
Edited by  

Xin Jin, Jingyu Hou, Zhou Wei and Shin-Jye Lee

Published in  

Frontiers in Neurorobotics

Recent advances in 
image fusion and 
quality improvement 
for cyber-physical systems

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org/research-topics/43906/recent-advances-in-image-fusion-and-quality-improvement-for-cyber-physical-systems
https://www.frontiersin.org/research-topics/43906/recent-advances-in-image-fusion-and-quality-improvement-for-cyber-physical-systems
https://www.frontiersin.org/research-topics/43906/recent-advances-in-image-fusion-and-quality-improvement-for-cyber-physical-systems
https://www.frontiersin.org/research-topics/43906/recent-advances-in-image-fusion-and-quality-improvement-for-cyber-physical-systems


June 2023

Frontiers in Neurorobotics 1 frontiersin.org

About Frontiers

Frontiers is more than just an open access publisher of scholarly articles: it is 

a pioneering approach to the world of academia, radically improving the way 

scholarly research is managed. The grand vision of Frontiers is a world where 

all people have an equal opportunity to seek, share and generate knowledge. 

Frontiers provides immediate and permanent online open access to all its 

publications, but this alone is not enough to realize our grand goals.

Frontiers journal series

The Frontiers journal series is a multi-tier and interdisciplinary set of open-

access, online journals, promising a paradigm shift from the current review, 

selection and dissemination processes in academic publishing. All Frontiers 

journals are driven by researchers for researchers; therefore, they constitute 

a service to the scholarly community. At the same time, the Frontiers journal 

series operates on a revolutionary invention, the tiered publishing system, 

initially addressing specific communities of scholars, and gradually climbing 

up to broader public understanding, thus serving the interests of the lay 

society, too.

Dedication to quality

Each Frontiers article is a landmark of the highest quality, thanks to genuinely 

collaborative interactions between authors and review editors, who include 

some of the world’s best academicians. Research must be certified by peers 

before entering a stream of knowledge that may eventually reach the public 

- and shape society; therefore, Frontiers only applies the most rigorous 

and unbiased reviews. Frontiers revolutionizes research publishing by freely 

delivering the most outstanding research, evaluated with no bias from both 

the academic and social point of view. By applying the most advanced 

information technologies, Frontiers is catapulting scholarly publishing into  

a new generation.

What are Frontiers Research Topics? 

Frontiers Research Topics are very popular trademarks of the Frontiers 

journals series: they are collections of at least ten articles, all centered  

on a particular subject. With their unique mix of varied contributions from  

Original Research to Review Articles, Frontiers Research Topics unify the 

most influential researchers, the latest key findings and historical advances  

in a hot research area.

Find out more on how to host your own Frontiers Research Topic or 

contribute to one as an author by contacting the Frontiers editorial office: 

frontiersin.org/about/contact

FRONTIERS EBOOK COPYRIGHT STATEMENT

The copyright in the text of individual 
articles in this ebook is the property 
of their respective authors or their 
respective institutions or funders.
The copyright in graphics and images 
within each article may be subject 
to copyright of other parties. In both 
cases this is subject to a license 
granted to Frontiers. 

The compilation of articles constituting 
this ebook is the property of Frontiers. 

Each article within this ebook, and the 
ebook itself, are published under the 
most recent version of the Creative 
Commons CC-BY licence. The version 
current at the date of publication of 
this ebook is CC-BY 4.0. If the CC-BY 
licence is updated, the licence granted 
by Frontiers is automatically updated 
to the new version. 

When exercising any right under  
the CC-BY licence, Frontiers must be 
attributed as the original publisher  
of the article or ebook, as applicable. 

Authors have the responsibility of 
ensuring that any graphics or other 
materials which are the property of 
others may be included in the CC-BY 
licence, but this should be checked 
before relying on the CC-BY licence 
to reproduce those materials. Any 
copyright notices relating to those 
materials must be complied with. 

Copyright and source 
acknowledgement notices may not  
be removed and must be displayed 
in any copy, derivative work or partial 
copy which includes the elements  
in question. 

All copyright, and all rights therein,  
are protected by national and 
international copyright laws. The 
above represents a summary only. 
For further information please read 
Frontiers’ Conditions for Website Use 
and Copyright Statement, and the 
applicable CC-BY licence.

ISSN 1664-8714 
ISBN 978-2-8325-2459-6 
DOI 10.3389/978-2-8325-2459-6

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org/
https://www.frontiersin.org/about/contact
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


June 2023

Frontiers in Neurorobotics 2 frontiersin.org

Recent advances in image fusion 
and quality improvement for 
cyber-physical systems

Topic editors

Xin Jin — Yunnan University, China

Jingyu Hou — Deakin University, Australia

Zhou Wei — Yunnan University, China

Shin-Jye Lee — National Chiao Tung University, Taiwan

Citation

Jin, X., Hou, J., Wei, Z., Lee, S.-J., eds. (2023). Recent advances in image fusion and 

quality improvement for cyber-physical systems. Lausanne: Frontiers Media SA. 

doi: 10.3389/978-2-8325-2459-6

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org/
http://doi.org/10.3389/978-2-8325-2459-6


June 2023

Frontiers in Neurorobotics 3 frontiersin.org

05 Editorial: Recent advances in image fusion and quality 
improvement for cyber-physical systems
Xin Jin, Jingyu Hou, Wei Zhou and Shin-Jye Lee

08 Multi-focus image fusion dataset and algorithm test in real 
environment
Shuaiqi Liu, Weijian Peng, Wenjing Jiang, Yang Yang, Jie Zhao and 
Yonggang Su

16 Multi-view SoftPool attention convolutional networks for 3D 
model classification
Wenju Wang, Xiaolin Wang, Gang Chen and Haoran Zhou

30 Multimodal medical image fusion using convolutional neural 
network and extreme learning machine
Weiwei Kong, Chi Li and Yang Lei

45 Transformer-based progressive residual network for single 
image dehazing
Zhe Yang, Xiaoling Li and Jinjiang Li

59 A lightweight multi-dimension dynamic convolutional 
network for real-time semantic segmentation
Chunyu Zhang, Fang Xu, Chengdong Wu and Chenglong Xu

73 Application of convolutional neural network in fusion and 
classification of multi-source remote sensing data
Fanghong Ye, Zheng Zhou, Yue Wu and Bayarmaa Enkhtur

84 Study on the enhancement method of online monitoring 
image of dense fog environment with power lines in smart 
city
Meng Zhang, Zhitao Song, Jianfei Yang, Mingliang Gao, 
Yuanchao Hu, Chi Yuan, Zhipeng Jiang and Wei Cheng

102 Multi-exposure electric power monitoring image fusion 
method without ghosting based on exposure fusion 
framework and color dissimilarity feature
Sichao Chen, Zhenfei Li, Dilong Shen, Yunzhu An, Jian Yang, Bin Lv 
and Guohua Zhou

119 An improved adaptive triangular mesh-based image warping 
method
Wei Tang, Fangxiu Jia and Xiaoming Wang

130 Rethinking 1D convolution for lightweight semantic 
segmentation
Chunyu Zhang, Fang Xu, Chengdong Wu and Chenglong Xu

141 DualFlow: Generating imperceptible adversarial examples by 
flow field and normalize flow-based model
Renyang Liu, Xin Jin, Dongting Hu, Jinhong Zhang, Yuanyu Wang, 
Jin Zhang and Wei Zhou

Table of
contents

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org/


June 2023

Frontiers in Neurorobotics 4 frontiersin.org

153 Research on steel rail surface defects detection based on 
improved YOLOv4 network
Zengzhen Mi, Ren Chen and Shanshan Zhao

164 A comparative analysis of near-infrared image colorization 
methods for low-power NVIDIA Jetson embedded systems
Shengdong Shi, Qian Jiang, Xin Jin, Weiqiang Wang, Kaihua Liu, 
Haiyang Chen, Peng Liu, Wei Zhou and Shaowen Yao

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org/


TYPE Editorial

PUBLISHED 04 May 2023

DOI 10.3389/fnbot.2023.1201266

OPEN ACCESS

EDITED AND REVIEWED BY

Florian Röhrbein,

Technische Universität Chemnitz, Germany

*CORRESPONDENCE

Xin Jin

xinxin_jin@163.com

RECEIVED 06 April 2023

ACCEPTED 14 April 2023

PUBLISHED 04 May 2023

CITATION

Jin X, Hou J, Zhou W and Lee S-J (2023)

Editorial: Recent advances in image fusion and

quality improvement for cyber-physical

systems. Front. Neurorobot. 17:1201266.

doi: 10.3389/fnbot.2023.1201266

COPYRIGHT

© 2023 Jin, Hou, Zhou and Lee. This is an

open-access article distributed under the terms

of the Creative Commons Attribution License

(CC BY). The use, distribution or reproduction

in other forums is permitted, provided the

original author(s) and the copyright owner(s)

are credited and that the original publication in

this journal is cited, in accordance with

accepted academic practice. No use,

distribution or reproduction is permitted which

does not comply with these terms.

Editorial: Recent advances in
image fusion and quality
improvement for cyber-physical
systems

Xin Jin1*, Jingyu Hou2, Wei Zhou1 and Shin-Jye Lee3

1School of Software, Yunnan University, Kunming, China, 2School of Information Technology, Deakin

University, Geelong, VIC, Australia, 3Institute of Technology Management, National Chiao Tung

University, Hsinchu, Taiwan

KEYWORDS

artificial neural networks, embedded learning system, feature extraction, image quality

improvement, image fusion, robot vision

Editorial on the Research Topic

Recent advances in image fusion and quality improvement for

cyber-physical systems

Multi-source visual information fusion and quality improvement can help the robotic

system to perceive the real world, and image fusion is a computational technique fusing

the multi-source images from multiple sensors into a synthesized image that provides either

comprehensive or reliable description, and quality improvement technique can be used to

address the challenge of low-quality image analysis task (Jin et al., 2017, 2021, 2023; Chen

et al., 2021;Wang et al., 2022; Jiang et al., 2023). At present, a lot of brain-inspired algorithms

methods (or models) are aggressively proposed to accomplish these two tasks, and the

artificial neural network has become one of the most popular techniques in processing image

fusion and quality improvement techniques in this decade, especially deep convolutional

neural networks (Chen et al., 2021; Jin et al., 2021, 2023). This is an exciting research field

for the research community of image fusion and there are many interesting issues remain to

be explored, such as deep few-shot learning, unsupervised learning, application of embodied

neural systems, and industrial applications.

How to develop a sound biological neural network and embedded system to extract

the multiple features of source images are basically two key questions that need to be

addressed in the fields of image fusion and quality improvement. Hence, studies in this

field can be divided into two aspects: first, new end-to-end neural network models for

merging constituent parts during the image fusion process; Second, the embodiment of

artificial neural networks for image processing systems. In addition, current booming

techniques, including deep neural systems and embodied artificial intelligence systems, are

considered as potential future trends for reinforcing the performance of image fusion and

quality improvement.

In the first work entitled “Multi-focus image fusion dataset and algorithm test in real

environment,” Liu S et al. proposed a multi-focus image fusion dataset named HBU-

CVMDSP. The dataset can truly reflect the real-world scene, which included 66 groups of

images captured by smartphones. Five image fusion algorithmswere performed on theHBU-

CVMDSP dataset, which revealed that the HBU-CVMDSP dataset could better promote the

research of multi-focus image fusion.
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Due to insufficient view refinement feature extraction and

poor generalization ability of the network model affecting the

classification accuracy, Wang et al. proposed a multi-view SoftPool

attention convolutional network for 3D model classification tasks.

The multi-view features were extracted through ResNest and

adaptive pooling modules, and then processed by SoftPool, which

enabled the subsequent refinement extraction. The experimental

results showed that the proposed model is effective.

In the third paper, Kong et al. proposed the model of

convolutional extreme learning machine (CELM) for the fusion of

multimodal medical images. In this method, CELM served as an

important tool to extract and capture the features of source images

from a variety of different angles, and the final fused image can

be obtained by integrating the significant features. Experiments

showed that the proposed method has obvious superiorities in gray

image fusion and color image fusion.

The visual quality of images will be seriously affected by

bad weather conditions, especially on foggy days. Yang et al.

proposed a new transformer-based progressive residual network

(PRnet) to achieve the quality improvement and obtain a fog-

free image. In this work, the swin transformer block encoded the

feature representation of the decomposed block and continuously

reduced the feature mapping resolution. The decoder was used to

recursively select and fuse image features. Experiments showed that

the performance of the proposed method was better than other

state-of-the-art methods.

Zhang C et al. proposed a lightweight multi-dimensional

dynamic convolutional network (LMDCNet) for real-time

semantic segmentation with an ideal trade-off between model

parameters, segmentation accuracy and inference speed. In this

work, the encoder was a depth-wise asymmetric bottleneck module

with multi-dimensional dynamic convolution and shuffling

operations (MS-DAB), which increased the utilization of local

and contextual information of features. Finally, a feature pyramid

module (SC-FP) based on spatial and channel attention can

perform the multi-scale fusion of features accompanied by

feature selection.

Ye et al. proposed a dual branch CNN network (BD-CNN)

for the fusion and classification of multi-source remote sensing

data. Comparing with ELM algorithm and SVM algorithm, the

proposed BD-CNN model can effectively fuse and classify multi-

source remote sensing data.

Electricity transmission line monitoring in hazy weather will

face some problems, such as reduced contrast and chromatic

aberration. Therefore, Zhang M et al. proposed an image defogging

algorithm for the electricity transmission line monitoring system.

In this research, an optimized quadtree segmentation method

for calculating global atmospheric light was proposed. Moreover,

the detail sharpening post-processing based on visibility and air

light level was introduced to enhance the detail level of electricity

transmission lines in the defogging image. Experiments proved that

the algorithm performs well in improving image quality.

Chen et al. proposed an improved multi-exposure fusion

method based on the exposure fusion framework and the color

dissimilarity feature to solve the problem of ghosting artifacts.

First, an improved exposure fusion framework based on the

camera response model was applied to preprocess the input image

sequence. Then, an improved color dissimilarity feature was used

to detect the object motion features in dynamic scenes. Finally,

the improved pyramid model was adopted to retain detailed

information about the poor exposure areas.

To preserve more local details and with few artifacts in

panoramas, Tang et al. presented an improved mesh-based joint

optimization image stitching model. An improved energy function

containing a color similarity term and a regularization parameter

strategy of combining the proposed method with an as-projective-

as-possible (APAP) warp was performed. Moreover, calculating

the distance between the vertex and the nearest matched feature

point to the vertex ensured a more natural stitching effect in

non-overlapping areas.

The 1D convolution is not limited by the input size and

has the advantage of fewer parameters. Thus, Zhang C et al.

designed a lightweight semantic segmentation network (LSNet)

composed of full 1D convolution. Moreover, increasing the depth

of network in the decoder can effectively solve the misalignment

of upsampling and improve the accuracy of network segmentation.

Experiments demonstrated that the proposed method can achieved

better performance in accuracy and parameters.

As most attack methods rely on a relatively loose noise

budget in image, Liu R et al. proposed a novel framework named

Dual-Flow for generating adversarial examples by disturbing the

latent representation of the clean examples. The spatial transform

techniques were applied to the latent value to preserve the details

of original images and guarantee the adversarial images’ quality.

Experiments revealed the superiority of the proposed method in

synthesizing adversarial examples.

Mi et al. proposed a deep learning algorithm based on the

modified YOLOv4 network to improve the accuracy of railway

defects detection. In this mehod, the rail region extraction,

improved Retinex image enhancement, background modeling

difference and threshold segmentation were performed sequentially

to obtain the segmentation map of defects. For the classification

of defects, Res2Net and Convolutional Block Attention Module

(CBAM) were introduced to improve the receptive field and small

target position weights.

Shi et al. proposed an evaluation system based on image

quality indexes, resource occupancy and energy consumption

metrics, which verified the performances of different near-

infrared image colorization methods on low-power NVIDIA

Jetson embedded systems. Eleven infrared image colorization

methods were tested on three different configurations of NVIDIA

Jetson boards. The experimental results indicated that the

CICZ had the smallest energy consumption per unit of time.

Pix2Pix and TIC-CGAN showed superiority in image quality

and latency metrics. Moreover, the RecycleGAN, PearlGAN and

I2V-GAN had smaller memory usage than other methods on

edge devices.
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Introduction

In the past three decades, not only some classical MIF datasets have appeared,

but also MIF technology has developed rapidly (Zheng et al., 2020; Zhu et al., 2021).

The existing MIF datasets can be divided into two categories, namely, the simulated

image dataset obtained by applying Gaussian blur to the existing image dataset and the

benchmark image dataset captured by the professional camera. The source image after

Gaussian blurring in the multi-focus simulated image dataset are difficult to reflect the

information of focused and unfocused objects in the real environment. The benchmark

image dataset also has imaging equipment limited to professional cameras. Both of them

are difficult to achieve the application of MIF technology in the real environment.

MIF algorithms can be classified into three categories i.e., spatial domain fusion

algorithms, transform domain fusion algorithms, and fusion algorithms based on deep

learning (Liu et al., 2021). The spatial domain fusion algorithms mainly take pixel-level

gradient information or image blocks for fusion. Bouzos et al. (2019) presented a

MIF algorithm based on conditional random field optimization. Xiao et al. (2020)

presented a MIF algorithm based on Hessian matrix. The transform domain fusion

algorithms consist of three processes: image transformation, coefficient fusion and

inverse transformation. Liu et al. (2019) proposed a MIF algorithm based on an adaptive

dual-channel impulse cortical model and differential images in non-subsampled Shearlet

transform (NSST) domain. In recent years, the fusion algorithms based on deep learning

have become a research hotspot in the field of multi-focused image fusion. Zhang et al.

(2020) proposed an image fusion framework based on convolutional neural network,

which utilizes two convolutional layers to extract salient features from source images.

Liu et al. (2022) proposed a MIF algorithm based on low vision image reconstruction

and focus feature extraction. Although these MIF algorithms have achieved good image

fusion results among these public datasets, the image fusion databases used by these

algorithms are all data taken by professional cameras or synthetic data, which cannot

reflect the fusion performance of the fusion algorithm in the real environment.

As mentioned above, in the past few years, a series of MIF algorithms have

been developed by scholars from various countries. To test the performance of
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these algorithms, some classic public MIF datasets have

occurred. Currently, the commonly used datasets include Multi

Focus-Photography Contest dataset (http://www.pxleyes.com/

photography-contest/19726), Lytro color multi-focus image

dataset (Nejati et al., 2015), Savic dataset (http://dsp.etfbl.net/

mif/) andAymaz dataset (https://github.com/sametymaz/Multi-

focus-Image-Fusion-Dataset), etc. Some of these datasets were

captured by professional cameras, and others were obtained by

applying Gaussian blur to existing image datasets. The Multi

Focus-Photography Contest dataset is an image photography

competition held by the Photography Contest website. It

contains 27 pairs of multi-focus images. Images in Lytro multi-

focus dataset were acquired by the Lytro camera which is an

all-optical camera whose imaging system employs a microlens

array focused on the focal plane of the camera’s main lens. The

Lytro multi-focus dataset includes 20 groups of color multi-

focus images and four sets of multi-source focus images. The

image resolution is and the image format is jpg. The Savic dataset

is collected by Nikon D5000 camera and contains 27 pairs of

images. In Savic dataset, 21 pairs of images with format jpg are

taken indoors, and 6 pairs of images with format bmp are used

for MIF algorithm testing. In Aymaz dataset, the 150 multi-

focus images are obtained by using the Gaussian blur function

to locally blur some common image datasets. This dataset also

contains some multiple source images of the same scene with

different focal points. In addition to color multi-focus datasets,

there are also some grayscale multi-focus datasets, and some

images in grayscale multi-focus datasets.

The above-mentioned datasets can well reflect the

performance of the fusion algorithms to some extent. However,

these datasets can hardly reflect the application of MIF

techniques in real environment. At present, the most commonly

used camera device in daily life is the smartphone. With

the continuous development of the imaging technology, the

smartphone photography is more and more recognized by

people. Therefore, it is necessary to try to construct a real-

environment dataset by using different smartphones. In order

to better build the database and collect images of the real

environment more widely, we selected five mobile phones that

were among the top ten in sales nationwide at that time for

data collection such as HUAWEI Mate 30, OPPO Reno Z,

Honor30 Pro+, Honor V30 Pro and iPhone XR to collect the

multi-focus images in HBU-CVMDSP dataset. There are some

unavoidable problems in collecting images with mobile phones,

such as jitter, not completely overlapped and brightness. To

address these issues, the proposed dataset is pre-processed after

acquisition with image cropping, standardization of basic image

attributes and image alignment. The contributions of this paper

are as follows: In this paper, we construct a real-environment

dataset named as HBU-CVMDSP, which includes 66 groups of

multi-focus images. we give the detail of how to pre-process the

raw data of the real-environment dataset, and the experiments

prove that it is effectively for testing the fusion algorithms.

TABLE 1 Acquisition equipment.

Smartphone

model

Camera description

HUAWEI Mate 30 Rear triple camera layout: 40-megapixel (MP) camera, 16

MP super-wide-angle camera and 8 MP telephoto camera

OPPO Reno Z Rear dual-camera layout: 48 MP camera and 5 MP

depth-of-field lens

Honor 30 Pro+ Rear three-camera layout: 50 MP super-sensitive camera, 16

MP super-wide-angle camera and 8 MP telephoto camera

Honor V30 Pro Rear triple camera layout: 40 MP main camera, 12 MP

super-wide-angle camera and 8 MP telephoto camera

iPhone XR Rear single-camera layout: 12 MP wide-angle camera

We also test the performance of some existing image fusion

algorithms on the HBU-CVMDSP dataset.

Collection and construction of the
dataset

Due to the variability of image effects from different

smartphones, five different models of smartphones shown in

Table 1 are used for image collection in this paper.

In this paper, the constructed real-environment multi-focus

image dataset is named as HBU-CVMDSP. There are two

kinds of sceneries i.e., natural scenery and artificial scenery

in HBU-CVMDSP dataset, and these sceneries are selected

from the laboratory, campus, gymnasium, and shopping mall,

respectively. The HBU-CVMDSP dataset contains 66 groups

of multi-focus images with jpg format. The image size is

uniformly cropped to 512× 512 to ensure the efficient execution

of the experiment. Figure 1 shows some images in HBU-

CVMDSP dataset.

Image preprocessing

In order to solve these unavoidable problems when

capturing images with mobile phones, the proposed dataset

is preprocessed by image clipping, standardization of basic

image attributes and image registration after acquisition, such

as Figure 2.

To further illustrate the necessity of image preprocessing,

before the dataset is preprocessed, we use dense scale-invariant

feature transform (DSIFT) (Liu et al., 2015) and CNN (Liu et al.,

2017) based image fusion algorithms to examine the dataset.

The partial fusion results of the DSIFT and CNN can be found

in https://www.researchgate.net/publication/359468841.

It can be seen from the above results that the fusion effects

are not visually satisfactory. The ghosting at the image edges is
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FIGURE 1

Some images selected from the HBU-CVMDSP dataset. (A1–F1) are the foreground focused image in a group of multi focus images. (A2–F2)

are the background focused image in a group of multi focus images.

FIGURE 2

Schematic diagram of Image preprocessing.

mainly due to the misregistration of the images in the dataset,

while the blocking and distortion in the images are due to

the inconsistency of the brightness between the two source

images in the dataset. Therefore, we conduct image cropping,

standardization of basic attributes and registration processing

on the dataset to ameliorate the quality of the fused images.

If the mobile phone device shoots scenes with different focus

areas, the obtained image field of viewwill be different.When the

image background information is clear, the field of view is wider,

and when the image near field information is clear, the view is

narrower. Therefore, if two images with different focal points

have the same size, the field of view of the two images will be

different, and the ghosting will appear during the fusion process.

In addition, the slight jitter when taking pictures will also lead to

a slight gap in the field of view of two images. The images in

HBU-CVMDSP dataset are cropped using the nearest neighbor

interpolation algorithm. The details be found in https://www.

researchgate.net/publication/359468841.

When smartphones collect a foreground and background

focused image, due to the different depth of field, the attributes

such as brightness and contrast of the image will be different. A

group of images with different attributes will affect the matching

of feature points in the image registration process, and the fusion

image will appear block effect, resulting in unsatisfactory fusion

result. In this paper, we standardize the basic attributes of color

images using the SHINE_color toolbox (Willenbockel et al.,

2010). When standardizing the basic attributes of images, we

designate one image in the image group as the source image

and the other image as the target image. Firstly, the source

image and target image are transformed from RGB space to

HSV space. Then the chroma, saturation and luminance are

separated, the standardization of the basic attributes of the

images is accomplished by adjusting the luminance channel of

the source image and the target image to be equal in spatial

frequency and direction. In this paper, the SIFT algorithm is

used for image registration.

Experimental results and analysis

Experiment and analysis

In this experiment, we use the following nine metrics to

quantitatively evaluate the performance of the image fusion
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FIGURE 3

The fusion results before and after image registration. (A1–D1) are the fused images for the multi focus image pair without registration

processing. (A2–D2) are the fused images by registration images.

algorithms: (1) Normalized mutual information (NMI), which

can effectively improve the stability of the MI (Liu et al.,

2020). (2) Nonlinear correlation information entropy (NCIE),

which is a metric used to evaluate the quality of the fusion

image (Su et al., 2022). (3) Gradient-based evaluation metric

QG (Liu et al., 2020), which is used to evaluate the gradient

information of the source image retained in the fused image.

(4) Phase consistency based evaluation metric was proposed

in Liu et al. (2020). (5) Structural similarity based evaluation

metric QS, which is an image quality evaluation metric based

on the universal quality index (Liu et al., 2020). (6) Structural

similarity based evaluation metric QY (Liu et al., 2020). (7)

Human perception based evaluation metric QCB, which can be

used to evaluate the contrast information between images (Liu

et al., 2020). (8) Human perception based evaluation metric

QCV , which is an image fusion evaluation metric based on

human visual perception (Liu et al., 2020). (9) Tsallis entropy

is a generalization of Shannon entropy, which can be used to

evaluate the retentive information between the source image and

the fusion image. For QMI , QNCIE, QG, QP , QS, QY , QCB, and

QTE, the higher the value of them is, the better the fusion result

will be. And for the QCV , the smaller the value is, the better the

fusion result will be.

Ablation experiment

To validate the importance of the pre-processing of the

dataset, we use DSIFT and CNN fusion algorithms to conduct

the fusion experiments on the dataset before and after image

registration, and compare the subjective and objective fusion

results of the two fusion algorithms. The experiments are

completed by a PC with Intel core i5-10500, 3.10 GHz CPU,

8GB RAM memory, and NVIDIA GeForce GTX 1660 SUPER

GPU. Due to space limitation, we only give the experimental

results of the DSIFT algorithm. The experimental results of

the CNN algorithm are shown in https://www.researchgate.net/

publication/359468841.

The fusion results of the DSIFT algorithm are shown in

Figure 3. The first row and second row in Figure 3 are the fusion

results corresponding to the dataset before image registration

and the dataset after image registration, respectively. Obviously,

after image registration, the visual effects of the fused images in

the second row have been significantly improved.

In addition, we calculate the values of QMI , QTE, QNCIE,

QG, QP , QS, QY , QCV , and QCB of the fused images obtained

by DSIFT algorithm on the dataset before and after image

registration, respectively. The values of the nine metrics are

shown in Table 2, respectively, from which one can find that

in addition to the decrease of the QCV value, the QMI ,

QTE, QNCIE, QG, QP , QS, QY , and QCB values of the fused

images obtained by the DSIFT on the dataset after image

registration are all increased. Therefore, conducting the image

registration process on the dataset can effectively improve the

performance of the fusion algorithms both in subjective vision

and objective evaluation.

The fusion results of the DSIFT algorithm on the dataset

before and after standardizing the basic attributes of images

are shown in the first row and second row of the Figure 4,

respectively. After the standardization of the image basic

attribute, the visual effects of the fused images shown in the

second row of the Figure 4 have been significantly improved.

Furthermore, we also calculate the values of QMI , QTE,

QNCIE, QG, QP , QS, QY , QCV , and QCB of the fused images

obtained by DSIFT algorithm on the dataset before and after
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TABLE 2 The nine metrics’ values of the fused images before and after image registration.

Test image Preprocessing QMI QTE QNCIE QG QP QS QY QCV QCB

Piggy image Before registration 1.029 0.3761 0.8445 0.6564 0.5465 0.854 0.9568 165.3 0.6904

After registration 1.2 0.4389 0.8572 0.6861 0.6957 0.9339 0.9709 51.29 0.7578

Wood pile image Before registration 1.021 0.3657 0.833 0.6702 0.6836 0.9043 0.9321 77.48 0.7011

After registration 1.135 0.4046 0.8393 0.7185 0.7571 0.9478 0.9736 57.23 0.7788

Handwashing fluid Before registration 1.192 0.4137 0.8474 0.6458 0.6512 0.9187 0.9105 145.9 0.6569

image After registration 1.31 0.4443 0.8562 0.6771 0.7512 0.9659 0.9287 13.14 0.6974

Scissors image Before registration 0.9387 0.3545 0.8279 0.6109 0.4073 0.8662 0.852 92.77 0.5971

After registration 1.208 0.4276 0.8479 0.641 0.7335 0.9425 0.9208 7.673 0.6936

FIGURE 4

The fusion results before and after standardization of the image basic attribute. (A1–C1) are the fused images for the multi focus image pair

without image basic attribute standardization processing. (A2–C2) are the fused images by image basic attribute standardization processing.

standardization of the image basic attribute. The calculated

results of the nine metrics are shown in Table 3, respectively.

From which one can find that in addition to the decrease of

the value, the values of QMI , QTE, QNCIE, QG, QP , QS, QY , and

QCB of the fused images obtained by the DSIFT algorithm on the

dataset after the standardization of the image basic attribute are

all increased. Therefore, after the dataset is standardized by the

image basic attribute, both the subjective vision and the objective

evaluation are all improved.

Test of existing image fusion algorithms

In this subsection, we test the performance of some existing

image fusion algorithms on the HBU-CVMDSP dataset. The

multi-focus image fusion algorithms used in the test include

multi-scale guided filtering algorithm (MGF) (Bavirisetti et al.,

2019), dense scale-invariant feature transformation algorithm

(DSIFT) (Liu et al., 2015), a general image fusion algorithm

based on convolutional neural network (IFCNN) (Zhang et al.,

2020), MIF algorithm based on convolutional neural network

(CNN) (Liu et al., 2017), and unsupervised depth model for MIF

(SESF) (Ma et al., 2020). We select six pairs of images from the

HBU-CVMDSP dataset to test the above algorithms, and the

selected images are shown in Figure 1. Figure 5 shows the fusion

results of different algorithms on the selected images. In order

to better show the visual effects of different fusion algorithms,

the image of the red rectangular area in the figure is enlarged

in this paper. From the Figure 5, it can be found that the fused

image obtained all the fusion methods are all kinds of problems,

such as block effect, unfocused pixels on the edge, blurred edges,

the detailed information lost, the boundary too smooth, artificial

artifacts, misclassification of focused pixels, distorted, and poor

spatial consistency.

The nine metrics’ values of the fused images in Figure 5

are shown in Table 4, in which the best result of each group
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TABLE 3 The nine metrics’ values of the fused images before and after standardization of the image basic attribute.

Test image Preprocessing QMI QTE QNCIE QG QP QS QY QCV QCB

Blue black box Before normalization 1.049 0.4295 0.8333 0.597 0.6621 0.8845 0.8211 156.4 0.6423

image After normalization 1.151 0.4546 0.8372 0.6216 0.738 0.9515 0.9012 13.72 0.6541

White black box Before normalization 1.199 0.4643 0.8445 0.6224 0.5284 0.9153 0 8392 43.79 0.6182

image After normalization 1.233 0.4664 0.8454 0.6274 0.5985 0.9559 0.8899 24.99 0.6196

Bottle cap image Before normalization 1.037 0.4542 0.8219 0.6639 0.5057 0.8898 0.8412 398.5 0.5374

After normalization 1.196 0.4557 0.8303 0.6966 0.5568 0.9808 0.9081 25.64 0.657

FIGURE 5

Fusion results of di�erent algorithms. (A–F) are the fusion results of MGF, DSIFT, IFCNN, CNN, and SESF, respectively.

of fused images is bolded. As can be seen from the Table 4, in

the objective evaluation of the fusion results of MGF, DSIFT,

IFCNN, CNN and SESF in the real environment, no fusion

algorithm has competitive performance compared with other

comparison algorithms, which indicates that the multi focus

image dataset in the real environment can reflect that the

existing fusion algorithms cannot meet the application of MIF

technology in the real environment. In addition, due to the

limited generalization ability, these existing fusion algorithms

all transfer specific prior knowledge to the model, and then
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TABLE 4 The nine metrics’ values of the fused images obtained by di�erent fusion algorithms.

Fused images Fusion algorithms QMI QTE QNCIE QG QP QS QY QCV QCB

Figure 5A MGF 0.9503 0.4118 0.8337 0.5144 0.6205 0.9703 0.8081 171.61 0.6218

DSIFT 1.331 0.4474 0.8591 0.6593 0.7285 0.9713 0.9365 52.805 0.7087

IFCNN 1.1692 0.4364 0.8449 0.5663 0.6786 0.9751 0.86 36.691 0.6591

CNN 1.2944 0.4449 0.8548 0.6515 0.7599 0.9736 0.9478 52.857 0.7094

SESF 1.2839 0.4412 0.8544 0.641 0.7201 0.9696 0.9438 52.823 0.7079

Figure 5B MGF 1.0355 0.4622 0.8336 0.6567 0.7942 0.9697 0.9066 7.5085 0.7040

DSIFT 1.259 0.4419 0.8457 0.7262 0.9103 0.9673 0.9595 8.991 0.6965

IFCNN 1.0766 0.4535 0.8356 0.6711 0.8433 0.967 0.9241 9.2736 0.6853

CNN 1.2673 0.4456 0.8471 0.7364 0.9132 0.9688 0.9707 9.4967 0.7087

SESF 1.2852 0.4477 0.8491 0.9319 0.9118 0.9681 0.9705 9.3427 0.7196

Figure 5C MGF 0.8845 0.3979 0.8284 0.5109 0.6787 0.9507 0.8332 131.73 0.6279

DSIFT 1.3773 0.455 0.8593 0.696 0.7722 0.9646 0.9793 119.89 0.7871

IFCNN 1.0918 0.4162 0.8381 0.5677 0.7317 0.9642 0.8996 35.251 0.6962

CNN 1.3699 0.4519 0.8582 0.6993 0.7732 0.9649 0.9898 119.86 0.7949

SESF 1.3498 0.4481 0.857 0.6913 0.7717 0.9649 0.9813 35.31 0.7902

Figure 5D MGF 1.0282 0.4094 0.8352 0.5355 0.6556 0.9598 0.7767 41.591 0.6395

DSIFT 1.4076 0.4498 0.8602 0.6732 0.792 0.9714 0.9287 46.321 0.7394

IFCNN 1.2627 0.4372 0.8474 0.5987 0.7460 0.9727 0.8541 36.335 0.6912

CNN 1.3808 0.4464 0.8561 0.6804 0.8007 0.9722 0.9562 44.702 0.7575

SESF 1.3962 0.4472 0.859 0.673 0.7884 0.9707 0.9454 44.88 0.7504

Figure 5E MGF 0.9027 0.412 0.8293 0.526 0.6821 0.9508 0.7965 72.736 0.6049

DSIFT 1.3144 0.438 0.8497 0.6772 0.8211 0.9654 0.9442 23.078 0.7069

IFCNN 1.1571 0.4413 0.8406 0.5843 0.7547 0.9691 0.8659 26.5 0.6623

CNN 1.2906 0.4363 0.848 0.6771 0.8369 0.9675 0.9659 23.374 0.7234

SESF 1.2784 0.4334 0.8474 0.6656 0.8083 0.9641 0.9424 29.576 0.7165

Figure 5F MGF 0.9452 0.4101 0.8323 0.5279 0.5967 0.9611 0.8309 96.451 0.6142

DSIFT 1.32 0.4479 0.8531 0.6927 0.7965 0.9666 0.9684 39.348 0.7202

IFCNN 1.174 0.4388 0.8436 0.5964 0.7127 0.9691 0.9 19.685 0.6651

CNN 1.3072 0.447 0.8522 0.6949 0.8299 0.9678 0.9776 38.345 0.7232

SESF 1.297 0.4451 0.8521 0.6915 0.8053 0.9669 0.9784 45.9072 0.7208

The bold values represent optimal values.

perform image fusion. However, images in the real world are

very complex, and cannot be achieved only through the prior

knowledge of inherent images. Therefore, the HBU-CVMDSP

dataset can be used as a new test set to promote the development

of the field of MIF and narrow the gap between the theoretical

and real environmental data of image fusion algorithms.

Conclusion

Due to the existing MIF datasets cannot reflect the image

registration caused by physical movement or camera shake, and

the brightness differences caused by illumination in real life, we

proposed a new MIF dataset i.e., the HBU-CVMDSP dataset.

Images in this dataset are captured by smartphone, and can truly

reflect the real-world scene. In addition, we test the performance

of some existing fusion algorithms on the proposed dataset. The

results indicate that the performance of these algorithms on the

proposed dataset has much room for improvement. Therefore,

the HBU-CVMDSP dataset can better promote the research of

the MIF algorithms.
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Introduction: Existing multi-view-based 3D model classification methods

have the problems of insu�cient view refinement feature extraction and poor

generalization ability of the network model, which makes it di�cult to further

improve the classification accuracy. To this end, this paper proposes a multi-

view SoftPool attention convolutional network for 3D model classification

tasks.

Methods: This method extracts multi-view features through ResNest and

adaptive pooling modules, and the extracted features can better represent

3D models. Then, the results of the multi-view feature extraction processed

using SoftPool are used as the Query for the self-attentive calculation, which

enables the subsequent refinement extraction. We then input the attention

scores calculated by Query and Key in the self-attention calculation into

the mobile inverted bottleneck convolution, which e�ectively improves the

generalization of the network model. Based on our proposed method, a

compact 3D global descriptor is finally generated, achieving a high-accuracy

3D model classification performance.

Results: Experimental results showed that our method achieves 96.96% OA

and 95.68% AA onModelNet40 and 98.57%OA and 98.42% AA onModelNet10.

Discussion: Compared with a multitude of popular methods, our algorithm

model achieves the state-of-the-art classification accuracy.

KEYWORDS

3D model classification, multi-view, attention, SoftPool, convolutional

1. Introduction

With the rapid development of 3D acquisition technology, various types of sensor

devices (e.g., 3D scanners, LIDAR, and RGB-D cameras) can collect 3D data conveniently

and quickly (Grenzdörffer et al., 2020). 3D data are abundant in geometry, shape, and

scale information and simple in expression, so are well suited for 3D scene perception

and understanding. 3D model-based classification is an important fundamental task

in 3D visual perception tasks such as target segmentation, recognition and tracking,

and matching. 3D model classification methods are currently extensively applied in

the fields of robotics (Kästner et al., 2020), autonomous driving (Yu et al., 2021), 3D

scene reconstruction (Pontes et al., 2017), augmented reality (Adikari et al., 2020), and

medicine (Liu et al., 2020); hence, 3D model classification methods have become a

research hotspot.
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3D model classification methods can be divided into two

fields: traditional and recent deep learning. Early 3D model

classification tasks focused on hand-designed feature extraction

followed by machine learning methods for classification (e.g.,

extreme learning machines and support vector learning).

Lalonde et al. (2005) investigated the automatic data-driven scale

selection problem using an approach driven by the Gaussian

mixture model geometry. The method does not consider the

relationship between neighbors, and the results are affected by

noise, leading to poor classification accuracy. To solve these

problems, Niemeyer et al. (2014) combined the contextual

information and then embedded the random forest classifier

into the conditional random field (CRE), which improved the

classification accuracy to some extent. However, optimization

is still essential in terms of feature extraction and the graph

structure, as well as research on reducing the amount of data and

the training time.

Traditional methods generally have several deficiencies,

including limited manual feature extraction and low

classification accuracy. Deep learning technology has achieved

considerably good performance in computer vision, natural

language processing, speech recognition, and other fields. In

recent years, ModelNet (Wu et al., 2015), ShapeNet (Yang et al.,

2021), ScanNet (Zou et al., 2021), and other publicly available

datasets have also driven research in 3D model classification

based on deep learning. 3D model classification methods based

on deep learning can be divided into three categories based

on the representation of the input data: voxel-based, point

cloud-based, and multi-view-based.

1.1. Voxel-based methods

The voxel-based model method aims to voxelize the point

cloud first, then employ a 3D convolutional neural network

(CNN) to extract features, and finally complete the classification

task. Maturana and Scherer (2015) proposed VoxelNet based

on the idea of voxels, which is the voxelization of unstructured

point cloud data into regular grid data for classification. The

method corresponds each grid to a voxel, and the values in

the grid cells are normalized and input to the convolutional

layer in the network for feature extraction and classification.

However, this method consumes a large amount of memory

because of the large number of zero-valued voxels that appear

in the process. Wu et al. (2015) proposed a convolutional

deep belief network (3DShapeNet) for the classification of 3D

models of different kinds and different poses. Both VoxNet and

3DShapeNet have the problems of prohibitive memory overhead

in the computation and low accuracy of model classification.

To reduce the memory consumption and running time, Riegler

et al. (2017) proposed OctNet, a sparse 3D data representation

method. The spatial stratification is represented as a series of

unbalanced octree structures with pooled features stored on the

leaf nodes in the octree. This method allows CNNs to handle

high resolutions with reduced memory consumption, yet the

problem of losing local geometric information has not been

solved. Aiming to solve the problem, Wang et al. (2018) divided

the whole space into voxels of different scales and employed the

proposed multi-scale convolutional network (MSNet) to learn

local features adaptively and fuse the local features to predict the

class probability of the model. The network allows for improved

classification accuracy and the ability to retain a large amount

of information, but the training time of a voxelized grid can be

exceedingly long. To reduce the time consumption, Le and Duan

(2018) proposed the 3D convolutional grid PointGrid. It belongs

to the regular embedded voxel grid, and the network can extract

a large number of local features for 3D model classification.

In summary, the voxel-based method converts 3D point

clouds into voxel meshes, solving the problem of unstructured

3D point clouds. However, as the voxelization requires the input

voxel format to be regular for a convolution operation, a large

amount of information is lost when the voxel resolution is

low, which causes the problem of low classification accuracy.

Moreover, it has the problem of high computational cost when

the resolution is high.

1.2. Point cloud-based methods

The point cloud-based method aims to directly classify

point cloud data obtained by 3D scanners, LIDAR, and RGB-

D cameras using the corresponding approaches. Qi et al.

(2017a) considered the direct processing of point cloud data

and proposed the PointNet network, which transforms the

input point cloud through the T-Net matrix and applies the

multilayer perceptron (MLP) to learn the features of the points

and aggregate them into global features. Their experiment

and analysis showed that PointNet made a great breakthrough

in point cloud classification and segmentation, but it could

not capture local information and had poor generalization

ability. PointNet++ (Qi et al., 2017b) was proposed based

on the shortcomings of PointNet in recognizing fine-grained

patterns. By introducing a hierarchical neural network and

metric spatial distance, the context ratio can be increased,

and thus the network can better learn local features. The

introduced ensemble learning layer can adaptively combine

multiple scale features for classification. Nevertheless, this

method lacks some structural information between points. Ma

et al. (2018) proposed the 3DMAX-Net architecture influenced

by the contextual information mechanism. This network can

obtain the contextual features in 3D point cloud space through

the introduced multi-scale feature learning block, while the

features learned by the network are aggregated through a local-

global feature aggregation block. Qiu et al. (2021) proposed a

density resolution network by introducing an adaptive extended

point algorithm; an error minimization module in the network
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is utilized to extract multi-resolution information, and local

features are fused to achieve the point cloud classification task.

The classification accuracy of the model was shown to be higher

than that in the PointNet network. Additionally, both 3DMAX-

Net network and density-resolution network are not applicable

to large-scale point clouds; they are also especially insufficient in

the case of many object classes.

To address the problem that most networks cannot adapt

to large-scale point clouds, Hu et al. (2020) proposed RandLA-

Net, which is based on a complex sampling technique that

devises random point sampling to reduce computation and

memory, while the introduced local feature aggregation blocks

retain important information among neighbors. RandLA-Net

can directly handle large-scale point clouds, and using a

lightweight network can improve classification accuracy while

greatly reducing the computational memory and time overhead.

However, because the RandLA-Net network chooses random

sampling, there is a loss of useful information. Liang et al.

(2019) proposed a deep graph CNN for local geometric feature

extraction, which obtains a large amount of useful information

and has a smaller memory consumption compared to previous

graph convolution methods. Zhang et al. (2020) proposed an

omnidirectional graph neural network for further improving the

performance of the network and reducing the complexity of the

model. The method proposes LKPO-GNN for obtaining local

and global spatial information, learning the local topology of the

point cloud using the omnidirectional local KNNs pattern, and

aggregating the local information spatial structure to obtain the

global map using GNN. In contrast, the KNN pattern still has

defects in neighborhood search. Feng et al. (2020) considered

the lack of performance in neighborhood search and constructed

local graphs based on searching neighborhood points inmultiple

directions while assigning attention coefficients to each edge

of the graph and aggregating centroid features as a weighted

sum of its neighboring points to obtain local features. Moreover,

the point-by-point spatial attention module is used to generate

the interdependency matrix of points so that local features

and contextual information can be obtained simultaneously.

The performance of this method is enhanced in point cloud

classification and segmentation. Wen et al. (2020) proposed

a novel deep learning network of Point2SpatialCapsule based

on aggregating local features and spatial relationships of point

clouds. This network consists of two modules, geometric feature

aggregation, and spatial relationship aggregation, which are

capable of aggregating local features to clustering centers and

aggregating their spatial relationships in the feature space using

spatially aware capsules. This method has greatly elevated the

accuracy of tasks (e.g., point cloud classification retrieval).

However, owing to the disorderly and unstructured nature

of 3D point clouds, as well as the fact that scanned models in

real scenes can be obscured and result in partial data loss and

complex scenes, direct methods of processing point clouds are

often more complex and take longer to train.

1.3. Multi-view-based methods

The multi-view-based method aims to project the 3D model

from multiple virtual cameras into the 2D plane and then

perform convolutional feature extraction and fusion on the

obtained multi-views to accomplish the task of 3D model

classification. The earliest rendering of 3D point clouds into

multi-views and applying them to model classification is the

MVCNNnetwork proposed by Su et al. (2015). The classification

accuracy and performance of MVCNN represent a remarkable

breakthrough in point cloud classification, but because of the

maximum pooling, keeping only the largest elements in these

views can lead to a large amount of information loss. To reduce

the loss of effective information, Wang et al. proposed RCPCNN

(Wang C. et al., 2019) to perform dominant set clustering

from the views of the same cluster. RCPCNN is updated

iteratively in the pooling layer in a round-robin fashion. This

method improves the classification performance but ignores

the relationships among views. Feng et al. (2018) introduced

a hierarchical view-group-shape framework, called GVCNN,

which is based on MVCNN to better utilize the connection

between multiple views. It can find more discriminative

features among views and offers a significant improvement in

classification accuracy. Yet, this method relies too much on the

choice of the viewpoint angle and is not applicable to the case of

a small number of views. Yu et al. (2018) proposedMHBN using

the relationship between the polynomial kernel and bilinear

pool and considered that local complementary information

exists among different views. Bilinear pooling aggregates local

features to measure similar pairs of related patch pairs and

coordinates the merging of bilinear features to generate a

more discriminative 3D object representation. MHBN offers an

improvement in classification accuracy and storage efficiency,

and also effectively suppresses irrelevant matching pairs. Ma

et al. (2019) combined CNNs with long short-term memory

(LSTM) based on the sequential nature among views and used

LSTM and sequential voting layers to aggregate multi-view

features into shape descriptors for object recognition.

Han et al. (2019b) proposed the SeqViews2SeqLabels

network considering the spatial relationship of views. It is

composed of an encoder for aggregating sequence views and

a decoder for global feature prediction sequence labels. An

attention mechanism is incorporated in this decoder, and

specific views are assigned more weights to improve the

discriminative ability. Moreover, better classification accuracy

is obtained. For this reason, they further proposed the

3D2SeqViews network (Han et al., 2019a), which has more

novel hierarchical attention to efficiently aggregate the content

information of views and spatially related information between

views. It affords great progress in global feature aggregation.

However, CNN and LSTM combined with SeqViews2SeqLabels

networks can only aggregate ordered views, not unordered

views. Based on this problem, Yang and Wang (2019) proposed
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a relational network from the perspective of relationships

among different view regions and views. The training methods

effectively connect the corresponding regions through the self-

attention module, combining the inter-view relationships to

highlight the salient information more, which can enhance the

information of single-view images. In contrast, there are still

shortcomings in the selection of relationships among views,

and selecting views that do not overlap and just complement

each other still needs to be studied further. To improve the

generalization ability and performance of the model, Sun et al.

(2021) proposed a dynamically routed CNN. The method is

based on a dynamic routing algorithm for adaptive selection

of features for transformation, which does not ignore the

inconspicuous information in the pooling layer and effectively

fuses the features of all views. Wei et al. (2020) proposed

view-GCN from the perspective of graph convolution. It is a

hierarchical network based on view-graph representation, which

is a viewgraph constructed by using multiple views as graph

nodes and sampling representative views by the introduced

view selection mechanism. The local and non-local convolution

of this network performs feature transformation, which can

obtain 3D object descriptors with different levels of feature

combinations. Yet, this network is less flexible and scalable for

shallow GCNs, and cannot pass the labels with little training

data to the whole graph structure. On this basis, Liu et al.

(2021) proposed a hierarchical multi-view context modeling

approach, which consists of four main components: view-

level context learning, the multi-view grouping module, the

primitive group level, and the group fusionmodule. The method

can fuse group-by-group contextual features into compact

3D object descriptors for object classification according to

their importance.

So far, the view-based approach has achieved the best

results on 3D model classification tasks. Compared to the

direct point cloud and voxel processing approach, it can

capture the features of the view more easily and learn the

view features to synthesize true global feature descriptors

with the help of a proven CNN. However, the method

still has shortcomings in feature extraction, because the

traditional pooled downsampling method cannot treat each

view equally and only retains the information considered

important. This leads to the problem of the insufficient

extraction of view refinement feature information and the

loss of a large amount of view feature information. However,

different convolutional models learn different classification rules

through a given dataset, so the classification accuracy predicted

by the network model for unknown datasets varies greatly.

Therefore, different convolutional models do not have the same

degree of generalization. Both insufficient extractions of view

refinement feature information and weak model generalization

affect the further improvement of 3D model classification

accuracy. Based on the above analysis, we propose a multi-

view SoftPool attention convolutional network framework

(MVMSAN) for 3D model classification tasks. Compared

with traditional methods, our method employs a SoftPool

attention convolution framework that can extract refined view

feature information, effectively solving the problem of feature

information loss and insufficient detail feature extraction during

downsampling while enhancing the generalization ability of

the model. Thus, the framework improves the accuracy of 3D

model classification.

This study made the following contributions:

(1) We propose the MVMSAN network framework.

It employs ResNest with the adaptive pooling method,

SoftPool attention method, and self-attention convolution

method to generate discriminative global descriptors for 3D

model classification. Compared with a multitude of popular

methods, our network framework achieves the state-of-the-art

classification accuracy.

(2) ResNest with the adaptive pooling method removes the

last fully connected layer and adds an adaptive pooling layer.

This method can be applied to the extraction of view feature

information, which focuses more on the feature information

among view channels, reinforces the representation of feature

maps, and better obtains real 3D features from 2D views.

(3) The SoftPool attention method can obtain finer view

feature information, emphasize the importance of detailed

features, and obtain more distinguishing features with model

categories, because SoftPool uses the processed view feature

value as the Query value of the self-attention. The self-

attention-based convolution method can also improve the

generalization ability of the model and focus on the learning

ability of the algorithmic framework to increase the accuracy

of 3D model classification, because Mobile inverted Bottleneck

Convolution (MBConv) is used to process the Query and Key

of self-attention.

(4) Our extensive experiments on the ModelNet40 and

ModelNet10 datasets demonstrate the effectiveness of the

proposed method. The experimental results show that,

compared with existing state-of-the-art classification methods,

the overall classification accuracy of our method on the two

datasets reaches 96.96 and 98.57%, respectively.

2. Methods

The framework diagram Multi-view SoftPool Attention

Convolution (MVMSAN) proposed by us is divided into

three modules (Figure 1): the 3D model multi-view acquisition

module, multi-view refinement feature extraction module, and

feature fusion classification module. The multi-view acquisition

module presents the 3Dmodel inmultiple views. Themulti-view

refinement feature extraction module employs ResNest with

an adaptive pooling method to extract the feature information

of the view. Then it uses our proposed SoftPool attention

convolution method for view feature refinement extraction,
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which enables the subsequent fusion to generate more compact

global descriptors. The feature fusion classification module

aggregates refined features through pooling layers to generate

global representation and completes 3Dmodel classification by 1

× 1 convolution. TheMVMSANnetwork framework will obtain

a trained classification network model in the training phase,

which uses datasets including ModelNet40 and ModelNet10

as training data. Any 3D mesh model can be input into

the MVMSAN classification model trained for classification

prediction in the testing phase.

2.1. 3D model multi-view acquisition

Our input is a mesh, point cloud representation of the

3D model. Then, a set of images from different angles V =

{v1, ...vi..., v20} are used instead of the virtual 3D model, where

Vi denotes the 2D images generated from 1 to 20 different

viewpoint angles for any 3D model. The process applies the

viewpoint selection method proposed by Kanezaki et al. (2018),

which involves placing the 3D model at the center of the ortho

dodecahedron and 20 virtual cameras on 20 vertices of the ortho

dodecahedron. The dodecahedron is chosen because it has the

highest number of vertices among the ortho polyhedra, and all

viewpoints are evenly distributed in the 3D space where the 3D

model is located.

2.2. Multi-view refinement local feature
extraction

2.2.1. Extraction of view features based on
ResNest with the adaptive pooling method

For the 20 views V = {v1, ...vi..., v20} obtained from the

3D model rendering, we use ResNest (Zhang et al., 2022)

to extract the view features. ResNest is based on ResNet

with the addition of split-attention blocks, which can exploit

the interrelationship among view channels. Thus, it increases

the perceptual field of feature extraction, strengthens the

representation of feature maps, and reduces information loss.

The view feature information extracted by ResNest is denoted

as{m1, ...mi...,m20}. See Equation (1):















































m1 = ResNest(v1)

...

mi = ResNest(vi)

...

m20 = ResNest(v20)

(1)

where {m1, ...mi...,m20} denotes the 20 extracted view

features.

All the view features are stitched together to obtain the

following Equation:

M =

i=20
∑

i=1

ResNest(vi) (2)

To satisfy the data input requirements for the subsequent

SoftPool attention convolution processing (Section 2.2.2), we

propose a combination of ResNest and adaptive pooling for view

feature extraction. In this method, ResNest removes the final

fully-connected layer and adds an AdaptiveAvgPool2d process.

This is because adaptive pooling can obtain the output of a

specified size based on an input, and the number of features

in the input and output does not change. Therefore, the output

of ResNest after adaptive pooling ensures that the view feature

information extracted by the network remains unchanged and

also satisfies the input requirements for the subsequent SoftPool

attention convolution.

The view features extracted by ResNest are processed by the

adaptive pooling layer to obtain F, as shown in Equation (3):

F = AAP(M) (3)

2.2.2. Refined feature extraction based on
SoftPool attention convolution

There is also some unnecessary information in the view

features (F) extracted using ResNest with the adaptive pooling

method. This information is redundant for aggregation into

a global descriptor. For this purpose, we propose a SoftPool

attention convolution method to accomplish refined feature

extraction. This method mainly relies on the self-attention

mechanism (Zhang et al., 2019). As self-attention can process

the entire input view feature information globally, its strong

global perception capability enables global feature extraction

of view features. However, it is deficient in the refinement

extraction of local features of the view. Moreover, it lacks the

inductive bias property, so it has poor generalization. Also,

our proposed SoftPool attention convolution method solves

these problems and can achieve fine-grained extraction of view

features. It contains the following two modules: Refinement

feature extraction based on the SoftPool self-attention method;

and Model generalization enhancement based on self-attention

convolution (Figure 2).

2.2.3. Refined feature extraction based on
softPool self-attention method

The pooling layer used in most neural networks is either

max pooling or average pooling. Max pooling selects only

the max activation values in the region, resulting in a large

amount of information loss. In contrast, average pooling

averages all activation values, which reduces the overall region
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FIGURE 1

Multi-view SoftPool attention convolution (MVMSAN) network framework. (A) Multi-view acquisition module. (B) Multi-view refined feature

extraction module. (C) Feature fusion classification module.

FIGURE 2

SoftPool attention convolution method. (A) Refinement feature extraction based on SoftPool. (B) Model generalized enhancement based on

self-attention convolution.

characteristics. Therefore, it is not appropriate to choose either

max pooling or average pooling for view feature extraction.

The SoftPool method (Stergiou et al., 2021) first selects the

activation graph, divides the individual activation values in the

activation graph by the sum of the natural exponents of all

activation values to obtain the corresponding weight values,

multiplies all the weights by the corresponding activation values,

and sums them to obtain the output. This makes all activation
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values of the feature map act on the final output, which is

the greatest difference between SoftPool and max and average

pooling. To this end, this paper proposes the SoftPool self-

attention method, which makes full use of the strong global

perception capability of self-attention and preserves the detailed

information of multi-view features by using SoftPool. The self-

attention mechanism obtains the corresponding V-value after

calculating the similarity between Q and K vectors, and then

the V-value is weighted and summed to obtain the value of

the self-attention method. In this method, SoftPool uses the

processed view feature F-value as the Q value of self-attention,

which can refine the multi-view feature downsampling process

and retain more multi-view feature detail information to achieve

refined feature extraction (Figure 2A). It effectively overcomes

the shortage of the self-attention mechanism in viewing the local

feature refinement extraction and helps to generate ultimate

global descriptors with discriminative ability.

The process is divided into two steps:

(1) For the F =
{

f1, ...fi..., f20
}

view features extracted by

ResNest with the adaptive pooling method, fi denotes the feature

of the i-th view. We take the view feature (F) as input and

generate a feature map (Q) by SoftPool (Stergiou et al., 2021)

processing. Two 1 × 1 convolutions are also used to generate

the feature maps K and V . See Equations (4), (5), and (6):

Q = SoftPool(F) (4)

K = Conv1×1(F) (5)

V = Conv1×1(F) (6)

where F denotes the feature vector of size m × n, Conv1×1

is a 1 × 1 convolution kernel, K and V are the feature vectors

obtained by the 1× 1 convolution operation, andQ is the feature

vector obtained by the output of the SoftPool operation.

(2) The vector S is obtained by multiplying the vector K with

the transpose vector QT , as shown in Equation (7):

S = K × QT (7)

where T is the transpose operation, × is the product

operation between two vectors, and S denotes the matrix vector

of the multiplication of K and QT .

2.2.4. Model generalization enhancement
based on self-attention convolution

The self-attention mechanism has weak generalization

owing to the lack of inductive bias (Dai et al., 2021). In

contrast, convolution has good generalization ability owing to

its convolution kernel, which is static and possesses translational

invariance. To this end, we introduce the mobile inverted

bottleneck convolution (MBConv) (Sandler et al., 2018), which

is currently the most advanced convolution, in the self-attention

mechanism to enhance the generalization (Figure 2B). The main

principle of MBConv is that the input features are first up-

dimensioned using 1× 1 convolution, and then the information

between their length and width is extracted by depth-separable

convolution. The dimensionalized input feature information

is downscaled by point convolution to obtain information

across channels. A linear activation function is adopted in

the dimensionality reduction process to prevent information

loss. To prevent network degradation, a reversal residual

block is added at the end to sum the reduced-dimensional

features with the input features, which significantly improves the

generalization performance of the model.

The process is divided into two steps.

(1) Input the vector S intoMBConv (Sandler et al., 2018) and

use the SoftMax function for scaling and normalization to obtain

the attention weight values, as follows:

beta = Softmax

(

MBConv(S)
√

dk

)

(8)

(2) Take this attention weight value and multiply it with the V

vector to obtain the result of the self-attention calculation O :

O = beta× V (9)

where beta denotes the attentionweights obtained by passing

the S matrix through the SoftMax function, SoftMax is the

activation function, and
√

dk is used to prevent the S value from

being too large when the dimensionality is large.

We combine ResNest with the multi-view features (F)

obtained by the adaptive pooling method with the result of

the self-attention calculation (O) to finally obtain the refined

features (Y) extracted by the SoftPool attention convolution

method:

Y = F + gamma ∗ O (10)

where gamma is the parameter, and Y denotes the

refined features.

2.3. Feature fusion classification

In this section, we describe the multi-view feature fusion

classification module. It is shown in Figure 3. For the refined

features (Y) obtained from the above equation, Maxpooling is

utilized to aggregate the features and thus generate a compact

global descriptor (Global), as shown in Equation (11). The 1

× 1 convolution allows the number of channels to be reduced

by controlling the number of convolution kernels, and it does

not limit the size of the input features. Therefore, we input the

generated global descriptor (Global) to the 1 × 1 convolution

to obtain the result of the 3D model classification, as shown in

Equation (12).

Global = Max(Y) (11)

Z = Conv1×1(Global) (12)
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FIGURE 3

Feature fusion classification.

where Z denotes the result of the determination of N classes

of objects, Max denotes the pooling aggregation operation,

Global denotes the resulting global descriptor, and Conv1×1

denotes the convolution operation with a 1 × 1 convolution

kernel.

3. Experiment

3.1. Datasets

To evaluate the performance of our proposed MVMSAN

network, we conducted extensive classification comparison

experiments using the ModelNet40 and ModelNet10 datasets.

ModelNet40 includes 3D CAD models in 40 common grid

forms, including 9,843 trainingmodels and 2,468 testingmodels.

ModelNet10 contains 10 categories of 3D CAD models, with

3,991 training models and 908 testing models.Since the number

of models varies across categories, we chose the overall accuracy

OA (Uy et al., 2019; Equation 13) for each sample and the

average accuracy AA (Zhai et al., 2020) (Equation 14) for each

category as metrics to evaluate the classification performance. It

is noteworthy that OA is the ratio of the number of correctly

classified samples to the total number of samples, and AA is the

average of the ratio of the number of correct predictions to the

total number of predictions for each category. See Equations (13)

and (14) for details.

OA =
1

N

∑c
i=1xii (13)

AA =
sum(recall)

C
(14)

where N is the total number of samples, xii is the number of

correct classifications, and C denotes the category of the dataset,

and recall denotes the ratio of predictions to samples.

3.2. Experimental setup and analysis

We conducted our experiments using a computer with

Windows 10, Inter 8700K CPU, 64 GB RAM, and the RTX2080

graphics card. In all experiments, our environment was set

to PyTorch 1.2 (Paszke et al., 2017) and Cuda 10.0. The

experiment was divided into two training phases. The first phase

classified only a single view to enable fine-tuning of the model

while removing the SoftPool attention convolution module.

The second stage added SoftPool attention convolutional blocks

to train all views of the 3D model, which was used to train

the whole classification framework. We only performed test

experiments in the second stage and set 20 epochs.We optimized

the entire network architecture using the Adam (Zhang, 2018)

optimizer. The initial learning rate and L2 regularization weight

decay parameters were set to 0.0001 and 0.001, respectively, to

accelerate model convergence and reduce model overfitting.

3.3. Impact of CNN on classification
performance

A pretrained CNN is used as a backbone model to

improve the performance of various tasks, e.g., classification and

segmentation. To extract view feature information more quickly

and effectively, we connected the SoftPool attention convolution

module to the encoders, such as ResNet18 (He et al., 2016),

Densenet121 (Huang et al., 2017), ResNest50d, ResNest26d,

and ResNest14d, in the ModelNet40 and ModelNet10 datasets.

The experimental results are shown in Table 1. On the

ModelNet40, the whole network had the shortest training

time when using ResNet18, while the network deepened

and the training time prolonged when using DenseNet121

and ResNest50d. In particular, the training process of the

ResNest50d network model took 809 min (312 min more than

ResNest14d). Employing ResNest14d as the backbone model,

the OA and AA metrics of the MVMSAN network reached

96.96% and 95.68%, respectively, achieving the best classification

performance. Hence, we chose ResNest14d as the backbone

model for extracting multi-view features.

3.4. The e�ect of di�erent number of
views on classification performance

To more intuitively observe the view feature information

in different angles, we selected 2D views of seven different

categories of 3D models for display. As shown in Figure 4, the

view V in the piano category ignores the key feature information

of the keys; therefore, if a single view is used for experiments, the

loss of feature information will affect the classification accuracy.

Multiple views can fuse the feature information of different
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TABLE 1 E�ects of di�erent backbone models on classification performance.

Network ModelNet40 ModelNet10

Tim(min) OA(%) AA(%) Tim(min) OA(%) AA(%)

Resnet18 366 96.31 94.43 147 98.45 98.22

Densenet121 748 96.59 94.81 290 98.23 97.98

ResNest50d 809 96.31 94.22 327 98.24 98.07

ResNest26d 599 96.72 95.33 239 98.67 98.45

ResNest14d 497 96.96 95.68 200 98.57 98.42

The bold values represent the best performance.

FIGURE 4

Six views of di�erent models.

views to make up for the loss of single view feature information.

To further investigate the effect of the number of views on the

model classification performance, we randomly selected 3, 6,

and 12 views from the 20 views obtained from 20 viewpoint

angles for each 3D model in experiments. At the same time,

the classification performance of MVMSAN was also compared

with other advanced methods [such as MVCNN (Su et al., 2015),

RCPCNN (Wang C. et al., 2019), 3D2SeqViews (Han et al.,

2019a), VERAM (Chen et al., 2019), MHBN (Yu et al., 2018),

and RN (Yang and Wang, 2019)] under 3, 6, and 12 number of

views. The experimental results are shown in Table 2.

On the ModelNet40 dataset, MVMSAN network

outperformed other methods (such as MVCNN, RCPCNN,

3D2SeqViews, VERAM, MHBN, and RN). Compared with

the RN network, our network improved OA by 3.0, 2.8, and

2.6% in each view configuration. In comparison with the

classic MVCNN network, it improved by 5.2, 5.0, and 5.5%,

respectively. From Table 2, we can see that the classification

accuracy did not increase with the number of views; for example,

our method achieved the best experimental results in six views.

Meanwhile, it can be seen from the Table 2 that OA of our

MVMSAN model can still reached 96.35, 96.84, and 96.80% in

3, 6, and 12 views. This experiment shows that our network has

high robustness.

TABLE 2 The e�ect of the number of views on classification

performance.

Methods ModelNet40

3 views 6 views 12 views

MVCNN 91.33 92.01 91.49

RCPNN 92.10 92.22 92.18

3D2SeqViews 92.10 93.07 93.40

VERAM 92.40 93.30 93.70

MHBN 93.78 94.12 93.42

RN 93.50 94.10 94.30

MVMSAN(Ours) 96.35 96.84 96.80

The bold values represent the best performance.

TABLE 3 Ablation study (ModelNet40).

ATT Soft MBConv OA(%) AA(%)

X 96.43 94.70

X X 96.11 94.47

X X 96.40 94.62

X X X 96.96 95.68

ATT represents attention calculation, Soft represents the SoftPool method, and MBConv

represents the mobile inverted bottleneck convolution. The bold values represent the

best performance.

TABLE 4 Ablation study (ModelNet10).

ATT Soft MBConv OA(%) AA(%)

X 98.34 98.20

X X 98.23 97.98

X X 98.24 97.99

X X X 98.57 98.42

ATT represents attention calculation, Soft represents the SoftPool method, and MBConv

represents the mobile inverted bottleneck convolution. The bold values represent the

best performance.

The high robustness achieved by the MVMSAN model

is mainly attributed to our proposed SoftPool attention

convolution method. SoftPool uses the processed view feature

value as the Query value of the self-attended to obtain

refined view feature information. Under any number of 1–

20 views, these fine-grained view features can hold salient
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features related tomodel categories. SubsequentMobile inverted

bottleneck convolution (MBConv) can process the Query

and Key of self-attentive, which significantly improve the

generalization performance of MVMSAN model. The learning

ability for our model also becomes stronger, so that it can

achieve high classification accuracy with any number of

1–20 views.

TABLE 5 Comparison of the e�ect of 1 × 1 convolution on

classification performance.

Network OA(%) AA(%) Time(min)

FC 96.79 95.20 524

1× 1Conv 96.96 95.68 497

The bold values represent the best performance.

3.5. Ablation experiments

We supplement a set of ablation experiments to demonstrate

the generalization performance of SoftPool attentional

convolution method proposed by us (see Tables 3, 4). The

experimental results on the ModelNet40 dataset show that our

proposed SoftPool attentional convolution method achieved the

best classification performance on ModelNet40 (96.96% for OA

and 95.68% for AA). The OA and AA obtained by applying only

the output of SoftPool as the Query vector of attention were

96.11 and 94.47%, respectively, which were lower than those

of the SoftPool attention convolution method. This is because

the network model at this point is less generalizable, i.e., the

classification ability learned by this network from the training

set performs poorly. Adopting only MBConv to process the

computational results of Query and Key of attention led to an

insufficient feature extraction capability of the network. The loss

FIGURE 5

Confusion matrix visualization of MVMSAN on ModelNet40.

Frontiers inNeurorobotics 10 frontiersin.org

25

https://doi.org/10.3389/fnbot.2022.1029968
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Wang et al. 10.3389/fnbot.2022.1029968

FIGURE 6

Confusion matrix visualization of MVMSAN on ModelNet10.

of this feature information further reduced the classification

accuracy (96.40 and 94.62% for OA and AA, respectively).

We also obtained consistent experimental results on the

ModelNet10 dataset (see Table 4).

It further proves that the best performance of the entire

model can be achieved with the output result of SoftPool

as the Query value of attention and MBConv to process

the computational results of Query and Key of attention.

It is worth noting that our algorithm can achieve 96.96%

on OA and 95.68% on AA. The result is closely related

to the refined feature extraction of SoftPool self-attention

method and the model generalization enhancement of self-

attention convolution method. The above two factors are

indispensable.

We also employed a 1 × 1 convolution alternative to

the fully connected layer that the network ends up using for

classification. As shown in Table 5, the OA and AA using 1 ×

1 convolution reached 96.96 and 95.68%, respectively, which is

0.17 and 0.48% improvement compared with fully connected

layers. By using 1 × 1 convolution with fewer parameters, the

training time in the same environment was also reduced by

27 min.

3.6. Confusion matrix visualization

Confusion matrix visualization can intuitively demonstrate

the advanced performance of the MVMSAN method on the

3D model classification task. Especially in the case that some

view features have high similarity, our method still has high

classification prediction performance. We plot the confusion

matrix on the ModelNet40 and ModelNet10 datasets. On

ModelNet40, it can be seen from Figure 5 that MVMSAN

achieved 100% classification accuracy on categories such as

airplane, bed, sofa, and guitar. In some harder categories, such

as night stand, table, and xbox, some views have high similarity.
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TABLE 6 Classification performance comparison with other methods.

Network Modality ModelNet40 ModelNet10

OA(%) AA(%) OA(%) AA(%)

3D ShapeNets Voxel 84.70 77.30 - 83.54

VoxNet Voxel 85.90 83.00 - 92.00

Pointgrid Voxel 92.0 88.90 - -

PointNet Point Cloud 89.20 86.20 - -

PointNet++ Point Cloud 91.90 - - -

Mo-Net Point Cloud 92.40 90.30 - -

DGCNN Point Cloud 93.50 90.70 - -

MVCNN 12-Views 92.10 89.90 - -

GVCNN 12-Views 92.6 - - -

MHBN 6-Views 94.12 92.20 95.00 95.00

12-Views 93.42 - - -

RN 6-Views 94.10 - - -

12-Views 94.30 92.30 95.30 95.10

HMVCM 12-Views 94.57 - 95.7 -

MVMSAN (Ours) 3-Views 96.35 94.62 97.80 97.65

6-Views 96.84 95.65 98.56 98.50

12-Views 96.80 95.31 98.57 98.37

20-Views 96.96 95.68 98.57 98.42

The bold values represent the best performance.

In this case, our MVMSAN model can also classify correctly. It

can be seen from Figure 5 that 76 samples are correctly classified

among the 86 the night stand models.

For the ModelNet10 dataset, it can be seen from Figure 6

that our MVMSAN also achieved 100% classification accuracy

on the chair and monitor categories. In some views, desk,

dresser, sofa and other 3D models have high similarity. The

existing networks will confuse the feature information of 3D

models and cause classification errors. However, our MVMSAN

model still has high classification performance for this situation.

For example, 78 samples are correctly classified among the 86

the desk models in Figure 6.

The data in the figure is enough to demonstrate the

superiority of our approach on the model classification

task. Especially for view features with high similarity, our

network model is still able to achieve high classification

prediction performance.

3.7. Comparison with other methods

We compared the classification performance of voxel-based

methods [3DShapeNets (Wu et al., 2015), VoxNet (Maturana

and Scherer, 2015), and Pointgrid (Le and Duan, 2018)], point

cloud-based methods [PointNet (Qi et al., 2017a), PointNet++

(Qi et al., 2017b), MO-Net (Joseph-Rivlin et al., 2019) and

DGCNN (Wang Y. et al., 2019) and view-based methods

[MVCNN (Su et al., 2015)], GVCNN (Feng et al., 2018), MHBN

(Yu et al., 2018), RN (Yang andWang, 2019), and HMVCN (Liu

et al., 2021)]

As shown in Table 6, the proposedMVMSAN outperformed

other deep learning methods. Compared with the most classical

multi-view-based model classification method (MVCNN),

MVMSAN improved OA and AA by 5 and 6%, respectively.

Compared with the GVCNN, MHBN, and RN methods,

MVMSAN showed considerable improvement. HMVCN is

a recently proposed model classification method based on

bidirectional LSTM, and its OA reached 94.57%. Our method

achieved 2.5% higher OA compared to HMVCN. On the

ModelNet10 dataset, the MVMSAN method also achieved

the best classification performance (98.57% for OA and

98.42% for AA).

The excellent performance of our MVMSAN method

on the two ModelNet datasets is attributed to three factors:

(1) ResNest removes the last fully connected layer and adds

an adaptive pooling layer. It can prove that the relationship

between view channels can increase the receptive field

of view feature extraction, so that the network obtains

more detailed features from the input data related to the

output. (2) Using the output result of SoftPool as the

Query vector of attention can realize the refined down-

sampling processing of view feature information, and

effectively solve the problem of insufficient extraction and

loss of detailed information in the process of view feature

extraction. (3) MBConv is employed to process the calculation

results of Query and Key of attention. It can enhance
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the generalization of the model, thereby improving the

classification accuracy.

4. Conclusion

In this paper, we proposed a multi-view SoftPool attention

convolutional network framework, MVMSAN, for 3D model

classification. The traditional method does not treat each

view equally in the view feature extraction process, and only

extracts the feature information that is considered important.

This causes the problem of insufficient extraction of the view

refinement feature information and loss. Our proposed SoftPool

attention convolution framework could achieve refined down-

sampling processing for all view features equally, thereby

obtaining more useful information from the input data related

to the output results, improving the generalization of the

model, and achieving high-precision 3D model classification.

To better evaluate our network framework, we conducted

several experiments to validate the impact of each component

of the framework. The experimental results demonstrate that

our framework has achieved better classification accuracy on

the ModelNet40 and ModelNet10 datasets compared to other

advanced methods.
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The emergence of multimodal medical imaging technology greatly increases

the accuracy of clinical diagnosis and etiological analysis. Nevertheless, each

medical imaging modal unavoidably has its own limitations, so the fusion

of multimodal medical images may become an e�ective solution. In this

paper, a novel fusion method on the multimodal medical images exploiting

convolutional neural network (CNN) and extreme learning machine (ELM)

is proposed. As a typical representative in deep learning, CNN has been

gaining more and more popularity in the field of image processing. However,

CNN often su�ers from several drawbacks, such as high computational costs

and intensive human interventions. To this end, the model of convolutional

extreme learning machine (CELM) is constructed by incorporating ELM into

the traditional CNN model. CELM serves as an important tool to extract and

capture the features of the source images from a variety of di�erent angles.

The final fused image can be obtained by integrating the significant features

together. Experimental results indicate that, the proposed method is not only

helpful to enhance the accuracy of the lesion detection and localization, but

also superior to the current state-of-the-art ones in terms of both subjective

visual performance and objective criteria.

KEYWORDS

image fusion, modality, multimodal medical image, convolutional neural network,

extreme learning machine

Introduction

As is well known, the accuracy of lesion detection and localization is crucial

during the whole clinical diagnosis and treatment. So far, the rapid growth of medical

imaging technologies such as computed tomography (CT), magnetic resonance imaging

(MRI), positron emission tomography (PET) and single-photon emission computed

tomography (SPECT) has provided us much richer information on the physical

condition. CT can accurately detect the slight differences of the bone density in a

transection plane, which is regarded as an ideal way to observe the lesions of the bone.

Nevertheless, its capacity of the tissue characterization is weak. The information of the
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soft tissue can be better visualized in MRI images, but the

movement information such as the body metabolism cannot

be found. Unlike MRI, PET images can reflect the activity

of the life metabolism through the accumulation of certain

substance so as to achieve the purpose of diagnosis, but they

are often with lower resolution. The main advantage of SPECT

is to demonstrate the changes in blood flow, function and

the metabolism of organs or diseases, which is beneficial to

the early and specific diagnosis of the disease. Obviously, due

to the respective different mechanism, each imaging modality

unavoidably has its characteristics and inherent drawbacks. To

this end, the fusion of the medical images with multiple different

modalities may be an effective solution, because it can not only

combine the advantages together to accurately implement the

localization and description of the lesion, but also reduce the

storage cost of the patient information database.

Recently, a variety of fusionmethods onmultimodal medical

images have been proposed during the past decades. Basically,

these methods can be mainly grouped into the following

categories, namely spatial domain-based methods, transform

domain-based methods, soft computing-based methods, and

deep learning-based ones.

The representative spatial domain-based methods include

simple averaging, maximum choosing, principal component

analysis (PCA) (He et al., 2010) and so on. Although most of

the above methods have comparatively high operating speed

and simple framework, they often tend to suffer from contrast

reduction and spectrum distortion in the final fused image.

Therefore, the pure spatial domain-based methods are rarely

used at present.

Unlike spatial domain-based methods, the core scheme

of transform domain-based methods usually consists of three

steps. Firstly, the source image is converted to the frequency

domain to get several sub-images which commonly contain

one approximation image with low-pass coefficients and several

detail images with high-pass coefficients. Secondly, certain

rules are adopted to complete the fusion of sub-images

at corresponding stages. Finally, the final fused image is

reconstructed. The classical methods include, but are not limited

to, Laplacian pyramid transform, discrete wavelet transform

(DWT), contourlet transform, shearlet transform and so on,

which have pioneered the use of transform domain-based

concept. However, with further in-depth research on themedical

image fusion, the defects of the above classical methods are

gradually revealed. Under this background, a series of improved

versions have been presented in the past decade. Du et al.

(2016) introduced union Laplacian pyramid to complete the

fusion of medical images. Some improved versions of DWT

such as dual tree complex wavelet transform (DT-CWT)

(Yu et al., 2016), non-subsampled rotated complex wavelet

transform (NSRCxWT) (Chavan et al., 2017), discrete stationary

wavelet transform (DSWT) (Ganasala and Prasad, 2020a; Chao

et al., 2022) were presented to complete the fusion of medical

images. Compared with DWT, these three new versions share

both the redundancy feature and the shift-invariance property,

which effectively avoid the Gibbs phenomenon in DWT.

Similarly, in order to overcome the absence of shift-invariance

in the original contourlet transform and shearlet transform,

the corresponding improved versions namely non-subsampled

contourlet transform (NSCT) and non-subsampled shearlet

transform (NSST) were proposed successively. In comparison

to the aforementioned transform domain-basedmethods, NSCT

andNSST have bothmanifested competitive fusion performance

due to their flexible structures. Zhu et al. (2019) combined

NSCT, phase congruency and local Laplacian energy together

to present a novel fusion method for multi-modality medical

images. Liu X. et al. (2017), Liu et al. (2018) proposed two

NSST-based methods to fuse the CT and MRI images.

In addition to spatial domain-based methods and transform

domain-based methods, extensive work has also been conducted

with soft computing-based methods dedicated to multimodal

medical image fusion. A great many representative models,

including dictionary learning model (Zhu et al., 2016; Li et al.,

2018), gray wolf optimization (Daniel, 2018), fuzzy theory (Yang

et al., 2019), pulse coupled neural network (Liu X. et al., 2016; Xu

et al., 2016), sparse representation (Liu and Wang, 2015; Liu Y.

et al., 2016), total variation (Zhao and Lu, 2017), guided filter (Li

et al., 2019; Zhang et al., 2021), genetic algorithm (Kavitha and

Thyagharajan, 2017; Arif and Wang, 2020), compressed sensing

(Ding et al., 2019), structure tensor (Du et al., 2020c), local

extrema (Du et al., 2020b), Otsu’s method (Du et al., 2020a) and

so on, were successfully used to fuse the medical images.

Since the transform domain-based methods and soft

computing-based methods have both manifested to be

promising in the field of medical image fusion, some novel

hybrid methods have also been presented in recent years.

Jiang et al. (2018) combined interval type-2 fuzzy sets with

NSST to complete the fusion task of multi-sensor images.

Gao et al. (2021) proposed a fusion method based on particle

swarm optimization optimized fuzzy logic in NSST domain.

Asha et al. (2019) constructed a novel fusion scheme based on

NSST and gray wolf optimization. Singh and Anand (2020)

employed NSST to decompose the source images, and then

used sparse representation and dictionary learning model to

fuse the sub-images. Yin et al. (2019) and Zhang et al. (2020)

each proposed a NSST-PCNN based fusion method for medical

images. The guided filter was combined with NSST to deal with

the issue of multi sensor image fusion (Ganasala and Prasad,

2020b). Zhu et al. (2022) combined the advantages of both

spatial domain and transform domain methods to construct

an efficient hybrid image fusion method. Besides, the collective

view of the applicability and progress of information fusion

techniques in medical imaging were reviewed respectively in

Hermessi et al. (2021) and Azam et al. (2022).

In recent years, the deep learning-based methods play

significant roles in the field of medical image fusion, and have
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been gaining more and more popularity in both the academic

and industry community. In 2017, convolutional neural network

(CNN) was firstly introduced into the area of image fusion

by Liu Y. et al. (2017). Fan et al. (2019) deeply researched

the semantic information of the medical image with different

modalities, and proposed a semantic-based fusion method for

medical images. Aside from CNN, another representative deep

learning model namely generative adversarial network (GAN)

was used to deal with the issue of image fusion in 2019 (Ma

et al., 2019). The unsupervised deep networks for medical image

fusion were presented in references (Jung et al., 2020; Fu et al.,

2021; Xu and Ma, 2021; Shi et al., 2022). Goyal et al. (2022)

combined transform domain-based methods and deep learning-

based methods together to present a composite method for

image fusion and denoising.

After consulting a great deal of literature, we found that how

much information from the original source medical images is

retained in the final fused image greatly determines the image

quality, which is crucial to the further clinical diagnosis and

treatment. So far, the single transformed domain-based methods

and relevant hybrid ones have been widely employed to deal with

the fusion issue of medical images. However, the transformed

domain-based methods may introduce the frequency distortion

into the fused image. With the rapid development of the deep

learning theory and its reasonable biological background, more

and more attention is being paid to the deep learning-based

methods such as CNN. Therefore, we desire to develop a novel

fusion method based on CNN to fuse the medical images. It is

noteworthy that each single theory always has its advantages and

disadvantages and deep learning is no exception, which is usually

accompanied by a huge amount of computational costs. To this

end, we need to construct or adopt some model to reduce the

computational complexity as much as possible.

In this paper, a novel fusion method on the multimodal

medical images exploiting CNN and extreme learning machine

(ELM) (Huang et al., 2006, 2012; Feng et al., 2009) is proposed.

On the one hand, since the nature of the medical image fusion

can be regarded as the classification problem, the existing

successful experiences of CNN can be fully applied. On the other

hand, due to a great many parameters, the computational cost of

CNN is high. ELM is a single hidden layer feed-forward network,

and its algorithm complexity is very low. Besides, since ELM

belongs to a convex optimization problem, it will not fall into

the local optimum. Therefore, ELM is utilized to improve the

traditional CNN model in this paper.

The main contributions of this paper can be summarized

as follows.

• A novel method based on CNN and ELM is proposed to

deal with the fusion issue of multimodal medical images.

• It is proved that, apart from the area of multi-focus image

fusion, the CNN model can also be used in the field of

multimodal medical image fusion.

FIGURE 1

Typical CNN structure.

• The traditional CNN model is integrated with ELM

to be a modified version called convolutional extreme

learning machine (CELM) which has not only much better

performance, but also much faster running speed.

• Experimental results demonstrate that the proposed

method has obvious superiorities over the current typical

ones in terms of both gray image fusion and color image

fusion, which is beneficial to obviously enhancing the

precision of disease detection and diagnosis directly.

The rest of this paper is organized as follows. The involved

theories of CNN and ELM are reviewed in Related work

section followed by the proposed multimodal medical image

fusion framework in Proposed method section. Experimental

results with relevant analysis are reported in fourth section.

In Conclusions section, the concluding remarks are given in

the end.

Related work

The models relevant to the proposed method are introduced

in this section. The two important concepts, namely CNN and

ELM are briefly reviewed as follows.

Convolutional neural network

As a representative neural network in the field of deep

learning, CNN aims to learn a multistage feature representation

of the input data, and each stage usually consists of a series of

featuremaps connected via different types of calculations such as

convolution, pooling and full connection. As shown in Figure 1,

a typical CNN structure is composed of five types of components

including the input layer, convolution layers, pooling layers, full

connection layer, and the output layer.

In Figure 1, C, P and F denote the convolution, max-pooling

and full connection operations, respectively, which can generate

a series of feature maps. Each coefficient in the feature maps is

known as a neuron. Clearly, CNN is an end-to-end system. The

roles of the three types of layers, namely convolution, pooling
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and full connection, can be summarized as feature extraction,

feature selection, and the classifier.

Here, the input data is a two-dimensional image. The

neurons between the adjacent stages are connected by the

operations of convolution and pooling, so that the number of

the parameters to be learned declines a lot. The mathematical

expression of the convolution layer can be described as:

yj=bj+
∑

i

kij ∗ xi (1)

where kij and bj are the convolution kernel and the bias,

respectively. The symbol ∗ denotes the 2D convolution. xi is the

ith input feature map and yj is the jth output one.

In fact, during the convolution course, the non-linear

activation is also conducted. The common activation functions

include sigmoid function, rectified linear units (ReLU), and so

on. Here, ReLU is adopted whose mathematical expression can

be written as:

yj= max

(

0,bj+
∑

i

kij ∗ xi

)

(2)

In CNN, the convolution layer is usually followed by the

pooling layer. The common pooling rules include max-pooling

and average-pooling, which can select the maximum or the

average value of a certain region to form new feature maps. Due

to the special mechanism of the pooling layer, it can bring some

desirable invariance such as translation and rotation. Moreover,

it can also decrease the dimension of the feature maps which

is favorable for reducing the computational costs as well as the

memory consumption.

Through the alternation of multiple convolution and

pooling layers, CNN relies on the full connection layer to classify

the extracted features to obtain the probability distribution

Y based on the input. In fact, CNN can be viewed as a

converter where the original matrix X can be mapped into a new

feature expression Y after multiple stages of data transformation

and dimension reduction. The mathematical expression can be

written as:

Y(i) = P(L =li|H0; (k, b)) (3)

where H0 is the original matrix, and the training objective

of CNN is to minimize the loss function L(k, b). k and b are

the convolution kernel and the bias, respectively, which can be

updated layer by layer via the following equations.

ki=ki−η
∂E(k, b)

∂ki
(4)

bi=bi−η
∂E(k, b)

∂bi
(5)

E (k, b)= L (k, b)+
λ

2
kTk (6)

where λ and η denote the weight decay parameter and the

learning rate, respectively.

According to the mechanism of CNN mentioned above,

the important features of the image can be classified.

Some fused methods for multi-focus images based on

CNN have been published in recent years. Although

CNN-based fusion methods have been gaining more and

more popularity, their inherent problems such as being

prone to local minima, intensive manual intervention

and the waste of the computing resources still cannot

be ignored.

Extreme learning machine

Different from the conventional neural networks, ELM is a

single hidden layer feed-forward neural network. It is generally

known that most current neural networks have many knotty

drawbacks. (a) The training speed is slow. (b) It is easy for

them to be trapped into the local optimum. (c) The learning

rate is very sensitive to the parameters selection. Fortunately,

ELM is able to generate randomly the weights between the

input and the hidden layer as well as the threshold of the

neuron in the hidden layer, and the weights adjustment is

totally unnecessary. In other words, the optimum solution can

be obtained, provided the neuron number in the hidden layer

is given.

Suppose N training samples (xi, ti) and a single

layer feed-forward neural network with L neurons in

the hidden layers and M ones in the output layers.

The concrete steps of the learning via ELM are

as follows.

Step 1: The node parameters are allocated randomly, which

is independent of the input data.

Step 2: Computing the output matrix h(x) = [g1(x), . . . ,

gL(x)]
T of the hidden layers for x. Obviously, the size of

h(x) is N×M, which is the mapping result from N input

data to L neurons in essence.

Step 3: Computing the output weights matrix β = [β1, . . . ,

βL]
T . β=HTT. H = [hT(x1), . . . , h

T(xN )]
T , and T = [t1,

t2, . . . , tN ]
T is the training objective. The output weights

matrix β can be obtained by using the regularized least

squares method as follows.

β=

(

I

C
+HTH

)−1

HTT (7)

where C is the regularization coefficient.

Besides, a hidden neuron of ELM can be a sub-network of

several neurons. The scheme of the ELM feature mapping is

shown in Figure 2.
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FIGURE 2

Scheme of the ELM feature mapping.

Proposed method

In this section, the proposed fusion method for multimodal

medical images based on CNN and ELM is presented in detail.

The concrete content can be divided into three subsections,

including the structure of convolutional extreme learning

machine (CELM), network design, and the fusion schemes.

Structure of CELM

As described in Related work section, we can reach several

conclusions as follows.

• It is feasible to utilize CNN to deal with the issue of

image fusion.

• There are still inherent drawbacks in the traditional CNN

model, so it has large development potentiality.

• ELM not only owns many superiorities over other current

neural networks, but also shares great similarities with

CNN in structure.

Therefore, it is sensible to integrate CNN with ELM to

combine the both advantages together, whichmay also introduce

a novel and more effective solution to the fusion of multimodal

medical images. To this end, the CELM model is proposed in

this paper, whose structure is shown in Figure 3.

As shown in Figure 3, C and P denote the convolution and

pooling operations, respectively, and the mechanism of ELM has

been added into the CNN structure. CELM is composed of an

input layer, an output layer, and several hidden layers where

the convolution layers and the pooling layers alternately appear.

FIGURE 3

Structure of CELM.

The convolution layer consists of several maps recording the

features of the previous layer via several different convolution

kernels. The pooling layer introduces the translation invariance

into the network, and the dimension of the feature map in the

previous layer will also decrease. Meanwhile, the number of the

feature maps in the pooling layer always equals to the one in the

previous convolution layer. It is noteworthy that, except for the

first convolution layer, the neurons of the feature map in the

convolution layer are all connected to all the feature maps in

the previous pooling layer, while the ones in the pooling layer

are only connected to the corresponding feature maps in the

previous convolution layer. As for the original full connection

layer in the original CNN model, it has been replaced by the

global average pooling layer (Lin et al., 2014), which is favorable

for sharply cutting down the number of parameters.

With regard to the feature extraction, ELM can randomly

generate the weights between the input layer and the first

convolution layer as well as the ones between the pooling layer

and the following convolution layer, as shown in Figure 3. Here,

we suppose that there are two original multimodal medical

images denoted byA and B, respectively. If the source images are

color ones, we can convert them into gray ones or deal with them

in different color spaces, which will be involved in a later section.

In CELM, the weights are viewed to be agreeing with the

normal distribution, and the weight matrix can be obtained

as follows.

P=
[

p̂1,p̂2, . . . ,p̂i, . . .p̂N
]

, 1 ≤ i ≤ N (8)

where P is the initial weight matrix, N is the number of

convolution kernels, and the size of each element in Equation

(8) is r × r. Therefore, if the size of the previous layer is k × k,

the size of the corresponding feature map would be (k – r + 1)

× (k – r + 1).

The convolution node on the point at (x, y) on the ith feature

map can be obtained as

cx,y,i (2)=
∑r

m=1

∑r

n=1
2x+m−1,y+n−1·p

i
m,n (9)

where “Θ” denotes the source image A or B.

As for the pooling layer, the max-pooling strategy is adopted

except the last layer. The pooling node on the point at (u, v) on
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FIGURE 4

Diagram of the global average pooling layer.

the jth pooling map can be obtained as:

cu,v,j (2)= max
[

cx,y,i
]

, x, y = u− z, . . . , u+ z (10)

where z denotes the pooling size.

Due to involving a large number of parameters, the original

full connection layer in CNN is substituted for the global average

pooling one here, so that we can directly treat the featuremaps as

the category confidence ones, and save the computational costs

and storage space. The diagram of the global average pooling

layer is shown in Figure 4.

Network design

In this work, multimodal medical image fusion is regarded

as a classification problem. CELM is able to provide the output

ranging from 0 to 1 according to a series of image patches {pA,

pB}. As is known, the essence of image fusion is to extract the

important information from the source images and then fuse

it into a single one. Fortunately, CELM can just lead us to find

the representative information via classification. Specifically, the

output near to 1 indicates the information in pA has better

reference value, while the information in pB seems more typical

if the output is close to 0. Therefore, the pair of the patches {pA,

pB} from the same scene can be used as the training samples in

CELM. For example, if the information in pA is more valuable

than that in pB, the corresponding label is set to 1, otherwise the

label is set to 0. For sake of maintaining the image information

integrity, the whole source medical images are input into the

CELM as a whole rather than dividing them into a series of

patches. The results in the output layer can provide the scores

reflecting the information importance in the source images.

As for the details of the network, two important points

need to be made. (a) The network framework can be

mainly categorized into three types according to the reference

(Zagoruyko and Komodakis, 2015), namely siamese, pseudo-

siamese and two-channel. The last type just has a trunk rather

than branches. The difference between siamese and pseudo-

siamese lies in whether the weights of the branches of them

FIGURE 5

CELM diagram used for multimodal medical image fusion.

are the same or not. Here, the siamese type is chosen as the

network framework in this paper, the reason for which can

be summarized as follows. Firstly, due to the weight sharing,

the network training course is easy and timesaving. Secondly,

take the fusion course of two source images for example, two

branches with the same weights indicate the same schemes

of feature extracting are used for these two images, which is

just consistent with the process of image fusion. (b) The final

fusion performance has something to do with the size of the

input patch. For example, when the patch size is set to 64 ×

64, the classification ability of the network is relatively high

since much more image information is taken into consideration.

According to Farfade et al. (2015), there is the 2-power law

relation between the kernel stride and the number of the max-

pooling layer. In other words, if there are four max-pooling

layers, the corresponding stride is 24 = 16 pixels. Obviously,

the final fused image will suffer from blocky effects. Therefore,

in order to guarantee the classification ability and remove the

blocky effects as much as possible, the patch size is set to 32× 32

in this paper.

The CELM diagram used for multimodal medical image

fusion is shown in Figure 5.
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As indicated in Figure 5, each branch consists of three

convolution layers, two max-pooling layers and a global average

pooling layer. The kernel size and the stride of the convolution

layer are set to 3× 3 and 1, while the corresponding values of the

max-pooling layer are set to 2× 2 and 2. Here, the global average

pooling is used for realizing the function of the original full

connection layer in CNN, and the 256 feature maps are obtained

for classification.

Fusion schemes

In this paper, the training datasets of CELM are from

the website www.ctisus.com, which is the premier radiological

website dedicated to multimodal scanning. This website has

an incredible library of content ranging from multimodal scan

protocols, lectures, case studies, medical illustrations, and a

monthly quiz. CTisus.com provides the latest in radiology

technology and 3D imaging information, and uploads new

content daily.

After constructing the CELM, the fusion issue of the

multimodal medical images can be achieved. The specific

implementation process consists of two stages, namely 1-stage

and 2-stage. Here, we only take the fusion of two images into

consideration, and the method can be extended to the case of

the fusion of more than two images.

During the 1-stage, the concrete steps are as follows.

Input: Patches of the multimodal medical images to

be fused.

Output: The 1-stage fused image.

Initialization: The CELM depicted in Figure 5.

Step 1.1: The patch of 32× 32 pixels are fed into the CELM.

Step 1.2: By using the two convolution layers, we can obtain

64 and 128 feature maps, respectively. The kernel sizes of the

two convolution layers are set to 3 × 3, and the strides of the

convolution layers are set to 1.

Step 1.3: The kernel sizes of the two max-pooling layers are

both set to 2× 2, and the strides of the convolution layers are set

to 2. And 128 feature maps can be obtained.

Step 1.4: The 128 feature maps are fed into another third

convolution layer with the size of 3 × 3 to generate 256

feature maps.

Step 1.5:The global average pooling layer is used to deal with

the 256 feature maps in Step 1.4.

Step 1.6: Guarantee that all the pixels of the source images

are performed by CELM, and the output can be obtained as:

label(i, j) =

{

1, if A
(

i, j
)

is better than B
(

i, j
)

0, otherwise
(11)

F(i, j) =

{

A
(

i, j
)

, if label
(

i, j
)

= 1

B
(

i, j
)

, if label
(

i, j
)

6= 1
(12)

where “label” is the classification result of CELM. A, B and

F denote the two source images and the final fused one,

respectively. (i, j) is the coordinate of the pixel in the image.

It should be noted that there will be inconsistency during

the fused image, namely a pixel from the source image Amay be

surrounded by a great many counterparts from B.

In order to overcome the problem mentioned above, a

consistency matrix denoted by C is defined here to describe the

ownership of the pixels. If the pixel F(i, j) is from A, the value

of the corresponding element C(i, j) is set to 1, otherwise the

value is 0. Then, a filter whose size and stride are 3 × 3 and

1 respectively is used. In the 3 × 3 window, three cases may

appear. (a) If the sum of the surrounding eight elements in C

is greater than or equal to five, the corresponding pixel in A

will be selected as the counterpart in F. (b) If the sum of the

surrounding eight elements in C is less than or equal to three,

the corresponding pixel in B will be selected as the counterpart

in F. (c) If the sum of the surrounding eight elements inC is four,

the original value in F will remain unchanged.

After the 1-stage, the initial fused image can be

obtained. However, unlike the fusion of other types of

images, higher requirements and standards are needed

in the fusion course of multimodal medical images to

enhance the precision of lesion detection and diagnosis.

In the 2-stage, the connection between the two source

images and the initial fused one is analyzed and

discussed further. The diagram of the 2-stage is shown in

Figure 6.

As shown in Figure 6, A, B, F and FF denote the two

source images, the initial fused one and the final fused one,

respectively. “sub” is the subtraction operator. “F-A” stands

for the subtraction result between F and A. Similarly, “F-B”

stands for the subtraction result between F and B.MF andMFF

denote the binary mapping of the images F and FF. MM is the

abbreviation of mathematical morphology.

In this paper, the simple subtraction operator is used to

measure the similarity between the initial fused image and the

source one. The concrete steps of the 2-stage are as follows.

Input: Two source images denoted by A and B, and the

initial fused image F.

Output: The 2-stage fusion result FF.

Initialization: The two source images and the initial fused

one are given.

Step 2.1: The subtraction operation is conducted between A

and F to generate the image F-A. Similarly, the image F-B can be

also obtained.

“F-A” and “F-B” can describe the extent of feature extracting

from the other original source image.

Step 2.2: Compute the value of root mean square error

(RMSE) between “F-A” and “B” to obtain RMSEF−A,B.

Meanwhile, RMSEF−B,A can also be computed. Here, the size

of the window used to compute RMSE is 5× 5.
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FIGURE 6

Diagram of the two-stage.

Step 2.3: Construct a new matrix MF with the same size as

F. The elements ofMF can be determined as:

MF(i, j) =

{

1, if RMSEF−B,A>RMSEF−A,B

0, otherwise
(13)

where MF(i, j) = 1 indicates that the difference between

F-B and A is more obvious than that between F-A and B. In

other words, more information should be fused in A than that

in B, otherwise we may should place more emphasis on B rather

than A.

Step 2.4:With the help ofMM,MF is optimized by a series of

opening and closing operators to smooth over the object outlines

and the connection between each other. Here, the structure

element is a square identity matrix of the size 5 × 5. The

modified mapping denoted byMFF can be obtained.

Step 2.5: MFF and F are both taken into account to

determine the final fused image FF. Please note that compared

with the requirements in the 1-stage, the modification condition

is more rigorous here. The reason for it lies in that the initial

fused image have been already obtained in the 1-stage, while the

main objective of the 2-stage aims to further optimization. The

elements of FF can be optimized as:

FF(i, j) =











1, if MFF
(

i, j
)

= 1 and sum
(

i, j
)

= 8

0, if MFF
(

i, j
)

= 0 and sum
(

i, j
)

= 0

F(i, j), otherwise

(14)

where “sum” denotes the sum of the elements surrounding

(i, j) in MFF. The window is of size 3 × 3. As Equation

(14), if and only if the elements in the window are all from

the same source image, the corresponding value in the initial

fused image may be modified. Otherwise, the element will still

remain unchanged.

It is also noteworthy that if the source images are color ones,

we need to convert them into gray ones or deal with them in

different color spaces. The color is usually characterized by three

independent attributes, which interact on each other to form

a spatial coordinate called color space. The color space can be

divided into two categories including primary color space, and

color brightness separation color space according to the basic

structure. RGB and YUV are the typical representatives of the

above categories respectively.

RGB mode is an additive one with luminescent screen,

while CMYK mode is a printing subtractive one with reflective

color. IHS mode suffers from spectral information distortion,

which easily leads to medical accidents. Unlike the above three

common modes, YUV mode can deal with brightness or color

without mutual influences, so it depends on neither light nor

pigment. Moreover, YUV includes all color modes the human

can see in theory, and it is able to make up for the drawbacks of

RGB, CMYK and IHS. Therefore, YUV mode is chosen as the

color space in this paper.

During the fusion course of medical source images, we

may encounter color images, such as SPECT-TI and SPECT-Tc

based ones. Under the circumstances, the RGB source image

is converted into the YUV version first. Three components

including Y, U and V can be obtained. The Y channel describes

the brightness information of the image whereas the other two

channels cover the color information. The Y component is fused

using the proposed scheme followed by the conversion from

YUV to RGB to get the final fused image F.

Experimental results with
relevant analysis

In order to verify the effectiveness and the superiorities of

the proposed method, a series of simulation experiments are

performed. Concretely, the section is composed of six parts.

The information on the source images to be fused, the methods

which are used to be compared with the proposed one, and

the experiment settings are given in detail in Experimental
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FIGURE 7

Six pairs of multimodal medical source images. Pair I (A,B). Pair II

(C,D). Pair III (E,F). Pair IV (G,H). Pair V (I,J). Pair VI (K,L).

setups section. Objective evaluation metrics section lists the

objective quantity metrics used in the following experiments.

In Experiments on gray and color source images section, the

comparisons on the gray images and color ones are conducted

in terms of both subjective visual performance and objective

quantity results. As the extensive research, the application of

the proposed method in other types of source images is also

investigated in Applications of the proposed method in other

types of source images section followed by the average running

time of the proposed method in Average running time of

the proposed method section. In the end, the discussions on

the potential research directions of the proposed method are

given in Discussions on the potential research directions of the

proposed method section.

Experimental setups

Six pairs of multimodal medical images are used in the

following experiments, which are shown in Figure 7. There

are several points requiring to be noted. (a) For simplicity,

the corresponding pairs of source images are named as Pair

I–VI. (b) All the images share the same size of 256 × 256

pixels, and can be downloaded from the Harvard university site1

or the Netherland TNO site2 (c) From the color perspective,

the images in pair I–IV are gray ones covering 256-level gray

scale, while the images in pair V–VI such as SPECT ones

are in pseudo-color. (d) The images with different modalities

own a great deal of complementary information, which is

1 http://www.med.harvard.edu/AANLIB/home.htm

2 http://www.imagefusion.org

beneficial for increasing the accuracy of the lesion detection

and localization.

The proposedmethod is compared with seven representative

and recently published ones, which are the adaptive sparse

representation (ASR)-based (Liu and Wang, 2015) one, the

convolutional sparse representation (CSR)-based one (Liu Y.

et al., 2016), the non-subsampled rotated complex wavelet

transform (NSRCxWT)-based one (Chavan et al., 2017), the

guided filtering fusion (GFF)-based one (Li et al., 2013), the cross

bilateral filter (CBF)-based one (Kumar, 2015), CNN-based one

(Liu Y. et al., 2017) and gradient transfer and total variation

(GTTV)-based one (Ma et al., 2016). Generally speaking, ASR,

CSR and NSRCxWT belong to the scope of TDB, while the other

four methods are SCB ones. In order to guarantee the objectivity

during the whole process of simulation experiments, the free

parameters of the seven methods used to be compared are all

set as the original references reported.

Objective evaluation metrics

As is well known, it is one-sided for us to evaluate the

fusion performance only by subjective inspection. The objective

quantity evaluation also plays a significant part during the whole

process of image fusion. In Liu et al. (2012), the 12 metrics

which are recently proposed and typical are fully analyzed and

discussed. On the whole, they can be categorized as four types,

namely information theory-based metrics, image feature-based

metrics, image structural similarity-based metrics, and human

perception inspired fusion metrics. In this paper, four metrics

each of which is from four different types above respectively are

selected to perform the objective evaluation on the final fused

results, including spatial frequency (QSF) (Zheng et al., 2007),

Piella’s metric (QPiella) (Piella and Heijmans, 2003), mutual

information (QMI) (Hossny et al., 2008), and Chen-Varshney

metric (QCV ) (Chen and Varshney, 2007).

Experiments on gray and color
source images

From the modality perspective, the source images are of six

different combinations as follows.

• Pair I (MR-T2 and MR-T1)

• Pair II (CT and MR-T2)

• Pair III (MR-PD and MR-T2)

• Pair IV (CT and MR)

• Pair V (MR-T2 and SPECT-TI)

• Pair VI (MR-T2 and SPECT-Tc)

The fusion results based on the eight different methods are

shown in Figure 8.
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FIGURE 8

Fusion results based on eight di�erent methods. (A) ASR, (B) CSR, (C) NSRCxWT, (D) GFF, (E) CBF, (F) CNN, (G) GTTV, (H) Proposed.
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As for the fused results on Pair I, the ASR-based and CBF-

based methods suffers from poor contrast. A great deal of

artifacts can be easily found in the fused image based on CSR.

Besides, the information of the source images doesn’t obtain a

fully expression in the fused images based on GFF, CNN and

GTTV (please see the red rectangles), which is very unfavorable

to the lesion detection and localization. In comparison, the fused

images based on NSRCxWT and the proposed one have much

better visual performance. In Pair II, a striking comparison can

be easily observed that the outline information in Figure 7C is

not adequately described by the other seven methods except

the proposed one. In other words, the bright white outline is

supposed to appear continuously and obviously in the fused

image. As to Pair III, the center-right region can be used as

a reference (see the red rectangles). The fused images based

on ASR, GFF and GTTV have a relatively low contrast level.

What is worse, some artifacts even appear in the fused results

based on CSR and CBF. Compared with the above five methods,

NSRCxWT, CNN and the proposed one all have satisfactory

visual performance. However, through careful observation, it

can be found that the proposed method has more superiorities

over other two ones in terms of the image texture and the

information representation. In Pair IV, the original information

of the source CT image is almost lost in the fused images

based on ASR, CNN and GTTV. In the fused image based on

NSRCxWT, there is also an obvious lack of the source MRI

information (see the red rectangles). Similarly, the information

locating at the bottom right corner in the CBF-based result is

also missing. A terrible indented edge can be noticed in the

fused result based on CSR (see the magnified region in the

upper right corner). Compared with the other six methods, GFF

and the proposed method have much better visual performance,

but the latter owns much clearer contours than the former,

which can be found in the red rectangles. The experiments on

Pair V and Pair VI involve the fusion between the gray image

and the color one, and their fused results are also in color.

Compared with the gray counterparts, color images are able to

offer much more information with no doubt. Pair V describes

the case of anaplastic astrocytoma. The significant lesion regions

obtain better descriptions in the fused image based on the

proposed method than other ones. Pair VI addresses another

case. Here, for sake of distinguishing the differences among the

eight methods, two regions are selected as the references to

evaluate the fusion performance (see the red rectangles). Based

TABLE 1 Objective evaluation on the fused images based on di�erent methods.

ASR CSR NSRCxWT GFF CBF CNN GTTV Proposed

Pair I QSF 34.8118 44.1029 42.4388 35.9596 36.8943 36.2532 34.5648 45.2897

QPiella 0.7094 0.7219 0.7299 0.7224 0.7302 0.7001 0.5910 0.7520

QMI 0.7083 0.8813 1.1378 0.6984 0.7198 0.7799 0.6727 1.1507

QCV 400.0300 367.5945 375.6842 402.3830 414.0351 302.5264 830.0512 423.3613

Pair II QSF 40.8550 50.0756 49.7400 39.9966 47.7477 44.3366 32.0796 49.9253

QPiella 0.7373 0.6991 0.7465 0.6587 0.7377 0.7431 0.5075 0.7783

QMI 0.6974 0.8798 1.0025 0.6704 0.7735 0.9054 0.6418 1.0780

QCV 1,145.383 1,290.245 716.1920 2,142.597 2237.970 971.9320 3,762.081 2535.860

Pair III QSF 39.0054 41.8544 40.3306 38.8861 38.1430 40.5021 27.7984 42.5274

QPiella 0.8974 0.9014 0.9009 0.9053 0.9012 0.8998 0.6221 0.9193

QMI 0.9498 1.0634 0.9922 0.9013 0.8901 0.9977 0.8141 1.0675

QCV 169.2490 161.1503 179.7873 150.0123 187.5749 139.1230 1575.770 177.0231

Pair IV QSF 28.4958 35.3432 36.7455 28.4490 32.4930 28.5946 24.0985 36.9254

QPiella 0.7667 0.8350 0.8295 0.8408 0.8612 0.7688 0.6847 0.8407

QMI 0.5002 0.7131 1.0356 0.5855 0.8597 0.5167 0.4761 1.0553

QCV 1,449.801 2,126.931 2,525.826 1,436.559 2,481.416 1,187.209 1,486.342 2638.738

Pair V QSF 28.1230 31.2896 31.5508 31.0568 31.5580 31.5670 11.9156 32.4373

QPiella 0.8102 0.9198 0.9118 0.9246 0.9213 0.9109 0.3985 0.9265

QMI 0.5846 0.9318 1.0688 0.8039 0.9030 1.0590 0.5759 1.0548

QCV 228.7973 18.3058 16.3897 25.1995 46.7478 16.3897 985.4931 231.8284

Pair VI QSF 27.2272 30.8178 31.3711 30.6399 30.6681 30.6681 11.9758 31.6360

QPiella 0.8237 0.9154 0.9133 0.9226 0.9189 0.9189 0.3655 0.9249

QMI 0.5806 0.9026 1.0588 0.7958 0.8377 0.8377 0.4874 1.0177

QCV 106.9227 8.0261 7.7041 28.8184 37.1281 7.7035 822.7828 127.5496

The bold values indicate the optimal results.
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on the eight fused images, the information of the corresponding

regions is not fully described by ASR, GFF and GTTV. What is

worse, in the right red rectangles, the artifacts can be observed

in the fused images based on CSR, NSRCxWT, CBF and CNN.

In comparison with other seven methods, the two regions in

the fused image based on the proposed method are much

better described.

Of course, there may be individual divergences during the

evaluating process. To this end, the four metrics mentioned in

subsection B are used to evaluate the fusion effects from more

balanced and objective perspectives, and the numerical results

are reported in Table 1, in which the value shown in bold in each

row indicate the best result among the eightmethods. Obviously,

as for the first three metrics QSF , QPiella and QMI , the proposed

method is almost always ranked the first. Owing to the special

mechanism of GTTV, its QCV value is abnormal.

Applications of the proposed method in
other types of source images

Different types of images often have diverse characteristics.

In order to verify and evaluate the comprehensive performance

of the proposed method, extensive investigations on its usage in

other types of source images are conducted in this subsection.

Here, another two types of source images are selected, namely

a pair of multi-focus source images and a pair of visible and

infrared source ones, which are denoted by Pair VII and Pair

VIII, respectively. These two pairs of source images are shown

in Figure 9.

Apart frommultimodal medical images, multi-focus images,

gray and infrared images are also research hotspots in the field

of image fusion. Therefore, these typical types of images are

selected as the source images, and the corresponding fusion

results are shown in Figure 10. In addition, the objective

evaluation results are reported in Table 2. As can be observed,

the fused images based on the proposed method are of

satisfactory quality.

Average running time of the
proposed method

Typically, the visual effect as well as the metric values seems

to be the focus of our attention. However, in the practical

situations, the computational cost especially the average running

time is also a very important factor we are interested in. In

this subsection, the experimental results on Pair I are taken

into consideration.

The hardware platform concerning the experiments above is

as follows. A computer is equipped with an IntelCore i7-7700

3.60 GHz CPU and 16 GB memory. Besides, a GPU module

FIGURE 9

Another two types of source images. (A) Left-focus source

image, (B) Right-focus source image, (C) Infrared source image,

(D) Visible light source image.

GTX1060 is also employed here. All the simulation experiments

are performed with matlab 2014b. In order to guarantee the

objectivity of the experimental results, the same experiments are

performed thrice via the proposed method, and then the average

running time is calculated to be the final result. The statistics

show that it only takes 1.32 s to achieve the final fused image

via the proposed method, which is perfectly acceptable to the

applications of the lesion detection and localization.

Discussions on the potential research
directions of the proposed method

Although the proposed method is proved to be effective to

deal with the fusion issue of the multimodal medical images, it

doesn’t mean that there is no room for development of CNN

theory. On the contrary, lots of researches and investigations

are still required to be done in the future. To the best of our

knowledge, the following several points are worth researching.

• Optimization of CNN architecture. It is well known

that the birth of CNN is of epoch-making significance

of the milestone for the area of image processing.

However, the traditional CNN architecture has its own

inherent drawbacks, which has been mentioned in Related

work section. Therefore, the further researches on the

optimization of CNN architecture are very necessary. On

the one hand, CNN is a representative model in the deep

learning field. The relation between the network depth of
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FIGURE 10

Fusion results on two pairs of source images with eight di�erent methods. (A) Fusion results on Pair VII (from left to right: ASR, CSR, NSRCxWT,

GFF, CBF, CNN, GTTV, Proposed). (B) Fusion results on Pair VIII (from left to right: ASR, CSR, NSRCxWT, GFF, CBF, CNN, GTTV, Proposed).

TABLE 2 Objective evaluation on the fused images based on di�erent methods.

ASR CSR NSRCxWT GFF CBF CNN GTTV Proposed

Pair VII QSF 23.9632 24.1251 24.1067 24.4411 23.1825 24.3852 22.2385 24.8856

QPiella 0.9377 0.9328 0.9311 0.9325 0.9388 0.9323 0.9060 0.9421

QMI 1.0345 1.0905 1.1473 1.1031 1.0791 1.2059 1.1002 1.2634

QCV 54.6205 63.0834 64.7638 64.8442 64.2539 64.6459 93.4914 63.2364

Pair VIII QSF 30.2317 35.6011 35.5563 30.5951 33.6958 30.1220 22.2862 35.9478

QPiella 0.8227 0.8178 0.8045 0.8270 0.8341 0.7967 0.5837 0.8345

QMI 0.3698 0.6208 0.6356 0.3808 0.3833 0.6467 0.3255 0.6033

QCV 837.8217 1,298.0269 1,317.6476 1,209.4535 1,101.0403 1,325.8068 1,245.9047 1,390.4678

The bold values indicate the optimal results.

CNN and the final performance is always an interesting

and meaningful topic. On the other hand, in this paper, the

introduction of another theory is proved to be effective to

overcome the above drawbacks of CNN to a certain extent,

so the combination between CNN and other theories could

be the future direction of development.

• As other typical fusion methods, the main structure is

commonly composed of fusionmodels and fusion schemes.

These two parts both play an instructive role in the whole

process of image fusion. As for the fusion models, it has

been involved in (a). Similarly, the investigations on the

fusion schemes should also be emphasized in the future.

Limitations of the proposed method

Despite its effectiveness, the proposed method also has its

inherent limitations as follows.

Firstly, due to the nature of deep learning, the size

of the training datasets determines the performance of the

proposed method to a large extent. However, compared

with the current well-known image datasets, the size of

the medical image datasets suitable for training is usually

small, so that the learning ability of the proposed network

is limited. To solve this problem, the deep cooperation

with domestic and foreign well-known medical institutions is

necessary, and the construction of large medical image database

is expectable.

Secondly, as the important component, ELM can

significantly improve the execution efficiency of the proposed

method, but its nonlinear representation ability is not well.

Therefore, how to improve the classical ELM to optimize the

representation ability of nonlinear features becomes a research

direction in the future.

Conclusions

In this paper, a novel fusion method called CELM

is proposed to deal with the fusion issue of multimodal

medical images. CELM combines the advantages of both

CNN and ELM. Compared with other typical fusion

methods, the proposed one has obvious superiorities in

terms of both subjective visual quality and objective metric
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values. In addition, the potential research directions of

the proposed method are also given and discussed, the

contents of which will be the emphasis of our next work

in future.
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Introduction: The seriously degraded fogging image a�ects the further

visual tasks. How to obtain a fog-free image is not only challenging, but

also important in computer vision. Recently, the vision transformer (ViT)

architecture has achieved very e�cient performance in several vision areas.

Methods: In this paper, we propose a new transformer-based progressive

residual network. Di�erent from the existing single-stage ViT architecture,

we recursively call the progressive residual network with the introduction of

swin transformer. Specifically, our progressive residual network consists of

three main components: the recurrent block, the transformer codecs and

the supervise fusion module. First, the recursive block learns the features

of the input image, while connecting the original image features of the

original iteration. Then, the encoder introduces the swin transformer block to

encode the feature representation of the decomposed block, and continuously

reduces the featuremapping resolution to extract remote context features. The

decoder recursively selects and fuses image features by combining attention

mechanism and dense residual blocks. In addition, we add a channel attention

mechanism between codecs to focus on the importance of di�erent features.

Results and discussion: The experimental results show that the performance

of this method outperforms state-of-the-art handcrafted and learning-

based methods.

KEYWORDS

transformer, residual network, image dehazing, progressive recurrent, multiple

self-attention

1. Introduction

Due to the color distortion, blurring and other quality problems of haze images that

affect further information capture, single image deblurring has always been a challenging

and highly concerned problem. The deblurring method originates from the classical

atmospheric scattering model, and the imaging formula is as follows:

I (x) = J (x) t (x) + A (1− t (x)) ,

t (x) = e−β(λ)d(x),
(1)
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where I (x) is the degraded image, J (x) is the brightness of

the scene when it does not propagate through the water,

t (x) is the transmissivity of the propagation medium, β (λ) is

the attenuation coefficient of different wavelengths of light, λ

represents different color channels, d (x) is the distance between

the camera and objects, and A is the ambient atmospheric

light of the scene. Many deblurring methods based on imaging

models (He et al., 2010; Zhu et al., 2015; Berman et al., 2016,

2018; Middleton, 2019) restore clean images by reversing the

blurring process, in which the atmospheric channel A (x) and the

medium transmission map t(x) need to be estimated by manual

prior. Although the quality of the blurred image is improved to

some extent, these physical priors are not always reliable, and

without priors and constraints, the blurring performance will be

further reduced, resulting in artifacts and color distortion.

With the development of deep learning in recent years,

convolutional neural network has become the backbone of

various visual tasks due to its robustness and accuracy. The

progress of CNN architecture improves network performance

and promotes the progress of single image defogging (Qin et al.,

2020) and other hierarchical visual tasks (Afshar et al., 2020;

El Helou and Süsstrunk, 2020; Akbari et al., 2021). Although

the method based on CNN has special representational ability.

It is unable to learn global and remote semantic information

interaction well due to the localization of convolution operation.

To overcome these problems, some methods add self-attention

mechanism (Wang et al., 2020). While others use full attention

structure to replace traditional RNN modeling, and propose

transformer model to solve Seq2Seq problem (Vaswani et al.,

2017). Compared to CNN, Transformer does not increase to

distance from the number of operations required to calculate the

association between two positions, and can not only do parallel

calculations, but also efficiently process global information and

encode longer sequences. Due to its powerful presentation

capabilities, researchers have applied Transformer to computer

vision tasks such as image representation (Wu et al., 2020),

image segmentation (Zheng et al., 2021), object detection

(Carion et al., 2020; Zhu et al., 2020), pose estimation (Huang

et al., 2020a,b; Lin et al., 2021b) and pre-training (Chen et al.,

2021a). There are still some problems that can not be ignored

when the model is transferred to the visual task, such as the large

scale change of the visual target and the high resolution pixel of

CV.

Recently, researchers have improved Vit, and swin

transformer (Liu et al., 2021) has solved these problems and

proved its effectiveness and superiority in target detection,

instance segmentation, semantic segmentation and other task

fields. Therefore, some methods uses it as the backbone for

image classification, image restoration and medical image

segmentation. For example, Chen et al. (2021b) introduces a

transformer to encode image features and extract contextual

input sequences. Cao et al. (2021) proposes a pure transformer

similar to u-net for medical image segmentation. Input

tokenized image patches to a transformer-based u-shaped

encoder-decoder architecture with skip-connections for local-

global semantic feature learning. Liang et al. (2021) uses several

swin Transformer layers and a residual swin transformer block

with a residual connection for image restoration. In order

to obtain image features from multi-scale, Gao et al. (2021)

proposes a method combining swin transformer trunk and

traditional multi-stage network, which effectively improved

the ability of feature extraction. Yue et al. (2021) proposes an

iterative and progressive sampling strategy and combined with

the transformer to classify images.

Inspired by the above process, we proposed an progressive

residual network (PRnet) based on swin transformer. PRnet

consists of recurrent block, transformer codecs and supervised

fusion modules. First, we have a recurrent block that learns

shallow features of input images and introduces a long

short-term memory (LSTM) network to connect different

iterations, ensuring that more of the original image features

can be retained over multiple iterations of the model. The

transformer codec then learns the sequence representation of

the input image through the u-net structure, and effectively

extracts the remote context features from multiple scales of

the image. The encoder introduces swin transformer block

to encode feature representation from the decomposed patch,

and continuously reduces the resolution of feature map for

local relationship modeling. Decoder decodes hidden features

through convolution and upsampling and realizes dimensional

transformation to further predict the semantic output of the

global context representation. In addition, we connect the

encoders through skip connection and add channel attention.

this design can effectively avoid the loss of original features and

improve the quality of the output image. Finally, the supervised

fusion module combines the attention mechanism and dense

residual blocks to recursively select and fuse the image features

and transfer the attention-guided features to the next stage,

which can effectively preserve the original features of the image

and prevent the model from over-fitting. In addition, the whole

recursive process under the supervision of the original input

image can effectively retain the original resolution characteristics

of the image, improve the learning efficiency and defogging

performance of the network.

To validate our approach, we tested it on different data

sets. A large number of experiments and qualitative and

quantitative evaluations show that our iterative strategy is

beneficial to image restoration and is superior to other state-

of-the art methods (see Figure 1). In short, our contribution

is:

• We introduce the swin transformer into the iterative

progressive residual network (PRnet), which obtains

sufficient contextual semantic information and spatial

features by learning multi-scale feature information of the

input image.
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FIGURE 1

Image dehazing on the RESIDE dataset (Li et al., 2018). Under

di�erent evaluation indexes, the performance of our method is

the most advanced (SSIM on x-axis and PSNR on y-axis) when

compared with several advanced methods.

• We introduce channel attention between the encoder and

decoder, which makes the module focus on extracting

significant useful features related to clean image in the

input image.

• We design a supervised fusion module, which combined

the dense residual block with attention to conduct recursive

supervised fusion of image features under the supervision

of ground-truth.

2. Related work

In this section, we will conduct a comprehensive review of

fog removal methods and vision transformer relevant to our

work. We will conduct a comprehensive review of single image

defogging algorithms, including traditional image defogging and

deep learning-based image defogging methods.

2.1. Model-based method

By observing and analyzing the imaging process of fog

image and its relationship with clean image, the physical model

of atmospheric scattering for fog imaging is established. The

model-based method tries to estimate the atmospheric light

and medium transmission map using the handmade prior

knowledge, and then restore the blurred image. Dark channel

prior (DCP) is one of the outstanding representatives of priority-

based methods. He et al. (2010) assumed that each pixel with a

value close to zero has at least one color channel, and combined

it with haze imaging model to recover high-quality fog-free

images. Zhu et al. (2015) proposed a method of restoring image

color attenuation by establishing a linear model to estimate the

depth of field information. Berman et al. (2016, 2018) propose

an algorithm based on non-local prior to predicting atmospheric

light by identifying haze lines and estimating transmission per

pixel. Although these methods have achieved some success,

they are still constrained by prior knowledge, which may lead

to insufficient demisting effect and more serious artifacts and

blurriness.

2.2. Deep-learning method

In recent years, a large number of methods based on

deep learning have flooded with the field of dehazing. Some

deep learning methods still combine physical models or prior

knowledge to improve the accuracy of fog removal. Kar et al.

(2020) takes the atmospheric light and transmission diagrams

estimated by convolutional architecture as a prior condition,

and uses an iterative mechanism to gradually update the

estimated value to the more appropriate estimated value of

fuzzy conditions. Yan et al. (2020) uses multi-scale convolutional

neural network combined with atmospheric scattering model

to extract features of different scales from global to local. By

learning the mapping relationship between hazy images and

their transmission images, Ren et al. (2020) predicts projected

images at multiple scales and refined the results of defogging.

Different from the above methods, Anvari and Athitsos (2020),

Liu et al. (2020b), Wang et al. (2021), and Zhang et al. (2022)

directly restores blurred images end-to-end by learning the

mapping between blurred and clear images. Anvari and Athitsos

(2020) combines encoder-decoder structure and residual block

to restore fog-free scenes. Through local residual learning and

feature attention mechanism, Qin et al. (2020) designs an end-

to-end feature fusion attention network to directly restore fog-

free images. Liu et al. (2020b) uses residual blocks in fine-

grained and coarse-grained networks to generate clean images

directly from input fuzzy images. These methods use residual

learning to enable network residual links to bypass unimportant

information and enable the network architecture to focus on

more effective information.

In addition, some methods take into account the

morphological differences of fuzzy images at different scales

to extract, transfer and fuse multi-scale image features. For

example, Yeh et al. (2019) relies on multi-scale residual learning

and image decomposition to remove haze from a single image,

and feature transmission benefited from the basic components

of remnant CNN architecture and simplified u-net structure.

Liu et al. (2019) performs multi-scale estimation based on

attention, alleviates the bottleneck problem of traditional

multi-scale methods and reduces the output image artifacts. Li

et al. (2021) designed a dual attention to extract global features

and guide subsequent recursive units. Through the strengthen-

operate-subtract boosting strategy, Dong et al. (2020) proposes

a multi-scale enhanced defogging network with dense feature
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fusion based on u-net architecture. Despite its success, the

limitations of the convolution layer, the main building block of

CNN networks, limit the ability to learn remote spatial relevance

in such networks. To solve these problems, we have introduced

the swin transformer block in this paper.

2.3. Vision transformer

Transformer was first proposed for machine translation

Vaswani et al. (2017) and is widely used in many natural

languages processing tasks. Because of its powerful

representation ability, it has recently been applied to computer

vision tasks. To adapt transformer for visual tasks, the

researchers have modified it. For example, Transformer model

does not have translation invariance and locality like CNN.

Parmar et al. (2018) applies self-attention to local fields and

solves the problem that it cannot be well generalized to new

tasks when data is insufficient. In addition, location information

is very important for Transformer. Dosovitskiy et al. (2020)

adds position embedding to feature vector and proposes a visual

transformer (ViT), which directly applies pure transformer to

image patch sequence to complete image classification task.

In addition, Transformer model does not have translation

invariance and locality like CNN. So it cannot be generalized to

new tasks when data is insufficient. Liu et al. (2021) improves

ViT by limiting self-attention computation to non-overlapping

local windows and allowing cross-window connections to

improve efficiency. This layered architecture has the flexibility

to model at a variety of scales, which can be well generalized to

new tasks. For example, with Swin Transformer as its backbone,

Xie et al. (2021) uses self-supervised learning methods to handle

object detection and semantic segmentation tasks. Cao et al.

(2021) proposes a pure Transformer similar to u-net for medical

image segmentation based on u-encoder-decoder architecture

and learning local and global semantic features by skipping

connections. Huang et al. (2022) has designed an adaptive

group attention for Swin Transformer, which reduces the model

parameters while taking into account the network performance.

Lin et al. (2021a) tries to incorporate the advantages of layered

FIGURE 2

The proposed framework for PRnet. PRnet extracts early features through recurrent blocks, then extracts multi-scale features through

transformer codec, and finally integrates the features into the supervised fusion module. The blue line represents concatenate operation, and

the black line represents forward.
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Swin Transformer into the standard encoder and decoder

U-shaped architecture at the same time, so as to improve the

semantic segmentation quality of different medical images. It

designes a strong baseline model for image recovery based on

Swin Transformer, and combined Swin Transformer layer with

residual connection for depth feature extraction. The success of

Swin Transformer in these visual tasks proves that it is superior

in some respects to the full convolution approach.

3. Progressive image dehazing
networks

In this section, we first introduce the cross scales supervisory

integration mechanism (CSSI) and then introduce our overall

architecture of progressive residual networks. As shown in

Figure 2, it is made up of recurrent block, a Transformer

encoder-decoder module based on the u-net architecture, and

a supervised fusion module. Finally, we will describe the details

of each module and the loss function in detail.

3.1. Cross scales supervisory integration
mechanism

Our analysis shows that if the encoder and decoder

are independent from each other, multi-scale features

cannot interact with each other, which will greatly reduce

the performance of the model (Figure 3). If features are

fused through simple transfer, convolution or addition

microstructures, and these features are treated equally, it is easy

to cause redundancy and bring great burden to the network.

To solve this problem, we added cross scales supervisory

integration (CSSI) between encoders, which can improve the

learning efficiency of U-codecs, make full use of features of

different scales, and ensure the connectivity of the model.

CSSI converts the output feature of encoder layer through 1×1

convolution. Then, the convolution features are paid attention

to the information useful to the current output features through

the channel attention block (CAB). The channel attention

mechanism aggregates spatial dimension features using

operations such as convolution, activation function, global

average pooling and maximum pooling. Subsequently, the

above features are fused through the following skip connection:

Fi = Ci ⊕ Ei = CAB[conv(Ei)]⊕ Ei , (2)

where Ei and Ci represent the output of the encoder layer

and channel attention mechanism respectively. Next, the output

feature of the encoder layer is fused with the up-sampling and

convolution operation results of the previous decoder layer to

obtain the input feature of the next decoder layer:

Di = CSSI[Fi, conv(↑ Di−1)], (3)

whereDi−1 andDi represent the features of the previous and

next decoder layers.

CSSI explores the relationship between feature maps of

different channels through channel attention, adjusts and

aggregates different feature maps in the process of feature

interaction, and finally transfers them to the decoder layer. On

the one hand, CSSI makes the network pay more attention to

find the significant useful information related to the current

output in the input data, which can effectively avoid the loss of

original features and improve the quality of the output image.

On the other hand, CSSI can improve the efficiency of feature

fusion and interaction between codecs with different resolutions,

effectively reducing the network burden.

3.2. Progressive networks

Swin Transformer interacts with the global information of

the image, without considering the importance of the content of

the image area and the overall structure of the object, and cannot

pay better attention to the structure and details of the image.

In order to make up for the above defects, we propose a new

progressive residual network (PRnet), which solves the problem

of fog removal through multiple stages. At the same time, u-

transformer encoder-decoder is used in each stage to learn

the morphological features of foggy images at different scales.

To avoid the increase and over-fitting of network parameters,

different from the previous multi-stage, we do not pile up

several sub-networks, but use the recursive calculation between

stages to share the same network parameters in multiple stages.

In addition, while swin transformer avoids the segmentation

edge loss problem, the Transformer image is smaller than the

original image resolution. Therefore, ground truth is used to

supervise the network, which can suppress features with less

information in the current stage and only allow useful features

to be transmitted to the next stage.

3.2.1. Progressive recurrent block

We designed a Recurrent block in PRnet to learn the

shallow features of the input image, and introduced the Long

Short-Term Memory (LSTM) (Yamak et al., 2019) networks

to connect different iterations to ensure the propagation of

features across multiple stages of the model. In the process

of feature dependence, more original image features can be

retained. As shown in Figure 4, taking the t iteration as an

example, we input the original foggy image and the predicted

image output by the iteration into the network together, go

through the convolutional layer 3 × 3 × 64 with a step size of

1, and then go through the activation function(ReLU) performs

nonlinear correction. In the subsequent convolution, we did

not perform batch normalization, but added an LSTM layer.

LSTM introduces and splices the feature map output xt−1 from
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FIGURE 3

(A) Encoder-decoder block. (B) Cross scale supervisory integration mechanism between encoder decoder and the last decoder.

FIGURE 4

Progressive recurrent block structure. ⊗ Represents Hadamard Product, and the corresponding elements in the matrix are multiplied.

⊕ Represents matrix addition operation.

the t − 1 iteration and the previous hidden state ht−1. The

feature graph it is obtained by convolution, which is used to

determine which information is important and needs to be

retained. Then feature graphs ft and ot controlling forgotten data

were obtained through sigmoid activation function, and then

forgetting and remembering were carried out according to the

following formula:

Ct = ft ∗ Ct−1 + it ∗
∼

C
t
, (4)

Among them,
∼

C
t
represents the cell state, which is a feature

map obtained by passing ht−1 and xt−1 to the Tanh function.

Next, multiply ot with Ct after Tanh activation to obtain ht to

determine the information carried in the hidden state, namely:

ht = ot ∗ Tanh(Ct), (5)

where ht is output as the current cell, which is passed to the

next time period with the new cell state Ct . The output of the

entire asymptotic recursive process can be expressed as:

fres = LSTM(xt−1, ht−1) (6)

3.2.2. Transformer encoder-decoder

As we all know, multi-scale networks can not only

extract low-level high-resolution features and texture detail

information, but also extract high-level feature semantic

information, and fully extract and utilize image features at

different scales. Therefore, we combine the advantages of swin

transformer and cnn to design encoder-decoder based on u-

net architecture. By learning the sequence representation of the

input image, we can ensure that sufficient contextual semantic

information and spatial features are acquired during the long-

distance transmission.

Swin transformer introduces the locality idea in the

Multiple Self-Attention (MSA)module to perform self-attention

computation in the window region without overlap. Because
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of its hierarchical design and generalization, it has proven

its effectiveness in several fields such as object detection,

semantic segmentation and image denoising. Therefore, we

apply Swin transformer directly in encoder to encode the feature

representation from the decomposed patch.

Our encoder generates different number tokens through

three layers of encoder layer. The first, second and third layers

generate H
4 ×

W
4 , H8 ×

W
8 , and H

16 ×
W
16 tokens respectively. Each

stage consists of Patch Merging and some Swin Transformer

Blocks. We merged the image resolution by a sliding window

operation for Patch Merging, and divided the image with a given

size of H × W into RGB image patches, and marked them as

the original pixel Mosaic vector with a size of 4 × 4. It is then

mapped to a vector of dimension 4C using linear embedding. At

this time, the output dimension is set to 2C and the feature size is

set to H
8 ×

W
8 from the originalH4 ×

W
4 . Next, the output feature

zl−1 enters two consecutive Swin Transformer Blocks for feature

transformation. Unlike MSA in ViT, Swin Transformer Block

computes self-attention by adding a relative position bias B to

the corresponding head, then the output feature zl−1 of layer l

can be written as follows:

zlm = SW −MSA(LN(zl−1))+ zl−1,

zl = MLP(LN(zlm))+ zl, l = 1, 2, 3,
(7)

where zlm represent the output of multi-head self-attention,

zl represent the output of MLP.

Corresponding to the encoder, a symmetric decoder is

constructed based on the swin transformer, forming an encoder-

decoder based on the u-net architecture.To recover the spatial

order, we use a convolution module and upsampling to form

a Decoder layer. In the first layer the hidden features are first

decoded by bilinear upsampling of the input features ( H16 ×

W
16 × 4C).And then implement dimension transformation in

the convolution module. A linear layer is applied to map the

dimensions to 2C, then the resolution is extended to H
8 ×

W
8 ,

and finally the output feature (H8 ×
W
8 × 2C) is fed into the next

Decoder layer. Bilinear up-sampling operation can ensure the

same dimensions before and after the fusion, so that the fusion

and feature mapping under the same dimension can be carried

out again. In addition, Decoder decodes hidden features while

further predicting the semantic output of the global context

representation.

3.2.3. Supervise fusion module

First, the output features of Swin transformer decoder are

supervised by ground-truth and attentionmaps are generated by

Supervised Attention (Zamir et al., 2021) to assist the delivery of

useful features and effectively preserve the original features of

the image. Next, we introduce residual blocks to learn deeper

features. Inspired by Kim et al. (2016), we use recursion to

unfold the residual block by calling the residual block 5 times,

with both input and output channels of 64 and a convolution

kernel size of 3 × 3. In addition, a skip connection is used in

the residual block to connect the input and output, which is

then passed to the next residual block as input. The calculation

formula is as follows:

xi = xi−1 + ReLU(xi−1,wi−1) (8)

where xi is the output of the current residual block, xi−1

is the output of the last residual block, ReLU is the activation

function, which can effectively improve the accuracy of the

model.

3.3. Loss function

The aim of our training is to recover clear images with low-

level and high-level features from fogged images. In order to

obtain high quality images, we use a combined loss function

for optimization during the training process. Therefore, given

a training dataset
{

RnT ,G
n
}N
n
for T-stage, we solve

L =

t
∑

T=1

{αLC(R
n
T ,G

n)+ βLS(R
n
T ,G

n)}, (9)

where RnT is the outputs of stage T, and Gn represents the

ground-truth images. The loss coefficients of α and β are set to

0.2 and 4. And LC is the Charbonnier loss (Charbonnier et al.,

1994), used to calculate the pixel loss between the predicted

image and the ground truth. In addition, LS(R
n
T ,G

n) is the

structural similarity loss (Wang et al., 2004), which is used

to evaluate the structural similarity of the content of the two

images. To avoid images suffering from distortion and low peak

signal-to-noise ratio (PSNR), Ren et al. (2019) uses negative

SSIM loss in an image recovery task and demonstrates the

effectiveness of this loss on PSNR, SSIM and visual.

4. Experimental results

In this section, we first present the training details and

evaluation metrics. Then, our method is compared qualitatively

and quantitatively with advanced methods on multiple datasets.

Finally, we conduct ablation experiments.

4.1. Experimental setup

The RESIDE dataset (Li et al., 2018) is a large-scale

benchmark including synthetic images and real-world blurred

images. The RESIDE is composed of five sub-data sets: Indoor

Training Set (ITS), Outdoor Training Set (OTS), Synthetic
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Objective Testing Set (SOTS), Real-world Task-driven Testing

Set (RTTS) andHybrid Subjective Testing Set (HSTS) constitute.

We selected 20,000 pairs and 500 pairs from SOTS as outdoor

scene training set and outdoor scene test set respectively, and

2,000 pairs of real blurred images from RTTS for testing. In

addition to the RESIDE dataset, we also conducted experiments

on another publicly available dataset. O-HAZE (Ancuti et al.,

2018) is an outdoor scene dataset proposed by NTIRE2018

FIGURE 5

Visual results on the SOTS dataset. Best viewed on a high-resolution display.
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Image Dehazing Challenge, including 45 pairs of real foggy

images and corresponding fog-free images. These fogged images

are taken by professional haze instruments, which can well

record the same visual content under fog-free and fogged

conditions. We choose 35 pairs as the training set, 5 pairs as the

validation set, and 5 pairs as the test set.

Our network was trained on an Ubuntu environment, using

the ADAM (Kingma and Ba, 2014) optimizer and on anNVIDIA

RTX2080ti GPUs. The training was performed using the Pytorch

framework. The initial learning rate was set to 3 × 10−5 and

gradually decreases to 1 × 10−6. The network was trained

for 50 epochs, and the input image size was 512 × 512 ×

3.

In order to evaluate the image quality of single image

defogging and compare it with other methods. We used the two

most commonly used evaluation metrics in defogging methods:

Peak Signal to Noise Ratio (PSNR) and structural similarity

(SSIM). PSNR is a pixel-level image quality evaluation method

used to measure the difference of gray values between two

images. The higher the PSNR value,the lower the distortion

FIGURE 6

Visual results on the O-HAZE dataset. Best viewed on a high-resolution display.
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FIGURE 7

Visual quality comparison on real mist images.

between the evaluated image and the ground-truth image, and

the better the quality; on the contrary, the poorer the quality.

SSIM is a measure of covariance to determine the degree of

structural similarity between images according to the degree of

correlation between image pixels. The higher SSIM value, the

more structure or color information the image retains, and the

better the effect of the resulting image. What’s more, we use the

scikit-image library of python to calculation them. In addition,

since there is no ground-truth image in real-world datasets, we

use Fog Aware Density Evaluator (FADE) (Choi et al., 2015) to

evaluate the haze density of the restored image. We also adopted

the non-reference blind image quality evaluation indicators,

NIQE (Mittal et al., 2012). NIQE is used to normalize the

image contrast into blocks, and determine the image quality by

calculating the average value of the local contrast of each block.

4.2. Image dehazing results

We evaluated the defogging results objectively and

subjectively on different datasets, and compared the proposed

defogging method with seven state-of-the-art methods, namely,

MSCNN, AOD-Net, GCANet (Chen et al., 2019), MSBDN,

FFA-Net, TDN (Chen et al., 2020), PMHLD (Liu et al., 2020a),

DCNet (Bhola et al., 2021), and SSDN (Huang et al., 2021).

4.2.1. Subjective evaluation

We selected outdoor synthetic and real fogged images from

the RESIDE dataset for testing, and combined our method with

seven advanced methods. In addition, to verify the effectiveness

of our network, we also selected real fog images from the

O-HAZE dataset for testing, and selected three of them for

comparison and presentation. The original fogged images,

ground truth and the defogging results using 8 methods are

shown in Figures 5–8.

In Figure 5, the top row shows the input fog image. It

can be seen that MSCNN, AOD-Net and DCNet are not ideal

in a slightly complex environment, and the restored colors

are not bright enough. The GCA, TDN and SSDN methods

have the problems of color difference, color spot and color

oversaturation. MSBDN, FFA-Net, PMHLD and our methods

are relatively close to the real ground images, but MSBDN and

FFA-Net are not satisfactory in restoring remote scenes, while

PMHLD produces color differences in the sky of column 1 and

column 2. In contrast, our method performs better in color

and detail in complex environments. For example, our method

removes the haze around people in the fourth and fifth columns

more thoroughly.

Figure 6 shows the demisting effects of different methods

in the O-HAZE dataset. In the first two layers, the fog removal

effect under the mist is displayed. MSCNN, AOD-Net, MSBDN,

and FFA-Net not only did not remove the influence of haze,

but also deepened the blurriness of the scene and made the

overall color darker. Although GCANet and PMHLD reduce the

fogging effect, the color of the image itself is affected, and the

overall brightness of the output image is low. TDN, SSDN and

our method generate more visible results with more significant

demisting effect and clearer texture details.

Figures 7, 8 show the demisting effect of real scenes at

different shooting distances. In these two images, the overall

brightness of the images restored by MSCNN, GCA-Net, and
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FIGURE 8

Visual quality comparison on real dense fog images.

TABLE 1 Quantitatively compare the dehazing results with SOTA

methods on the RESIDE and O-HAZE datasets.

Method
SOTS O-HAZE

SSIM PSNR SSIM PSNR

MSCNN 0.8436 19.49 0.7359 18.93

AOD-Net 0.8747 22.31 0.6724 18.19

GCANet 0.9151 22.89 0.6633 15.77

MSBDN 0.9068 28.64 0.6378 18.46

FFA-Net 0.9422 31.31 0.6792 18.07

TDN 0.7857 17.38 0.7286 19.41

PMHLD 0.8276 23.81 0.4839 14.40

DCNet 0.8343 19.47 0.7028 20.74

SSDN 0.8852 21.11 0.7789 25.71

Ours 0.9439 33.25 0.8758 24.19

Best and second best scores are red and blue. The table shows the average of the data.

DCNet is low, such as a large area of dark areas in the sky.

The overall color of TDN, MSBDN, and FFA Net is not bright

enough, and the distant scenes are not well recovered. SSDN

and our method restore relatively complete details, but in

the first scene, SSDN is blurred in the vegetation (red box

area), and our details processing is more prominent. Compared

with these advanced methods, PMHLD and our methods

have more realistic details and better visibility in the restored

images.

In summary, our method is visually outstanding in both

synthetic and real scenes, and the recovered images are

more thoroughly defogged and have clearer details such as

color textures.

TABLE 2 Quantitative and e�ciency comparison in RTTS dataset.

Method NIQE FADE Runtimes

MSCNN 3.2499 1.1716 2.3356

AOD-Net 3.4439 1.4342 0.1904

GCANet 3.2615 1.0135 0.0821

MSBDN 3.4248 1.5211 0.0394

FFA-Net 3.4515 2.0205 0.6561

TDN 3.3356 0.9217 0.8767

PMHLD 3.2254 0.7240 0.3321

DCNet 3.4188 1.2886 0.1725

SSDN 3.3756 1.8476 0.3357

Ours 3.1752 0.7873 0.4436

Color numbers indicate the best indicator value.

4.2.2. Objective evaluation

In the previous section we evaluated the images after

defogging through visual effects.In this section, we provide

an objective analysis of several methods using two different

quality evaluation metrics, PSNR and SSIM. We count the data

metrics averaged over the RESIDE dataset and the O-HAZE

dataset for each method and visualize them. In addition, we

also show the values of SSIM and PSNR metrics for several

images in Figure 5. It can be found that the PSNR values of

our method are much higher than the other methods, which

indicates that the less distortion and better quality between the

images processed by our method and the ground-truth images.

As can be observed in Table 1: our method outperforms all

SOTA methods with SSIM and PSNR of 0.9438 and 33.2523

dB on the RESIDE dataset. It is intuitively seen in Figure 1

that our method significantly outperforms other methods in
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FIGURE 9

Single image defogging image obtained in di�erent iterations.

TABLE 3 Use outdoor synthetic images to test models with di�erent

iteration times, use PSNR, SSIM, and TIME for comparison.

SSIM PSNR TIME

Iteration=3 0.9289 32.71 0.3354

Iteration=4 0.9356 33.14 0.3863

Iteration=5 0.9438 33.25 0.4436

Iteration=6 0.9438 33.28 0.4986

The value in the table is the average of all images.

two metrics. In addition, the O-HAZE dataset outperforms the

other methods with 0.8758dB and 24.1986dB. Compared with

the RESIDE dataset, the haze in this dataset is more dense, the

image quality degrades more seriously, and the defogging is

more difficult, which further confirms the effectiveness of our

method in a dense fog environment.

Table 2 shows the objective indicators and time comparison

of all methods on RTTS. NIQE, and BRISQUE evaluated

the overall quality of the image. Our method obtained the

best results of NIQE, indicating that the results in this paper

have excellent colors and details. In terms of FADE metric,

our method obtained suboptimal, while PMHLD obtained the

optimal FADE value. This is inseparable from the effective haze

removal of PMHLD. In terms of time, our method has only

achieved the fourth place, not outstanding in efficiency.

4.3. Ablation study

Our approach shares the same network parameters across

multiple stages through the iterative idea of using recursive

computation between stages. We speculate that the defogging

effect of the model will change with the increase of the number

of iterations, so it is crucial to determine the optimal number of

iterations.We hypothesize that the defogging effect of the model

varies with the number of iterations, so it is crucial to determine

the optimal number of iterations. We trained the model using

iterations 1–6 under the RESIDE dataset, and Figure 9 shows the

effect of image defogging under different iterations. The visual

effects were similar from the 3rd to the 5th iteration, so we

made an objective evaluation of these iterations. According to

the comparison of PSNR and SSIM in Table 3, we found that

the metrics of the third iteration and the fourth iteration were

slightly lower, while the metrics of the fifth iteration and the

sixth iteration were similar. By comparing the time, we choose

the fifth iteration as the optimal number of iterations.

5. Conclusion

In this paper, we propose a new transformer-based

progressive residual network (PRnet). Our method recursively

invokes the residual network to gradually recover clean images

under ground-truth supervision. First of all, PRnet learns the

features of the input images through recurrent block, while

taking care of connecting the different stages to ensure that

more original image features are retained during the multi-

stage feature transfer of the model. We design a codec with

u-net structure in combination with swin-transformer, which

can ensure that sufficient contextual semantic information and

spatial features are obtained during long-distance transmission.

In addition, CSSI, which can ensure the synergy and connectivity

of the transformer codec. Finally, the supervised fusion module

can adaptively select and fuse the image features, and transfer

the attention-guided features to the next stage.In addition,

Frontiers inNeurorobotics 12 frontiersin.org

56

https://doi.org/10.3389/fnbot.2022.1084543
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Yang et al. 10.3389/fnbot.2022.1084543

we demonstrate the effectiveness of the progressive network

through experiments, and our model provides high-quality

defogging on multiple data sets. Nonhomogeneous de-hazing is

the next topic we would like to explore with our approach, as it

is crucial to study complex foggy environments in real scenarios.
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Semantic segmentation can address the perceived needs of autonomous

driving and micro-robots and is one of the challenging tasks in computer

vision. From the application point of view, the difficulty faced by semantic

segmentation is how to satisfy inference speed, network parameters, and

segmentation accuracy at the same time. This paper proposes a lightweight

multi-dimensional dynamic convolutional network (LMDCNet) for real-

time semantic segmentation to address this problem. At the core of our

architecture is Multidimensional Dynamic Convolution (MDy-Conv), which

uses an attention mechanism and factorial convolution to remain efficient

while maintaining remarkable accuracy. Specifically, LMDCNet belongs to an

asymmetric network architecture. Therefore, we design an encoder module

containing MDy-Conv convolution: MS-DAB. The success of this module is

attributed to the use of MDy-Conv convolution, which increases the utilization

of local and contextual information of features. Furthermore, we design a

decoder module containing a feature pyramid and attention: SC-FP, which

performs a multi-scale fusion of features accompanied by feature selection.

On the Cityscapes and CamVid datasets, LMDCNet achieves accuracies of

73.8 mIoU and 69.6 mIoU at 71.2 FPS and 92.4 FPS, respectively, without pre-

training or post-processing. Our designed LMDCNet is trained and inferred

only on one 1080Ti GPU. Our experiments show that LMDCNet achieves a

good balance between segmentation accuracy and network parameters with

only 1.05 M.

KEYWORDS

semantic segmentation, lightweight network, dynamic convolution, encoder-
decoder, multi-dimension convolution
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1 Introduction

Semantic segmentation, widely used in the real world,
classifies every pixel of a visual image. Semantic segmentation
visualization uses different colors to distinguish different classes
of objects effectively. Semantic segmentation is mainly used in
scene analysis, including medical imaging, autonomous driving,
and satellite maps. Semantic segmentation has become one of
the most critical tasks in computer vision.

Fully convolutional networks (FCN) (Long et al., 2015)
pioneered the end-to-end training of neural networks, and
many semantic segmentation networks use a full convolution
approach to network construction. U-Net (Ronneberger et al.,
2015) adopts a symmetric network structure and fuses high-
level and low-level semantic information in decoding. SegNet
(Badrinarayanan et al., 2017) introduces a pooling operation
with pixel indices to optimize segmentation details at the
decoder stage. In order to achieve higher segmentation
accuracy, high-precision networks such as DeepLab series (Chen
et al., 2017a,b, 2018), APCNet (He et al., 2019), and CANet
(Zhang et al., 2019) have been proposed one after another.
In practical application scenarios, slow inference speed and
many parameters are the main reasons semantic segmentation
cannot be applied. On the Cityscape dataset (Cordts et al.,
2016), networks that meet the 80% accuracy requirement have
inference speeds below 10 FPS or model parameters over
100 M. Lightweight real-time semantic segmentation research
is imminent.

Lightweight real-time semantic segmentation requires a
neural network that perfectly balances segmentation accuracy
and parameter quantity. Typical lightweight real-time semantic
segmentation networks are SegNet, ENet (Paszke et al., 2016),
ICNet (Zhao et al., 2018), ERFNet (Romera Carmena et al.,
2018), CGNet (Wu et al., 2020), BiSeNet (Yu et al., 2018),
EDANet (Mehta et al., 2018), ESPNetV2 (Mehta et al., 2019),
ESNet (Wang et al., 2019b), DABNet (Li G. et al., 2019), LEDNet
(Wang et al., 2019a), DFANet (Li H. et al., 2019), FDDWNet
(Liu et al., 2020), LRNNet (Jiang et al., 2020), LRDNet (Zhuang
et al., 2021), JPANet (Hu et al., 2022), LEANet (Zhang et al.,
2022) and our LMDCNet, As shown in Figure 1. When applying
semantic segmentation, our first consideration is segmentation
accuracy. PSPNet (Lv et al., 2021) pursues the fusion of multi-
scale information, and SFNet (Lo et al., 2019) performs scale
alignment of different features. The accuracy of these networks
meets practical requirements, but the device’s computing power
is too demanding. To overcome the memory requirement of
the algorithm, ESPNetV2 proposes dilated convolutions for
semantic segmentation, mainly to increase the receptive field.
BiSeNetV2 adds a spatial branch to compensate for the loss of
details in semantic segmentation. STDC-Seg designs the coding
backbone network to reduce the number of parameters. These
algorithms are less demanding on equipment but have poor
segmentation accuracy.

FIGURE 1

Accuracy of segmentation (mIoU) and network parameters (M)
derived from Cityscapes test set. Clearly, our LMDCNet achieves
the optimal balance between segmentation accuracy and
parameters.

This paper proposes a lightweight multi-dimensional
dynamic convolutional network (LMDCNet) to solve the
problem of unbalanced accuracy and parameters. The network
adopts an asymmetric structure; the relevant details are
shown in Figure 2. We design a new multi-dimensional
dynamic convolution (MDy-Conv), which uses an attention
mechanism for convolution and linearly combines multiple
factorial convolutions to find a convolution kernel suitable for
the current feature. Specifically, the operation flow is shown
in Figure 3. We design the MS-DAB module to include MDy-
Conv, residual connections, and channel shuffling operations.
The encoder structure performs channel separation to reduce
computational complexity. MDy-Conv is used to improve
the coding performance, and channel shuffling improves the
robustness of the network. Residual connections are used to
reuse features and reduce the difficulty of training. The overall
structure of the encoder is designed to achieve a perfect balance
of encoding performance and parameters. We design a decoder
with a feature pyramid structure, spatial attention, and channel
attention: SC-FP. Feature Pyramid Module (FP) obtains multi-
scale contextual information of features. Combining spatial
and channel attention for efficient feature selection improves
computational efficiency. To improve segmentation accuracy,
SC-FP achieves a good balance between feature space details and
computational network cost.

In brief, we have the following contributions:

1. A multi-dimensional dynamic convolution (MDy-Conv)
is proposed. It adopts an attention mechanism for
convolution and linearly combines multiple convolution
kernels to find the best convolution kernel that conforms
to the current feature encoding, thereby improving the
encoding ability;

2. We propose a depth-asymmetric bottleneck module with
multi-dimensional dynamic convolution and shuffling
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FIGURE 2

Overview architecture of the proposed LMDCNet.

operations (MS-DAB module). It can effectively extract
local and contextual information about features and fuse
them. The MS-DAB module is far superior to similar
modules in segmentation accuracy and parameters;

3. A feature pyramid (SC-FP module) with spatial and
channel attention is proposed. The simplified feature
pyramid incorporates multi-scale contextual information
and uses spatial and channel attention for feature selection.
Combining the two algorithms can extract more effective
information during decoding and improve segmentation
accuracy;

4. Using MS-DAB and SC-FP modules, create a Lightweight
Multi-dimensional Dynamic Convolutional Network
(LMDCNet). Evaluation results on the Cityscape
dataset show that LMDCNet outperforms state-of-
the-art networks, achieving the best balance between
segmentation accuracy and parameters. On the CamVid
dataset, the segmentation accuracy surpasses the current
algorithms and reaches the top level.

2 Related work

In this section, we introduce algorithms related to
lightweight real-time semantic segmentation, including the
following: Dilated convolution, Attention mechanism, and
Lightweight semantic segmentation network.

2.1 Dilated convolution

Dilated convolution is one of the standard methods for
lightweight real-time semantic segmentation to reduce the
number of parameters. This convolution has an additional
hyper-parameter, called dilated rate, to represent the number of
intervals in the kernel (e.g., the standard convolution is dilated
rate 1). Yu and Koltun (2015) first applied dilated convolution
to semantic segmentation algorithms. Later, the DeepLab series
and DABNet, among others, borrowed the method further to
improve the segmentation accuracy of semantic segmentation
networks. Dilated convolution increases the convolutional
receptive field and acquires contextual information. However,
the dilated convolution produces grid effects due to adding
0 elements. Wang et al. (2018) proposed a hybrid dilated
convolution that uses different dilated rates for each layer of the
network so that the receptive field covers the entire region.

2.2 Attention mechanism

The role of the attention mechanism is to select features,
highlight important information, and suppress unnecessary
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information. In order to make full use of limited visual
information processing resources, attention is required to select
features during information processing. SENet (Hu et al.,
2018) (Squeeze and Excitation Network) is typical channel
attention, and its purpose is to select feature channels. ECANet
(Wang et al., 2020) is an enhanced version of SENet with a
detailed explanation of channel attention. Convolutional block
attention module (CBAM) (Woo et al., 2018) connects channel
attention and spatial attention to form a hybrid attention
mechanism.

2.3 Lightweight semantic
segmentation network

Lightweight semantic segmentation network can
accomplish on-device semantic segmentation tasks. Low
computation, real-time reasoning, and accurate segmentation
require lightweight semantic segmentation for practical
tasks. At this stage, the devices that implement lightweight
semantic segmentation are 1080Ti, 2080Ti, Titan, and 3080.
Their processing power is 1080Ti < 2080Ti < Titan < 3080.
We summarize three principles for designing lightweight
semantic segmentation at this stage: (1) Improvement of
the existing lightweight network backbone. For example,
DFANet aims to use a lightweight classification network to
encode semantic segmentation. Shuffle-Seg is an application
of the lightweight classification network ShuffleNet in the
direction of semantic segmentation. (2) Create a lightweight
coding module as the coding base. For example, LEDNet
uses only decomposed convolutional methods to design
coding units. (3) Reduce the loss of segmentation details and
increase the network coding branch. For example, BiSeNet
designed a semantic segmentation network with spatial and
context branches.

3 Materials and methods

In this section, we propose the LMDCNet network
to balance the accuracy and the number of parameters
for semantic segmentation. In Section “3.1 Multi-dimension
dynamic convolution,” we propose multi-dimension dynamic
convolution (MDy-Conv). We propose a depth-asymmetric
bottleneck module with multi-dimension dynamic convolution
and shuffling operations (MS-DAB module) and describe it in
detail in Section “3.2 MS-DAB module.” In Section “3.3 SC-
FP module,” we propose a feature pyramid module with spatial
and channel attention (SC-FP module). Finally, we design the
architecture of the whole network in Section “3.4 Network
architecture”.

3.1 Multi-dimension dynamic
convolution

Dynamic convolution has become the focus of attention
in recent years. The output y of ordinary convolution is equal
to the convolution operation performed by the convolution
kernel conv and the input x, and ∗ represents the convolution
operation, as shown in Equation 1. Dynamic convolution
is a convolution obtained by linearly combining multiple
convolution kernels. The current feature obtains the weight
in the combination process through correlation processing.
As the input features change, the combined weight of the
convolution also changes, so it is a dynamic convolution.
CondConv (Yang et al., 2019) and DyConv (Chen et al.,
2020) are typical dynamic convolutions whose structure is
shown in Figure 3B. CondConv and DyConv use a modified
SE (Squeeze-and-Excitation) attention structure to calculate
convolution weights. The convolution kernel obtained by
multiplying the weight with multiple convolutions and then
adding them is dynamic convolution. The specific operation
process is shown in Figure 3B. Then the output of a
typical dynamic convolution follows Equation 2, where �
represents the multiply add operation, and aC represents
the convolution combination weight vector obtained by
processing in the channel-wise direction. Conv represents the
list of convolution kernels. The combined weight of this
dynamic convolution is derived from the channel direction
of the feature, the information obtained is limited, the
convolution kernel cannot be linearly combined, and the
generated dynamic convolution could be more optimal.

y = conv ∗ x (1)

y = (αC � Conv) ∗ x (2)

y = ({αW + αH + αC} � Conv) ∗ x (3)

As shown in Figure 3A, the feature map contains three
dimensions, namely height (H), width (W), and channel
(C). Locating a point in the feature map requires three
dimensions to work together, and a single dimension cannot
lock a point. Similarly, a single feature channel direction
cannot determine the optimal convolution combination (i.e.,
weight), and three directions must work together. Based on
the above arguments, we design a multi-dimensional dynamic
convolution (MDy-Conv), and the detailed operation flow is
shown in Figure 3C. The dynamic convolution we designed
contains the information on the feature map’s three directions
(H, W, and C), and the resulting convolution kernel combined
weight is optimal. The specific description of the dynamic
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FIGURE 3

(A) Shows the feature map, (B) shows the typical dynamic convolution structure, (C) shows the multi-dimensional dynamic convolution
structure (MDy-Conv).

convolution generated by the feature x is as follows: (1)
Perform global average pooling (GAP) on the three directions
(height, width, and channel) of the feature x to obtain three
tensors (c × 1 × 1, h × 1 × 1, w × 1 × 1),
where

(
c,w, h

)
represent the channel, width, and height values,

respectively; (2) They are sent to 3 fully connected layers
(FC) and softmax, respectively, to obtain the exact size tensor
(r × 1 × 1), where the size of r represents the number
of convolutions participating in the calculation; (3) Add the
three tensors to get the final convolution weight, and its
size is also (r × 1 × 1); and (4) Multi-dimensional dynamic
convolution (MDy-Conv) that performs multiplication and
addition operations on r convolutions and convolution weights.
The mathematical expression of multi-dimensional dynamic
convolution is shown in Equation 3, (aC, aH, aW) represents the
tensor obtained by feature x after global average pooling, fully
connected layer, and softmax.

As shown in Figure 3, the differences between our multi-
dimensional dynamic convolution and others are: First, we
entirely use the information in the feature map to find
the optimal solution for the combination of convolutions.
In contrast, ordinary dynamic convolution only considers
channel direction. Second, we use a single-layer fully connected
layer, traditional dynamic convolution uses two layers, and
we have fewer parameters. Third, the performance of our
designed dynamic convolutional encoding is stronger than
other dynamic convolutions, which we verified in comparative
experiments.

3.2 MS-DAB module

The coding module of the lightweight real-time semantic
segmentation network design pays more attention to the coding
ability and the number of parameters. Most of the encoding
modules adopt the structure of ResNet’s residual module.
As shown in Figure 4, ERFNet designs a non-bottleneck-1D
module using decomposed convolutions. ShuffleNet designs a
lightweight real-time encoding model using group and depth-
wise separable convolution. The DAB module uses asymmetric
depth-wise separable convolution and asymmetric depth-wise
dilated separable convolution.

Based on the above observations, our MS-DAB module
design is shown in Figure 4D. First, we use a channel separation
technique to segment the input features in the channel
direction, thereby reducing the computational complexity.
The depth-wise separable dilated convolution and dynamic
convolution can improve the expressiveness of the model
without increasing the network width and depth. Therefore,
we replace the 3 × 3 convolutions in the first branch
with 3 × 1 convolutions and 1 × 3 convolutions. We
replace the standard 3 × 3 convolution in the second branch
with 3 × 1 and 1 × 3 depth-wise multi-dimensional
dynamic convolution. In order to achieve a better encoding
effect, the feature maps of the two branches are spliced
together, and 1 × 1 convolution is used to perform
information fusion between feature map channels. In order
to increase the receptive field of the module and obtain the
contextual information of the feature, we add a 3 × 1 and
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FIGURE 4

(A) Non-bottleneck-1D module. (B) ShuffleNet module. (C) DAB module. (D) Our MS-DAB module. W denotes the number of input channels. d
denotes dilated convolution. DDy denotes depth-separable dynamic convolution. Dy denotes dilated dynamic convolution. For brevity, the
batch normalization and activation functions are not marked.

a 1 × 3 multi-dimensional dilated dynamic convolution.
Afterward, residual connections are used to improve feature
utilization and simplify training. Finally, we use the shuffle
operation in Figure 4B to enhance the robustness of the
encoder.

Compared with the residual module of the same type,
our MS-DAB module has the following advantages: First,
we introduce MDy-Conv convolution in the residual
module, which improves the encoding ability of the module;
Second, the module adopts feature channel separation. The
operation is separated from the convolution depth to reduce
the computational complexity; Thirdly, the hollow multi-
dimensional dynamic convolution is introduced to increase the
receptive field of the encoder and improve the segmentation
accuracy; Finally, channel shuffling and residual connection
are used to improve the robustness of the network, reduce the
difficulty of training.

3.3 SC-FP module

The image segmentation scene is complex and changeable,
and simple upsampling will lose details. Moreover, most
lightweight real-time semantic segmentation adopts three
coding stages, resulting in a too-small receptive field.
Lightweight real-time semantic segmentation requires
the decoding part to increase the receptive field, improve
multi-scale information fusion, and reduce the loss of details.
Therefore, we design a decoding module feature pyramid with
spatial and channel attention (SC-FP module) that includes
feature pyramid structure, spatial attention, and channel
attention mechanisms. Feature pyramid structure can fuse

multi-scale context information while increasing the receptive
field of the network and reducing the loss of details. FPN
proposes a feature pyramid structure, as shown in Figure 5A.
FPN works well for multi-scale object recognition. However,
too many layers exist in each encoding stage, resulting in an
enormous computational burden. Channel Attention (CA) and
Spatial Attention (SA) can perform feature selection on both
channels and spaces, and the specific structures are shown in
Figures 5B, C.

Based on the above observations, we designed the SC-FP
module, as shown in Figure 5D. It integrates feature pyramid,
channel attention, and spatial attention, effectively enhancing
the ability to capture multi-scale contextual information and
reducing the loss of image details. The decoder contains four
branches: feature pyramid branch, channel attention branch,
spatial attention branch, and channel compression branch.
The feature pyramid branch comprises 3 × 3, 5 × 5,
and 7 × 7 convolutions. Due to the smaller resolution of
the features, using larger convolution kernels brings little
computational burden. To further improve the performance,
a channel attention branch is introduced. Channel attention
consists of global max-pooling, global average-pooling, and
two fully connected layers. Unlike other channel attention,
we adopt a double pooling operation, which can obtain
more channel information. The third branch is the feature
channel compression branch, where the 1 × 1 convolution
fuses the information between different channels to make the
output channel equal to the segmentation category. Considering
that the loss of details in lightweight real-time semantic
segmentation seriously affects the segmentation accuracy, a
spatial attention branch is introduced to integrate the global
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FIGURE 5

(A) Feature pyramid network (FPN). (B) Channel attention (CA). (C) Spatial attention (SA). (D) Our SC-FP module. For brevity, the batch
normalization and activation functions are not marked.

context. Spatial attention includes global average-pooling, global
max-pooling, and 7 × 7 convolutions. Channel attention
performs channel selection on the result of the 1 × 1
convolution, while spatial attention acts on the output of the
pyramid to highlight detailed information. Finally, the two
results are added point by point to generate the decoded
feature map.

Our SC-FP module has the following advantages: First, it
adopts a feature pyramid structure to increase the receptive field
of the network, capture multi-scale context information, reduce
the loss of details, and improve network performance. Second,
it introduces a dual attention mechanism to integrate context
information further, increase attention to detail information,
and improve segmentation accuracy; Third, to reduce the
computational burden, point-by-point multiplication or
addition is used for feature fusion. Although a larger
convolution kernel is used, the feature map resolution is
lower and does not increase the computational complexity.

3.4 Network architecture

Our main objective in this work is to create a compact model
that can strike the best balance between segmentation accuracy
and network parameters. We propose the LMDCNet depicted in
Figure 2 utilizing the SC-FP and MS-DAB modules to achieve
this. The specific architecture of our LMDCNet, which has an
asymmetric encoder-decoder, is displayed in Table 1.

In the encoder section of LMDCNet, we created three
downsampling blocks and three encoder stages. The initial
block in ENet, a cascaded output of 3 × 3 convolution with
step 2 and a 2 × 2 pooling, serves as the downsampling

TABLE 1 The detailed architecture of lightweight multi-dimensional
dynamic convolutional network (LMDCNet).

Stage Type Channel Output size

Encoder Downsampling 32 512× 256

MS-DAB× 3 32 512× 256

Downsampling 64 256× 128

MS-DAB× 2 64 256× 128

Downsampling 128 128× 64

MS-DAB (r = 1) 128 128× 64

MS-DAB (r = 2) 128 128× 64

MS-DAB (r = 5) 128 128× 64

MS-DAB (r = 2) 128 128× 64

MS-DAB (r = 5) 128 128× 64

MS-DAB (r = 9) 128 128× 64

MS-DAB (r = 17) 128 128× 64

Decoder SC-FP C 128× 64

Upsampling C 1024× 512

“Channel” denotes the number of output feature maps, and “C” is the number of classes.
“Output size” denotes the output size with an input size of 1024× 512.

block. The downsampling operation produces thumbnails
of the corresponding images, enabling deeper networks to
gather more contextual data while requiring less computational
work. Downsampling, however, lowers spatial resolution, which
typically results in a loss of spatial information and impacts the
predictions’ outcomes. Therefore, to maintain a good balance,
only three downsampling operations—for a total downsampling
rate of eight—are carried out in our LMDCNet. The three,
two, and seven MS-DAB modules comprise LMDCNet’s three
encoder stages. We introduce dilated convolution in the MS-
DAB module. To solve the grid problem, we follow the design
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concept of HDC (hybrid dilated convolution) when designing
the dilation rates: First, the adjacent dilation rates cannot be
greater than the common divisor of 1; Second, the dilation rates
can be designed as a zigzag structure, such as (1, 2, 5, 2, 5,
7); Third, the final dilation rates should cover the maximum
segmentation target. The specific design of the network is as
follows: the dilation rates of the first stage and the second stage
are set to 1, and the dilation rates of the third stage is set to (1, 2,
5, 2, 5, 9, 17).

Many lightweight real-time networks remove the decoder
part, and proper decoding can improve network accuracy.
The decoder includes the SC-FP module and the upsampling
module; obviously, our network architecture is asymmetric. The
SC-FP module contains feature pyramids and attention, which
can refine the detailed information on segmentation and the
selection of features. The feature map size does not match
the input image size, and a bilinear interpolation algorithm is
needed to recover the feature map resolution. The parameters
of the decoder part are few but can effectively improve the
segmentation accuracy. Our network has no complicated data
processing links in the training process, and the number of
parameters is only 1.05 M.

4 Experiments

In this section, we evaluate the performance of our
designed LMDCNet on two challenging public datasets, the
Cityscapes, and CamVid datasets. We first introduce the two
datasets used in the experiments and the implementation
details. The effectiveness of each LMDCNet component is then
demonstrated using a series of ablation experiments on the
Cityscapes validation set. Finally, we present evaluation results
on the CamVid and Cityscapes test sets and comparisons with
other lightweight real-time semantic segmentation networks.

4.1 Datasets

4.1.1 Cityscape dataset
Cityscape dataset is a large dataset for semantic

segmentation for training. The dataset contains 5000 finely
labeled images and 20,000 coarsely labeled images. Usually,
fine-labeled images are used for network training, and coarse
images are used for network migration for pre-training. The
resolution of the images is 1024 × 2048, and the default
classification label is 19 classes. We compressed the image
resolution to 512 × 1024 to improve the inference speed.

4.1.2 CamVid dataset
CamVid dataset uses street scenes from video sequences as

semantic segmentation training data. The dataset has 701 high-
quality training images, of which 367 are the training set, 101 are

the validation set, and 233 are the test set. The dataset contains
32 semantic categories, and the categories commonly used for
network training are 11 categories. The resolution of the images
is 720 × 960, and 360 × 480 is used in our training process.

4.2 Implementation details

4.2.1 Environment configuration
The model creation and training were based on the Pytorch

platform with CUDA 9.0 and cuDNN 7, and all experiments
were conducted on a machine outfitted with an Intel i7-10700K
CPU and a single NVIDIA GTX 1080Ti GPU (11G).

4.2.2 Network training configuration
We did not employ any additional datasets as network

preprocessing. We used small batch stochastic gradient descent
(SGD) during the training process as the optimization function
with a weight decay of 2e-4 and a momentum of 0.9. The
batch processing size is 8 for the Cityscapes dataset and 16
for the CamVid dataset. The cross-entropy loss function is
used for the loss function. The initial learning rate for the
Cityscapes dataset is 4.5e-2, and the CamVid dataset is 1e-3
using the “poly” learning rate technique. The current epoch
learning rate is lr = init_lr ×

(
1− epoch/max_epoch

)power ,
where power is 0.9.

4.2.3 Data augmentation
Data augmentation reduces the risk of training overfitting.

Our experiments used the following methods for data
augmentation: average subtraction, random level flipping, and
random scaling. The scales of random scaling during training
are 0.75, 1.0, 1.25, 1.5, 1.75, and 2.0.

4.2.4 Evaluating indicator
The evaluation metrics of semantic segmentation include

three aspects: segmentation accuracy, inference speed, and
model size. Segmentation accuracy is measured by mean
Intersection over Union (mIoU); inference speed is measured
by the number of frames per second (FPS) processed in the
image, and model size is measured by the number of statistically
learnable parameters (M).

4.2.5 Network performance balance indicator
We designed an optimal balance index to evaluate the

accuracy and parameter amount of lightweight real-time
semantic segmentation, and it is named as increment rate (IR).
The most critical indicators of lightweight real-time semantic
segmentation are segmentation accuracy, parameter amount
and inference speed. Because the inference speed is related to
the verification platform, the speed of comparing lightweight
real-time semantic segmentation must be on a unified platform.
The standard for evaluating the quality of a lightweight real-time

Frontiers in Neurorobotics 08 frontiersin.org

66

https://doi.org/10.3389/fnbot.2022.1075520
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org/


fnbot-16-1075520 December 9, 2022 Time: 14:30 # 9

Zhang et al. 10.3389/fnbot.2022.1075520

TABLE 2 Ablation study results of depth-asymmetric bottleneck module with multi-dimensional dynamic convolution and shuffling operations
(MS-DAB module).

Type Model mIoU (%) FPS Params (M)

Baseline LMDCNet 73.8 71.2 1.05

Ablation for residual module LMDCNet-Non-bottleneck-1D 68.4 74.3 1.90

LMDCNet-DAB 69.7 84.1 0.90

LMDCNet-ShuffleNet 66.8 97.3 0.56

Ablation for dilation rates 4,4,4,4,4,4,4 72.3 70.8 1.05

2,2,5,5,9,9,17 72.9 70.8 1.05

2,2,4,4,8,8,16 73.2 70.9 1.05

Ablation for actiation function Relu 73.4 70.9 1.05

Ablation for convolution 1D 70.2 73.2 1.01

Cond-Conv 71.6 71.0 1.08

Dy-Conv 72.8 71.5 1.04

TABLE 3 Ablation study results of feature pyramid with spatial and channel attention (SC-FP module).

Type Model mIoU (%) FPS Params (M)

Baseline LMDCNet 73.8 71.2 1.05

Ablation for decoder depth LMDCNet-1× 1 72.0 76.4 1.04

Ablation for attention LMDCNet-CA 73.3 72.9 1.05

LMDCNet-SA 73.1 73.2 1.05

Ablation for FP kernel size LMDCNet-K333 73.1 73.2 1.05

LMDCNet-K235 73.4 72.7 1.05

LMDCNet-K135 72.8 72.9 1.05

TABLE 4 Evaluation results of our lightweight multi-dimensional dynamic convolutional network (LMDCNet) and other state-of-the-art real-time
semantic segmentation models on the Cityscapes test set.

Model Input size Pretrain GPU mIoU (%) FPS Params (M) IR

SegNet 640× 360 ImageNet TitanX 57 16.7 29.5 0.69

ENet 640× 360 No TitanX 58.3 135.4 0.4 1.08

ICNet 1024× 2048 ImageNet TitanX 69.5 30.3 26.5 0.87

ERFNet 512× 1024 No TitanX 68 41.7 2.1 1.23

ESPNet 512× 1024 No TitanX 60.3 112 2.1 1.09

BiSeNet 768× 1536 ImageNet TitanX 68.4 72.3 5.8 1.16

Fast-SCNN 1024× 2408 ImageNet TitanX 68 123.5 1.11 1.25

ESPNetV2 512× 1024 No TitanX 66.2 67 1.25 1.21

DFANet 512× 1024 ImageNet TitanX 70.3 160 7.8 1.15

LEDNet 512× 1024 No 1080Ti 69.2 71 0.94 1.27

ESNet 512× 1024 No 1080Ti 69.1 63 1.66 1.25

DABNet 512× 1024 No 1080Ti 70.1 104 0.76 1.29

FDDWNet 512× 1024 No 2080Ti 71.5 60 0.8 1.32

BCPNet 512× 1024 No TitanX 68.4 250.4 0.61 1.27

DDPNet 768× 1536 No 1080Ti 74.0 85.4 2.52 1.32

LEANet 512× 1024 No 1080Ti 71.9 77.3 0.74 1.35

SFNet 1024× 2048 No 1080Ti 78.9 26 12.87 1.19

PIDNet-S 1024× 2048 No 3090 78.8 93.2 7.6 1.29

LMDCNet 512× 1024 No 1080Ti 73.8 72.1 1.05 1.36

Frontiers in Neurorobotics 09 frontiersin.org

67

https://doi.org/10.3389/fnbot.2022.1075520
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org/


fnbot-16-1075520 December 9, 2022 Time: 14:30 # 10

Zhang et al. 10.3389/fnbot.2022.1075520

T
A

B
LE

5
E

va
lu

at
io

n
re

su
lt

s
o

f
ea

ch
cl

as
s

In
te

rs
ec

ti
o

n
o

ve
r

U
n

io
n

(I
o

U
)(

%
)a

n
d

cl
as

s
m

Io
U

(%
)o

n
th

e
C

it
ys

ca
p

es
te

st
se

t.

M
od

el
R
o

Si
Bu

i
W
a

Fe
Po

T
l

Ts
V
e

T
e

Sk
Pe

R
i

C
a

T
ru

Bu
s

T
r

M
o

Bi
C
l

Se
gN

et
96

.4
73

.2
84

.0
28

.4
29

.0
35

.7
39

.8
45

.1
87

.0
63

.8
91

.8
62

.8
42

.8
89

.3
38

.1
43

.1
44

.1
35

.8
51

.9
57

.0

EN
et

96
.3

74
.2

75
.0

32
.2

33
.2

43
.4

34
.1

44
.0

88
.6

61
.4

90
.6

65
.5

38
.4

90
.6

36
.9

50
.5

48
.1

38
.8

55
.4

58
.3

IC
N

et
97

.1
79

.2
89

.7
43

.2
48

.9
61

.5
60

.4
63

.4
91

.5
68

.3
93

.5
74

.6
56

.1
92

.6
51

.3
72

.7
51

.3
53

.6
70

.5
69

.5

ER
FN

et
97

.7
81

.0
89

.8
42

.5
48

.0
56

.3
59

.8
65

.3
91

.4
68

.2
94

.2
76

.8
57

.1
92

.8
50

.8
60

.1
51

.8
47

.3
61

.7
68

.0

Fa
st

-S
C

N
N

97
.9

81
.6

89
.7

46
.4

48
.6

48
.3

53
.0

60
.5

90
.7

67
.2

94
.3

74
.0

54
.6

93
.0

57
.4

65
.5

58
.2

50
.0

61
.2

68
.0

ES
PN

et
97

.0
77

.5
76

.2
35

.0
36

.1
45

.0
35

.6
46

.3
90

.8
63

.2
92

.6
67

.0
40

.9
92

.3
38

.1
52

.5
50

.1
41

.8
47

.2
60

.3

ES
PN

et
V

2
97

.3
78

.6
88

.8
43

.5
42

.1
49

.3
52

.6
60

.0
90

.5
66

.8
93

.3
72

.9
53

.1
91

.8
53

.0
65

.9
53

.2
44

.2
59

.9
66

.2

LE
D

N
et

97
.1

78
.3

90
.4

46
.5

48
.1

60
.9

60
.4

71
.1

91
.2

60
.0

93
.2

74
.3

51
.8

92
.3

61
.0

72
.4

51
.0

43
.3

70
.2

69
.2

ES
N

et
97

.1
78

.5
90

.4
46

.5
48

.1
60

.1
60

.4
70

.9
91

.1
59

.9
93

.2
74

.3
51

.8
92

.3
61

.0
72

.3
51

.0
43

.3
70

.2
69

.1

D
A

BN
et

97
.9

82
.0

90
.6

45
.5

50
.1

59
.3

63
.5

67
.7

91
.8

70
.1

92
.8

78
.1

57
.8

93
.7

52
.8

63
.7

56
.0

51
.3

66
.8

70
.1

FD
D

W
N

et
98

.0
82

.4
91

.1
52

.5
51

.2
59

.9
64

.4
68

.9
92

.5
70

.3
94

.4
80

.8
59

.8
94

.0
56

.5
68

.9
48

.6
55

.7
67

.7
71

.5

LE
A

N
et

98
.1

82
.7

91
.0

51
.0

53
.2

58
.8

65
.9

70
.3

92
.5

70
.5

94
.3

81
.6

59
.9

94
.1

52
.3

68
.2

57
.2

55
.5

69
.8

71
.9

LM
D

C
N

et
98

.2
82

.7
91

.2
51

.4
53

.1
59

.3
65

.8
70

.5
92

.6
70

.2
94

.2
81

.5
59

.8
94

.2
52

.9
68

.1
57

.7
55

.7
69

.7
73

.8 semantic segmentation network is that the higher the accuracy,
the lower the parameters, and the better the network. It is
equivalent to an inverse relationship between the segmentation
accuracy and the number of parameters. We must divide the
accuracy by the number of parameters. Let us take a simple
example: the accuracy of ENet is 58.3, the parameters are 0.4,
the ratio of accuracy to parameters is 145.75, the accuracy
of DABNet is 70.1, and the parameters are 0.76, then the
accuracy and parameters ratio is 92.27. We know that DABNet
is recognized as a network with much better performance
than ENet. However, the ratio of accuracy to parameters is
higher than DABNet, which shows that the relationship between
accuracy and parameters is not y = a × x. There is an offset b
between them. The relationship is y = a ×

(
x+ b

)
. We have

sorted out the formula:

a = y/(x+ b) (4)

Among them, y represents the segmentation accuracy
(mIoU), x represents the parameters (M), b represents the
offset, and a represents the increment rate (IR). We bring the
accuracy of PIDNet-S, 78.8 mIoU and parameter 7.6 M, and
the accuracy of 70.1 mIoU and parameter 0.76 M of DABNet,
which are recognized as the best lightweight real-time semantic
segmentation at this stage, into the formula, and get b = 53.4.
In this article, we take b = 53.4. The calculation formula of the
IR is:

a = y/(x+ 53.4) (5)

4.3 Ablation study

4.3.1 Ablation study for MS-DAB module
4.3.1.1 Ablation for residual module

The encoder part of LMDCNet we designed uses the MS-
DAB module. To prove the effectiveness of our designed encoder
module, we compare the same type’s residual modules. We
replace the MS-DAB module with a non-bottleneck-1D module,
a ShuffleNet module, and a DAB module and test them on
the Cityscapes dataset. As seen in Table 2, the LMDCNet
network with ShuffleNet’s coding module has the lowest number
of parameters and the fastest inference speed but the lowest
segmentation accuracy. The combined consideration needs to
be more competent for the actual segmentation task. On the
other hand, the semantic segmentation network using MS-
DAB has 0.15 M higher parameters than that using DAB,
and the segmentation accuracy is improved by 4.1%, which
is a more reasonable performance. The MS-DAB module
we designed perfectly balances segmentation accuracy and
parameters.

4.3.1.2 Ablation for dynamic convolution

We gradually replaced the multi-dimension dynamic
convolution in MS-DAB with the factorial and dynamic
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FIGURE 6

Some visual comparisons on the Cityscapes validation set. From left to right are input images, ground truth, predicted results from DABNet,
FDDWNet, LEANet, and our LMDCNet.

convolution to confirm that the MDy-Conv we proposed has
better experimental results than other convolutions displayed in
Figure 3. Table 2 shows that the convolution with the fewest
parameters and the fastest inference speed when utilizing the
factorial convolution also has the least accurate segmentation.
Even though there were 0.01 M more parameters with the
MDy-Conv than with the Dynamic convolution module,
segmentation accuracy increased by 1.0%, demonstrating the
excellent efficiency of our MDy-Conv.

4.3.1.3 Ablation for dilation rates

The size of the perceptual field of the network affects the
segmentation accuracy of the network, and the lightweight real-
time network uses dilated convolution to improve the receptive
field of the network. A reasonable dilation rate can improve
the segmentation accuracy of the network while avoiding grid
problems. In order to verify whether the criterion for the
dilation rates we designed is correct, we designed four groups
of dilation rates for tuning. The dilation rates of the first
two stages of our coding part are set to 1, and the third
part is set to (4,4,4,4,4,4,4), (2,2,5,5,9,9,17), (2,2,4,4,8,8,16), and
(1,2,5,2,5,9,17), respectively. The results from Table 2 show that
the segmentation accuracy is the lowest when the dilation rate
is set to (2,2,4,4,8,8,16), and the segmentation accuracy is the
largest when it is set to (1,2,5,2,5,9,17). Experiments show that
the design requirements for the dilation rate of our network
should follow the HDC (hybrid dilated convolution) design
principle. We design the final dilation rate of the network as:
(1, 2, 5, 2, 5, 9, 17).

4.3.1.4 Ablation for activation function

The introduction of nonlinear functions in the network
can improve the network performance. The commonly used
nonlinear functions in semantic segmentation are Relu and
PRelu. We use PRelu in the baseline network and Relu in the

comparison network. From the experimental results in Table 2,
it is concluded that PRelu is more suitable for the LMDCNet
network.

4.3.2 Ablation study for SC-FP module
4.3.2.1 Ablation for decoder module

The SC-FP module is the main component of the decoder
in our LMDCNet, which is an integration of encoded features
to refine the segmentation categories. However, most real-time
semantic segmentation deletes the decoder to pursue inference
speed. We replaced the SC-FP module in LMDCNet with 1 × 1
point convolution to justify the design of the SC-FP decoder
module. Table 3 shows that 5.2 FPS improves the inference
speed of the LMDCNet network with 1 × 1 convolution with
0.01 M parameter reduction, but the segmentation accuracy
is decreased by 1.8%. In summary, our design of SC-FP is
reasonable.

4.3.2.2 Ablation for channel attention

In designing SC-FP, we utilized the channel attention
technique. To illustrate the appropriateness of choosing the
channel attention branch in our SC-FP module, we removed the
channel attention branch. Table 3 shows that the segmentation
accuracy obtained by the decoding module without channel
attention is 0.5% lower than that obtained using the SC-FP
module. This experiment shows that the channel attention
branch we designed can improve the segmentation accuracy of
the network.

4.3.2.3 Ablation for spatial attention

We introduce the spatial attention branch in SC-FP, and
spatial attention focuses more on the spatial information
of segmented targets to improve segmentation accuracy. To
demonstrate the role of spatial branching in the decoder,
we removed the spatial attention branch for comparison.
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TABLE 6 Evaluation results of our lightweight multi-dimensional dynamic convolutional network (LMDCNet) and other state-of-the-art real-time
semantic segmentation models on the CamVid test set.

Model Input size Pretrain GPU mIoU (%) FPS Params (M)

SegNet 360× 480 ImageNet TitanX 55.6 – 29.5

ENet 360× 480 No TitanX 51.3 – 0.4

ICNet 720× 960 ImageNet TitanX 67.1 27.8 26.5

CGNet 360× 480 No 2xV100 65.6 – 0.5

BiSeNet 720× 960 ImageNet TitanX 65.6 175 5.8

BiSeNetV2 720× 960 ImageNet TitanX 68.7 124.5 49.0

DFANet 720× 960 ImageNet TitanX 64.7 120 7.8

DABNet 360× 480 No 1080Ti 66.2 124.4 0.76

LRNNet 360× 480 No 1080Ti 67.6 83 0.67

DDPNet 360× 480 No 1080Ti 67.3 – 1.1

LEANet 360× 480 No 1080Ti 67.5 98.6 0.74

LMDCNet 360× 480 No 1080Ti 69.6 92.4 1.04

TABLE 7 Evaluation results of each class Intersection over Union (IoU) (%) and class mIoU (%) on the CamVid test set.

Mode Bu Tr Sk Ca Si Ro Pe Fe Po Si Bi Cl

SegNet 88.8 87.3 92.4 82.1 20.5 97.2 57.1 49.3 27.5 84.4 30.7 55.6

ENet 74.7 77.8 95.1 82.4 51.0 95.1 67.2 51.7 35.4 86.7 34.1 51.3

BiSeNet 82.2 74.4 91.9 80.8 42.8 93.3 53.8 49.7 25.4 77.3 50.0 65.6

BiSeNetV2 83.0 75.8 92.0 83.7 46.5 94.6 58.8 53.6 31.9 81.4 54.0 68.7

DABNet 80.8 73.3 91.0 81.0 40.0 94.8 59.5 56.6 29.8 80.3 41.7 66.2

LEANet 82.0 75.0 91.2 83.2 44.2 94.9 63.2 55.7 30.2 81.1 41.9 67.5

LMDCNet 82.7 76.3 91.7 83.5 46.6 94.5 59.0 53.9 32.4 81.7 53.9 69.6

Table 3 shows that the segmentation accuracy obtained
by the decoder module without spatial attention is 0.7%
lower than that obtained using the SC-FP module. This test
shows that our spatial attention branch can improve the
network’s ability.

4.3.2.4 Ablation for kernel size

We employ convolutions with kernel sizes of 3 × 3, 5 × 5,
and 7 × 7 to obtain various context information scales in the
SC-FP module’s feature pyramid structure. We use a 3 × 3
kernel (K333) to replace each of the SC-FP module’s three
convolutions to show how effective this method is. Table 3
displays the experimental results. Additionally, we set up two
convolution combinations with smaller kernel sizes: 1 × 1,
3 × 3, 5 × 5 (i.e., K135) and 2 × 2, 3 × 3, 5 × 5 (i.e.,
K235). Table 3 demonstrates that our SC-FP module performs
well when 3 × 3, 5 × 5, and 7 × 7 convolutions are used to
construct a feature pyramid structure.

4.4 Evaluation results on cityscapes

The parameters of our designed LMDCNet are 1.05 M,
the inference speed on a 1080Ti is 72.1FPS, the segmentation

accuracy is 73.8 mIoU, and the increase rate is 1.36. The
increment rate represents the balance between the accuracy and
parameters of lightweight real-time semantic segmentation, and
the larger the increment rate, the better the balance. As can
be seen from Table 4, our increase rate is the highest among
lightweight real-time semantic segmentation at this stage.
The current state-of-the-art lightweight semantic segmentation
network PIDNet-S has a growth rate of 1.29, which is smaller
than that of the semantic segmentation network we designed. It
can be seen that our designed network outperforms PIDNet-S
in the balance between accuracy and parameters. The speed of
our designed network is 46.1FPS faster than that of SFNet tested
on the same 1080Ti platform. The number of parameters is only
1/12 of SFNet. Among the semantic segmentation network with
an input resolution of 512 × 1024, our accuracy is the highest,
1.9 mIoU higher than LEANet.

We show the results for each class IoU (%) and class mIoU
(%) on the Cityscapes test set in Table 5. Overall, especially
in 5 categories, our LMDCNet achieves higher segmentation
accuracy, demonstrating the effectiveness of our LMDCNet.
Figure 6 shows a visual comparison of the Cityscapes validation
set. We can classify different objects more accurately using
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LMDCNet and produce more consistent visual outputs across
all categories. LMDCNet outperforms ERFNet, DABNet, and
FDDWNet in the segmentation of vehicles, riders, and traffic
signs.

4.5 Evaluation results on CamVid

Tables 6, 7 show the contrast between LMDCNet and
other real-time semantic segmentation models for the CamVid
dataset. Our LMDCNet produced effective segmentation results
on the CamVid dataset. Without any prior training, our
LMDCNet has a segmentation accuracy of 69.6 mIoU. Our
LMDCNet can process 360 × 480 images at 92.4 FPS using
a 1080Ti GPU for inference speed. In contrast to most real-
time semantic segmentation models, LMDCNet has several clear
advantages: fewer parameters, excellent segmentation accuracy,
and quick inference speed. Our LMDCNet’s performance on the
CamVid dataset is the best, illustrating its superior adaptability
and effectiveness.

5 Conclusion

We present a lightweight multi-dimension dynamic
convolutional network (LMDCNet) with an ideal trade-off
between model size, segmentation accuracy, and inference
speed for real-time semantic segmentation. A multi-dimension
dynamic convolution is what we suggest (MDy-Conv). In
order to improve convolution presentation and maintain
remarkable accuracy, it uses multi-convolutional kernel fusion.
Our encoder is a depth-wise asymmetric bottleneck module
with multi-dimension dynamic convolution and shuffling
operations (MS-DAB module). This module can collect local
and contextual information with fewer parameters and less
computation. We propose a feature pyramid module (SC-FP
module) based on spatial and channel attention for decoding.
With minimal computational overhead, this module aggregates
context data and generates pixel-level spatial and channel
attention to aid in feature selection. According to experiments,
our LMDCNet performs exceptionally well with the Cityscapes
and CamVid datasets, making it the best option for various road
scene interpretation applications.
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Introduction: Through remote sensing images, we can understand and

observe the terrain, and its application scope is relatively large, such as

agriculture, military, etc.

Methods: In order to achievemore accurate and e�cientmulti-source remote

sensing data fusion and classification, this study proposes DB-CNN algorithm,

introduces SVM algorithm and ELM algorithm, and compares and verifies their

performance through relevant experiments.

Results: From the results, we can find that for the dual branch CNN network

structure, hyperspectral data and laser mines joint classification of data can

achieve higher classification accuracy. On di�erent data sets, the global

classification accuracy of the joint classification method is 98.46%. DB-CNN

model has the highest training accuracy and fastest speed in training and

testing. In addition, the DB-CNN model has the lowest test error, about 0.026,

0.037 lower than the ELM model and 0.056 lower than the SVM model. The

AUC value corresponding to the ROC curve of its model is about 0.922, higher

than that of the other two models.

Discussion: It can be seen that the method used in this paper can

significantly improve the e�ect ofmulti-source remote sensing data fusion and

classification, and has certain practical value.

KEYWORDS

remote sensing image, convolutional neural network, double branch structure,

hyperspectral, DB-CNN algorithm, lidar data

1. Introduction

As a depth detection technology, remote sensing is applied to space exploration,

urban planning, rescue and disaster relief. It combines multi-disciplinary technologies

such as earth science, space science, and computer, so it has different characteristics in

terms of scope of use and technical tools (Demir and Ulke, 2020; Zhou et al., 2021c;

Du et al., 2022; Lu et al., 2022). However, facing different application scenarios, remote
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sensing image classification needs higher accuracy, and the

accuracy and performance of image classification determine

the quality of the application effect. Remote sensing images

usually contain a lot of spectral information, which can be

used in image recognition and classification (Hu et al., 2021).

In remote sensing, classification and recognition of related

images is an important function, and different classification

and recognition methods have different effects (Yu, 2020). The

previous classification methods can not classify well, and the

classification results are poor. The classification technology

based on the deep learning algorithm has been studied by

many scholars because of its high classification effect and

performance. Convolutional neural network (CNN) has shown

good performance in image feature extraction and classification.

In this paper, it is applied to remote sensing image classification

to improve its classification accuracy and performance.

2. Related work

In the study of remote sensing images, the main content

focuses on the fusion and classification of remote sensing data.

During this period, different scholars adopted different research

methods. For example, Du et al. (2021) applied methods such as

integrated hyperspectral images to extract and analyze remote

sensing image features. After verification, it is found that the

proposed method can achieve effective classification (Du et al.,

2021). In the process of classifying multi-source remote sensing

data, Pastorino et al. (2021) designed a hierarchical probabilistic

graphical model, which combines Markov framework and

decision tree method, which has certain effectiveness and

feasibility (Pastorino et al., 2021). In order to improve the

classification effect of remote sensing images, Luo et al. (2021)

designed a combination strategy based on sorting batch mode,

combined with spectral information divergence, and good

classification effect can be obtained (Luo et al., 2021). Dong R.

et al. (2020) proposed a fast depth-aware network that combines

multiple advantages to achieve simultaneous extraction of deep

and shallow features (Dong R. et al., 2020). Zhang and Han

(2020) used the multi-target classification recognition model

when carrying out remote sensing image segmentation and

feature extraction. Through correlation verification, it can better

perform correlation recognition and has strong robustness

(Zhang and Han, 2020). Bazi et al. (2021) proposed a remote

sensing image classificationmodel based on the vision converter,

in which the context relationship is represented through the

multi head attention mechanism. After relevant verification,

it is found that the classification effect of this method is

better (Bazi et al., 2021). In the process of remote sensing

image classification, there will be a problem of data feature

distortion. Face this problem, Dong Y. et al. (2020) designed

a spectral space weighted popular embedded distribution

alignment method, and proved its effectiveness and practical

value through experiments (Dong Y. et al., 2020). On the basis

of multi-scale feature fusion, Zhang C. et al. (2020) proposed

the corresponding remote sensing image classification method,

which uses a new weighted eigenvalue convolutional neural

network to segment images, and achieved good experimental

results (Zhang C. et al., 2020). Xu Y. et al. (2019) analyzed the

data fusion contest held in 2018, summarized a variety of multi-

source optical remote sensing, analyzed its related land cover

classification applications, and the machine vision algorithms

involved. The effective combination of machine learning and

observation data has become a good data analysis method (Xu

Y. et al., 2019). Jin and Mountrakis (2022) classified the land

cover types through the random forest algorithm, during which

the remote sensing data sources were involved. The results show

that the highest overall accuracy of the algorithm is 83.0%, which

is much higher than the accuracy of other sensors (Jin and

Mountrakis, 2022).

Ma et al. (2020) used improved CNN to classify seismic

remote sensing images, and verified the method. After

verification, it can have a high accuracy, and its excellent

performance has an important role in earthquake prevention

and disaster relief (Ma et al., 2020). Pan et al. (2020) corrected

the high-resolution remote sensing classification results through

end-to-end localization post-processing. This method can

achieve effective correction and make the classification results

have high accuracy (Pan et al., 2020). Han et al. (2020)

designed a classification method combining 3D-CNN and

squeeze excitation network to classify relevant sea ice remote

sensing images. The practical value of this method has been

proved through relevant research (Han et al., 2020). Qing et al.

(2021) designed an end-to-end Transformer model and applied

it to hyperspectral image classification, and the experimental

results showed that it has high performance (Qing et al., 2021).

Sun et al. (2021) designed a ConvCRF model with boundary

constraints, which was used to improve the classificationmethod

of synthetic aperture radar images, thereby improving the

classification accuracy of remote sensing images (Sun et al.,

2021). Samat et al. (2020) improved the extreme gradient

boosting (XGBoost) algorithm and proposed a Meta-XGBoost

algorithm, which integrated the advantages of multiple methods

and improved the effect of hyperspectral remote sensing image

classification (Samat et al., 2020). He et al. (2020) combined a

fully convolutional network with a popular graph embedding

model and applied it to PolSAR image classification, which

proved to have high application performance (He et al., 2020).

The above studies have used different deep learningmethods

to classify and identify different types of remote sensing

images, and have achieved good application results. Although

some methods can achieve good experimental results, the

experimental process is more complicated, so there is still room

for improvement in efficiency. The research adopts CNN based

classification method, which can classify efficiently and has high

classification accuracy.
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3. Multi-source remote sensing data
fusion and classification based on
CNN

3.1. Build CNN model

With the continuous progress of remote sensing technology,

the application scope of remote sensing image data is expanding.

The application of remote sensing image data is conducive to

better urban planning. Before that, it is necessary to classify

multi-source remote sensing data to perform other operations.

CNN algorithm has strong feature extraction ability and is

widely used in data classification. Therefore, CNN is applied

in multi-source remote sensing data fusion classification. As

a feedforward neural network, CNN includes convolution

structure and multilayer non-linearity. The algorithm can

extract middle and high level abstract features from remote

sensing images under the action of convolution layer and

pooling layer (Deng et al., 2020; Huang et al., 2022; Zhong

et al., 2022; Zhou et al., 2022). The convolutional neural network

represents the target by building a multi-layer network, and its

structure is shown in Figure 1.

In Figure 1, CNN includes multiple layers, such as

convolution layers. At the same time, in this algorithm, features

can be extracted and classified. In a convolutional neural

network, each image can be represented by a matrix of pixel

values. Meanwhile, in the convolution layer, the neurons are

connected in a special way, and the image edges and features are

extracted (Zhang et al., 2020). And the convolution operation

can process image noise, and can also enhance some features.

Under complex conditions, through the action of activation

function, the non-linear ability of the network is strengthened.

For the binary classification problem, the Sigmoid function is

used, while for the image recognition classification, the ReLU

function is used (Chung et al., 2020; Zhou et al., 2021a,b;

Zhang et al., 2022). Finally, the model needs to be downsampled

to reduce its complexity, which is done through a pooling

operation. The fully connected layer belongs to the classification

and recognition part, which performs weighted summation

of the extracted features and performs the final output. As a

key part of the convolutional neural network, the convolution

layer mainly performs feature extraction and dimensionality

reduction processing operations. It contains many convolution

kernels, which convolve with the input and generate new feature

maps. Convolution usually contains both single-channel and

multi-channel types (Feng et al., 2021). Among them, the

one-dimensional convolution usually plays the role of signal

processing. Assuming that the input signal is listed as xt , and t =

1, 2, · · · , n, then its output expression is shown in Formula (1).

yt =

K
∑

k=1

wkxt−k+1 (1)

In Formula (1), wk is the convolution kernel, and K is the

length of the convolution kernel. In the processing of images and

videos, two-dimensional convolution is used more frequently.

Let the 2D image input be xij, where 1 ≤ i ≤ M, 1 ≤ j ≤ N.

In the same way, wij represents the convolution kernel, where

1 ≤ i ≤ m, 1 ≤ j ≤ n. Then its output expression is shown in

Formula (2).

yij =

m
∑

u=1

n
∑

v=1

wuvxi−u+1,j−v+1 (2)

In Formula (2), wuv is the convolution kernel, and m, n

is the length of the convolution kernel. In Formula (2), we

know that during the convolution operation, the filter remains

stable and the entire input part is processed. At the same

time, the convolution process can be trimmed by changing the

step size and padding, which has a certain adjustment effect

on the sliding amplitude, thereby making the boundary more

complete. The pooling layer is a non-linearly connected area,

located between convolution layers, and its adjacent layers are

connected to each other through neurons. When extracting

the main features of the image, the pooling layer has a good

performance. First, the pooling layer can effectively reduce

the amount of computation, thereby saving resources. Second,

the pooling layer can reduce the number of parameters and

the complexity of the model, thereby avoiding overfitting and

ensuring scale and space invariance (Li et al., 2020). Average

pooling and max pooling are the two most common methods

of pooling operations, which can effectively retain the original

image features. The structure diagram is shown in Figure 2.

In Figure 2, these two operations can reduce the error of

feature extraction, the variance of estimated value caused by the

domain, and the shift of estimated mean value caused by the

error of convolution parameters. After two operations, activate

the data through the activation function, which is a key step

in CNN. Neural networks are generally linear calculations, and

complex functions are not generated during the calculation

process. The activation function can add complex models to

it and effectively enhance the non-linear expression ability

of the network. These functions of the activation function

can play a good role in solving complex network problems,

while improving the fitting ability of the model. Common

activation functions are Sigmoid, Tanh, and ReLU. Among them,

the definition of the sigmoid activation function is shown in

Formula (3).

Sigmoid (z) =
1

1+ e−z
(3)

In Formula (3), the output value of the sigmoid activation

function is between (0, 1) and has monotonicity. Its image

is similar to the sigmoid, which has the advantage of stable

optimization. The definition of the Tanh activation function is
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FIGURE 1

Convolutional neural network structure diagram.

FIGURE 2

Average pool and maximum pool structure.

shown in Formula (4).

Tanh (z) =
ez − e−z

ez + e−z
(4)

In Formula (4), the output value of the Tanh activation

function is between (−1, 1) and is centered at 0. At the same

time, its image curve is also similar to the S-shape, and the

convergence speed is faster. The relevant expression of ReLU

activation function is Formula (5).

Re LU (z) = max (0, z) (5)

In Formula (5), when the input value is positive, the

derivative of the function is always 1. Therefore, compared

with the Sigmoid activation function and the Tanh activation

function, it has a faster calculation speed and can effectively

save resources. After the above operations are completed, the

data is normalized to eliminate the influence of the index on

the value. In the normalization processing operation, Faced

with the problems of slow convergence speed and scattered

characteristics, it is necessary to process each batch of data. For

the same batch of data XB = {x1, x2 · · · , xn}, the mean and

variance expressions are shown in Formula (6) and Formula (7).

µB =
1

m

m
∑

i=1

xi (6)

σ 2
B =

1

m

m
∑

i=1

(xi − µB)2 (7)

In Formula (6) and Formula (7), µB and σ 2
B are the

mean and variance, respectively, and a new mapping x̂i can be

obtained after normalization xi, and its expression is shown in

Formula (8).

x̂i =
xi − µB
√

σ 2
B + ε

(8)

In Formula (8), ε > 0 and the value is smaller. In

order to obtain the real and effective distribution of network

data, scale transformation and offset processing are added after

normalization, and its expression is shown in Formula (9).

yi = γ x̂i + β (9)

In Formula (9), γ and β are parameters in network training,

and the update methods are shown in Formula (10) and

Formula (11).

∇γ =

m
∑

i=1

∇yi
∂yi

∂y
=

m
∑

i=1

∇yi · x̂i (10)

∇β =

m
∑

i=1

∇yi
∂yi

∂β
=

m
∑

i=1

∇yi · 1 =

m
∑

i=1

∇yi (11)
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In Formula (10) and Formula (11), the two are updated by

means of derivation, and the input xi gradient expression is

shown in Formula (12).

∇xi = ∇x̂ ·
1

√

σ 2
B + ε

+∇σ 2
B ·

2 (xi − µB)

m
+ ∇µB ·

1

m
(12)

In Formula (12), there is a certain relationship between xi,

X̂I , µB and σ 2
B . At the same time, in the back-propagation

process, calculate the gradient of X̂I , µB and σ 2
B to xi, as shown

in Formula (13), Formula (14), and Formula (15).

∇x̂i = ∇yi · γ (13)

∇µB =

m
∑

i=1

∇x̂ ·
−1

√

σ 2
B + ε

+ ∇σ 2
B ·

1

m

m
∑

i=1

−2 (x2 − µB) (14)

∇σ 2
B =

m
∑

i=1

∇x̂ · (xi − µB) ·
−1

2

(

σ 2
B + ε

)−
3
2

(15)

After the feature extraction and classification and

recognition are completed, the results are output, thus

completing the entire convolutional neural network steps.

3.2. Multi source remote sensing data
fusion and classification based on CNN

Multi-source remote sensing data includes hyperspectral

data (HSI) and lidar data (LiDAR), due to their different types

and applicable directions, there are certain challenges in fusion

and classification (Qu et al., 2021). Therefore, the research

uses CNN to extract its features, and proposes a dual-branch

convolutional neural network (DB-CNN), which is convenient

for organically combining multiple data sources. The multi-

source remote sensing data fusion and classification process

based on CNN is shown in Figure 3.

In Figure 3, a dual-channel CNN network is used to extract

spectral information. In HSI branch, Conv2D3 of 2-D channel

is 256, Conv2D3 is 512, Max Pool is 2 ∗ 2, Conv1D11 of 1-D

channel is 256, Conv1D3 is 512, Max Pool is 2 ∗ 1; In the HSI

branch, the value of Conv2D3 is 64, the value of Cascade2D

is [128, 64,128, 64], the value of Max Pool is 2 ∗ 2, and the

value of Cascade2D is [256128256128]. For hyperspectral data

extraction, the spatial information is extracted by 2-D CNN,

and the central pixel information is extracted by 1-D CNN.

For LiDAR and Visible Light Image (VIS) data, because of

their strong spatial information, the same network can be used

for feature extraction. The overall network structure consists

of three parts, namely spectrum, spatial channel and space-

spectral fusion. The spectral channel can be divided into three

parts, including convolution layer, pooling layer, etc., and batch

normalization. When performing the convolution operation,

a one-dimensional convolution method is adopted to process

the one-dimensional vector of the spectral data. At the same

time, in order to correct the data distribution, the Leaky

ReLU activation function is selected to perform the correction

operation. Therefore, the spectral dimension feature extraction

process can be expressed as: firstly, input the spectral vector

H
spec
ij into the network, then, perform correlation operation

through it, and finally output the feature F
spec
ij , and expand the

feature into a one-dimensional vector at the same time.

For spatial dimension feature extraction, the processing

object is usually r the image block with radius around the center

pixel, so the output feature F
spat
ij is the information of the center

pixel and its surrounding radius r. It will also expand F
spat
ij into a

one-dimensional vector and fused with F
spec
ij each other. When

extracting relevant features, the consistency of the depth and

structure of the dual channel network shall be ensured to make

the extracted features more complete. The two kinds of features

are fed into the fully connected layer after fusion, and they are

reorganized and selected by learning. For the features with too

little contribution, the Dropout method can be used to discard

them, and the whole process can be represented by Formula (16).

T
(

F
spat
ij , F

spec
ij

)

= f
(

W
(

F
spat
ij

∥

∥

∥
F
spec
ij

)

+ b
)

(16)

Formula (16), � ‖� denote feature fusion, W and b denote

the weights and biases of fully connected layers. Then the above

formula can be expressed as Fhsi and input into the softmax

classifier. The classifier can predict features as corresponding

probability distributions, as shown in Formula (17).

pred
(

i, j
)

=

1
∑C

n=1

(

exp
(

θ ′nFhsi
))













exp
(

θ ′1Fhsi
)

exp
(

θ ′2Fhsi
)

...

exp
(

θ ′CFhsi
)













(17)

In Formula (17), θn (n = 1, 2, · · · ,C) represents the nth

column parameter of the classifier, which pred
(

i, j
)

∈ RC is a

one-dimensional vector, which represents the prediction result

of the pixel pij. For LiDAR or VIS data feature extraction, a

cascaded CNN network is required, as shown in Figure 4.

From Figure 4, the cascade structure is mainly composed

of basic cascade operations. Before entering the data into the

network structure, it needs to be normalized. In the convolution

operation, the convolution kernel size is set to 3× 3. After going

through the operations of all modules, expand the extracted

feature through FLV to obtain one-dimensional vector, and then

use it as the input part of the fully connected layer. In order to

improve the fusion effect of features at different levels, a Cascade

block structure is designed in which different features can be
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FIGURE 3

Related flow chart.

FIGURE 4

CNN network structure of cascaded modules for LiDAR/VIS feature extraction.

bridged. This structure can be represented by Formula (18).

{

ym = gm (x, {Wi,Bi}) + x

y = gs
(

xs,
{

Wj,Bj
})

+ xs
(18)

In Formula (18), gm (x, {Wi,Bi})and gs
(

xs,
{

Wj,Bj
})

is the

operation between two channels, x and the y corresponding

input and output, indicating the output of themiddle layer. After

the CNN network is constructed, all its parameters need to be

trained and updated. For the network parameters, the feature

map of each layer of the network is set to a power of 2. Since

more parameters need to be trained and the distribution of these

parameters is not uniform, training on two branches at the same

time will have an impact on obtaining the optimal parameter

solution. Therefore, it is necessary to train the parameters

on the two branches separately, and then perform fine-tuning

training after the two are trained. In training experiments, data

and methods are the two most critical parts. Different from

general deep learning training models, remote sensing image

data training has a limited number of labels, and the labeling

process is time-consuming and costly (Gu et al., 2022). To solve

this problem, it is usually necessary to process the data in the

preprocessing stage, such as rotating the image, adding Gaussian

noise, etc., to expand the training set. In addition to this, all data

needs to be normalized.

When performing feature extraction on HSI, 1-D CNN is

responsible for extracting spectral features, while 2-D CNN is

responsible for extracting spatial information (Xu et al., 2019).

This dual-channel network design can reduce training update

parameters, so it can save computing resources and improve

training efficiency. In addition, the Cascade block structure

also has certain advantages when extracting LiDAR/VIS data.

This cascaded CNN network structure can transfer low-

level features to high-level features, which can be reused to

improve efficiency.

4. Performance analysis of multi
source remote sensing data fusion
and classification based on CNN

In order to effectively verify the performance of the proposed

dual-channel CNN, the same type of classification models are
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TABLE 1 Comparison of classification accuracy of dual-branch CNN networks on di�erent data sets.

Data DB-CNN(L/V) DB-CNN(H) DB-CNN(H+L/V)

OA (%) Kappa OA (%) Kappa OA (%) Kappa

Houston 55.62 0.5168 83.21 0.8157 86.69 0.8577

Trento 84.81 0.8105 94.98 0.9285 96.83 0.9547

Pavia 92.85 0.9042 96.87 0.9593 98.46 0.9735

Salinas 91.68 0.9107 95.53 0.9487 96.58 0.9576

FIGURE 5

Comparison of classification accuracy of three classification

models on Houston dataset.

introduced: SVM algorithm and ELM algorithm. During the

performance analysis, the samples used by the three methods are

the same. Use (H) to represent the experiments and results of the

classification model on hyperspectral, and (H+L) to represent

the experimental results of the combination of hyperspectral

and LiDAR. First, the experimental results of DB-CNN network

using different classification methods on different datasets are

analyzed. The data sets involved are Houston data set, Trento

data set, Pavia data set and Salinas data set. The Houston data

set consists of two parts, namely hyperspectral data and LiDAR

data. Themap size is 349 ∗ 1,905; Trento dataset is shot in Trento

region, Italy, with 600 ∗ 166 pixels; The Pavia dataset was taken

in Pavia, Italy, with a map size of 610 ∗ 340; The Salinas dataset

was taken in the Salinas region of Italy, and the map size is 512 ∗

217. The analysis results are shown in Table 1.

In Table 1, compared with a single HSI or LiDAR method,

the combined method has higher global classification accuracy

in different data sets. For example, on the Pavia dataset, the

global classification accuracy of the three classification methods

is the highest, among which the global classification accuracy of

the joint classification method reaches 98.46%, which is 5.61%

higher than the single LiDAR/VIS classification accuracy and

1.59% higher than the single HSI classification accuracy. At

the same time, the Kappa value of the classification accuracy

index of the joint classification method is 0.9735, which is

0.0693 higher than the Kappa value of the single LiDAR/VIS

classification and 0.0142 higher than the Kappa value of the

FIGURE 6

Accuracy of di�erent classification models.

single HSI classification. This result shows that the classification

effect of the joint classification method is better than that of the

single classification method. Classification method. At the same

time, the Houston data set is taken as an example to verify the

classification accuracy of different classification models on this

data set. The comparison results are shown in Figure 5.

As can be seen from Figure 5, for the three classification

models, the fusion classification method has the best

performance and the highest classification accuracy in the

global classification. For example, the average accuracy of SVM

model using a single HSI classification is about 82.83%, and the

average accuracy of SVMmodel using a combination of HSI and

LiDAR classification is about 89.86%. The average accuracy of

the ELMmodel using a single HSI classification is about 85.57%,

and the average accuracy of the ELMmodel using a combination

of HSI and LiDAR classification is about 91.05%. The average

accuracy of DB-CNN model using a single HSI classification

is about 92.13%, and the average accuracy of DB-CNN model

using a combination of HSI and LiDAR classification is about

95.08%. Therefore, in the three classification models, the average

classification accuracy of the single classification method and

the joint classification method corresponding to the dual branch

CNN network structure is higher than that of the SVM model

and ELMmodel, indicating that the classification effect is better.
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FIGURE 7

Comparison of classification performance of three classification models under di�erent training sample numbers. (A) Training accuracy of the

three classifications of Houston training set. (B) Training accuracy of the three classifications of Pavia training set.

TABLE 2 Comparison of training time of three classification models under di�erent training sample numbers.

Number of training samples Training time (s) Test time (s)

SVM ELM DB-CNN SVM ELM DB-CNN

200 36.4 32.7 25.3 15.7 13.4 8.1

400 68.1 61.5 49.6 28.5 25.3 15.6

600 103.9 92.4 70.6 40.9 35.8 21.5

800 135.7 119.5 91.4 51.2 43.7 26.1

1,000 160.4 142.9 113.8 60.3 49.9 29.8

The classification performance of the DB-CNN model is further

analyzed through the Pavia dataset. The results are shown in

Figure 6.

In Figure 6, according to the trend of the broken line

chart of the accuracy rate of the six classification models,

compared with the classification models corresponding to the

SVM algorithm and the ELM algorithm, the accuracy rate

of the classification model corresponding to the DB-CNN is

higher, especially the classification accuracy rate of the two

branch CNN classification model is the highest, with the highest

accuracy rate of 100.00%; Moreover, the accuracy of the two

branch CNN classification model is above other models, and the

accuracy difference between different data sets is small, that is,

the performance of the two branch CNN classification model

is more stable. In addition, the classification performance of

the three classification models under different training sample

numbers is compared, as shown in Figure 7.

Figure 7A shows the training accuracy of the three

classifications of Houston training set, and Figure 7B shows the

training accuracy of the three classifications of Pavia training

set. According to the trend of the graph, in the process of

increasing training samples, the classification accuracy of the

three classification models shows an overall upward trend.

Among them, the accuracy of the dual-branch CNN network

model has an obvious upward trend, and its training accuracy

is higher than the other two classification models under the

same number of samples. And when the number of training

samples is small, the dual-branch CNN network model can also

achieve better classification accuracy. In Figure 7A, when the

training sample size is 800, the accuracy of DB-CNN model

is 0.862, 0.062 higher than that of SVM model; In Figure 7B,

when the training sample size is 1,600, the precision of ELM

model and DB-CNN model is 89.73 and 97.68, respectively.

The results show that the two branch CNN network model

can achieve better classification accuracy when performing

correlation classification. The training and test times of the three

classification models under different training and test sample

numbers are compared, as shown in Table 2.

In Table 2, when the number of samples becomes large, the

training time and testing time of the three classification models
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FIGURE 8

Test error comparison of three classification models on test set.

FIGURE 9

Comparison of ROC curves of three classification models.

gradually increase, and the growth trend gradually slows down.

When the number of samples used for training and testing is

equal, the training and testing time of the dual-branch CNN

network model is the shortest, followed by the ELM model,

and the SVM model with the longest training and testing time.

For example, when the number of samples used for training

and testing is 1,000, the training time of the dual-branch CNN

model is 113.8 s, which is 29.1 s lower than the ELM model and

46.6 s lower than the SVM model; its test time is 29.8 s, which is

20.1 s lower than the ELM model, which is 30.5 s lower than the

SVM model. Therefore, under the same conditions, the training

efficiency and testing efficiency of the dual-branch CNNnetwork

model are higher, and it has a better effect in the fusion and

classification of multi-source remote sensing data. In addition,

the test errors of the three classification models on the test set

are compared and analyzed, as shown in Figure 8.

In Figure 8, as the number of iterations increases, the

classification errors of the three models gradually decrease and

finally become stable.When the number of iterations is at a small

level, the convergence speed of the dual-branch CNN network

model was faster, followed by the ELM model and the SVM

model. At 100 iterations, the error value of the dual-branch CNN

network model is minimized and stabilized, and its error value is

about 0.026. At 200 iterations, the error value of the dual-branch

CNNnetworkmodel is minimized and stabilized, the error value

of the ELM model is minimized and stabilized, and its error

value is about 0.063, the dual branch CNN network model is

0.100. When the number of iterations reaches 200, the error

value of the SVM model decreases to a minimum and tends to

be stable. According to the results, the two branch CNN network

model has the smallest error value and the best classification

effect. Finally, the ROC curves of the three classification models

are compared, as shown in Figure 9.

In Figure 9, the lower area corresponding to the ROC curve

of the dual-branch CNN network model is the largest, that is,

the AUC value is the largest, followed by the ELMmodel and the

SVM model. The AUC value corresponding to the dual-branch

CNN network model is about 0.922. AUC value of ELM model

is about 0.869, which is 0.053 lower than the dual-branch CNN

network model. AUC value of SVMmodel is about 0.837, which

is 0.032 lower than the ELM model and 0.085 lower than the

dual-branch CNN network model. The ROC curve and AUC

value represent the quality of the classification effect. From the

above results, we can see that the classification effect of the

dual-branch CNN network model is the best, and it can play

a greater role in the recognition and classification of remote

sensing images.

5. Conclusion

CNN can better classify and recognize, and they have been

widely used in many fields. In order to realize the fusion and

classification of multi-source remote sensing data, a dual branch

CNN network structure model is proposed, and ELMmodel and

SVM model are used as comparison models. According to the

results obtained, it can be seen that for the dual branch CNN

network, the HSI and LiDAR joint classification method has the

highest global classification accuracy on different data sets. On

the Pavia dataset, the global classification accuracy of the three

classification methods is the highest. Among them, the global

classification accuracy of the joint classification method is 98.46,

5.61% higher than that of the single LiDAR/VIS classification,

and 1.59% higher than that of the single HSI classification.

In the training experiment, compared with other methods, the

training accuracy of BD-CNN model is higher than that of the

other two classification models with the same sample number.

When the number of samples used in training and testing is the

same, the training time and testing time of BD-CNN model are

the lowest. In the error test experiment, when the number of

iterations of the DB-CNN model is 100, the test error reaches

the lowest steady state, which is about 0.026, 0.037 lower than
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the ELM model. In addition, the ROC curve of the DB-CNN

model corresponds to the largest lower area, that is, the AUC

value is the largest, which is about 0.922, that is, the DB-CNN

model has the best classification performance. Comprehensive

analysis shows that BD-CNN model can effectively fuse and

classify multi-source remote sensing data. However, there is still

room for improvement. In this paper, we can discuss other depth

learningmethods when classifying remote sensing data to obtain

better classification results.
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In this research, an image defogging algorithm is proposed for the electricity

transmission line monitoring system in the smart city. The electricity

transmission line image is typically situated in the top part of the image

which is rather thin in size. Because the electricity transmission line is situated

outside, there is frequently a sizable amount of sky in the backdrop. Firstly, an

optimized quadtree segmentation method for calculating global atmospheric

light is proposed, which gives higher weight to the upper part of the image

with the sky region. This prevents interference from bright objects on the

ground and guarantees that the global atmospheric light is computed in

the top section of the image with the sky region. Secondly, a method of

transmission calculation based on dark pixels is introduced. Finally, a detail

sharpening post-processing based on visibility level and air light level is

introduced to enhance the detail level of electricity transmission lines in the

defogging image. Experimental results indicate that the algorithm performs

well in enhancing the image details, preventing image distortion and avoiding

image oversaturation.

KEYWORDS

smart city, power lines, atmospheric scattering model, global atmospheric light, dark
pixels

1. Introduction

With the development of the Internet of Things sensor and image processing
technology, the monitoring requirements of the power system for the transmission line
are gradually improved. The transmission line can be equipped with image sensors to
observe its running status in real time, which leads to potential risks of prefabrication.
As an important part of power system, electricity transmission line is an important
way of power resource transmission. Its operation stability will have a direct impact on
power quality. People are always concerned with monitoring electricity transmission
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lines in order to guarantee the secure and reliable operation of
those lines. Electricity transmission lines are installed outdoors
and exposed to fog, rain, dew and other weather conditions for
a long time, and are greatly affected by the environment. Faults
such as insulator defects may occur, which will seriously affect
the normal use of the electricity transmission line and reduce
the service life of the line. Once the electricity transmission
line fails, accidents such as tripping and power outages may
occur, resulting in human and economic losses. Therefore,
regular inspection of the electricity transmission line is of great
significance to ensure the reliable, safe, and efficient operation
of the electricity transmission line. The inspection of electricity
transmission lines has been dominated by manual inspection
for a long time, but manual inspection requires staff to work in
the outdoor environment for a long time, which not only has
poor monitoring efficiency and accuracy, but also has potential
safety hazards for staff. Therefore, in recent years, the method
of monitoring electricity transmission lines through a video
monitor system has been widely used, which is of importance
to improve the monitoring efficiency of electricity transmission
lines and speed up the construction of smart cities.

In recent years, constant fog has become one of the terrible
weather situations damaging the power grid’s atmospheric
environment as a result of the rapid development of the
economic scale and the acceleration of urbanization. Fog is a
common occurrence in the atmosphere. In foggy circumstances,
the air is dense with atmospheric particles that not only
absorb and scatter the reflected light from the scene, but
also disseminate some of it into the observation equipment
(Xu et al., 2015). Therefore, in haze weather, the images
obtained by the monitoring system and the vision system will
be seriously degraded, such as image color offset, reduced
visibility, loss of details, and other problems, which seriously
affect image detection, tracking, recognition and the use of the
monitoring system (Su et al., 2020). Electricity transmission
line monitoring in hazy weather will face some problems, such
as reduced contrast, chromatic aberration, and unclear details,
which will significantly impact the visual impact of monitoring
power transmission lines, adversely affect transmission line
monitoring, and even cause misjudgment. Therefore, it is
necessary to conduct defogging research for transmission line
monitoring.

The two kinds of defogging algorithms that are now
most often utilized are image enhancement and image
restoration. Since computer hardware has improved quickly in
recent years, image defogging algorithms based on machine
learning have also been proposed (Sharma et al., 2021).
The image enhancement-based defogging algorithm merely
improves the image contrast and other characteristics using
image enhancement technology to achieve the defogging
goal. It does not take into account the physical process
of fog generation. Traditional image contrast enhancement
methods include histogram redistribution (Zhou et al., 2016),

intensity transformation (Sangeetha and Anusudha, 2017),
homomorphic filtering (Seow and Asari, 2006), wavelet
transform (Jun and Rong, 2013), and Retinex algorithm (Jobson
et al., 1997b). In Retinex theory, the image is made up of the
incident element which represents the brightness information
around the object and the reflection element which reflects
the reflection ability of itself, then the single scale Retinex
algorithm (SSR) is proposed. And then, multiscale Retinex
with color restoration (MSRCR) and the multiscale Retinex
(MSR) algorithm have both been developed on the foundation
of SSR (Jobson et al., 1997a). Defogging algorithm based
on image restoration is more commonly used at present.
Such algorithms need to consider the physical processes of
fog formation, and reasonably estimate the transmission and
atmospheric light. In the end, the atmospheric scattering model’s
calculations provide the restored image. Please note that the
word “transmission” mentioned here is not the same as the word
“transmission” in the electricity transmission line mentioned
above. The “transmission” mentioned here is a parameter in the
atmospheric scattering model that reflects the distance between
the object in the image and the observation point (such as the
camera). Without special circumstances, the t appears later to
refer to transmission in atmospheric scattering models.

Multiple image defogging is mainly based on polarization
method. Schechner proposed a method of defogging by
using two polarized images taken vertically and horizontally
(Schechner et al., 2001). Miyazaki et al. (2013) suggested a
fog removal method based on the polarization data of two
known photographs taken at various distances to predict the
characteristics of fog. Shwartz and Schechner (2006) suggested
a polarization defogging technique for images without sky areas
that choose two comparable characteristics in the scene to
estimate atmospheric scattering model parameters. However,
the polarization-based image defogging algorithm needs to take
multiple polarized images in the same weather condition, which
is hard to fulfill the practical needs.

Due to the large limitations of multiple image defogging, it
has not been widely used. The more commonly used defogging
method is the restoration-based single image defogging method.
To estimate necessary parameters based on atmospheric
scattering model, Fattal (2008) created the concept of surface
shading and the assumption that the transmission and surface
shadow are unrelated. Based on the supposition that fog-covered
images have less contrast than those taken in clear skies, Tan
(2008) proposed an defogging algorithm for images based on
the Markov random field optimization atmospheric scattering
model to maximize local contrast. Meng et al. (2013) offered a
technique to calculate the transmission of unknown scenes by
combining the boundary constraint of single image defogging
with context regularization based on weighted L1 norm. He
et al. (2010) proposed a defogging algorithm called dark channel
prior. For single image defogging, the dark channel prior
algorithm has developed as one of the most popular methods.
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In order to reduce halo and block artifacts generated by coarse
transmission estimation, He uses “soft matting” to smooth up
the coarse transmission. However, the soft matting technique
has the disadvantage of consuming too much time, so it is hard
to apply in actual situations. To resolve this issue, He et al.
(2012) proposed a guide filter and a fast guide filter (He and
Sun, 2015). The neighborhood pixels relationship of hazy images
may be transferred by the guided filter to improve air light
and transmission smoothness. However, dark channel prior
algorithm has some limitations. Dark channel prior algorithm
is ineffective for sky region or bright ground region, and the
result of defogging in this region is often oversaturated. And
dark channel prior algorithm is poor in the processing of depth
discontinuous region, and in the area where the foreground and
background of the image meet, “halo” phenomena are simple
to create. Tarel and Hautiere (2009) proposed a median filter
and its variants to replace soft matting, which can improve the
calculation speed. Ehsan et al. (2021) proposed a fog removal
method that uses local patches of different sizes to calculate
the two transmission maps and refine the transmission map
with gradient-domain guided image filtering. With the help of
training the sum of squared residual error, Raikwar and Tapaswi
(2020) suggested a method to determine the lower limit of
transmission based on the peak signal-to-noise ratio. Berman
and Avidan (2016) assumed that an image can be approximated
by hundreds of different colors, which form close clusters in
RGB space, and thus proposed a non-local prior method of
defogging.

More and more fog removal algorithms based on machine
learning have been presented as a result of the advancement
of computer neural networks and deep learning. Li et al.
(2017) reconstructed the atmospheric scattering model. Then,
to estimate the pertinent parameters of fog, an All-in-One
Dehazing Network was created utilizing residual learning
and convolutional neural network. GridDehazeNet is Liu’s
proposed end-to-end trainable convolutional neural network
for removing fog from a single image. It has pre-processing,
backbone, and post-processing, it is a multi-scale network
image defogging algorithm based on attention (Liu et al.,
2019). Cai et al. (2016) proposed a deep CNN structure for
fog removal, named Dehaze Net, to achieve end-to-end fog
removal. Zhang and Patel (2018) proposed an edge-preserving
densely connected encoder-decoder structure fusion end-to-
end densely connected pyramid defogging network, named
DCPDN. Pang et al. (2020) suggested a binocular image
dehazing Network, which requires the simultaneous use of
multiple images for defogging. Ren et al. (2018) suggested
a Gated Fusion Network for image defogging, which fuses
the three inputs preprocessed for foggy images to avoid halo
artifacts. Qin et al. (2020) proposed an attention-based feature
fusion single image dehazing network, named FFA-Net.

In order to promote the construction of smart cities, we
propose a defogging algorithm for electricity transmission line
monitoring. The following are the paper’s contributions:

• In order to solve the problem of inaccurate calculation
of global atmospheric light in the original dark channel
prior algorithm, according to the assumption that the
sky area of the electricity transmission line image is
usually in the upper half of the image, an improved
quadtree segmentation is proposed to calculate the global
atmospheric light value. The algorithm can avoid the
interference caused by the bright objects on the ground to
the solution of the global atmospheric light;
• The concept of dark pixel is introduced for the problem

that the dark channel prior is prone to the “halo” effect.
Dark pixels are located using super pixel segmentation and
a fidelity function is proposed to calculate the transmission;
• Due to the size of the electricity transmission line in

the image is tiny and difficult to observe, a detail
sharpening post-processing based on visibility and air light
is introduced to improve the image details of the electricity
transmission line.

The remainder of this paper is organized as shown below.
(Section “2 Related works) reviews atmospheric scattering
models and dark channel priors, and points out the limitations
of dark channel priors. (Section “3 Proposed method) presents
a defogging method for electricity transmission line images
based on improved quadtree segmentation and dark pixels, and
enhances image details. (Section “4 Experimental results and
discussion) evaluates the efficacy of the proposed method using
both qualitative and quantitative analyses. And the entire study
is summarized in (Section “5 Conclusion).

2. Related works

2.1. Physical model

The physical model of atmospheric scattering based on Mie
scattering theory was initially put out by McCartney (1976).
Narasimhan and Nayar (2001) believes that the wavelength of
visible light in a uniform atmosphere has nothing to do with the
scattering coefficient, and proposed a simplified version of the
atmospheric scattering model:

I (x) = I∞ρ (x) e−βd(x)
+ I∞

(
1− e−βd(x)

)
(1)

In formula (1), I is the brightness of the sky, ρ(x) denotes
the normalized radiance of a scene point x, β is the scattering
coefficient of the atmosphere, and d is the scene depth. However,
this model is too complicated, so a simplified atmospheric
scattering model is proposed. The simplified atmospheric
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FIGURE 1

Atmospheric scattering model.

scattering model developed by he is now the most used
atmospheric scattering model for expressing the principle of fog
(He et al., 2010). It is shown in the following formula:

I (x) = J (x) t (x)+ A (1− t (x)) (2)

where A is the global atmospheric light, which represents the
background lighting in the atmosphere, and I(x) and J(x) are
the fogging and defogging images, respectively. And x = (m, n) is
the coordinate of the image. t(x) is transmission. It represent the
transmission of a medium that is not scattered and successfully
entries into vision systems such as monitoring systems and
cameras. As per the atmospheric scattering theory, the scattering
of air light during the process of reaching the vision system and
the attenuation process of the reflected light from the surface of
the object reaching the vision system are the two main divisions
of the scattering of atmospheric particles. For equation (2),
J(x)t(x) is direct transmission, and A[1- t(x)] is airlight, denoted
as a(x). Direct transmission means the attenuation of the foggy
image directly passing through the air medium, and the airlight
is generated by the scattered light. The schematic diagram for
the atmospheric scattering model is shown in Figure 1. Note
that the solid line represents direct transmission and the dashed
line represents airlight.

For transmission t(x), we have:

t (x) = e−βd(x) (3)

In the above formula, d(x) represents the scene depth and,
at the same time, β is the atmospheric scattering coefficient. The
formula shows that the transmission decreases gradually as the
depth of the scene increases.

Trying to imply the transmission t(x) and the global
atmospheric light value A into the atmospheric scattering
physical model yields the defogging image J, which is the

essential step in image defogging based on the atmospheric
scattering model. The following formula can be obtained by
deriving formula (2):

J (x) =
I (x)− A

t (x)
+ A (x) (4)

It can be seen from formula (4) that the key to calculating
the defogging image is to reasonably estimate the transmission
t(x) of the foggy image and the global atmospheric light value A.
At present, the most commonly used method of defogging is the
dark channel prior theory proposed by He et al. (2010).

2.2. Dark channel prior theory

He gained a statistical rule by observing a significant number
of images without fog: for a large number of non-sky local
patches, there is always at least one color channel with pixel
intensity so low that it is close to 0. So the dark channel Jdark(x)
is defined by the following formula:

Jdark (x) = min
y∈�(x)

{
min

c∈{r,g,b}

[
Jc (y)]} (5)

where �(x) is the local area centered at x, y is the pixel in the
local area�(x), JC is the color channel of the fog-free image J, C
is the three channels of the RGB image. And r, g, b represent the
red, green and blue channels of the RGB image, respectively.

He draws the following conclusion through observation:
for an outdoor fog-free image J, due to the shadows
caused by buildings in the city or leaves in the natural
landscape, the surfaces of colored objects with low
reflectivity, and the surfaces of dark objects, dark channel
intensity of J for non-sky regions is exceedingly low,
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almost nothing. So there is the following formula:

Jdark
→ 0 (6)

The transmission calculation formula may be constructed
using the dark channel prior theory and the atmospheric
scattering model above as follows:

t (x) = 1− ω min
y∈�(x)

{
min

c

[
Ic (y)

Ac

]}
(7)

The role of ω is to retain some fog to make the image appear
more natural. The value range of ω is (0, 1), and the value is
generally set to 0.95.

The transmission obtained by this method is not accurate,
and is prone to “halo” effect. The “halo” phenomenon is an
effect that tends to occur in images after the fog has been
removed. Since the foreground is close to the observation point
and the background is far from the observation point in the
image, the depth of field of different positions in the image
has a large gap, especially for the junction of the foreground
and background. Therefore, the “halo” phenomenon is usually
generated at the junction of the foreground and background of
the image, resulting in abnormal color distortion at the edge
of the observed object in the image after fog removal, and the
“halo” phenomenon gradually weakens when the image is far
away from the edge. Therefore, He optimized the transmission
using “soft matting” to get rid of the “halo” effect. However,
the “soft matting” consumes a lot of time, so it is not suitable
or practical applications. Therefore, He proposed the guided
filter, through which the transmission optimization time can be
greatly shortened, and the resulting image edges are sharper.

In order to prevent the image from being enhanced too
much due to too small transmission, it is required to define
the bottom bound of transmission t0, which is usually set to
0.1. Then the final result can be obtained from the following
equation:

J (x) =
I (x)− A

max (t (x) , t0)
+ A (8)

It can be seen from Formula (8) that for a given fogged image
I[x], to obtain the image after defogging [that is, J(x)], only
two unknown quantities need to be solved: global atmospheric
light value A and transmission t. Therefore, when using the
atmospheric scattering model for image defogging, the most
important two steps are the calculation of global atmospheric
light A and the calculation of transmission t.

2.3. Disadvantages of dark channel
priors

In the dark channel prior algorithm, the global atmospheric
light is chosen in the brightest color channel in the image.
He picks the pixels with the highest intensity as the global

atmospheric light after first detecting the brightest top 0.1
percent of the dark channel pixels. However, this process suffers
from large areas of white objects or objects that are too bright
in the image. At this point the global atmospheric light is
misestimated, resulting in a color shift in the recovered image.
Second, it is common to create a “halo” phenomenon in the
region separating the image’s foreground and background when
employing the dark channel prior algorithm for regions with
discontinuous depths. Finally, the atmospheric scattering in the
real situation is multiple scattering. The single scattering model
is the most often used atmospheric scattering model since it
is challenging to compute multiple atmospheric scattering. As
a result, the defogging images obtained by the dark channel
prior algorithm are often too smooth and lack of image details.
Therefore, this paper will optimize the dark channel prior
algorithm for these three aspects.

3. Proposed method

The defogging algorithm flowchart from this work is shown
in Figure 2. Electricity transmission lines and power towers are
often located outdoors, and their images often have large areas
of the sky. According to the statistical law that the sky area
often exists in the upper part of the image, in order to address
the issue of erroneous estimation of the global atmospheric
light due to the influence of a large area of white objects,
a global atmospheric light solution based on the optimized
quadtree algorithm is proposed. This ensures correct estimation
of global atmospheric light. Then we define dark pixels,
perform superpixel segmentation on the input foggy image,
and locate dark pixels in the segmented superpixel block. The
transmission is calculated through a fidelity function, and the
solved transmission is optimized for color correction. The next
step is to invert the atmospheric scattering model to produce a
preliminary defogging image. Due to the thin size of electricity
transmission line, which is not suitable for observation, and
the defogging image lacks details, a detail sharpening post-
processing algorithm based on airlight constraints and visibility
constraints are used for the preliminary defogging image to
improve the texture details of the image. Finally, the final
defogging image J(x) is obtained.

3.1. Global atmospheric light
estimation

The presence of fog in the image will lead to a brighter area
in the image, so the global atmospheric light is usually selected in
the bright area, usually in the sky area. However, white objects
on the ground or high-brightness objects can easily induce an
incorrect selection of the global atmospheric light, resulting
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FIGURE 2

The flow chart of the proposed method.

in chromatic aberration in the fog-free image. Therefore, it is
necessary to improve the selection of global atmospheric light.

An optimized quadtree segmentation algorithm is used to
estimate global atmospheric light in this study. Based on the
principle that the pixel value variance of the image is often
low in the foggy area, Kim et al. (2013) suggested an algorithm
based on quadtree segmentation to select the global atmospheric
light. The input image is first divided into four sections. Then
we name the upper left area as area A, the upper right area as
area B, the lower left area as area C, and the lower right area
as area D. Then, for each region, we determine the standard
deviation and mean of the pixel values for the three R, G, and
B channels, and subtract the standard deviation from the mean
to obtain a region score. The region with the highest score is
first determined. It is then divided into four smaller parts, and
the region with the highest score is selected from those four.
Repeat the aforementioned procedure up until the size of the
selected area is below the predetermined threshold. In the final
selected area, we look for the value of the pixel closest to the
white area as the global atmospheric light. For an RGB image,
the white part is the area where the three channels of R, G, and
B are all 255. Hence the estimate of global atmospheric light
can be transformed into finding the minimum of the following
formula: ∣∣∣∣(Ir (x) , Ig (x) , Ib (x)

)
− (255, 255, 255)

∣∣∣∣ (9)

In Formula (9), I represents the input image, r, g, b
represent the RGB color channel of the input image, x represents
the pixel value of each pixel of the input image, and 255
represents the white in the RGB space. Through the quadtree
segmentation method, the global atmospheric light can be
selected in a brighter area as much as possible. However, when
there are large areas of white objects or high-contrast objects
in the non-sky area, the quadtree segmentation algorithm will
still select the non-sky area as the global atmospheric light,
as shown in Figure 3. Images are from the OTS dataset
in the Realistic Single Image Dehazing dataset. We usually

call it RESIDE. The green line in the image represents the
quadtree segmentation process, and the red fill represents the
final selected area. It can be seen from Figure 3 that the
estimation of the global atmospheric light may be disturbed
by the white objects on the ground, and the final result
is chosen on the ground and the lake surface instead of
the sky.

We optimize the quadtree segmentation for estimating the
global atmospheric light to address this issue. For the four
regions A, B, C, and D, we calculate their regional scores and
record them as scoreA, scoreB, scoreC, and scoreD, and then
compare the scores. Because the sky is mostly concentrated in
the upper portion of the image, if the area with the highest
score in the first step is located in the upper half of the
image, that is, the scoreA or the scoreB has the highest score,
the subsequent segmentation operation will be continued. If
the region with the highest score in the first step is located
in the lower half of the image, that is, the scoreC or scoreD

has the highest score, then we assign the calculation weights
ξA and ξB to the scoreA and scoreB, respectively, and the
scores are recorded as ξA·scoreA and ξB·scoreB. Then calculation
process returns to the first segmentation process, and re-
compare the scores of ξA·scoreA, ξB·scoreB, scoreC, and scoreD,
so that the global atmospheric light can be located at the
top half of the image in the first step. To ensure that the
recalculated ξA·scoreA and ξB·scoreB can be larger than scoreC

and scoreD, the calculation weight ξ is set to 1.5. Finally,
the average value of the selected area is used as the global
atmospheric light. Figure 4 depicts the process mentioned
previously.

Figure 5 shows the global atmospheric light selection result
for the three foggy images given in Figure 3 using the optimized
quadtree segmentation algorithm. The selected area of the global
atmospheric light is changed from bottom half of images to
the sky area. This shows that for foggy images with a sky, this
method can locate the global atmospheric light in the sky area
in the upper half of the image, and avoid locating it on the

Frontiers in Neurorobotics 06 frontiersin.org

89

https://doi.org/10.3389/fnbot.2022.1104559
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org/


fnbot-16-1104559 January 6, 2023 Time: 6:42 # 7

Zhang et al. 10.3389/fnbot.2022.1104559

FIGURE 3

Estimation of global atmospheric light using quadtree segmentation algorithm.

Input foggy 

image

First quadtree 
image 

segmentation

Give weight to 

the scores of 

 
region B 

Get the final 

selected area

Output global 

atmospheric light  

Y

NDetermine whether the 

highest score is achieved in 
region A or region B

Subsequent 

quadtree image 

segmentation

regions A and

FIGURE 4

Flowchart of the optimized quadtree segmentation algorithm.

ground or large areas of white objects and other interfering
objects.

3.2. Transmission optimization

Since the dark channel prior uses the minimum filter
to calculate the transmission, it is common for a depth
discontinuity to emerge at the image’s boundaries. Hence it is
easy to produce a “halo” phenomenon at the boundary between
the foreground and background. When the foggy image is
converted into a dark channel map to extract the clear part,
the size of the local patch � is difficult to determine. When
deriving the transmission calculation formula, the original
dark channel prior method assumes that the transmission
in the local patch � is a constant, which is not consistent
with the real situation. To optimize transmission, a method

combining super-pixel segmentation and the dark pixel is
utilized in this research.

Zhu pointed out in Zhu et al. (2019) that dark pixels are
widespread. First, this paper defines dark pixels as follows:

min
c

Jc (z)→ 0 (10)

Simple linear iterative clustering (Achanta et al., 2012) is
used for super-pixel segmentation of images. The technology
can be called SLIC for short. Superpixel segmentation
uses adjacent pixels with the same brightness and texture
characteristics to form irregular pixel blocks, and aggregates
pixels with similar characteristics to achieve the purpose of using
a small number of superpixel blocks to replace a large number of
pixels in original images. When the superpixel block is too large,
block artifacts and “halo” phenomena may also occur, which are
caused by the discontinuity of depth caused by the excessively
large superpixel, so the size of the superpixel block needs to
be selected reasonably. We partition the foggy image into 1,000
superpixels in this study. Next, we need to locate dark pixels in
the generated superpixel block. We locate dark pixels using the
local constant assumption (Zhu et al., 2019). Note that the local
constant assumption is only used to locate dark pixels, not to
estimate transmission. For each superpixel local patch �, there
is at least one dark pixel in it. From the assumption that the
amount of transmission in the local patch � of each superpixel
is constant, it can be known that dark pixels are found in each
superpixel local area � by finding a local minimum in minc Ic

w,
where minc Ic

w = minc [Ic (x)Ac
].

For each dark pixel, there is the following formula:

min
c

Ic (z)
Ac = [1+ t (z)]− t (z)min

c

Jc (z)
Ac (11)

A certain amount of fog should be preserved in order
to give the image a more realistic appearance, and take
Jc (z) /Ac

= 0.05 (Zhu et al., 2019). Bringing formula (10) into
formula (11), there is the following formula:

0.95t (z) ≈ 1−min
c

Ic (z)
Ac (12)

For any pixel x, the smaller the value of
minc [Ic (x) /Ac

] = min�,c [Ic (x) /Ac
] is, the closer
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FIGURE 5

Estimation of global atmospheric light using an optimized quadtree segmentation algorithm.

minc [Ic (x) /Ac
] is to the minimum value of the local patch �,

and the more likely the pixel is to be a dark pixel (Zhu et al.,
2019). To ensure that x is a dark pixel, minc [Ic (x) /Ac

] and
min�,c [Ic (x) /Ac

] should be close enough. Therefore we define
the fidelity function F(x) for the dark pixel x as follows:

F (x) = log0.001

{
max

[
min

c

Ic (x)
Ac −min

�,c

Ic (x)
Ac , 0.001

]}
(13)

As can be seen from the above, the closer minc [Ic (x) /Ac
]

and min�,c [Ic (x) /Ac
] are, the more likely pixel x is to be a

dark pixel. Formula (13) is a fidelity function. According to
this formula, when the difference between minc [Ic (x) /Ac

] and
min�,c [Ic (x) /Ac

] is less than 0.001, it can be seen from the
property of logarithmic function that the value of F(x) is 1,
thus minc [Ic (x) /Ac

] = min�,c [Ic (x) /Ac
]. Therefore, it can

be approximately considered that the pixel x is the expected dark
pixel. Therefore, there is the following formula:

∼

t (x) ≈

[
1−min

c
Ic(x)

Ac

]
0.95

=

1−min
�

[
min

c
Ic(x)

Ac

]
0.95

(14)

The final transmission is obtained by optimizing the
following energy function:

E (t) =
∑

x
F (x)

[
t (x)− t̃ (x)

]2

+λ

[
ax,N(t̃)

(
∂t
∂x

)2
+ ay,N(t̃)

(
∂t
∂y

)2
]

(15)

where ax,N(̃t) and ay,N(̃t) are weight coefficients, defined as:

ax,N(t̃) =

∣∣∣∣∣∂
(
Ic/Ac)
∂x

∣∣∣∣∣
2

+ ε

−1

(16)

ay,N(t̃) =

∣∣∣∣∣∂
(
Ic/Ac)
∂y

∣∣∣∣∣
2

+ ε

−1

(17)

The final transmission can be obtained from the above
formula, as shown in the following formula:

−→t =
(
−→
F + λ

−→
L
)−1−→

F
−→
t̃ (18)

where −→t is the vector form of t,
−→
t̃ is the vector form of t̃. And

−→
F is a sparse diagonal matrix composed of elements in F,

−→
L is

the Laplace matrix. The value of λ is 0.02.
The restored fog-free image may have color offset problems

such as too dark color in non-sky area and overexposure color
in bright sky area. It is necessary to perform color correction on
the obtained transmission. Color correction for transmission t
is performed by the following formula:

t =
max

(
t, 1−min

c
Ic(x)

Ac

)
+ σ

1+ σ
(19)

where 0.2 is used as the value for σ .
Figure 6 shows the comparison of the dark channel prior

method and proposed method on transmission and recovered
images. As shown in Figure 6C, when the transmission is
estimated using the dark channel prior algorithm, the dark
channel map contains some depth-independent details. And
for thin overhead lines of electricity transmission lines, the
range of the transmission map will be overestimated, resulting
in halo artifacts near the overhead lines in the defogging
results. As shown in Figure 6E, the proposed method can avoid
overestimating the transmission of the overhead line, avoid halo
artifacts near overhead line, and provide better transition at the
junction of overhead line and sky. Comparing the method to the
ground truth in Figure 6B, color saturation may also be avoided.

3.3. Detail sharpening

The transmission line is thin in size and difficult to observe,
so it is necessary to enhance the details of the defogging image
in order to better observe the electricity transmission line.
The actual atmospheric scattering is multiple scattering, while
the commonly used atmospheric scattering model is only one
scattering, which will lead to the loss of details and blurred
images in the defogging image. Therefore, it is necessary to
sharpen the details of the defogging image. Image blur caused
by multiple scattering is mainly related to two factors: visibility
level and airlight level. The visibility level is related to detail,
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FIGURE 6

The effect of this method on transmission line transmittance optimization. (A) Hazy image; (B) ground truth (C) transmission of dark channel
prior; (D) result of dark channel prior; (E) transmission of our method; (F) preliminary result of our method.

and the airlight level is related to depth (Gao et al., 2018). If
the airlight level in a certain area of the image is high, the
image details in that area will be smoother, so the degree of
image sharpening is proportional to the airlight level. And the
smoothness of the image details is poor when there is high
visibility in a certain area, hence the degree of image sharpening
is inversely related to the visibility level. The following is a
definition of the sharpening coefficient:

S
(
x, y

)
= S1

(
x, y

)
◦ S2

(
x, y

)
(20)

In formula (20), S(x, y) represents the sharpening coefficient
matrix. The function determined by the airlight level is
represented by S1(x, y), while the function determined by the
visibility level is represented by S2(x, y). S(x, y) means the
multiplication of the corresponding elements of the S1(x, y) and
S2(x, y) matrices.

Sigmoid function can satisfy the requirement that the
airlight level is proportional to the sharpening coefficient, and
the visibility level is inversely proportional to the sharpening
coefficient. We use the cumulative distribution function as the
constraint functions for the airlight level and visibility level. This
function is a sigmoid function, expressed as follows:

φ (x) =
1
2

[
1+ erf

(
x
√

2

)]
(21)

The following formula is the error function erf (x):

erf (x) =
2
√
π

∫ x

0
e−t2

dt (22)

The cumulative distribution function 8(x) is an sigmoid
function that increases monotonically with x. The cumulative
distribution function can meet the requirement that the
airlight level is proportional to the sharpening coefficient
and the visibility level is inversely proportional to the
sharpening coefficient. For the cumulative distribution function,
it approaches 0 as x approaches −∞ and 1 as x approaches
∞, and the cumulative distribution function is a monotonically
increasing function. If we add a minus sign to the cumulative
distribution function, we get a monotonically decreasing
function. Therefore, the cumulative distribution function can
be used as the constraint function of airlight level and visibility
level. As a result, the following definitions apply to the airlight
level and visibility level constraints:

S1
(
x, y

)
=

1
2

{
1+ erf

[
a
(
x, y

)
− aave

√
2k1

]}
(23)

S2
(
x, y

)
= 1−

1
2

{
1+ erf

[
C
(
x, y

)
− Cave

√
2k2

]}
(24)

where a(x, y) denotes the airlight level, and C(x, y) represents the
visibility level. aave represents the average value of the airlight
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FIGURE 7

Comparison of local details between the two methods. (A) Preliminary defogging result without sharpening; (B) Final defogging result after
sharpening; (C) Local detail of intermediate defogging result (insulators); (D) Local detail of final defogging result (insulators); (E) Local detail of
intermediate defogging result (buildings); (F) Local detail of final defogging result (buildings).

FIGURE 8

Experimental results of different methods for Figure 1: (A) input image; (B) ground truth; (C) dark channel prior; (D) Fattal et al.; (E) Meng et al.;
(F) Tarel et al.; (G) Ehsan et al.; (H) Berman et al.; (I) Raikwar et al.; (J) proposed.
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FIGURE 9

Experimental results of different methods for Figure 2: (A) input image; (B) ground truth; (C) dark channel prior; (D) Fattal et al.; (E) Meng et al.;
(F) Tarel et al.; (G) Ehsan et al.; (H) Berman et al.; (I) Raikwar et al.; (J) proposed.

FIGURE 10

Experimental results of different methods for Figure 3: (A) input image; (B) ground truth; (C) dark channel prior; (D) Fattal et al.; (E) Meng et al.;
(F) Tarel et al.; (G) Ehsan et al.; (H) Berman et al.; (I) Raikwar et al.; (J) proposed.

level, Cave represents the average value of the visibility level, and
k1 and k2 are the slope control coefficients. The visibility level
C has a relationship with the Weber brightness (Hautiere et al.,
2008). The expression for visibility level C is as follows:

C (x) =
1L

(
x, y

)
Lb
(
x, y

) = Lt
(
x, y

)
− Lb

(
x, y

)
Lb
(
x, y

) (25)

In the above formula, 1L is the brightness difference
between the preliminary defogging result and the background
image, Lt is the brightness of the preliminary defogging result,
and Lb is the brightness of the image background. RGB
space is the most commonly used color space, including three
basic colors: red (R), green (G), and blue (B), while YCbCr
is another color space, including luminance component (Y),
blue chrominance component (Cb), and red chrominance
component (Cr). To calculate the brightness difference, the
image needs to be transferred from RGB space to YcbCr space.

The preliminary defogging result is converted from RGB to
YCbCr space, and the brightness component Lt is extracted,
then the preliminary defogging result is low-pass filtered to
produce Lb.

The final enhancement result is as follows:

Jfinal
(
x, y

)
= J

(
x, y

)
+ θ · S

(
x, y

)
◦T
(
x, y

)
(26)

For formula (26), Jfinal(x,y) is the final defogging result,
J(x,y) is the preliminary defogging result, and the upper bound
on the enhancement is constrained using θ . T(x,y) is the
high-frequency value of the preliminary result J(x,y), which is
obtained by Gaussian filtering on J(x,y) to prevent excessive
enhancement of flat areas such as the sky. The preliminary
defogging result J (x, y) in Formula (26) refers to the defogging
result obtained by formula (8) after calculating the global
atmospheric light A and transmission t of the input image I (x)
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FIGURE 11

Experimental results of different methods for Figure 4: (A) input image; (B) ground truth; (C) dark channel prior; (D) Fattal et al.; (E) Meng et al.;
(F) Tarel et al.; (G) Ehsan et al.; (H) Berman et al.; (I) Raikwar et al.; (J) proposed.

FIGURE 12

Experimental results of different methods for Figure 5: (A) input image; (B) ground truth; (C) dark channel prior; (D) Fattal et al.; (E) Meng et al.;
(F) Tarel et al.; (G) Ehsan et al.; (H) Berman et al.; (I) Raikwar et al.; (J) proposed.

through the methods of (Section “3.1 Global atmospheric light
estimation”) and (Section “3.2 Transmission optimization”).
That is, the fog-free image without detail sharpening.

The final defogging result after detail sharpening has more
accurate local details. Figure 7 shows the comparison between
the preliminary defogging results without sharpening and the
final defogging results after sharpening. The details of the
electricity transmission lines and insulators after sharpening
are richer. According to Figure 7D, the electricity transmission
line and insulator have more prominent image details after
sharpening. In addition, the details of distant buildings have
also become clearer. As shown in Figures 7E, F, the details
of buildings in the image after detail sharpening are more
prominent.

4. Experimental results and
discussion

The efficiency of proposed defogging algorithm is
examined through qualitative and quantitative comparisons
with widely utilized defogging methods. We select foggy
images with electricity transmission lines in the RESIDE
dataset and compare with the methods of He et al. (2010),
Fattal (2008), Meng et al. (2013), Tarel and Hautiere
(2009), Ehsan et al. (2021), Berman and Avidan (2016),
and Raikwar and Tapaswi (2020). The following parameters
are selected for this study: ξ = 1.5, λ = 0.02, ε = 0.00001,
σ = 0.2, k1 = 25, k2 = 0.01, θ = 3. The experimental
platform is a 64-bit Windows 10 operating system laptop.
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FIGURE 13

Experimental results of different methods for Figure 6: (A) input image; (B) ground truth; (C) dark channel prior; (D) Fattal et al.; (E) Meng et al.;
(F) Tarel et al.; (G) Ehsan et al.; (H) Berman et al.; (I) Raikwar et al.; (J) proposed.

FIGURE 14

Experimental results of different methods for Figure 7: (A) input image; (B) ground truth; (C) dark channel prior; (D) Fattal et al.; (E) Meng et al.;
(F) Tarel et al.; (G) Ehsan et al.; (H) Berman et al.; (I) Raikwar et al.; (J) proposed.

The CPU is Inter(R) Core i7-11800 H and clocked at
2.30 GHz. The GPU is NVIDIA RTX3060. The computer
memory is 40 GB. The software platform is MATLAB
2021b.

4.1. Qualitative comparison

We select 8 foggy images with electricity transmission lines
or power towers from the OTS dataset in the RESIDE dataset
with ground truth as research objects. We name images as
Figures 1–8. The defogging results are shown in Figures 8–15.
Note that the post-processing of the transmission of He’s method
employs guided filter, rather than soft matting.

It can be seen from Figures 8–15 that dark channel prior
and Meng’s method will over enhance the sky area, resulting
in color deviation or over saturation of the sky area, while it
is too dark for the non-sky area. Therefore, the fog removal
image is very different from the ground truth. The reason for

this is that the transmission is often underestimated when using
these methods. At the same time, it is noted that when He’s
method is used to defog the electricity transmission line, because
the power tower and electricity transmission line are used as
the foreground and the sky area is used as the background,
there is a depth discontinuity between the foreground and the
background, so there will be an obvious “halo” effect at the edge
of the electricity transmission line, which is not conducive to
observation. The “halo” phenomenon will lead to the transition
area of color deviation between the image to be observed and
the background, and produce abnormal colors of white or other
colors around the image, affecting the observation of the image.
This phenomenon is particularly obvious when dealing with
Figures 2, 3, 4, 8.

For Fattal’s method, the sky area in the defogging image
will be overexposed, resulting in chromatic aberration in the sky
area. In addition, due to the tine size of the transmission line,
the image of the electricity transmission line occupies a small
proportion in the entire image, so the image information of the
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FIGURE 15

Experimental results of different methods for Figure 8: (A) input image; (B) ground truth; (C) dark channel prior; (D) Fattal et al.; (E) Meng et al.;
(E) Tarel et al.; (G) Ehsan et al.; (H) Berman et al.; (I) Raikwar et al.; (J) proposed.

TABLE 1 Comparison of peak signal-to-noise ratio (PSNR) of the defogging images.

Figure He Fatal Meng Tarel Ehsan Berman Raikwar Our

I 17.4379 16.3903 15.4995 12.5983 16.2771 14.9417 13.8952 19.82

II 12.4694 14.655 12.1856 15.3734 12.0424 13.0669 12.7189 18.5631

III 14.8967 13.5464 13.5908 14.4461 13.599 16.1208 14.8689 20.7617

IV 11.8169 14.5616 11.985 14.6685 11.2372 15.6598 11.4271 18.2309

V 16.8005 12.7247 16.6877 10.9627 15.965 18.8939 16.0547 19.2684

VI 11.6662 12.5876 13.9475 13.1485 11.4975 15.1161 13.0413 17.9578

VII 14.7942 12.2326 15.6319 12.8542 14.4614 19.006 13.8794 19.6325

VIII 16.0436 11.5157 16.8198 16.5496 15.0584 20.0116 14.0607 20.1302

Average 14.4907 13.5267 14.5435 13.8252 13.7673 16.6021 13.7433 19.2956

TABLE 2 Comparison of structural similarity index measurement (SSIM) of the defogging images.

Figure He Fatal Meng Tarel Ehsan Berman Raikwar Our

I 0.7908 0.6541 0.7542 0.6952 0.7373 0.7186 0.5402 0.7857

II 0.6939 0.4905 0.6952 0.7566 0.6577 0.652 0.5856 0.7621

III 0.6798 0.6411 0.6309 0.8271 0.6425 0.5822 0.6662 0.8238

IV 0.706 0.6852 0.6622 0.7349 0.7057 0.7057 0.7057 0.6986

V 0.7357 0.487 0.6886 0.7378 0.7095 0.7411 0.6692 0.785

VI 0.6548 0.5038 0.795 0.7476 0.6958 0.5672 0.5852 0.8185

VII 0.7135 0.4965 0.7285 0.7521 0.6884 0.8242 0.6088 0.7868

VIII 0.8501 0.5455 0.8467 0.8562 0.8287 0.9023 0.7999 0.862

Average 0.7281 0.563 0.7252 0.7634 0.7082 0.7117 0.6451 0.7903

electricity transmission line in the defogging image is partially
or completely lost, which is not conducive to the observation
of the electricity transmission line. This phenomenon has a
particularly obvious impact on the results of the Fattal’s method
for defogging in Figures 5–8. For Tarel’s method, this method
cannot completely remove fog, the image still retains a part
of fog after defogging, and the overall image looks hazy with

low saturation. For Ehsan’s method, there is a large chromatic
aberration in the sky area, and there is a “halo” effect around the
electricity transmission line, which is particularly evident in the
defogging images of Figures 1, 3, 4, 6, 8. For Berman’s method,
serious color distortion and color shift occur in the sky area
of some defogging images, as shown in Figures 2, 3, 5, which
are quite different from the ground truth. This is because this
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TABLE 3 Comparison of information entropy of the defogging images.

Figure He Fatal Meng Tarel Ehsan Berman Raikwar Our

I 7.1639 6.586 7.3179 7.0902 7.0475 7.2592 6.9901 7.3549

II 7.4548 4.1126 7.4348 7.3702 7.3647 7.3263 7.3466 7.5985

III 7.5324 5.6041 7.4242 6.8307 7.3969 7.5966 7.5963 7.4889

IV 7.5499 5.5866 7.4739 7.2516 7.438 7.7022 6.9906 7.5764

V 7.3755 6.5764 7.3821 6.5202 7.2797 7.3142 7.5267 7.4763

VI 7.1002 5.2216 7.246 6.9646 7.1061 7.3705 7.1291 7.4727

VII 7.4989 5.6138 7.5771 6.9565 7.3666 7.5943 7.5273 7.6219

VIII 7.5316 5.6522 7.5435 6.678 7.4648 7.4519 7.5322 7.6213

Average 7.4009 5.6192 7.4249 6.9578 7.308 7.4519 7.3299 7.5264

TABLE 4 Comparison of mean squared error (MSE) of the defogging images.

Figure He Fatal Meng Tarel Ehsan Berman Raikwar Our

I 1172.9902 1492.9522 1832.8653 3574.8292 1532.4007 2084.0716 2651.9413 677.7674

II 3682.4637 2226.287 3931.1625 1886.8427 4062.9096 3209.1541 3476.8593 905.2525

III 2105.7584 2873.7249 2844.4478 2335.9851 2839.0908 1588.5627 2119.313 545.6503

IV 4279.4657 2274.6594 4117.0035 2219.371 4890.5339 2256.9768 4681.292 977.2104

V 1358.4117 3472.2773 1394.1472 5209.7195 1646.554 1646.554 1612.9123 769.5488

VI 4430.6094 3583.5926 2620.1912 3149.4204 4606.1166 2002.0382 3228.1386 1040.6388

VII 2156.0511 3888.8094 1777.8414 3370.2747 2327.7683 817.48 2661.5958 707.6773

VIII 1617.0443 4586.8511 1352.3898 1439.1915 2028.7847 648.512 2552.7462 631.0411

Average 2600.3493 3049.8942 2483.7561 2898.2043 2991.7698 1781.6687 2873.0998 781.8483

TABLE 5 Comparison of universal quality index (UQI) of the defogging images.

Figure He Fatal Meng Tarel Ehsan Berman Raikwar Our

I 0.8314 0.7429 0.8439 0.6734 0.7999 0.7679 0.5632 0.8665

II 0.726 0.6864 0.8223 0.7922 0.7022 0.7529 0.6101 0.9369

III 0.8077 0.8525 0.8725 0.8331 0.7643 0.902 0.7829 0.9638

IV 0.7683 0.8261 0.7391 0.7753 0.7278 0.7912 0.5586 0.8571

V 0.8791 0.7446 0.9149 0.6979 0.8565 0.898 0.7825 0.9234

VI 0.6906 0.7417 0.8542 0.7017 0.7494 0.8552 0.6078 0.883

VII 0.8367 0.7472 0.8857 0.7334 0.8224 0.9041 0.6716 0.8886

VIII 0.9238 0.8622 0.9433 0.9232 0.9023 0.9645 0.8122 0.9781

Average 0.808 0.7755 0.8595 0.7663 0.7906 0.8545 0.6736 0.9122

method needs to preset a gamma value for each image, and the
most suitable gamma value for different images is an unknown
quantity. If the best gamma value for each image is unknown,
Berma recommends trying to set the default gamma value to
1. Therefore, Berman’s algorithm cannot satisfy all situations,
and has limitations for practical use. Raikwar’s method can
eliminate the “halo” phenomenon effectively, but it will still
cause color saturation in the sky area, resulting in color shift.
At the same time, the method also has low contrast in the non-
sky area, which leads to darkness in the non-sky area of the

defogging image and affects the observation of power towers on
the ground.

For our algorithm, the color saturation of the image after
defogging is moderate, the sky area is not over-saturated, and
the ground area is not too low in brightness, the “halo” effect
can be reduced at the same time. And the visual effect is most
similar to the ground truth. In addition, because the proposed
method sharpens and enhances the details of the defogging
image, the power towers and electricity transmission lines in the
defogging image have a clearer visual effect, retaining clearer
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TABLE 6 Comparison of average gradient (AG) of the defogging images.

Figure He Fatal Meng Tarel Ehsan Berman Raikwar Our

I 6.2546 9.3965 7.9195 7.2134 6.1852 7.6195 7.6144 10.391

II 4.8603 4.7456 6.3885 5.1114 4.6492 5.3087 5.7916 8.4631

III 7.138 7.2709 8.193 5.6889 7.006 8.3407 8.1677 10.0117

IV 8.6812 8.9836 10.0807 8.1328 8.8091 9.1037 10.1014 12.2277

V 8.215 12.1108 9.1919 6.1002 7.9448 8.7118 9.3035 12.5756

VI 2.7866 3.4014 2.8994 2.9219 2.5547 3.1448 2.8588 4.902

VII 5.4091 4.6841 6.4485 4.4309 5.0904 5.7151 6.1237 7.6858

VIII 11.7685 10.2167 14.1335 7.9979 11.8835 12.1639 13.4144 17.8921

Average 6.8892 7.6012 8.1569 5.9497 6.7654 7.5135 7.9219 10.5186

outlines and more detailed details. It is convenient to observe
electricity transmission lines and power towers. The qualitative
study above shows that our method has better visual effects, and
the fog removal effect is better and more realistic.

4.2. Quantitative comparison

The proposed defogging algorithm will be compared and
analyzed with previous defogging algorithms utilizing various
test metrics in the section on quantitative comparison. The
following are the evaluation methods used in this study: peak
signal-to-noise ratio (PSNR), information entropy, structural
similarity index measurement (SSIM), mean squared error
(MSE), universal quality index (UQI), average gradient (AG).
According to whether there is a reference image, image
evaluation methods can be divided into full reference image
quality assessment and no reference image quality assessment.
Full reference image quality assessment refers to comparing the
difference between the image to be evaluated and the reference
image when there is an ideal image as the reference image. No
reference image quality assessment refers to directly calculating
the visual quality of an image when there is no reference image.
PSNR, SSIM, MSE, and UQI belong to full reference image
quality assessment, while information entropy and AG belong
to no reference image quality assessment. PSNR is the most
commonly used image quality evaluation metric, which is an
objective standard to measure the level of image distortion. The
similarity between the fog removal image and the ground truth is
directly proportional to the value of PSNR. A larger PSNR value
means that the smaller the distortion of the defogging image and
the better the defogging effect. SSIM is a measurement metric
that objectively compares the brightness, contrast, and structure
of two images to determine how similar they are to one another.
The value of SSIM is a number in the range of 0 to 1, and the
closer the value is to 1, the more closely the defogging images
resemble the ground truth image. For an image, the average
amount of information can be determined via the information
entropy. The more details and richer colors of the image after

defogging, the greater the information entropy. The UQI can
reflect the structural similarity between two images. The larger
the value of UQI, the closer the two images are. The AG is related
to the changing characteristics of the image detail texture and
reflects the sharpness. The clearer the image, the higher the value
of AG. Note that SSIM and UQI belong to the full reference
image quality assessment and need to be compared with the
reference image when calculating. Therefore, we selected the
ground truth of OTS data set as the reference image, compared
the defogging images obtained by different methods with the
ground truth, and obtained the evaluation results. Similarly,
PSNR and MSE also chose ground truth as the reference image.

Tables 1–6 show the results of evaluation metrics
obtained when different defogging algorithms are adopted
in Figures 1–8. For each row in the table, the bold value
represents that the evaluation metric can obtain the optimal
result when the defogging algorithm corresponding to the value
is adopted for the image.

As shown in Tables 1–6, for PSNR, MSE and AG,
compared with other comparison algorithms, the algorithm
proposed in this paper achieves the best effect for each image,
and obviously the average evaluation results also achieve
the best effect. For SSIM, information entropy and UQI,
the proposed method achieves the highest or relatively high
performance on single image metrics, respectively, and the
best performance on average score. For SSIM, the average
value obtained by the method proposed in this paper is
0.7903, which is 3.4% higher than that of Tarel, the second
highest ranking method, and 28.76% higher than that of
Fattal, the lowest ranking method. For information entropy,
the method proposed in this paper achieves an average value
of 7.5264, which is 0.99% higher than Berman’s method with
the second highest ranking and 25.34% higher than Fattal’s
method with the lowest ranking. For UQI, the method proposed
in this paper achieves an average value of 0.9122, which is
5.78% higher than that of Meng, the second highest ranking
method, and 26.16% higher than that of Raikwar, the lowest
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ranking method. Quantitative analysis show s that the image
obtained by using the proposed method has better structure
similarity, rich information content, better color restoration and
clarity. As a result, the proposed method has good visual effect.

For the evaluation results of a single defogging image,
Berman’s method and Raikwar’s method will cause color shift
and over-saturation in the sky area, making the sky area more
yellow or blue. And the information entropy is an indicator that
reflects the richness of the color, so the information entropy is
sometimes higher when using Berman’s method and Raikwar’s
method. At the same time, Berman’s method requires a gamma
value to be set in advance, so the application scenarios are
limited. Although Tarel’s method is used for some images
to obtain the best SSIM, Tarel’s method cannot completely
remove the fog, and the details of electricity transmission
lines in the defogging image are not obvious, which is not
conducive to observation.

In general, this method can enhance image details,
avoid image distortion and color offset, and has a good
defogging effect.

5. Conclusion

In this study, we propose an image defogging algorithm
for power towers and electricity transmission lines in video
monitoring system. First of all, in view of the statistical law that
most of the outdoor electricity transmission line images have a
sky area in the upper part of the image, the proposed algorithm
uses an improved quadtree segmentation algorithm to find the
global atmospheric light, then locates the global atmospheric
light in the sky area containing the electricity transmission line,
preventing the white or bright objects on the ground interfere
with the calculation of global atmospheric light. Second, to solve
the “halo” effect when the transmission is computed by the
dark channel prior, the algorithm in this paper introduces the
concept of dark pixels, and uses superpixel segmentation to
locate the dark pixels and use a fidelity function to compute
the transmission. Finally, in view of the problem that the size
of outdoor electricity transmission lines is tiny and unsuitable
for observation, this paper introduces a detail enhancement
post-processing based on visibility level and air light level to
enhance the details of defogging images. We assess the efficacy
of the proposed method by quantitatively and qualitatively
assessing defogging images of power towers and transmission
lines that were acquired using various methods. The results of
the experiment proved that the defogging images restored by
suggested algorithm have better detail level, structural similarity
and color reproduction, and can effectively remove fog, which
is superior to existing algorithms. In addition, the algorithm
proposed in this paper can not only be used in power system
online monitoring, but also can be extended to community
monitoring, UAV monitoring, automatic driving, industrial

production, Internet of Things and other fields, with broad
application space. In the further work, we are going to do
research on image defogging combined with dark image en-
hancement to expand the application range of the algorithm.
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Multi-exposure electric power
monitoring image fusion
method without ghosting based
on exposure fusion framework
and color dissimilarity feature
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Jian Yang1, Bin Lv1 and Guohua Zhou1

1Hangzhou Xinmei Complete Electric Appliance Manufacturing Co., Ltd., Hangzhou, China, 2School

of Electrical and Electronic Engineering, Shandong University of Technology, Zibo, China

To solve the ghosting artifacts problem in dynamic scenemulti-scale exposure

fusion, an improvedmulti-exposure fusionmethod has been proposedwithout

ghosting based on the exposure fusion framework and the color dissimilarity

feature of this study. This fusion method can be further applied to power

systemmonitoring and unmanned aerial vehicle monitoring. In this study, first,

an improved exposure fusion framework based on the camera responsemodel

was applied to preprocess the input image sequence. Second, the initial weight

map was estimated by multiplying four weight items. In removing the ghosting

weight term, an improved color dissimilarity feature was used to detect the

object motion features in dynamic scenes. Finally, the improved pyramid

model as adopted to retain detailed information about the poor exposure

areas. Experimental results indicated that the proposed method improves the

performance of images in terms of sharpness, detail processing, and ghosting

artifacts removal and is superior to the five existing multi-exposure image

fusion (MEF) methods in quality evaluation.

KEYWORDS

ghosting artifacts, electric power monitoring, camera response model, color

dissimilarity feature, pyramid, multi-exposure image fusion

1. Introduction

Since the objects are constantly in motion, compared with most natural scenes, the

dynamic range of the existing ordinary cameras is very narrow (Akçay et al., 2017).

Therefore, the captured image cannot have all the details in the high dynamic range

(HDR) scene at disposable. Dynamic range refers to the ratio between the brightness

in the brightest and darkest areas of the images. To address the issue of low dynamic

range (LDR) images, we used HDR imaging technology tomerge LDR images of different

scenes captured into HDR images (Debevec and Malik, 2008).
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At present, there are twomethods for HDR imaging, namely,

MEF and tone mapping. The tone mapping method requires

the camera response function (CRF) for correction in the HDR

imaging process and also uses the tone mapping operator

to convert HDR images to LDR images that can be shown

on traditional LDR devices. The MEF method directly fuses

images taken at different exposure levels in the same scene

to generate HDR images with rich information. It makes up

for the shortcomings of the tone mapping method. Exposure

evaluation, CRF correction, and tone mapping operation are not

required during HDR imaging. Therefore, it saves computation

costs and is widely used in high-dynamic-range imaging.

In recent years, many MEF methods have been successfully

developed. According to whether the objects in the input

image sequence are moving or not, they were divided into two

methods, namely, the static scene MEF method (Mertens et al.,

2007; Heo et al., 2010; Gu et al., 2012; Zhang and Cham, 2012;

Shen et al., 2014; Ma and Wang, 2015; Nejati et al., 2017; Huang

et al., 2018; Lee et al., 2018; Ma et al., 2018; Wang et al., 2019;

Ulucan et al., 2021; Wu et al., 2021; Hu et al., 2022) and the

dynamic scene MEF method (Li and Kang, 2012; Qin et al.,

2014; Liu and Wang, 2015; Vanmali et al., 2015; Fu et al.,

2016; Ma et al., 2017; Zhang et al., 2017; Hayat and Imran,

2019; Li et al., 2020; Qi et al., 2020; Jiang et al., 2022; Luo

et al., 2022; Yin et al., 2022). Mertens et al. (2007) proposed

a technique for fusing exposure sequences into high-quality

images using multi-scale resolution. It can generate natural-

color images, but the edge texture details of the fusion image

are largely lost. Zhang and Cham (2012) proposed a method to

process static and dynamic exposure compositions using image

gradient information. This method can reduce the tedious tone

mapping steps but cannot deal with the ghosts caused by the

movement of objects and cameras. Gu et al. (2012) proposed a

MEF method using the Euclidean metric to measure intensity

distance in gradient domain feature space. It can produce fused

images with rich information. Shen et al. (2014) proposed

an advanced exposure fusion method. The method integrates

local, global, and saliency weights into the weight processing

problem. Ma andWang (2015) proposed a patch decomposition

MEF method to save running time. It improves the color

appearance of the fusion image based on the decomposition

of the image patches into three components, namely, average

intensity, signal structure, and signal strength. Later, Ma et al.

combined structural similarity with patch structure. Ma et al.

(2018) proposed a MEF method to increase the perceptual

quality by optimizing the color structure similarity index (MEF-

SSIMc). Nejati et al. (2017) first disaggregated the source

input image into basic and detail levels. Second, the exposure

function is adopted to handle the weight problem. Although this

method improves computational efficiency, it cannot remove

the ghosts of dynamic scenes. Lee et al. (2018) designed

an advanced weight function. Its function is to increase the

weights of the bright regions in underexposure images and

the dark regions in overexposure images while suppressing the

oversaturation of these regions. Huang et al. (2018) proposed

the color multi-exposure image fusion method to enhance the

detailed information of fusion images. The method is based on

decomposing the images into three weights, including intensity

adjustment, structure preservation, and contrast extraction, and

fusing them separately, preserving a great deal of detailed

information for the input images. Wang et al. (2019) proposed

a multi-exposure image fusion method in YUV color space.

Simple detail components are used to strengthen the fused image

details, which can retain the brightest and darkest area details

in the HDR scene. A few pieces of literature (Ulucan et al.,

2021; Wu et al., 2021; Hu et al., 2022) describe the recent

results of the MEF method. Ulucan et al. (2021) designed a

MEF technology to obtain accurate weights of fused images.

The weight map is constructed by watershed masking and linear

embedding weights. Then, the weight map and the input image

are fused. This method can produce fusion images with lots of

details and a good color appearance. Wu et al. (2021) presented

a MEF method based on the improved exposure evaluation

and the dual-pyramid model. The method can be applied in

the computer vision field and the medical, remote sensing,

and electrical fields. Hu et al. (2022) proposed a MEF method

for detail enhancement based on homomorphic filtering. In

terms of weight map calculation, threshold segmentation and

Gaussian curves are utilized for processing. In terms of detail

enhancement, the pyramid model of homomorphic filtering is

used for processing weight maps and input image sequences.

In the dynamic sceneMEF process, there is an object motion

phenomenon in the input image sequence. Therefore, we should

consider removing ghosting caused by object motion. Heo

et al. (2010) proposed a high-dynamic-range imaging (HDRI)

algorithm using a global intensity transfer function to remove

ghosting artifacts. Li and Kang (2012) proposed a MEF method

to remove ghosting utilizing histogram equalization and color

dissimilarity feature using median filtering. Qin et al. (2014)

used a random walk algorithm to maintain the content of

the moving objects and provide more details. Therefore, this

method can process dynamic scenes and reduce the ghosting

artifacts of fused images. To increase the color brightness of

the fused image, Vanmali et al. (2015) proposed a weight-

forced MEF method without ghosting. Mertens et al. (2007)

presented an algorithm to obtain the weighted map and used

the weight-forced technology to force the weight of newly

detected objects to zero. Therefore, it can produce ghost-

free images with good color and texture details. Li and Kang

(2012) presented a multi-exposure image fusion method based

on DSIFT deghosting. It was adopted to extract the local

contrast of the source image and remove the ghosting artifacts

in the dynamic scene using the dense SIFT descriptor. To

enhance the quality of ghost-free fusion images, Ma et al. (2017)

proposed a MEF method (SPD-MEF) based on structural patch

decomposition. It uses the direction of signal structure in the
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patch vector space to detect motion consistency, which removes

ghosts. Zhang et al. (2017) introduced the inter-consistency

of pixel intensity similarity in input image sequences and the

intra-consistency of the interrelationships between adjacent

pixels. To reduce the cost of motion estimation and accelerate

MEF efficiency, Hayat and Imran (2019) presented a MEF

method (MEF-DSIFT) based on dense SIFT descriptors and

guided filtering. The method calculates the color dissimilarity

feature using histogram equalization and median filtering,

which removes the ghosting phenomenon in the MEF of

dynamic scenes. Recently, Qi et al. (2020) proposed a MEF

method based on feature patches. This method removes ghosts

in dynamic scenes by prior exposure quality and structural

consistency checking, which improves the performance of ghost

removal. Li et al. (2020) proposed a fast multi-scale SPD-MEF

method. It can decrease halos in static scenes and ghosting in

dynamic scenes.

The available MEF methods are mainly suitable for static

scene fusion, but they lack robustness to dynamic scenes,

which causes a poor ghost removal effect. Therefore, this study

adopts the multi-exposure image fusion method of weighted

term deghosting. Based on the Ying method, an improved

exposure fusion framework based on the camera response

model is proposed to process input image sequences. Based

on the Hayat method, an improved color dissimilarity feature

is proposed for dynamic scenes, which is used to remove

ghosting artifacts caused by object motion. In this study, the

proposed method can generate images without ghosting fusion

with pleasing naturalness and sharp texture details. Overall,

the main advantages of the proposed method are summarized

as follows:

(1) This study proposes an improved exposure fusion framework

based on the camera response model. For the first time, the

input image sequences processed by the fusion framework

are used as multi-exposure input source image sequences.

Through the fusion framework processing, the brightness

and contrast of the source image are enhanced, and vast

details are retained.

(2) The initial weight map is designed. It is obtained by

calculating four weight terms, namely, local contrast,

exposure feature, brightness feature, and improved color

dissimilarity feature, of the input image and multiplying the

four weight terms together. For dynamic scenes, an improved

color dissimilarity feature is proposed based on a hybrid

median filter and histogram equalization, which strengthens

the sharpness of the image and has a better deghosting effect.

(3) Weighted guided image filtering (WGIF) is utilized

to refine the initial weight map. The improved multi-

scale pyramid decomposition model is used to add the

Laplacian pyramid information to the highest level of the

weighted mapping pyramid to weaken halo artifacts and

retain details.

The rest of the study is organized as follows: Section 2

describes in detail the proposed multi-scale fusion deghosting

method. In section 3, the effectiveness of the proposed method

is obtained by analyzing the experiment results. Finally, section

4 concludes this study and makes prospects for the future.

2. Multi-scale image fusion
ghosting removal

2.1. Improved exposure fusion framework
based on the camera response model

There are overexposure/underexposure areas in the input

image sequence. The input image sequence used for direct multi-

scale image fusion may affect the contrast and sharpness of

the fused images. Therefore, we transform the brightness of all

images in the exposure sequence and carry out a weighted fusion

of images before and after brightness transform to enhance

image contrast, as in Equation (1).







Ii(x, y) = M(x, y) ◦ Pci (x, y)+(1-M(x, y)) ◦ Pci

′

(x, y)

Pci

′

(x, y)=g(Pc, ki) = βPγ
= eb(1−ka)Pk

a
(x, y)

(1)

where g is the brightness transfer function, which uses the β-

γ correction model. Pi(x,y), I = 1, 2, 3 ...; N is the input image;

Pi
′

(x, y) is the image of Pi(x,y) brightness change in the exposure

sequence; and ki is the exposure rate of the i-th image. M is

the weight map of the input image of Pi(x,y); “
◦” indicates the

dot product operator; c is the index of three-color channels; a

= −0.3293 and b = 1.1258 are the parameters of the CRF; and

Ii(x,y) is the enhancement result.

For low-light images, image brightness Li(x,y) is obtained

using the maximal value in the three color channels in

Equation (2).

Li(x, y) = max
c∈{R,G,B}

Pi
c(x, y) (2)

The illumination map T estimation algorithm has been

extensively studied. This study adopts the morphological closure

operation to calculate the initial illumination map Ti by Fu et al.

(2016), as shown in Equation (3).

Ti(x, y) =
Li(x, y)·Qi(x, y)

255
(3)

where Qi(x,y) denotes a structural element, and “·” denotes

an end operation. The range is mapped to [0,1] downstream

operations by dividing by 255. Then, weighted guided image

filtering (WGIF) (Li et al., 2014) is used to optimize the initial

illumination map Ti(x,y), which can better remove the halo

phenomenon than the existing guided image filter (GIF). The V

level in the HSV color space for the input images is regarded as

the guiding image in WGIF.
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FIGURE 1

Results of dynamic scene “Arch” image sequence processed with/without CRF exposure fusion framework. (A) “Arch” image sequence; (B)

Without CRF exposure fusion framework processing method (Hayat and Imran, 2019); (C) ICCV image processing method (Ying et al., 2017b);

(D) CAIP image processing method (Ying et al., 2017a); (E) The image processing method proposed in this study.

It should be noted that the key point of image fusion

enhancement is the design of the weight mapM(x,y). The weight

map M(x,y) is calculated using the method proposed by Ying

et al. (2017a) in Equation (4).

M(x,y)=(T
op
i (x, y))θ (4)

where θ = 0.5 is a parameter to control the enhanced

intensity and T
op
i (x, y) represents the optimized illumination

map. Besides, we used the Ying et al. (2017a) exposure rate

determination method to obtain the best exposure rate k. To

obtain images with good sharpness, the non-linear unsharp

masking algorithm (Ngo et al., 2020) proposed by Ngo et al. is

used to increase the naturalness and sharpness of fused images.

Figure 1 shows the effect with/without CRF exposure fusion

framework on experiment results. Figure 1B shows the results

of the without CRF exposure fusion framework. Figures 1C–

E are the result of the CRF exposure fusion framework. In

Figure 1D, although the contrast of the image is improved,

the image suffers from oversaturation distortion. The proposed

fusion framework (see Figure 1E) significantly improves the

brightness and sharpness of over/underexposure regions in the

source input image sequences. Therefore, we used the proposed

exposure fusion framework for related experiments in the

following algorithm.

2.2. Multi-exposure image fusion without
ghosting based on improved color
dissimilarity feature and improved
pyramid model

This section proposes an improved multi-exposure image

fusion method without ghosting. The proposed method is

mainly for motion scenes in multi-exposure images. Figure 2

shows the flow schematic drawing of the proposed method.

2.2.1. Improved color dissimilarity feature

An improved color dissimilarity feature based on fast multi-

exposure image fusion with a median filter and recursive filter is
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FIGURE 2

Schematic diagram of the proposed method.

proposed by Li and Kang (2012). Unlike themethod proposed by

Li and Kang (2012), static background images IS of the scene are

processed by a hybrid median filter (mHMF) (Kim et al., 2018)

as in Equation (5).

IS=mhmf (IHEmin(x, y)) (5)

where IS represents the static background of the scene andmhmf

(·) denotes an operator. The hybrid median filter (mHMF)

(Kim et al., 2018) was applied to the worst image IHEmin(x, y)

in the histogram equalized exposure sequence IHEi (x, y), which

is more beneficial to preserving the image edges in regions

such as mutation than the median filter. Besides, the color

dissimilarity feature Di(x,y) of moving objects is calculated

between the static background image IS and histogram equalized

image IHEi (x, y) in Li and Kang (2012) and Hayat and Imran

(2019).

Comparisons of the color dissimilarity feature by Li and

Kang (2012) and the proposed method have been conducted,

as shown in Figure 3. The fused image in Figure 3B generated

by the method of Li and Kang (2012) has ghosting artifacts at

the ellipsoid. The proposed algorithm is validated by adopting

underexposure, exposure normal, and overexposure source

images, as shown in Figures 3C–E. According to Figure 3E,

it can be seen that the results generated by underexposure

images have a good effect on deghosting and are better
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FIGURE 3

The results of processing the dynamic scene of the “Puppets” image sequence using the original/improved color dissimilarity features. (A)

“Puppets” image sequence; (B) using the original color dissimilarity feature (Li and Kang, 2012); (C) hybrid median filter processing the brightest

exposure image; (D) hybrid median filter processing the good exposure image; (E) hybrid median filter processing the darkest exposure image.

FIGURE 4

General flow of multi-scale exposure fusion. Ii(x,y) is an LDR image. Wi(x,y) is a weighted mapping. The Laplacian pyramid is obtained by LDR

image decomposition, and the weighted mapping decomposition obtains the Gaussian pyramid. R1(x,y)–Rn(x,y) is the resulting level of the

Laplacian pyramid.

than in Figure 3B. Therefore, in the following algorithm,

we utilized the mHMF to handle underexposure images for

related experiments.

2.2.2. Exposure feature and brightness feature

Because of the correlation between the three channels in

RGB color space, which affects the final multi-scale pyramid

decomposition and fusion, the input source image is converted

from RGB to YUV color space. The exposure feature weight item

Ei(x,y) of the input image is measured in the Y channel as in

Equation (6).

Ei(x, y) = e
−

[Yi(x,y)−(1−Yi)]
2

2σ2 (6)

where Yi(x,y) is the standardized value of the Y channel,

Y i is the mean value of Yi(x,y), and σ is a Gaussian kernel

parameter taken as σ = 0.2. Besides, to increase the SNR of

the input image sequence and retain the detailed information

of the brightest/darkest regions, this method uses the brightness

quality metric Bi = Y i
2
in Kou et al. (2018).

Frontiers inNeurorobotics 06 frontiersin.org

107

https://doi.org/10.3389/fnbot.2022.1105385
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Chen et al. 10.3389/fnbot.2022.1105385

FIGURE 5

Experimental results of processing a dynamic scene “Tate” image sequence using the original/improved pyramid model. (A) “Tate” image

sequence; (B) using the original pyramid model (Mertens et al., 2007); (C) using the improved pyramid model.

2.2.3. Local contrast using dense SIFT
descriptor

The local contrast is measured using Equation (7), which

is extracted by non-standardized dense filtering in dense SIFT

descriptor (Liu et al., 2010).

Ci(x, y) =
∥

∥

∥
DSIFT(I

gray
i (x, y))

∥

∥

∥

1
(7)

where DSIFT(.) represents the operator that computes

the non-normalized dense SIFT source image mapping,

Ci(x,y) represents a simple indicator vector for local contrast

measurement, and I
gary
i (x, y) denotes the grayscale image

corresponding to the input image sequence Ii(x,y). At each

pixel, the I
gary
i (x, y) mapping is regarded as the l1 norm of

Ci(x,y). Besides, this study selects a winner-take-all weight

allocation strategy (Liu and Wang, 2015; Hayat and Imran,

2019) to obtain the final local contrast weight term C
final
i (x, y).

2.2.4. Estimation and refinement of the weight
map

First, the following four weight items of the input image

sequence are calculated: color dissimilarity feature, exposure

feature, brightness feature, and local contrast. Second, weight

items are multiplied to generate a weighted mapping, as in

Equation (8).











Wi(x, y) = C
final
i (x, y)× Bi × Ei(x, y), for static scene

Wi(x, y) = C
final
i (x, y)× Bi × Ei(x, y)× Di(x, y),

for dynamic scene

(8)

Using WGIF (Li et al., 2014) directly refines and filters the

weight map obtained by Equation (8), which is different from

the refinement of the weight map in Liu and Wang (2015) and

Hayat and Imran (2019). In the process of filter refinement, both

the source image and the guide image are used Wi(x, y). Then,

normalizing refined weight maps makes weight maps sum to 1

at every pixel. The final weight map is shown in Equation (9).

Wi(x, y) =





N
∑

i=1

∧

WWF
i (x, y)+ε





−1

(
∧

WWF
i (x, y)+ε) (9)

where ŴWF
i (x, y) denotes the weight map after WGIF

refinement, Wi(x, y) denotes the final normalized weight map,

and ε = 10−5 is a small positive value, avoiding a zero

denominator in the calculation process.

2.2.5. Improved pyramid decomposition fusion
model

Utilizing the original multi-scale pyramid model (Mertens

et al., 2007) may produce fusion images with a loss of details
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FIGURE 6

Source image sequences used in experiments. (A) Farmhouse; (B) Brunswick; (C) Cli�; (D) Llandudno; (E) Cadik; (F) Landscape; (G) Venice; (H)

Balloons.

and the halo phenomenon. Therefore, an improved pyramid

fusion model is used. In this pyramid model, the Laplacian

and Gaussian pyramids are disaggregated into n levels, as

shown in Figure 4. The total number of levels n is defined by

Equation (10).

n = [log2(min(ro, co))]− 2 (10)

where ro and co are the number of rows and columns of input

image pixels, respectively.

It is considered that, at the highest level of the Gaussian

pyramid, improper smoothing of edges is the main reason for

producing halos. On the lower levels of the Gaussian pyramid,

the improper smoothing of the edges is not evident for the

generation of halos. Therefore, on the n-th level of the RGB

color space pyramid, using the single-scale fusion algorithm in

Ancuti et al. (2016) adds the Laplacian pyramid information of

the source image to the Gaussian pyramid weighted mapping as

in Equation (11).

Rin = [Gn{Wi(x, y)} + λ
∣

∣L1{Ii(x, y)}
∣

∣]Ii(x, y) (11)

where Ii is the input image of LDR, Rin is the result of fusing

the i-th image and the i-th image weight on the n-th level,

and G
n

{

Wi(x, y)
}

is the n-th Gaussian pyramid of Wi(x, y).

In Ancuti et al. (2016), n is the maximum number of levels

of the Gaussian pyramid, L1
{

Ii(x, y)
}

is the first level of the

input image Ii(x,y) Laplacian pyramid, and λ is the coefficient of

L1
{

Ii(x, y)
}

, which controls the amplitude of the high-frequency

signal L1
{

Ii(x, y)
}

.

To retain detailed information on

overexposed/underexposed areas, on the n-th level, the

improved multi-scale exposure fusion algorithm proposed by

Wang et al. (2019) is used as in Equation (12).

Rin(x, y) = [Gn{Gn{Wi(x, y)}} + λ
∣

∣L1{Ln{Ii(x, y)}}
∣

∣]Ln{Ii(x, y)}

(12)
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FIGURE 7

Comparison results of di�erent methods on the dynamic “Brunswick” image sequence. (A) Hayat and Imran (2019); (B) Mertens et al. (2007); (C)

Li and Kang (2012); (D) Liu and Wang (2015); (E) Lee et al. (2018); (F) the proposed method in this study.

FIGURE 8

On dynamic “Cli�” image sequence, the available MEF methods compare with the proposed method. (A) Hayat and Imran (2019); (B) Mertens

et al. (2007); (C) Li and Kang (2012); (D) Liu and Wang (2015); (E) Lee et al. (2018); (F) the proposed method in this study.

For underexposure source images,
∣

∣L1
{

Ln
{

Ii(x, y)
}}

∣

∣ in

Equation (12) is introduced at the n-th level to correct the

incorrect weights introduced by the weighted mapping

smoothed by the Gaussian smoothing filter. It also

reasonably enhances the weight of the well-exposure areas

in the underexposure image, which retains the details of

the underexposure areas. For overexposure images, the

weight map of the n-th level adopts the primary Gaussian

smoothing filter to smooth, which retains the details of the

overexposure area.
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FIGURE 9

Fusion results of di�erent methods on the dynamic “Llandudno” image sequence. (A) Hayat and Imran (2019); (B) Mertens et al. (2007); (C) Li and

Kang (2012); (D) Liu and Wang (2015); (E) Lee et al. (2018); (F) the proposed method in this study.

For other scales, the improved pyramid fusion is the same

as the original pyramid fusion (Mertens et al., 2007). Finally,

reconstructing the Laplacian pyramid composed of Rl(x,y) in

Equation (13) generates the fused image R.

Rl(x, y) =

N
∑

i=1

Ril(x, y), l = 1, 2, . . . , n (13)

where l represents the level number of the pyramid. The image

details and brightness enhancementmethod proposed by Li et al.

(2017) is adopted to enhance fusion image detail information,

which obtains the final multi-scale exposure fusion image.

Comparisons of the original and improved pyramid models

have been conducted, as shown in Figure 5. Compared with

the original pyramid model (see Figure 5B), the generated

image in Figure 5C by the improved pyramid model performs

well in contrast and detail processing aspects, especially in

pedestrian and white cloud areas. It is considered that multi-

scale pyramid decomposition and fusion, loss of details, and

the halo phenomenon are complex problems in pyramid

decomposition and fusion. Therefore, this study selects

the improved pyramid model to decompose and fuse the

input image.

3. Experimental analysis

3.1. Experimental setup

In our experiments, five and six image groups were

selected from seventeen static scene (Kede, 2018) and twenty

dynamic scene (DeghostingIQADatabase, 2019) image groups,

respectively. As shown in Figure 6, two images with different

brightnesses are extracted from the above input image

sequences. We utilized eleven image groups to test five existing

MEF methods and the proposed method. The five MEF

methods were presented by Mertens et al. (2007), Li and Kang

(2012), Liu and Wang (2015), Lee et al. (2018), and Hayat
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FIGURE 10

Comparison of the proposed method with Mertens et al. (2007), Li and Kang (2012), Hayat and Imran (2019), Liu and Wang (2015), and Lee et al.

(2018) in the static “Venice” image sequence. (A) Hayat and Imran (2019); (B) Mertens et al. (2007); (C) Li and Kang (2012); (D) Liu and Wang

(2015); (E) Lee et al. (2018); (F) the proposed method in this study.

and Imran (2019), respectively. All experiments are run on

MATLAB 2019a [Intel Xeon X5675 3.07 GHz desktop with 32.00

GB RAM].

3.2. Subjective evaluation

In this section, to thoroughly discuss the content

of the experimental results, we performed a local

amplification close-up shot of the results of most

sequence images.

3.2.1. Dynamic scenes

Figure 7 shows the experimental results of different

methods in the dynamic Brunswick sequence. In terms of

ghost removal, the methods (see Figures 7B–E) presented

by Mertens et al. (2007), Li and Kang (2012), Liu and

Wang (2015), and Lee et al. (2018) have poor effects and

cannot effectively remove ghosts in pedestrian areas. The

pixel oversaturation distortion in Figure 7A significantly

reduces the visual quality. The proposed method can

produce a good result (see Figure 7F). No ghosting artifact

phenomenon exists in the image, and human visual perception

is natural.

Figure 8 shows the fusion results of different methods

in the dynamic Cliff sequence. The images in Figures 8A, B

generated by the methods of Mertens et al. (2007) and Hayat

and Imran (2019) are dark in color, the local contrast is not

apparent, and the ghosting phenomenon exists in the water

waves, which reduces the visual observation effect to a certain

extent. Although the methods (see Figures 8C–E) of Li and Kang

(2012), Liu and Wang (2015), and Lee et al. (2018) increase

the contrast of the image, there are still darker colors and

ghost phenomena. Figure 8F is the method proposed in this

study. In contrast, the ghost removal performance significantly

improved. On the waves and beaches, detailed information, local

contrast, and naturalness aremaintained, consistent with human

visual observation.

Figure 9 shows the performance comparison of different

methods in the dynamic Llandudno sequence. The results (see

Figures 9B–D) acquired by Mertens et al. (2007), Li and Kang

(2012), and Liu and Wang (2015) show that there are apparent

ghosting artifacts in the area of characters and that there is a

loss of detail information and color distortion. In Figure 9A,

the overall image deghosting effect is good, but the color above

the house is dark. The image in Figure 9E is unclear, and there

is a color distortion phenomenon. The proposed method can

produce a good result (see Figure 9F). The characters in the

image have no noticeable ghosting artifacts, details are well
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FIGURE 11

Comparison results of di�erent methods on the static “Landscape” image sequence. (A) Hayat and Imran (2019); (B) Mertens et al. (2007); (C) Li

and Kang (2012); (D) Liu and Wang (2015); (E) Lee et al. (2018); (F) the proposed method in this study.

preserved, and the exposure level is consistent with human

visual observation.

3.2.2. Static scenes

Experimental results on the static Venice sequence using

different methods are shown in Figure 10. In terms of image

sharpness and detail processing, the proposed method (see

Figure 10F) is superior to the methods (see Figures 10A–E)

proposed by Mertens et al. (2007), Li and Kang (2012), Liu and

Wang (2015), Lee et al. (2018), and Hayat and Imran (2019).

Especially in Figures 10B–D, in the sky and church areas of the

image, exposure and sharpness are poor, local contrast is not

apparent, and fused image details are lost. In the results of the
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TABLE 1 MEF-SSIMd of six MEF methods.

Dataset Hayat Mertens Li Liu Lee Proposed

Arch 0.9503 0.8423 0.9464 0.9417 0.8711 0.9267

Brunswick 0.8592 0.8834 0.8586 0.8261 0.8378 0.9270

Cliff 0.8873 0.9401 0.9243 0.9006 0.9035 0.9687

Llandudno 0.9072 0.8483 0.8926 0.8746 0.9771 0.9260

Puppets 0.8357 0.7791 0.8085 0.8035 0.8481 0.8900

Tate 0.8306 0.8076 0.8044 0.8298 0.8258 0.9123

Cadik 0.9247 0.9268 0.9032 0.9474 0.9290 0.9004

Landscape 0.9936 0.9941 0.9924 0.9883 0.9935 0.9941

Venice 0.8141 0.8612 0.8654 0.8250 0.8631 0.9170

Balloons 0.9756 0.9597 0.9429 0.9205 0.9539 0.9651

Farmhouse 0.9824 0.9824 0.9824 0.9872 0.9791 0.9588

Average 0.9055 0.8932 0.9019 0.8950 0.9075 0.9351

Rank 3 6 4 5 2 1

Total 9.9607 9.825 9.9211 9.8447 9.982 10.2861

The bold value indicates the maximum value, and the larger the value, the better the image fusion.

TABLE 2 NIQE comparison results of the MEF method.

Dataset Hayat Mertens Li Liu Lee Proposed

Arch 2.4484 2.6802 2.5456 2.6763 2.4354 2.2921

Brunswick 2.7688 2.4740 3.0447 3.0847 2.9462 2.8631

Cliff 3.4004 3.5940 3.4480 3.5294 3.5791 2.9777

Llandudno 3.1018 3.9349 3.3978 3.4781 3.9544 2.8940

Puppets 3.0152 2.9780 3.2068 3.2526 3.0909 3.2955

Tate 3.0066 2.6109 2.9594 2.9954 2.7553 2.8802

Cadik 3.5912 3.5379 3.7545 3.7202 3.5309 3.4117

Landscape 2.7917 2.8495 2.8220 2.7845 2.8128 2.7497

Venice 3.4862 3.8663 3.3296 3.3251 3.4182 3.2924

Balloons 3.3137 3.2691 3.5863 3.4309 3.4333 3.0047

Farmhouse 2.9762 2.9537 3.017 2.9744 2.9261 2.7657

Average 3.0818 3.159 3.1920 3.2047 3.1744 2.9479

Rank 2 3 5 6 4 1

Total 33.9002 34.7485 35.1117 35.2516 34.8826 32.4268

The bold value indicates the minimum value, the smaller the NIQE value is, the better the image quality is, and the image more accords with the requirements of the visible human system

to observe the scene.

method proposed by Lee et al. (2018) and Hayat and Imran

(2019), the sharpness of the fused image has improved, but there

is still local contrast that is not obvious, and details are lost (see

Figures 10A, E).

The fusion results of six MEF methods on static scene

landscape sequences are shown in Figure 11. In Figures 11B–E,

in the sky area (white cloud parts), the sharpness is not good

enough. In the method (see Figure 11A) proposed by Hayat and

Imran (2019), although the sharpness and naturalness of the

image are enhanced in the sky area, the fused image details are

seriously lost. Compared with the methods (see Figures 11A–

E) presented by Mertens et al. (2007), Li and Kang (2012),

Liu and Wang (2015), Lee et al. (2018), and Hayat and Imran

(2019), the proposed method in this study (see Figure 11F) has

good saturation and contrast in the sky area, and the detailed

information is retained better.
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TABLE 3 Test results of LPC-SI.

Dataset Hayat Mertens Li Liu Lee Proposed

Arch 0.9767 0.9710 0.9758 0.9774 0.9728 0.9770

Brunswick 0.9691 0.9620 0.9699 0.9703 0.9678 0.9785

Cliff 0.9671 0.9619 0.9637 0.9653 0.9643 0.9777

Llandudno 0.9737 0.9724 0.9737 0.9736 0.9734 0.9767

Puppets 0.9785 0.9731 0.9782 0.9763 0.9759 0.9821

Tate 0.9739 0.9686 0.9736 0.9723 0.9702 0.9795

Cadik 0.9691 0.9626 0.9655 0.9650 0.9687 0.9700

Landscape 0.9516 0.9484 0.9516 0.9522 0.9477 0.9512

Venice 0.9692 0.9633 0.9675 0.9659 0.9537 0.9709

Balloons 0.9701 0.9689 0.9696 0.9681 0.9690 0.9700

Farmhouse 0.9729 0.9728 0.9752 0.9760 0.9754 0.9780

Average 0.9711 0.9659 0.9695 0.9693 0.9672 0.9738

Rank 2 6 3 4 5 1

Total 10.6819 10.625 10.6643 10.6624 10.6389 10.7116

The bold value indicates the maximum value, a more considerable LPC-SI value of the fused image represents a clearer image, which conforms to the evaluation of human visual

observation.

3.3. Objective evaluation

3.3.1. Evaluation using dynamic scene
structural similarity index (MEF-SSIMd)

The structural similarity index (MEF-SSIMd) (Fang et al.,

2019) is applied to measure structural similarity between input

image sequences and fused images in dynamic ranges. The

overall MEF-SSIMd is defined in Equation (14).

qoverall =
qs+qd
2

(14)

where qd represents MEF-SSIMd of dynamic scenes and qs

represents MEF-SSIMd of static scenes.

The data range of MEF-SSIMd is [0,1]. The greater the

value, the better the deghosting efficiency, and the stronger

the robustness of the dynamic scene. The smaller the value

is, the opposite is true. As shown in Table 1, using MEF-

SSIMd objectively evaluates six MEF methods for the quality

of generating fused images. Overall, the proposed method

is superior to the other five existing MEF methods in the

performance evaluation of MEF-SSIMd.

3.3.2. Evaluation using natural image quality
evaluator (NIQE)

In multi-exposure image fusion, the fused image should

meet the requirements of the human visual system to observe

the scene. Since the general purpose does not reference the

IQA (image quality assessment), the algorithm requires much

training to meet the IQA. Thus, a non-reference quality metric,

NIQE (Mittal et al., 2012) was proposed. The smaller the NIQE

value is, the better the image quality is, and the image more

closely accords with the requirements of the visible human

system to observe the scene. On the contrary, the greater the

NIQE value is, the fewer images conform requirements of the

human visual system observation scene. As shown in Table 2,

NIQE is used to evaluate the quality of fusion images produced

by different MEF methods. Overall, the proposed method can

acquire images with better naturalness.

3.3.3. Evaluation of image sharpness using local
phase coherence (LPC)

In multi-exposure image fusion, sharpness is a critical factor

in the visual evaluation of image quality. The sharpness of the

image to achieve the human visual system can effortlessly detect

blur and observe visual images. Therefore, Hassen et al. (2013)

used sharpness in the complex wavelet transform domain to

evaluate the local solid phase coherence (LPC) of the image

features. Then, the overall sharpness index of LPC (LPC-SI) is

proposed. A more considerable LPC-SI value of the fused image

represents a clearer image, which conforms to the evaluation

of human visual observation. A smaller LPC-SI value of the

fused image represents a blurred image. The value range of LPC-

SI is [0,100]. Table 3 shows the comparison results of LPC-SI

values between the other five MEF methods and the presented

method. A comprehensive comparison shows that the proposed

method in this study outperforms the other five existing

MEF methods.
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FIGURE 12

The mean values of MEF-SSIMd, NIQE, LPC-SI, and AG are obtained by di�erent methods.

3.3.4. Mean value analysis of objective
evaluation indexes

As shown in Figure 12, the proposed method in this study

ranks first in the line graph of the mean values of the entire

reference objective evaluation index MEF-SSIMd and non-

reference objective evaluation index NIQE, LPC, and average

gradient (AG). The proposed MEF method without ghosting

based on the exposure fusion framework and color dissimilarity

feature can effectively remove ghosting in dynamic scene MEF.

It also improves the sharpness and naturalness of the fused

image and retains many details.

4. Conclusion

An improved MEF method has been proposed in this study

without ghosting based on the exposure fusion framework

and color dissimilarity feature. It generates ghost-free, high-

quality images with good sharpness and rich details. The

proposed algorithm in this study can be further applied

to power system monitoring and unmanned aerial vehicle

monitoring fields. An improved exposure fusion framework

based on the camera response model has been utilized to

improve the contrast and sharpness of over/underexposure

regions in the input image sequence. The WGIF refined

weight map with an improved color dissimilarity feature was

adopted to remove ghosting artifacts and to retain more

image details utilizing an improved pyramid model. In the

experimental tests of qualitative and quantitative evaluation

for eleven image groups, including five static scene image

groups and six dynamic scene image groups, this method

ranks first compared with the five available MEF methods.

However, when objects move frequently or move more widely,

the fusion results may produce ghosting artifacts. Therefore,
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we hope that the researchers further study to overcome the

above problems.
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An improved adaptive triangular
mesh-based image warping
method

Wei Tang, Fangxiu Jia* and Xiaoming Wang

College of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing, China

It is of vital importance to stitch the two images into a panorama in many computer

vision applications of motion detection and tracking and virtual reality, panoramic

photography, and virtual tours. To preserve more local details and with few artifacts

in panoramas, this article presents an improved mesh-based joint optimization image

stitching model. Since the uniform vertices are usually used in mesh-based warps, we

consider the matched feature points and uniform points as grid vertices to strengthen

constraints on deformed vertices. Simultaneously, we define an improved energy

function and add a color similarity term to perform the alignment. In addition to

good alignment and minimal local distortion, a regularization parameter strategy of

combining our method with an as-projective-as-possible (APAP) warp is introduced.

Then, controlling the proportion of each part by calculating the distance between

the vertex and the nearest matched feature point to the vertex. This ensures a more

natural stitching e�ect in non-overlapping areas. A comprehensive evaluation shows

that the proposed method achieves more accurate image stitching, with significantly

reduced ghosting e�ects in the overlapping regions and more natural results in the

other areas. The comparative experiments demonstrate that the proposed method

outperforms the state-of-the-art image stitching warps and achieves higher precision

panorama stitching and less distortion in the overlapping. The proposed algorithm

illustrates great application potential in image stitching, which can achieve higher

precision panoramic image stitching.

KEYWORDS

image stitching, mesh deformation, image alignment, color consistency, combining strategy

Introduction

Image stitching algorithm to mosaic two or more images into a panorama image to create

a larger image with a wider field of view is the oldest and most widely used in computer

vision (Szeliski, 2007; Nie et al., 2022; Ren et al., 2022). Earlier, the methods estimate a 2D

transformation between two images focus on the global warps that include similarity, affine, and

projective ones (Brown and Lowe, 2007; Chen and Chuang, 2016). Thus, the global warps are

usually not flexible enough for all types of scenes like low-alignment quality images and parallax

images. Furthermore, the holy grail of image stitching is to seamlessly blend overlapping images,

even in scenes of distortion and parallax, to provide a panorama image that looks as natural as

possible (Zaragoza et al., 2013).

While image stitching based on global warps (Zhu et al., 2001; Brown and Lowe, 2007;

Kopf et al., 2007) can achieve good results, it still suffers from local distortion and is unnatural.

The global warps estimate the global transformation, and they are robust but often not flexible

enough. To address the model problem of global warps, many local warp models have been

proposed, such as the dual-homography warping (DHW) (Gao et al., 2011), smoothly varying

affine (SVA) (Lin et al., 2011) stitching, as-projective-as-possible (APAP), single-perspective

warps (SPW), and so on. Unlike global warps, the abovemethods adoptmultiple local parametric
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warps as the primary (Zaragoza et al., 2013; Liao and Li, 2019; Li

et al., 2019; Guo et al., 2021), which is more flexible than the global

warps. The DHW divides the image into two parts: a distant back

plane and a ground plane, and it can seamlessly stitch most scenes.

To achieve flexibility, Lin et al. (2011) proposed a smoothly varying

affine stitching field that is defined over the entire coordinate frame,

which is better for local deformation and alignment. Therefore, it

is more tolerant of parallax than traditional global homography

stitching. Instead of adopting an optimal global transformation,

APAP estimates local space transformations to align every local image

patch accurately.

Local parametric methods use spatially varying models to

represent the motion of different image regions (Gao et al., 2011;

Zaragoza et al., 2013; Chen et al., 2018). Compared to global methods,

the higher degrees of freedom make them more flexible in handling

motion in complex scenes but also make the model estimation more

difficult (Chen et al., 2018; Liao and Li, 2019) proposed two single-

perspectives warps for image stitching. The first parametric warp

combines dual-feature-based APAP with quasi-homography. The

second mesh-based warp is to achieve image stitching by optimizing

a sparse and quadratic total energy function. Inspired by the Liu et al.

(2009), many mesh-based warps (Li et al., 2015; Lin et al., 2016)

have been proposed, which divide the source image into a uniform

grid mesh.

In Liao and Li (2019), the stitching panorama looks as natural

as possible when the source image has lots of lines; on the contrary,

the stitching results represent noticeable ghosting in the curved areas

and irregular object regions, such as the curve on the ground and the

orange bag in the blue and red box in Figure 6. Meanwhile, Figure 6

illustrates the results of APAP which looks much better than global

alignment, but visible ghosting still appears in some areas, such as the

orange bag in the blue box picture.

To address the above problem with distortion and ghosting in the

stitched images, we improved our method’s meshing and combined

our warps with APAP. In this study, we propose an improved

mesh-based image stitching method. To optimize the quadrilateral

grid cells, we introduce an innovative triangular mesh strategy.

The mesh vertices include two parts: APAP and matched feature

vertices. The APAP vertices belong to uniform vertices, which can

preserve the flexibility of the APAP algorithm. Thus, the matched

feature vertices, which are non-uniform, can make a few artifacts

in overlapping regions. We then design a color constraint term in

the energy function, and the global alignment term includes two

transformations for the mesh vertices. The matched feature vertices

can reduce ghosting in overlapping areas in the function term.

Finally, to reduce distortion in non-overlapping areas, we combine

our method with APAP warp and give the weight value by calculating

the distance between the vertex and the nearest matched feature point

to the vertex. The comparative experiments prove that the alignment

accuracy of our method is higher than the APAP warp. In summary,

our three contributions are as follows:

(1) We introduce an improved mesh deformation model,

including two-part vertices: non-uniform and uniform vertices.

Then, the cell in our method is changed from quads to triangles,

which is a novel mesh different from the conventional ways.

Thus, results show that our model makes few artifacts in

overlapping regions.

(2) We also design a new deformation function, which includes

the data term, global alignment term, and color smoothness term.

Unlike other warps, the color smoothness term can constrain the

overlapping regions’ smoothness.

(3) We give a new strategy of combining our method with APAP

warp to obtain its flexibility.

We compare ourmethod with the state-of-the-art image stitching

methods, and the comparison experiments illustrate that our method

outperforms all other methods in preserving local details and with

few artifacts in overlapping regions. This syudy is organized as

follows. Section is the introduction. Section shows the related work

of image stitching. Section introduces the proposed method for

image stitching in detail. In Section , the results and comparison

experiments with other algorithms were presented. Finally, Section

shows the conclusion of this article.

Related work

Image stitching has been widely used in computer vision

and many applications. This section will give a brief finding on

image stitching.

Multi-homography method for image
stitching

A single global homography matrix can be used to express the

relationship between images when the scenes are approximately in

the same plane. The actual scenes are often complex with multiple

planes; thus, employing the global homography to align images in

the overlapping region is usually not flexible enough to provide high-

precision alignment. Gao et al. (2011) proposed a dual-homography

warping, which divides the image into two parts: a distant back plane

and a ground plane, and it can seamlessly stitch most scenes. The

method can improve alignment accuracy, but for complex scenes

with multiple planes, this method incorrectly divides the different

planes into one structure, which will lead to alignment errors.

Hence, Yan et al. (2017) proposed a robust multi-homography image

composition method. By calculating different homographies from

different types of features, multiple homographies are then blended

with Gaussian weights to construct a panorama. When the scene is

complex, and there are multiple planes, the method based on the

simple multiple homographies is ineffective for alignment. Many

methods (Chen and Chuang, 2016; Medeiros et al., 2016; Zheng

et al., 2019) based on planar segmentation were provided to align

images. Zheng et al. (2019) proposed a novel projective-consistent

plane-based image stitching method. According to the normal vector

direction of the local area and the reprojection error of the aligned

image, the overlapping area of the input image is divided into several

projection-uniform planes.

Image stitching based on mesh deformation

The main idea of image stitching based on mesh deformation

(Liu et al., 2009; Zaragoza et al., 2013; Chen and Chuang, 2016;

Chen et al., 2018; Liao and Li, 2019) is to mesh the image, transform

the deformation of the image into the redrawing of the mesh, and

then correspond the deformation of the mesh to the deformation

of the image. This method enables the vast majority of matched
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feature point pairs to be completely aligned. Such methods realize

image stitching by constructing an energy function for mesh vertices,

and different results can be achieved by adding different constraints

to the energy function. Liu et al. (2009) proposed a content-

preserving warp (CPW) for video stabilization. This method divides

the aligned image into multiple grid units and then constructs an

energy function for the grid vertices consisting of data items, similar

transformation items, and global alignment items and obtains the

redrawn vertex coordinates by minimizing the energy function. The

vertex coordinates of the grid where the feature points are located

are optimized by the energy function, which can protect the shape

of the important area of the image from being changed during the

transformation. Zaragoza et al. (2013) proposed a moving direct

linear transformation (Moving DLT) method to obtain the local

homography matrix for each grid cell. The method added a weight

value for each grid when calculating the local homography matrix.

Liao and Li (2019) and Jia et al. (2021) proposed an image stitching

method combining point features and line features and introduced

global collinear structures into an energy function to specify and

balance the desired characters for image stitching.

Seam-driven image stitching

When the image parallax is large, the image stitching method

based on spatial transformation can no longer obtain accurate

results. For such image stitching problems with large parallax, the

more effective method is the image stitching approach based on

stitching seam (Gao et al., 2013; Zhang and Liu, 2014; Lin et al.,

2016; Chen et al., 2022). Gao et al. (2013) proposed an image

stitching method based on seam driven, which obtains the final

homography matrix based on the quality of the stitching seam.

Zhang and Liu (2014) proposed a method for local alignment using

CPW near stitching seam to achieve large parallax image stitching

and combined homography transformation with content-preserving

warp. The experiment results illustrated that their method could

stitch images with large parallax well. A superpixel-based feature

grouping method (Lin et al., 2016) was proposed to optimize the

generation of initial alignment hypotheses. To avoid generating only

potentially biased local homography hypotheses, the hypothesis set

was enriched by combining different sets of superpixels to generate

additional alignment hypotheses. Then, the method evaluated the

alignment quality of the stitching seam to achieve the final panorama

stitching. Chen et al. (2022) proposed a novel warping model based

on multi-homography and structure preserving. The homographies

at different depth regions were estimated by dividing matched

feature pairs into multiple layers. Collinear structures were added

to the objective function to preserve salient line structures. Thus, an

optimal stitching seam searchmethod based on stitching seam quality

assessment was proposed.

Our approach

This section will give a detailed presentation of our image

stitching approach. We first describe the traditional global

homography model to pre-align the reference and the target

image; a roughly global homography is obtained to help refine image

stitching in the later sections. Then, we introduce the triangular

mesh deformation and give the total energy function to get the

coordinates of triangular mesh vertices after deformation. Finally, a

regularization parameter is introduced to balance the global and local

vertices after deformation; hence, the final result can be automatically

adjusted by the input images. Major steps of our proposed scheme, as

shown in Figure 1.

The similarity projective transformations

Given a pair of matching points p =
[

x y
]T

and p′ =
[

x′ y′
]T

across overlapping images I and I′. The homography model can be

represented as follows

p̃′ = Hp̃, (1)

Where p̃ is p in homogeneous coordinates, p̃ =
[

x y 1
]T
, and p̃′ =

[

x′ y′ 1
]T
. H ∈ R

3×3 denotes the homography matrix and H =
[

h1 h2 h3
]T
. In inhomogeneous coordinates,

x′ =
hT1

[

x y 1
]T

hT3

[

x y 1
]T

and y′ =
hT2

[

x y 1
]T

hT3

[

x y 1
]T

. (2)

Taking a cross product on both sides of Equation (1), we can obtain

the following:

01×3 =







01×3 −p̃T y′p̃T

p̃T 01×3 −x′p̃T

−y′p̃T x′p̃T 01×3













h1
h2
h3






. (3)

There only two rows of the 3×9 matrix in Equat9ion (3) are

linearly independent, and we let ai ∈ R
2×9 be the first-two rows

of Equation (3) computed for the i-th datum for a set of N matched

points
{

pi
}N

i=1
and

{

p′i
}N

i=1
, we can obtain h by the following

ĥ = argmin
h

∑
∥

∥aih
∥

∥

2
= argmin

h
‖Ah‖2. (4)

With the constraint
∥

∥h
∥

∥ = 1, where matrix A = [a1 a2 . . . ai]
T .

Given the estimated H (reshaped from ĥ), to align the images, the

arbitrary pixel in the source image I is warped to the target image I′

by Equation (1). Thus, the details can be found in Lin et al. (2015).

Triangular mesh deformation

The image stitching based on mesh deformation usually uses the

quadrilateral grid, but the warp could still have less distortion at

the position of the matched feature points. Therefore, we propose a

triangular mesh cell, including APAP and matched feature vertices.

Mathematical setup
Inspire by the work of Li et al. (2019), they introduced the planar

and spherical triangulation strategies and approximated the scene

as a combination of adjacent triangular facets. This inspired us, so

we partitioned the source image into a triangular mesh of a series

of cells and took the matching points and APAP’s vertices as our
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FIGURE 1

The schematic diagram of the proposed image stitching method.

FIGURE 2

View triangulation results on the target image. (A) The template image and (B) the triangular mesh image. The green dots are APAP vertices, and the red

dots denote matched feature vertices.

triangular mesh vertices. Then, a triangulation-based local alignment

algorithm for image stitching is proposed, which could compensate

for the weaknesses of the quadrilateral grid deformation.

For ease of explanation, we take the two image stitching pair as an

example and let I′, I, and Î to denote the reference image, the target

image, and the final warping image. We keep the reference image I′

fixed and warp the target image I. Thus, the vertices in the image I, I′,

and Î are denoted as V , V ′, and V̂ .

Unlike traditional quadrilateral grid deformation warps, we

partition the source target image I into a series of triangular cells

by Delaunay triangulation (Edelsbrunner et al., 1990). For each

cell, three vertices are more stable than the four vertices in the

quadrilateral cell. To make the image stitching warp more stable, we

choose a series of APAP’s vertices as the triangular cell vertices and

add n-matched feature points as vertices into the original vertices.

Therefore, the target image is partitioned into many cells, including

two parts: APAP and matched feature vertices. Figure 2 illustrates a

warp learned with 250 vertices cells for an image pair.

In addition, after buildingmesh grids for the target image I, where

Vi,j is the grid vertex at position
(

i, j
)

. The target image is composed

of many cells which have three vertices, and we index the grid

vertices from 1 up to n; we reshape all vertices into a 2n-dimension

vector V =
[

x1 y1 . . . xn yn
]T
; then, the mesh deformation vertices

which correspond to the target image vertices are formed into V̂ =
[

x̂1 ŷ1 · · · x̂n ŷn
]T
. Each cell has four vertices in Liao and Li (2019),

so different from Liao and Li (2019), the mesh deformation cell has

three vertices in our approach.

In Liao and Li (2019), each feature point p can be characterized

as a bilinear interpolation of its four enclosing grid vertices. Thus,

similar to Liao and Li (2019), for any feature point p in the triangular

cell, which can be expressed as a linear interpolation of the triangular

vertices v1, v2, and v3. Different from the bilinear interpolation,

barycentric coordinate system (Koecher and Krieg, 2007) can denote

any point which is inside the triangle cell well. So, the feature point p

can be characterized as follows:

ϕ(p) = w1v1 + w2v2 + w3v3, (5)

Where w1, w2, and w3 denote the weight of each vertex, respectively,

the higher the weight, the closer the point is to the vertex, and w1 +

w2 + w3 = 1. If we get a known point inside the triangle, the weights

will be obtained by solving a binary system of linear equations.
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FIGURE 3

Comparison of stitching results with di�erent ωG. (A) ωG = 0, (B) ωG = 10, and (C) ωG = 5000.

Assuming that the weights are fixed, thus the corresponding

point p′ that is after mesh deformation can also be characterized

as ϕ(p̂) = w1v̂1 + w2v̂2 + w3v̂3. Subsequently, any

constraint on the point correspondences, which are inside the

triangle can be expressed as a constraint on the three vertex

correspondences.

Energy function definition
Inspired by the study of the content-preserving warps Liu et al.

(2009), we construct the total energy function E that includes the

following three parts: data term, global alignment term, and color

smoothness term.

E
(

V̂
)

= ED

(

V̂
)

+ ωGEG

(

V̂
)

+ EC

(

V̂
)

, (6)

Where ED denotes the data term that addresses the alignment issue

by enhancing the feature point correspondences, EG is the global

alignment term, and EC addresses a color smoothness issue by

protecting the vertices’ intensity and its neighboring region. The

deformed vertex V̂ can be calculated by the above formula, then

mapping the deformation of the mesh to the deformation of the

image to obtain the final panorama. The aboveminimization problem

is easily solved using a standard spares linear solver. We use texture

mapping to extract the final image when we get the deformed vertices.

The weight ωG = 10 in our implementation. Figure 3 shows the

stitching results of different ωG. Theoretically, the larger ωG is, the

better the alignment at the matched feature vertex positions of the

stitching results; the blue box in Figure 3 verifies this point. Thus, ωG

is too large, which means the weight of the global alignment term is

too large. As shown in the red box in Figure 3, too much weight of

data items will affect the stitching effect of other regions.

A. Data term

The data term ED is defined the same way as Liu et al. (2009).

Thus, the feature point p which is in the mesh cell can be denoted

by the triangular vertices of its enclosing grid cell. To align p to

its matched location p′ after deformation, we define the data term

as follows:

ED =

∑

i

∥

∥

∥

∥

∥

3
∑

i=1

wi,kV̂i,k − p′i

∥

∥

∥

∥

∥

2

(7)

Where V̂ is the unknown coordinate of mesh vertices to be estimated,

ωi,k is the interpolation coefficient, which is obtained by the mesh

cell, that contains pi in the target image (Equation 5), and p′i is the

corresponding feature point in the reference image.

B. Global alignment term

To align the grid vertices and avoid unnecessary moving

of the vertices from their pre-warped positions, we construct

an improved global term to provide a good estimation. We

redefine the global term EG as the summation in the L2

norm of the difference between the origin vertex and its

deformation.

EG =

∑

j

∥

∥

∥
V∗V̂j −

(

V∗
)2

∥

∥

∥

2
(8)

V∗

j =

{

p′j, if Vj is feature point vertex

HAPAPVj, other vertices
, (9)

Where p′i denotes the matching feature point in the reference image

I′,Hapap is the local homography in Zaragoza et al. (2013) and j is the

cell vertices index. V and V̂ are the corresponding vertex in the target

image triangular cell and its deformation.

C. Color similarity term

To constrain the smoothness of color models with a connected

neighboring region and let these selected intensities remain close

after the mesh deformation, we design this color similarity term.

Assuming that the overlapping image region with any points has the
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FIGURE 4

Weight map of the target image. (A) Weight map of content-preserving warps and (B) weight map of APAP warps. The color denotes the weight value,

which is between 0 and 1.

same intensities. Thus, we can obtain the intensity difference value

between the two overlapping image parts.

Ec =
∑

�

∑

(x,y)=Q

∥

∥

∥
Î�(x̂, ŷ)− I′�

(

x′, y′
)

∥

∥

∥

2
(10)

Where Q denotes the feature point set, which is in the overlapping

image region. Here, � denotes the point connected neighboring area

at position (x̂, ŷ) and its corresponding (x′, y′). � is set to 9 × 9 in

our experiment.

Joint optimization

After we obtain a warped version of this triangular mesh vertices

by the above energy function. The overlapping image area in the

target image and reference image can stitch well, and the mosaic

image has a good performance. The feature points have a good

match pair only on the overlapping region, and if we only get the

warped version by the energy function, the stitching result may have

an unnatural visual effect on the non-overlapping area. Hence, we

update the final warped vertices by controlling the relative amount

of the vertices obtained with APAP warps injected into the vertices

obtained by the energy function way in a soft manner, which can be

auto-adjusted further by the origin image pair. The final vertices can

be denoted as follows:

˜Vi = c1i V̂i + c2i V̄i, (11)

Where, ˜Vi is the final triangular cell vertex after deformation, Vi is

the cell vertex in the target image I, V̄i = HapapVi, and V̂i denotes the

vertices after deformation by the energy function. Hapap can find the

details in Zaragoza et al. (2013), APAP computes a local homography

for each image patch for high-precision local alignment, so we use

each homography in this study. c1 and c2 are weighting coefficients.

We also make c1 + c2 = 1, and c1 and c2 are between 0 and 1. They

are identified by the following equations:

c2i =
min

(

Di
max(Di)

, γ
)

γ
, c1i = 1− c2i (12)

Di = min
(

di(k)
)

, k = 1, 2, 3 . . . (13)

di(k) = Dist(Vi, P(k)), (14)

Where Dist(·) represents the function to calculate the distance

between two points, P is the feature point sequence of p1, p2,. . . , γ is

an adjustable parameter, in fact, as γ → 1 the shortest distance when

the weight is equal to 1 between vertex and thematched feature points

is the largest. Thus, Vi is the location of the i-th location in the image

cell vertices. As shown in Figure 4, when the vertex is near the over

from the matched feature points regions (the overlapping regions),

the content-preserving warps have a high weight to ensure accurate

alignment. On the contrary, the APAP warps have a high weight

for fewer distortions for vertices far from the overlapping regions.

Therefore, the final warp has good performance by using the weight

combination. Figure 5 shows the comparison results with APAP and

global homography.

Experiments

To verify the effectiveness of the proposed image stitching

method, we test the method by subjective and objective assessments

on pairwise datasets. In this section, we illustrate several

representative image pair stitching results for comparing our

warp for image stitching with several state-of-the-art stitching

methods. First, we show a quantitative evaluation of the alignment

accuracy for comparing our method against the state-of-the-art

image stitching methods, namely, APAP, global homography, APAP,

AutoStich, and SPW. Second, we give a quantitative evaluation of

pairwise alignment by our image stitching way and several state-of-

the-art methods. The mesh-based warps have a good performance;

therefore, we ran a series of tests. Thus, the experimental parameters

of the comparative paper are also consistent with the original paper.
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FIGURE 5

Comparisons with APAP and global homography. (A) APAP, (B) our method, and (C) global homography.

In our experiment, we use VLFeat (Vedaldi and Fulkerson, 2010)

library to extract and match SIFT (Lowe, 2004) feature key points

and run RANSAC to remove mismatches and match feature points

by Jia et al. (2016). Codes are implemented in MATLAB (some

codes are in C++ for efficiency) and run on a desktop PC with

Intel i3-10100 3.6 GHz CPU and 16GB RAM. Then, all the image

pairs in our test are contributed by the authors of Li et al. (2017).

For parameter settings, γ = 0.8, the number of the APAP vertex

is set to 5 × 6, and the matched feature vertex is set to 0.7x the

total number of the matched feature points. As shown in Figure 3,

if ωG is too small then the vertices distortion becomes serious, and

if ωG is too large, then the region outside the vertex is severely

distorted. Thus, ωG is set to 10 in the experiment. The experimental

parameters of the comparison algorithm are consistent with its

original paper.

Qualitative evaluation of pairwise stitching

Figure 6 depicts the result of image stitching on the Temp image

pair. Each row illustrates a panorama result of different methods,

and the green and blue box regions are enlarged for a wide view

of the local details. As we can see, all the results have a good

performance. Nevertheless, our method has a better performance on

the details. The global homography and AutoStitch could not align

two images well using a global 2D transformation, in addition to the

stitching results suffering from ghosting, such as the curves on the

ground in the green rectangle and the orange bag being duplicated in

the blue zoomed-in rectangle. Considering the limitations of global

transformation, the APAP method shows a fine stitching result as

shown in Figure 6C; however, the details in the APAP results are not

good as our method, comparing the white arched logo in Figures 6A,

C, it can be seen that our result has few artifacts. As shown in

Figures 6A, B, D, the orange bag in the blue zoomed-in rectangle has

few artifacts in our results. The SPW method has a weakness in the

image with few lines, the detail is illustrated in Figure 6E, and there is

obvious misalignment. Contrast the abovemethods with ourmethod,

which has less “ghostly” with few artifacts. Especially, the curves on

the ground, the white arched logo on the wall, and the orange bag in

the blue zoomed-in rectangle have few artifacts, as shown in the first

row of Figure 6A, so our method has the best stitching quality. The

better performance is due to our approach adding a tight constraint

into themesh warps and combining ourmethod with the APAPwarp.

To comprehensively demonstrate the effectiveness of our image

stitching method, we compare the final stitching results on a different

scene. As shown in Figure 7, from left to right, the stitching results

are the tower, riverbank, and theater, respectively. In the results

of the riverbank, the round pillar misalignments are shown in

the AutoStitch method. The other stitching method has a good

performance on the riverbank. However, our method shows the

roads, wires, and buildings on the riverbank more clearly. As shown

in tower, the global homography method shows an obvious “ghostly,”

and the gaps in the paving exhibit non-uniform distortions over

the image. In the SPW result, the top of the tower is duplicated.

Thus, all of the results introduce obvious distortion or ghosting, as

indicated in Figure 7. As for scene theater, the gaps in the paving show

less ghosting than the other methods because the authors of SPW

combine point and line features in the mesh-based warp. Then, the

building on the overlapping region exhibited more ghosting than our

method. Generally speaking, our method shows less distortion and

ghosting results.

Quantitative evaluation of alignment

To quantify the alignment accuracy of our proposed method,

we calculate the structural similarity index (SSIM) (Wang et al.,

2004) along the overlapping region points as an evaluation standard.

The SSIM is usually used to describe the alignment accuracy on

the different images. The quantitative results are shown in Table 1,

which includes five methods tested data from seven scenes. As shown

in Table 1, our method yields the highest similarity value in five

scenes, and our method is next to the highest value in the other two

scenes. Our average similarity value is 0.9426, 1.5% higher than SPW,
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FIGURE 6

Comparisons with state-of-the-art image stitching techniques on the Temp image dataset. From top to bottom, each row is (A) our method, (B) global

homography, (C) APAP, (D) AutoStich, and (E) SPW. The red boxes and blue boxes show the stitching details clearly stated.
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FIGURE 7

Comparison results for di�erent scenes. From top to bottom, the image stitching results are (A) our method, (B) global homography, (C) APAP, (D)

AutoStitch, and (E) SPW, respectively. Here, from left to right, the scenes are the tower, riverbank, and theater.
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TABLE 1 Comparison of the SSIM of di�erent scenes (the global homography is abbreviated as GH).

Railtracks Temp Tower Theater Riverbank Racetracks Worktable Average

Our 0.936 0.945 0.963 0.947 0.959 0.898 0.949 0.943

GH 0.884 0.905 0.945 0.896 0.949 0.867 0.936 0.913

APAP 0.909 0.939 0.912 0.918 0.965 0.887 0.953 0.926

AutoStitch 0.898 0.913 0.946 0.921 0.959 0.864 0.751 0.893

SPW 0.922 0.911 0.946 0.933 0.960 0.880 0.947 0.928

The best value is shown in bold.

5.5% higher than AutoStitch, 3.3% higher than global homography,

and 1.8% higher than APAP. A comprehensive visual comparison is

demonstrated in Figures 6, 7. Our method performs better than all

the other methods in preserving local details and being artifact-free

in overlapping regions.

Conclusion

We have proposed an improved adaptive triangular mesh-based

image stitching method. First, without sacrificing the accuracy of

alignment, a non-uniform triangular mesh is set over the image

to improve alignment accuracy. The non-uniform grid includes

uniform and non-uniform vertices, and the non-uniform vertices are

from the matched feature points, which provide good constraints

on overlapping areas and is a novel method. Second, an improved

deformation function is constructed to obtain deformed vertices. To

constrain the smoothness of the color model, we introduced a color

similarity term in the deformation function. Finally, we give a novel

strategy for combining our method with APAP warp to obtain its

flexibility. The combining strategy not only absorbs the advantages of

the good alignment of APAP but also can adaptively adjust its weight

value. The proposed algorithm is proved on different images and

compared with other methods. The experimental results illustrate

that the image stitching method in this study can achieve more

accurate panoramic stitching and less overlapping distortion and

improve the accuracy of panoramic image stitching. The proposed

method has an improvement in accuracy compared to the other

methods. The mean SSIM of the proposed method is 0.9426, which

is 1.5% higher than SPW, 5.5% higher than AutoStitch, 3.3% higher

than global homography, and 1.8% higher than APAP. For further

work, we expect to apply this method to large parallax image stitching

and image stitching with moving targets.
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Lightweight semantic segmentation promotes the application of semantic

segmentation in tiny devices. The existing lightweight semantic segmentation

network (LSNet) has the problems of low precision and a large number of parameters.

In response to the above problems, we designed a full 1D convolutional LSNet. The

tremendous success of this network is attributed to the following three modules:

1D multi-layer space module (1D-MS), 1D multi-layer channel module (1D-MC),

and flow alignment module (FA). The 1D-MS and the 1D-MC add global feature

extraction operations based on the multi-layer perceptron (MLP) idea. This module

uses 1D convolutional coding, which is more flexible than MLP. It increases the global

information operation, improving features’ coding ability. The FA module fuses high-

level and low-level semantic information, which solves the problem of precision loss

caused by the misalignment of features. We designed a 1D-mixer encoder based

on the transformer structure. It performed fusion encoding of the feature space

information extracted by the 1D-MS module and the channel information extracted

by the 1D-MC module. 1D-mixer obtains high-quality encoded features with very

few parameters, which is the key to the network’s success. The attention pyramid

with FA (AP-FA) uses an AP to decode features and adds a FA module to solve

the problem of feature misalignment. Our network requires no pre-training and

only needs a 1080Ti GPU for training. It achieved 72.6 mIoU and 95.6 FPS on the

Cityscapes dataset and 70.5 mIoU and 122 FPS on the CamVid dataset. We ported the

network trained on the ADE2K dataset to mobile devices, and the latency of 224 ms

proves the application value of the network on mobile devices. The results on the

three datasets prove that the network generalization ability we designed is powerful.

Compared to state-of-the-art lightweight semantic segmentation algorithms, our

designed network achieves the best balance between segmentation accuracy and

parameters. The parameters of LSNet are only 0.62 M, which is currently the network

with the highest segmentation accuracy within 1 M parameters.

KEYWORDS

semantic segmentation, lightweight network, 1D convolution, encoder-decoder, feature
alignment

1. Introduction

Semantic segmentation is one of the essential tasks in computer vision, which requires the
classification of each pixel of an image. There are many problems in practical applications:
application equipment has a small storage capacity and cannot store large-scale networks;
equipment needs to complete the calculation of semantic segmentation; reasoning speed needs to
be faster to meet actual needs. Based on the above problems, the researchers adjusted the research
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direction accordingly and proposed lightweight semantic
segmentation. The lightweight network has the advantages of
fewer parameters, fast operation speed, and segmentation accuracy
that meets engineering needs. The earliest lightweight semantic
segmentation networks (LSNets) are SegNet (Badrinarayanan
et al., 2017), ENet (Paszke et al., 2016), SQNet (Treml et al.,
2016), ERFNet (Romera et al., 2017), LinkNet (Chaurasia and
Culurciello, 2017), and BiSeNet (Yu et al., 2018). Their segmentation
accuracy is around 65 mIoU, and their inference speed is 50 FPS.
The segmentation accuracy and inference speed of LSNets that
have emerged in recent years have significantly improved. Typical
networks include HyperSeg-S (Nirkin et al., 2021), STDC1 (Fan
et al., 2021), STDC2, SFNet (Li et al., 2020), and PIDNet (Xu
et al., 2022). By reading a lot of semantic segmentation papers,
we summarized several directions for lightweight semantic
segmentation design: (1) downsampling: reduce the resolution
of the input image and reduce the amount of calculation; (2) design
efficient convolution: expand the receptive field of convolution,
reduce model parameters, and calculations; (3) residual connection:
reuse features, improve gradient propagation; (4) design backbone
encoding module: standard backbones include ResNet (He et al.,
2016), SqueezeNet (Iandola et al., 2016), ShuffleNetV2 (Ma et al.,
2018), MobileNet (Howard et al., 2019), and EfficientNet (Tan and
Le, 2019).

In this paper, we rethink the application of 1D convolution
in lightweight semantic segmentation and design a 1D multi-
layer spatial module (1D-MS) and 1D multi-layer channel module
(1D-MC). 1D-MS and 1D-MC adopt the idea of the multi-layer
perceptron (MLP), simultaneously adds global information. They
obtain the best balance in terms of encoding performance and
parameters. We also propose a feature alignment module (FA),
which solves the problem of feature misalignment on the network,
improving segmentation accuracy. Based on the above modules, we
designed a 1D-mixer module and an attention pyramid with FA
(AP-FA). 1D-mixer adopts the coding structure of the transformer.
The first residual connection contains 1D-MSs, and the channel
separation operation aims to extract spatial information and reduce
the amount of calculation. The second residual connection contains
1D-MCs to facilitate information fusion between channels. The AP-
FA module contains an AP and a FA to decode and upsample
features. The purpose of our design of the AP-FA module is to
fuse multi-scale information, reduce the loss of details, solve the
problem of misalignment, and improve the segmentation accuracy.
Based on the 1D-mixer and AP-FA modules, we propose an
efficient, LSNet consisting entirely of 1D convolutions. The 1D-
LSNet network we designed is trained and predicted on only one
1080Ti GPU, and there are no other pre-training operations. On the
Cityscapes dataset, a segmentation accuracy of 72.6 mIoU has been
achieved, and the number of parameters is 0.62 M. It is currently
the lightweight network with the highest segmentation accuracy
within 1 M parameters. On the CamVid dataset, our accuracy is
70.5 mIoU, and the inference speed reaches 122 FPS, the model
with the highest accuracy among all lightweight networks. On the
ADE2K dataset, our network achieves an accuracy of 36.4 mIoU.
We transplanted the trained network to the Qualcomm Snapdragon
865 mobile processing device, and the delay time was 224 ms,
which met the requirements for mobile devices. Compared with
advanced semantic segmentation algorithms, LSNet outperforms the
latest lightweight networks regarding segmentation accuracy and
parameter balance.

Our contributions can be summarized in the following points:

1. A 1D-MS and a 1D-MC are proposed, which inherit the
design idea of MLP and integrate global feature operations.
Since this module uses 1D convolution, it is not limited
by the input size. This module has the advantages of fewer
parameters and strong coding ability.

2. We designed the 1D-mixer module, which adopts the
structure of the visual transformer, and combines the 1D-
MS module, the 1D-MC module, and the channel separation
technology. This module encodes and fuses the feature
map along the space and channel direction, which has the
advantages of strong encoding ability and few parameters.

3. An AP-FA is proposed. The purpose of the AP is to expand
the network receptive field, reduce the loss of details, and
improve the segmentation accuracy. At the same time, to
solve the loss of accuracy caused by feature misalignment,
a FA is proposed for upsampling.

4. Based on the above modules, we designed a LSNet. The
network performed well on the Cityscapes and CamVid
datasets compared with the advanced LSNet, and it obtained
the best balance between accuracy and parameters. The
network trained in the ADE2K data set is transplanted
to the mobile device, and the delay time is 224 ms,
which meets the requirements of the mobile device. The
number of parameters of the network we designed is
0.62 M, and the accuracy is the highest among the networks
within 1 M parameters.

2. Related work

2.1. Semantic segmentation

Semantic segmentation (Brempong et al., 2022; Mo et al., 2022;
Sheng et al., 2022; Ulku and Akagündüz, 2022) is the vision task
of classifying image pixels. FCN (Noh et al., 2015) replaces the
FC of the classification network with convolution, enabling the
development of end-to-end convolutional networks. Recently, MLP-
based networks have shown great potential in object detection
and surpassed transformer-based semantic segmentation methods.
LEDNet (Wang et al., 2019) is a typical lightweight network. The
encoder uses a combination of residual modules and decomposed
convolutions, and the decoder uses a simple pyramid structure. The
algorithm’s structure conforms to the design principle of lightweight
semantic segmentation structure and has the advantages of high
segmentation accuracy and few parameters. We summarized the
main design ideas of lightweight semantic segmentation through
many research papers, mainly multi-scale receptive field fusion,
multi-scale semantics, expanding receptive field, strengthening edge
features, and obtaining global information.

2.2. Attention mechanism

The purpose of the attention mechanism (Guo et al., 2022a,b)
is to select features and make reasonable use of computing
resources. There are two types of attention mechanisms in semantic
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segmentation networks, channel attention and spatial attention,
which play different roles in the network. Spatial attention focuses
on the central region from the perspective of feature space. Channel
attention focuses on selecting feature channels and using some
channels as the primary encoding object. CBAM (Woo et al.,
2018) uses a mixture of typical channels and spatial attention. The
most significant advantage of this module is that it has a small
number of parameters. It can be seamlessly integrated into any CNN
architecture, ignoring additional overhead.

2.3. Transformer

The transformer (Han et al., 2022; Khan et al., 2022) was
first used in the field of NLP to encode the input sequence.
ViT (Dosovitskiy et al., 2020) demonstrates that transformers can
also be applied to image classification. ViT treats an image as a
sequence and sends it to a transformer layer for classification. ViT-
based variants include CPVT (Chu et al., 2021), TNT (Han et al.,
2021), and LocalViT (Li et al., 2021), improving image classification
accuracy. For semantic segmentation, the core architecture of SETR
(Zheng et al., 2021) is still the encoder-decoder structure. However,
compared to the traditional CNN-led encoder structure, SETR uses
transformer to replace it, but this method could be more efficient.
Recently, SegFormer (Xie et al., 2021) designed a novel hierarchical
transformer encoder that outputs multi-scale features. It does not
require positional encoding, thus avoiding interpolation of positional
encodings. SegFormer also has disadvantages: the output resolution
is fixed, and the resolution is too low, which affects the detail
segmentation.

3. Method

3.1. 1D-MS and 1D-MC

Lightweight semantic segmentation research aims to design
a neural network with small parameters and high segmentation
accuracy. The current lightweight segmentation network can be
divided into two categories: (1) the number of parameters is more
than 5 M, and the segmentation accuracy is between 72 and 80 mIoU.
The utilization rate of such network parameters is low, and it may
be necessary to increase the parameters by about 10 M for every
1 mIoU increase in accuracy. Although the accuracy can meet the
application requirements, it deviates from the original intention
of lightweight. (2) The number of parameters is below 5 M, and
the segmentation accuracy is less than 72 mIoU. The parameter
utilization rate of this type of network is high, but the segmentation
accuracy could be better. The parameters and segmentation accuracy
are challenging to balance. MLP has recently become a new research
direction, and its advantages are high segmentation accuracy and a
small number of parameters, as shown in Figure 1A. MLP has a fatal
shortcoming. It has strict requirements on the input feature size and
requires additional feature cropping to be applied to the semantic
segmentation network.

Based on the above analysis, we designed a 1D-MS and a 1D-
MC. The purpose of our design of these two modules is to inherit
the excellent performance of MLP and solve the shortcomings of
MLP. The design process is as follows: 1D-MS is divided into a local

feature extraction branch and a global information extraction branch,
as shown in Figure 1C. The local feature extraction branch adopts
the structure of MLP and replaces the fully connected layer with
1D depth separation convolution (convolution kernel size is 3 × 1
and 1 × 3). This not only fits the coding performance of MLP but
also solves the problem of input size. Since 1D convolution is used
for spatial encoding, there will be decoupling problems in extracting
features. To solve this problem, we design the global information
extraction branch. This branch uses max-pooling and avg-pooling
to obtain global feature information and generates global features
through 1 × 1 convolution. The addition of the output features
of the two branches not only solves the decoupling problem but
also integrates the local and global features to improve the coding
performance. The design concept of 1D-MC is similar to that of 1D-
MS. As shown in Figure 1B, its channel fusion branch replaces the
MLP fully connected layer with 1 × 1 convolution, and the channel
selection branch uses the global max-pooling operation. It is worth
noting that the number of intermediate feature output channels of
our designed channel fusion branch is half the number of input
channels. The output of the two branches is multiplied, and 1D-
MC not only performs information fusion between channels but also
selects feature channels.

The 1D-MS and 1D-MC we designed to have the following
advantages: they inherit MLP’s advantages of solid coding ability
and fewer parameters; there is no requirement for the input feature
size, which is more flexible than MLP; it adds a global feature
branch and channel selection branch to improve the overall coding
performance of the module.

3.2. 1D-mixer module

The design of the encoder is key to the success of the network.
Visual transformer is the coding structure that has recently received
the most attention and is widely used in object detection and
semantic segmentation. The 1D-mixer module we designed uses
the transformer architecture. The 1D-mixer module comprises 1D
convolution, which extracts and fuses the feature’s spatial and channel
information. The 1D-mixer spatial feature encoding part includes the
1D-MS module, channel separation, and residual connection. The
role of channel separation is to reduce the number of feature channels
and the parameters required for later encoding. 1D-MS is used for
encoding in the direction of feature space. This encoding module
integrates local and global information and has strong encoding
ability. Using residual connections increases the utilization of features
and speeds up network training. The 1D-mixer channel information
fusion part is composed of 1D-MC and residual connection. This part
helps feature information flow between different channels and feature
selection along the direction of the channel. The overall structure
of the 1D-mixer is shown in Figure 1D, and the specific calculation
process is as follows:

SF = Concat
(
MS

(
Split (X)

))
+ X (1)

OUT = MC (SA)+ SF (2)

Where X represents the feature input.SF and OUT denote spatially
encoded features and 1D-mixer encoded output. Split means distinct
channel separation, MS means 1D-MS module, and MC is the
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FIGURE 1

(A) Multi-layer perceptron (MLP); (B) 1D multi-layer channel module (1D-MC); (C) 1D multi-layer space module (1D-MS), and (D) 1D-mixer. ⊗ Means pixel
multiplication; ⊕means pixel addition; split means channel separation; concat means channel splicing.

FIGURE 2

(A) Attention pyramid with flow alignment module (AP-FA); (B) FA; (C) AP. ⊗ Means pixel multiplication; ⊕means pixel addition; © means channel
splicing; T means deconvolution.

1D-MC module. + Means residual connection, and Concat means
channel splicing.

Our 1D-mixer has the following advantages: (1) it adopts
transformer structure to fuse spatial feature information and channel
information to improve segmentation accuracy; (2) 1D-MS fuses
local and global information of feature space direction with very
few parameters; (3) 1D-MC module promotes the flow of feature
information in the channel direction and selects effective feature
channels; (4) it adopts channel separation operation to reduce model
parameters and calculation further.

3.3. AP-FA module

In order to further extract high-level semantic information and
adapt to different tasks, the network usually connects a decoder
after the encoder, for which we designed a novel AP-FA, as shown

in Figure 2A. The decoder consists of two main parts, one is the
attention feature pyramid, and the other is the FA.

3.3.1. Attention pyramid
The AP consists of three branches: 1D pyramid structure, which

can further encode features to obtain global information and detailed
information; 1 × 1 convolution, which fuses channel information
on the output of the encoder; the spatial attention branch acquires
features. The spatial position relationship reduces the loss of details.
The specific operation process is shown in Equation (3).

OUT = [C1 × 1 (X)+ P (X)] × SA (X) (3)

Where X and OUT represent the output feature of the Stage 3
and output of AP, P is the pyramid structure, C1 × 1is 1 × 1
convolution, SA is spatial attention, + represents the addition
of corresponding elements, and represents the multiplication of
corresponding elements. In the pyramid structure, the convolution
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FIGURE 3

The overall network architecture of lightweight semantic segmentation network (LSNet).

and deconvolution of the depth-wise convolution kernel sizes we use
are (3 × 1, 5 × 1, and 7 × 1). There are two main reasons for
using decomposed convolution here. One is that banded convolution
meets the needs of lightweight networks, and the second is that most
detected targets are banded. Therefore, using banded convolution
is helpful for feature decoding. In the spatial attention branch, two
kinds of pooling are used to obtain global information from multiple
aspects and are encoded by 1 × 7 and 7 × 1 convolutions. 1 × 7
and 7 × 1 large convolutions can extract spatial features very well.
AP related details are shown in Figure 2C.

3.3.2. Flow alignment
Ordinary upsampling will cause the problem of feature

misalignment, resulting in decreased segmentation accuracy. We
design a FA to restore the resolution and solve the misalignment
problem by predicting the flow field inside the network. The specific
process is shown in Figure 2B. The input of FA is the output feature
(F1) of Stage 1 and the output feature map (D) of AP. The feature
map is obtained through a 1 × 1 convolutional layer to obtain a
feature map with a channel number of 1. The resulting feature map is
upsampled to ensure that the resolution of the two features is equal
to the resolution of the input image. We concatenate them together
and feed the concatenated feature maps into 7 × 1 and 1 × 7

TABLE 1 The detailed architecture of lightweight semantic segmentation
network (LSNet).

Stage Type Channel Output size

Encoder Downsampling 64 512×256

1D-mixer×3 64 512×256

Downsampling 96 256×128

1D-mixer×3 96 256×128

Downsampling 128 128×64

1D-mixer×21 128 128×64

Decoder AP-FA C 1,024×512

“Channel” denotes the number of output feature maps and “C” is the number of classes. “Output
size” denotes the output size with an input size of 1,024× 512.

concatenated convolutional networks. The above steps can be written
as follows:

offset = Conv (U (C1 × 1 (F1, D))) (4)

Among them, U represents the connection and upsampling
operation, C1 × 1is a 1 × 1 convolutional layer, Conv is a series
network of 7 × 1 and 1 × 7. offset is the offset required for
bilinear interpolation. We normalize offset and sum it with the grid
to generate an upsampling index. The features output by the AP is
upsampled through the grid sample operation. The FA we designed
combines high-level semantic features and low-level structural
features to solve the problem of feature misalignment perfectly.

The AP-FA structure we designed has the following advantages:
first, the pyramid structure is used to extract features, and the
purpose is to expand the network receptive field and obtain more
decoding features; second, the spatial attention structure suppresses
unnecessary information, highlights important information, and

TABLE 2 Ablation study results of 1D-mixer module.

Type Model mIoU (%) Params (M)

Baseline LSNet 72.6 0.62

Ablation for typical
module

SS-nbt 69.8 2.52

DAB 71.2 2.15

CG 64.4 0.48

Ablation for depth 3, 9 65.6 0.40

3, 12 67.2 0.46

6, 12 67.4 0.49

3, 15 68.8 0.51

6, 15 67.5 0.54

3, 18 70.2 0.57

3, 24 72.3 0.67

Ablation for 1D-MS 3 × 3 70.9 2.31

3 × 3 depth-wise 69.8 0.64

Ablation for 1D-MC 1 × 1 71.4 0.62
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FIGURE 4

The lightweight semantic segmentation network (LSNet) feature visualization. The picture from left to right is: the original image, the encoder feature
map using DAB, the encoder feature map using 1D-mixer, the network output feature map using DAB, and the network output feature map using
1D-mixer.

improves segmentation precision. Third, the FA method solves
the misalignment problem when bilinear interpolation is used for
upsampling and improving segmentation accuracy.

3.4. Network architecture

Figure 3 is a structural diagram of LSNet, which uses an
asymmetric encoder-decoder structure. The details of the specific
design are shown in Table 1. The encoding part uses three stages to
encode different resolution features, and the number of 1D-mixer
in each stage is 3, 3, 21. The input resolutions of each stage are
(H 1

4
× W 1

4
, H 1

8
× W 1

8
, and H1/16 × W1/16), where H and

W are the height and width of the input image, respectively. The
downsampling is 3 × 1 and 1 × 3 convolution concatenation, the
step size is 2, and the max-pooling output is spliced simultaneously.

The input of the AP-FA decoder comes from the feature
maps of Stage 1 and Stage 3, and the final scene parsing is
performed through the attention feature pyramid and the FA. Much
lightweight semantic segmentation ignores the decoder in order
to reduce network parameters. A dense decoder can help improve
segmentation accuracy without generating too many parameters.
Many lightweight networks use three-stage encoders to cause the
network’s receptive field to be too small, and bilinear interpolation

TABLE 3 Ablation study results of attention pyramid with flow alignment
module (AP-FA) module.

Type Model mIoU (%) Params (M)

Baseline LSNet 72.6 0.62

Ablation for AP 1×1 70.5 0.59

Ablation for
attention

– 72.2 0.62

Ablation for
feature pyramid

– 70.9 0.59

333 71.9 0.61

235 72.0 0.61

135 71.5 0.61

3,579 72.5 0.62

Ablation for FA Bilinear
interpolation

70.8 0.62

has problems with upsampling misalignment. Aiming at the problem
of the decrease in segmentation accuracy caused by the above, we
designed the AP module to expand the network receptive field and
increase the global information. We design a FA to restore feature
resolution and improve segmentation accuracy.

4. Experiments

4.1. Datasets and implementation details

4.1.1. Cityscapes
Cityscapes (Cordts et al., 2016) is an urban scene parsing dataset

commonly used for semantic segmentation training. It contains street
scenes in multiple cities and 5,000 car-driving images collected from
the driver’s perspective. This network splits the dataset into 2,975,
500, and 1,525 for training, validation, and testing. We select 19 of
these semantic categories for training. We convert the resolution of
the original image from 2, 048 × 1, 024 to 1, 024 × 512 to improve
the running speed. We do not introduce additional pre-training
during training.

4.1.2. CamVid
CamVid (Brostow et al., 2008) contains 701 street view images,

of which 367 are used for training, 101 for validation, and 233 for
testing. The data set semantically annotates 32 objects in the picture,
and we only train 11 semantic objects. We reduce the resolution of
the original image from 960 × 720 to 480 × 360 to improve the
inference speed.

4.1.3. ADE2K
ADE2K contains 25,000 pictures, and the resolution of each

picture is not uniform. We unified the size of the pictures to
512 × 512 to facilitate model training. The training set contains
20,000 images, the validation set contains 2,000 images, and the test
set contains 3,000 images.

4.1.4. Implementation details
All our experiments are run on a 1080Ti GPU. PyTorch 1.7,

CUDA 9.0, cuDNN 8.0, and Anaconda environment are specific
configurations. For fairness, we adopted the training configuration
widely used by everyone. The details are as follows: the stochastic
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TABLE 4 Evaluation results of our lightweight semantic segmentation network (LSNet) and other state-of-the-art real-time semantic segmentation models
on the Cityscapes test set.

Model Input size Pre-train GPU mIoU (%) FPS Params (M)

SegNet (Badrinarayanan et al., 2017) 640 x 360 ImageNet TitanX 57 16.7 29.5

ENet (Paszke et al., 2016) 640 x 360 No TitanX 58.3 135.4 0.4

ICNet (Zhao et al., 2018) 1,024 x 2,048 ImageNet TitanX 69.5 30.3 26.5

ERFNet (Romera et al., 2017) 512 x 1,024 No TitanX 68 41.7 2.1

ESPNet (Mehta et al., 2018) 512 x 1,024 No TitanX 60.3 112 2.1

BiSeNet (Yu et al., 2018) 768 x 1,536 ImageNet TitanX 68.4 72.3 5.8

Fast-SCNN (Poudel et al., 2019) 1,024 x 2,408 ImageNet TitanX 68 123.5 1.11

ESPNetV2 (Mehta et al., 2019) 512 x 1,024 No TitanX 66.2 67 1.25

DFANet (Li H. et al., 2019) 512 x 1,024 ImageNet TitanX 70.3 160 7.8

LEDNet (Wang et al., 2019) 512 x 1,024 No 1080Ti 69.2 71 0.94

ESNet (Lyu et al., 2019) 512 x 1,024 No 1080Ti 69.1 63 1.66

DABNet (Li G. et al., 2019) 512 x 1,024 No 1080Ti 70.1 104 0.76

FDDWNet (Liu et al., 2020) 512 x 1,024 No 2080Ti 71.5 60 0.8

DDPNet (Yang et al., 2020) 768 x 1,536 No 1080Ti 74.0 85.4 2.52

LEANet (Zhang et al., 2022) 512 x 1,024 No 1080Ti 71.9 77.3 0.74

SFNet (Li et al., 2020) 1,024 x 2,048 No 1080Ti 78.9 26 12.87

PIDNet-S (Xu et al., 2022) 1,024 x 2,048 No 3,090 78.8 93.2 7.6

LSNet (Our) 512 x 1,024 No 1080Ti 72.6 95.6 0.62

FIGURE 5

Some visual comparisons on the Cityscapes validation set. From left to right are input images, ground truth, predicted results from LEDNet, DABNet, and
our lightweight semantic segmentation network (LSNet).

TABLE 5 Evaluation results of our lightweight semantic segmentation network (LSNet) and other state-of-the-art real-time semantic segmentation models
on the CamVid test set.

Model Input size Pre-train GPU mIoU (%) FPS Params (M)

SegNet (Badrinarayanan et al., 2017) 360 x 480 ImageNet TitanX 55.6 – 29.5

ENet (Paszke et al., 2016) 360 x 480 No TitanX 51.3 – 0.4

ICNet (Zhao et al., 2018) 720 x 960 ImageNet TitanX 67.1 27.8 26.5

CGNet (Wu et al., 2020) 360 x 480 No 2 x V100 65.6 – 0.5

BiSeNet (Yu et al., 2018) 720 x 960 ImageNet TitanX 65.6 175 5.8

BiSeNetV2 (Yu et al., 2021) 720 x 960 ImageNet TitanX 68.7 124.5 49.0

DFANet (Li H. et al., 2019) 720 x 960 ImageNet TitanX 64.7 120 7.8

DABNet (Li G. et al., 2019) 360 x 480 No 1080Ti 66.2 124.4 0.76

LRNNet (Jiang et al., 2020) 360 x 480 No 1080Ti 67.6 83 0.67

DDPNet (Yang et al., 2020) 360 x 480 No 1080Ti 67.3 – 1.1

LEANet (Zhang et al., 2022) 360 x 480 No 1080Ti 67.5 98.6 0.74

LSNet (Our) 360 x 480 No 1080Ti 70.5 122 0.62
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gradient descent method (SGD) is used, the loss function is the cross-
entropy, and the learning rate update strategy uses “poly.” The input
image is randomly cropped, inverted, and scaled, and the scaling
range is 0.75− 2. The initial learning rate of training Cityscapes is
1e− 2, the weight decay is 5e− 4, the cropping size is 512 × 512,
and the number of input images is eight. The initial learning rate of
training. Initial learning rate of CamVid is 1e− 3, the weight decay
is 5e− 4, the cropping size is 480 × 360, and the number of input
images is 16. Initial learning rate of ADE20K is 1.2e− 4, the weight
decay is 1e− 2, the cropping size is 512 × 512, and the number of
input images is eight.

4.2. Ablation study

4.2.1. Ablation study for 1D-mixer module
4.2.1.1. Ablation for typical module

We compare LEDNet’s (Wang et al., 2019) encoding structure
SS-nbt, DABNet’s (Li G. et al., 2019) encoding structure DAB,
and CGNet’s (Wu et al., 2020) CG encoder with our designed
1D-mixer. We trained on the Cityscapes dataset, replacing the
classic module 1D-mixer in the LSNet network. As shown in
Table 2, the LSNet network with the CG module has minor
parameters, but the accuracy is 8.2 mIoU lower than the network
with 1D-mixer. The parameters of the remaining two modules are
more than three times that of the 1D-mixer, and the accuracy
is also lower than the modules we designed. Figure 4 is a
feature visualization diagram of the LSNet network using the
1D-mixer module and the DAB module. Through the above
comparative analysis, the 1D-mixer we designed outperforms the
classic lightweight encoding modules in feature extraction and
parameters.

4.2.1.2. Ablation for depth

The LSNet network contains three encoding stages, and the
number of layers set in the first stage is three, which is consistent with
the design of most classic lightweight networks. We experimented
with the number of modules in the second and third stages of the
network, hoping to find a suitable number of layers to achieve a

TABLE 6 Results of typical networks on the ADE20K validation set.

Model Params
(M)

FLOPs
(G)

mIoU
(%)

Latency
(ms)

FCN-8s (Noh et al., 2015) 9.8 39.6 19.7 1,015

PSPNet (Zhao et al., 2017) 13.7 52.2 29.6 1,065

R-ASPP (Sandler et al., 2018) 2.2 2.8 32.0 177

Lite-ASPP (Chen et al.,
2018)

2.9 4.4 36.6 235

LR-ASPP (Howard et al.,
2019)

3.2 2.0 33.1 126

SegFormer (Xie et al., 2021) 3.8 8.4 37.4 770

Semantic FPN (Kirillov
et al., 2019)

12.8 33.8 35.8 777

LSNet (Our) 0.65 3.8 36.4 224

All networks are trained on the server and ported to mobile devices through TNN. Latency and
GFLOPs calculations take 512 × 512 resolution images as input. Latency measured based on a
single Qualcomm Snapdragon 865 processor. All results are evaluated using a single thread.

certain balance between the segmentation accuracy and parameters
of the network. As shown in Table 2, the segmentation accuracy
and model parameters increase as the number of network layers
increases. When the network exceeds a certain number of layers, the
segmentation accuracy does not increase. We denote the number
of encoders in the second stage by N, and M is the number of
encoders in the third stage. When M = 12, the network accuracy
of N = 3 is 0.2 mIoU higher than that of N = 6. The network
accuracy is the highest when N = 3 and M = 21. After the
above analysis, we set to N = 3 and M = 21 in Stage 2 and
3.

4.2.1.3. Ablation for 1D-MS

According to the idea of MLP and global information fusion
technology, we designed the 1D-MS module. The 1D-MS module
plays the role of spatial feature extraction in the encoder. To
explore the superiority of our designed 1D-MS block encoding,
we replace 1D-MS with 3 × 3 convolution and 3 × 3 depth-wise
convolution. As shown in Table 2, 3 × 3 depth-wise convolution
has the same parameters as our designed 1D-MS module, but
the accuracy drops by 2.8 mIoU. The 3 × 3 convolution is
not as powerful as the 1D-MS module in terms of accuracy
and parameters. The above experimental results prove that the
encoding effect of our designed 1D-MS exceeds that of ordinary
convolution.

4.2.1.4. Ablation for 1D-MC

Information fusion between channels can improve network
accuracy. We design the 1D-MC module, adopting the ideas of MLP
and channel selection. Ordinary channel information fusion uses
1× 1 convolution, and here we compare 1D-MC with it. As shown in
Table 2, 1D-mixer with 1 × 1 convolution has the same parameters
as 1D-MC, but the accuracy is reduced by 1.2 mIoU. It can be seen
from the experiments that efficient channel information fusion can
improve segmentation accuracy, and our designed 1D-MC is more
suitable for channel information fusion than 1× 1 convolution.

4.2.2 Ablation study for AP-FA module
4.2.2.1 Ablation study for AP

Attention pyramid can fuse multi-scale information and perform
feature screening simultaneously to improve network accuracy. We
conduct ablation experiments on the AP structure, replacing the AP
module with 1 × 1 convolution. As can be seen from Table 3, the
accuracy of the network without the AP module drops by 2.1 mIoU.
From the experiments, it can be seen that adequately designing the
decoder can improve network accuracy.

4.2.2.2 Ablation study for attention

We introduced spatial attention in AP-FA; the purpose is to
extract the overall structural features of the feature map and filter
the features to improve the segmentation accuracy. To demonstrate
the role of spatial attention in the decoder, we compare LSNet with
LSNet without attention. Table 3 shows that the accuracy of the
network without spatial attention drops by 0.4 mIoU. This test shows
that our spatial attention branch can improve network segmentation
accuracy.

4.2.2.3 Ablation study for feature pyramid

We use 3 × 1, 5 × 1, and 7 × 1 convolution and deconvolution
to form a feature pyramid, the purpose of which is to increase the
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depth of the network and integrate contextual scale information. We
designed five sets of 1D convolution, and the convolution kernel
sizes are ((3, 3, 3) , (1, 3, 5) , (2, 3, 5) , (3, 5, 7) , (3, 5, 7, 9)).
In order to further prove the value of the pyramid, we designed
LSNet to remove the pyramid structure. It can be seen from Table 3
that introducing the pyramid structure can increase 1.7 mIoU.
Comparing the experimental results of the LSNet network using these
five sets of convolution kernels, the segmentation accuracy of the
convolution kernel (3, 5, 7) is the highest, and it is proved that
further increasing the depth of the pyramid has little effect on the
segmentation accuracy.

4.2.2.4 Ablation study for FA

Since the output resolution of the encoder is smaller than the
resolution of the original image, bilinear interpolation is usually used
to restore the feature resolution at the end of the network. There is
a problem of feature misalignment in bilinear upsampling, which
affects the segmentation accuracy. We design a FA in the decoder
to solve this problem. We compared bilinear interpolation with FA,
and the specific results are shown in Table 3. The FA we designed
is 1.8 mIoU higher than the bilinear interpolation algorithm, which
shows that the design of the alignment module is effective.

4.3 Evaluation results on Cityscapes

We designed an LSNet with a parameter of 0.62 M, an inference
speed of 95.6 FPS, and a segmentation accuracy of 72.6 mIoU
on a 1080Ti. It can be seen from Table 4 that the network we
designed has the highest accuracy among the networks with less
than 1 M parameters. Under the same experimental conditions
of 1080Ti, the network we designed is 69.6 FPS faster than
SFNet, and the parameters are also reduced by 12.25 M. From
the balance of network parameters and segmentation accuracy, the
parameter expression ability of the LSNet we designed is better
than that of SFNet. For PIDNet, the segmentation accuracy is
6.2 mIoU higher than LSNet, but 6.98 M increases the number
of parameters. From the perspective of accuracy and parameter
balance, the parameters of PIDNet are 11 times that of LSNet, but
the accuracy increases very little. The network we designed has a
better balance. It is worth noting that the resolution of our network
input is 1, 024 × 512, and the resolution of PIDNet and SFNet
input is 2, 048 × 1, 024, which is an important reason why their
accuracy is higher than our network. We compare the visualization
results of DABNet, LEDNet, and our designed LSNet, as shown in
Figure 5.

4.4 Evaluation results on CamVid

Table 5 compares the performance of LSNet on the CamVid
dataset with other models. The network we designed has the
highest accuracy in the current LSNet, which is 3 mIoU higher
than LEANet (Zhang et al., 2022). Without any pre-training, the
LSNet network has an accuracy of 70.5 mIoU and a speed of
122 FPS. Our training is only done on a 1080Ti GPU, and the
input resolution uses low-resolution images. Unlike most real-time
semantic segmentation models, LSNet has apparent advantages:
fewer parameters and high segmentation accuracy. Whether it is the

Cityscapes or CamVid dataset, our LSNet has excellent performance
and strong robustness.

4.5 Evaluation results on ADE20K

We train all networks on the server and use TNN to port
the trained networks to mobile devices. The LSNet we designed
and the advanced algorithm are compared on the validation
dataset on ADE20K, and the latency (ms) is tested on a mobile
device with a single Qualcomm Snapdragon 865 processor. The
experimental results are shown in Table 6. FCN-8s, PSPNet
(Zhao et al., 2017), R-ASPP (Sandler et al., 2018), and Lite-
ASPP (Chen et al., 2018), use MobileV2 as the encoder. LR-
ASPP (Howard et al., 2019) uses MoblieV3 as the encoder.
We also compare with the advanced lightweight transformer
algorithm, where SegFormer uses MiT-B0 as the encoder, and
Semantic FPN (Kirillov et al., 2019) uses ConvMLP-S as the
encoder. As can be seen from Table 6, LSNet and Lite-ASPP
are comparable in latency and segmentation accuracy. However,
LSNet has more advantages in calculation amount (GFLOPs) and
parameter amount. This experiment proves that the network we
designed can be used on mobile devices, and the calculation amount,
parameter amount, and segmentation accuracy achieve the best
balance.

5. Conclusion

In this paper, we designed a LSNet. The network’s success
is attributed to the combination design of 1D convolution.
Our network transforms the MLP idea into a 1D convolution
multi-layer combination, which solves problems where MLP is
challenging to apply in semantic segmentation. At the same
time, the design of the decoder increases the network’s depth,
solves the misalignment of upsampling, and further improves
the accuracy of network segmentation. Experimental results show
that our designed network achieves the best balance of accuracy
and parameters, surpassing the current state-of-the-art lightweight
language segmentation network. This paper shows that the
proper use of multi-layer 1D convolution is more suitable for
semantic segmentation than MLP. Clever decoder design is also
an essential part of improving segmentation accuracy. We hope
this paper encourages researchers to investigate the potential of 1D
convolutions further.
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Recent adversarial attack research reveals the vulnerability of learning-based deep

learning models (DNN) against well-designed perturbations. However, most existing

attack methods have inherent limitations in image quality as they rely on a relatively

loose noise budget, i.e., limit the perturbations by Lp-norm. Resulting that the

perturbations generated by these methods can be easily detected by defense

mechanisms and are easily perceptible to the human visual system (HVS). To

circumvent the former problem, we propose a novel framework, called DualFlow,

to craft adversarial examples by disturbing the image’s latent representations with

spatial transform techniques. In this way, we are able to fool classifiers with

human imperceptible adversarial examples and step forward in exploring the existing

DNN’s fragility. For imperceptibility, we introduce the flow-based model and spatial

transform strategy to ensure the calculated adversarial examples are perceptually

distinguishable from the original clean images. Extensive experiments on three

computer vision benchmark datasets (CIFAR-10, CIFAR-100 and ImageNet) indicate

that ourmethod can yield superior attack performance inmost situations. Additionally,

the visualization results and quantitative performance (in terms of six di�erent

metrics) show that the proposedmethod can generatemore imperceptible adversarial

examples than the existing imperceptible attack methods.

KEYWORDS

deep learning, adversarial attack, adversarial example, normalize flow, spatial transform

1. Introduction

Deep neural networks (DNNs) have achieved remarkable achievements in theories and

applications. However, the DNNs have been proven to be easily fooled by adversarial examples

(AEs), which are generated by adding well-designed unwanted perturbations to the original clean

data (Zhou et al., 2019). In these years, many studies dabbled in crafting adversarial examples and

revealed that many DNN applications are vulnerable to them. Such as Computer Vision (CV)

(Kurakin et al., 2017; Eykholt et al., 2018; Duan et al., 2020), Neural Language Processing (NLP)

(Xu H. et al., 2020; Shao et al., 2022; Yi et al., 2022), and Autonomous Driving (Liu A. et al.,

2019; Zhao et al., 2019; Yan et al., 2022). Generally, in CV, the AE needs to meet the following

two properties, one is that it can attack the target model successfully, resulting in the target model

outputting wrong predictions; another one is its perturbations should be invisible to human eyes

(Goodfellow et al., 2015; Carlini and Wagner, 2017).

Unfortunately, most existing works (Kurakin et al., 2017; Dong et al., 2018, 2019) are focused

on promoting the generated adversarial examples’ attack ability but ignored the visual aspects of
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the crafted evil examples. Typically, the calculated adversarial noise

is limited by a small Lp-norm ball, which tries to keep the built

adversarial examples looking like the original image as possible.

However, the Lp-norm limited adversarial perturbations blur the

images to a large extent and are so conspicuous to human eyes

and not harmonious with the whole image. Furthermore, these Lp-

norm-based methods, which modify the entire image at the pixel

level, seriously affect the quality of the generated adversarial images.

Resulting in the vivid details of the original image can not be

preserved. Besides, the adversarial examples crafted in these settings

can be easily detected by the defense mechanism or immediately

discarded by the target model and further encounter the “denied to

service.” All the mentioned above can lead the attack to be failed.

Furthermore, most existing methods adopt Lp-norm, i.e., L2 and Linf -

norm, distance as the metrics to constraint the image’s distortion.

Indeed, the Lp-norm can ensure the similarity between the clean and

adversarial images. However, it does not perform well in evaluating

an adversarial example.

Recently, some studies have attempted to generate adversarial

examples beyond the Lp-norm ball limited way. For instance, patch-

based adversarial attacks, which usually extend into the physical

world, do not limit the intensity of perturbation but the range

scope. Such as adversarial-Yolo (Thys et al., 2019), DPatch (Liu X.

et al., 2019), AdvCam (Duan et al., 2020), Sparse-RS (Croce et al.,

2022). To obtain more human harmonious adversarial examples

with acceptable attack success rate in the digital world, Xiao et al.

(2018) proposed the stAdv to generate adversarial examples by spatial

transform to modify each pixel’s position in the whole image. The

overall visual effect of the adversarial example generated by stAdv is

good. However, the adversarial examples generated by stAdv usually

have serration modifications and are visible to the naked eye. Later,

the Chroma-Shift (Aydin et al., 2021) made a forward step by

applying the spatial transform to the image’s YUV space rather than

RGB space. Unfortunately, these attacks have destroyed the semantic

information and data distribution of the image, resulting that the

generated adversarial noise that can be easily detected by the defense

mechanism (Arvinte et al., 2020; Xu Z. et al., 2020; Besnier et al., 2021)

and leading the attack failed.

To gap this bridge, we formulate the issue of synthesizing invisible

adversarial examples beyond noise-adding at pixel level and propose

a novel attack method called DualFlow. More specifically, DualFlow

uses spatial transform techniques to disturb the latent representation

of the image rather than directly adding well-designed noise to the

benign image, which can significantly improve the adversarial noise’s

concealment and preserve the adversarial examples’ vivid details at

the same time. The spatial transform can learn a smooth flow field

vector f for each value’s new location in the latent space to optimize an

eligible adversarial example. Furthermore, the adversarial examples

are not limited to Lp-norm rules, which can guarantee the image

quality and details of the generated examples. Empirically, the

proposed DualFlow can remarkably preserve the images’ vivid details

while achieving an admirable attack success rate.

We conduct extensive experiments on three different computer

vision benchmark datasets. Results illustrate that the adversarial

perturbations generated by the proposed method take into account

the data structure and only appear around the target object.

We draw the adversarial examples and their corresponding noise

from the noise-adding method MI-FGSM and the DualFlow in

Figure 1. As shown in Figure 1, our proposed method slightly

alters this area around the target object, thus ensuring the

invisibility of the adversarial perturbations. Furthermore, the

statistical results demonstrate that the DualFlow can guarantee

the generated adversarial examples’ image quality compared to the

existing imperceptible attack methods on the target models while

outperforming them both on the ordinary and defense models

concerning attack success rate. The main contributions could be

summarized as follows:

• We propose a novel attack method, named DualFlow, which

generates adversarial examples by directly disturbing the latent

representation of the clean examples rather than performing an

attack on the pixel level.

• We craft the adversarial examples by applying the spatial

transform techniques to the latent value to preserve the details

of original images and guarantee the adversarial images’ quality.

• Comparing with the existing attack methods, experimental

results show ourmethod’s superiority in synthesizing adversarial

examples with the highest attack ability, best invisibility, and

remarkable image quality.

The rest of this paper is organized as follows. First, we briefly

review the methods relating to adversarial attacks and imperceptible

adversarial attacks in Section 2. Then, Sections 3 and 4, introduce

the preliminary knowledge and the details of the proposed DualFlow

framework. Finally, the experimental results are presented in Section

5, with the conclusion drawn in Section 6.

2. Related work

In this section, we briefly review the most pertinent attack

methods to the proposed work: the adversarial attacks and the

techniques used for crafting inconspicuous adversarial perturbations.

2.1. Adversarial attack

Previous researchers contend that deep neural networks (DNN)

are sensitive to adversarial examples (Goodfellow et al., 2015), which

are crafted by disturbing the clean data slightly but can fool the well-

trained DNN models. The classical adversarial attack methods can

be classified into two categories, white-box attacks (Kurakin et al.,

2017; Madry et al., 2018) and black-box attacks (Narodytska and

Kasiviswanathan, 2017; Bai et al., 2023). In white-box settings, the

attackers can generate adversarial examples with a nearly 100% attack

success rate because they can access the complete information of the

target DNNmodel, while for the physical world, the black-box attack

is more threatening to the DNN applications because they don’t need

too much information about the DNN models’ details (Ilyas et al.,

2018, 2019; Guo et al., 2019).

2.2. Imperceptible adversarial attacks

Recently, some studies have attempted to generate adversarial

examples beyond the Lp-norm ball limit for obtaining humanly

imperceptible adversarial examples. LowProFool (Ballet et al., 2019)

propose an imperceptibility attack to craft invisible adversarial
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FIGURE 1

The adversarial examples generated by the MI-FGSM (Aydin et al., 2021) and the proposed DualFlow for the ResNet-152 (He et al., 2016) model.

Specifically, the first column and the second column are the adversarial examples and their corresponding adversarial perturbations generated by

MI-FGSM, respectively. The middle column is the clean images. The last two columns are the adversarial perturbations and their corresponding

adversarial examples, respectively.

examples in the tabular domain. Its empirical results show that

LowProFool can generate imperceptible adversarial examples while

keeping a high fooling rate. For computer vision tasks the attackers

will also consider the human perception of the generated adversarial

examples. In Luo et al. (2018), the authors propose a new approach

to craft adversarial examples, which design a new distance metric

that considers the human perceptual system and maximizes the

noise tolerance of the generated adversarial examples. This metric

evaluates the sensitivity of image pixels to the human eye and can

ensure that the crafted adversarial examples are highly imperceptible

and robust to the physical world. stAdv (Xiao et al., 2018) focuses

on generating different adversarial perturbations through spatial

transform and claims that such adversarial examples are perceptually

realistic and more challenging to defend against with existing defense

systems. Later, the Chroma-Shift (Aydin et al., 2021) made a forward

step by applying the spatial transform to the image’s YUV space

rather than RGB space. AdvCam (Duan et al., 2020) crafts and

disguises adversarial examples of the physical world into natural

styles to make them appear legitimate to a human observer. It

transfers large adversarial perturbations into a custom style and

then “hides" them in a background other than the target object.

Moreover, its experimental results that AEs produced by AdvCam

are well camouflaged and highly concealed in both digital and

physical world scenarios while still being effective in deceiving

state-of-the-art DNN image detectors. SSAH (Luo et al., 2022)

crafts adversarial examples and disguises adversarial noise in a low-

frequency constraints manner. This method limits the adversarial

perturbations to the high-frequency components of the specific image

to ensure low human perceptual similarity. The SSAH also jumps out

of the original Lp-norm constraint-based attack way and provides a

new idea for calculating adversarial noise.

Therefore, crafting adversarial examples, especially for the

imperceptible ones, poses the request for a method that can efficiently

and effectively build adversarial examples with high invisibility and

image quality efficiently and effectively. On the other hand, with

the development of defense mechanisms, higher requirements are

placed on the defense resistance of adversarial examples. To achieve

these goals, we learn from the previous studies that adversarial

examples can be gained beyond noise-adding ways. Hence, we are

well motivated to develop a novel method to disturb the original

image latent representation obtained by a well-trained normalizing

flow-based model, and then apply a well-calculated flow field to it

to generate adversarial examples. Our method can build adversarial

examples with high invisibility and image quality without losing

attack performance.

3. Preliminary

Before introducing the details of the proposed framework, in this

section, we first present the preliminary knowledge about adversarial

attacks and normalizing flows.

3.1. Adversarial attack

Given a well-trained DNN classifier C and a correctly classified

input (x, y) ∼ D, we have C(x) = y, where D denotes the accessible

dataset. The adversarial example xadv is a neighbor of x and satisfies

that C(xadv) 6= y and ‖xadv − x‖p ≤ ǫ, where the ℓp norm is

used as the metric function and ǫ is usually a small value such as

8 and 16 with the image intensity [0, 255]. With this definition, the

problem of calculating an adversarial example becomes a constrained

optimization problem:

xadv = arg max ℓ

‖xadv−x‖p≤ǫ

(C(xadv) 6= y), (1)
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Where ℓ stands for a loss function that measures the confidence of

the model outputs.

In the optimization-based methods, the above problem is solved

by computing the gradients of the loss function in Equation (1)

to generate the adversarial example. Furthermore, most traditional

attack methods craft adversarial examples by optimizing a noise δ

and adding it to the clean image, i.e., xadv = x + δ. By contrast,

in this work, we formulate the xadv by disturbing the image’s latent

representation with spatial transform techniques.

3.2. Normalizing flow

The normalizing flows (Dinh et al., 2015; Kingma and Dhariwal,

2018; Xu H. et al., 2020) are a class of probabilistic generative

models, which are constructed based on a series of entirely reversible

components. The reversible property allows to transform from the

original distribution to a new one and vice versa. By optimizing

the model, a simple distribution (such as the Gaussian distribution)

can be transformed into a complex distribution of real data. The

training process of normalizing flows is indeed an explicit likelihood

maximization. Considering that the model is expressed by a fully

invertible and differentiable function that transfers a random vector

z from the Gaussian distribution to another vector x, we can employ

such a model to generate high dimensional and complex data.

1 Specifically, given a reversible function F :R
d
→ R

d and two

random variables z ∼ p(z) and z′ ∼ p(z′) where z′ = f (z), the change

of variable rule tells that

p(z′) = p(z)

∣

∣

∣

∣

det
∂F−1

∂z′

∣

∣

∣

∣

, (2)

p(z) = p(z′)

∣

∣

∣

∣

det
∂F

∂z

∣

∣

∣

∣

, (3)

Where det denotes the determinant operation. The above equation

follows a chaining rule, in which a series of invertible mappings can

be chained to approximate a sufficiently complex distribution, i.e.,

zK = FK ⊙ . . . ⊙ F2 ⊙ F1(z0), (4)

Where each F is a reversible function called a flow step. Equation

(4) is the shorthand of FK(Fk−1(. . . F1(x))). Assuming that x is the

observed example and z is the hidden representation, we write the

generative process as

x = Fθ (z), (5)

Where Fθ is the accumulate sum of all F in Equation (4). Based on

the change-of-variables theorem, we write the log-density function of

x = zK as follows:

− log pK(zK) = − log p0(z0)−

K
∑

k=1

log

∣

∣

∣

∣

det
∂zk−1

∂zk

∣

∣

∣

∣

, (6)

Where we use zk = Fk(zk−1) implicitly. The training process of

normalizing flow is minimizing the above function, which exactly

maximizes the likelihood of the observed training data. Hence, the

optimization is stable and easy to implement.

TABLE 1 The notations used in this paper.

x clean example C the classifier zadv the disturbed

latent value

xadv adversarial

example

L loss function δ the noise

y clean label F Pretrained Flow

Model

f the flow field

t the target label z the latent value N (·) the four

neighborhood

3.3. Spatial transform

The concept of spatial transform is firstly mentioned in Fawzi

and Frossard (2015), which indicates that the conventional neural

networks are not robust to rotation, translation and dilation. Next,

Xiao et al. (2018) utilized the spatial transform techniques and

proposed the stAdv to craft adversarial examples with a high fooling

rate and perceptually realistic beyond noise-adding way. StAdv

changes each pixel position in the clean image by applying a well-

optimized flow field matrix to the original image. Later, Zhang et al.

(2020) proposed a new method to produce the universal adversarial

examples by combining the spatial transform and pixel distortion,

and it successfully increased the attack success rate against universal

perturbation to more than 90%. In the literature (Aydin et al., 2021),

the authors applied spatial transform to the YUV space to generate

adversarial examples with higher superiority in image quality.

We summarized the adopted symbols in Table 1 to increase

the readability.

4. Methodology

In this section, we propose our attack method. First, we take an

overview of our method. Next, we go over the detail of each part step

by step. Finally, we discuss our objective function and summarize the

whole process as Algorithm 1.

4.1. The DualFlow framework

The proposed DualFlow attack framework can be divided into

three parts, the first one is to map clean image x to its latent

space z by the well-trained normalizing flow model. The second

part is to optimize the flow field f , and apply it to the images’

latent representation z and inverse the transformed z to generate its

corresponding RGB space counterpart xt . Note that step 2 needs to

be worked in an iterative manner to update the flow field f guided

by the adv_loss until the adversarial candidate xt can fool the target

model. Finally, apply the optimized flow field f to the image’s latent

counterpart z and do the inverse operation of normalizing flow to

obtain the adversarial image. The whole process is shown in Figure 2.

4.2. Normalizing flow model training

As introduced in Section 3.2., the training of the normalizing

flow is to maximize the likelihood function on the training data

Frontiers inNeurorobotics 04 frontiersin.org
144

https://doi.org/10.3389/fnbot.2023.1129720
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Liu et al. 10.3389/fnbot.2023.1129720

FIGURE 2

The framework of proposed DualFlow. x represent the image, among them, x0 is the benign image, xadv is the corresponding adversarial counterpart; z is

the hidden representation of the image; F is the well-trained Normalize Flow model and C is the pre-trained classifier; f is the flow field need to be

optimized and ⊗ represents the spatial transform operation.

with respect to the model parameters. Formally, assume that the

collected dataset is denoted by x ∼ X. The hidden representation

follows the Gaussian distribution, i.e., z ∼ N (0, 1). The flow

model is denoted by F, parameterized θ , which have x = Fθ (z)

and z = F−1(x). Then, the loss function to be minimized is

expressed as:

L(θ; z, x) = − log p(x|z, θ) = − log pz(F
−1
θ (x))− log

∣

∣

∣

∣

∣

det
∂F−1

θ (x)

∂x

∣

∣

∣

∣

∣

,

(7)

By optimizing the above objective, the learned distribution p(x|z, θ)

characterizes the data distribution as expected.

In the training process, we use the Adam algorithm to optimize

the model parameters; while the learning rate is set as 10−4, the

momentum is set to 0.999, and the maximal iteration number

is 100,000.

4.3. Generating adversarial examples with
DualFlow

For a clean image x, to obtain its corresponding adversarial

example xadv, we first calculate its corresponding latent space vector

z by performing a forward flow process via z = Fθ (x). Once the z

is calculated, we can disturb it with the spatial transform techniques,

the core is to optimize the flow filed vector f , which will be applied

to z to get the transformed latent representation zst according to x. In

this paper, the flow filed vector f is directly optimized with the Adam

optimizer iteratively. We will repeat the above process to optimize

flow field f until zst becomes an eligible adversarial latent value, that

is, make the zst becomes zadv. Finally, when the optimal flow filed f

is calculated, we restore the transformed latent representation zadv
to the image space through the inverse operation of the normalizing

flow model, that is, xadv = Fθ (zadv), to get its perturbed example xadv
in pixel level.

Moore specifically, the spatial transform techniques using a flow

field matrix f = [2, h,w] to transform the original image x to xst
(Xiao et al., 2018). In this paper, we adopt the spatial transform

from the pixel level to the latent space. Specifically, assume the latent

representation of input x is z and its transformed counterpart zst , for

the i-th value in zst at the value location (uist , v
i
st), we need to calculate

the flow field matrix f i = (1ui,1vi). So, the i-th value zi’s location in

the transformed image can be indicated as:

(ui, vi) = (uist + 1ui, vist + 1vi). (8)

To ensure the flow field f is differentiable, the bi-linear

interpolation (Jaderberg et al., 2015) is used to obtain the four

neighboring values surrounding the location (uist + 1ui, vist + 1vi)

for the transformed latent value zst as:

zist =
∑

q∈N (ui ,vi)

zq(1− |ui − uq|)(1− |vi − vq|), (9)

WhereN (ui, vi) is the neighborhood, that is, the four positions (top-

left, top-right, bottom-left, bottom-right) tightly surrounding the

target value (ui, vi). In our adversarial attack settings, the calculated

zst is the final adversarial latent representation zadv. Once the f has

been computed, we can obtain the zadv by applying the calculated flow

field f to the original z, which is given by:

zadv =
∑

q∈N (ui ,vi)

zq(1− |ui − uq|)(1− |vi − vq|)), (10)

and the adversarial examples xadv can be obtained by:

xadv = clip(F−1(zadv), 0, 1), (11)
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Where clip(·) is the clip operation to keep the generated value

belonging to [0, 1].

4.4. Objective functions

Taking the attack success rate and visual invisibility of the

generated adversarial examples into account, we divide the objective

function into two parts, where one is the adversarial loss and the other

is a constraint for the flow field. Unlike other flow field-based attack

methods, which constrain the flow field by the flow loss proposed in

Xiao et al. (2018), in our method, we use a dynamically updated flow

field budget ξ (a small number, like 1 ∗ 10−3) to regularize the flow

field f . For adversarial attacks, the goal is making C(xadv) 6= y. We

give the objective function as follows:

for un-targeted attacks:

Ladv(X, y, f ) = max[C(Xadv)y −max
k6=y

C(Xadv)k, k], s.t.‖f ‖ ≤ ξ .

(12)

for target attacks:

Ladv(X, y, t, f ) = min[max
k=t

C(Xadv)k − C(Xadv)y, k], s.t.‖f ‖ ≤ ξ .

(13)

The whole algorithm of LFFA is listed in Algorithm 1 for

easy reproducing of our results, where lines 11-18 depict the core

optimization process.

Input: Xtr: a batch of clean examples used for training;

α: the learning rate; T: the maximal training

iterations; Q: the maximal steps for attack; ξ:

the flow budget; Xte: a clean example used for test;

C: the target model to be attacked.

Output: The adversarial example xadv is used for attack.

Parameter: The flow model Fθ.

1: Initialize the parameters of the flow model Fθ;

2: for i = 1 to T do

3: Optimize Fθ according to Equation (6);

4: if Convergence reached then

5: break;

6: end if

7: end for

8: Obtain optimized Fθ;

9: Compute the hidden representation of examples in Xte

via z = F−1(xte);

10: z
′

0 = z

11: Initialize the flow filed f with zeros;

12: for i = 1 to Q do

13: Optimize f via Equations (12) or 13;

14: Compute the adversarial example candidate x
′

i via

Equation (11);

15: if Successfully attack C by x
′

i then

16: xadv = x
′

i

17: break.

18: end if

19: end for

Algorithm 1. DualFlow attack.

5. Experiments

In this section, we evaluate the proposed DualFlow on three

benchmark image classification datasets. We first compare our

proposed method with several baseline techniques concerned with

Attack Success Rate (ASR) on clean models and robust models on

three CV baseline datasets (CIFAR-10, CIFAR-100 and ImageNet).

Then, we first provide a comparative experiment to the existing attack

methods in image quality aspects with regard to LPIPS, DISTS, SCC,

SSIM, VIPF and et al. Through these experimental results, we show

the superiority of our method in attack ability, human inception and

image quality.

5.1. Settings

Dataset
We verify the performance of our method on three benchmark

datasets for computer vision task, named CIFAR-101 (Krizhevsky

and Hinton, 2009), CIFAR-1001 (Krizhevsky and Hinton, 2009) and

ImageNet-1k2 (Deng et al., 2009). In detail, CIFAR-10 contains 50,000

training images and 10,000 testing images with the size of 3x32x32

from 10 classes; CIFAR-100 has 100 classes, including the same

number of training and testing images as the CIFAR-10; ImageNet-

1K has 1,000 categories, containing about 1.3M samples for training

and 50,000 samples for validation. In particular, in this paper, we

extend our attack on the whole images in testing datasets of CIFAR-

10 and CIFAR-100, in terms of ImageNet-1k, we are using its subset

datasets from ImageNet Adversarial Learning Challenge, which is

commonly used in work related to adversarial attacks.

All the experiments are conducted on a GPU server with 4 * Tesla

A100 40GB GPU, 2 * Xeon Glod 6112 CPU, and RAM 512GB.

Models
For CIFAR-10 and CIFAR-100, the pre-trained VGG-19

(Simonyan and Zisserman, 2015), ResNet-56 (He et al., 2016),

MobileNet-V2 (Sandler et al., 2018) and ShuffleNet-V2 (Ma N.

et al., 2018) are adopted, with top-1 classification accuracy 93.91,

94.37, 93.91, and 93.98% on CIFAR-10 and 73.87, 72.60, 71.13, and

75.49% on CIFAR-100, respectively, all the models’ parameters are

provided in the GitHub Repository3. For ImageNet, we use the

PyTorch pre-trained clean model VGG-16, VGG-19 (Simonyan

and Zisserman, 2015), ResNet-152 (He et al., 2016), MobileNet-V2

(Sandler et al., 2018) and DenseNet-121 (Huang et al., 2017),

achieving 87.40, 89.00, 94.40, 87.80, and 91.60% classification

accuracy rate on ImageNet, respectively. And in terms of robust

models, they include Hendrycks2019Using (Hendrycks et al., 2019),

Wu2020Adversarial (Wu et al., 2020), Chen2020Efficient (Chen

et al., 2022) and Rice2020Overfitting (Rice et al., 2020) for CIFAR-10

and CIFAR-100, And Engstrom2019Robustness (Croce et al., 2021),

Salman2020Do_R18 (Salman et al., 2020), Salman2020Do_R50

(Salman et al., 2020), and Wong2020Fast (Wong et al., 2020) for

1 http://www.cs.toronto.edu/~kriz/cifar.html

2 https://image-net.org/

3 https://github.com/chenyaofo/pytorch-cifar-models
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ImageNet. All the models we use are implemented in the robustbench

toolbox4 (Croce et al., 2021) and the models’ parameters are also

provided in Croce et al. (2021). For all these models, we chose their

Linf version parameters due to most baselines being extended Linf
attacks in this paper.

Baselines
The baseline methods are FGSM (Goodfellow et al., 2015), MI-

FGSM (Dong et al., 2018), TI-FGSM (Dong et al., 2019), Jitter

(Schwinn et al., 2021), stAdv (Xiao et al., 2018), Chroma-Shift (Aydin

et al., 2021), and GUAP (Zhang et al., 2020). The experimental results

of those methods are reproduced by the Torchattacks toolkit5 and the

code provided by the authors with default settings.

Metrics
Unlike the pixel-based attack methods, which only use Lp norm

to evaluate the adversarial examples’ perceptual similarity to its

corresponding benign image. The adversarial examples generated

by spatial transform always use other metrics referring to image

quality. To be exact, in this paper, we follow the work in Aydin

et al. (2021) using the following perceptual metrics to evaluate the

adversarial examples generated by our method, including Learned

Perceptual Image Patch Similarity (LPIPS) metric (Zhang et al., 2018)

and Deep Image Structure and Texture Similarity (DISTS) index

(Ding et al., 2022). LPIPS is a technique that measures the Euclidean

distance of deep representations (i.e., VGG network Simonyan and

Zisserman, 2015) calibrated by human perception. LPIPS has already

been used on spatially transformed adversarial examples generating

studies (Jordan et al., 2019; Laidlaw and Feizi, 2019; Aydin et al.,

2021). DISTS is a method that combines texture similarity with

structure similarity (i.e., feature maps) using deep networks with

the optimization of human perception. We used the implementation

of Ding et al. for both perceptual metrics (Ding et al., 2021).

Moreover, we use other metrics like Spatial Correlation Coefficient

(SCC) (Li, 2000), Structure Similarity Index Measure (SSIM) and

Pixel Based Visual Information Fidelity (VIFP) (Sheikh and Bovik,

2004) to assess the generated images’ qualities. SCC reflects the

indirect correlation based on the spatial contiguity between any two

geographical entities. SSIM is used to assess the generated images’

qualities concerning luminance, contrast and structure. VIFP is used

to assess the adversarial examples’ image quality. The primary toolkits

we used in the experiments of this part are IQA_pytorch6 and

sewar7.

5.2. Quantitative comparison with the
existing attacks

In this subsection, we will evaluate the proposed DualFlow and

the baselines FGSM, MI-FGSM, TI-FGSM (Dong et al., 2019), Jitter,

stAdv, Chroma-shift and GUAP in attack success rate on CIFAR-10,

4 https://github.com/RobustBench/robustbench

5 https://github.com/Harry24k/adversarial-attacks-pytorch

6 https://www.cnpython.com/pypi/iqa-pytorch

7 https://github.com/andrewekhalel/sewar

CIFAR-100 and the whole ImageNet dataset. We set the noise budget

as ǫ = 0.031 for all Linf -based attacks baseline methods. The other

attack methods, such as stAdv and Chroma-shift, follow their default

settings in the code provided by the authors.

Tables 2–4 show the ASR of DualFlow and the baselines on

CIFAR-10, CIFAR-100 and ImageNet, respectively. As the results

illustrated, DualFlow can perform better in most situations on the

three benchmark datasets. Take the attack results on ImageNet as

an example, refer to Table 3. The BIM, MI-FGSM, TI-FGSM, Jitter,

stAdv, Chroma-shift and GUAP can achieve 91.954, 98.556, 93.94,

95.172, 97.356, 98.678, and 94.606% average attack success rate on

ImageNet dataset, respectively, vice versa, our DualFlow can achieve

99.364% average attack success rate. On the other two benchmark

datasets, CIFAR-10 and CIFAR-100, the DualFlow also can get a

better average attack performance. To further explore the attack

performance of the proposed DualFlow, we also extend the targeted

attack on ImageNet, and the results are presented in Table 4. The

empirical results show that DualFlow can generate more powerful

adversarial examples and obtain a superior attack success rate in

most cases. It can get an ASR range from 94.12 to 99.52% on five

benchmark DL models, but the most competitive baseline MI-FGSM

can achieve an ASR of 83.90 to 99.34%. It is indicated that the

proposed method is more threatening to DNNs and meaningful

for exploring the existing DNNs’ vulnerability and guiding the new

DNNs’ design.

5.3. Attack on defense models

Next, we investigate the performance of the proposed method in

attacking robust image classifiers. Thus we select some of the most

recent defense techniques that are from the robustbench toolbox

as follows, for CIFAR-10 and CIFAR-100 are Hendrycks2019Using

(Hendrycks et al., 2019), Wu2020Adversarial (Wu et al., 2020),

Chen2020Efficient (Chen et al., 2022) and Rice2020Overfitting

(Rice et al., 2020); for ImageNet are Engstrom2019Robustness

(Croce et al., 2021), Salman2020Do_R18 (Salman et al., 2020),

Salman2020Do_R50 (Salman et al., 2020) and Wong2020Fast

(Wong et al., 2020). We compare our proposed method with the

baseline methods.

Following the results shown in Table 5, we derive that DualFlow

exhibits the best performance of all the baseline methods in terms

of the attack success rate in most cases. The attack success rate of

the baseline method stAdv and Chroma-Shift range from 95.41 to

99.12% and 17.22% from 74.80 in ImageNet, respectively. However,

the DualFlow can obtain a higher performance range from 97.50 to

100%. It demonstrates the superiority of our method when attacking

robust models.

5.4. Evaluation of human perceptual and
image quality

Unlike the noise-adding attack methods, which usually use Lp
norm to evaluate the victim examples’ perceptual similarity to its

corresponding benign image. The adversarial examples generated

by noise-beyond ways always use other metrics referring to image

quality. To be exact, we follow the work in Aydin et al. (2021)

Frontiers inNeurorobotics 07 frontiersin.org
147

https://doi.org/10.3389/fnbot.2023.1129720
https://github.com/RobustBench/robustbench
https://github.com/Harry24k/adversarial-attacks-pytorch
https://www.cnpython.com/pypi/iqa-pytorch
https://github.com/andrewekhalel/sewar
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Liu et al. 10.3389/fnbot.2023.1129720

TABLE 2 Experimental results on attack success rate (ASR) of un-targeted attack of CIFAR-10 and CIFAR-100.

CIFAR-10 CIFAR-100

VGG19 ResNet56 MobileNetV2 Shu	eNetV2 VGG19 ResNet56 MobileNetV2 Shu	eNetV2

FGSM 55.28 65.58 71.46 54.85 75.42 91.23 90.40 85.72

MI-FGSM 76.43 93.11 94.12 78.47 87.69 99.78 99.47 93.68

TI-FGSM 59.63 71.03 80.01 76.10 83.43 97.46 93.92 92.77

Jitter 83.70 94.87 96.92 86.25 98.31 100.00 99.76 94.63

stAdv 86.04 63.77 69.43 66.11 97.66 93.26 93.55 95.61

Chroma-shift 84.87 68.36 73.57 64.58 98.84 98.37 96.39 96.86

GUAP 82.55 89.34 87.61 87.02 92.26 94.59 96.89 92.20

DualFlow 97.07 95.31 93.65 96.19 99.32 99.02 98.83 97.36

The victim models are VGG19, ResNet56, MobileNetV2 and ShuffleNetV2, respectively, pre-trained by a GitHub Repository, named pytorch-cifar-models. Note that for the FGSM-based baselines,

we synthesize their adversarial examples under Linf -norm=0.031 limitation; the others are not subject to the Linf -norm restrictions. Bold values indicates the best result.

TABLE 3 Experimental results on attack success rate (ASR) of un-targeted attack of ImageNet.

GSM MI-FGSM TI-FGSM Jitter stAdv Chroma-shift GUAP DualFlow

VGG16 93.56 98.64 97.16 95.27 97.62 98.62 97.73 99.37

VGG19 95.31 99.42 96.34 91.76 98.74 98.98 96.10 99.43

ResNet152 84 96.82 85.17 94.28 97.46 97.79 88.90 98.63

MobileNetV2 91.92 98.29 91.47 94.99 96.13 99.35 97.60 99.61

DenseNet121 94.98 99.61 99.56 99.56 96.83 98.65 92.70 99.78

The victim models are VGG19, ResNet152, MobileNetV2 and DenseNet121, respectively, which are pre-trained by PyTorch. Note that for the FGSM-based baselines, we synthesize their adversarial

examples under Linf -norm=0.031 limitation; the others are not subject to the Linf -norm restrictions. Bold values indicates the best result.

TABLE 4 Experimental results on the attack success rate of targeted attack on dataset ImageNet.

Methods FGSM MI-FGSM TI-FGSM Jitter stAdv Chroma-Shift DualFlow

VGG16 80.78 73.11 96.34 67.51 54.74 65.10 96.67

VGG19 60.59 49.36 83.90 46.50 53.23 55.39 98.85

ResNet152 80.22 73.93 94.72 70.45 65.87 69.60 94.12

MobileNetV2 72.70 63.94 92.38 60.86 70.63 76.00 99.52

DenseNet121 78.06 74.56 99.34 63.86 75.94 80.79 99.06

The baselines are FGSM, MI-FGSM, TI-FGSM, Jitter, stAdv, Chroma-shift and DualFlow. Note that for the FGSM-based baselines, we synthesize their adversarial examples under Linf -norm=0.031

limitation; the others are not subject to the restrictions. Bold values indicates the best result.

using the following perceptual metrics to evaluate the adversarial

examples generated by baseline methods and the proposed method,

including Learned Perceptual Image Patch Similarity (LPIPS) metric

(Zhang et al., 2018) and Deep Image Structure and Texture

Similarity (DISTS) index (Ding et al., 2022). In addition, Linf -

norm, Spatial Correlation Coefficient (SCC) (Li, 2000), Structure

Similarity Index Measure (SSIM) (Wang et al., 2004), and Pixel

Based Visual Information Fidelity (VIFP) (Sheikh and Bovik, 2004)

are also involved in evaluating the difference between the generated

adversarial examples and their benign counterparts and the quality of

the generated adversarial examples.

The generated images’ quality results can be seen in Table 6,

which indicated that the proposed method has the lowest LPIPS,

DISTS perceptual loss and Linf (the lower is better) are 0.0188, 0.0324

and 0.1642, respectively, on VGG-19model; and has the highest SCC,

SSIM and VIFP (the higher is better), achieving 0.9452, 0.7876 and

0.8192, respectively, on VGG-19 model. All the empirical data are

obtained on the ImageNet dataset. The results show that the proposed

method is superior to the existing attack methods.

To visualize the difference between the adversarial examples

generated by our method and the baselines, we also draw the

adversarial perturbation generated on NIPS2107 by FGSM, MI-

FGSM, TI-FGSM, Jitter stAdv, Chroma-shift, GUAP and the

proposed method in Figure 3, the target model is pre-trained VGG-

19. The first two columns is the adversarial examples and the

following are the adversarial noises of FGSM, MI-FGSM, TI-FGSM,

Jitter stAdv, Chroma-shift, GUAP and our method, respectively.

Noted that, for better observation, we magnified the noise by a factor

of 10. From Figure 3, we can clearly observe that stAdv and Chroma-

Shift distort the whole image. In contrast, the adversarial examples

generated by our method are focused on the salient region and its

noise is milder, and they are similar to the original clean counterparts

and are more imperceptible to human eyes. These simulations of

the proposed method take place under diverse aspects and the
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TABLE 5 Experimental results on the attack success rate of un-targeted attack on CIFAR-10, CIFAR-100 and ImageNet dataset to robust models.

FGSM MIFGSM TIFGSM Jitter stAdv Chroma-shift DualFlow

CIFAR-10

Hendrycks2019Using 27.06 16.90 18.54 32.67 99.12 20.70 100

Wu2020Adversarial 25.63 16.28 19.10 31.02 99.12 18.36 100

Chen2020Efficient 28.59 18.93 20.94 35.59 99.02 24.90 100

Rice2020Overfitting 27.38 16.87 16.92 33.02 98.93 25.98 100

CIFAR-100

Hendrycks2019Using 37.67 25.57 28.88 48.89 95.41 35.16 100

Wu2020Adversarial 40.13 27.06 30.71 50.13 97.66 30.86 100

Chen2020Efficient 42.24 30.51 34.24 54.66 97.75 34.57 100

Rice2020Overfitting 52.55 38.92 46.63 62.66 97.75 34.67 100

ImageNet

Engstrom2019Robustness 62.92 51.03 65.50 83.85 95.41 22.61 97.50

Salman2020Do_R18 65.61 51.82 62.44 82.09 97.66 42.16 100

Salman2020Do_R50 57.58 44.99 55.66 76.48 97.75 17.22 99.19

Wong2020Fast 61.24 50.08 70.02 82.30 97.75 74.80 97.5

Bold values indicates the best result.

TABLE 6 Perceptual distances were calculated on fooled examples by FGSM, MI-FGSM, TI-FGSM, Jitter, stAdv, Chroma-shift, GUAP, and the proposed

DualFlow on ImageNet.

VGG19 ResNet152

LPIPS DISTS Linf SCC SSIM VIFP LPIPS DISTS Linf SCC SSIM VIFP

FGSM 0.3036 0.1916 – 0.5572 0.8273 0.4705 0.2688 0.1679 – 0.5796 0.8348 0.4753

MI-FGSM 0.1962 0.1444 – 0.7135 0.9474 0.6575 0.1589 0.1078 – 0.7180 0.9466 0.6597

TI-FGSM 0.2179 0.1849 – 0.8153 0.9199 0.5576 0.1684 0.1451 – 0.8216 0.9330 0.5943

Jitter 0.2461 0.1617 – 0.6342 0.9076 0.5864 0.2001 0.1305 – 0.6480 0.9107 0.5792

stAdv 0.0581 0.0757 0.2420 0.8954 0.9873 0.7290 0.0490 0.0690 0.2420 0.8954 0.9873 0.7290

Chroma-shift 0.0231 0.5943 0.0275 0.9142 0.9834 0.8079 0.0.0203 0.0246 0.0.2250 0.9126 0.0.9848 0.0.8027

GUAP 0.4349 0.2838 0.4984 0.2768 0.7630 0.2955 0.4205 0.2501 0.6443 0.2289 0.7274 0.2674

DualFlow 0.0188 0.0324 0.1642 0.9451 0.9876 0.8192 0.0169 0.0312 0.1550 0.9451 0.9876 0.8192

Note that for the FGSM-based baselines, we synthesize their adversarial examples under Linf -norm=0.031 limitation; the others are not subject to the restrictions. Bold values indicates the best result.

outcome verified the betterment of the presented method over the

compared baselines.

5.5. Detectability

Adversarial examples can be viewed as data outside the clean

data distribution, so the defender can easily check whether each

input is an adversarial example. Therefore, generating adversarial

examples with high concealment means that they have the same

or similar distribution as the original data (Ma X. et al., 2018;

Dolatabadi et al., 2020). To verify whether the carefully crafted

examples satisfy this rule, we follow (Dolatabadi et al., 2020) and

select LID (Ma X. et al., 2018), Mahalanobis (Lee et al., 2018), and

Res-Flow (Zisselman and Tamar, 2020) adversarial attack detectors

to evaluate the performance of the adversarial examples crafted by

DualFlow. For comparison, we choose FGSM (Goodfellow et al.,

2015), MI-FGSM (Dong et al., 2018), stAdv (Xiao et al., 2018),

and Chroma-Shift (Aydin et al., 2021) as baseline methods. The

test results are shown in the Table 7, including the area under

the receiver operating characteristic curve (AUROC) and detection

accuracy. Table 7, we can find that these adversarial detectors struggle

to detect malicious examples constructed with DualFlow, compared

to the baseline in all cases. Empirical results precisely demonstrate

the superiority of our method, which generates adversarial examples

closer to the distribution of original clean images than other

methods, and the optimized adversarial perturbations have better

hiding ability. The classifier is ResNet-34, and the code used in

this experiment is modified from deep_Mahalanobis_detector8 and

Residual-Flow9, respectively.

6. Conclusions

In this paper, we propose a novel framework named Dual-

Flow for generating imperceptible adversarial examples with strong

attack ability. It aims to perturb images by disturbing their

latent representation space rather than adding noise to the clean

8 https://github.com/pokaxpoka/deep_Mahalanobis_detector

9 https://github.com/EvZissel/Residual-Flow
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FIGURE 3

Adversarial examples and their corresponding perturbations. The first two columns are the adversarial examples, and the followings are the adversarial

noise of FGSM, MI-FGSM, TI-FGSM, Jitter, stAdv, Chroma-shift, GUAP and our method, respectively.

TABLE 7 The detect results of DualFlow and the baselines on CIFAR-10 and CIFAR-100, Where the Chroma represent the Chroma-Shift.

Datasets Methods
AUROC (%) ↑ Detection Acc. (%) ↑

FGSM MI-FGSM stAdv Chroma DualFlow FGSM MI-FGSM stAdv Chroma DualFlow

CIFAR-10

LID 99.67 95.36 82.13 70.61 52.23 99.73 90.42 78.95 65.42 58.42

Mahalanobis 96.54 98.54 85.64 75.61 58.49 90.42 97.26 79.67 76.13 64.23

Res-Flow 94.47 97.59 78.96 72.37 64.95 88.56 91.54 76.38 73.64 59.78

CIFAR-100

LID 97.86 91.67 75.85 73.84 62.37 93.34 82.6 76.71 69.57 57.78

Mahalanobis 99.61 97.64 76.17 72.32 65.48 98.62 92.49 80.65 71.48 63.15

Res-Flow 99.07 99.76 78.53 78.56 65.74 95.92 96.99 83.43 69.72 62.94

↑means that the larger the value, the better the detection method. Bold values indicates the best result.

image at the pixel level. Combining the normalizing flow and the

spatial transform techniques, DualFlow can attack images’ latent

representations by changing the position of each value in the

latent vector to craft adversarial examples. Besides, the empirical

results of defense models show that DualFlow has stronger attack

capability than noise-adding-based methods, which is meaningful for

exploring the DNN’s vulnerability sufficiently. Therefore, developing

a more effective method to generate invisible, both for human

eyes and the machine, is fascinating. Extensive experiments

show that the adversarial examples obtained by DualFlow have

superiority in imperceptibility and attack ability compared with the

existing methods.
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Introduction: The surface images of steel rails are extremely difficult to detect and

recognize due to the presence of interference such as light changes and texture

background clutter during the acquisition process.

Methods: To improve the accuracy of railway defects detection, a deep learning

algorithm is proposed to detect the rail defects. Aiming at the problems of

inconspicuous rail defects edges, small size and background texture interference, the

rail region extraction, improved Retinex image enhancement, background modeling

difference, and threshold segmentation are performed sequentially to obtain the

segmentation map of defects. For the classification of defects, Res2Net and CBAM

attention mechanism are introduced to improve the receptive field and small target

position weights. The bottom-up path enhancement structure is removed from

the PANet structure to reduce the parameter redundancy and enhance the feature

extraction of small targets.

Results: The results show the average accuracy of rail defects detection reaches

92.68%, the recall rate reaches 92.33%, and the average detection time reaches an

average of 0.068 s per image, which can meet the real-time of rail defects detection.

Discussion: Comparing the improved method with the mainstream target detection

algorithms such as Faster RCNN, SSD, YOLOv3 and other algorithms, the improved

YOLOv4 has excellent comprehensive performance for rail defects detection, the

improved YOLOv4 model obviously better than several others in Pr, Rc, and F1 value,

and can be well-applied to rail defect detection projects.

KEYWORDS

rail defects, machine vision, defects detection, image enhancement, convolutional neural
network (CNN)

1. Introduction

With the development of rail network layout and the rapid development of high speed rail
technology, the importance of rail quality to train safety is becoming more and more obvious.
According to the relevant safety statistics, the train safety accidents caused by rail surface defects
account for about 30% of all accidents (Popović et al., 2022). Therefore, to ensure the security of
traffic, accurate and dynamic detection of rail surface defects has become an urgent problem for
railway development, and has important practical application value and research significance.

Due to the influence of rail manufacturing process, or by the wheel rail extrusion, impact,
wear and other contact stress and natural weathering, its health status and quality deteriorate
continuously, thus forming cracks, scars, wear, peeling, and other defects on the surface, with
the passage of time, these defects will further deteriorate the rail surface quality, which may
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cause major railroad safety accidents. Therefore, the diversity
and dynamics of rail defects bring great challenges to rail
inspection technology.

The main rail defects detection methods include ultrasonic
method, eddy current method, magnetic particle method, etc. (Zhao,
2021). The traditional detection methods need to rely on manual
operation, time-consuming, labor-intensive, low efficiency, while it
will bring unknown safety hazards to the inspectors.

Machine vision has been paid more and more attention by
researchers with the benefits of fast speed, high precision and
reliability, and many algorithms for surface defects detection
have been generated. Faghih-Roohi et al. (2016) designed 3-layer
convolution + maximum pooling layer to improve the speed of
defects detection, and the accuracy of rail defects recognition can
reach 92.00%, but the method only defects are detected and no
classification is performed. Yuan et al. (2016) used the Otsu method
to improve it by weighting the target variance of Otsu with the
probability of occurrence of the target as the weight, so that the
segmentation threshold close to the left edge of the single-mode
histogram and the valley of the bimodal histogram, and the defects
detection rate reach 93%, but the image segmentation algorithm
cannot reach the real-time requirements. Shang et al. (2018) used
a convolutional neural network (CNN) based on Inception-v3 to
distinguish between normal and defective rail images. The model
has a simple structure and faster processing speed, achieving a
recognition accuracy of 92.08%, but the method is mainly effective
for the detection of scar defects. Wang et al. (2018), Ni et al.
(2021), and Ghafoor et al. (2022) analyzed the image features of
rail defects, removed interference noise by image filtering, and then
trained the model to improve the detection of surface defects, but
the image enhancement algorithm is not universal and the image
processing is time-consuming. Han et al. (2021) presented a multi-
level feature fusion model for rail surface defects detection, which
fuses the image features of different receptive field of multiple levels
for target detection and enhances the accuracy of detection results
and decreases the missing detection rate of small area defects, but
the method detects too few types of defects and is not applicable to
the detection of multiple complex defects of the rail. In summary,
the above research is more concerned with the detection of defects,
no classification recognition of defects, and there are problems such
as image recognition methods are not universal, the speed of image
processing cannot meet the defects detection of rail.

Therefore, according to the typical defect characteristics and
defect types of rail, the defects are classified into four types of scars,
peeling, wear and cracks, and a visual detection method combining
image enhancement and deep learning is used to detect, identify and
classify these four types of defects. In terms of the image processing,
the captured images are firstly extracted from the rail region, then
the defects edge information is enhanced with the improved Retinex
algorithm, then the background modeling difference method is used
to remove the background interference, and finally the defects are
extracted with the adaptive thresholding. The improved Retinex
algorithm and the background modeling difference method are more
parameterized, and the effect on the detection speed of defects is
not significant. In terms of deep learning, the Res2Net structure and
attention mechanism are introduced to enhance feature extraction
and improve the YOLOv4 network structure to enhance the detection
rate of small-sized defects. The improved model enhances the
accuracy of the four typical defects on the rail surface and ensures
the detection speed.

2. Image enhancement algorithm for
rail defects

The rail surface defects are highly susceptible to interference
from lighting changes and textured backgrounds in the process of
acquisition, making defects detection and recognition very difficult.
To make the rail defects can be better detected and classified, the rail
defects images are enhanced from four steps of rail region extraction,
defects edge enhancement, background modeling difference and
threshold segmentation, and the processing flow is shown in Figure 1,
which solves the influence of unfavorable factors during rail surface
defects segmentation.

2.1. Rail region extraction

To reduce the influence of textured backgrounds on rail defects
detection, the column histogram minimum method (Xu et al., 2022)
is first used to segment the target rail region from the original image.
The steps of the column histogram algorithm are as follows:

(1) Calculate the sum of grayscale values for each column Si.
(2) Search for the minimum value min of (Si + d-th) at fixed rail

width intervals d.
(3) The i-th column corresponding to the minimum value min is

the leftmost position of the corresponding rail.
(4) The position of the rightmost rail is the (i+d)-th column.

2.2. Improved Retinex image
enhancement algorithm

Due to environmental interference, the captured rail image
has low contrast, which affects the extraction of image defect
features. In addition, the two defects, wear and crack, are similar
to the background, and the texture features are not obvious, which
will bring great challenges to the feature extraction of the image.
Therefore, the image needs to be processed to enhance the contrast
of the edge contour, which helps the segmentation of this image.

Retinex is an adaptive image enhancement method (Yu et al.,
2017). The theory states that the brightness of an object depends
on the ambient light and the reflection of the surface of the object
on the light. The reflective component is the essence of the object.
The object image can be recovered by simply removing the irradiated
component. The Multi-Scale Retinex (MSR) (Zhu et al., 2021a) can
achieve better results by adding a weighted average of multiple scales,
and its expressions are as follows:

RMSR(x, y) =
N∑

n=1

Wn{log[I(x, y)] − log[I(x, y) · Gn(x, y)]} (1)

Where, N is the total number of scales, generally taken as 3, Wn
for the scale coefficient, and meet

∑N
n=1 Wn = 1, said the number

of scales for the Gaussian function. Gn
(
x, y

)
represents the Gaussian

amplifier model with the number of scales.
The MSR algorithm uses a linear quantization approach, and

the processed data are widely distributed, which will show serious
bifurcation and generally make it difficult to obtain satisfactory
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FIGURE 1

Defects detection algorithm based on background difference method.

results. To enhance the edge information of rail defects, the MSR
algorithm is improved from the way of quantization. The mean value
and mean squared deviation are introduced, and then a parameter
controlling the image dynamics is added to realize the contrast
adjustment to solve the problem of serious two-level differentiation of
the data and thus the unsatisfactory image enhancement effect, with
the following equation.

R(x, y) =
255

2

(
1+

log[RMSR(x, y)− µ]

D×MSE

)
(2)

Where D is the dynamic adjustment parameter of the image, the
value of D is inversely proportional to the contrast of the image, and
µ, MSE are the mean and mean squared deviation of the number of
channels of R, G, B in log [RMSE (x, y)], respectively, and Value is
the value of log [RMSE (x, y)]. After the experiment, the best effect is
obtained when the scale number is 3 and D is 2.5 (Figure 2).

The results show that the improved Retinex has stronger contrast
and more prominent defect edges information than MSR, and
less noise than histogram equalization. If the results of MSR are
quantified directly, the overall darker images are obtained, which is
due to the smaller data range of the original values after logarithmic
processing and the small differences between channels, and the
linear quantization is much smoother than the logarithmic curve,
so the overall effect is darker and the edge information is easily
lost. Proposed in this paper achieves good results by changing the
quantization of the mean and mean squared deviation to strengthen
the defect edges. The average Peak Signal to Noise Ratio (PSNR)
per image is calculated to be 15.40, which is a very significant
improvement in image quality and is very suitable for the processing
of orbital defect images.

2.3. Background difference segmentation
algorithm for surface defects

To segment the rail defects from the background image, the
defects segmentation based on background difference algorithm is

proposed, the idea of background difference method is the process
of subtracting the background from the current image so as to get the
defects. The background image is obtained by learning the rail video
sequence, and the method of extracting the motion foreground in
the video sequence based on background difference is mainly divided
into three steps (Chel et al., 2020): background modeling, foreground
detection, and background update. Among them, the mean method
is the simplest in background modeling (Piccardi, 2004), which can
quickly and effectively segment moving targets in static scenes with
high real-time performance.

Since single image defects segmentation cannot learn the
background model from the video sequence, the background
difference method in video surveillance cannot be directly used
for rail surface defects segmentation. Considering the feature of
small variation range of gray value along the rail direction of
the image and the real-time requirement, rail surface defects
segmentation algorithm based on the mean background difference
is proposed.

2.3.1. Background modeling
Define the direction perpendicular to the rail as the x−axis and

the rail direction as the y−axis. Calculate the mean value of each
column of the image according to the feature of small change of the
image along the y−axis, and modeling the background image.

Im (x) = mean
(
Iy (x)

)
(3)

Where Im (x) denotes the x-th column image background
modeling and mean

(
Iy (x)

)
is the mean value function.

The algorithm implements static single-image background
modeling, and the processing speed is not affected due to the
simplicity of modeling, and the background is maximally close to
the original image.

2.3.2. Background subtraction
To highlight defects and diminish the effects of illumination

variations and reflection unevenness, and subtract the rail
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FIGURE 2

Comparison chart of the effect of image enhancement algorithm. (A) Original image. (B) Grayscale map. (C) Histogram equalization. (D) MSR.
(E) Improved Retinex.

image from the background image to get the difference
image.

1I(x, y) = I0(x, y)− Im(x, y),∀(x, y) (4)

where I0(x, y) is the original image and Im(x, y) is the modeled
background image.

2.3.3. Adaptive thresholding segmentation
To segment the defective regions in the differential images,

Niblack thresholds are defined (Zhou et al., 2013).

th = µ1I + C · δ1I (5)

Where µ1I and δ1I are the mean and variance of 1I, respectively,
and the control factor C is a constant. Following Chebyshev′s
formulas, ratio of data with more than C times the Standard
Deviation (SD) from the mean is at most 1

/
C2 in any dataset. For

this purpose, the value of C can be determined based on the ratio of
the target defects to the total image. Since the differential image has
the property of zero mean, Equation 5 can be simplified as follows.

th = C · δ1I (6)

After experiments, the segmentation effect is best when C = 3.
The method can segment the defects well according to the obtained
threshold th for the image. The processed ones are shown in Figure 3.

3. Improved YOLOv4 model for rail
defects detection

YOLOv4 has a high performance in recognizing large and
medium-sized, significantly separated targets (Bochkovskiy et al.,
2020), but the detection accuracy is not high for small-sized targets
and targets with small background differences. In the dataset used in
this paper, most of the Scar and Peeling defects are small in size, and
the foreground background differences of Wear and crack defects are
small, which are not ideal for the recognition of defects directly with
the YOLOv4 network. Accordingly, the network structure and feature
extraction aspects are optimized based on the YOLOv4 network to
adapt it to the detection and recognition of orbital defects.

3.1. Rail defects feature extraction method

3.1.1. Introduction of Res2Net
Aiming at the problem of small size and little detail information

of rail defects, Res2Net structure and attention mechanism are
introduced to enhance the feature extraction of defects.

The ResNet residual blocks in the YOLOv4 network structure
are replaced with the Res2Net structure, as shown in Figure 4. This
structure not only increases the receptive field of each network layer,
but also enhances the ability of multi-size feature extraction and
enables effective detection of small-size defects.
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FIGURE 3

Splitting effect of the rail images. (A) Rail image. (B) Background image. (C) Difference image. (D) Segmentation image.

FIGURE 4

Structure of ResNet and Res2Net.

In the Res2Net structure, each output can increase the receptive
field, where y2 can get a 3x3 receptive field, can y3 get a 5x5 receptive
field, and y4 can get a larger 7x7 receptive field, so each Res2Net
can obtain a combination of features with different receptive field
sizes. Thus, the structure can both increase the receptive field of each
network layer, and fuse multi-scale features. It is very effective for the
small-sized targets (Gao et al., 2021).

3.1.2. CBAM attention mechanism
To enhance the attention to the effective feature information and

to improve the region weight of rail defects, an attention mechanism
is added to the model. Convolutional Block Attention Module
(CBAM) (Woo et al., 2018) is a lightweight attention module based on

CNN, and is shown in Figure 5. It integrates the Channel Attention
Module (CAM) (Ilyas et al., 2021) and the Spatial Attention Module
(SAM) (Hu et al., 2020) to generate the corresponding feature map
mapping to increase the weight of the defects region in the feature
map, which in turn makes the model pay more focus to the features
of the defects location and reduces the influence of background and
uneven spatial distribution on the detection of rail defects.

3.1.2.1. In channel attention

The rail defect features are max-pooled and average-pooled,
respectively, to obtain 2 “1× 1× C′′ channel descriptions, and then
they are sent into a 2-layer shared fully-connected layer, and the two
output features are summed up to obtain a weight coefficient after
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FIGURE 5

CBAM overall structure diagram.

FIGURE 6

Improved YOLOv4 network structure diagram.

the activation function, and eventually the new features multiplied
by the weight coefficients and the original features are used as
input for the SAM.

3.1.2.2. In SAM

Global average pooling as well as global maximum pooling
operations are performed on channels to produce 2 feature maps
represent different information. After merging them, feature fusion
is proceeded by 7× 7 convolution with a larger receptive field, and
lastly the operation is used to generate a weight map, which is then
superimposed on the original input feature map to obtain a final rail
defects feature map.

The feature map of CBAM is the same size as the feature map
of original image, only the feature elements have changed, focusing
more on the edge location information of the defects image, reducing
the impact of background on detection accuracy and reducing the
rate of wrong and missed detection. It can help the network to extract

features better and deeper, and further improve the network’s ability
to learn rail defects.

3.2. Design of defects recognition network

3.2.1. Network structure
The PANet structure used in YOLOv4 can fuse the semantic

information of different feature layers and is suitable for detecting
targets of different sizes. However, the number of rail surface defects
is high and the proportion of pixels in the image is low, and the
original PANet structure still lacks effective detection for tiny defect
targets. Therefore, on the basis of the original feature layer, Continue
to fuse shallow and deep features to increase the feature detection
scale and form a new feature detection layer.

Adding new feature detection layers leads to an increase in the
number of network structure parameters, and the bottom-up path
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enhancement structure contributes less to the detection of small area
defects. Therefore, the bottom-up path enhancement structure in
PANet is removed in order to reduce parameter redundancy and
ensure sufficient detection speed. Meanwhile, to help the network
extract features better and deeper, the residual structure in the
CSPBlock block is replaced with the Res2Net structure; to further
improve the network’s ability to learn rail defects, the CBAM
structure is added to the CSPBlock block. The improved PANet
structure is shown in Figure 6. The improved structure not only
inherits the feature fusion effect of the original structure, but also can
obtain more shallow features while reducing the network parameters,
so the feature extraction effect of small area defects of the rail is better.

3.2.2. Anchor frame clustering
Since a new feature detection layer is added, the number and size

of anchor frames are not suitable for this network, so it needs to be
re-clustered. K-means is used in YOLOv4 network, and the clustering
effect is largely determined by selecting the initial cluster center. To
ensure a relatively good clustering effect, K-means++ is adopted to
re-cluster the anchor frames. The method of clustering is as follows:

1. Randomly select a sample from the rail defects dataset as the
initial cluster center vj.

2. Secondly, calculate the distance between each sample xi and vj
in the dataset and select the shortest of them.

3. Then calculate the probability of each data sample being selected
as the next clustering center, and select the sample with the
greatest probability distance as the new clustering center.

4. Repeat steps 2 and 3 until all k clustering centers have been
identified.

5. Cluster the k initialized cluster centers obtained, assign each
sample to the cluster center with the smallest distance from each
other, and update the cluster centers, and repeat the step until
the cluster centers unchanged.

The clustering results are shown in Table 1.
From Table 1, it can see that most of the anchor frames are very

different from each other, except for the first three groups of anchor
frames, which do not vary much. Compared with k-means randomly
selecting the cluster center, k-means++ selects the cluster center by
the idea of “the farther the cluster center are from each other, the
better,” which converges the data faster and achieves good results
while reducing the computation time.

4. Experiment and analysis

Evaluation metrics for training and performance are first
established, and then the current mainstream deep learning-based

TABLE 1 A priori box clustering results.

Clustering algorithm Prior box

Entry 1K-means (12,14), (15,23), (17,44), (40,26), (41,93), (48,49),
(33,151), (63,78), (85,45), (61,125), (74,223),
(134,82)

K-means++ (11,13), (16,21), (18,42), (37,27), (51,51), (78,41),
(33,152), (40,85), (65,80), (60,123), (71,222),
(118,77)

FIGURE 7

Image samples collected by three different types of line-scan CCDs.
The figure has been licensed by Gan et al. (2017).

target detection algorithms are compared with the algorithms of
this paper in terms of accuracy and speed metrics. The computer
configuration is a 64-bit Windows 10 system with 32G of RAM,
CPU model i9-10980XE, and GPU model is RTX3090. In the training
process, the bitch_size is set to 16, the initial learning rate is 0.001,
the learning rate is decayed, the final learning rate is 0.00001, and
iterations is set in 1,000. A 416 × 416 resolution input is taken for
training, the detection threshold is set to 0.5, and the Dropout method
is used to prevent overfitting.

4.1. Dataset and evaluation index

The experimental dataset were obtained from Rail beam factory
of Panzhihua Iron and Steel (Group) Company and network datasets,
where the self-acquired dataset were used for training and the RSDDs
(Gan et al., 2017) network datasets were used for validation. For the
image acquisition experiments, color/grayscale images of heavy rails
of 60 kg/m were obtained using three different types of line-scan CCD
cameras, and a total of 2,124 images of rails with high imaging quality
were selected, of which 956 were defective, and image samples are
shown are shown in Figure 7.

To unify the experimental dataset, all acquired images are first
segmented on the rail surface, and then the images are resized to
400∗800 pixels, and finally the dataset is expanded by flip transform,
brightness transform, random cropping, geometric scaling, etc., 4,000
images of rail surface defects dataset are generated, including 1,000
images each of cracks, scars, wear and peeling. Randomly select 80%
as the training set, and 20% as the test set. Figure 8 shows the typical
samples of the four defects and their expansions.

This paper introduces four evaluation indexes: Recall Rate (Rc
or R), Precision Rate (Pr or P), F1 Value and Average Inspection
Time. Rail surface damage detection is related to the safety of railroad
transport, and both R and P indexes are particularly important, while
F1 value can visualize the importance of R and P.

R =
TP

TP + TN
(7)

P =
TP

TP + FP
(8)

F1 =
2PR
P + R

(9)
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FIGURE 8

Expansion of the dataset.

TABLE 2 Comparison of the detection performance of different algorithms for the self-collected dataset.

Detection algorithm Cracks Scars Wear Peeling F1 T/ms

P/% R/% P/% R/% P/% R/% P/% R/%

Faster R-CNN 91.2 93.1 89.8 90.3 88.5 86.9 90.7 91.6 0.903 41.2

SSD 86.3 88.6 84.1 87.2 80.7 77.9 84 86.3 0.844 82.0

YOLOv3 85.8 87.5 84.3 85.8 79.2 76.5 86.9 88.2 0.843 46.0

YOLOV4 88.4 90.4 86.1 85.3 84.1 83.9 89.1 91.2 0.873 55.0

YOLOv5 90.1 91.7 88.6 88.9 85.3 84.1 89.2 90.5 0.885 49.0

YOLOv6 93.6 92.3 92.4 92.8 88.7 89.2 90.4 91.7 0.914 40.0

Algorithm in this paper 94.8 93.7 94.0 93.6 89.7 88.4 92.2 93.6 0.925 68.0

FIGURE 9

Comparison chart of the effect of detection.
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FIGURE 10

Detection accuracy of the four defects.

Where: TP: Positive samples predicted to be positive class, FP:
Negative samples predicted to be positive class, TN: Negative samples
predicted to be negative class.

4.2. Algorithm performance analysis

Training and test experiments were conducted on several
detection algorithms [Faster R-CNN (Sekar and Perumal, 2021),
SSD (Liu et al., 2016), YOLOv3 (Redmon and Farhadi, 2021),
YOLOv4 (Bochkovskiy et al., 2020), YOLOv5 (Zhu et al., 2021b),
YOLOv6 (Li et al., 2022)] and the improved algorithms in this paper,
and after the network training and parameter tuning, the network
convergence, and then the data results were tallied according to the
evaluation metrics.

The data in Table 2 show that the detection algorithm of this
paper has the highest Rc and Pr for four defects: cracks, scars,
wear, and peeling. Relative to other mainstream algorithms, the
improved YOLOv4 algorithm has an F1 value that is 2.2% higher than
Faster R-CNN, 8.1% higher than SSD, 8.2% higher than YOLOv3,
5.2% higher than YOLOv4, 4.0% higher than YOLOv5, and 1.1%
higher than YOLOv6. All 3 metrics are better than other mainstream
detection algorithms. Compared with the original YOLOv4 network,
the accuracy of the improved network reaches 94.8% for cracks, 6.4%
higher than before the improvement; 94.0% for scars, 7.9% higher
than before the improvement; 89.7% for wear, 5.6% higher than
before the improvement; and 92.2% for spalling, 3.1% higher than
before the improvement. The accuracy rates of the four typical defects
are 1.2, 1.6, 1.0, and 1.8% higher than YOLOv6, respectively, which

TABLE 3 Comparison of detection performance of different algorithms
for RSDDs dataset.

Literature sources Network structure AP/% T/ms

Luo et al. (2021) Improved cascade R-CNN 98.75 146.3

Guo et al. (2022) Improved YOLOv5 91.80 54.8

Han et al. (2021) Multi-layer feature fusion
network

96.72 59.8

Algorithms in this paper Improved YOLOv4 98.96 68.0

FIGURE 11

Accuracy change curve of each model in ablation experiment.

is a significant improvement. In addition, although this algorithm
increases the detection layer and adds the attention mechanism
resulting in increased parameters, the removal of the bottom-up path
structure in the PANet reduces a large number of parameters, and the
image pre-processing of the background difference method is concise
and effective. The average detection time per image is 0.068 s (68 ms),
which is very close to that of YOLOv4, YOLOv5, and YOLOv6, and
can meet the system real-time requirements while ensuring the effect
of rail defects detection. Mapping the inspection results back to the
original image, the effect comparison chart is shown in Figure 9,
where the green box is for wear defects, the orange box is for crack
defects, the red box is for peeling defects, and the blue box is for scar
defects.

From Figure 9, this algorithm can recognize defects of small size
and defects with small background differences very well, and the
recognition effects are all better than other mainstream algorithms,
and Figure 10 shows the accuracy of four kinds of defects.

To continue to verify the effectiveness of this algorithm,
the algorithm is tested on the publicly available dataset RSDDs,
comparing the method of this paper with improved Cascade R-CNN
proposed by Luo et al. (2021), improved YOLOv5 proposed by Guo
et al. (2022) and multi-layer feature fusion network proposed by Han
et al. (2021), the defects detection accuracy and the average detection
time of a single image are shown in Table 3.

The accuracy of this algorithm for defect detection on the RSDDs
rail dataset reaches 98.96%, all of which are better than the methods
used by the other three. The average detection time per image is
68 ms, which is significantly better than Luo’s method and very close
to Li and Han’s methods, and fully satisfies the real-time performance
of rail defects detection. The results show that this method is more
suitable for performing the task of rail surface defects detection.

TABLE 4 Results of ablation experiments.

Network model Pr/% Rc/% F1 value T/ms

Model I 87.70 86.93 0.873 55

Model II 90.45 88.92 0.897 59

Model III 89.11 88.67 0.889 63

Model IV 92.68 92.33 0.925 68
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4.3. Ablation experiments

The algorithm uses several improved strategies based on
YOLOv4, and to verify its effectiveness, ablation experiments were
designed for comparative analysis.

Model I: YOLOv4 network. Model II: The model obtained by
replacing the Residual Block structure in the feature extraction
part of YOLOv4 with the Res2Net module, and then adding the
CBAM attention mechanism. Model III: Adding the detection layer
and removing the top-down structure in PANet. Model IV is the
model of this paper. Each network model is trained for 1,000 cycles
(Figure 11).

In this figure, the loss values of each network model in the
ablation experiments decrease rapidly within the first 50 iterations of
the training process, and then gradually converge.

As seen in Table 4, Model II makes improvements to feature
extraction, and increasing the weight of defects location and
increasing the perceptual field to better extract the small defect
features of the rails, with a 2.75% improvement in Pr , 1.99%
improvement in Rc, and 2.40% improvement in F1 value over the
YOLOV4 network, effectively improving the detection performance
of small size defects. The model III network structure performs multi-
scale feature fusion to enhance the accuracy of defects localization,
which improves Pr by 1.41%, Rc by 1.74%, and F1 value by 1.60%
over the YOLOV4 network, but the detection time of a single
image increases by 8 ms, which is due to the increase of detection
layers, resulting in the calculation of a large number of additional
parameters. The fusion of the above two improved methods into
the benchmark network at the same time can further improve
the accuracy of rail defects localization and identification, which
improves Pr by 4.98%, Rc by 5.40%, and value by 5.20% over the
YOLOV4 network. This verifies the validity of the improved method
for rail surface defects detection.

5. Discussion

For the problem of small defects size and complex background
of rail. The detection algorithm for rail surface defects is proposed.
The improved YOLOv4 defects detection algorithm not only inherits
the feature fusion effect of the original structure, but also can obtain
more shallow features while reducing the network parameters and
improving the feature extraction capability of small targets. The
average processing speed of a single image is only 13 ms higher
than YOLOv4, which is also very close to the detection speed of
YOLOv6. Efficient and accurate detection of rail defects is achieved,
where the recognition accuracy of 4 defects, namely, cracks, scars,
wear and peeling, reaches 94.8, 94.0, 89.7, and 92.2%, respectively.

Their Pr , Rc and F1 values are higher than other mainstream target
detection algorithms. The detection algorithm ensures high detection
accuracy while guaranteeing detection speed, and is more suitable for
performing rail surface defect detection tasks.

Data availability statement

The original contributions presented in this study are included in
this article/supplementary material, further inquiries can be directed
to the corresponding authors.

Author contributions

ZM organized the database. RC performed the statistical analysis
and wrote the first draft of the manuscript. All authors contributed to
conception and design of the study, wrote sections of the manuscript,
revised the manuscript, and read and approved the submitted
version.

Funding

This research was funded by National Natural Science
Foundation of China (grant number 61901068), Chongqing
Natural Science Foundation (grant numbers KJQN201901150,
KJQN202001131, and cstc2021jcyj-msxmX0525), and Chongqing
Graduate Student Innovation Foundation (grant numbers
gzlcx20222041 and CYS21467).

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the reviewers.
Any product that may be evaluated in this article, or claim that may
be made by its manufacturer, is not guaranteed or endorsed by the
publisher.

References

Bochkovskiy, A., Wang, C. Y., and Liao, H. (2020). YOLOv4: optimal speed
and accuracy of object detection. arXiv [preprint]. doi: 10.48550/arXiv.2004.
10934.

Chel, H., Bora, P. K., and Ramchiary, K. K. (2020). A fast technique for hyper-echoic
region separation from brain ultrasound images using patch based thresholding and
cubic B-spline based contour smoothing. Ultrasonics 111:106304. doi: 10.1016/j.ultras.
2020.106304

Faghih-Roohi, S., Hajizadeh, S., Núñez, A., Babuska, R., and De Schutter, B. (2016).
“Deep convolutional neural networks for detection of rail surface defects,” in Proceeding
of the 2016 international joint conference on neural networks (IJCNN), 2584–2589. doi:
10.1109/IJCNN.2016.7727522

Gan, J. R., Li, Q. Y., Wang, J. Z., and Yu, H. M. (2017). A hierarchical extractor-based
visual rail surface inspection system. IEEE Sens. J. 17, 7935–7944. doi: 10.1109/JSEN.2017.
2761858

Frontiers in Neurorobotics 10 frontiersin.org162

https://doi.org/10.3389/fnbot.2023.1119896
https://doi.org/10.48550/arXiv.2004.10934.
https://doi.org/10.48550/arXiv.2004.10934.
https://doi.org/10.1016/j.ultras.2020.106304
https://doi.org/10.1016/j.ultras.2020.106304
https://doi.org/10.1109/IJCNN.2016.7727522
https://doi.org/10.1109/IJCNN.2016.7727522
https://doi.org/10.1109/JSEN.2017.2761858
https://doi.org/10.1109/JSEN.2017.2761858
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org/


fnbot-17-1119896 February 6, 2023 Time: 15:7 # 11

Mi et al. 10.3389/fnbot.2023.1119896

Gao, S., Cheng, M. M., Zhao, K., Zhang, X., Yang, M., and Torr, P. (2021). Res2Net:
a new multi-scale backbone architecture. IEEE Trans. Pattern Analy. Mach. Int. 43,
652–662. doi: 10.1109/TPAMI.2019.2938758

Ghafoor, I., Tse, P. W., Munir, N., and Trappey, A. J. C. (2022). Non-contact detection
of railhead defects and their classification by using convolutional neural network. Optik
253:168607. doi: 10.1016/j.ijleo.2022.168607

Guo, Z. X., Wang, C. S., Yang, G., Huang, Z. Y., and Li, G. (2022). MSFT-YOLO:
improved YOLOv5 based on transformer for detecting defects of steel surface. Sensors
22:3467. doi: 10.3390/s22093467

Han, Q., Liu, J. B., Feng, Q. B., Wang, S. C., and Dai, P. (2021). Damage detection
method for rail surface based on multi-level feature fusion. China Railway Sci. 42,
41–49.

Hu, J., Shen, L., Albanie, S., Sun, G., and Wu, E. (2020). Squeeze-and-excitation
networks. IEEE Trans. Pattern Analy. Mach. Int. 42, 2011–2023. doi: 10.1109/TPAMI.
2019.2913372

Ilyas, N., Lee, B., and Kim, K. (2021). HADF-crowd: a hierarchical attention-based
dense feature extraction network for single-image crowd counting. Sensors 21:3486.
doi: 10.3390/s21103483

Li, C. Y., Li, L. L., Jiang, H. L., Wang, K. H., Geng, Y. F., Li, L., et al. (2022). YOLOv6:
a single-stage object detection framework for industrial applications. arXiv [preprint].
doi: 10.48550/arXiv.2209.02976

Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C., et al.
(2016). “SSD: single shot multibox detextor,” in Computer vision – ECCV 2016.
ECCV 2016. Lecture notes in computer science, Vol. 9905, eds B. Leibe, J.
Matas, N. Sebe, and M. Welling (Cham: Springer). doi: 10.1007/978-3-319-46
448-0_2

Luo, H., Li, J., and Jia, C. (2021). Rail surface defect detection based on image
enhancement and improved cascade R-CNN. Laser Optoelect. Prog. 58, 324–335. doi:
10.3788/LOP202158.2212001

Ni, X., Liu, H., Ma, Z., Wang, C., and Liu, J. (2021). Detection for rail surface defects
via partitioned edge feature. IEEE Trans. Int. Trans. Syst. 23, 5806–5822. doi: 10.1109/
TITS.2021.3058635

Piccardi, M. (2004). “Background subtraction techniques: a review,” in Proceeding
of the 2004 IEEE international conference on systems, man and cybernetics (IEEE Cat.
No.04CH37583), 3099–3104.
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The near-infrared (NIR) image obtained by an NIR camera is a grayscale image

that is inconsistent with the human visual spectrum. It can be difficult to perceive

the details of a scene from an NIR scene; thus, a method is required to convert

them to visible images, providing color and texture information. In addition, a

camera produces so much video data that it increases the pressure on the cloud

server. Image processing can be done on an edge device, but the computing

resources of edge devices are limited, and their power consumption constraints

need to be considered. Graphics Processing Unit (GPU)-based NVIDIA Jetson

embedded systems offer a considerable advantage over Central Processing

Unit (CPU)-based embedded devices in inference speed. For this study, we

designed an evaluation system that uses image quality, resource occupancy,

and energy consumption metrics to verify the performance of different NIR

image colorization methods on low-power NVIDIA Jetson embedded systems

for practical applications. The performance of 11 image colorization methods on

NIR image datasets was tested on three different configurations of NVIDIA Jetson

boards. The experimental results indicate that the Pix2Pix method performs best,

with a rate of 27 frames per second on the Jetson Xavier NX. This performance is

sufficient to meet the requirements of real-time NIR image colorization.

KEYWORDS

near-infrared image, image colorization, Jetson, performance evaluation, embedded
systems

1. Introduction

In surveillance and vehicle driving scenes (Ni et al., 2022), color image sensors are
preferred because their images are close to human visual perception. However, visible images
have obvious limitations related to lighting conditions (Yu et al., 2022) and the color of an
object’s surface (Liao et al., 2022). However, NIR sensors are usually used in night vision and
low-illumination scenes because they provide more useful information than visual sensors
(Jin et al., 2017). An NIR image is a shaded gray image, which is not in line with human
visual habits; so, it is preferable to colorize it, enhancing its color and texture information.
Colorized images can improve an observer’s ability to assess a scene and increase the
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efficiency of target detection. The problem of image colorization
lies in generating a plausible visible image from only an NIR image
(Sun et al., 2019). Thus, NIR image colorization aims to generate a
reasonable visible image from an NIR image while preserving the
texture in the NIR domain so that the coloring of the converted
visible image looks natural.

In the common gray image colorization domain, chromaticity
is the only feature that needs to be calculated because the input gray
image provides brightness levels. However, the colorized results
of NIR images are usually fuzzy and lack high-frequency scene
details. Therefore, it is necessary to test the common gray image
colorization methods to determine whether they are suitable for
NIR image colorization on embedded systems (Liang et al., 2021).

Deep learning models usually require many computing
resources (Qin et al., 2020; Fortino et al., 2021), which are deployed
on the cloud server. The large amount of data collected by video
surveillance equipment needs to be processed by the cloud server
(Ma et al., 2018) so that the deep learning model of image
processing is affected by network delay (Zhang et al., 2020) or
shutdown. Since a deep learning model can be deployed on edge
devices that process data in real-time, there is no need to connect
the cloud computing platform to process the data from an edge
of the network (Han et al., 2020). This would reduce latency and
bandwidth costs, improving availability and protecting data privacy
and security (Shi et al., 2016). For example, many researchers
deploy target detection (Zhao et al., 2019) and visual tracking (Cao
et al., 2022) to the edge device for testing and striving for real-time
processing.

There has been considerable research that evaluated the
effectiveness of various image processing methods (Jin et al., 2017;
Liu et al., 2020; Huang et al., 2022). However, most colorization
techniques have not been tested for edge devices, and there is
no widely recognized system for evaluating these methods on
edge devices. However, image colorization has many potential
applications on edge devices (Liu et al., 2022). Our study designed
an evaluation system to examine the performance of current
methods on edge devices. Eleven image colorization methods were
tested for NIR image datasets on the Jetson AGX Xavier, Jetson
Xavier NX, and Jetson Nano devices. Seven indexes were selected in
analyzing the experimental results, and the results using each index
were tabulated for evaluating the performance of each method on
an edge device.

The contributions of this work are as follows:
We analyzed current image colorization methods to provide

guidance in their practical application.
We deployed and tested image colorization methods on three

different edge devices and analyzed their resource utilization and
energy consumption.

This work inferred general rules and determined key points
requiring attention in evaluating the performance of test methods.
These were based on the performance of current image colorization
methods on edge devices, focusing on resource occupancy, energy
consumption, and image quality metrics.

Section 1 summarizes the status of current research on NIR
image colorization and the deployment of models on edge devices.
Section 2 introduces the structure and operation of the proposed
evaluation system and explains why the tested models were chosen.
The edge devices used and the evaluation metrics are also described
in detail. Experiments on three edge devices and the RGB-NIR

scene dataset (Brown and Süsstrunk, 2011) are described in Section
3. Section 4 presents the conclusions of our work and possible
directions of future development in this research.

2. Materials and methods

In this work, we designed a system for evaluating the
performance of an image colorization method on edge devices,
as shown in Figure 1. We selected 11 classical image colorization
methods based on their network structures, and we briefly
introduce these models’ structures here. We trained these
models using the RGB-NIR scene dataset (Brown and Süsstrunk,
2011) on a server equipped with an RTX3060 GPU to obtain
the corresponding model weight files. Then, according to the
development of current embedded devices, Nvidia Jetson series
edge devices were selected. The Jetson AGX Xavier, Jetson Xavier
NX, and Jetson Nano offer high, middle, and low performance
levels, respectively. When configuring the software environment of
the edge device, we chose the system with the same version number
from NVIDIA, which ensures that the software environment for
the three edge devices is as similar as possible. According to the
environmental requirements of different models, we configured
the running environment for each device and compiled the
ARM Python package suitable for the particular device. Then, we
uploaded the model weight files from the server to each edge device.
To better compare the various methods’ performance on edge
devices, we selected seven evaluation metrics for the experiment.
Finally, we analyzed the experimental data and summarized the
results of the experiments presented in this paper.

2.1. Image colorization methods

In recent years, methods based on convolutional neural
networks (CNNs) have been used extensively in computer vision.
ResNet (He et al., 2016) and deep convolution generated adversarial
networks (DCGANs) (Radford et al., 2015) are two types of neural
networks that have become popular recently. Finding meaningful
information in the image is an essential problem in machine vision
and image processing research. Attention mechanisms have also
attracted the interest of researchers in image processing (Zhu et al.,
2023). Many image colorization methods have been proposed based
on these structures (Huang et al., 2022).

2.1.1. Convolutional neural network
CICZ (Zhang et al., 2016) is an automatic image colorization

method that transforms the colorizing problem into a classification
problem by quantifying the color space and combining the method
of category balancing, as shown in Figure 2. The encoder-decoder
structure is adopted. The L channel of the grayscale image is input
to predict the a and b channels of the image, and then, the colorized
result is obtained.

ELGL (Iizuka et al., 2016) is a fully automatic image
colorization method that combines global information and local
features, as shown in Figure 3. The method first extracts shared
low-level features from the image and then uses these features to
obtain global image features and middle-level image features. Next,
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FIGURE 1

Architecture of the evaluation system.

FIGURE 2

Architecture of CICZ (Zhang et al., 2016).

FIGURE 3

Architecture of ELGL (Iizuka et al., 2016).
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FIGURE 4

Architecture of ChromaGAN (Vitoria et al., 2020).

FIGURE 5

Architecture of SCGAN (Zhao et al., 2020)’s generator.

the shallow and global features are fused through the fusion layer,
which inputs the result to the colorization network and outputs the
final chrominance information.

2.1.2. Wasserstein generated adversarial network
ChromaGAN (Vitoria et al., 2020) is an adversarial learning

colorization method that infers the chromaticity of a given
grayscale image according to semantic clues. In the adversarial
network-based method, a three-term loss function combining
color, perceptual information, and semantic category distribution
was proposed. A self-supervised strategy is used to train the model.
The discriminator is based on Markovian architecture [PatchGAN
(Isola et al., 2017)]. Figure 4 shows the method’s block diagram.

SCGAN (Zhao et al., 2020) is an automatic saliency map-
guided colorization method with a generative adversarial network.

It combines predictive colorizing and saliency maps to minimize
semantic confusion and color bleeding in the colorized image, as
shown in Figure 5. The global features of the pre-trained VGG-
16-Gray network were embedded in the color encoder. Branches
of the color decoder are used to predict saliency maps as proxy
targets. Then, the method uses two hierarchical discriminators to
distinguish between the generated colorized result and saliency
maps, as shown in Figure 6.

2.1.3. Conditional generated adversarial network
Pix2Pix (Isola et al., 2017) is based on the idea of a conditional

generated adversarial network (CGAN). Generator G uses the
U-Net structure. The input contour map x is encoded and
decoded into a real image. The discriminator D uses the condition
discriminator PatchGAN proposed by the author himself. The
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FIGURE 6

Architecture of SCGAN (Zhao et al., 2020)’s discriminator.

function of discriminator D is to judge the generated image as false
and the real image as true under the condition of the contour map x.
Figure 7 shows the structure of Pix2Pix.

MemoPainter (Yoo et al., 2019) is a novel storage memory-
enhanced colorizing model that obtains the given color information
in the training set with the memory network by querying to guide
colorizing. This model can generate high-quality colorized images
from limited data and proposes a novel threshold triplet loss, which
can complete unsupervised training of storage networks under
classless labels. MemoPainter’s architecture is shown in Figure 8.

TIC-CGAN (Kuang et al., 2020) uses a detail-preserving coarse-
to-fine generator to learn transformation mapping, as shown in
Figure 9. The method proposes a composite loss function that
integrates content, adversarial, perceptual, and total variation loss.
Content loss is used to restore global image information, and the
other three losses synthesize local realistic textures.

2.1.4. Cycle-consistent adversarial network
CycleGAN (Zhu et al., 2017) is an unsupervised GAN. Its main

idea is to train two pairs of generator-discriminator models (two
mapping functions G: X—> Y and F: Y—> X) to convert images
from one domain to another. In this process, two cycle-consistency
losses are introduced to ensure that the generator does not convert
an image from one domain to another that is entirely unrelated
to the original image. The architecture of CycleGAN is shown in
Figure 10.

RecycleGAN (Bansal et al., 2018) is an unsupervised data-
driven method for video redirection that combines spatial and
temporal information and adversarial loss for content translation
and style retention for video redirection. The method proves that

under different conditions, the use of time information provides
more constraints for optimizing the transformation from one
domain to another, which helps to obtain better local minima. The
combination of temporal and spatial constraints helps to learn the
style characteristics of a given domain. The difference in design
between this method and CycleGAN (Zhu et al., 2017) and Pix2Pix
(Isola et al., 2017) is shown in Figure 11.

PearlGAN (Luo et al., 2022) is a GAN based on top-
down attention and gradient alignment. First, a top-down guided
attention module and an elaborate attentional loss reduce semantic
coding ambiguity during translation. Then, the model introduces a
structured gradient alignment loss to encourage edge consistency
between transmissions. The internal structure of PearlGAN is
shown in Figure 12.

I2V-GAN (Li et al., 2021) is an infrared-to-visible
video conversion method that generates fine-grained and
spatiotemporally consistent visible video from a given unpaired
infrared video, as shown in Figure 13. The model utilizes
adversarial constraints to generate a synthetic frame similar
to the real frame and then introduces the circular consistency
of perceptual loss for effective content transformation and
style preservation. Finally, it utilizes the similarity constraints
between and within domains to enhance the content and motion
consistency of space and time-space at the fine-grained level.

2.2. Edge devices

While the Raspberry Pi offers low power consumption
and energy-saving performance, NVIDIA Jetson platforms
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FIGURE 7

Architecture of Pix2Pix (Isola et al., 2017).

FIGURE 8

Architecture of MemoPainter (Yoo et al., 2019).

FIGURE 9

Architecture of TIC-CGAN (Kuang et al., 2020).

have a higher GPU speed, leading to better deep learning
inference performance. The security and reliability of the
NVIDIA Jetson series make it possible to deploy deep learning
models in harsh environments; hence, the Jetson series of

edge devices have been used in many industrial fields. The
Jetson platform is compatible with the Jet Pack software
development kit, which includes libraries for deep learning,
such as computer vision and accelerated computing. By using

Frontiers in Neurorobotics 06 frontiersin.org169

https://doi.org/10.3389/fnbot.2023.1143032
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org/


fnbot-17-1143032 April 19, 2023 Time: 13:38 # 7

Shi et al. 10.3389/fnbot.2023.1143032

FIGURE 10

Architecture of CycleGAN (Zhu et al., 2017).

FIGURE 11

Architecture of RecycleGAN (Bansal et al., 2018).

FIGURE 12

Architecture of PearlGAN (Luo et al., 2022).

the same version of the NVIDIA official system, we can maintain
consistency in the experimental environment to a certain
degree. Thus, we test the performance of different models
on Jetson AGX Xavier, Jetson Xavier NX, and Jetson Nano

devices that belong to three edge devices of high, middle,
and low-performance levels. It is appropriate to compare the
performance of different models under the constraints of different
hardware conditions.
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FIGURE 13

Architecture of I2V-GAN (Li et al., 2021).

FIGURE 14

Subjective comparison of near-infrared (NIR) image colorization effects of different models on RTX3060. (A) Input; (B) label; (C) CICZ (Zhang et al.,
2016); (D) ELGL (Iizuka et al., 2016); (E) ChromaGAN (Vitoria et al., 2020); (F) SCGAN (Zhao et al., 2020); (G) Pix2Pix (Isola et al., 2017);
(H) MemoPainter (Yoo et al., 2019); (I) TIC-CGAN (Kuang et al., 2020); (J) CycleGAN (Zhu et al., 2017); (K) RecycleGAN (Bansal et al., 2018);
(L) PearlGAN (Luo et al., 2022); (M) I2V-GAN (Li et al., 2021).

2.2.1. Jetson AGX Xavier
Jetson AGX Xavier is a 30 W GPU workstation from NVIDIA

that was launched in December 2018. Its CPU is eight-core ARM
NVIDIA Carmel, the GPU is NVIDIA Volta architecture with 512
NVIDIA CUDA cores, and the memory is 32 GB LRDDR4x. Jetson
AGX Xavier provides good memory bandwidth and computing
performance. It has a computing speed of up to 32 TOPS (30 W)
in deep learning and computer vision tasks. For image processing
tasks, real-time effects can be achieved on some models (Mazzia
et al., 2020; Jeon et al., 2021).

2.2.2. Jetson Xavier NX
Jetson Xavier NX is a mid-end product launched by NVIDIA in

November 2019. Its CPU is 6-core ARM NVIDIA Carmel, the GPU
is NVIDIA Volta architecture with 384 NVIDIA CUDA cores, and

the memory is eight GB LRDDR4x. Due to the Volta architecture, it
has a server-level performance of up to 21 TOPS (15 W) or 14 TOPS
(10 W). For image processing tasks, Jetson Xavier NX already offers
the performance requirements of most models (Jeon et al., 2021).

2.2.3. Jetson Nano
Jetson Nano is an entry-level product launched by NVIDIA

in March 2019. Its CPU is four-core ARM A57, the GPU is
NVIDIA Maxwell architecture with 128 NVIDIA CUDA cores,
and the memory is four GB LRDDR4, which supports switching
between 5 W and 10 W modes. The Jetson Nano has the
lowest performance in the series at only 0.5 TFLOPS, but
it also has the lowest price and power consumption, making
it more suitable for use in less-demanding edge scenes. The
Jetson Nano is unsuitable for infrared image colorization, mainly
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TABLE 1 Evaluation of different image colorization models based on
Peak Signal to Noise Ratio (PSNR) and Structural Similarity (SSIM) on
Jetson AGX Xavier, Jetson Xavier NX, Jetson Nano, and RTX3060 devices.

Devices RTX3060 AGX NX Nano

Method PSNR/SSIM

CICZ 14.249/0.565 14.265/0.565 14.265/0.565 14.265/0.565

ELGL 14.834/0.572 14.806/0.572 14.834/0.572 14.834/0.572

ChromaGAN 14.902/0.569 14.902/0.570 14.696/0.564 14.902/0.570

SCGAN 16.714/0.621 16.714/0.621 16.714/0.621 16.714/0.621

Pix2Pix 22.140/0.580 22.139/0.580 22.122/0.579 22.122/0.580

MemoPainter 18.645/0.535 18.645/0.535 18.645/0.535 –

TIC-CGAN 20.589/0.642 20.590/0.642 20.590/0.642 20.590/0.642

CycleGAN 14.139/0.535 14.139/0.535 14.139/0.535 14.139/0.535

RecycleGAN 14.083/0.474 14.087/0.472 14.098/0.472 14.087/0.471

PearlGAN 13.548/0.475 13.536/0.474 13.536/0.474 13.536/0.474

I2V-GAN 13.637/0.485 13.614/0.485 13.599/0.484 13.631/0.484

TABLE 2 Evaluation of different image colorization models based on
latency and Frames Per Second (FPS) on Jetson AGX Xavier, Jetson Xavier
NX, and Jetson Nano.

Devices AGX NX Nano AGX NX Nano

Method Latency (s) FPS

CICZ 0.157 0.263 0.831 6.370 3.801 1.203

ELGL 0.021 0.043 0.191 46.823 23.397 5.244

ChromaGAN 0.035 0.072 0.270 28.387 13.805 3.703

SCGAN 0.159 0.303 1.221 6.305 3.301 0.819

Pix2Pix 0.022 0.036 0.146 44.986 27.426 6.863

MemoPainter 0.063 0.109 – 15.806 9.164 –

TIC-CGAN 0.044 0.081 0.412 22.731 12.288 2.427

CycleGAN 0.022 0.038 0.157 44.900 26.395 6.351

RecycleGAN 0.250 0.433 2.291 4.006 2.309 0.436

PearlGAN 0.147 0.252 1.058 6.799 3.968 0.945

I2V-GAN 0.226 0.388 2.051 4.433 2.574 0.488

playing a comparative role in the experiment (Mazzia et al.,
2020).

2.3. Evaluation metrics

In research on deploying deep learning methods in edge
devices, the allocation of computing resources is a crucial concern.
The choice of resources varies depending on the specific scenario.
Computing resources such as CPU, GPU, and memory are
considered for computing-sensitive tasks (Toczé and Nadjm-
Tehrani, 2018). Storage and communication resources such as
IO, hard disk, spectrum, and bandwidth are considered for data-
sensitive tasks (Toczé and Nadjm-Tehrani, 2018).

The evaluation metrics selected in this work include Peak
Signal to Noise Ratio (PSNR), Structural Similarity (SSIM), latency,
memory usage, maximum current, maximum power, and power
consumption. We have considered CPU occupancy, but in the

TABLE 3 Evaluation of different image colorization models based on
RAM and maximum current (Imax) on Jetson AGX Xavier, Jetson Xavier
NX, and Jetson Nano.

Devices AGX NX Nano AGX NX Nano

Method RAM (GB) Imax (A)

CICZ 15.150 4.440 2.520 1.370 0.650 1.460

ELGL 16.010 4.640 3.050 1.840 0.860 1.510

ChromaGAN 16.530 4.810 2.950 1.970 0.890 1.650

SCGAN 15.170 4.380 2.740 1.980 0.910 1.710

Pix2Pix 6.200 3.780 2.470 1.630 0.800 1.610

MemoPainter 8.160 5.230 – 1.680 0.770 –

TIC-CGAN 6.110 4.750 2.790 1.730 0.820 1.590

CycleGAN 6.560 4.060 2.840 1.650 0.810 1.600

RecycleGAN 5.930 3.530 2.530 1.770 0.840 1.610

PearlGAN 5.850 2.830 1.960 1.700 0.850 1.690

I2V-GAN 5.730 3.220 2.350 1.730 0.840 1.540

actual test process, the occupancy rate is difficult to evaluate as a
metric because of its multi-core architecture.

2.3.1. Image quality
Peak Signal to Noise Ratio is generally used between the

maximum signal and background noise. Usually, after image
processing, the processed image x1 will be different from the
original image x2. To measure the quality of the processed
image, we usually refer to the PSNR value to measure whether
a processing program is satisfactory. PSNR’s formula is shown
in Equation 1. MAX2

x1
represents the maximum pixel value of

the processed image x1. The size of the processed image x1 and
original image x2 is m∗n. PSNR can be calculated as follows:

PSNR = 10∗log10

( MAX2
x1

1
m∗n
∗∑m

i = 1
∑n

j = 1
[
x2(i, j)− x1(i, j)

]2

)
.

(1)
Structural Similarity is a metric that considers luminance,

contrast, and structure. The SSIM value of two images is
calculated using the original image x2 and the processed image
x1. SSIM can measure the degree of distortion and the similarity
between the two images. SSIM ranges from –1 to 1. When
two images are the same, the SSIM value is 1. SSIM’s formula
is shown in Equation 2. l(x2, x1) represents the luminance
contrast function. c(x2, x1) represents the contrast function.
s(x2, x1) represents the structural contrast function. µx2 and
µx1 represent the averages of x2 and x1, respectively. σx2 and
σx1 represent the variances of x2 and x1, respectively. σx2x1

represents the covariances of x2 and x1. θ1, θ2, and θ3 are
designed with three constants to avoid zero denominators. SSIM
is given by

SSIM (x2, x1) =
[
l (x2, x1)

]α[c (x2, x1)]β[s (x2, x1)]γ,where (2)

l (x2, x1) =
2µx2µx1+θ1

µ2
x2
+µ2

x1
+θ1

, (3)

c (x2, x1) =
2σx2σx1+θ2

σ2
x2
+σ2

x1
+θ2

, and (4)
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FIGURE 15

Performance of different image colorization models on Jetson AGX Xavier, Jetson Xavier NX, Jetson Nano, and RTX3060 devices for RAM metrics.

s (x2, x1) =
σx2x1+θ3

σx2σx1+θ3
. (5)

2.3.2. Resource occupancy
By comparing the latency of different models, a suitable model

is selected to deploy in different industrial application scenarios
(Cao et al., 2022). Meanwhile, the memory of edge devices is a
scarce resource because multiple models with different purposes
may need to be deployed. By clarifying the memory usage of
different models, we can select a suitable model without affecting
the deployment of other models.

Latency refers to the average time consumed per image when
the model colorizes the image continuously. Because the time
consumed is the same as different models have the same operation
when reading and saving images, we only calculate the time
consumed in generating the colorized image [forward()]. We tested
20 NIR images 100 times to calculate the accurate latency and
then averaged them. The formula to calculate latency is shown
in Equation 6. a represents the number of different images used
to calculate the latency. b represents the number of times the
same image runs forward(). Time() represents the time calculation
function. Frames Per Second (FPS) is also used in this article to
represent inference speed, as shown in Equation 7. The formulas
are as follows:

Latency =
1
a

∑a

i = 1

Time(forward()∗b)
b

and (6)

FPS =
1

Latency
. (7)

Memory usage refers to the occupied memory monitored by the
system process Jtop during the model test. We use RAM to denote
the occupied memory in the experiment, including the video
memory of the Jetson device, which is also calculated as a part of
memory. In contrast, the video memory of the server with RTX
3,060 is calculated separately; so, when comparing the results, the
sum of the memory usage and the video memory usage of the server
is calculated. To test the accurate memory usage of the colorizing
image, we continue to colorize the image for 180 s. The test results
are the increase in memory usage from reading an NIR image to
outputting a colorized image.

2.3.3. Energy consumption
In laboratory studies, we usually do not consider the energy

consumed by the model operation. In the actual application
scenario, users take the energy consumption problem seriously.
Therefore, recording the model’s energy consumption when
deployed on edge devices makes sense.

The maximum current (Imax) refers to the maximum current
recorded. The maximum power (Pmax) is the product of the
maximum current and voltage. Power consumption (PC) refers to
the total power consumption of the model running on the edge
device for a certain time. The UD18 detector measures these three
metrics during the model test. To test the accurate data, we need
only to test the function of colorizing images and can continue
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FIGURE 16

Performance of different image colorization models on Jetson AGX Xavier, Jetson Xavier NX, and Jetson Nano for maximum current (Imax) (A),
maximum power (Pmax) (B), and power consumption (PC) (C).

to colorize the image for 180 s. It measures the process of end-
to-end inference, from reading an NIR image to outputting a
colorized image.

3. Results and analysis

We trained the different methods using a computer with an
AMD Ryzen7 5800H 3.2 GHz CPU and one NVIDIA Geforce RTX

TABLE 4 Evaluation of different image colorization models based on
maximum power (Pmax) and power consumption (PC) on Jetson AGX
Xavier, Jetson Xavier NX, and Jetson Nano.

Devices AGX NX Nano AGX NX Nano

Method Pmax (W) PC (Wh)

CICZ 26.400 12.400 7.200 1.300 0.620 0.340

ELGL 35.400 16.400 7.400 1.770 0.820 0.370

ChromaGAN 37.800 17.000 8.100 1.890 0.850 0.390

SCGAN 38.000 17.400 8.300 1.890 0.830 0.410

Pix2Pix 31.400 15.300 7.900 1.530 0.760 0.390

MemoPainter 32.300 14.600 – 1.610 0.730 –

TIC-CGAN 33.300 15.700 7.700 1.670 0.790 0.380

CycleGAN 31.800 15.500 7.800 1.550 0.780 0.380

RecycleGAN 34.100 16.100 7.900 1.690 0.810 0.380

PearlGAN 32.700 16.300 8.200 1.650 0.810 0.400

I2V-GAN 33.300 16.100 7.500 1.660 0.800 0.370

3060 GPU. We compared the following methods [CICZ (Zhang
et al., 2016), ELGL (Iizuka et al., 2016), ChromaGAN (Vitoria et al.,
2020), SCGAN (Zhao et al., 2020), Pix2Pix (Isola et al., 2017),
MemoPainter (Yoo et al., 2019), TIC-CGAN (Kuang et al., 2020),
CycleGAN (Zhu et al., 2017), RecycleGAN (Bansal et al., 2018),
PearlGAN (Luo et al., 2022), and I2V-GAN (Li et al., 2021)] on
three different edge devices based on the selected metrics.

3.1. Experimental dataset

We used the RGB-NIR scene dataset (Brown and Süsstrunk,
2011), which contains 477 image pairs with a resolution of
1,024 × 680 captured from nine scene categories. Image scene
categories were villages, fields, forests, indoors, mountains, ancient
buildings, streets, cities, and water. The image pairs in this dataset
are coarsely registered using a global calibration method; so, pixel-
level registration could not be guaranteed. We cropped each of the
nine types of scene images to 256× 256 and did a mirror flip. Then,
we selected two types of scene images, fields, and streets, to merge
as the training set and test set of the experiment, for a total of 5,616
RGB-NIR image pairs. Among them, 5,460 image pairs were used
as the training set and 156 were used as the test set.

3.2. Experimental environment

The basic configuration of the operating environment of the
edge device is the same. The system is Ubuntu 18.04 for ARM,
the Jet Pack version is 4.5, the CUDA version is 10.2, the cuDNN
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version is 8.0.0, the OpenCV version is 4.1.1, and the TensorRT
version is 7.1.3. The selected configuration is currently more stable
because different system versions and dependent environments
impact device performance.

3.3. Subjective assessment

As shown in Figure 14, different methods perform quite
differently on the RGB-NIR scene dataset used in this work. Pix2Pix
has the best image effect, closest to the visible image, as shown
in Figure 14G. TIC-CGAN’s performance is slightly blurrier than
that of Pix2Pix. The image effect of the MemoPainter is different
from the color of the visible image, and the image effect of
SCGAN is dark. The subjective evaluation of the models based on
Cycle-Consistent Adversarial Networks (CycleGAN, RecycleGAN,
PearlGAN, I2V-GAN) is poor, especially in the images shown in
Figure 14L. The reason is that the number of training sets is small,
and the network cannot learn representative features. The CICZ
does not learn helpful information on the datasets used in this
work, resulting in subjective evaluation close to NIR images, as
shown in Figure 14C. ELGL and ChromaGAN directly combine
the L-channels of the NIR image during colorization to preserve
details but with severe color deviations.

3.4. Objective assessment

3.4.1. Image quality
We found that in the 11 models tested, the results of

their image quality metrics on different edge devices were
the same with only a few subtle differences; so, we only
compared the test results on the RT3060 device. As shown
in Table 1, from the image quality metrics, PSNR and SSIM,
Pix2Pix, and TIC-CGAN have the best results, followed by
MemoPainter. Part of the reason for the poor performance of
CNN methods is that they combine L-channels, the brightness
of NIR images when they finally generate the colorized images.
This results in a significant difference between them and visible
images.

3.4.2. Resource occupancy
As shown in Table 2, the latency and the inference speed

of the 11 compared models vary significantly across different
edge devices. We found that, as the performance of the devices
decreases, the ratio of latency difference to each other also narrows.
ELGL (46.8 FPS), Pix2Pix (45.0 FPS), CycleGAN (44.9 FPS),
ChromaGAN (28.4 FPS), and TIC-CGAN (22.7 FPS) achieve real-
time colorization on the Jetson AGX Xavier. Pix2Pix (27.4 FPS),
CycleGAN (26.4 FPS), and ELGL (23.4 FPS) can achieve real-time
colorization on the Jetson Xavier NX. The fastest on the Jetson
Nano is Pix2Pix (6.8 FPS), followed by CycleGAN (6.3 FPS). We
found that the fastest model to run on high-performance devices
does not necessarily represent the fastest model to run on low-
performance devices. Combined with the data in Figure 14, we
believe that the running speed of a model with larger memory
usage may be significantly affected when the memory resources are
limited.

The initial memory usage of the server is 7.2 GB, the initial
memory usage of Jetson AGX Xavier is 0.72 GB, the initial memory
usage of Jetson Xavier NX is 0.56 GB, and the initial memory usage
of Jetson Nano is 0.52 GB. The RAM values in Table 3 are the
measured values minus the initial memory usage. As shown in
Table 3, Figure 15, when the model is deployed on edge devices
with sufficient running memory, it will occupy more than those
with limited memory. This phenomenon may be related to the
memory invocation principle of the PyTorch framework. I2V-GAN
consumes the least memory on Jetson AGX Xavier. PearlGAN
consumes the least memory on Jetson Xavier NX and Jetson Nano.
MemoPainter cannot be run on Jetson Nano due to excessive
memory usage.

3.4.3. Energy consumption
As shown in Figures 16B, C, the comparison model’s

performance of the maximum power and total power consumption
has the same trend. Since both Jetson AGX Xavier and Jetson
Xavier NX are rated at 19 V and Jetson Nano is rated at 5 V,
the maximum current of the model on Jetson Nano is higher
than that on Jetson Xavier NX when the performance is limited,
as shown in Figure 16A and Table 3. CICZ has the smallest
energy consumption per unit time when it runs on the three edge
devices, as shown in Table 4. The total power consumption is
the power consumption in a certain period rather than the power
consumption of each inference. Therefore, when selecting a model
on an edge device with limited energy, we had to consider both the
model’s latency (or FPS) and energy consumption metrics.

3.4.4. Equilibrium assessment
From the results shown in Table 5, we believe that, if a model

is suitable for running on edge devices, it requires a balance
between the quality of colorized results and the inference speed.
In general, on the edge device (Jetson Xavier NX), Pix2Pix can
achieve real-time NIR image colorization requirements and has
good image quality, as shown in Figure 17A. TIC-CGAN is slightly
inferior in terms of latency. The performance differences between
RecycleGAN, PearlGAN, and I2V-GAN are insignificant, as shown
in Figure 17B.

TABLE 5 Evaluation of different image colorization models based on
Peak Signal to Noise Ratio (PSNR), Structural Similarity (SSIM), and
Frames Per Second (FPS) on Jetson Xavier NX.

Method PSNR (%) SSIM (%) FPS (%)

CICZ 0.645 0.976 0.139

ELGL 0.671 0.988 0.853

ChromaGAN 0.664 0.974 0.503

SCGAN 0.756 1.072 0.120

Pix2Pix 1.000 1.000 1.000

MemoPainter 0.843 0.924 0.334

TIC-CGAN 0.931 1.109 0.448

CycleGAN 0.639 0.923 0.962

RecycleGAN 0.637 0.815 0.084

PearlGAN 0.612 0.819 0.145

I2V-GAN 0.615 0.836 0.094

This (%) represents the ratio of the model and Pix2Pix on the corresponding metric.
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FIGURE 17

Comparison of different image colorization models [(A): CICZ (Zhang et al., 2016), ELGL (Iizuka et al., 2016), ChromaGAN (Vitoria et al., 2020),
SCGAN (Zhao et al., 2020), Pix2Pix (Isola et al., 2017), MemoPainter (Yoo et al., 2019), TIC-CGAN (Kuang et al., 2020), CycleGAN (Zhu et al., 2017); (B):
RecycleGAN (Bansal et al., 2018), PearlGAN (Luo et al., 2022), I2V-GAN (Li et al., 2021)]. The size of the circle represents the combined weight of the
values on X-axis and Y-axis. The larger the circle, the better the performance.

4. Conclusion

The Jetson series is a widely used embedded system. Limits
on hardware resources and energy consumption restrict the
deployment of current deep learning models on edge devices.
In this study, an evaluation system was designed to test the
performance of NIR image colorization methods on edge devices
on the RGB-NIR scene dataset (Brown and Süsstrunk, 2011). From
the experimental results, we summarize several conclusions for
reference and provide suggestions for future work:

1. We found that the data were very close by comparing the
results of the image quality metrics of the same model on
the server and the edge devices. When considering image
quality metrics of methods, researchers only needed to
refer to the results on the server.

2. Among the 11 methods, the image quality metrics of
Pix2Pix and TIC-CGAN were the best on the RGB-NIR
scene dataset (Brown and Süsstrunk, 2011).

3. The latency of each model varied significantly across
different edge devices. As device performance decreased,
the proportion of the latency differences among the
models also changed.

4. Of the 11 methods, ELGL had the smallest latency on
Jetson AGX Xavier. On Jetson Xavier NX and Jetson Nano,
Pix2Pix had the smallest latency.

5. When deployed on an edge device with enough running
memory, the model will occupy more memory than
the memory-limited device. The memory usage may be
related to the memory allocation policy of the deep
learning framework.

6. The RecycleGAN, PearlGAN, and I2V-GAN had smaller
memory usage on edge devices than the others. Since

we used only the generator to create colorized results
for model testing, researchers who wish to optimize
a model’s memory usage can refer to these models’
generator structures.

7. Of the 11 methods, CICZ had the smallest energy
consumption per unit of time, while the maximum current
and maximum power were the smallest. Meanwhile, the
difference in energy consumption among other models
was lower than the difference between CICZ and them. For
optimizing energy consumption, researchers can refer to
the structure of CICZ.

8. Combining the testing results of image quality and latency
metrics, it can be concluded that Pix2Pix and TIC-CGAN
could serve as a basis for further optimization of NIR
image colorization on edge devices.
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