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This eBook contains ten articles on the topic of representation of abstract concepts, 
both simple and complex, at the neural level in the brain. 

Seven of the articles directly address the main competing theories of mental 
representation – localist and distributed. Four of these articles argue – either on 
a theoretical basis or with neurophysiological evidence – that abstract concepts, 
simple or complex, exist (have to exist) at either the single cell level or in an exclusive 
neural cell assembly. There are three other papers that argue for sparse distributed 
representation (population coding) of abstract concepts. 

There are two other papers that discuss neural implementation of symbolic models. 

The remaining paper deals with learning of motor skills from imagery versus actual 
execution. 

A summary of these papers is provided in the Editorial.
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Editorial on the Research Topic

Representation in the Brain

Representation of abstract concepts in the brain at the neural level remains a mystery as we
argue over the biological and theoretical feasibility of different forms of representations. We have
divided the papers in this special topic on “Representation in the brain” broadly into the following
sections:

(1) Those arguing, either on a theoretical basis or with neurophysiological evidence, that abstract
concepts, simple or complex, exist (have to exist) at the single cell level. Papers by Edwards,
Tsotsos, Feldman, and Roy are in this category. However, Feldman and Tsotsos argue that
there might be an underlying neural cell assembly (a sub-network) of subconcepts to support
a concept at the single cell level. Feldman also stresses action circuits in his paper.

(2) There are three papers that argue for sparse distributed representation (population coding) of
abstract concepts. Papers by Balkenius and Gärdenfors, Kajic et al., and Lőrincz and Sárkány
are in this category.

(3) There are two papers discussing neural implementation of symbolic models: one by van der
Velde et al. and the other by Wolff.

(4) The paper by Frank and Schack, on learning of motor skills from imagery vs. actual execution,
is not strictly related to the issue of abstract concept representation, but is about other aspects
of learning.

We provide a brief summary of each of the papers next.

ON SINGLE CELL ABSTRACT REPRESENTATION IN THE BRAIN

Edwards argues that both local and distributed representation is present in the brain and explains
which occurs when. He explains that distributed representation occurs on the input side of a
neuron, but the neuron itself, being the receiver and interpreter of these signals, is localist. This
interpretation of brain architecture essentially resolves the fundamental question of who ultimately
establishes meaning and interpretation of a collection of signals. In other words, there has to be
a “consumer” (a decoder) of such a collection of signals. Without a “consumer,” the collection of
signals is not “received.” In this interpretation, therefore, any signal generated by a neuron has
meaning and interpretation. Another neuron, receiving a collection of these signals, then interprets
and generates new information. He further argues that this interplay of distributed and localist
representation occurs throughout the brain in multiple layers of processing. And he claims that the
concept of “representation-as-input” is not in conflict with neuroscience at all.
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Tsotsos revisits the issue of complexity analysis, mainly of
visual tasks, and claims that complexity analysis, accounting for
resource constraints, dictates the type of representation required
for visual tasks. He argues that complexity analysis could be
used as a test to validate theories of the brain. For example,
accounting for the resource constraints, certain computational
schemes cannot be feasibly implemented in biological systems.
For human vision, such resource constraints include numbers
of neurons, synapses, neural transmission times, behavioral
response times, and so on. He also examines certain abstract
representations in the brain and shows how they reduce problem
complexity. For example, certain pyramidal processing structures
in the brain (which have origins in the work of Hubel and
Wiesel) produce abstract representations and thus reduce the
problem size and the search space for algorithms. He quotes
Zucker (1981) on the need for explicit abstract representation:
“One of the strongest arguments for having explicit abstract
representations is the fact that they provide explanatory terms for
otherwise difficult (if not impossible) notions.” A key conclusion
is that knowledge of the intractability of visual processing in
the general case tells us that no single solution can be found
that is optimal and realizable for all instances. This forces a
reframing of the space of all problem instances into sub-spaces
where each may be solvable by a different method. This variety of
different solution strategies implies that processing resources and
algorithms must be dynamically tunable. An executive controller
is important to decide among solutions depending on context
and to perform this dynamic tuning, and explicit representations
must be available to support these functions.

Feldman focuses on brain activity rather than just structure
to explain that action and communication are crucial to
neural encoding. The paper starts with a brief review of
the localist/distributed issue that was active early in the
development of connectionist models. He suggests that there is
now a consensus—the main mechanism for neural signaling is
frequency encoding in functional circuits of low redundancy,
often called sparse coding. The main point of the piece is that the
term “representation” presupposes a separation of process and
data, which is fine for books and computers, but hopeless for the
brain. A related point is that brains are not in the storage or truth
business, but compute actions and actionability. Actionability is
an agent’s internal assessment of the expected utility of its possible
actions. In addition, the idea of planning, etc. as programs
running against data structures should be replaced by mental
“simulations.” The final section discusses some mysteries of the
mind and suggests that all current theories are incompatible with
aspects of our subjective experience. There is evidence for all this,
some of which is cited in the short article.

Roy provides extensive evidence for single-cell based simple
and complex abstractions from neurophysiological studies of
single cells. These single-cell abstractions show up in various
forms, but the most significant and complex ones are the
category-selective cells, the multisensory neurons and the
grandmother-like cells. Category-selective cells encode complex
abstract concepts at the highest levels of processing in the brain.
There is also extensive evidence for multisensory neurons in
the sensory processing areas of the brain. In addition, abstract

modality invariant cells (e.g., Jennifer Aniston cells) have been
found at higher levels of cortical processing. Overall, according
to Roy, these neurophysiology studies reveal the existence of a
purely abstract cognitive system in the brain encoded by single
cells.

ON SPARSE DISTRIBUTED

REPRESENTATION

Topographic representations are used widely in the brain,
such as retinotopy in the visual system, tonotopy in the
auditory system and somatotopy in the somatosensory system.
These topographic representations are projections from a
higher dimensional space (of sensory information) to a lower
dimensional one. Such abstract, low-dimensional representations
also appear in the entorhinal-hippocampal complex (EHC).
Lőrincz and Sárkány introduce the concept of Cartesian Factors
(they use it to enable localized discrete representation) and
use the concept to model and explain the EHC system. They
are Cartesian in the sense that they are like coordinates
in an abstract space. And these Cartesian Factors can be
used like symbolic variables. They conclude that Cartesian
Factors provide a framework for symbol formation, symbol
manipulation, and symbol grounding processes at the cognitive
level.

In Remote Associates Test (RAT), subjects are presented
with three cue words (e.g., fish, mine, and rush) and have
to find a solution word (e.g., gold) related to all cues within
a time limit. RAT is commonly used to find an individual’s
ability to think creatively and finding a novel solution word
is usually associated with creativity. Kajic et al. present a
spiking neuron model for RAT. Their model shows significant
correlation with human performance on such a task. They use
distributed representation in their model, but each neuron in
such a representation has a preferred stimuli similar to what
is found in the visual system and place cells. They used leaky
integrate-and-fire spiking neurons in the model. Their RAT
model is the first one to link such a cognitive process with neural
implementation. However, their current model does not explain
how humans learn such word associations. All connection
weights and other parameters were determined in an offline
mode.

Humans and animals use abstractions (information
compression) at different levels of processing in the brain.
For example, cones and rods in the retina code for 3-dimensional
color perception in humans. Such abstractions to lower
dimensional spaces occur explicitly throughout sensory systems.
Balkenius and Gärdenfors a, in their paper explain how the
brain can abstract from neurocognitive representations to
psychological spaces and show how population coding at the
neural level can generate these abstractions. They show that
radial basis function networks are ideal structures for mapping
population codes to such lower dimensional spaces. In their
theory, the coding of the low-dimensional spaces need not
be explicitly expressed in individual neurons but the spatial
structures are emergent properties. They also argue that the
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mediation between perception and action occurs through such
spatial representations and that this form of mediation results in
more efficient learning.

NEURAL IMPLEMENTATIONS OF

SYMBOLIC MODELS

van der Velde et al. explore the characteristics of two
architectures for representing and processing complex
conceptual (sentence-like) structures: (1) the Neural Blackboard
Architecture (NBA), which is at the neural level, and (2) the
Information Dynamics of Thinking (IDyOT) architecture, which
is at the symbolic level. They then explore the combination
of these two architectures for the purpose of creating both an
artificial cognitive system and to explain representation and
processing of such structures in the brain. With IDyOT, one can
learn the structural elements from real corpora. NBA provides
a way to neurally implement IDyOT, whereas IDyOT itself
provides a higher-level formal account and learning abilities.
Overall, the combined architecture provides a connection
between neural and symbolic levels.

Wolff outlines how his “SP Theory of Intelligence” (where
“SP” stands for Simplicity and Power), can be implemented
using connected neurons and signal transmission between them.
He calls this neural extension “SP-neural”. In the SP theory
different kinds of knowledge are represented with patterns,
where a pattern is an array of atomic symbols in one or two
dimensions. In SP-neural, these patterns are realized using an

array of neurons, a concept similar to Hebb’s cell assembly,
but with important differences. The central concept in the SP
theory is information compression via “SP-multiple-alignment.”
A favorable combination of Simplicity and Power is aimed for by
trying to maximize compression. In the SP theory, unsupervised
learning is the basis for other kinds of learning—supervised,
reinforcement, imitation and so on.

LEARNING FROM IMAGERY VS.

EXECUTION

Frank and Schack provide an overview of the literature on
learning of motor skills by imagery and execution from
three different perspectives—performance (actual changes in
motor behavior), the brain (changes in the neurophysiological
representation of motor action) and the mind (changes in
the perceptual-cognitive representation of motor action). Both
simulation and execution of motor action leads to functional
changes in the motor action system through learning, although
perhaps to a different extent. They observe, however, that very
little is known about how actual learning takes place under these
different forms of motor skill practice, especially in terms of
action representation.
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There remains considerable controversy about how the brain operates. This review
focuses on brain activity rather than just structure and on concepts of action and
actionability rather than truth conditions. Neural Communication is reviewed as a crucial
aspect of neural encoding. Consequently, logical inference is superseded by neural
simulation. Some remaining mysteries are discussed.

Keywords: actionability, connectionist, fitness, neural code, representation, simulation

INTRODUCTION

This Frontiers project on “Representation in the Brain” is extremely timely. Despite significant
theoretical and experimental advances, there is still considerable confusion on the topic. Wikipedia
says: Representation: “A mental representation (or cognitive representation), in philosophy
of mind, cognitive psychology, neuroscience, and cognitive science,” is a hypothetical internal
cognitive symbol that represents external reality, or else a mental process that makes use of such a
symbol: a formal system for making explicit certain entities or types of information, together with
a specification of how the system does this. “https://en.wikipedia.org/wiki/Mental_representation,
August/8/2016.”

The definition above presupposes a separation between data and process that is true of books
and computers but is utterly false in neural systems. In this article we use the term “encoding”
instead of “representation”. The brain is not a set of areas that represent things, but rather a network
of circuits that do things. It is the activity of the brain, not just its structure, that matters. This
immediately brings focus on actions and thus circuits. This paper will not attempt to describe (the
myriad) particular brain circuits but will focus on the mechanisms for coordination among the
local information transfer and areas and circuits missing in most discussions of “representation.”

For concreteness, let’s start with a simple, well-known, neural circuit, the knee-jerk reflex shown
in Figure 1. We are mainly concerned with the simplicity of this circuit; there is a single connection
in the spinal cord that converts sensory input to action. The knee-jerk reflex is behaviorally
important for correcting a potential stumble while walking upright. The doctor’s tap reduces
tension in the upper leg muscle and this is detected by stretch receptor in the muscle spindle,
sending neural spike signals to the spinal cord. The downward spike signals directly cause the
muscle to contract and the leg to “jerk.” Not shown here are the many other circuit connections
that support coordination of the two legs, voluntary leg jerking, etc.

There are several general lessons to be learned from this simple example. Essentially everyone
now agrees that neurons are the foundation of encoding knowledge in the brain. But, as the example
above shows, it is the activity of neurons, not just their connections, that supports the functionality.

The example involved motor activity, but the basic point is equally valid for perception, thought,
and language, they are all based on neural activity. There are three essential considerations in
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FIGURE 1 | Knee-jerk Reflex Circuit.

discussing neural circuits – the computational properties
of individual neurons, the structure of networks and the
communication mechanisms involved.

Of these three, it is communication mechanisms that have
been studied the least and this fact is the basis for the
subtitle “no representation without communication”. “Neural
Communication and Representation,” below is a brief review
of what has been called the neural code (Feldman, 2010a).
Considerations from neural computation also constrain possible
answers to traditional questions like localist vs. distributed
representations. Actionability and Simulation goes further and
directly addresses the consequences of accepting action and
actionability as the core brain function that needs to be explained.
The final Conclusions section also considers remaining unsolved
mysteries involving the mind-brain problem, some of which are
ubiquitous in everyday experience

NEURAL COMMUNICATION AND
REPRESENTATION

One key question concerns the basic mechanisms of neural
communication. It is now accepted that the dominant method is
transmission of voltage spikes along axons and through synapses
that are connections to downstream neural processes. Neural
spikes are an evolutionary ancient development that remains
nature’s main technique for fast long distance information
passing (Meech and Mackie, 2007). Other neural communication
mechanisms are either extremely local (e.g., gap junctions) or
much slower (e.g., hormones). Neural spikes serve a wide range
of functions.

Much of the chemistry underlying neural spikes goes back
even earlier (Katz, 2007; Meech and Mackie, 2007). The earliest

use of spiking neurons is to signal coordinated action as in
the swimming of jellyfish. This kind of direct action remains
one of the main functions of neural spikes as suggested by
Figure 1. Due to the common chemistry, all neural spikes
are of the same duration and size (Katz, 2007; Meech and
Mackie, 2007). The basic method of neural information transfer
is direct –the information depends on which neurons are linked.
Most of the information sent by a sensory neural spike train
is based on the sending unit. For output, the result of motor
control signaling is largely determined by which fibers are
targeted. The other variable is timing; there is a wide range
of variation in the firing rate and conduction time of neural
spikes.

The other factor on neural computation is resource limitations
(Lennie, 2003). The most obvious resource constraint for neural
action/decision is time. Many actions need to be fast even at
the expense of some accuracy. Some neural systems evolved
to meet remarkable timing constraints. Bats and owls make
distinctions that correspond to timing differences at the 10 µs
level -much faster than neural response times. A second key
resource is energy; neural firing is metabolically costly (Lennie,
2003) and brains evolved to conserve energy while meeting
performance requirements. The three factors of accuracy, timing,
and resources are the elements of a function that conditions
neural computation.

We can show why it is not feasible for one neuron to send
an abstract symbol (as in ASCII code) to another as a spike
pattern (Feldman, 1988). It is known experimentally that the
firing of sensory (e.g., visual) neurons is a function of multiple
variables, often intensity, position, velocity, orientation, color, etc.
It would take an extremely long message to transmit all this as
an ASCII like code and neural firing rates are too slow for this,
even omitting the stochastic nature of neural spikes. Even if such
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a message were somehow encoded and transmitted downstream,
it would require a complex computation to decode it and
combine the result with the symbolic messages of neighboring
cells and then build a new symbolic message for the further levels.
Language is a symbolic system that is processed by the brain, but
nothing at all like abstract symbols occurs at the individual unit
level.

In the past, there have been debates about whether neural
representations were basically punctuate with a “grandmother
cell” (Bowers, 2009) for each concept of interest. The alternative
was basically holographic (with each item encoded by a
pattern involving all the units in a large population). It
has been understood for decades (Feldman, 1988) that
neither extreme could be realized in the neural systems of
nature.

Having just a single unit coding the element of interest
(concept) is impractical for many reasons. The clearest is that the
known death of cells would cause concepts to vanish. Also, the
firing of individual units is probabilistic and would not be a stable
representation. It is easy to see that there are not nearly enough
units in the brain to capture all the possible combinations of sizes,
motions, shapes, colors, etc., that we recognize, let alone all the
non-visual concepts. The grandmother cell story was always a
straw man— using a modest number (∼10) units per concept
could overcome all these difficulties.

The holographic alternative was originally more popular
because it used the techniques of statistical mechanics. But
it is equally implausible. This is easy to see informally and
was proved as early as (Willshaw et al., 1969). Suppose a
system should represent a collection of concepts (e.g., words)
as a pattern of activity over some number M (say 10,000,000)
neurons. The key problem is cross-talk: if multiple words are
simultaneously active, how can the system avoid interference
among their respective patterns. Willshaw et al. (1969) showed
that the best solution is to have each concept represented by
the activity of only about logM units, which would be about 24
neurons in our example. There are many other computational
problems with holographic models (Feldman, 1988). For example
if a concept required a pattern over all M units, how would
that concept combine with other concepts without cross-talk.
Even more basically, there is no way that a holographic
representation could be transmitted from one brain circuit to
another.

There is a wide range of converging experimental evidence
(Quiroga et al., 2008; Bowers, 2009) showing that neural encoding
relies on a modest number (10–100) of units. There is also some
overlap—the same unit can be involved in the representation of
different items. For several reasons, not all of them technical,
some papers continue to refer to these structured representations
as “sparse population codes.” A much more appropriate term
would be redundant circuits.

There is now a general consensus on the basis of neural spike
signaling and encoding. There are a number of specialized neural
structures involving delicate timing. The relative time of spike
arrival is also important for plasticity. But the main mechanism
for neural signaling is frequency encoding in functional circuits
of low redundancy.

ACTIONABILITY AND SIMULATION

Given that knowledge is encoded in the brain as active
circuits, the next big question concerns the nature of this
embodied knowledge. The key idea is that living things and
their brains evolved to act in the physical and social world.
Action is evolutionarily much older than symbolic thought,
belief, etc., and is also developmentally much earlier in people.
Sensory actions loops like the knee-jerk reflex (Figure 1)
significantly pre-date neurons and are crucial even for single
celled animals such as amoeba (Katz, 2007). Only living
things act (in our sense); natural forces, mechanisms, etc. are
said to act by metaphorical extension (Lakoff and Johnson,
1980).

Fitness is the technical term for nature’s assessment of agents’
actions in context. Natural selection assures that creatures with
sufficiently bad choices of actions do not survive and reproduce.
The term actionability has been defined as an organism’s internal
assessment of its available actions in context (Feldman and
Narayanan, 2014). Of course, such an internal calculation will
rarely be optimal for fitness, but evolution selects systems where
the match is good enough.

Actions, in this formulation, include persistent change of
internal state: learning, memory, world models, self-concept, etc.
In animals, perception is best-fit, active, and utility/affordance
based (Parker and Newsome, 1998). The external world (e.g.,
other agents) is not static so internal models need simulation.
Simulation involves imagining actions and estimating their
likely consequences before actually entailing the risks of trying
them in the real world (Bergen, 2013). Both actionability
assessment and simulation rely on good (but not veridical)
internal models. This is another fundamental property of neural
encoding.

Another important issue concerns the roles of rules, including
logical rules in the brain. Once a simulation has been done
successfully, people can cache (remember) the result as a rule
and thus shortcut a costly simulation. Search in a symbolic
model can be viewed as a form of simulation. Learning
generalizations of symbolic rules is a crucial process and not well
understood.

Communication is an important form of action and is needed
for cooperation, as discussed in Neural Communication and
Representation. Even single-celled animals, like some amoebas,
rely on pheromones for survival, particularly for organizing into
stable structures in times of environmental stress (Shorey, 2013).
Higher plants and animals rely on communication actions for
many life functions. And, of course, language is a characterizing
trait of people. Much of what we know and what we need
to learn about “representation in the brain” is concerned with
language.

Actionability, not non-tautological truth, is what an
agent/animal can actually compute. We have no privileged
access to external truth or to our own internal state. This entails
the operationality of all living things. In science, operationalism
states that theories should be evaluated for their explanatory
and predictive power, not as assertions of the reality of their
terms, e.g., electrons. Living things incorporate structures that
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model the external and internal milieus to enhance fitness.
Evolution constrains these structures to be consistent with
reality.

The basic actionability story applies to all living things, but
there are profound differences between different species. One
crucial divide/cline is volitional action and communication –
the boundary is not clear, but birds are above the line;
protozoans, plants below. We assume that, in nature, neurons
are necessary for volition (Damasio, 1999). Volitional actions
have automatic components and influence, e.g., speech. For
example, deciding to talk is volitional; the details of articulation
are automatic.

Learning is obviously a foundation of intelligent activity
and also important in much simpler organisms. The current
revolution in big data, deep learning, etc., can help provide
insights for this enterprise as well as many others, but is not
a model for the mechanisms under study. Structure learning
remains to be understood. Observational learning without a
model is influenced by the observer’s ability to act in the situation
(Iani et al., 2013). In Nature, there is no evidence for tabula-rasa
learning and massive evidence against it.

Language is a hallmark of human intelligence and its
representation in the brain is of major importance. From our
actionability perspective, the crucial question is the neural
encoding of meaning. A tradition dating literally back to the
Greeks identifies meaning with “truth” as defined in formal
logics. This historical fact wouldn’t matter except that the
same definition of meaning dominates much current work
in formal linguistics, philosophy, and computer science. But
action is evolutionarily much older than symbolic thought,
belief, etc., and is also developmentally much earlier in
people.

Decades of inter-disciplinary work suggests that the definition
of meaning should be expressed in an action-oriented formalism
(Narayanan, 1999) that maps directly to embodied mechanisms
(Feldman, 2005). For example, the meaning of a word like
“push” is captured formally as an action schema that captures
the preconditions and resources needed for the action as well
as the possible results of the action. Furthermore, all actions
inherit from a common control schema (Narayanan, 1999)
that models general aspects of action including completion,
interrupts, repetition, etc. This action formalism is multi-modal:
describing execution, recognition, and planning as well as
language.

In addition, the meaning of a word like “push” is assumed
to engage neural circuits that produce pushing behavior in
people and other animals. There are wide ranging findings
that indeed words and images about actions do activate much
of the same circuitry as carrying out the action (Garagnani
and Pulvermüller, 2016). This is strong evidence about the
encoding of actions, action images, and action language in the
brain. A further extension of actionability theory accounts for
the meaning of metaphorical meanings of words like push in
examples like “push for a promotion” (Lakoff and Johnson,
1980). Metaphorical mappings are modeled as mappings from
some target domain (here, employment) to an embodied source
domain. A remarkable range of phenomena are explained by

this theory and, again, there is strong neural support for the
connection (Bergen, 2013).

This brings us back to simulation, which was discussed
earlier as being necessary for modeling the response of
external environment (including other agents) to one’s
actions. Some automatic simulations (like dreams) are well
understood in mammals, but people rely upon volitional
(intentional, purposeful) simulation for many functions
including planning and language (Feldman, 2005). Some
remarkable new experiments (Pfeiffer and Foster, 2013) suggest
that rodents might exhibit volitional simulation, but this remains
controversial.

More generally, simulation is a cornerstone of an extensive
effort on language theory, embodiment, and application.
Volitional simulation has been proposed as the mechanism of
planning, mind-reading, etc. (Bergen, 2013). With an appropriate
formalism, simulation can yield both causal and predictive
inferences (Pearl, 2000). Results of simulations can be cached
(remembered) and generalized as rules. The NTL theory of
language and thought entails additional mechanisms including
construction grammar, mental spaces, mappings, etc. (Feldman,
2010b).

CONCLUSIONS AND MYSTERIES

This Frontiers project on “Representation in the Brain” is
extremely timely; despite recent theoretical and experimental
advances, there is still considerable confusion on the topic.
As is often the case, part of the problem arises from the use
of anachronistic terms like “representation” to describe neural
computation. There are also surviving revivals of old theories
(like holographic memory and field theory) that are incompatible
with current findings. But for the most part, there is a good
scientific consensus on what could be called a standard theory
of neural computation (Parker and Newsome, 1998). This is
based on the activity of individual neurons that participate in
multiple complex circuits and communicate primarily through
spikes transmitted through axons to synapses with processes of
downstream cells.

In addition to our improved understanding of the
computational primitives of the brain, there are promising
advances on theories and experiments at the functional level.
The ancient idea that meaning should be equated with logical
truth is being replaced by theories that emphasize the function of
brains in interacting with the physical and social environments
(Kahneman, 2011). In a related development, the idea of
language and thought as logical deduction is giving way to theory
and experiment grounded in bodily experience and simulation
(Bergen, 2013).

However, there are fundamental questions on neural
computation that remain mysteries in that there is no plausible
theory to account for them. The general mind-body problem is
known to be intractable and currently mysterious (Chalmers,
1996). This is one of many deep problems, including quantum
phenomena, etc., that are universally agreed to be beyond
the current purview of science. But all of these famous
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unsolved problems are either remote from everyday experience
(complementarity, dark matter) or are hard to even define sharply
(consciousness, free will, etc.).

There are also problematic ordinary behaviors–recent work
(Feldman, 2016) describes some obvious problems in vision that
arise every time that we open our eyes and yet are demonstrably
incompatible with current theories of neural computation,
including those presented in this article. The focus was on two
related phenomena, known as the neural binding problem and
the illusion of a stable visual world. I, among many others, have
struggled with these issues for more than 50 years and I now
believe that they are both unsolvable within current neuroscience.
By considering some basic facts about how the brain processes
image input, (Feldman, 2016) shows that there are not nearly
enough brain neurons to compute what we experience as vision.
We imagine that we perceive an entire scene at full resolution,
but only about 1 degree in the fovea is encoded that precisely.
However, the area of visual cortex that encodes the fovea is much
too large to be replicated ∼400 times to fully encode a full scene
in detail.

I suggest that these facts should induce humility about the
prospects for our current neuroscience to yield a complete
reductionist account of even concrete aspects of vision and other

thought processes. So, “representation in the brain” remains one
of the central scientific questions of our time, if not of all time.
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The debate about representation in the brain and the nature of the cognitive system has
been going on for decades now. This paper examines the neurophysiological evidence,
primarily from single cell recordings, to get a better perspective on both the issues. After
an initial review of some basic concepts, the paper reviews the data from single cell
recordings – in cortical columns and of category-selective and multisensory neurons. In
neuroscience, columns in the neocortex (cortical columns) are understood to be a basic
functional/computational unit. The paper reviews the fundamental discoveries about the
columnar organization and finds that it reveals a massively parallel search mechanism.
This columnar organization could be the most extensive neurophysiological evidence
for the widespread use of localist representation in the brain. The paper also reviews
studies of category-selective cells. The evidence for category-selective cells reveals
that localist representation is also used to encode complex abstract concepts at the
highest levels of processing in the brain. A third major issue is the nature of the cognitive
system in the brain and whether there is a form that is purely abstract and encoded by
single cells. To provide evidence for a single-cell based purely abstract cognitive system,
the paper reviews some of the findings related to multisensory cells. It appears that
there is widespread usage of multisensory cells in the brain in the same areas where
sensory processing takes place. Plus there is evidence for abstract modality invariant
cells at higher levels of cortical processing. Overall, that reveals the existence of a purely
abstract cognitive system in the brain. The paper also argues that since there is no
evidence for dense distributed representation and since sparse representation is actually
used to encode memories, there is actually no evidence for distributed representation in
the brain. Overall, it appears that, at an abstract level, the brain is a massively parallel,
distributed computing system that is symbolic. The paper also explains how grounded
cognition and other theories of the brain are fully compatible with localist representation
and a purely abstract cognitive system.

Keywords: localist representation, distributed representation, amodal representation, abstract cognitive system,
theory of the brain, cortical columns, category cells, multisensory neurons
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INTRODUCTION

We have argued for decades about how features of the outside
world (both abstract and concrete) are encoded and represented
in the brain (Newell and Simon, 1976; Newell, 1980; Smith, 1982;
Hinton et al., 1986; Earle, 1987; Smolensky, 1987, 1988; Fodor
and Pylyshyn, 1988; Rumelhart and Todd, 1993). In the 70s and
80s, however, when the various theories were proposed and most
of the fundamental arguments took place, study of the biological
brain was still in its infancy. We, therefore, didn’t have much
neuroscience data to properly evaluate the competing theories.
Thus, the arguments were mainly theoretical. Fortunately, that
situation has changed in recent years with a significant amount
of research in neurophysiology. We are, therefore, in a better
position now to evaluate the competing theories based on real
data about the brain.

Freeman and Skarda (1990) have argued that the brain
does not need to encode or represent features of the outside
world in any explicit way. Representation, however, is a
useful abstraction for computer and cognitive sciences and for
many other fields and neurophysiology continues to search
for correlations between neural activity and features of the
external world (Logothetis et al., 1995; Chao and Martin, 2000;
Pouget et al., 2000; Freedman et al., 2001; Wang et al., 2004;
Quiroga et al., 2005; Samejima et al., 2005; Averbeck et al.,
2006; Martin, 2007; Patterson et al., 2007; Kriegeskorte et al.,
2008). In fact, the two Nobel prizes in physiology for ground-
breaking discoveries about the brain have been about encoding
and representation: (1) Hubel and Wiesel’s discovery of a
variety of fundamental visual processing cells in the primary
visual cortex, such as line, edge, color and motion detector
cells (Hubel and Wiesel, 1959, 1962, 1968, 1977), and (2) the
discovery of place cells by O’keefe and grid cells by Mosers
(O’Keefe and Dostrovsky, 1971; O’keefe and Nadel, 1978; Moser
et al., 2008). Thus, in this paper, I focus primarily on the
two main competing theories of representation – localist vs.
distributed.

The cortical column – a cluster of neurons that have similar
response properties and which are located physically together
in a columnar form across layers of the cortex – is now
widely accepted in neuroscience as the fundamental processing
unit of the neocortex (Mountcastle, 1997; Horton and Adams,
2005; DeFelipe, 2012). There are some very interesting findings
from studies of the cortical columns and it makes sense to
understand the nature and operation of cortical columns from
a representational and computational point of view. So that is a
major focus of this paper.

Encoding of complex abstract concepts is the second major
focus of this paper. Distributed representation theorists have
always questioned whether the brain is capable of abstracting
complex concepts and encoding them in single cells (neurons)
or in a collection of cells dedicated to that concept. There was an
article in MedicalExpress (Zyga, 2012) on localist representation
following the publication of Roy (2012). That article includes
an extensive critique of localist representation theory by James
McClelland. I quote here a few of his responses regarding
encoding of complex concepts:

(1) “what basis do I have for thinking that the representation
I have for any concept – even a very familiar one –
as associated with a single neuron, or even a set of neurons
dedicated only to that concept?”

(2) “A further problem arises when we note that I may
have useful knowledge of many different instances of
every concept I know – for example, the particular
type of chicken I purchased yesterday evening at the
supermarket, and the particular type of avocados I found
to put in my salad. Each of these is a class of objects,
a class for which we may need a representation if
we were to encounter a member of the class again.
Is each such class represented by a localist representation
in the brain?”

As one can sense from these arguments, the nature and means
of encoding of complex abstract concepts is a major issue in
cognitive science. A particular type of complex abstract concept
is the concept of a category. There are several neurophysiological
studies on category representation in the brain and they provide
some new insights on the nature of encoding of abstract concepts.
I review some of those studies that show that single cells can
indeed encode abstract category concepts.

I also address the issue of modality-invariant (or amodal)
representation, which is also a form of abstraction, and provide
evidence for the extensive use of an amodal cognitive system in
the brain where such abstractions are encoded by single cells.
Finding these different kinds of abstractions in the brain (from
categorization to modality-invariance) resolves a long standing
dispute within cognitive science – between grounded cognition,
which is modality-based, and the traditional cognitive system
defined on the basis of abstractions (Borghi and Pecher, 2011).
Given the evidence for grounded cognition (Barsalou, 2008) and
the various forms of abstractions encoded by single cells, it is
fair to claim that both a purely abstract form of cognition and
modality-dependent cognition co-exist in the brain providing
different kinds of information and each is supported by localist
representation.

Finally, I address the issue of distributed representation or
population coding (Panzeri et al., 2015) and its conflict with the
evidence for localist representation. I essentially argue that there
is no evidence for distributed representation because there is
no evidence for dense distributed coding. And dense distributed
coding is the essential characteristic of distributed representation
as claimed by some of the original proponents (McClelland et al.,
1995).

The paper has the following structure. In Section “Localist vs.
Distributed Representation,” I provide the standard definitions
for localist and distributed representations and explain the
difference between distributed processing and distributed
representation. In Section “Columnar Organization in the
Neocortex,” I explore the neuroscience of columnar organization
in the neocortex and what it implies for representational theories.
In Section “Category Cells,” I review neurophysiological studies
that relate to encoding of category concepts in the brain. Section
“Multisensory Integration in the Brain” has the evidence for
multi-sensory integration and modality-invariant single cells
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in the brain. In Section “The Existence of a Single Cell-Based
Purely Abstract and Layered Cognitive System and Ties to
Grounded Cognition,” I argue that there’s plenty of evidence
for a purely abstract, single-cell based cognitive system in the
brain. In addition, I argue that a sensory-based (grounded)
non-abstract and a purely abstract cognitive system co-exist
and support each other to provide cognition in its various
forms. In Section “On the “Meaning and Interpretation”
of Single Neuron Response,” I explain what “meaning and
interpretation” implies for a single cell response. Section
“Localist Representation and Symbols” explains why localist
neurons are symbols in a computational and cognitive sense.
Section “No Evidence for Distributed Representation” argues
that there is no neurophysiological evidence for distributed
representation because distributed representation is about dense
representation. Section “Conclusion” has the conclusions.

LOCALIST VS. DISTRIBUTED
REPRESENTATION

Definitions and What They Mean
Distributed representation is generally defined to have the
following properties (Hinton et al., 1986; Plate, 2002):

• A concept is represented by a pattern of activity over
a collection of neurons (i.e., more than one neuron is
required to represent a concept).

• Each neuron participates in the representation of more than
one concept.

By contrast, in localist representation, a single neuron
represents a single concept on a stand-alone basis. But that
doesn’t preclude a collection of neurons representing a single
concept. The critical distinction between localist units and
distributed ones is that localist units have “meaning and
interpretation” whereas the distributed ones don’t. Many authors
have pointed out this distinction.

• Elman (1995, p. 210): “These representations are distributed,
which typically has the consequence that interpretable
information cannot be obtained by examining activity of
single hidden units.”

• Thorpe (1995, p. 550): “With a local representation, activity
in individual units can be interpreted directly... with
distributed coding individual units cannot be interpreted
without knowing the state of other units in the network.”

• Plate (2002):“Another equivalent property is that in a
distributed representation one cannot interpret the meaning
of activity on a single neuron in isolation: the meaning of
activity on any particular neuron is dependent on the activity
in other neurons (Thorpe, 1995).”

Thus, the fundamental difference between localist and
distributed representation is only in the interpretation and
meaning of the units, nothing else. Therefore, any and all kinds of
models can be built with either type of representation; there are
no limitations as explained by Roy (2012).

Reviewing single cell studies, Roy (2012) found evidence that
single cell activations can have “meaning and interpretation,”
starting from the lowest levels of processing such as the retina.
Thus, localist representation is definitely used in the brain. Roy
(2013) found that multimodal invariant cells exist in the brain
that can easily identify objects and concepts and such evidence
supports the grandmother cell theory (Barlow, 1995, 2009; Gross,
2002). This paper builds on those previous ones and provides
further evidence for widespread use of localist representation
by examining columnar organization of the neocortex and the
evidence for category cells.

Other Characteristics of Distributed
Representation

(a) Representational efficiency – Distributed representation
is computationally attractive because it can store multiple
concepts using a small set of neurons. With n binary output
neurons, it can represent 2n concepts because that many
different patterns are possible with that collection of binary
neurons. With localist representation, n neurons can only
represent n concepts. In Section “Columnar Organization
in the Neocortex,” I explain that this property of distributed
representation could be its greatest weakness because such a
representation cannot be a feasible structure for processing
in the brain, given the evidence for columnar organization
of the neocortex.

(b) Mapping efficiency – Distributed representation allows
for a more compact overall structure (mapping function)
from input nodes to the output ones and that means
less number of connections and weights to train. Such
a mapping function requires less training data and will
generalize better.

(c) Resiliency – A distributed representation based mapping
function is resilient in the sense that degradation of a few
elements in the network structure may not disrupt or effect
the overall performance of the structure.

(d) Sparse distributed representation – A distributed
representation is sparse if only a small fraction of the n
neurons is used to represent a subset of the concepts. Some
argue that representation in the brain is sparse (Földiak,
1990; Olshausen and Field, 1997; Hromádka et al., 2008;
Yu et al., 2013).

McClelland et al. (1995), however, have argued that sparse
distributed representation doesn’t generalize very well and
that the brain uses it mainly for episodic memories in
the hippocampus. They also argue that dense distributed
representation is the only structure that can generalize well
and that the brain uses this dense form of representation
in the neocortex to learn abstract concepts. Bowers (2009)
summarizes this particular theory of McClelland et al. (1995) in
the following way: “On the basis of this analysis, it is argued that
sparse coding is employed in the hippocampus in order to store
new episodic memories following single learning trials, whereas
dense distributed representations are learned slowly and reside in
cortex in order to support word, object, and face identification
(among other functions), all of which require generalization (e.g.,
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to identify an object from a novel orientation).” The essence of
this theory is that only dense representations can generalize and
learn abstract concepts. And thus the only form of distributed
representation to consider is the dense one.

Distributed Processing vs. Distributed
Representation
The interactive activation (IA) model of McClelland and
Rumelhart (1981), shown in Figure 1, is a classic localist model.
The IA model is a localist model simply because the letter-feature,
letter and word units have labels on them, which implies that
they have “meaning and interpretation.” Although the model is
localist, it uses distributed and parallel processing. For example,
all of the letter units are computed in parallel with inputs
from the letter-feature layer. Similarly, all of the word units are
computed in parallel with inputs from the letter units layer. Thus,
both localist and distributed representation can exploit parallel,
distributed processing. The representation type, therefore, does
not necessarily place a restriction on the type of processing. And
localist representation can indeed parallelize computations.

COLUMNAR ORGANIZATION IN THE
NEOCORTEX

Although the neocortex of mammals is mainly characterized
by its horizontal layers with different cell types in each layer,
researchers have found that there is also a strong vertical
organization in some regions such as the somatosensory,
auditory, and visual cortices. In those regions, the neuronal
responses are fairly similar in a direction perpendicular to
the cortical surface, while they vary in a direction parallel to
the surface (Goodhill and Carreira-Perpiñán, 2002). The set of

FIGURE 1 | Schematic diagram of a small subcomponent of the
interactive activation model. Bottom layer codes are for letter features,
second layer codes are for letters, and top layer codes are for complete
words, all in a localist manner. Arrows depict excitatory connections between
units; circles depict inhibitory connections. Adapted from Figure 3 of
McClelland and Rumelhart (1981), by permission of American Psychological
Association.

neurons in the perpendicular direction have connections between
them and form a small, interconnected column of neurons.
Lorente de Nó (1934) was the first to propose that the cerebral
cortex is formed of small cylinders containing vertical chains of
neurons and that these were the fundamental units of cortical
operation. Mountcastle (1957) was the first to discover this
columnar organization (that is, the clustering of neurons into
columns with similar functional properties) in the somatosensory
cortex of cats. Hubel and Wiesel (1959, 1962, 1968, 1977) also
found this columnar organization in the striate cortex (primary
visual cortex) of cats and monkeys.

A minicolumn, a narrow vertical chain of interconnected
neurons across the cortical layers, is considered the basic
unit of the neocortex. The number of neurons in these
minicolumns generally is between 80 and 100, but can be more
in certain regions like the striate cortex. A cortical column (or
module) consists of a number of minicolumns with horizontal
connections. A cortical column is a complex processing unit
that receives input and produces outputs. In some cases, the
boundaries of these columns are quite obvious (e.g., barrels in
the somatosensory cortex and ocular dominance columns in the
visual cortex), but not always (e.g., orientation columns in the
striate cortex).

Figure 2 shows the “ice cube” models that explain the spatial
structure of orientation columns, ocular dominance columns and
hypercolumns across layers of the striate cortex. An orientation
column has cells that have the same orientation (i.e., they respond
to an edge or bar of light with the same orientation) and
this columnar structure is repeated in the striate cortex for
different orientations and different spatial positions [receptive
fields (RFs)] on the retina. Tanaka (2003) notes that: “Cells
within an orientation column share the preferred orientation,
while they differ in the preferred width and length of stimuli,
binocular disparity, and the sign of contrast.” Hypercolumn
(macrocolumn) cells, on the other hand, respond to the same
spatial position (RF) in the retina, but have different orientation
preferences. Orientation preferences generally changes linearly
from one column to the next, but can have jumps of 90 or
180◦. A hypercolumn (macrocolumn) contains about 50–100
minicolumns. According to Krueger et al. (2008), the neocortex
has about 100 million minicolumns with up to 110 neurons in
each.

Direction of motion selectivity columns have been found in
the middle temporal (MT) visual area of macaque monkeys
(Albright et al., 1984; DeAngelis and Newsome, 1999). Figure 3
shows the distribution of preferred directions of 95 direction-
selective lateral intraparietal area (LIP) neurons of two male
rhesus monkeys from the study by Fanini and Assad (2009). Out
of the 614 MT direction selective neurons monitored by Albright
et al. (1984), 55% responded to moving stimuli independent of
color, shape, length, or orientation. The response magnitude and
tuning bandwidth of the remaining cells depended on stimulus
length, but not the preferred direction. They also found that “cells
with a similar direction of motion preference are also organized
in vertical columns and cells with opposite direction preferences
are located in adjacent columns within a single axis of motion
column.” Diogo et al. (2002) found direction selective clusters of

Frontiers in Psychology | www.frontiersin.org February 2017 | Volume 8 | Article 18615

http://www.frontiersin.org/Psychology/
http://www.frontiersin.org/
http://www.frontiersin.org/Psychology/archive


fpsyg-08-00186 February 15, 2017 Time: 17:22 # 5

Roy A Purely Abstract Cognitive System

FIGURE 2 | Orientation columns, ocular dominance columns, hypercolumns, and layers of the striate cortex. (A) Adapted from Figure 1 of Bressloff and
Carroll (2015). (B) Reprinted from Ursino and La Cara (2004), with permission from Elsevier.

FIGURE 3 | Distribution of preferred directions for 95
direction-selective LIP neurons of two male rhesus monkeys (filled
arrowheads for monkey H and open arrowheads for monkey R).
Adapted from Figure 6 of Fanini and Assad (2009), by permission of
The American Physiological Society.

cells in the visual area MT of the Cebus apella monkey that change
gradually across the surface of MT but also had some abrupt 180◦

discontinuities.
Tanaka (2003) found cells in the inferotemporal cortex (area

TE) that selectively respond to complex visual object features and
those that respond to similar features cluster in a columnar form.
For example, he found cells in a TE column that responded to
star-like shapes, or shapes with multiple protrusions in general.
Tanaka (2003) notes: “They are similar in that they respond to
star-like shapes, but they may differ in the preferred number
of protrusions or the amplitude of the protrusions.” Figure 4
shows types of complex objects (complex features) found (or
hypothesized) by Tanaka in TE columnar modules. He also notes:
“Since most inferotemporal cells represent features of object images
but not the whole object images, the representation of the image
of an object requires a combination of multiple cells representing
different features contained in the image of the object.”

In general, neuroscientists have discovered the columnar
organization in many regions of the mammalian neocortex.
According to Mountcastle (1997), columnar organization is just
one form of modular organization in the brain. Mountcastle
(1997) notes that the modular structure varies “in cell type and

number, in internal and external connectivity, and in mode of
neuronal processing between different large entities.” DeFelipe
(2012) states that “The columnar organization hypothesis is
currently the most widely adopted to explain the cortical processing
of information. . .” although there are area and species specific
variations and some species, such as rodents, may not have
cortical columns (Horton and Adams, 2005). However, Wang
et al. (2010) found similar columnar functional modules in
laminated auditory telencephalon of an avian species (Gallus
gallus). They conclude that laminar and columnar properties of
the neocortex are not unique to mammals. Rockland (2010) states
that columns (as modules) are widely used in the brain, even in
non-cortical areas.

Columnar Organization – Its Functional
Role and as Evidence for Localist
Representation
Neuroscience is still struggling to understand the functional
role of columnar organization in cortical processing (Horton
and Adams, 2005; DeFelipe, 2012). Here I offer a macro level
functional explanation for columnar organization and the way
it facilitates fast and efficient processing of information. I
also explain why distributed representation (population coding)
is inconsistent with and infeasible for the type of superfast
processing required in certain parts of the neocortex (and perhaps
for other parts of the brain also), where such superfast processing
is facilitated by the columnar organization. And columnar
organization could be the most extensive neuroscience evidence
we have so far for the widespread use of localist representation in
the brain.

What the columnar organization reveals is a massively parallel
search mechanism – a mechanism that, given an input, searches
in parallel for a match within a discrete set of explicitly coded
features (concepts). In other words, it tries to match the input,
in parallel, to one of the component features in the discrete
set, where each such component feature is encoded separately
by one or more minicolumns. And the search is parallelized
for all similar inputs that arrive simultaneously at a processing
stage. That is, each input that arrives at the same time at a
processing stage, is processed immediately and separately in a
parallel mode. To make this type of parallelized search feasible
for multiple inputs, it provides a dedicated macrocolumn (such
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FIGURE 4 | Columnar modules of region TE. Adapted from Figures 3 and 7 of Tanaka (2003), by permission of Oxford University Press.

as a hypercolumn), that encodes the same set of discrete features
in its minicolumns, to each and every input (e.g., a RF) so that
it can be processed separately in parallel. Horton and Adams
(2005) describe a hypercolumn as a structure that contains “a
full set of values for any given set of receptive field parameters.”
The discrete set of explicit features (concepts) – which range
from simple features (e.g., line orientation) to complex and
invariant ones (e.g., a star-like shape) and where the set of features
depends on the processing level – is, of course, learned over
time.

Thus, the defining principle of columnar organization is
this parallel search for a matching explicit feature within a
discrete set, given an input, and performing such searches for
multiple inputs at the same time (in parallel), where such parallel
searches for multiple inputs are facilitated by deploying separate
dedicated macrocolumns for each input. This same parallel
search mechanism is used at all levels of processing as necessary.
This mode of processing is, without question, very resource
intensive. However, this mode of processing is an absolute
necessity for the neocortex (and elsewhere in the brain) wherever
there is a need for incredibly fast processing.

What’s really unique about columnar organization is the fact
that it creates a discrete set of features (concepts) that are
explicit. The features are explicit in the sense that they are
interpretable and can be assigned meaning. And that organizing
principle provides direct evidence for widespread use of localist
representation in the cortex and perhaps other areas of the brain
(Page, 2000; Roy, 2012, 2013). Here’s an explanation from a
computational point of view why columnar organization works
that way and why distributed representation, especially dense
distributed representation which is hypothesized to be used in
the neocortex (McClelland et al., 1995; Poggio and Bizzi, 2004;
Bowers, 2009), is not compatible with the processing needs. In
dense distributed representation, concepts are coded by means
of different patterns of activation across several output units
(neurons) of a network. If such a pattern vector, which can
code for any number of concepts, is transmitted to another
system, that system would have to know how to decode that
pattern vector and determine what the concept is. That means
that the receiving system would require a decoding processor
(a decoder) to understand an incoming pattern vector encoded

by signals from a population of neurons. If the columnar
organization were to use dense distributed representation to
code for features and concepts, it would have to deploy
millions of such decoders. That obviously would add layers
of processing and slow down the processing of any stimulus.
Explicit features, encoded by one or more neurons in cortical
columns, make the interpretation (decoding) task simple for
subsequent processes. Thus, learning of explicit features by the
columnar organization could be mainly about simplification of
computations and to avoid a complex decoding problem at every
stage of processing.

CATEGORY CELLS

There is significant evidence at this point that animal brains,
from insects to humans, have the ability to generalize and create
abstract categories and concepts and encode and represent them
in single cells or multiple cells, where each group of such cells is
dedicated to a single category or concept. This reveals a lot about
mental representation in the brain. This aspect of abstraction and
representation of such abstractions has been ignored and denied
in the distributed representation theory.

The Evidence for Abstract Category Cells
Regarding the ability to create abstract categories, Freedman and
Miller (2008) notes (p. 312): “Categorization is not an ability
that is unique to humans. Instead, perceptual categorization and
category-based behaviors are evident across a broad range of
animal species, from relatively simple creatures like insects to
primates.” Researchers have found such abstraction capability in
a variety of studies of animals and insects. Wyttenbach et al.
(1996), for example, found that crickets categorize the sound
frequency spectrum into two distinct groups – one for mating
calls and the other for signals of predatory bats. Schrier and Brady
(1987), D’amato and Van Sant (1988) and others have found that
monkeys can learn to categorize a large range of natural stimuli.
Roberts and Mazmanian (1988) found that pigeons and monkeys
can learn to distinguish between animal and non-animal pictures.
Wallis et al. (2001) recorded from single neurons in the prefrontal
cortex (PFC) of monkeys that learned to distinguish whether
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two successively presented pictures were same or different.
Fabre-Thorpe et al. (1998) found that monkeys can accurately
categorize images (food vs. non-food, animal vs. non-animal)
with remarkable speed in briefly flashed stimuli. They conclude:
“Overall, these findings imply that rapid categorization of natural
images in monkeys must rely, as in humans, on the existence of
abstract categorical concepts.”

Merten and Nieder (2012) found single neurons in the
PFC of two rhesus monkeys that encoded abstract “yes” and
“no” decisions from judgment about the presence or absence
of a stimulus. They note the following (p. 6291): “we report
a predominantly categorical, binary activation pattern of “yes”
or “no” decision coding.” Rolls et al. (1997) found viewpoint-
independent spatial view cells in the vicinity of the hippocampus
in monkeys. These cells responded when the monkey looked
toward a particular view, independent of the place where the
monkey is or its head direction. Vogels (1999) found single cells
in the anterior temporal cortex of two rhesus monkeys that were
involved in distinguishing trees from non-trees in color images.
About a quarter of those neurons responded in a category-specific
manner (that is, either trees or non-trees). And the responses
were mostly invariant to stimulus transformation, e.g., to changes
in position and size.

Lin et al. (2007) report finding “nest cells” in the mouse
hippocampus that fire selectively when the mouse observes a
nest or a bed, regardless of the location or the environment. For
example, they found single cells that drastically increased the
firing rate whenever the mouse encountered a nest. If the mouse
looked away from the nest, that single cell became inactive. In
testing for invariance, they note (p. 6069): “Together, the above
experiments suggest that the responses of the nest cell remained
invariant over the physical appearances, geometric shapes,
design styles, colors, odors, and construction materials, thereby
encoding highly abstract information about nests. The invariant
responses over the shapes, styles, and materials were also observed
in other nest cells.”

Other single cell studies of the monkey visual temporal
cortex have discovered neurons that respond selectively
to abstract patterns or common, everyday objects (Fujita
et al., 1992; Logothetis and Sheinberg, 1996; Tanaka, 1996;
Freedman and Miller, 2008). Freedman and Miller (2008)
summarize these findings from single cell recordings
quite well (p. 321): “These studies have revealed that the
activity of single neurons, particularly those in the prefrontal
and posterior parietal cortices (PPCs), can encode the
category membership, or meaning, of visual stimuli that the
monkeys had learned to group into arbitrary categories.”

Different types of faces, or faces in general, represent a type of
abstract categorization. Face-selective cells have been a dominant
area of investigation in the last few decades. Bruce et al. (1981)
were the first ones to find face selective cells in the monkey
temporal cortex. Rolls (1984) found face cells in the amygdala
and Kendrick and Baldwin (1987) found face cells in the cortex
of the sheep. Gothard et al. (2007) studied neural activity in
the amygdala of monkeys as they viewed images of monkey
faces, human faces and objects on a computer monitor. They
found single neurons that respond selectively to images from

each category. They also found one neuron that responded to
threatening monkey faces in particular. Their general observation
is (p. 1674): “These examples illustrate the remarkable selectivity
of some neurons in the amygdala for broad categories of stimuli.”
Tanaka (2003) also observed single cell representation of faces
and observes: “Thus, there is more convergence of information to
single cells for representations of faces than for those of non-face
objects.”

On the human side, in experiments with epileptic patients,
Fried et al. (1997) found some single medial temporal lobe
(MTL) neurons that discriminate between faces and inanimate
objects and others that respond to specific emotional expressions
or facial expression and gender. Kreiman et al. (2000),
in similar experiments with epileptic patients, found MTL
neurons that respond selectively to categories of pictures
including faces, houses, objects, famous people and animals
and they show a strong degree of invariance to changes in
the input stimuli. Kreiman et al. (2000) report as follows:
“Recording from 427 single neurons in the human hippocampus,
entorhinal cortex and amygdala, we found a remarkable degree
of category-specific firing of individual neurons on a trial-by-trial
basis. . .. Our data provide direct support for the role of human
medial temporal regions in the representation of different categories
of visual stimuli.” Recently, Mormann et al. (2011) analyzed
responses from 489 single neurons in the amygdalae of 41
epilepsy patients and found that individual neurons in the right
amygdala are particularly selective of pictures of animals and that
it is independent of emotional dimensions such as valence and
arousal.

In reviewing these findings, Gross (2000) observes:
“Electrophysiology has identified individual neurons that
respond selectively to highly complex and abstract visual stimuli.”
According to Pan and Sakagami (2012), “experimental evidence
shows that the PFC plays a critical role in category formation and
generalization.” They claim that the prefrontal neurons abstract
the commonality across various stimuli. They then categorize
them on the basis of their common meaning by ignoring their
physical properties. These PFC neurons also learn to create
boundaries between significant categories.

Can We Believe these Studies? Are They
Truly Category-Selective Cells?
These studies, that claim category-selective response of single
cells, are often dismissed because, in these experiments, the cells
are not exhaustively evaluated against a wide variety of stimuli.
Desimone (1991) responds to that criticism with respect to face
cell studies: “Although they do not provide absolute proof, several
studies have tried and failed to identify alternative features that
could explain the properties of face cells.” For example, many
studies tested the face cells with a variety of other stimulus,
including textures, brushes, gratings, bars and edges of various
colors, and models of complex objects, such as snakes, spiders,
and food, but there was virtually no response to any such stimulus
(Bruce et al., 1981; Perrett et al., 1982; Desimone et al., 1984;
Baylis et al., 1985; Rolls and Baylis, 1986; Saito et al., 1986). In
fact, each such face cell responded to a variety of faces, including
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real ones, plastic models, and photographs of different faces (e.g.,
monkey, human). Rolls and Baylis (1986) found that many face
cells actually respond to faces over more than a 12-fold range in
the size. Others report that many face cells respond over a wide
range of orientations in the horizontal plane (Perrett et al., 1982,
1988; Desimone et al., 1984; Hasselmo et al., 1989). Desimone
(1991) concludes: “Taken together, no hypothesis, other than face
selectivity, has yet been advanced that could explain such complex
neuronal properties.”

Are Category-Selective Cells Part of a
Dense Distributed Representation? If So,
Do We Need Exhaustive Testing to Find
that Out?
A dense distributed representation uses a small set of neurons to
code for many different concepts. The basic idea is compressed
encoding of concepts using a small physical structure. This also
means that different levels of activations of these neurons will
code for different concepts. In other words, for any given concept,
most of the neurons in such a representation should be active
at a certain level. If that is the case and if a so-called “category-
selective” cell is actually a part of a dense representation, then
stimuli that belong to different abstract concepts should activate
the so-called “category-selective” cell quite often. There is no
need for exhaustive testing with different stimuli to find that the
“category-selective” cell is part of a dense representation. Testing
with just a few different types of stimuli should be sufficient to
verify that a cell is either part of a dense representation that codes
for complex concepts or codes for a lower level feature. And that’s
what is usually done in these neurophysiological studies and that
should be sufficient. That doesn’t mean that rigorous testing is
not required. It only means that we don’t need exhaustive testing
to establish that a cell is selective of certain types of stimuli.

MULTISENSORY INTEGRATION IN THE
BRAIN

Research over the last decade or so has produced a large
body of evidence for multisensory integration in the brain
and even in areas that were previously thought to be strictly
unisensory or unimodal. Ghazanfar and Schroeder (2006)
claim that multisensory integration extend into early sensory
processing areas of the brain and that neocortex is essentially
multisensory. Stein and Stanford (2008) observes that many areas
that were previously classified as unisensory contain multisensory
neurons. This has been revealed by anatomical studies that show
connections between unisensory cortices and by imaging and
ERP studies that reveal multisensory activity in these regions.
Klemen and Chambers (2012), in a recent article, notes that
there is now “broad consensus that most, if not all, higher, as well
as lower level neural processes are in some form multisensory.”
The next two sections examine some specific evidence for
multisensory integration.

The Evidence for Multisensory
Integration in Various Parts of the Brain
Neurons in the lateral intraparietal (LIP) area of the PPC are
now known to be multisensory, receiving a convergence of eye
position, visual and auditory signals (Andersen et al., 1997).
Ventral intraparietal area (VIP) neurons have been found to
respond to visual, auditory, somatosensory and vestibular stimuli,
and for bi- or tri-modal VIP neurons, RFs driven through
different modalities usually overlap in space (Duhamel et al.,
1998). Graziano et al. (1999) found neurons in the premotor
cortex that responded to visual, auditory and somatosensory
inputs. Maier et al. (2004) found that the function of these
neurons appear to be ‘defense’ related in the sense that
monkeys (and humans) are sensitive to visual, auditory and
multisensory looming signals that indicate approaching danger.
Morrell (1972) reported that up to 41% of visual neurons
could be driven by auditory stimuli. Single unit recordings in
the IT cortex of monkeys performing a crossmodal delayed-
match-to-sample task shows that the ventral temporal lobe
may represent objects and events in a modality invariant way
(Gibson and Maunsell, 1997). Saleem et al. (2013) recorded
from mice that traversed a virtual environment and found that
nearly half of the primary visual cortex (V1) neurons were
part of a multimodal processing system that integrated visual
motion and locomotion during navigation. In an anatomical
study, Budinger and Scheich (2009) show that the primary
auditory field AI in a small rodent, the Mongolian gerbil,
has multiple connections with auditory, non-auditory sensory
(visual, somatosensory, olfactory), multisensory, motor, “higher
order” associative and neuromodulatory brain structures. They
observe that these connections possibly mediate multimodal
integration processes at the level of AI. Some studies have
shown that auditory (Romanski and Goldman-Rakic, 2002),
visual (Wilson et al., 1993; O’Scalaidhe et al., 1999; Hoshi et al.,
2000), and somatosensory (Romo et al., 1999) responsive neurons
are located within the ventrolateral prefrontal cortex (VLPFC),
suggesting that VLPFC is multisensory.

The Evidence for Modality-Invariant
Single Cell Representation in the Brain
Here, I review some of the evidence for modality-invariant single
cells in the brain of humans and non-human.

Fuster et al. (2000) were the first to find that some PFC
cells in monkeys integrate visual and auditory stimuli across
time by having them associate a tone of a certain pitch for
10 s with a color. PFC cells responded selectively to tone and
most of them also responded to colors as per the task rules.
They conclude that PFC neurons are part of an integrative
network that represent cross modal associations. Romanski
(2007) recorded from the VLPFC of rhesus macaques as they
were presented with audiovisual stimuli and found that some
cells in VLPFC are multisensory and respond to both facial
gestures and corresponding vocalizations. Moll and Nieder
(2015) trained carrion crows to perform a bimodal delayed paired
associate task in which the crows had to match auditory stimuli
to delayed visual items. Single-unit recordings from the area

Frontiers in Psychology | www.frontiersin.org February 2017 | Volume 8 | Article 18619

http://www.frontiersin.org/Psychology/
http://www.frontiersin.org/
http://www.frontiersin.org/Psychology/archive


fpsyg-08-00186 February 15, 2017 Time: 17:22 # 9

Roy A Purely Abstract Cognitive System

nidopallium caudolaterale (NCL) found memory signals that
selectively correlated with the learned audio-visual associations
across time and modality. Barraclough et al. (2005) recorded
from 545 single cells in the temporal lobe (upper and lower
banks of the superior temporal sulcus (STS) and IT) from
two monkeys to measure the integrative properties of single
neurons using dynamic stimuli, including vocalizations, ripping
paper, and human walking. They found that 23% of STS
neurons that are visually responsive to actions are modulated
significantly by the corresponding auditory stimulus. Schroeder
and Foxe (2002), using intracranial recordings, have confirmed
multisensory convergence in the auditory cortex in macaque
monkeys. Using single microelectrode recordings in anesthetized
monkeys, Fu et al. (2003) confirmed that such convergence in the
auditory cortex occurs at the single neuron level.

In some experiments, reported in Quian Quiroga et al. (2009)
and others, they found that single MTL neurons can encode
an object-related concept irrespective of how it is presented –
visual, textual, or sound. They checked the modality invariance
properties of a neuron by showing the subjects three different
pictures of the particular individual or object that a unit responds
to and their spoken and written names. In these experiments,
they found a neuron in the left anterior hippocampus that fired
selectively to three pictures of the television star Oprah Winfrey
and to her written and spoken name (Quian Quiroga et al.,
2009, p. 1308). The neuron also fired to a lesser degree to a
picture of actress Whoopi Goldberg. And none of the other
responses of the neuron were significant, including to other
text and sound presentations. They also found a neuron in the
entorhinal cortex of a subject that responded (Quian Quiroga
et al., 2009, p. 1308) “selectively to pictures of Saddam Hussein as
well as to the text ‘Saddam Hussein’ and his name pronounced by
the computer. . ... There were no responses to other pictures, texts,
or sounds.”

Quian Quiroga (2012, p. 588) found a hippocampal neuron
which responded selectively to pictures of Halle Berry, even when
she was masked as Catwoman (a character she played in a movie).
And it also responded to the letter string “HALLE BERRY,” but
not to other names. They also found that a large proportion of
MTL neurons respond to both pictures and written names of
particular individuals (or objects) and could also be triggered by
the name of a person pronounced by synthesized voice. Hence,
they conclude: “These and many other examples suggest that MTL
neurons encode an abstract representation of the concept triggered
by the stimulus.” Quian Quiroga et al. (2008) estimate that 40% of
MTL cells are tuned to such explicit representation.

Suthana and Fried (2012, p. 428) found an MTL neuron that
responded to a picture of the Sydney Opera House but not to 50
other landmarks. It also responded to “many permutations and
physically different representations of the Sydney Opera House,
seen in color, in black and white, or from different angles.”
The same neuron also responded to the written words “Sydney
Opera.” Nieder (2013) found single neurons in a parieto-frontal
cortical network of non-human primates that are selectively
tuned to number of items. He notes that: “Such ‘number neurons’
can track items across space, time, and modality to encode
numerosity in a most abstract, supramodal way.”

THE EXISTENCE OF A SINGLE
CELL-BASED PURELY ABSTRACT AND
LAYERED COGNITIVE SYSTEM AND
TIES TO GROUNDED COGNITION

Sections “Category Cells and Multisensory Integration in the
Brain” on category cells and multisensory, modality-invariant
cells provide significant biological evidence for the existence of
a single cell-based purely abstract cognitive system in the brain.
The multisensory cells are abstract in the sense that they integrate
information from more than one sensory process. And since
the multisensory neurons are also present in what are generally
considered to be unisensory areas, such an abstract cognitive
system is well-spread out in various parts of the brain and not
confined to a few areas. This does not mean that cognition in
appropriate cases is not grounded in sensory-motor processes
(Barsalou, 2008, 2010; Pezzulo et al., 2013). In this section,
I extend a well-known abstract model of cognition and show
how abstract cognition could be connected to modality-based
representations, memory and sensory processes and invoke them
as necessary. And it is fair to claim, based on the biological
evidence, that both the abstract and non-abstract systems co-exist
in the brain and are tightly integrated.

Let’s now examine an often referenced abstract model of
cognition from Collins and Quillian (1969) shown in Figure 5.
Rogers and McClelland (2004, 2008) uses the same model to
illustrate how distributed representation might be able to create
the same semantic structure. Figure 5 shows a possible way of
storing semantic knowledge where semantics are based on a
hierarchy of abstract concepts and their properties. Given the
evidence for category and multisensory abstract cells, this model
now looks fairly realistic. In this tree structure, nodes represent
abstract categories or concepts and arrows reflect properties
of that category or concept. For example, the node bird has
arrows for the properties feathers, fly, and wings. The arrows
point to other nodes that represent these properties, which are
also abstract concepts. The semantic tree shows the hierarchical
relationship of these abstract concepts and categories. For
example, plant and animal are subcategories of living thing. Here,
nodes pass down their properties to the descendant nodes. For
example, salmon inherits all the properties of fish (scales, swim,
and gills) and also the properties of animal (move, skin) and living
thing (grow, living). The properties of higher level concepts reflect
the common properties of lower level concepts. The tree produces
propositions such as: living things grow; a plant is a living thing; a
tree is a plant; and an oak is a tree. It therefore follows that an oak
can grow.

This model can be easily extended to include modality-
based representations, memory and sensory processes including
simulations. For example, the robin node could be a multimodal
invariant abstraction that is activated by the physical appearance
of a robin (or its picture), by its singing and by the written or
spoken name “robin.” However, multisensory integration exists
at many levels of processing. For example, there could be a
multisensory neuron that integrates information from just the
visual and auditory systems. That is, it fires with the physical
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FIGURE 5 | A taxonomic hierarchy of the type used by Collins and Quillian (1969). Adapted from Figure 2, Rogers and McClelland (2008) reproduced with
permission.

appearance of a robin (or its picture) and/or when it sings. Many
other combinations of sensory information are possible – two at
a time, three at a time and so on.

Thus, there could be a layered structure of abstractions in the
brain, starting with bi-modals, then tri-modals and so on. And
Section “Multisensory Integration in the Brain” cites evidence for
such different levels of abstractions. One can think of this layered
structure of abstractions in terms of an inverted tree (similar
to Figure 5) culminating in a single, high-level multimodal
abstraction such as the robin node of Figure 5. Inversely, one
can think of the robin node having deep extensions into lower
levels of modality invariant neurons through an extended tree
structure. The lowest level bi-modal invariant nodes, in turn,
could be coupled with modal-based representations, memories
and sensory processes. A modal representation of a robin in the
visual system could have links to a memory system that has one
or more generic pictures of robins in different colors and thereby
provide access to the imagery part of cognition (Kosslyn et al.,
2006). A visual system can also trigger a simulation of the bird
flying (Goldman, 2006).

In summary, a purely abstract cognitive system could be
tightly integrated with the sensory system and the integration
could be through the layered level of abstractions that various
multisensory neurons provide. In other words, the conjecture
is that a purely abstract cognitive system co-exists with a
sensory-based cognition system and perhaps is mutually
dependent. For example, the fastest way to trigger the
visualization of robins on hearing some robins singing in
the background could be through the multisensory (bi-modal)
neurons embedded in the sensory systems. The abstract
cognitive system could, in fact, provide the connectivity
between the sensory systems and be the backbone of
cognition in its various forms. So the second part of this
Barsalou (2008, p. 618) statement is very consistent with
the claims in this section: “From the perspective of grounded
cognition, it is unlikely that the brain contains amodal symbols;
if it does, they work together with modal representations to create
cognition.” And Sections “Multisensory Integration in the Brain

and The Existence of a Single Cell-Based Purely Abstract and
Layered Cognitive System and Ties to Grounded Cognition”
answers another Barsalou question (p. 631): “Can empirical
evidence be found for the amodal symbols still believed by many to
lie at the heart of cognition?”

ON THE “MEANING AND
INTERPRETATION” OF SINGLE NEURON
RESPONSE

I come back to the issue of “meaning and interpretation” of the
response of a single neuron, an issue that is crucial to the claims
of both localist representation and a purely abstract cognitive
system. Instead of getting into a philosophical discussion on
meaning of the term “meaning,” it would be better if we grounded
the discussion in neurophysiology. In neurophysiology, the
purpose of testing single neurons with different stimuli is to find
the correlation between the response and the collection of stimuli
that causes it. This is the “meaning and interpretation” of the
response to an external observer such as a scientist. From an
internal point of view of the brain, the firing of a neuron can
have a cascading effect and trigger other neurons to fire and this
generates extra information or knowledge. This is best explained
with reference to Figure 5 and the discussions in Sections
“Multisensory Integration in the Brain and The Existence of a
Single Cell-Based Purely Abstract and Layered Cognitive System
and Ties to Grounded Cognition.” For example, when we see
a robin, it would fire a bi-modal neuron that associates the
physical appearance of a robin with its singing. This and other
multisensory neurons would, in turn, cause the multimodal
invariant robin node of Figure 5 to fire. That firing, in turn, would
cause the other associated nodes of Figure 5 to fire, such as the
nodes bird, animal, living thing and their associated properties.
What this means is that the brain activates and collects a body of
knowledge after seeing the robin. And that body of knowledge,
from multiple cell activations, is the composition of internal
meaning of robin in the brain. And that whole body of knowledge
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can be activated by any and all of the sensory modalities. And
that body of knowledge is the sense of “meaning” internal to the
brain. And we observe this body of knowledge when we find
the multisensory and abstract neurons in the brain. Of course,
a simple line orientation cell or a color detection cell may not
activate such a large body of abstract knowledge internally in the
brain. But these cells still have both internal and external meaning
in a similar sense.

LOCALIST REPRESENTATION AND
SYMBOLS

An obvious question is, in what way is localist representation
symbolic? I explain it here in a computational sense without
getting into a philosophical discussion of symbols. One can
think of the neurons, in parts of the brain that use localist
representation, as being a unit of memory in a computing
system that is assigned to a certain variable. The variables in
this case range from a purely abstract concept (e.g., a bird) to
something as concrete as a short line segment with a certain
orientation. And when any of these neurons fire, it transmits a
signal to another processor. These processors could, in turn, be
neurons in the next layer of a sensory cortex, in the working
memory of the PFC or any other neurons it is connected to.
Thus, a localist neuron not only represents a variable in the
computing sense, but also does processing at the same time.
And, in this computational framework, the so-called variables
represented by the localist neurons have meaning inside the brain
and are also correlated with stimuli from the external world,
as explained in Section “Localist Representation and Symbols.”
Hence, these localist neurons are symbols both in the computing
sense and because they are correlated with certain kinds of
external stimuli.

NO EVIDENCE FOR DISTRIBUTED
REPRESENTATION

As mentioned in Section “Other Characteristics of Distributed
Representation,” McClelland et al. (1995) have argued that
sparse distributed representation does not generalize very well
and that the brain uses it mainly for episodic memories
in the hippocampus. They also argue that dense distributed
representation is the only structure that can generalize well
and that the brain uses this dense form of representation
in the cortex to learn abstract concepts. And thus the only
form of distributed representation to consider is the dense
one. But no one has found a dense form of coding anywhere
in the brain. In a recent review article, Panzeri et al. (2015)
summarize the findings of population coding studies as follows
(p. 163): “. . . a small but highly informative subset of neurons
is sufficient to carry essentially all the information present in the
entire observed population.” They further observe that (pp. 163–
164): “This picture is consistent with the observed sparseness of

cortical activity (Barth and Poulet, 2012) (at any moment only
a small fraction of neurons are active) and is compatible with
studies showing that perception and actions can be driven by
small groups of neurons (Houweling and Brecht, 2008).” These
observations are also supported by other studies (Olshausen
and Field, 1997; Hromádka et al., 2008; Ince et al., 2013;
Yu et al., 2013). And these findings are quite consistent with
findings on multisensory neurons that indicate that a lot of
information can be coded in a compact form by a small set of
neurons.

CONCLUSION

Neurophysiology has provided a significant amount of
information about how the brain works. Based on these
numerous studies, one can generalize and claim that the brain
uses single cells (or a collection of dedicated cells) to encode
particular features and abstract concepts at various levels of
processing. One can also claim, based on the evidence for
multisensory neurons and category cells, that the brain has a
purely abstract and layered cognitive system that is also based
on single cell encoding. And that abstract cognitive system, in
turn, is connected to the sensory processes and memory. The
combined abstract and non-abstract cognitive systems provide
the backbone for cognition in its various forms. Parts of the
abstract system are also embedded in the sensory systems and
provide fast connectivity between the non-abstract systems. This
kind of architecture has real value in terms of simplification,
concreteness, automation, and computational efficiency. It
essentially automates the recognition of familiar patterns at every
processing layer and module and delivers such information to
other layers and modules in a simplified form.

Cells that encode features and abstract concepts have meaning
and interpretation at the cognitive level. Thus, these cells provide
easy and efficient access to cognitive level information. Thus far,
we have had no clue where cognitive level information was in the
brain. These neurophysiological studies are slowly revealing that
secret. It could be claimed that these feature and abstract concept
cells provide the fundamental infrastructure for cognition and
thought.

From these neurophysiological studies, it appears that, at
an abstract level, the brain is a massively parallel, distributed
computing system that is symbolic. It employs symbols from the
earliest levels of processing, such as with discrete sets of feature
symbols for line orientation, direction of motion and color, to the
highest levels of processing, in the form of abstract category cells
and other modality-invariant concept cells.
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Distinguishing Representations as
Origin and Representations as Input:
Roles for Individual Neurons
Jonathan C. W. Edwards*

University College London, London, UK

It is widely perceived that there is a problem in giving a naturalistic account of
mental representation that deals adequately with the issue of meaning, interpretation,
or significance (semantic content). It is suggested here that this problem may arise
partly from the conflation of two vernacular senses of representation: representation-
as-origin and representation-as-input. The flash of a neon sign may in one sense
represent a popular drink, but to function as a representation it must provide an input
to a ‘consumer’ in the street. The arguments presented draw on two principles –
the neuron doctrine and the need for a venue for ‘presentation’ or ‘reception’ of a
representation at a specified site, consistent with the locality principle. It is also argued
that domains of representation cannot be defined by signal traffic, since they can be
expected to include ‘null’ elements based on non-firing cells. In this analysis, mental
representations-as-origin are distributed patterns of cell firing. Each firing cell is given
semantic value in its own right – some form of atomic propositional significance – since
different axonal branches may contribute to integration with different populations of
signals at different downstream sites. Representations-as-input are patterns of local
co-arrival of signals in the form of synaptic potentials in dendrites. Meaning then draws
on the relationships between active and null inputs, forming ‘scenarios’ comprising a
molecular combination of ‘premises’ from which a new output with atomic propositional
significance is generated. In both types of representation, meaning, interpretation or
significance pivots on events in an individual cell. (This analysis only applies to ‘occurrent’
representations based on current neural activity.) The concept of representations-as-
input emphasizes the need for an internal ‘consumer’ of a representation and the
dependence of meaning on the co-relationships involved in an input interaction between
signals and consumer. The acceptance of this necessity provides a basis for resolving
the problem that representations appear both as distributed (representation-as-origin)
and as local (representation-as-input). The key implications are that representations in
the brain are massively multiple both in series and in parallel, and that individual cells play
specific semantic roles. These roles are discussed in relation to traditional concepts of
‘gnostic’ cell types.

Keywords: mental representation, percept, grandmother cell, pontifical cell, gnostic cell
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INTRODUCTION

Concepts of mental representation are widely invoked in
neurobiology, linguistics, artificial intelligence, and philosophy.
Yet, as Seager and Bourget (2007) note: “there is no acknowledged
theory of mental representation.” This appears to be partly
because people differ in terms of the explanatory work they want
such a theory to do (Stich, 1992). It also reflects an impasse in
reaching a consensus on how mental representations could fit
into a naturalistic account of the brain; what sort of substrate,
or causal nexus could support a mental representation, and how?
I shall argue that these are interdependent questions and that a
careful assessment of the logical constraints on substrate, in terms
of physical dynamics and their location, may clarify the ways in
which mental representation may be a useful concept, as well as
vice versa.

From the outset I wish to emphasize that the problem
I address relates only to what may be called ‘occurrent’ or
‘active’ representations in which signals are sent and received
on specific occasions. There is another use of the term that
might be called a ‘dispositional representation’ – an acquired
pattern of cellular connectivity underlying memory, knowledge,
or concept acquisition, that disposes the brain to generate
occurrent representations in response to stimuli (Simmons
and Barsalou, 2003). I will be using ‘representation’ to mean
‘occurrent representation.’

The naturalization problem is not so much about whether a
representation is to the right, left, front or back of the brain, or
what connection tracts are involved. The more basic problem
is defining the type, or level, of biophysical location that could
support a fitting causal role, and with appropriate information
capacity (‘bandwidth’). There are those who would argue that
we have a rough answer: that representations can be equated
with patterns of neural activity, or firing. However, as discussed
below, this fails to address key problems, justifiably of concern to
philosophers of mind. Meaning is not to be solved so easily.

It might be argued that searching for a detailed substrate type
for mental representation is overly reductionist or, in theoretical
modeling terms, simply premature. It might even be considered
immaterial to understanding of how a representation can have
a meaning, either in terms of external referents or internal
‘meaning to the subject.’ However, I think the search is justified
on the following grounds. Firstly, spatial pattern is about the only
way meaning can be encoded in a brain at any point in time, as
far as we know, so at least type of spatial pattern and location is
likely to be central to a theory of meaning. Secondly, recognizing
that reductive analysis of mechanism is only part of the story does
not mean that fruitful progress in neural mechanisms should be
abandoned half-finished and replaced by hand-waving. Rather
than, as Marr (1982) advocated, treating the biophysical and
‘functional’ levels of analysis as incommensurable, to be able to
test viability of theories I believe, with Trehub (1991), that we
need some idea of how and where they could correspond.

Moreover, the ability to suggest at least one plausible physical
example for any theoretical model is a requirement that is
arguably never premature. A search for such examples can render
explicit contradictions in popular concepts. The key proposal

here is that neuropsychology may benefit from a greater focus
on the input aspect of mental representation. The author’s
background is in immunology. It was not until we insisted on a
grounding in a dynamics of integration of signals into individual
cells that we began to understand leucocyte behavior in immune
recognition and memory (Male et al., 2012). Hypotheses that
could not be so grounded were discarded. The gap between work
on post-synaptic integration (e.g., Branco and Häusser, 2011;
Smith et al., 2013; Ishikawa et al., 2015) and psychology may still
be harder to bridge but the possibility of grounding in plausible
input mechanisms should be an acid test of all models of mental
representation.

THE NATURE OF MENTAL
REPRESENTATIONS

Representation is a term used in a variety of ways that are not
always transparent. It is not simply ‘re-presentation,’ and not just
because ‘presentation’ might be a better label. It can also imply
‘proxy’ or ‘symbol.’ In the mental case, where representations do
not resemble their referents in any simple way, the meaning of
the term will be preconditioned not only by presumptions about
how brains work but also metaphysical standpoint. A materialist
may think in terms of brain states representing external ‘things’
whereas someone taking a dynamist or structural realist approach
(as I do) may think in terms of internal dynamic relations
representing external dynamic relations (Ladyman and Ross,
2007). There will also be different views on how these concepts
relate to subjectivity or phenomenality. To clarify the way
‘representation’ relates to meaning it may help to consider two
main purposes to which the term ‘mental representation’ is put.

Mental representation may be invoked simply as part of
an account of the human brain as a machine that generates
outputs from inputs. A mental representation can be seen as the
equivalent of local currents or magnetizations in a computer.
As long as we accept that brain cells send messages around
in a way vaguely similar to computer components, we can
consider the nature of mental representations in this context
as just a technical issue, like the difference between Microsoft
Windows and Mac OS-X, without raising too many philosophical
questions. ‘Representation’ is being used here purely to imply
some internal dynamics that co-vary usefully with external world
dynamics.

There is, nevertheless, even here, a need to define a
representation more precisely than just that total pattern of brain
activity that arises in a specific context, whether the presence
of a red square or blue circle, or when thinking ‘I suspect the
recession will double-dip.’ A representation is not just a pattern
of events; it is a pattern with a causal role. A red square will
trigger patterns in the retinae, geniculate bodies, primary and
secondary visual cortices, temporal, parietal and frontal lobes,
all with different causal roles. To function, the content of any
individual representation must be available to some functional
component at a causal nexus: what Millikan calls a ‘consumer’
(Ryder et al., 2012). Thus we may need to talk of many mental
representations at many levels rather than a single representation.
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That then begs the question of which mental representations
are those envisaged by philosophers and linguists such as Fodor
(1985) or Dretske (1986) and what their consumers are.

The second motivation for talking about mental
representations is in the context of questions about first
person experience, as conceived from positions on the nature
of ‘mentality’ ranging from Cartesian to eliminitivist (Stich,
1992). Thus ‘mental representation’ is often used to imply an
associated experience, in which operational meaning is somehow
‘interpreted.’ This may be as a ‘percept,’ as when something
is viewed or heard, or a ‘mental image,’ as when retrieving
memories, thinking of a scene or sound, or in dreams (Fodor,
1975; Kosslyn, 1994).

There is a general assumption that there is only one instance of
this ‘percept’ type of representation in a brain at a time, and there
has been extended debate over whether this is local or distributed
(e.g., Barlow, 1972; Fodor and Pylyshyn, 1988; Marcus, 2001),
which remains unresolved. It is suggested here that this may
reflect confusion about what we should expect the biophysical
processes underlying a representation, of the ‘percept’ type, to
consist of and where they might be – and that the assumption
that there is only one such representation needs challenging.

There are those who, probably rightly, point out that a
first person account of mental representation will ultimately
be redundant to a description of its physical dynamics (e.g.,
Churchland, 1992). The mistake, I believe, is to take this as a
reason for discounting the first person account. Even granted
that representations of the percept type may form a tiny minority
of the total, and quite apart from the desire to know how there
comes to be a first person account, it is likely that without
heuristic clues from experience and the language we use to
describe it the causal dynamics of all our representations will
remain intractable. However tidy it may feel to regard talk of
‘phenomenality’ as outside physical science, I follow those who
argue that there is a strong case for accepting that ‘phenomenal
experience’ plays a crucial role in all science, as the medium of
observation, and that we should be happy to make all use of it
we can. Thus, mental representations associated with experience
or ‘feel,’ whether percepts or ‘current belief states’ (Crane, 2014)
are not only those of greatest philosophical interest but may
also be particularly worth exploring for their potential to shed
light on mental processes in general. I shall therefore focus on
such representations from now on, taking sensory percepts as the
paradigm.

GENERAL CAUSAL PRINCIPLES

Unless there are good reasons otherwise, an account of a
representation-as-percept in a brain should follow causal
principles used elsewhere in physical science, where possible
confirmed by experimental neurophysiology. Two such
principles are particularly relevant. The first is the neuron
doctrine. The second is that the content of a percept will be
encoded in signals that form inputs to some physical domain.

The neuron doctrine, in essence, is the principle that brain
function (qua ‘thinking’) can be explained by the interactions of

separate neuronal units (Gold and Stoljar, 1999). Each neuron
is a discrete computational (in the broad sense of having rule-
based input–output relations) unit, conforming to biophysical
laws. The timing of firing of a neuron is determined by chemical
and electrical interactions between the cell and its immediate
environment. All cause and effect relations occur locally. The
neuron doctrine does not preclude other levels of explanation in
terms of groups of cells or macroscopic brain domains, but holds
that these can be broken down, without residue, to an account of
individual cell interactions.

Some have suggested that the neuron doctrine should be
replaced by a description of brain function at a ‘global’ level
(Gold and Stoljar, 1999). However, since the causal biophysical
pathways of the neuron doctrine are not seriously in doubt it is
unclear that a global description can be an alternative, rather than
just a higher-level analysis grounded in the same local dynamics.
There may be a temptation to suggest that some of the perplexing
aspects of mental representation can only be accounted for using
approaches such as systems theory or non-linear dynamics that
might be seen to give an ‘emergent’ dynamic ‘greater than the
sum of the parts.’ However, without clear evidence it seems safer
to assume that, as Barlow (1994) says, all causal relations pass
through the bottlenecks of individual neurons.

The second premise is as fundamental but less often
articulated. It underlies Rosenberg’s (2004) concept of receptivity
and Millikan’s idea of ‘consumer’ and is laid out in explicit
neurological terms by Orpwood (2007). The representations we
call percepts must be based on the co-availability of certain signals
to some neuron-based domain, i.e., they must be inputs to such
a domain, which will also generate outputs in response that
allow the percept to be ‘reported.’ (Reporting may be a complex
indirect process but the basic point is unaffected.) Something
has to receive the signals that encode a percept, whether these
are derived originally from sense organs or other sources as in
dreams. An un-received signal does not even qualify as a signal,
since reception is entailed in the concept.

This might seem self-evident. However, this second premise
is worth emphasizing because literature on consciousness often
appears to take a different view. Representations may be seen
as associated with computational or ‘information processing’
operations, which involve not inputs but input–output relations,
or ‘roles in the world’ – the essence of ‘functionalism’ (Fodor,
1975; Block, 1996). The ‘content’ of the representation is then
seen as being dependent not only on the effect of the world on
the computational unit but also on the effect of the unit on the
world. This appears to imply that if percepts belong to physical
domains then those domains are in some way acquainted with, or
informed by, their outputs (effects on the world) as well as their
inputs. This is self-contradictory for any computational system
that obeys standard concepts of causality – what something has
access to is its input – and neuroscience consistently indicates that
these concepts of causality hold good.

I must emphasize that this is a low-level analysis dealing with
individual neuro-computational steps. Events within feedback
systems taken as whole, as in anticipatory models of perception
(Hommel, 2009) can, in a broader sense, be considered as
representing a certain action/perception scenario but even here
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it is not the input/output relation that gives the content, but
the particular pattern of signals (‘the data’), considered either as
cellular outputs or inputs.

Both in neuroscience and philosophy, representations are
often considered in terms of patterns of cell activity, with no
specific reference to input or output. The problem here is that
to consider a pattern as an operant representation implies that
the total activity pattern is accessible to something. A pattern of
activity of 73,456 out of a bank of 1,000,000 right occipital cells
might seem to represent a scene. However, each of these cells may
have 10,000 branches to its axonal output, some feeding forward,
some back. Only 6,228 cells may send branches to each of a bank
of temporal cells, and 18,992 to a bank of prefrontal cells (through
any one direct or indirect route) and, moreover, there will be
variation (and plasticity) in this between individual sending and
receiving cells in each bank. Although the activity of the 73,456
cells is a representation in a certain legitimate vernacular sense,
there seems to be another important sense in which it underpins,
together with whatever other ‘null cells’ whose non-firing may
contribute critically to the content being conveyed, not one, but
many, representations-as-inputs, diverse in content and function.

In other words, an act of representation must ultimately imply
an input to something specified. It is sometimes implied that there
are no ‘inner receiving entities’ for representations in a brain, but,
again, this is inconsistent with our understanding of causality. To
be part of a causal chain, and thus reportable, the information
encoded in a representation must be made available to something
that generates a response. A word of text in a forgotten language
embedded in an opaque medium that cannot be removed without
destroying the text cannot function as a representation. Similarly,
a pattern of lines of cellular activity in my visual cortex that bears
a homotopic relation to a pattern of tree trunks I am viewing
is not acting as a spatial representation by dint of homotopy,
since no part of me, including the cells themselves, is informed
of the spatial relations of active and inactive cells. The cells
provide a representation in the form of presenting sensory data to
other parts of my brain through patterns of downstream synaptic
transmission, but the homotopic spatial relation of their cell
bodies is itself of no consequence. Representation must be linked
to a causal path.

Inner receiving entities are often rejected as ‘homuncular’
and criticized on grounds that shifting the problem of the
input/percept relationship for a brain to a subdomain of brain
leaves the problem unchanged and therefore invokes infinite
regress. The implication of regress is, however, non sequitur. If
the problem is the same as for the whole brain then that must
surely also suffer from the regress. The reverse conclusion applies:
if the problem has any solution for the brain it may also have
a solution for a homuncular subdomain and it may only have a
solution there (see also Fodor, 1975, p. 189) Thus, even Dennett’s
(1988) homunculi that ‘repeat entirely the talents they are rung
in to explain’ are only straw bogeymen. Homunculi are in fact
usefully rung in to deal with practical computational issues.

There is no doubt that treating representations as inputs to
specific neural structures raises difficulties. However, nothing in
neuroscience so far conflicts with the idea that a representation-
as-percept is an input to something. It might be argued that

standard causal principles only apply at the periphery of the
system and not centrally, but it is unclear why or how. We
have no reason to postulate an invisible envelope that divides
an external or peripheral world from an inner ‘animate’ world
(perhaps Fodor’s organism) with novel (i.e., supernatural) non-
local properties, at any structural level. Neurobiology has shown
that we can push the concept of ‘input’ as far in as interpretable
empirical observation will allow, and well within the confines of
the human body or brain. Pressure from an intervertebral disk on
a lumbar nerve root gives pain in the foot. Cochlear implants give
deaf people an experience of sound. Stimulation of cerebral cortex
in the awake individual can evoke sensations and memories. The
evidence indicates that sensory pathways, at all points up to that
where a percept is experienced, are simply providing an input to
the next stage, which often can be mimicked artefactually.

The work of Hubel and Wiesel (2005) and others has
shown that detailed mechanisms of acquisition and collation
of sensory data can be tracked far into the brain. Cells that
respond to lines at particular angles, lines of limited length,
or color contrasts can be demonstrated. It might be argued
that the absence of precise analysis beyond this level could
indicate that signals enter a ‘black box’ in which percepts are
no longer associated with inputs, but rather with input-output
relations. However, the simpler explanation is that beyond this
level computation is so sophisticated that analysis requires very
sophisticated experimental approaches. The more recent work of
Quian Quiroga et al. (2005) showing that individual cortical cells
respond to specific faces suggests that this is so.

In summary, despite speculations in other directions in some
fields of study, the two assumptions of the neuron doctrine and
the doctrine of percepts as based on inputs to perceiving entities
appear to be worth retaining.

POSSIBLE DOMAINS FOR
REPRESENTATIONS AS PERCEPTS

Armed with this basic causal standpoint, it is possible to ask
general questions about the location of the representations as
percepts and the nature of the entities to which these are available.
The starting premise is that at least one domain exists in a
waking brain that supports an experience correlated with input
from sense organs, contextualized by anticipations derived from
kinesthetic monitoring, etc. We want to describe such a domain
in dynamic physical terms. The prima facie case is that it will be a
dynamic domain comprising part or all of one or more neurons,
receiving inputs derived from all sensory modalities, and other
internally generated signals, like names and concepts retrieved
from memory (i.e., anything and everything we can experience),
and capable of sending a sequence of outputs that can connect
to all, or most, motor pathways. Conventional neuroscience
indicates that the input will be of signals leading to patterns
of depolarization of cell membrane. Since we are considering
input this ought to be a pattern within dendrites (i.e., input
projections).

It might be questioned that any single domain has inputs
of all perceptual modalities and also concepts. However, our
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ability to mix raw sensory data and concepts in use of language
indicates that somewhere in the brain signals with these
disparate types of meaning are integrated – i.e., are co-inputs
to some computational unit. Moreover, introspection indicates
that human perceiving subjects experience them concurrently in
a meaningful relationship and do so alongside the use of relevant
language. Synchronization of signals may be important for
optimal computation but as von der Malsburg (1981) pointed out
when first suggesting that synchrony of signals was important, it
can only be important because it determines synchronized arrival
at some site of input.

I agree with Orpwood’s (2007) reasoning that percepts must be
based on inputs that somehow are ‘interpreted’ on arrival at the
perceiving domain and thereby have meaning to the perceiving
subject. As this meaning belongs to the input itself, rather than
any computational input–output relation, it seems that it too
should be located at the site of input in dendrites. ‘Interpretation’
is not meant here in the sense that sensory signals encoding four
legs, a bushy tail, pointed ears, and a toothy snout are converted to
a signal meaning fox. That would imply at least one computation
involving an input–output relation. The identification label ‘fox’
would be the input to the next domain along. Interpretation is
used here to mean simply the correspondence of an input, (of
electrical or chemical signals based on collation amongst sensory
data and with data from memory) to a ‘percept’ that ‘is like
something’ for, or has a meaning to, the receiving entity (in
the above case legs, tail, ears, and snout). ‘Manifestation’ might
be an alternative term, since it implies no additional physical
interaction, but simply a correspondence between physical input
and its meaning to the receiving entity.

Absence of a mechanism for this sense of interpretation
may seem puzzling. However, immediate local correspondence
between physical dynamics and meaningful experience seems
to be something that, like Descartes, we have to take as brute
fact. Ascribing it to processes prior to the point of input to the
perceiving entity makes things no easier. There is no means
by which to carry interpretation forward from previous events,
since we have no evidence for anything other than the physical
input itself being available to the receiving unit. Moreover, the
idea of ‘carrying meaning forward’ generates an absurdity. Since
the history of past events contributing to any causal interaction
is immeasurably complex an immeasurably large number of
‘interpretations’ from earlier events should be carried forward
in causal chains and that is not what we experience. Both the
existence and the richness of the meanings inputs have to human
perceiving subjects may be things for us to wonder at, but trying
to delegate richness elsewhere is no solution.

It seems that representations as meaningful percepts ought to
occur in neural dendrites.

REPRESENTATIONAL DOMAINS
CANNOT BE BASED ON TRAFFIC

A further consideration is helpful in narrowing down options
for the domain of a percept. The content of a percept almost
certainly has to be an interpretation of both signals associated

with membrane excitation and ‘null signals’ corresponding to
where membrane might have been excited but was not. Unless
signals are interpreted in the context of all possible signals in
a domain we lose what appears to be essential for a complex
percept: encoding of information in patterns of inter-relation.
A summation of all and only the black spots of a set of printed
words can have only one meaning: black. (Or if black is coded
null the sum of white areas just means white.) Moreover, it is
indeterminate whether the spots included are on one page, or
in a whole library. Only if both active and null signals and their
relations are included do we have diverse meaning and bounded
domains of meaning. In visual cortex, a ‘line’ of uniform color
within a block of the same color is not interpreted as a line. The
interpretation of ‘a line’ implies the absence of signals encoding
similar color on either side of the line.

This means that the domain that supports a representation
with meaning cannot be defined by a pattern of active signal
traffic; it cannot be defined in terms of where signals are
occurring. It must include null signals, so there must be some
intrinsically defined structural domain within which signals and
null signals are co-interpreted. The domain receiving signals
interpreted as a percept cannot be an ‘active circuit’ in the sense
of a set of pathways currently carrying signal traffic.

There is a distinction here between the processing units in
a brain and in a computer. In a computer there are ‘gates’ in
which electrical signals ‘open’ or ‘close’ connections between
units, forming and breaking electrical circuits. The brain does not
have gates in this sense. Connections remain unchanged, at least
over periods of hours, regardless of traffic. The processing units
are integrators, but not gates. Something akin to gating will occur
during refractory periods and if input signals show differential
synchronization in relation to refractory periods there may be
triage, so that some active signals are ‘let through’ and others
not. However, these signals will still operate in the context of null
signals within the non-refractory time window.

LOCALIZED VERSUS DISTRIBUTED
REPRESENTATIONS

Representations-as-percepts, if only in a degraded form, survive
damage to large areas of cerebral cortex. Damage to certain areas
produces predictable defects, but does not appear to remove the
capacity for some sort of perceptual experience, even if there
is agnosia in the sense of not being aware that the percept is
defective. The inference is that if the type of domain receiving
representations as percepts is indeed cortical then there is no
single and local domain. That leaves options of one very extended
domain or multiple local domains.

The idea that a percept is an interpretation of the inputs to
cells over a wide area of brain generates a range of problems,
quite apart from the basic problem noted by James (1890/1983)
that each cell’s input is separate. Many neurons are involved in
‘housekeeping,’ such as suppression of vision during saccades,
or motor co-ordination. The inputs to such cells do not appear
to figure in percepts, which reflect the input to a select cell
population involved in a field of attention. It is unclear, in a
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distributed model, why the inputs to certain cells and not others
should figure in a reportable percept. Nor is it clear why we
should perceive a single ‘copy’ of sensory data if cells over a wide
area contribute, since most if not all signals arising from cellular
activity in sensory pathways are sent as inputs to many cells
through widely ramifying axonal branches. When we see a red
tomato early signals referring to a red tomato are sent to 1000s of
cells further forward in the brain. Why should we consider these
thousands of ‘copies’ a single representation? If a company sends
out 1000 Christmas cards, each with a photo of head office in the
snow, do we consider this ‘one representation’ of head office?

These and related concerns may have motivated the proposal
by Pribram (1991) that the cortex carries information somewhat
in the manner of a hologram, in which every part of a spatial
array carries a copy of the entire pattern of information being
handled. Although often thought of as a model of distributed
representation, the holographic model provides a means for
having very many ‘copies’ of a pattern at many sites rather
than a single copy available to one extended site. A simpler
and neurologically reasonable version of the idea is just that
sensory data are sent to many locations in the cortex and each
of these has the potential to interpret its input as percept.
This would seem to be in keeping with the experiments of
Quian Quiroga et al. (2005) in which visual sense data often
gave rise to excitation in many sampled cortical cells. In some
cases cells were highly restricted in their responses to images,
but others are more promiscuous. At least there is little doubt
that sensory stimuli lead to signals being sent widely to many
cells.

In summary, although the discussion so far might suggest that
the question of what domain supports a perceptual representation
is just what it must always have been – which cell or cells – it may
need a subtler formulation. How many of which sort of neuron
have a perceptual representation encoded in their input(s) and
do they constitute one domain of one representation of this type
at any one time or are there multiple domains, with multiple
representations based on the same sensory data? It is important
to note that the latter should not be expected to evoke a sense
of multiplicity (of the perception of being one of many subjects)
since multiplicity would not itself be encoded, represented or,
therefore, perceived by anything, being a fact about parallel
reception events, not a property of the receiving unit, or the
content of its input.

At this point the reader may sense that the concept of
representation is too confusing to be useful, and there is a case
for that position! I would argue, however, that if some historic
confusions in the literature are unpacked it is possible to restore
the usefulness of the idea, with some riders that add significant
explanatory power.

PONTIFICAL, GRANDMOTHER AND
CARDINAL CELLS

The simplest hypothesis for the domain of a percept, now
universally taken as a null hypothesis, is that of a single pontifical
cell, as discussed by James (1890/1983) and dating back at least

to ideas raised by Leibniz (Woolhouse and Franks, 1998), writing
shortly after cells were first observed. This form of pontifical cell
is a single cell that supports all ‘my’ representational percepts of
all sensory inputs. It is the ‘me’ cell. Other cells act as conduits
to and from this central cell, collating inputs and delegating
outputs. James considers that they might also support ‘percepts,’
but of a meaner sort than those I report as ‘mine.’ (He includes
the point that none of these percepts need involve any sense of
multiplicity or presence of others.) The attraction of this idea is
that the cell is the brain’s integrating unit, with an intrinsically
delimited input domain, and the contents of human experience
appear to be integrated and delimited. However, the idea that just
one neuron should have this specialized function is implausible
on a range of grounds and, as indicated above, the argument that
experience seems ‘single’ is immaterial, since there would be no
reason for there to be representation (and thus perception) of
multiplicity, or a sense of ‘other copies,’ within each of multiple
representations.

It is useful to raise here a potential confusion in terminology
between sites of representation and sites of recognition.
Sherrington (1940) invoked a concept of a quite different sort
of ’pontifical’ cell to explain recognition. Sensory data relating
to an object such as a dog enters through many 1000s of
receptors. Recognition would appear to require sequential stages
of discrimination, each leading to a reduced number of possible
interpretations. This might be expected to form of a ‘pyramid’
with fewer cells at each stage until the input finally converged
on one cell responsible of recognizing dogs. There would be
a pontifical cell for a dog, another for a cat and another for
grandmother.

A key point here is that we have no reason to think that only
the cell with the job of recognizing dogs will receive input signals
encoding doggy features. If 100 cells each recognized a different
mammal we would not expect the presence of a dog to lead to
input to only one of these. We would expect all the cells to receive
signals encoding doggy features but only one (or some) to fire.
It could be argued that synapses receiving signals encoding long
snouts will atrophy on koala-recognizing cells but at least to be
able to learn to recognize new animals we have to assume that
cells with catholic inputs exist.

Thus if a representation is based on an input pattern we
do not expect sites of representation and recognition to be
commensurate. This emphasizes the need to consider a causal
chain as potentially involving many levels of representation with
multiplicity at each level (Figure 1). It highlights the fact that a
representation is always a step in a causal chain and is thus always
a representation to a domain at a particular point in that chain.
Thus a pattern of data, perhaps encoding legs, fur and muzzle,
would represent a dog to a ‘dog-pontifical cell’ as well as to a lot of
other cells, untuned, or tuned to other creatures. In turn the firing
of the dog-pontifical cell and not its neighbors would denote ‘dog’
to the rest of the brain. The two types of representation would be
quite different. Moreover, intuition tells us that whatever domain
has a percept of a dog of the sort normally discussed it must have
an input encoding both the key features of a dog – legs, fur, etc. –
and the sense of these being part of a dog, apparently putting
the relevant domain downstream of the site of dog-recognition
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FIGURE 1 | Simplified schema of successive representations-as-origin and representations-as-input, starting with sensory patterns, followed by
recognition with encoding as identifiers that allow recall from memory of concepts and finally the generation of percepts including both sensory
patterns and conceptual/naming features.

with additional parallel input encoding the original upstream
context-dependent sensory data.

Empirical studies indicate that recognition does not use a
pyramidal system with fewer and fewer cells at each stage
(Barlow, 1972). Sequential stages involve as many, if not more,
cells as at the beginning – as implied by the above discussion.
Recognition is signaled by the firing of one or a few cells in
the context of non-firing of many more cells. At all stages
representations are thus widespread, but it needs to be established
whether this is because individual representations are extended or
because of multiplicity.

This issue is relevant to Barlow’s (1972) classic Perception
paper. Barlow takes as his object grandmother, following Letvin
(Gross, 2002) and discusses the plausibility of a ‘grandmother cell’
in the sense of a single cell that fires with 100% sensitivity and
specificity for grandmother. This bears a relation to Sherrington’s
(1940) pontifical cell but not to that of Leibniz or James. Barlow
suggested that grandmother was probably not important enough
to have her own cell and that, more likely, grandmother would
be encoded by the activity of perhaps a thousand ‘cardinal’ cells,
each representing an aspect of grandmother such as a mouth
or nose, any of which might presumably contribute to encoding
other faces in other combinations. These elements of the percept
are then seen as combining rather in the way words combine in a

sentence (an analogy also used by Marr, 1982). Note that Barlow is
not proposing a redundancy-for-safety strategy with information
distributed in a ‘holographic’ way to several cells, each with a
sensitivity and specificity of less than 100%. He is giving each cell
a separate and specific job.

The odd thing here is that Barlow appears to be describing the
activity of cells upstream of a site of recognition of grandmother.
If each cell is responding to signals which together encode
a feature not entirely specific and sensitive for grandmother
then grandmother can only be recognized, and social responses
activated, by a downstream group of cells receiving inputs from
these thousand cells, some of which downstream cells will fire and
some not. It would be these downstream cells whose inputs would
encode all grandmother’s features and it would therefore be their
domains that we could (perhaps) expect to support a ‘percept’
of granny in the sense of manifestation of all of grandmother’s
features, whether or not they fired. And it would be the pattern of
firing and non-firing of these latter cells that would ‘represent’
(in the denoting sense) to domains in the rest of the brain
the presence, but not the pattern of features, of this individual.
Whether or not within this latter group of cells there are cells with
100% sensitivity and specificity for grandmother is a different
issue that need not bear on the search for the domains supporting
the representations known as percepts.
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More recently, Quian Quiroga and Kreiman (2010), has
discussed the interpretation of experiments on individual cell
responses to faces (Quian Quiroga et al., 2005) in relation to
the grandmother cell concept. In this case the grandmother
cell is rejected on redundancy grounds. While emphasizing the
complexity of the grandmother cell concept, discussion seems
to bypass the crucial issue of the distinction between the site of
experience of a pattern such as a face and the site of recognition
of such a pattern. Nevertheless, it seems to support the idea
that inputs carrying information about a pattern such as a face
will be received by not one, but many cellular computational
units.

The above discussion emphasizes a number of issues relating
to this crucial question. It seems that representations (in the
broadest sense) of a given referent in the brain must be multiple
and diverse. At each level many cells will be involved in
representing. Representation and recognition are not likely to
be commensurate. So far the discussion has been in terms of
individual cells despite the general assumption in the literature
that representations in brains each involve many cells. The
grounds for such an assumption need be revisited in the light of
the preceding arguments.

A RETURN TO THE NEURON DOCTRINE

As already noted, to be useful, the concept of representation-
as-percept, has to imply a step in a causal chain with content
encoded in the input to some domain. It is also difficult to see
how a representation can have a meaning, or interpretation,
to a domain, unless its content is encoded in the co-temporal
input of a pattern of active signals and null signals to the
domain. Representations like this do not occur in computers.
Stored data in a computer can represent something meaningful
to a human user accessing it via a screen but no representation
based on a pattern of co-temporal input occurs to anything
within the machine beyond the four trivial input options
for an electronic gate of on/on, on/off, off/on and off/off.
Moreover, we do not require that anything in a computer
interprets, or attributes meaning to, input signals. It might
be argued that a sequence of signals passing through a gate
might constitute a representation. However, since each signal
contributes to a separate computation this is problematic. The
sequence of incoming signals is not subjected as a whole
to a computation, other than as arbitrarily defined by a
programmer. Within the machine any temporal ‘chunking’ of
serial signals into ‘representations’ adds nothing to the causal
account and at the gate in question no chunking should be
apparent.

Within brains there are units that receive complex patterns
co-temporally: neurons. Moreover, they are the only units that
receive patterns relevant to percepts as far as we know. Barlow’s
1000 cardinal cells are not a unit receiving a pattern of features of
grandmother. Each has a separate input encoding one feature. For
all 1000 features to contribute co-temporally to a representation
1000 cardinal cells must send all 1000 active or null signals to
converge on at least one downstream neuron, which is within

the range of neuronal inputs. The neuron doctrine, as was
probably evident to Leibniz, entails the simple but surprising
conclusion that representations qua percepts in brains can only
be in individual neurons (Edwards, 2005; Sevush, 2006, 2016).
There may be very large numbers of such representations, all
encoding the same sensory data, distributed over a wide area,
but each percept must be tied to the receiving unit that is the
neuron.

This conclusion immediately resolves the paradox of
localization and distribution of representation in the brain, since
it implies that local representations can be present over a widely
distributed area. This situation is familiar in the distribution of
a newspaper, which is widespread but can only convey news if
all the words of a news story are present in each copy read by
an individual. To suggest that a single perceptual representation
could be available to several cells is equivalent to saying that news
can be understood by a group of people each of which receives
one word from the paper.

The conclusion also resolves the question of precisely where
in the brain are the representations that determine our actions.
The answer is that they may be all over the brain. Even
the question of where in the brain are the representations
that determine considered verbalized behavior may have the
same answer, although it seems reasonable to attach some
special significance to representations in cells with multimodal
inputs that would allow both the visual and auditory features
and the concept of a dog to contribute to a ‘percept’ of
a dog.

Putting representations in individual cells may appear
implausible. However, it is unclear why a representation in a
single cell should be more implausible than one involving many
cells. The implausibility may be more salient simply because
any proposal for a specific location for such representations
brings into focus our lack of understanding of the rules of
interpretation. This may be no bad thing. Ironically, the charge of
implausibility tends to come from those who argue for functional
rather than structural analysis and yet the conclusion is based
on the ‘functional’ property of having input (and capacity)
rather than structure. The conclusion might be branded over-
reductive but one of its key features is that it makes explicit
the boundary between reductive analysis and the non-reductive
relation of ‘interpretation,’ rather than invoking an ill-defined
internal no-man’s-land where both are claimed to apply at
different ‘levels.’

Another attraction of the idea that representations are to
the single computational (rule based input–output) units that
are neurons is that it implies that the brain does not perform
single operations on ‘atomic’ (structureless) symbols, but rather
it performs operations on ‘molecular’ representations. That is
to say that the basic data units that the brain operates on are
irreducibly complex, with many degrees of freedom. This begins
to address the puzzle of how the manipulation of symbols can
be associated with an experience of complex patterns that reflect
the complexity of their referents. It also provides a reason why,
as appears to be increasingly recognized, syntax and semantics
cannot be totally dissociated when considering meaning (Hinzen,
2006).
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MULTIPLE REPRESENTATIONS OF
MULTIPLE TYPES

The concept of multiplicity of representations of sensory data
in the brain should not be unexpected if we consider the
parallel and hierarchical nature of computation. There may
be a lingering presumption that representations, qua percepts,
ought to be single – belonging to a single ‘me,’ but this is
not logically required. There is also a lingering discomfort with
the idea that our actions may be guided by representations
distinct from those we report as our percepts. Perhaps the best
known ‘redundancy’ of representations is that implied by the
dual path hypothesis for visual perception of Goodale and Milner
(1992). The dissociation of percept and action described by
Króliczak et al. (2006) for the hollow face illusion, presents the
counterintuitive idea that the brain builds more than one spatial
representation, which might seem redundant or extravagant in
use of resources. This has the interesting implication that we
consider the building of spatial representations qua percepts
labor-intensive.

Figure 1 illustrates an approach to representation in the
brain that suggests that this concern may be misplaced. It
makes explicit the idea that ‘representation’ has two different
meanings. One sense of representation (R) is an instance of
a pattern, as in a picture or map, that acts as origin for a
representation in the other sense (r) of an instance of representing
to something via its input. At every stage of neural computation
we can expect a representation-as-input to lead to an output
that can act as representation-as-origin for the next stage. At
every stage banks of cells will be involved but whereas such a
bank of cells will hold a single representation-as-origin it will
hold as many representations-as-inputs as there are cells in the
bank. Perhaps surprisingly, although building a representation-
as-origin is likely to be labor-intensive, much larger numbers of
representations-as-inputs, which we could expect to correspond
to percepts, would appear to come free of charge.

We are used to the idea that the nervous system generates
motor output from sensory input at several levels of complexity.

There are spinal reflexes, brainstem reflexes, automatic but co-
ordinated responses involving cerebellum, routine purposive
actions and deliberated actions. All of these can be expected
to be associated with different levels of representation-as-
origin and representations-as-input so we should not be
surprised by the idea of multiple spatial representations
even in terms of representations-as-origin. Perhaps more
interestingly, as indicated on the right side of Figure 1,
hierarchies of representation-as-origin give the opportunity for
representations-as-input downstream to ‘pick-‘n’-mix’ inputs
from more than one level of this hierarchy. Thus there is nothing
very surprising about the idea that the representations that guide
our rapid actions appear to overlap in content in most but not all
situations with those that form the basis of our percepts.

CONCLUSION

Mainstream neuroscience prides itself in being rigorously
physicalist, in the sense of adhering to the basic precepts
of natural science and general principles of causality.
A consideration of representations in such a rigorous causal
framework leads to the conclusion that all representations in
the brain, including those that may form the basis of percepts,
must ultimately be considered in terms of how they are cashed
out in the inputs to individual neurons. These representations as
inputs will occur at multiple levels of sensory processing and will
be multiple at all levels, including levels associated with pattern
recognition, denotation and reportable percepts. Such a model is
counterintuitive but resolves certain important problems relating
to the distributed nature of representation and may provide clues
to the basis of meaning and language.

AUTHOR CONTRIBUTIONS

The author confirms being the sole contributor of this work and
approved it for publication.

REFERENCES
Barlow, H. (1972). Single units and sensation: a neuron doctrine for perceptual

psychology? Perception 1, 371–394. doi: 10.1068/p010371
Barlow, H. (1994). “The neuron doctrine in perception,” in The Cognitive

Neurosciences, Vol. 26, ed. M. Gazzaniga (Cambridge: MIT Press), 415–435.
Block, N. (1996). “What is functionalism?,” in The Encyclopedia of Philosophy

Supplement, ed. D. M. Borchert (London: Macmillan).
Branco, T., and Häusser, M. (2011). Synaptic integration gradients in single

cortical pyramidal cell dendrites. Neuron 69, 885–892. doi: 10.1016/j.neuron.
2011.02.006

Churchland, P. (1992). A Neurocomputational Perspective. Cambridge, MA: MIT
Press.

Crane, T. (2014). “Unconscious belief and conscious thought, in Apects of
Psychologism. (Cambridge, MA: Harvard University Press).

Dennett, D. (1988). “Quining qualia,” in Consciousness in Modern Science, eds A.
Marcel and E. Bisiach (Oxford: Oxford University Press).

Dretske, F. (1986). “Misrepresentation,” in Belief, Form, Content and Function, ed.
R. Brogdan (Oxford: Oxford University Press).

Edwards, J. C. (2005). Is consciousness only a property of individual cells?
J. Conscious. Stud. 12, 60–76.

Fodor, J. A. (1975). The Language of Thought. New York, NY: Thomas Crowell.
Fodor, J. A. (1985). Fodor’s guide to mental representation. Mind 94, 76–100. doi:

10.1093/mind/XCIV.373.76
Fodor, J. A., and Pylyshyn, Z. (1988). Connectionism and cognitive architecture: a

critical analysis. Cognition 28, 3–71. doi: 10.1016/0010-0277(88)90031-5
Gold, I., and Stoljar, D. (1999). A neuron doctrine in the philosophy of

neuroscience. Behav. Brain Sci. 22, 585–642.
Goodale, M. A., and Milner, A. D. (1992). Separate visual pathways for perception

and action. Trends Neurosci. 15, 20–25. doi: 10.1016/0166-2236(92)90344-8
Gross, C. G. (2002). Genealogy of the “grandmother cell”. Neuroscientist 8, 512–

518. doi: 10.1177/107385802237175
Hinzen, W. (2006). Mind Design and Minimal Syntax. Oxford: Oxford University

Press.
Hommel, B. (2009). Action control according to TEC (theory of event coding).

Psychol. Res. 73, 512–526. doi: 10.1007/s00426-009-0234-2
Hubel, D. H., and Wiesel, T. (2005). Brain and visual perception. Oxford: Oxford

University Press.

Frontiers in Psychology | www.frontiersin.org September 2016 | Volume 7 | Article 153734

http://www.frontiersin.org/Psychology/
http://www.frontiersin.org/
http://www.frontiersin.org/Psychology/archive


fpsyg-07-01537 September 28, 2016 Time: 15:55 # 10

Edwards Roles for Individual Neurons

Ishikawa, T., Shimuta, M., and Häusser, M. (2015). Multimodal sensory integration
in single cerebellar granule cells in vivo. Elife 4:e12916. doi: 10.7554/eLife.12916

James, W. (1890/1983). The Principles of Psychology. Cambridge, MA: Harvard
University Press.

Kosslyn, S. M. (1994). Image and Brain: The Resolution of the Imagery Debate.
Cambridge, MA: MIT Press.

Króliczak, G., Heard, P., Goodale, M. A., and Gregory, R. L. (2006). Dissociation
of perception and action unmasked by the hollow-face illusion. Brain Res. 1080,
9–16. doi: 10.1016/j.brainres.2005.01.107

Ladyman, J., and Ross, D. (2007). Every Thing Must Go. Oxford: Oxford University
Press.

Male, D., Brostoff, J., Roth, D., and Roitt, I. M. (2012). Immunology, 8th Edn.
Philadelphia, PA: Elsevier.

Marcus, G. (2001). The Algebraic Mind. Cambridge, MA: MIT Press.
Marr, D. (1982). Vision: A Computational Investigation into the Human

Representation and Processing of Visual Information. New York, NY: Freeman.
Orpwood, R. (2007). Neurological mechanisms underlying qualia. J. Integr.

Neurosci. 6, 523–540. doi: 10.1142/S0219635207001696
Pribram, K. H. (1991). Brain and Perception. Upper Saddle River, NJ: Lawrence

Erlbaum.
Quian Quiroga, R., and Kreiman, G. (2010). Postscript: about grandmother cells

and Jennifer Aniston neurons. Psychol. Rev. 117, 297–299.
Quian Quiroga, R., Reddy, L., Kreiman, G., Koch, C., and Fried, I. (2005). Invariant

visual representation by single neurons in the human brain. Nature 435,
1102–1107. doi: 10.1038/nature03687

Rosenberg, G. (2004). A Place for Consciousness in Nature. Oxford: Oxford
University Press.

Ryder, D., Kingsbury, J., and Williford, K. (2012). Millikan and Her Critics.
Chichester: John Wiley & Sons.

Seager, W., and Bourget, D. (2007). “Representationalism about consciousness,” in
The Cambridge Handbook of Consciousness, eds P. D. Zelazo, M. Moskovitch,
and E. Thompson (Cambridge: Cambridge University Press).

Sevush, S. (2006). Single-neuron theory of consciousness. J. Theor. Biol. 238,
704–725. doi: 10.1016/j.jtbi.2005.06.018

Sevush, S. (2016). Single-Neuron Theory: Closing in on the Neural Correlate of
Consciousness, Chap. 8. Basingstoke: Palgrave-MacMillan.

Sherrington, C. (1940). Man on His Nature. Cambridge: Cambridge University
Press.

Simmons, W. K., and Barsalou, W. (2003). The similarity-in-topography principle:
reconciling theories of conceptual deficits. Cogn. Neuropsychol. 20, 451–486.
doi: 10.1080/02643290342000032

Smith, S. L., Smith, I. T., Branco, T., and Häusser, M. (2013). Dendritic spikes
enhance stimulus selectivity in cortical neurons in vivo. Nature 503, 115–120.
doi: 10.1038/nature12600

Stich, S. (1992). What is a theory of mental representation? Mind 101,
243–261.

Trehub, A. (1991). The Cognitive Brain. Cambridge, MA: MIT Press.
von der Malsburg, C. (1981). “The correlation theory of brain function,” in MPI

Biophysical Chemistry, Internal Report 81–2. Reprinted in Models of Neural
Networks II (1994), eds E. Domany, J. L. van Hemmen, and K. Schulten (Berlin:
Springer).

Woolhouse, R. S., and Franks, R. (1998). G.W. Leibniz, Philosophical Texts. Oxford:
Oxford University Press.

Conflict of Interest Statement: The author declares that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2016 Edwards. This is an open-access article distributed under the terms
of the Creative Commons Attribution License (CC BY). The use, distribution or
reproduction in other forums is permitted, provided the original author(s) or licensor
are credited and that the original publication in this journal is cited, in accordance
with accepted academic practice. No use, distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Psychology | www.frontiersin.org September 2016 | Volume 7 | Article 153735

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Psychology/
http://www.frontiersin.org/
http://www.frontiersin.org/Psychology/archive


HYPOTHESIS AND THEORY
published: 09 August 2017

doi: 10.3389/fpsyg.2017.01216

Frontiers in Psychology | www.frontiersin.org August 2017 | Volume 8 | Article 1216

Edited by:

Tarek Richard Besold,

University of Bremen, Germany

Reviewed by:

Sashank Varma,

University of Minnesota, United States

Johan Kwisthout,

Radboud University Nijmegen,

Netherlands

Ulrike Stege,

University of Victoria, Canada

*Correspondence:

John K. Tsotsos

tsotsos@cse.yorku.ca

Specialty section:

This article was submitted to

Cognition,

a section of the journal

Frontiers in Psychology

Received: 15 August 2016

Accepted: 03 July 2017

Published: 09 August 2017

Citation:

Tsotsos JK (2017) Complexity Level

Analysis Revisited: What Can 30 Years

of Hindsight Tell Us about How the

Brain Might Represent Visual

Information?. Front. Psychol. 8:1216.

doi: 10.3389/fpsyg.2017.01216

Complexity Level Analysis Revisited:
What Can 30 Years of Hindsight Tell
Us about How the Brain Might
Represent Visual Information?
John K. Tsotsos*

Department of Electrical Engineering and Computer Science, York University, Toronto, ON, Canada

Much has been written about how the biological brain might represent and process

visual information, and how this might inspire and informmachine vision systems. Indeed,

tremendous progress has been made, and especially during the last decade in the latter

area. However, a key question seems too often, if not mostly, be ignored. This question

is simply: do proposed solutions scale with the reality of the brain’s resources? This

scaling question applies equally to brain and to machine solutions. A number of papers

have examined the inherent computational difficulty of visual information processing using

theoretical and empirical methods. The main goal of this activity had three components:

to understand the deep nature of the computational problem of visual information

processing; to discover howwell the computational difficulty of visionmatches to the fixed

resources of biological seeing systems; and, to abstract from the matching exercise the

key principles that lead to the observed characteristics of biological visual performance.

This set of components was termed complexity level analysis in Tsotsos (1987) and was

proposed as an important complement to Marr’s three levels of analysis. This paper

revisits that work with the advantage that decades of hindsight can provide.

Keywords: vision, attention, complexity, pyramid representations, selective tuning model

INTRODUCTION

This paper has two main parts. In the first, there is a brief recapitulation of 30 years of research1

that addresses the question: do proposed solutions to how the brain processes visual information
match the reality of the brain’s resources? The main goal of this activity had three components:
to understand the deep nature of the computational problem of visual information processing; to
discover how well the computational difficulty of vision matches to the fixed resources of biological
seeing systems; and, to abstract from the matching exercise the key principles that lead to the
observed characteristics of biological visual performance. The second part of the paper uses the
results of that analysis and extends them to specifically connect to how the brain represents visual
information. We begin by motivating the analysis as presented three decades ago.

1There is a distinct focus on our own work throughout this paper simply because the goal of this presentation is to examine

that old work and how its conclusions have stood the test of time. This is not to say that no other work has appeared since nor

that all other work is unimportant. Far from it! However, most other developments along complexity theoretic lines do not

line up with the main thread of this paper, namely, what can this analysis tell us about representations in the brain.
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Tsotsos Revisiting Complexity of Visual Processing

A universally acclaimed landmark in the development of
computational theories of intelligence is the presentation of the
three levels of analysis defined by Marr (1982). Marr presents the
three levels, now quoted, at which any machine carrying out an
information-processing task must be understood:

• Computational theory: What is the goal of the computation,
why is it appropriate, and what is the logic of the strategy by
which it can be carried out?

• Representation and algorithm: How can this computational
theory be implemented? In particular, what is the
representation for the input and output, and what is the
algorithm for the transformation?

• Hardware implementation: How can the representation and
algorithm be realized physically?

This prescription has been used effectively ever since not only
in vision modeling but throughout computational neuroscience
and cognitive science. Unfortunately, Marr, not being a computer
scientist, missed an important issue. He did not realize that it
is not difficult to pose perfectly sensible computational solutions
that are physically unrealizable. As argued in Tsotsos (1990) and
elsewhere, there are a large number of perfectly well-defined
computational problems whose general solution is provably
intractable—unrealizable on available physical resources or
requiring time longer than the age of the universe2. Even worse,
there are well-defined problems that are undecidable, meaning
there provably exists no algorithm to determine the result3. As
argued in Tsotsos (1993, 2011), such results that seem impossible
do not negate their main impact: our brains seem to deal with
all the problems they face remarkably well so it can only be
the case that the formal definitions of the problems that lead to
such intractable or impossible results cannot be the ones that our
brains are actually solving.

This matching process as an idea has its roots in earlier
works. Uhr (1972, 1975) describes “recognition cones” as a
representation for perception. Although his papers are clear in
their inspiration from neural systems, Uhr only hinted at their
resource implications. Feldman and Ballard (1982), however,
explicitly linked computational complexity to neural processes
saying “Contemporary computer science has sharpened our
notions of what is ‘computable’ to include bounds on time,
storage, and other resources. It does not seem unreasonable to
require that computational models in cognitive science be at least
plausible in their postulated resource requirements.” They go on
to examine the resources of time and numbers of processors, and

2Details on this assertion are beyond the scope of this paper. The interested

reader can find a very accessible discussion in Stockmeyer and Chandra (1988),

while those wishing a deeper treatment should see classic texts such as Garey and

Johnson (1979), Papadimitriou (2003).
3Decidability is discussed in Davis (1958, 1965). Proof of decidability is sufficient

to guarantee that a problem can be modeled computationally. It requires that

the problem be formulated as a decision problem and that a Turing Machine is

defined to provide solution. This formulation for the full generality of vision does

not currently exist. If no sub-problem of vision can be found to be decidable,

then it might be that perception as a whole is undecidable and thus cannot

be computationally modeled. However, many decidable vision problems are

mentioned throughout this paper so that is not the case.

more, leading to a key conclusion that complex behaviors can
be carried out in fewer than 100 (neural processing) time steps.
The overall import of their paper was to stress the need for a
careful matching of problem to resources in cognitive theories.
Resource-complexity matching is a source of critical constraints on
the viability of theories, especially those that attempt to provide a
mechanistic theory as opposed to a descriptive one (see Brown,
2014).

Even though these arguments were very strong, they took
the form of ‘counting arguments’ and a formalization could
perhaps make them even stronger. An attempt to formalize those
points was made beginning with Tsotsos (1987). We examined
the inherent computational difficulty of visual information
processing from formal and empirical perspectives4. The
methods used have their roots in the theoretical sub-domain
of computer science known as computational complexity.
Computational complexity has the goal of discovering formal
characterizations of the difficulty of achieving solutions to
computational problems5 in terms of the size and nature of the
input. The difficulty of achieving solutions has direct impact on
resources, such as computational power, memory capacity and
processing time, as Feldman and Ballard (1982) also pointed out.

For this reason, a fourth level, the complexity level, was
introduced in Tsotsos (1987, 1990), intended to ensure the logic
of the strategy for solving the problem is actually realizable within
its available resources:

• Complexity analysis: What is the computational complexity
of the problem being addressed? How does it match with
the resources used for its realization? If the problem is
intractable and/or there are insufficient resources available for
a realization of its solution, how can the problem be reframed
to enable a solution?

This paper revisits the conclusions reached by the resulting
series of papers with the advantage of decades of hindsight.
Interestingly, a wide spectrum of predictions regarding the
brain’s visual processes that resulted from that analysis has
enjoyed subsequent experimental support (see Tsotsos, 2011 for
details). We begin with a brief overview of the main conclusions
and assertions that complexity level analysis provided.

COMPLEXITY LEVEL ANALYSIS

In Tsotsos (1989, 2011), a number of mathematical proofs were
presented that formalize the difficulty of perhaps the most

4It is not within the scope of this paper to detail the full sequence of papers on the

topic, so they are simply cited here so that the interested reader can examine them

separately: Tsotsos (1987, 1988a,b, 1989, 1990, 1991, 1992, 1993, 1995a, 2011), Ye

and Tsotsos (1996), Ye and Tsotsos (2001), Parodi et al. (1998) Andreopoulos and

Tsotsos (2013).
5A problem is distinct from an algorithm. A problem is a general statement about

something to be solved (Marr’s computational level, Marr, 1982) whereas an

algorithm is a proposed solution (Marr’s representational and algorithmic level).

One can address computational complexity at both levels: the inherent difficulty

of a problem in its general form as well as the difficulty of a particular algorithm.

Problem complexity applies to all possible solutions and any realization of them

while algorithm complexity applies only to the specific algorithm analyzed. Here,

we address only the former.
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elemental of visual operations—essentially a sub-element of all
visual operations—namely, visual matching6. Visual matching is
the task of determining if some arbitrary image, a goal image, is
a subset of some other image, the test image. In this definition,
no knowledge of the target is allowed to influence the solution—
the problem is thus termed unbounded in those papers. A
function was assumed to exist that would quickly determine if
a particular match was found, and it was not permitted to reverse
engineer that function in order to guide the search. In other
words, the solution was constrained to be one requiring a strictly
data-driven approach7. The main proof, replicated by Rensink
(1989) using a different approach, showed that this problem
potentially had exponential time complexity in the number of
image pixels, largely because in the worst case, it is unknown
which image subset is the one that represents that goal image
(think of an arbitrary sky full of stars—which subset of stars
forms a hexagon?). The more important part of this is that it
was proved that no single solution exists that is optimal for
all possible problem instances. Due to the particular manner
in which the proof was executed, the problem lends itself to a
number of non-exponential, but not necessarily exact or optimal,
solutions, as pointed out by Kube (1991)8. Following a more
detailed examination, it was shown that although these non-
exponential solutions are indeed valid, they do not really help
because they all rely on solution elements that have no biological
counterpart and have execution times that do not reflect human
performance (Tsotsos, 1991)9. Note that this is likely true also for
the other problems cited throughout this paper; they may also
have known non-exponential solutions and realizable solutions
for small enough or special case instances. A puzzling situation

6If we look at the perceptual task definitions provided byMacmillan and Creelman

(2005), we see that all psychophysical judgments are of one stimulus relative

to another — the basic process is comparison. The most basic task is termed

discrimination, the ability to tell two stimuli apart. The fact that it is a sub-element

of all visual tasksmeans that the difficulty of any visual task is at least as great as that

of this sub-element. Interestingly, this is a decidable perceptual problem and is an

instance of the Comparing Turing Machine (Yasuhara, 1971). Further discussion

is found in Tsotsos (2011).
7Although it is admittedly unusal to include this restriction, it makes sense if

one wishes to follow the Marr approach to vision, i.e., that visual processing

included no top-down or knowledge-based guidance. Marr (1982; p 96) restricted

his approach to be applicable for the first 160ms of processing by the brain and for

stimuli where target and background have a clear psychophysical boundary. Our

original motivation was to show that this approach would not suffice for all stimuli;

this was successfully accomplished.
8In general, it is true that for problems that are proven to have such complexity

characteristics, it only means that sufficiently large problem instances may not be

realizable and that perhaps small ones, or particular subsets or special cases of the

overall problem,may be perfectly realizable. The point of the complexity proof is to

characterize a general solution that applies for all possible instances. For vision, this

is a tall order. The space of all possible images is impossibly large. Pavlidis (2014)

derives possible characterizations of this space. He claims that a very conservative

lower bound to the number of all possible human-discernible images is 1025 and

may be as large as 10400. The practical import is that any solution that one proposes

must apply to this full set.
9Kube (1991) pointed out that the Knapsack problem, which forms the foundation

of the proof, is known to have efficient solutions under certain circumstances.

Tsotsos (1991) surveys those efficient solutions and notes that they are not

easily matched to, let alone relevant for, biologically plausible architectures and

processes. It is beyond the scope to give further details on this here but the sequence

of commentaries in Tsotsos (1990, 1991), Kube (1991) provide more detail.

thus results: can we or can we not rely on the theoretical work as
a guide? Our everyday experience with our own visual systems
exhibits no such intractability. The only conclusion therefore
is that the brain is not solving the problem as formalized for
those proofs: the human brain is solving a different version
of visual matching. This is admittedly a non-standard use of
complexity theory because it disallows solutions that are not
biologically realizable or plausible10. It does however show that
the prevailing thoughts of the time (i.e., 1980’s and somewhat
beyond) that vision can be formulated as a purely bottom-up (i.e.,
stimulus-driven) process needed to be re-considered. To preview
the endgame of this paper, that reformulation is one that allows
differing levels of solution precision and different expenditures of
processing time for different subsets of problem instances.

At this point in this presentation, it seems important to
emphasize that the proofs mentioned in the previous paragraph
do indeed point to sensible conclusions because there are many
other researchers who have reached similar conclusions, i.e., that
their problems are likely intractable, for a variety of visual and
non-visual problems that are associated with human intelligent
behavior. Selected examples of other works focusing on vision
and neural networks and thus relevant for this paper include:
polyhedral scene line-labeling (Kirousis and Papadimitriou,
1988); loading shallow architectures (neural network learning
with finite depth networks) (Judd, 1988); relaxation procedures
for constraint satisfaction networks (Kasif, 1990); finding a single,
valid interpretation of a scene with occlusion (Cooper, 1998);
unbounded stimulus-behavior search (Tsotsos, 1995a); and 3D
sensor planning for visual search (Ye and Tsotsos, 1996).

The impact of computational complexity has also been
pursued by many researchers in artificial intelligence and
cognitive science (too many to properly mention here, however,
see van Rooij, 2008, for a nice review). To round out this
section, the important paper focusing on algorithm complexity,
as opposed to problem complexity addressed by the previously
cited authors, in vision by Grimson (1990) must be highlighted.
Biologists also contributed with consistent and complementary
conclusions (Thorpe and Imbert, 1989; Lennie, 2003, and others).

So how to proceed with the complexity level analysis?
The whole point was to ensure that solutions are tractable
within the constraints of biological processing structures.
The strategy we chose which first appeared in Tsotsos (1987)
is to simply start with the obvious, brute-force, worst-case
complexity for the visual problem first described in this section’s
opening paragraph, termed Visual Match in Tsotsos (1989) and
Comparison in Macmillan and Creelman (2005) (which is not
provable as a bound on the time complexity in any way) and see
how it might be altered to fit within a brain11. It’s as if we were

10Traub (1991) also struggles with this issue. He suggests that a theory of

complexity of scientific problems is needed such that formulations capture the

essence of the science and that they be tractable.
11This is essentially the same process as seen in Judd (1988), van Rooij et al.

(2012), van Rooij and Wareham (2012), and others, where they effectively used

intractability results to guide a search for methods and problem re-formulations

that would lead to realizable solutions. However, a major difference is the need

to further constrain that search to be consistent with neuroanatomical and

neurophysiological knowledge.
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tasked, in some imaginary world, to design the first ever visual
system from scratch. Tsotsos (2011) gives this simple-minded
worst-case complexity as O(P22P2M)12. P represents the number
of image elements (pixels, photoreceptors), M is the number
of features represented (e.g., color, shape, texture, etc.); these
are the starting elements from which we need to design vision.
Recall that the problem is termed ‘unbounded’ since there is no
bounding information arising from task or world knowledge
that limits the search—as designers of the first ever visual system,
it might not yet be apparent to us that we need task or world
knowledge! In other words, we begin with the Marr approach
(see footnote 7). Any image subset can be the correct one,
and thus the powerset of image elements gives the worst-case
scenario, and processing proceeds in a purely data-directed
manner. The three elements of the complexity function arise in
the following manner: P2-the worst-case cost of computing the
matching functions; 2P-the worst-case number of image subsets
in an image of P pixels; 2M-the worst-case number of feature
subsets associated with each pixel.

In Artificial Intelligence, a central concept is that of Rational
Action. Rational Action, carried out by a rational agent,
maximizes goal achievement given the agent’s current knowledge,
the agent’s ability to acquire new knowledge, and the current
computational and time resources available to the agent (Russell
et al., 2003). In everyday behavior, we humans only rarely attempt
to optimize solutions, but rather, just need to get something done
(when drinking from a glass, we do not optimize the path to
minimize energy or distance; rather, we simply want to get the
glass to our mouth). In other words, we mostly resort to solutions
that may not be optimal in any way but that are good enough
for the current needs. Often, these are heuristic solutions that
simply accomplish our goals13. One of these heuristics is to seek a
Satisficing solution. Satisficing is a strategy that entails searching
through the available alternatives until an acceptability threshold
is met. This differs from optimal decision-making, an approach
that attempts to find the best feasible alternative. The term
satisficing, (a combination of satisfy and suffice), was introduced
by Herb Simon in 1956. Satisficing can take more than one form.
If one is faced with a problem and has the luxury of time, then
one can spend as much time as one likes to find an acceptable
solution among all the possible ones. One the other hand, if
time is limited, perhaps strictly limited by the need to act before
something else occurs, then a different sort of search would
occur, one that would find a just in time solution, the best one
within the time limit. If time is extremely tight, then an almost
reflexive response is needed, perhaps the first one that comes to
mind. Clearly, external tasks and situations as well as internal
motivations play an important role in determining the right sort
of approach to employ. Different from this strategy is the one
where subsets of the full problem are defined where optimal
procedures apply without infeasible characteristics. Here, the

12The notation O(-), known as Big-O notation, signifies the order of the time

complexity function, that is, its dominating terms asymptotically.
13Garey and Johnson (1979) detail a variety of strategies and heuristics for dealing

with intractable problems theoretically and these are as applicable here as for

theoretical computer science problems.

first step is to determine when such a problem is presented.
Then, the most appropriate solution can be deployed. A rational
agent, then, attempts to achieve its current goal, given its current
constraints, by applying such selection methods to choose among
its many possible solution paths. This points to the need for some
kind of executive to control the process (one review for executive
function in the brain, of the many available, can be found in
Funahashi, 2001).

Knowledge of the intractability of visual processing in the
general case—that is, that no single solution can be found that
is optimal and realizable for all instances—forces a reframing
of the original problem. The space of all problem instances can
be partitioned into sub-spaces where each may be solvable by a
different method. Some of those methods—whether satisficing,
optimal, just in time, reflexive or other type—may lead to fast
realizations (for example, if there is a special case problem subset
that leads to non-exponential algorithm14), others slow ones,
and some perhaps no realization. Given that a fixed processing
resource such as the brain is to be employed, the need to apply a
variety of different solution strategies in a situation dependent
manner implies that resources must be dynamically tunable15.
In order to support such a decision process, representations of
visual, task, and world information and more must be available
to support the reasoning involved that an executive controller
performs (a sketch of how this might occur appears in Tsotsos
and Womelsdorf, 2016).

The second stage of complexity level analysis looks for ways
of matching the available resources with the computational
difficulty of the problem to be solved. For vision, and specifically
for human vision, those resource constraints include numbers
of neurons, synapses, neural transmission times, behavioral
response times, and so on. As Garey and Johnson (1979) point
out, using the main variables of the problem definition as a
guide is useful; variables that appear in exponents are the most
important to try and reduce. Only the conclusion of this exercise
will be given here since the details have appeared in several past
papers (see Tsotsos, 2011 for overview). The key activity is to
reduce the worst-case time complexity expression so that it can
lead to an algorithm that is matched to the size and behavior of
the human brain. The main conclusions are:

1. Use a pyramid representation to reduce the number of image
locations searched. A pyramid is a layered representation,
each layer with decreasing spatial resolution and with
bidirectional connections between locations in adjacent layers
(Jolion and Rosenfeld, 1994 provide review). Introduced by
Uhr (1972), they permit an image to be abstracted so that
a smaller number of locations at the top level may be the
only ones over which some algorithm needs to search. At

14One additional possibility is that of a fixed parameter-tractable algorithm, that

is, an algorithm that is exponential only in the size of a fixed parameter while

polynomial in the size of the input (see Downey and Fellows, 1999; van Rooij and

Wareham, 2007 for more).
15This is of course, not without a cost. Tuning takes time to affect the processing,

and processing itself may also then take longer. That different visual tasks take

different amounts of processing time is well documented and is related to dynamic

tuning in Tsotsos et al. (2008), Tsotsos (2011). See also Figure 5 and caption.

Frontiers in Psychology | www.frontiersin.org August 2017 | Volume 8 | Article 121639

http://www.frontiersin.org/Psychology
http://www.frontiersin.org
http://www.frontiersin.org/Psychology/archive


Tsotsos Revisiting Complexity of Visual Processing

least, they may provide the starting point for a coarse-to-fine
search strategy from top to bottom of the pyramid. such
a representation would reduce the size of the variable P.
Figure 1 shows a hypothetical pyramid of 3 layers. The
number of locations represented in the lowest layer (layer 1)
is p1; p1 > p2 > p3. In most pyramid definitions, the value
at each location in each layer is determined by a computation
based on a subset of the other layer values. Each element is
not only connected to others in the adjacent layers but may
also be connected to elements within the same layer. Such a
representation has much in common with the hierarchical
organization of early visual cortex as revealed by the work of
Hubel and Wiesel (1962, 1965).

2. The objects and events of the visual world are mostly spatially
and temporally confined to some region; however, we can also
recognize scattered items as well (such as star constellations,
or collections of animals as flocks or herds, group motion say
as in a rugby play, etc.). Spatio-temporally localized receptive
fields reduce the number of possible receptive fields from
O(2P) to O(P1.5) (this assumes contiguous receptive fields of
all possible sizes centered at all locations in the image array
and is derived in Tsotsos, 1987). Figure 1 not only shows
a three-layer pyramid but also a typical element (neuron)
within the middle layer and an illustration of the breadth of
its connections within the pyramid showing that connectivity
is limited in feedforward, feedback and lateral directions.

3. Selection of a single or group of receptive fields to consider
can further reduce the P1.5 term to some value P′ < P1.5. This
may be not only a selection of location, but also a selection
of a local region or size. Such selection of region of interest
is the most common use of attention in models (Tsotsos and
Rothenstein, 2011; Tsotsos et al., 2015).

4. For some given task, feature selectivity to relevant features

can further reduce the M term to some value M′, where 2M
′

FIGURE 1 | A hypothetical 3-layer pyramid representation. The number of

locations represented in the bottom layer (layer 1) is p1; p1 > p2 > p3. A

typical element of each layer is shown in the center of the middle layer (layer 2).

The figure shows how that element is connected to its immediate neighbors in

the layer, as well as to elements in the lower and higher layers. All connections

are potentially bidirectional. The figure shows the converging pattern of

feedforward connections from layer 1 to 2, the diverging pattern of feedforward

connections from layer 2 to 3, the converging pattern of feedback connections

from layer 3 to 2 and the diverging pattern of feedback connections from layer

2 to 1. Each element of each layer features this pattern of connectivity.

< 2M , that is, the subset M′ of all possible features actually
present in the image or important for the task at hand.
M ≪ P in any case so its presence in the exponent poses
much less of a problem. This implies that features are best
organized into separate representations, one for each feature,
permitting a processing mechanism to involve only the
required features into a computation and leaving the irrelevant
ones outside the computation. Such separate representations
likely lead into separate processing pathways as features are
abstracted. Human vision has the characteristic of performing
differently depending on the feature complexity of stimuli, as
has been shown many times since Duncan and Humphreys
(1989). Their experiments showed that in visual search tasks,
difficulty increases with increased similarity of targets (that
is, feature overlap and thus the ability to remove irrelevant
features from the computation) to non-targets and decreased
similarity between non-targets, producing a continuum of
search efficiency. This is yet another form of a restrictive
attentive process, that may be termed priming in this instance.

These16 achieve our goal, that is, to reduce the exponential
complexity function to a much lower complexity expression,

O(2M
′
P′3.5). It is important to note that attentional selection

to either select a single candidate or to restrict consideration to
a small set of candidates forces a serialization of the problem
solution. If the chosen candidate is correct, the algorithm of
course terminates. However, if it is not, the next candidate must
be selected for consideration. A related situation arises for stimuli
that are not spatially localized (such as the examples of a star
constellation or flock of birds given earlier) and in such cases, full
image comparisons or more complex methods (such as piecing
together results from the available sub-image matches) would be
required, again perhaps necessitating a serial search. No single
solution will handle all problem instances; different strategies
can be applied in succession until success is achieved, each
with a successively higher processing cost. This characteristic is
unavoidable and representations must support the process.

This leads to the final stage of complexity level analysis, which
is to determine what impact arises from the previous stages that
provide the foundations for developing a theory of human vision.
This impact is summarized here:

• Pyramidal abstraction affects the problem through the loss
of location information and signal combination. It affects
the problem solution by sometimes enabling shorter search
processes, commonly known as coarse-to-fine search.

• Spatiotemporally localized receptive fields force the system to
look at features across a receptive field instead of finer grain
combinations and thus arbitrary combinations of locations
must be handled by some other strategy.

• Attentional processes permit selection and restriction within
the input data to control the overall size of input to be
considered.

16It should be noted that the original formulation included consideration of the

set of world models N whose search efficiency can be logarithmically improved

by hierarchical organization (Tsotsos, 1987). This is omitted here since it does not

alter that nature of the problem.
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What this demonstrates is that although the analysis began
considering solutions for the full space of problem instances,
the need to fit a solution within the brain’s resources forced
a shrinking of that full space into something smaller. In other
words, the restriction that Marr placed on his approach—that is,
a clear figure-ground boundary—manifests itself as a restriction
on the set of problem instances. Unfortunately, it is not easy to
characterize this subspace. However, there is a possible taxonomy
of visual tasks that can help. Figure 2 shows this taxonomy; there
is no claim that it is complete. What it does point out is that the
visual task most current AI systems address (such as Fukushima,
1988; LeCun and Bengio, 1995; Riesenhuber and Poggio, 1999;
Krizhevsky et al., 2012), namely categorization, comprises only a
small part of the taxonomy. Itmust be stressed that this taxonomy
of tasks is not the same as a depiction of the space of problem
instances. Each task has its own set of possible instances (and
there may be overlap). For example, within categorization, there
are instances that are easy (clear figure-ground boundary is seen)
and instances that are difficult (without a clear figure-ground
delineation).

To this point, the possibility of task influence on how a
vision problemmight be approached has not been discussed. The
reason is that in his formulation, Marr discounted its use entirely
and our approach was originally motivated by his perspective.
However, increasingly, cognitive psychology and neuroscience
has demonstrated that task influence plays a major role (see
Carrasco, 2011; Tsotsos, 2011; Herzog and Clarke, 2014). In
fact, accompanying the intractability proof in Tsotsos (1989)
was a second theorem that showed that simple task knowledge
can bound the search; it provides limits on the search space
making it linear, rather than exponential, in the number of
image elements (Wolfe, 1998 provides a relevant visual search
review). The task knowledge can be as specific as target size or as

generic as statistical regularities (as Parodi et al., 1998, illustrate
empirically). This is a form of attentional priming (in advance
of task execution) which limits what is processed in the location,
feature and object domains. In Figure 2, task knowledge is critical
for all the MG tasks as part of their basic definition, but also for
the AG tasks since it bounds any search processes that might
be employed in their solution. In effect, therefore, the original
problem of Visual Match has been significantly reframed into a
set of more specific problems as Figure 2 shows, with different
constraints on the solution for each and together extending
the temporal range of visual tasks far beyond Marr’s 160 ms.
This is consistent with van Rooij et al. (2012) who proposed
computational-level theory revision as a way of dealing with
intractability.

Thus, in addition to the three bullet points presented above
regarding impact of the analysis, we add two more:

• The use of task or world knowledge can have profound impact
on the computational complexity of a visual problem and
should be employed whenever available (of course, there must
be a default processing state when none is available),

• The discussion on different decision-making strategies and
the complex taxonomy of visual tasks of Figure 2 strongly
motivates the need for an executive control process that would
dynamically decide on how to best approach and solve visual
tasks as they are presented.

THE PROBLEMS WITH PYRAMIDS

Although pyramids played a strong role in reducing complexity,
they do cause new problems with how information might
flow within them. Some were first described in Tsotsos et al.
(1995). Table 1 provides a characterization of each (more

FIGURE 2 | A taxonomy of visual tasks (adapted from Tsotsos, 2011 and task naming based on Macmillan and Creelman, 2005). Within each taxonomy element,

there are both easy and difficult instances. AG, At-a-Glance tasks are those that can be solved using only a single feed-forward pass through the brain’s visual

processing machinery; MG, More-than-a-Glance tasks are those that require more processing than a single feed-forward pass through the brain’s visual processing

machinery; K, the number of possible images; M, the number of object categories of interest.
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details can be found in Tsotsos, 2011) and the reader is
encouraged to refer to Figure 3 while reading the table entries.
These are all consequences of the basic connectivity pattern of
Figure 1.

The consideration of representational issues, such as the
problem with information flow in a pyramid is not common in
the modeling literature (but see Anderson and Van Essen’s Shifter
circuits, 1987, that were strongly motivated by information
routing issues). For the most part, the information flow
problems require dynamic solutions that change frommoment to
moment depending on task and input. Models that ignore these
routing characteristics are not only incomplete but lose out on
incorporating the constraints that arise.

LATTICE OF PYRAMIDS

The pyramid representation as described so far fits very naturally
into the hierarchical view of Hubel and Wiesel (1965, 1968).
However, it is insufficient. Felleman and Van Essen (1991) give
a set of criteria for determining hierarchical relationships among
the visual areas in the cortex. These are:

“each area must be placed above all areas from which it receives

ascending connections and/or sends descending connections.

Likewise, it must be placed below all areas from which it receives

descending connections and/or sends ascending connections.

Finally, if an area has lateral connections, these must be with other

areas at the same hierarchical level.”

This characterization of connectivity resembles that of a
general lattice, as shown in Figure 4B (see Birkoff, 1967, for a
mathematical discussion on the properties of lattice structures).
In contrast to the pyramid of Figure 4A, i.e., exactly the
representation found in convolutional neural networks (CNN-
see LeCun and Bengio, 1995; Riesenhuber and Poggio, 1999;
Krizhevsky et al., 2012), Figure 4B highlights the fact that
there may be more than one pathway from input, as is well-
documented in visual cortex. Tsotsos (2011) marries the concept
of the pyramid with that of the lattice to define the P-Lattice, or
lattice of pyramids in order to fully accommodate the criteria laid
out by Felleman and Van Essen.

Each element or layer of the pyramid will be referred to as a
sheet—an array of retinotopically organized neurons of common
tuning profile. Each sheet may be connected to more than one
other sheet in a feed-forward, recurrent or lateral manner. The
main constraint is that no matter which path is taken from lower
to higher level, each sheet at a lower level has the same or larger
number of elements compared to any higher-level sheet on its

TABLE 1 | A summary description of the main information flow problems resulting from pyramid representations.

Problem Data flow Basic characteristic

Blurring Figure 3A ↑ Feedforward neural connections have a diverging pattern, a one-to-many mapping, so that spatial precision is not

preserved.

Crosstalk Figure 3B ↑ Two spatially separated stimuli each root a feedforward diverging cone of connections which may intersect thus presenting

neurons within the intersection with a conflicted (corrupted with respect to the stimulus of interest) signal.

Context Figure 3C ↑ The receptive field of a neuron—a many-to-one mapping—in the higher layers of the pyramid can be potentially large

enough to include not only a stimulus of interest but a significant local spatial context which may confound the stimulus

interpretation.

Multiple foci Figure 3D ↑↓ If more than one neuron at the output layer is considered, the ability to tease their meanings apart depends on the spatial

separation of the receptive fields (the inverted version of the crosstalk problem). In the forward flow direction, contexts due

to each overlap to some degree, thus neural responses at the top cannot be considered independent. In the top-down

direction, there is a complication when solving the routing problem (see part 3F) which although seemingly trivial for this

simple example, would be quite difficult for scenes with many stimuli, such as natural scenes.

Boundary Figure 3E ↑ In a hierarchy of spatial convolutions, at each layer, a kernel half-width at the edge of the visual field is left unprocessed

because the kernel does not have full data for its convolution. This is compounded layer by layer because the half-widths

are additive layer to layer. The result is that a sizeable boundary region at the top layer is left undefined (a true information

loss) and thus the number of locations that represent veridical results of neural selectivity from the preceding layer is smaller

and restricted to the central portion of the visual field. Solutions, such as used in current CNN’s were first described in van

der Wal and Burt (1992); they have no biological counterpart. See Tsotsos (2011) and Tsotsos et al. (1995, 2016) for a

theory on how the brain deals with the boundary problem.

Routing Figure 3F ↑↓ Because of the above problems, a difficulty arises in the search for the neural pathway that connects a stimulus to the

neurons that best represent it. If the search is bottom-up—from stimulus to highest layer neuron—then the search is

constrained to the feed-forward cone outlined by the dotted lines. If the decisions are based on locally maximal neural

responses (such as max pooling), then there is nothing to prevent a bottom-up search losing its way, due to the diverging

feedforward connectivity, and missing the globally maximum response at the top layer. It is clear that to be successful, the

correct path must always go through the overlap regions shown in dark ovals. But nothing guarantees that the local

maximum must lie within those overlap regions. If the search is top-down—from the globally maximum responding neuron

to the stimulus—the search is constrained by the dashed lines. Only top-down search is guaranteed to correctly connect

the best responding neuron at the top with its stimulus because the search is constrained by the connectivity pattern of the

source neuron which necessarily contains the goal stimulus.

Other such problems, not described here are the Sampling, Lateral Spread, Spatial Spread, Spatial Interpolation, and Convergent Recurrence problems and the interested reader can

find these in Tsotsos (2011).
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FIGURE 3 | The breadth of problems inherent in pyramid representations. (A) The Blurring Problem. An input element in the lowest layer will affect, via its feed-forward

connections, a diverging pattern of locations in the higher layers of the pyramid. (B) The Crosstalk Problem. Two input stimuli activate feed-forward projections that

overlap, with the regions of overlap containing neurons that are affected by both. Those might exhibit unexpected responses with respect to their tuning profiles. (C)

The Context Problem. A stimulus (black dot) within the receptive field of a top layer neuron, showing its spatial context defined by that receptive field. (D). The Multiple

Foci Problem. Regions of overlap show the extent of interference if two (or more) output nodes are considered simultaneously. (E) The Boundary Problem. The two

units depicted in the second layer from the bottom illustrate how the extent of the black unit’s receptive field is entirely within the input layer while only half of the

receptive field of the gray unit is within the input layer. The bottom layer represents the retina; the next layer of the pyramid (say area V1) represents the spatial

dimension of the viewing field in a manner that gives more cortical area to central regions than peripheral. The boundary problem forces more and more of the

periphery to be unrepresented in higher layers of the pyramid. (F) The Routing Problem. Interacting top-down and bottom-up spatial search constraints are shown

with the areas of overlap representing the viable search regions for best neural pathway. (Reproduced from Tsotsos, 2011).

FIGURE 4 | From pyramids to P-lattices. (A) A simple pyramid representation. (B) A lattice of three pyramids. (C) A lattice of pyramids showing complex connectivity.

path. Both Figures 4B,C are P-Lattices; the Figure 4C shows a
more complex version of Figure 4B in order to illustrate the
full nature of the representation. The formalization will not be
further described, but is developed in Tsotsos (2011). It should be
apparent that the P-Lattice representation is much more faithful
to the organization of different processing areas in the brain than
the standard CNN.

The P-Lattice concept also lends itself very naturally to
thinking about an organization that includes not only a
part-whole relationship as is common for pyramids, but
also a specialization relationship. Different features may be
separated out into different sheets, and those may then
be specialized differently along each pathway of the P-
Lattice.

Frontiers in Psychology | www.frontiersin.org August 2017 | Volume 8 | Article 121643

http://www.frontiersin.org/Psychology
http://www.frontiersin.org
http://www.frontiersin.org/Psychology/archive


Tsotsos Revisiting Complexity of Visual Processing

SELECTIVE TUNING

As a result of the complexity level analysis, a series of
papers outlined the development of a model for how the
main conclusions in the previous sections might impact a
visual processing hierarchy (Tsotsos, 1988b, 1990, 1995b, 2011;
Tsotsos et al., 1995, 2001; Rothenstein and Tsotsos, 2014).
This model, named Selective Tuning (ST) was intended to
provide a mechanistic explanation for how not only attentive
selection and restriction might occur, but also, how the visual
system deals with the many problems of information flow
described in the previous section. To this end, ST incorporated
pyramid representations, spatiotemporally limited receptive
fields, separable feature representations, dynamic tuning and
attentive selection. In order to deal with the Context Problem,
ST employs a suppressive mechanism, recurrent localization,
to inhibit portions of a receptive field deemed ‘ground’ while
attending to ‘figure’ (see Tsotsos et al., 1995; Tsotsos, 2011
for details). Thus, suppression must be added to selection and
restriction to form the full suite of attentional mechanisms.
ST also offers an explanation for a wide variety of attentional
phenomena; it is among the oldest and most studied models
of attention. ST, beginning with the earliest papers, made a
number of predictions about visual attention at both neural and
behavioral levels, which, starting in the late 1990’s, have seen
broad and strong experimental support17 (reviewed in Tsotsos,
2011; also in Hopf et al., 2010; Carrasco, 2011 and more).

Figure 5 illustrates the main features of the model showing
how there are many aspects to attentive processing, and which
are executed determined by the nature of the task of the
moment. It shows the different stages of processing of the
visual hierarchy needed for different visual tasks. The five
components of the figure represent processing stages ordered
in time, from left to right. The stages may be described as
Figure 5A: pre-stimulus (shown as blank to portray a visual
hierarchy ready for a new stimulus); Figure 5B. top-down
priming for task; Figure 5C: feedforward stimulus processing
and figure selection; Figure 5D: recurrent localization and
local suppression, if the task requires it; Figure 5E: secondary
feedforward processing. This illustrates the main cost associated
with dynamic tuning, namely, time. Each hierarchy traversal
may be primed for different function. Different visual tasks
require different processing times depending on passes through
the hierarchy. A smaller additional cost would be the process of
actual tuning. Different visual tasks require different sets of these
basic elements, sometimes with repeated elements and this shows
how dynamic tuning can be realized.

To summarize, ST features several major elements not present
in other models of attention: (1) the recurrent localization
process; (2) the integration of multiple attentional processes
within a single framework; (3) both local and global attentional
operations; (4) the realization that not all vision occurs within the

17These predictions - all asserted before any supporting experimental data -

include, for example, the suppressive surround in spatially attended stimuli, a

suppressive surround in the attended feature dimension, the latency of attentional

neural modulation having a top-down pattern, that neural modulation due to

attention is present throughout the visual hierarchy, that neural baseline firing

increases for an attended location and decreases elsewhere, and more.

150 ms time frame and that different kinds of visual tasks require
different processes and thus take different durations to complete;
(5) the capacity to dynamically tune the visual processing
hierarchy depending on task; and (6) the use of inhibitory
mechanisms rather than enhancement in order to achieve
attentive effects (enhancement is a side-effect of suppression of
competing stimuli).

NATURE OF SIGNAL INTERFERENCE IN
THE P-LATTICE

The impressive successes of deep learning approaches to vision
system development may lead one to think that vision is
a solved problem, and that all one needs is a fast-enough
computer and enough training data18. The complexity level
analysis does indeed tell us something of interest here: that
with enough computational capacity, some vision problems can
be solved. Recall that the role of image size in the complexity
function; this dictates the primary barrier without attentive
selection. Proponents of deep learning widely acknowledge that
the advent of GPU’s and faster processors contributed to the
recent successes. This is not the same as saying the vision
problem has been made tractable: all it means is that with
enough GPU power, the size of image—that is, the value of
P that can be realized in the complexity expression—is now
a reasonable number for practical applications. Importantly, it
cannot be as large as the size of a human retina. We also note that
although those approaches do indeed receive some motivation
from biological vision, that motivation is almost entirely based on
knowledge of the late 1960’s. The methods validate the concepts
of spatially limited receptive field size, convolution processing
and hierarchical processing levels, but not much more. The
representations typically used in deep learning are also not easily
related to neural representations nor their methods for decoding
those representations. None of this of course should detract from
their practical success. The point here is simply that there is a
great deal more work to be done with respect to understanding
how biological systems deal with visual problems.

Let us return to the representation problem. Pyramid
representations help with reducing complexity but as shown
above, add new complications that can, as a group, be considered
as signal interference. In other words, all incoming signals are
represented in all layers of a pyramid (this is true for central
regions, but not for peripheral—see Figure 2E), as they are in all
layers of a modern CNN too. But they are not easily discriminable
due to the interference that the context, boundary, blurring
problems impose. It is important to examine interference more
deeply.

The Context Problem is due to many-to-one neural mapping,
the Blurring Problem due to one-to-many neural mapping
and the Boundary Problem due to the realities of convolution
processes. Of these, only the Boundary Problem leads to actual
information loss and specifically in the periphery; the rest lead to

18Amnon Sha’shua, for example, asserted this in his keynote lecture the 2016 IEEE

Computer Vision and Pattern Recognition conference, Las Vegas NV (Sha’shua,

2016). Elon Musk also claimed autonomous driving is solved, for which vision is a

key technology, in Eadicicco (2016).

Frontiers in Psychology | www.frontiersin.org August 2017 | Volume 8 | Article 121644

http://www.frontiersin.org/Psychology
http://www.frontiersin.org
http://www.frontiersin.org/Psychology/archive


Tsotsos Revisiting Complexity of Visual Processing

FIGURE 5 | The different stages of processing of the visual hierarchy needed for different visual tasks. The five components of the figure represent processing stages

ordered in time, from left to right. (A) In the first stage, the network is portrayed as “blank,” that is, without stimulus or top-down influences, as it might be prior to the

start of an experiment, for example. (B) The second stage shows the network affected by a top-down pass tuning the network with any priming information to set up

its expectation for a stimulus to appear, when such information is available. Here, the network is set up to expect a stimulus that is centrally located and is imposed via

a global suppression of non-task-relevant locations and/or features. (C) At this point, the stimulus appears and is processed by the tuned network during a single

feedforward pass. If the task is sufficiently simple, such as a detection or categorization tasks with sufficiently simple stimuli so that figure can be selected from

ground, processing is complete. (D) If the required task for this stimulus cannot be satisfied by the first feedforward pass, such as for a within-category identification or

the need for an eye movement response, the recurrent localization algorithm is deployed that traverses the network in a top-down manner, identifying the selected

components while suppressing their spatial surrounds locally. (E) A subsequent feedforward pass then permits a re-analysis of the attended stimulus with interfering

signals reduced or eliminated. It also permits a continuation of the cycle in a repeating fashion, such as would be needed for visual search. This illustrates the main

cost associated with dynamic tuning, namely, time. Different visual tasks require different processing times depending on passes through the hierarchy. A smaller

additional cost would be the process of actual tuning. (Reproduced from Tsotsos and Kruijne, 2014).

signal interference via combination. Every signal continues to be
represented during the feedforward traversal of an input signal,
except that it becomes increasingly intertwined and amalgamated
with nearby signals, dictated by receptive field sizes. Modern
theories prescribe computational decoding procedures that are
able to take this muddled representation as input and decode
it to extract meaning. For example, Hung et al. (2005) used a
classifier-based readout technique (linear SVM) to interpret the
neural coding of selectivity and invariance at the IT population
level. The activity of small neuronal populations over very short
time intervals (as small as 12.5 ms) contained accurate and
robust information about both object “identity” and “category.”
Coarse information about position and scale could be read out
over three positions. Isik et al. (2014) used neural decoding
analysis (also known as multivariate pattern analysis, or readout)
to understand the timing of invariant object recognition in
humans. Neural decoding analysis applies a machine learning
classifier to assess what information about the input stimulus
is present in the recorded neural data. They found that size—
and position-invariant visual information appear around 125
and 150 ms, respectively, and both develop in stages, with
invariance to smaller transformations arising before invariance
to larger transformations. They claimed that this supports a
feed-forward hierarchical model of invariant object recognition
where invariance increases at each successive visual area along
the ventral stream. This is in contrast to work by Zhang et al.
(2011) who show how a classifier can be trained on data from

isolated-object trials and then make predictions about which
objects were shown on either different isolated-object trials or
on trials in which three objects are shown. They concluded that
by focusing on how information is represented by populations
of neurons, competitive effects that occur when two stimuli are
presented within a neuron’s RF, and global gain-like effects that
occur when a single stimulus is presented within a neuron’s
RF, can both be viewed as restoring patterns of neural activity
for object identity and position information, respectively. The
competitive interactions Zhang et al. refer to are attentive
mechanisms whose intent is to reduce interference, which was
the goal of their study. The difference between the last two
papers is due to the different stimuli used, the latter requiring
attention and the former not. We can conclude that although
coarse location information is likely easily extracted after a single
feedforward pass for detection tasks, more complex visual tasks
that require image details of precise features of location likely
are not. The Multiple Foci problem of Figure 3D illustrates
this nicely; spacing within the visual field dictates the degree of
interference.

Let’s continue to examine this neural interference. It is well-
known and studied that the size of visual receptive fields generally
increases with higher levels (or greater abstraction) of processing
within the visual hierarchy of the brain. There is a further
dependency not only on abstraction level but also eccentricity,
or distance of the receptive field from the center of gaze. Kay
et al. (2013) provide illuminating plots of receptive field sizes
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in many visual areas of human cortex as a function of retinal
eccentricity, reproduced in Figure 6. It is clear that the receptive
field size increases with eccentricity within each visual map.
Second, the receptive field size differs between maps, with the
smallest pRFs in V1, and much larger pRFs in ventral (hV4, VO-
1/2) and lateral (LO-1/2, TO-1/2) maps, showing a progression
from least to most abstract in terms of processing. It is important
to note—as the complexity level analysis pointed out earlier—
that receptive fields are space-limited, i.e., there seem to be no
fully connected layers where all receptive fields are connected
to all others. There is a well-defined feedforward as well as
feedback connectivity pattern (mostly symmetric) so that each
element of a representation affects a clear feedforward diverging
cone of elements in the next representation, is fed by a clear
converging cone of elements from the earlier representation
and these connections are bidirectional (this is exactly what
Figure 1 illustrates). A re-plotting of the elements of Figure 6
leads to an explicit view in Figure 7 of the spatial extent

of feedforward convergence. Superimposing the receptive field
maps, V3 onto V1, V4 onto V1 and a hypothetical LO1 receptive
field (using values from Figure 6 at 20◦ eccentricity) shows
clearly that degree of signal convergence onto single neurons with
higher levels of visual processing in cortex. These figures are a
concrete demonstration of the Blurring and Context Problems
of Figure 3. How can the visual system function at all under
such circumstances? Most models do not consider how such
eccentricity-dependent receptive field size variations might be
usefully incorporated.

First, it might be the case that there are many more
target representations at higher levels than previously thought,
something hinted at by the very recent results of Glasser et al.
(2016). That is, the breadth of the P-Lattice representation in the
brain may be significant. Perhaps these might be specializations
as suggested earlier, thus removing some of the interference that
way. Second, lateral interactions within representations could
assist in well-known ways by enhancing contrast, contrast in

FIGURE 6 | Regularities in human population receptive field properties measured with functional MRI. (A) Population receptive field size as a function of eccentricity in

several human retinotopic maps. Two clear trends are evident. First, the population receptive field size increases with eccentricity within each map. Second, the

population receptive field size differs between maps, with the smallest pRFs in V1, and much larger pRFs in ventral (hV4, VO-1/2) and lateral (LO-1/2, TO-1/2) maps

(B) The spatial array of pRFs using the parameters in the left panel. The radius of each circle is the apparent receptive field size at the appropriate eccentricity. [a-from

Kay et al., 2013, Reproduced with permission of the publisher; b-Reproduced with permission of J. Winawer (https://archive.nyu.edu/handle/2451/33887)].

FIGURE 7 | Superposed spatial arrays of receptive fields using plots of Figure 6. (A) V3 over V1. (B) V4 over V1. (C) LO1 over V1 with the LO1 receptive field centerd

over 20◦ eccentricity to match the data from Figure 6. (D) The black circles represent the feedforward divergence of outputs from a single V1 neuron at the V4 level.
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this case not being restricted to luminance but to contrast in
any featural or conceptual space. But this contrast enhancement
cannot be total because local decisions may be wrong (Marr’s,
1982 principle of least commitment; Herzog and Clarke, 2014).

It is not hard to believe that a classifier can indeed be
trained to extract location for simple (Marr-like) images with
small numbers of separated stimuli as Hung et al. report. But
such a situation is not representative of real vision. Something
more is needed for natural images and for tasks where more
precision is required than simple coarse position. There are really
two choices: 1-provide mechanisms that dynamically ameliorate
the interference before interpretation; or, 2-provide mechanisms
to correctly interpret corrupted representations. The methods
just described are of the latter type. We chose to explore the
former possibility. A key feature of the Selective Tuning model of
visual attention is the use of a recurrent localization process that
imposes a suppressive surround around the attended stimulus
as shown in Figure 5D (Carrasco, 2011; Tsotsos, 2011) to deal
with the Context and Routing problems. This would require a
top-down pass through the processing hierarchy after the initial
feedforward pass, consistent with the behavioral timing observed
for such tasks. The requirement for an additional top-down
pass for localization is not inconsistent with the claims of Isik
et al. (2014). In ST, it is the recurrent localization process that
replaces the role of the classifier, and in contrast to current
classifiers presents a biologically plausible mechanism (supported
experimentally, e.g., Boehler et al., 2009, 2011; Hopf et al., 2010).

Signal interference within a pyramid representation is a reality
that seems insufficiently addressed in general. To be sure, the
majority of experimental work, whether neural or behavioral,
focus on foveal or near-foveal stimuli and as the plots of Figure 6
show, the interference impact is not so great. Further, most
experimenters use relatively simple stimuli, spaced apart andwith
little conflicting context. As the diagrams of Figure 3 show, the
distance between stimuli matters for the Blurring, Crosstalk, and
Context Problems and it is experimentally possible to minimize
the effect, thus making it appear as if the problem does not exist.
As a result, experimental work does not fully address the problem
in order to determine if and how it might cause interference or
how the brain might deal with it. New experimental paradigms
seem required.

ATTENTIVE PROCESSING AND ADAPTIVE
BEAMFORMING

The most common way in which attention has found its way
into theories and models of visual processing or other human
sensory or cognitive abilities is as a mechanism to defeat capacity
limits. This is also true for computational systems. The most
prevalent mechanism is that of selecting a region of interest in
some modality of the sensory input or in some conceptual space,
such as a task-relevant sub-domain of interest. In a behaving
agent, eye movements are most often considered the primary
indicator of a shift in attention. Nevertheless, as Tsotsos (2011)
argues and as any review of visual attention (such as Carrasco,
2011) amply illustrates, attention is a much broader capability
with, sadly, no real consensus on how it might be characterized.

One possibility for such a broad characterization appeared in
Tsotsos (2011) where is was proposed that attention is a set of
mechanisms that tune and control the search processes inherent
in perception and cognition, with the major types of mechanisms
being Selection, Suppression, and Restriction. Within each type
are several specific mechanisms as shown in Figure 8.

Earlier, as a result of the complexity level analysis, it
was asserted that the original vision problem is reframed by
partitioning the space of problem instances into sub-spaces
where each might be solvable by a different method instead of
having a single, optimal, algorithm for all problem instances.
The resource limits—which are fixed and common for all sub-
problems in the case of the brain—guide the choices. A key
element of the process is to have a method that, when confronted
with a visual problem instance, can quickly determine which
solution method to apply. And this is where attention is critical.
A sufficiently flexible attentive process can start from the general
and thus largest possible problem definition, and then focus in
and scale down the problem to more manageable sub-problems.
Combining all of these seemingly disparate tools, as shown in
Figure 8, within a single formulation seems a daunting task, but
this is what the Selective Tuning model of attention attempts to
do (Tsotsos, 1988b, 1990, 2011; Tsotsos et al., 1995).

Interestingly, a related combination of disparate tools
has not only been attempted previously, but has developed
into a well-understood and very widely use technology,
namely adaptive beamforming. Beamforming is a signal
processing technique used in sensor arrays for directional
signal transmission or reception (Van Veen and Buckley,
1988). Electromagnetic waves are additive and if more
than one wave co-exists in space and time, this additive
property causes each waveform to interfere with the others.
Beamforming attempts to minimize this interference. This
is achieved by controlling how elements combine so that
some signals experience constructive interference while others
experience destructive interference. Beamforming can be
used at both the transmitting and receiving ends in order
to achieve spatial selectivity. Beamforming can be used for
radio or sound waves and has found numerous applications
in radar, sonar, seismology, wireless communications, radio
astronomy, acoustics, and biomedicine. An adaptive beamformer
dynamically adjusts in order to maximize or minimize a desired
parameter, such as signal-to-interference-plus-noise ratio.
Dynamically adjusting phase and magnitude will cause the
antenna gain pattern to change and provides for directional
sensitivity without physically moving an array of receivers or
transmitters.

The essence of beamforming seems precisely what attention
seeks to accomplish: to pick out the relevant signal from
among all the irrelevant ones. This connection between
attention and beamforming has been made previously in the
auditory domain (see Kidd et al., 2015, for a recent effort)
in order to provide solutions to the well-known Cocktail
Party problem. There are components of constructive and
destructive interference within the attentional mechanisms of
ST, and more, but it would be beyond the scope here to
further explore the relationship. However, it is clear that
any representations of visual information processing must
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FIGURE 8 | Attention is a set of mechanisms that tune and control the search processes inherent in perception and cognition, with the major types of mechanisms

being Selection, Suppression, and Restriction. See Tsotsos (2011) for details on each of the sub-mechanisms.

support these mechanisms. Adaptive beamforming—or perhaps
more appropriately attentive beamforming—might present an
appropriate analogy for formalization of dynamic visual attention
processes.

CONCLUSIONS

The hallmark of human vision is its generality. The same brain
and same visual system allow one to play tennis, drive a car,
perform surgery, view photo albums, read a book, gaze into your
loved one’s eyes, go online shopping, solve 1,000-piece jigsaw
puzzles, find your lost keys, chase after your young daughter
when she appears in danger, and so much more. The reality
is that incredible as the AI successes so far have been, it is
humbling to acknowledge how far there is still to go. Recent
AI systems even sometimes outperform humans so it is difficult
to determine how well they might provide an explanation for
human intelligence. With respect to an explanation for human
intelligence, it is as important to ensure that model systems
behave correctly as humans and with the same response times,
as it is to ensure model systems fail as humans do. The successes
have all been uni-taskers (they have a single, narrowly defined
function)—the human visual system is a multi-tasker, and the
tasks one can teach that system seem unbounded. And it is an
infeasible solution to simply create a brain that includes a large
set of uni-taskers.

Representation has been central to AI since its inception
and it is only recently that it seems supplanted by the
success of the machine learning approach. Unfortunately, the
representations that learning systems create—except possibly

for limited aspects of early vision—seem inscrutable. It
might be that in order to make progress, there remains
a need to better understand the kinds of representations
and their transformations as they may be occurring in the
brain, a sentiment appearing decades ago. Zucker (1981)
stressed the importance of representation. He pointed out
that computational models have two essential components—
representational languages for describing information, and
mechanisms that manipulate those representations, and: “One of
the strongest arguments for having explicit abstract representations
is the fact that they provide explanatory terms for otherwise
difficult (if not impossible) notions.”

Our presentation has focused on the constraints that
complexity level analysis presents for the representations and
for the visual processes that operate on them in the brain
(or in machines). It is clear that the main claim, namely,
that resource-complexity matching is a source of critical
constraints on the viability of theories, remains intact. The 30
years that have passed since their first introduction in this
context have given us the luxury of seeing how they stood
the test of time. None of the conclusions were in common
use back then and some indeed were firmly believed to be
incorrect19. Throughout, we have argued for a very specific
view on representation and their processing, whose features
include:

19For example, the prediction of spatial surround suppression due to attention,

first described in Tsotsos (1988b), was in fact “proved” infeasible in the brain by

Crick andKoch (1990; p. 959) but now is widely confirmed (see review byCarrasco,

2011). See also the various peer commentaries published along with Tsotsos (1990).
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• an overall organization of visual areas into a lattice of
pyramids,

• spatiotemporally limited receptive fields,
• specialized pathways based on visual features,
• a suite of attentional mechanisms that dynamically suppress,

select and restrict processing to control the input space and to
ameliorate the signal interference problem, and,

• the use of task or world knowledge can have profound impact
on the computational complexity of a visual problem and
should be employed whenever available,

• a partitioning of the space of visual tasks into a taxonomy
of sub-tasks, each with its own specific characteristics
and requiring differing methods all realized on that same
processing substrate,

• the different decision-making strategies and the complex
taxonomy of visual tasks strongly motivates the need for
an executive control process that would dynamically decide
on how to best approach and solve visual tasks as they are
presented.

Moreover, the intractability results of our own work and
of all other authors cited here, and more, show the futility
of pursuing single criterion algorithms of any kind (for
example, Friston’s (2010) free-energy principle). Much is

already in line with current knowledge of the brain, many
of these features have found their way into the successful
systems of the present, but much still requires further
study. There is no suggestion that complexity level analysis
can replace any other type of analysis. However, it is
a critical component of theory development and provides
an important source of constraint that models cannot do
without.
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Generating associations is important for cognitive tasks including language acquisition

and creative problem solving. It remains an open question how the brain represents

and processes associations. The Remote Associates Test (RAT) is a task, originally

used in creativity research, that is heavily dependent on generating associations in a

search for the solutions to individual RAT problems. In this work we present a model

that solves the test. Compared to earlier modeling work on the RAT, our hybrid (i.e.,

non-developmental) model is implemented in a spiking neural network by means of

the Neural Engineering Framework (NEF), demonstrating that it is possible for spiking

neurons to be organized to store the employed representations and to manipulate them.

In particular, the model shows that distributed representations can support sophisticated

linguistic processing. The model was validated on human behavioral data including the

typical length of response sequences and similarity relationships in produced responses.

These data suggest two cognitive processes that are involved in solving the RAT: one

process generates potential responses and a second process filters the responses.

Keywords: semantic search, vector representations, semantic spaces, Neural Engineering Framework (NEF),

spiking neurons, remote associates test

1. INTRODUCTION

Language acquisition is highly dependent on the ability to create associations (Elman et al.,
1997; Rogers and McClelland, 2004), as they are a central means of expanding both vocabulary
and syntax (Brown and Berko, 1960; Hills, 2013). As well, associations allow infants to learn
about previously unseen objects or concepts in terms of semantic similarities and semantic
distinctions (Mandler and McDonough, 1993). While acquisition of language occurs in the earliest
stages of human growth and development, starting with utterances of simple words and sentences,
language skills continue to develop over the lifetime. Because associative mechanisms play such a
crucial role in language and human cognition more generally, it is important to understand how
the brain might represent, store, and deploy them.

The representation of linguistic content is an actively researched topic in various disciplines.
For example, in Natural Language Processing (NLP) researchers work on optimal representations
for the extraction of information from large corpora of text, as well as algorithms for
text comprehension and production. Technology companies such as Facebook and Google
are actively researching how to make machines better at understanding human language
to improve their services and the efficiency of interactions between machines and humans
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Kajić et al. A Spiking Neuron Model for the RAT

(Mikolov et al., 2013; Bordes et al., 2014; Weston et al., 2014;
Hermann et al., 2015). One of the primary goals inNLP is to reach
high performance on practical problems. Because this goal is
generally adopted without regard for psychological or biological
plausibility, it is unclear how such approaches can provide useful
insights into how the brain solves the same problems.

Potentially more promising contributions to understanding
the representation of lexical content and its meaning in the
brain come from neuroimaging studies (Binder et al., 2009).
Several studies have used fMRI data to construct semantic maps
spanning broad areas of the cerebral cortex (Huth et al., 2012,
2016). Also, direct brain stimulation in the frontal cortex, left
perisylvian cortex, and posterior temporal cortex of epileptic
patients has identified regions essential for language production
and comprehension (Ojemann et al., 1989).

While such studies provide us with a high-level perspective
on possible brain regions involved in the processing of language,
they do not shed light on how words and word associations
might be represented by individual neurons and small networks.
Improving our understanding of these lower-level mechanisms
is a daunting task due to difficulty of locating, accessing, and
recording from the brain regions responsible for such processes.
In addition, direct recordings of neurons are invasive and can
seldom be done on healthy humans.

Here, we opt to use a modeling approach to circumvent
these problems while still gaining insight into representational
structures and mechanisms that may potentially be used by the
brain. We chose a linguistic task, the Remote Associates Test
(RAT), to verify that the chosen representations of words and
associations allow the model to perform in correspondence with
human behavioral data. The model is hybrid insofar as it does
not simulate the developmental process underlying the neural
behavior. Rather, we use an analytical approach to derive the
neural connectivity and then use simulated spiking neurons to
produce the search process in the RAT. This makes it a non-
developmental neural model, and we believe this is an important
step toward the ultimate goal of having a complete neural account
of the entire process that results in RAT behavior.

The choice of a particular neuron model also represents
an important decision in the process of constructing the
model. While there is a wide variety of neural models, we
have chosen the leaky integrate-and-fire (LIF) neuron model
due to its favorable trade-off between computational efficiency,
analytical tractability, and its ability to capture some of the
basic features of neuronal dynamics observed in biological
systems (Izhikevich, 2007). In particular, synaptic dynamics and
noise from fluctuations introduced by spiking impose constraints
that a theoretical approach used to simulate neural systems needs
to account for. The LIF neuron model is a spiking neuron model
as it imitates the spiking behavior observed in biological neurons.

In biological neurons, electrically charged ions are exchanged
across the cell membrane and an influx of positive ions into
the cell can cause the neuron to trigger an action potential
(also known as a spike). A spike can be registered by another,
receiving neuron, if it has a synaptic connection with the neuron
emitting a spike. In our modeling approach, spiking neurons
are also connected by synapses so that the arrival of a spike at

the side of a receiving neuron causes a post-synaptic current.
The relevant neuron and synapse model parameters such as
the membrane and synaptic time constants, and the shape of
the post-synaptic currents conform to empirically measured
value ranges and properties. These constraints are ensuring that
the modeled system approximates the biological system and
provides an account of the internal mechanisms underlying the
investigated behavior.

1.1. The Remote Associates Test (RAT)
The RAT was developed in the early 1960s (Mednick, 1962) to
study an individual’s ability to think creatively. A creative thought
or idea can often be described as novel and unusual (Boden,
2003). In the RAT subjects are presented with three cue words
and have to find a solution word related to all cues within a
time limit. An aspect of creativity is thought to be captured
by subjects generating solution words that are only remotely
associated with the problem cues, requiring subjects to relate
familiar words in a novel way. For example, given a cue triplet
fish, mine, and rush, thinking about common associations of
each of the triplets such as water, coal, and hour is not helpful.
Instead, gold, a less frequent associate of each of the words, is the
correct solution as it can be meaningfully combined with each of
the cues. The associative relationship between the cues and the
solution in the RAT can vary: it can be a compound word such
that each cue and the solution form a new word (e.g., firefly); it
can be semantically related (e.g., water and ice); or it can form
an expression (e.g., mind game). Mednick (1962) proposed that
creative individuals are more likely to think of unstereotypical
words that are solutions in the RAT. He attributed this to their
flat associative hierarchy, in which the probability of coming up
with an association is not very different for typical and untypical
associations. In contrast, individuals scoring lower on the RAT
would produce stereotypical associates with higher probability
than untypical associates, which Mednick (1962) described as the
characteristic of a steep associative hierarchy.

Performance on the test is expressed as the number of
correctly solved items within a time limit, which is typically
somewhere between a few seconds and a few minutes. Longer
intervals correlate with higher solution rates (Bowden and Jung-
Beeman, 2003), and it is assumed that longer solving periods
allow for deliberate search processes, while shorter solving
times are more likely to reflect sudden and involuntary insight
solutions (Kounious and Beeman, 2014). Analyses of responses
people give when attempting to solve a RAT problem have
shown particular search patterns that differentiate search in
the RAT from other related search processes (Raaijmakers and
Shiffrin, 1981; Hills et al., 2012). Specifically, the RAT search
process retrieves words that are strongly related to one of the
three problem cues, shows occasional switching between the
cues (Smith et al., 2013; Davelaar, 2015), and involves a local
search strategy (Smith et al., 2013; Smith and Vul, 2015).

Performance on the RAT has been characterized by
experimental, theoretical, and computational studies (Gupta
et al., 2012; Kenett et al., 2014; Klein and Badia, 2015; Olteteanu
and Falomir, 2015). Mednick’s proposal about flat associative
hierarchies of high-scoring individuals has been supported
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experimentally by studies showing that indviduals who score
higher on the RAT tend to avoid high-frequency answers on
both incorrect and correct trials (Gupta et al., 2012; Kenett
et al., 2014). This observation was further supported using
NLP approaches that achieve better-than-human performance
on the RAT (Klein and Badia, 2015; Olteteanu and Falomir,
2015). The properties of individual subjects’ semantic networks
correlates with their performance on the RAT (Kenett et al.,
2014; Monaghan et al., 2014). Specifically, individuals who score
high on a battery of creativity tests have semantic networks with
small-world properties (Kenett et al., 2014). The connectivity
in such networks is sparse, as they are characterized by short
average path lengths between words, and strong local clustering.
However, even though every node in the network is only sparsely
connected, it takes just a few associations to reach any other
node in the network. This kind of topology would assist in the
solution of the RAT because quick, efficient searches can cover
much of the semantic network.

1.2. Neural Representation
The question of word representation is central to all models
concerned with linguistic tasks, including the RAT. Borrowing
from the early theories of semantic memory in cognitive
psychology (Collins and Quillian, 1969; Collins and Loftus,
1975), it is reasonable to approach the RAT by creating a
semantic network where individual words are represented as
nodes connected via edges indicating associations. Then, the
process of finding the solution involves either a random or
directed search in the network. Indeed, several models have used
such representations to demonstrate performance on par with
human performance (Bourgin et al., 2014; Monaghan et al., 2014;
Kajić and Wennekers, 2015).

In terms of neurally plausible representations, these models
would most closely correspond to the localist theory of
representation (Bowers, 2009). Localist representations imply
that a single neuron or a small group of neurons carries
meaning. While this approach is often considered problematic
in that it implies the existance of so-called “grandmother cells”
(where there are particular neurons dedicated to representing
the concept “grandmother”), some support for this type
of representation can be seen in studies recording from
single-cells which show high degrees of specificity in their
response to external stimuli (Hubel and Wiesel, 1968; Moser
et al., 2008; Quian Quiroga, 2012). In contrast to localist
representations, distributed representations (McClelland and
Rumelhart, 1987; Rogers andMcClelland, 2004) are characterized
by the assumption that a concept is represented by a population
of neurons, where each individual neuron participates in the
representation of multiple concepts. More recently, it has
been argued that the kind of data used to support localist
representations is often exhibited by distributed models (Stewart
and Eliasmith, 2011; Eliasmith, 2013, p. 98–99, 369–370).
Importantly, as will be described in more detail below, the
method for distributed representation of concepts used in
this paper suggests that each neuron within a distributed
representation has a preferred state. This means that some
neurons might be highly specific while others will have

broad responses in our biologically informed distributed
representation (Stewart et al., 2011a).

1.3. Modeling the Remote Associates Test
Despite arguments and evidence that distributed representations
are used in many parts of the brain, there is no agreed upon
approach to characterizing the representation of cognitive or
linguistic structures using such representations. In particular, it
is an open question of how such representations support word
associations and how they might be employed in tasks requiring
associative processing. We suggest answers to these questions by
building a model that bridges from individual spiking neurons to
the behavioral level and validating it on the RAT task.

To construct the model, we used the Neural Engineering
Framework (NEF; Eliasmith and Anderson, 2003) described
in the following section. It allows us to derive the required
neural network to implement the necessary representations
and transformations for performing the RAT. We describe
the specific model in Section 2.3 and evaluation methods in
Section 2.4. The quantitative and qualitative results are presented
in Section 3, followed by a discussion and concluding remarks.

2. MATERIALS AND METHODS

The hybrid model presented in this paper was constructed
with the methods of the NEF (Eliasmith and Anderson, 2003).
The NEF specifies how a wide variety of functions can be
implemented in biological neurons. It has been successfully
used to model a diverse set of neural systems including those
controlling behaviors such as eye position control, directed arm
movements, and lamprey locomotion (Eliasmith and Anderson,
2003). It has also been successfully applied to the modeling of
higher cognitive tasks such as serial working memory and action
selection, and was the basis for the construction of the first
detailed brain model capable of performing multiple tasks, called
Spaun (Eliasmith et al., 2012). In this section we introduce the
essentials of the NEF required to represent words with neural
populations and to manipulate these representations. Using these
basic methods, we describe the organization of a neural network
to realize the cognitive processes in RAT memory search. We
conclude by describing the semantic analysis methods used to
validate the model.

2.1. Neural Engineering Framework (NEF)
Wefirst describe how a group of neurons encodes a vector-valued
stimulus x, which lays the foundation for the representation of
single words. Neurons have preferred stimuli, that is, they will
respond more strongly to some stimuli than to other stimuli. For
example, neurons in the striate cortex show selective responses
to vertical bars of different orientations (Hubel andWiesel, 1968)
and neurons known as place cells in the hippocampus selectively
exhibit specific firing patterns when an animal is present in a
particular location in an environment (Moser et al., 2008). This
stimulus preference can be expressed by assigning a preferred
direction vector ei to each neuron i. The inner product e⊤i x

expresses how strongly a neuron will respond to a given stimulus;
it increases as the stimulus vector aligns with the preferred
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direction. This value can be thought of as being proportional
to the amount of current flowing into a neuron, leading to the
equation

ai(t) = ai
(

x(t)
)

= Gi

[

αie
⊤
i x(t)+ Jbiasi

]

(1)

which gives the neuron activity ai(t) at time t for a time-
dependent stimulus x(t). Here we convert the inner product into
an input current to a neuron by means of a gain factor αi and
a bias current Jbiasi , used to capture observed neural responses
also known as neural tuning curves. The spiking activity ai of
a neuron is given by applying a neuron non-linearity Gi to the
input current.

While a wide variety of neuron non-linearities can be used
with the NEF, here we use the LIF neuron model, which captures
important properties related to neuronal excitability observed
in biological neurons (Koch, 2004, Chapter 14). The incoming
currents are accumulated as membrane voltage until a firing
threshold is reached. At that point, the neuron emits a spike and
the membrane voltage is reset to its resting value for a refractory
period during which the neuron is unable to produce spikes.
Without incoming currents, the membrane voltage will slowly
decay to a resting potential due to leak currents. The left panel
of Figure 1 shows an example of how individual neurons in a set
of seven LIF neurons respond to inputs in the range x ∈ [0, 1].
In this one-dimensional space, all preferred directions are either
−1 or 1. For this example specifically, we assigned preferred
directions of 1 to all neurons, as indicated by the increasing firing
rate with increase of x. This captures the effect where stronger

environmental stimuli (larger values of x) elicit stronger neural
responses.

Given the firing in a group of neurons, how do we reconstruct
the represented value x? With LIF neurons, ai(t) is a spike train,
i.e., ai(t) is 0 at all times t that no spike occurred and peaks at
the spike times. However, biologically, each spike causes a post-
synaptic current, which can be modeled as an exponential filter
of the form h(t) = 1

τ
exp(−t/τ ). This function can be combined

with a linear decoding to provide a weighted linear filter that
estimates the original vector x. That is:

x̂(t) =
∑

i

ai(t) ∗
[

dih(t)
]

. (2)

The weights di are obtained by a global least-squares

optimization of the error E =
∑

k

∥

∥xk − x̂k
∥

∥

2
of the

reconstructed stimulus across k sample points and all neurons
in the group. The decoding process is visualized in the top right
panel of Figure 1. The decoding weights scale the tuning curves
(left panel) and the represented value is estimated with a sum
over the scaled tuning curves.

Representing and reconstructing values is not sufficient for
functionally interesting neural networks. Information needs to be
transmitted and manipulated between groups of neurons. To do
this, we need to find the synaptic connection weights that will
perform this transformation. These can be computed from the
decoding weights di of the pre-synaptic neurons that reconstruct
an estimate of the represented value x̂. In addition, the input
current to a post-synaptic neuron j depends on its preferred
direction ej and gain αj. Because the quantities di, ej, and αj do

FIGURE 1 | Randomly generated tuning curves for seven neurons (left) and linear combination of these to decode the represented value x (top right) or

decode a function, here x2 (bottom right). The dashed gray line is the ideal output and the black solid line the decoded value from all seven neurons.
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not change over time1, they can be multiplied together to provide
standard neural network connection weights as follows

Wji = αje
⊤
j di (3)

where Wji comprise the synaptic weight matrix W. This is
the optimal synaptic connection weight matrix for transmitting
information from one neural group to another (Eliasmith and
Anderson, 2003).

Finally, in addition to finding synaptic weight matrices that
simply pass information from one group of neurons to the next,
the NEF also allows us to find weight matrices that will compute
functions f (x) with neurons. This is done by using alternate

decoding weights d
f
i . Again, these can be determined from a

least-squares optimization, but with a different error function

Ef =
∑

k

∥

∥

∥
fk(x)− f̂k(x)

∥

∥

∥

2
. The decoding with such alternative

weights for the example of f (x) = x2 is shown in the bottom right
panel of Figure 1. The optimization for finding decoding weights
is done separately for each function, but over all neurons within
a group of neurons at once.

To summarize, the NEF allows us to state how a time-varying,
vector-valued stimulus is encoded in neural populations, how the
value represented in a neural population can be decoded, and
how to connect neural populations to compute functions using
those represented values. All connection weights are determined
in an offline optimization without the need for an online process.

2.2. Representing Words and Associations
with the NEF
To model the word search process in the RAT, words and
associations among them need to be represented. We centrally
adopt a representation where the activity of several neurons
contributes to a representation ofmultiple words. In the NEF, this
is achieved by using vectors to represent words, which we have
elsewhere referred to as Semantic Pointers (Eliasmith, 2013)2.
With the random distribution of preferred direction vectors ei,
each neuron will be involved in the representation of multiple
words and the representation is distributed across the neurons.

Representing words as vectors has a long tradition within NLP,
for example Latent Semantic Analysis (Deerwester et al., 1990;
Landauer andDumais, 1997) and word2vec (Mikolov et al., 2013)
are just two prominent approaches of generating word vectors
from text corpora. Approaches like LSA and word2vec usually try
to encode semantic structure or associations into the similarity
or distance between the vectors. However, given two associated
words A and B, this makes it difficult to decide which of these
words is represented under the noisy conditions of plausible
spiking neural representations. The word vector for A might
become more similar to B than to A due to the noise. Thus,
1This assumes no synaptic weight changes, e.g., through learning, are happening.

These could also be handled in a biologically realistic manner by the NEF (Bekolay

et al., 2013), but are out of the scope of this paper.
2Semantic Pointers for words are more sophisticated than the representations

used here, as they can encode structured representations as well. However,

those structured representations are also vectors encoded as described here,

so the present model is consistent with using semantic pointers for cognitive

representation more generally.

we avoid this kind of representation and use nearly orthogonal
vectors. Specifically, we generate random unit-vectors with the
constraint that no pair of such vectors exceeds a similarity of
0.1 as measured by the dot product. To fulfill the similarity
constraint, a sufficient vector dimensionality has to be used. For
theN = 5018 words used in the model, we set the dimensionality
to D = 2048. This is considerably below the number of words
because the number of almost orthogonal vectors, that can be
fit into a vector space, grows exponentially with the number of
dimensions (Wyner, 1967).

Such vector-based word representations have been
successfully used to implement a variety of cognitive tasks
such as the Tower of Hanoi task (Stewart and Eliasmith, 2011),
inferential word categorization (Blouw et al., 2015), and Raven’s
Advanced Progressive Matrices (Rasmussen and Eliasmith,
2014). These representations have been shown in simulation
to be robust to neural damage (Stewart et al., 2011a) and are
consistent with the type of distributed representation found
throughout sensory and motor cortex (Georgopoulos et al.,
1986).

We next turn to the methods we used to compute the
connection matrix between groups of neurons representing
associations. These methods refer to algebraic operations and
we do not consider them to be a part of the model. Instead,
we use them to compute a matrix Ã, which is implemented in
connection weights among groups of neurons. The matrix Ã is
used to describe associations between words and it transforms
a word vector w to a linear combination of its associates. This
matrix can be derived from an association matrix A where Aij

gives the associative strength from word i to word j. To do so
we need to define the N × D matrix V that collects all the
word vectors, i.e., row i of V is the vector representing word i.
Then we can state Ã = V⊤A⊤V . Applied to a vector w, this
will first correlate w with all the word vectors (Vw) to yield an
N-dimensional vector indicating the similarity with each word;
then A⊤ is used to retrieve the corresponding associations before
V⊤ projects those associations back into aD-dimensional vector.
As all of this collapses into a single linear transformation matrix
Ã, the retrieval of associations can be easily implemented with the
NEF in the connection weights between two groups of neurons,
computing the function y = Ãx.

The model assumes that this set of connection weights
is given. That is, we do not aim to explain the underlying
developmental process, or speculate on whether particular
mechanisms are innate or acquired developmentally. We would
expect that the learning of associations and word representations
occurs separately from the search process. Prior work (Bekolay
et al., 2013; Voelker, 2015) has demonstrated the learning of
NEF connection weights with spiking neurons in a biologically
plausible manner, but we leave the investigation of these
processes in this context to future work.

2.3. Model Description
We describe the core parts of the model most relevant to the
RAT here, omitting implementational details not relevant to the
main model function. A complete description can be found in
the Supplementary Material. We used the Nengo neural network
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simulator (Bekolay et al., 2014) for the implementation of the
model. The model source code can be found at https://github.
com/ctn-archive/kajic-frontiers2016.

All components of the model can be grouped into two main
parts (see Figure 2):

• A cue selection network that randomly selects one of the three
input cues as the primary cue. This selection is repeated in
certain intervals to allow the primary cue to switch.

• A response network that selects an association as a response
based on the current primary cue and previous responses.

While all three cues are being provided as input to the model,
only one of them at a time will be regarded as the primary cue
to generate associations. This is consistent with the way humans
generate responses (Smith et al., 2013). To select a single cue
each input cue is fed through a group of gating neurons that
project to the neurons representing the primary cue. Inhibiting
a set of gating neurons will prevent the transmission of the
corresponding cue. To select a single cue, a simple winner-take-
all (WTA) mechanism, seeded by white noise, is used. To get
the required inhibitory gating signal, the WTA output has to be
inverted. This is done with additional groups of neurons biased
to represent 1. The WTA output will inhibit one of these groups
to deactivate its inhibition of the gating neurons.

In the response network a single associated word is selected by
a clean-up memory (Stewart et al., 2011b) with an added WTA
mechanism. The input vector is correlated with the individual
word vectors and each correlation value is represented by a
group of neurons. In this way, the preferred direction vectors
are not randomly distributed as in other parts of the model,
but the preferred direction of every neuron and every group of
neurons corresponds to one of the words. Furthermore, these
groups of neurons threshold the represented value at 0.1. Each
group is connected with every other group with lateral inhibitory
connections, and to itself with a self-excitatory connection. This
allows the group with the strongest input to remain active,
while inhibiting all other groups. Another feedback connection
is used to capture the evidence on the locality of search (Smith

et al., 2013). This connection implements a transformation Ã, so
that the associates of the current response are fed as additional
input to the WTA network. In Figure 2, all of these recurrent
connections are denoted by a single feedback connection on the
WTA in the response network.

The response inhibition plays a crucial role in allowing the
next word to appear in the search process. It is realized as a
neural group acting as a leaky integrator. Without external input,
the represented vector will slowly decay to the zero vector. A
recurrent connection feeding the output of the neural group
back to itself prevents the otherwise very quick decay. External
input to the integrator will slowly shift the represented value
toward the input vector. This input is provided from the WTA
network, while at the same time the response inhibition is used
to inhibit the WTA network. Thus, the active word in the WTA
network will be subject to increasing inhibition until finally a
new word is selected. This switch will typically happen before the
vector represented by the response inhibition shifted completely
to the input vector. Because of that, the response inhibition will
represent an additive mixture of the sequence of the last couple
words and prevents those from reappearing in the search process
in short succession.

The list of free model parameters and their values which
produce the described model behavior is provided in Table 1.
The values have been determined manually by observing which
ranges produce the desired word-selection behavior.

To generate the association transformation matrix Ã, we used
the Free Association Norms dataset (FAN; Nelson et al., 2004).
This dataset was constructed from a series of free association
experiments conducted with over 6000 participants over the
course of a few decades. In the experiments, participants were
presented with a cue word and asked to write down the first
word they thought of. In this way, a distribution of associates
was created for every cue word by norming the frequency
of response with the number of participants performing the
task. The FAN data have been shown to provide a good
match with human performance on the RAT when using it
for solving RAT problems with a 2 s time limit (Kajić et al.,

FIGURE 2 | The architecture of the RAT model. All neural groups, gating neurons, and networks consist of spiking neurons. The cues, noise, and bias are

provided as external input to the model. The Ã label indicates the transformation, implemented on the connection to produce the associates of the primary cue.
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TABLE 1 | Free parameters of the RAT model.

Parameter Value Description

d 2048 Number of dimensions per word vector

th 0.6–0.8 Percentage of randomly removed associations

in the association matrix (varies with simulation)

assoc_th 0.05 WTA cut-off input threshold

cue_strength 0.1 Input strength of individual cues to WTA

network

primary_cue_strength 0.7 Input strength of primary cue to WTA network

wta_feedback_strength 0.5 Input strength of associates of current

response to WTA network

noise_std 0.01 Standard deviation of the zero-centered

Gaussian noise in the cue selection network

integrator_feedback 0.95 Strength of recurrent connection on response

inhibition

2016). Here, we use a binary association matrix A by assigning
1 to all non-zero association strengths and 0 otherwise. This
disregards the associative strengths and only considers the (non-)
existence of associative links. Preliminary simulations indicated
that this approach gives a better match to the human data than
weights proportional to the frequency of associations. To model
individual differences in associative networks and adjust solution
probabilities tomatch human data, we randomly remove between
60% and 80% of associations in thematrix by setting them to zero.
This range has been determined empirically.

Not all potential responses produced by the response network
qualify as a valid response to a RAT problem. Some words
might be the result of an implicit priming effect, where a
previous response primed a word which is not related to any
of the cues. Also, it is reasonable to assume that participants
in the experiment have typed only a subset of words that they
thought of. To account for these effects, we implement a filtering
procedure that regards only certain words as responses to a RAT
problem. For every generated word, a similarity measure to the
problem cues is calculated and, if it is below a threshold, the word
is dismissed. The similarity is the sum of association strengths
between every cue and the word.

Prior work (Kajić et al., 2016) allowed us to focus on a
single source of association data for the generation of potential
responses. However, we have no reason to assume that the
same data is optimal for the filtering procedure. As such, we
explore two association matrices and their binary variants for
filtering purposes: FAN and the Google Books Ngram Viewer
dataset (version 2 from July 2012, Michel et al., 2011, here
referred to as Ngrams). We have previously shown both datasets
to be suitable for modeling the RAT (Kajić et al., 2016). Although,
the two sources of data contain similar information, there are
interesting differences: approximately 6.5 million association
pairs exist in the Ngram matrix and not in the FAN matrix.
Conversely, only about 26,000 associations exist in the FAN but
do not exist in the Ngram matrix.

Unlike the Ngram matrix, the FAN matrix contains non-
reciprocal association strengths because associations are not
bi-directional. Ninety-four percent participants in the free

association experiment responded with the word right when
given a cue left. However, the cue word right has much lower
association to the word left, as only 41% participants responded
with left and 39% participants responded with wrong. We used
the sum of the FAN matrix with its transpose to obtain a
symmetric association matrix.

While FAN data provides empirically derived association
information through experiments with humans, a co-occurrence
matrix for the Ngram data set has been derived by counting
frequencies of n-grams across 5 million books published up to
2008. This is the second matrix we use. Here, we focus on 2-gram
(bi-grams) only for words which exist in the FAN database. The
Ngrammatrix was constructed by iterating over all combinations
of associative word pairsw1 andw2 and summing up occurrences
of the 2-gram (w1,w2) and the 1-gram w1w2 in the corpus.

Apart from using matrices that contain association strengths
(for FAN) and co-occurrence frequencies (for Ngrams), we also
explore whether just the existence of an association is sufficient
to obtain the distribution of responses similar to the distribution
of human responses. This is easily achieved by setting every non-
zero entry in the matrix to one and gives the binary matrices
bFAN and bNgram.

2.4. Model Evaluation
To evaluate the model, we use a set of 25 RAT problems
and compare the model responses to the human responses
from Smith et al. (2013). For each of the 25 problems, we ran
56 simulations with different random number seeds to ensure
the independence of the results from the initial conditions, such
as the choice of neurons and word vectors. For the analysis of
responses, we adapt a set of analysis tools from Smith et al. (2013),
which was originally developed to analyze human responses
and characterize memory search in the RAT. The same analysis
tools are used for human responses and model responses. While
the experimental details about the data collection and detailed
descriptions of analysis methods are available in the original
publication, we present a brief overview of the data and a
description of the adapted methods.

The data set contains responses from 56 participants, which
were given 2 min to solve each RAT problem. Every participant
was given 25 problems and was instructed to type every
word which came to their mind, as they were solving the
problem. Participants indicated when they thought they had
provided the correct solution word with a key press. Thus,
every trial consists of a sequence of responses from one
participant to one RAT problem, ideally ending with the correct
solution. Here, the analysis of responses has been performed
over 1396 human trials and 1400 model trials. For each
RAT problem, we ran 56 simulations, corresponding to the
number of human participants. In 169 trials, human participants
marked an incorrect response as correct and we excluded those
from qualitative analyses, as they could have skewed analyses
comparing how participants approached the final answer on
incorrect and correct trials.

For every trial we did a series of pre-processing steps, as
per Smith et al. (2013). Word pairs with words not available
in the Free Norms or words identical to one of the cues were
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Kajić et al. A Spiking Neuron Model for the RAT

excluded from the analysis. Responses repeated twice in a row
were merged into a single response. Then, we assigned a 300-
dimensional word vector to every word, including problem cues,
the solution, and human responses. Those vectors were based
on the Word Association Space (WAS; Steyvers et al., 2004),
constructed by reducing the dimensionality of an association
matrix. This matrix was theWAS S(2) measure based on the FAN,
which includes not only direct association strengths between two
words wi and wj, but also links across one intermediary word,
i.e., associations from wi to wk to wj. The similarity between
words was measured as the cosine angle between the assigned
word vectors. To conclude the pre-processing, every response
was assigned the word vector with the highest similarity as the
primary cue vector.

Metrics were calculated on the pre-processed data to evaluate
the model. First, we determined the average response similarity
for within and across cluster response pairs of adjacent responses.
Clusters were defined on the primary cue of the responses;
adjacent responses with the same primary cue are considered to
be part of the same cluster. This was done to test for bunching
of responses around cues by comparing the similarity between
word pairs in each cluster. The assumption is validated with a
permutation test for average response similarity by assigning cues
from another trial and checking for conservation of similarity
trends. The average response similarity within clusters is also
computed in a cleaned data set, where all missing entries
were dropped, which yielded new response pairs. Second, the
probability of switching primary cues is computed as the number
of response pairs with the different cues divided by the total
number of response pairs. This value needs to be compared
against a baseline probability based on the frequency each cue
was selected under an independence assumption. This baseline
calculation is required because certain cues might be selected
more or less often than pure chance would predict. Third, the
similarity between adjacent and non-adjacent responses within a
cluster is computed to test for the direct influence of the previous
response on the next one. The same is done for the responses with
different primary cues, which occur right at the cluster breaks.
Fourth, we tested whether the similarity to the final response
increases as participants approach the final answer (either correct
or incorrect).

3. RESULTS

In this section model responses are presented and compared
to human responses using the methods described. Quantitative
comparisons refer to the statistics of responses in terms of
the number of correct solutions and the average number
of responses for each RAT problem. The qualitative analysis
addresses semantic properties of responses. Semantic analysis
is based on the WAS space as described in Section 2.4. The
aim of the qualitative analysis is to investigate whether response
search trends, observed in human responses, match with those
produced by the model. In particular, this refers to bunching
of responses around problem cues, local search strategy, and
clustering patterns.

3.1. Quantitative Comparison
The model solved on average 43% of the problems, showing a
moderate correlation (Pearson correlation coefficient r = 0.49,
p < 0.05) with humans who on average solved 42% problems.
The left panel of Figure 3 shows the accuracy on the 25 problems
averaged, respectively, over all model simulations and over all
human subjects. By applying the two-sided exact binomial test
we find that for 14 out of 25 problems there is a statistically
significant difference (p < 0.05) between the human and model
responses3. These results are expected given that there are some
problems which are easier for humans, and others that are easier
for the model. On two problems—dust, cereal, fish; and speak,
money, street—the model accuracy was more than 35 percentage
points greater than the human accuracy on the same problems.
On the other hand, there was one problem, safety, cushion,
point where the human score was more than 35% points higher
than the model score. However, Table 2 indicates that, while the
accuracy of this model matches well to the human performance,
this model produces a much longer sequence of outputs than
observed in the human subjects (40.20 vs. 7.78).

To deal with this discrepancy, we consider that there is
some filter applied between the output of the model and the
actual reported responses (in other words, the subjects do not
actually write down all the words that come to mind while
performing the task). As described in Section 2.3, this means
that only a subset of all words produced by the model will be
regarded as a set of responses to a RAT problem. In particular,
a word that has a connection strength to all three cues below
a threshold will be discarded. Thresholds have been determined
as the lowest connection strength between the sets of three cues
and solution for all problems. In this way, filtering will ensure
that all solution words pass the filter. As a result, the accuracy
and the correlation with the human accuracies are independent
of the filtering method. Table 2 summarizes the statistics for the
raw data and various filteringmethods.We compared the average
number of responses per trial, the shortest and longest response
sequence, and the match between distributions of the number of
responses.

Overall, the Ngram matrix and the binary Ngram matrix yield
distributions that best match to human data (r = 0.95 and
r = 0.93, respectively). The threshold for the binary Ngram
matrix has been set to 3, so that a word will pass the filter if it
is an associate of all three problem cues. Reducing the threshold
to two decreases the correlation with the distribution to r = 0.36
(p < 0.05) and increases the average number of responses per
problem to 17.73. Figure 4 displays the distributions for all filters
plotted against the distribution of human responses. The Ngram
derived matrices are more aggressive in filtering the responses
compared to the FAN derived matrices. The former preserve
≈ 20% of words produced by the model, while the latter did
so for ≈ 40% of the responses. Although, the Ngram matrix
and the binary Ngram matrix yield comparably good matches

3It should be noted that if the number of problems is increased sufficiently, then

there will always be a statistically significant difference for all conditions. For this

reason, we take this test as a means of identifying problems where model responses

deviate the most from human responses rather than as a measure of the quality of

the model.
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FIGURE 3 | (Left): Average accuracy on 25 RAT problems for model responses and human responses. Error bars denote 95% bootstrap confidence intervals.

(Right): Linear regression (Pearson correlation coefficient r = 0.49, p < 0.05) with 95% bootstrap confidence intervals.

TABLE 2 | Quantitative analysis of raw and filtered model responses.

Analysis Humans Raw Filtering method

FAN bFAN Ngram bNgram

Filtering threshold 0.006 1 0.006 3

Shortest response sequence 1 2 1 1 1 1

Longest response sequence 49 46 39 40 27 33

Mean response sequence length 7.78 40.20 16.99 17.47 8.33 8.44

- Correlation with human data (r) −0.30* 0.54*** 0.51*** 0.95*** 0.93***

Association matrices used for the filtering are: FAN, Free Association Norms; bFAN, binary FAN; Ngram; bNgram, binary Ngram. Values significant at p < 0.05 are marked with *,

significant at p < 0.001 with ***.

FIGURE 4 | Distribution of number of responses per trial for human responses and model responses plotted as Kernel Density Estimates (Gaussian

kernel, bandwidth determined with Scott’s rule, Scott, 1979). Four different model distributions were produced with four different filters (see text for details): Free

Association Norms (FAN), binary FAN, Ngram, and binary Ngram.

with response distributions, in the following analyses we use the
binary Ngram matrix which provided a slightly better match for
some of the qualitative analyses.

To further investigate the effects of this filter, we tried applying
it to the human data. Similarly to the model data it also reduced
the dataset considerably, leaving <10% of overall responses.
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3.2. Qualitative Comparison
We analyze responses obtained by applying the filter to raw
model outputs in terms of their semantic similarity. The analysis
compares similarity between two groups of response pairs, where
groups refer to primary cue assignment of response pairs (same
cue vs. different cue) and their proximity in a sequence of
responses (adjacent vs. non-adjacent word pairs). Such analyses
on human responses (Smith et al., 2013; Davelaar, 2015) showed
that responses humans give tend to bunch around one of the
three problem cues, and that different cues can be selected
while search for the solution unfolds. Also, responses show
sequential dependence, where the next response is dependent on
the previous one. We use the set of analysis methods described
in Section 2.4 to explore whether model responses exhibit such
similarity patterns.

All analysis results are summarized in Table 3. To test for
bunching of responses around problem cues, we explore the
similarity of response pairs with a common primary cue. The
similarity is greater for word pairs with the same cue compared
to word pairs with different cues [0.141 vs. 0.054; two-sided
t-test t(9915) = 20.4]. This trend is preserved when we use the
permutation test, which randomly assigns cues from a different
trial [0.142 vs. 0.054; t(4729) = 13.7]. Evidence for sequential
dependence of word responses has been found by comparing
similarities for word pairs within the same cluster; adjacent
word pairs within the same cluster are more similar than pairs
which are further apart [0.141 vs. 0.076; t(13652) = 17.8].
Additional evidence for sequential search arises from greater
similarity between adjacent word pairs with different primary
cues compared to non-adjacent word pairs with different primary
cues [0.054 vs. 0.011; t(12,819) = 22.4]. We found that when the
model produced a response, it produced another response with
the same primary cue in 54.4% of cases. As done in the previous
studies (Smith et al., 2013; Bourgin et al., 2014), we also analyzed
the change in similarity between the final response (either correct
or incorrect) and each one of the ten words prior to the final
response. We identified a positive slope in similarity rates as
responses were approaching the final answer.

3.3. Neural Outputs
We now turn to the neural responses generated by the model.
Consequently, most observations in this section can be regarded
as qualitative comparisons to spiking patterns observed in
cortical neurons.

Figure 5 shows the spiking activity in three parts of the model
during one simulation run. In the shown time frame, the primary
cue starts as widow, but changes to bite about halfway through.
This change is induced by the rising reset signal inhibiting the
cue selection and causing a reselection of the primary cue. During
the active period of either cue, the response neurons sequentially
represent different words associated to the cue. Note, while four
associations are shown for either cue, the number of responses
generated during each active phase of a primary cue differs.

The spike raster plots (Figure 5) and firing rate estimates
in Figure 6 reveal interesting neuron tuning properties. We
observe neurons that appear to be selective to cue words: some
neurons only fire for widow (Figure 6A), while others only fire

TABLE 3 | Performance on the RAT and similarity patterns in the response

search.

Analysis Humans Model

Average problem accuracy 42% 43%

-Correlation with human data (r) 0.49*

Shortest response sequence 1 1

Longest response sequence 49 33

Average number of responses per trial 7.78 8.44

-Correlation with human data (r) 0.93***

AVERAGE RESPONSE SIMILARITY

-Within vs. across cue clusters 0.189 vs. 0.041 0.141 vs. 0.054

CI: [0.134, 0.162] CI: [0.079, 0.095]

-Permutation test 0.182 vs. 0.040 0.142 vs. 0.054

CI: [0.124, 0.160] CI: [0.077, 0.100]

-Within vs. across cue clusters (cleaned

responses)

0.180 vs. 0.039 0.141 vs. 0.054

CI: [0.128, 0.154] CI: [0.079, 0.095]

Baseline vs. actual percentage of

response pairs with the same primary

cue (two-sided exact binomial test)

33.3 vs. 37.1%*** 34.2 vs. 54.4%***

AVERAGE SIMILARITY BETWEEN ADJACENT AND NON-ADJACENT

RESPONSES

-With different primary cues (across

cluster)

0.041 vs. 0.016 0.054 vs. 0.011

CI: [0.063, 0.098] CI: [0.038, 0.047]

-With same primary cues (within cluster) 0.189 vs. 0.108 0.141 vs. 0.076

CI: [0.063, 0.098] CI: [0.057, 0.072]

Stated 95% confidence intervals are computed on the difference of reported mean values.

Values significant at p < 0.05 are marked with *, significant at p < 0.001 with ***.

for bite (Figure 6B) in the shown time span. However, it is
important to note that we did not test the response of these
neurons to all possible cues and there might be other words
which also elicit their response. Notwithstanding, such selective
and explicit response behavior is consistent with observations
from single-neuron recordings in medial temporal cortex in
humans (Földiák, 2009; Quian Quiroga, 2012). We also observe
neurons that fire for both cues, but with different firing rates.
This word-dependent change in firing rate is more prominent
for some neurons (Figure 6C), while it is more subtle for others
(Figure 6D). The response population also includes neurons that
are primarily active when a word is being represented, but not
otherwise (Figure 6E).

From a single neuron perspective, of particular interest is
the reset signal. Here, the neurons produce a clear bursting
pattern during the onset of the reset signal. Such behavior is
often thought to need an explanation in terms of complex neuron
models that intrinsically burst (Izhikevich, 2007), which is not a
charactersitic of LIF neurons. Nevertheless, we observe a bursting
behavior because of the recurrent network dynamics producing
the reset signal.

The presented neural network model, constrained by
biological properties like membrane and synaptic time constants,
shows a reasonable match to behavioral data. With that in mind,
we believe that proposed mechanisms, such as word selection
and word inhibition realized in spiking neurons, demonstrate the
biological plausibility of this approach. Future work can address a
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FIGURE 5 | Spikes and decoded values for three neural groups in the model. Data shown are an excerpt from a longer single simulation run. From top to

bottom data for neurons representing the primary cue, the cue selection reset signal, and the response neurons are shown. Line plots for the primary cue and

response show the similarity of the decoded vector with word vectors and are annotated with the corresponding words. The reset signal line plot shows the decoded

scalar value. These line plots are interleaved with corresponding spike raster plots showing a subset of the neurons partaking in the representations.

FIGURE 6 | Firing rates of individual neurons. Spike trains where filtered with h(t) = [α2t exp(−αt)]+ to obtain firing rate estimates. (A) Neuron responding to

widow. (B) Neuron responding to bite. (C) Neuron responding to both widow and bite to a varying degree. (D) Neuron responding to both widow and bite with a more

subtle difference. (E) Neuron responding to varying degrees whenever a response is produced.

stronger claim about the connection between measurable neural
signals and the proposed mechanisms by using the model to
generate fMRI predictions from the physiological properties of
spiking neurons and their dendritic activity, as done in previous
work (Eliasmith, 2013, Chapter 5).

4. DISCUSSION

We proposed a spiking neural network model that solves the
Remote Associate Test, a task commonly used in creativity
research. The model shows a significant correlation with human
accuracy on the test, and its responses replicated similarity
patterns observed in human responses (Smith et al., 2013;

Davelaar, 2015). At the same time it implements possible
biological mechanisms that generate these behavioral patterns,
thus connecting multiple scales of the cognitive system.

The existing body of modeling studies have contributed
to the general understanding of the RAT, including factors
that influence the difficulty. Specifically, word frequency has
been investigated as important in determining solvability of a
RAT problem; an aspect that was already discussed when the
test was developed (Mednick, 1962). Based on the frequency
of a word or an expression in text corpora, it is possible
to determine whether a problem will be easy or hard for
humans (Gupta et al., 2012; Olteteanu and Falomir, 2015). Our
model has reproduced the pattern of RAT item difficulty by
showing a correlation with human accuracies on the 25 problems
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from Smith et al. (2013). Individual differences in associative
networks known to influence the performance on the test (Kenett
et al., 2014) were modeled by randomly dropping a fraction
of associations from the association matrix. Moving beyond
the accuracy measure, we also looked at the quantitative and
qualitative characteristics of response sequences. In terms of
quantitative statistics, we analyzed the distribution of response
sequence lengths which showed a strong correlation with the
human data. We also observed a good match of the model
and human data with respect to qualitative properties, such as
bunching of responses around a single cue, cue switching, and
sequential search. Such statistical similarity patterns were also
successfully reproduced with probabilistic approaches in Bourgin
et al. (2014), but without reference to cognitive processes
underlying the search. Our model extends current findings by
proposing biologically plausible network components involved in
the search. In addition, we demonstrated how the representations
in the model can display both specificity (commonly attributed to
localist representation) and broad tuning (commonly attributed
to distributed representation) depending on how single neuron
activity is analyzed.

Previous studies identified the FAN as a viable source of
associative data to model the RAT (Gupta et al., 2012; Bourgin
et al., 2014; Kajić et al., 2016) and provided the motivation
to use it in this model. Steyvers and Tenenbaum (2005) have
shown that the FAN exhibits small-world properties. That means
that its shortest paths between nodes are short on average, the
clustering coefficients are high, and the connectivity is sparse.
In our model, however, we removed associative links to model
individual differences. It is left to future research to explore
how this changes the properties of the associative network. For
example, it might be possible that the small-world property gets
disrupted leading to a lower performance on the RAT (Kenett
et al., 2014).

Besides the generation of potential responses, we identified
that it is important to filter out some of these responses to match
human data. Interestingly, the Ngram data proved to be better
suited for this task than the FAN. This leads to the hypothesis that
humans use both sorts of information at different stages in the
search process. But the cause could also be that most solutions, in
the set of 25 problems, created compound words or word phrases
with the cues, which is a property reflected to a larger degree in
the co-occurrence data of the Ngrams. Nevertheless, it remains
interesting that the Ngram data does not seem to be used for the
generation of potential responses (Kajić et al., 2016).

While the current model offers a first unified account
of the RAT search process in terms of both psychological
and biological mechanisms, significant possible improvements
remain for future work. First, switching of the primary cue is
induced in quite regular intervals in our model. While we cannot
exclude the possibility that this is the case in the actual cognitive
process, we expect the actual process to be more complex.
It would be interesting to explore how changing this part of
the model can improve the match to human data, especially
regarding the percentage of response pairs with the same primary
cue. Second, the filtering of potential responses could be further

investigated by exploring methods which discard less of the
human and model responses, providing a closer match with
the plausible cognitive mechanism. Furthermore, biologically
plausible filtering with neurons should be implemented to extend
the plausibility of the mechanisms of the complete model. While
we have a proof-of-concept implementation of the filtering
methods in spiking neurons, it is not yet complete. Third,
current analysis methods filter out repeated responses, but these
might give additional information on the search process and
considering their occurrence patterns would allow us to refine
the response inhibition network. Finally, the current model does
not explain how humans learn word associations, or how the
process of learning relates to changes in connection weights that
store the relevant information. Since the acquisition of linguistic
structure happens early in childhood and continues to develop
throughout adulthood (Elman et al., 1997), a full account of word
representation in the brain would also need to address learning
at multiple time-scales, as well as mechanisms which enable such
learning.

5. CONCLUSION

The RAT model proposed here specifies both cognitive processes
and their neural implementation, which makes it unique among
models of the RAT task. The model was validated on empirical
data and shows a good match to this data. In the process of
matching this data we identified that two processes might be
at work: the generation of potential answers and the filtering
of the answers to provide reported responses. Furthermore, the
model sheds light on how the task relevant information can be
represented in biologically realistic spiking neurons.
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The existence of place cells (PCs), grid cells (GCs), border cells (BCs), and head

direction cells (HCs) as well as the dependencies between them have been enigmatic.

We make an effort to explain their nature by introducing the concept of Cartesian

Factors. These factors have specific properties: (i) they assume and complement each

other, like direction and position and (ii) they have localized discrete representations with

predictive attractors enabling implicit metric-like computations. In our model, HCs make

the distributed and local representation of direction. Predictive attractor dynamics on

that network forms the Cartesian Factor “direction.”We embed these HCs and idiothetic

visual information into a semi-supervised sparse autoencoding comparator structure that

compresses its inputs and learns PCs, the distributed local and direction independent

(allothetic) representation of the Cartesian Factor of global space. We use a supervised,

information compressing predictive algorithm and form direction sensitive (oriented) GCs

from the learned PCs by means of an attractor-like algorithm. Since the algorithm can

continue the grid structure beyond the region of the PCs, i.e., beyond its learning domain,

thus the GCs and the PCs together form our metric-like Cartesian Factors of space. We

also stipulate that the same algorithm can produce BCs. Our algorithm applies (a) a

bag representation that models the “what system” and (b) magnitude ordered place cell

activities that model either the integrate-and-fire mechanism, or theta phase precession,

or both. We relate the components of the algorithm to the entorhinal-hippocampal

complex and to its working. The algorithm requires both spatial and lifetime sparsification

that may gain support from the two-stage memory formation of this complex.

Keywords: Cartesian factors, entorhinal hippocampal complex, integrate-and-fire neurons, head direction cells,

place cells, grid cells, border cells

1. INTRODUCTION

The fact that we are able to describe autobiographic events, can discover rules, in spite of the many
dimensional inputs, such as the retina (millions of photoreceptors), the ear (cca. 15,000 inner plus
outer hair cells), the large number of chemoreceptors as well as proprioceptive, mechanoreceptive,
thermoceptive and nociceptive sensory receptors is puzzling, since the number of sensors enters
the exponent of the size of the state space. This number is gigantic even if the basis of exponent is
only 2, but it is typically much larger. How is it possible to remember for anything in such a huge
space?
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An illuminating and classical observation has been made
by Kohonen (1982): the brain develops low dimensional
representations, sometimes in the form of topographic maps
manifested by retinotopy in the visual system, tonotopy in the
auditory system, somatotopy in the somatosensory system, and
so on. Kohonen considered these maps as some kind of implicit
metric of the sensed space, being visual, auditory, or body
related. The dimensionality of these maps is low, unlike the
number of the sensors that give rise to those maps. Similarly
low-dimensional representations of the external space appear
in the entorhinal-hippocampal complex (EHC), although the
topography is sometimes missing. The derivation of the abstract
and low-dimensional representation of space from the actual and
high dimensional sensory information is critical for goal oriented
behavior as noted in the context of reinforcement learning, see,
e.g., Kearns and Koller (1999), Boutilier et al. (2000), and Szita
and Lőrincz (2009). In this context, one is directed to the EHC.
The importance of this complex was discovered many years ago
by Scoville and Milner (1957). Now, it is widely accepted that
the EHC is responsible for episodic memory, see, e.g., Squire
and Zola (1998) and Moscovitch et al. (2016) for an earlier
review and for a recent one, respectively. In their paper, Buzsáki
and Moser (2013) propose that (i) planning has evolved from
navigation in the physical world, (ii) that navigation in real and
mental space are fundamentally the same, and (iii) they underline
the hypothesis that the EHC supports navigation and memory
formation.

We believe that one of the functional tasks of this complex is
the learning of low-dimensional Cartesian Factors that we define
as follows. We say that (i) a low-dimensional representation
discretizes a low dimensional variable, if discretization means
that individual neurons [e.g., place cells (PCs) discovered more
than 40 years ago (O’Keefe and Dostrovsky, 1971; O’Keefe and
Nadel, 1978) represent local regions of their space (the so called
place fields for PCs)] and thus the representation of the variable
is distributed, (ii) the variable could be used as a coordinate in
controlling and cognitive tasks, and (iii) an attractor network
can predict by means of the local representation and, in turn,
it can work as an implicit metric. As a further specification, we
distinguish two factor types. Components of the first kind may
exist even if other ones are not present, whereas components of
Cartesian Factors do assume each other; no Cartesian Factor may
exist without the others althoughmany of them can be latent. We
detail this below:

• Type I factors make no (or minor) assumptions about each
other. Non-negative matrix factorization (NMF), for example,
originates from chemistry: it is used in mass spectrometry and
radiology among other fields, where absorbing or radiating
components can sum up. In a given environment and for a
given detector system, the observation of different isotopes
depends on the environment and the detector, but they do
not influence each other’s spectrum except that—to a good
approximation—they sum up. Another example is slow vs.
faster or fast features (Franzius et al., 2007; Schönfeld and
Wiskott, 2015). Such Type I factors are called features in most
cases; they can be independent, one of them may not have to

imply the presence of others. In other words, if one of the NMF
or slow feature components is present, others can be missing.

• Type II factors assume each other. For example, texture, shape,
weight, material components belong to the same object and
any object possess all of these features. Some of them can be
relevant when considering the value of a tool in a task. Another
example is the information about the position of an object in
space that can be given by the spatial coordinates and its pose.
The speed of the object is another component, being necessary
for the characterization of its state in certain tasks.

Latent Type II factors can serve cognition by decreasing the
description and thus the state space. Keeping the example of
the space, path planning requires the discretization of space and
information about the neighboring relations of the PCs, i.e.,
the neighbor graph. Then an algorithm can find the shortest
path on the graph. This path planning procedure doesn’t require
directional information; it works in a reduced dimensional space.
We are concerned with such complementing and dimension
reducing factors that may alleviate cognition in different ways in
different tasks.

We assume that there is at least one Type II factor that
can be sensed directly and this factor is represented in a
topographic manner: it has some kind of (implicit) metric.
This factor plays the role of a semi-supervisor in the learning
of the complementing Type II factor(s). We also assume that
the complementing factor is also low dimensional. Allothetic
representation of the space is one example of such factors and
it is the complementing factor of the allothetic representation of
direction. Head direction cells (HCs) (see e.g., the work of Taube,
2007 and the references therein) make the discretized allothetic
head direction representation. An attractor network can predict
the activity pattern of the representation during rotation making
it an (implicit) metric-like representation of direction. In turn,
the set of HCs make a Cartesian Factor. We will consider how
a metric-like representation may emerge from neurally plausible
dynamics and the PC representation via predictive methods.

We note that according toWinter et al. (2015), in rodents, HCs
are needed for the development of PCs, which are localized (i.e.,
discretized and distributed) allothetic representation of space;
Type II factor according to our concepts.

There are neurons that respond along trigonal grids. These are
the so called grid cells (GCs) (Fyhn et al., 2004; Moser et al., 2014).
Results of Bonnevie et al. (2013) indicate that the presence of GCs
is conditioned on both the presence of PCs and on the availability
of HCs. For a recent review of the grid cells and the place cells
see, e.g., the collection edited by Derdikman and Knierim (2014)
as well as the references cited therein.

Our contributions are as follows.

1. We present a unified model of the EHC. We put forth
the idea that this complex tries to solve the problem of
nonlinear dimensionality reduction via Type II factors. These
reduced dimensions function are like Cartesian coordinates if
attractor networks enable them to form an implicit metric.
Such Cartesian Factors can be reasoned with like symbolic
variables. Consequently, we see the continuation of the grid
as learnable manipulation at the symbolic level called mind
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travel by Sanders et al. (2015). The grounding of the symbolic
manipulation beyond the known domain seems as a necessity
for acting according to Harnad (1990). A simple example is
homing behavior; the transformation of goals in allothetic PCs
to idiothetic action series.

2. The model is a learning model, which is capable of explaining
(a) peculiar findings on the inter-dependencies of PCs and
GCs, including (b) the corruptions that occur upon lesioning
of different components and (c) the order of learning as
described in the recent review paper of Rowland et al. (2016).

3. Direction sensitive GCs are developed from PCs and HCs by
means of a predictive and compressing supervised algorithm
working onmagnitude ordered neural activities. We argue that
either (a) integrate-and-fire characteristics or (b) theta phase
precession can give rise to magnitude ordering in the time
domain. We apply two simple linear algorithm on the ordered
representation; we use pseudoinverse computation and partial
least squares (PLS) regression. We show that PLS regression
produces orientation sensitive, close to hexagonal grids in
an incommensurate squared environment. We demonstrate
that magnitude ordered predictive grid representation can be
continued beyond the experienced environment.

4. We show that the predictive mechanism that gives rise to
direction sensitive GCs can support the learning of Border
Cells (BCs).

5. Our autoencoder model exploits sparsification and has the
following constraints: we find that lifetime sparsification, i.e.,
sparsification over a larger number of inputs is necessary for
efficient learning. Lifetime sparsification is not possible in real
time, when individual input based sparsification, called spatial
sparsification is needed. We propose that the two types of
sparsification may be (one of) the underlying reason(s) of
the two-stage memory formation in the EHC loop (Buzsáki,
1989).

Cartesian Factors have been introduced in two previous
conference papers (Lőrincz et al., 2016; Lőrincz, 2016).
The definition presented here is more precise and more
elaborate: Cartesian Factors complement each other and assume
metric-like representations. PCs have been developed in those
publications and we review the results here. The extension
of the model with orientation sensitive grid cells appears
here for the first time alike to the proposal that magnitude
ordered representation can serve the learning. Both integrate-
and-fire behavior and theta phase precession are neurally
plausible mechanism for magnitude ordering. In the first case,
the spike representing the highest magnitude input comes
first. In the second case, highest firing rates occur in the
middle of the theta cycles. The combined model of direction
sensitive GCs, PCs, and BCs is presented here for the first
time.

In the following sections, we review background information
and list some of the models of place cell and grid formation
(Section 2). We describe the algorithmic components of our
model in Section 3. More details of the algorithms are provided
in the Appendix. The results section (Section 4) presents PC and
directional sensitive GC representations. Results are discussed

from the point of view of neuroscience in Section 5. We
also consider symbolic representation, symbol manipulation
and the symbol grounding problem in this section. We argue
that all components—i.e., Cartesian Factors, place cell forming
algorithms, oriented grid learning computational methods,
and border cell formation—may fit the features of the EHC.
Conclusions are drawn in Section 6.

2. BACKGROUND

2.1. Review of Related Findings in the EHC
The set of PCs, also called the cognitive map, the orientation
independent representation of space, was discovered more than
40 years ago (O’Keefe and Dostrovsky, 1971; O’Keefe and Nadel,
1978). Since then we have learned many features of these
cells, which are present in the CA3 and CA1 subfields of the
hippocampus. Theta frequency oscillations (5–10 Hz) in the
rodent hippocampal system create theta sequences: (i) place cells
fire in temporal order, (ii) the sequences cover past, present and
future, and (iii) time compression can be as much as a factor
of 10 (Skaggs and McNaughton, 1996). Such temporal series
centered on the present are the so called (theta) phase precession
of PCs. The CA3 subfield has a recurrent collateral structure
that, during sharp wave ripple (SPW-R, 140–200 Hz) complexes,
replays temporal series experienced during exploratory behavior,
when theta oscillations occur. Time series compression in SPW-
R is around twenty fold and forty fold, before and after learning,
respectively as shown by Lee and Wilson (2002). Memory
trace formation seems to require to stages, the theta-concurrent
exploratory activity and the population burst during SPW-R
following the explorations (Buzsáki, 1989; Chrobak and Buzsáki,
1994) and according to the widely accepted view, the EHC
formedmemories include episodic ones (Moscovitch et al., 2016).
The hippocampal formation is needed for dead reckoning (path
integration) (Whishaw et al., 2001).

Grid cells have been found in the medial entorhinal cortex
(MEC). It turns out thatMEC lesion can abolish phase precession
(Schlesiger et al., 2015; Wang et al., 2015), but the lesion only
corrupts hippocampal place cells, it can’t fully eliminate them
(Hales et al., 2014). On the other hand, grid cells require
hippocampal input (Bonnevie et al., 2013). The excellent review
of Sanders et al. (2015) about place cells, grid cells, and phase
precession includes a novel model about the two halves, i.e., about
the past and the future. They claim that different mechanisms
operate during the two halves.

Another important feature is that both the grid representation
in the entorhinal cortex and the place cell representation of the
hippocampus depend strongly on the vestibular information.
There are indications put forth by Winter and Taube (2014) that
head direction cells may not be critical for place cell formation
since those can be controlled by environmental cues, like visual
landmarks. However, it was shown by Winter et al. (2015) that
the disruption of head direction cells can impair grid cell signals
and are crucial for the formation of the allothetic representation
including both place cells and grid cells . They also reported that
theta waves are spared upon the same manipulation.
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We shall argue that several findings follow from the
constraints of developing the Cartesian Factor abstraction and
the related metric-like representations.

2.2. Related Models
The number of place cell models is considerable, we list
only a few of them. The interested reader is directed to the
recent publication of Schultheiss et al. (2015) that reviews both
mechanistic bottom-up models and top-down models.

Neural representation of trajectories traveled and the
connectivity structure developed during such paths have been
suggested as the method for place cell formation by Redish and
Touretzky (1998). Incoming information includes external cues
and internally generated signals. They are fused to develop place
cells in the paper of Arleo and Gerstner (2000). Place cells were
derived by Solstad et al. (2006) from linear combinations of
entorhinal grid cells (Fyhn et al., 2004) and vice versa, neuronal
level model can produce grid cell firing from place cell activities
as shown by Burgess and O’Keefe (2011). Time plays the key
role in the slow feature analysis model of place cells put forth by
Franzius et al. (2007) and Schönfeld and Wiskott (2015). Time
plays the opposite role in the independent component analysis
based autoencoding place cell models (Lőrincz and Buzsáki, 2000;
Lőrincz and Szirtes, 2009). In these works, time appears in a so
called novelty detection (time differentiation) step.

We think that all of these models, i.e., navigation based
models, models based on interaction between representations,
models that search for components that change slowly in
time, and models that consider novelty detection may
have their merits in the development of low-dimensional
representation of Cartesian Factors, since the development os
such representations—as it has been mentioned earlier—are
crucial for reinforcement learning of goal oriented behavior.
For example, navigation in partially observed environments,
like the Morris maze or when in dark, can be supported by
temporal integration. As another example, novelty detection
may support the separation of a rotating platform from remote,
non-rotating cues studied by the Stuchlik group (Stuchlik and
Bures, 2002; Stuchlik et al., 2013). Further, the relevance of
learning of low-dimensional task oriented representations can’t
be underestimated since state space and thus learning time
decreases tremendously if the dimension is decreased.

It seems straightforward to us that information both from
the environment and from self-motion should be combined for
an efficient and precise neural representation of self motion
in the external space (Evans et al., 2016) and that different
signals and latent variables can be advantageous under different
conditions and may support each other. The case is similar
to object recognition, when the different mechanisms, such as
stereoscopic information, structure from motion, shape from
shading, texture gradient, and occlusion contours among others
work together in order to disambiguate the “blooming, buzzing
confusion” of the visual information in different conditions,
see, e.g., the work of Todd (2004) and the references in that
paper.

Due to the critical nature of the vestibular input, our goal is to
derive place cells under the assumption that only this component

of the Cartesian representation, namely the egocentric direction
relative to an allothetic coordinate system is available and we
ask if the allothetic representation of space can be derived by
using only (i) directional information and (ii) the egocentric, i.e.,
idiothetic visual information.

3. REVIEW OF THE ALGORITHMS

3.1. The Logic of the Algorithmic
Components
The logic is as follows:

(i) We start with an autoencoding network and meet the
comparator hypothesis of Vinogradova (2001).

(ii) Firing in the hippocampus is very sparse, see, e.g., the work
of Quiroga et al. (2008), and we apply sparse models.

(iii) We find limitations and include lifetime sparsity beyond the
spatial one. It is supported by the two-stage formation of
memory traces.

(iv) We derive the dynamics of the grid structure by predicting
in the simplest form: input–output pairs are formed by past
and future experiences, respectively. The predicted values
can be fed back, the input can be shifted by them and thus,
prediction can be continued into the future. We compare
linear models; the pseudoinverse computation and partial
least square regression.

(v) Prediction concerns the actual firing pattern instead of the
individual neurons that fire and components are ordered
by their magnitudes: the largest magnitude signal makes
the first component of the input and so on in decreasing
order. This feature may appear naturally in integrate-and-
fire mechanisms.

(vi) We assume view invariant observations of the objects. We
use indices: a visible object activates an index. This is like the
recognition of the presence of the object (“what”) without
the knowledge about its position (“where”). This “what”
representation resembles to the so called “bag model”
(Harris, 1954; Csurka et al., 2004).

Below, we elaborate on these algorithms and then we present our
results.

3.2. Autoencoder
An autoencoder is the self-supervised version of the Multilayer
Perceptron (MLP) and may have deep versions (Hinton and
Salakhutdinov, 2006; Vincent et al., 2010). For the sake of general
formulation, the deep version is described below although our
numerical studies in this respect are limited.

Consider a series of non-linear mappings (layers) of the form:

H = fN
(

· · · f2
(

f1(XW1)W2

)

· · ·WN

)

, (1)

where X ∈ R
I×J is the matrix of I inputs of size J,Wn ∈ R

Qn−1 ,Qn

are parameters with Q0 = J, and fn are non-linear almost
everywhere differentiable element-wise functions (n = 1, . . . ,N;
N ∈ N). Then H ∈ R

I×Q is called the feature map (QN = Q).
Typically, one takes two such mappings with reversed sizes—an
encoder and a decoder—and composes them. Thereupon one can
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define a so-called reconstruction error between the encoder input
X and the decoder output̂X ∈ R

I×J , normally the ℓ2 or Frobenius
norm of the difference, i.e.,

1

2
‖X −̂X‖2F =

1

2

∑

i=1,...,I

∑

j=1,...,J

(Xi,j −̂Xi,j)
2

and try to find a local minimum of it in terms of parameters
Wn after random initialization, by taking advantage of a step-size
adaptive mini-batch subgradient descent method (Duchi et al.,
2011; Zeiler, 2012; Kingma and Ba, 2014). The non-linearity can
be chosen to be the rectified linear function fn(x) = x · I (x > 0)
for x ∈ R (Nair and Hinton, 2010; Dahl et al., 2013) to avoid the
vanishing gradient problem (Hochreiter, 1991; Hochreiter et al.,
2001), where I designates the indicator function.

3.3. Spatial Sparsity and Lifetime Sparsity
Deep Autoencoders are often used as a pretraining scheme, see,
e.g., the work of Erhan et al. (2010), or as a part of supervised
algorithms as in the paper of Rasmus et al. (2015), but they lack
the ability to learn a meaningful or simple data representation
without prior knowledge (Sun et al., 2017). To obtain such a
description, one might add regularizers or constraints to the
objective function as did Grant and Boyd (2014) and Becker et al.
(2011), or employ a greedy procedure like Tropp and Gilbert
(2007) and Dai and Milenkovic (2009). It is well known that
minimizing the sum of ℓ2 norms of parameters Wn can reduce
model complexity by yielding a dense feature map, and similarly,
the ℓ1 variant may result in a sparse version (Tibshirani, 1996;
Ng, 2004).

An alternative possibility is to introduce constraints in the
non-linear function fn. For example, one may utilize a k-sparse
representation by keeping solely the top k activation values in
feature map H, and letting the rest of the components zero as
suggested byMakhzani and Frey (2013). This case, when features,
i.e., the components of the representation, compete with each
other is referred to as spatial sparsity.

Sparsification occurs on a different ground if indices of the
representation onmany inputs go up against each other. This case
is called lifetime sparsity, see, e.g., the work of Makhzani and Frey
(2015) and the references therein. Lifetime sparsification ensures
that all indices may play a role, whereas spatial sparsification may
render a large portion of the components of the representation
quiet for all inputs. On the other hand, lifetime sparsificationmay
not be used on any single input, the case needed for real time
responses.

3.4. Predictive Partial Least Squares
Regression
PLS regression started with the works of Kowalski et al. (1982)
and Geladi and Kowalski (1986) back in the eighties. The PLS
model assumes explanatory samples collected in matrix R made
of t samples of l dimensions and a response matrix Q of
m dimensions collected on the t observations. PLS combines
features of principal component regression (PCR) and multiple
linear regression (MLR): PCR finds maximum variance in R,
MLR is to maximize correlation between R andQ. PLS regression

tries to do both by maximizing covariance between them: first, it
extracts a set of latent factors that explain the covariance between
the explanatory and response variables and then the regression
step predicts the values of the response variables.

In our case, explanatory variables and responses are connected
by time: R = [r(1), . . . , r(t)] andQ = R(+) = [r(2), . . . , r(t+1)]
make the explanatory and the response variables, respectively.
PLS regression takes the form

R = TPT + E (2)

R(+) = UQT + F (3)

where T and U are matrices of dimensions t× n, P andQ are the
so called orthogonal loadingmatrices of dimensions t×n (PTP =

QTQ = I), and matrices E and F are the error terms drawn
from independent and identically distributed random normal
variables. It is also assumed that covariance between matrices T
and U are maximal. In the computations, we used the Python
package sklearn (Pedregosa et al., 2011).

3.5. Prediction via Pseudoinverse
Computation
PLS regression is one option for predictions. Deep networks
can be considerably more efficient. The simplest method, on the
other hand, is possibly pseudoinverse computation that can be
embedded into a Hebbian network structure as suggested by
Lőrincz and Szirtes (2009) and in some of the references cited.
Using the notations of the previous section, the pseudoinverse
solution can be formulated as follows:

r(τ + 1) = M

(

r(τ )T , . . . , r(τ − t)T
)T

+ e(t) (4)

where e(t) is the error term at time t. Equation (4) gives rise to the
solution ̂M ≈ R(+)R+ where R

+ denotes the Moore–Penrose
right pseudoinverse of the matrix constructed from the matrix

with the ith column formed by
(

r(i)T , . . . ; r(i− t)T
)T

and i > n
is assumed.

3.5.1. Continued Prediction
For the pseudoinverse method, matrix ̂M and the estimated
predicted activities can be used for shifting the prediction further
in time

r̂(τ + 1) ≈ ̂M

(

r(τ )T , . . . , r(τ − t)T
)T

(5)

r̂(τ + 2) ≈ ̂M

(

r̂(τ + 1)T , . . . , r(τ − t + 1)T
)T

(6)

and so on

and the case is similar for the PLS regression.

3.6. Magnitude Ordered Activities
PC activities themselves are bounded to the PCs themselves. This
representation can’t fulfill our purposes since PCs are locked
to already observed bag representations and thus they are not
able to support prediction outside of the explored field. As we
shall see, sparse autoencoder on the bag representation produces
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densely packed PCs that have high activities at the centers and
lower activities off-center. In turn, between two place cell bumps
there should be a hump and a metric-like representation can
take advantage of this periodicity. If we order activities according
to their magnitudes then largest activity will reach its (local)
maximum at the center of a place cell, it will be smaller at
other (neighboring) positions and will become large at another
center. We will develop latent predictive factors of the magnitude
ordered place cell activities. Indications that magnitude based
ordering may be present in the neural substrate is elaborated in
the discussion (Section 5.2).

3.7. The Bag Model
We assume a high level representation of the visual information
that correspond to the so called bag model of machine learning.
The Bag of Words representation, for example, represents a
document by the words that occur in the document, without
any syntactic information (Harris, 1954). Similarly, the Bag of
Keypoints representation of an image (see e.g., Csurka et al.,
2004 and the references therein) contains the visual descriptors
of the image without any information about the position of those
descriptors. Such representations are similar to thewhat system in
visual processing as described first by Mishkin and Ungerleider
(1982), elaborated later by Goodale and Milner (1992) and that
may also be present in the representations of other modalities,
see, e.g., the work of Schubotz et al. (2003).

Our inputs are represented by the indices of the objects
present in the visual field. If the object is present, then the value at
corresponding input component is set to 1. Otherwise, it is set to
zero. This representation is independent from the position of the
object within the visual field, being an invariant representation of
the object, since the value of the representation does not change
as a function of idiothetic direction and allothetic position as long
as the object is within the visual field.

3.8. Algorithmic Formulation of Cartesian
Factor Learning
We assume that a latent random variable Z (e.g., the discretized
allothetic representation of the state, that is, the place cells) and
an observed random variable Y (e.g., the head direction, that is,
a compass) are continuous and together they can fully explain
away—by means of saved memories—another observed binary
random variable X (e.g., the egocentric view with pixel values
either one or zero taken in the direction of the head, or the
invariant bag representation with ones and zeros). The ranges
of Z and Y are supposed to be discretized finite r- and one-
dimensional intervals, respectively. For more details, see Figure 1
and the Appendix.

3.9. Simulation environment and numerical
details
3.9.1. The Arena
For our study, we generated a squared “arena” surrounded by
d = 150 boxes (Figure 1). The “arena” had no obstacles. Boxes
were placed pseudo-randomly: they did not overlap. The “arena”
was discretized by an M × M = 36 × 36 grid. From each grid
point and for every 20◦, a 28◦ field of view was created (i.e.,

L = 360◦

20◦ = 18, overlap: 4◦ between regions), and the visibility—
a binary value (0 for occlusion or out of the angle of view)—for
each box was recorded, according to Equation (7); we constructed
a total of I = 37 · 37 · 18 = 24, 642 binary (x(m,l)) vectors.

3.9.2. Masks and Information on Closeness
These vectors were processed further. Beyond the actual viewing
direction and viewing angle of 28◦, we also input visual
information in neighboring directions: we varied the non-zeroed
(non-masked) part of the input from a single direction (28◦) to
all 18 directions (360◦). Formally, for various experiments, we
defined masks Vi,· summing to v = 1, 3, . . . , 17, 18, for which
we carried out the concatenation method for each visible sectors
separated by 20◦ degrees that we appended with all-zero vectors
for the non-visible sectors (see, Figure 2 below and Equation 8 in
the Appendix).

3.9.3. Normalization and Lifetime Sparsity
In some experiments we normalized the inputs to unit ℓ2 norm
for each d = 150 dimensional components, provided that at
least one of the components differed from zero and dropped the
input if all the components were zeroes. This is the “normalized
case.” We used spatial sparsification with k = 1. We also used
lifetime sparsification. The dimension Q of the feature map of
the autoencoder was set to 30 and we used probabilities of p =
100
Q % = 3.33% and p = 6.66%. The p = 3.33% means that
any component was active once on the average in the sample,
but either none of them, one of them, or more than one of them
may have assumed non-zero values for an individual input. The
all zero case was dropped and thus the average probability was
somewhat higher than p = 3.33%. The ratio of dropped inputs
was smaller for probability p = 6.66%.

Concerning the error of the autoencoder we had two
options: (a) error of the full output and (b) error only on
the visible components that belonged to the viewing angle
as in Equation (9). This latter is called masked experiment.
We experimented with 3 and 5 layer autoencoders, with
the middle layer representing the latent variables. For the
5 layer case, the sizes of the hidden layers were spaced
linearly between 2700 and 30 giving rise to layers of
dimensions 2, 700, 1, 335, 30, 1, 335, 2, 700 from input to output,
respectively.

3.9.4. Magnitude Ordering
For each point in the arena we ordered the activity vector’s
components according to their magnitudes, with the largest
being the first. Although the dimension of the representation
remains, the individual indices of the place cells disappear: one
doesn’t know, which place cell has the largest activity, which
one is the second largest, and so on. Nonetheless the largest
activity will change along straight paths since between two
place cell dumps there is always a hump. The oscillation is the
basis of learning. Magnitude ordered activities along straight
paths may provide information about displacements along the
path, since the differences of the magnitudes change. Exceptions
correspond to different positions that have the same set of activity
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FIGURE 1 | Arrangements of the numerical experiments. (A) Input is concatenated from sub-vectors, which belong to different allothetic directions. A given

index corresponds to the same box, the “remote visible cue,” in all sub-vectors. The value of the a component of a sub-vector is 1 (0) if the box is visible (non-visible)

in the corresponding direction (cf. bag representation, for more details, see text). More than one direction can be visible. The figure shows the case of three visible

directions depicted by green color. Some boxes may be present in more than one visible direction, since they are large. (B–D) The “arena” from above with the

different boxes around it plus some insets. Shaded green areas in (B–D), show the visible portions within the field of view at a given position with a given head

direction. Insets show the visual information for each portion to be transformed to 1 s and 0 s in the respective components of the sub-vectors. Components of

out-of-view sub-vectors are set to zero. (Lőrincz et al., 2016 with permission).

FIGURE 2 | General architecture. In the numerical experiments the notations correspond to the following quantities: Z latent positions, Y discretized “compass”

values. Non-visible part of the input to the network is denoted by red, visible part is denoted by green. Visible part consists of 28◦ viewing angle in the actual direction

and 28◦ viewing angle in neighboring directions separated by 20◦. The number of neighbors was set to 2, 4, 16, 17 with 17 directions and the actual direction

covering the whole 360◦. For each viewing angle inputs represent boxes visible within the corresponding range. Values of the vector components representing the

boxes are set to 1 if the range corresponds to the actual direction or if belongs to the set of neighbors. The full size of the input equals to the “No. of boxes × No. of

viewing angle ranges.” (Lőrincz et al., 2016 with permission).

magnitudes, whichmay occur for regular lattices and along lattice
translation vectors.

3.9.5. Prediction along Straight Paths
We performed the prediction experiments on a place cell
activity model trained by the autoencoder with a specific set of
parameters: we used p = 6.66% lifetime sparsity with normalized
input and masked loss function with a 220◦ viewing angle. The

model was trained for 100 epochs. We discretized the arena to a
150× 150 grid and collected place cell activities using the model
from each of the 151 × 151 = 22801 grid points for all 18
directions.

We collected data in each direction separately. Distance
between the steps equals the grid step distance of the discretized
arena. In the learning phase we used n = 60, 80, 100 samples of
them(= 30) magnitude ordered place cell activities from a n step
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length straight path as inputs. For each step the sample of the
closest grid point was taken. The m dimensional data sample of
the (n + 1)st step along the same path was used as supervisory
predictive information. All sample paths where the necessary
n + 1 steps doesn’t lead out from the arena were used during
training.

With this method we can estimate the representation beyond
the arena from an initial series of samples by using the predicted
estimation for shifting the n consecutive samples and dropping
the last one. The short distances between the steps aim to imitate
gamma-wave sampling.

The software used in these studies can be downloaded from
GitHub1.

4. RESULTS

First, we review our recent results on place cells derived in
Lőrincz et al. (2016) and in Lőrincz (2016) for the sake of
argumentation and clarity. These results are reproduced in
Figures 3, 4, and in Table 1. Then we derive new features related
to the place cells. This subsection is followed by the description
of our new results on oriented grid cells. They, together, form the
Cartesian Factor.

We note that uniformly distributed inputs and sparsification
favors similarly sized sets of the input space, since latent units are
competing for responses as we shall discuss it later. Competition
gives rise to close packing. In 2D, the locally closest packing is
the hexagonal structure and this arrangement is commensurate
with the 2D space, so locally close packing can be continued
and gives rise to a regular global structure, the triangular lattice.
Our arena is, however, a square structure and has 90◦ symmetry,
which is incommensurate with the hexagonal structure. In turn,
we expect a close to hexagonal PC structure with reasonable
amount of structural errors. Notably, self-supervised predictive
compression gives rise to grids and emerging grids show
improved hexagonal symmetry and tend to correct the errors of
the place cells. Note that the larger the arena, the smaller the effect
of the boundary is.

4.1. Cartesian Abstraction Yields Place
Cells
The dependencies of the responses in the hidden representation
vs. space and direction are shown in Figures 3, 4, respectively.
Linear responses of randomly selected latent units for different
algorithms are depicted in Figure 3, illustrating the extent
that the responses became localized even in the absence of
competition after learning.

Figure 4 shows the direction (in)dependence of the responses.
This figure has a special coding method: for each position and
for each direction we computed the responses of all 30 neurons
of the middle layer of the autoencoder and chose the one with
the highest activity. In the ideal case a single neuron wins in
all directions at a given position. Therefore, for each position
we selected the neuron which won in the most directions (out
of the 18) and assigned the number of its winnings to that

1https://github.com/asarkany/ehcmodel

position. Then we colored each position within the arena with
a color between white, when the number is zero, i.e., none of
the neurons is responding in any of the directions, and black,
when the number is 18, i.e., the winner is the same neuron in all
directions. Middle values between 0 and 18 are colored from light
yellow to dark red in increasing order. Figure 4 depicts results for
different masks. The first column from the left is the case when
only a single direction is not masked. Other columns from left
to right correspond to cases when 3, 5, . . . 18 directions are not
masked.

One should ask (i) if the linear responses are local and
activities far from the position of the peak activity are close
to zero; (ii) if the number of dead latent units is small, (iii) if
responses are direction independent, that is, if we could derive
the discretization of space in allothetic coordinates. We found
that spatial sparsity with the 3 layer network rendered the output
of some or sometimes all hidden units to zero (Table 1). The
same happened for the 5 layer network with dense 2nd and
4th layers and sparse 3rd layer. On the other hand, lifetime
sparsity p = 3.33% with the 5 layer network produced excellent
results. Lifetime sparsity p = 6.66% also produce high quality
PCs. Figure 4 shows that including the mask, direction-invariant
activations start to develop at around about 100◦ (see the second
and the third lines), whereas without themask, similar activations
appear at around 230◦. For the sake of comparison, we also
provide the ICA responses in Figure 3.

4.2. Place Cells Assume Close to
Hexagonal Structure
Competition, as it was mentioned above, gives rise to hexagonal
close packing in two dimensions, that is in a triangular lattice
structure. In our experiments the symmetry is frustrated by the
squared boundary of the “arena.” The Delaunay triangulation
of Figure 5A shows a number of distorted hexagons, some
heptagons, pentagons and—closer to the edges of the “arena”—
a few quadrilaterals, too. The more dark red the color, the
smaller is the winning domain of the neuron. Sizes are more
similar and shapes are more circle-like in the internal part
of the “arena,” whereas they are more distorted around the
edges and at the corners. The size of the PCs are similar or
larger at around the edges and the corners (Figure 5C). The
paper written by Muller et al. (2002) reviews the different
variables of sensory information that affect the sizes and the
densities of PCs. We note that in the experiments, the bags
are almost empty at the edges (in 180◦) and in the corners (in
270◦).

4.3. Predictive Methods Can Form Grid
Cells from Place Cells
We use pseudoinverse and PLS regression methods to predict
the next activity based on a series of previous ones. These
methods work on magnitude ordered series and thus they are
not associated with individual place cells. Magnitude ordered
activities show oscillations along straight paths as shown in
Figure 6. Such behavior suits prediction.

We show results for this two linear methods below.
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FIGURE 3 | Linear responses of individual latent units selected randomly: we chose neuron with index 2 from the latent layer. ICA: values may take

positive and negative values. Other experiments: all units are ReLUs, except the output, which is linear. Color coding represents the sum of responses for all directions

at a given point. SP1: spatial sparsity with k = 1, LT3.3%: lifetime sparsity = 3.3%, Norm: for each 150 components, the ℓ2 norm of input is 1 if any of the

components is non-zero, Mask: autoencoding error concerns only the visible part of the scene (i.e., the non-masked part of the input) DL: dense layer.

“Norm-LT3.3%-LT3.3%-Mask” means normed input, masked error, 5 layers; the input layer, 3 layers with LT sparsity of 3.3% and the output layer. Columns

correspond to masks of different angular extents separated by 20◦ and covering viewing angle of 28◦, i.e., they overlap. Left column: a single viewing angle is

non-masked. Other columns correspond to 3, 5, . . . 17, 18 non-masked directions in increasing order to the right. (Lőrincz et al., 2016 with permission).

FIGURE 4 | Angle independence. Notations are the same as in Figure 3. The highest activity (winning) unit was selected for each input at each position in each

direction. We counted the number of wins at each position for each unit and selected the largest number. Results are color coded. Black (18): there is a single winner

for all angles at that position. White (0): no response at that point from any neuron in any direction. Values between 1 and 17: the darker the color the larger the

direction independence for the best winner at that position. Rows represent different algorithmic components. SP1: spatial sparsity with k = 1, LT3.3%: lifetime

sparsity = 3.3%, Norm: for each 150 components, the ℓ2 norm of input is 1 if any of the components is non-zero, Mask: autoencoding error concerns only the visible

part of the scene (i.e., the non-masked part of the input), DL: dense layer. “Norm-LT3.3%-LT3.3%-Mask” means normed input, masked error, 5 layers; the input layer,

3 layers with LT sparsity of 3.3% and the output layer. Columns correspond to masks of different angular extents separated by 20◦ and covering viewing angle of 28◦,

i.e., they overlap. Left column: a single viewing angle is non-masked. Other columns correspond to 3, 5, . . . 17, 18 non-masked directions in increasing order to the

right. (Lőrincz et al., 2016 with permission).

4.3.1. Prediction Outside of the “Arena”
Figures 7, 8 depict the results for the pseudoinverse method and
for PLS regression, respectively

PLS regression is a better predictor than the pseudoinverse
method. We show predictions starting from a straight line along
different directions. Both methods produce results that depend

on the position along the starting line. PLS also predicts periodic
changes along the paths and this structure is close to hexagonal
beyond the “arena”: pentagons and heptagons or other non-
hexagonal polygons are rare except around the edges of the
predicted region (Figure 9). Predicted signal fades in most cases
as prediction proceeds.
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TABLE 1 | Dead neuron count: number of non-responsive computational units.

Field of view [deg]

28 68 108 148 188 228 268 308 348 360

Norm-SP1-Mask 2 0 5 5 10 12 16 18 15 18

LT3.33% 0 0 0 0 0 2 2 6 8 9

Norm-LT3.33% 0 0 0 1 1 3 2 4 9 11

Norm-LT3.33%-Mask 0 0 0 0 0 0 1 2 7 11

Norm-LT6.66%-Mask 0 0 0 0 0 0 1 4 13 13

Norm-DL-LT3.33%-Mask 0 3 1 29 30 30 30 30 30 30

Norm-LT3.33%-LT3.33%-Mask 0 0 0 0 0 0 0 0 0 0

Figure 9 show predicted structures at angles 0◦

(Figures 9A–C) and in 340◦ (Figures 9D–F), respectively.
Prediction takes past values of 60, 80, and 100 steps, respectively
(see Figure 9). Outside the arena the number of predicted steps
are in the order of 200. Note one step is very small compared to
the PCs. If the size of the PCs is about the size of the rat, then the
steps are about one twentieth of the rat’s size.

For 0◦, hexagonal structure is the best for 60 steps, but it fades
quickly. Fading decreases for 80 steps, but the structure inherits
the PC errors of the arena. This is more so for 100 steps. The
case is somewhat different for predictions along 340◦. In this case,
fadings are similar. Visual inspection says that it is the smallest
for the 80 step case. Hexagonal structure is relatively poor for 60
steps and is considerably better for 80 and 100 steps.

The figures demonstrate that close to hexagonal predictions
can arise. The following notes are due here. The more the
information from the past, the more the squared arena frustrates
the hexagonal structure. Different directions approximate
hexagonal structure differently, depending on the error structure
within the squared arena. We also note that the ratio between
length of the boundary and the size of the arena decreases the
frustrating effect of boundary as the size of the arena increases.

From the point of view of model categories, the predictive
network that uses its own output to complement (increment) its
own input is an attractor network.

5. DISCUSSION

First, we review and discuss the general and specific features
of our results. We also link them to the neural substrate
and consider the computational potentials from the point of
view of semantic memory, episodic memory, and reinforcement
learning.

5.1. General Considerations
Our goal was to find hidden and abstract Cartesian Factor, that is,
the discretization of the factor and the related attractor network
that serves as an implicit representation of the related metric,
provided that we have the complementing one. The method is
general. We applied the approach as a model for the EHC. We
assumed that we are having the head direction cells. From the
point of view of the neuronal computations, attractor models
working on set of cells are the most promising (see e.g., Skaggs

et al., 1995; Redish et al., 1996 reviewed by Clark and Taube,
2012).

From the theoretical point of view, the abstraction that we
want to develop is similar to geometrical abstractions or algebraic
abstractions: they cannot be sensed directly, so they are latent.
They are also Cartesian in the sense that they are like coordinates
in an abstract space. In turn, they enable highly compressed
descriptions. According to our assumptions, Cartesian Factors
are low dimensional and only a few of them are needed for the
mental solving of certain tasks and for the execution of decisions.
Such elimination of variables is critical for reinforcement
learning (Kearns and Koller, 1999; Boutilier et al., 2000; Szita
and Lőrincz, 2009). The example in the context of navigation
is path planning. Path planning can be accomplished in a
discretized allothetic abstraction independently from idiothetic
visual observations. This property lowers computational needs
considerably. In turn, optimization of problem solving depends
on the capability of forming low dimensional Cartesian Factors
that are relevant for planning.

The concept of Cartesian Factors is closely related to Gestalt
principles. Gestalt psychologists considered objects as perceived
and as global constructs made of the constituting elementswithin
an environment. Gestalt psychology has a number of concepts
or laws on how to group things or events. Among these are the
Law of Proximity and the Law of Continuity: according to Köhler
(1929), “whatmoves together, belongs together” (see e.g., Paglieri,
2012 and the references therein). Self-motion, for example, allows
the separation of the self from the rest of the environment and can
be uncovered by temporal information. Such information drives
the SFA procedure explored by Wiskott’s group (Franzius et al.,
2007; Schönfeld and Wiskott, 2015). They found that in realistic
conditions and for large viewing angles, direction independent
place cells can be formed by means of the temporal information.
However, temporal information may be limited due to sudden
environmental changes or occlusions. Furthermore, limiting the
algorithm to temporal information limits the Gestalt principles
to a few of them.

Another Gestalt principle is the Law of Similarity. This
principle does not rely on temporal information and could be
more adequate for general databases. Our algorithms implicitly
exploit this principle through the concatenated input pieces
that correspond to different viewing directions and may have
identical, similar or very different information contents, subject
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FIGURE 5 | PC positions make close to hexagonal structure constrained by the non-hexagonal form of the “arena.” (A) Delaunay triangulation on the

linear activities of the first (largest) component of the magnitude ordered representation. (B) Linear activities of the second(-largest) component of the magnitude

ordered representation. (C) Individual PC activities. For more details, see text.

FIGURE 6 | Magnitude ordered examples at two different positions in two different directions. Activities are color coded. (A) 1st place and 1st direction.

Top: activities of place cells along a 60 step paths, bottom: magnitude ordered activities. (B) Alike (A), but for 2nd place and 2nd direction. Different place cells fire.

About four place cells produce non-negligible outputs in both cases.

to the position and the orientation. In our work, we used head
direction and idiothetic information. The idiothetic observation
was in the form of a bag model. Bag models are widely used
in natural language processing, called the bag of words (BoW)
representation, and in image processing, called the bag of
keypoints (BoK) representation in this case. It means that we
have access to the components being present at a time, but not
about their order in time or space. In other words, the bag model
is similar to the what system of visual information processing,
described first by Mishkin and Ungerleider (1982).

Considering the bag model from another point of view,
any component in the bag requires an invariant representation.
For BoW, stemming is the tool. BoK can be based, for
example, on local scale invariant features introduced by Lowe
(1999). Whereas stemming eliminates the details and becomes
invariant of the syntax, scale invariant features incorporate

scale and rotation variations in order to become invariant to
transformations. The case of PCs is similar, their outputs are
invariant to directional changes. In turn, our concept can be
formulated as follows: we assume that beyond having a Cartesian
Factor, (a) some “details,” such as suffixes or scaling and rotations
or orientation, can be measured, (b) the bag model has been
built and the “suffixes” are either explicitly embedded into the
complementing observations (i.e., into BoK) or neglected (i.e.,
from BoW), (c) the complementing observations hide a low
dimensional space and thus it can be discretized with limited
resources, and (d) this low dimensional space may have a related
metric. In the case of documents, discretization may correspond
to topics and the underlying structure is similar to a tree, since
each topic may have subtopics. In the case of scale invariant
features, the complementing space is the space of shapes and
textures and it is very large. However, if the bag of environmental
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FIGURE 7 | Pseudoinverse predictions along straight paths beyond the “arena.” Inset of (B) and the parallelogram framed with black line in (B) show how the

figures were created: oscillating paths along a straight line are color coded and numerous parallel lines were computed. Different directions are cumulated into different

parallelograms oriented according to the path traveled. Predictions start from the points of the lower edge of the “arena,” have (A) 60 and (B) 100 time steps measured

in different directions and proceed in that direction. Each direction had its trained predictive matrix that predicted activities from all neighboring oriented lines. Ideal

activity pattern forms a triagonal lattice structure. The predictive matrix learned some characteristics of the displacements in the structure, but the prediction is poor.

FIGURE 8 | PLS regression based predictions along straight paths beyond the “arena.” The subfigures are created alike to those of Figure 7. Predictions

start from the points of the lower edge of the “arena,” have (A) 60 and (B) 100 time steps measured in different directions and proceed in that direction. Each direction

had its trained predictive PLS algorithm. The predictions can represent displacement information along the parallel lines and periodic, approximately hexagonal

structure appear in a number of directions.

visual cues can be formed as we did here, then it can support the
discretization of the environment as we showed in our computer
studies.

We should note that similarity based grouping is an alternative
to temporal grouping and can be used if the latter is not available.
For example, temporal grouping is impaired in akinetopsia,
but the representation of the 3D world is not impaired. It
seems reasonable to expect that temporal and similarity based
algorithms together learn faster, performmore robustly and more
precisely, e.g., if the task is forecasting.

The novelty of our contribution is the concept of Cartesian
Factor. Such factors can be developed in many ways. Here, we
put forth a similarity based algorithm, studied it, and suggest to
unify it with other Gestalt principles. From the point of view of
Gestalt theory, the novelty in this work is that we are looking
for descriptors of the global context, that is, the environment
itself. Compression takes place via sparse autoencoding, when
encoding is based on the information that we apply via masking
part of the input representation. Note that the input is in the
form of a bag representation, which is a sufficient condition
here.

We added temporal clues and developed predictive systems
using pseudoinverse computations and PLS regression.
Pseudoinverse computation seem to fit the structure of
the superficial layers of the entorhinal cortex (Lőrincz and
Szirtes, 2009) and the non-linear extensions are feasible. For
pseudoinverse computation and for PLS, we found that PLS
regression can provide more regular predictions. Furthermore,
we found that the oriented hexagonal-like structures continued
beyond the observed “arena” can keep the hexagonal regularity,
sometimes to a better extent than the original set of PCs learned
in a non-hexagonal environment. We suspect that the highly
precise hexagonal grids (see e.g., the review written by Buzsáki
and Moser, 2013 and the cited references therein) may emerge
by including an interplay between the PCs and the oriented grids
when orientation free grids are developed, since the trigonal grid
is the common structure in the different directions.

5.2. Cell Types Developed
Using the bag model, we could develop place cells by covering
viewing angles of about 100◦. Further improvement can be
expected if (i) deeper networks are applied and (ii) if temporal
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FIGURE 9 | Delaunay triangulation fitted to the predicted structure from models. (A–C) Trained on 0◦ paths (D–F) trained on 340◦ paths. Training paths are

60, 80, and 100 steps long for (A)+(D), (B)+(E), and (C)+(F) subfigures, respectively.

changes are included. We found in our simulations that sparsity
should be kept for deeper networks at least for some of the
layers. No experiments were conducted on pixel based visual
information, a much higher dimensional representation that has
pixel-wise nonlinearities. Such nonlinearities can be overcome
in many ways, including temporal methods as demonstrated by
Franzius et al. (2007) and Schönfeld and Wiskott (2015). An
extension of our architecture to a hierarchy may also suffice.

While the first largest amplitude PC signal must belong to the
closest cell, the second largest must belong to its nearest neighbor
along the path. In turn, second largest amplitudes should uncover
the Voronoi tessellation of the PCs as demonstrated in our
computer experiments (Figure 5B).

From the algorithmic point of view, when a path proceeds
toward the border of the “arena” and gets close to it, the second
largest component becomes very small, since there is no cell
beyond the border and the second nearest neighbor can be far
at the sides. Assume that a cell responds to the ratio between
the largest activity and the second largest one. This cell will show
high activity when the path is directed toward the border and the
position is close to the border, since the second largest activity
belongs to a remote PC and is small. This cell would behave alike

to border cells even in dark. We should note that according to the
long held view, interneurons approximate arithmetic operations,
such as subtraction, division or shunting of the excitation.

By means of PCs, we could develop oriented grid cells
and could derive some precursors for border cells. Three
simple and justifiable algorithmic operations were exploited,
(i) the integrate-and-fire mechanism, (ii) features of the theta
waves, and (iii) a self-supervisory compression in the form of
pseudoinverse computation and PLS regression. Self-supervision
means that actual signals supervise delayed signals during
learning. Magnitude based ordering may occur in the neural
substrate, e.g., if magnitudes are converted to time giving rise to
time ordering. However, some kind of clock is needed for telling
the zero instant of the ordering. Intriguingly, the phase of theta
wave can play the role of such a clock. Indeed, during the first
half of the theta cycle, cells that fire represent current position,
whereas during the second half of the theta cycle temporally
ordered (future) place cells fire (Sanders et al., 2015). These
findings point to a more complex mechanism: cells that represent
the past cant fire in the second half of the theta wave. We used a
concatenation mechanism for prediction and, in turn, our model
suggests a predictive learning mechanism that overbridges theta
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cycles and exploits the activities of the second halves of the theta
cycles.

Recent results from Ferrante et al. (2016b) show that different
functional groups of pyramidal and inhibitory neurons are
present in the entorhinal cortex. Such groups may satisfy our
constraints that magnitude based ordering can support oriented
grid cell formation via self-supervised prediction as well as border
cell formation via shunting inhibition. Here is putative model
for the latter. Consider the integrate-and-fire model. Spikes that
come first excite the neuron and if delayed spikes that respond
to the second largest activities are not capable for the ignition
of shunting inhibition—e.g., if the animal is close to the border
and no PC is in that direction—then the cell will fire and the
cell will behave like a border cell. The head direction dependence
is, however, more complex as reported by the original work of
Solstad et al. (2008) calling for more detailed models based on
sophisticated features, see e.g., the review of Kepecs and Fishell
(2014) and the papers of Ferrante et al. (2016a), being outside of
the scope of this paper.

5.3. Order of Learning in the Model
We used HCs for learning PCs without temporal information.
We developed oriented grid cells from the PCs by means
of temporal information and self-supervised compression. We
showed that prediction becomes more regular (more hexagonal-
like) if it is continued beyond the area represented by PCs.
Temporal information on the second largest amplitudes gives
rise to the Voronoi polygons on the set of PCs and may uncover
border responses, e.g., by insufficient shunting inhibition. This
algorithmic feature remains valid in dark, since it relies on the
available set of PCs.

Other entorhinal cell types, such as speed cells and direction
independent grid cells pose further challenges for our model.
Speed cells described by Kropff et al. (2015), can be easily formed,
since the firing rate of oriented grids is a monotone function
of speed as found by Sargolini et al. (2006). For example, the
max pooling operation, being well documented for the primary
visual cortex (Movshon et al., 1978; Mechler and Ringach, 2002;
Touryan et al., 2005), suits the needs. The idea can be traced
back to the work of Fukushima (1980) and has gained attention
from the point of view of (i) invariant representations (Serre
et al., 2002), (ii) as a tool for efficient feature extraction, and
(iii) reduction of the dimension of the representation (Huang
et al., 2007). From the point of view of grid cells, a max pooling
neuron outputs the largest activity and thus it loses orientation
and displacement dependencies making the activity a monotone
function of the speed.

The model of direction independent grid cells is more
challenging, since there are additional constraints: firing should
be continued (a) at any point, (b) including the absence of learned
PCs, and (c) according to the displacement of the grid in any
changes of the direction. A number of neurally plausible models
based on different assumptions have been built see, e.g., the works
of Burgess and O’Keefe (2011), Giocomo et al. (2011), and Kesner
and Rolls (2015) and the cited references. The capability for
planning, however, seems crucial as emphasized by Buzsáki and
Moser (2013) and Sanders et al. (2015). It has been included into

a detailed model by Sanders et al. (2015). Compared to these
model, the Cartesian Factor principle is a high level description
that aims to shed light onto the origin of the key algorithmic
building blocks of the development of neural representations.

The Cartesian Factor principle suggests the following order
of learning: (i) head direction cells, (ii) place cells, (iii) oriented
grid cells, (iv) direction free grid cell representation by means of
an interplay between place cells and grid cells. According to the
recent paper from Rowland et al. (2016), there are two possible
routes for grid cell formation: it is either species specific or spatial
experience shapes the grid system. Our model proposes the
latter option and fits the experimentally found order of learning
reviewed in the cited paper.

We illustrated that the hexagonal like symmetry of the grid
cells can be maintained in the absence of information form
PCs. Planning and then traveling along loops, e.g., exploring
and then homing, can serve the tuning of the grid cells. It may
be worth noting that both grids and PCs change under slight
distortion of the “arena” showing the coupling between these
representations.

Along the same line of thoughts, our model is based on
an autoencoder, which—by construction—is also a comparator
(Lőrincz and Buzsáki, 2000) as suggested for the hippocampal
function by Vinogradova (2001) and others, see the cited
references. In the autoencoder, the input received is compared
with the representation generated output. In case of mismatch,
the adjustment of the representation may take place and the same
error may drive Hebbian learning. Such error based optimization
of the representation and learning were suggested by Lőrincz
and Buzsáki (2000) and Chrobak et al. (2000) and elaborated by
Lőrincz and Szirtes (2009).

Our sparse autoencoder hypothesis is supported by the fact
that activity patterns are very sparse in the CA1 subfield of the
hippocampus. We found in our numerical experiments that two
stages are needed for the development of sparse representations,
one for real time processing that uses spatial sparsity, and another
one for off-line processing, when replayed inputs satisfy lifetime
sparsity constraints. Such differences may show up in statistical
evaluations of theta phase patterns and SPW-R patterns, with
the former representing the actual path, whereas the latter may
perform lifetime sparsification. However, behavioral relevance
may modulate this simple picture.

5.4. Special Features of the Algorithms
The particular features of our algorithmic approach are as
follows:

1. Sparse autoencoding requires two stage operation, one
for real time and another one for learning. The latter
should implement or approximate lifetime sparsity. Imperfect
lifetime sparsitymay give rise to silent neurons not responding
to inputs. Homeostasis can counteract this process, enabling
an adjustable reservoir of PCs for learning new information.
Homeostatic maintenance of the activity may manifest itself
through low spatial specificity. Such neurons have been found
by Grosmark and Buzsáki (2016), but the picture seems more
sophisticated.
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2. Temporal ordering is necessary for the predictive compression
in our model. This is the core step that sets the high-level grid
representation free from external observations. Theta-waves
or integrate-and-fire behavior, possibly both, are candidates
for temporal ordering.

3. The bag model simplifies both the algorithm and
representation; it decreases the dimensionality of the
input and neglects many of the details. It keeps track of
the components, but not their actual manifestations. The
bag representation is analogous of the “what system” that
has information about the objects present, but not about
their positions, for example. From the point of view of
component based representation, the bag model resembles
to the “recognition by components” principle put forth by
Biederman (1987) for visual inputs.

4. The model of Cartesian Factor formation needs neurons that
can multiply and can produce conjunctive representations,
e.g., between the visual cues and the head direction cells.
Candidates for such computations include (i) the logical
operations, such as the AND operation made possible by
coincidence detection (for a recent review, see the work of
Stuart and Spruston, 2015), (ii) the interplay between distal
and proximal dendritic regions—when the proximal input
enhances the propagation of the distal dendritic spikes—
can also support a multiplicative function (Larkum et al.,
2001; Jarsky et al., 2005). We note that the EHC has
sophisticated interconnections between distant and proximal
regions (Gigg, 2006). We exploited the multiplicative feature
in our representation by using the product space and zero
some of the inputs by (multiplicative) masking.

5.5. Relation to Meta-Level Cognition
Cartesian Factors select features of the world and a limited set
of features may be sufficient for solving distinct problems. Path
planning is an example. The grid like structure, its potentials
for path planning and distance estimation as described in Huhn
et al. (2009), for example, are high level descriptors of the
world. They tell very little about the actual sensory information.
The autoencoding principle can serve both functions that is (i)
the manipulation at the meta-, or symbolic level, such as the
computation of distances on the grid structure and (ii) the low
level input-like representation via the estimations of the inputs
or the inputs that follow. The autoencoding principle resolves the
homunculus fallacy by saying that “making sense of the input” is
the function of the representation that approximates the input
(Lőrincz et al., 2002). We undersign the view that the estimation
of the input occurs via hierarchical bag representations that
neglect more andmore details bottom-up and combinemore and
more (Cartesian) factors top-down. One may say that in the top-
down generation of the estimated input, meta level description
becomes semantically embedded by means of the contributing
Cartesian Factors.

One can also treat episodic memory in the context of the
autoencoding principle. The appearances or the disappearances
of sparse codes by time can be seen as starting and ending
points of events. Such description fits factored reinforcement
learning (Szita et al., 2003). Taken together, our algorithms and

the concept of Cartesian Factors can provide simple clues about
the working mechanisms of the “cognitive map” in such a way
that the computations avoid combinatorial explosions (Szita and
Lőrincz, 2009) and thus escape the curse of dimensionality,
explicated by Bellman (1958).

6. CONCLUSIONS

Weput forth the novel concept of Cartesian Factors. The working
was demonstrated by forming of place cells and grid cells, where
we exploited the complementary information, the head direction
cells. Our proposed cognitive mechanism does not work in the
absence of such information. We note that upon destroying the
vestibular system, which is critical for having head direction cells,
no place cell is formed (Taube, 2007; Winter and Taube, 2014).

Our algorithm is a sparse autoencoding mechanism that can
be deep, but should be sparse in the hidden layers according to the
numerical studies. Our algorithm relies on the bag model that we
related to the what system. The bag model works with a collection
of input portions that represent the same quantity type, or object
types, or episode types, such as idiothetic inputs collected at the
same position but in different directions, or the different views
of an object, or the different temporal variations starting from a
given state and ending in an other one, respectively. The different
mechanisms should support each other.

The particular feature of the Cartesian Factors is that a few
of them may be sufficient for solving cognitive problems. An
example is path planning on the “cognitive map” if neighbor
relations are available. Elimination of directions from the path
planning problem reduces the state space in the exponent. This is
a very important advantage in decision making.

We used the discretized form of the Cartesian Factors to
develop the (implicit) metric-like representation that can be
continued beyond the experienced portion of the factor. The
self-supervised predictive compression method was illustrated
in oriented grid formation. We found that the predicted grids
can be very regular and may compensate for the errors of the
underling discretization of the factor. We used magnitude based
ordering and suggested integrate-and-fire mechanism and theta
wave based firing as candidate mechanisms for this learning
stage. The attractive feature of magnitude ordering is that it
detaches sensory information from the underlying (metrical)
structure and enables extrapolation beyond the already observed
part of the world.

The interplay between (a) the detachment of the direct
sensory information, (b) the manipulation in the underlying
space, and (c) the association of new sensory information to the
extrapolated structure, in other words, the separation of grids
from visual sensory information, the prediction on the grids can
be seen as symbol learning, symbol manipulation, respectively.
The association of grid cell activities to visual information, on the
other hand, corresponds to symbol grounding in our framework
and offers a solution to the grounding problem targeted first by
Harnad (1990).

We found that the concept of Cartesian Factors approximates
well the learning order and impairment related features of head
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direction cells, place cells, and oriented grid cells. The concept
also provides hints about border cells that can fire in the absence
of visual information. We argued that border cells, direction free
grid cells, and speed cells can emerge in the model via neurally
plausible mechanisms, but they require further studies.

In sum, the concept of Cartesian Factors offers (a) a solution
for the curse of dimensionality problem of reinforcement
learning, (b) an explanation for a number of features of the
EHC, such as sparse representation, distinct cell types, and
the order of learning, (c) a framework for symbol formation,
symbol manipulation, and symbol grounding processes, and (d)
a mechanism for the learning of attractor models by means of
magnitude ordering.
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Lőrincz, A., and Buzsáki, G. (2000). Two-phase computational model training

long-term memories in the entorhinal-hippocampal region. Ann. N. Y. Acad.

Sci. 911, 83–111. doi: 10.1111/j.1749-6632.2000.tb06721.x
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APPENDIX: DETAILS OF THE
ALGORITHMIC FORMULATION OF
CARTESIAN FACTOR LEARNING

Assume that a latent random variable Z and an observed random
variable Y are continuous and together they fully explain away
another observed binary random variable X. The ranges of Z
and Y are supposed to be grid discretized finite r- and one-
dimensional intervals, respectively. We denote the resulting grid
points by (z(m), y(l)) ∈ R

r×R; l = 0, . . . , L,m = 1, . . . , (M+ 1)r ,
L,M, r ∈ N. The indices m = 1, . . . , (M + 1)r are supposed to
be scrambled throughout training (i.e., we assume no topology
between z(m)). Then observation x(m,l) ∈ {0, 1}d is generated by
a highly non-linear function g : R

r × {1, . . . , L} → {0, 1}d from
grid point z(m) and grid interval [y(l−1), y(l)) as

x(m,l) = g(z(m), l) (7)

for m = 1, . . . , (M + 1)r ; l = 1, . . . , L. For each fixed m, one
is given masks Vi,· ∈ {0, 1}L;

∑L
l=1 Vi,l = v ∈ N indexing

pairs of the form (l, x(m,l)), where i = 1, . . . , I is a global index.
Provided such a sample from Y and X, we aim to approximate
the discretized version of Z.

We formulated the above problem as a multilayer feedforward
lifetime sparse autoencoding (Makhzani and Frey, 2015)
procedure with input matrix X ∈ {0, 1}I×J utilizing two
novelties: concatenated input vectors and a masked loss function
are motivated by the input structure. In order to construct the

inputs Xi,·; i = 1, . . . , I of size J = L · d, we coupled each v-tuple
of x(m,l) vectors for fixed m into a single block-vector using the
Vi,· values as follows:

Xi,· =
[

Vi,1 · x
(m,1), . . . ,Vi,l · x

(m,l), . . . ,Vi,L · x
(m,L)

]

. (8)

Then, we used the ℓ2 reconstruction error as the loss, but on a
restricted set of elements, namely, on the v non-zero blocks for
each input:

l(X,̂X,V) : =
1

I

∑

i=1,...,I
j=1,...,J

V
i,⌊

j−1
d
+1⌋

· (Xi,j −̂Xi,j)
2 (9)

where ̂X denotes the output of the decoder network. Finally,
a sparse non-linearity was imposed on top of each encoder
layer, which selected the k percent topmost activations across
one component. We applied both lifetime (Makhzani and
Frey, 2015) and spatial sparsification (Makhzani and Frey,
2013). Multilayer autoencoders with rectified linear units,
k = 1 spatial sparsity, p%-sparse lifetime sparsity, and
linear decoder output layer make the non-linear units of the
network.

We implemented our method in the Python library Theano
(Bergstra et al., 2010) based upon the SciPy2015 GitHub
repository2.

2https://github.com/kastnerkyle/SciPy2015
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Spaces in the brain can refer either to psychological spaces, which are derived from

similarity judgments, or to neurocognitive spaces, which are based on the activities of

neural structures. We want to show how psychological spaces naturally emerge from

the underlying neural spaces by dimension reductions that preserve similarity structures

and the relevant categorizations. Some neuronal representational formats that may

generate the psychological spaces are presented, compared, and discussed in relation

to the mathematical principles of monotonicity, continuity, and convexity. In particular, we

discuss the spatial structures involved in the connections between perception and action,

for example eye–hand coordination, and argue that spatial organization of information

makes such mappings more efficient.

Keywords: chorus transform, conceptual spaces, eye–hand coordination, population coding, radial basis function,

similarity, stimulus generalization

1. INTRODUCTION

Within psychology there is considerable evidence that many aspects of human perception and
categorization can be modeled by assuming an underlying spatial structure (Shepard, 1987;
Gärdenfors, 2000). A paradigmatic example is the color space (Vos, 2006; Renoult et al., 2015), but
also, for example, the emotion space (Russell, 1980; Mehrabian, 1996) and musical space (Longuet-
Higgins, 1976; Shepard, 1982; Large, 2010) have been extensively studied. Within cognitive
linguistics, such spaces are also assumed to be carriers of meaning. For example, Gärdenfors (2000,
2014) has proposed that the semantic structures underlying major word classes such as nouns,
adjectives, verbs and prepositions can be analyzed in terms of “conceptual spaces.”

For some of the psychological spaces, there exist models that connect neural structures to
perception. For example, it is rather well understood how the different types of cones and rods
in the human retina result in the psychological color space (see Renoult et al., 2015 for a review).
The mammalian brain sometimes represents space in topographic structures. A clear example is
the three layers in the superior colliculus for visual, auditory and tactile sensory inputs (Stein and
Meredith, 1993). Another example of a topographic representation is the mapping from pitch to
position in the cochlea and the tonotopic maps of auditory cortex (Morel et al., 1993; Bendor and
Wang, 2005).

For most psychological spaces, however, the corresponding neural representations are not
known. Our aim in this article is to investigate the hypothesis that also other representing
mechanisms in the brain can be modeled in terms of spatial structures, even if they are not directly
mapped onto topographic maps. We present some neuronal representational formats that may
generate the psychological spaces. We want to show how psychological spaces naturally emerge
from the underlying neural spaces by dimension reduction that preserve similarity structures and
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Balkenius and Gärdenfors Spaces in the Brain

thereby preserve relevant categorizations. In this sense, the
psychological and the neural spaces correspond to two different
levels of representation.

Furthermore, we argue that spatial representations are
fundamental to perception since they naturally support similarity
judgments. In a spatial representation, two stimuli are similar
to each other if they are close in the space (Hutchinson and
Lockhead, 1977; Gärdenfors, 2000). Spatial representations also
help generalization since a novel stimulus will be represented
close to other similar stimuli in the space, and will thus be likely
to belong to the same category or afford the same actions.

One of the main tasks of the brain is to mediate between
perception and action (Churchland, 1986; Jeannerod, 1988; Stein
and Meredith, 1993; Milner and Goodale, 1995). We argue
that this task is supported by spatial representations. When
both the sensory input and the motor output use a spatial
representation, the task of mapping from perception to action
becomes one of mapping between two spaces. To be efficient,
spatial representations need to obey some general qualitative
constraints on such a mapping. We focus on continuity,
monotonicity, and convexity.

In the following section we present some basic psychological
spaces and possible connections with neural representations.
In Section 3, the role of similarity in psychological spaces,
in particular in relation to categorization is presented and
conceptual spaces are introduced as modeling tools. Section 4
is devoted to arguing that spatial coding is implicit in neural
representations, in particular in population coding. In Section 5,
we show how spatial structures are used in mappings between
perception and action. Some computational mechanisms, in
particular the chorus transform, are discussed in Section 6.

2. BASIC PSYCHOLOGICAL SPACES

We share many psychological spaces with other animals. In
this section, we briefly present some of the most basic spaces
and outline the representational formats. First and foremost,
most animal species have some representations of the external
physical space. Even in insects such as bees and ants, one can find
advanced systems for navigation (Gallistel, 1990; Shettleworth,
2009). However, the neuro-computational mechanisms that are
used vary considerably between species. Mammals have a spatial
representation system based on place cells in the hippocampus
that are tuned to specific locations in the environment such that
the cell responds every time the animal is in a particular location
(O’Keefe and Nadel, 1978). This system is complemented by
the grid cells in the entorhinal cortex that show more regular
firing patterns that are repeated at evenly spaced locations in the
environment (Moser et al., 2008). Taken together, the responses
of these cells represent a location in space. This code is redundant
in the information theoretical sense since many more neurons
are used than would be strictly necessary to represent a point in
three-dimensional space. One reason for this is that a redundant
coding is less sensitive to noise, but it also supports the spatial
computations made by the brain as we will see in Section 4.

A second example is the emotion space that is shared with
many animal species. Mammals, birds, and other species show

clear indications of at least fear, anger and pleasure and there are
evolutionarily old brain structures that regulate these emotions
and their expressions. For the psychological space of human
emotions, there exist a number of models. Many of these models
can be seen as extensions of Russell’s (1980) two-dimensional
circumplex (Figure 1A). Here, the emotions are organized along
two orthogonal dimensions. The first dimension is valency, going
from pleasure to displeasure; the second is the arousal-sleep
dimension. Russell shows that the meaning of most emotions
words can be mapped on a circumplex spanned by these
two dimensions. Other models of psychological emotion space
sometimes include a third dimension, for example a “dominance”
dimension that expresses the controlling nature of the emotion
(Mehrabian, 1996). For example while both fear and anger are
unpleasant emotions, anger is a dominant emotion, while fear is
non-dominant.

In relation to the topic of this paper, a central question
concerns what are the neurophysiological correlates of the
psychological emotion space. A recent hypothesis is the three-
dimensional emotion cube based on neuromodulators proposed
by Lövheim (2012), where the axes correspond to the level
of serotonin, dopamine and noradrenaline respectively. By
combining high or low values on each of the dimensions, eight
basic emotions can be generated. For example, “fear” corresponds
to high dopamine, low serotonin and noradrenaline, while “joy”
corresponds to high noradrenaline, high serotonin and dopamine
(see Figure 1B). The mapping between the representation in
terms of neurotransmitters and the psychological emotion space
remains to be empirically evaluated, but Lövheim’s model
presents an interesting connection between brain mechanism
and the psychological emotion space. Unlike the coding
of physical space, this representation has a direct relation
between the underlying physiological variables, the transmitter
substances, and the psychological emotion space.

A third example of a psychological space that is shared
between many species is the color space. The human
psychological color space can be described by three dimensions:
The first dimension is hue, which is represented by the familiar
color circle. The second dimension of color is saturation, which
ranges from gray (zero color intensity) to increasingly greater
intensities. The third dimension is brightness, which varies from
white to black and is thus a linear dimension with end points.
There are several models of this human psychological space that
differ in some detail concerning the geometric structure, but they
are all three dimensional (Vos, 2006).

In other animal species, the psychological color space
has only been investigated, via discrimination tasks, for a
limited number of species (Renoult et al., 2015). However, the
dimensionality of the space varies from one-dimensional (black-
white) two-dimensional (in most mammals), three-dimensional
(e.g., in primates), to four-dimensional (in some birds and fish).
For example, some birds with a four-dimensional space can
distinguish between a pure green color and a mixture of blue and
yellow, something that most humans cannot (Jordan andMollon,
1993; Stoddard and Prum, 2008).

The next question then becomes how these various
psychological color spaces can be grounded in the
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FIGURE 1 | (A) Russell’s circumplex with the two basic dimensions of valency and arousal and different emotions arranged in a circular structure. (B) Lövheim’s

emotion cube where the three axes represent the levels of dopamine, noradrenaline, and serotonin respectively.

neurophysiology of the vision systems of different species.
The retinas of tri-chromats such as humans have three types
of cones that generate color perception: short wavelength
(blue), medium wavelength (green) and long wavelength
cones (red). Tetra-chromats typically have an additional type
of cone that is sensitive to ultra-violet light (Endler and
Mielke, 2005). Although every photoreceptor is tuned to a
particular wavelength of light, its response intertwines its
light intensity with spectral content (Hering, 1964). A change
in photoreceptor response can be the results of a change in
light intensity as well as a change in color. It is only when
the responses of receptors with different tuning are combined
that the brain can distinguish between brightness, saturation,
and hue.

There exist different theories regarding the connection
between the signals from the cones and the rods and the perceived
color. One is the opponent-process theory that claims that for
tri-chromats there are three opponent channels: red vs. green,
blue vs. yellow, and black vs. white. The perceived color is then
determined from the differences between the responses of the
cones (Hering, 1964). The theory has received support also in
several animal species with known tri-chromacy, for examples
in primates, fish and bees (see Svaetichin, 1955; De Valois et al.,
1958; Backhaus, 1993). For tetra-chromats, a similar theory has
been proposed (Endler and Mielke, 2005; Stoddard and Prum,
2008).

It is interesting to note that even though both the receptor
space and the psychological color space are both of low
dimension, they are not the same. For example, the subjective
experience of a color circle has no correspondence in sensory
physiology. For humans, the color coded at the receptor level is a
cube while the psychological space has the shape of a double cone.
None of these spaces are a direct representation of the physical
light spectrum.

3. MODELS OF PSYCHOLOGICAL SPACES

3.1. Similarity as a Central Factor
Perhaps the most important cognitive function of the brain is
to provide a mapping from perception to action (Milner and
Goodale, 1995). In the case of simple reflex mechanism, the
mapping is more or less fixed and automatic. In most cases,
however, the mapping has to be learned (Schouenborg, 2004)
and it is a function not only of the current perception, but also
of memory and context (Bouton, 1993). It is central that such a

mapping can be learnable in an efficient way. A general economic
principle for cognition is that similar perceptions should lead to
similar actions. Therefore, similarity should be a fundamental
notion when modeling the mapping from perception to action.

In the behavioristic tradition, connections between stimuli
and responses were investigated. This research lead to the
principle of stimulus generalization that says that, after
conditioning, when the subject is presented with a stimulus that
is similar to the conditioned stimulus, it will evoke a similar
response (Hanson, 1957, 1959). For example, work by Shepard
(1957) was seminal in showing that stimulus generalization can

be explained in terms of similarity between stimuli. Within this
tradition, it was seldom studied what made a stimulus similar to
another. What was meant by similarity was taken for granted or
induced by varying a physical variable (Nosofsky and Zaki, 2002).

If we leave the behavioristic tradition and turn to more
cognitively oriented models, a general assumption is that the
connection between stimuli and responses is mediated by
a categorization process and that it is the outcome of the
categorization that determines the action to be taken. For
example, stimuli are categorized as food or non-food, which then
determines whether an act of eating will take place.

There exist several psychological category learning models
based on similarity. Some are based on forming prototypes of
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categories (Rosch, 1975; Gärdenfors, 2000). One way of using
prototypes to generate concepts is by Voronoi tessellations (see
next subsection) that are calculated by placing any stimulus
in the same category as the nearest prototype (Gärdenfors,
2000). Other category learning methods are based on learning
a number of exemplars for the different concepts in a domain.
(Nosofsky, 1988; Nosofsky and Zaki, 2002). Then a new stimulius
is categorized as the same as its nearest neighbor among the
exemplar. This is also a technique that is commonly used for
pattern recognition in an engineering context (Cover and Hart,
1967).

A general problem for such categorization models is that
only for special types of stimuli it is known how the underlying
similarity structure can be described. For most stimuli, the
modeling will have to be based on hypotheses. The idea that
similar perceptions should lead to similar action can, however, be
formulated in terms of some general principles that a mapping
from perceptions to actions should fulfill. In mathematical terms,
the principles can be described as monotonicity, continuity and
convexity. Monotonicity means that an increase in a perceptual
variable should correspond to an increase in an action variable.
For example, if an object B is perceived as being further away
than object A, then the agent must reach further to grasp B
than to grasp A. Continuity means that small changes in a
perceptual variable should correspond to an small change in
an action variable. Again eye–hand coordination provides an
example: When reaching for an object, the agent makes small
adjustments to hand movements in order to adjust for small
perceptual discrepancies between hand and object. Convexity
means that closed regions of a perceptual space are mapped
onto a closed region of action space. To continue with the
reaching example, this requirement entails that if object C is
located between objects A and B, then the motor signals to
reach C should also lie between the motor signals to reach
A and to reach B. Even if these three requirements do not
determine the mapping from perceptions to actions, they provide
strong constraints on such a mapping. The important thing
to notice is that once perceptions and actions are spatially
represented, a continuous mapping from perception to action
typically also fulfills the criteria of monotonicity and convexity.
These properties are also important from the perspective of
control theory, for example when a robot needs to interpolate
between learned movements in novel situations (Schaal and
Atkeson, 2010).

Furthermore, when an agent is learning, for example, to
coordinate the information from the eyes with the actions of
the hands, the fact that the mapping satisfies these conditions
potentially makes the learning procedure considerably more
efficient. Even with little training, it would be possible to
interpolate between already trained mappings from eye to hand
and to test a movement that likely is close to the correct one.
Under ideal conditions, it is sufficient to have learned how to
reach three points on a plane to be able to reach any position
on that plane. Other points can be reached by interpolating (or
extrapolating) from the movements that reaches each of these
three points. Although such interpolation does not necessarily
lead to a perfect behavior, it is a good starting point and as more

movements are tested the mapping will quickly converge on the
correct one.

3.2. Conceptual Spaces
A modeling problem is how psychological and neurological
spaces can best be represented. Gärdenfors, 2000 proposes that
categories can be modeled as convex regions of a conceptual
space. A psychological conceptual space consists of a number of
domains such as space, time, color, weight, size, and shape, where
each domain is endowed with a particular topology or geometry.
Convexity may seem a strong assumption, but it is a remarkably
regular property of many perceptually grounded categories, for
example, color, taste, and vowels. Although a main argument
for convexity is that it facilitates the learnability of categories
(Gärdenfors, 2000), it is also crucial for assuring the effectiveness
of communication (Warglien and Gärdenfors, 2013). In this
article, we focus on the role of convexity in mappings from
perception spaces to action space.

There are interesting comparisons to make between analyzing
categories as convex regions and the prototype theory developed
by Rosch and her collaborators (Rosch, 1975; Mervis and Rosch,
1981; Lakoff, 1987). When categories are defined as convex
regions in a conceptual space, prototype effects are to be expected.
Given a convex region, one can describe positions in that region
as being more or less central. Conversely, if prototype theory is
adopted, then the representation of categories as convex regions
is to be expected. Assume that some conceptual space is given, for
example, the color space; and that the intention is to decompose
it into a number of categories, in this case, color categories. If
one starts from a set of categories prototypes—say, the focal
colors—then these prototypes should be the central points in
the categories they represent. The information about prototypes
can then be used to generate convex regions by stipulating that
any point within the space belongs to the same categories as the
closest prototype. This rule will generate a certain decomposition
of the space: a so-called Voronoi tessellation (see Figure 2).
The illustration of the tessellation is two-dimensional, but
Voronoi tessellations can be extended to any arbitrary number
of dimensions. An important feature of Voronoi tessellations is
that they always generate a convex partitioning of the space.

The prototype structure of concepts is also central for
modeling meanings of words. Gärdenfors (2000, 2014) develops
a semantic theory where elements from the main word classes are
mapped onto convex regions of domain or convex sets of vectors
over a domain. This way of representing word meanings can
explain many features of how children learn their first language.
Again, the low-dimensional structure of the domains are essential
for rapid learning of new word meanings (Gärdenfors, 2000).

4. SPATIAL CODING IS IMPLICIT IN

NEURAL REPRESENTATIONS

We next turn to a more general account of how space may be
neurally represented. We suggest that a spatial coding is implicit
in most neural mechanisms, and that concepts of distances and
betweenness are readily applicable to such codes.
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FIGURE 2 | Voronoi tessellation of the plane into convex categories.

Each point represents a prototype and the lines show the borders between the

categories.

As a first example, we look at the neurons in motor cortex.
These neurons code for the direction of movement using a
population code where each individual neuron is tuned to
movement in a particular direction (Georgopoulos et al., 1988)
and modulated by distance (Fu et al., 1993). In a population
code, a stimulus or a motor command is coded by the joint
activities of a set of neurons. Before the movement, the response
of each cell is proportional to the angle between the direction
vector represented by that cell and the direction of the following
movement. Cells with vectors close to the movement direction
will respond more than cells that code for different movement
directions.

The set of neurons can be seen as a basis for a highly redundant
high-dimensional coding of a low-dimensional vector space for
movement direction. The responses of all neurons taken together
represent a population vector that can be computed by adding
together the direction vectors of each individual neuron weighted
by its response magnitude (Figures 3A,B). The population vector
is thus the low-dimensional “decoding” of the high-dimensional
population code.

The similarity between two population codes can be calculated
by considering the population codes as vector in the high-
dimensional space. The similarity is defined by the cosine of
the angle between these vectors. This similarity measure varies
between 0 and 1, where 1 indicates identical population codes,
and a value of 0 indicates two maximally dissimilar codes. This is
different from calculating the similarity between the population
vectors that lie in the low-dimensional space. A fundamental
aspect of the population coding is that population codes that
are similar using this measure in the high-dimensional neural
space will produce population vectors that are also similar in the
low-dimensional movement space.

Population codes are not only used for motor coding but
are also used for perceptual tasks. In their seminal study of
population coding of human faces in the anterior inferotemporal
cortex (AIT) and anterior superior temporal polysensory area
(STP) of macaque monkeys, Young and Yamane (1992) showed
that the recorded responses of these brain regions contain
information about the identity (AIT) and possibly familiarity
(STP) of the faces the monkey is viewing. The responses of a
large number of neurons to different faces were recorded. Using
multidimensional scaling, they mapped the recordings onto a
lower dimensional space. The dimensions of this space are not
visible when looking at a single neuron that responds preferably
to a single stimulus and gradually decreases its response as
the stimulus moves away from the preferred one. However, by
looking at the low-dimensional code, they were able to show that
two dimensions explainedmost of the variation in the population
code for each of the two brain regions.

This implies that the macaque brain implicitly uses a low-
dimensional space to code different faces. Although a high-
dimensional population code is used, most of the information
is contained in a small number of dimensions. Each face is
coded in a unique location in this space, and faces coded
close to each other in the space share visual characteristics
such as the amount of hair and the general shape of the face.
The distance between points in this low-dimensional space
represents the similarity between the coded faces (Figure 3C)
and may correspond to the psychological face space of the
monkey.

For both examples of population coding described above,
the underlying space appears to be two-dimensional, but this is
clearly an artifact of the experimental details. In Georgopoulos’
experiments, the monkey moved its arm in two dimensions, the
vectors found are consequently also two-dimensional, but we
must assume that the same principle holds for movement in
three dimensions and possibly also for more complexmovements
that are extended in time and involves more degrees of freedom
(Graziano et al., 2002). The only difference in this case is
that a larger number of dimensions are necessary. Similarly, in
the experiment by Young and Yamane, two dimensions were
sufficient to capturemost of the variation necessary to distinguish
the different faces, but presumably, the monkey could have
access to more dimensions had it been necessary to differentiate
between the faces. The exact number of dimensions in neural
representation is not important as long as a low-dimensional
reduction of the space covers most of the information.

There are two ways to view the coding in the brain—one
at a detailed level, the other at an aggregated level. The first is
to look at each neuron individually. By systematically testing
different stimuli, it is possible to find the stimulus that each
neuron maximally responds to (Tanaka, 2003). In this case, the
neuron is considered a detector tuned to that preferred stimulus.
The preferred stimulus can be seen as the prototype for that
neuron (Edelman and Shahbazi, 2012), and the more similar a
stimulus is to that prototype, the stronger the neuron will react.

The other approach is to look at the whole population of
neurons and view the activity pattern as a point in a high
dimensional space. In this case, the response of each neuron is
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FIGURE 3 | (A,B) The direction vectors from a minimal population of two cells are combined into a population vector. Each cell codes for a particular movement

direction and the responses of the two cells weigh together the two vectors into a combined population vector that corresponds to the subsequent movement

direction. When the response of cell 2 is higher than that of cell 1, the population vector will point in a direction that is closer to vector 2 than that of vector 1. When

cell 1 has the higher response, the population vector will be more aligned with vector 1. (C) A hypothetical face space of the type found by Young and Yamane (1992).

Different faces are arranged along two dimensions where faces that are similar to each other are located close to each other in the space.

seen as a basis function and every stimulus is coded as a blend
of these basis functions1. In this case, the responses of individual
neurons are not necessarily meaningful on their own. Although
these two views may look contrasting, they are actually two sides
of the same coin and are both equally valid.

Although a population code consists of the activity of multiple
neurons that are not necessarily located close to each other on
the cortical surface, Erlhagen and Schöner (2002) have suggested
that neurons that make up a stable activity pattern may be linked
by mutual excitation in such a way that they functionally can be
considered a point in a higher dimensional topographic space.
This is a central component of the Dynamic Field Theory that
studies the temporal dynamics of such activity patterns.

We have here looked at how low dimensional spaces are
implicitly coded in a high dimensional population code, but
the brain also constructs lower dimensional codes explicitly
throughout the sensory system. This is often modeled as
successive steps of dimensionality reduction, or compression,
in hierarchical networks (e.g., Serre et al., 2007). In the
semantic pointer architecture (Eliasmith, 2013), relatively low
dimensional codes that are constructed in this way are used
to define a “semantic space” where different concepts can be
represented. The high dimensional representation at lower levels
in the hierarchy can be partially reconstructed from the low-
dimensional semantic pointer. Furthermore, the architecture
allows for recursive binding through the operation of circular
convolution. Unlike earlier methods using tensor operations
(Smolensky, 1990), circular convolution does not increase the

1Basis functions are elementary function that can be linearly combined to produce

more complex functions in a particular function space.

dimensionality of the representation and can be performed in
several successive steps to produce deep embeddings (Blouw
et al., 2015). Many other forms of binding mechanisms are
discussed by van der Velde and De Kamps (2006). Common to all
are that the individual constituents can have the spatial structure
described above.

5. THE USE OF SPACES AS MAPPINGS

BETWEEN PERCEPTION AND ACTION

We next turn to neuro-cognitive models that include both the
sensory and the motor side. Specifically, we want to show that
sensory-motor mappings can be described as mappings between
points in low-dimensional spaces, Here we only consider basic
examples of sensory-motor mappings, but the principles we
present are general.

A direct form of sensory to motor mapping is used when we
keep our head stationary and let the eyes saccade to an object.
The location of the object is captured in eye-centered coordinates
and it is necessary to convert these into the appropriate motor
commands to move the eyes to that location. This sensory-
motor transformation can be seen as a mapping between two
representational spaces, one for the object location and one for
the movements of the eyes.

For a saccade, the mapping is relatively simple since every
location on the retina could in principle be mapped to a unique
motor command (Salinas and Abbott, 1995). When a target is
detected on the retina, a motor command would be produced
that would point the eye in the correct direction. There would
thus be one eye direction vector for each retinal position. Here,

Frontiers in Psychology | www.frontiersin.org November 2016 | Volume 7 | Article 182090

http://www.frontiersin.org/Psychology
http://www.frontiersin.org
http://www.frontiersin.org/Psychology/archive


Balkenius and Gärdenfors Spaces in the Brain

the desired gaze direction is a function of the target location
on the retina and the function satisfies the three conditions of
monotonicity, continuity and convexity. As the target moves
further away from the center of the eye, the required movement
is larger and the mapping is thus monotone. A small change
in the target position on the retina, requires a small change of
the corresponding movement. The mapping is thus continuous.
It also follows that the convexity criteria is met since the
movements are mapped out in an orderly fashion over the
retina. The movement to a target that is projected between two
arbitrary points on the retina lies somewhere in-between the two
movements required for the two points.

Deneve and Pouget (2003) suggested that mappings from
sensory to motor systems could be performed using basis
function maps. Such maps use basis functions to represent all
possible stimuli in such a way that linear combinations of basis
functions can compute any motor command. More specifically,
they propose that the neurons of the supplementary eye field
of the parietal cortex form a set of basis units. Each basis unit
corresponds to a single prototype in the sensory space. The
output from the unit codes the distance from the input to that
prototype. The task for the subjects in their experiment was to
saccade to the left or the right part of an object that appeared
at an arbitrary location and orientation on the retina. This task
is interesting since it requires that the whole object is identified
before it is possible to localize its sides and thus it appears to
require object-centered representations and as such a sequence of
coordinate transformation would be necessary. However, Deneve
and Pouget showed that this task can be performed as a single
mapping by a three layer network where the middle layer consists
of basis function units (Figure 4). The basis units work together
so that inputs that match several basis units will produce an
output that is a combination of the outputs from each of the

FIGURE 4 | A three-layer neural network. The input x is mapped onto a

population code p(x) in a hidden layer where each neuron (or basis unit) is

tuned to different position in the input space (its prototype). The output

function f (x) is computed by weighting together the responses of the units in

the hidden layer. Different functions can be computed by weighting the

outputs differently. Learning in the network consists of finding the appropriate

weights for the desired function.

individual basis units. A finite set of basis units can thus cover the
whole input and output spaces. The responses of all these basis
units together constitute a population code (Pouget and Snyder,
2000).

Since we know that the input can be described by a small
number of variables (here the position and orientation of the
object combined with the instruction to look at the left or right
part of it), it is clear that the responses of the basis function
units implicitly codes for this low-dimensional space. Similarly,
the output is a point in a two dimensional space consisting of
the possible targets for the saccade. We can thus interpret the
operation of the network as a mapping from a four-dimensional
to a two-dimensional space, although the computations are made
implicitly in a high-dimensional space as a linear combination of
basis unit responses.

Similar models have been proposed to explain the sensory-
motor transformations necessary to reach for a visually identified
object (Zipser and Andersen, 1988). For example, to point at a
visual target the brain needs to take into account the position
of the target on the retinas of the two eyes, the orientation of
the head and eyes and the posture of the body. To compute the
location of the target relative to the hand, the target must first be
identified on the retina and then it is necessary to compensate for
the location of the eyes relative to the hand and the rest of body.
This can be viewed as a sequence of coordinate transformations,
but it is also possible that, like in Deneve and Pouget’s (2003)
model, the target location could be found in a single step by
mapping from a space coding retinal position and the positions
of all the relevant joints. In either case, these computations can be
made asmappings between population codes in different layers of
a network (Zipser and Andersen, 1988; Eliasmith and Anderson,
2003).

The relative roles of retinal target position and joint angles
can be seen in an experiment by Henriques et al. (2003). The
experiment showed that reaching is easier when we look directly
at the target compared to when the target is off-gaze. This
indicates that the orientation of the eyes has a larger influence on
the movement than the retinal position of the target and supports
the idea that joint position are used in computations of spatial
locations. The result is probably a consequence of the fact that we
most often look directly at an object we try to reach.

In the brain, the mapping from the retinal position and eye
direction to the external target location that controls reaching
movements is believed to take place in the posterior parietal
cortex (PPC) (Jeannerod, 1997). Zipser and Andersen (1988)
looked at the responses of the neurons in area 7a of PPC
and trained an artificial neural network on the mapping from
eye direction and retinal position to head-centered coordinates.
The network consisted of three layers where units in the first
layer code for retinal position and eye direction. The activity
of the output layer indicated the head-centered location of the
target. The model produced similar response properties as the
real neurons of PPC. The neurons in the hidden layer became
tuned to retinal position but they are also modulated by eye
position. Like the saccade control described above, this learned
mapping fulfills the criteria of monotonicity, continuity and
convexity.
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The type of population coding that is found in area 7a,
and that also emerges in the hidden layer of the model, is
often called a gain field (Zipser and Andersen, 1988; Buneo and
Andersen, 2006). Like other types of population coding, different
neurons take care of different parts of the mapping and the
final result is obtained by weighing together the contributions of
each neuron (Figures 3, 4). However, a gain field is characterized
by the fact that the neurons are primarily organized along
only some of the input dimensions. For example, Zipser and
Andersen (1988) found that neurons coding for target position
were retinotopically tuned, but responded differently depending
on the eye positions.

Salinas and Abbott (1995) also addressed the question of
how the brain can transfer information from sensory to motor
system using population codes. They investigated the coordinate
transformations in visually guided reaching and proposed a
model that uses a Hebbian learning mechanism to learn the
sensory-motor mapping. Unlike Zipser and Andersen, they
assume that the input space is already covered by a large
set of prototypes coded by a set of basis units. They view
the problem of eye–hand coordination as a form of function
approximation where the problem is to find the appropriate
weights for the outputs of each basis unit to obtain the desired
mapping (Figure 4). They show how these weights can be learned
using Hebbian learning and the general model they present can
be used to describe arbitrary mappings between spaces.

We now turn to the slightly more complicated situation where
reaching is followed by grasping an object. Here, we not only need
to locate the target, we also need to shape the hand in the correct
way both before reaching the object and subsequently to grasp it.
Despite the added complexity, this too can be seen as a mapping
between two spaces. In the case that only visual information is
used, the input space codes for the location and the shape of the
object while the output space minimally contains the movement
direction for reaching, the parameters to preshape the hand and
finally the force vectors to perform the grasping movement.

Although little is known about how shapes are represented in
the brain, work in mathematics (Kendall, 1984) and computer
graphics (Blanz and Vetter, 1999; Kilian et al., 2007) show that it
is possible to design shape spaces where different shapes can be
synthesized from combinations of basic shapes in a way that is
similar to how basis units work together to represent a point in a
space using a population code. For a known rigid object however,
it is sufficient to code the orientation of the object. This can be
done in a three dimensional space of the rotation angles that
describes the orientation of the object2. The orientation can be
represented in a way similar to position by a set of basis units that
together code for all possible orientations of the object. Here the
final mapping is between a six-dimensional space representing
position and orientation to a space that represents the critical
parameters of the reaching movement.

There are a number of spaces that could potentially
be involved in eye–hand coordination. Depending on task

2Euler angles are generally problematic as orientation representations, in particular

because they do not fulfill the three criteria of monotonicity, continuity and

convexity. However, there exist other representations, such as quarternions,

that do.

constraints, the brain is thought to use both egocentric and
allocentric representations of space (Crawford et al., 2004) and
there is evidence that neurons in PPC code for targets in relation
to both gaze (Batista et al., 1999) and hand (Buneo and Andersen,
2006). Investigating spatial representations for reaching in the
superior parietal lobule (SPL) of PPC, Buneo and Andersen
(2006) found evidence for representations of targets in both eye-
centered coordinates and of the difference in position between
the hand and target.

Figure 5 summarizes some of the coordinate systems involved
in eye–hand coordination. The target object can be represented in
either allocentric or one of the egocentric spaces. For reaching,
an egocentric frame of reference is more suitable but as we
have seen, there are several egocentric spaces corresponding
at least to the eye and the hand, but it is likely that many
more exist and presumably the brain is able to map freely
between them. To grasp an object, its representation must be
mapped on the space that contains the possible motor actions.
The dimensionality of this space is high enough to contain all
possible grasp movements, but still of limited dimensionality.
For the brain to learn these mapping in an efficient way, it
is necessary that where possible, these mappings fulfill the
three conditions of monotonicity, continuity and convexity.
We submit that population codes are used to make this
possible.

6. MECHANISMS

Population codes of spaces as described above are instances of
a coding scheme where each input is coded by the distance to
a number of prototypes. The optimal stimulus for each neuron,
or basis unit, in the population can be considered the prototype
for that unit. One such form of population coding is given by
the chorus transform proposed by Edelman (1999) who calls it a

FIGURE 5 | Coordinate systems in eye–hand coordination. The position

of an object can be coded in in relation to allocentric space, the eye or the

hand and potentially also other parts of the body. To reach and grasp the

object, the brain must map representations of the object from a sensory space

to a motor space in order to control the arm and hand in an appropriate way.
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“chorus of prototypes.” In the simplest case, the response of each
unit is the similarity to the prototype measured by some suitable
metric. Figure 6 shows an example of a chorus transform. The
input to the transform is an image of a face. This face is compared
to each of five face prototypes and the resulting transform is
the set of similarity measurements. The chorus transform thus
describes a type of population coding of the input.

An important property of the chorus transform is that it
preserves Voronoi tessellations of the input space (Edelman,
1999, p. 268). It also approximately preserves the inter-point
distances in the original space. This means that category
boundaries in the input space are mostly preserved in the output
space (Edelman and Shahbazi, 2012). This has several critical
consequences for both neural coding and mappings of spatial
representations:

Stimulus generalization. The spatial representation naturally
supports generalization since novel stimuli will be coded by the
similarity to known stimuli and the coding will gradually change
if the stimulus gradually changes. There is thus a continuous
mapping from stimulus properties to the representation of the
stimulus.

Discrimination. Since discrimination borders are typically
Voronoi borders and these are mostly preserved by the coding,
it means that discrimination borders in the input space are
preserved in the coding space.

Categorization. For the same reason, categories induced by the
Voronoi tessellation are preserved in the population coding.

When looking at mapping between two spaces coded by
a population of units we note that these properties of the
chorus transform imply that a linear mapping from such a
representation also have these properties. This has consequences
for sensory-motor mapping between spaces:

Interpolation. Since similar stimuli are coded by similar
population codes, similar stimuli will be mapped to similar

FIGURE 6 | In the chorus transform (and in RBF networks) an input is

mapped to its similarity to a number or prototypes. Here, an image x is

compared to five face prototypes with different orientation. Each comparison

produces one component of the chorus transform that will here consist of five

similarity measures.

motor outputs. This is equivalent to the continuity criteria
introduced above.

Sensory-motor categories. When object categories are
represented as Voronoi borders in the stimulus space, different
stimulus categories can be mapped to different motor actions by
a single mapping. When the input crosses the Voronoi border
between two categories, so will the output, and in the same way
a small part of the input space represents a particular category,
a corresponding part of the output space can represent actions
suitable for that category. Furthermore, since Voronoi borders
are preserved in the mapping it follows that the convexity criteria
is also fulfilled by these types of mappings.

The most commonly used computational architecture that
uses the chorus transform is the radial basis function (RBF)
network (Moody and Darken, 1989). This artificial neural
network consists of three layers (Figure 4). The middle layer
consists of units that are tuned to different stimulus prototypes
and their response is maximal when the input is identical
to the prototype. The prototypes can be selected in different
ways. One possibility is to use one prototype for each exemplar
that has been encountered. Alternatively, the prototypes can be
selected by trying to cover the input space by suitably spaced
prototypes. Finally, the prototypes can be found by learning.
Once selected, each unit in the middle layer contributes to the
output depending on how well the input matches its prototype.
RBF-networks have been used in numerous applications for
both categorization and function approximation tasks and
can easily learn complex relations between their input and
output.

A type of RBF-network that is of special interest is normalizing
radial basis function networks (Bugmann, 1998). This model
differs from the standard model in that the output is normalized.
This is an operation that has been suggested to be implemented
by lateral inhibition and it is ubiquitous in the brain (Carandini
and Heeger, 2012). The importance of the normalization stage is
that it makes the output of the RBF-network consist of a convex
combination of the outputs of the individual units, where each
output is weighed by how close its prototype is to the input. This
property guarantees that the output will be a continuous function
of the input that quickly converges on the correct mapping
during learning. Like other multilayer feed-forward networks,
RBF-networks are universal approximators, which means that
they can learn any mapping between finite dimensional spaces
with any desired accuracy as long as there are a sufficient number
of hidden units.

Salinas and Abbott (1995) investigated how the number of
units influenced the accuracy of the coding and decoding of
different magnitudes. More recently, Eliasmith and Anderson
(2003) presented general mathematical recipes for how low
dimensional quantities can be coded and decoded in the brain
using population codes as well as suggestions for how such
quantities can be combined in different ways to implement
different arithmetic operations and mappings between spaces.
The same type of reasoning can be applied to many different
tasks including other sensorimotor transformations, learning
and short-term memory (Pouget and Snyder, 2000). This shows
that population codes are a general way to code quantities
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in one- or multi-dimensional spaces and to perform arbitrary
operations on them. This further supports that the machinery
available to the brain is ideally suited for processing spatial
representations.

It is interesting to note that the basis unit coding has many
similarities to approaches in control theory, such as locally
weighted learning (Atkeson et al., 1997). In fact, Stulp and Sigaud
(2015) have shown that many models and algorithms working
according to these principles use exactly the same underlying
model as the three-layer network described above. This lends
support to the idea that there is something fundamental about
these types of mechanisms where functions are computed using
units that each react to different parts of the input space and the
output is subsequently calculated as a combination of the outputs
from those individual units.

To summarize, we have proposed that mappings between
spaces consist of two steps. The first is a comparison between
the input and a number of prototypes and the second is the
weighting of the output from each prototype unit by its similarity
to the input. The chorus transform provides a good model for
the usefulness of population codes, both as a way to represent
points in psychological spaces and as a mechanism for mapping
between such spaces. RBF-networks constitute the canonical way
to model learning of such mappings, but many other models are
possible.

7. CONCLUSION

This article has treated two levels of spaces in the brain—
psychological and neurocognitive. The psychological spaces,
for example the color space, can be studied in psychophysical
experiments, in particular with the aid of discrimination or
similarity judgments. These spaces can often be represented
in a small number of dimensions and we have shown how
conceptual spaces can be used to model categorization
processes. Neurocognitive representations are implemented
implicitly using populations coding where different neurons
process different regions of the spaces and allow for efficient

mappings between spaces. Furthermore, spatial coding
naturally supports generalization from learned examples by
interpolation and extrapolation. We have also argued that
the psychological spaces naturally emerge from the neural
codings.

Although there exist examples of topographic representations
in the brain, the spatial representations are typically not
topographically organized. This is not even the case for the
representations of physical space in the hippocampus. Instead,
a population code is used to implicitly represent the spaces. The
main advantage of this is that it allows the brain to potentially
learn any functional mapping and not only those that can be
represented by mappings between two-dimensional spaces.

The main function of spatial representations is to make
the mapping from perception to action more efficient. Many
models of computations with population codes use explicit
representations of perceptual and motor variables. This is useful
when investigating what the model is doing, but does not mean

that we should expect to find such neurons in the brain, where
there is no need to decode the population codes until the final
stage when they are used to produce movements. To reveal the
low-dimensional spatial representations and tomake themmatch
the psychological results, it is necessary to decode the population
codes in a low-dimensional space but such a decoding is never
explicitly required by the brain itself.

By analyzing the neural representations and reducing them to
low-dimensional representations, we have argued that they to a
large extent can explain the structure of the psychological spaces.
Moreover, we have shown how spatial representations are useful
as a basis for categorization and sensory-motor mappings and
how they can be implicitly coded by populations of neurons. This
suggests that spatial representations can be found everywhere in
the brain.
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The SP theory of intelligence, with its realization in the SP computer model, aims to

simplify and integrate observations and concepts across artificial intelligence, mainstream

computing, mathematics, and human perception and cognition, with information

compression as a unifying theme. This paper describes how abstract structures and

processes in the theory may be realized in terms of neurons, their interconnections, and

the transmission of signals between neurons. This part of the SP theory—SP-neural—is

a tentative and partial model for the representation and processing of knowledge in

the brain. Empirical support for the SP theory—outlined in the paper—provides indirect

support for SP-neural. In the abstract part of the SP theory (SP-abstract), all kinds of

knowledge are represented with patterns, where a pattern is an array of atomic symbols

in one or two dimensions. In SP-neural, the concept of a “pattern” is realized as an array

of neurons called a pattern assembly, similar to Hebb’s concept of a “cell assembly”

but with important differences. Central to the processing of information in SP-abstract is

information compression via the matching and unification of patterns (ICMUP) and, more

specifically, information compression via the powerful concept of multiple alignment,

borrowed and adapted from bioinformatics. Processes such as pattern recognition,

reasoning and problem solving are achieved via the building of multiple alignments,

while unsupervised learning is achieved by creating patterns from sensory information

and also by creating patterns from multiple alignments in which there is a partial match

between one pattern and another. It is envisaged that, in SP-neural, short-lived neural

structures equivalent to multiple alignments will be created via an inter-play of excitatory

and inhibitory neural signals. It is also envisaged that unsupervised learning will be

achieved by the creation of pattern assemblies from sensory information and from the

neural equivalents of multiple alignments, much as in the non-neural SP theory—and

significantly different from the “Hebbian” kinds of learning which are widely used in

the kinds of artificial neural network that are popular in computer science. The paper

discusses several associated issues, with relevant empirical evidence.

Keywords: multiple alignment, cell assembly, information compression, unsupervised learning, artificial

intelligence
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1. INTRODUCTION

The SP theory of intelligence, and its realization in the
SP computer model, is a unique attempt to simplify and
integrate observations and concepts across artificial intelligence,
mainstream computing, mathematics, and human perception
and cognition. The name “SP” derives from the central
importance in the theory of information compression, something
that may be seen as a process of maximizing the Simplicity
of a body of information, by removing information that is
repeated, whilst retaining as much as possible of its non-
repeated expressive Power. Also, the theory itself may be seen
to compress empirical information by combining simplicity
in the theory with wide-ranging explanatory and descriptive
power.

This paper, which draws on Wolff (2006, chapter 11) with
revisions and updates, describes how abstract structures and
processes in the SP theory may be realized in terms of neurons,
their interconnections, and the transmission of impulses between
neurons. This part of the SP theory—called SP-neural—may
be seen as a tentative and partial theory of the representation
and processing of knowledge in the brain. As such, it may
prove useful as a source of ideas for theoretical and empirical
investigations in the future. For the sake of clarity, the abstract
parts of the theory, excluding SP-neural, will be referred to as
SP-abstract.

It is envisaged that SP-neural will be further developed in the
form of a computer model. As with the existing computer model
of SP-abstract (which, unless otherwise stated, will be referred
to as “the SP computer model”), the development of the new
computermodel of SP-neural will help to guard against vagueness
in the theory, it will serve as a means of testing ideas to see
whether or not they work as anticipated, and it will be a means of
demonstrating what the model can do, and validating it against
empirical data.

The next section says something about the theoretical
orientation of this research. Then SP-abstract will be described
briefly as a foundation for the several sections that follow, which
describe aspects of SP-neural and associated issues.

2. THEORETICAL ORIENTATION

Cosmologist John Barrow has written that “Science is, at root,
just the search for compression in the world” (Barrow, 1992,
p. 247), an idea which may be seen to be equivalent to Occam’s
Razor because, in accordance with the remarks above about the
name “SP” and the theory itself, a good theory should combine
conceptual Simplicity with descriptive or explanatory Power.

This works best when the range of phenomena to be described
or explained is large. But this has not always been observed in
practice: Newell (1973, p. 303) urged researchers in psychology
to address “a genuine slab of human behavior”; and McCorduck
(2004, pp. 417, 424) has described how research in artificial
intelligence became fragmented into many narrow sub-fields.

In the light of these observations, and in the spirit of
research on “unified theories of cognition” (Newell, 1990)

and “artificial general intelligence1,” the SP programme of
research has attempted to simplify and integrate observations
and concepts across a broad canvass, resisting the temptation to
concentrate only on one or two narrow areas.

3. SP-ABSTRACT IN BRIEF

As a basis for the description of SP-neural, this section provides
a brief informal account of SP-abstract. The theory is described
most fully in Wolff (2006) and quite fully but more briefly in
Wolff (2013). Details of other publications in the SP programme,
most of them with download links, are shown on (http://www.
cognitionresearch.org/sp.htm).

3.1. Origins and Foundations of the SP
Theory
The origins of SP theory are mainly in a body of research by
Attneave (1954) and Barlow (1959, 1969) and others suggesting
that much of the workings of brains and nervous systems may be
understood as compression of information, and my own research
on language learning (summarized in Wolff, 1988) suggesting
that, to a large extent, the learning of languagemay be understood
in the same terms. There is more about the foundations of the
theory in Wolff (2014d).

3.2. Elements of SP-Abstract
In SP-abstract, all kinds of knowledge are represented with
patterns, where a pattern is an array of atomic symbols in one
or two dimensions. At present, the SP computer model2 works
only with 1D patterns but it is envisaged that the model will
be generalized to work with 2D patterns. In this connection, a
“symbol” is simply a “mark” that can make a yes/no match with
any other symbol—no other result is permitted.

In most of the examples shown in this paper, symbols are
shown as alphanumeric characters or short strings of characters
but, when the SP system is used to model biological structures
and processes, such representations may be interpreted as low-
level elements of perception such as formants or formant ratios
in the case of speech or lines and junctions between lines in the
case of vision (see also Section 4.2).

To help cut through mathematical complexities associated
with information compression, the SP system—SP-abstract and
its realization in the SP computer model—is founded on a
simple, “primitive” idea: that information may be compressed
by finding full or partial matches between patterns and merging
or “unifying” the parts that are the same. This principle—
“Information Compression via the Matching and Unification
of Patterns” (ICMUP)—provides the foundation for a powerful
concept of multiple alignment, borrowed and adapted from
bioinformatics. The multiple alignment concept, outlined in
Section 3.5, below, is itself central in the workings of SP-abstract

1See, for example, “Artificial General Intelligence”, Wikipedia, http://bit.ly/

1ZxCQPo, retrieved 2016-01-19.
2The current version of the SP computer model is SP71, the source

code for which may be downloaded via a link near the bottom of

www.cognitionresearch.org/sp.htm. This version of the computer model is very

similar to SP70, described in Wolff (2006, Sections 3.9.2, 9.2).

Frontiers in Psychology | www.frontiersin.org November 2016 | Volume 7 | Article 158498

http://www.cognitionresearch.org/sp.htm
http://www.cognitionresearch.org/sp.htm
http://bit.ly/1ZxCQPo
http://bit.ly/1ZxCQPo
http://www.cognitionresearch.org/sp.htm
http://www.frontiersin.org/Psychology
http://www.frontiersin.org
http://www.frontiersin.org/Psychology/archive


Wolff SP-Neural

and is the key to versatility and adaptability in the SP system.
It has the potential to be as significant for the understanding
of “intelligence” in a broad sense as is DNA for biological
sciences.

3.3. SP Patterns, Multiple Alignment, and
the Representation and Processing of
Knowledge
In themselves, SP patterns are not very expressive. But in the
multiple alignment framework (Section 3.5) they become a very
versatile medium for the representation of diverse forms of
knowledge. And the building of multiple alignments, together
with processes for unsupervised learning (Sections 3.4, 3.7), has
proved to be a powerful means of modeling diverse aspects of
intelligence.

The two things together—SP patterns and multiple
alignment—have the potential to be a “Universal Framework
for the Representation and Processing of Diverse Kinds of
Knowledge” (UFK), as discussed in Wolff (2014c, Section III).

An implication of these ideas is that there would not,
for example, be any difference between the representation
and processing of non-syntactic cognitive knowledge and the
representation and processing of the syntactic forms of natural
language. A framework that can accommodate both kinds of
knowledge is likely to facilitate their seamless integration, as
discussed in Section 3.8.2.

3.4. Early Stages of Learning
The SP theory is conceived as a brain-like system that receives
New patterns via its “senses” and stores some or all of them, in
compressed form, asOld patterns. In broad terms, this is how the
system learns.

In the SP system, all learning is “unsupervised3,” meaning
that it does not depend on assistance by a “teacher,” the
grading of learning materials from simple to complex, or the
provision of “negative” examples of concepts to be learned—
meaning examples that are marked as “wrong” (cf. Gold, 1967).
Notwithstanding the importance of schools and colleges, it
appears that most human learning is unsupervised. Other kinds
of learning, such as “supervised” learning (learning from labeled
examples)4, or “reinforcement” learning (learning with carrots
and sticks)5, may be seen as special cases of unsupervised learning
(Wolff, 2014b, Section V).

At the beginning of processing by the system, when the
repository of Old patterns is empty6, New patterns are stored as
they are received but with the addition of system-generated “ID”
symbols at the beginning and end. For example, a New pattern
like “t h e b i g h o u s e” would be stored as an Old
pattern like “A 1 t h e b i g h o u s e #A.” Here,

3See “Unsupervised learning,”Wikipedia, bit.ly/22nEPL2, retrieved 2016-03-17.
4See “Supervised learning,”Wikipedia, bit.ly/1nR4ybK, retrieved 2016-03-17.
5See “Reinforcement learning,”Wikipedia, bit.ly/1R0RoDv, retrieved 2016-03-17.
6Although it is likely that, contrary to what Noam Chomsky and others have

suggested, a newborn child does not have any kind of detailed knowledge of the

structure of natural language, it is likely he or she does have inborn knowledge

such as how to suck milk from a breast. In this respect (and others), the SP theory,

insofar it is seen as a model of human cognition, is not entirely accurate.

the lower-case letters are atomic symbols that may represent
actual letters but could represent basic elements of speech (such
as formant ratios or formant transitions), or basic elements of
vision (such as lines or corners), and likewise with other sensory
data.

Later, when some Old patterns have been stored, the
system may start to recognize full or partial matches
between New and Old patterns. If a New pattern is
exactly the same as an Old pattern (excluding the ID-
symbols), then frequency measures for that pattern and
its constituent symbols are incremented. These measures,
which are continually updated at all stages of processing,
have an important role to play in calculating probabilities
of structures and inferences and in guiding the processes of
building multiple alignments (Section 3.5) and unsupervised
learning.

With partial matches, the system will form multiple
alignments like the one shown in Figure 1, with a New pattern
in row 0 and an Old pattern in row 1.

From a partial match like this, the system creates Old patterns
from the parts that match each other and from the parts that
don’t. Each newly-created Old pattern will be given system-
generated ID-symbols. The result in this case would be patterns
like these: “B 1 t h e #B,” “C 1 h o u s e #C,” “D 1

s m a l l #D,” and “D 2 b i g #D.” In addition, the
system forms an abstract pattern like this: “E 1 B #B D #D

C #C #E” which records the sequence [“B 1 t h e #B,” (“D
1 s m a l l #D” or “D 2 b i g #D”), “C 1 h o u s

e #C”] in terms the ID-symbols of the constituent patterns.
Notice how “s m a l l” and “b i g” have both been

given the ID-symbol “D” at their beginnings and the ID-symbol
“#D” at their ends. These additions, coupled with the use of the
same two ID-symbols in the abstract pattern “E 1 B #B D #D

C #C #E” has the effect of assigning “s m a l l” and “b i

g” to the same syntactic category, which looks like the beginnings
of the “adjective” part of speech.

The overall result in this example is a collection of SP patterns
that functions as a simple grammar to describe the phrases the
small house and the big house.

In practice, the SP computer model may form many other
multiple alignments, patterns and grammars which are much less
tidy than the ones shown. But, as outlined in Sections 3.5, 3.7, the
system is able to home in on structures that are “good” in terms
of information compression.

As we shall (see Sections 3.5, 3.8.1, and 6), SP patterns, within
the SP system, are remarkably versatile and expressive, with
at least the power of context-sensitive grammars (Wolff, 2006,
Chapter 5).

0 t h e s m a l l h o u s e 0

||||||||

1 A 1 t h e b i g h o u s e #A 1

FIGURE 1 | A multiple alignment produced by the SP computer model

showing a partial match between a New pattern (in row 0) and an Old

pattern (in row 1).
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0evarbehtsruovafenutrof0

||||||||||||||||||||||

1|||||||||rV#ruovaf6rV|||||||1

||||||||||||||||||

2 | | | | | | | V 7 Vr #Vr s #V | | | | | | | | 2

|||||||||||||||||

3PV#PN#||||||||PNV#V3PV|||||||3

|||||||||||||||||||

4||||||||||||N#enutrof4N4

||||||||||||||

5||||||||||||PN#N#N2PN5

||||||||||||||

6S#PV#||||||||||PVPN#PN0S6

| | | | | | | | | |

7 | | | | N 5 b r a v e #N | 7

| | | | | | |

8 NP 1 D | | | #D N #N #NP 8

| | | | |

9 9D#eht8D

FIGURE 2 | The best multiple alignment produced by the SP computer model with a New pattern representing a sentence to be parsed and a

repository of user-supplied Old patterns representing grammatical categories, including words. In the multiple alignment, the New pattern appears in row 0

and some of the Old patterns supplied to the system appear in rows 1 to 9, one pattern per row.

3.5. The Multiple Alignment Concept
The multiple alignment shown in Figure 1 is unusually simple
because it contains only two patterns. More commonly, the
system forms “good” multiple alignments like the one shown
in Figure 2, with one New pattern (in row 0) and several Old
patterns (one in each of rows 1–9)7. As a matter of convention,
the New pattern is always shown in row 0, but the order of the
Old patterns across the other rows is not significant.

Amultiple alignment like the one shown in Figure 2 is built in
stages, using heuristic search at each stage to weed out structures
that are “bad” in terms of information compression and retaining
those that are “good.” Problems of computational complexity are
reduced or eliminated by a scaling back of ambition: instead of
searching for theoretically-ideal solutions, one merely searches
for solutions that are “good enough.”

In this example, multiple alignment achieves the effect of
parsing the sentence into parts and sub-parts, such as a sentence
(“S”) defined by the pattern in row 6, one kind of noun phrase
(“NP”) defined by the pattern that appears in row 5, and another
kind of noun phrase shown in row 8, a verb phrase (“VP”)
defined by the pattern in row 3, nouns (“N”) defined by the
patterns in rows 4 and 7, and so on. But there is much more
than this to the multiple alignment concept as it has been
developed in the SP programme. It turns out to be a remarkably
versatile framework for the representation and processing of
diverse kinds of knowledge—non-verbal patterns and pattern
recognition, logical and probabilistic kinds of “rules” and several
kinds of reasoning, and more (Sections 3.8.1, 6).

A point worth mentioning here is that, although the multiple
concept is entirely non-hierarchical, it can model several kinds
of hierarchy and heterarchy (Section 3.8.1), as illustrated by
the parsing example in Figure 2. And such hierarchies or
heterarchies may not always be “strict” because any pattern may
be aligned with any other pattern and, within one multiple

7In this case, the SP computer model was supplied with an appropriate set of Old

patterns. It did not learn them for itself.

alignment, any pattern may be aligned with two or more other
patterns.

3.6. Deriving a Code Pattern from a
Multiple Alignment
From a multiple alignment like the one shown in Figure 2, the
SP system may derive a code pattern—a compressed encoding of
the sentence—as follows: scan the multiple alignment from left to
right, identifying the ID-symbols that are not matched with any
other symbol and create an SP pattern from the sequence of such
symbols. In this case, the result is the pattern “S 0 2 4 3 7

6 1 5 #S.” This code pattern has several existing or potential
uses including:

• It provides a basis for calculating a “compression score” for
the Old patterns in the multiple alignment, meaning their
effectiveness as a means of compressing the New pattern.
Compression scores like that have a role in sifting out one or
more “good” grammars for any given set of New patterns.

• If the code pattern is treated as a New pattern then, with the
same Old patterns as when the code pattern was produced, the
SP system can recreate the original sentence, as described in
Section 8.

• When SP-abstract is developed to take account of meanings
as well as syntax, it is likely that each ID-symbol in the code
pattern will take on a dual role: representing each syntactic
form (word or other grammatical structure) and representing
the meaning of the given syntactic form.

• It is envisaged that, with further development of the SP
computer model, code patterns will enter into the learning
process, as outlined in Section 3.7, next.

3.7. Later Stages of Learning
As we saw in Section 3.4, the earliest stage of learning in
SP-neural—when the repository of Old patterns is empty or
nearly so—is largely a matter of absorbing New information
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directly with little modification except for the addition of system-
generated ID-symbols. Later, when there are more Old patterns
in store, the system begins to create Old patterns from partial
matches between New and Old patterns. Part of this process
is the creation of abstract patterns that describe sequences of
lower-level patterns.

As the system begins to create abstract patterns, it will also
begin to formmultiple alignments like the one shown in Figure 2.
And, as it begins to formmultiple alignments like that, it will also
begin to form code patterns, as described in Section 3.6.

At all stages of learning, butmost prominent in the later stages,
is a process of inferring one or more grammars that are “good” in
terms of their ability to encode economically all the New patterns
that have been presented to the system. Here, a “grammar” is
simply a collection of SP patterns8.

Inferring grammars that are good in terms of information
compression is, like the building multiple alignments, a stage-by-
stage process of heuristic search through the vast abstract space
of alternatives, discarding “bad” alternatives at each stage, and
retaining a few that are “good.” As with the building of multiple
alignments, the search aims to find solutions that are “good
enough,” and not necessarily perfect. These kinds of heuristic
search may be performed by means of genetic algorithms,
simulated annealing, and other heuristic techniques.

It is envisaged that the SP computer model will be developed
so that, in this later phase of learning, learning processes will
be applied to code patterns as well as to New patterns. It is
anticipated that this may overcome two weaknesses in the SP
computer model as it is now: that, while it forms abstract
patterns at the highest level, it does not form abstract patterns at
intermediate levels; and that it does not recognize discontinuous
dependencies in knowledge (Wolff, 2013, Section 3.3).

In Wolff (2006, Chapter 9), there is a much fuller account of
unsupervised learning in the SP computer model.

3.8. Evaluation of SP-Abstract
The SP theory in its abstract form may be evaluated in terms of
“simplicity” and “power” of the theory itself (discussed in Section
3.8.1 next), in terms of its potential to promote simplification
and integration of structures and functions in natural or artificial
systems that conform to the theory (Section 3.8.2 below), and in
comparison with other AI-related systems.

3.8.1. Simplicity and Power
In terms of the principles outlined in Section 2, the SP
system, with multiple alignment center stage, scores well. One
relatively simple framework has strengths and potential in the
representation of several different kinds of knowledge, in several
different aspects of AI, and it has several potential benefits and
applications:

• Representation and processing of diverse kinds of knowledge.
The SP system (SP-abstract) has strengths and potential
in the representation and processing of: class hierarchies

8The term “grammar” has been adopted partly because of the origins of the SP

system in research on the learning of natural language (Wolff, 1988) and partly

because the term has come to be used in areas outside computational linguistics,

such as pattern recognition.

and heterarchies, part-whole hierarchies and heterarchies,
networks and trees, relational knowledge, rules used in several
kinds of reasoning, patterns with pattern recognition, images
with the processing of images (Wolff, 2014a), structures in
planning and problem solving, structures in three dimensions
(Wolff, 2014a, Section 6), knowledge of sequential and parallel
procedures (Wolff, 2014b, Section IV-H). It may also provide
an interpretive framework for structures and processes in
mathematics (Wolff, 2014d, Section 10).

There is a fuller summary in Wolff (2014c, Section III-B)
and much more detail in Wolff (2006, 2013).

• Strengths and potential in AI. The SP theory has things to
say about several different aspects of AI, as described most
fully in Wolff (2006) and more briefly in Wolff (2013). In
addition to its capabilities in the parsing of natural language,
described above, the SP system has strengths and potential
in the production of natural language, the representation
and processing of diverse kinds of semantic structures,
the integration of syntax and semantics, fuzzy pattern
recognition, recognition at multiple levels of abstraction,
computer vision and modeling aspects of natural vision
(Wolff, 2014a), information retrieval, planning, problem
solving, and several kinds of reasoning (one-step “deductive”
reasoning; abductive reasoning; reasoning with probabilistic
decision networks and decision trees; reasoning with “rules”;
nonmonotonic reasoning and reasoning with default values;
reasoning in Bayesian networks with “explaining away”; causal
diagnosis; reasoning which is not supported by evidence; and
inheritance of attributes in an object-oriented class hierarchy
or heterarchy). There is also potential for spatial reasoning
(Wolff, 2014b, Section IV-F.1) and what-if reasoning (Wolff,
2014b, Section IV-F.2). The system also has strengths and
potential in unsupervised learning (Wolff, 2006, Chapter 9).

• Many potential benefits and applications. Potential benefits
and applications of the SP system include: helping to solve
nine problems associated with big data (Wolff, 2014c); the
development of intelligence in autonomous robots, with
potential for gains in computational efficiency (Wolff, 2014b);
the development of computer vision (Wolff, 2014a); it may
serve as a versatile database management system, with
intelligence (Wolff, 2007); it may serve as an aid in medical
diagnosis (Wolff, 2006); and there are several other potential
benefits and applications, some of which are described inWolff
(2014e).

In short, the SP theory, in accordance with Occam’s Razor,
demonstrates a favorable combination of simplicity and power
across a broad canvass. As in other areas of science, this should
increase our confidence in the validity and generality of the
theory.

3.8.2. Simplification and Integration
Closely related to simplicity and power in the SP theory are two
potential benefits arising from the use of one simple format (SP
patterns) for all kinds of knowledge and one relatively simple
framework (chiefly multiple alignment) for the processing of all
kinds of knowledge:
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• Simplification. Those two features (one simple format for
knowledge and one simple framework for processing it) can
mean substantial simplification of natural systems (brains)
and artificial systems (computers) for processing information.
The general idea is that one relatively simple system can
serve many different functions. In natural systems, there is
a potential advantage in terms of natural selection, and in
artificial systems there are potential advantages in terms of
costs.

• Integration. The same two features are likely to facilitate
the seamless integration of diverse kinds of knowledge and
diverse aspects of intelligence—pattern recognition, several
kinds of reasoning, unsupervised learning, and so on—in
any combination, in both natural and artificial systems. It
appears that that kind of seamless integration is a key part
of the versatility and adaptability of human intelligence
and that it will be essential if we are to achieve human-
like versatility and adaptability of intelligence in artificial
systems.

With regard to the seamless integration of diverse kinds of
knowledge, this is clearly needed in the understanding and
production of natural language. To understand what someone is
saying or writing, we obviously need to be able to connect words
and syntactic structures with their non-syntactic meanings, and
likewise, in reverse, when we write or speak to convey some
meaning.

This has not yet been explored in any depth with the SP-
abstract conceptual framework but preliminary trials with the
SP computer model suggest that it is indeed possible to define
syntactic-semantic structures in a set of SP patterns and then,
with those patterns playing the role of Old patterns, to analyse a
sample sentence and to derive its meanings (Wolff, 2006, Section
5.7, Figure 5.18), and, in a separate exercise with the same set of
Old patterns, to derive the same sentence from a representation
of its meanings (Wolff, 2006, Figure 5.19).

3.8.3. Distinctive Features and Advantages of the SP

System Compared with Other AI-Related Systems
In several publications, such as Wolff (2006, 2007, 2014e),
potential benefits and applications of the SP system have been
described.

More recently, it has seemed appropriate to say what
distinguishes the SP system from other AI-related systems and,
more importantly, to describe advantages of the SP system
compared AI-related alternatives. Those points have now been
set out in some detail inThe SP theory of intelligence: its distinctive
features and advantages (Wolff, 2016). Of particular relevance to
this paper are the several advantages of the SP system compared
with systems for deep learning in artificial neural networks
(Wolff, 2016, Section V).

Since many AI-related systems may also be seen as models of
cognitive structures and processes in brains, Wolff (2016) may
also be seen to demonstrate the relative strength of the SP system
in modeling aspects of human perception and cognition.

In this connection, the SP system appears to have some
advantages compared with concepts developed in research in

“neural-symbolic computation,” described in d’Avila Garcez
et al. (2015), de Penning et al. (2011), d’Avila Garcez et al.
(2009), Komendantskaya et al. (2007), and d’Avila Garcez (2007)
amongst other publications. The main apparent advantages are:

• The AI scope of the SP system. The scope of SP-abstract in
AI, meaning the range of AI-related capabilities where it
has strengths and potential (summarized in Section 3.8.1),
appears to be greater than the range of AI-related capabilities
considered in research on neural-symbolic computation.
There is potential for SP-neural to inherit that same wide
scope.

• Problems with deep learning in artificial neural networks, and
potential SP solutions. As mentioned above, the SP system has
the potential to overcome several problems with deep learning
in artificial neural networks (Wolff, 2016, Section V).

4. INTRODUCTION TO SP-NEURAL

As we have seen in Section 3, SP-abstract is a relatively simple
system with descriptive and explanatory power across a wide
range of observation and phenomena in artificial intelligence and
related areas. How can such a system have anything useful to
say about the extraordinary complexity of brains and nervous
systems, both in their structure and in their workings?

An answer in brief is that SP-neural—a realization of SP-
abstract in terms of neurons, their interconnections, and the
transmission of impulses between neurons—may help us to
interpret neural structures and processes in terms of the relatively
simple concepts in SP-abstract. To the extent that this is
successful, it may—like any good theory in any field—help us
to understand empirical phenomena in our area of interest, it
may help us to make predictions, and it may suggest lines of
investigation.

It is anticipated that SP-neural will work in broadly the same
way as SP-abstract, but the characteristics of neurons and their
interconnections raise some issues that do not arise in SP-abstract
and its realization in the SP computer model. These issues will be
discussed at appropriate points in this and subsequent sections.

This section introduces SP-neural in outline, and sections that
follow describe aspects of the theory in more detail, drawing
where necessary on aspects of SP-abstract that have been omitted
from or only sketched in Section 3.

4.1. Sensory Data and the Receptor Array
Figure 3, to be discussed in this and the following subsections,
shows in outline how a portion of the multiple alignment
shown in Figure 2, may be realized in SP-neural. with associated
patterns and symbols.

In the figure, “sensory data” at the bottom means the visual,
auditory or tactile data entering the system which, in this case,
corresponds with the phrase “t h e b r a v e.” In a more realistic
illustration, the sensory data would be some kind of analog signal.
Here, the letters are intended to suggest the kinds of low-level
perceptual primitives outlined below.

It is envisaged that, with most sensory modalities, the receptor
array would be located in the primary sensory cortex. Of course,
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FIGURE 3 | A schematic outline of how part of the multiple alignment shown in Figure 2, with associated patterns and symbols, may be expressed in

SP-neural as neurons and their inter-connections. The meanings of the conventions in the figure, and some complexities that are not shown in the figure, are

explained in this main section and ones that follow.

a lot of processing goes on in the sense organs and elsewhere
between the sense organs and the primary sensory cortices. But
it seems that most of this early processing is concerned with the
identification of the perceptual primitives just mentioned.

As with SP-abstract, it is anticipated that SP-neural will, at
some stage, be generalized to accommodate patterns in two
dimensions, such as visual images, and then the sensory data may
be received in two dimensions, as in the human eye.

Between the sensory data and the receptor array (above it
in the figure), there would be, first, cells that are specialized
to receive particular kinds of input (auditory, visual, tactile

etc.). These send signals to neurons that encode the sensory
data as neural symbols, the neural equivalents of “symbols” in
SP-abstract. In the receptor array, each letter enclosed in a solid
ellipse represents a neural symbol, expressed as a single neuron
or, more likely, a small cluster of neurons. As we shall see Section
5.1, the reality is more complex, at least in some cases.

In vision, neural symbols in the receptor array would
represent such low-level features as lines, corners, colors, and
the like, while in speech perception, they would represent such
things as formants, formant ratios and transitions, plosive and
fricative sounds, and so on. Whether or how the SP concepts can
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be applied in the discovery or identification of features like these
is an open question (Wolff, 2013, Section 3.3). For now, we shall
assume that they can be identified and can be used in the creation
and use of higher-level structures.

4.2. Pattern Assemblies
In the rest of Figure 3, each broken-line rectangle with rounded
corners represents a pattern assembly—corresponding to a
“pattern” in SP-abstract. The word “assembly” has been adopted
within the expression “pattern assembly” because the concept is
quite similar to Hebb’s concept of a “cell assembly”—a cluster
of neurons representing a concept or other coherent mental
entity. Differences between Hebb’s concept of a cell assembly
and the SP concept of a pattern assembly are described in the
Appendix.

Within each pattern assembly, as represented in the figure,
each character or group of characters enclosed in a solid-line
ellipse represents a neural symbol which, as already mentioned,
corresponds to a “symbol” in SP-abstract. As with neural symbols
in the receptor array, it is envisaged that each neural symbol
would comprise a single neuron or, more likely, a small cluster
of neurons.

It is supposed that, within each pattern assembly, there are
lateral connections between neural symbols—but these are not
shown in the figure.

It is envisaged that most pattern assemblies would represent
knowledge that is learned and not inborn, and would be located
mainly outside the primary sensory areas of the cortex, in other
parts of the sensory cortices. Pattern assemblies that integrate two
or more sensory modalities may be located in “association” areas
of the cortex.

Research with fMRI recordings from volunteers (Huth
et al., 2016) has revealed “semantic maps” that “show that
semantic information is represented in rich patterns that are
distributed across several broad regions of cortex. Furthermore,
each of these regions contains many distinct areas that
are selective for particular types of semantic information,
such as people, numbers, visual properties, or places. We
also found that these cortical maps are quite similar across
people, even down to relatively small details”9. Of course, this
research says nothing about whether or not the knowledge is
represented with pattern assemblies and their interconnections.
But it does apparently confirm that knowledge is stored in
several regions of the cortex and throws light on how it is
organized.

Although most parts of the mammalian cerebral cortex has
six layers and many convolutions, it may be seen, topologically,
as a sheet which is very much broader and wider than it is
thick. Correspondingly, it is envisaged that 1D and 2D pattern
assemblies will be largely “flat” structures, rather like writing or
pictures on a sheet of paper. That said, it is quite possible, indeed
likely, that pattern assemblies would take advantage of two or
more layers of the cortex, not just one.

9From the website of the Gallant Lab at UC Berkely, retrieved 2016-05-02,

http://bit.ly/1WvvLhX. See also “Brain ‘atlas’ of words revealed,” BBC News, 2016-

04-27, bbc.in/1SGESLz.

Incidentally, since 2D SP patterns may provide a basis for 3D
models, as described inWolff (2014a, Sections 6.1, 6.2), flat neural
structures in the cortex may serve to represent 3D concepts.

4.3. Connections between Pattern
Assemblies
In Figure 3, the solid or broken lines that connect with neural
symbols represent axons, with arrows representing the direction
of travel of neural impulses. Where two or more connections
converge on a neural symbol, we may suppose that, contrary
to the simplified way in which the convergence is shown in the
figure, there would be a separate dendrite for each connection.

Axons represented with solid lines are ones that would be
active when the multiple alignment in Figure 2 is in the process
of being identified. Broken-line connections show a few of the
many other possible connections.

As mentioned in Section 4.2, it is envisaged that there would
be one or more neural connections between neighboring neural
symbols within each pattern assembly but these are not marked
in the figure.

Compared with what is shown in the figure, it likely
that, in reality, there would be more “levels” between basic
neural symbols in the receptor array and ID-neural-symbols
representing pattern assemblies for relatively complex entities
like the words “one,” “brave,” “the,” and “table,” as shown in the
figure.

In this connection, it is perhaps worth emphasizing that,
as with the modeling of hierarchical structures in multiple
alignments (Section 3.5), while pattern assemblies may form
“strict” hierarchies, this is not an essential feature of the concept,
and it is likely that many neural structures formed from pattern
assemblies may be only loosely hierarchical or not hierarchical
at all.

4.4. SP-Neural, Quantities of Knowledge,
and the Size of the Brain
Given the foregoing account of how knowledge may be
represented in the brain, a question that arises is “Are there
enough neurons in the brain to store what a typical person
knows?” This is a difficult question to answer with any precision
but an attempt at an answer, described in Wolff (2006, Section
11.4.9), reaches the tentative conclusion that there are. In brief:

• Given that estimates of the size of the human brain range from
1010 up to 1011 neurons,10 we may estimate, via calculations
given in Wolff (2006, Section 11.4.9), that the “raw” storage
capacity of the brain is between approximately 1000 and
10,000 MB.

• Given a conservative estimate that, using SP compression
mechanisms, compression by a factor of 3 may be achieved
across all kinds of knowledge, our estimates of the storage
capacity of the brain will range from about 3000 MB up to
about 30,000 MB.

10This is consistent with another estimate, not quoted in Wolff (2006, Section

11.4.9), that there may be as many as 86 billion neurons in the human brain

(Herculano-Houzel, 2012).
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• Assuming: (1) That the average person knows only a relatively
small proportion of what is contained in the Encyclopedia
Britannica (EB); (2) That the average person knows lots
of “everyday” things that are not in the EB; (3) That the
“everyday” things that we do know are roughly equal to the
things in the EB that we do not know; Then (4), we may
conclude that the size of the EB provides a rough estimate of
the volume of information that the average person knows.

• The EB can be stored on two CDs in compressed form.
Assuming that most of the space is filled, this equates to 1300
MB of compressed information or approximately 4000 MB of
information in uncompressed form.

• This 4000 MB estimate of what the average person knows is
the same order of magnitude as our range of estimates (3000
to 30,000 MB) of what the human brain can store.

• Even if the brain stores two or three copies of its compressed
knowledge—to guard against the risk of losing it, or to speed
up processing, or both—our estimate of what needs to be
stored (lets say 4000× 3 = 12, 000 MB) is still within the 3000
to 30,000 MB range of estimates of what the brain can store.

4.5. Neural Processing
In broad terms, it is envisaged that, for a task like the parsing of
natural language or pattern recognition:

1. SP-neural will work firstly by receiving sensory data and
interpreting it as neural symbols in the receptor array—with
excitation of the neural symbols that have been identified:

• Excitatory signals would be sent from those excited neural
symbols to pattern assemblies that can receive signals from
them directly. In Figure 3, these would be all the pattern
assemblies except the topmost pattern assembly.

• Within each pattern assembly, excitatory signals will spread
laterally via the connections between neighboring neural
symbols.

• Pattern assemblies would become excited, roughly in
proportion to the number of excitatory signals they receive.

2. At this stage, there would be a process of selecting amongst
pattern assemblies to identify one or two that are most excited.

3. From those pattern assemblies—more specifically, the neural
ID-symbols at the beginnings and ends of those pattern
assemblies—excitatory signals would be sent onwards to other
pattern assemblies that may receive them. In Figure 3, this
would be the topmost pattern assembly (that would be reached
immediately after the first pass through stages 2 and 3).

As in stage 1, the level of excitation of any pattern assembly
would depend on the number of excitatory signals it receives,
but building up from stage to stage so that the highest-level
pattern assemblies are likely to be most excited.

4. Repeat stages 2 and 3 until there are no more pattern
assemblies that can be sent excitatory signals.

The “winning” pattern assembly or pattern assemblies, together
with the structures below them that have, directly or indirectly,
sent excitatory signals to them, may be seen as neural analogs
of multiple alignments (NAMAs), and we may guess that they

provide the best interpretations of a given portion of the sensory
data.

If the whole sentence, “f o r t u n e f a v o u r

s t h e b r a v e,” is processed by SP-neural with pattern
assemblies that are analogs of the SP patterns provided for the
example shown in Figure 2, we may anticipate that the overall
result would be a pattern of neural excitation that is an analog of
the multiple alignment shown in that figure.

When a neural symbol or pattern assembly has been
“recognized” by participating in a winning (neural) multiple
alignment, we may suppose that some biochemical or
physiological aspect of that structure is increased as an at
least approximate measure of the frequency of occurrence of the
structure, in accordance with the way in which SP-abstract keeps
track of the frequency of occurrence of symbols and patterns
(Section 3.4).

Some further possibilities are discussed in Sections 5, 9.

5. SOME MORE DETAIL

The bare-bones description of SP-neural in Section 4 is probably
inaccurate in some respects and is certainly too simple to work
effectively. This section and the ones that follow describe some
other features which are likely to figure in a mature version of
SP-neural, drawing on relevant empirical evidence where it is
available.

5.1. Encoding of Information in the
Receptor Array
With regard to the encoding of information in the receptor array,
it seems that the main possibilities are these:

1. Explicit alternatives. For the receptor array to work as
described in Section 4, it should be possible to encode sensory
inputs with an “alphabet” of alternative values at each location
in the array, in much the same way that each binary digit (bit)
in a conventional computer may be set to have the value 0
or 1, or how a typist may enter any one of an alphabet of
characters at any one location on the page. At each location in
the receptor array, each option may be provided in the form
of a neuron or small cluster of neurons. Here, there seem to be
two main options:

a. Horizontal distribution of alternatives. The several
alternatives may be distributed “horizontally,” in a plane
that is parallel to the surface of the cortex.

b. Vertical distribution of alternatives. The several alternatives
may be distributed “vertically” between the outer and inner
surfaces of the cortex, and perpendicular to those surfaces.

2. Implicit alternatives. At each location there may be a neuron
or small cluster of neurons that, via some kind of biochemical
or neurophysiological process, may be “set” to any one of the
alphabet of alternative values.

3. Rate codes. Something like the intensity of a stimulus may
be encoded via “an interaction between [the] firing rates and
the number of neurons [that are] activated by [the] stimulus.”
(Squire et al., 2013, p. 503).
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4. Temporal codes. A stimulus that varies with time may be
encoded via “the time-varying pattern of activity in small
groups of receptors and central neurons.” (Squire et al., 2013).

In support of option 1.a, there is evidence that neurons in the
visual cortex (of cats) are arranged in columns perpendicular
to the surface of the cortex, where, for example, all the
neurons in a given column respond most strongly to a line
at one particular angle in the field of view, that—within a
“hypercolumn” containing several columns—the preferred angle
increases progressively from column to column, and that there
aremany hypercolumns across the primary visual cortex (Barlow,
1982). “Hubel and Wiesel point out that the organization their
results reveal means that each small region, about 1mm2 at the
surface, contains a complete sequence of ocular dominance and
a complete sequence of orientation preference.” (Barlow, 1982,
pp. 148–149).

Leaving out the results for ocular dominance, these
observations are summarized schematically in Figure 4. In
terms of this scheme, the way in which the receptor array is
shown in Figure 3, is a considerable simplification—each neural
symbol in the receptor array in that figure should really be
replaced by a hypercolumn.

With something like the intensity of a stimulus, it seems that,
at least in some cases: “... activity in one particular population of
somatosensory neurons ... leads the CNS to interpret it as painful
stimulus ....” (Squire et al., 2013, p. 503), while “An entirely
separate population of neurons ... would signal light pressure.”
(Squire et al., 2013). Since it is likely that relevant receptors
appear repeatedly across one’s skin, this appears to be another
example of option 1.a.

There seems to be little evidence of encoding via option 1.b.
Indeed, since the concept of a cortical column is, in effect, defined
by the fact that all the neurons in any one column have the same
kind of receptive field, this seems to rule out the 1.b option (see
also Section 5.2).

a b c ... a b c ... a b c ... a b c ...

a b c ... a b c ... a b c ... a b c ...

a b c ... a b c ... a b c ... a b c ...

a b c ... a b c ... a b c ... a b c ...

a b c ... a b c ... a b c ... a b c ...
.  .  . .  .  . .  .  . .  .  .
.  .  . .  .  . .  .  . .  .  .
.  .  . .  .  . .  .  . .  .  .

FIGURE 4 | Schematic representation of one hypercolumn in the

receptor array in the cortex. Each letter represents a neural symbol that

responds to a particular small pattern in the sensory data. The ellipsis, “...,” in

each row and each column represents other neural symbols that would be

shown in a more comprehensive representation of the given hypercolumn.

Each vertical sequence of letters, all of one kind such as “a” or “b,” represents

a simple column in the cortex.

But, with respect to option 2, it appears that in some cases, as
noted above, the intensity of a stimulus may be encoded via the
rates of firing of neurons, together with the numbers of neurons
that are activated (option 3). And, since we can perceive and
remember time-varying stimuli such as the stroking of a finger
across one’s skin, or the rising or falling pitch of a note, some kind
of temporal encoding must be available (option 4).

Here, it must be acknowledged that options 3 and 4 appear
superficially to be outside the scope of the SP theory, in view of
the emphasis in many examples on discrete atomic symbols. But,
as we know from the success of digital recording, or indeed digital
computing, any continuum may be encoded digitally, in keeping
with the digital nature of the SP theory. How the SP theory may
be applied to the digital encoding and processing of continua has
been discussed elsewhere in relation to vision (Wolff, 2014a) and
the development of autonomous robots (Wolff, 2014b).

5.2. Why Are There Multiple Neurons with
the Same Receptive Fields in Columns in
the Cortex?
Aswe have seen (Section 5.1), some aspects of vision aremediated
via columns of neurons in the primary visual cortex in which each
column contains many neurons with receptive fields that are all
the same, all of them responding, for example, to a line in the
visual field with a particular orientation.

Why, at each of several locations across the visual cortex,
should there be many neurons with the same receptive field, not
just one? There seem to be two possible answers to this question
(and they are not necessarily mutually exclusive):

• Encoding of sensory patterns. If, in the receptor array, we wish
to encode two or more patterns such as “m e t” and “h e

m,” they need to be independent of each other, with repetition
of the “e” neural symbol, otherwise there will be the possibly
unwanted implication that such things as “m e m” or “h e

t” are valid patterns.
• Error-reducing redundancy. At any given location in the

receptor array, multiple instances of neurons representing a
given neural symbol may help to guard against the problems
that may arise if there is only one neuron at that location and
if, for any reason, it becomes partially or fully disabled.

With regard to the first point, the receptor array may have a
useful role to play, inter alia, as a short-term memory for many
sensory patterns pending their longer-term storage (Section 11).
In vision, for example, the receptor array may store many short
glimpses of a scene, as outlined in Section 5.6, until such time as
further processingmay be applied to weld themany glimpses into
a coherent structure (Wolff, 2014b) and to transfer that structure
to longer-term memory.

5.3. The Labeled Line Principle
Section 4.5 suggests that normally, at some early stage in
sensory processing, raw sensory data is encoded in terms of the
excitation of neuronal symbols in a receptor array, then excited
neural symbols send excitatory signals to appropriate neural
symbols within pattern assemblies, and pattern assemblies that
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are sufficiently excited send excitatory signals on to other pattern
assemblies, and so on. As we shall see (Section 9), it is likely
that, in this processing, there will also be a role for inhibitory
processes.

At first sight, it may be thought that, in the same way that
each location in the receptor array should provide an alphabet of
alternative encodings (Section 5.1), the same should be true for
the location of each neural symbol within each pattern assembly.
But if a neural symbol in a pattern assembly (let’s call it “NS1”)
receives signals only from neural symbols in the receptor array
that represent a given feature, let us say, “a,” then, in accordance
with the “labeled line” principle (Squire et al., 2013, p. 503), NS1
also represents “a.”

For most sensory modalities, this principle applies all the
way from each sense organ, through the thalamus, to the
corresponding part of the primary sensory cortex11. It seems
reasonable to suppose that the same principle will apply onwards
from each primary sensory cortex into non-primary sensory
cortices and non-sensory association areas.

5.4. How the Ordering or 2D Arrangement
of Neural Symbols May Be Respected
In SP-neural, as in SP-abstract and the SP computer model, the
process of matching one pattern with another should respect the
orderings of symbols. For example, “A B C D” matched with
“A B C D” should be rated more highly in terms of information
compression than, for example, “A B C D” matched with “C A

D B12.”
It appears that this problem may be solved by the adoption,

within SP-neural, of the following feature of natural sensory
systems:

“Receptors within [the retina and skin surface] communicate

with ganglion cells and those ganglion cells with central neurons

in a strictly ordered fashion, such that relationships with

neighbors are maintained throughout. This type of pattern, in

which neurons positioned side by side in one region communicate

with neurons positioned side-by-side in the next region, is called a

typographic pattern.” (Squire et al., 2013, p. 504) (emphasis in the

original).

5.5. How to Accommodate the Variable
Sizes of Sensory Patterns
A prominent feature of human visual perception is that we can
recognize any given entity over a wide range of viewing distances,
with correspondingly wide variations in the size, on the retina, of
the image of that entity.

11Thus, for example, “Even within one function, mappings of neurons [within the

thalamus] are preserved so that there is separation of neurons providing touch

information from the arm vs. from the leg and of neurons responding to low

vs. high sound frequencies ....” (Squire et al., 2013, p. 507). Also, “Nuclei in the

central pathways often contain multiple maps.” but “The functional significance of

multiple maps in general, however, remains to be clarified.” (Squire et al., 2013).
12A possible exception is when one pattern is a mirror image or inversion of

another, since Leonardo da Vinci, by repute, could read mirror writing as easily

as ordinary writing, and it is now well established that people wearing inverting

spectacles can learn quite quickly to see the world as if it was the right way up

(Stratton, 1897).

For any model of human visual perception that is based on
a simplistic or naive process for the matching of patterns, this
aspect of visual perception would be hard to reproduce or to
explain. But the SP system is different: (1) Knowledge of entities
that we may recognize are always stored in a compressed form;
(2) The process of recognition is a process of compressing the
incoming data; (3) The overall effect is that an image of a thing
to be recognized can be matched with stored knowledge of that
entity, regardless of the original size of the image.

As an example, consider how the concept of an equilateral
triangle (as white space bounded by three black lines all of
the same length) may be stored and how an image of such a
triangle may be recognized. Regarding storage, there are three
main redundancies in any image of that kind of triangle: (1) The
white space in the middle may be seen as repeated instances of
a symbol representing a white pixel; (2) Each of the three sides
of the triangle may be seen as repeated instances of a symbol
representing a black pixel; and (3) There is redundancy in that
the three sides of the triangle are the same.

All three sources of redundancy may be encoded recursively
as suggested in Figure 513, which shows a multiple alignment
modeling the recognition of a one-dimensional analog of a
triangle.

Column 0 shows information about the triangle to be
recognized, comprising three “corners” and three sides of the
triangle, each one represented by just two “points.”

The pattern “LN ln1 point LN #LN #LN” in columns 1
and 2 is a self-referential and thus recursive definition of a line as
a sequence of “points.” It is self-referential because, within the
body of the pattern, it contains a reference to itself via the symbols
at the beginning and end of the pattern: “LN #LN.” Because there
is no limit to this recursion, it may represent a line containing any
number of points. In a similar way, a second side is encoded via
the same pattern in columns 6 and 7, and, again with the same
pattern, the third line is encoded in columns 12 and 12.

In columns 4, 9 and 15 in the figure, the pattern “SG sg1

CR #CR LN #LN #SG” shows one of the three elements of a
triangle as a corner (“CR #CR”) followed by a line (“LN #LN”).
And the recursion to encode multiple instances of that structure
is in self-referential occurrences of the pattern “TR tr1 SG

#SG TR #TR #TR” in columns 5, 10, and 22. Strictly speaking,
the encoding is for a polygon, not a triangle, because there is
nothing to stop the recursive repetition of “SG sg1 CR #CR

LN #LN #SG.” And, in terms of the problem, as described
above, the representation is incomplete because there is nothing
to show that the three sides of the triangle are the same.

These encodings account for the redundancy in the repetition
of points along a line and also the redundancy in the repetition of
three sides of a triangle. In a 2D version, they would also account
for the redundancy in the white space within the body of the
triangle, because they would allow most of the white space to be
eliminated via shrinkage of the representation to the minimum
needed to express the concept of a triangle.

13Compared with the multiple alignments shown in Figures 1, 2, this multiple

alignment has been rotated by 90◦. The choice between these alternative

presentations of multiple alignments depends entirely on what fits best on the page.
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FIGURE 5 | A multiple alignment produced by the SP computer model showing how a one-dimensional analog of how an equilateral triangle may be

perceived, as described in the text. Adapted from Wolff (2016, Figure 8), with permission.

5.6. We See Much Less than We Think We
See
Most people with normal vision have a powerful sense that their

eyes are a window on to a kind of cinema screen that shows what

we are looking at with great detail from left to right and from top
to bottom. But research shows otherwise:

• In the phenomenon of inattentional blindness, people may fail
to notice salient things in their visual fields when they are
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looking for something else, even if they are trained observers.
In a recent demonstration (Drew et al., 2013), radiologists were
asked to search for lung-nodules in chest x-rays but many of
them (83%) failed to notice the image of a gorilla, 48 times the
size of the average nodule, that was inserted into one of the
radiographs.

• In the phenomenon of change blindness, people often fail
to notice large changes to visual scenes. For example, if a
conversation between two people—the investigator and the
experimental subject—is interrupted by a door being carried
between them, the experimental subject may fail to notice,
when the door has gone by, that the person they are speaking
to is different from the person they were speaking to before
(Simons and Ambinder, 2005).

• Although each of our eyes has a blind spot14, we don’t notice
it, even when we are viewing things with one eye (so that there
is no possibility that the blind spot in one eye will be filled in
via vision in the other eye). Apparently, our brains interpolate
what is likely to be in the blind part of our visual field.

It seems that part of the reason for this failure to see things is that
photoreceptors are concentrated at the fovea (Squire et al., 2013,
p. 502), and cones are only found in that region (Squire et al.,
2013), so that, with two eyes, we are, to a large extent, looking at
the world through a keyhole composed of two circumscribed and
largely overlapping views, one from each eye.

It seems that our sense that the world is displayed to us on a
wide and deep cinema screen is partly because our perception of
any given scene draws heavily on our memories of similar scenes
and partly because we can piece together what will normally be a
partial view of what we are looking at from many short glimpses
through the “keyhole” as we move our gaze around the scene.

The SP theory provides an interpretation for these things as
follows:

• The theory provides an account in some detail of how New
(sensory) information may be related to Old (stored)
information and how an interpretation of the New
information may be built up via the creation of multiple
alignments. When sensory information provides an
incomplete description of some entity or scene (which is
normally the case), we fill in the gaps from stored knowledge.

• The theory provides an account of how we can piece together
a picture of something, or indeed a 3D model of something,
from many small but partially-overlapping views, in much the
same way that: (1) With digital photography, it is possible to
create a panoramic picture from several partially-overlapping
images; (2) The views in Google’s Streetview are built up from
many partially-overlapping pictures; (3) A 3D digital image of
an object may be created from partially-overlapping images of
the object, taken from viewpoints around it. These things are
discussed in Wolff (2014a, Sections 5.4, 6.1).

With regard to the second point, it should perhaps be said that
partial overlap between “keyhole” views is not an essential part
of building up a big picture from smaller views. But if two or
more views do overlap, it is useful if they can be stitched together,

14See “Blind spot (vision),”Wikipedia, bit.ly/1oI0vyI, retrieved 2016-04-08.

thus removing the overlap. And partial overlap may be helpful in
establishing the relative positions of two or more views.

5.7. A Resolution Problem and Its Possible
Resolution
As we have seen (Section 5.1), each hypercolumn in the primary
visual cortex of cats occupies about 1mm2 at the surface of the
cortex, and it seems likely that each such hypercolumn provides
a means of encoding one out of an alphabet of perceptual
primitives, such as a line at a particular angle.

Assuming that this interpretation is correct, and if we view
the primary visual cortex as if it was film in an old-style camera
or the image sensor in a digital camera, it may seem that the
encoding of perceptual primitives, with 1mm2 for each one, is
remarkably crude. How could such a system—with the area of
the primary visual cortex corresponding to the area of our field
of view—create that powerful sense that, through our eyes, we
see a detailed “cinema screen” view of the world (Section 5.6).

Part of the answer is probably that we see much less than we
think we see (Section 5.6). But it seems likely that another part
of the answer is to reject the assumption that the whole of the
primary visual cortex corresponds to the area of our field of view.
In the light of the remarks in Section 5.6, it seems more likely
that, normally, in each of the previously-mentioned glimpses of
a scene, all of the primary visual cortex or most of it is applied
in the assimilation and processing of information capture by the
fovea and, perhaps, parts of the retina that are near to the fovea.

In support of this idea: “Cortical magnification describes how
many neurons in an area of the visual cortex are ‘responsible’
for processing a stimulus of a given size, as a function of visual
field location. In the center of the visual field, corresponding to
the fovea of the retina, a very large number of neurons process
information from a small region of the visual field. If the same
stimulus is seen in the periphery of the visual field (i.e., away from
the center), it would be processed by a much smaller number
of neurons. The reduction of the number of neurons per visual
field area from foveal to peripheral representations is achieved
in several steps along the visual pathway, starting already in the
retina (Barghout-Stein, 1999)”15.

With this view of visual processing, what appears superficially
to be a rather course-grained recording and analysis of visual
data, may actually be very much more detailed. As described in
Section 5.6, it seems likely that our view of any scene is built up
partly from memories and partly from many small snapshots or
glimpses of the scene. And it seems like that each such snapshot
or glimpse is processed using a relatively large neural resource.

5.8. Grandmother Cells, Localist and
Distributed Representations
In terms of concepts that have been debated about how
knowledge may be represented in the brain, the ID-neural-
symbols for any pattern assembly are very much like the concept
of a grandmother cell—a cell or small cluster of cells in one’s
brain that represents one’s grandmother so that, if the cell or

15See “Cortical magnification,”Wikipedia, bit.ly/1qJsQX1, emphasis in the original,

retrieved 2016-04-14.
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cells were to be lost, one would lose the ability to recognize one’s
grandmother16.

It seems that the weight of observational and experimental
evidence favors the belief that such cells do exist (Gross, 2002;
Roy, 2013). This is consistent with the observation that people
who have suffered a stroke or are suffering from dementia may
lose the ability to recognize members of their close family.

Since SP-neural, like Hebb’s (1949) theory of cell assemblies,
proposes that concepts are represented by coherent groups of
neurons in the brain, it is very much a “localist” type of theory.
As such, it is quite distinct from “distributed” types of theory
that propose that concepts are encoded in widely-distributed
configurations of neurons, without any identifiable location or
center.

However, just to confuse matters, SP-neural does not propose
that all one’s knowledge about one’s grandmother would reside
in a pattern assembly for that lady. Probably, any such pattern
assembly would, in the manner of object-oriented design as
discussed in Section 6 and illustrated in Figure 6, be connected
to and inherit features from a pattern assembly representing
grandmothers in general, and from more general pattern
assemblies such as pattern assemblies for such concepts as
“person” and “woman.” And again, a pattern assembly for
“person” would not be the sole repository of all one’s knowledge
about people. That pattern assembly would, in effect, contain
“references” to pattern assemblies describing the parts of a
person, their physiology, their social and political life, and so on.

Thus, while SP-neural is unambiguously localist, it proposes
that knowledge of any entity or concept is likely to be encoded
not merely in one pattern assembly for that entity or concept but
also inmany other pattern assemblies in many parts of the cortex,
and perhaps elsewhere.

5.9. Positional Invariance
With something simple like a touch on the skin, or a pin prick, it
is not too difficult to see how the sensation may be transmitted to
the brain via any one of many relevant receptors located in many
different areas of the skin. But with somethingmore complex, like
an image on the retina of a table, a house, or a tree, and so on, it is
less straightforward to understand how we might recognize such
a thing in any part of our visual field.

For each entity to be recognized, it seems necessary at first
sight to provide connections, directly or indirectly, from every
part of the receptor array to the relevant pattern assembly. In
terms of the schematic representation shown in Figure 3, it
would mean repeating the connections for “t h e” and “b r

a v e” in each of many parts of the receptor array. Bearing in
mind the very large number of different things we may recognize,
the number of necessary connections would become very large,
perhaps prohibitively so.

However, things may be considerably simplified via either or
both of two provisions:

1. For reasons outlined in Section 5.6, it seems likely that, with
vision, we build up our perception of a scene, partly from
memories of similar scenes and partly via many relatively

16See “Grandmother cell,”Wikipedia, bit.ly/1UDulyV, retrieved 2016-08-26.

narrow “keyhole” views of what is in front of us. If that is
correct, and if, as suggested in Section 5.7, most of the primary
visual cortex is devoted to analysing information received via
the fovea and, perhaps, via parts of the retina that are very
close to the fovea, then the need to provide for any given
pattern in many parts of the receptor array may be greatly
reduced. Since, by moving our eyes, we may view any part of a
scene, it is possible that any given entity would need only one
or two sets of connections between the receptor array and the
pattern assembly for that entity.

2. As noted in Section 4.3, it seems likely that, with regard to
Figure 3, there would, in a more realistic example, be several
levels of structure between neural symbols in the receptor
array and relatively complex structures like words. At the
first level above the receptor array there would be pattern
assemblies for relatively small recurrent structures, and the
variety of such structures would be relatively small. This
should ease any possible problems in connecting the receptor
array to pattern assemblies.

If it turns out that the number of necessary connections is indeed
too large to be practical, or if there is empirical evidence against
such numbers, then a possible alternative to what has been
sketched in this paper is some kind of dynamic system for the
making and breaking of connections between the receptor array
and pattern assemblies. It seems likely that permanent or semi-
permanent connections would be very much more efficient and
the balance of probabilities seems to favor such a scheme.

In connection with positional invariance, it is relevant to
note that “... lack of localization is quite common in higher-
level neurons: receptive fields become larger as the features
they represent become increasingly complex. Thus, for instance,
neurons that respond to faces typically have receptive fields that
cover most of the visual space. For these cells, large receptive
fields have a distinct advantage: the preferred stimulus can be
identified no matter where it is located on the retina.” (Squire
et al., 2013, p. 579). A tentative and partial explanation of this
observation is that repetition of neurons that are sensitive to each
of several categories of low-level feature—in the receptor array
and as ID-neural-symbols for “low-level” pattern assemblies—is
what allows positional invariance to develop at higher levels.

6. NON-SYNTACTIC KNOWLEDGE IN
SP-NEURAL

As was emphasized in Section 3, the SP system (SP-abstract)
has strengths and potential in the representation and processing
of several different kinds of knowledge, not just the syntax of
natural language. That versatility has been achieved using the
mechanisms in SP-abstract that were outlined in that section. If
those mechanisms can be modeled in SP-neural, it seems likely
that the several kinds of knowledge that may be represented and
processed in SP-abstract may also be represented and processed
in SP-neural.

As an illustration, Figure 6 shows a simple example of how,
via multiple alignment, the SP computer model may recognize
an unknown creature at several different levels of abstraction,
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and Figure 7 suggests how part of the multiple alignment,
with associated patterns, may be realized in terms of pattern
assemblies and their inter-connections.

Figure 6 shows the best multiple alignment found by the SP
computer model with four symbols representing attributes of
an unknown creature (shown in column 0) and a collection
of Old patterns representing different creatures and classes of
creature, some of which are shown in columns 1–4, one pattern
per column. In a more detailed and realistic example, symbols
like “eats,” “retractile-claws,” and “breathes,” would
be represented as patterns, each with its own structure.

From this multiple alignment, we can see that the unknown
creature has been identified as an animal (column 4), as a
mammal (column 3), as a cat (column 2) and as a specific cat,
“Tibs” (column 1). It is just an accident of how the SP computer
model has worked in this case that the order of the patterns
across columns 1–4 of the multiple alignment corresponds with
the level of abstraction of the classifications. In general, the order
of patterns in columns above 0 is entirely arbitrary, with no
significance.

Figure 7 shows how part of the multiple alignment from
Figure 6 may be realized in SP-neural. The figure contains
pattern assemblies for “animal” and “mammal,” corresponding to

patterns from columns 4 and 3 of the multiple alignment. Notice
that the left-right order of the pattern assemblies is different from
the order of the patterns in the multiple alignment, in accordance
with the remarks, above, about the workings of the SP computer
model, and also because there is no reason to believe that pattern
assemblies are represented in any particular order.

Neural connections amongst the things that have been
mentioned so far are very much the same as alignments between
neural symbols in Figure 6: “eats” on the left connects with
“eats” in the “animal” pattern assembly; “furry” connects with
“furry” in the “mammal” pattern assembly, and the “A” and “#A”
connections for those two pattern assemblies correspondwith the
alignments of symbols in the multiple alignment. As in Figure 3,
some neural connections are shown with broken lines to suggest
that they would be relatively inactive during the neural processing
which identifies one or more “good” NAMAs. And as before, it is
envisaged that there would be one or more neural connections
between each neural symbol and its immediate neighbors within
each pattern assembly, but these are not marked in the figure.

The inclusion of a pattern assembly for “reptile” in Figure 7,
with some of its neural connections, is intended to suggest some
of the processing involved in identifying one or more winning
NAMAs. In the same way that the pattern for “mammal” is
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FIGURE 6 | The best multiple alignment found by the SP computer model with four one-symbol New patterns representing attributes of an unknown

creature and a collection of Old patterns representing different creatures and classes of creature. Adapted from Figure 6.7 in Wolff (2006), with permission.
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FIGURE 7 | How part of the multiple alignment shown in Figure 6 may be realized in SP-neural—showing two of the attributes from column 0 in the

multiple alignment and with “animal” and “mammal” pattern assemblies corresponding to patterns from columns 4 and 3—with an associated

pattern assembly for “reptile.” The conventions are the same as in Figure 3.

receiving excitatory signals from the pattern for “animal,” one
would expect excitatory signals to flow to pattern assemblies for
the other main groups of animals, including reptiles. Ultimately,
“reptile” would fail to feature in any winning NAMA because of
evidence from the neural symbols “furry,” “purrs,” and “white-
bib.”

7. REPETITION AND RECURSION

Like any good database or dictionary, the repository of Old
patterns in SP-abstract should only contain one copy of any given
SP pattern. But in something like Jack Sprat could eat no fat, His
wife could eat no lean, the words could, eat, and no each occur
twice. With an example like this, it seems reasonable to suppose
that there is only one stored pattern for each of the repeated
words, and likewise for the many other examples of entities that
are repeated within something larger, witness the many legs of a
centipede.

In SP-abstract, this apparent difficulty has been overcome
by saying that each SP pattern in a multiple alignment is an
appearance of the pattern, not the pattern itself—which allows us
to have multiple instances of a pattern in a multiple alignment
without breaking the rule that the repository of Old patterns
should contain only one copy of each pattern. But in SP-
neural, it is not obvious how to create an “appearance” of a
pattern assembly that is not also a physical structure of neurons
and their interconnections—but the speed with which we can
understand natural language seems to rule out what appears

to be the relatively slow growth of new neurons and their
interconnections.

How we can create new mental structures quickly arises again
in other connections, as discussed in Section 11. If we duck these
questions for the time being and return to parsing, it may be
argued that with something like Jack Sprat could eat no fat, His
wife could eat no lean, the first instance of could is represented
only for the duration of the word by the stored pattern for could,
so that the same pattern can be used again to represent the second
instance of could—and likewise for eat and no. But it appears that
this line of reasoning does not work with a recursive structure like
the very very very fast car.

Native speakers of English know that with a phrase like
the very very very fast car, the word very may in principle be
repeated any number of times. This observation, coupled with the
observation that recursive structures are widespread in English
and other natural languages, suggests strongly that the most
appropriate parsing of the phrase is something like the multiple
alignment shown in Figure 8. Here, the repetition of very is
represented via three appearances of the pattern “ri ri1 ri

#ri i #i #ri,” a pattern which is self-referential because the
inner pair of symbols “ri #ri” can be matched with the same
two symbols, one at the beginning of the pattern and one at the
end. Because the recursion depends on at least two instances of
“ri ri1 ri #ri i #i #ri” being “live” at the same time,
it seems necessary for SP-neural to be able to model multiple
appearances of any pattern.

That conclusion, coupled with the above-mentioned
arguments from the speed at which we can speak, and the speed
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FIGURE 8 | A multiple alignment produced by the SP computer model showing how recursion may be modeled in the SP system. Adapted from Figure 3

in Wolff (2016), with permission.

with which we can imagine new things, argues strongly that
SP-neural—and any other neural theory of cognition—must
have a means of creating new mental structures quickly. It seems
unlikely that these things could be done via the growth of new
neurons and their interconnections.

The tentative answer suggested here is that, in processes
like parsing or pattern recognition, including examples with
recursion like that shown in Figure 8, virtual copies of pattern
assemblies may be created and destroyed very quickly via
the switching on and switching off of synapses (Section
11). Clearly, more detail is needed for a fully satisfactory
answer.

Pending that better answer, Figure 9 shows tentatively how
recursion may be modeled in SP-neural, with neural symbols
and pattern assemblies corresponding to selected symbols and

patterns in Figure 8. On the left of that figure, we can see how
the neural symbol “very” connects with a matching neural
symbol in the pattern assembly “i i1 very #i.” Further
right, we can see how the first and last neural symbols in “i i1

very #i” connect with matching neural symbols in the pattern
assembly “ri ri1 ri #ri i #i #ri.”

In the figure, the self-referential nature of the pattern assembly
“ri ri1 ri #ri i #i #ri” can be seen in the neural
connection between “ri” at the beginning of that pattern
assembly and the matching neural symbol in the body of the
same pattern assembly, and likewise for “#ri” at the end of the
pattern assembly. Although it is unclear how this recursion may
achieve the effect of repeated appearances of the pattern assembly
at the speed with which we understand or produce speech,
the analysis appears to be more reliable than what is described
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very
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FIGURE 9 | A schematic example showing how recursive structures

may be modeled in SP-neural.

in Wolff (2006, Section 11.4.2), especially Figure 11.10 in that
section.

8. SP-NEURAL: AN OUTPUT PERSPECTIVE

An inspection of Figure 3—showing how, in SP-neural, a
small portion of natural language may be analyzed by pattern
assemblies and their interconnections—may suggest that if we
wish to reverse the process—to create language instead of
analysing it—then the innervation would need to be reversed:
we may guess that two-way neural connections would be needed
to support the production of speech or writing as well as their
interpretation.

But a neat feature of SP-abstract is that one set of Old
patterns, together with the processes for building multiple
alignments, will support both the analysis and the production
of language. So it is reasonable to suppose that if SP-neural
works at all, a similar duality will apply to pattern assemblies
and their interconnections, without the need for two-way
connections amongst pattern assemblies and neural symbols (but
see Section 8.3).

Of course, speaking or writing would need peripheral motor
processes that are different from the peripheral sensory processes
required for listening or reading, but, more centrally, the
processes for analysing language or producing it may use the
same mechanisms17.

The reason that SP-abstract, as expressed in the SP computer
model, can work in “reverse” so to speak, is that, from a
multiple alignment like the one shown in Figure 2, a code
pattern like “S 0 2 4 3 7 6 1 8 5 #S” may be derived,
as outlined in Section 3.6. Then, if that code pattern is presented
to the SP system as a New pattern, the system can recreate
the original sentence, “f o r t u n e f a v o u r s

t h e b r a v e,” as shown in Figure 10.

17Of course, things are a little more complicated with output processes because

sensory feedback is normally an important part of speaking or writing.

8.1. An Answer to the Apparent Paradox of
“Decompression by Compression”
That the SP system should be able to reconstruct a sentence
that was originally compressed by means of the same system
(Section 8) may seem paradoxical. How is it that a system that is
dedicated to information compression should be able, so to speak,
to drive compression in reverse?

A resolution of this apparent paradox is described in Wolff
(2006, Section 3.8). In brief, the key to the conjuring trick is
to ensure that, after the sentence has been compressed, there is
enough residual redundancy in the code pattern to allow further
compression, and to ensure that this further compression will
achieve the effect of reconstructing the sentence.

8.2. Meanings in the Analysis and
Production of Language
Of course, parsing a sentence (as shown in Section 3.5) or
constructing a sentence from a code pattern (as shown in
Section 8) are very artificial applications with natural language.
Normally, when we read some text or listen to someone speaking,
we aim to derive meaning from the writing or the speech. And
when we write or speak, it seems, intuitively, that the patterns
of words that we are creating are derived from some kind of
underlying meaning that we are trying to express.

It is envisaged that, in future development of SP-abstract
and the SP computer model, the ID-symbols in code patterns
will provide some kind of bridge between syntactic forms and
representations of meanings, thus facilitating the processes of
understanding the meanings of written or spoken sentences and
of creating sentences to express particular meanings.

As noted at the end of Section 3.8.2, there are preliminary
examples of how, with the SP computer model, a sentence may be
analyzed for its meaning (Wolff, 2006, Section 5.7, Figure 5.18),
and how the same sentence may be derived from a representation
of its meaning (Wolff, 2006, Figure 5.19).

8.3. But There Are Projections from the
Sensory Cortex to Subcortical Nuclei
Although as we have seen earlier in Section 8, SP-neural, via
principles established in SP-abstract, provides for the creation
of language, and other kinds of knowledge, without the need
for efferent connections from the cortex back along the path of
afferent nerves, there is evidence that such connections do exist:

“Neurons of the cerebral cortex send axons to subcortical

regions .... Subcortical projections are to those nuclei in

the thalamus and brainstem that provide ascending sensory

information. By far the most prominent of these is to the

thalamus: the neurons of a primary sensory cortex project back to

the same thalamic nucleus that provides input to the cortex. This

system of descending connections is truly impressive because the

number of descending corticothalamic axons greatly exceeds the

number of ascending thalamocortical axons. These connections

permit a particular sensory cortex to control the activity of the

very neurons that relay information to it.” (Squire et al., 2013,

p. 509).

Frontiers in Psychology | www.frontiersin.org November 2016 | Volume 7 | Article 1584114

http://www.frontiersin.org/Psychology
http://www.frontiersin.org
http://www.frontiersin.org/Psychology/archive


Wolff SP-Neural

0S#581673420S0

|||||||||||

1S#PV#||||||PVPN#||PN0S1

||||||||||||

2PV#PN#|||PNV#||V3PV||||2

|||||||||||||

3||||||rV#ruovaf6rV||||||3

||||||||||||||

4|||||V#srV#rV7V||||4

|||||||||

5|N#evarb5N|||||||5

||||||||||

6PN#N#ND#|D1PN||||6

|||||||

7D#eht8D||||7

||||

8 NP 2 N | #N #NP 8

| | |

9 N 4 f o r t u n e #N 9

FIGURE 10 | The best multiple alignment produced by the SP computer model with the same Old patterns as for the multiple alignment shown in

Figure 2 but with the New pattern comprising an appropriate sequence of ID-symbols, “S 0 2 4 3 7 6 1 8 5 #S,” as described in the text.

But the descending nerves described in this quotation may
have a function that is quite different from the creation of
sentences or other patterns of activity. One possible role for such
nerves may be “the focussing of activity so that relay neurons
most activated by a sensory stimulus are more strongly driven
and those in surrounding less well activated regions are further
suppressed.” (Squire et al., 2013, p. 509).

9. THE POSSIBLE ROLES FOR INHIBITION
IN SP-NEURAL

A familiar observation is that, if something like a fan is switched
on near us, we notice the noise for a while and then come to
ignore it. And if, later, the fan is switched off, we notice the
relative quiet for a while and then cease to be aware of it. In
general, it seems that we are relatively sensitive to changes in
our environment and relatively insensitive to things that remain
constant.

It has been accepted for some time that the way we adapt
to constant stimuli is due to inhibitory neural structures and
processes in our brains and nervous systems, that inhibitory
structures and processes are widespread in the animal kingdom,
and that they have a role in reducing the amount of information
that we need to process (von Békésy, 1967).

Regarding the last point, it is clearly inefficient for anyone
to be constantly registering, second-by-second, the noise of a
nearby fan: “noise, noise, noise, noise, noise,

...” and likewise for the state of relative quietness when the
fan is switched off. In terms of information theory, there is
redundancy in the second-by-second recurrence of the noise (or
quietness), and we can eliminate most or all of the redundancy—
and thus compress the information—by simply recording that
the noise is “on” and that it is continuing (and likewise,
mutatis mutandis, for quiet). This is the “run-length encoding”
technique for compression of information,18 it is essentially what

18See “Run-length encoding,”Wikipedia, bit.ly/21JlB1T, retrieved 2016-03-04.

adaptation does, and, in neural tissue, it appears to be mediated
largely by “lateral” inhibition.

With lateral inhibition in sensory neurons, there are inhibitory
connections between neighboring neurons so that, when they are
both stimulated, they tend to inhibit each other, and thus reduce
their rates of firing where there is strong uniform stimulation.
But inhibition is reduced where strong stimulation gives way to
weaker stimulation, leading to a local swing in the rate of firing
(Ratliff et al., 1963; see also Wolff, 2006, Section 2.3.1; there is
more about lateral inhibition in Squire et al., 2013, p. 505). There
are similar effects in the time dimension. Again, Barlow (1982)
says, in connection with neurons in the mammalian cortex that
receive inputs from both eyes, “... it is now clear that input from
one eye can, and frequently does, inhibit the effects of input from
the other eye, ...” (p. 147).

Taking these observations together, we may abstract a general
rule: When, in neural processing, two or more signals are the
same, they tend to inhibit each other, and when they are different,
they don’t. The overall effect should be to detect redundancy in
information and to reduce it, whilst retaining non-redundant
information, in accordance with the central principle in the SP
theory—that much of computing and cognition may, to a large
extent, be understood as information compression.

In a similar vein: “Lateral inhibition represents the classic
example of a general principle: most neurons in sensory
systems are best adapted for detecting changes in the external
environment. ... As a rule, it is change which has the most
significance for an animal ... This principle can also be explained
in terms of information processing. Given a world that is filled
with constants—with uniform objects, with objects that move
only rarely—it is most efficient to respond only to changes.”
(Squire et al., 2013, p. 578).

In view of the widespread occurrence of inhibitory
mechanisms in the brain19, and in view of their apparent

19“These [aspiny or sparsely spiny nonpyramida] interneurons constitute

approximately 15–30% of the total population of cortical neurons, and they appear

to be mostly GABAergic, representing the main components of inhibitory cortical

circuits ....” (Squire et al., 2013, p. 45); “Synaptic inhibition in themammalian brain
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importance for the compression of information, and thus for
selective advantage (Wolff, 2014d, Section 4), it is pertinent to
ask what role or roles they may play in SP-neural. Here are some
possibilities:

• Low-level sensory features. At relatively “low” levels in sensory
processing, it appears that, as noted above, lateral inhibition
has a role in identifying such things as boundaries between
uniform areas, meaning lines. It may also have a role
in identifying other kinds of low-level sensory features
mentioned in Section 4.1.

• Information compression via the matching and unification of
patterns (ICMUP). As noted in Section 3.2, SP-abstract, and
the SP computer model, is founded on the principle that
information compression may be achieved by the matching
and unification of patterns (ICMUP). Here, there appear to be
these possible roles for inhibition:

• As we have seen, lateral inhibition can have the effect of
inhibiting signals from neighboring sensory neurons when
they are receiving stimulation which is the same of nearly
so. This may be seen as an example of ICMUP.

• In accordance with the abstract general rule suggested
above, inhibitory processes may serve as a means of
detecting redundancy between a New pattern assembly like
“t a b l e” and an Old pattern assembly like “N 9 t

a b l e #N”:

• We may suppose that there are inhibitory links between
neighboring neural symbols in the Old pattern assembly
so that, if all of the neural symbols in the body of that Old
pattern assembly (i.e., “t a b l e”) are stimulated,
or most of them, then mutual inhibition amongst those
neural symbols will suppress their response. And, as with
lateral inhibition in sensory neural tissue, inhibition in
one area can mean enhanced responses at the boundaries
with neighboring areas, which, in this case, would be
the ID-symbols “N” and “9” on the left, and “#N” on
the right. Then, excitatory signals from “N” and “#N”
may go on to higher-level patterns that contain nouns, as
suggested by the broken-line links from those two neural
symbols in Figure 3. Since there is no link to export
excitatory signals from “9,” no such signals would be sent.

• Alternatively, we may suppose that a stored pattern
assembly like “N 9 t a b l e #N” has a
background rate of firing and that, when matching
stimulation is received for the neural symbols “t a b

l e,” the background rate of firing in the corresponding
neural symbols in “N 9 t a b l e #N” is reduced,
with an associated upswing in the rates of firing of the
neural symbols “N” and “9” and “#N,” as before.

• Sharpening choices amongst alternatives. As mentioned in
Section 4.5, the process of forming neural analogs of multiple

is mediated principally by GABA receptors.” (Squire et al., 2013, p. 169); “One

of the great mysteries of synaptic integration is why there are so many different

types of inhibitory interneurons. ... more than 20 different types of inhibitory

interneuron have been described in the CA1 region of the hippocampus alone.”

(Squire et al., 2013, p. 249).

alignments (NAMAs) means identifying one or two of the
most excited pattern assemblies, with structures below them
that feed excitation to them. Here, inhibition may play a part
by enhancing the status of the most excited pattern assemblies
and suppressing the rest. How inhibition may achieve that
kind of effect is discussed quite fully by von Békésy (1967,
Chapters II and V), and also in Shamma (1985).

More information and discussion about the possible roles of
inhibition in the cerebral cortex may be found in Isaacson and
Scanziani (2011).

10. UNSUPERVISED LEARNING IN
SP-NEURAL

This section considers how the learning processes in SP-abstract,
which are outlined in Sections 3.4, 3.7, may be realized in SP-
neural.

It seems likely that neural structures for the detection
of “low level” features like lines and corners in vision, or
formant ratios and transitions in hearing, are largely inborn20,
although “It is a curious paradox that, while [Hubel and Wiesel]
have consistently argued for a high degree of ontogenetic
determination of structure and function in the visual system,
they are also the authors of the best example of plasticity in
response to changed visual experience.” (Barlow, 1982, p. 150),
and “It has ... been shown convincingly that the orientation
preference of cells can be modified, ...” (Barlow, 1982). Also,
“In the somatosensory system, if input from a restricted area
of the body surface is removed by severing a nerve or by
amputation of a digit, the portion of the cortex that was
previously responsive to that region of the body surface becomes
responsive to neighboring regions ....” (Squire et al., 2013,
p. 508).

But it is clear that most of what we learn in life is at a “higher”
level which, in SP-neural, will be acquired via the the creation and
destruction of pattern assemblies, as discussed in the following
subsections.

10.1. Creating Old Pattern Assemblies
Let us suppose that a young child hears the speech equivalent
of “t h e b i g h o u s e” in accordance with the
example in Section 3.4. As we have seen, when the repository
of Old patterns is empty or nearly so, New patterns are stored
directly as Old patterns, somewhat like a recording machine, but
with the addition of ID-symbols at their beginnings and ends.

It seems unlikely that a young child would grow new neurons
to store a newly-created Old pattern assembly like “A 1 t

h e b i g h o u s e #A,” as discussed in Section 3.4.
It seems much more likely that a pattern assembly like that
would be created by some kind of modification of pre-existing
neural tissue comprising sequences or areas of unassigned neural
symbols with lateral connections between them as suggested
in Section 4.2. Pattern assemblies would be created by the
switching on and off of synapses at appropriate points, in

20“For all systems except the olfactory, the receptor neurons you were born with

are the ones you will live with.” (Squire et al., 2013, p. 503).
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a manner that is more like a tailor cutting up pre-woven
cloth than someone knitting or crocheting each item from
scratch.

In accordance with the labeled line principle (Section 5.3),
the meaning of each symbol in a newly-created pattern assembly
would be determined by what it is connected to, as described in
Section 10.2.

Similar principles would apply when Old patterns are
created from partial matches between patterns, as described in
Section 3.4.

10.2. Creating Connections between
Pattern Assemblies
As with the laying down of newly-created Old patterns
(Section 10.1), it seems unlikely that connections between pattern
assemblies, like those shown in Figure 3, would be created by
growing new axons or dendrites. It seems much more likely
that such connections would be established by switching on
synapses between each of the two neurons to be connected and
pre-existing axons or dendrites, somewhat like the making of
connections in a telephone exchange (see Section 11).

This idea, together with the suggestions in Section 10.1 about
how Old pattern assemblies may be created, is somewhat like the
way in which an “uncommitted logic array” (ULA)21 may, via
small modifications, be made to function like any one of a wide
variety of “application-specific integrated circuits” (ASICs)22,
or how a “field-programmable gate array” (FPGA)23 may be
programmed to function like any one of a wide variety of
integrated circuits.

10.3. Destruction of Pattern Assemblies
and Their Interconnections
In the SP theory, patterns and pattern assemblies are never
modified—they are either created or destroyed. The latter process
occurs mainly in the process of searching for “good” grammars
to describe a given set of New patterns, as outlined in Section
3.7. At each stage, when a few “good” grammars are retained in
the system, the rest are discarded. This means that any pattern
assembly in one or more of the “bad” grammars that is not also
in one or more of the “good” grammars may be destroyed.

It seems likely that, in a process that may be seen as a reversal
of the way in which pattern assemblies and their interconnections
are created, the destruction of a pattern assembly does not mean
the physical destruction of its neurons. It seems more likely that
all neural connections from the pattern assembly are broken by
switching off relevant synapses (Sections 10.3, 11) and that its
constituent neurons are retained for later use in other pattern
assemblies.

10.4. Searching for Good Grammars
It must be admitted that, apart from the remarks in forgoing
subsections about the creation and destruction of pattern

21See “Gate array,”Wikipedia, bit.ly/1UdB46j, retrieved 2016-03-20.
22See “Application-specific integrated circuit,”Wikipedia, bit.ly/1pUs2y8, retrieved

2016-03-20.
23See “Field-programmable gate array,”Wikipedia, bit.ly/1Hgi9iH, retrieved 2016-

03-20.

assemblies and their inter-connections, it is unclear how, in SP-
neural, one may achieve anything equivalent to the process of
searching the abstract space of possible grammars that has been
implemented in the SP computer model.

One possibility is to simplify things as follows. Instead of
evaluating whole grammars, as in the SP computer model, it
may be possible to achieve roughly the same effect by evaluating
pattern assemblies in terms of their effectiveness or otherwise for
the economical encoding of New information and, periodically,
to discard those pattern assemblies that do badly.

10.5. What about Hebbian Learning?
Readers familiar with issues in AI or neuroscience may wonder
what place, if any, there may be in SP-neural for the concept of
“Hebbian” learning. This idea, proposed by Hebb (1949), is that:

“When an axon of cell A is near enough to excite a cell B

and repeatedly or persistently takes part in firing it, some growth

process or metabolic change takes place in one or both cells such

that A’s efficiency, as one of the cells firing B, is increased.” (p. 62).

Variants of this idea are widely used in versions of “deep learning”
in artificial neural networks (Schmidhuber, 2015) and have
contributed to success with such systems24.

But in Wolff (2016, Section V-D) I have argued that:

• The gradual strengthening of neural connections which is a
central feature of Hebbian learning (and deep learning) does
not account for the way that people can, very effectively,
learn from a single occurrence or experience (sometimes called
“one-trial” learning)25.

• Hebb was aware that his theory of learning with cell assemblies
would not account for one-trial learning and he proposed a
“reverberatory” theory for that kind of learning (Hebb, 1949,
p. 62). But, as noted in Wolff (2016, Section V-D), Milner has
pointed out (Milner, 1996) that it is difficult to understand how
this kind of mechanism could explain our ability to assimilate
a previously-unseen telephone number: for each digit in the
number, its pre-established cell assembly may reverberate; but
this does not explain memory for the sequence of digits in
the number. And it is unclear how the proposed mechanism
would encode a phone number in which one or more of the
digits is repeated.

• One-trial learning is consistent with the SP theory because the
direct intake and storage of sensory information is bedrock in
how the system learns (Section 3.4).

• The SP theory can also account for the relatively slow learning
of complex skills such as how to talk or how to play tennis at a

24See, for example, “Don’t despair if Google’s AI beats the world’s best Go player,”

MIT Technology Review, bit.ly/1p7Wzb7, 2016-03-08; and “Google unveils neural

network with “superhuman” ability to determine the location of almost any image”,

MIT Technology Review, bit.ly/1p5qmSe, 2016-02-24.
25It may be argued that Hebbian learning may apply in such cases because a single

experience may be mentally rehearsed. But that begs the question of how the one

experience is remembered between when it first occurred and the first rehearsal—

and likewise later on. And, while rehearsal may be helpful in some cases, it seems

that there are many things we do remember after a single experience, without

rehearsal.
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high standard—because of the complexity of the abstract space
of possible solutions that needs to be searched.

Does this mean that Hebbian learning is dead? Probably not:

• In some forms, the phenomena of “long-term potentiation”
(LPT) in neural functioning seem to be linked to Hebbian
types of learning (Squire et al., 2013, pp. 1022–1023).

• Gradual strengthening of neural connections may have a role
to play in SP-neural because some such mechanism is needed
to record, at least approximately, the frequency of occurrence
of neural symbols and pattern assemblies (Sections 3.4, 4.5).

11. THE PROBLEMS OF SPEED AND
EXPRESSIVENESS IN THE CREATION AND
DESTRUCTION OF NEURAL STRUCTURES

A general issue for any neural theory of the representation and
processing of knowledge, is how to account for the speed with
which we can create neural structures, and, probably, destroy
them, bearing in mind that such structures must be sufficiently
versatile to accommodate the representation and processing of
a wide range of different kinds of knowledge. This issue arises
mainly in the following connections:

• One-trial learning. In keeping with the remarks above about
one-trial learning (Section 10.5), it is a familiar feature of
everyday life that we can see and hear something happening—
a football match, a play, a conversation, and so on—and then,
immediately or some time later, give a description of the event.
This implies that we can lay down relevant memories at speed.

• The learning of complex knowledge and skills. If we accept the
view of unsupervised learning which is outlined in Sections
3.4, 3.7, and 10, then it seems necessary to suppose that pattern
assemblies are created and destroyed during the search for
one or two grammars that provide a “good” description of the
knowledge or skills that is being learned—and it seems likely
that the creation and destruction of pattern assemblies would
be fast.

• The interpretation of sensory data. In processes like the parsing
of natural language or, more generally, understanding natural
language, and in processes like pattern recognition, reasoning,
and more, it seems necessary to create intermediate structures
like those shown in Figure 2, and for those structures to be
created at speed.

• Speech and action. In a similar way, it seems necessary for us
to create mental structures fast in any kind of activity that
requires thought, such as speaking in a way that is meaningful
and comprehensible, most kinds of sport, most kinds of games,
and so on.

• Imagination. Most people have little difficulty in imagining
things they are unlikely ever to have seen—such as a cat with a
coat made of grass instead of fur, or a cow with two tails. We
can create such ideas fast and, if we like them well enough, we
may remember them for years.

One possible solution, which is radically different from SP-neural,
is to suppose that our knowledge is stored in some chemical form

such as DNA, and that the kinds of mental processes mentioned
above might be mediated via the creation and modification of
such chemicals. Another possibility is that learning is mediated
by epigenetic mechanisms, as outlined in Baars and Gage (2010,
Section 7.4). Without wishing to prejudge what the primary
mechanism of learning may be, or whether perhaps there are
several such mechanisms, this paper focusses on SP-neural and
how it may combine speed with expressiveness, as seems to be
required for the kinds of functions outlined above.

At first sight, the problem of speed in the creation of neural
structures is solved via the long-established idea that we can
remember things for a few seconds via a “short-term memory26”
that is distinct from “long-term memory27,” and “working
memory28.” But there is some uncertainty about the extent to
which these three kinds of memory may be distinguished, one
from another, and there is considerable uncertainty about how
they might work, and how information may be transferred from
one kind of memory to another.

As a proffered contribution to discussions in this area, the
suggestion here is that, in any or all of short-term memory,
working memory, and long-term memory, SP-neural may
achieve the necessary speed in the creation of new structures,
combined with versatility in the representation and processing
of diverse kinds of knowledge, by the switching on and off of
synapses in pre-established neural structures and their inter-
connections, as outlined in Sections 10.1, 10.2.

With regard to possible mechanisms for the switching on and
off of synapses:

• It appears that, in the entorhinal cortex between the
hippocampus and the neocortex, there are neurons that can
be switched “on” and “off” in an all-or-nothing manner
(Tahvildari et al., 2007), and we may suppose that synapses
have a role to play in this behavior.

• “The efficacy of a synapse can be potentiated through at least
six mechanisms” (Squire et al., 2013, Caption to Figure 47.10)
and it is possible that at least one them has the necessary
speed, especially since “[Long-term potentiation] is defined as
a persistent increase in synaptic strength ... that can be induced
rapidly by a brief burst of spike activity in the presynaptic
afferents.” (emphasis added) (Squire et al., 2013, p. 1016).

• “[Long-term depression] is believed by many to be ... a process
whereby [Long-term potentiation] could be reversed in the
hippocampus and neocortex ....” (Squire et al., 2013, p. 1023).

• “... it is now evident that [Long-term potentiation], at least
in the dentate gyrus, can either be ... stable, lasting months
or longer.” (Abraham, 2003, Abstract), although there appears
to be little or no evidence with a bearing on whether or not
there might be an upper limit to the duration of long-term
potentiation.

• There is evidence that the protein kinase Mζ (PKMζ ) may
provide a means of turning synapses on and off, and thus
perhaps storing long-termmemories (Ogasawara and Kawato,
2010).

26“Short-term memory,”Wikipedia, bit.ly/1RzAVHN, retrieved 2016-04-04.
27“Long-term memory,”Wikipedia, bit.ly/1M9uPhh, retrieved 2016-04-04.
28“Working memory,”Wikipedia, bit.ly/1PQq0UA, retrieved 2016-04-04.
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With all these possible mechanisms, key questions are: do they act
fast enough to account for the speed of the phenomena described
above; and can they provide the basis for memories that can last
for 50 years or more.

12. ERRORS OF OMISSION, COMMISSION,
AND SUBSTITUTION

Aprominent feature of human perception is that we have a robust
ability to recognize things despite disturbances of various kinds.
We can, for example, recognize a car when it is partially obscured
by the leaves and branches of a tree, or by falling snow or rain.

One of the strengths of SP-abstract and its realization in the
SP computer model is that, in a similar way, recognition of a New
pattern or patterns is not unduly disturbed by errors of omission,
commission, and substitution in those data (Wolff, 2006, Chapter
6, Wolff, 2013, Section 4.2.2). This is because of the way the SP
computer model searches for a global optimum in the building of
multiple alignments, so that it does not depend on the presence
or absence of any particular feature or combination of features in
the New information that is being analyzed.

In its overall structure, SP-neural seems to lend itself to that
kind of robustness in recognition in the face of errors in data. But
the devil is in the detail. In further development of the theory, and
in the development of a computer model of SP-neural, it will be
necessary to clarify the details of how that kind of robustness may
be achieved. In shaping this aspect of SP-neural, the principles
that have been developed in SP-abstract are likely to prove useful
and, with empirical evidence from brains and nervous systems,
they may serve as a touchstone of success.

13. CONCLUSION

As was mentioned in the Introduction, SP-neural is a tentative
and partial theory. That said, the close relationship between
SP-neural and SP-abstract, the incorporation into SP-abstract
of many insights from research on human perception and
cognition, strengths of SP-abstract in terms of simplicity and
power (Section 3.8.1), and advantages of SP-abstract compared
with other AI-related systems (Section 3.8.3)—lend support to
SP-neural as it is now as a conceptual model of the representation
and processing of knowledge in the brain, and a promising basis
for further research.

Naturally, we may have more confidence in some parts of
the theory than others. Arguably, the parts that inspire most
confidence are these:

• Neural symbols and pattern assemblies. All knowledge is
represented in the cerebral cortex with pattern assemblies, the
neural equivalent of patterns in SP-abstract. Each such pattern
assembly is an array of neural symbols, each of which is a single
neuron or a small cluster of neurons—the neural equivalent of
a symbol in SP-abstract. Topologically, each array has one or
two dimensions, perhaps parallel to the surface of the cortex.

• Information compression via the matching and unification
of patterns. As in SP-abstract, SP-neural is governed by
the overarching principle that many aspects of perception

and cognition may be understood in terms of information
compression via the matching and unification of patterns.

• Information compression via multiple alignment. More
specifically, SP-neural is governed by the overarching
principle that many aspects of perception and cognition may
be understood via a neural equivalent of the powerful concept
ofmultiple alignment.

• Unsupervised learning. As in SP-abstract, unsupervised
learning in SP-neural is the foundation for other kinds
of learning—supervised learning, reinforcement learning,
learning by imitation, learning by being told, and so on. And as
in SP-abstract, unsupervised learning in SP-neural is achieved
via a search through alternative grammars to find one or
two that score best in terms of the compression of sensory
information. As noted in Section 10.5, this is quite different
from the kinds of “Hebbian” learning that are popular in
artificial neural networks.

• Problems of speed and expressiveness in the creation of pattern
assemblies and their interconnections. To account for the speed
with which we can assimilate new information, and the speed
of other mental processes (Section 11), it seems necessary to
suppose that pattern assemblies and their interconnections
may be created from pre-existing neural structures by the
making and breaking of synaptic connections, somewhat
like the making and breaking of connections in a telephone
exchange, or the creation of a bespoke electronic system
from an “uncommitted logic array” (ULA) or a “field-
programmable gate array” (FPGA).

As with SP-abstract, areas of uncertainty in SP-neural may be
clarified by casting the theory in the form of a computer model
and testing it to see whether or not it works as anticipated. It
is envisaged that this would be part of a proposed facility for
the development of the SP machine (Wolff and Palade, 2016), a
means for researchers everywhere to explore what can be done
with the SP machine and to create new versions of it.

At all stages in its development, the theory may suggest
possible investigations of the workings of brains and nervous
systems. And any neurophysiological evidence may have a
bearing on the perceived validity of the theory and whether or
how it may need to be modified.
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APPENDIX

Cell Assemblies and Pattern Assemblies
The main differences between Hebb’s (1949) concept of a “cell
assembly” and the SP-neural concept of a “pattern assembly” are:

• The concept of a pattern assembly has had the benefit of
computer modeling of SP-abstract—reducing vagueness in
the theory and testing whether or not proposed mechanisms
actually work as anticipated. These things would have been
difficult or impossible for Hebb to do in 1949.

• Cell assemblies were seen largely as a vehicle for recognition,
whereas, as neural realizations of SP “patterns,” pattern
assemblies should be able to mediate several aspects of
intelligence, including recognition.

• Anatomically, pattern assemblies are seen as largely flat
groupings of neurons in the cerebral cortex (Section 4.2),
whereas cell assemblies are seen as structures in three
dimensions.

• As described below, a fourth difference between cell assemblies
and pattern assemblies is in how structures may be shared.

With regard to the last point, possible models for sharing of
structures are illustrated in Figure A1.

In literal sharing, structures B and C in the figure both contain
structure A. In sharing by copying, structures B and C each
contains a copy of structure A. While in sharing by reference,
structures B and C each contains a reference to structure A, in
much the same way that a paper like this one contains references
to other publications.

From Hebb’s (1949) descriptions of the cell assembly concept,
it is difficult to tell which of these three possibilities are intended.

By contrast with the concept of a pattern assembly in SP-
neural, sharing is almost always achieved by means of neural
“references” between structures. For example, a noun like “table”
is likely to have neural connections to the many grammatical
contexts in which it may occur, as suggested by the two broken-
line connections from each of “N” and “#N” in the pattern
assembly for “table” shown in Figure 3. Notice that, in this
example, the putative direction of travel of nerve impulses is not
relevant—it is the neural connection that counts.

Sharing by reference

B C

A

A A

Literal sharing A

B C

Sharing by copying

B

A1

C

A2

FIGURE A1 | Three possible ways in which cell assemblies may be

shared, as described in the text. Adapted with permission from Wolff

(2006, Figure 11.3).

In the SP system, it is intended that literal sharing should be
impossible and that sharing by copying may only occur on the
relatively rare occasions when the system has failed to detect the
corresponding redundancy, and not always then.
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We compare and discuss representations in two cognitive architectures aimed at

representing and processing complex conceptual (sentence-like) structures. First is the

Neural Blackboard Architecture (NBA), which aims to account for representation and

processing of complex and combinatorial conceptual structures in the brain. Second

is IDyOT (Information Dynamics of Thinking), which derives sentence-like structures

by learning statistical sequential regularities over a suitable corpus. Although IDyOT is

designed at a level more abstract than the neural, so it is a model of cognitive function,

rather than neural processing, there are strong similarities between the composite

structures developed in IDyOT and the NBA. We hypothesize that these similarities form

the basis of a combined architecture in which the individual strengths of each architecture

are integrated. We outline and discuss the characteristics of this combined architecture,

emphasizing the representation and processing of conceptual structures.

Keywords: cognitive architecture, memory representation, hebbian learning, compositional learning, incremental

learning, In situ representations

1. INTRODUCTION

The ability to represent and process conceptual structures, as found in language processing,
reasoning, and in generating conceptual representations from visual and auditory perception, are
key elements of human cognition. They can be studied with the aim to understand human cognition
and its relation to the brain. But they can also be targets for the development of artificial cognitive
systems. These aims can be combined to various degrees, because a cognitive architecture that
provides an understanding of a (neural) cognitive process can also be used in artificial systems,
and, conversely, the way in which an artificial system processes complex information can reveal
aspects of human processing as well.

Here, we discuss and relate the different representations used in two cognitive architectures,
one neural and one symbolic, in which complex conceptual structures can be represented and
processed. That is, we discuss and illustrate the different ways in which complex conceptual
structures are represented or learned in the two architectures and how these representations could
be related.

In particular, we aim to outline how combined representations could be developed, for use in
a combined architecture in which aspects of our neural and symbolic architectures are integrated.
We hypothesize that such a combined architecture could serve as a model of human conceptual
processing and its relation to the brain. When implemented, it could also serve as a new artificial
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architecture in which forms of neural (parallel) hardware and
neural and symbolic forms of learning and processing could be
integrated. We are as yet at the beginning of the integration of
our architectures, which is also a reason why we focus on issues
of representation here.

The neural representation in our integration is that used in
the Neural Blackboard Architecture (NBA), which is aimed to
represent and process conceptual structures in language (e.g.,
van der Velde and de Kamps, 2006, 2010), reasoning and
other cognitive domains (van der Velde, 2016a). The NBA
assumes that conceptual representations in the brain consist
of dedicated network structures, or neural assemblies, that
develop over time and that can be distributed over wide areas
in the brain and cortex. A fundamental characteristic of these
network-like conceptual representations is that they are always
content addressable, whether they are activated in isolation or
whether they are parts of more complex (and even hierarchical)
conceptual structures, such as sentences in language.

The NBA provides “neural blackboards” that afford the
representation and processing of complex conceptual structures
based on neural assembly conceptual representations in specific
cognitive domains. Examples are neural blackboards for sentence
structures, phonological structures, sequences, and relations
as used in reasoning. In each domain, a dedicated neural
blackboard will provide a range of specialized structural
elements that can bind in a neural manner to the neural
assemblies (e.g., representing “words” in language). The neural
bindings, implemented with neural circuits, allow the creation
and processing of more complex cognitive structures (e.g.,
“sentences”) in a combinatorial manner.

The symbolic representation in our integration is that used
in Information Dynamics of Thinking (IDyOT). IDyOT derives
(e.g., sentence-like) structures by learning statistical sequential
regularities over a linguistic corpus (Wiggins, 2012b; Wiggins
and Forth, 2015; Forth et al., 2016). IDyOT is unusual as a
machine learning formalism in that it is symbolic in nature,
but it generates and gives explicit semantics to its own symbols,
in a bottom-up learning process, which is optimized by a
general, data-independent principle of information efficiency,
conceptualized as predictive accuracy. These symbols correspond
with concepts in the semantics of the system. Another unusual
aspect of IDyOT’s operation is that both representations and
sequential models are optimized simultaneously with respect
to the prediction accuracy of the models, causing a trade-off
between overfitting and accuracy that we propose as a model of
the corresponding trade-off in human cognition. The explanation
of this process is a novel contribution of the current paper.

The representational links between IDyOT and NBA concern
the nature of the dedicated structural elements that allow
processing and representation of complex conceptual structures,
the way these elements could be activated during processing,
and the underlying semantics of the architectures in the
form of conceptual spaces that possess a geometrical structure
(Gärdenfors, 2000, 2014).

In the NBA, the dedicated structural elements form the neural
blackboards. The kinds of elements used and the way they are
activated derive from analyses of the cognitive domains at hand,

as in the sentence NBA (e.g., van der Velde and de Kamps, 2006,
2010). However, the combination of NBA with IDyOT provides
the possibility to derive these structural elements by learning
from real corpora. Conversely, the NBA could provide a neural
implementation of the more higher-level formal account as
provided by IDyOT. Thus, IDyOT potentially supplies a higher-
level formal account and learning abilities to the operations of
the NBA. Conversely, the NBA provides a route toward a neural
implementation of IDyOT, which could also form the basis of in
parallel operating hardware.

2. THEORETICAL POSITION AND NOVELTY

Our theoretical position here is that the representations used in
NBA and IDyOT are in fact two different representations of the
same thing, at different levels of abstraction, but with focus on
similar representational affordances. In the following sections, we
describe the representations, and the relations between them—
but, as always, to understand the representations it is necessary
also to understand the processes that work over them.

The novelty in the current paper lies in several places,
primarily in the thorough-going comparison between the
representations and corresponding processes in the two
architectures. The entire description of IDyOT memory
construction is also novel, and we present a novel simulation
of neural activity based on the NBA, which allows for a
detailed comparison with brain activity observed in human
(sentence) processing. To the best of our knowledge, such a
detailed potential comparison between human brain activity and
simulated model activity is not available in the case of high-level
cognitive processing, such as sentence comprehension. This also
strongly motivates the integration of our architectures, because
that would endow the NBA with the learning capabilities of
IDyOT, based on real corpora (as outlined below). In turn,
the dynamics and structure of the NBA would then allow
a comparison between the representations and underlying
processing as learned by IDyOT and human brain activity.

The structure of the paper is as follows. In the next two
sections we briefly describe the representations used in NBA
and IDyOT in turn, also giving detail of processing where
appropriate. In the sections that follow, we discuss a number of
specific links between NBA and IDyOT and the potential benefits
of their integration.

3. NEURAL BLACKBOARD

ARCHITECTURE

In our outline of Neural Blackboard Architecture, or NBA for
short, we focus on the representation of concepts (e.g., underlying
words) in the architecture and the representational structures
that are used to integrate concepts in more complex cognitive
structures, such as relations and sentences.

The basis of concept representation in the NBA are “neural
assemblies,” as proposed by Donald Hebb (1949). In the
view of Hebb, these neural assemblies develop over time by
interconnecting the neurons in the brain that are involved
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in processing (sensory) information and generating actions
related to the concept they represent. However, unlike Hebbian
assemblies, conceptual representations in the NBA are not only
associative. Instead, they can (and mostly will) contain relational
structures as well.

Figure 1 illustrates a neural assembly representation of cat.
It would be distributed over different areas in the cortex and
brain, depending on the kind of information involved, including
networks processing perceptual information about cats and
networks that can produce specific actions (e.g., pronouncing the
word “cat”). But also networks representing emotional content or
associations related to cats belong to the assembly, and networks
that instantiate relations, such as cat is pet.

The combination of perception and action in the assembly
structure of a concept entails that both the patterns (and
activation) of “incoming” and “outgoing” connections determine
the meaning of a concept. For example, neurons observed in
the medial temporal cortex responded to a person whether the
person or his or her name was presented (Quian Quiroga, 2012).
These “perception” networks do in fact belong to the assembly
structure of a concept, because without them the concept could
not be activated (or was not learned). But this would capture
only part of the role and (hence) meaning of the conceptual
representation involved. Equally important would be the effect of
these neurons on downstream processing (van der Velde, 2015).

The notion that conceptual representations interconnect
sensory information processing and action generation
underscores their role in producing behavior. The ability to
produce behavior is a crucial aspect of cognition (and hence of
every neuro-cognitive model) because the evolution of cognition
depended on the ability to produce behavior.Without advocating
a behavioristic view of cognition (e.g., as the basis of modeling
cognition) we do argue that the prime role of cognition is to
intervene in the reflex (cf. Shanahan, 2010). In this view, the need
for a connection structure that transfers sensory activity to motor
activity should always be at the background of a neural-cognitive
model.

So, in Figure 1, it is not just the gray oval that represents the
concept cat, but instead the entire network structure to which it
is connected. The gray oval could play the role of a higher-level
representation of the concept in the sense that it interconnects
the concept to other networks. But it would be wrong to see
this as the “genuine” encoding of the concept. Without the
networks to which it is connected, the gray oval does not encode
anything.

An important feature of conceptual representations given by
neural assemblies is that they are “in situ.” This entails that
they cannot be copied and transported to create more complex
structural representations with them (e.g., as found in language
or reasoning). Instead, the same assembly (or a part thereof) is
always activated when the concept it represents is tokened. One
consequence of this kind of representation is that an assembly can
develop and grow over time, as originally discussed by Hebb.

Another direct consequence of the in situ nature of a neural
assembly is that the concept it represents is content addressable.
This entails that the same assembly (or part thereof) will
be activated when sufficient information about the concept it

FIGURE 1 | Left: Neural assembly representation of cat. Right: Sentence

structure in the Neural Blackboard Architecture: a sentence neural blackboard

(temporarily) interconnects the “in situ” concept representations (given by

neural assemblies) of cat, is, on, and mat to form the sentence structure cat is

on mat. The thick line connections represent “conditional connections.” They

can be opened by gating circuits that are either activated by sustained activity

in working memory neural populations (representing binding) or by neural

control circuits (e.g., performing parsing operations). N, noun; P, preposition;

S, sentence; V, verb.

represents is available (e.g., perceived), even when the concept is
part of a (complex) sentence structure.

Huth et al. (2016) give an indication of the in situ nature
of conceptual representation in the brain. They measured brain
activity related to words when people were listening to stories (in
an fMRI scanner). The parts of the cortex that responded to the
words (after statistical analysis) were much larger compared to
previous studies in which only individual words were presented.
The analysis divided the left hemisphere (LH) into 192 distinct
functional areas, 77 of which were semantically selective. The
right hemisphere was divided into 128 functional areas, 63 of
which were semantically selective (even though the RH is usually
regarded as not being involved in language). Remarkably, the
organization of these areas was quite similar over the different
(7) subjects involved in the study. Furthermore, next to these
semantic areas, other areas also responded to other aspects of
words (e.g., Broca’s area).

Because the study was focused on semantic representation, the
words observed in the study were categorized into 12 semantic
domains. These domains tiled the cortex in terms of the 77
areas in the LH and the 63 areas in the RH referred to above.
Inspection of the data reveals that semantic domains are generally
represented in different tiles, distributed over the LH and/or RH
cortex.

The semantic representation as observed by Huth et al. (2016)
seems to be in line with the Hebbian assembly hypothesis, in that
these representations would have arisen over time, and would
(partly) be determined by the context in which the concepts were
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processed. This could explain why, e.g., the same visual concept
(e.g., colored) activates areas near the visual cortex but also in the
prefrontal cortex. This pattern of activation could reflect different
parts of the assembly of the concept, and their selective activation
would then be determined by the context (visual processing
vs. motor behavior) in which the concept is used and learned.
The fact that a concept generates activation in different cortical
areas is in line with the assembly representation as illustrated in
Figure 1.

3.1. Neural Blackboards as Connection

Paths
If concepts are represented and distributed as in situ assemblies,
the question arises of how they could be combined to represent
more complex cognitive structures, such as relations or sentences.

The key notion of the NBA is that more complex cognitive
structures are formed by providing (temporal) connection paths
between the assemblies (concepts) they contain, in relation with
the structure they express. These (temporal) connection paths are
formed and controlled in “neural blackboards.”

For example, in the case of language, the NBA provides a
connection structure (or connection path) that allows arbitrary
words in a given language to be (temporarily) interconnected
in accordance with the structure of the sentence. The words
in this case are the network structures (neural assemblies) as
described by Huth et al. (2016). The neural blackboards in the
NBA provide a “small world” network structure that would allow
the in situ and distributed concept assemblies (“words”) to be
interconnected using a limited set of intermediary “hubs and
sub-hubs,” given by the structure assemblies and their potential
bindings in the blackboards. Small world networks are found in
a wide variety of natural and man-made structures because they
allow arbitrary interconnectivity with minimal means. They also
play an important role in the brain (Shanahan, 2010).

Figure 1 illustrates how in the NBA a sentence can be formed
with in situ concepts encoded by neural assemblies. The in
situ assemblies for cat, is, on, and mat are bound to a “neural
blackboard” to form the sentence cat is on mat.

Figure 1 illustrates the very basic aspects of the neural
blackboards that the NBA uses to encode relations between in situ
concept assemblies. In the case of language there are (at least) two
neural blackboards involved. One is a phonological blackboard,
which is not illustrated here. The other is the sentence blackboard
which encodes sentence structures, as illustrated here with the
sentence cat is on mat.

The need for both a phonological and a sentence blackboard
derives from the productivity of natural language. Language
has (at least) a two tier productive structure (Jackendoff, 2002)
in which first phonemes form words and then words (or
word-phoneme combinations) form sentences. The combination
of (familiar) phonemes allows the generation of a very large
set of words, which can grow continuously in life. These
words (including novel but phonetically regular words) can
then be combined to give a practically unlimited set of
sentences. Yet, it is important to realize that this two tier
productivity is restricted to the languages we are familiar

with. In the NBA, that means languages for which we have
developed neural blackboards (van der Velde and de Kamps,
2015a).

van der Velde and de Kamps (2006, 2010) explain the structure
and operations of the neural blackboards in detail. Here, we
address a number of main issues, focusing on representational
structures in the sentence blackboard. The composite structural
elements of the sentence blackboard are “structure assemblies,” as
illustrated in Figure 1. They can bind to concept assemblies (or to
“word assemblies” in the phonological blackboard) and they can
bind to each other to generate the structure of the sentence (e.g.,
cat is on mat).

The thick-line connections in the blackboards play a crucial
role in the process of generating and representing a sentence
structure. These connections are “conditional connections,”
consisting of gating circuits. To operate as a connection, the
gates in the connections have to be opened or activated. This
ensures that activation does not flow without control in the
neural blackboards, that is, the connections in the blackboards
are not associative. The gates can be activated by working
memory (WM) activation, representing a binding, and by control
circuits, which represent (e.g., syntactic) operations in the
architecture. We will discuss these operations in more detail
later on.

So, the in situ assembly cat is bound (via the phonological
blackboard) to a “Noun” structure assembly Nx in the sentence
blackboard. Binding is achieved by working memory activation
that opens the gates between the assemblies involved. To this end,
the sentence blackboard has a number of Noun assembles which
can all potentially bind to each of the Word assemblies in the
phonological blackboard (via a matrix or tensor-like connection
structure, see below). All bindings in all neural blackboards
are of this kind. A specific binding in the “connection matrix”
between assemblies is achieved by activating a specific working
memory, which consists of sustained activation in a population
of neurons. Once activated (by the mutual activation of the
assemblies it binds), the population remains active on its own
for a while due to “reverberating” activity (e.g., Amit, 1989).
So, in this way, cat will bind to Nx. Similarly, is will bind to
the Verb structure assembly Vz, on to the Preposition structure
assembly Pu and mat to Nw (again, via the phonological
blackboard).

Thus, to represent sentences based on in situ words
(concepts), the NBA builds a connection path (structure) in
the sentence (and phonological) blackboard, in accordance
with the syntactic structure of the sentence. These sentences
can be novel sentences based on familiar words (or even
novel words based on familiar phonemes), and they can
include hierarchical structures like (e.g., center) embedding
(van der Velde and de Kamps, 2006, 2010). Once a connection
structure is built it can be used to produce behavior, because
it constitutes a connection path between the in situ concept
assemblies it interconnects. In turn, this entails that it forms
a (temporal) connection path between all perception and
action structures embedded in these concept assemblies, thus
forming a path between perception and action as the basis for
behavior.
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4. IDYOT: THE INFORMATION DYNAMICS

OF THINKING

4.1. Overview
IDyOT (Information Dynamics of Thinking: Wiggins, 2012b;
Wiggins and Forth, 2015; Forth et al., 2016) implements Baars’
Global Workspace Theory (GWT; Baars, 1988), affording a
computational model of a hypothetical cognitive architecture.
At the functional level1, a number of generators sample from
a complex statistical model of sequences (explained below),
performing Markovian prediction from context (Wiggins and
Forth, 2015; Forth et al., 2016). Each generator indexes a string
of symbols, forming a chunk, a final substring of the overall
memory model, expressed as symbols, whose origin is explained
below. Each indexed string serves as a context for prediction of
the next (as yet unsensed) symbol; predictions are expressed as
distributions over the alphabet used to express the input. A chunk
is integrated into thememory and GlobalWorkspace (whichmay
be thought of as an AI blackboard: Corkill, 1991) when it meets
a criterion based on information content. The upshot of this
design is that IDyOT’s primary cognitive operation is perceptual
chunking. Figure 2 gives a functional overview.

IDyOT maintains a cognitive cycle that continually predicts
what is expected next, from a statistical model, expressed in
terms of self-generated symbols that are given semantics by
perceptual experience; it is thus focused on sequence. Perceptual
input is matched against generators’ predictions, and where a
match leads to a larger increase in uncertainty than other current
matches, the corresponding generator’s chunk is flushed into the
Global Workspace, and stored in memory, linked in sequence
with the previous chunk. Chunks that fail to win are forgotten
after a fixed period, the duration of which is question of the
research. The model entails that, for perception to work, at least
some generators must be working in all perceptual modalities
at all times; otherwise no generator would be predicting for
input in a newly active modality to match against. This activity
may account for otherwise unexplained electrical brain activity
that is not directly concomitant with perceived events, and it
may be responsible for spontaneous creativity (Wiggins and
Bhattacharya, 2014).

4.2. Representation, Memory, and

Prediction in IDyOT
Each chunk, having been recorded, is associated with a symbol
in a higher-level model, which adds to the overall predictive
model. Each symbol corresponds with a point in a conceptual
space (Gärdenfors, 2000, 2014) associated with its own layer,
and each such point corresponds with a region or subspace
of the conceptual space of the layer below, defined by the
lower-level symbols in the chunk. Thus, there are two parallel
representations: one symbolic and explicitly sequential; and
one continuous and non-sequential, but encoding sequential
information. The former provides evidence from which the latter
is derived, while the latter provides semantics for the former.

1The formal implementation of this functional behavior is somewhat different in

actuality. However, the description given here is easier to understand in isolation.

FIGURE 2 | Overview of the IDyOT (Information Dynamics of Thinking)

architecture. Generators synchronized to perceptual input sample, given

previous perceptual input (if any), from a first-order, multidimensional Markov

model to predict the next symbol in sequence, which is matched with the

input. Predicted symbols that match are grouped in sequence until a chunk is

detected on grounds of its information profile. The generator then stores the

chunk, as described in §7.1.3 and resets its chunk, which is the sum of the

structured hierarchical memory and a detector that searches for salient

information, shown as “conscious awareness” here. This allows the resulting

chunk of sequence to be stored in the memory, to become part of the

statistical model and thence to be used subsequently.

For grounding (or, more precisely, tethering: Sloman and
Chappell, 2005), the lowest-level conceptual spaces are a
priori defined by the nature of their sensory input (inspired
by human biology: for example, auditory input models the
output of the Organ of Corti); higher-level ones are inferred
from the lower levels using the information in the sequential
model. Structures may be grouped together in categories,
according to similarity in their conceptual space, giving them
semantics in terms of mutual interrelation. Using this, a
consolidation phase allows membership of categories to be
optimized, by local adjustment, in terms of the predictive
accuracy of the overall model. Theoretically, the layering
of models and its associated abstraction into categories can
proceed arbitrary far up the constructed hierarchy (Wiggins,
2012b; Wiggins and Forth, 2015). Forth et al. (2016) provide
an account of the representation of timing in IDyOT;
these aspects, however, are beyond the scope of the current
paper.

In general, the stimuli to which IDyOT will respond are
sequences of atomic percepts. All the dimensions of music,
pitch, timbre, amplitude and time, which also feature in speech,
are used for prediction, as has been demonstrated in IDyOM
(Pearce, 2005; Pearce et al., 2012), as can any other transduced
signal. This demands a more powerful Markov model than is
common in cognitive science language modeling. Conklin and
Witten (1995) proposed a viewpoint-based approach that allows
a set of interacting features, associated by means of sequences
of multi-dimensional symbols, to perform multi-dimensional
prediction. This is the system used in IDyOM and adapted for
multidimensional language models by Wiggins (2012a). A key
contribution of the viewpoint idea is the ability to superpose
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distributions from different features with weights determined by
their entropy (Pearce et al., 2005).

Given Conklin’s notion of viewpoint (Conklin and Witten,
1995) and the associated mathematics, it becomes possible
also to represent propositional meaning within the statistical
framework: to do this, one incorporates representations of the
meaning (perhaps drawn from another sensory modality, e.g.,
describing in language a scene representation derived from visual
input) in the statistical model (Eshghi et al., 2013). Here, we
presuppose a rich, multisensory input which allows associations
to be constructed between different sensory modalities, on the
basis of co-occurrence.

A key scientific advantage of this representations is that its
symbols are (directly or indirectly) explicable in terms of IDyOT’s
perceptual input, and a record of that perception is maintained.
Thus, its status as a cognitive model is more easily tested than
in equally powerful, but less semantically transparent, learning
systems, such as deep neural networks.

4.3. Summary: the Principles of IDyOT
In summary, the IDyOT model is based on 6 principles.
Notations used in the current description of IDyOT are presented
in the Table 1.

1. The fundamental function of cognition is to efficiently process
sensory information so as to predict what is to happen next in
the world.

2. Predictions are made by classifying events (§§6.1.3,7.1.3),
counting likelihoods of short sequences, and building a
literal model of the experience of the organism in these
terms (§6.1.1). Predictions are expressed as distributions over
alphabets of events.

3. Events are identified by chunking sensory input (§7.1.3).
4. The cognitive system always strives to maintain the optimal

representation of its memory. Optimality is expressed in terms
of the mean number of bits required to represent each symbol
in the memory: smaller is better.

5. Meaning is constructed internally to the cognitive system, and
incrementally, and consists in associations between symbols in
the IDyOT memory (§§6.1.3,7.1.4).

6. Because the model maps directly to experience, it is learned
incrementally (§7.1). This has the following consequences:

a. Meanings attributed to symbols depend on the order of
events that the model learns (§7.1).

b. It is necessary from time to time to re-optimize the model,
after an extended phase of incremental learning. This is
termed memory consolidation. One consequence is that
meanings can change retrospectively as the system learns.

5. NBA AND IDYOT AS COMPLEMENTARY

APPROACHES TO REPRESENTATION

Although the NBA is a neural architecture whereas IDyOT is
primarily a symbolic one, they are functionally and structurally
related.

TABLE 1 | Notation used in the current description of IDyOT.

ℵ(v) The alphabet associated with viewpoint v.

Dt,A The distribution that constitutes IDyOT’s prediction at time point t over

alphabet A.

H(D) The estimated entropy of distribution D, over alphabet A:

H(D) = −
∑

s∈A

p(s) log2 p(s).

h(D, s) The estimated information content of symbol s drawn from distribution D

over alphabet A:

h(D,s) = −log2 p(s).

SA The conceptual space (Gärdenfors, 2000) associated with alphabet A.

RA,s The region of SA that corresponds with the symbol s ∈ A.

In particular, chunking plays a key role in this relation between
the two architectures. Perceptual chunking is the key operation
of IDyOT, but it is also the underlying principle of structure
formation in the NBA. The neural blackboards in the NBA not
only interconnect information or provide a workspace in which
information can interact and compete, they also form larger
chunks of the information presented to them. These chunks
arise during information processing and competition and are
represented with the structure assemblies that characterize a
given blackboard.

In this way, the two approaches are strongly mutually
complementary: IDyOT can provide the structural elements that
would be needed in a neural blackboard representation, instead of
deriving them from a laborious and perhaps faulty analyses. The
way in which IDyOT derives these structural elements is much
more direct and secure than the engineering approach in NBA,
because the elements derived by IDyOT are based on learning
mechanisms using real corpora. These learning methods could
also be used to develop the structural elements of a phonological
neural blackboard and for neural blackboards of other languages
than English.

In turn, the NBA provides a direct neural implementation
of the structures as learned by IDyOT. This offers the
possibilities for fast hardware implementations combined with
processing abilities based on dynamic competitions in the neural
blackboards. The dynamics in neural blackboards also strengthen
functional processing in the architecture. For example, they can
play a role in sentence processing, in the generation of behavior
(e.g., answering questions) or in ambiguity resolution. They also
reduce the constraints that need to be learned to perform these
tasks.

In the next sections we address a number of relations between
the representations used in the NBA and IDyOT in more detail.

6. STRUCTURAL ELEMENTS IN NEURAL

BLACKBOARDS OR WORKSPACES

The first relation between NBA and IDyOT concerns the role
of neural blackboards or a workspace. In both architectures,
special operators (or neural circuits) process and generate special
forms of information. But to account for the productivity of
human cognition there has to be a way in which the information
processed or generated by special processors is interrelated

Frontiers in Psychology | www.frontiersin.org August 2017 | Volume 8 | Article 1297127

http://www.frontiersin.org/Psychology
http://www.frontiersin.org
http://www.frontiersin.org/Psychology/archive


van der Velde et al. Representation and Processing of Conceptual Structures

and combined. A neural blackboard or workspace allows these
interactions to occur, with the special processors feeding into
and competing within them. The role of neural blackboards or
workspace in both architectures is also related to the small-world
network structures that would allow different brain processors
(areas) to interconnect with each other in a flexible way.

Blackboards play a role in classical computation (Corkill,
1991), in which they allow the representation of generic forms
of information that can be stored and retrieved at will (in line
with the characteristics of symbolic information processing). In
contrast, the neural blackboards in the NBA are not generic in
this sense. They do not represent arbitrary information which
can be stored and retrieved at will. Instead, the information that
can be stored in a given neural blackboard is determined by the
nature of its composite structural elements, which depends on the
kind of process the neural blackboard is involved in. For example,
the structural elements of the neural sentence blackboard are
different from those in the phonological neural blackboard:
the sentence neural blackboard has main assemblies and sub
assemblies for specific syntactic structural elements (e,g., “clause”
or “preposition”), which are not found in the phonological neural
blackboard. As a consequence, the neural sentence blackboard
cannot (by itself) represent phonological structures. This is why
the blackboards in the NBA are referred to as neural blackboards,
to emphasize their internal and selective neural structure.

The workspace in IDyOT is symbolic. But the composite
structural elements in the workspace, learned by IDyOT, are
related to the composite structural elements in the neural
blackboards of the NBA.

In the NBA, however, the composite structural elements (or
‘structure assemblies’) are engineered, derived from an analysis of
the domain (e.g., language) for which the neural blackboards are
used. In contrast, the structural elements in IDyOT that provide
a representation of phonological and sentential structures are
learned from a real corpus.

It would be a huge advantage for an architecture as the NBA
if the structures in neural blackboards could be learned from
real corpora instead of being designed. In return, the NBA could
then offer a neural (parallel and dynamic) implementation of
the structures as learned by IDyOT. The following subsections
illustrate, for the first time, how learning proceeds in IDyOT
and how structural elements as learned in IDyOT can be
implemented in a neural and dynamic manner.

6.1. IDyOT Memory: Encoding Sequential

Structure and Conceptual Meaning
6.1.1. Overview
Because IDyOT’s learning process is incremental, as opposed to
the one-shot learning of most statistical learning systems, there is
diachronic development of meaning in its memory. As a result, it
is difficult to see how the system works from a static, descriptive
perspective. Therefore, we begin with a static description of the
representation and how it is used, so that the reader has a clear
idea of where the incremental process is heading. Related, but
different descriptions are given by Wiggins and Forth (2015),
with respect to the dynamics of lexical disambiguation, and by

Forth et al. (2016) with respect to timing in music and language.
First, then, the reader is asked to focus on the data structure
presented, and to postpone the question of how it is constructed
to §7.1. The “viewpoint” terminology used in the following
description was originated by Conklin (1990) and Conklin and
Witten (1995).

IDyOT’s conceptual representation consists of two
components, both of which are learned. The primary component
is a sequence of events with separable features (viewpoints),
annotated with chunk extents, which themselves form a
sequence, and to which chunking is then applied recursively,
up to a limit which is a parameter of the system (see §7.1.3);
we say that a symbol at level i subtends a sequence at level
i − 1; Figure 3 illustrates this. The shortest possible event is a
multidimensional object that describes a simultaneous moment
as sensed by IDyOT, at a sampling rate which is a parameter of
the system, but of which 40 Hz is a preferred value, in terms
of all the sensory modalities available to it. The examples given
here are taken from auditory processing; however, there is no
implication that this should be the only modality available.

6.1.2. Sequence
The sequence memory consists of symbols, beginning at the
lowest representational level, and recorded sequentially in
perceived time, as abstractly illustrated in Figure 3. Higher
layers in the hierarchy constitute abstractions of the sequences
that their symbols subtend, in lower layers. Thus, once the
memory is constructed, there are in general three directions of
possible prediction from any given context: up, with increased
abstraction, down, with decreased abstraction, and forwards in
perceived sequence. The theory does not currently consider
the complicating possibility of reasoning backwards, nor of
subsequent conscious reinterpretation; reinterpretation should
be layered on top of this. The structure so produced, combined
with the contextualized distributions afforded by the transition
matrices, is similar in nature to a Dynamic Bayesian Network
(Pearl, 1999).

For a concrete example, consider speech input. The lowest-
level representation of this would be spectral and highly granular,
and therefore prohibitively expensive in memory. Since the basic
symbols would, in a full example, be sensory inputs, for a human-
like IDyOT, retention of the very lowest levels of memory should
be fleeting, modeling echoic memory, and therefore our example
is more realistic, beginning, like Wiggins and Forth (2015), at the
somewhat artificial level of phonemes, pitch and amplitude: these
constitute our basic viewpoints.

Consider the extremely simple example sentence, “John
loves Mary” in Figure 4, which illustrates the idea in multiple
dimensions. For example only, we use emoji to denote the
semantics of the sentence: these are presented at the same time as
the example sentence is being spoken. This could be represented
by viewpoint “emoji” in Figure 4A, which should be thought of
as alongside the other viewpoints, together constituting level 0
in Figure 4B, simulating more complex world experience. We
can consider not just single viewpoints, but also their cross
products (known in Conklin’s system as a linked viewpoint),
whose alphabet consists of pairs constructed from the two source
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FIGURE 3 | Simplified illustration of the abstract structure of IDyOT memory. The three generators are working at the level denoted by labels with upper case L; these

have been derived from the lower case l labels, below, and the generators are engaged in working on the next level up, denoted by labels with upper case italic L.

Arrows with empty heads denote abstraction; arrows with solid heads denote concretisation; and arrows with open heads denote temporal sequence, though note

that the diagram shows only sequence, and does not represent time. Recall that each generator’s chunk subtends the sequence from its pointer to the end of the

memory. Finally, note that each arrow denotes a range of possible next labels, with an associated distribution, and that generators can work at any and all of these

levels. The diagram is simplified by showing only one of the alternative labels that exist at each level; thus, each of the abstraction and concretisation arrows should be

thought of as a range of choices, governed by a distribution derived from observed likelihood.

FIGURE 4 | Two perspectives on IDyOT memory. (A) An illustration of the parallel basic viewpoints for the sentence “John loves Mary,” expressed in phonemes with

associated voice pitch and amplitude signals, and semantics represented (for the purposes of example only) by emoji sequences. The top group are the basic

viewpoints, as directly transduced (again, for the purposes of example); the middle example shows a linked viewpoint at the basic level; and the bottom example

shows a linked viewpoint that encodes the discovered association between the semantic representations and the spoken words; such links can only take be

generated when the two source viewpoints are aligned in time. (B) The hiearchical memory structures resulting from sensing of the sentence, “John loves Mary,” in

terms of the individual phoneme and emoji viewpoints by a fully trained IDyOT. Note that this does not correspond with the standard syntactic parse, and nor is it the

same as a MERGE style parse of the words. Associated with each layer of the tree, L, is a continuous, time-variant conceptual space, SL, (Gärdenfors, 2000) of

timbre; this is a complex Hilbert space, whose points are time-slices in a spectral representation, such as a Fourier transform. Each stimulus at level 0 corresponds

with a temporal trajectory (of variable length) in that space, while the corresponding structures at level 1 are points in a different, abstract space. Si+1 is related to Si
by spectral (e.g., Fourier) transformation, following Chella et al. (2007). Then, the sound /dZ/ is represented in full spectral detail at level 0, but in summary form, as a

point, at level 1, as are /o/ and /n/. At level 1, further trajectories connect the more abstract representations, and thus the temporal detail of the individual sounds is

abstracted, allowing (for example) the same word to be recognized regardless of how long the vowel takes. Expectations as to timing are generated from the various

examples of each sound in each context in the memory (Forth et al., 2016).

alphabets. This, of course, generates a combinatorial explosion of
viewpoints.

At each layer, there is a first-order Markov model, which

allows prediction of the next item in sequence; Wiggins

(2012b) explains the importance of this prediction with respect

to creativity. Predictions, expressed as distributions over the
alphabet of the relevant layer, may be generated for any point
at the leading edge of the hierarchical memory structure as it is

generated: thus, higher-level, abstract predictions are current at
the same time as surface-level ones, and this is how long-term
dependency in language, music, and narrative is managed.

6.1.3. Meaning
IDyOT is unusual as a symbolic learning system because it does
not use symbols with predefined meanings. Rather, symbols are
grounded in perception, and their meaning is determined either
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in terms of synchronic relations between sensory modalities, or
in terms of the diachronic sequence chunks that they subtend.
In either case, meaning is placed in context of the conceptual
spaces (Gärdenfors, 2000, 2014) associated with the viewpoints
and the alphabets built above them. To summarize very briefly,
conceptual spaces are low-dimensional geometrical spaces that
afford judgments of similarity or betweenness. An example is
the familiar color spindle, which has regions corresponding
with colors of the spectrum, in which Euclidean distance
models similarity (Gärdenfors, 2000, 2014). Different perceptual
phenomena exhibit different geometries (for example, musical
pitch is a spiral, Shepard, 1964), and methods for deriving these
properties are a rich area of future research; Tenenbaum et al.
(2011) propose various candidate statistical structures. In the
higher layers of IDyOT memory, because a symbol subtends
a sequence of symbols below it, it must be possible to map a
trajectory of points or regions in a lower space to a single point
in a higher one; this suggests that spectral representations are a
promising route; Chella et al. (2008) and Chella (2015) suggest
methods.

The conceptual spaces in IDyOT are important, because they
afford the similarity measures that categorize chunks together in
the incremental chunking and representation process, which we
describe in §7.1.

6.2. NBA: binding sequential structures and

concepts
The abstract structure of IDyOT memory, as illustrated
in Figure 3, consist of learned components, organized in
hierarchical layers. They form the link between the learning
mechanisms of IDyOT and the neural blackboard structures of
the NBA.

Figure 5 illustrates these neural blackboard structures in more
detail, with the structure the sentence cat sees cat, to compare the
encoding of sequential structures in IDyOT and the NBA.

The red and black thick lines in the figure illustrate the
(crucial) conditional connections in the NBA, which consist of
gating circuits. In the NBA, each concept assembly (e.g., of a
noun) is connected to a set of structure assemblies of the same
kind (all Ni assemblies in the case of a noun) with gating circuits.
(In fact, the words need to be represented in a phonological
blackboard first, to enhance the productivity of the architecture,
being able to represent novel but phonologically regular words,
and to reduce the number of conditional connections in the
architecture.) In turn, each structure assembly consists of a “main
assembly,” such as N1, and (a set of) sub assemblies, such as n or
t. The connection between a main assembly and a sub assembly
consists of a gating circuit as well.

Structure assemblies of different kinds, such asV1 andN2, are
connected by their sub assemblies of the same kind. Here, by their
t (theme) sub assemblies, which represents the fact that a verb can
have a theme (object). This connection (red line) also consists of a
gating circuit, which can be activated by aWMneural population.
This results in the binding of the two connected sub assemblies
and hence their main assemblies, which last as long as this WM
population is active. When two sub assemblies are bound in this

way, activation can flow from one of the main assemblies to the
other, by opening the gates between these main assemblies and
their sub assemblies.

The gating circuits operate by disinhibition (di), as illustrated
in Figure 5. When N1 is active, it activates a neuron (or neuron
population) X and an inhibitory neuron (or population) i. The
latter inhibits X, which blocks the flow of activation. But when
i itself is inhibited (by neuron or population di), activation can
flow from N1 (via X) to n.

Gating circuits can be disinhibited (or “activated”) in one
of two different ways. In the case of gating circuits between
main assemblies and sub assemblies (the black connections in
Figure 5), the activation results from an external control circuit
that activates the di population. This is how syntactical operations
affect binding in the blackboard. A control circuit could have
recognized that sees cat represent a verb and a theme. It then
activates all di populations in the gating circuits between all Vi
and Nj assemblies and their t assemblies. As a result, the active Vi
and Nj will activate their t sub assembly.

Gating circuits between sub assemblies and between word and
main assemblies (the red connections in Figure 5) are activated
by (specific) “working memory” (WM) populations. A WM
population remains active for a while, after initial activation,
by reverberating activation in the population (e.g., Amit, 1989).
An active WM population binds the assemblies to which it is
connected. Figure 6 illustrates how this is achieved in the NBA.
Figures 6A–C illustrate the same binding process with increasing
detail. In Figure 6A, the binding between the t sub assemblies of
V1 (orV1−t) andN2 (N2−t) in Figure 5 is repeated. Figure 6B
illustrates that this binding is based on a “connection matrix,”
which consists of columns and rows of “connection nodes,” which
are illustrated in Figure 6C.

Each specific Vi − t and Nj − t pair of sub assemblies
is interconnected in a specific connection node, located in a
connection matrix dedicated to binding Vi − t and Nj − t sub
assemblies. In general, when two assemblies Xi and Yj (e.g., Vi− t
andNj−t) are concurrently active in the processing of a sentence,
they activate a WM population in their connection node by
means of a gating circuit, as illustrated in Figure 6C. In turn,
the active WM population disinhibits a gating circuit by which
activation can flow from Xi to Yj, and another such circuit, not
show in (c), by which activation can flow from Yj to Xi. As long
as their WM population is active, Xi and Yj are “bound” because
activation will flow from one to the other whenever one of them
is (initially) activated.

The NBA allows any noun to bind to any verb in any thematic
role using dedicated connection matrices. Also, the NBA has
structure assemblies that can bind to other structure assemblies,
such as S1 in Figure 5 or clause structure assemblies. In this
way, hierarchical sentence structures can be represented, such as
relative or complement clauses.

6.2.1. Sentence Structure as Connection Path
To form a sentence structure, the structure assemblies have to
bind to each other. This process is regulated by control circuits
that build a sentence structure in line with the (syntactical)
relations in the sentence (van der Velde and de Kamps, 2010).

Frontiers in Psychology | www.frontiersin.org August 2017 | Volume 8 | Article 1297130

http://www.frontiersin.org/Psychology
http://www.frontiersin.org
http://www.frontiersin.org/Psychology/archive


van der Velde et al. Representation and Processing of Conceptual Structures

FIGURE 5 | Left: conditional connections. N, n, noun; i, inhibition; di, dis-inhibition; WM, working memory. Right: Representation of cat sees cat in the sentence

neural blackboard. S, sentence; V, v, verb; t, theme (object).

FIGURE 6 | (A) Conditional connections. N, noun; V, verb, t, theme (object) . (B) Connection matrix. (C) Connection node. i, inhibition; di, dis-inhibition; WM, working

memory.

So, with cat sees cat in Figure 5, the control circuits will recognize
cat as the subject of the sentence, expressed by the binding of N1
to the ‘Sentence’ structure assembly S1, and sees as the verb of the
main clause, expressed by binding V1 with S1.

But then, the control circuits will recognize the second
occurrence of cat as the object of the sentence. This seems to
pose a problem, because that would seem to require a copy
(different token) of cat to bind as the object to the verb. Indeed,
symbol manipulation represents the sentence cat sees catwith two
tokens of cat. But in the NBA, a given concept assembly can bind
to different structure assemblies at the same time, allowing the
creation of sentence structures in which words are repeated, as

illustrated in Figure 5. However, the concept assemblies remain
in situ in this way, so words in sentence structures are always
content addressable and grounded. This example illustrates how
the NBA solves the “problem of two” posed by Jackendoff (2002).

The sentence structures in the NBA (as illustrated in
Figures 1, 5) and IDyOT (e.g., John loves Mary in Figure 4) are
structurally similar. The sentence in IDyOT is derived from its
learning principles, as outlined above, and it can be represented
in the NBA in the manner illustrated in Figure 5.

As we argued, the representational similarities between
IDyOT and NBA would offer a basis for combining the learning
mechanisms of IDyOT, based on real corpora, with the parallel
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and dynamic implementation of the NBA. The dynamics in
the neural blackboard can in fact be used to solve forms of
(e.g., sentence) ambiguity (van der Velde and de Kamps, 2015b),
which in turn offers the possibility of further reduction of the
constraints that would have to be learned to represent and process
complex cognitive structures.

7. PROCESSING OF SEQUENTIAL

STRUCTURES

A second link between the NBA and IDyOT concerns the
processing of sequential information. Based on its learning
mechanism, IDyOT derives probabilistic choices between
structural interpretations of the processed information, in the
form of transition matrices. Based on learning, predictions can
be made that influence further processing of the input sequence.

The NBA uses similar kinds of information to train control
circuits that selectively activate the neural blackboards, as
illustrated in Figure 5. Control circuits have been implemented
with feedforward networks (van der Velde and de Kamps, 2010)
and, more recently, with reservoirs (Jaeger and Haas, 2004)
consisting of “sequence nodes” (van der Velde, 2016a).

Similar to the connection nodes in Figure 6, each sequence
node has a column structure with gating circuits that control
the activation of the node. This activation depends on three
sources: previously activated sequence nodes (hence forming a
chain of nodes in the reservoir, representing sequential order),
external activation generated by the (ongoing) input sequence,
and activation already generated in the neural blackboard. The
latter includes the predictions generated in the neural blackboard
in the course of processing an input sequence, as in the resolution
of ambiguity (van der Velde and de Kamps, 2015b).

The reservoir can, for example, learn to answer the question
Where is cat? with the sentence Cat is on mat in Figure 1.
The reservoir can learn to do this by recognizing the sequence
Where - localizer - noun - Agent. Here, the sequence Where -
localizer - noun is based on transforming the question Where
is cat? in a more general form (with is = localizer and cat
= noun). The Agent in the sequence is derived from the
activation of the neural blackboard representation of cat is on
mat, because cat in the question Where is cat? activates its
in situ neural assembly (Figure 1) and thus the part of the
neural blackboard representation of cat is on mat to which the
assembly cat is bound. In this way, the reservoir can learn to
reactivate the sentence representation of cat is on mat in the
neural blackboard, to generate the answer mat (van der Velde,
2016b).

But, for example, the transformation of the question Where
is cat? into the more general form Where - localizer - noun?,
learned by the reservoir in the NBA, is based on an analysis.
In contrast, the learning mechanism of IDyOT can provide the
information to train the reservoir in the NBA, based on real
corpora. Conversely, the distinction between structured neural
blackboards and the control reservoirs in the NBA can strongly
reduce the number of contingencies that have to be learned over
time, as illustrated with the ease with which the reservoir can

learn to recognizeWhere - localizer - noun - Agent (van der Velde,
2016b).

The more elaborate learning mechanism of IDyOT would
thus have to be integrated with the NBA, and eventually be
implemented with neural reservoirs that interact with the neural
blackboard in the NBA. The learning process in IDyOT is
outlined in more detail below, again for the first time.

7.1. The IDyOT Incremental Learning

Process
7.1.1. Initial State
Initially, IDyOT has no memory, no symbols, and only inputs.
Input is in terms of percepts conceptualized as symbols
representing continuous real-world phenomena at whatever level
of abstract is chosen: here, phonemes, pitch, amplitude, and
observed meaning (emoji).

7.1.2. Chunks and Labels
Given a low-level, predefined conceptual space, Sv (which initially
has no geometry, but learns it as more data is received), for each
low-level viewpoint, v, IDyOT labels the mutually discriminable
points in Sv with symbols, building an alphabet, ℵ(v), and,
separately, builds a chain of these symbols as the input sequence
proceeds; this may be thought of as the chain li in Figure 3.
Simultaneously, IDyOT builds a first order transition matrix
of the chain; this will allow the construction of successive
distributions over ℵ(v), Dt,ℵ(v), as time, t, proceeds. Each symbol
is considered in relation to the symbols already created, in terms
of their corresponding points: a quasi-Euclidean distance (norm),
in Sv, may be computed between them. At the same time, the
space is progressively partitioned into regions whose points are
nearest to each point in the sequence, as in a Voronoi Tessellation
(Aurenhammer, 1991). This tessellation, possibly modified by a
parameter which creates a gap between the regions (Figure 7),
forms the basis of similarity comparison. Points in (non-zero)
gap regions form new seeds. This process will, of course, produce
initially inaccurate predictions and labelings, but as sufficient
data is processed, these early errors fade into statistical obscurity,
propelled by the memory consolidation process described below.

However, this simple mechanism would not account for the
human propensity to perceive what is expected, because Sv, the
conceptual space associated with v, is static. The distribution,
D0,ℵ(v), describes IDyOT’s expectation at this point; it is derived
from the transition matrix for v. Each region, Rv,s, where s ∈

ℵ(v) in the Voronoi tessellation of Sv is now expanded or
contracted, by changing the position of each plane dividing the
space, in proportion to the relative likelihood of the symbols
corresponding with the points to whose connecting line the plane
is perpendicular. A parameter, whose value is the subject of study,
determines the degree of variation; an interesting possibility
is that this value is related to entropy of the distribution, as
was found empirically to be case in a related application of
distributions in IDyOM (Pearce et al., 2005), where distributions
containing more information influence the outcome more. Thus,
the less expected a phoneme, s, is, the smaller its Rv,s temporarily
becomes, and so a phoneme that is both imprecisely articulated
and unexpected may be misidentified as one near it, which
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FIGURE 7 | Modulating conceptual regions according to expectedness. (A) The unmodified Voronoi tessellation of the conceptual space of phonemes, S8, showing

the boundary between RS8 ,@ and RS8 ,D. (B) The modified tessellation; note that the distances from the labeled points to the boundary have changed in proportion to

the relative likelihoods in D0,8. (C) The tessellation with a non-zero gap. (D) Schematic partial representation of the distribution, D0,8 showing (imaginary) proportions

for /@/ and /D/.

is more likely in the distribution (Figure 7). IDyOT behaves
like a human in this context: it commits to memory incorrect
perceptions, as if they were correct.

7.1.3. Chunking: Competition and Boundary Entropy
Each new symbol, indexing a point in Sv, is available to all
generators associated with this viewpoint (see Figure 3). As
the transition matrix is populated, predictions can be made
of likelihood, and as IDyOT’s memory develops, progressively
more informed predictions may be made using the probabilistic
network afforded by the layeredmemory. Thus, the entire context
will influence Dt,ℵ(v) it any time point t. Again, initially, these
predictions will not be particularly accurate; as more data is
received they will improve. As each new label appears, therefore,
a new distribution is generated, and its entropy, H(Dt+1,ℵ(v))
can be calculated and compared with H(Dt,ℵ(v)). On the basis
of empirical evidence from computational linguistics and music

cognition (e.g., Sproat et al., 1994; Brent, 1999; Pearce et al.,
2010; Rohrmeier et al., 2015), at each time step, IDyOT’s agents
compete for global workspace access, the largest positive change
being the winner. If no agent registers an increase in entropy,
there is no winner, and no change in the memory; IDyOT
proceeds to the next input stimulus.

Thus, IDyOT achieves hierarchical perceptual chunking.

7.1.4. Layer Formation and Abstraction
Following the identification of a chunk in memory, IDyOT must
decide whether to generate a new label or to label this chunk
with an existing symbol, on grounds of similarity. In the former
case, a new label is generated, at level Li in Figure 3, and it is
added to memory, along with pointers to the lower level chunk
that it subtends; also, the transition matrix for the upper layer
is updated. A further transition matrix, of which one exists for
each pair of contiguous levels, is also updated with the new
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symbol and transition. In this connection, a higher-level symbol
is deemed to connect down to any symbol in its chunk, while any
lower level symbol is deemed to connect to any symbol in whose
chunk it appears. It is implicit in this process that each symbol
in an IDyOT memory chain may be subtended by more than one
symbol at the immediately higher level, and it may subtend more
than one symbol below. Transition matrices for these upward
connections, too, must be maintained.

Returning to the example: the higher level sequence has a
transition matrix, and so its entropy can be determined, symbol-
wise, as above, and therefore the same boundary test as above can
be applied. If a new chunk at this level is detected, then the same
process applies, and so on up the layers of the network, using
the same principle of similarity measurement as above. This first
generates level Li in Figure 3, and then on beyond the scope of
that simple example.

This recursive process constructs a tree from the very lowest
level of representation up to the highest possible abstraction,
as shown for our concrete example, in Figure 4. Although this
simple example has focused on only one aspect of the stimulus,
it is important to recall that, in a fully implemented IDyOT,
all modalities of perception would be active simultaneously,
and synchronized (Forth et al., 2016) in such a way as to
interrelate simultaneous stimuli. Thus, the association between,
for example, the word “orange”, the sound [6rInZ], and
appropriate representations of the corresponding color, fruit, pop
star and politics, could be learned, as illustrated in Figure 4.

8. FURTHER RELATIONS BETWEEN NBA

AND IDYOT

8.1. Conceptual spaces
The semantics underlying the IDyOT and NBA representations
are derived from the conceptual spaces with which they interact.
In turn, the conceptual spaces play a role in processing in
both architectures. For IDyOT, the role of conceptual spaces is
illustrated in Figure 4. In the NBA, representations of conceptual
structures (relations, propositions, sentences) are based on
content addressable concept representations, which directly and
selectively activate conceptual structures in neural blackboards.
Also, conceptual domains and relations are needed to influence
sequential processing in the control reservoirs of the NBA
(van der Velde, 2016a).

McGregor et al. (2015) outline a basis for a geometrical
conceptual space, with interpretable spaces and dimensions
derived from observed co-occurrence statistics in a large corpus.
Conceptual relations and domains can be obtained by the
techniques described byMcGregor et al. (2015) and by the metric
based on a semantic map as derived by van der Velde et al. (2015).
This semantic map also consists of a co-occurrence matrix,
derived from human categorizations. The metric provided a
similar concept-cluster structure as derived from reduction
techniques. But it also revealed the possibility of deriving bridges
between conceptual domains based on metric violations.

The geometrical nature of such a conceptual space provides a
natural representation for the content addressable concept

representations underling the combined IDyOT-NBA
architecture. Furthermore, the geometrical nature of this
conceptual space and the neural blackboard mechanisms of
the IDyOT-NBA architecture provide the possibilities of new
forms of hardware implementations that can circumvent the
limitations of the Von Neumann Architecture, on which
symbolic computation is standardly based.

8.2. Brain and Computation
As referred to in our introduction, the processing of conceptual
structures can be studied with the aim to understand human
cognition and its relation to the brain. Or they can be targets for
the development of artificial cognitive systems. We argue that a
combined IDyOT-NBA architecture can address both aims.

Because learning in IDyOT is based on information found
in real corpora, it derives structures and processes based on
human information processing and generation. In this way,
the NBA structures and processes derived from IDyOT will be
based on human information processing as well. The neural
implementation of the NBA then allows a comparison between
the structures and processes of the combined architecture with
those observed in brain research.

An example of how the combined architecture can be related
to neuro-cognitive processing is presented in Figure 8. The figure
illustrates a novel simulation of NBA activity, with the processing
of the sentence Bill-Gates has met two very tired dancers in Dallas,
with Bill-Gates as one noun (BG). Activation of “main assemblies”
(MA), “sub assemblies” (SA) and binding in working memory
(WM) are shown, because they determine the representation
structure of the sentence in the sentence neural blackboard of
the NBA (van der Velde and de Kamps, 2006). Also shown is the
overall activation of all assemblies and circuits, consisting ofmore
than 300 neural populations in all (marked “Total”; red line).
The neural populations are simulated with Wilson and Cowan
population dynamics (Wilson and Cowan, 1972).

Using intracranial measurements, Nelson et al. (2014)
observed that binding of words and phrases produces an
increase and then decrease of activity (e.g., because binding
related activation will reduce after binding). The NBA activation
simulates this effect, and also indicates why it occurs, i.e., which
structures and processes are related to this effect. In particular,
total neural activity first increases when a new word is presented
(as illustrated by the increase of total activity at the location of
the black vertical bars, that indicate the presentation times of the
words). But then, total activity drops, due to the binding of the
presented word to previously presented words and phrases in the
developing sentence structure in the sentence neural blackboard
of the NBA. Occasionally, activity does not decline, as with Bill
has or very tired, which results from the fact that Bill is the first
word, which cannot bind to other words yet, and very does not
bind to the previous word two.

Hence, the simulation illustrates the close relation between
neural dynamics and the representation structures underlying
processed sentences in the NBA. The aim of the integration of
NBA with IDyOT is to develop these representation structures
by learning from real corpora. In this way, machine learning
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FIGURE 8 | (A): NBA structure of Bill-Gates has met two very tired dancers in Dallas, with B(ill)-Gates as one noun. Aux, va, auxiliary verb; Adj, na, adjective; Adv, ad,

adverb; N, n, noun; Num, nm, numerator; PP, pv, pn, preposition; S, sentence; V, v, verb. (B): Neural activity in the NBA when Bill-Gates has met two very tired

dancers in Dallas is processed. BG, Bill Gates; d’ers, dancers; MA, main assemblies; SA, sub assemblies; WM, working memory. ‘Total’ (red activity ) is the sum of the

activation of all neural populations in the NBA structure of this sentence (over 300 populations), simulated with Wilson-Cowan population dynamics. The words of the

sentence are presented at the times indicated with the vertical bars. The last bar signals the end of input activation.

could be related to brain activity observed in human cognitive
processing.

Furthermore, the NBA predicts the existence of “connection”
fields (ormatrices) with special roles, such as “agent” and “theme”
(object) in which bindings between (e.g.,) arbitrary verbs and
nouns as (agent or theme) arguments can occur. Recent fMRI
observations indicated the existence of (agent and theme) areas
in the cortex that are selectively activated when nouns function,
respectively, as agents or themes of verbs (Frankland and Greene,
2015). The activation patterns in these areas also concur with
the activation patterns produced in the NBA. These areas could
form a neural substrate for (parts of) a Global Workspace, in
which competitions between neural structural representations
could occur.

The combined IDyOT-NBA architecture also targets
the development of artificial cognitive systems. Recently,
Lake et al. (2016) argued that, despite recent successes,
Deep Learning does not capture essential characteristics
of human learning and processing. One of the difficulties
for Deep Learning concerns compositional (combinatorial)
processing, in which structured information is processed
in terms of already familiar constituents and partial
structures.

A crucial feature of compositional processing is the interaction
between specialized processors and domains in which these
processors, and the information they process, can interact,
compete, and be combined. This is what the neural blackboards
and the workspace in NBA and IDyOT are about. Because the
combined architecture can develop and activate these structures
based on learning from real corpora, it can address key features
of human cognitive processing.

The combined architecture can also address new demands
on computing power because the NBA can be implemented

fully as a system operating in parallel, based on dynamic
interactions. Of course, processing will be sequential when
input is presented in a sequential manner. Also, the dynamic
interactions will proceed in time as well. But each of the
components (e.g., connection nodes in the connection matrices)
will operate in parallel with all other components, and their
interactions are based on direct dynamical activation and
competition. When implemented in hardware, this allows the
system to operate at minimal levels of power, with fast processing
speeds.

9. CONCLUSION

We have presented two knowledge representations, used in
two cognitive architectures, the NBA and IDyOT, that both
aim to account for conceptual representation and processing
in productive forms of cognition. Although the architectures
differ in that the NBA is neural and IDyOT is symbolic, they
are also similar in many ways. Both assume that conceptual
representations consist of structures in which all aspects
related to a concept are interconnected. Both assume that
processing with representations occur in blackboards or a
workspace, in which these representations can interact and can
be (re)combined. And both rely on the principles of chunking
to generate higher-level structural representations based on the
more elementary ones.

Finally, the relations between both architectures combined
with their different bases provide unique opportunities for a
complementary integration. The NBA could provide a neural
implementation of the processing and representation of higher
level conceptual representations and IDyOT could provide
the learning mechanisms by which the more elementary

Frontiers in Psychology | www.frontiersin.org August 2017 | Volume 8 | Article 1297135

http://www.frontiersin.org/Psychology
http://www.frontiersin.org
http://www.frontiersin.org/Psychology/archive


van der Velde et al. Representation and Processing of Conceptual Structures

representations needed for this implementation could be derived
from human cognitive (corpus) material.
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Learning in intelligent systems is a result of direct and indirect interaction with the
environment. While humans can learn by way of different states of (inter)action such
as the execution or the imagery of an action, their unique potential to induce brain- and
mind-related changes in the motor action system is still being debated. The systematic
repetition of different states of action (e.g., physical and/or mental practice) and their
contribution to the learning of complex motor actions has traditionally been approached
by way of performance improvements. More recently, approaches highlighting the role
of action representation in the learning of complex motor actions have evolved and
may provide additional insight into the learning process. In the present perspective
paper, we build on brain-related findings and sketch recent research on learning by
way of imagery and execution from a hierarchical, perceptual-cognitive approach to
motor control and learning. These findings provide insights into the learning of intelligent
systems from a perceptual-cognitive, representation-based perspective and as such
add to our current understanding of action representation in memory and its changes
with practice. Future research should build bridges between approaches in order to
more thoroughly understand functional changes throughout the learning process and
to facilitate motor learning, which may have particular importance for cognitive systems
research in robotics, rehabilitation, and sports.

Keywords: motor imagery, motor memory, simulation, s-states, intelligent systems, functional equivalence

INTRODUCTION

Learning in intelligent systems is a result of direct and indirect interaction with the environment.
To understand how intelligent systems learn to adequately act in a given environment with
respect to a particular task, thereby adapting, is of particular relevance to cognitive science
disciplines such as psychology, biology, and computer science (e.g., Pfeifer and Bongard, 2007;
Wolpert et al., 2011; Abrahamsen and Bechtel, 2012; Pacherie, 2012; Engel et al., 2013, 2015). This
capability of goal-directed motor (inter)action changes and develops with practice, transitioning
from unskilled into skilled motor (inter)action, and resulting in refined planning and execution
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of motor (inter)actions (e.g., Meinel and Schnabel, 2007; Schmidt
and Wrisberg, 2008; Magill, 2011; Schmidt and Lee, 2011).
Interestingly, advancing our understanding of intelligent systems’
actions and their acquisition remains a significant endeavor
to this day, especially in view of prospective applications
in various settings such as robotics, psychology, sports, and
rehabilitation. For instance, the development of intelligent
interactive technical platforms which are to assist humans
requires a thorough understanding of natural, intelligent
forms of (inter)action and their acquisition, respectively (e.g.,
Pfeifer and Bongard, 2007; Schack and Ritter, 2009, 2013; Di
Nuovo et al., 2013; De Kleijn et al., 2014). Understanding
learning by way of different states of action (e.g., imagery or
execution) and related functional changes within the motor
action system, particularly with regards to action representation
may help to advance in this direction. Here, we overview the
literature on learning by imagery and execution from three
perspectives, namely the performance, the brain, and the mind
perspective.

STATES OF (INTER)ACTION AND
LEARNING

An action reflects “a set of mechanisms that are aimed at
producing activation of the motor system for reaching a
goal” (Jeannerod, 2004, p. 376). Similarly, interaction may be
considered as sets of mechanisms of several individuals acting
together, which are aimed at producing activations of all motor
systems involved for reaching a shared goal. (Inter)actions can
overt as well as covert actions, that is executed, imagined or
observed actions (Jeannerod, 2001, 2004). Given the principle of
functional equivalence (Finke, 1979; Johnson, 1980; Jeannerod,
1994, 1995) and the simulation theory (Jeannerod, 2001, 2004,
2006), executed, imagined, and observed actions are all suggested
to be actions, as each draws on the same action representation.
While ‘actual’ actions involve both a covert (e.g., planning) and
an overt (e.g., execution) stage of action, ‘simulated’ actions
such as imagery imply a covert stage of action only (i.e.,
simulation state; s-state; Jeannerod, 2001). To this extent, each
of the different types of s-states to some degree involves the
activation of the motor action system. That is, any form of
executed or simulated state of action is considered an action,
regardless of whether it includes covert stages of action only
or both covert and overt stages of action. Given the principle
of functional equivalence, the repeated use of any of these
states as means of practice should lead to functional changes
within the motor action system and to learning. Accordingly,
mental types of practice have been suggested to be effective
means to induce learning (e.g., Jeannerod, 1994, 1995, 2001,
2004).

To date, it is widely accepted that humans can learn by
way of different states of (inter-)action, but their unique
potential to induce changes in the motor action system is
still being debated (e.g., Driskell et al., 1994; Allami et al.,
2014; Di Rienzo et al., 2016; Frank et al., 2016). Interestingly,
while evidence on the functional equivalence of executed and

imagined actions is vast (e.g., Finke, 1979; Johnson, 1980;
Jeannerod, 1994, 1995, 2001; Decety, 1996, 2002; Jeannerod
and Frak, 1999), only little is known about how learning by
execution or imagery works. Furthermore, it is unclear what
the similarities and differences of these ways of learning are,
particularly with regards to changes in action representation.
In other words, research has yet to systematically examine the
differential effects of learning by way of different states of
action.

In this perspective paper, we focus on learning by way
of imagery and execution, and discuss it from a perceptual-
cognitive point of view on action representation. For this
purpose, we review learning by way of imagery and execution
from three different levels of analyses. First, we examine
the literature from the performance perspective (here: in
terms of changes in motor behavior), followed by the brain
perspective (here: in terms of changes in neurophysiological
representations of motor action), and finally by the mind
perspective (here: in terms of changes in perceptual-cognitive
representations of motor action). In doing so, we highlight the
role of action representation within a motor hierarchy, and
exemplify how such models could advance our understanding of
learning, enabling links between neurophysiological approaches
and motor control and learning theories. Finally, we discuss
potential future directions to advance research comparing
learning by way of execution, imagery, and other states of
action.

THE PERFORMANCE PERSPECTIVE ON
IMAGERY AND EXECUTION: LEARNING
AS CHANGES IN MOTOR
PERFORMANCE

The systematic use of different states of action for practice
and their contribution to the learning of complex motor
actions has traditionally been approached by way of persisting
performance improvements (e.g., Schmidt and Lee, 2011).
Similarly, researchers investigating the influence of mental
practice traditionally have focused on motor performance (e.g.,
Corbin, 1967a,b; for reviews and meta-analyses, see Richardson,
1967a,b; Feltz and Landers, 1983; Feltz et al., 1988; Hinshaw,
1991; Grouios, 1992; Driskell et al., 1994). From this, mental
practice has shown to be more effective than no practice, but
less effective than physical practice (e.g., Feltz and Landers,
1983; Feltz et al., 1988; Driskell et al., 1994). Driskell et al.
(1994), for instance, conducted a meta-analysis on the effects of
mental practice in comparison to irrelevant practice and physical
practice, reporting an overall average effect size of d = 0.531

for mental practice, and an effect size of d = 0.78 for physical
practice. Moreover, combined mental and physical practice has
been suggested to be as effective as or superior to physical practice
(e.g., Corbin, 1967b; McBride and Rothstein, 1979; Hall et al.,
1992; Gomes et al., 2014). From this perspective, mental practice
is considered a potentially effective means to promote learning.

1Effect sizes reported throughout this chapter refer to Cohen’s d (Cohen, 1992).
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THE BRAIN PERSPECTIVE ON IMAGERY
AND EXECUTION: LEARNING AS
CHANGES IN NEUROPHYSIOLOGICAL
ACTION REPRESENTATION

In search of answers to the question why learning by way of
different states of action works (e.g., Heuer, 1985; Murphy,
1990; Murphy et al., 2008), neurocognitive approaches have
evolved, considering learning from within (e.g., Jeannerod, 2001,
2004). Neurocognitive approaches highlight the role of action
representation in the learning of complex motor actions from
a neurophysiological perspective. So far, the adaptation of the
brain (i.e., neurophysiological and -anatomical changes) as a
result of physical practice has received a great deal of attention
(e.g., Wadden et al., 2012). From this, multifaceted insights
into central changes within the motor action system have been
provided regarding the neural aspects of learning a motor action,
and the neural plasticity of the brain, respectively (for a recent
meta-analysis, see Hardwick et al., 2013; for reviews, see also
e.g., Doyon and Ungerleider, 2002; Ungerleider et al., 2002;
Doyon and Benali, 2005; Kelly and Garavan, 2005; Halsband
and Lange, 2006; Dayan and Cohen, 2011). In the context of
the principle of functional equivalence and the simulation theory
(Jeannerod, 2001, 2004, 2006), the study of action representation
from a neurophysiological point of view has received tremendous
research interest (for overviews, see e.g., Decety, 2002; Guillot
et al., 2014). While considerable research attention has been
directed to comparing the different states of action, such as the
imagery and the execution of an action (e.g., Decety, 1996, 2002;
Jeannerod and Frak, 1999), only few studies exist that compare
learning by way of imagery and execution and respective changes
in the brain (e.g., Pascual-Leone et al., 1995; Jackson et al., 2003;
Nyberg et al., 2006; Zhang et al., 2012, 2014; Allami et al.,
2014; Avanzino et al., 2015; for a review, see Di Rienzo et al.,
2016).

For instance, Pascual-Leone et al. (1995) investigated plastic
changes in the human motor action system resulting from
physical and mental practice, using transcranial magnetic
stimulation. Interestingly, while the authors found physical
practice to be superior to mental practice in terms of performance
improvement in a key pressing task, both physical and mental
practice led to the same plastic changes, namely an equally
increased size of the cortical representation for the finger
muscle groups involved. From this, the authors concluded
that mental practice modulates the neural circuits involved
in learning, potentially by forming a cognitive model of
the motor action. Jackson et al. (2003) investigated cerebral
functional changes in the brain as induced by mentally practicing
foot movements employing positron emission tomography and
compared these changes to those induced by physically practicing
foot movements (Lafleur et al., 2002). Similar to the findings
reported by Lafleur et al. (2002) on physical practice effects, the
authors found mental practice to be associated with functional
cerebral reorganization in the right medial orbitofrontal cortex.
From the lack of striatum activation after mental practice,
however, the authors suggest that the re-organization rather

relates to the planning and the anticipation of motor actions
than to its motor execution. More recently, Zhang et al. (2014)
examined changes in functional connectivity in resting state as
a result of mental practice, using functional magnetic resonance
imaging. The authors reported alterations in cognitive and
sensory resting state networks in various brain systems after
learning by way of motor imagery (i.e., mental practice), while no
alterations in connectivity were found in the control condition
(i.e., no practice). From this, the authors concluded that
modulation of resting-state functional connectivity as induced by
mental practice may be associated with attenuation in cognitive
processing related to the formation of motor schemas. These
neurophysiological studies on learning as induced by mental
practice and/or physical practice show that both mental and
physical practice lead to significant changes in action-related
brain activation during skill acquisition. At the same time,
however, they reveal distinct differences pointing to a hierarchy
in learning by way of different states of action (for more details,
see discussion section).

From a neurophysiological perspective, learning can be
considered as neurophysiological reorganization, with the
neurophysiological representation of motor action functionally
developing over the course of the learning process. This seems
to hold for both learning by execution and learning by imagery.
Neurophysiological studies as the ones exemplified above provide
valuable multifaceted insights into the functional changes in
brain activation as a result of physical and mental practice.
Findings elucidating neurophysiological changes associated with
motor learning as induced by mental and physical practice,
however, do not necessarily allow for specific conclusions
regarding action representation and its relation to motor control.
Therefore, it seems important to link these approaches to models
and theories of motor control and learning, particularly those
emphasizing the role of action representation, in order to be
able to draw specific conclusions about changes of the motor
action system during learning. To put it differently: Given the
functional reorganization of neurophysiological features in the
brain, is there a functional reorganization of perceptual-cognitive
representations of motor (inter)action in the mind as part of a
functional stratification on various levels within the motor action
system?

THE MIND PERSPECTIVE ON IMAGERY
AND EXECUTION: LEARNING AS
CHANGES IN PERCEPTUAL-COGNITIVE
ACTION REPRESENTATION

According to perceptual-cognitive approaches (e.g., theory of
anticipative behavioral control: Hoffmann, 1993; theory of event
coding: Hommel et al., 2001; simulation theory: Jeannerod, 2001)
and the original idea of a bidirectional link between an action
and its effects (i.e., ideomotor theory: James, 1890), actions are
primarily guided by cognitively represented perceptual effects.
Drawing on the seminal work of Bernstein (1967) and his idea of
a model of the desired future, motor actions can be considered
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as being stored in memory as well-integrated representational
networks or taxonomies comprised of perceptual-cognitive units
(i.e., basic action concepts; BACs) that guide action execution (cf.
cognitive action architecture approach/ CAA-A: for an overview,
see Schack, 2004; Schack and Ritter, 2009). Moreover, these
networks of BACs are suggested to change throughout the process
of motor learning by way of perceptual-cognitive scaffolding,
resulting in a more elaborate perceptual-cognitive representation.

Based on research relating to CAA-A (e.g., Schack and
Mechsner, 2006), experts, as compared to novices, have been
shown to hold structured representations. A functionally
structured representation is comprised of groupings of
perceptual-cognitive units (i.e., groupings of BACs) that
relate to the same (sub-)functions of the action, and thus reflect
the functional phases of the motor action (cf. Göhner, 1992, 1999;
Hossner et al., 2015). Schack and Mechsner (2006), for instance,
examined representational networks of the tennis serve in experts
and non-experts, using the structural dimensional analysis of
mental representations (SDA-M). Results elicited that skilled
individuals held functionally structured representations relating
well to the biomechanical demands of the task (i.e., reflecting
clearly the three movement phases pre-activation, strike, and
final swing), whereas unskilled individuals’ representations were
unstructured. This has been shown to generalize to motor skills
of different complexities (e.g., manual action: Braun et al., 2007;
gait: Schega et al., 2014; Stöckel et al., 2015; dance: Bläsing, 2010).

With regards to learning, action representations have been
shown to functionally adapt in the direction of an elaborate
representation during motor learning (Frank et al., 2013).
Findings revealed that, together with improvements in golf
putting performance, representations changed with practice,
developing toward more functional ones, with groupings of
perceptual-cognitive units (i.e., groupings of BACs) relating
more closely to the same (sub-)functions of the action itself
(i.e., preparation, forward swing, and impact). Drawing on
the finding that novices’ perceptual-cognitive representations
of complex action develop and adapt with practice, Frank
et al. (2014) addressed the development of one’s representation
according to type of practice, comparing physical practice (i.e.,
repeated motor execution), mental practice (i.e., repeated motor
imagery) and their combination. While motor performance
reflected the well-known pattern of magnitude of improvement
according to type of practice (i.e., combined practice > physical
practice > mental practice > no practice), mental practice, either
solely or in combination with physical practice, led to even
more elaborate representations compared to physical practice
only. Representation structures of the groups practicing mentally
became more similar to a functional expert structure, whereas
those of the physical practice group revealed less development.
Building on these findings, Frank et al. (2016) further examined
the perceptual-cognitive background of performance changes
that occur within the motor action system as a result of mental
and physical practice, employing a mobile eye-tracking system to
investigate gaze behavior (i.e., the quiet eye; e.g., Vickers, 1992,
1996, 2009). Combined practice led both to more developed
representation structures and to more elaborate gaze behavior
prior to the execution of the putt, with final fixations prior to the

onset of the putting movement (i.e., the quiet eye) being longest
for this group and better developed representation structures
relating to longer quiet eye durations after learning. Accordingly,
the quiet eye might reflect a predictive mode of control that
initiates a cognitively demanding process of motor planning
based on the representation available (for details on a perceptual-
cognitive perspective on the quiet eye, see Frank and Schack,
2016).

More recently, learning as it relates to interaction was
investigated by examining representational frameworks of
interaction and their development with mental practice (Frank
et al., under review). The impact of a team action imagery
intervention on futsal player’s shared representations of team-
specific tactics was investigated. Mental practice consisted of
practicing four team-specific tactics (i.e., counter-attack, play
making, pressing, transitioning) by imagining team actions in
specific game situations for three times a week over the course
of 4 weeks. Results revealed representational networks of team
action becoming more similar to those of experts after mental
practice. This study indicates that the imagery of team actions can
have a significant impact on players’ representational networks of
interaction in long-term memory.

From this line of studies, the learning of a motor action
can be considered as perceptual-cognitive reorganization,
with the perceptual-cognitive representation of action
functionally developing throughout the learning process.
This research furthermore indicates that the perceptual-cognitive
reorganization taking place during learning depends on the state
of action used for practice. Learning by way of imagery differs
from learning by way of execution, with practice through imagery
promoting the functional development of a perceptual-cognitive
action representation (perceptual-cognitive explanation of
mental practice), while not necessarily transferring one-to-one
to motor performance. This points to a differential influence of
mental and physical practice with regards to different levels of
action organization, with mental practice operating primarily
on higher levels within the motor action system, particularly
during early skill acquisition (for a more detailed discussion,
see Frank, 2014). This approach, particularly together with
neurophysiological approaches, may add to the picture of
potential basic mechanisms that underlie each type of practice,
an issue still being highly debated (e.g., Annett, 1995; Jackson
et al., 2001; Munzert et al., 2008; Murphy et al., 2008; Cumming
and Williams, 2012; Glover and Dixon, 2013). By complementing
existing evidence from a performance and a brain perspective
on learning by mental and physical practice (e.g., Driskell
et al., 1994; Allami et al., 2014), these findings contribute to a
better understanding of the adapting motor action system, by
disentangling changes on various levels within the motor action
system during learning.

DISCUSSION AND CONCLUSION

While there is ample evidence on the functional equivalence
between different states of action (such as the imagery and the
execution of an action; e.g., Decety, 1996, 2002; Jeannerod and
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Frak, 1999), research addressing the similarity or difference with
respect to the influence that each of the states of action has on
the motor action system during learning has remained scarce to
date. Meanwhile, more and more researchers have claimed to take
into account potential differences between the states of action
and their contribution to motor control and learning, as these
might be as well (or in particular) meaningful to fully understand
the motor action system (e.g., Munzert et al., 2009; Wakefield
et al., 2013; O’Shea and Moran, 2017). Given that each state of
action differs to some degree, the repeated use of imagery or
execution is likely to differ in their influence on the motor action
system. In other words, while the repeated use of imagery and
execution of an action is suggested to result in learning, learning
is likely to differ as a function of the state of action used for
practice.

Here, we outlined learning by way of imagery and execution
from three perspectives. While there is ample evidence from
the performance perspective (for a review, see e.g., Driskell
et al., 1994), the research from a brain perspective (for a
review, see e.g., Di Rienzo et al., 2016), and from a mind
perspective (e.g., Frank et al., 2016) on action representation
as it relates to learning by imagery and execution has just
started to gain momentum. Despite these initial steps, the
potential of imagery and execution to induce changes within
the motor action hierarchy during learning, however, remains to
be explored more thoroughly. Interestingly, although sometimes
not explicitly introduced as the theoretical background of their
studies, (indirect or direct) conclusions about the formation
of action representations are drawn from the brain changes
observed, linking neurophysiological findings to hierarchical
motor control and learning theories: for instance, Pascual-Leone
et al. (1995, p. 1043) discussed that repeated imagery may
help establish a cognitive model of the motor action; Zhang
et al. (2014, p. 4) state that motor schemas have developed;
Jackson et al. (2003, p. 1178) discuss from the lack of striatum
activation after mental practice, that the re-organization relates
to the planning and the anticipation of motor actions rather
than to its motor execution. By doing so, each of the studies
implicitly refers to a theoretical background of motor control
and learning, and alludes to some form of representational
format in memory. However, the results of these studies have
not yet been discussed in the light of hierarchical models of
action organization, focusing on higher and lower levels of
action representation, as the one delineated in the present
perspective paper. By suggesting that mental practice helps
promote a ‘cognitive model,’ ‘attenuated cognitive processing,’ and
the ‘planning and the anticipation of actions,’ these findings are in
line with the perceptual-cognitive explanation of mental practice
and the idea that the repeated use of imagery particularly helps
establish perceptual-cognitive representations of action (Frank
et al., 2014, 2016).

Future studies may place more emphasis on the role
of action representation and compare learning by way of
imagery and learning by execution with regards to brain-
and mind-related changes on different levels within motor
action system. For instance, related research disentangling
neurophysiological representations of actions within a motor

hierarchy (e.g., Grafton and Hamilton, 2007), research on the
degree of abstractness of neurophysiological representation of
actions (e.g., Tucciarelli et al., 2015; Wurm and Lingnau,
2015; Turella et al., 2016), or research on neurophysiological
representations’ structural geometry across states of action
(Zabicki et al., 2016) in conjunction with perceptual-cognitive
approaches to motor learning might be promising avenues
to better understand learning across states of action. In a
recent study, for instance, Zabicki et al. (2016) investigated
imagined and executed actions using a multivariate approach
and a representational similarity analysis to neurophysiological
representations of action, highlighting a similar structural
geometry as well as distinct differences in action representation
between the two states of action. Using such approaches together
with hierarchical, perceptual-cognitive ones in the realm of motor
cognition might help to further approach the phenomenon of
action representation in motor control and learning and the
unique potential of imagery and execution to induce changes
on different levels within the motor action system during
learning.

In sum, research directly comparing the two modes of
learning has remained scarce to date, with many studies
focusing on one mode only (e.g., imagery: Zhang et al., 2014;
execution: Lafleur et al., 2002). Furthermore, most of the
studies conducted so far focus on the potential similarities that
learning by way of motor imagery may share with learning
by way of motor execution, thereby disregarding potential
differences across learning types, such as a differential influence
on various levels within the motor action system. And finally,
the brain and the mind perspective have been considered
merely isolated, investigating neurophysiological representations
or perceptual-cognitive representations. Accordingly, three main
challenges may have to be addressed by future studies
in order to advance research comparing learning by way
of execution, imagery, and observation, and thus to more
thoroughly understanding intelligent systems and learning by
different states of action. First, research comparing learning by
different states of action should be conducted in a systematic
manner, employing research designs that allow for examining
states of action both in isolation as well as in combination
(cf. four group design in mental practice research, e.g.,
Corbin, 1967b; Hall et al., 1992). Second, research questions
and hypotheses should be directed toward the differences
between learning by different states of action, and thus going
beyond the traditional focus on the functional equivalence
between the states of action, and the potential similarities
across learning types, toward a hierarchical view of the
motor action system. Third, learning by different states of
action should be approached in future research by integrating
findings and methods from different disciplines (e.g., Moran
et al., 2012) such as the ones exemplified above in order
to approach the problem from distinct, but complementary
perspectives.

To systematically examine learning by different states of
action from various perspectives focusing on both the similarities
and the differences across higher and lower levels of action
organization may contribute to a better understanding of the
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motor action system. Complementing both the performance
and the brain perspective by a mind perspective may
lead to advancing our understanding of intelligent systems
in general, and the learning of (inter)action across states
of action in particular, in order to better be able to
design training tools that facilitate motor (re)learning.
Future research should therefore build bridges between the
perspectives in order to more thoroughly understand functional
changes throughout learning across states of action, and to
subsequently address specific levels within the motor action
hierarchy as part of individualized coaching in robotics,
rehabilitation, or sports settings (e.g., Hülsmann et al.,
2016).
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