning seasons of 2017–2021. A simple

linear regressionmodel allows efficient prediction of seasonal fire activity within

an error of up to 10%. In addition to forecasting seasonal fire activity, the linear

regression model offers a practical tool to track and evaluate the effectiveness

of the residue management system intended to reduce fire activities and

resulting air pollution.

KEYWORDS

crop residue fires, NDVI, post-monsoon, Northwestern India, prediction, assessment,
MODIS

1 Introduction

The movement of the Green Revolution in India, initiated in the 1960s, has brought

great success in terms of significantly increased crop yield and productivity, particularly in

staple food grains such as wheat, rice, and other crop varieties. This has been achieved

through technology adaptation, high-yielding seed varieties, mechanized agricultural

machinery, pesticides, fertilizers, expanded acreage, and a dual cropping system (Parayil,

1992; Pingali, 2012). Especially in the heartland of the Green Revolution, the northern

states of Punjab and Haryana have seen amultifold increase in the yield and production of
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wheat and rice under the crop rotation system in the last several

decades (Duxbury, 2001). For instance, the compiled data of crop

production by the Punjab University shows an eleven-fold

increase in rice crop productivity in Punjab, i.e., ~1 million

tons in 1965 to ~11 million tons in 2007. Furthermore, Jethva

et al. (2019), using the crop production data compiled by the

Ministry of Agriculture and Farmers Welfare, Govt. of India, has

shown that rice crop production has increased from ~9 million

tons in 2002 to ~13 million tons in 2016, i.e., a net increase in the

productivity by 25%.

Prior to the mid-1980s, seasonal crop harvesting in

northwestern (NW) India had traditionally been carried out

manually. Since then, the practice of manual harvesting has

been gradually replaced by the advent of automatic combine

harvesters (Singh and Kaskaoutis, 2014). Although mechanized

harvesting has reduced labor, machinery leaves a significant part

of the crop stem rooted in the ground. Increasing labor cost of

manual harvest, the lack of affordable crop residue removal

mechanisms that farmers can bear financially, and a shorter

time window for preparing the land for the next seasonal crop,

are prime reasons behind farmers resorting to burning the

residue in open fields (Badarinath et al., 2006).

Several studies published in recent years, using satellite and

ground observations, have adequately highlighted the impact of

post-monsoon rice straw burning on extreme levels of air

pollution affecting one of the most densely populated regions

of the world, i.e., Indo-Gangetic Plain (IGP) (Kaskaoutis et al.,

2014; Cusworth et al., 2018; Jethva et al., 2018). Using a 15-year-

long record (2002–2016) of NASA’s A-train satellite observations

of thermal anomalies (fires) and aerosols (MODIS, OMI,

CALIOP), Jethva et al. (2018) have shown an increasing trend

in post-monsoon agricultural fires (~617 per year) and aerosol

loading (0.031 and 0.04 per year in aerosol optical depth and UV

aerosol index) in November. Furthermore, an intentional delay

in the rice growing season from May to June enforced by the

Punjab Preservation of Subsoil Water Act 2009 has led to a delay

in crop harvesting, followed by the peak residue burning window

by about 2 weeks (Jethva et al., 2019; Liu et al., 2021).

In a follow-up study by Jethva et al. (2019), a strong positive

trend in fires was attributed to the increased rice crop production

by 25%, supported by a net increase in vegetation index (NDVI)

by 21%. Concurrently, the post-harvest agricultural fire activity

rose by a net ~60%, leading to a nearly 43% increase in aerosol

loading over the IGP region. In addition, the ground-level

particulate matter (PM2.5) downwind over New Delhi also

showed a concurrent upward trend of 60%. An increase in

crop yields implies the generation of proportionate amounts

of residue. The relative ratio, also quantified as residue to crop

production ratio (RCR), varies considerably depending on crop

type, harvesting practice, and environmental factors (Kumar

et al., 2015). Previous studies have estimated RCR values in

the range of 1.5–2.25 for rice crops in northern India (Gupta

et al., 2004; Badarinath et al., 2006). In other words, the amount

of agricultural waste generated post-harvest is estimated to be

1.5 to 2.25 times the actual quantities of the crop. Due to the lack

of affordable and effective removal mechanisms, farmers resort

to burning crop residue in open fields to clear and prepare the

land for the following seasonal crop.

Increasing agricultural fire activities implies greater

availability of crop residue to burn, and the generation of

agricultural waste is proportional to the crop production

amounts reflected in NDVI measurements. Following this

hypothesis, Jethva et al. (2019) showed a reasonably well-

correlated (R2 = 0.70) long-term relationship between NDVI

and seasonally accumulated fire counts over NW India. While

earlier studies have examined different aspects of the crop

burning issue in NW India, the prediction of the totality of

seasonal fire activities wasn’t explored until the work of Jethva

et al. (2019). The NDVI-fires relationship opened up the

possibility of predicting seasonal fire activities in advance by

looking at the regional mean NDVI values prior to the onset of

the burning season.

In this brief report, the predictability of crop residue fires in

NW India, based on the work of Jethva et al. (2019), is assessed

for the post-monsoon crop burning seasons of 2017–2021. The

accuracy of the predicted seasonal fire activity is evaluated by

comparing it to near real-time remote sensing data of thermal

anomalies from the Aqua/MODIS sensor. The method section

briefly describes the satellite datasets and further refinements

applied to the fire counts vs. NDVI relationship. The results

section presents the assessment analysis of predicted seasonal fire

activity against actual near real-time observations of fire

occurrences for the years 2017–2021. Finally, concluding

remarks on the findings and future applications are presented

in the discussion section.

2 Methods

The methodology adopted in Jethva et al. (2019) used the

monthly NDVI dataset (product name MYD13C2) and seasonally

accumulated fire counts derived from Aqua/MODIS (product

name MYD14) for the pre-burning and burning periods,

respectively, over NW India. The selection of the geographical

boundaries of the study region over NW Indian subcontinent

(Longitudes: 74°–77°E, Latitudes: 29°–32°N) was based on the long-

term average of active fire detection fromMODIS sensor on board

Aqua satellite encompassing prominent areas of residue burning in

Punjab and Haryana states of India. A further revision of the

derived relationship revealed that the use of the 16-day NDVI

product (product nameMYD13C1) correlates even better with the

total fire counts detected during the post-monsoon season (see

Figure 1). The 16-day NDVI dataset provides an improved

correlation coefficient and standard fitting error of 0.74 and

1,482, respectively, compared to 0.70 and 1,583 obtained using

the monthly NDVI dataset. Because of the improved correlation
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and lower fitting error, the 16-day NDVI is correlated with fire

counts to assess the accuracy of the proposed linear regression

model. The MYD13C1 dataset consists of cloud-free spatial

composites of 16-day 1-km MYD13A2 data and is available as

a Level 3 product projected on a 0.05 degree (5,600 m) geographic

climate model grid (Didan, K., 2015). The dataset was obtained

from LP DAAC online data holdings at the URL https://e4ftl01.cr.

usgs.gov/MOLA/.

The monthly, area-averaged NDVI dataset used in Jethva

et al. (2019) was scaled by a factor that accounts for interannual

variations in the spatial extent of NDVI measurements over the

crop area. The factor was calculated by normalizing the total

number of NDVI measurements for each year with respect to the

maximum number of pixels detected during a particular year

over the period 2002–2016. In this study, both scaled and non-

scaled (simple area averaged without scaling) 16-day NDVI

datasets are used to compare their relative performance in

predicting seasonal fire counts.

The MODIS Thermal Anomaly/Fire product provides the

geolocation of active fire spots and fire radiative power over land

at a spatial resolution of 1 km2 × 1 km2. Active fire detection is

physically based on the strong emission of mid-infrared radiation

from fires used as a signal in a contextual algorithm (Giglio et al.,

2003, 2016). The Aqua/MODIS Thermal Anomalies/Fire 5-Min

L2 Swath 1-km data MYD14 (Collection 006, Giglio and Justice,

2015), both post-processed (2002–2016) and near-real time

(2017–2021), was obtained from the NASA Fire Information

for Resource Management System (FIRMS) (https://earthdata.

nasa.gov/earth-observation-data/near-real-time/firms). Fire

detection pixels flagged with a confidence value of 30%–80%

and 80%–100% that correspond to the “nominal” and “high”

classes, respectively, were considered in this study.

3 Results

3.1 Rice residue burning season

Figure 1 displays the multiyear (2002–2016) linear regression

relationship between the post-monsoon seasonally accumulated

total fire counts (y-axis) observed during the 2-month long

burning season (October and November) and 16-day NDVI

(x-axis) over the same region for the pre-burning period in

September. The black dots represent values for individual

years, whereas the red dotted line is a derived linear

regression. The results shown here are derived using the

scaled (left) and non-scaled (right) NDVI datasets, as

described in the method section. The colored asterisk symbols

represent observations, not used in the linear regression, in both

parameters for the post-monsoon season of 2017 through 2021.

Overall, both relationships are found to adequately predict the

severity of the residue fire season. However, the differences

between the predicted and actual total fire counts remain,

which are quantified as % difference and tabulated in Table 1.

Though the scaled version of the relationship delivers better

correlation and lower fitting error relative to the non-scaled

FIGURE 1
Multi-year (2002–2016) relationships between the pre-burning season NDVI and the total number of fire counts during post-monsoon crop
burningmonthsderived following scaled (A) and non-scaled (B)methods. See the section Method for the description. Both datasets are derived from
Aqua/MODIS sensor over NW India. Black-filled circles show values for individual years, whereas the red dotted line represents a linear regression, the
statistical measures of which are given on the top-left of each plot. Color-coded asterisk symbols are values observed for the years 2017–2021
not used in the regression.
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version, the % error yield with the latter is found to be lower for

the years 2017 and 2021. Both methods render similar accuracy

in predicting seasonal fires for the years 2018 and 2019. While it

is hard to pinpoint the exact reason behind larger errors

encountered in the prediction during specific years, the

observed spread in the fires-NDVI relationship, thus

associated error in the prediction, could be attributed to

several factors, including inherent uncertainties in the

detection of active fires and derivation of NDVI, cloud cover

affecting sampling of both fires and NDVI, unaccounted fire

activities occurring before and/or after Aqua overpass time, a

saturation of NDVI in dense vegetation canopies, and

variabilities in RCR and percentage of total crop residue burned.

Overall, when averaged over the years 2017–2021, the

mean error (absolute error) produced by the scaled and

non-scaled methods is calculated to be 0.93% (7%) and

0.052% (4%). Regardless of how the NDVI dataset was

used, both methods deliver reasonably a good estimate of

seasonally accumulated fire counts with an error of up to 10%

for 2017–2021.

3.2 Wheat residue burning season

Contrary to the rice residue burning during post-monsoon

(October-November), the total fire activities during the

springtime wheat residue burning season in April-May are

noted to be about four to six times lesser (Jethva et al., 2018).

Significantly lower residue burning post wheat harvest may be

attributed to the usage of residue as fodder and fuel in power

generation. An extension of the fire counts vs. NDVI relationship

to the wheat crop burning season (2002–2020), shown in

Figure 2, reveals no systematic behavior between the two

parameters. The linear regression relationships, both scaled

TABLE 1 Values of Aqua/MODIS NDVI for the pre-burning period (September), predicted and actual fire counts for the post-harvest burning season (October
and November), and difference (%, predicted-actual) between the latter two for NW India for the years 2017–2021.

Year NDVI scaled/non-
scaled

Predicted fire counts scaled/non-
scaled

Actual fire counts Difference (%) scaled/non-
scaled

2017 0.6652/0.6683 14,256/13,220 13,081 8.98/1.06

2018 0.6612/0.6727 14,035/13,526 13,825 1.52/−2.16

2019 0.6851/0.6991 15,239/15,362 14,070 8.94/9.19

2020 0.7091/0.7131 16,626/16,336 16,751 −0.74/−2.47

2021 0.7066/0.7393 16,492/18,159 19,188 −14.05/−5.36

The values derived from both scaled and non-scaled NDVI methods are reported. The % difference numbers printed in bold represent relatively lower error in the prediction between the

two methods.

FIGURE 2
Same as in Figure 1 but for the wheat residue burning season (April-May) over NW India.
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and non-scaled, yield poor correlation (R2 = 0.03) with a large

spread in data for the individual years around linear fit and a

slight negative slope. Since the main focus of the present report is

to assess the predictability of fire activities during post-monsoon,

a detailed analysis of the wheat crop burning is left out in this

report. It demands a separate study involving year-to-year

dynamics of crop yield and production, burning practices, and

residue usage for other purposes (fodder, power generation, etc.).

3.3 Scaling fire detection from MODIS to
VIIRS

Since 2012, the VIIRS sensor onboard the Suomi-NPP

satellite has provided continuity in the global remote sensing

of atmospheric and land parameters, including thermal

anomalies. VIIRS detects active fire locations at 375-m

resolution—a significant improvement in spatial resolution

over MODIS, which provides fire detection at 1-km

resolution. Owing to higher spatial resolution, VIIRS is

expected to detect smaller-scale fires, which MODIS might

miss due to its relatively coarser resolution. The linear

regression model developed by Jethva et al. (2019) is based on

MODIS observations of NDVI and fire counts. Therefore, it is

strictly valid for predicting seasonal fire activity as it would detect

by MODIS at a 1-km nominal resolution.

Such a prediction model has not been developed using

observations from VIIRS. To extend the seasonal fire

prediction to VIIRS, a relationship, as shown in Figure 3,

comparing the total fire activity from both sensors over the

crop residue burning region of NW India is warranted. The

VIIRS thermal anomaly data was accessed from the NASA

FIRMS platform. The seasonal fire counts detected during the

rice (left) and wheat (right) burning seasons from both

sensors over the overlapping period 2012–2021 (black

filled circles) are used to derive a linear regression (red

dotted line). It shows that VIIRS detects about 3.56 (1.47)

times more fire incidences with a positive offset of 18,836

(11,404) than those observed from MODIS for the rice

(wheat) residue burning season. The spread of

observations around the linear fit can be attributed to how

two instruments see the active fires, algorithmic differences,

spatial resolution, and temporal changes in fire occurrences

between the overpass time (typically within 30 min). Such an

empirical relationship comparing fire statistics from two

sensors can be helpful in converting MODIS-based fire

prediction to that from the VIIRS sensor.

4 Discussion

The linear regression model correlating post-monsoon

seasonal fire activities and vegetation index NDVI over NW

India proposed by Jethva et al. (2019), with refinements applied

in this article, offers a practical tool to predict, track, and monitor

the severity of the agricultural fire season in advance about one to

2 weeks prior to the onset of a 2-month long burning season. An

assessment of the predictability of such an empirical model

carried out in this report using the satellite data for the years

2017–2021 shows adequate accuracy of the proposed method, in

FIGURE 3
Relationship comparing post-monsoon (A) and springtime (B) total fire detection from Aqua/MODIS and Suomi-NPP/VIIRS sensors over NW
India(red box inside an inset map). Thermal anomaly data with confidence levels >30% for MODIS and ‘nominal’ and ‘high’ classes for VIIRS are
included. Black filled circles show values for individual years (2012-2021), whereas the red dotted line represents a linear regression the statistical
measures of which are given at the top left.
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which the predicted total fire counts are found to be within 10%

of the satellite-observed, near real-time data.

The concerns and general awareness about the seasonal crop

residue burning and its detrimental impact on air quality and

health in the region have grown in recent years, particularly after

the anomalous, elevated levels of residue burning and resulting

extreme bad air pollution episodes of post-monsoon 2016. With

the growing attention and concern year by year, it is expected that

an effective, economical, and farmer-friendly crop residue

management policy will be implemented in the region to

control and curb seasonal burning activities. Under such a

favorable scenario, the proposed empirical prediction model

discussed in this report will be further helpful in tracking and

monitoring the effectiveness of the residue management policy.

For instance, reduced burning activities as a result of the strict

implementation of such policies would deviate

(underestimation) from the expected seasonal crop fire

statistics under the “as usual” scenario derived from the

proposed linear model. The difference between the two,

beyond the inherent uncertainties in the proposed method,

can be interpreted as a net reduction in fire activities.

Beginning the post-monsoon season of 2017, the prediction

of the total fire activities over NW India was announced and

made available to the authorities, academic and government

institutions in India, and the public in general on social media

(such as Twitter) prior to the onset of seasonal burning. The

Earth Observatory—an outreach platform and a part of the

EOS Project Science Office at NASA Goddard Space Flight

Center has referred to and highlighted the seasonal forecast

values in their story/image of the day articles published around

the peak time of the residue burning (first 2 weeks of

November) almost every year. One such article for the year

2020 can be accessed at the URL https://earthobservatory.nasa.

gov/images/147547/a-busy-season-for-crop-fires-in-

northwestern-india.

The early forecast assumes importance in gauging the

severity of the fire activities, thereby serving as a guideline

for planning and preparedness for better management of

extreme air pollution episodes. Furthermore, the prediction

of the totality of seasonal fires can be useful to gauge the

overall spatiotemporal variations in PM2.5 and aerosol

loading over the source as well as in the downwind region

by assimilating its spatial and temporal distribution over a

two-month long season (based on the patterns observed

during previous years) into the regional modelsfor making

the short-term to even seasonal forecast. The work presented

in the report meets at the intersection of land and atmosphere

disciplines of Earth Science. While increasing crop production

of the staple grain food of wheat and rice secures the nation’s

food demand, agricultural practices and crop residue

management require urgent attention, particularly in NW

India, which is a major contributor to the agricultural

output of the country. Until an effective, economical, and

farmer-friendly crop residue management is in place, it is

expected that farmers, in the wake of no other alternatives, will

continue to follow the traditional burning of crop residues in

open fields for clearing agricultural land.

The extreme episodes of air pollution resulting from the open

field burning of residue in NW India not just affect the source

region but encompasses the length and breadth of the populous

IGP, as evident from ground instrumentation and satellite maps

of aerosol retrievals. The PM2.5 concentration measured at

ground stations in the region during the peak period of

residue burning (i.e., the last week of October and the first

2 weeks of November) often exceeds the 24-h averaged safe

guideline value set by WHO (the standards adopted by the

Central Pollution Control Board of India) by a factor of

10–30 (8–15), leading to a situation of a public health

emergency. Such hazardous level of air pollution is further

enhanced by the wintertime meteorology (i.e., colder

temperatures, temperature inversion, and shallower boundary

layer) coupled with the possible semi-direct effect of smoke

aerosols (Mhawish et al., 2022), resulting in the trapping of

particulate matter near-surface.

Increasing crop fires and proportionately deteriorating air

quality over IGP is a pressing concern. The work presented here

stands as scientific evidence urging the policymakers in India to

implement an effective, economical, and farmer-friendly crop

residue management system towards eliminating the burning

practice, which otherwise may continue to be responsible for the

seasonal, hazardous air pollution in the region, affecting the

health of millions.
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China implemented a one-month lockdown after the 2020 Spring Festival to

prevent the spread of COVID-19. The closure measures provide a rare

opportunity to understand the resulting changes in air pollution levels and to

test the effectiveness of previous environmental protection measures. We used

the time series decomposition method to quantify the air pollution in Lanzhou

during the closure period. The results showed that during the epidemic

lockdown period, although the concentration of SO2 in Lanzhou decreased

substantially, there was a significant increase in the concentration of O3 (by

19.14%), followed by a gradual return to the normal level. Most of the changes

during the COVID-19 lockdown were within the range of fluctuations over the

past five years. The trend of decreasing SO2 and CO in 2020 was less than that

during 2015–2019, and the continuous decline of the PM10 concentration

exceeded expectations. NO2, PM2.5 and O3 maintained the trend of the

previous five years. Our results show that temporary social closure measures

have a limited effect on improving air quality in Lanzhou, and they emphasize

the importance of reducing the O3 concentration in the future.

KEYWORDS

lockdown, Lanzhou, O3, particulate matter, COVID-19

1 Introduction

The outbreak of the Corona Virus Disease 2019 (COVID-19) pandemic in 2020 has

had major impacts on economic activity and human health. To control the spread of

COVID-19, China implemented lockdown policies and urban traffic and industrial

production were strictly limited. Lanzhou, the capital city of Gansu Province,

announced the Level Ⅰ response (shut down commercial activities, restrict travel, and

require people to stay at home) to major public health emergencies on 25th January, two

days after the confirmation of two pneumonia cases with new coronavirus infections in
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the city. Control measures such as self-isolation at home, store

closures, and traffic control were implemented. After 27 days of

these strict control measures, more than 90% of areas in Gansu

Province were designated as being of low-risk of infection, and

the emergency response level for COVID-19 prevention and

control in Gansu Province was reduced to Level Ⅲ on 21st

February.

This short-term lockdown severely restricted the movement

of people and economic activities (He et al., 2020), the economy

was adversely affected, and industrial energy consumption

decreased; especially, there was significant reduction in traffic

volume. Reduced pollution levels during the COVID-19

lockdown have been reported in different countries and

regions worldwide (Chen et al., 2020; Donzelli et al., 2020; Li

et al., 2020; Singh et al., 2020). However, several studies have

pointed out that air quality improvements are notably more

limited than some earlier reports or observational data suggest

(Pei et al., 2020; Shi et al., 2021; Wang et al., 2021). For example,

Wang et al. (2020) reported that the concentrations of NO2 and

particulate matter in Beijing during the period of strictest travel

restrictions (Level Ⅰ control measures) were significantly lower

than before the closure of the city, while Brimblecombe & Lai

(2021) found no obvious decrease in pollutant concentrations in

Beijing during the lockdown, compared to the same period in

2019. Similar differences between the effects of lockdown on

pollutant concentrations among different studies for the same

area were reported for the United Kingdom (Munir et al., 2021).

These findings suggest that evaluating the impact of the COVID-

19 lockdown on air quality is more complicated than initially

reported. Due to differences in research methods, slightly

different results were obtained for the extent of the COVID-

19 impact in the same region. Compared with the sequential

method (comparing the lockdown period with the period before

lockdown), the parallel method is more suitable for this type of

intervention analysis (Munir et al., 2021).

With the implementation of the Air Pollution Prevention

and Control Measures since 2012, the air quality in urban

Lanzhou has improved significantly and the phenomenon of

“Lanzhou Blue” is frequent (Zhao et al., 2018). Nevertheless, the

local government is faced with major challenges in further

improving the air quality. In this context, the strict control

measures implemented during the COVID-19 epidemic

provide the opportunity to observe the relationship between

human activities and environmental quality, which may help

formulate future air pollution control strategies for Lanzhou.

In this study we compared measured pollution data during

the interval of 1st January–30th September 2020 with those for the

previous five years (2015–2019) in Lanzhou. Based on the

changes in the trends of six pollutants (PM2.5, PM10, SO2,

NO2, O3, and CO) from 2015 to 2019, the air pollution level

that would have occurred in 2020 without an epidemic was

reconstructed. The impact of the COVID-19 lockdown on the air

quality in the city is discussed using the difference between the

reconstructed and observed pollutant concentrations. Our results

may help formulate forward-looking intervention policies for

improving the air quality in the city.

2 Materials and methods

To quantify the impact of the COVID-19 lockdown

intervention on the air quality in Lanzhou, we divided the

study interval, from 1st January 2020 to 30th September 2020,

into four periods. P1 (1st–24th January 2020) is pre-lockdown, P2

(25th January–20th February 2020) is the Level Ⅰ response period,
with strict controls on traffic and prohibition on gathering. P3

(21st February–10th May 2020) is the Level Ⅲ response period

with public places opening in an orderly manner, and schools

and living services resuming, P4 (11st May–30th September 2020)

is the relaxation period.

2.1 Study area

Lanzhou, the capital city of Gansu province, is located in the

semi-arid area of Northwest China (102°35′-104°34′E, 35°34′-
37°07′N), in a long and narrow valley. The average altitude of the

valley floor is ~1,500 m. Lanzhou has a temperate continental

climate, with an annual average air temperature of 11.5°C,

relative humidity of 26.8%, wind speed of 1.49 m/s, and an

average annual precipitation of 327 mm (which is

concentrated in the summer months) (Ma et al., 2020).

Lanzhou is located on the sandstorm transport path

originating from the Taklimakan Desert, the Badain Jaran

Desert, and the Hexi Corridor, the dust intrusions from

upstream regions in spring time make Lanzhou one of the

most severely air-polluted cities in China. Lanzhou is also an

important industrial city in Northwest China (Yan et al., 2021),

major industries in the urban area are petrochemical refinery and

manufacturing (Wang et al., 2009).

2.2 Air quality data

Hourly concentrations of particulate matter (PM2.5, PM10),

nitrogen dioxide (NO2), sulfur dioxide (SO2), carbon monoxide

(CO) and 8 h moving average ozone (O3−8h) at four air quality

monitoring stations in Lanzhou City from 2015 to 2020 were

obtained from the China National Environmental Monitoring

Network (http://www.cnemc.cn). Three of the monitoring

stations are in the urban area and one is in a suburban of

Lanzhou. The averages of the four sites is used to represent

the overall pollution situation in Lanzhou. The following quality

control measures were applied to the monitoring data. When the

hourly concentration of PM2.5 exceeded the concentration of

PM10 at the same hour, both the PM2.5 and PM10 for that hour
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were discarded; if more than three consecutive hours had the

same value, the records were discarded; all zero values and

outliers (values exceeding the measurement range of the

instrument) were removed (Liu et al., 2016; Wu and Zhang,

2018). After the application of these criteria, if there were more

than four missing data in a day, the daily average for that day was

recorded as missing.

2.3 Time series decomposition

The level of air pollutants in Lanzhou has shown a clear

downward trend in recent years (Tan et al., 2009; Yin et al., 2020),

and therefore the data needed to be detrended before the effect of

the COVID-19 lockdown could be evaluated by comparing the

concentrations of each pollutant in previous years with that in

2020. Besides the trend of the inter-annual change, seasonal

variations and the Spring Festival effect were also considered.

The non-parametric Mann-Kendall trend test (http://www.

mathworks.com/matlabcentral/fileexchange/authors/23983)

(Burkey, 2006) was used to obtain the trend of the interannual

change for the six pollutants during 2015–2019, and the Theil-

Sen method (Theil, 1992; Sen, 1968) was used to determine the

magnitude (Sen’s slope) of the trend. All the slopes were

calculated in MATLAB using the daily averaged pollutant

concentrations.

The Theil-Sen method has been widely used in long-term

trend analysis (Neeti and Eastman, 2011; Munir et al., 2013). It is

a non-parametric technique for robustly fitting a line to data

while minimizing the influence of outliers. Sen’s slope (Q) is

determined by finding the median of all slopes between pairs of

data points in a time series (i.e., time series of the daily averaged

pollutant concentrations from 2015 to 2019):

Q � median(xi − xj

i − j
) 1< j< i< n

Where xi and xj are daily average concentrations of PM2.5,

PM10, NO2, SO2, CO, or the daily 8-h maximum O3 (O3–8 h) for

day i and j, and n is the number of days in the five years. A

positive Q value represents an increasing trend, while a negative

Q value represents a decreasing trend.

The daily PM2.5 concentrations from 2015 to 2019 were used

to calculate the inter-annual trend (orange line in Figure 1A). The

seasonal variation was calculated after removing the interannual

trend from the daily averaged data (Figure 1B). An average

seasonal variation for 2015–2019 was obtained (red line in

Figure 1B) and further removed from the detrended data to

obtain the residual (similar Figures for other pollutants are

presented in the Supplementary Information, see

Supplementary Figure S1). The graphical fitting process was

performed on the data shown in Figure 1 using locally

weighted scatterplot smoothing (LOWESS) (Cleveland et al.,

FIGURE 1
(A) Time series of daily PM2.5 concentration averaged across all sites in Lanzhou (black) and the trend (orange) calculated using the data for
2015–2019. (B) Seasonal cycle of PM2.5 after removing the inter-annual trend. The data are smoothed using a LOWESS filter (30 days).
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2017). LOWESS smoothing was conducted in Origin

2021 software. The 5-year daily data were processed using the

LOWESS data smoothing algorithm with a 30-day window. After

removing the inter-annual trend (blue line in Figure 1A), the

pollutant concentrations in different years were found to be more

comparable, which facilitated the analysis of the impact of

COVID-19.

Lanzhou announced its lockdown on 25th January 2020,

which is also the first day of the Chinese New Year (CNY) and

the most important festival in China. Therefore, the holiday

effect would potentially cause errors in assessing the impact

of the COVID-19 lockdown. Obvious differences in air

pollutant concentrations during CNY and non-CNY have

been confirmed by many studies (Tan et al., 2009; Shi et al.,

2014; Zhao et al., 2014), and thus proper treatment of the

CNY effect is important when comparing pollutant

concentrations across years (Silver et al., 2020). The date

of the CNY is determined according to the Lunar calendar in

China, and the official Chinese New Year Festival lasts for

seven days. Here, we consider the 7 days prior to and the

7 days after (total of 15 days) the CNY as the period affected

by the Chinese Spring Festival. The 15-day time series after

detrending and deseasonalizing were averaged for each

pollutant to obtain the CNY signal (red line in Figure 2).

The above processing was applied to each pollutant at each

site, using the daily averaged data series during 2015–2019. As

a result, the time series for each pollutant were divided into

four components: inter-annual trends, season variations, fixed

events (i.e., the CNY effect), and noise or residuals. The

patterns of the first three components were used to

reconstruct the daily concentrations of each pollutant at

each site in 2020. The residuals for each pollutant were

used to assess the deviation of each pollutant concentration

due to the COVID-19 lockdown from their expected value in

the absence of COVID-19. In 2020, the most likely source

impacting these residual concentrations was the COVID-19

lockdown, although meteorological contributions cannot be

excluded.

FIGURE 2
Average 2015–2019 detrended and deseasonalized concentrations of six pollutants, PM2.5/PM10 and NO2/SO2 during the Chinese New Year
(CNY). The Spring Festival data for each year are stripped of trend and seasonal cycle.
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3 Results

3.1 Temporal variations of the pollutants

As shown in Figure 3, during the period of 2015–2019, PM2.5,

PM10, SO2 and CO in Lanzhou all show a decreasing trend, while O3

shows a significant increasing trend. There is no obvious trend in

NO2. The inter-annual trends of all pollutants are all significant at

p <0.05. PM2.5 and CO have the strongest negative trend, with a

median trend of −6.81% year−1 or −2.44 μg m−3 year−1 and −8.43%

year−1 or −0.08mg m−3 year−1, respectively. PM10 and SO2 have a

negative trend of −0.55% year−1 or −0.55 μg m−3 year−1 and −5.54%

year−1 or −0.73 μg m−3 year−1, respectively, while O3 has a positive

trend of 1.69% year−1 or 1.53 μg m−3 year−1. NO2 increased slightly

with a median trend of 0.05% year−1 or 0.02 μg m−3 year−1. These

values are comparable to those in Silver et al. (2018), who found that

the annual average PM2.5 concentration of 1,689 monitoring sites in

China decreased by 3.4 μg m−3 year−1 or 7.2% year−1 between

2015 and 2017, and that there was no median trend in annual

mean NO2 concentration (0.0 μg m−3 year−1 or 0.1% year−1). The

increase in O3 concentration and decrease in PM2.5 and SO2 were

also observed in other regions in China in recent years (Fan et al.,

2020; Kuerban et al., 2020). The decreasing trend indicates the

effectiveness of the Air Pollution Prevention and Control

Measures implemented since 2012 in reducing high loading PM2.5

and SO2 therein. For ozone, several studies have reported that

decreases in PM2.5 could increase ozone through decrease in

aerosol sink of hydroperoxy (HO2) radicals and increase of

photolysis rates (Li et al., 2019). For example, a recent study by

Zhao et al. (2021) in Lanzhou noticed an increase of mean ambient

temperature and net radiation at noon during 2017–2019 compared

with 2015–2016, and attributed it partly to large PM2.5 reductions.

Both the increase of mean ambient temperature and net radiation

could increase the production of ozone. The role played by

FIGURE 3
Daily time series for six pollutants (black), decomposed into the trend (orange), seasonal cycle (blue), ChineseNew Year (CNY) effect (green) and
residual (red) components. The data are smoothed using a LOWESS filter.
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meteorological conditions and its interaction with aerosols in ozone

trends in the study area need further investigation.

Although there are fluctuations in some months, the PM2.5,

PM10, SO2, NO2 and CO concentrations during

2015–2019 generally showed high values in winter and spring,

and low values in summer and autumn, which is a combination

effect of both strong emissions of pollutants and relatively stable

atmospheric condition in winter (Ma et al., 2019). The variation

of the O3 concentration, with a peak in summer, is different from

the other pollutants, which is mainly due to the enhanced

photochemical reactions with abundant sunlight and high

temperature in summer (Li et al., 2014; Li et al., 2019).

However, there are still debates on whether anthropogenic

pollution or stratospheric intrusion plays a more dominant

role (Liu et al., 2019; Li et al., 2020).

Figure 3 demonstrates the effect of the Spring Festival on the

concentration of pollutants, which show a generally increasing

trend during the 7 days interval prior to CNY and a decreasing

trend during the 7 days after CNY. PM2.5 peaked on two days

before CNY (-2) and CNY day (0). PM2.5/PM10 was small during

CNY (-2), largely caused by the floating dust event occurred

during 25–26 January 2017 (Sand-dust Weather Almanac, 2017).

A peak in PM2.5/PM10 occurred on the CNY day, when SO2 and

O3–8 h also peaked, which may be related to emissions from

fireworks. The concentrations of the six pollutants were lower

than usual during the 7 days after the CNY; PM2.5 and NO2

decreased by 10.19 μg m−3 and 7.05 μg m−3 respectively. O3

concentrations decreased by 0.59 μg m−3 on average during the

7-day holiday, and a significant fall 3 days before the CNY was

observed before the upward trend, which was contrary to the

change in PM10.

3.2 Residuals analysis

The time-series decomposed components (i.e., the trend,

seasonal cycle and effect of the CNY based on the

2015–2019 time series) were used to reconstruct the time series of

FIGURE 4
Comparison of the observed pollutant concentrations in 2020with those reconstructed using the three components of the inter-annual trends,
seasonal variations and CNY events, based on the data for 2015–2019.
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FIGURE 5
Changes in 7-day moving average residuals of six pollutants for all, urban and rural sites in 2020. P1, pre-lockdown; P2, Level Ⅰ response period;
P3, Level Ⅲ response period; P4, relaxation period.

Frontiers in Earth Science frontiersin.org07

Liu et al. 10.3389/feart.2022.1011536

34

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.1011536


the daily concentrations of each pollutant in 2020 (red lines in

Figure 4). As shown in Figure 4, the reconstructed time series are in

overall good agreement with the observations. The highest

correlation coefficient (0.73) is for CO, while that for NO2 is the

smallest (0.43). This indicates that the changes in the CO

concentration were relatively stable, while NO2 was more variable.

Figure 5 shows the 7-day moving average residuals

(observation minus reconstructed values) of the six pollutant

concentrations in 2020, at different stages of the COVID-19

epidemic. The residuals of the six pollutants fluctuate around

zero. The variation of the residuals are very well correlated at the

urban and suburban sites, except for NO2 and O3–8h during P1,

with the residuals at urban sites being more positive and

generally larger than that at the suburban sites. Reference to

the average residuals for the different periods (Supplementary

Table S1) shows that the pollutant concentrations in Lanzhou did

not decrease as sharply as might have been expected during P2.

During P2 the PM2.5 concentration in Lanzhou increased by

2.48 μg m−3, an increase of 15.86% compared to the reconstructed

value, and a decrease of 3.26 μg m−3 compared to pre-lockdown

(Supplementary Table S1). In Figure 6, we compare the residuals of

different pollutants during the four phases. PM2.5, SO2 and CO show

monotonic changes during the four periods, which indicates that

COVID-19 had a limited effect on the concentrations of the three

pollutants. The residuals of PM2.5 decreased monotonically and that

of CO increased monotonically during the study period, which may

be related to the large seasonal decrease in the background

concentration or a reduction of the inter-annual trend. Although

SO2 showed amonotonic increase during the four stages of the study

period, the concentration of SO2 was lower than the reconstructed

value, except during P4.

PM10 decreased during the COVID-19 lockdown, falling by

23.40% if only the P2 stage, with the strictest controls, is

considered. PM10 decreased by 1.81 μg m−3 compared to pre-

lockdown (Supplementary Table S1). The variation of PM10

differed between urban and suburban areas during the study

period. The PM10 at urban sites during P2 increased by 9.79 μg

m−3, an increase of 14.86%, comparedwith pre-lockdown. PM10 in the

suburban site decreased by 13.56% compared to pre-lockdown.

During the period when the COVID-19 lockdown was relaxed

(P4) and the restrictions were lifted, the concentration of PM10 at

the suburban site rebounded to the reconstructed value, although it

did not reach the expected values.

NO2 was low during the LevelⅢ response period (P3) (-5.91 μg

m−3, -14.65%), while a slight decrease occurred during the strict

lockdown period (P2). The decline during P3 was mainly at the

suburban site. The NO2 in the suburban of Lanzhou decreased by

53.91% compared to the expected values. NO2 decreasedmore during

P3 than during P2, which may be due to the overlap of the CNY and

the epidemic during this period. We removed the New Year effect to

determine the impact of the epidemic, but during CNY, people gather

in families to celebrate the holiday, which is to some extent the same

behavior as the response to the home isolation measures undertaken

to control the epidemic. As a result, the impact of the epidemic may

have been reduced by removing the effect of CNY. Ignoring the CNY

holiday, it can be inferred that the NO2 concentration 14 days after

CNY decreased by 0.48% compared to the 14 days before CNY, and

by 8.63% compared to the reconstructed values during the same

period. During the P3 stage, the difference between urban and

suburban areas indicates that the suburban areas were more

affected by the control measures implemented during the COVID-

19 lockdown than urban areas. In general, for Lanzhou, the COVID-

19 lockdown had a relatively small impact on NO2 concentrations.

Among the pollutants studied, O3 was the most obviously

affected by the COVID-19 lockdown, and the difference in

residuals between the urban and the suburban areas during the

lockdown period was also the largest. During the strict lockdown

(P2), the O3 concentration in Lanzhou increased by 19.14%

compared to the reconstructed value. Both urban and suburban

sites showed an increase during the P2 stage, with the urban areas

increasing more, with an increase of 24.60%. This rise in O3 during

the lockdown period has been widely reported in China and even

globally (Silver et al., 2020; Grange et al., 2021). In particular, during

the Level Ⅲ response (P3), the O3 concentration in Lanzhou

FIGURE 6
Comparison of the 7-day moving average residuals of the six pollutants at different stages of the epidemic. Note: CO is multiplied by ten for
clarity.
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decreased by 19.80% compared to the strict control phrase (P2). Both

urban and suburban sites showed a decrease during P3. The O3

concentration in suburban areas decreased by -11.31 μg m−3 (-7.97%)

comparedwith the reconstructed value during P3, and it decreased by

13.07% compared to P2. The O3 concentration in urban areas

increased by 2.97 μg m−3 (3.54%) compared to the reconstructed

value in P3, but it decreased by 21.06% compared to P2. The analysis

of O3 is complicated by the spatio-temporal heterogeneity of its

production and the nonlinear chemical response to NOX and VOC

emissions (Jin and Halloway, 2015). Due to the influence of

atmospheric chemistry, changes in the NO2 concentration do not

reflect the same relative change inNOX emissions (Keller et al., 2021).

Previous studies have reported that the elevatedO3 during lockdowns

was mainly attributed to the enhanced atmospheric oxidation

capacity in northern China (Le et al., 2020), the North China

emission reduction during lockdown (Zhu et al., 2021). Chemistry

of secondary aerosols and ozone as well as the meteorological

conditions may have contributed positively to the anomalous

enhancement in O3 during the lockdown in Lanzhou, which

merit further investigation.

3.3 Comparison of residuals between
2020 and 2015–2019

Figure 7 compares the 7-daymoving average residuals during the

study period with those of the same period of the previous five years.

In addition to changes related to the inter-annual trend, the seasonal

cycle and the CNY effect, there are complex interactions between

atmospheric chemistry and meteorology. To assess the impact of the

restriction measures after the COVID-19 outbreak, we consider the

change in residuals during the same period of 2015–2019 as the

normal range of fluctuation of the pollutants. A Student t test at the

0.1 significance level revealed a large negative SO2 anomaly and

FIGURE 7
Comparison of the residual concentrations of pollutants in 2020 with those for same period in 2015–2019. The 25th and 75th percentiles of
averaged detrended concentrations for 2015–2019 (blue shading) are shown.
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positive O3 anomaly during the lockdown (P2), with a large positive

CO anomaly and a negative PM10 anomaly during the relaxation

period, compared to the anomalies during the previous five years. A

large positive SO2 anomaly (significant at the 0.25 level) and a negative

NO2 anomaly (significant at the 0.25 level) were also observed during

P4. This indicates that there was a reduction in the trend of decreasing

CO and SO2 in 2020 compared with that during 2015–2019, while

PM10 continued to decrease beyond expectations. This indicates the

effectiveness of air pollution control measures, and it also shows that

air quality management is a long-term process. The PM2.5, NO2 and

O3 residuals maintained the same rate of change as during the

previous five years. The increase in O3 in urban areas during the

strict lockdown period and the decrease in NO2 in suburban areas

during the Level Ⅲ response were significantly beyond expectations

(Supplementary Figure S2).

The impact of the COVID-19 lockdown measures on air quality

was not as great as we expected. A similar conclusion was reached in

other studies, although different methods were used. The results of

Wang et al. (2021) showed that the lockdown temporarily improved

the air quality in China, but the rate of reduction of SO2, NO2, and

COwas very small. Pei et al. (2020) believed that the air quality in the

urban areas of China did not improve overall during the lockdown.

Under the restrictions imposed to reduceCOVID-19 infections, there

were several improvements in air quality, but they were not as

effective as we expected. To further improve the air quality in

Lanzhou City, detailed source-response studies are needed.

4 Conclusion

Time-series decomposition was used to quantify the changes in

air quality in Lanzhou City during the COVID-19 epidemic. During

the epidemic prevention and control period in Lanzhou, only PM10

decreased (by 23.40%) compared with the expected values over the

same period, with a 1.80 μg m−3 decrease compared with that before

the lockdown. The NO2 concentration 14 days after CNY fell by

0.48% compared with that 14 days before, and by 8.63% compared

with the reconstructed value for the same period. The O3 response

depends on the season, time scale, and environment. During the

period of the COVID-19 lockdown, the O3 concentration in Lanzhou

increased by 19.14% compared to the reconstructed value during P2,

and it then decreased by 19.80% during the Level Ⅲ response (P3).

Comparedwith the past five years, the changes during the COVID-19

epidemic were generally within the normal range of fluctuations. The

PM10 concentration in Lanzhou continued to decrease, but there was

a reduction in the rate of decrease in SO2 and CO, while PM2.5, NO2

andO3maintained the same trend as during the previous five years. It

is important to determine the cause of the widespread increase in O3

in future studies. In short, we believe that the COVID-19 lockdown

did indeed reduce the levels of several air pollutants in Lanzhou, but

the temporary social lockdown measures were insufficient to further

improve the atmospheric environment. Atmospheric pollutants

require comprehensive and coordinated mitigation measures,

which highlights the importance of reducing the concentration of

O3 in the future.
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Introduction: The concentrations of particulate and gaseous Polycyclic

Hydrocarbons Carbon (PAHs) were determined in the urban atmosphere of

Delhi in di�erent seasons (winter, summer, and monsoon).

Methodology: The samples were collected using instrument air metric

(particulate phase) and charcoal tube (gaseous phase) and analyzed through

Gas chromatography. The principal component and correlation were used to

identify the sources of particulate and gaseous PAHs during di�erent seasons.

Results and discussion: The mean concentration of the sum of total PAHs

(TPAHs) for particulate and gaseous phases at all the sites were found to

be higher in the winter season (165.14 ± 50.44 ng/m3 and 65.73 ± 16.84

ng/m3) than in the summer season (134.08 ± 35.0 ng/m3 and 43.43 ± 9.59

ng/m3), whereas in the monsoon season the concentration was least (68.15

± 18.25 ng/m3 and 37.63 1 13.62 ng/m3). The principal component analysis

(PCA) results revealed that seasonal variations of PAHs accounted for over

86.9%, 84.5%, and 94.5% for the summer, monsoon, and winter seasons,

respectively. The strong and positive correlation coe�cients were observed

between B(ghi)P and DahA (0.922), B(a)P and IcdP (0.857), and B(a)P and

DahA (0.821), which indicated the common source emissions of PAHs. In

addition to this, the correlation between Nap and Flu, Flu and Flt, B(a)P, and

IcdP showed moderate to high correlation ranging from 0.68 to 0.75 for the

particulate phase PAHs. The carcinogenic health risk values for gaseous and

particulate phase PAHs at all sites were calculated to be 4.53 × 10−6, 2.36 ×
10-5 for children, and 1.22 × 10−5, 6.35 × 10−5 for adults, respectively. The

carcinogenic health risk for current results was found to be relatively higher

than the prescribed standard of the Central Pollution Control Board, India (1.0

× 10−6).

KEYWORDS

PAHs, PCA, correlation, seasonal variation, carcinogenic health risk
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Introduction

In the last few decades, urban air pollution has become

a serious environmental problem, especially in developing

countries, including India (1–4). Widespread industrialization,

rapid urban planning, and a large increase in the number of

vehicles with a high population density have been responsible

for a deterioration in the ambient air quality (5–8). Among air

pollutants, polycyclic aromatic hydrocarbons (PAHs) are among

the most important due to their impact on both health and

climate (9–11).

Polycyclic aromatic hydrocarbons are a group or class of

hydrocarbons with multiple aromatic rings fused in various

configurations that appear to have a universal presence in the

environment and are the first atmospheric pollutants whose

carcinogenic and mutagenic nature has been assessed (12, 13).

Several studies reported that incomplete combustion of fossil

fuels contributed to approximately 60% of the global emission of

PAHs (14–16). The emission of PAHs to the atmosphere comes

from both natural and anthropogenic sources. The emission

of PAHs from natural sources is combustion from forest

fires and volcanic eruptions (17, 18), whereas anthropogenic

sources are due to incomplete combustion of fossil fuels

(coal, wood oil, diesel, and petrol) at high temperatures (12,

19–22). Several studies reported that high concentrations of

PAH were also found in petroleum products, coal tar, crude

oil, creosote, and roofing tar (23–25). The partitioning of

PAHs into a particular gaseous phase is determined by the

molecular weight of the compounds as well as themeteorological

parameters (26).

The principal sources of PAHs are the incomplete

combustion of fuels and other organic substances, which

contribute in the range of 70–90% (27). Many studies

have pointed out that the levels, human exposure, and

composition may vary by geographical area (12, 28).

PAHs are the products of incomplete combustion and

domestic activities, which contribute to ∼ 60% of global

emissions of PAHs into the environment (29). Naturally,

PAHs can be eliminated by hydrolysis, biodegradation,

and photolysis so that the concentration of PAHs in

the environment is always maintained in dynamic

equilibrium (27).

Currently, the widespread distribution of PAHs in the

atmosphere is of great concern to scientists, which has led

to their critical study for proper monitoring of concentration

and release into the environment (30). Bioaccumulation

of PAHs is highly influenced by the particle phases in

the atmosphere and their partitioning between the gaseous

phases (13, 31, 32), and the most dominant forms of

PAHs that exist in the environment are the particulate and

gaseous phases (33). The most common PAHs associated

with particulates were pyrene, phenanthrene, acenaphthylene,

and fluoranthene, which were associated with diesel and

gasoline exhaust particles. PAHs with a low ring structure

exist only in the gaseous form (33–35), while PAHs with a

high ring structure are mainly associated with the particulate

form, which adsorbs on the surface of particles in large

amounts (36).

Several studies reported that PAHs are considered to be

carcinogenic and mutagenic agents (32, 37), even in India with

a high concentration of PAHs with potential exposure risks

(38–40). Moreover, long-term exposure to PAHs may cause

damage to our human cell lines, cardiopulmonary mortality,

and pulmonary tissue damage (14, 29, 41). In addition, a

variation in the health risks caused by PAHs has been seen

among different age groups and different genders. Several

studies showed that the risks of cancer caused by PAHs are ∼
4.83 times higher in adults than those in children through the

inhalation pathway due to their longer exposure time and the

larger body weight (42). In addition, several literature studies

associated PAHs with various diseases, including cardiovascular

diseases, bone marrow diseases, immune system suppression,

liver diseases, reproductive diseases, and cancer (18, 43,

44).

Based on the aforementioned assessment of PAH levels,

especially in the gaseous phase in the urban ambient atmosphere,

fuel consumption from transport (driven by petrol and diesel)

is attributed as a predominant source of PAHs (10). Few

studies in the literature have assessed particulate-phase PAHs,

resulting from the gaseous phase, and their correlation is

limited in the scientific literature. Therefore, this current

study aimed to evaluate the different levels of particulate-

and gaseous-phase PAHs in the urban city of Delhi, with

the following objectives: (a) to compare particulate- and

gaseous-phase PAHs in different seasons, (b) to determine

the source apportionment of PAHs using different statistical

analyses, and (c) to estimate the health risk assessment of

particulate- and gaseous-phase PAHs with exposure to different

age groups.

Methods and materials

Sampling area

In this study, five topographical sites in Delhi were identified

for the study of PAH concentration in ambient air. These

sites included JNU, Mukherjee Nagar, Rohini, Anand Vihar,

and CP. The basis of this selection included land use and

its pattern of coverage, the number of automobiles, the

presence of electricity, and safety. The details of sampling

coordination and meteorological parameters are presented

in Supplementary Tables 1, 2. In total, 96 samples were

collected from each monitoring station for particulate and

gaseous emissions.
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Monitoring of particulate-phase and
gaseous-phase PAHs

For the particulate-phase PAHs, an air sampler (Airmetrics

Minivol) was used for sampling. This device was operated with

a reusable battery, a 24-h backup, and a low consumption rate.

It maintains a 5 L/min flow rate to ensure steady performance

throughout the sampling period of the impactors, which are

fitted at 1.5m above the second floor of household apartments

at every chosen location. The air sampler collected PM2.5 on a

47-mm polytetrafluoroethylene (PTFE) filter sheet (45).

The gaseous phase of PAHs was collected on an absorbent

tube (ORBOTM) with a polyurethane foam (PUF) plug and glass

cassettes with XAD-2 resin. Most scholars claim that this resin

shows greater efficiency in the separation of naphthalene (46).

The fluidity rate of the samples was taken using a rotameter

(accuracy ±1%). Then, the samples were covered with a silver

foil, stored in a very clean screw-capped vial using a Teflon

cap liner, and then placed in refrigerated containers (4◦C
temperature) for further transport.

Ambient air samples through both XAD-2 and the filter were

kept at room temperature to warm them. The resin from the

XAD-2 tubes was placed in 4-ml screw-top vials. The front and

back sections of the XAD-2 resin were placed in different vials

and labeled front and back with a marker. The PTFE filter was

first used to cut the samples into small pieces, and they were

also placed in separate 4-ml screw-top vials. In each vial, 2ml

of methyl chloride was added and shaken for 2min. Laboratory

and field blanks were also extracted in the same way. From

each vial containing XAD resin or filter, 1ml of the extract was

transferred to an autosampler vial for further analysis by gas

chromatography/mass spectrometry (GC/MS). The analysis was

carried out on a Bruker 450GC (gas chromatograph) equipped

with a DB-5 capillary column (30m × 0.25mm × 0.25µm film

thickness). According to the procedures listed by the National

Institute for Occupational Safety Health (NIOSH)Method 5515,

the analysis of PAHs in air samples was performed (47). The

details for the extraction and chemical analysis method are

presented in Supplementary Table 1.

Method validation

Several studies suggested the calculation and validation

methods for PAH concentration, which include various

parameters such as linearity, recovery, precision, limits of

detection (LOD), and limits of qualification (LOQ). In this

study, linearity was estimated through spiked calibration levels,

ranging between 10 and 500 ng/l. To estimate the recovery

accuracy, three spiked blank samples were prepared at different

concentration levels of 25, 50, and 200 ng/l. LOD and LOQ

were calculated according to the sample PAH concentration

at a signal-to-noise ratio of 3–10. The amount of PAHs

in particulate- and gaseous-phase samples was estimated by

interpolating the peak areas of each PAH to the internal standard

peak area in the sample (Supplementary Figures 1, 2).

Principal component analysis

Principal component analysis (PCA) is one of the important

tools that changes a set of observations of possibly linked

variables into a set of values that are not linked. In this study,

PCAwas performed at five differentmonitoring stations inDelhi

to determine the relationship between PAHs and to identify the

causes of ambient air pollution. The PCA process was used to

identify the source contribution based on the variability of the

measured element in a large number of samples. PCA results

indicate which factors can explain the main part of the data

variance (24). PCs are the eigenvectors of a covariance matrix

or a correlation matrix, and each PC extracts a maximal share

of the total variance. A PC with an eigenvalue greater or equal

to 1 is considered statistically significant (48). In this study,

factor loading, the percentage variance, and the cumulative

percentage are explained by each factor and each component for

the data obtained. In addition, the following sources of PAHs

have been incorporated from various literature sources that use

the PCA method to increase the accuracy of emission source

identification (24, 48, 49).

Health risk calculation

In this study, B(a)P is considered as a reference to calculate

the toxicity equivalent factor (TEF) of all PAHs. The toxicity

equivalent concentration (TEQ) of PAH equation broadening

performed for health risk assessment can be calculated as

described below (33, 35, 50):

TEQs =
∑

Ci × TEFi (1)

Here,

Ci = level of PAHs.

TEFi is the amount of toxic equivalence of samples.

Health assessments were carried out in previously published

studies (10, 33).

The incremental lifetime cancer risk (ILCR) was estimated as

the risk of exposure to chemicals suspected to have carcinogenic

effects based on the USEPA standard models (51–53). ILCR

was calculated based on the corresponding lifetime average

daily dose (LADD) of PAHs by considering two different age

groups: children (age 6 years) and adults (age 52 years). LADD

indicates the amount of PAH intake per kilogram of body weight

per day. LADD and ILCR were estimated in Equations 2 and

3, respectively.

LADD (mg kg−1day−1) = (Cs× IR× CF × EF × ED) /

(BW × AT)Cancer risk (ILCR) (2)
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Cancer risk = LADD× CSF (Slope Factor) (3)

where Cs is the total of converted amount of PAHs based on

toxic equivalents of BaP (ng m−3) using the toxic equivalency

factor (TEF) value. IR is the air inhalation rate (m3 day−1) (53),

CF is the unit conversion factor (1 × 10−6 mg kg−1), EF is

the exposure frequency (day year−1), and ED is the exposure

duration (day years−1) (54). ED is the value for children (6

years) and adults (52 years). BW represents body weight (kg)

(53). AT represents the carcinogen averaging time (days) (55),

and CSF represents the inhalation cancer slope factor (3.85mg

kg−1 day−1).

Statistical analyses

Statistical analyses, such as factorial analysis and correlation,

were performed using Statistical Package for the Social Sciences

(SPSS) version 26.0 (SPSS, Inc., Chicago, IL, USA). Factorial

analysis and correlation were performed to identify the

correlated variables in different seasons for both particulate- and

gaseous-phase PAHs in the ambient atmosphere.

Results and discussion

Seasonal variation in particulate- and
gaseous-phase PAHs

In this study, 14 out of the 16 PAHs were identified as

having a higher molecular weight associated with the particulate

phase, while low molecular weight PAHs (acenaphthylene and

acenaphthene) were not detectable in particulate-phase PAHs.

Similarly, 8 out of the 16 PAHs were identified as having a low

molecular weight associated with the gaseous phase, while high

molecular weight PAHs [Chr, B(a)A, B(k)F, B(b)F, B(a)P, IcdP,

DahA, and B(ghi)P] were not detectable in gaseous-phase PAHs.

The amount of total PAHs (TPAHs; particulate and gaseous

phases) in all areas was higher in the winter season (165.14

± 50.44 and 65.73 ± 16.84 ng/m3) than in the summer

season (134.08 ± 35.0 and 43.43 ± 9.59 ng/m3), whereas

in the monsoon season, the concentration was lower (68.15

± 18.25 and 37.63 ± 13.62 ng/m3), as similar results were

obtained in Delhi (India) by Singh et al. (56). A study

conducted in eastern India reported a much higher average

annual PAH concentration, ranging from 797.9 ± 39.1 to

1,015.1 ± 42.7 ng/m3 compared to the present study (57).

Gaseous-phase PAHs showed less significant variation during

the different seasons due to more local sources of origin,

whereas particulate-phase PAHs might be local but could

translocate away from the emission site. Some barometric

factors also played a significant role in controlling the

concentration of PAHs in all areas; at the same time, area-specific

emission sources might have influenced their concentration

in the surrounding atmosphere (10, 58, 59). Several studies

reported a much lower TPAH concentration compared to

the present study, such as 70.4 ng/m3 in Italy (60), 39.5

ng/m3 in La Plata, Argentina (59), and 20.9–65.4 ng/m3 in

Spain (61).

The availability of more PAHs in the sample over

Anand Vihar during the winter was due to the lower

amount of photochemical destruction, the restricted mixing

layer, and the continuous production of the temperature

inversion layer. During the hot season and monsoon, a

higher amount of photochemical destruction and mixture

layers in the atmosphere might result in a lower PAH

concentration in the samples, and also humidity and

precipitation might play an important role during the

monsoon period (10).

In the winter season, particulate-phase TPAHs were found

to be higher as compared to gaseous-phase PAHs in the winter

season. It ranged from 91.99 ± 6.51 (JNU) to 210.94 ±
14.30 ng/m3 (Anand Vihar) for particulate-phase PAHs but

from 41.40 ± 1.19 (JNU) to 82.37 ± 8.0 ng/m3 (Mukherjee

Nagar) for gaseous-phase TPAHs in the winter season. In the

summer season, the amount of particulate-phase TPAHs was

reported to be higher as compared to gaseous-phase PAHs.

It ranged from 74.64 ± 5.03 (JNU) to 163.61 ± 9.17 ng/m3

(Mukherjee Nager) for particulate-phase PAHs but from 30.53

± 1.90 (Anand Vihar) to 57.47 ± 2.51 ng/m3 (Mukherjee

Nagar) for gaseous-phase PAHs. Further, in the monsoon

season, it ranged from 36.34 ± 2.80 (JNU) to 81.70 ± 5.84

ng/m3 (Mukherjee Nager) for particulate-phase PAHs, whereas

it ranged from 17.97 ± 2.25 (JNU) to 52.06 ± 6.51 ng/m3

(Rohini) for gaseous-phase PAHs. The trend of the maximum

concentration of the particulate phase was in the following

order: Mukherjee Nagar > Anand Vihar > CP > Rohini >

JNU during the winter season. Apart from the summer season,

a pattern for the highest amount of the particulate phase was

in the sequence of Rohini > Mukherjee Nagar > Anand Vihar

> CP > JNU and that of gaseous-phase PAHs was in the

sequence of Mukherjee Nagar > CP > JNU > Rohini >

Anand Vihar. The mean TPAHs level at all monitoring stations

has presented for summer, monsoon, and winter seasons in

Figures 1, 2.

The level of particulate-phase PAHs was observed to be

relatively higher at Mukherjee Nagar and Anand Vihar sites

than at the other monitoring sites. The Anand Vihar site is

considered to be an interstate bus terminal, which indicates

higher vehicular emission sources. Additionally, other PAH

emission sources in Delhi certainly had large seasonal variations,

including residential biofuel burning and open burning of

biomasses (62). Excessive traffic during the winter period

due to fog and haze was also responsible for increasing the

atmospheric level of PAHs during winter (63). The recorded

TPAH concentration was low in summer due to photochemical

degradation and dispersion of PAHs in Delhi (64), whereas
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FIGURE 1

Seasonal variation of particulate PAHs at di�erent monitoring stations.

FIGURE 2

Seasonal variation of gaseous PAHs at di�erent monitoring stations.

the highest concentration was observed in the winter season

as a common phenomenon in many urban residential

areas (65).

PCA for annual PAHs

Principal component analysis for annual PAHs was

calculated as a mean value for all seasons during the

sampling period, as presented in Supplementary Tables 3,

4 for particulate- and gaseous-phase PAHs. Annually, for

the particulate phase, six principal components (PCs) were

extracted, while for the gaseous phase, three factors were

extracted at different sites. In this study, a high factor loading

for these PAHs was obtained in PC-1 for particulate-phase

PAHs [B(a)P, B(k)f, B(g,h,i)P, and endo(cd)pyrene]. The present

result indicated that PC-1 (eigenvalues 5.61) of particulate-

phase PAHs represented gasoline sources. A similar result

reported gasoline emission sources for B(a)P, B(k)F, B(g,h,i)P,

and endo(cd)pyrene (66). Another study in east-central India

reported higher PAH rings associated with diesel emission and

coal combustion sources (57). Several researchers suggested

that diesel emissions from vehicles had a high factor loading for

fluorene, phenanthrene, anthracene, and pyrene (67), whereas

Zhao et al. (68) proposed that fluorene and phenanthrene

with a high factor loading of benzo (b & k) fluoranthene

indicated diesel-driven vehicles. Several studies reported

that diesel emissions from road traffic were associated with

low and medium molecular weight (three to four rings)

PAHs (69).
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In this study, a high factor loading for these PAHs has

been obtained in PC-4 for particulate-phase PAHs. Thus, it

was witnessed that PC-4 of particulate-phase PAHs represented

diesel-driven sources. Annual PCA revealed for the gaseous

phase that Nap, Acy, Ace, and Flu were dominant species in the

first factor, which indicated natural sources of emission for all

seasons. The initial factor for most of the total variance (35.0%)

was high loading with B(b)P, B(k)P, B(a)P, IcdP, DahA, and

B(ghi)P for the particulate phase, whereas the gaseous phase

accounted for the total variance (34.4%) with Nap, Acy, Ace,

and Flu. The first factor with B(b)P and B(ghi)P confirmed that

vehicle emission from traffic was one of the significant sources

of the PAHs in all three seasons for the particulate phase (70).

The second factor accounted for 23.17% of the total variance,

where Anth and Pyr were identified. This factor accounted

for natural gas sources (71). It reflected a substantial influence

of low molecular weight PAHs with low rings (three to four

rings PAHs). Several studies reported that high-loading Phe was

associated with either unburned petroleum from vehicles or coal

combustion (72, 73). A study was conducted on the gaseous

phase reported that the first factor accounting for the majority of

the total variance (25%) was highly loaded with BaP and DahA,

while factor 2 was a high-loading factor with Phe and Flt (24).

PCA for seasonal PAHs

Principal component analysis for particulate-phase PAHs

extracted three factors for all seasons (summer, monsoon, and

winter). The seasonal variations of PAHs accounted for more

than 86.9%, 84.5%, and 94.5% for the summer, monsoon, and

winter seasons, respectively, as a similar result in Changsha,

China, was reported for 85.8% and 89.9% of the total data

variance in the summer and autumn samples, respectively, for

the particulate phase (74), while this study accounted for 83.6%,

75.5%, and 82.4% for gaseous phase samples in the three seasons.

It was reported that similar PCA results in Japan accounted for

88.6% of the variance with a high loading of all PAHs, which

indicated traffic emission (49).

In the summer season, for the particulate phase, the first

factor illustrated 71.8% of the total variance, which indicated

the loading of higher molecular weight PAHs, such as B(k)P

B(a)P, DahA, and B(ghi)P. Transport was validated to be a

significant contributor to higher PAHs. The loadings of lighter

PAH (Acy, Ant, and Flu) for the particulate phase and Nap,

Acy, and Flu for the gaseous phase were also higher for this

factor, which accounted for natural gas sources (46). The second

factor accounted for 18.4% of the total variance, with a finding

of loading for Chry PAH as dominant, which may have been

emitted from petrol and CNG vehicles for particulate-phase

PAHs, whereas the gaseous phase accounted for 21.5% of the

total variance and dominant species were Chry and B(a)P, which

may have been emitted due to gasoline emission (75, 76).

During the monsoon season, the first factor demonstrated

51.7% of the total variance, which indicated the loading of

higher PAH [such as DahA, BghiP, and B(a)P] for the particulate

phase and PAHs such as Anth and Phen for the gaseous

phase, respectively (Table 1). This study indicated that diesel

and gasoline emission sources were significant sources (66). The

second factor explained 17.8% and 24.0% of the total variance for

particulate- and gaseous-phase PAHs, respectively, during the

sampling period. The loading of higher PAHs Nap [B(a)P, and

B(k)P] for the particulate phase and Nap, Acy, and Ace for the

gaseous phase were the dominant species attributed to natural

gas sources (24).

During the winter, the first factor accounted for 36.3%

and 26.35% of the total variance for particulate- and gaseous-

phase PAHs, respectively (Table 2). The higher molecular weight

PAHs had reduced the loading concentration for gaseous-phase

and particulate-phase PAHs. This factor was also dominated

by Nap and Ace for gaseous-phase PAHs and Anth, Flt, and

Chr for particulate-phase PAHs, which indicated a natural gas

combustion source (71). The second factor accounted for 31.73%

of the total variance for particulate-phase PAHs, and Phen and

Pyr were dominant, which may have been emitted from diesel

sources. The results obtained from PC-2 demonstrated that the

low molecular weight (Phen) indicated a petrochemical source

(77, 78). For the third factor, high molecular weight PAHs

[B(b)F, B(a)P, and DahA] were dominant components, which

accounted for 26.5% of the total variance for particulate-phase

PAHs. Many researchers suggested that these species originated

from vehicular sources, especially from diesel emissions (20, 79).

Hence, the results of PCA revealed that themajor source of PAHs

was found to be vehicular emissions (diesel and gasoline) as well

as wood burning (biomass burning).

Correlation analysis for PAHs

Pearson’s correlation was used to provide the correlation

coefficients needed for data analysis, with a significant level of

p < 0.05. The correlation of the total particulate- and gaseous-

phase PAHs is presented in Tables 3, 4. A strong significant

positive correlation was observed between B(ghi)P and DahA

(0.92), B(a)P and IcdP (0.85), and B(a)P and DahA (0.821).

The highest molecular weight was linked with particulate-phase

PAHs and was released mainly from vehicular emissions. In

addition to this, the correlation between Nap and Flu, Flu and

Flt, and B(a)P and IcdP showed a moderate to high positive

correlation ranging from 0.68 to 0.75 for particulate-phase

PAHs. For the gaseous phase, a strong and positive correlation

coefficient of 0.678 was observed between Acy and Nap, Nap

and Ace. The lowest molecular weight emission was found in

the gaseous phase as an indicator of petroleum sources (78).

Furthermore, the correlation between Phe and Flu, Phe and

Pyr, and Flu and Ant showed a low-to-moderate correlation
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TABLE 1 Result of factor analysis with varimax rotation for particulate phase PAHs at di�erent seasons.

PAH Summer Monsoon Winter

1 2 3 1 2 3 1 2 3

Nap −0.061 0.799 −0.582 0.720 −0.020 −0.589 −0.44 −0.73 0.25

Acy 0.826 0.396 −0.373 – – – – – –

Ace −0.945 0.306 0.086 – – – – – –

Flu 0.864 −0.270 0.344 0.462 −0.528 – – – –

Phe −0.894 0.297 −0.313 −0.529 0.421 0.572 0.01 0.94 0.21

Ant 0.948 0.316 0.028 0.850 0.216 0.368 0.95 −0.14 −0.24

Flt 0.836 0.546 −0.025 0.484 −0.677 0.244 0.94 −0.16 −0.14

Pyr 0.708 0.590 0.349 −0.789 −0.280 −0.182 −0.45 0.86 −0.10

B(b)A 0.971 −0.050 0.114 −0.170 0.810 −0.086 −0.87 −0.06 0.46

Chry 0.192 0.908 0.366 −0.960 −0.021 −0.238 0.89 0.04 −0.37

B(b)F −0.763 0.482 0.430 0.319 0.807 −0.398 0.02 −0.69 0.70

B(k)F 0.996 −0.038 0.043 −0.286 −0.122 0.825 0.31 −0.94 0.11

B(a)P 0.981 0.050 −0.182 0.917 0.287 0.132 0.07 0.19 0.97

IcdP 0.960 −0.094 −0.263 −0.934 0.190 −0.158 0.38 −0.14 0.88

DahA 0.947 −0.282 −0.142 0.973 0.041 0.107 0.55 0.54 0.59

BghiP 0.972 −0.081 0.201 0.928 0.112 0.121 0.66 0.46 0.57

Initial Eigenvalues 11.500 2.950 1.320 7.25 2.50 2.09 4.72 4.13 3.44

% of variance 71.88 18.47 8.25 51.7 17.83 14.90 36.29 31.74 26.48

Cumulative % 71.88 90.35 98.35 51.77 69.60 84.50 36.29 68.03 94.50

Bold values indicate a strong correlation.

ranging from 0.28 to 0.50 for gaseous-phase PAHs. A weak

correlation of these gaseous-phase PAHs showed negligible

sources of emissions.

Toxicity of PAHs

Emission sources of air pollutants, especially PAHs, play a

significant role in understanding and determining their potential

in environmental and human health assessment. This study

estimated the potential toxicity of human exposure to all selected

sites in Delhi in terms of total TEFs. Total TEQ values at all

sites were calculated to be 38.39 and 0.55 ng/m3 for particulate-

and gaseous-phase PAHs, respectively. The largest contributor

to the total risk of particulate-phase PAHs was estimated to be

D(ahA) (43.66–45.42%), followed by B(a)P (34.62–44.31%) at

all sites, which was similar to the study conducted in Pakistan

for D(ah)A (42.52–80.91%) followed by B(a)P (4.42–35.51%) in

all cities (80). The maximum TEQ value for particulate-phase

PAHS was attributed by D(ahA) at JNU (7.46), Mukherjee Nagar

(20.94), Anand Vihar (18.99), and CP (18.28). Similar TEQ

values at Anand Vihar and CP for particulate-phase PAHs were

highly predominant in traffic areas, which indicated a similar

source of emission driven by diesel- and gasoline-powered

vehicles, whereas Mukherjee Nagar was considered to have a

high population density and local emission sources such as wood

and charcoal burning for cooking contributed to higher PAH

concentrations. The current study focused on evaluating the

health risk assessment in terms of LADD and cancer risk due

to exposure to both particulate-phase and gaseous-phase PAHs.

Average LADD values for children and adults were calculated

as 3.17 × 10−6, 1.65 × 10−6 and 1.18 × 10−6, 6.12 × 10−6

for particulate-phase and gaseous-phase PAHs, respectively. In

the gaseous phase, LADD values were reported to be relatively

higher for adults than for children. The reason could be that

gasoline was a significant source of gaseous-phase PAHs and

adults are usually exposed to these for longer periods. In the

particulate phase, the LADD value was higher for children, as a

major source of particulate-phase PAHs was biomass burning,

including wood burning in outdoor and indoor premises, to

which children were more exposed. JNU observed minimum

LADD values compared to other sites due to less movement of

transport inside the campus. Cancer risk for children and adults

at all sites was estimated for gaseous-phase and particulate-phase

PAHs. The average value for cancer risk for children and adults

were found to be 4.53 × 10−6, 2.36 × 10−5 and 1.22 × 10−5,
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TABLE 2 Result of factor analysis with varimax rotation for gaseous phase PAHs at di�erent seasons.

PAH Summer Monsoon Winter

1 2 3 1 2 3 1 2 3

Nap 0.636 −0.222 0.667 −0.264 0.754 0.380 0.778 0.198 0.424

Acy 0.659 −0.273 0.488 −0.340 0.832 −0.337 0.531 0.681 −0.166

Ace 0.441 −0.133 0.348 −0.178 0.686 −0.133 0.748 0.188 0.246

Flu 0.720 −0.499 −0.187 0.081 0.117 0.960 0.328 0.171 −0.591

Phen 0.585 0.110 −0.695 0.875 0.041 −0.099 0.194 0.583 −0.399

Anth 0.552 −0.148 −0.619 0.910 0.251 −0.081 −0.507 0.514 0.303

Flt −0.179 0.359 0.100 0.772 0.181 0.150 −0.371 0.674 −0.046

Pyr 0.593 0.553 −0.175 0.677 0.281 −0.106 −0.374 0.393 0.670

BaA 0.280 0.789 0.212 – – – −0.124 0.175 −0.013

Chr 0.332 0.815 0.139 – – – −0.700 0.207 −0.332

Initial Eigenvalues 2.77 2.14 1.81 2.87 1.92 1.24 2.63 1.85 1.43

% of variance 27.69 21.45 18.10 35.89 24.01 15.58 26.33 18.53 14.30

Cumulative % 34.17 63.08 79.40 51.77 69.60 84.50 36.29 68.03 94.50

Bold values indicate a strong correlation.

6.35 × 10−5 for particulate-phase and gaseous-phase PAHs,

respectively, which indicated that the values were found to be

much higher than the prescribed standard (1.0× 10−6). Similar

results were reported for children and adults, with 3.5 × 10−5

and 1.17× 10−5 for the hot season and 3.30× 10−5 and 1.10×
10−5, respectively, for the hot and cold seasons (7).

Conclusion

This study analyzed seasonal variations, source

identification, and toxicity of PAHs in urban sites. The

concentration of TPAHs (particulate and gaseous phases)

in all monitoring sites was higher in the winter season

(165.14 ± 50.44 and 65.73 ± 16.84 ng/m3) than in the

summer season (134.08 ± 35.0 and 43.43 ± 9.59 ng/m3),

whereas in the monsoon season, the concentration was

lower (68.15 ± 18.25 and 37.63 ± 13.62 ng/m3). The main

source of PAH emission was manmade sources, including

the burning of wood and stubble burning during the winter

from the neighboring states like Punjab and Haryana. Some

emission sources of PAHs in Delhi certainly had large seasonal

variations, including residential biofuel burning and open

burning of biomass. To identify the source apportionment of

PAHs through statistical tools, this study used PCA analysis

and revealed that natural gas combustion was significantly

attributed to the particulate-phase PAHs during the winter

season, followed by diesel-driven vehicles in the ambient

atmosphere of Delhi. During the summer season, vehicular

emission was a major contributor of particulate-phase PAHs,

followed by gasoline. In the case of the gaseous phase, PAH

dominant species B(a)P and Chry may have been emitted

from gasoline emission. This study can contribute to a better

understanding of the monitoring of both particulate- and

gaseous-phase PAHs in the ambient atmosphere of the

urban area.

The current study focused on evaluating the health risks

in terms of LADD and cancer risk due to exposure to both

particulate- and gaseous-phase PAHs. Average LADD values for

children and adults were calculated to be 3.17 × 10−6, 1.65 ×
10−6 and 1.18 × 10−6, and 6.12 × 10−6 for particulate- and

gaseous-phase PAHs, respectively. The average value of cancer

risk for particulate- and gaseous-phase PAHs were found to be

4.53 × 10−6 and 2.36 × 10−5 for children but 1.22 × 10−5

and 6.35 × 10−5 for men at all monitoring sites, respectively,

which indicated much higher values than the prescribed

standard (1.0 × 10−6) by CPCB. The carcinogenic health risk

for this study was reported to be relatively higher than the

prescribed standard values (1.0 × 10−6). This study confirmed

that the PAH levels in the ambient atmosphere of Delhi

could not be neglected, and this study would be enlightening

among the scientists, researchers, and government to address

the issues along with policy formulation. Furthermore, this

study can enhance policymakers with appropriate scientific

solutions, such as imposing a ban on the burning of steeples,

examining the quality of petroleum (petrol and diesel), and

setting antipollution measures, whereas the issue of health

risk assessment and recognition of factors affecting pollution

is crucial and essential. Further, more comprehensive studies

are required in this area. Thus, the results of this study
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TABLE 3 Correlation of PAH species in the particulate phase PAHs.

Nap Acy Ace Flu Phe Ant Flt Pyr B(a)A Chry B(b)F B(k)F B(a)P IcdP DahA B(ghi)P

Nap 1

Acy 0.598∗∗ 1

Ace 0.041 −0.175 1

Flu 0.688∗∗ 0–0.734∗ 0.210 1

Phe 0.079 0.088 0.010 0.414∗ 1

Ant −0.007 0.532∗∗ 0.328 −0.513∗∗ −0.415∗∗ 1

Flt 0.348∗ 0.305 0.387 0.638∗∗ 0.211 0.174 1

Pyr −0.102 0.050 0.784 −0.039 0.331∗ −0.264 −0.125 1

B(a)A −0.034 −0.322 0.066 −0.056 −0.386∗∗ −0.240 −0.499∗∗ 0.295∗ 1

Chry −0.191 0.510∗∗ 0.838 −0.385∗ 0.196 0.038 −0.013 0.275 −0.079 1

B(b)F 0.029 0.397∗ 0.989
∗ −0.587∗∗ −0.422∗∗ 0.134 −0.484∗∗ 0.107 0.689∗∗ 0.262 1

B(k)F −0.120 0.351 −0.246 −0.512∗∗ 0–0.718∗∗ 0.305∗ −0.155 −0.248 0.450∗∗ 0.215 0.637∗∗ 1

B(a)P −0.233 0.056 −0.466 −0.463∗ −0.552∗∗ 0.078 −0.304∗ 0.310∗ 0.620∗∗ 0.205 0.614∗∗ 0.731∗∗ 1

IcdP −0.241 0.336 −0.751 −0.515∗∗ −0.331∗ 0.026 −0.224 0.259 0.425∗∗ 0.507∗∗ 0.523∗∗ 0.756∗∗ 0.851
∗∗ 1

DahA −0.056 0.351 −0.908 −0.506∗∗ −0.494∗∗ 0.423∗∗ −0.054 0.300∗ 0.289∗ 0.156 0.413∗∗ 0.567∗∗ 0.821
∗∗ 0.638∗∗ 1

B(ghi)P −0.097 0.356 0.598 −0.476∗ −0.473∗∗ 0.495∗∗ −0.035 0.294∗ 0.326∗ 0.153 0.456∗∗ 0.558∗∗ 0.753
∗∗ 0.591∗∗ 0.922

∗∗ 1

∗∗Correlation is significant at the 0.01 level (two-tailed).
∗Correlation is significant at the 0.05 level (two-tailed).

Bold values indicate a strong correlation.
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TABLE 4 Correlation of PAH species in the gaseous phase PAHs.

Nap Acy Ace Flu Phen Anth Flt Pyr BaA Chr

Nap 1

Acy 0.619
∗∗ 1

Ace 0.591
∗∗ 0.481∗∗ 1

Flu 0.196 0.343∗∗ 0.257∗ 1

Phen −0.054 0.048 0.041 0.227 1

Anth −0.057 0.129 −0.132 0.258 0.462∗∗ 1

Flt −0.066 0.076 −0.162 0.078 0.124 0.293∗ 1

Pyr −0.115 −0.165 −0.080 −0.197 0.351∗∗ 0.301∗ −0.015 1

BaA 0.056 −0.011 0.017 −0.032 0.129 0.170 −0.100 0.011 1

Chr −0.407∗∗ −0.186 −0.286 −0.080 0.195 0.007 0.398∗ 0.471∗∗ 0.060 1

∗∗Correlation is significant at the 0.01 level (two-tailed).
∗Correlation is significant at the 0.05 level (two-tailed).

Bold values indicate a strong correlation.

emphasize the need for continuous monitoring of particulate-

and gaseous-phase PAHs in the ambient air of Delhi, whereas

the chances of exposure to the population are high for PAHs,

which cause health risks such as cancer.
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Air pollution is one of the leading causes for global deaths and understanding pollutant

emission sources is key to successful mitigation policies. Air quality data in the urban,

suburban, industrial, and rural areas (UA, SA, IA, and RA) of Jining, Shandong Province

in China, were collected to compare the characteristics and associated health risks.

The average concentrations of PM2.5, PM10, SO2, NO2, and CO show di�erences

of −3.87, −16.67, −19.24, −15.74, and −8.37% between 2017 and 2018. On the

contrary, O3 concentrations increased by 4.50%. The four functional areas exhibited

the same seasonal variations and diurnal patterns in air pollutants, with the highest

exposure excess risks (ERs) resulting from O3. More frequent ER days occurred within

the 25–30◦C, but much larger ERs are found within the 0–5◦C temperature range,

attributed to higher O3 pollution in summer and more severe PM pollution in winter.

The premature deaths attributable to six air pollutants can be calculated in 2017 and

2018, respectively. Investigations on the potential source show that the ER of O3 (r of

0.86) had the tightest association with the total ER. The bivariate polar plots indicated

that the highest health-based air quality index (HAQI) in IA influences the HAQI in

UA and SA by pollution transport, and thus can be regarded as the major pollutant

emission source in Jining. The above results indicate that urgent measures should be

taken to reduce O3 pollution taking into account the characteristics of the prevalent

ozone formation regime, especially in IA in Jining.

KEYWORDS

air pollution, functional regions, health e�ect, potential source, premature mortality

1. Introduction

Air pollution has attracted significant concern worldwide in recent decades, especially in

China due to the highest ranking of death records across the world (1). Many previous studies

have reported that exposure to both ambient and indoor air pollutants has a direct association

with a significantly increased risk of cardiovascular, respiratory, and coronary heart diseases, and

even can induce cancer (2–7). Moreover, numerous studies have demonstrated that no matter

the long-term or short-term exposure, the varied risk and non-accident premature mortality

could be attributed to exposure levels of different air pollutants [i.e., particulate matter with

an aerodynamic diameter <2.5 and 10µm (PM2.5 and PM10), nitrogen dioxide (NO2), sulfur

dioxide (SO2), ozone (O3), carbon monoxide (CO)] in one city or at the national scale (8–18).
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Health impacts from different air pollutants are usually assessed

by epidemiology, toxicology and clinical studies (19, 20). One of the

popularly used approaches is the epidemiological statistics method,

which can be used to calculate the coefficient of the exposure-

response relationship based on the relative mortality risk of air

pollutants (21), thus linking pollutants with health risks. At present,

many health impact assessment studies have investigated the health

risks or premature mortality attributable to a single air pollutant or

adjusted for exposure to other pollutants globally or regionally (22–

27). In China, numerous epidemiological literature concentrated on

the association of single pollutants and population health has been

designed by using various methods, which include time-series, cross-

sectional, panel, case-crossover, cohort and intervention designs (28).

To make an assessment of the short-term health effects of one single

air pollutant, time-series studies coupled with Poisson regression

or Generalized Additive Model (GAM) were conducted to explore

the association of different air pollutants [like NO2 (29), CO (30),

SO2 (31), PM10 (32), PM2.5 (33), and O3 (34)] and daily mortality

in large Chinese cities, including Beijing, Shanghai, Chongqing,

Shenyang, andWuhan (28). Because of the easier conducted research

experiment and clearly interpretable result, single-pollutant air

quality strategies are widely applicable to protect human health for

policy-makers (35). However, the health effect of single-pollutant

should be applied cautiously. Because of the certain correlation

among different air pollutants, identifying the independent effects

of single-pollutant become much more difficult (36). Moreover, the

air that humans breathe at once is multiple pollutants. Therefore,

exploring the joint effect associated with multi-pollutant should be

taken into consideration urgently by scholars.

Currently, three typical approaches, including statistical

regression models, the indicator approach, and the source

identification methods, can be used to quantify the joint health

risk from multi-pollutant (35). Generally, the indicator approach

means that it is to use one pollutant to represent the total exposure to

several pollutants. To evaluate the total health risks and premature

mortalities attributed to different air pollutants (here including

PM2.5, PM10, SO2, NO2, O3, and CO), how to select an appropriate

pollutant or construct a health risk index has become more

significant. Currently, the air quality is characterized by the widely

used Air Quality Index (AQI) system, an index implemented by

the central government (like in the US or China) is determined by

the primary pollutant rather than the overall air condition (37). To

address the inadequacy of the single-pollutant-oriented AQI, the

aggregate AQI (AAQI) (38) and air quality health index (AQHI)

(39) have been developed and applied in practice. In a recent

study, Hu et al. (40) using a novel index referred to as the health

risk-based AQI (HAQI), investigated air quality in six representative

Chinese cities and found that the total days in a given AQI category

(either unhealthy or very unhealthy) were including days in HAQI

categories that were equal or even higher than the respective AQI

category (i.e., very unhealthy or hazardous). Shen et al. (41) applied

the HAQI in 367 cities in China, showing high HAQI to be most

prevalent in the North China Plain region (NCP). Zhou et al. (42)

established the HAQI in 366 cities in China and found organics were

driving PM2.5-formation when PM2.5 is at a lower level of health risk.

Here, we expand on these studies, which focused on atmospheric

pollution at the city level (that is averaged over whole cities), to

investigate multi-pollutant exposure health risks associated with

different functional areas within a city. To this end, we applied the

HAQI calculation to observations obtained from four functional

areas in Jining city. Meanwhile, to identify which functional areas

and air pollutants play the dominant role in Jining, we introduced

the potential source contribution function (PSCF)model in this study

as well. The PSCF is a conditional probability model by coupling

the pollutant with an air mass arriving at the observational site after

having passed through a specific geographical area (43). The PSCF

value is determined by dividing the space up into certain grid cells and

checking the back-trajectory endpoint to see if there was a sampling

day commensurate with the trajectory. The PSCF analysis is widely

applied to identify the potential source of any pollutant, like SO2

(44), NO2 (45), PM2.5 (46), PM10 (47), CO (48), and O3 (48) black

carbon particles (49), or a pollutant-related indicator (e.g., excess risk

in section 2.4) (41).

At last, the results aim at providing a clear understanding of

the regional distribution of health risks and to provide guidance

to policy-makers for effective mitigation policies within Jining’s city

borders. In particular, Jining is located between the Beijing-Tianjin-

Hebei region and the Yangtze River Delta, which is prone to air

pollution under a zonal circulation and stable synoptic conditions

(low wind and high relative humidity) aside from strong emissions of

pollutants, especially in winter and spring. To evaluate the air quality

expected over the 2017–2018 period and the associated feedback on

health risks in four different functional regions in Jining city, this

study aims to: (1) compare the air pollution levels across the four

functional areas; (2) estimate the multi-pollutant exposure health risk

in these functional areas; (3) evaluate all-cause premature mortalities

attributable to all air pollutants, and (4) identify which functional

areas and air pollutants are the major contributors to the health risk

of Jining City.

2. Materials and methods

2.1. Site and data

The study region, Jining (116◦26
′
-116◦44

′
E, 35◦08

′
-35◦32

′
N), is

located in the southwest of Shandong Province in eastern China

(Figure 1A). The air sampling sites (colored stars) andmeteorological

stations (colored triangles) are located in the four different functional

areas identified in Jining. Highways and industrial parks are found

near the industrial (IA) site. For the urban (UA) site in the city

center, the nearby road network is complex, with heavy traffic and

high building density. The suburban (SA) site is located between the

urban and rural areas, and the rural (RA) site is located by a farm and

river and far away from the city center. The surrounding environment

of each air quality sampling site is largely consistent with the

basic characteristics of the functional areas. The meteorological

stations were chosen to be as close as possible to the air pollutant

sampling sites.

The hourly monitoring data of six pollutants and the hourly

meteorological data at each site were obtained from the website

of the Environmental Meteorological Platform of Shandong (http://

10.76.10.119/) and the Jining Meteorological Bureau, respectively.

The meteorology factors include temperature (◦C), wind direction

(WD), and wind speed (WS). Here, WS and WD were used to

explore the potential source region of pollution. The temperature
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FIGURE 1

The location of Jining in Shandong Province (A), and the meteorology and air quality stations (B) in Jining city. Colored stars and triangles represent air

quality sites and meteorological site in four functional areas (Suburban: orange, Urban: red, Rural: green, Industry: blue).

was applied to investigate the impact on air pollutants, especially

for O3. Based on the daily minimum requirement for the validity

of air pollutant concentration data (Chinese Ambient Air Quality

Standard GB 3095-2012) (https://www.mee.gov.cn/ywgz/fgbz/bz/

bzwb/dqhjbh/dqhjzlbz/201203/t20120302_224165.shtml), the daily

and monthly data during 2017 (2018) reported in this study are

valid for 362 (365) days and 12 (12) months, respectively. The other

days in 1 year were deleted due to the sampling data being <20 h

in a day. For the meteorology dataset, all the data used each day

is valid according to China’s Surface Meteorological Observation

Standard (CSMOS) (https://www.cma.gov.cn/zfxxgk/gknr/flfgbz/bz/

202209/t20220921_5099079.html). For precipitation and relative

humidity, we did not explore the impact of the two meteorology

factors on air pollution due to the large number of missing values.

2.2. The calculation method of excess risk
and health-risk based AQI

The relative risk (RR) of each pollutant is expressed by an

exponential-linear function as shown in Eq. 1 (40). Here, βi is

the exposure-response relationship coefficient (which quantifies the

additional health risk per unit increase of an air pollutant) with

values of 0.038, 0.032, 0.081, 0.13, and 0.048% per µg/m3 for PM2.5,

PM10, SO2, NO2, and O3, respectively, and 3.7% per mg/m3 for

CO (50). Ci represents the mass concentration of a pollutant i.

Meanwhile, a baseline concentration Ci,0 is also defined to determine

the minimum risk of each pollutant i, meaning one pollutant has

no health risk when its concentration is below or equal to C0, that

is, RRi = 1. Here, the upper threshold values of Chinese Ambient

Air Quality Standard (CAAQS) 24-h Grade II were regarded as the

Ci,0 (Supplementary Table 1). The excess risk (ER) of pollutant i is

written as in Eq. 2 and the total ER can be calculated by adding up

the ER of each pollutant (Eq. 3). It should be noted that the ER added

up linearly could over-estimate the assessment of total ER if those

pollutants are highly correlated. Therefore, the total ER from six air

pollutants can be regarded as an upper-bound estimation (40).

RRi = exp
[

βi

(

Ci − Ci,0

)]

, Ci > Ci,0 (1)

ERi = RRi − 1 (2)

ERtotal =
n

∑

i=1

ERi =
n

∑

i=1

(RRi − 1). (3)

After calculating the total ER, the combined multi-pollutant

Relative Risk (RR∗) and an equivalent total concentration (Ci
∗) of

pollutant i (40) can be written as:

RR∗ = ERtotal + 1 = exp
[

β
(

C∗ − C0

)]

(4)

Ci
∗ = ln (RR∗)

βi + C0,i.
(5)

Finally, Ci
∗ is substituted for the Ci,m in the AQI calculation to

yield the HAQI (40), where the AQI calculation is as follows:

AQIi =
AQIi,j − AQIi,j−1

(

Ci,j − Ci,j−1

) ×
(

Ci,m − Ci,j−1

)

+ AQIi,j−1, j > 1 (6)

AQIi = AQIi,1
Ci,m

Ci,1
, j = 1 (7)

AQI = max (AQI1,AQI2 . . . ,AQIn) , n = 1, 2, . . . , 6. (8)

where Ci,m is the measured concentration of pollutant i; j is the

health category index; Ci,j is the reference concentration for pollution
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i corresponding to the j-th health category. Accordingly, the HAQI

calculation could be demonstrated as follows:

HAQIi = HAQIi,j−HAQIi,j−1

(Ci,j−Ci,j−1)
×

(

Ci
∗ − Ci,j−1

)

+

HAQIi,j−1, j > 1, (9)

HAQIi = HAQIi,1
Ci

∗

Ci,1
, j = 1 (10)

HAQI = max (HAQI1,HAQI2 . . . ,HAQIn) , n = 1, 2, . . . , 6. (11)

2.3. Daily cause-specific mortality and health
burden assessment

The annual all-cause mortality in Jining was obtained from the

Jining Statistical Yearbooks 2017 and 2018. The daily mortality was

then calculated by the annual mortality rate divided by the number

of days per year. The estimated health burden owing to short-term

exposure to air pollutants can be calculated as follows (51, 52):

M =
n

∑

i

AFi × BM (12)

AFi = (RRi − 1)/RRi (13)

where M (total mortality due to atmospheric pollution), n (total

number of days), BM (daily baseline mortality), AFi (daily

attributable fraction related to short-term exposure of air pollutant i).

2.4. Potential source contribution function
analysis

In this study, back trajectory analyses were performed by

using the Hybrid Single-Particle Lagrangian Integrated Trajectory

HYSPLIT model (Version 4.9) (53). The 72 h back trajectories

arriving at Jining city at a height of 300m were calculated every 3-h

from 2017 to 2018. Based on these back trajectories data, a potential

source contribution function (PSCF) analysis (54) was executed

with ZeFir, an Igor-based (Wavemetrics, USA) package (55). PSCF

analyses are commonly used to investigate the origin of observed

concentrations at a sampling site under a given criterion (here, the

75th percentile value).

PSCFi,j =
mi,j

ni,j
(14)

where ni,j and mi,j are the total count of endpoints and above-

threshold endpoints located in the i, jth air cell, respectively. A

sigmoid weighting function (41) was used to reduce the influence of

large differences between two air cells (see Eq. 15). Three values in

this function are 10, 0.5, 0.1 for a, b, c respectively (41). It is written

as follows:

W = 1

(1+ c)
(

1+ e−a(x−b)
) + c

1+ c
(15)

x = log
(

ni,j + 1
)

/maxlog(ni,j+1) (16)

After calculating the PSCF for each sampling site in one city

individually, the combined PSCF over all the sampling sites in the

city can be calculated by using a multi-site (MS) merging method:

MSi,j =
∑

l m
l
i,j

∑

l n
l
i,j

(17)

where ml and nl values indicate the m and n number counts of the

sampling sites l in Jining.

3. Results and discussion

3.1. Comparison of six pollutants in four
functional areas

Figure 2 shows the annual mean mass concentrations of six

pollutants in Jining during 2017 and 2018 at the city level. PM2.5,

PM10, SO2, NO2, and CO all show lower values in 2018 than in 2017,

indicating decreased emissions between the 2 years with 3.87% (from

57.11 to 54.89 µg/m3), 16.67% (from 107.65 to 89.71 µg/m3), 19.24%

(from 26.27 to 21.21 µg/m3), 15.74% (from 40.97 to 34.52 µg/m3)

and 8.37% (from 10.43 to 9.56 mg/m3), respectively. Conversely, the

mass concentration of O3 was elevated by 4.5% (from 99.26 µg/m3

to 103.72 µg/m3). Elevated O3 mass concentrations and decreased

mass loadings of PM have become a generally observed phenomenon

resulting from pollution control measures, indicating that fewer PM

but more O3 pollution events may also occur in Jining city in the

future. Following many previous studies reports (56–59), this finding

also stresses the key role of controlling O3 pollution through a

series of strategies, such as the reduction of anthropogenic emissions,

adjustment of the temperature, and balanced NOx and VOC control,

for the local government in the future.

The seasonal distributions of the six pollutants averaged over

the 2 years were then compared among four functional areas: UA,

SA, RA, and IA, with the results shown in Figure 3A. Overall, the

mass loading of all pollutants (except for O3) exhibited high (low)

mass concentrations in winter and low (high) mass concentrations

in summer. The seasonal patterns of all the air pollutants’ mass

loadings in Jining are consistent with that in almost all other cities

across China (41, 42). The higher concentrations of the six air

pollutants, except for ozone, in winter, can be explained by enhanced

coal combustion, biomass burning, and unfavorable meteorological

conditions, including low temperature (2.6◦C), and boundary layer

height (395m) in winter (Supplementary Figure 1). The opposite

behavior of the ozone concentrations, with the highest values during

spring/summer is a well-known consequence of photochemistry,

which is most active in these seasons.

After identifying the seasonal patterns of the six air pollutants in

the four functional areas, the differences in the annual mean behavior

(averaged over 2017 and 2018) of the mass loadings of the six air

pollutants among UA, SA, RA, and IA are discussed. For PM (PM10

and PM2.5), the order of mass loading from high to low follows as:

IA (105.00 and 60.37 µg/m3) > RA (103.57 and 57.56 µg/m3) > UA

(98.52 and 54.49 µg/m3) > SA (88.61 and 53.26 µg/m3). With the

contribution of fossil fuel combustion from plenty of power plants

and the emissions from factories in this area, the IA had a higher
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FIGURE 2

The annual mean mass concentrations of six pollutants in Jining during 2017 and 2018 [the unit of CO is mg/m3, CO (*10) means the real CO mass

concentration multiple 10].

FIGURE 3

The seasonal (A) and diurnal (B) distributions of the six pollutants averaged over 2017 and 2018 for each of the functional areas (color-coded).

mass concentration of PM than in the other three areas in all four

seasons (except for the PM10 in summer and fall). The local source

of high mass loading of PM in RA results mainly from residents

cooking and straw burning. The higher PM10 in UA compared to

that in IA in summer and fall might be ascribed to the heavy traffic

emissions and unfavorable pollution dilution conditions due to high

building density. For NO2 and SO2, the mass concentrations in these

areas followed the order of RA (41.02 µg/m3) > UA (36.79 µg/m3)

> IA (36.61 µg/m3) > SA (36.52 µg/m3) and SA (26.74 µg/m3)

> RA (24.92 µg/m3) > UA (23.13 µg/m3) > IA (20.56 µg/m3),
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respectively. The mass concentrations of NO2 and SO2 were the

highest in IA and SA, respectively. For CO, the mass loading was very

similar during spring, summer, and fall. In winter, on the other side,

the concentrations were decreasing following the order of SA (1.53

mg/m3)> IA (1.49 mg/m3)> RA (1.38 mg/m3)>UA (1.23 mg/m3).

The SA and IA sites are located at the edge of the city and nearby

the outside ring of a highway, therefore, higher traffic emissions of

CO might be the main source in SA and IA. At last, for O3, the mass

loading ranked from high to low as: SA (76.61µg/m3) ≈ UA (76.00

µg/m3) > IA (70.49 µg/m3) > RA (62.88 µg/m3). Even though the

average mass loading of O3 in SA was almost equal to that in UA in

all four seasons, the O3 in UA was significantly higher than that in SA

in summer, indicating a phenomenon that O3 pollution has become

an increasing concern for the urban residents in Jining. On the other

hand, O3 in RA was the lowest in all seasons.

Figure 3B illustrates the diurnal pattern of the six standard

pollutants in the four functional areas. The different functional areas

exhibit very similar diurnal cycles for the same pollutant. Overall,

the mass loadings of PM2.5 and NO2 during night-time were stable

but started to drop after 9:00 a.m. After reaching minimum values

around 4:00 p.m., they began to increase until 11:00 p.m. For

PM10, the diurnal pattern is different to PM2.5 and exhibits two

peaks at 3:00 a.m. and 9:00 a.m. and a valley at 4:00 p.m. Overall,

PM and NO2 concentrations during night-time surpass daytime

values and an obvious decrease appears in the afternoon, which

could be interpreted by the strengthened emission (traffic emission,

resident heating, etc.) during night-time and an elevated height of the

planetary boundary layer (PBL) during the afternoon.Meanwhile, the

decreased concentrations of gas pollutants, including SO2 and CO, in

the afternoon also can be explained by the increased height of PBL,

which can dilute those gas pollutants. However, morning peaks (at

9:00 am) of PM, SO2 and CO can be attributed to enhanced fossil fuel

combustion.

3.2. Health risk in four functional areas

In the next step, the average AQI and HAQI values were

calculated over the 2017–2018 time period based on the daily average

values of pollutants (Figure 4). In the four functional areas, the mean

value of AQI and HAQI in 2017–2018 decreases following the order:

IA (AQI: 106.9 ± 47.0, HAQI: 121.3 ± 71.5) > UA (AQI: 103.6 ±
45.2, HAQI: 117.0 ± 68.2) > SA (AQI: 101.5 ± 47.1, HAQI: 112.5 ±
68.0)>RA (AQI: 99.1± 46.1, HAQI: 108.8± 65.0). For all functional

areas, the mean values of HAQI are higher than the AQI value,

which is consistent with the finding of studies concentrated on the

comparison between AQI and HAQI (21, 40, 42). The main reason

for higher HAQI than AQI is that the HAQI reflects comprehensive

health risk rather than the single-pollutant oriented AQI.

It is interesting to also look at the total ERs needed as input to the

HAQI calculation and which were calculated by using Eq. 3. It should

be noted that SO2 and CO concentrations were always below the

threshold concentration and thus the two pollutants had no exposure

health risk to the public people. The total ER in IA (Figure 5) was the

highest with a value of 2.38%, followed by 2.35% in UA, 1.50% in SA,

and 1.20% in RA, respectively. For total ERs in the four functional

areas, ERs of O3 (IA: 0.88%, UA: 1.05%, SA: 0.89%, RA: 0.41%) made

the dominant contribution to total ERs. For the total ER in IA, the

ER of PM2.5 and PM10 made an almost equal contribution (0.71%

and 0.72%) after that of O3, followed by the contribution of NO2

(0.06%). In UA, the other total ER contributors amounted to 0.58%

for PM2.5, 0.68% for PM10, and 0.04% for NO2. In SA, the other three

contributions to the total ER were 0.30% for PM2.5, 0.24% for PM10,

and 0.07% for NO2, respectively. Except for the ER of O3, the ER of

PM2.5, PM10, and NO2 in RAwere 0.29, 0.26, and 0.24%, respectively.

For total ERs in RA, even though the major contributor of O3 is

rather low compared to the other functional areas, the highest ER for

NO2 can offset the contribution fromO3, leading to the not quite low

HAQI in RA.

3.3. Premature mortality attributable to air
pollutants

After evaluating the total ERs from six air pollutants in Jining,

we can further investigate the premature mortality attributable to

different air pollutants. Based on monitoring data of six pollutants

in 2017 and 2018, the all-cause premature mortality by short-

term exposure to air pollution in Jining was calculated here. The

total premature mortality caused by air pollution for the 2 years

was 6,072 and 2,145 for 2017 and 2018, respectively (Table 1).

Specifically, the premature mortalities attributable to NO2, O3, PM10,

and PM2.5 were 912, 1,755, 1,824, 1,581 for 2017 and 175, 666,

593, and 710 for 2018. For the number of premature mortality

attributable to PM2.5 in 2017, it is almost consistent with the death

number of 1,488 in terms of the total population (1.5 million)

(60). PM10 was the dominant contributor to premature deaths in

2017, but its contribution decreased from 30.0% in 2017 to 27.7%

in 2018. The relative contribution of O3 increased from 28.9%

in 2017 to 31.0% in 2018, exceeding the relative contribution of

PM10 in 2018. The changing contributions of PM10 and O3 to

the total premature mortality between 2017 and 2018 are directly

related to the opposed changes in their observed concentrations.

Furthermore, the contribution of NO2 decreased from 15.0% in

2017 to 8.2% in 2018. Note, the health effects of SO2 and CO

are not shown in the table because their concentrations are

always under the threshold values and thus do not contribute to

premature mortality.

Looking into the four functional areas separately, the number

of NO2-driven premature deaths in RA and IA was higher in

2017 than that in 2018, and their relative contributions decreased

from 22.9% and 24.9% in 2017 to 7.2% and 15.8% in 2018,

respectively. Note, the contribution of NO2 to premature death

was much lower and the inter-annual variation was not significant

in the other two regions. Inspection of the contribution of O3

to premature death in UA and SA reveals its significance in

these areas, notably increasing from 43.5 and 40.1% in 2017

to 48.31 and 47.83% in 2018, respectively, and representing the

main factor leading to premature death in UA and SA. In

the other two regions, the contribution of O3 to premature

death was relatively low and the inter-annual variation was

not significant.

The contributions of PM10 and PM2.5 to premature death

in the four regions varied between 2017 and 2018. In RA, the

contribution rates of PM10 and PM2.5 increased from 30.9 and

29.3% in 2017 to 38.2 and 42.8% in 2018, respectively. In SA
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FIGURE 4

The mean AQI and HAQI average over 2017 and 2018 in four functional areas in Jining.

FIGURE 5

The comparison of excess risks (ERs) averaged over 2017 and 2018 attributable to the sum and individual air pollutants among the four functional areas in

Jining.

and IA, the contribution rate of PM10 decreased from 29.6 and

31.7% in 2017 to 19.5 and 23.6% in 2018, while PM2.5 increased

from 28.63 and 19.9% in 2017 to 31.2 and 36.2% in 2018,

respectively. In RA, the trend of PM10 and PM2.5 contributions

to premature death was thus different to that in the other

functional areas.
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TABLE 1 Premature mortality attributable to short-term exposure to di�erent air pollutants and their emission sources in 2017 and 2018, respectively.

Air pollutant 2017 2018

Premature
death

(person)

Urban Contribution (%) Premature
death

(person)

Urban Contribution (%)

Suburban Suburban

Rural Rural

Industry Industry

NO2 912 17 15.0 1.53 175 9 8.2 1.7

22 1.7 16 1.4

392 22.9 34 7.2

481 24.9 127 15.8

O3_8h 1,755 490 28.9 43.5 666 236 31.0 48.3

522 40.1 175 47.8

288 16.8 57 11.8

456 23.6 198 24.5

PM10 1,824 298 30.0 26.4 593 147 27.7 30.1

385 29.6 71 19.5

528 30.9 184 38.2

613 31.7 191 23.6

PM2.5 1,581 322 26.0 28.6 710 97 33.1 19.9

373 28.6 114 31.2

501 29.3 206 42.8

386 19.9 292 36.2

Total 6,072 1,127 100 100 2,145 489 100 100

1,301 100 366 100

1,708 100 482 100

1,936 100 808 100

Bold indicate total numbers, rows beside each total from top to bottom are numbers for UA, SA, RA, and IA.

3.4. Identify the contributions of air
pollutants to health risk

The PSCF analysis (see methods in section 2.4) was used to

identify which functional areas and air pollutants are the major

contributors to the health risk in Jining (Figure 6). To this end, the

total ER in each functional area is first calculated by adding up the

ER of all six pollutants according to Eq. 3, and then the multi-

site merging method (see Eq. 17) was applied for calculating the

multi-site ER for the total (Figure 6A) and PM2.5 (Figure 6B), PM10

(Figure 6C), O3 (Figure 6D), and NO2 (Figure 6E) contributions

in Jining, respectively. In Figure 6, the color scale represents the

possibility of the ER source, while the areas of hot spots covered can

be considered as the Potential Source Areas (PSA) for each pollutant.

The information obtained from this analysis is expected to offer

important information to the local government in Jining on which

air regulation measures to implement to reduce public exposure to

health risks depending on the different functional areas.

For the total ER in Jining, the dominant PSA are mainly located

in the north and central of Shandong Province, including Jining city

itself, and also expand to significant fractions of the southeast of

Henan Province and the Anhui Province, and almost the total area

of Yangtze River Delta (YRD). Besides, there was still a small part of

PSA located in the northwest of Hubei Province and East China Sea

extending from Henan Province and YRD, respectively. The hot spot

areas in the north direction of ER for PM2.5 was larger than that for

PM10, thus ER for PM2.5 was considered as the major contributor

of the total ER in the north direction. In the south direction, the

contribution to the PSA of the total ER is mostly attributable to

O3, followed by that attributable to PM2.5, PM10, and NO2. After

identifying the PSA of the total ER in different directions, we further

calculated the Pearson coefficient (r) and Spearman coefficient (s)

between the PSA for ER of each pollutant and that for the total ER

(Figure 7). From the results of the two coefficients, the ER of O3

(r of 0.86) had the tightest association with the total ER, followed

by that of PM2.5 (r of 0.76), PM10 (r of 0.75), and NO2 (r of

0.42) when just considering the r. The ER of NO2, on the other

hand, was only weakly correlated with the total ER exhibiting the

lowest r of 0.4 and s of 0.42. This finding stress that the local

government in Jining should take urgent ways to reduce O3 pollution

as well as PM in the south direction and north direction of Jining

City, respectively.
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FIGURE 6

The potential source areas (PSA) of the excess risks (ERs) of air pollutants (based on CAAQS standards) in the four functional areas in Jining estimated

based on multi-site emerging method. The color scale represents the possibility of the ER source, while the areas of hot spots covered can be considered

as the PSA for each pollutant (A: Total; B: PM2.5; C: PM10; D: O3; and E: NO2).

3.5. E�ects of meteorological factors on
health risk

Figure 8 shows the bivariate polar plots of HAQI in four

functional areas during 2017 and 2018. In Figure 8, the horizontal

(W–E) and vertical (S–N) axes represent the wind directions, the

length of the radial contours represents the wind speed, and the color

bar scale indicates HAQI values. HAQI varied depending on the wind

speed and wind direction. The layout of Figures 8A–D is displayed

according to the actual geographic location of each functional site

in Jining. For instance, the UA (Figure 8C) and RA (Figure 8D)

sites are located in the west and south of the IA (Figure 8B) site,

respectively. The SA (Figure 8A) site is on the west side of the UA.

When the wind speed was low in IA and RA, the HAQIs were both

higher indicating a local source leading to the high HAQI values. It

also reveals high HAQIs for wind directions from the southeast and

southwest suggesting two potential transport directions in IA. The

RA site also had two potential transport directions in the southwest

and northwest. Conversely, when the windspeed was higher at the

UA and SA sites, the HAQI resulted in higher values, suggesting high

HAQIs at these two sites can be attributed to transport from nearby

pollution sources in the northeast and southeast directions. From the

analysis above, IA has been identified as a likely source for increased

health risk in UA and SA in situations with east wind direction.

Figure 9 illustrates the HAQI variation depending on the

temperature in IA, UA, SA and RA (Figure 5a–d). At each site, the

triangles (HAQI in 2017) and circles (HAQI in 2018) indicate the

distribution of HAQI events in each temperature bin, with the circle

size depending on the ER values and the circle color indicating

the season during which the event occurred. Overall, in all four

functional areas, more ER days (UA: 150, SA: 147, RA: 145, IA: 145)

occurred in the temperature range of 25 to 30◦C (that is primarily

during summer), but higher averaged HAQI (UA: 134.7, SA: 140.28,

RA: 139.66, IA: 149.24) presented in the temperature bin of 0 to 5◦C
(that is mostly during winter). High frequency of Ozone pollution

days led to more ER days in summer, while less PM pollution days

coupled withmore severe pollution levels attributed to higher average

HAQI in winter.

4. Policy implication

To better protect the public’s health in Jining as well as in

the whole of China, the local government should design certain

policies and execute mitigation measures to tackle the threat to

the public’s health. Firstly, the multi-pollutant index should be

considered when policymakers are developing relative regulations.

Air quality standards are generally constructed based on the

summary of the research evidence on the assessment of health impact

attributable to each air pollutant separately. With the emergence

of the multi-pollutant health index’s framework and the increasing

epidemiological evidence of the health effects, the future application

of the multi-pollutant health index will become possible, even

though there are still many uncertainties. Moreover, standards for

multi-species air pollution levels should be built. If the multi-

pollutant-oriented health risk assessment (including their statistical

uncertainty) could be estimated with high reliability, then the air

quality standards could be built on the base of the multi-species air
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FIGURE 7

Distribution of the di�erence between total ER and ER from individual pollutant, and the Pearson coe�cient and Spearman coe�cient between the two

in Jining. The color scale represents the di�erence between the total ER and ER from each air pollutant, the areas of hot spots covered can be considered

as the PSA for each air pollutant (A: PM2.5; B: PM10; C: O3; and D: NO2).

pollution level. For example, this study in Jining city found that PM10

was the dominant contributor to premature mortality but the O3

pollution level increased simultaneously. Thus, it would be better

to define a standard for PM10 that considers the ozone pollution

level. Finally, if the pollution source that leads to health risks for the

humans is identified, the mitigation regulations could be designed

such that it would account for the relative importance of the primary

and secondary pollutants. For example, in Jining city, the ozone

pollution level increased from 2017 to 2018, and control measures

should be taken that yield a more balances control of the levels of

VOC and NOx, which are the precursors of ozone.

5. Conclusion and remarks

In this study, four ambient air sampling sites in different

functional areas, including urban, suburban, industrial, and rural

areas, were selected to explore air pollution characteristics and the

exposure health risk to the public in Jining. The spatiotemporal

distribution, exposure health risks, and potential source areas of

each functional area were compared for 2017 and 2018 in Jining.

Overall, all average air pollutant concentrations in Jining decreased

between 2017 and 2018, except for O3, which showed an increase.

The four functional areas showed the same seasonal and diurnal

patterns among the six criteria air pollutants considered. The mass

concentration of PM and NO2 in IA and RA showed higher

concentrations, respectively. The total premature deaths attributable

to air pollution were 6,072 and 2,145 in 2017 and 2018 respectively,

attributing to the decrease of air pollutants’ concentrations and

reflecting the benefits of controlling air pollution levels to human

health in this region. Local pollutant emissions mainly contributed

to high HAQI values in IA and RA, while high HAQI in UA and

SA may instead be attributed to long-distance pollution transport.

The ER of O3 was with the highest r, reflecting the dominant

contributor to the potential source area for total ER in the south,

while PM was the main contributor to the potential source area
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FIGURE 8

The bivariate polar plots of HAQI in suburban (A), industry (B), urban (C), and rural (D) areas in Jining. The horizontal (W–E) and vertical (S–N) axes in the

bivariate polar plots represent the wind directions, the length of the radial contours represents the wind speed, and the color bar scale indicates HAQI

values.

FIGURE 9

The HAQI variation depends on the temperature in the four functional areas (A: Industry; B: Urban; C: Suburban; D: Rural) in Jining. The triangles (HAQI in

2017) and circles (HAQI in 2018) indicate the distribution of HAQI events in each temperature bin, with the circle size depending on the ER values and the

circle color indicating the season.
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of total ER in the north. Overall, these results highlight that

IA is the main local pollution source and that the most urgent

measures should be taken to reduce O3 pollution and particulate

matter (PM), especially in industrial and urban areas to improve

public health.

Results demonstrated in this study imply that O3 rather than

PM might become the primary threat to the public’s health and

urgent measures should be taken in the IA region in Jining

city. However, it should be noted that this health assessment

includes uncertainties due to various factors such as the ER

calculation, measurement errors, and degree of correction between

pollutants etc. More epidemiologic studies are required in the

future to validate whether or not the HAQI is reliable to represent

the multi-pollutant’s health risk. Simultaneously, more attention

should be paid on how to select the baseline concentration and

ER coefficients since the results are sensitive to these measures

as well.
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Analysis of spatial and temporal
characteristics of carbon emission
e�ciency of pig farming and the
influencing factors in China

Hongpeng Guo, Shi Li, Chulin Pan, Shuang Xu and Qingyong Lei*

College of Biological and Agricultural Engineering, Jilin University, Changchun, China

Pig farming has been a crucial contribution to China’s food security although intestinal

fermentation and its excrement during pig breeding are major sources of greenhouse

gas emissions. In this paper, we measured the carbon emission e�ciency of pig

farming in 30 provinces (autonomous regions and municipalities) from 2010 to 2020

by using the non-expected output Slack-Based Measure (SBM) model and analyzed

the spatial characteristics of the carbon emission e�ciency of pig farming in China.

We also examined and analyzed the factors influencing the carbon emission e�ciency

of pig farming by using the limited dependent variable model (Tobit). The results show

that: the carbon emission e�ciency of pig farming in China shows an M-shaped

upward trend over time by comparing the carbon emission e�ciency longitudinally

during the study period and the carbon emission e�ciency of pig farming shows

a decreasing trend in the east, central and west regions of China by comparing

the carbon emission e�ciency of di�erent regions horizontally. It’s also shown

that regions with low- and extremely-low-e�ciency transfer from the east to the

central and west regions and the central and regions with high-e�ciency transfer

to the east. The regression analysis of the factors influencing the carbon emission

e�ciency of pig breeding shows that the comparative advantage of the pig industry

and transportation accessibility is positively correlated with the carbon emission

e�ciency of pig breeding, whereas the proportion of food resources andmarket scale

is negatively correlated with the carbon emission e�ciency of pig breeding. At the

same time, the production layout index has no significant influence on the carbon

emission e�ciency of pig breeding. The research results provide a theoretical basis for

regional di�erentiation of carbon emissionmanagement from pig farming, optimizing

the layout of the pig industry and reducing environmental pollution.

KEYWORDS

carbon emission e�ciency, SBM model, distribution characteristics of carbon emission

e�ciency, Tobit model, factors a�ecting carbon emission e�ciency

1. Introduction

Carbon emissions from livestock and poultry farming have been one of the most significant

sources of greenhouse gas emissions in China (1). Statistics from the Food and Agriculture

Organization of the United Nations (FAO) show that pigs, cattle, sheep, and poultry account

for 18% of overall greenhouse gas emissions. China is not only a major pig-producing country

but also a major pork-consuming country. In China, both pig rearing and pork consumption

account for half of the world’s total. The pig farming industry pollutes water, air, and soil, making

the rural ecological environment more fragile and limiting the sustainable development of the
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industry (2). The carbon emission from pig farming has become

the second largest type of carbon emission from livestock farming

in China, second only to that from cattle farming. The carbon

emission from pig farming has become one of the major difficulties

in the management of agricultural surface pollution in China

(3). It is very important to get higher profits with lesser carbon

emissions and carbon emission efficiency has been used to measure

this index. By referring to other scholars’ definitions of carbon

emission efficiency (4–6), this paper defines the carbon emission

efficiency of pig breeding as low carbon emission to obtain

maximum benefits in the process of pig breeding with certain

input factors.

Livestock production accounts for a significant share of the

global greenhouse gas (GHG) balance, including carbon dioxide

(CO2), methane (CH4), ammonia (NH3), and nitrous oxide (N2O)

released into the atmosphere (7). There are many calculation

and assessment methods to study carbon emission efficiencies,

such as the stochastic frontier model, regression model, data

envelopment analysis (DEA) method, and unexpected output (Slack-

Based Measure) model (8–11). Most studies have adopted the

unexpected output (Slack-Based Measure) model to calculate carbon

emission efficiency. For example, Zhao et al. (12) used the Slack-

Based Measure (SBM) model to measure the agricultural eco-

efficiency of 31 provinces in China during 2010–2019 and analyzed

the spatial-temporal differences (12). Wang and Du (13) also used

the Slack-Based Measure (SBM) model to measure the carbon

emission efficiency and environmental efficiency of 14 cities in

Hunan Province in China from 2010 to 2016 and analyzed the

spatial differences.

Domestic and foreign scholars have carried out a large number

of studies on the influencing factors of carbon emissions from

pig farming. Due to the differences in the farming environment,

mode of farming as well as fecal waste treatment methods at home

and abroad, the influencing factors of carbon emissions from pig

farming also vary. Some developed countries mainly adopt intelligent

management systems, automatic phased feeding systems, pig farm

environmental monitoring systems, and other modern techniques

to carry out real-time feeding and testing of pig breeding, reducing

carbon emissions through the improvement of technical means (14).

Domestic scholars mainly study the influencing factors of carbon

emissions from animal husbandry, including economic development,

breeding scale, industrial structure, agricultural technical conditions,

education level, scales of the agricultural labor force, urbanization

level, etc., (15–19).

With the current national emphasis on environmental pollution

control, most scholars have measured and evaluated the carbon

emission efficiency of agriculture and animal husbandry in the

context of environmental pollution (20–22). However, scholars have

not studied the carbon emission efficiency of a single industry, and

the relationship between the change in pig industry layout and the

carbon emission efficiency of pig farming and the influencing factors

are still unknown. Based on the above studies, this paper uses the

non-expected output Slack-Based Measure (SBM)model to measure

the carbon emission efficiency of pig breeding in 30 provinces

(autonomous regions and municipalities) in China and combines the

Tobit model to test and analyze its influencing factors. It provides the

government with theoretical references and policy guidance on the

layout of the pig industry and how to improve the carbon emission

efficiency of pig farming to reduce pollution.

TABLE 1 Carbon emission e�ciency measurement index of pig farming.

Category Indicators Metrics

Input elements Capital Investment

Labor input

Pig farming cost

Number of employees in

the pig industry

Output elements Expected output

Non-desired outputs

Pig production value

Carbon emissions from pig

farming

2. Materials and methodology

2.1. Spatial and temporal characteristics of
carbon emission e�ciency of pig farming

2.1.1. Data sources
The data required for this paper were obtained from the

2010–2020 China Statistical Yearbook1 and the China Rural

Statistical Yearbook2, as well as provincial and municipal statistical

yearbooks and statistical bulletins on national economic and social

development. Due to the unavailability of data, Hong Kong, Macau,

Tibet and Taiwan have not been included in the study.

2.1.2. Indicator construction
Through reviewing a large amount of literature, this study

selected pig farming capital, and labor (23) as input indicators, pig

production value (1), and carbon emission (24) as desired output

indicators and non-desired output indicators, respectively (Table 1).

2.1.3. Costs of pig farming
The total costs of pig farming in each province and city were

obtained by calculating the product of the cost per pig farmed and the

annual pig slaughter volume in each province and city by reviewing

the literature and referring to the China Rural Statistical Yearbook3

and the statistical yearbooks of each province and city.

2.1.4. Number of employees in the pig industry
Due to the lack of accurate data on the number of employees in

the pig industry, by reviewing the literature, we refer to the methods

and ideas of Zhang et al. (23) to calculate the amount of investment

in fixed assets and the number of employees in the livestock industry.

The formula for calculating the number of employees in the pig

industry is shown below.

PEtk = XEtk
POV t

k

XOV t
k

(1)

In the formula: PE is the number of employees in the pig industry,

XE is the number of employees in the livestock industry, POV is the

1 “China Statistical Yearbook” (https://data.cnki.net/yearbook/Single/

N2022110021).

2 “China Rural Statistical Yearbook” (https://data.cnki.net/yearbook/Single/

N2021120010).

3 “China Rural Statistical Yearbook” (https://data.cnki.net/yearbook/Single/

N2021120010).
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output value of pigs, XOV is the output value of livestock, k is the

region, and t is the period.

2.1.5. Carbon emissions from pig farming
After reviewing the literature, it is found that the carbon

emissions of pig farming mainly come from methane (CH4)

produced by the intestinal fermentation process of pigs, CH4 (1 t

CH4 = 6.82 carbon), and nitrous oxide (N2O, 1 t = N2O = 81.27 t

carbon) from manure emissions. Referring to the IPCC Greenhouse

Gas Emissions Inventory Guidelines 2019, carbon emissions are

calculated as follows:

C =
1
∑

i=1

Ct
k =

1
∑

i=1

[6.82× λtk × (µi + νi) + 81.27× λtk × ωi] (2)

Where: C is the total carbon emission, Ct
k
is the carbon emission

from pig farming in year t in region k, λt
k
is the average feeding

capacity of pigs in year t in region k [see Equation (4) for the

calculation of the average feeding capacity], µi, vi, ωi are the CH4

and N2O emission coefficients of pigs, and by referring to the IPCC

Guidelines for Greenhouse Gas Emission Inventories 2019, we know

that the emission coefficient of CH4 from enteric fermentation of pigs

(µi) is 1, the emission coefficient of CH4 from manure emissions

from CH4 (vi) is 3.5 and N2 O (ωi) is 0.53, respectively.







λt
k
= φt

k
× ϕt

k
365 γ ≥ 1

λt
k
= τ t

k
+σ t

k
2 γ < 1

(3)

Where: λ is the average stocking, 8 is the average annual growth

cycle, φ is the annual slaughter, γ is the slaughter rate (where the

slaughter rate of pigs and poultry is ≥ 1, and the average annual

growth cycle is 200 d and 55 d, respectively), τ is the stocking at the

end of the previous year, σ is the stocking at the end of the current

year, k is the region, and t is the period.

2.1.6. Non-desired output SBM model
Modern production methods have increased labor productivity,

which not only facilitates the increasing trade and economic activities

between countries, but it also improves people’s living standards

with the privilege of having abundant and cheap industrial products.

At the same time, industrial production inevitably produces large

amounts of pollutants such as wastewater, waste gas, and solid waste,

which are commonly referred to as undesired outputs.

Furthermore, it leads to a series of problems such as haze and

global warming. Therefore, green production methods which reduce

waste have become a crucial goal in every production area. If non-

desired outputs are being considered, we do not want to produce

more industrial waste, no matter what the input is. Therefore, the

most efficient production method in today’s society is the green

production method, producing more desired outputs with fewer

inputs as well as fewer undesired outputs. Tone proposed the

undesired output Slack-Based Measure (SBM) model in 2003. The

model is based on the Slack-Based Measure (SBM) model proposed

by Tone in 2001 (23).

Suppose there are n decision units, each of which contains three

elements: three vectors of inputs X, desired outputs Yg and non-

desired outputs (production emissions such as wastewater, CO2, soot,

etc.) Yb, which can be expressed as

X = [x1, . . . , xn] ∈ Rm×n

Yg =
[

y
g
1, . . . , y

g
n

]

∈ Rs1×n

Yb =
[

yb1, . . . , y
b
n

]

∈ Rs2×n

(4)

Where: X, Yg , Yb > 0, R is the set of real vectors, m, s1, s2
are the number of factors of input, desired output, and non-desired

output, respectively. The SBM model for non-desired outputs can be

expressed as



















ρ
∗ =

1− 1
m

∑m
j

S−i
xi0

1+ 1
s1+s2

(

∑s1
r=1

S
g
r

y
g0
r

+
∑s2

r=1
Sbr

y
b0
r

)

s.t. x0 = Xλ + s−, y
g
0 = Ygλ − sg , yb0 = Ygλ + sb

(5)

In this model ρ∗ is the carbon emission efficiency value, and

s−, sg and sb are the slack amounts of input, desired output, and non-

desired output, respectively. When ρ∗ = 1, the decision unit is valid,

i. e., there is a Pareto optimum; when ρ∗ > 0 ∼< 1, it is in an invalid

state, and the efficiency can be improved by optimizing the input

and output. Efficiency is specifically divided into four levels: very low

efficiency (0 < ρ∗ ≤ 0.3), low efficiency (0.3 < ρ∗ ≤ 0.6), medium

efficiency (0.6 < ρ∗ ≤ 0.9), and high efficiency (ρ∗ > 0.9) (25).

2.1.7. Carbon emission e�ciency values
In this paper, Equations (1)–(5) and Matlab software are used

to measure the carbon emission efficiency values of 30 provinces

(autonomous regions and municipalities) in China from 2010 to

2020, and the results are shown in Table 2.

2.2. Analysis of factors a�ecting carbon
emission e�ciency of pig farming

2.2.1. Data sources
The data required for this paper are obtained from the carbon

emission efficiency values calculated in the previous sections, those

from the China Statistical Yearbook and the China Rural Statistical

Yearbook for 2010–2020, as well as from provincial and municipal

statistical yearbooks and statistical bulletins on national economic

and social development. Due to the lack of availability of data, Hong

Kong, Macau, Tibet and Taiwan have not been included in the study.

2.2.2. Introduction to the Tobit model
The national carbon emission efficiency values from pig farming

obtained from the efficiency evaluation are all >0, which are

truncated data. The Tobit model is a model in which the dependent

variable is continuous but subject to some restrictions on its value.

Therefore, it’s also known as a restricted dependent variable model.

The Tobit model focuses on the analysis of how continuous variables

change under a certain choice of behaviors. The general form of the

model is shown below:

yi = βTXi + εi, i = 1, 2, . . . , n, εi ∼ N
(

0, σ 2
)

{

y∗ ≤ 0, yi = 0

y∗ ≥ 0, yi = y∗
(6)
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TABLE 2 Carbon emission e�ciency values of pig farming in 30 provinces, cities, and autonomous regions nationwide, 2010–2020.

Region 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

Beijing 0.862 0.847 0.905 0.938 0.882 0.776 0.438 0.794 0.953 0.114 1.000

Tianjin 0.413 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Hebei 0.397 0.447 0.408 0.468 0.437 0.470 0.296 0.298 0.465 0.309 0.467

Shanxi 0.414 0.370 0.307 0.304 0.296 0.323 0.240 0.296 0.291 0.214 0.379

Inner

Mongolia

0.398 0.408 0.377 0.439 0.447 0.485 0.279 0.416 0.399 0.417 0.483

Liaoning 0.472 0.701 0.536 0.617 0.534 0.544 0.288 0.315 0.318 0.183 0.129

Jilin 1.000 0.715 0.718 0.650 0.716 0.727 1.000 0.445 0.554 0.274 0.414

Heilongjiang 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.893 1.000 1.000

Shanghai 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.508 1.000

Jiangsu 0.424 0.539 0.537 0.592 0.531 0.545 0.347 0.716 0.844 0.449 0.608

Zhejiang 0.418 0.698 0.635 0.693 0.690 0.839 0.828 1.000 1.000 0.585 0.833

Anhui 0.462 0.458 0.453 0.439 0.429 0.471 0.493 1.000 0.706 0.314 0.747

Fujian 0.522 0.652 0.594 0.633 0.623 0.687 0.476 0.703 0.903 0.516 1.000

Jiangxi 0.346 0.408 0.380 0.415 0.422 0.467 0.196 0.192 0.207 0.218 0.264

Shandong 0.556 0.635 0.582 0.604 0.579 0.657 0.532 0.615 0.677 0.446 0.382

Henan 0.322 0.427 0.411 0.422 0.421 0.448 0.238 0.280 0.479 0.236 0.318

Hubei 1.000 0.553 0.472 0.535 0.563 0.596 0.551 0.577 0.783 0.491 0.679

Hunan 0.315 0.385 0.338 0.370 0.335 0.383 0.246 0.283 0.376 0.360 0.591

Guangdong 0.340 0.410 0.410 0.443 0.431 0.449 0.215 0.418 0.467 0.329 0.373

Guangxi 0.309 0.317 0.348 0.330 0.308 0.343 0.213 0.436 0.360 0.259 0.189

Hainan 0.492 0.736 0.680 0.673 0.630 0.788 0.766 0.998 0.984 1.000 0.780

Chongqing 0.188 0.199 0.237 0.271 0.239 0.238 0.166 0.178 0.206 0.214 0.412

Sichuan 0.332 0.357 0.333 0.370 0.353 0.460 0.200 0.227 0.266 0.324 0.432

Guizhou 0.184 0.189 0.191 0.220 0.254 0.377 0.550 1.000 1.000 0.506 0.386

Yunnan 0.241 0.266 0.303 0.369 0.322 0.352 0.417 0.430 0.504 0.257 0.370

Shaanxi 1.000 0.615 0.602 0.639 0.584 0.649 1.000 0.819 0.787 0.457 0.570

Gansu 0.288 0.261 0.241 0.266 0.273 0.306 0.229 0.226 0.282 0.197 0.198

Qinghai 0.231 0.285 0.261 0.303 0.294 0.256 0.204 0.344 0.441 0.250 0.209

Ningxia 0.283 0.293 0.328 0.342 0.325 0.335 0.377 0.327 0.414 0.241 0.328

Xinjiang 0.515 0.578 0.346 0.493 0.647 0.806 0.590 0.478 0.750 0.524 0.847

In Equation (6), yi is the explained variable, Xi is the explanatory

variable, βT is the parameter vector, and εi denotes the random

error term of the model equation that follows a normal distribution.

Tobit model is an intercept regression model, where the explanatory

variable Xi takes actual observations and the explained variable yi
takes values in a restricted manner: when y∗ ≥ 0, yi takes actual

observations, and when y∗ ≤ 0, yi takes values of 0.

2.2.3. Selection of indicators
For pig farming, the change of various influencing factors triggers

the change of production layout through the change of the number

of pigs in each region, which will lead to the change in the carbon

emission efficiency of pig breeding in each region. Microscopically,

the change in pig farming layout in China is formed by the change

in the scale of the feeding of many pig farmers. At the same time,

the change in pig farming layout will also lead to the industrial shift

of pig farming and thus the change in carbon emission efficiency in

each region. Therefore, any change of factors leading to the change

of pig farmers’ feeding scale will become a factor affecting the change

of pig farming layout in China. The formation of the regional layout

of pigs is the product of natural, economic, and social interaction at a

certain stage of development. According to the theory of agricultural

regional factor formation developed based on location theory, there

are many factors affecting the carbon emission efficiency of pig

farming. This study selects the carbon emission efficiency of pig

farming as the dependent variable and, by referring to the research

results of other scholars, we select the proportion of grain resources
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(26), production layout index (27), market size (26), transportation

accessibility (28) and comparative advantage of pig industry (2) as

independent variables. Hence we construct the model as below:

PEtk = αt
k + β1LS

t
k + β2PLI

t
k + β3SG

t
k + β4BS

t
k + β5JT

t
k + εtk (7)

Where: PE is the carbon emission efficiency generated by pig

farming, LS is the share of food resources, PLI is the production

layout index, SG is the market size, BS is thcomparativedvantage,

JT is the transportation accessibility, β1 ∼ β5 are the estimation

coefficients, ε is the disturbance term, k is the region, and t is

the period.

2.2.4. Interpretation of indicators
2.2.4.1. Share of food resources

Grain, as the main type of feed for pigs, has an important impact

on pig farming. The amount of grain production directly determines

whether farmers have enough grain to convert into feed grain for

pig farming in addition to their subsistence needs. Hence, it has an

impact on the behavioral choice of whether to engage in pig farming.

Generally speaking, farmers who have resources of grain to convert

into feed grain will continue or expand pig farming scale, whereas

farmers who do not have grain to convert into feed grain will face two

choices of either withdrawing from production or purchasing feed

grain. The latter option translates to increased breeding costs (29).

Therefore, the abundance or scarcity of grain resources, especially

corn and soybean resources, directly affects the pig farming scale

of farmers.

2.2.4.2. Production layout index

The production layout index can better reflect the regional

distribution and scale of pig farming, and the regional distribution

and scale of pig farming affect the change of carbon emission

efficiency in each region. In this paper, the production layout index

is measured by the proportion of pig farming in each region to the

national pig farming in that specific year (27).

2.2.4.3. Market size

Supply and demand theory suggests that an increase in demand

leads to an increase in supply, which in turn makes the equilibrium

quantity rise and demand is the most direct factor affecting the

change in supply. The market size has an important impact on the

distribution of live pig farming (27). The larger the market size is, the

more people will consume pigs and the more pigs are being kept in

the nearby area. The increase in the number of pigs kept will also have

an impact on the carbon emission efficiency of the area.

2.2.4.4. Comparative advantage of the pig industry

If pig farming in each region has obvious advantages over

agriculture, it will push more farmers and enterprises to enter the

pig-producing industry. that the reality is that major agricultural

and animal husbandry enterprises are entering the pig industry and

expanding their production capacity drastically. The more obvious

the comparative advantage of pig breeding, the greater the potential

and space for pig farming (30). The greater the pig farming potential

and space, the more likely other regions will have a large pig farming

potential and space for transfer, and the carbon emission efficiency

will change accordingly.

2.2.4.5. Transportation accessibility

The distance between the place of consumption and the origin

of pigs determines the source of pork in that individual market.

Without considering the differences in pork quality, transportation

costs become the most substantial cost factor when the differences

in pig farming costs between regions are small. In addition to the

distance from the market, the transportation cost is largely related

to the transportation systems and conditions of the region. The more

developed the transportation systems and conditions are, the easier

it is for pig farming to form a scale, which generates more carbon

emissions, and, as a consequence, the carbon emission efficiency will

change (26).

2.2.5. Variable description
To interpret the model variable data more effectively, this study

provides descriptive statistics on the variables and explains the

measures of the independent variables in Table 3.

3. Results

3.1. Spatial and temporal characteristics of
carbon emission e�ciency of pig farming

3.1.1. Analysis of time-series characteristics of
carbon emission e�ciency of pig farming in China

Due to the vast geographic landscape of China, there are

obvious differences in resource endowment and support policies

in pig farming across the country. To analyze the spatial and

temporal differences in the carbon emission efficiency of pig farming

in different regions, the 30 provinces (autonomous regions and

municipalities) in China were divided into three major regions,

eastern, central, and western regions for analysis, as shown in

Figure 1.

To better analyze the differences and trends of carbon emission

efficiency of pig farming in different regions from 2010 to 2020,

the average values of carbon emission efficiency in the eastern

region, central region, western region, and the whole country were

calculated. The results are shown in Table 4. A line graph was also

drawn, which is shown in Figure 2.

Looking into three different regions, the carbon emission

efficiency value of pig farming shows a trend of “East > Central >

West.” The efficiency value of the eastern region increased from 0.536

in 2010 to 0.688 in 2020, with an increase of 28.4% realizing the

transformation from a low to medium efficiency zone. The carbon

emission efficiency value of the central region decreased from 0.607 in

2010 to 0.549 in 2020, with a decline of 10% changing from amedium

to a low-efficiency zone. Carbon emission efficiency in the western

region, on the other hand, increased from 0.361 in 2010 to 0.402 in

2020, with an increase of 11.4%. It remains in the low-efficiency zone.

From 2010 to 2020, the carbon emission efficiency of pig farming

in China generally showed an M-shaped upward fluctuating trend.

Although the nationwide carbon emission efficiency was still at a

low-efficiency level in 2020, the carbon emission efficiency value has

increased from 0.491 to 0.549. The value was close to the medium

efficiency level, indicating that the ratio of input to output is more

harmonious, which improves the carbon emission efficiency. From

2010 to 2014, the carbon emission efficiency of pig farming in China
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TABLE 3 Descriptive statistics of variables.

Variables Observed
values

Average
value

Standard
deviation

Minimum
value

Maximum
value

Metrics

PE 330 0.5200 0.25600 0.11400 1.00000 Carbon efficiency of pig farming

LS 330 0.33200 0.02800 0.00434 0.11410 Grain production by region/total national grain

for the year

PLI 330 2.05100 3.22800 0.00033 18.6868 Pig slaughter volume by region/national pig

slaughter volume of the year

SG 330 0.33200 0.02000 0.00420 0.08940 Total population by region/year-end national

population of the same period

BS 330 0.38300 0.16100 0.02850 0.75670 Output value of pig industry by region/total

output value of livestock industry

JT 330 0.96200 0.51500 0.08900 2.23400 Total road and rail mileage by region/land area

FIGURE 1

Spatial characteristics of the three major regions in China.

showed a relatively steady change and fluctuated up and down around

0.5. The first high and first low-value points of “M” appeared in 2015

and 2016 respectively but the difference between the high and low-

value points of efficiency was not significant. From 2016 to 2018,

the carbon emission efficiency of Chinese pig farming showed a

significant upward trend and reached a medium efficiency level in

2018. The efficiency value dropped deeply in 2019 followed by a

rebound in 2020, probably due to the downward adjustment of inputs

and outputs caused by the epidemic.

The carbon emission efficiency values of the three regions from

2010 to 2020 were generally consistent with the national trend.

The carbon emission efficiency values of the eastern region were

at the medium efficiency level in all years except for 2010 and

2019 when they were at a low-efficiency level. The central region

only reached a medium efficiency level in 2010 with all the other

years at a low-efficiency level. The carbon emission efficiency of

the western region was at a low-efficiency level during the period

of study.

3.1.2. Spatial characteristics analysis of carbon
emission e�ciency of pig farming in China

According to the carbon emission efficiency values of pig farming

in China from 2010 to 2020, ArcGIS was used to draw the spatial

distribution of carbon emission efficiency of pig farming in 30

provinces (autonomous regions and municipalities) nationwide, as

shown in Figures 3A–D.

In 2010, Shanghai and Beijing in the eastern region were in

the high and medium-efficiency zones respectively, while all other

cities were in the low-efficiency zone. In the central region, Jilin,
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TABLE 4 The average value of carbon emission e�ciency of pig farming in China, 2010–2020.

Region 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

Eastern region 0.536 0.697 0.663 0.696 0.667 0.705 0.563 0.714 0.783 0.495 0.688

Central region 0.607 0.539 0.510 0.517 0.523 0.552 0.495 0.509 0.536 0.388 0.549

Western

region

0.361 0.342 0.324 0.367 0.368 0.419 0.384 0.444 0.492 0.331 0.402

Nationwide 0.491 0.525 0.498 0.528 0.519 0.559 0.479 0.560 0.610 0.406 0.546

FIGURE 2

The trend of carbon emission e�ciency of pig farming in China, 2010–2020.

Heilongjiang, and Hubei were in the high-efficiency zone, while other

cities were in the low-efficiency zone. In the western region, no

city was in the medium-efficiency zone, with only Inner Mongolia,

Xinjiang, Sichuan, and Shaanxi in the low-efficiency zone. All the

other cities in the region were in a very low-efficiency zone. In 2014,

the number of provinces in medium-efficiency zones increased from

1 to 5, and Xinjiang, Zhejiang, Fujian, and Hainan underwent a shift

from low-efficiency zone to medium-efficiency zone. In the eastern

region, the number of high-efficiency zones increased by one and the

carbon emission efficiency of Tianjin went from a low-efficiency zone

to a high-efficiency zone. The number of medium-efficiency zones

also increased by four provinces, whereas the others were still located

in the low-efficiency zones. In the central region, only Heilongjiang

remained in the high-efficiency zone while other provinces were still

in the low-efficiency zone. Jilin in the central region changed from

the high-efficiency zone to the medium-efficiency zone and Hubei in

the central region also changed from the high-efficiency zone to the

low-efficiency zone.

From 2014 to 2017, the number of provinces in the medium

efficiency zone increased from 5 to 6, while the number of provinces

in the very low-efficiency zone increased from 6 to 9. Most of

them were in the central and western regions, such as Sichuan,

Hunan, Jiangxi, Henan, etc. In the eastern region, except for Hebei,

Liaoning, and Guangdong which were in the very low-efficiency and

low-efficiency zones, the remaining provinces were located in the

medium and high-efficiency zones. It’s also worth mentioning that

the number of provinces in the high-efficiency zone reached five,

so the efficiency of the eastern region has been improving faster.

Sichuan, Hunan, Jiangxi, and Henan in the central region changed

from low-efficiency areas to very low-efficiency areas in 2014, while

Anhui province in the central region evolved from low-efficiency

areas to high-efficiency areas. In 2020, the eastern region still has the

highest number of provinces with high efficiency, while the central

region has no province in high-efficiency areas. In the central region,

there were two provinces, Anhui and Hubei in medium-efficiency

areas and only Jiangxi with a very low-efficiency. Although the carbon

emission efficiency of the western region was not as high as that of the

eastern and central regions, the overall carbon emission efficiency has

improved. For example, Xinjiang has changed from a low-efficiency

area to a high-efficiency area, while Sichuan and Chongqing have

changed from a very low-efficiency area to a low-efficiency area.

From 2010 to 2020, the carbon emission efficiency of pig breeding

in China has improved to a certain extent and we have seen the trend

of “East > Middle > West.” The number of areas with very low

efficiency increased first followed by a decrease. From 2010 to 2017,

the number of areas with very low efficiency increased from 6 to 9 and

in 2020, the number dropped back to 6, which transferred to the Great

Northwest and the Great Southwest comprehensive economic zones.

From 2010 to 2020, the number of low-efficiency areas decreased

from 16 to 13 and we have seen a shift from the eastern to the

central and western regions, from the south to the north. During the

same period, the number of areas with medium efficiency increased

from 1 to 6 and we have seen a shift to Beijing, Tianjin, and

South China water network areas. High-efficiency areas showed a
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FIGURE 3

Spatial distribution of carbon emission e�ciency of pig farming in China in some years (A–D).

trend of “decrease—increase—decrease” pattern and transferred to

Beijing, Tianjin, Shanghai, and other areas with higher economic

development levels.

3.2. Regression analysis of factors a�ecting
carbon emission e�ciency of pig farming

The mixed Tobit regression and random panel Tobit regression

scores were applied to the model using STATA 14 software and the

random panel Tobit model was selected by LR test to determine the

direction of influence and the degree of influence of each influencing

factor. The results are shown in Table 5.

From the regression results, the regression coefficient value of

food resources is −0.736 and it shows a significance at 0.05 level,

implying that food resources have a significant negative correlation

with carbon emission efficiency. For every one-unit increase in food

resources, the carbon emission efficiency of pig farming will decrease

by 0.736 units. The regression coefficient value of the production

layout index is 0.00564 and the p-value is 0.507, implying that the

production layout index has a non-significant positive influence on

carbon emission efficiency. The carbon emission efficiency increases

by 0.00113 units for each unit of increase in production layout index,
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TABLE 5 Tobit model estimation results.

Variables Hybrid Tobit regression Stochastic panel Tobit regression

Estimated
coe�cient

p-value Estimated
coe�cient

p-value

LS 2.77000 0.18500 −0.73600∗∗ 0.67600

PLI −0.00451 0.40200 0.00564 0.50700

SG −7.40300∗ 0.09600 −5.04100∗ 0.05400

BS 0.15700 0.20500 0.35500∗∗∗ 0.00100

JT 0.23300∗∗ 0.03100 0.21100∗∗ 0.00200

C 0.41600∗∗∗ 0.00000 0.33100∗∗∗ 0.00000

LR 244.11 (p = 0.000)

∗ , ∗∗ , ∗∗∗indicate significance at the 10, 5, and 1% levels, respectively; C is the constant term, and LR is the likelihood ratio test value.

the regression coefficient value of market size is −5.401 and it shows

a significance of 0.1 level, implying that market size has a significant

negative influence on carbon emission efficiency.

The regression coefficient value of the comparative advantage

of the pig industry is 0.355 and it shows a significance at 0.01

level, which means that the comparative advantage of the pig

industry has a significant positive influence on the carbon emission

efficiency. With each unit increase in the comparative advantage

of the pig industry, the carbon emission efficiency will increase

by 0.355 units. The regression coefficient value of transportation

accessibility is 0.211 and it shows a significance at 0.05 level, implying

that transportation accessibility has a significant positive influence

on carbon emission efficiency. With every one unit of increase

in transportation accessibility, the carbon emission efficiency will

increase by 0.211 units.

4. Discussion

4.1. Spatial and temporal characteristics of
carbon emission e�ciency of pig farming

4.1.1. Time-series characteristics of carbon
emission e�ciency of pig farming in China

From 2010 to 2020, the carbon emission efficiency of pig

farming in China roughly exhibited an “M” type growth trend

with three different stages. From 2010 to 2015, the fluctuation of

carbon emission efficiency of pig farming in China was in a stable

and slow growth state, with little changes in the ratio of input

to output. From 2015 to 2020, the carbon emission efficiency of

China’s pig farming showed an inverted M-shape trend. In 2015,

the State promulgated the Regulations on Prevention and Control

of Pollution from Livestock and Poultry Farming, which have put

forward the requirement that the livestock and poultry farming

industry should achieve sustainable development and minimize

environmental pollution caused by livestock and poultry farming. As

a result, various provinces (autonomous regions and municipalities)

have actively responded to the national policies and they have

taken measures to improve carbon emission efficiency and the

ecological environment.

Although the carbon emission efficiency of China’s pig farming

decreased from 2015 to 2016, it rose back sharply from 2016 to 2018.

In 2018, the outbreak of African swine fever (ASF) led to a significant

decline in the number of pig farms. Hence the income of pig farmers

and the number of people engaged in pig farming have also been

severely impacted. The significant reduction in the supply of pigs led

to an imbalance of demand and supply in the pork market, leading

to a sharp rise in the price of pork. When the price of pork rose,

consumers reduced their consumption of pork, resulting in a decline

in output value and a significant decline in input and output. From

2018 to 2019, the carbon emission efficiency of pig farming in China

decreased significantly from 0.601 to 0.406. After ASF was effectively

controlled, the carbon emission efficiency of China’s pig breeding in

2019–2020 improved somehow, but the improvement was not very

significant due to the outbreak of COVID-19.

4.1.2. Spatial characteristics of carbon emission
e�ciency of pig farming in China

Overall, the carbon emission efficiency of pig farming in all

provinces (autonomous regions and municipalities) has improved

to a certain extent from 2010 to 2019 and the local government of

all provinces (autonomous regions and municipalities) have taken

corresponding measures to improve carbon emission efficiency at

source by implementing the concept of green development. From the

regional perspective, the carbon emission efficiency value of China’s

pig farming showed a trend of “East>Middle>West” during 2010–

2019. Moreover, a trend has been seen that the distribution of very

low-efficiency areas and low-efficiency areas has transformed from

eastern to central and western China. Also, the same trend has been

seen from the southern part to the northern part of China with

medium high-efficiency areas shifting to the eastern and southern

parts of China.

The eastern region is mostly in the front of the country in terms

of economic development state and potential, high degree of pig

industry intensification, early development of pig scale, rich talent

resources and mature production and breeding technology, high

degree of effective transformation of animal husbandry resources,

and large output to input ratio. At the same time, the development of

pig farming in economically developed areas happened much earlier

and the environmental regulation policies have been implemented

earlier and more strictly. Hence, the pollutant emission management

ability is stronger and the carbon emission efficiency is higher. With

economic development, pork production is more influenced by the

regional economic level, and economically developed areas gradually
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reduce pig farming. Traditional pig breeding areas, such as Zhejiang

and Guangdong, have moved to Sichuan, Hubei, and Guizhou, which

are the main producing areas of pig breeding currently.

In the central region, Henan is one of the ten main pig farming

areas in China. Besides Henan, the traditional pig breeding areas

are in the southern water network as well as Jilin and Heilongjiang

in the northeast. These regions have a lower level of economic

development with a more developed livestock industry, less intensive

pig industry, lower level of pig breeding technology know-how, and

less capability in pollution management. As a result, the carbon

emission efficiency of pig breeding is lower than that of the eastern

region. The central region is rich in grain resources and Henan, as the

main producing area of corn and wheat, has abundant feed resources.

That translates to low production cost, high scale and organization of

pig farming, and a relatively developed pig processing industry, which

has gathered many well-known domestic meat processing enterprises

such as Shuanghui, Delis, and Jinluo. Jilin andHeilongjiang provinces

are also China’s main grain-producing areas, the agricultural labor

force is rich in these two provinces and their breeding technology

has certain capital and geographic advantages. These advantages will

attract external investment in the pig industry from Beijing, Tianjin,

and Shanghai, the Yangtze River Delta, and the Pearl River Delta.

However, the pig breeding technology in the central region is

not mature and the pollution emissions in the breeding process

have not been well-controlled, resulting in low carbon emission

efficiency (31). The western region is greatly influenced by the level

of economic development (32). Moreover, the development mode of

animal husbandry is scattered and small with poor scale efficiency. As

a result, the pollution surface is wide and scattered and governance is

difficult (2, 33), leading to a low level of carbon emission efficiency.

4.2. Analysis of factors a�ecting carbon
emission e�ciency of pig farming

Since ancient times, there has been an old saying that “pigs

and grains secure the world,” which shows that in the process of

national economic development, pig farming and grain industry

as two basic industries play an important role (34). As a grain-

consuming industry, pig farming is based on grain production

(especially corn industry and soybean industry), and from the

perspective of the industrial chain, one of the most crucial constraints

to the development of pig farming is the supply of upstream feeding

materials (35). Therefore, pig farming and grain production are

closely related. Pig farming is a grain-consuming livestock industry,

which consumes a large amount of corn and other grain crops. The

introduction of a market mechanism makes it possible to allocate

resources tomaximize production efficiency and concentrate on areas

with rich grain resources. The more abundant the food resources are,

the easier it is to become the main production area for pig farming.

However, the economic development level of those areas is relatively

low generally. The result is, for those more developed areas of the

livestock industry, there’re more carbon emissions from pig farming

so the carbon emission efficiency is relatively low.

The pig production layout index is the performance of regional

centralization and concentration of pig farming, which integrally

reflects the regional distribution and the changes in the scale of pig

farming. The production layout index of pigs is also subject to various

factors, such as non-agricultural employment opportunities, science

and technology, and economic factors. The higher the production

layout index of pigs in a region, the more concentrated pig farming

in the region is. Hence, it’s much easier for pig farming to form

an economy of scale. However, the results of the model regression

show that the effect on carbon emission efficiency is not significant,

indicating that the production layout index of pigs does not have a

significant effect on the carbon emission efficiency of pig farming.

With the continuous promotion of market-oriented reform, the

market gradually becomes the decisive force for resource allocation

so the market demand is becoming more and more obvious for the

development of pig farming. China is the world’s number one pork-

consuming country and pork is the most consumed meat product.

With the improvement of income level, people will further increase

the consumption of pork, thus stimulating farmers to increase the

amount and scale of pig slaughter, which will constantly affect the

layout and change of pig farming areas. Regions with large market

scales will have more demand for the consumption of pork than those

in other regions. As a result, it stimulates more farmers to increase

the breeding of pigs. Through regression analysis, market scale and

carbon emission efficiency show a negative correlation, and regions

with large market scale will have higher breeding volume and lower

carbon emission efficiency than those regions with small market scale.

If the benefits generated by pig farming in each region have

obvious advantages over agricultural production, more farmers and

enterprises will be attracted to increase their investment in scaling

up pig farming as well as technological advancement. Through the

regression results, the comparative advantage of the pig industry has

a positive influence over carbon emission efficiency, which indicates

that regions with obvious comparative advantage in the pig industry

attract more capital and technology to that region. The introduction

of technology can improve pig breeding, pig rearing environment,

feed, and grain types, hence improving pig rearing efficiency and

reducing carbon emissions generated in the pig breeding process. At

the same time, the introduction of capital can make farmers increase

their investment in the intestinal fermentation and manure excretion

aspects of the pig breeding process, thus reducing carbon emissions

and improving carbon emission efficiency.

The separation of pig farmers and consumers and the

differentiation of production and consumption areas require

convenient transportation facilities to ease the contradiction between

supply and demand and to reduce transportation costs. Through

transportation facilities, modern production factors such as capital,

technology, and information can also be quickly transferred

to producers, thus improving production efficiency. Convenient

transportation conditions have a great positive impact on the

distribution of regional feeds, transportation, and sales of pigs.

Developed transportation systems not only facilitate sales, but also

transfers information and technology to pig farmers timely, which

facilitates farmers to understand relevant technical know-how to

improve pig farming technology. Hence the carbon emission can be

better controlled in the pig farming process, thus improving carbon

emission efficiency (31).

5. Conclusions

By comparing the spatial and temporal characteristics of

the carbon emission efficiency of pig farming in 30 provinces
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(autonomous regions and municipalities) in China during the study

period, it was found that the carbon emission efficiency of pig farming

in China showed an M-shape growth trend. Moreover, the trends

of the three regions identified were the same as the changing trend

of carbon emission efficiency of pig farming in China. Through

horizontal comparison, we found that the carbon emission efficiency

of the three regions of the eastern, middle, and western parts of

China showed the trend of “East > Middle > West” and the very

low-efficiency areas and low-efficiency areas shifted from eastern to

middle and western part of China. At the same time, areas with

middle and high efficiency shifted to the east.

For pig farming, changes in various influencing factors will

contribute to changes in the carbon emission efficiency of pig

farming. The regression analysis found that the comparative

advantage of the pig industry and transportation accessibility had

a significant positive influence on the carbon emission efficiency of

pig farming. The proportion of food resources and market size had

a significant negative correlation on carbon emission efficiency. The

production layout index had no significant influence on the carbon

emission efficiency generated by pig farming.
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Introduction: There have beenmany researches done on the association between

maternal exposure to ambient air pollution and adverse pregnancy outcomes, but

few studies related to very low birth weight (VLBW). This study thus explores the

association between maternal exposure to ambient air pollutants and the risk of

VLBW, and estimates the sensitive exposure time window.

Methods: A retrospective cohort study analyzed in Chongqing, China, during

2015–2020. The Generalized Additive Model were applied to estimate exposures

for each participant during each trimester and the entire pregnancy period.

Results: For each 10 µg/m3 increase in PM2.5 during pregnancy, the relative risk

of VLBW increased on the first trimester, with RR = 1.100 (95% CI: 1.012, 1.195) in

the single-pollutant model. Similarly, for each 10 µg/m3 increase in PM10, there

was a 12.9% (RR = 1.129, 95% CI: 1.055, 1.209) increase for VLBW on the first

trimester in the single-pollutant model, and an 11.5% (RR = 1.115, 95% CI: 1.024,

1.213) increase in the multi-pollutant model, respectively. The first and second

trimester exposures of NO2 were found to have statistically significant RR values

for VLBW. The RR values on the first trimester were 1.131 (95% CI: 1.037, 1.233)

and 1.112 (95% CI: 1.015, 1.218) in the single-pollutant model and multi-pollutant

model, respectively; The RR values on the second trimester were 1.129 (95% CI:

1.027, 1.241) and 1.146 (95% CI: 1.038, 1.265) in the single-pollutant model and

multi-pollutantmodel, respectively. The RR of O3 exposure for VLBWon the entire

trimester was 1.076 (95% CI: 1.010–1.146), and on the second trimester was 1.078

(95% CI: 1:016, 1.144) in the single-pollutant model.

Conclusion: This study indicates that maternal exposure to high levels of PM2.5,

PM10, NO2, and O3 during pregnancy may increase the risk of very low birth

weight, especially for exposure on the first and second trimester. Reducing the

risk of early maternal exposure to ambient air pollution is thus necessary for

pregnant women.

KEYWORDS

very low birth weight, air pollution, risk assessment, environmental exposure, China
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1. Introduction

Nowadays, considerable literatures on epidemiology and

clinical medicine has reported the association and adverse effects

of ambient air pollution on adverse pregnancy outcomes (1, 2).

Low birth weight (LBW), defined as weight at birth <2,500 g, is a

major neonatal adverse outcome that is strongly related to infant

mortality and even producing adverse effects on children’s health

in adulthood (3). Very low birth weight (VLBW) is defined as

weight at birth <1,500 g (4). Many researchers have explored the

association between maternal exposure to ambient air pollution

and low birth weight or preterm birth (5–8). Among these

significant results, it has been suggested ambient air pollution may

increase the risk of low birth weight. However, few studies have

yet specifically focused on the association between ambient air

pollution and very low birth weight. Probably because of the low

incidence of VLBW, these studies can be limited by sample size

(9). However, further specific research is still essential to explore

the ongoing risk of air pollutants on very low birth weight.

Many scholars in China have studied and published the

relationship between exposure to air pollutants and birth outcomes

(10–12); however, the association between exposure to ambient

air pollutants and very low birth weight has been rarely reported.

Chongqing is the largest municipality in China and is located along

the Yangtze River. It is a huge industrial city with 40 districts and

a permanent population of 31 million. From 2014 to the present,

the air quality of Chongqing has greatly improved through years of

efforts by local governments. These special air quality change trends

in Chongqing offer a unique research environment for studying the

effects of air pollution exposure on birth outcomes that is quite

different from the environments found in Europe, America, Africa,

and other countries and regions.

Given that few studies have explored the potential relationship

between ambient air pollution and VLBW, this study sought to

estimate the association between maternal exposure to ambient air

pollutants (PM2.5, PM10, SO2, O3, NO2, and CO) and the risk of

VLBW in Chongqing, China. In doing so, it focused on the sensitive

exposure time window of air pollutants for VLBW with a large

sample size and also via precise individual exposure assessment.

2. Materials and methods

2.1. The study population

Research data for this study was gathered from a large

retrospective cohort of live births from 2015 to 2020, in Chongqing,

China, which was consistent with our previously published paper

(13), all birth data were extracted from the birth certificate

system database for Chongqing. This database contains maternal

age, maternal residence address, date of birth, birth weight,

gestational age, etc. We only used part of this information for our

scientific research.

To facilitate a comparison of this study to previous studies, the

subset of births used for this analysis was limited to singleton live

births among women with 20–42 completed gestation weeks. We

used the date of birth and gestational age to establish the start and

end dates of gestational exposure and estimate the exposure time

during the entire pregnancy and each trimester. Trimesters were

defined as the 1–13, 14–27, and 28 weeks until birth (14). Cases

were excluded if they had missing data for birth outcome variables.

We also excluded births for any of the following: Extremely

low birth weight where the value was <500 g; and a multi-fetal

gestation; the mother lived ≥10 km from the nearest monitor

station; and exposure data were not available for all three trimesters.

This study was approved by the Institutional Ethical Committee

Board of the Chongqing Health Center for Women and Children.

2.2. Assessment of air pollution exposure

All ambient air pollutant concentrations, including PM2.5,

PM10, SO2, CO, NO2, and O3, were obtained from the Chinese

National Urban Air Quality Monitoring Platform (https://air.

cnemc.cn:18007/) for 17 ground-based monitoring stations in nine

main districts of Chongqing, China, from January 1, 2015, to

December 31, 2020.

Air pollution exposure assessment was carried out using the

same method as our published paper (13) mentioned above.

Based on the detailed residence address of every researched

pregnant woman and the location of air monitoring stations, we

calculated the distance between each maternal residence and the

monitoring sites using ArcGIS (version 10.2). The benefit from

this process is that we were able to assign exposure values at

an individual level, rather than compiling only our distinct-level

measurements from the raw data (11). The proximity principle

from the nearest air quality monitoring stations was applied

with a cut-off distance of 10 km, which is consistent with the

related research literatures (15, 16). The pregnancy exposure time

started with the date of conception, according to the date of

the gestational week and the last menstruation of the individual

woman (17).

Daily average relative humidity and temperature were

available from the China Greenhouse Data Sharing Platform

(http://data.sheshiyuanyi.com). Input of any missing data

was done using multiple linear interpolation based on other

monitoring values.

2.3. Statistical analysis

To evaluate the association between ambient air pollutant

exposure and the risk of VLBW in each exposure period, we

performed a Generalized Additive Model (GAM), also consistent

with our previously published paper (13). The effects were

examined for both single-pollutant and multiple-pollutant models.

The single-pollutant model was adjusted for mean temperature and

humidity, the age of the mother and father, week of gestational age;

further, the multi-pollutant model was adjusted for covariates that

included mean temperature and humidity, age of the mother and

father, week of gestational age, and additionally adjusted for other

air pollutant exposure. The basic model can be described as follows:

Log [E (Yt)] = α + βZt + S
(

time, df
)

+ S
(

temperature, df
)

+ S
(

relativehumidity, df
)

+ as.factor(Dow)

Frontiers in PublicHealth 02 frontiersin.org
78

https://doi.org/10.3389/fpubh.2023.1123594
https://air.cnemc.cn:18007/
https://air.cnemc.cn:18007/
http://data.sheshiyuanyi.com
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Zhou et al. 10.3389/fpubh.2023.1123594

TABLE 1 Descriptive summary of the general characteristics of live birth data.

Variables LBW VLBW Non-VLBW Total p-value

(n = 24,497, 4.28%) (n = 1,725, 0.3%) (n = 570,381, 99.7%) (n = 572,106)

Gestational age 35.15± 2.61 30.02± 2.55 38.75± 1.41 38.73± 1.49 <0.001

Preterm birth

Yes 16,421 (67.01%) 1,706 (98.90%) 31,961 (5.60%) 33,667 (5.88%) <0.001

No 8,086 (32.99%) 19 (1.10%) 538,420 (94.40%) 538,439 (94.12%)

Maternal age 29.58± 5.15 30.18± 5.16 28.84± 4.95 28.84± 4.95 <0.001

<20 years 416 (1.7%) 22 (1.28%) 8,184 (1.43%) 8,206 (1.42%) <0.001

20–24 years 3,589 (14.65%) 203 (11.77%) 97,075 (17.02%) 97,278 (17.11%)

25–29 years 8,536 (34.85%) 578 (33.51%) 229,341 (40.21%) 229,919 (40.43%)

30–34 years 7,837 (31.99%) 575 (33.33%) 163,020 (28.58%) 163,595 (28.44%)

≥35 years 4,092 (16.7%) 346 (20.06%) 72,265 (12.67%) 72,611 (12.51%)

Missing 27(0.11%) 1 (0.05%) 496 (0.08%) 497 (0.08%)

Father age 31.90± 5.96 32.76± 5.98 31.13± 5.62 31.14± 5.62 <0.001

<20 years 76 (0.31%) 4 (0.23%) 1,736 (0.30%) 1,740 (0.30%) <0.001

20–24 years 1,842 (7.52%) 77 (4.46%) 48,907 (8.57%) 48,984 (8.56%)

25–29 years 7,021 (28.66%) 423 (24.52%) 191,604 (33.59%) 192,027 (33.57%)

30–34 years 8,101 (33.07%) 563 (32.64%) 183,848 (32.23%) 184,411 (32.23%)

≥35 years 6,702 (27.36%) 525 (30.43%) 132,639 (23.25%) 133,164 (23.28%)

Missing 755 (3.08%) 133 (7.71%) 11,647 (2.04%) 11,780 (2.05%)

Conception season

Spring 5,850 (23.88%) 416 (24.12%) 134,931 (23.66%) 135,347 (23.66%) <0.001

Summer 6,062 (24.75%) 411 (23.83%) 135,916 (23.83%) 136,327 (23.83%)

Autumn 6,324 (25.82%) 448 (25.97%) 154,892 (27.16%) 155,340 (27.15%)

Winter 6,261 (25.56%) 450 (26.09%) 144,642 (25.36%) 145,092 (25.36%)

The p-value stands for the comparison of VLBW and non-VLBW.

where Log[] is a link function; t is the observation day; α is

the model intercept; β is the factor for each pollutant; Yt is the

concentration of pollutants in day t; S() is the natural spline

function; and Dow is dummy variable for day of week; S(time, df )

is the conception time.

We estimated attributable risk percent (ARP) to explore the

increased risk of VLBW caused by exposure to air pollutants. ARP

indicates that the air concentration in Chongqing is higher than

the national standard concentration. The standard leads to an

increased proportion of VLBW occurring, which is Proportion of

increased risk attributed to higher concentrations of air pollutants.

In order to facilitate calculation and calculation of confidence

interval, Levin’s formula is applied, and the formula is as follows:

ARP = Pe × (RR− 1)

Pe × (RR− 1) + 1
× 100%

In the formula, Pe is the incidence of very low birth weight in

Chongqing at present when the air pollutant exposure is higher

than the national level I standard concentration. RRmeans that the

air concentration in Chongqing is higher than the national level I

standard concentration due to this study.

Sensitivity analysis were undertaken by changing the degree of

freedom (df) for the time (6–8 df/year) by minimizing the Akaike

information criterion (18). Finally, we selected the df of time,

temperature, and relative humidity in the spline function, which

were 7, 3, and 3 in the model, respectively. The GAM models were

employed using R software (Version 4.1.0) with the “splines” and

“mgcv” packages.

3. Results

3.1. Descriptive statistics of the research
objects

In this study, a total number of 572,106 mother-newborn pairs

were finally analyzed. The descriptive summary of the general

characteristics of live birth data is shown in Table 1. The ages

of the mothers ranged from 18 to 37 years, with an average age

of 28.84 ± 4.95. The mean gestational age was 38.73 ± 1.49

weeks. Among them, 24,497 (4.28%) were LBW and 1,725 (0.3%)

were VLBW.
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TABLE 2 Descriptive summary of air pollutants and meteorological factors in the study area.

Pollutants (µg/m3) Mean SD Min Max Percentiles

25th 50th 75th

PM2.5 41.62 10.01 17.82 83.65 34.39 42.69 47.50

PM10 66.39 12.61 28.79 121.46 59.12 67.30 73.66

NO2 38.95 6.46 10.78 68.19 35.50 38.35 41.15

CO (mg/m3) 1.02 0.18 0.54 1.52 0.89 1.01 1.14

SO2 9.73 3.14 3.21 22.11 7.32 9.12 11.27

O3 38.45 13.34 8.27 105.65 30.24 39.07 47.38

Temperature (◦C) 20.25 2.73 13.13 29.09 18.43 20.42 21.86

Relative humidity (%) 75.25 2.17 66.89 80.37 73.85 75.21 76.81

Period for January 1, 2015, to December 31, 2020.

3.2. Air pollutants descriptive statistics

The characteristics of air pollution and their meteorological

factors are summarized in Table 2. The mean concentration of

PM2.5 during a whole pregnancy was 41.62 µg/m3, and the mean

concentration of PM10 at the same time was 66.39 µg/m3. The

mean concentrations were 38.95 µg/m3 for NO2, 1.02 mg/m3

for CO, 9.73 µg/m3 for SO2, 38.45 µg/m3 for O3, 20.25
◦C for

the apparent mean temperature, and 75.25% for relative humidity

during the entire study period.

The correlation between most pollutant correlations were

positive except O3. In addition, except for O3 and temperature,

CO and humidity, the correlation between other air pollutants and

meteorological factors was mostly negative. A positive correlation

between PM2.5 and PM10 (r = 0.910), and a negative correlation

between PM2.5 and average daily temperature (r =-0.244) were

observed. The correlation analysis results between air pollutants

and meteorological factors are shown in Figure 1.

3.3. Associations between air pollutants
and VLBW

The associations found between Air pollutants and VLBWwere

calculated using the GAMmodels. The adjusted relative risks (RRs)

and corresponding 95% confidence intervals (CIs) for VLBW to

maternal exposure to air pollutants by pregnancy trimester are

given in Table 3.

We observed that for each 10 µg/m3 increase in PM2.5 during

pregnancy, the relative risk of VLBW increased on the first

trimester, with RR=1.100 (95% CI: 1.012, 1.195) in the single-

pollutant model. Similarly, for each 10 µg/m3 increase in PM10,

there was a 12.9% (RR = 1.129, 95% CI: 1.055, 1.209) increased

risk for VLBW on the first trimester in the single-pollutant model,

and an 11.5% (RR = 1.115, 95% CI: 1.024, 1.213) increase in the

multi-pollutant model, respectively.

The first and second trimester exposures of NO2 were found

to have statistically significant RR values for VLBW. The RR

values on the first trimester were 1.131 (95% CI: 1.037, 1.233) and

1.112 (95% CI: 1.015, 1.218) in the single-pollutant model and the

FIGURE 1

Correlation analysis results for air pollutants and meteorological

factors.

multi-pollutant model, respectively; The RR values on the second

trimester were 1.129 (95% CI: 1.027, 1.241) and 1.146 (95% CI:

1.038, 1.265) in the single-pollutant model and the multi-pollutant

model, respectively.

The RR of O3 exposure for VLBW on the entire trimester was

1.076 (95% CI: 1.010, 1.146), and on the second trimester was 1.078

(95% CI: 1:016, 1.144) in the single-pollutant model. As shown in

Table 3, No statistically significant RR was found for SO2 and CO

in each trimester of pregnancy.

Overall, the association with statistical significance between

maternal exposure to air pollutants and VLBWwas concentrated in

PM2.5, PM10, and NO2. Exposure at different stages of pregnancy

had different results, particularly the risk of early pregnancy

exposure was relatively higher. Forest plots of the RR values and

95% CIs for VLBW associated with maternal exposure to six

pollutants during the different stages of pregnancy are shown in

Figure 2.
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TABLE 3 Adjusted relative risks (RRs) and corresponding 95% confidence intervals (CIs) from GAMmodels for VLBWmaternal exposure to air pollutants

by trimester of pregnancy.

Pollutant Model Trimester 1 Trimester 2 Trimester 3 Entire pregnancy

RR 95% CI RR 95% CI RR 95% CI RR 95% CI

PM2.5 Model 1 1.100 (1.012, 1.195) 0.968 (0.883, 1.062) 1.017 (0.965, 1.072) 1.018 (0.908, 1.141)

Model 2 1.070 (0.972, 1.176) 0.934 (0.836, 1.045) 1.041 (0.978, 1.108) 1.034 (0.891, 1.200)

PM10 Model 1 1.129 (1.055, 1.209) 1.048 (0.978, 1.124) 1.007 (0.970, 1.045) 1.050 (0.962, 1.145)

Model 2 1.115 (1.024, 1.213) 1.041 (0.955, 1.135) 1.028 (0.980, 1.078) 1.100 (0.975, 1.242)

SO2 Model 1 1.198 (0.921, 1.562) 1.234 (0.946, 1.610) 0.961 (0.760, 1.216) 1.199 (0.878, 1.641)

Model 2 1.062 (0.785, 1.438) 1.257 (0.928, 1.701) 0.945 (0.731, 1.222) 1.080 (0.739, 1.577)

NO2 Model 1 1.131 (1.037, 1.233) 1.129 (1.027, 1.241) 0.962 (0.897, 1.032) 1.069 (0.967, 1.182)

Model 2 1.112 (1.015, 1.218) 1.146 (1.038, 1.265) 0.944 (0.872, 1.022) 1.071 (0.964, 1.190)

O3 Model 1 1.013 (0.952, 1.077) 1.078 (1.016, 1.144) 0.995 (0.952, 1.037) 1.076 (1.010, 1.146)

Model 2 1.036 (0.967, 1.110) 1.069 (0.996, 1.146) 0.996 (0.952, 1.041) 1.083 (0.998, 1.175)

CO Model 1 0.993 (0.958, 1.030) 0.974 (0.939, 1.010) 0.999 (0.971, 1.028) 0.960 (0.923, 0.998)

Model 2 1.002 (0.962, 1.044) 0.999 (0.960, 1.041) 0.998 (0.967, 1.029) 0.987 (0.940, 1.036)

The bold face indicates statistical significance established at p < 0.05 in the above three models. Model 1: single-pollutant model, adjusted for covariates including mean temperature and

humidity, age of mother and father, and age of gestation; Model 2: multi-pollutant model, adjusted for covariates including mean temperature and humidity, age of mother and father, weight of

birth, and additionally adjusted for other air pollutants.

3.4. Attribution analysis of maternal
exposure to air pollutants and VLBW

In this study, we calculated the attributable risk percentage

(ARP) of PM2.5 for VLBW throughout the entire pregnancy

according to the Chinese Class I Standard of PM2.5 < 35 µg/m3.

We adjusted for the covariates including mean temperature and

mean humidity, parental age, and gestational age. We estimated the

ARP of PM2.5 for VLBW that was attributable to PM2.5 exposure

concentration to be higher than the Chinese Class I Standard after

adjusting for covariates. The ARP was 17.89% (95% CI: 10.5%,

24.26%). Similarly, the attributable risk percentage (ARP) of PM10

for VLBW was calculated using the Chinese Class I Standard of

PM10 < 50 µg/m3. Lastly, the ARP of PM10 for VLBW was 36.81%

(95% CI: 25.69%, 46.01%).

4. Discussion

In this study, we used a generalized additive model (GAM) to

analyze the exposure-response association of air pollutants on the

risk of very low birth weight. It revealed that maternal exposure to

PM2.5 and PM10 in the first trimester of pregnancy was associated

with increased risk of VLBW. In addition, a positive association

with VLBWwas linked toNO2 exposure during the first and second

trimesters of pregnancy. These results are a valuable supplement to

the few previous association researches for maternal exposure to

ambient air pollution and the risk of very low birth weight (19).

Especially in China, such similarly related research is quite rare.

There are a lot of studies that have demonstrated that maternal

exposure to fine ambient air pollution increases the risk of preterm

birth and low birth weight (2, 20–22). Ghosh et al. (23) conducted a

meta-regression and analysis related association of PM2.5 pollution

and adverse perinatal outcomes for 204 countries and territories. Its

pooled estimates indicated 22 grams (95% UI: 12, 32) lower birth

weight, and 11% greater risk of LBW (1.11, 95% UI: 1.07, 1.16)

per 10 µg/m3 increment in ambient PM2.5. Globally, an estimated

15.6% (95% UI: 15.6, 15.7) of all LBW infants were attributable to

total PM2.5 in 2019. A meta-analysis by Bekkar et al. (2) reported

that positive associations between exposure to air pollution and

LBW were found across all US geographic regions. Exposure to

PM2.5 or ozone was associated with an increased risk of LBW in 25

of 29 studies (86%). Niu et al. (24) carried out a cohort study in Los

Angeles, California, and found early pregnancy to mid-pregnancy

exposures to PM2.5, PM10, and NO2 were associated with lower

birth weight. Their result is highly consistent with our research.

Still, some studies have suggested that the sensitive exposure period

for NO2 is throughout all of a pregnancy (12, 25). Although

the stages of a sensitive window to air pollution exposure varied

in the different literatures, the basic consensus is that maternal

exposure to air pollution, particularly during the critical windows

of pregnancy, significantly do increases the risk of LBW.

Over the past decade, numerous studies have been published

on air pollutant exposure and low birth weight in China (12,

26, 27). The study by Yuan et al. (28) reported critical windows

of gestational exposure to PM2.5 were identified as 31st−34th

gestational weeks for reduced birth weight, and 38th−42nd weeks

for LBW, respectively. Liang et al. (29) conducted a study on

1,455,026 singleton births during 2014–2017 in nine cities of

Guangdong, China, and found PM2.5 was significantly associated

with LBW in every trimester of pregnancy stage, with stronger

effects on the first and third trimester for each 10 µg/m3 increase

in PM2.5 concentrations. The results of a cohort study performed

in Changsha, China, further showed term LBW was significantly

associated with exposure to ambient PM during pregnancy, with

OR = 1.47 (95% CI: 1.00, 2.14) for per IQR increase after
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FIGURE 2

Adjusted RRs (95% CIs) for VLBW associated with air pollutants during the di�erent stages of pregnancy in Model 1 and Model 2. Model 1:

single-pollutant model, adjusted for covariates including mean temperature and humidity, age of mother and father, and age of gestation, as

represented by a circle; Model 2: multi-pollutant model, adjusted for covariates including mean temperature and humidity, age of mother and father,

weight of birth, and additionally adjusted for other air pollutants, as represented by a triangle.

adjustment for the covariates and home environmental factors (3).

Specifically, the authors identified a significant association in the

early phase of pregnancy including conception month and the first

trimester. Zou et al. (26) performed a retrospective observational

study on 2,527 preschoolers in Shanghai, China, and indicated

that exposure to NO2 was a risk factor for LBW and T-LBW. The

difference when compared to this study is that effects of exposures

could be greater during early periods than during later periods

of gestation.

Related studies have suggested different sensitive windows

worldwide. The differences may be due to study design, air

pollution level, regional disparity, components of PM, and sample

size, etc. However, most of the sensitive time windows are

concentrated in the first trimester. For example, in a study of seven

states in the U.S. (30) for associations between maternal exposure

to PM2.5 and the risk of LBW, showed a statistically significant

correlation during the entire stage of pregnancy and all specific

trimesters in New York, for the full gestation, the first and third

trimesters in Minnesota, and for the entire pregnancy and first

trimester in New Jersey.

The current study focused on associations between maternal

exposure to ambient air pollution and VLBW, which was unique

to our study. We observed that the first trimester may be the

sensitive window for PM2.5 and PM10, consistent with a few

previous studies on LBW (29, 31). Meanwhile, the first and second

trimesters constituted the susceptible exposure window for NO2.

On the other hand, a few studies have shown different staging

methods with consequently different results. For example, several
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researchers divided pregnancy into months or weeks to evaluate

the relationship between exposure and outcomes. Our large sample

size and the exposure evaluation mode of individual assessment

allowed us to reliably estimate the associations. However, the effect

of exposure sensitive time does need to be further explored, and

personal exposure measurements need to be more widely utilized.

Few studies have evaluated the disease burdens of PM exposure

on LBW worldwide. We found 17.89% (95% CI: 10.5%, 24.26%)

of VLBW was attributable to a higher PM2.5 exposure (PM2.5 ≥
35 µg/m3) relative to the Chinese Class I Standard after adjusting

for covariates. The ARP of PM10 for VLBW was 36.81% (95%

CI: 25.69%, 46.01%), calculated for PM10 exposure concentration

higher than 50 µg/m3. These results were statistically sufficient to

demonstrate the harmful effects of high PM exposure on very low

birth weight. Liu et al. (4) estimated the LBW burden caused by

outdoor PM2.5 exposure in Shanghai, China, in 2013, according

to Shanghai’s Class I Standard (15 µg/m3). Those results showed

that 23.36% (95%CI: 3.86%, 40.02%) of LBW could be attributed

to PM2.5 exposure. Our results provided a particular estimate of

attribution analysis of PM exposure on VLBW in China.

There are several possible biologic mechanisms through which

ambient air pollution can cause LBW (32, 33). Yet, no studies

have specifically focused on the mechanisms that cause very low

birth weight. Current research reports mainly include systemic

oxidative stress and inflammatory response that induces premature

birth; maternal endocrine disorder; the release of inflammatory

factors and entering into the placenta; direct toxicity to the

placenta or fetus, etc. (7, 34, 35). Studies on the effects of different

components of PM2.5 on birth outcomes have shown that the

component elements of carbon, calcium, copper, nickel, titanium,

zinc, aluminum, and antimony are associated with low birth

weight (36). The toxicological effects of metal components are

inferred as well, mainly by increasing oxidative stress (37). The

biological mechanisms related to VLBW, however, need to be

further investigated and explored in the future.

This study did have some limitations. First, due to the

large sample size, it was difficult to obtain comprehensive and

complete information. Some potential risk factors were not

considered in this study, such as maternal nutritional status,

pregnancy complications, and life behaviors, genetic information,

etc. These factors may have confounded the association results.

However, previous similar studies have found little change in

efficacy estimates based on whether or not these factors are

adjusted (33). Second, as with most related studies, exposure

measurement errors were inevitable. The type of area, proximity

of green/blue area and the “quality” of neighborhood can also

be important in assessment of exposure level. However, due to

the absence of these variables in the original data, we did not

conduct further analysis about this. The proximity principle from

nearby air quality monitoring stations was applied to serve as

the estimates of individual air pollution exposure. Moreover, we

limited the exposure concentration assessment to within 10 km

of the monitoring station. We did not assess the movement of

pregnant women during pregnancy. Fortunately, the large sample

size used for this study balanced that situation to some extent.

Third, the composition of PM is complex, and that composition

was not obtained and analyzed in this study. It is possible that

different pollutant components can have inconsistent effects on

VLBW. The risk effects caused by specific components will be

explored in subsequent relevant studies.

5. Conclusions

In conclusion, this study provides special evidence on the

associations between air pollutant exposure during pregnancy and

VLBW using a retrospective birth cohort study. We estimated that

maternal exposure to high levels of PM2.5, PM10, NO2, and O3

during pregnancy may increase the risk of very low birth weight.

The sensitive period for that exposure window is likely to be the first

and second trimesters. Reducing the risk of early maternal exposure

to ambient air pollution is thus necessary for pregnant women.
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Huazhong University of Science and Technology, Wuhan, Hubei, China, 3First A�liated Hospital, Gannan

Medical University, Ganzhou, China, 4Key Laboratory of Prevention and Treatment of Cardiovascular and

Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, China, 5School of

Public Health and Health Management, Gannan Medical University, Ganzhou, China

Objective: Previous epidemiological studies have shown that both long-term

and short-term exposure to fine particulate matters (PM2.5) were associated with

the morbidity and mortality of circulatory system diseases (CSD). However, the

impact of PM2.5 on CSD remains inconclusive. This study aimed to investigate the

associations between PM2.5 and circulatory system diseases in Ganzhou.

Methods: We conducted this time series study to explore the association between

ambient PM2.5 exposure and daily hospital admissions for CSD from 2016 to 2020

in Ganzhou by using generalized additive models (GAMs). Stratified analyses were

also performed by gender, age, and season.

Results: Based on 201,799 hospitalized cases, significant and positive associations

were found between short-term PM2.5 exposure and hospital admissions for CSD,

including total CSD, hypertension, coronary heart disease (CHD), cerebrovascular

disease (CEVD), heart failure (HF), and arrhythmia. Each 10 µg/m3 increase in

PM2.5 concentrations was associated with a 2.588% (95% confidence interval

[CI], 1.161%–4.035%), 2.773% (95% CI, 1.246%–4.324%), 2.865% (95% CI, 0.786%–

4.893%), 1.691% (95% CI, 0.239%–3.165%), 4.173% (95% CI, 1.988%–6.404%)

and 1.496% (95% CI, 0.030%–2.983%) increment in hospitalizations for total

CSD, hypertension, CHD, CEVD, HF, and arrhythmia, respectively. As PM2.5

concentrations rise, the hospitalizations for arrhythmia showed a slow upward

trend, while other CSD increased sharply at high PM2.5 levels. In subgroup

analyses, the impacts of PM2.5 on hospitalizations for CSD were not materially

changed, although the females had higher risks of hypertension, HF, and

arrhythmia. The relationships between PM2.5 exposure and hospitalizations for

CSD were more significant among individuals aged ≤65 years, except for

arrhythmia. PM2.5 had stronger e�ects on total CSD, hypertension, CEVD, HF, and

arrhythmia during cold seasons.

Conclusion: PM2.5 exposure was positively associated with daily hospital

admissions for CSD, which might provide informative insight on adverse e�ects

of PM2.5.

KEYWORDS

circulatory systemdiseases, PM2.5, hospital admissions, air pollution, generalized additive

model (GAM), time series study
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1. Introduction

The development of modern industrialization has made air

pollution one of the leading public health concerns worldwide (1).

According to the latest Global Burden of Disease (GBD) Survey,

ambient air pollution could be responsible for 6.7 million deaths

in 2019 (2). Accumulating studies have shown that exposure to air

pollutants, whether both short- or long-term, may damage human

health on multiple levels (3).

PM2.5, named particulate matter with aerodynamic diameter

below 2.5µm, is considered the most sensitive indicator of air

quality (4). Ambient PM2.5 mainly comes from natural conditions

(volcanic eruptions and dust storms) and human activities

such as industrial production, and traffic exhaust emissions (5).

PM2.5 has become an environmental problem and has attracted

global public health concerns because of its adverse effects

on multiple organs (6). Previous studies suggested that PM2.5

exposure might lead to increased risks of respiratory diseases (7),

circulatory system diseases (CSD) (8), neurological diseases (9), and

metabolic diseases (10). In fact, the impact of PM2.5 on CSD has

been extensively reported in previous studies (11–13). However,

epidemiologic studies regarding the relationships of short-term

exposure to PM2.5 and CSD remain inconclusive. According to

a national study containing 379,133 participants, there was a

0.12% (95% CI, 0.001–0.25%) elevation in cardiovascular disease

mortality with a 10-µg/m3 increase in PM2.5 levels on the same

day (14). However, a study (15) including over 286 million

hospitalizations in England and Wales found little evidence of

PM2.5 exposure with increased risk of cardiovascular admissions,

and even in many cases, PM2.5 was related to decrease risks

of cardiovascular hospitalization. More studies are warranted to

evaluate the impacts of short-term PM2.5 exposure on CSD risks.

Ganzhou, a city with 9.8402 million population in 2021 and

located in southern China, enjoys a typical subtropical monsoon

climate. In recent years, great measures were conducted to reduce

urban ambient pollution in China and the air quality of Ganzhou

has gradually improved in last 10 years. In 2021, the mean

concentration of PM2.5 in Ganzhou was 23 µg/m3, 34.3% lower

than the that (35 µg/m3) in 168 Chinese cities in the same year.

To evaluate potential effects of PM2.5 on the onset of CSD in

Ganzhou is also helpful to understand adverse health effects caused

by relatively low levels of PM2.5 in China.
In this study, daily concentrations of air pollutants in Ganzhou

were collected from China National Environmental Monitoring

Center (CNEMC), and hospital admission data for CSD from 2016

to 2020 were extracted from the biggest hospital in Ganzhou. This

time-series analysis was conducted to evaluate the relationships of

ambient PM2.5 exposure with daily hospitalizations for CSD. The

effects of co-exposure to other air pollutants on above relationships

were also analyzed.

2. Materials and methods

2.1. Daily hospital admissions data

Daily hospital admissions data of CSD from Jan.1, 2016 to

Dec.31, 2020 were extracted from the hospital’s admission case

registry system in the biggest hospital of Ganzhou. The patient

information included gender, age, residential address, date of

admission, and principal diagnosis. The CSD in present study

were encoded according to the 10th version of the International

Classification of Diseases (ICD-10) as follows: total circulatory

disease (I00-I99), hypertension (I10-I15), coronary heart disease

(CHD, I20-I25), cerebrovascular diseases (CEVD, I60-I69), heart

failure (HF, I50), and arrhythmia (I47-I49).

2.2. Ambient air pollutants and
meteorological data

The 24-h average concentrations of PM2.5, NO2, PM10, SO2,

and CO, and the maximum 8-h mean concentrations of O3

from January 1, 2016 to December 31, 2020 were obtained from

the National Real-Time Air Quality Monitoring Data Publishing

Platform developed by CNEMC (http://www.cnemc.cn/). Daily

average meteorological data including daily average temperature,

relative humidity, and wind speed during the 5 years were obtained

from the National Meteorological Information Center (http://data.

cma.cn/). Present study did not involve/include any personally

identifiable information and Institutional Review Board approval

was not applicable.

2.3. Statistical analysis

Descriptive statistical analyses were performed to reveal the

features of daily circulatory hospital admissions, ambient air

pollutants and meteorological factors from January 1, 2016 to

December 31, 2020. Spearman’s rank correlation test was used

to evaluate the bivariate associations between air pollutants and

meteorological variables. To address the associations between

PM2.5 and hospitalization for CSD, the quasi-Poisson regression

method in generalized additive models (GAMs) based on time

series was applied. In this model, spline smoothing functions of

time trend, daily mean temperature and relative humidity were

introduced into the GAMs to exclude the potential confounding

effects of long-term time trend and meteorological variables.

Besides, the day of the week (DOW) and holiday were also

considered as potential confounders. The model finally used was

as follows:

Log [E (Yt)] = α + βXt + s
(

time, df = 14 per year
)

+ s
(

Temp, df = 3
)

+ s
(

RH, df = 3
)

+ as.factor (DOW) + as.factor(Holiday)

Where t is the day of observation; Yt denotes daily count

of hospital admissions for CSD at day t; Xt is the daily mean

concentration of PM2.5 at day t; β is the regression coefficient which

represents the log-relative rate of hospital admissions for CSD with

a 10 µg/m3 increase of PM2.5 concentration; DOW means the day

of the week; df is degree of freedom whose value is determined

based on the Quasi-Akaike information criterion (QAIC); α is the

model intercept.
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TABLE 1 Characteristics of meteorological variables, ambient air pollutants, and hospital admissions in Ganzhou (2016–2020).

N (%) Mean ± Sd Min P25 P50 P75 Max

Meteorological factors

Temperature (◦C) – 20.54± 8.09 1 13.69 21.7 27.79 33.5

Relative Humidity (%) – 75.21± 12.00 35.5 66.3 75.5 84.5 99

Air pollutants

PM2.5 (µg/m
3) – 37.38± 20.8 6 23 33 47 184

PM10 (µg/m
3) – 60.06± 33.60 11 36 52 75 246

NO2 (µg/m
3) – 22.75± 12.60 4 14 19 28 84

SO2 (µg/m
3) – 18.73± 11.18 2 11 16 23 73

CO (mg/m3) – 1.24± 0.32 0.6 1 1.2 1.43 2.9

O3 (µg/m
3) – 90.52± 39.09 7 62.5 88 116 224

Hospital admissions

Total 201,799 (100) 110.0± 45.10 18 77 103 139 308

Male 114,671 (56.8) 62.76± 26.70 9 44 58 79 177

Female 87,101 (43.2) 47.67± 19.90 6 33 45 60 131

≤65 years old 99,921 (49.5) 54.69± 24.30 6 37 51 69 150

>65 years old 101,878 (50.5) 55.76± 23.10 7 38 52 71 160

Cold 100,711 (49.91) 111.0± 44.98 18 79 105 138 308

Warm 101,088 (50.09) 109.0± 45.17 25 77 102 139 281

CSD

Total 201,799 (100) 110.0± 45.10 18 77 103 139 308

Hypertension 94,844 (47.0) 51.91± 22.00 8 36 49 65 155

CHD 28,597 (14.2) 15.00± 7.36 0 10 15 20 49

CEVD 42,120 (20.9) 23.05± 8.79 2 16 22 29 57

HF 21,636 (10.7) 11.84± 6.73 0 7 10 16 40

Arrhythmia 14,602 (7.2) 7.99± 4.93 0 4 7 11 29

N, number; Sd, standard deviation; P, percentile; CSD, circulatory system diseases; CEVD, Cerebrovascular Disease; CHD, Coronary Heart Disease; HF, Heart Failure.

It is universally accepted that ambient air pollutants have

persistent and hysteresis effects on health outcomes (16). We

considered both single-day lags (lag0–lag14) and multiday lags

(lag01–lag014) to evaluate delayed effects of PM2.5. Lag0 refers to

the impact of PM2.5 on hospitalizations for CSD on the same day

and Lag01 shows the effect of PM2.5 in the current and the previous

days. Additionally, stratified analyses were performed to determine

whether the associations differed by age (≤65 and >65 years

old), gender, season (May-October, warm season; December-April,

cold season).

To exclude the potential confounding effect of other pollutants,

a series of co-pollutant models were developed in addition to the

single-pollutant model. Notably, to avoid collinearity, pollutants

with correlation coefficients >0.6 were not incorporated into co-

pollutant models simultaneously.

In the sensitivity analysis, we adjust the dfs of calendar time

to 7 per year to test the stability of the associations, according to

relevant studies (17–19). In addition, previous studies have shown

that COVID-19 might have impacts on circulatory system (20). In

this study, in order to control the impact of COVID-19 on the

associations, we also included the occurrence of COVID-19 in the

model for sensitivity analysis.

All results were given as percent changes and 95% confidence

intervals (CIs) in daily hospitalizations for CSD per 10 µg/m3

increment in PM2.5 levels. All statistical analyses were performed

in R version 4.1.2 with the “mgcv” and “tsModel” packages. P-value

< 0.05 was considered as statistically significant (2-sided).

3. Results

The descriptive statistics of daily air pollutants, meteorological

variables, and hospitalizations for CSD during the 5 years were

shown in Table 1. A total of 201,799 hospitalizations for CSD (daily

average: 110 hospital admissions) in Ganzhou were included in the

analysis. Among all the records, 50.5% were older than 65 years

old, and 56.8% were males. As for disease subtypes, hypertension

accounted for 47.0% of total CSD, followed by cerebrovascular

diseases (20.9%), coronary heart disease (14.2%), heart failure

(10.7%) and arrhythmia (7.2%).
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The average daily concentrations of PM2.5, PM10, NO2, SO2

and CO during research period were 37.38 µg/m3, 60.06 µg/m3,

22.75 µg/m3, 18.73 µg/m3, 1.24 mg/m3, respectively, while the 8-

hour average concentration of O3 was 90.52 µg/m3. On average,

FIGURE 1

Spearman’s rank correlations of meteorological variables with

ambient air pollutants. T represents temperature; RH denotes

relative humanity; *means P < 0.05, **means P < 0.01.

the daily temperature was 20.54◦C and the relative humidity was

75.21 %.

As shown in the time series plots, the levels of PM2.5 in

Ganzhou decreased slowly and gradually during the study period

(Supplementary Figure 1). The levels of PM10, NO2, SO2 and CO

also showed similar trends, except that O3 levels increased. During

the same period, hospital admissions for total CSD and five specific

subtypes fluctuated and rose steadily (Supplementary Figure 2).

The Spearman’s correlation coefficients for exposure variables

were given in Figure 1. PM2.5 was highly correlated with PM10 and

SO2, and NO2 (r > 0.6 and P < 0.05), moderately correlated with

CO and O3 (r = 0.44 and 0.33, respectively, P < 0.05). However,

PM2.5 was negatively correlated with relative humidity (r = −0.21,

P < 0.05) and temperature (r =−0.22, P < 0.05).

Positive linear exposure-response relationships between PM2.5

concentrations and daily hospitalizations for total and cause-

specific CSD were observed (Figure 2). Hospitalizations for total

CSD, hypertension, CHD, CEVD, and HF increased rapidly at high

levels of PM2.5, except for arrhythmia, which showed a slowly linear

rise. In single-pollutant models, significantly positive associations

were observed between PM2.5 levels and hospital admissions for

studied CSD in both single-day (lag1–lag14) and cumulative-day

(lag01–lag014) lag structures (Table 2). The largest single day effect

of PM2.5 was at lag6 for total CSD, hypertension, CHD, lag4 for

CEVD, and lag1 for HF and arrhythmia. The greatest cumulative

day effect for total CSD, hypertension, CHD and HF were observed

at lag014. The effect of PM2.5 on hospitalizations for CEVD

peaked at lag011. Every 10 µg/m3 increment of ambient PM2.5

concentrations was associated with a 2.588% [95% confidence

interval (CI), 1.161–4.035%], 2.773% (95% CI, 1.246–4.324%),

FIGURE 2

Exposure-response relationships of PM2.5 concentrations with daily hospital admissions for total and cause-specific circulatory system diseases.

CEVD, Cerebrovascular Disease; CHD, Coronary Heart Disease; HF, Heart Failure. The concentration response curve is the solid line and the 95% CI is

presented by the dotted line.
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TABLE 2 Percent changes and 95% confidence intervals (CIs) of daily hospital admissions for total and cause-specific circulatory system diseases by each 10 µg/m3 increase of PM2.5 concentrations at di�erent lag

structures in the single-pollutant model.

Lag Type Lag day Total CSD Hypertension CHD CEVD HF Arrhythmia

Single-lag 0 0.245 (−0.495, 0.990) 0.134 (−0.660, 0.935) 0.402 (−0.632, 1.446) −0.125 (−0.972, 0.730) 1.436 (0.326, 2.558) 0.804 (−0.541, 2.168)

1 0.880 (0.157, 1.609) 0.758 (−0.017, 1.538) 0.840 (−0.180, 1.870) 0.443 (−0.380, 1.274) 2.277 (1.172, 3.393) 1.638 (0.320, 2.972)

2 0.560 (−0.147, 1.272) 0.586 (−0.170, 1.348) 0.349 (−0.649, 1.356) 0.279 (−0.526, 1.091) 1.655 (0.571, 2.750) 0.557 (−0.736, 1.866)

3 0.305 (−0.394, 1.01) 0.442 (−0.308, 1.198) −0.084 (−1.072, 0.914) 0.132 (−0.667, 0.937) 0.898 (−0.167, 1.974) 0.359 (−0.918, 1.653)

4 0.691 (0.001, 1.386) 0.822 (0.080, 1.569) 0.378 (−0.600, 1.365) 0.873 (0.083, 1.670) 0.462 (−0.585, 1.520) 0.562 (−0.700, 1.84)

5 0.935 (0.250, 1.624) 1.134 (0.397, 1.875) 0.667 (−0.304, 1.647) 0.858 (0.072, 1.651) 1.079 (0.042, 2.127) 0.395 (−0.859, 1.664)

6 1.099 (0.421, 1.782) 1.129 (0.399, 1.864) 1.185 (0.223, 2.156) 0.767 (−0.015, 1.555) 1.934 (0.904, 2.975) 0.774 (−0.474, 2.038)

7 0.912 (0.233, 1.595) 1.084 (0.354, 1.820) 0.804 (−0.159, 1.776) 0.692 (−0.088, 1.479) 1.336 (0.305, 2.378) 0.206 (−1.040, 1.468)

8 0.711 (0.029, 1.398) 0.925 (0.190, 1.665) 0.597 (−0.370, 1.573) 0.555 (−0.229, 1.345) 0.747 (−0.282, 1.788) 0.114 (−1.133, 1.376)

9 0.747 (0.070, 1.429) 0.973 (0.244, 1.707) 0.735 (−0.225, 1.704) 0.558 (−0.222, 1.344) 0.562 (−0.459, 1.594) 0.254 (−0.981, 1.505)

10 0.689 (0.009, 1.374) 0.690 (−0.043, 1.429) 1.060 (0.095, 2.034) 0.784 (0.000, 1.575) 0.423 (−0.597, 1.453) 0.252 (−0.986, 1.506)

11 0.488 (−0.196, 1.176) 0.584 (−0.153, 1.327) 0.965 (−0.007, 1.946) 0.179 (−0.607, 0.971) 0.228 (−0.795, 1.261) 0.347 (−0.899, 1.608)

12 0.504 (−0.184, 1.196) 0.475 (−0.267, 1.223) 1.277 (0.299, 2.266) 0.029 (−0.760, 0.824) 0.528 (−0.501, 1.567) 0.708 (−0.545, 1.978)

13 0.219 (−0.470, 0.913) 0.246 (−0.498, 0.996) 0.720 (−0.261, 1.711) −0.252 (−1.041, 0.544) 0.533 (−0.498, 1.575) 0.177 (−1.079, 1.448)

14 0.223 (−0.466, 0.916) 0.207 (−0.537, 0.957) 0.473 (−0.506, 1.461) −0.24 (−1.030, 0.556) 0.522 (−0.511, 1.566) 0.958 (−0.304, 2.236)

Cumulative-

lag

01 0.697 (−0.111, 1.512) 0.555 (−0.310, 1.427) 0.758 (−0.376, 1.905) 0.198 (−0.723, 1.128) 2.305 (1.077, 3.547) 1.496 (0.030, 2.983)

02 0.820 (−0.051, 1.698) 0.717 (−0.211, 1.655) 0.766 (−0.453, 1.999) 0.290 (−0.697, 1.287) 2.632 (1.301, 3.981) 1.441 (−0.134, 3.041)

03 0.836 (−0.091, 1.772) 0.798 (−0.190, 1.796) 0.631 (−0.666, 1.944) 0.310 (−0.740, 1.371) 2.670 (1.247, 4.113) 1.385 (−0.290, 3.089)

04 1.020 (0.039, 2.011) 1.024 (−0.022, 2.081) 0.699 (−0.672, 2.089) 0.639 (−0.471, 1.761) 2.538 (1.032, 4.066) 1.509 (−0.261, 3.311)

05 1.279 (0.249, 2.320) 1.339 (0.240, 2.449) 0.858 (−0.580, 2.317) 0.921 (−0.243, 2.099) 2.751 (1.170, 4.356) 1.517 (−0.338, 3.408)

06 1.599 (0.526, 2.685) 1.642 (0.497, 2.801) 1.254 (−0.244, 2.774) 1.139 (−0.075, 2.368) 3.324 (1.677, 4.998) 1.700 (−0.234, 3.671)

07 1.802 (0.688, 2.929) 1.894 (0.703, 3.098) 1.439 (−0.115, 3.018) 1.266 (0.009, 2.539) 3.631 (1.919, 5.371) 1.654 (−0.353, 3.702)

08 1.954 (0.797, 3.125) 2.101 (0.864, 3.353) 1.574 (−0.038, 3.213) 1.379 (0.074, 2.701) 3.709 (1.930, 5.518) 1.640 (−0.445, 3.769)

09 2.122 (0.921, 3.338) 2.327 (1.042, 3.628) 1.760 (0.088, 3.460) 1.488 (0.136, 2.859) 3.766 (1.921, 5.645) 1.667 (−0.496, 3.878)

010 2.280 (1.033, 3.541) 2.476 (1.143, 3.827) 2.024 (0.290, 3.788) 1.675 (0.272, 3.097) 3.804 (1.892, 5.752) 1.704 (−0.538, 3.997)

011 2.383 (1.092, 3.691) 2.601 (1.218, 4.002) 2.256 (0.458, 4.085) 1.691 (0.239, 3.165) 3.795 (1.816, 5.812) 1.780 (−0.542, 4.156)

012 2.501 (1.165, 3.856) 2.699 (1.268, 4.151) 2.574 (0.712, 4.470) 1.682 (0.181, 3.207) 3.916 (1.870, 6.003) 1.961 (−0.442, 4.422)

013 2.543 (1.160, 3.945) 2.742 (1.261, 4.244) 2.744 (0.818, 4.708) 1.590 (0.041, 3.164) 4.042 (1.927, 6.202) 1.994 (−0.492, 4.542)

014 2.588 (1.161, 4.035) 2.773 (1.246, 4.324) 2.865 (0.876, 4.893) 1.508 (−0.089, 3.129) 4.173 (1.988, 6.404) 2.240 (−0.329, 4.874)

Bold font indicates statistical significance.

CSD, circulatory system diseases; CEVD, Cerebrovascular Disease; CHD, Coronary Heart Disease; HF, Heart Failure.
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FIGURE 3

Percent changes and 95% confidence intervals (CIs) of daily hospital admissions for total and cause-specific circulatory system diseases by each 10

µg/m3 increase of PM2.5 concentrations stratified by gender at the cumulative-day lag models. HBP, hypertension; CHD, Coronary Heart Disease;

CEVD, Cerebrovascular Disease; HF, Heart Failure.

FIGURE 4

Percent changes and 95% confidence intervals (CIs) of daily hospital admissions for total and cause-specific circulatory system diseases by each 10

µg/m3 increase of PM2.5 concentrations stratified by age in the cumulative-day lag models. HBP, hypertension; CHD, Coronary Heart Disease; CEVD,

Cerebrovascular Disease; HF, Heart Failure.
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FIGURE 5

Percent changes and 95% confidence intervals (CIs) of daily hospital admissions for total and cause-specific circulatory system diseases by each 10

µg/m3 increase of PM2.5 concentrations stratified by season in the cumulative-day lag models. HBP, hypertension; CHD, Coronary Heart Disease;

CEVD, Cerebrovascular Disease; HF, Heart Failure.

2.865% (95% CI, 0.786–4.893%), 1.691% (95% CI, 0.239–3.165%),

4.173% (95% CI, 1.988–6.404%) and 1.496% (95% CI, 0.030–

2.983%) increment in hospitalizations for total CSD, hypertension,

CHD, CEVD, HF, and arrhythmia, respectively.

The risk of hospital admissions seems to be higher in males for

total CSD, CHD, and CEVD, and in females for hypertension, HF,

and arrhythmia (Supplementary Figure 3 and Figure 3).

When analyses were stratified by age (≤65 and >65 years

old), the results were not materially changed. In the elderly

(>65 years old), significantly positive associations were observed

of PM2.5 exposure with all the outcomes of interest in present

study (Supplementary Figure 4 and Figure 4), slightly different

from those in the younger (≤65 years old). As for the young people,

PM2.5 levels were significantly associated with hospitalizations for

CSD, except for arrhythmia.

The impacts of PM2.5 on hospitalizations for CSD in

cold seasons were stronger than those in warm seasons

(Supplementary Figure 5 and Figure 5). In cold seasons, positive

associations were observed in at least one exposure lag structure in

present study, except for CHD. In warm seasons, hospitalizations

for CHD and HF increased 2.618% (95% CI, 0.725–4.546%) and

2.769% (95% CI, 0.493–5.097%) per 10 µg/m3 elevation in PM2.5

levels, while there were no significant increases observed for total

CSD, hypertension, CEVD, and arrhythmia.

The results of co-pollutant models were shown in Table 3.

The associations remained largely unchanged when additionally

adjusted for CO or/and O3, and were similar with additionally

adjusted for all major air pollutants. Moreover, the results

were similar when we changed the df for secular time

(Supplementary Tables 1, 2 and Supplementary Figures 6–11)

and adjusted the effect of COVID-19 (Supplementary Table 3),

which illustrated the robustness of our findings.

4. Discussion

In this study, we found that short-term exposure to PM2.5

was positively associated with hospitalizations for CSD, including

total CSD, hypertension, CHD, CEVD, HF and arrhythmia, with

significant lag effects. When analyses were stratified by age, gender,

and season, there were no material changes of our findings,

although the risk of hospitalizations seems to be higher among

young people and cold seasons. Our results kept robust in the

co-exposure models.

Though previous studies have reported relationships of PM2.5

with the risks of CSD, the results were largely inconsistent.

Most studies found positive relationships of PM2.5 with increased

risk of CSD. A multi-country time series study including 30

countries reported that every 10-µg/m3 elevation in PM2.5

concentrations was significantly relevant to a 0.12%, 0.42%,

and 0.17% increase in cardiovascular diseases (CVD), acute

myocardial infarction (AMI), and CHD on the same day (14).

Furthermore, another study conducted in Beijing found that

increasing PM2.5 levels were associated with hospitalizations for

total CVD, CHD and atrial fibrillation (AF) (21). However, a

few studies argued that there were no significantly associations

of PM2.5 exposure with the risks of CSD (12, 15). Notably,

the case data in above studies mainly came from government
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departments, which means that the data might be incomplete.

Moreover, the confounding effect of time was not considered. Here,

this time-series study based onmore complete data were conducted

and significantly positive associations of PM2.5 exposure with

hospitalizations for CSD were observed, which was keeping with

most studies.

The delayed effect of PM2.5 was also inconsistent in previous

studies. Some studies across different countries showed that the

impacts of PM2.5 on CSDmortality were peaked on the current day

(22) and lag03 (13, 23, 24). A study in Kraków, Poland reported the

delayed effects of PM2.5 levels on the risk of Myocardial Infarction

(MI) admissions were observed at lag4 and lag6 (11). In our study,

the earliest positive association between PM2.5 and hospitalizations

for total CSD was at lag1 and peaked at lag6, as well as lag04 and

lag014 in the cumulative-day lag model, which were longer than the

hysteresis of other studies. The potential underlying reasons are as

follows. First of all, the air quality of Ganzhou city is relatively good,

and the average levels of PM2.5 from 2016 to 2020 was 37.38µg/m3,

which was significantly lower than that in other studies (21, 25).

According to previous toxicological studies, PM2.5 exposure could

lead to chronic systemic inflammation (26, 27), oxidative stress

(28), stress hormone secretion (29–31) and vascular endothelial

disfunction (32, 33), thereby causing to cardiovascular system

damage. It takes several days from PM2.5 exposure to symptoms

and hospitalization. Therefore, we speculated that exposure to

higher levels of PM2.5 might have an acute effect on circulatory

system health, while relatively low levels of PM2.5 tended to have

delayed effects. Further studies are definitely needed to verify

the hypothesis. Besides, in present study, hypertension and CHD

accounted for relatively higher proportion of 47.0% and 14.2% in

total CSD, respectively (Table 1). Worthy of note was that patients

with hypertension and CHD are more inclined to self-medicate

rather than to be hospitalized until their conditions worsen, which

might be responsible for longer days’ lag and underestimations of

the impacts of PM2.5.

In this study, the cumulative-day lagmodel generally has higher

estimates than the single-day lag model, with the greatest effects

observed at lag 014. Similar results have been observed in other

studies (34–36). The health effects of air pollutants usually last

for several days, therefore, a cumulative lag model might be more

accurate than a single-day lag model in assessing the health effects

of air pollutants.

Our results regarding the positive associations of PM2.5 with

CSD were correspondent with current mainstream understanding

of the damage effects of PM2.5 on the circulatory system.

Previous toxicological studies (28) have shown that PM2.5 is

inhaled into lung through respiration, causing lung inflammation.

The particles and inflammatory mediators released by alveolar

macrophages could also enter the blood circulation system

directly through the capillaries in the lungs and cause systemic

inflammation and vascular endothelial dysfunction (37). These

responses may underlie PM-induced circulatory system damage.

PM2.5 could also activate the hypothalamic–pituitary–adrenal

(HPA) axis, triggering an increase of stress hormones release,

thereby causing vasoconstriction, increased blood pressure and a

series of pathological reactions (29). However, full details regarding

the biological mechanisms remain largely unclear and warrant

further study. T
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The associations between PM2.5 and hospitalizations for CSD

were not materially changed in different gender subgroups. The

impacts of PM2.5 on the hospitalizations for arrhythmia seemed to

be stronger in females compared with males, consistent with some

studies (35–37), which might be attributable to more vulnerable

biological systems of females.

In age subgroups, we found that younger people (≤65 years

old) showed greater sensitivity to PM2.5 exposure in total CSD,

hypertension, CHD, CEVD, and heart failure. In addition to

air pollution, numerous factors such as occupational exposure

(38), lifestyles (39), and even social status (40) and psychological

factors (8) could also affect the health of circulatory system.

Compared with the elderly, younger people tend to spend more

time outdoors and are more vulnerable to harmful ambient hazards

and occupational factors, such as industrial dust, chemicals, and

noise (41), which can explain why younger people are more

susceptible to PM2.5. Overall, more researches are warranted to

probe the potential modifiers in age and sex on associations of

PM2.5 exposure with the risks of CSD.

In our study, the impacts of PM2.5 on the CSD, except

for CHD, dominated during the cold seasons. The differences

in PM2.5 levels and compositions might be accounted for the

seasonal variations in the relationships of PM2.5 exposure with

hospitalizations for CSD. The mean levels of PM2.5 during cold

seasons from 2016 to 2020 in Ganzhou is 43.62µg/m3, significantly

higher than that in warm seasons (31.22 µg/m3), shown in

Supplementary Table 2. Furthermore, some constituents in PM2.5,

including polycyclic aromatic hydrocarbons (PAHs) and metals,

which were acknowledged to cause damage to the circulatory

system (42, 43), increased significantly compared with warm

seasons according to related studies (44, 45).

Profound elucidation for the exposure-response relationship

is essential for public health policy formulation regarding the

limit for PM2.5. In this study, the exposure-response curves were

approximately linear with relatively steeper increases at higher

concentrations of PM2.5 (>110 mg/m3 for HF, >100 mg/m3 for

other circulatory system diseases). A series of previous studies also

reported similar linear exposure-response relationships (21, 36, 46–

50). For example, a study in Beijing found that the hospitalizations

for ischemic stroke had a stable increase at lower concentrations

(<100 µg/m3) and a steeper increment at higher concentrations of

PM2.5 (46).

Notably, the average 24h concentration of PM2.5 in Ganzhou

from 2016 to 2020 was 37 µg/m3, lower than current National

Ambient Air Quality Standard (NAAQS) for PM2.5 (75 µg/m3)

(51). However, significantly positive associations of PM2.5 and

hospitalizations for CSD were still observed. Our findings were

consistent with some studies. In a study of 200 Chinese cities

(52), which included 58.52 million hospital admissions, the positive

relationships of PM2.5 with hospitalizations were observed when

the daily levels met the current NAAQS (75 µg/m3). Furthermore,

a recent analysis of Europe (53) also revealed that long-term low

levels of PM2.5 exposure was related to the morbidity of stroke

and CHD. Additionally, a study in USA (54) also reported the

deleterious effects of PM2.5 at levels below the specified limits.

From the perspective of public health, our study suggests that more

stringent PM2.5 standard limits than current NAAQS should be

established to minimize the harmful effects of ambient PM2.5.

In the co-pollutant models, after adjusting CO or/and O3, and

other major pollutants, the hospitalizations for CSD per 10-µg/m3

elevation of PM2.5 still significantly increased, indicating that the

impacts of PM2.5 on the risks of CSD were robust, in keeping with

most studies (21, 23, 55).

There are several strengths in the current study. Firstly, this

study estimated the associations between PM2.5 levels and the

risk of hospitalizations for CSD in Ganzhou for the first time.

Besides, hospital admission data was selected as the effect indicator,

which was more sensitive than mortality and has great public

health implications.

However, several limitations should also be considered. First,

using outdoor air pollution measured at outdoor fixed sited

monitors as a proxy for individual exposure levels might lead to

the misestimation of the exposure assessment. Secondly, our case

data were only collected from one hospital in Ganzhou, which

was inevitably to the ecological fallacy and the extrapolation of

our research results were limited, to a certain extent. In addition,

confounding factors such as smoking, alcohol consumption,

occupation and education levels were not considered in the analysis

due to lack of information. Finally, we were unable to evaluate the

long-term influence of PM2.5 on the CSD under the time-series

analysis design. Therefore, more well-designed studies are needed

to explore the short-term and long-term impacts of PM2.5 exposure

on the incidence of CSD in depth.

5. Conclusion

In this study, we found significantly positive associations

of relatively low PM2.5 exposure with daily hospitalizations for

total and cause-specific CSD in Ganzhou. And the associations

varied in age, gender, and season subgroups. Our findings provide

substantial insight regarding the effects of PM2.5 exposure on

CSD, which may provide evidence of stricter limits on PM2.5

concentrations and help local policymakers to formulate or

promulgate prevention policies.
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The expansion of China’s development zones has made great contributions

to economic development, as well as provided practical guidance for other

developing countries to implement development zone policies. However, in the

context of global advocacy of low carbon, literature about how the development

zone policy a�ect carbon emissions is poor, especially in China at the urban level.

Therefore, this study takes China’s development zone policy as a quasi-natural

experiment, using the panel data of 285 cities in China from 2003 to 2020, and

adopting the DID model to analyze its impact on carbon emissions. After a series

of robustness tests including placebo test, dynamic test (all independent variables

are lagged by one period), endogeneity test, and parallel trend test, the results

are basically robust. The findings show that the development zone policy indeed

significantly reduces carbon emissions. In addition, we find that cities with higher

resource endowments, cities in the eastern and central regions, and other larger

cities across the country have better carbon emissions reduction e�ects. To a

certain extent, the research in this paper fills the gap of theoretical research on

carbon emissions in terms of the development zone policy, and provides some

practical basis for future research in the field of carbon emissions.

KEYWORDS

national development zone policy, carbon emissions, spatial di�erence-in-di�erences

model, quasi-natural experiment, spatial heterogeneity

1. Introduction

The world’s first special economic zone can be traced back to 1959, when the

development zone in Shannon, Ireland, was established. Establishing the development zone

has brought prosperity to the Irish economy (1). Since then, many countries worldwide

have established various special economic zones similar to the development zone [(2–5);

Frick et al., 2022]. In particular, China’s first batch of national-level development zones

was launched in 1984, which has rapidly promoted economic growth due to its unique

advantages in management mechanisms, innovative elements, and preferential policies (6).

It is widely known that China has the second largest economic system in the world (7),

while there is no consensus on the factors driving sustainable economic development,

especially in the field of policy evaluation (8). In fact, it is commonly known that national

development zone strategy promotes economic development (9). The global economy has

slumped in recent years due to the COVID-19 pandemic, and China’s economy has also

been significantly impacted at the same time, thus the outlook for export commerce situation

is not promising. Fortunately, since China’s population base is large and is located in a

development zone, the Chinese people can alleviate the effects of the pandemic there,
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allowing China’s economy to continue to grow steadily despite the

ongoing decline of the world economy (10–12).

Despite the fact that China has experienced significant

economic growth in the recent decades (13), the rise in carbon

emissions year after year casts doubt on this broad progress

(14). China now ranks among the countries with the highest

global carbon emissions (15). In contrast, China’s carbon emissions

in 2017 made up 28% of all carbon emissions worldwide (16).

In addition, global carbon dioxide emissions increased in 2021

compared to 2020 by 4.8% (17). Global warming, caused by the

recent rapid surge in carbon emissions, poses a serious threat to

human sustainability (18). Therefore, the main challenge facing

the Chinese government is to find solutions to balance the issues

of economic development and environmental conservation (19).

Against this background, in order to accept the international duty

and foster the development of “a community with a shared destiny

formankind”, Chinese President Xi proposes the program of “strive

to peak carbon dioxide emissions by 2030 and strive to achieve

carbon neutrality by 2060” in September 2020 (20).

The available literature on the effects of national development

zone policy may generally be split into three categories including

economy, society, and environment. As for the economy, the

development zone has a significant economic impact on the

city’s technological innovation (21), and it may foster the

growth of high-tech enterprises, encourage investment benefits,

and broaden the region’s economic base (22). In terms of

social welfare, the development zone’s economic expansion will

unavoidably encourage regional growth, raise residents’ quality of

life, and further the completion of sanitary infrastructure (23).

In addition, the level of employment, wealth, and happiness of

the populace will rise locally (24). However, the development

zone resembles an industrial cluster in terms of ecology. Sulfur

dioxide, nitrogen dioxide, and industrial waste water, will be

released as a result of mass production, which will take a lot

of energy and fuel and which will cause serious damage to

the ecological environment (25). At this time, the research how

development zone policies affect carbon emissions is limited,

which forms the initial incentive of this study, that is, to fill the

research gap.

Has the implementation of the development zone policy

reduced total carbon emissions? Evidence from a quasi-natural

experiment in China. Research on the impact of development

zone policies on carbon emissions based on DID model; Study

the lagging effect of development zone policies; Analyze whether

the effect of implementing development zone policies in different

regions, cities of different sizes and different resource types in

China is consistent; Study the spatial effects of development zone

policies between pilot and non-pilot cities. Through the above

correlation analysis, the mechanism of how the implementation

of development zone policies and similar policies affects the total

carbon emissions is systematically elaborated. It aims to provide

guiding advice to developing countries like China. According to

existing research findings, the DID model and its derivatives are

frequently employed in the field of policy assessment due to their

benefits in avoiding issues with endogeneity and omitted variable

bias (26, 27). Due to China’s unique characteristics, including its

huge landmass and wealth of natural resources (28), there may

be disparities in the extent of the effects of the development zone

policy’s implementation in various areas and cities. Additionally,

the city’s resource endowment will influence how the development

zone policy performs (29). Moreover, this work takes into account

the effect of policy upgrading or superposition on carbon emissions

in order to further illustrate the research scenario (30). In order

to examine the effects of development zone policies on urban

carbon emissions, this study seeks to arrange development zone

policies as a collection of quasi-natural experiments, and employs

the DID model as a benchmark regression approach (31). The

propensity score matching DID model (PSM-DID model) (32)

is used to around the DID model’s limitations. Furthermore, the

spatial difference model (SDID) is also employed to detect the

probable existence of spatial spillover effects (33).

Two characteristics of this study can be used to infer its

key contributions (33). Theoretically, research on the effects

of development zone rules now focuses majorly on the effects

on the economic scale and economic development of the city,

while the research on the impacts of the policies on the urban

environment is uncommon. In order to conceptually fill the gap

left by the absence of this module. We put the development

zone policy and carbon emissions into a research framework,

and comprehensively analyzed the relationship between the

development zone policy and carbon emissions from both static

and dynamic perspectives by using various methods. This research

has significant worldwide guiding relevance for other emerging

nations as well as significant practical meanings for the creation and

optimization of development zones including high-tech zones and

economic development zones, etc. Practically, this study divided

the entire sample into subgroups according to geographic location,

urban scale, and resource endowment of the city, which enriches

the application value of policy recommendations.

The remainder of the study is organized as follows to maintain

its integrity. Section 2 presents and summarizes earlier related

studies in a concise manner, and constructs the theoretical

mechanism. Section 3 describes the economic model and related

variables. Section 4 examines the empirical results and some

robustness tests. Section 5 covers the diversity of city location,

scale and resource donation, and tests the SDID model and policy

upgrading and superposition effects. Section 6 summarizes the

research results, offers guidance, and identifies future directions for

further study.

2. Literature review and theoretical
mechanism

The literature review is divided into four sections: The first

part provides an overview of the current literature on carbon

emissions; The second part analyzes the literature on the economic

effects of development zone policies; The third part provides a brief

summary of the research literature on the environmental effects of

development zone policies; The forth part, through the research of

relevant literature, the theoretical mechanisms of the development

zone policy’s effect on carbon emission are sorted out.
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2.1. Literature on carbon emissions

As is common knowledge, energy use and carbon emissions

are intimately correlated with human activity. Especially,

population mobility has a major negative impact on carbon

emissions in regions where people live (34, 35). Mobility

of the population will unavoidably result in frequent use

of transportation, which uses a lot of fossil fuels and raises

carbon emissions. In the transportation sector, intelligent

mobility can significantly reduce carbon emissions (36).

Economic manufacturing will raise carbon emissions in

cities, which is another significant element affecting China’s

industrial development. Some academics contend that while

economic progress aids in the rationalization of industrial

structure and carbon emissions, the upgrading and optimization

of industrial structure has a detrimental effect on carbon

emissions (19, 37).

China has a significant agricultural sector, thus its influence on

carbon emissions cannot be understated. Research on the steadily

rising rural carbon emissions in China’s provinces discovered

that the provinces closest to the ministry created the most

emissions (38). Numerous academics have studied how the use

of science and technology in diverse areas influences carbon

emissions in light of China’s tremendous advancement. Some

academics state that China’s total carbon emissions are somewhat

increasing due to low innovation efficacy of green technology

(39, 40). Also, some scholars think that the advancement of

green technology benefits the research and creation of renewable

resources. Eventually, it has a major detrimental influence on

carbon emissions, but has less of an effect in the short term (41).

Science and technology advancements encourage the development

of digital technology, and these advancements can decrease carbon

emissions as a result of their positive knock-on effects (42).

According to the study, China’s embedded carbon emissions

from 2002 to 2017 were significantly impacted negatively by

factors relating to the production structure of the digital economy

(43).

2.2. Literature on the influence of
development zone policy on the economy

We can assume that when we talk about the development

zone, we are talking about development-related information.

Therefore, the focus of this research material is on the development

and economic development zones, as well as on how these

development zones impact affect the local economy. According

to some academics, the creation of development zones can, in

some cases, encourage industrial agglomeration, boost industrial

productivity, and boost exports. Also, the upgrading strategy

policy of development zones influences both imports and exports

(44). Moreover, China’s development zones have a variety of

repercussions, the most notable of which is a considerable impact

on nearby manufacturing businesses (45). The creation of the

economic development zone serves as a foundation for improving

the organization of the industrial land, maximizing its use, and

providing a solid land guarantee for the industrial transfer of the

manufacturing industry (46).

Development zones can boost investment effectiveness,

increase financial openness, and enhance the region’s overall

economic growth in terms of fostering regional economy (47).

Development initiatives strategies has considerably significant

spillover and driving impacts and serves as a launchpad for

communities to pursue innovation-driven development initiatives

(46). Over time, the spillover impacts will differ in numerous ways,

largely depending on the special zone’s strategic development

and policy objectives (48). By distributing resources fairly, the

spillover effect can effectively encourage regional economic

growth, and help close the economic development gap between

regions (22). By maximizing the arrangement of public service

facilities, the high-tech zone diversifies urban public service goals

in order to better the city as a whole (49). At the macro level, it

encourages regional economic growth, and at the micro level, it

benefits business performance and the improvement of individual

performance (50, 51).

2.3. Literature on the impact of
development zone policies on the
environment

Development zones influence our ecological environment to

varied degrees in addition to having an effect on our economic

development. Theoretically, the establishment of the development

zone will attract a large number of industries to settle in these cities,

since industrial manufacturing is an indispensable real economy

in a city. Unfortunately, it contaminated the environment of the

city in the process of creating the economy. According to Guo

et al. (52), the industrial pollution index records an initial decline

and a gradual rise with time. Furthermore, the research shows

that industrial production will produce a large amount of polluting

gases, the most important of which are sulfur dioxide and nitrogen

dioxide (52). Simultaneously, the production of heavy industry

produces a large amount of industrial wastewater. Palani et al. (53)

explain that improper treatment of wastewater will cause pollution

of water resources, and the long-term consequence is the decline in

the quality of the ecological environment.

Arguably, developing digital industries and sustainable

industries are critical skills that can be used to solve this problem.

Some researchers hold that developing the digital economy will

significantly reduce the industrial pollution (35). The argument

is that the high-tech sector puts emphasis on progressing

science and technology (54). Consequently, the upgrading of

science and technology will improve the efficiency and quality

of environmental pollution treatment (55). Because of the

varying stages of development zones, the pollution situation

after implementation is also very different. The formation of

provincial-level development zones further aggravated China’s

contamination intensity, but rising to the national level, they no

longer play the same role (56). Likewise, concerning the smog

pollution in the nation, the provincial development zone policies

significantly increased smog pollution. On the other hand, the

national development zone policies have no significant effect (57).
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Contrasting the development zones, the establishment of high-tech

zones can improve the environment, and the increase of green

patents and economic agglomeration are the mechanisms by which

high-tech zones can improve the environment (47).

2.4. Theoretical mechanism

From the perspective of technological innovation, on the one

hand, the establishment and construction of the development

zone will attract a large number of high-tech enterprises (22),

and at the same time, it will encourage local enterprises to carry

out technological innovation activities and increase investment

in innovative scientific research (26). High and new technology

will improve the efficiency of production and manufacturing,

meanwhile, it will increase the utilization rate of raw materials,

promoting production efficiency and reducing the consumption

of production resources and power resources (58), to achieve

the effect of reducing carbon dioxide emissions. On the other

hand, the establishment of the development zone will promote

the development of emerging green industries such as high-

end equipment manufacturing, new energy industries, and lead

the direction of urban industrial transformation (59). With the

acceleration of the industrial structure upgrading process led by

the establishment of the development zone, the living space of

the traditional “three high” industries in the city has been further

reduced, and the vacated development space will be more occupied

by strategic emerging green industries, which makes pollution-free,

Clean and green production factors have been widely gathered and

applied (60), it can also reduce carbon dioxide emission intensity

and improve urban air quality.

From the perspective of resource allocation, on the one hand,

the lower land price inside the development zone and related

policy grants enable enterprises in the park to enjoy low supply of

factors and ensure the continuity of normal production activities

of enterprises (13, 61), to promote the efficiency of enterprise

factor utilization. In addition, the complete infrastructure of the

national development zone has successfully attracted foreign high-

quality innovation capital, creating conditions for the emergence

and development of high-end productive services (61). On the

other hand, the high-end production factors attracted by the

development zone can fully replace traditional production factors,

promote the development of resource-intensive industries, and

gradually reduce environmental pollution (62). To sum up, the

optimization of resource allocation caused by the establishment

of national development zones will help reduce undesired outputs

in the industrial production process (63), and accordingly reduce

carbon dioxide emissions.

From the perspective of the city’s own conditions, under

the background of the establishment of national development

zones, there are large differences between different cities in terms

of economic scale, innovation factor agglomeration capacity,

resource allocation efficiency, and industrial policy formulation

and implementation capacity (46). Generally speaking, regional

economic development lags behind that of central cities (64).

Under the guidance of the construction of ecological civilization,

compared with other cities, the central city with stronger

agglomeration ability of innovation elements can give full play

to its advantages in terms of policy pilot, economic development

scale and innovation element agglomeration, so as to achieve

the transformation of economic development model (65). And

the first-mover advantage of industrial structure adjustment,

promote the full release of the potential of urban environmental

improvement (66). Due to the relatively poor elements to

promote the upgrading of the industrial structure and the

poor external environment for industrial development, other

cities have great potential and latecomer advantages in terms

of environmental improvement capabilities (67). Through the

construction of national-level development zone, such cities can

obtain the technological spillover effect and high-end production

factor agglomeration associated with the establishment of

development zones, and fully release the vitality of urban industrial

transformation (68), thereby enhancing the city’s ability to improve

environmental quality by adjusting its industrial structure.

From the perspective of spatial effects, in view of the

spatial agglomeration and spatial differences in my country’s

environmental policies, institutional environment and energy

structure, when examining the impact of the establishment of

national development zones on local carbon dioxide emissions, the

carbon emissions of neighboring cities should also be taken into

account (69). In other words, we should fully consider the spatial

spillover effect of policy. With the rapid development of country’s

digital information technology, cloud computing platform, and big

data applications, industries in different cities are more closely

connected (70). The development zone policy can not only rely

on the transformation of the local energy structure to enhance

the green total factor productivity and improve the quality of the

urban environment (63), but also have a significant impact on the

carbon dioxide emissions of adjacent cities (71). Namely, although

the local carbon dioxide emissions have been reduced, their cost

may be higher energy consumption in neighboring cities and lower

urban environmental quality. In particular, to reveal the theoretical

mechanism vividly, we have draw the framework of empirical steps

and reported in Figure 1.

3. Empirical model

3.1. Empirical framework

After the creation of the initial group of development zones,

the nation’s policies have always maintained development as an

essential objective. Pilot areas of development zones across China

were the large-scale cities. It is clear that the development brought

to the cities caused economic growth and betterment of science and

technology. Consumption of resources is another causal factor for

economic growth, the consumption of resources is at the expense

of the environment, which will bring large emissions of greenhouse

gases, such as the total carbon emissions of cities. Research holds

that the development of science and technology can ease this

occurrence. Theoretically, the use of advanced technology will

lower the total carbon emissions of the city. In this regard, this

paper considers development zone policies as a set of quasi-natural

experiments. The paper also relies on the DID model to assess

how development zone policies impact carbon emissions. For this
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FIGURE 1

Flowchart of theoretical mechanism.

research, pilot cities were listed as the experimental group while the

non-pilot cities were the control group. Since the development zone

pilots are conducted in different years, a multi-phase DID model

will be used. The following is the formula for the multi-period

DID model:

TCEit = α0 + α1DZPit + βXit + λi + λt + µit (1)

Where the subscripts i and t represent city and year, TCE is

the total carbon emissions of the city, DZP represents the dummy

variable about the status of the policy implementing, X is a series

of control variables, λi denotes the individual effect, λt denotes

the time fixed effect, α1 is the DID estimator, indicating the net

effect of policy on total carbon emissions, β is the coefficient of

control variables, µ is the random disturbance term, α0 is the

constant term. DZPit is the dummy variable, representing a city’s

development zone policy implementing status. More specifically,

DZPit= 1 if city i implemented the development zone policy during

the sample period, and 0 otherwise.

In addition, we constructed a PSM-DID model for correlation

robustness checks because the DIDmodel is not ideal in addressing

the problem of sample selection bias. In addition, the model can

make the more actual test in line with the theory. Using the model,

we can more accurately measure if development zone policies

can effectively affect the city’s total carbon emissions. The specific

theoretical model is as follows:

TCEPSMit = α0 + α1DZPit + βXit + λi + λt + µit (2)
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Furthermore, a spatially extended form of the DID model to

SDID model based on Equation (1) was used to analyze the spatial

spillover effects of policy further. The following is the formulated

form of this extended model:

TCEit = α0 + α1DZPit + βXit + β1 ×WT,TDit

+β2 ×WNT,TDit

+β3 ×W × Xit + λi + λt + µit

(3)

Where W is the spatial weight matrix, WT,TDitrepresents the

spatial spillover effects among pilot cities, WNT,TDitdesignates the

spatial spillover result of pilot cities on non-pilot cities which

neighbor pilot cities, W×Xit is the spillover effects of control

variables. β1 is the spatial coefficient of WT,TDit , β2 is the spatial

coefficient ofWNT,TDit , and β3 is the spatial coefficient ofW×Xit .

Last but not least, it should be pointed out that the DID

model satisfies the parallel trend test. In other words, levels of

carbon emission from pilot and non-pilot cities must not differ

systematically over time. According to the approach of Jacobson

and Sullivan (72), by constructing a series of temporal dummy

variables, a temporal analysis research framework is used to analyze

the dynamic influence of the application of development zone

policies on urban carbon emissions. Consequently, we create a

dynamic analysis model as formulated below:

TCEit = α0 +
t+5
∑

t-5

αtDZPit + βXit + λi + λt + µit (4)

Among them, DZP represents the dummy variable of the years

before and after the realization of the development zone policy.

DZP0 is the dummy variable of the year when the city enforces

the development zone policy; DZPt−n is the dummy variable of n

years before the implementation of the development zone policy;

DZPt+n is the dummy variable of n years after the enforcement of

the development zone policy; other variables are constant as in the

case of Equation (1).

3.2. Data and variables

Panel datasets and IPE research reports of 285 cities in China

provide the sample data. The data period was scanning from

2003 to 2020. Other data sources included several official national

statistical documents like the China Urban Construction Statistical

Yearbook, the China Urban Yearbook, and the China Statistical

Yearbook. After the disruption, all minor indicators are adjusted

to the constant price in 2003 as per the provincial price index.

3.2.1. Dependent variable
The total carbon emissions is the dependent variable. To

prevent double counting, the annual consumption of various

types of energy in each city was subtracted from the input and

loss of energy processing and conversion process and industrial

production as raw materials, and the net consumption of 285

cities was obtained. As per the regulations stipulated in the 2006

IPCC Guidelines for National Greenhouse Gas Inventories issued

by the IPCC Panel on Climate Change (IPCC), carbon emissions

from fossil fuel combustion are projected from the amount

of fuel burned and default emission factors. When calculating

urban carbon emissions as explained by Zhang et al. (73), the

consumption of three energy sources is mainly considered. These

energy sources are liquefied petroleum gas (LPG) represented by

LCO2, natural gas (NGas) represented by NCO2, and electricity

(ET) represented by ECO2. Below is the formula for calculating the

total carbon emissions:

CO2 = LCO2 + NCO2 + ECO2 = σ1LPG+ σ2NGas

+σ3(k× ET) (5)

Where σ 1 represents the carbon emission factor of LPG with

a value of 3.1013 kg/m3; σ 2 stands for the carbon emission factor

of NGas with a value of 2.1622 kg/m3; σ 3 represents the carbon

emission factor of the coal-fired fuel chain, equal to 1.3023 kg/kW

carbon emissions; κ is the ratio of coal-fired power generation to

total power generation.

3.2.2. Key independent variable
In this study, we chose DZPit as the key dependent variable,

which is a dummy variable that describes the application status

of development zone policies in pilot cities. When DZPit= 1, it

means that the ith pilot city began to implement the development

zone policy in t, and the rest of the cases are 0. Specifically, from

2008 to 2012, a total of 113 cities implemented the development

zone policy. After 2013, by 2020, a total of 7 cities implementing

the development zone policy will be added, for a total of 120 pilot

cities. Due to the non-uniform nature of policy timing points,

multi-period DID was used for correlation analysis.

3.2.3. Control variables
Studies conducted previously by other researchers (74, 75),

explain that to prevent omission of small variables related to

the level of total carbon emissions, we need various control

variables. For this study, the control variables are: (1) Foreign

direct investment (FDI): expressed by the ratio of foreign direct

investment to GDP. (2) Urban rate (UR): expressed by the ratio

of the urban population to the total population of the city (3) Per

capita GDP (PGDP): expressed by logarithmic form of per capita

GDP; (4) Finance Decentralization (FD): expressed by the form

of the ratio of fiscal expenditure to fiscal revenue; (5) Population

density (DENSTY): expressed by logarithmic form of the ratio

of the total urban population to the urban administrative area;

(6) Industrial upgrading (IU): expressed by the ratio of the total

industrial value of the secondary industry to GDP and the ratio of

the total output value of the tertiary industry to GDP.

This paper gives relevant statistical descriptions of independent

variables, dependent variables and control variables. The number of

valid samples is 5,130, and the mean, standard deviation, minimum

and maximum values of each variable are statistically described.

The specific details are shown in Table 1.
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TABLE 1 Descriptive statistics.

Variables Observations Mean S.D. Min Max

TCE 5,130 25.988 23.617 1.529 230.712

DZP 5,130 0.472 0.499 0.000 1.000

lnPGDP 5,130 10.252 0.837 7.545 13.056

lnDENSITY 5,130 5.726 0.916 1.547 7.923

FD 5,130 2.814 1.869 0.649 18.399

IU 5,130 0.933 0.512 0.094 5.348

UR 5,130 0.495 0.174 0.078 1.000

FDI 5,130 0.022 0.025 0.000 0.376

4. Empirical analysis

4.1. Benchmark regression test

It is important to note the regression analysis is conducted on

the primary variables first then other overall variables in the results

of the regression analysis are shown in Table 2. From column (1),

it is found that the coefficient of the key variable DZP is −1.390.

The coefficient reaches a significant level of 5%, indicating that

the implementation of the development zone policy is conducive

to the reduction of the total carbon emissions of the pilot cities.

Column (2) of the table indicates that with the upsurge of the

control variables, the coefficient ofDZP and the significance test do

not change considerably. These results mean that control variables

have the very minimal effect on the total carbon emissions of the

pilot cities. This conclusion is consistent with Gao et al. (76), whose

research on the impact of development zones on carbon emissions,

and the establishment of development zones has a positive impact

on the city’s carbon emission performance. Table 2 also shows that

in the control variables, FD, FDI and the total carbon emissions of

the pilot cities have the positive relationship of change. On the other

hand, lnPGDP, lnDENSITY, IU, UR and the total carbon emissions

of the pilot cities have an inverse relationship of change relating to

the total carbon emissions of the pilot cities.

4.2. Robustness test

Several robustness tests were necessary to demonstrate the

robustness of the results gotten from the regression tests on the

core results. These robustness tests included PSM-DID model

evaluation, endogeneity test, dynamic effect analysis, parallel trend

test, placebo test, and other test removing municipalities that can

prove robustness of regression analysis. Based on the results from

a series of analysis the core results have strong robustness. In other

words, the effect of development zone policies in pilot cities on the

total carbon emissions is very significant.

4.2.1. Parallel trend test
According to the parallel trend test of carbon emissions

related to special economic zones by existing scholars (50), he

believes that after the establishment of new special economic

TABLE 2 Benchmark regression results.

Variables TCE

(1) (2)

DZP −1.390∗∗ −1.057∗

(0.603) (0.553)

lnPGDP −0.469

(1.346)

lnDENSITY 12.252∗∗∗

(4.387)

FD −0.651∗∗∗

(0.156)

IU 2.024∗∗∗

(0.739)

UR 8.132∗∗

(3.497)

FDI −30.376∗∗∗

(11.613)

City fixed Yes Yes

Year fixed Yes Yes

Observations 5,130 5,130

R-squared 0.966 0.968

Robust standard errors in parentheses, ∗∗∗ , ∗∗ , and ∗ indicate significance at the 1, 5, and 10%
levels, respectively.

zones, the trend of per capita carbon emissions is consistent

with that before the policy impact. This means that the

assumption of parallel trends is valid. After the impact of

relevant policies, carbon emissions show a significant downward

trend, which further indicates that the establishment of new

special economic zones will have a negative impact on the

carbon emissions of cities. As a kind of special economic

zone, whether the development zone has the same parallel

trend of carbon emissions. This paper also conducts a parallel

trend test for this problem. The test results are shown in the

following figure.

The horizontal axis in Figure 2 represents the years before

and after the implementation of the development zone policy. On

the other hand, the vertical axis on the same figure depicts its

correlation coefficient. For example, t-4 represents the 4th year

before the policy implementation, and t+4 represents the 4th year

after the policy implementation.

In Figure 2, from year t-5 to year t of the policy execution,

the coefficients all contain 0 values within the 95% confidence

interval. These results indicate that the development zone policy

when implemented and not enforced in the cities have the same

time trend and that the effect of the policy on the carbon emissions

is insignificant From year t+1 to year t+5 of the policy execution,

all coefficient values in the 95% confidence interval are <0.

Likewise, this nature shows that enforcing the development zone

policy in pilot cities and non-enforced cities share the same trend.

Consequently, carbon emissions decreased significantly during
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FIGURE 2

Parallel trend test chart.

FIGURE 3

Placebo test chart.

this time period because of the enactment of the development

zone policy in the cities. Thus, this test holds and satisfies the

parallel trend hypothesis of this study. Over the period of 5 years

after implementation of the development zone policy in these

cities, there was a gradual decrease of the coefficient value for

key independent variable. Before the policy was implemented, the

coefficient value was smaller showing that the implementation of

the development zone policy has a significant inhibitory effect on

the total carbon emissions.

4.2.2. Placebo test
Referring to the placebo test conducted by scholars (77) on the

impact of national independent innovation demonstration zones

on urban carbon emissions, according to the number of pilot cities

launched each year, the same number of cities were randomly

selected as the experimental group to construct a dummy variable

baseline model. Perform 1,000 and 2,000 repeated regressions on

the data. This article discusses how development zone policies affect

carbon emissions. We adopted the placebo test to try and evade

TABLE 3 PSM-DID regression results.

Variables TCE

(1) (2)

DZP −1.739∗∗∗ −1.693∗∗∗

(−6.237) (−6.144)

Control variables No Yes

City fixed Yes Yes

Year fixed Yes Yes

Observations 4,695 4,695

R-squared 0.942 0.945

Robust standard errors in parentheses, ∗∗∗ indicates significance at the 1% level.

situations like sample selection bias (38). Specifically, there were

113 cities from 2008 to 2012, that executed the development zone

policy. Later in 2013, 7 cities were added in 2020 year, for a total of

120 pilot cities for the study. Through the period from 2008 to 2020,

there are 5,130 – 1,525 = 3,605 data samples in the control group

and 113 × 5 + 120 × 8 = 1,525 data samples in all experimental

groups. We randomly selected 113 cities that implemented the

development zone policy from 2008–2020 to collect data. To collect

data from the second group of cities, we also randomly selected 7

cities that did not implement the development zone policy from

2013 to 2020 as cities that implemented the development zone

policy. In total, 120 cities were randomly selected as the treatment

group for the placebo experiment. As shown in Figure 3, the vertical

axis represents the corresponding p-value while the horizontal axis

represents the t value of the development zone policy. The overall

figure shows that the distribution is roughly centered at 0. Most of

the p-values are >0.1, and the absolute value of the corresponding

t-value is <2. Results from this test analysis support that the effect

of our development zone policy on the total carbon emissions is not

affected by the omitted variables.

4.2.3. PSM-DID assessment
During this study, we relied on research methods of existing

literature and use PSM-DID to conduct robustness tests. This

approach allowed us to avoid systematic differences among cities

that do not implement policies and cities that implement policies by

reducing the estimation bias of the key variable DZP. The primary

stages are as follows: first, conduct logit regression on the control

variables in the baseline model to get propensity scores; After that,

use the non-pilot cities with the most alike propensity scores as

the paired objects for the pilot cities; third, use the DID model to

approximate the paired sample cities. As shown in Table 3, from the

approximation results, the coefficients before the key variable DZP

are all negative, from the comparison of the (1) and (2) columns,

the coefficient values are very approximative when considering and

not considering the control variables. These results indicate that

the application of the development zone policy has successfully

lowered the total carbon emissions. Conclusively, we hold that the

core results have strong robustness.
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TABLE 4 Dynamic test results.

Variables TCE

(1) (2)

L.DZP −1.122∗∗ −0.845∗

(0.523) (0.482)

Control variables No Yes

City fixed Yes Yes

Year fixed Yes Yes

Observations 4,845 4,845

R-squared 0.973 0.974

Robust standard errors in parentheses, ∗∗ and ∗ indicate significance at the 5 and 10%

levels, respectively.

4.2.4. Dynamic e�ect test
Because economic and social development have a certain

inertia, the impact on economic operation after the implementation

of the policy will not be immediate. It is probable that the impact

of applying the development zone policy will be many periods or a

one-period lag. For this study we only factor the likely effect of the

policy with one-period lag on the total carbon emissions of the city.

In essence, we considered the dynamic effect for the research. So, we

set the one-period lagged core variable as LDZP and re-regressed it

in the study with all control variables with one-period lag. Results of

these modifications are displayed in Table 4. According to the test

data of the core variable LDZP, the application of the development

zone policy still affects the total carbon emissions in the cities.

Through the comparison of Tables 2, 4, it is found that majority

of the independent variable coefficients still have high consistency,

and their significance is slightly different, and it is obvious that the

lagging policy effect is not significant.

4.2.5. Endogeneity test
To alleviate endogeneity problems, this paper conducts

research using the instrumental variable (IV) approach. For the

assortment of the instrumental variable, refer to the research ideas

as discussed by Zhang et al. (78). Ming Dynasty post stations

were the national postal and postal transportation system in

ancient times. These stations have unique benefits in logistics

transportation and information transmission while simultaneously

bringing prosperity to the regional economy and development

of the nation. It follows that the layout of post stations and

the number of these stations have an effect on the economic

development of the region, and may also have a relationship with

the existing economic development. Consequently, it conforms

to the endogenous principle. It is worth noting that there is no

direct relationship between the post stations in the Ming Dynasty

and the current carbon emissions. Because the Ming Dynasty post

station has a long time span, and there is no reasonable relationship

between the Ming Dynasty post station and carbon emissions.

In this sense, Ming Dynasty post stations satisfy the principle of

exogenous assumptions. Keeping in mind that the Ming Dynasty

Post Station is already an existing and unchanging historical data,

it cannot be directly inserted into the panel baseline model. To

TABLE 5 Endogenous test results.

Variables DZP TCE

(1) (2)

IV −0.002∗∗∗

(−2.981)

DZP −54.703∗∗∗

(−3.210)

Control variables Yes Yes

City fixed Yes Yes

Year fixed Yes Yes

Observations 5,130 5,130

R-squared 0.732 –

Robust standard errors in parentheses, ∗∗∗ indicates significance at the 1% level.

overcome this problem, we introduced the number of modern taxis

in the city as an instrumental variable and sets the interactive term

of the number of post stations in the Ming Dynasty and, denoted

by IV. The following formulas are established based on Equations

(1) and (2):

DZXit = ω0 + ω1IV + ω2xit + γi + γ t + εitTCEit

= ϕ0 + ϕ1
˜DZPit + ϕ2Xit + νi + νt + ξit (6)

Equation (6) is the regression of the first stage. The core

explanatory variable is represented by DZP represents while the

instrumental variable is represented by IV ; Equation (7) is the

final regression result. The DZP with a wavy line is a new

variable column fitted by the first-stage regression. It combines the

instrumental variable and the original core explanatory variable.

Table 5 shows the final regression results. From the table, it is clear

that the instrumental variable has no direct linkages with the total

carbon emissions in the cities. As a result, these results are constant

with the exogenous hypothesis. From the table, the absolute value

implicated with the core variable DZP is small. Nonetheless, the

absolute value still maintains a significant effect on the core

variable DZP at the 1% significance level. In this regard, these

results align with the endogeneity hypothesis analysis successfully

tested endogeneity using carefully selected instrumental variables.

However, these results do not show a direct relationship between

the dependent variable and an instrumental variable. At the same

time, there is an indirect impact on the dependent variable through

the core variable DZP.

4.2.6. Other related test
Because of the different administrative levels from one city to

the next, there is a need to eliminate the differential impact. We

achieved it by eliminating the municipalities in the original sample

cities, and using the remaining cities as a new sample (the four

municipalities of Beijing, Shanghai, Tianjin, and Chongqing were

excluded in the new sample). After that, the regression analysis

as stipulated in the DID model is used to test data from the new
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TABLE 6 Regression results for samples that remove municipalities.

Variables TCE

(1) (2)

DZP −1.420∗∗ −1.080∗

(0.603) (0.554)

Control variables No Yes

City fixed Yes Yes

Year fixed Yes Yes

Observations 5,058 5,058

R-squared 0.954 0.957

Robust standard errors in parentheses, ∗∗ and ∗ indicate significance at the 5 and 10%

levels, respectively.

sample. Results of these tests are depicted Table 6. DZP, as the

primary variable, remains consistent with the core results, while

the absolute value of the coefficient is slightly smaller. These results

support the fact that application of the development zone policies in

cities result in a decline in total carbon emissions in these regions.

5. Further analysis

5.1. Heterogeneity test

According to relevant literature (32, 79), it is found that

China’s industrial carbon dioxide emissions have different emission

standards due to different local policies and environmental

requirements. Therefore, it is important to note that development

zone policies may have varying effects from one city to the next.

This phenomenon is caused by factors like large differences in

the resource endowments of cities, different urban scales and

different geographic locations. These variances are shown in

Table 7, columns (1), (2), and (3) show the effect on the total

carbon emissions after enforcing the development zone policy in

the eastern, central and western pilot cities, respectively. Based

on the analysis, development in the central region is balanced

and implementation of the development zone policy at this point

causes more effect on the decline of carbon emissions. The eastern

region in China is relatively developed and the development zone

policy is implemented early. Despite these efforts, the marginal

effect of the policy is fading, from the current stage, the policy

effect is not ideal. The western region in the country is least

developed in terms of economy, science and technology, making

it too backward in comparison. Therefore, it is essential to hasten

the development of these sectors and eventual implementation

of the development zone policy. As shown in the table, the

implementation of the policy resulted in the slight increase in

urban carbon emissions. Columns (4) represents the impact of

the implementation of the development zone policy on the total

carbon emissions in small cities, column (5) represents the impact

of the implementation of the development zone policy on the

total carbon emissions in medium cities and column (6) represents

the impact of the implementation of the development zone policy

on the total carbon emissions in large cities. The conclusion we

made is that the larger the city scale, the more beneficial it is

to reduce the total carbon emissions. Columns (7) represents the

impact of the implementation of development zone policies in

resource-based cities on the total carbon emissions. Column (8)

represents the impact of the implementation of development zone

policies in non-resource-based cities on the total carbon emissions.

Conclusively, the enforcement of the development zone policy in

non-resource-based cities has a very obvious effect on lowering the

total carbon emissions of the city. Conversely, implementing the

development zone policy increases the total carbon emissions in

resource-based cities.

5.2. SDID test analysis

Possibly, there is a spatial connection between carbon emissions

and neighboring cities. Neglecting this spatial correlation may

cause inconsistent findings when comparing the theoretical results

and actual results of the study. To prevent this inconsistency, the

spatial impact of implementing development zone policy pilots and

the spatial dependence of carbon emissions were taken into account

in themodel, and the SDIDmodel was used for analysis. The results

are shown in Table 8.

Column (1) and column (2) prove that the application of the

development zone policy has a spatial effect on the total carbon

emissions of neighboring cities. Absolute values of the coefficients

of variables WNT,TD, WT,TD, and DZP, are very large and they all

reach the 1% significance level. From column (1), it is conclusive

that regardless of whether control variables are considered, the

development zone policy has the spatial effect of the total carbon

emissions of surrounding cities. On the other hand, the coefficient

of DZP is significantly negative. In other words, the development

zone policies can significantly reduce the total carbon emissions.

The coefficient of WNT,TD is significantly negative, indicating

that the spatial effect of the development zone policy pilot cities

reduces total carbon emissions in neighboring non-pilot cities. On

the other hand, the coefficient of WT,TD is significantly positive,

indicating that the spatial effect of the pilot cities of development

zone policy increases the total carbon emissions of the neighboring

pilot cities. This condition may be implicated with the variances in

economic scale, the policy implementation and the administrative

levels between pilot cities and non-pilot cities. According to Guo

et al. (52), whose research stands there are indeed geographical

proximity effects and spatial spillover effects between cities in

China. This effect is more pronounced between cities that are

spatially closer.

5.3. E�ect test about upgrading and
superposition of the policy

To further improve the accuracy of the study, we factored

if the upgrading and superposition of policies will still have the

same impact on the total carbon emissions as the core results.

The results of the regression analysis are shown in Table 9.

The policy upgrading effect of the pilot city’s upgrading to

the national high-tech zone policy from the provincial high-

tech zone policy is Column (1). DZP_up1 represents the core
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TABLE 7 Heterogeneity test results.

Variables TCE

Geographical location City scale Endowment of resources

Eastern Central Western Small Medium Large Resource Non-resource

(1) (2) (3) (4) (5) (6) (7) (8)

DZP −0.784 −1.933∗∗ 0.061 0.472 0.539 −2.241∗∗ 1.130 −2.223∗∗∗

(0.946) (0.771) (1.021) (0.961) (0.526) (0.871) (0.733) (0.689)

City fixed Yes Yes Yes Yes Yes Yes Yes Yes

Year fixed Yes Yes Yes Yes Yes Yes Yes Yes

Control variables Yes Yes Yes Yes Yes Yes Yes Yes

Observations 1,818 1,800 1,512 896 1,801 2,397 2,070 3,060

R-squared 0.976 0.953 0.961 0.948 0.976 0.978 0.956 0.974

Robust standard errors in parentheses, ∗∗∗ and ∗∗ indicate significance at the 1 and 5% levels, respectively.

TABLE 8 The regression results are based on the SDID model.

Variables TCE

(1) (2)

DZP −5.804∗∗∗ −5.033∗∗∗

(1.165) (1.052)

WT,TD 5.252∗∗∗ 4.759∗∗∗

(1.618) (1.478)

WNT,TD −3.888∗∗∗ −3.441∗∗∗

(1.248) (1.197)

Control variables No Yes

City fixed Yes Yes

Year fixed Yes Yes

Observations 5,130 5,130

R-squared 0.968 0.970

Robust standard errors in parentheses, ∗∗∗ indicates significance at the 1% level.

variable with its coefficient being −2.891 and a significance level

of 5%. These results show that upgrading the high-tech zone

policy considerably helps to lessen the total carbon emissions.

The second column is the policy upgrading effect of the pilot

cities’ upgrading to the national-level economic development

zone policy from the provincial-level economic development zone

policy. DZP_up2 represents the core variable and its coefficient

is −0.131. These results show that upgrading the economic

development zone policy causes a minor decrease in the total

carbon emissions.

The policy superposition effect of the pilot cities is Column

(3). The superposition effect first applies to the national economic

development zone policy and then to the national high-tech zone

policy. DZP_sp1 represents the core variable. Its coefficient is

−2.745 with a 10% significance level. These figures show that

the superposition of such policies has a relatively clear lessening

impact on the total carbon emissions of the pilot cities. Column

(4) is the policy superposition effect of the pilot cities first

TABLE 9 Policy upgrade and superposition test results.

Variables TCE

P to N P to N N plus N N plus N

(1) (2) (3) (4)

DZP_up1 −2.891∗∗

(1.426)

DZP_up2 −0.131

(0.962)

DZP_sp1 −2.745∗

(1.439)

DZP_sp2 −0.665

(0.761)

Control variables Yes Yes Yes Yes

City fixed Yes Yes Yes Yes

Year fixed Yes Yes Yes Yes

Observations 3,030 2,881 2,423 2,423

R-squared 0.953 0.948 0.981 0.981

Robust standard errors in parentheses, ∗∗ and ∗ indicate significance at the 5 and 10%

levels, respectively.

executing the national high-tech zone policy and then executing

the national economic development zone policy. The core variable

is represented by DZP_sp2, and its coefficient is −0.665. These

figures support that the superposition of such policies has a feeble

impact on the total carbon emissions in the cities. Contrasting

column (1), (2), (3), and (4), shows that the high-tech zone policy

has more effect than the economic development zone policy in

the cities. Contrasting the two columns (1) and (2), shows that

the upgrade of the high-tech zone policy has a more significant

and clear impact in terms of reducing the total carbon emissions

compared to the upgrade of the economic development zone policy.

Comparing the two columns (3) and (4), shows that shifting to a

national high-tech zone from a national economic development

zone can decrease the total carbon emissions of pilot cities more
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than shifting to a national economic development zone from a

national high-tech zone.

6. Conclusions and research prospects

6.1. Conclusions

By analyzing the results of the study, five main conclusions

can be drawn: first, the implementation of the development zone

policy can effectively reduce the total carbon emissions of the city;

Second, the development zone policy that lags behind a single cycle

can still significantly reduce the total carbon emissions of cities;

Third, the implementation of development zone policies for cities,

larger cities and non-resource cities in the central region has a

better effect on carbon reduction than other cities; Fourth, there is a

spatial effect on the impact of development zone policies on carbon

emissions. Its spatial effect reduces the total carbon emissions

of neighboring non-pilot cities and increases the total carbon

emissions of neighboring pilot cities. Fifth, there are upgrading

and overlapping effects in the implementation of relevant policies.

Whether it is upgrading or superimposing, the carbon reduction

effect of the high-tech zone policy is better than that of the

economic development zone.

6.2. Policy implications

The following policy suggestions are put forward based on

the above discussions: First, the development zone policy can

effectively reduce the total carbon emissions, which means that

the formulation of relevant policies can successfully achieve

a balance between the ecological environment and economic

development, which is a positive measure toward optimizing the

ecological environment. Therefore, developing countries similar

to China that face similar environmental optimization in the

process of urbanization can vigorously promote the construction

of development zones. Second, there is a single-period lag effect in

the implementation of the development zone policy, which means

that there is a single-cycle buffer time for the implementation of

relevant policies. Therefore, the government should fully consider

the time inconsistency of the policy and the final policy results

when formulating relevant policies. The third suggestion is the

selection of development zone policies suitable for local cities

while considering the city’s scale, resource endowment, and

geographical location while promoting the inclusive development

of the local cities in a targeted manner to evade the variance in

the effect of development zone policies on carbon emissions. The

western region of China is comparatively backward in technology.

However, this region has abundant natural resources and a large

urban area. The country’s western development project has been

advancing in recent years and it is arguable that the region

is more conducive for the development zone policies. Science

technology and natural resources are ample in the central region

of China, thus it is necessary to choose and implement appropriate

high-tech zone policies to coordinate the overall development

and balance the requirements of development and economy. In

the eastern part of China, there is a high population density,

technological development and advanced economic development.

Moreover, the majority of cities in eastern China are closer to the

sea, hence, development of foreign trade is a primary advantage

for these urban areas. With this in mind, local economic and

technological development is arguably reliant on the development

zone policies. Forth, the local government should try to reduce

the impact of the spatial effect in the implementation of the

development zone policy in response to the spatial effect among

cities. The central government is responsible for strictly checking

the policy effect of each region, establishing strict regulated

rules, and issuing relevant deployment documents. The local

governments are implicated with conducting implementations of

the policies to categorize regional responsibilities and interests,

further preventing any pollution transfer. Finally, according to the

research results, the central government should vigorously support

the construction of high-tech economic development zones in local

areas as much as possible, take innovation as the driving force

for sustainable development, and create a win-win development

pattern of economic development and ecological protection.

6.3. Research prospects

Some of the limitations discovered during the research of this

paper may encourage future research on relating subjects. To begin

with, bias may have arose during the calculations of industrial

carbon emissions because of the limited data on the subject.

The aim is to attain an inclusive measure of the environmental

efficiency. Thus, we included industrial carbon emissions as one

of the undesirable outputs. Nonetheless, as per the “China Urban

Statistical Yearbook”, we can only analyze the carbon dioxide

emissions from three energy sources, that is, natural gas, electricity

and liquefied petroleum gas. And so, the results can be altered or

protracted in the future using newer or alternative data sources.

The second limitation is that the endogeneity analysis lacked some

sample data for the tests. The instrumental variable consists of

the number of stations in a city and the product of the number

of taxis. Unfortunately, we only managed to collect data for most

cities, while we could not get data from other cities because of

the limited data collection methods available and limited research.

In other words, in all the 285 sample cities used for this study,

there are missing data. It follows that this missing data needs to

be collected to facilitate supplementary verification. Lastly, we use

the dummy variable DZP to represent the core variable because the

PITI (pollution source supervision information disclosure index)

standard used by the 113 pilot cities from 2008 to 2012 is different

from the PITI standard used by the 120 pilot cities from 2013

to 2020. The variance in PITI intensity between the two times is

not definitely distinguished in terms of treatment. In future, more

unified and reliable standards can enhance the study of the effect of

national development zone policy on carbon emissions.
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Environmental regulation efficiency facilitates environmental governance

performance assessment, ecological protection, and high-quality

development. Herein, based on the panel data of 75 cities in the Yellow River

Basin from 2007 to 2020, this paper constructed an evaluation index system and

measured the environmental regulation efficiency using a super-EBM hybrid

distance model. We analyzed the regional differences and dynamic evolution

characteristics of environmental regulation efficiency with the help of Dagum’s

Gini coefficient decomposition and kernel density estimation methods.

Furthermore, a spatial econometric model explored the spatio-temporal

convergence of environmental regulation efficiency. The main findings show

that the environmental regulation efficiency of the overall Yellow River Basin and

the upper, middle, and lower reaches showed an increasing trend with significant

within-region spatial differences. The differences between all regions had a

narrowing trend. The primary source of spatial differences in environmental

regulation efficiency was the intensity of transvariation. The dynamic evolution

characteristics of environmental regulation efficiency in different regions were

quite different, and the spatial polarization phenomenon was more evident in the

upper reaches. Except for the overall Yellow River Basin, all regions existed s
convergence. The results of spatial convergence estimation indicated absolute

and conditional b convergence in all regions. The findings provide a factual

reference for policies related to establishing policy systems for environmental

regulation efficiency and green coordinated development in similar regions of

the world.

KEYWORDS

environmental regulation efficiency, super-EBM model, regional differences, dynamic
evolution, spatio-temporal convergence, the Yellow River Basin
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1 Introduction

The Yellow River Basin is a distinct geographical region that

spans China’s three gradient terrains and economic belts, serving as

a significant ecological barrier and a key region to defeat poverty in

China (Zeng and Hu, 2021). In recent years, the Chinese

government has placed the ecological protection and high-quality

development of the Yellow River Basin at a prominent national

strategic position. It has continued to strengthen environmental

regulations, resulting in significant results in eco-environmental

protection in the Yellow River Basin. From 2007 to 2020, the total

investment in environmental pollution control in nine provinces

and regions along the Yellow River in China rose from 5.086 billion

USD to 24.144 billion USD, an average annual growth of 1.466

billion USD. However, the Yellow River Basin still faces problems

such as a fragile ecological background, severe environmental

pollution, and inefficient resource utilization (Liu and Ma, 2020;

Zhang and Zhang, 2020). The needs of people continue to vary on

how the ecological environment is being improved. According to

the 2020 China Ecological and Environmental Bulletin released by

the Ministry of Ecology and Environment, 15 of the 20 cities with

relatively poor ambient air quality in China are in the Yellow River

Basin, indicating that although environmental quality in the basin

has improved, its governance performance is not satisfactory. In

this context, it is necessary to explore the current development of

environmental regulation efficiency in the Yellow River Basin as a

whole and by region. However, due to natural and economic factors

vary among regions in the Yellow River Basin, there are certain

differences in environmental regulation efficiency between regions.

So where do the differences originate? What are the evolution

characteristics of regional differences in environmental regulation

efficiency? Is there any spatial convergence in environmental

regulation efficiency among regions? Addressing the above

questions can improve our understanding of the current situation

and the fundamental characteristics of environmental regulation

efficiency in the Yellow River Basin and help us grasp the evolution

of the spatial pattern of environmental regulation efficiency, so as to

promote relevant research on environmental regulation efficiency in

theory and provide a reference basis for the collaborative

construction of an environmental regulation system in the Yellow

River Basin in practice.

Environmental regulation improves environmental quality and

ensures public interest by intervening in the behavior of pollution

emission externalities of economic subjects. Implementing

environmental regulation for pollution control should consider the

technical and economic feasibility. Therefore, as reflected in

environmental regulations, good environmental performance must

be achieved by relying on the efficiency of pollution control. Facing

the growing contradiction between economic development and

environmental protection, the role of government regulation in

environmental activities has become increasingly apparent, and the

concept of environmental regulation efficiency has been developed.

Compared with general input–output efficiency, environmental

regulation efficiency is the ratio of environmental benefits obtained

by the government in exercising its public management function of
Frontiers in Ecology and Evolution 02
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environmental protection to environmental management costs and is

an effective way to assess the performance of government

environmental governance (Xue and Liu, 2010; Cheng et al., 2016;

Cao, 2021). Environmental regulation efficiency highlights the

magnitude of the environmental benefits derived from a particular

cost input and measures the effectiveness of the regulation by its value.

In recent years, with the continuous deepening of the world’s attention

to assessing the performance of environmental governance, relevant

research on environmental regulation efficiency has become a hot topic

in the academic community. Concerning the research on the theory of

environmental regulation efficiency, the academic circle has donemuch

productive work. Many scholars have combined the theory of cost-

benefit analysis to provide theoretical explanations for environmental

regulation efficiency (Erdogan, 2014; Riccardi et al., 2015). Sunstein

argued that the cost–benefit analysis theory could promote significant

changes in environmental regulation and the combination of

environmental science and economics (Sunstein, 1996). Hamamoto

constructed an evaluation index system of environmental regulation

efficiency through the cost–benefit analysis theory to provide a

reference basis for a scientific, reasonable, and comprehensive

evaluation of environmental regulation efficiency (Hamamoto, 2006).

As for the evaluation of environmental regulation efficiency, existing

studies have mainly used the data envelopment analysis (DEA)method

(Tang et al., 2017), the stochastic frontier analysis (SFA) method (Xu

et al., 2021), the multi-factor comprehensive evaluation method (Cui

et al., 2018), the cost elasticity coefficient method (Liu and Wang,

2009), and the data converting functionmethod (Simões et al., 2010) to

measure environmental regulation efficiency in terms of the number of

environmental policies, the amount of pollution abatement, and the

cost of operating pollution control facilities. DEA is widely used in

measuring environmental regulation efficiency because it does not

require an explicit functional form relating inputs and outputs. It

involves the traditional DEAmodel (Xu et al., 2014; Cheng et al., 2016),

the two-stage DEAmodel (Wu et al., 2017), the three-stage DEAmodel

(Zeng and Niu, 2019), the Malmquist index approach (Tang et al.,

2016), the SBM model (Wang and Ma, 2020; Dong and Han, 2021;

Wang and Cheng, 2021; Sun et al., 2022a), and the super-SBM model

(Huang and Shi, 2015; Yin et al., 2017; Ren et al., 2019).

Regarding regional differences in environmental regulation

efficiency, the driving forces mainly include the level of economic

development, industrial structure, market environment,

urbanization, technology input, and openness to the outside

world (Xu et al., 2014; Cheng et al., 2016; Ren et al., 2019). The

research methods used to measure regional differences cover the

spatial analysis techniques, the Gini coefficient, the indicator

observation, and the kernel density estimation (Dong and Han,

2021; Xu et al., 2021). Jia et al. examined the regional differences in

the environmental regulation efficiency of the Lanzhou–Xining

urban agglomeration in the Yellow River Basin using spatial

analysis techniques. They found that the main differences were

regional (Jia et al., 2022). Ren et al. used the Gini coefficient to

compare the internal differences in the environmental regulation

efficiency in three major urban agglomerations in China and found

that the Pearl River Delta showed the most apparent internal

regional differences (Ren et al., 2019). Although indicators can be
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observed visually and their differences compared, the spatial

analysis techniques, traditional Gini coefficient, and indicator

observation method cannot explain the sources of these

differences. Wang and Cheng investigated the distribution

dynamics of marine environmental regulation efficiency in China

using kernel density estimation and pointed out that the internal

differences were gradually increasing (Wang and Cheng, 2021).

Kernel density estimation presents an intuitive explanation of the

spatial distribution dynamics of environmental regulation

efficiency, but it fails to take into account the distribution of the

sub-samples and uses the mean value for the calculation, which

leads to an averaging of the sample differences and reduces the

accuracy of the results. The convergence of environmental

regulation efficiency has gradually become the focus of research

in economics and the environment as scholars continue to study it.

Many scholars used the s convergence model (Li and Luo, 2016), b
convergence model (Piao, 2020), and club convergence model

(Deng et al. , 2021) to investigate the convergence of

environmental regulation efficiency. Camarero et al. pointed out

that both the most efficient countries for environmental regulation

and the worst within the Organization for Economic Co-operation

and Development (OECD) tend to form convergence clubs

(Camarero et al., 2013). Some scholars have argued that there are

spatial spillover effects and convergence in environmental

regulation efficiency. Fredriksson and Millimet believed that the

environmental regulation efficiency of all states in the United States

has spatial spillovers and that the states with more efficient

environmental regulations have a “demonstration effect” on their

neighbors (Fredriksson andMillimet, 2002). Jia et al. identified both

spatial spillover effects of environmental regulation efficiency and

spatial b convergence in the Lanzhou–Xining urban agglomeration

(Jia et al., 2022).

Specific results have been achieved in studying environmental

regulation efficiency, but several limitations exist. First, the

measurement of environmental regulation efficiency mainly adopts

the traditional radial DEA model or the non-radial SBM model. Both

models have certain restrictions, which often lead to biased

measurements of environmental regulation efficiency, thus affecting

the scientificity and accuracy of the conclusion. Second, the study of

regional differences mainly applies the traditional Gini coefficient

method and cannot reveal the source of regional differences in

environmental regulation efficiency. In contrast, the Dagum Gini

coefficient method effectively solves this problem. Third, in the

aspect of the research object, most of the current environmental

regulation efficiency measurements are focused on countries (Tang

et al., 2016), provinces (Xu et al., 2014), and urban agglomerations (Ren

et al., 2019; Wang and Ma, 2020; Sun et al., 2022b). Less attention has

been paid to the environmental regulation efficiency of the Yellow

River Basin, which is a significant ecological barrier and a rapidly

transmutating economic–environmental system in China. Finally, the

spatio-temporal characteristics of environmental regulation efficiency

are less widely explored, and spatial econometric models are seldom

tested for their spatial spillover effects. Therefore, this paper introduces

the super-EBM (epsilon-based measure) model containing the

undesirable output to measure the environmental regulation

efficiency of 75 prefecture-level cities in the Yellow River Basin from
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2007 to 2020. Then, the Dagum Gini coefficient, kernel density

estimation method, and spatial convergence model are used to

analyze the regional differences, dynamic evolution characteristics,

and spatio-temporal convergence of environmental regulation

efficiency in detail. This paper also puts forward relevant policy

suggestions to promote the environmental management of the

Yellow River Basin in China under the strategy of ecological

protection and high-quality development of the Yellow River Basin.
2 Materials and methods

2.1 Methods

2.1.1 Super-EBM model
A hybrid EBM model with both radial and non-radial

information was proposed by Tone and Tsutsui (2010), which

accounts for the influence of non-radial slack variables while

retaining the majority of the original proportion information

from the front projection value. In addition, it addresses the

problem of inconsistent input and output element dimensions,

allowing for a more accurate and valuable reflection of the

efficiency of decision-making units (DMUs). Considering the

ranking problem of undesirable output elements and decision

units (Andersen and Petersen, 1993; Tone, 2011; Xie et al., 2018),

the super-EBM model based on undesirable outputs is defined as

follows (Zou et al., 2019):

g * = min
q−ϵxo

m

i=1

w−
i s

−
i

xik

j+ϵyo
s

r=1

w+
r s

+
r

yrk
+ ϵuo

q

p=1

wu−
p su−p
upk

s:t: o
n

j=1
xijlj + s−i = qxi0,  i = 1, 2,  …  ,  m

     o
n

j=1
yrjlj − s+r = jyi0,  r = 1, 2,  …  ,  s

     o
n

p=1
upjlj + su−p = jupk,  p = 1, 2,  …  ,  q

     lj ≥ 0,  s+r ≥ 0,  s−i ≥ 0,  su−p ≥ 0

     

(1)

where g* represents the environmental regulation efficiency, lj
refers to the linear combination coefficient of DMUj, xij, yrj, and

upj represent the i-th input, r-th and p-th denote desirable output

and undesirable output of DMUj, respectively, si
-, sr

+, and sp
u-

represent slack variables, q represents the radial planning

parameter, ϵx, ϵy, and ϵu represent the non-radial weight of input,

desirable output, and undesirable output, respectively.
2.1.2 Dagum Gini coefficient and its
decomposition

Dagum decomposed the Gini coefficient into the contribution

of within-region difference (Gw), between-region difference (Gnb),

and the intensity of transvariation (Gt) (Dagum, 1997), which

effectively solved problems such as the overlap of sample data.
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The formula is as follows:

G =
o
k

j=1
o
k

h=1
o
nj

i=1
o
nh

r=1
yji − yhr
�� ��

2n2m
(2)

where G represents the overall Gini coefficient, yji is the

environmental regulation efficiency of the city i in region j, and µ

is the average environmental regulation efficiency of all cities. The

specific formulas of Gw, Gnb, and Gt are as follows:

Gw =o
k

j=1
Gjjpjsj (3)

Gjj =
o
nj

i=1
o
nj

r=1
yji − yjr
�� ��
2n2j yi

(4)

Gnb =o
k

j=2
o
j−1

h=1

Gjh(pjsh + phsj)Djh (5)

Gt =o
k

j=2
o
j−1

h=1

Gjh(pjsh + phsj)(1 − Djh) (6)

Gjh =
o
nj

i=1
o
nh

r=1
yji − yjr
�� ��

njnh(yi + yh)
(7)

Djh =
(djh − pjh)

(djh + pjh)
(8)

djh =
Z ∞

0
dFj(y)

Z y

0
(y − x)dFh(x) (9)

pjh =
Z ∞

0
dFh(y)

Z y

0
(y − x)dFj(x) (10)

where pj = nj=n, sj = nj yj=ny, yj(yh) represents the average

environmental regulation efficiency of region j(h), djh represents the

difference in gross environmental regulation efficiency influence

between regions j and h, and pjh represents the first-order moment

of transvariation.

2.1.3 Kernel density estimation
Kernel density estimation is a highly representative method for

examining the differences in particular geographic phenomena,

which describes the distribution patterns of random variables by

estimating their probability densities (Zhang et al., 2022). Suppose

the density function of the random variable X is f(x), and the

probability density at point x is as follows:

f (x) =
1
nho

n

i=1
K

xi − �x
h

� �
(11)

where K(·) is the kernel density function, n is the number of

observations, �x is the mean value of observation, and h represents
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the bandwidth that determines the accuracy and smoothness of the

kernel density curve.

2.1.4 s convergence
Sigma (s) convergence indicates that the deviation of

environmental regulation efficiency tends to decrease over time

(Rezitis, 2010; Zhang et al., 2022). The coefficient of variation was

used to measure the s convergence of environmental regulation

efficiency in the Yellow River basin and different regions. The

calculation formula is:

s =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o
nj

i
(EREjt − EREjt)

2=nj

s

EREjt
(12)

where EREjtrepresents the environmental regulation efficiency

of time t in region j.

2.1.5 Spatial b convergence
b convergence is derived from neoclassical growth theory,

including absolute b and conditional b convergence (Liu and Du,

2017; Bigerna et al., 2021; Ram, 2021; Shi et al., 2022). Absolute b
convergence refers to a gradual convergence to the same state of

environmental regulation efficiency across cities over time, without

considering external factors. Conditional b convergence means that

the environmental regulation efficiency of each region eventually

converges to its respective steady state after controlling for other

influencing factors. Considering the increasing flow of

environmental resource factors between regions, it is necessary to

incorporate spatial dependence in the convergence of

environmental regulation efficiency in the Yellow River Basin.

The absolute b convergence of the spatial Durbin model (SDM)

was built because it can degenerate into the spatial autoregressive

model (SAR) and spatial error model (SEM). The proposed model is

as follows:

ln EREi,t+1
EREi,t

� �
= a + b ln (EREi,t) + ro

n

j=1
Wij ln

EREi,t+1
EREi,t

� �
+ qo

n

j=1
Wij ln (EREi,t)

                      + mi + nt + ϵit

(13)

The conditional b convergence of SDM was further established.

The control variables in this model include the level of economic

development (GDP), industrial structure (INS), market

environment (MKT), degree of economic openness (OPEN), and

technological progress (TP). GDP is reflected by per capita GDP

and promotes rapid economic development to the detriment of

environmental benefits. INS is the secondary industry’s ratio to

GDP, increasing industrial pollutant emissions and degrading eco-

environmental quality. MKT is expressed by the proportion of

private and self-employed employment in total employment, and it

can improve the government’s decision-making system and

reasonably allocate regulatory elements. OPEN is measured via

foreign direct investment (FDI) to indicate the level of

environmental regulation intensity thresholds. TP is characterized

by the proportion of public budget expenditure on science and

technology, and it stimulates the reduction of regulatory costs and
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promotes productivity improvement. The conditional b
convergence of SDM can be expressed as follows:

ln EREi,t+1
EREi,t

� �
= a + b ln (EREi,t) + ro

n

j=1
Wij ln

EREi,t+1
EREi,t

� �
+ qo

n

j=1
Wij ln (EREi,t)

                      + g Xi,t+1 + do
n

j=1
WijXi,t + mi + nt + ϵit

(14)

where b is the convergence coefficient, r, q, and d are spatial

coefficients,W is the spatial weight matrix, EREit and EREt+1 are the

environmental regulation efficiency of region i from t to t + 1, Xit is

the control variable, a is the constant term, m is the spatial fixed

effect, υt is the time effect, and ϵ is the random error term.
2.2 Environmental regulation efficiency
indicators system

The evaluation of environmental regulation efficiency refers to

measuring and evaluating the government’s environmental

regulation behavior using scientific evaluation methods to achieve

a specific goal. Based on the cost–benefit analysis theory and related

principles, this study divided the evaluation indicators into cost

indicators (input indicators) and benefits indicators (output

indicators). Cost indicators select labor input, capital input, and

physical resource input. Benefit indicators include pollution control

situations and environmental quality status. According to the

general rule of DEA method indicator selection (Golany and Roll,

1989), the number of DMUs should not be less than the product of

the input and output indicators. At the same time, it should be at
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least three times the number of input and output indicators.

Drawing on the selection of indicators in the existing literature

(Huang and Shi, 2015; Cheng et al., 2016; Tang et al., 2016; Zeng

and Niu, 2019; Jia et al., 2022; Sun et al., 2022a; Sun et al., 2022b), 17

fundamental evaluation indicators of environmental regulation

efficiency in the Yellow River basin were selected in this study. In

terms of pollution control indicators, the industrial “three waste”

emissions indicator is used as an indicator of undesirable output.

Since there is too much missing data for the industrial wastewater

emission compliance rate indicator for each prefecture-level city in

the Yellow River basin, this indicator is not considered. The price-

related indicators are deflated using 2007 as the base period to

eliminate the effect of price fluctuations. The input–output

indicators system is shown in Table 1.
2.3 Overview of the study area

The Yellow River flows through and borders nine provinces and

autonomous regions in Qinghai, Sichuan, Gansu, Inner Mongolia,

Ningxia, Shanxi, Shaanxi, Henan, and Shandong, with a total length

of 5464 km and a basin area of about 2.17 million km2. It is an

essential ecological barrier and economic belt in China, and the

ecological protection and high-quality development of the Yellow

River Basin were elevated to a major national strategy in 2019. In

order to delineate the study area of the Yellow River Basin, 75

prefecture-level cities in the upper, middle, and lower reaches of the

Yellow River basin were selected for the study based on the principle

of “taking the natural river basin as the basis, considering the
TABLE 1 Indicators system of environmental regulation efficiency.

Indicator type Indicators name Indicator characterization

Input indicators

Labor Number of employees in the environmental sector (person)

Capital

Investment in sewerage per unit of output (million yuan RMB)

Total investment in landscaping (million yuan RMB)

Total investment in environmental sanitation (million yuan RMB)

Physical resources

Number of wastewater treatment plant (unit)

Number of harmless treatment plants/grounds (unit)

The density of water supply pipelines in the built district (km/km2)

Desirable output indicators

Pollution control

Industrial SO2 removal rate (%)

Wastewater treatment rate (%)

The comprehensive utilization rate of industrial solid waste (%)

Domestic garbage harmless treatment rate (%)

Industrial smoke (dust) removal rate (%)

Environmental quality
The green coverage rate of the built district (%)

Public recreational green space per capita (m2)

Undesirable output indicators Industrial “three waste” emissions

Wastewater emissions per unit of output (million t/billion yuan RMB)

Industrial smoke (dust) emissions per unit of output (t/million yuan RMB)

Industrial SO2 emissions per unit of output (t/million yuan RMB)
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integrity of the geographical study unit, and the direct correlation

between the regional economy and the Yellow River” (Li et al.,

2011) (Table 2). Since Sichuan belongs to the Yangtze River Basin,

Hanzhong, Ankang, and Shangluo in Shaanxi, Hulunbeier, Chifeng,

and Tongliao in Inner Mongolia are classified as northeast China in

a broad sense, and Haidong in Qinghai has more severe missing

data, these regions are not included in the Yellow River basin

examined in this study. The spatial distribution of the Yellow River

Basin is shown in Figure 1.
2.4 Data sources

The panel data of 75 prefecture-level cities in the Yellow River

Basin from 2007 to 2020 in this study were mainly obtained from

the China City Statistical Yearbook, the China Urban Construction

Statistical Yearbook, the China Urban-Rural Construction

Statistical Yearbook, and the statistical yearbooks and bulletins of

various cities. Linear interpolation was used to supplement the

missing data. Considering the continuity of the data, the data of

Laiwu before 2019 was merged into Jinan. The acquired data were

classified into the Yellow River Basin’s upper, middle, and

lower reaches.
3 Results

3.1 Results of environmental regulation
efficiency measurements

With the help of MaxDEA 9.1 Ultra software, the input and

output data of 75 prefecture-level cities in the Yellow River Basin

from 2007 to 2020 were substituted into the super-EBMmodel with

undesirable outputs, non-oriented, and variable returns to scale,

and the environmental regulation efficiency values of various cities

and regions over the years were calculated. The results are shown

in Figure 2.

The overall average environmental regulation efficiency in the

Yellow River Basin increased from 0.588 in 2000 to 0.776 in 2020,

with an average annual increase of 1.861%. Specifically, during the

study period, the environmental regulation efficiency of the Yellow

River Basin showed a U-shaped trend, which first decreased and

then increased, reaching the lowest point in 2011. The possible

reason is that in the early stage of economic development, most

cities in the Yellow River Basin were dominated by resource-
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intensive industries such as coal, iron and steel, and chemical

industries, which were overly dependent on natural resources,

resulting in pollutant emissions that were significantly higher

than the national average. At the same time, pollution regulation

and control were inadequate, traditional production technology and

management modes were relatively backward, and a scientific and

complete pollution management system still needed to be

established, leading to a gradual decrease in environmental

regulation efficiency. Since the 18th National Congress of the

Communist Party of China (CPC), the national strategic

positioning of the development of the Yellow River Basin has

become more prominent, along with the in-depth implementation

of ecological civilization construction. Most of the cities in the

Yellow River Basin have changed their short-sighted development

patterns of the long-term pursuit of economic growth while

ignoring resource conservation and eco-environmental protection.

They have curbed the development inertia of lagging economic

development, local environmental pollution, and significant

potential risks. They have also reduced the total amount and

intensity of pollutant emissions and the carrying capacity of

resources. At the same time, pollution regulation and control

were inadequate, traditional production technology and

management modes were relatively backward, and a scientific and

complete pollution management system still needed to be

established, leading to a gradual decrease in environmental

regulation efficiency. Thus the environmental regulation efficiency

is still fluctuating to a certain degree.

In the sub-regional comparison of environmental regulatory

efficiency, the upper reaches had the highest average of 0.801, and

the lower reaches was the next highest with 0.748. Both regions have

long been higher than the overall average of 0.726 in the Yellow

River Basin. The middle reaches ranked lower at 0.641, below the

Yellow River Basin average. The time-series trend of the sub-regions

shows that the environmental regulatory efficiency of all regions has

increased at different rates during the study period, and there is a

trend toward further development at higher levels. Further analysis

reveals that the environmental regulation efficiency in the middle

reaches increased by 0.230 and in the upper reaches by 0.053 during

the study period, with the former exceeding the latter by more than

four times, indicating that the increase in the regions with low

environmental regulation efficiency is higher than that in the

regions with high environmental regulation efficiency and that the

difference in the average environmental regulation efficiency among

regions is significantly reduced, showing some convergence

characteristics. However, it was also found that the average
TABLE 2 The division of prefecture-level cities in the upper, middle, and lower reaches of the Yellow River Basin.

Region Prefecture-level city

Upper
reaches

Lanzhou, Baiyin, Wuwei, Jinchang, Pingliang, Zhangye, Jiayuguan, Jiuquan, Qingyang, Dingxi, Longnan, Tianshui, Xining, Yinchuan, Guyuan, Wuzhong,
Shizuishan, Zhongwei

Middle
reaches

Hohhot, Baotou, Wuhai, Ordos, Ulanqab, Bayannur, Taiyuan, Datong, Yangquan, Changzhi, Linfen, Jinzhong, Yuncheng, Jincheng, Xinzhou, Shuozhou,
Lvliang, Xi’an, Xianyang, Yulin, Baoji, Tongchuan, Weinan, Yan’an

Lower
reaches

Zhengzhou, Kaifeng, Luoyang, Pingdingshan, Jiaozuo, Hebi, Xinxiang, Anyang, Puyang, Xuchang, Luohe, Sanmenxia, Nanyang, Shangqiu, Xinyang, Zhoukou,
Zhumadian, Jinan, Qingdao, Zibo, Zaozhuang, Dongying, Yantai, Weifang, Jining, Tai’an, Weihai, Rizhao, Binzhou, Dezhou, Liaocheng, Linyi Heze
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annual increase of environmental regulation efficiency in the upper

reaches was 0.460%, much lower than the overall level of the Yellow

River Basin. In comparison, the average annual increase in the

middle reaches was 2.422%, which shows that the increase in the

regions with high environmental regulation efficiency failed to

exceed that of the regions with low environmental regulation

efficiency. The catching-up effect was noticeable, and then

different regions may converge to the same steady state.
3.2 Regional differences in environmental
regulation efficiency and their sources

The DagumGini coefficient and its decomposition method were

used to reveal the overall difference in environmental regulation
Frontiers in Ecology and Evolution 07
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efficiency in the Yellow River Basin, the differences within and

among the three regions, and the primary contribution sources. The

specific results are shown in Table 3. In particular, the names of the

three regions in the table were abbreviated here to provide more

result information.

3.2.1 Overall and within-region differences
Figure 3 depicts the Gini coefficient and characteristics of

change in environmental regulation efficiency for the Yellow

River Basin and the three regions considered. During the

inspection period, the difference in environmental regulation

efficiency in the Yellow River Basin showed an inverted U-

shaped fluctuation. The overall Gini coefficient had an average

value of 0.253, reaching a maximum value of 0.372 and a

minimum value of 0.098 in 2012 and 2018, respectively,
FIGURE 2

Trends of average environmental regulation efficiency by region in the Yellow River Basin.
FIGURE 1

Location of the study area in China. The map projection system is World Geodetic System (WGS) 84.
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indicating that the environmental regulation efficiency in the

Yellow River Basin had noticeable differences between cities and

that the differences were shrinking.

In terms of within-region differences, the average Gini

coefficient values of environmental regulation efficiency in the

upper, middle, and lower reaches were 0.208, 0.316, and 0.244,

respectively, with the most considerable difference in the middle

reaches owing to the convergence of industrial structures in the

upper reaches and the relatively balanced input of environmental
Frontiers in Ecology and Evolution 08
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regulation factors. However, the problem of unbalanced

environmental regulation efficiency in the region was

prominent in the middle reaches due to its wide coverage area

and the heterogeneity of economic level , populat ion

characteristics, government regulation, and other factors, the

pace of industrial transformation and upgrading and pollution

control in core cities was not uniform. In addition, the Gini

coefficients of the upper and lower reaches did not exceed the

overall Gini coefficient, indicating that the imbalance among
FIGURE 3

Trends in the overall and within-region Gini coefficient of environmental regulation efficiency.
TABLE 3 The Gini coefficient of environmental regulation efficiency and results of its decomposition.

Year Overall
Within-region Gini coefficient Between-region Gini coefficient Contribution (%)

Upper Middle Lower Upper-Middle Upper-Lower Middle-Lower Gw Gnb Gt

2007 0.115 0.182 0.290 0.256 0.247 0.231 0.273 34.575 15.152 50.091

2008 0.331 0.262 0.304 0.371 0.289 0.336 0.351 35.279 7.881 56.840

2009 0.322 0.244 0.396 0.300 0.338 0.281 0.345 34.210 22.087 43.704

2010 0.364 0.340 0.524 0.245 0.453 0.280 0.371 31.313 31.272 37.414

2011 0.365 0.247 0.483 0.329 0.392 0.303 0.398 33.264 27.720 39.016

2012 0.372 0.286 0.471 0.336 0.396 0.324 0.395 33.825 20.345 45.830

2013 0.346 0.248 0.480 0.293 0.387 0.278 0.375 33.421 22.602 43.976

2014 0.333 0.244 0.415 0.298 0.357 0.288 0.350 33.138 25.360 41.502

2015 0.277 0.217 0.204 0.393 0.332 0.213 0.289 31.737 30.488 37.816

2016 0.229 0.193 0.292 0.189 0.255 0.198 0.234 33.246 19.054 47.250

2017 0.151 0.103 0.175 0.147 0.154 0.135 0.160 34.148 22.625 43.200

2018 0.098 0.089 0.106 0.095 0.101 0.094 0.100 34.743 5.233 60.024

2019 0.115 0.128 0.149 0.078 0.143 0.097 0.110 32.877 11.358 55.765

2020 0.117 0.130 0.136 0.090 0.135 0.105 0.111 33.309 7.406 59.285

Average 0.253 0.208 0.316 0.244 0.284 0.226 0.276 33.506 19.185 47.265
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cities within the upper and lower reaches was relatively low. The

Gini coefficients of environmental regulation efficiency in the

upper, middle, and lower reaches all showed a fluctuating

decreasing trend from 0.182, 0.290, and 0.256 in 2007 to 0.130,

0.136, and 0.090 in 2020, with a decrease of 28.571%, 53.103%,

and 64.844%, respectively. The difference in the Gini coefficients

of the three regions was narrowing, and the regions with a low

environmental regulation efficiency were getting closer to the

regions with a high environmental regulation efficiency.

3.2.2 Between-region differences
As shown in Figure 4, the average Gini coefficient values of

environmental regulation efficiency in the upper-middle, upper-

lower, and middle-lower reaches were 0.284, 0.226, and 0.276,

respectively. Among them, the most considerable differences were

found in the upper-middle reaches and the smallest in the upper-

lower reaches. From the dynamic evolution trend, the Gini

coefficients of environmental regulation efficiency in the upper-

middle, upper-lower, and middle-lower reaches exhibited a

fluctuating decreasing trend from 0.247, 0.231, and 0.273 in

2007 to 0.135, 0.105, and 0.111 in 2020, with a decrease rate of

45.344%, 54.545%, and 59.341%, respectively, reflecting the

evolution of the fluctuating increasing and decreasing trends.

This indicates that the differences in the upper-middle, upper-

lower, and middle-lower reaches have narrowed significantly from

2007 to 2020. Still, the difference in the upper-middle reaches has

narrowed relatively little.

3.2.3 Sources and contributions of differences
The contribution rates of the intensity of transvariation (Gt),

within-region difference (Gw), and between-region difference (Gnb)

were measured separately in this paper to reveal the sources of the

overall difference in environmental regulation efficiency in the
Frontiers in Ecology and Evolution 09
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Yellow River Basin. The evolution of these three contribution

rates is reflected in Figure 5.

For the magnitude of the contribution rates, the average annual

contribution rates of within-region difference, between-region

difference, and the intensity of transvariation were 33.506%,

19.185%, and 47.265%, respectively, from 2007 to 2020. The

sources of the overall difference in environmental regulation

efficiency in the Yellow River Basin were, in order, the

contributions of the intensity of transvariation, within-region

difference, and between-region difference. Therefore, the most

crucial cause of the overall difference in environmental regulation

efficiency in the Yellow River Basin is the intensity of transvariation.

In other words, reducing the intensity of between-region

transvariation should be the focus of future efforts to promote the

development of environmental regulation efficiency in the Yellow

River Basin. This means the environmental regulation efficiency in

the upper, middle, and lower reaches has a particular intersection.

In addition, the environmental resource endowment and

development levels of certain cities in different regions are

similar. As a result, a city with a lower environmental regulation

efficiency in the higher-rank region may be lower than a city with a

higher value in the lower-rank region. Regarding the dynamic

evolution trend, the contribution rate of within-region difference

was relatively stable at about 33%. In contrast, the contribution rates

of between-region difference and the intensity of transvariation

fluctuated more during the observation period. The contributions of

within-region difference and the intensity of transvariation have a

complementary fluctuating relationship that reinforces each other.

The contribution rate of the intensity of transvariation showed a U-

shaped trend, and correspondingly, the contribution rate of within-

region difference showed an inverted U-shaped trend. The former

reached the minimum value of 37.414% in 2010, while the latter

reached the maximum value of 31.272% in 2010.
FIGURE 4

Trends in the between-region Gini coefficient of environmental regulation efficiency.
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3.3 Distribution dynamics of environmental
regulation efficiency

The Gini coefficients revealed the magnitude and source of

environmental regulation efficiency in the Yellow River Basin and

represented the relative differences in environmental regulation

efficiency but could not describe the dynamic changes in the
Frontiers in Ecology and Evolution 10
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absolute differences. In this study, we applied the kernel density

estimation method to characterize the distribution dynamics of

environmental regulation efficiency in the Yellow River Basin and

the three regions in terms of location, pattern, extension, and

polarization trends. Figure 6 presents a 3D kernel density map of

environmental regulation efficiency in the Yellow River Basin from

2017 to 2020.
FIGURE 5

Sources of regional difference and their contributions.
A B

DC

FIGURE 6

Dynamic evolutionary trends of environmental regulation efficiency. (A) Overall, (B) Upper reaches, (C) Middle reaches, and (D) Lower reaches.
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As illustrated in Figure 6, the distribution curves of the overall

Yellow River Basin and the three regions tended to move to the

right, indicating that the environmental regulation efficiency of

the overall Yellow River Basin and the three regions improved,

which is consistent with the trend of environmental regulation

efficiency measured in the previous paper. The distribution curves

of the upper and lower reaches did not move significantly to the

right over time. The efficiency of environmental regulation still

needs to be improved, especially with the tightening of resource

and environmental constraints and the acceleration of green

transformation. Considering the shape of the kernel density

curves, the height of the main peak of the distribution curves of

the overall Yellow River Basin and the three regions increased. At

the same time, the width narrowed, indicating that the absolute

difference in the environmental regulation efficiency of the overall

Yellow River Basin and the three regions had a particular

diminishing trend. The height of the main peak in the middle

reaches first decreased as the width widened and then increased as

the width narrowed, implying that the dispersion of

environmental regulation efficiency tended to increase at the

beginning of the inspection period and that the dispersion

trends had diminished in recent years. In terms of the extension

of the main peak, there was an apparent right-trailing

phenomenon in the distribution curves for the overall Yellow

River Basin and the three regions, which was mainly due to the

existence of cities with high environmental regulation efficiency in

each region, such as Qingyang in the upper reaches, Linfen in the

middle reaches, and Sanmenxia in the lower reaches.

Furthermore, the distribution curves of the overall Yellow River

Basin and the three regions had the characteristics of extended

convergence, and the gap between the cities with higher

environmental regulation efficiency and the cities with average

efficiency had been reduced, i.e., the probability of extreme values

of environmental regulation efficiency became increasingly

unlikely. From the perspective of the polarization characteristics,
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the distribution curves of the overall Yellow River Basin and the

lower reaches had a bimodal peak phenomenon at the beginning

of the inspection period. Still, at the end of the period, the

distribution curves had a single peak pattern, indicating that the

polarization within these regions tended to weaken. The degree of

within-regional difference gradually decreased. The distribution

curve of the upper reaches consistently showed a bimodal peak,

and the difference between the main peak and the side peak was

relatively large, indicating a significant spatial polarization

phenomenon in the environmental regulation efficiency of this

region. On the other hand, the distribution curve of the middle

reaches showed a single peak characteristic with a more moderate

divergence trend.
3.4 Spatio-temporal convergence of
environmental regulation efficiency

3.4.1 Time series convergence analysis
The s convergence of environmental regulation efficiency in

each region of the Yellow River Basin is shown in Figure 7. The

coefficient of variation of environmental regulation efficiency in the

overall Yellow River Basin showed a repeated rise and declined from

0.195 in 2007 to 0.248 in 2020. In general, there is no s convergence

because the variation coefficient at the period’s end was higher than

at the beginning. The coefficient of variation of the upper reaches

had a rising–declining–rising–declining, indicating that there is s
convergence in the environmental regulation efficiency of the upper

reaches. The coefficient of variation of environmental regulation

efficiency in the middle reaches only increased from 2007 to 2010

and showed cyclical ups and downs from 2010 to 2020. Moreover,

the coefficient of variation of environmental regulation efficiency in

the lower reaches only increased slightly from 2007–2008, 2010–

2011, and 2019–2020, and decreased in other years. Therefore, there

is s convergence in the middle and lower reaches. The convergence
FIGURE 7

Trends of s convergence of environmental regulation efficiency.
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speed in the lower reaches was 0.6287, nearing that of the upper and

middle reaches, in a “catch-up” situation.

3.4.2 Spatial convergence analysis
3.4.2.1 Spatial autocorrelation test

According to Formula (8), the spatial autocorrelation of

environmental regulation efficiency in the Yellow River Basin was

tested and analyzed using the Rook spatial weight matrix. In order

to avoid the “island phenomenon”, Xining and Weiwu were set as

neighbors. Stata 16.0 software was used to calculate the global

Moran’s I for the environmental regulation efficiency in the Yellow

River Basin from 2017 to 2020 (Table 4). Except for 2007 and 2017,

the global Moran’s I values were significantly positive during the

observation period, indicating that the environmental regulation

efficiency in the Yellow River Basin was not randomly distributed.

Instead, it showed that the spatial distribution of environmental

regulation efficiency tended to exhibit significant spatial correlation

and regional clustering. The results of the spatial autocorrelation

test indicated that the environmental regulation efficiency in the

Yellow River Basin could be analyzed using a spatial econometric

model for convergence.

3.4.2.2 Spatial convergence model setting

The spatial convergence model involves spatial lag terms. When

solving spatial problems, the traditional least squares regression

method presents difficulty acquiring unbiased estimates. Thus, a

suitable spatial econometric model was selected using the Wald and

Lagrange multiplier (LM) tests. The Hausman test results were for

determining whether the model utilized fixed effects or random

effects. The Likelihood ratio (LR) test was further judged for the

fixed effects model for time-fixed, spatial-fixed, and spatial-time

double-fixed. Because of the space limitation, the specific model

setting process was not listed in this study. The corresponding

author is available upon request.

3.4.2.3 Spatial absolute b convergence analysis

The spatial absolute b convergence test of environmental

regulation efficiency in each region is listed in Table 5. The

parameter s=−ln(1+b)/T represents the convergence speed, and

t=ln(2)/s represents the half-life cycle (Pan, 2010). It can be seen

from Table 4 that, first, the convergence coefficient b of the test in

the overall Yellow River Basin and the upper, middle, and lower
Frontiers in Ecology and Evolution 12
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reaches were significantly negative at the 1% level, indicating that

there was absolute b convergence in environmental regulation

efficiency in all of them. Suppose the influence of a series of

economic, environmental, and social factors on environmental

regulation efficiency is not considered. In that case, the

environmental regulation efficiency of the overall Yellow River

Basin and the three reaches will converge to their respective

steady-state levels in the long run. Combined with the fact that

environmental regulation efficiency increases from year to year (see

Figure 2), even though the coefficient of variation increases in the

short term for each study object (see Figure 7), the trend of

increasing and long-term convergence of environmental

regulation efficiency is already apparent. Second, there were

differences in the convergence speed of environmental regulation

efficiency across regions. The convergence speed was 0.0702, 0.0862,

0.0770, and 0.0646 for the overall Yellow River Basin and the upper,

middle, and lower reaches. At the same time, the half-life cycle was

9.867, 8.038, 8.971, and 10.737 years, respectively. In other words,

the upper reaches had the fastest convergence speed. The cities

with lower environmental regulation efficiency in the region had

the shortest time to “catch up” with the cities with higher

environmental regulation efficiency, followed by the middle

reaches and the overall Yellow River Basin. In contrast, the lower

reaches had the slowest convergence speed. The environmental

regulation efficiency in the upper and middle reaches can maintain

a high convergence speed despite the relatively high coefficient of

variation, which can be attributed to the interaction within cities

through spatial effects. Finally, the Yellow River Basin and the three

reaches exhibited different spatial effects. Both independent and

dependent variables’ spatial lags existed in the Yellow River Basin

and lower reaches. The r and q coefficients of each model were

significantly positive at the 5% level, demonstrating that the positive

spatial spillover of both environmental regulation efficiency in other

cities and the rates of change of environmental regulation efficiency

in other cities had an impact on the rate of change of environmental

regulation efficiency in this city within the region. The spatial lags of

the dependent variable existed in the upper and lower reaches. The

r coefficients of the models for both regions were significantly

positive at the 5% level, indicating that the rate of change of

environmental regulation efficiency in this city within the region

was affected by positive spatial spillovers from the rates of change in

other cities. It should be noted that the absolute b convergence of
TABLE 4 The results of Moran’s I of environmental regulation efficiency in the Yellow River Basin from 2005 to 2020.

Year Moran’s I Zscores P-value Year Moran’s I Zscores P-value

2007 0.087 1.279 0.101 2014 0.137 1.902 0.029

2008 0.104 1.809 0.046 2015 0.083 2.625 0.004

2009 0.102 1.459 0.072 2016 0.147 1.829 0.034

2010 0.113 1.595 0.055 2017 0.078 0.833 0.203

2011 0.250 3.335 0.000 2018 0.175 2.399 0.008

2012 0.091 1.325 0.093 2019 0.137 2.053 0.020

2013 0.143 2.132 0.019 2020 0.099 1.484 0.069
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environmental regulation efficiency across the regions was

conducted under the assumption that the level of economic

development, industrial structure, market environment, degree of

economic openness, and technological progress were similar across

regions, which is not the case, so further analysis on conditional b
convergence is needed.

3.4.2.4 Spatial conditional b convergence analysis

Table 6 presents the results of the conditional b convergence

test for the environmental regulation efficiency of 75 cities and

regions in the Yellow River Basin. The selection process for the

different spatial econometric models is the same as for the absolute

b convergence analysis. The results show that taking into account

the different economic, environmental, and social characteristics of

the overall Yellow River Basin and the three regions, the b
coefficients of the overall Yellow River Basin and the upper,

middle, and lower reaches were all still significantly negative at

the 5% level, indicating that the environmental regulation efficiency

of all of them showed significant conditional b convergence, with

the convergence speed of 0.071, 0.092, 0.080, and 0.066, while the

half-life cycle was 9.760, 7.571, 8.618, and 10.504 years, respectively.

With the inclusion of control variables, the convergence speed of all
Frontiers in Ecology and Evolution 13
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regions was accelerated to varying degrees. At the same time, the

half-life cycle was shortened, indicating that the control variables

can effectively promote the b convergence of environmental

regulation efficiency in the overall Yellow River Basin and the

three regions so that the cities with lower environmental

regulation efficiency needed less time to “catch up” with the cities

with higher environmental regulation efficiency. The overall Yellow

River Basin and the three regions also exhibited different spatial

effects. In contrast, the spatial effects in individual regions differed

from those in the absolute b convergence analysis. In particular, the

type of spatial effect in the overall Yellow River Basin changed from

SDM to SAR, indicating that the spatial spillover of environmental

regulation efficiency in other cities disappeared. Otherwise, the type

of spatial effect in the upper reaches changed from SAR to SDM.

Apart from these, it did not differ from the absolute b
convergence analysis.

3.4.3 Robustness tests
The Pyatt Gini coefficient was used to measure the regional

differences in environmental regulation efficiency and the primary

sources of contribution in the Yellow River Basin to examine the

findings of the previous study based on the Dagum Gini coefficient
TABLE 5 Absolute b convergence test results of the environmental regulation efficiency in the Yellow River Basin.

Model

Overall Upper Middle Lower

Spatial-time double-fixed
effects SDM

Spatial-time double-fixed
effects SAR

Spatial-time double-fixed
effects SAR

Spatial-time double-fixed
effects SDM

b −0.626*** −0.701*** −0.661*** −0.595***

r/l 0.125*** 0.021** 0.065** 0.093**

q 0.141** 0.261***

Hausman 84.03*** 58.29*** 114.75*** 73.21***

Wald-lag 5.94** 0.03 2.97* 23.88***

Wald-error 8.72*** 0.10 0.46 13.39***

LM-lag 10.238*** 7.464***

Robst-LM-
lag

22.156*** 19.350***

LM-error 2.386 1.585

Robst-LM-
error

14.304*** 13.471***

Spatial effects 73.52*** 27.09*** 66.57*** 34.84***

Time effects 159.49*** 54.51*** 53.91*** 50.80***

Log-
likelihood

427.9634 114.6240 113.6536 224.3129

sigma2 0.024*** 0.022*** 0.028*** 0.021***

s 0.070 0.086 0.077 0.065

t 9.867 8.038 8.971 10.737

N 975 234 312 429

R2 0.186 0.190 0.227 0.217
*, **, and *** represent significance at the 10%, 5%, and 1% levels, respectively.
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(Pyatt, 1976). It can be easily seen that the Pyatt Gini coefficient and

decomposition were generally consistent with the Dagum Gini

coefficient, which indicates that the conclusions drawn from the

Dagum Gini coefficient were robust and reliable. Due to space

constraints, the composition of the Pyatt Gini coefficient needed to

be more detailed here, and specific Gini coefficient data needed to

be reported. The corresponding author is available upon request.

The spatial conditional b convergence analysis was conducted

using the geographic distance weight matrix and the economic

geography nested weight matrix to examine the robustness of

spatial convergence, and the results are shown in Table 7. The b
coefficients of the overall Yellow River Basin and the upper, middle,

and lower reaches were all significantly negative at the 5% level

under both types of weight matrices, implying that the spatial

convergence conclusion of this paper was robust.
4 Discussion

Environmental regulation efficiency facilitates environmental

governance performance assessment, ecological protection, and

high-quality development. Based on the input–output indicators
Frontiers in Ecology and Evolution 14
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system, this study identified the differences and convergence of

environmental regulation efficiency in the Yellow River Basin.

First, the average value of environmental regulation efficiency in

the Yellow River Basin from 2007 to 2020 was 0.726, which is lower

than the results of the Yangtze River Economic Belt and coastal

urban agglomerations in China (Ren et al., 2019; Wang and Ma,

2020). The results are lower because our study considered the

impact of undesirable output indicators such as industrial “three

waste” emissions on environmental regulation, which makes our

calculation more scientific. Second, the environmental regulation

efficiency in the Yellow River Basin has great within-region

differences, and the differences within the middle reaches are the

largest. The average contribution to the intensity of transvariation

was 47.265%, indicating that the intensity of transvariation is the

main source of spatial differences in environmental regulation

efficiency. Compared with traditional empirical analysis, the

difference and contribution analysis in this study can more

scientifically show the characteristics of environmental regulation

efficiency in the Yellow River Basin. Finally, the environmental

regulation efficiency in the Yellow River Basin has obvious

characteristics of spatial absolute and conditional b convergence,

and the environmental regulation efficiency of each city tends to a
TABLE 6 Conditional b convergence test results of the environmental regulation efficiency in the Yellow River Basin.

Variables

Overall Upper Middle Lower

Spatial-time double-fixed
effects SAR

Time-fixed effects
SDM

Spatial-time double-fixed
effects SAR

Spatial-time double-fixed
effects SDM

b −0.629*** −0.705*** −0.673*** −0.603***

r/l 0.073** 0.044** 0.056*** 0.079**

q 0.083** 0.219***

Hausman 106.81*** 147.20*** 158.12*** 64.55***

Wald-lag 10.55 16.66** 11.76* 23.20***

Wald-error 6.30 16.80** 9.88 18.86***

LM-lag 8.849*** 7.756***

R-LM-lag 43.838*** 24.315***

LM-error 0.267 1.160

R-LM-error 35.256*** 17.719***

Spatial
effects

36.32*** 9.62 34.26*** 18.87**

Time
effects

155.49*** 41.79*** 45.75*** 51.71***

Log-
likelihood

427.1545 125.1941 92.8780 228.6742

sigma2 0.024*** 0.020*** 0.032*** 0.020***

s 0.071 0.092 0.080 0.066

t 9.760 7.517 8.681 10.504

N 975 234 312 429

R2 0.164 0.100 0.159 0.199
*, **, and *** represent significance at the 10%, 5%, and 1% levels, respectively.
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common steady state. Among them, the upper reaches has the

fastest convergence speed, and the lower reaches has the slowest

convergence speed. Under the influence of the level of economic

development, industrial structure, market environment, degree of

economic openness, and technological progress, the convergence

speed of all regions is accelerated to varying degrees, which

indicates that the control variables can promote the steady-state

convergence of environmental regulation efficiency in the overall

Yellow River Basin and the three regions. The analysis based on

spatial convergence significantly shows the characteristics of the

spatial evolution of environmental regulation efficiency in the

Yellow River Basin, which can compensate for the lack of

research on the dynamic evolution trend of environmental

regulatory efficiency (Cheng et al., 2016; Jia et al., 2022).

Our contribution includes three aspects. First, the super-EBM

model was used tomeasure the environmental regulation efficiency in

the Yellow River Basin from multiple dimensions of cities, regions,

and overall, solving the problem of non-radial slack, radial ratio

information, and the pros and cons of various effective decision-

making units (DMUs), which helped to enrich the measurement

method to some extent. Second, we analyzed the regional differences

in environmental regulation efficiency in the Yellow River Basin from

the perspectives of composition and source. We also revealed the

dynamic evolution characteristics of regional differences, which can

provide empirical support for policies based on regional

circumstances. Finally, the spatial absolute and conditional b
convergence across regions in the Yellow River Basin were verified

in light of the spatial effects, which provided guidance and reference

for establishing environmental regulation efficiency policy systems

and green coordinated development. Our findings and research

methodology can provide references for similar regions to select

appropriate environmental regulation tools based on local conditions

and explore a new way of economic development and eco-

environmental protection.
5 Conclusions and policy implications

In this paper, we calculated the environmental regulation

efficiency of 75 cities in the Yellow River Basin from 2007 to 2020
Frontiers in Ecology and Evolution 15
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using the super-EBM model containing the undesirable output.

Further, we analyzed the regional differences, dynamic evolution,

and spatio-temporal convergence of environmental regulation

efficiency among regions using the Dagum Gini coefficient, kernel

density estimation method, and spatial econometric model. The

main findings are as follows: First, the average environmental

regulation efficiency of the overall Yellow River Basin and the

upper, middle, and lower reaches had an increasing trend. The

average environmental regulation efficiency in the upper and lower

reaches was higher than the overall average, while that in the middle

reaches was lower than average but increased fastest. Second, the

overall Yellow River Basin and the three regions had obvious

within-region differences, and the differences within the middle

reaches were the largest. The differences between all regions had a

narrowing trend. The regional differences between the upper and

middle reaches and the middle and lower reaches were higher than

those between the upper and lower reaches. The intensity of

transvariation was the main source of spatial differences in

environmental regulation efficiency, and the within-regional

difference was the second source, with the lowest contribution to

the between-regional difference. Third, the gap between the cities

with higher environmental regulation efficiency and those with

average efficiency had been reduced in the Yellow River Basin. The

upper reaches had a significant spatial polarization phenomenon

and maintained a certain level. The dynamic evolutionary

characteristics of the overall Yellow River Basin and the lower

reaches were relatively similar, the within-region polarization

tended to weaken, and the differences gradually decreased.

Finally, the coefficient of s convergence of environmental

regulation efficiency in the overall Yellow River Basin was

increasing to some extent, so there is no s convergence.

Meanwhile, the coefficients of s convergence for environmental

regulation efficiency in the upper, middle, and lower reaches

showed a fluctuating decreasing trend, which indicates s
convergence, and the convergence speed in the lower reaches was

fast. Overall, the upper, middle, and lower reaches all had significant

spatial absolute and conditional b convergence, and they will

converge to their respective steady-state levels over time. Their

conditional b convergences were faster than absolute b
convergences with shorter half-life cycles, indicating that
TABLE 7 Spatial convergence robustness test results.

Weight type b r/l R2

Overall
Geographic distance weight matrix −0.710*** 0.123*** 0.160

Economic geography nested weight matrix −0.585*** 0.266*** 0.193

Upper
Geographic distance weight matrix −0.591*** 0.685*** 0.162

Economic geography nested weight matrix −0.513*** 0.128* 0.127

Middle
Geographic distance weight matrix −0.510*** 0.018*** 0.090

Economic geography nested weight matrix −0.669*** 0.211*** 0.178

Lower
Geographic distance weight matrix −0.731*** 0.119* 0.168

Economic geography nested weight matrix −0.425*** 0.165** 0.173
*, **, and *** represent significance at the 10%, 5%, and 1% levels, respectively.
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economic, environmental, and social factors such as the level of

economic development, industrial structure, market environment,

degree of economic openness, and technological progress

accelerated the convergence of regional differences.

To further improve the environmental regulation efficiency in

the Yellow River Basin, the following policy implications are

derived based on the results: First, it is necessary to increase

environmental investment and support in the middle reaches of

the Yellow River to continuously narrow the gap in environmental

regulation efficiency between the middle and lower reaches. As

one of the regions with the most significant and fastest-growing

pressures on resources and the environment, the middle reaches

should optimize the combination of environmental regulation

tools, strictly control the scale of highly polluting and energy-

consuming industries, and curb the transfer of polluting industries

to it, and taking the development of a circular, low-carbon, and

green economy as an opportunity to promote the transformation

of the economic growth mode to a low consumption and pollution

economic development mode. Second, through administrative

means such as breaking regional boundaries, improving the

property rights trading system for resources and the

environment, and optimizing the supply of services, we will

facilitate the cross-regional flow of urban input factors,

environmental information sharing, and policy coordination,

especially by creating conditions and preferential policies for

environmental governance exchange and cooperation between

cities with lower environmental regulation efficiency and higher

cities. Innovative explorations can be considered in constructing

resource-sharing platforms, eco-environmental restoration, policy

co-benefits, and other win-win benefits. Third, we should be wary

of the dangers of over-polarization and the widening disparity in

environmental regulation efficiency in the upper reaches of the

Yellow River Basin and instead concentrate on improving the

diffusion and radiation effects of cities at the growth poles of

environmental regulation efficiency to neighboring cities. By

establishing a collaborative governance mechanism, breaking the

“siphon effect” and reasonably weakening the polarization effect,

we can achieve a balanced development of environmental

regulation efficiency in the upper reaches. The two core cities of

Lanzhou and Xining, in particular, play the role of radiation

diffusion of industrial structure transformation and upgrading

with the implementation of the western development strategy and

accelerate the neighboring cities to improve the proportion of

strategic new industries to continuously promote the synergistic

improvement of environmental regulation efficiency with the

environmental construction of the Lanzhou–Xining urban

agglomeration. Finally, the rate of change in environmental

regulation efficiency is influenced by various factors. We should

fully implement the new development concept, strengthen the

development potential according to our own environmental

resources endowment and comparative advantages, accelerate

the convergence speed of environmental regulation efficiency by

transforming and upgrading industrial structures, enhancing

independent innovation capability, improving the market

economy system and harmonizing fiscal and environmental
Frontiers in Ecology and Evolution 16
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policies, and then promote the economic development and

ecological protection of the Yellow River Basin.

There are still limitations to the study of differences and

convergence in environmental regulation efficiency in the Yellow

River Basin. Due to the difficulty of data acquisition, this study

selected research samples from 75 prefecture-level cities in the

Yellow River Basin, but the research on regional differences and

convergence in environmental regulation efficiency at the county

level based on micro-perspectives will be the focus of our future

research. In addition, the club convergence of environmental

regulation efficiency at the county level should also be further

analyzed on the basis of their initial values. Meanwhile, the

number of control variables can also restrict the spatial

conditional b convergence conclusions. In future research, we

intend to increase the number of control variables and

continuously improve the research results.
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