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Editorial on the Research Topic

Computational analysis of promoters in prokaryotic genomes

Promoters are DNA sequence fragments located upstream of structural gene, which

start gene transcription by combining with RNA polymerase. It has been found that in

Prokaryote, promoters are considered to be key elements for Sigma factor recognition in

the transcription process. By changing the promoter sequence, gene expression can be

regulated. At present, enough prokaryotic promoter sequences have been accumulated,

and multiple prokaryotic promoter databases have been constructed, such as PPD (Su

et al., 2021), RegulonDB (Tierrafria et al., 2022), Pro54DB (Liang et al., 2017) and

DBTBS (Sierro et al., 2008). The study of prokaryotic promoters will provide more useful

information for understanding microbial gene transcription. This Research Topic aims to

provide an important scientific communication platform for the analysis of prokaryotic

promoters using artificial intelligence and big data techniques, including the development

and application of computing methods and technologies for the analysis and research of

prokaryotic genome promoters.

In this Research Topic, nine papers were published, five of which are about the use of

artificial intelligent techniques to identify the prokaryotic promoter sequence.

Zulfiqar et al. developed a random forest (RF)-based model to predict promotors in

Agrobacterium Tumefaciens strain C58. In the model, promotor sequences were encoded

by accumulated nucleotide frequency, k-mer nucleotide composition, and binary encodings,

and then optimized by using correlation and the mRMR-based algorithm. They inputted

these optimized features into RF classifier to classify promotor sequences. The examination

of 10-fold cross-validation (CV) showed that the proposed model could yield an overall

accuracy of 0.837. They have also discussed the limitations and the future perspective of

this study. Lin Y. et al. also developed a model to predict promotors in Klebsiella Aerogenes.

In their model, they have utilized pseudo k-tuple nucleotide composition and position-

correlation scoring function to encode the promotor sequences. They have also utilized

mRMR to optimize the encoded features. Afterwards, they inputted the optimized features

into support vector machine (SVM)-based classifier to recognize promotor sequences.

Results on 10-fold CV showed the overall accuracy of 96.0%. They have also discussed about

the future perspectives of this study. Li R. et al. developed a promoter prediction model

for Corynebacterium glutamicum based on novel feature by calculating statistical parameters
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of multiple physicochemical properties (Li H. et al.). Feature

dimensionality is effectively reduced by using variance analysis

and hierarchical clustering. Finally, they achieved an accuracy of

91.6%. They briefly analyzed the importance of feature selection

and validated the robustness of the model. Sumeet et al. focused on

sigma70 promoter in Escherichia coli K-12 strains. They used over

8000-dimension features to formulate samples (Patiyal et al.). By

utilizing SVM as classifier, they achieved the maximum accuracy

97.38% with AUROC 0.99 on training dataset by using 200

most relevant features. They established a webserver for using

by wet-experimental scholars. Shujaat et al. designed a powerful

computational model to identify phage promoters and their types

(Shujaat et al.). Ten distinct feature encoding approaches were

investigated in this work. Finally, a 1-D convolutional neural

network model combined with one-hot encoding approach was

proposed to construct model. They also built a freely web server.

Transcription factors (TFs) are important regulators for gene

expression. Zheng et al. presented a capsule network-based

method to identify TFs. Their model obtained an accuracy of

0.8820. They also constructed a user-friendly web server for all

scientific researchers.

Bo, Sun, Ning et al.; Bo, Sun, Li et al. submitted two works

for mRNA splice regulation. They first presented a novel approach

to analyze the association characteristics between post-spliced

introns and their corresponding mRNA based on binding free

energy weighted local alignment algorithm method. They briefly

introduce the advantages of binding free energy weighted local

alignment algorithm method to analyze the interaction of RNA-

RNA, compared with Smith-Waterman local alignment-based

algorithm method. They also discussed biological significance and

evolutionary mechanism of the interaction between introns and

mRNAs. Subsequently, they studied the ubiquitous conservative

interaction patterns between post-spliced introns and their mRNAs

revealed by genome-wide interspecies comparison. They also

discussed show that there are abundant functional units in the

introns, and these functional units are correlated structurally with

all kinds of sequences of mRNA.

Although previous studies have revealed that introns play an

important role in regulating gene expression and participate in gene

evolution, but the function of introns is far from clear, and are being

studied from different perspectives. In the work of Li R. et al., the

characteristics of the optimal matched segments between the first

intron and the reverse complementary sequences of other introns

of each gene were analyzed, some interesting results had been

gotten. The results in this paper showed that the characteristics of

the optimal matched segments presented varied regular variation

along with the evolution of eukaryotes. It is found that some

optimal matched segments may be related to non-coding RNA

with special biological functions, just like siRNA and miRNA, they

may play an important role in the process of gene expression

and regulation. And perhaps the optimal matched segments with

special characteristics in the first intronsmay take part in regulating

gene expression by RNA matching competition with other introns

or exon.
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The increased interest in phages as antibacterial agents has resulted in a rise 

in the number of sequenced phage genomes, necessitating the development 

of user-friendly bioinformatics tools for genome annotation. A promoter 

is a DNA sequence that is used in the annotation of phage genomes. In 

this study we  proposed a two layer model called “iProm-phage” for the 

prediction and classification of phage promoters. Model first layer identify 

query sequence as promoter or non-promoter and if the query sequence 

is predicted as promoter then model second layer classify it as phage or 

host promoter. Furthermore, rather than using non-coding regions of the 

genome as a negative set, we created a more challenging negative dataset 

using promoter sequences. The presented approach improves discrimination 

while decreasing the frequency of erroneous positive predictions. For feature 

selection, we investigated 10 distinct feature encoding approaches and utilized 

them with several machine-learning algorithms and a 1-D convolutional 

neural network model. We discovered that the one-hot encoding approach 

and the CNN model outperformed based on performance metrics. Based on 

the results of the 5-fold cross validation, the proposed predictor has a high 

potential. Furthermore, to make it easier for other experimental scientists to 

obtain the results they require, we set up a freely accessible and user-friendly 

web server at http://nsclbio.jbnu.ac.kr/tools/iProm-phage/.

KEYWORDS

DNA promoters, convolutional neural networks, bioinformatics, computational 
biology, phages
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Introduction

Bacteriophages, commonly referred to as phages, are viruses 
that infect and destroy bacteria (Salmond and Fineran, 2015). The 
number of sequenced phage genomes has increased exponentially 
in recent decades, primarily owing to their small size and ability 
to bacterial infections (Silva and Echeverrigaray, 2012). This 
richness of genomic data necessitates the development of user-
friendly bioinformatics tools to aid biologists in genome analyses. 
Recognition of regulatory elements is the most difficult phase in 
phage genome analysis. Promoters are DNA sequences responsible 
for transcription initiation. These sequences are difficult to 
identify because they are composed of short, nonconserved 
components. However, it is essential to comprehend and describe 
the genetic regulatory networks of phages, which may permit the 
engineering of improved phages for medicinal or biotechnological 
applications (Guzina and Djordjevic, 2015).

Several attempts have been made to develop promoter 
prediction tools for bacterial genomes. The majority of these tools 
use computational techniques based on-10 and-35 motifs (Sierro 
et al., 2008; Mishra et al., 2020; Wang et al., 2020). In contrast to 
these promoters with typical motifs, phage genome promoters are 
composed of host and phage promoters with varying motifs 
(Sampaio et al., 2019).

Therefore, existing tools are not suitable for identifying 
promoters in phages. Computational tools are required to predict 
promoters in phages. Prediction of phage promoters has seldom 
been studied. The PHIRE method (Lavigne et  al., 2004) 
systematically scans a bacteriophage genome to determine the 
frequency of subsequences in a sequence. All sequences are 
compared, which significantly increases the running time. 
PromoterHunter (Klucar et al., 2010) is an online tool to identify 
phage promoters; however, it requires additional information as 
input, such as weight matrices of the two promoter elements and 
is limited concerning the size of the input genome sequences. The 
PhagePromoter tool (Sampaio et al., 2019) can be used to identify 
promoters across the entire phage genome. It was created using 
machine learning (ML) methods, such as artificial neural networks 
or support vector machines, in conjunction with sequence 
characteristics (size and score of motifs, frequency of adenine and 
thymine, and free energy value). Additionally, PhagePromoter can 
distinguish host promoters from phage promoters. However, 
PhagePromoter has to be used in a deterministic manner with 
some previous experimental or predictive knowledge, such as 
phage family, host bacterium species, and phage type (temperature 
or virulence), which limits the effectiveness of PhagePromoter. 
DPProm (Wang et al., 2022) is a proposed convolutional neural 
network (CNN)-based method for predicting phage promoters and 
their types as phages or hosts. However, the proposed sequence-
processing workflow requires a long time for a query sequence.

Significant progress has been achieved in the essential aspects 
of phage promoter identification, although improvements are 
required in different aspects. We  identified the following 
shortcomings of prior research:

 1. Most of the aforementioned studies only predicted the 
promoter sequence as phage or non-promoter. 
Classification of predicted promoter sequences as phages 
or hosts was rare.

 2. Most studies utilized ML models to classify 
predicted sequences.

 3. Not all studies created a user-friendly and publicly available 
web server, which has proven inconvenient for practical use 
by experimental scientists.

 4. Performance analysis of different feature encoding 
schemes on different ML and CNN models was 
not performed.

 5. In the previously proposed tools, the number of false 
positive values for promoter prediction requires 
further improvement.

 6. Previous studies selected non-coding regions as negative 
dataset, that’s makes a very easy task for the classifier on 
other hand trained model cannot perform well on difficult 
test datasets.

In this study, we focused on overcoming these drawbacks to 
improve the prediction capabilities in identifying phage 
promoters. First, high-quality benchmark datasets were 
constructed. Subsequently, we  extracted the best feature 
representation vector and model from a variety of encoding 
techniques, ML, and CNN models. To achieve this, we sequentially 
fed encoded vector sequences from all encoding methods into 
various ML and CNN algorithms. Based on performance 
evaluation, we chose the one-hot encoding technique and CNN 
algorithm. We investigated the sequence and properties of phage 
promoters and presented a two-layer model designated “iProm-
phage.” In the first layer model, the query sequence is identified 
as a promoter or non-promoter. If it is a promoter sequence, then 
the second layer classifies the identified sequence as a phage 
promoter or host promoter. To assess model performance, 
we measured the accuracy (Acc), sensitivity (Sn), specificity (Sp), 
and Matthew’s correlation coefficient (MCC). All these 
parameters are frequently used in state-of-the-art methods in 
computational biology and bioinformatics (Rahman et al., 2019; 
Ali et  al., 2020; Shujaat et  al., 2020; Rehman et  al., 2021). In 
addition, we evaluated the model using five-fold cross validation 
and receiver operating characteristic (ROC) curves. Finally, the 
iProm-phage web server was built in compliance with the 
suggested paradigm. The proposed flow diagram of the study is 
shown in Figure 1.

Materials and methods

Benchmark dataset

While developing an effective biological predictor, it is critical 
to select an appropriate benchmark dataset to evaluate the 
proposed predictive model. We prepared separate datasets for 
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each layer of the model, as described in Sections “Dataset for the 
first layer” and “Dataset for the second layer.”

Dataset for the first layer
The promoters of phage genomes have been poorly 

characterized. Only the phiSITE database has identified the 
promoters of phage genomes (Klucar et  al., 2010). The phage 
promoter sequence utilized in this study is the same as that used 
in previous studies (Sampaio et al., 2019; Wang et al., 2022). For 
the model’s first layer, 1,140 promoter sequences from 69 phages 
were collected and divided into training and test datasets; 901 
promoter sequences were utilized as the training dataset and 198 
promoter sequences were utilized as the test dataset. 
Supplementary Table S1 in Supplementary file summarize the 
promoter sequences from each phage genome.

The selection of a negative dataset is an important step in 
ensuring model performance. In previous studies, non-promoter 
regions were randomly selected to build a negative dataset. 
However, this method tends to be illogical because there is no 
intersection between positive and negative sets. Consequently, 

the model immediately detected the key differences between the 
two groups. Therefore, precision could not be maintained when 
tested on more difficult datasets. To overcome this problem, 
we propose a negative dataset generation technique. We created 
a negative dataset from positive promoter sequences by the 
following three steps. First, each positive sequence is divided 
into eight subsequences. Second, five subsequences are randomly 
selected and placed. Thirdly, the remaining three subsequences 
are placed at the same position. Using this method, each positive 
promoter sequence creates one negative sequence with 35–40% 
conserved portions from the promoter sequence. This 
proportion is ideal as a reliable predictor of promoter activity.

Dataset for the second layer
To create the positive and negative sets for the second layer of 

the model, promoter sequence type information as a host or phage 
was retrieved. The collection contains several promoters of unknown 
types. Finally, we collected 139 phage promoter-negative and 478 
host promoter-positive samples. We randomly chose 80% of these 
positive and negative samples as the training dataset and 20% as the 
test dataset. Table 1 lists the dataset parameters for both layers.

Methods

In this section, we briefly explain the proposed model, feature 
encoding techniques, and baseline models.

Proposed model
The proposed two-layer model is designated “iProm-phage.” 

The model’s first layer predicts the query sequence as a phage 

FIGURE 1

Flow diagram of iProm-phage.

TABLE 1 Summary of the Benchmark dataset.

Model Layer Dataset Promoter Non-promoter

First layer Training 901 901

Test 198 198

Second layer Phage Host

Training 111 382

Test 28 96
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promoter or non-promoter. If the predicted sequence is a phage 
promoter then the model’s second layer classifies it as a phage or 
host. Figure 2 illustrates the proposed model.

Based on performance measures, we  opted for the CNN 
model and one-hot encoding technique for this two-layer 
predictor. The selection of the model and encoding technique are 
briefly explained in the performance measure section.

Convolutional neural network model 
architecture

The CNN is composed of 2 one-dimensional convolutional 
layers (Conv1D), which are followed by maximum (max) pooling 
and dropout layers. The filter and kernel sizes of both Conv1D is 16 
and 5, respectively. The max pooling size is four with strides of two 
in both the max pooling layers. A dropout layer is utilized after each 
max pooling layer, with a value of 0.5. A flattened layer was utilized, 
followed by a dense layer with 64 nodes. Subsequently, we used a 
dropout layer with a value of 0.5. The ReLU activation function was 
utilized in all the Conv1D and dense layers. Finally, the dense layer 
is employed as an output layer with a single node and sigmoid 
activation function that classifies the input sequence as positive or 
negative based on the probability scores. The mathematical 
expression for the sigmoid activation function is as follows:

 
S p

p
( ) =

+ -( )
1

1 exp

We used L2 regularization and bias regularization in the 
convolution and dense layers to ensure that the model did not 
overfit. The values for both regularizations were set to 0.0001. The 
loss function of the model is binary cross-entropy. Adam was used 
as the optimizer. The batch size was set to 20 with a total of 85 
epochs. iProm-phage was created and trained using the Keras 
framework. The CNN architecture is illustrated in Figure 3.

Feature encoding techniques
A DNA sequence is comprised of the A, C, G, and T 

nucleotides. To perform computational operations, the sequence 
must be  translated into a numerical representation. Feature 
encoding schemes play a vital role in creating optimal predictors. 
The input size should be the same for all sequences. We apply the 
zero-filled method to make every DNA sequence with an equal 
length of 99 bp. This technique was previously applied by DPProm 
(Wang et al., 2022). In this study, we find the best feature encoding 
technique among the 10 different techniques. The details of each 
encoding scheme are presented below.

One-hot feature encoding

One-hot encoding techniques are used by many state-of-
the-art bioinformatics tools (Umarov and Solovyev, 2017; Liu and 
Li, 2019; Shujaat et al., 2021; Kim et al., 2022). Each nucleotide in 
a DNA sequence is represented by a four-dimensional vector, 
which is a vector of zeros with a single one. Nucleotide A is encoded 
as (1,0,0,0), C (0,1,0,0), G (0,0,1,0), and T (0, 0,0,1). Each DNA 
sequence can be represented by a (99,4) two-dimensional vector.

Nucleotide chemical property feature encoding

The chemical characteristics of the four DNA nucleic acids 
differ (Jeong et al., 2014). Nucleotides are classified into three 
types based on their chemical characteristics: hydrogen-bond 
strength, base type, and functional groups. Purines with two 
rings are represented by the letters A and G, whereas pyrimidines 
with one ring are represented by the letters C and T. The hydrogen 
bonds between A and T are weak, whereas the hydrogen bonds 
between C and G are strong. In terms of functional groups, the 
amino group includes A and C, whereas the keto group includes 
G and T. Each DNA sequence is represented by a three-
dimensional vector (b, c, p) based on chemical properties, where 
ni  denotes the nucleotide n at position i; hence, b, c, and, p were 
computed as follows:

FIGURE 2

Flow diagram of the two-layer model.
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Dinucleotide-based auto-cross covariance feature 

encoding

DACC is a combination of dinucleotide-based auto-
covariance (DAC) and dinucleotide-based cross covariance 
(DCC) encoding. DAC computes the correlation of the same 
physicochemical index between two dinucleotides separated by a 
lag distance along the sequence. DAC is calculated as:
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where u , L  represent the physicochemical index and length 
of the sequence, respectively, and the physicochemical index u  
for the dinucleotide R Ri i+( )1  at position i  is expressed 
numerically as P R Ru i i+( )1 . 



Pu  represents the average value of 
the physicochemical index u  along the whole sequence, and is 
calculated as:

 



P P R R Lu
j

L
u j j= ( ) -( )

=

-

+å
1

1
1 1/

The DAC feature vector has a dimension of N ´LAG , where 
LAG is the maximum lag (lag = 1, 2,…, LAG) and N is the total 
number of physicochemical indices. DCC computes the 
correlation of two different physicochemical indices between two 
dinucleotides along the sequence separated by lag nucleic acids. 
Mathematically, DCC can be represented as
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where u u L1 2, and  represent the physicochemical indices and 
length of the nucleotide sequence, respectively, P R Ru i i1 1+( )  is the 
numerical value of the physicochemical index u1  for the 
dinucleotide R Ri i+( )1  at position i , and 



Pua  is the average value 
for the physicochemical index ua  along the whole sequence, 
calculated as:

 



P P R R Lua
j

L
ua j j= ( ) -( )

=

-

+å
1

1
1 1/

The DCC feature vector has dimensions of N N´ -( )´1 LAG
, where LAG is the maximum lag (lag = 1, 2,.., LAG) and N is the 
total number of physicochemical indices. Thus, the dimension of 
the DACC encoding is N × N × LAG, where N is the number of 
physicochemical indices and LAG is the maximum lag (lag = 1, 2, 
…, LAG).

Pseudo dinucleotide composition

PseDNC encoding incorporates both contiguous local and 
global sequence order information into a feature vector of the 
nucleotide sequence. PseDNC is mathematically defined as follows:
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where fk  (k = 1, 2,…, 16) is the normalized frequency of 
dinucleotide occurrence in the nucleotide sequence, l  

FIGURE 3

iProm-phage CNN architecture.
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represents the highest counted rank (or tie) of the correlation 
along the nucleotide sequence, w is the weight factor ranging 
from 0 to 1, and q j  (j = 1,2,…, l ) is the jth correlation factor 
and is defined as
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The correlation function is given as follows:
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where physicochemical indices are represented by μ, 
P R Ri im +( )1  measures are the numerical values of the u-th (u = 1, 

2, …, μ) physicochemical index of the dinucleotide R Ri i+1 at 
position i  and P R Rj jm +( )1  represents the corresponding value 
of the dinucleotide R Rj j+1  at position j .Pseudo k-tupler 
composition (PseKNC).

PseKNC encoding uses a k-tuple nucleotide composition 
defined as
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where l  is the total number of ranks of correlations along a 
nucleotide sequence, f uu

k= ¼( )1 2 4, , ,  is the frequency of

oligonucleotides normalized to 
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The correlation function is defined as:
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where m  represents the physicochemical index. P R Rv i i+( )1  
is a numerical value v-th (v = 1, 2, …, μ). The physicochemical 
index of dinucleotide R Ri i+( )1  at position i and P R Rv i j i j+ + +( )1  
represents the corresponding value of dinucleotide R Ri j i j+ + +( )1  
at position i + j.

Electron-ion interaction pseudopotentials of 

trinucleotide

The values of nucleotides A, G, C, and T electron-ion 
interaction pseudopotentials (EIIP) were determined as previously 
described using Nair (Lavigne et al., 2004; A: 0.1260, C: 0.1340, G: 
0.0806, T: 0.1335). Nucleotides in the DNA sequence are directly 
represented by EIIP using the EIIP value. EIIPA, EIIPT, EIIPG, and 
EIIPC represent the EIIP values of nucleotides A, T, G, and C, 
respectively, in PseEIIP encoding. A feature vector is created using 
the mean EIIP value of the trinucleotides in each sample, as follows:

 
V EIIP f EIIP f EIIP fAAA AAA AAC AAC TTT TTT= ¼[ ]· · ·, , ,

Parallel correlation pseudo dinucleotide composition

Similar to PseDNC, PCPseDNC encoding differs in that it 
uses 38 default physiochemical indices for DNA instead of the six 
indices used in PseDNC encoding. Supplementary Table S2 in 
Supplementary file presents a list of 38 physicochemical indices.

Parallel correlation pseudo trinucleotide composition

PCPseTNC encoding is described as:
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where fk  (k = 1, 2,…, 64) is the normalized frequency of 
dinucleotide occurrence in the nucleotide sequence, l  represents 
the highest counted rank (or tie) of the correlation along the 
nucleotide sequence, w is the weight factor ranging from 0 to 1, 
and q j  (j = 1,2,…, l ) is the jth correlation factor and is 
defined as:
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where physicochemical indices are represented by μ, 
P R R Ri i im + +( )1 2  measures are the numerical values of the u-th 

(u = 1, 2, …, μ) physicochemical index of the dinucleotide 
R R Ri i i+ +1 2 at position i  and P R R Rj j jm + +( )1 2  represents the 

corresponding value of the dinucleotide R R Rj j j+ +1 2  at position j .

Moran correlation

The distribution of amino acid characteristics along the 
sequence is used to create autocorrelation descriptors (Horne, 
1988; Feng and Zhang, 2000; Sokal and Thomson, 2006). The 
amino acid properties used here are different types of amino acid 
indices retrieved from the AAindex Database (Kawashima et al., 
2008) available at http://www.genome.jp/dbget/aaindex.html.

kmer

DNA sequences are represented as the occurrence frequencies 
of k adjacent nucleic acids in the kmer descriptor, which has been 
effectively used for human gene regulatory sequence prediction. 
The kmer descriptor (k = 3) is calculated as follows:

 
f t

N t
N

t AAA AAC AAG TTT( ) = ( )
¼{ }, e , , , ,

where N t( )  represents the number of kmer types (t) and N 
is the length of the sequence.

Baseline models
Selection of the optimal model is a vital step in developing 

a novel predictor. We have utilized different ML and CNN 

models and, based on performance measures, selected the 
best model. ML models include the Adaboost (AdB) classifier, 
multinomial naive Bayes, extreme gradient boosting 
(XGboost), gradient boosting (Gboost), logistic regression 
(LR), K-nearest neighbor, decision tree classifier, support 
vector machine (SVM), multilayer perceptron classifier, and 
SVM bagging. A CNN is composed of two convolution layers. 
We  used hyperparameter tuning to determine the  
best convolution, pooling, dropout, and dense layer  
parameters.

Performance measures

In this section, we explain the evolution metrics, selection of 
the best model and feature encoding scheme, model performance, 
and model comparison.

Evaluation metrics

In the performance assessment matrix, we used the accuracy 
(Acc), sensitivity (Sn), specificity (Sp), and MCC. These 
parameters have been used in several cutting-edge studies. The 
numerical representation of an evaluation matrix is expressed 
using the following equations:

 
Acc TP TN

TP TN FP FN
=

+
+ + +

 
Sn TP

TP FN
=

+

 
Sp TN

TN FP
=

+

 
MCC TP TN FP FN

TP FP TP FN TN FP TN FN
=

* - *
+( ) +( ) +( ) +( )

The terms TP, TN, FP, and FN in the aforementioned 
equations represent the appropriate numbers of true positives, 
true negatives, false positives, and false negatives, respectively.

Selection of best model and feature 
encoding

To generate an optimum model, we  compared all the 
encoding strategies stated above to the baseline approaches. 
Supplementary Tables S3, S4 in Supplementary file, and 
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FIGURE 4

Accuracy of First layer baseline models.

Figures  4, 5 illustrate the performance of each method on 
various encoding schemes for the first and second layers. For 
the first layer of the model CNN and one-hot encoding 
outperformed after that AdB performed better on PseKNC 
feature encoding and for the second layer almost every feature 
encoding scheme performed good on ML and CNN algorithms, 
but one-hot and CNN outperformed in the second layer as well. 
Therefore, based on performance evaluation, we chose the CNN 

and one-hot encoding technique for both layers and the 
proposed tool “iProm-phage.”

Model performance

The prediction performance of iProm-phage was evaluated 
using 5-fold cross validation. We employed the same parameters 
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used in choosing the best model and also considered ROC curve 
data. The first layer of iProm-phage achieved an Acc of 95.68 
93.47%, Sn of 96.12%, Sp of 92.63%, MCC of 0.872, and AUROC 
of 0.99 during cross validation. These findings suggest that our 
predictor is capable of properly recognizing whether a query 
sequence is a promoter. The second layer of iProm-Zea achieved 
values of 97.25, 94.32, 98.5%, 0.8619, and 0.97, respectively. In the 
test dataset model, the first layer achieved an accuracy of 94.2%, Sn 
90%, Sp 90%, and MCC 0.88. The second layer obtained accuracies 

of 95.2%, 94.37%, 97.14%, and 0.88% for the test dataset. Figures 6, 
7 depict the ROC curves for both layers of the iProm-phage model.

Comparison with existing models

We compared iProm-phage with state-of-the-art promoter 
identification tools PhagePromoter and DPProm for the 
identification of query sequences as promoters or promoters. 

FIGURE 5

Accuracy of Second layer baseline models.
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We measured the precision and recall for both layers to compare 
them with state-of-the-art methods. The following equations 
express precision and recall:

 
Recall TP

TP FN
=

+

 
Precison TP

TP FP
=

+

A performance comparison of the methods used for 
promoter identification is presented in Table 2. The superior 
performance of the proposed iProm-phage tool can 
be  observed in all four performance metrics for this 
particular task.

We demonstrate the performance comparison between 
DPProm in Table 3 for promoter classification as a phage or 
host. The iProm-phage tool was superior to DPProm in 
performance for all classification tasks. The precision and 
recall of iProm-phage for promoter identification and 
classification were higher than those of DPProm, and the 

values were more consistent. As a result, iProm-phage showed 
a considerably higher score than the state-of-the-art methods 
in all cases.

Webserver

A web server hosting the high performance iProm-phage tool 
is freely available at the following link1 to enable easy access to the 
proposed tool for the scientific community. This approach has been 
adopted by several scholars (Chantsalnyam et al., 2020; Ali SD 
et al., 2022). iProm-phage is an easy-to-use tool that can be utilized 
by researchers and specialists in bioinformatics. It consists of two 
stages first is input and second is output. To input it uses two input 
methods: direct sequence input and uploading a file containing 
sequences for prediction. Each sequence should be 99 bp long and 
contain the letters A, C, G, and T. Figures 8, 9 depict web server 
snippets; Figure 8 is an example of adding sequences for prediction 
and Figure 9 provides the predictor’s output. We also provide an 
example to better understand how to use the webserver.

1 http://nsclbio.jbnu.ac.kr/tools/iProm-phage/

TABLE 2 First layer performance comparison.

Methods Acc% Precision% Recall%

PhagePromoter 92 89 87

DPProm 85.5 88.9 83

iProm-phage 95.68 94.2 93.5

TABLE 3 Second layer performance comparison.

Methods Acc% Precision% Recall%

DPProm 93.0 95.2 96.4

iProm-phage 95.2 96.5 97.2

FIGURE 6

First layer ROC curve.
FIGURE 7

Second layer ROC curve.
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Conclusion

This work presents iProm-phage, a two-layer technique for 
identifying phage promoters and classifying them as phages or 
hosts. We  developed a new method for generating negative 
datasets to create a robust model that performs well on tough 
datasets. Based on cutting-edge performance tests, we also found 

the best model among several ML and CNN algorithms, as well 
as the best feature encoding method among the 10 distinct 
methods. The architecture of the proposed model was evaluated 
using publicly available datasets. Compared to earlier techniques, 
the program had superior overall results. Finally, we created a 
web server that is available online and will be extremely useful to 
other experimental scientists.

FIGURE 8

Webserver adding query sequence.

FIGURE 9

Predictor output.
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Sigma70Pred: A highly accurate 
method for predicting sigma70 
promoter in Escherichia coli K-12 
strains
Sumeet Patiyal 1†, Nitindeep Singh 2†, Mohd Zartab Ali 2†, Dhawal 
Singh Pundir 2† and Gajendra P. S. Raghava 1*
1 Department of Computational Biology, Indraprastha Institute of Information Technology Delhi, 
New Delhi, India, 2 Department of Computer Science and Engineering, Indraprastha Institute of 
Information Technology Delhi, New Delhi, India

Sigma70 factor plays a crucial role in prokaryotes and regulates the transcription 

of most of the housekeeping genes. One of the major challenges is to predict 

the sigma70 promoter or sigma70 factor binding site with high precision. In this 

study, we trained and evaluate our models on a dataset consists of 741 sigma70 

promoters and 1,400 non-promoters. We have generated a wide range of features 

around 8,000, which includes Dinucleotide Auto-Correlation, Dinucleotide Cross-

Correlation, Dinucleotide Auto Cross-Correlation, Moran Auto-Correlation, 

Normalized Moreau-Broto Auto-Correlation, Parallel Correlation Pseudo Tri-

Nucleotide Composition, etc. Our SVM based model achieved maximum 

accuracy 97.38% with AUROC 0.99 on training dataset, using 200 most relevant 

features. In order to check the robustness of the model, we have tested our model 

on the independent dataset made by using RegulonDB10.8, which included 1,134 

sigma70 and 638 non-promoters, and able to achieve accuracy of 90.41% with 

AUROC of 0.95. Our model successfully predicted constitutive promoters with 

accuracy of 81.46% on an independent dataset. We have developed a method, 

Sigma70Pred, which is available as webserver and standalone packages at https://

webs.iiitd.edu.in/raghava/sigma70pred/. The services are freely accessible.

KEYWORDS

sigma70 factor, promoter, machine learning, transcription, prokaryotic genome

Introduction

Promoters and enhancers regulate the fate of a cell by regulating the expression of the 
genes. Promoters are generally located at the upstream of genes’ transcription start sites (TSS) 
responsible for the switching on or off the respective gene. In prokaryotes, promoters are 
recognized by the holoenzyme, which is made up of RNA polymerase and a related sigma 
factor. There are various types of sigma factors responsible for different functions, such as 
sigma54 controls the transcription of genes responsible for the modulation of cellular nitrogen 
levels, sigma38 regulates the stationary phase genes, sigma32 regulates heat-shock genes, and 
sigma24 and sigma18 controls the extra-cytoplasmic functions (Paget, 2015). The number 
associated with each sigma factor represents the molecular weight. Sigma70 factor is a crucial 
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factor as it regulates the transcription of most of the housekeeping 
genes and responsible for the most of the DNA regulatory functions. 
Sigma70 promoter comprises two well-defined short sequences 
located at-10 and-35 base pairs upstream of TSS, known as pribnow 
box and-35 region, respectively (Paget and Helmann, 2003). It is 
essential to identify the promoter regions in a genome, as it can aid 
in illuminating the genome’s regulatory mechanism and disease-
causing variants within cis-regulatory elements. The area of the 
promoters is of great interest as researchers pay great attention to 
their importance not only in developmental gene expression but 
also in environmental response. To control the expression of every 
gene and transcription unit in the genome, promoters must 
be  precisely identified, and in terms of consensus sequences, 
promoter sequences may differ and be  comparable within and 
between the different classes of promoters. However, since each 
promoter often deviates from the consensus at one or more 
locations, it is still difficult to predict promoters with reliable 
accuracy (Mrozek et  al., 2014, 2016). Moreover, due to the 
advancement in sequencing technology, the data is growing 
exponentially, which made the accurate identification of promoter 
regions in the DNA sequences a difficult task. Of note, the accurate 
and fast classification of the promoter region is a crucial problem, 
as the standard experimental procedures are expensive in terms of 
time, and performance (Bernardo et al., 2009; Lu et al., 2015).

In the past, ample of methods have been developed for 
predicting sigma70 promoters which are based on different 
machine-and deep-learning approaches developed using various 
types of features (Lin and Li, 2011; Song, 2012; He et al., 2018; Liu 
et al., 2018; Lai et al., 2019; Lin et al., 2019; Liu and Li, 2019; Zhang 
et al., 2019). IMPD (Lin and Li, 2011), is based on the increment of 
diversity, which achieved an accuracy of 87.9%. This method was 
trained on RegulonDB (Gama-Castro et  al., 2016) dataset that 
contains 741 E. coli sigma70 promoters. Z-curve-based approach 
(Song, 2012) attains the maximum accuracy of 96.1% by using a 
smaller dataset that comprises 576 sigma70 promoters and 1,661 
non-promoters. Liu et al. (2018) proposed a two-layer prediction 
method, named as iPromoter-2L, for the identification and 
classification of multiple sigma promoters using the multi-window-
based pseudo K-tuple nucleotide composition approach and 
achieved the highest accuracy of 81.68% for sigma70 promoter 
prediction. 70Propred (He et al., 2018) has incorporated features 
like position-specific trinucleotide propensity based on single-
stranded characteristic (PSTNPss) and electron-ion potential values 
for trinucleotides (PseEIIP) using benchmark dataset of 741 
sigma70 promoters and 1,400 non-promoters from RegulonDB9.0, 
and reported 95.56% accuracy. iPro70-PseZNC (Lin et al., 2019) is 
based on a multi-window Z-curve approach and gained the 
maximum accuracy of 84.5% using the dataset from RegulonDB9.0 
(Gama-Castro et al., 2016). iPromoter-2L2.0 (Liu and Li, 2019) is 
an update of iPromoter-2L, which implemented the combination of 
smoothing cutting window algorithm and sequence-based features 
to improve the performance with accuracy 85.94%.

The aforementioned methods are developed using traditional 
machine learning approaches such as logistic regression (Rahman 

et al., 2019a), support vector machine (He et al., 2018; Lai et al., 
2019; Lin et al., 2019; Liu and Li, 2019; Zhang et al., 2019), random 
forest (Liu et al., 2018), ensemble of different classifiers (Rahman 
et al., 2019b). On the other hand, due to the advancement in the 
computational and sequencing technology, deep convolutional 
neural network (CNN) based methods have been implemented to 
develop the prediction methods with the ability to identify the 
sigma promoters and then determines the different types of sigma 
promoter sequences such as sigma24, sigma28, sigma32, sigma38, 
sigma54, and sigma70. Amin et al. proposed a method, iPromoter-
BnCNN (Amin et al., 2020), is a branched-CNN based method 
which utilized the sequence and structural based properties to 
identify and classify the sigma promoters. Shujaat et  al. (2020) 
introduced pcPromoter-CNN which convert the nucleotide 
sequence information into one-hot encoding vectors and feed them 
to convolutional neural network (CNN)-based classifier to predict 
and determine the sigma promoter classes. Recently, a new method 
based on the light CNN named as PromoterLCNN was proposed 
by Hernandez et  al. (2022) which also used one-hot encoding 
representation of nucleotide sequences to predict the sigma 
promoters using the sequencing information. The correct prediction 
of sigma70 promoters in the DNA sequences is still a difficult 
challenge due to the intraclass variation in terms of consensus 
sequence as sigma70 factor is responsible for the transcription of the 
most of the regulatory genes. Albeit, number of computational 
methods are available to predict the sigma70 promoters using the 
sequence information, but there is a still enough room for the 
improvement in term of various performance measures.

In the present study, we  have developed a computational 
method called as Sigma70Pred, to classify the sequences in 
sigma70 promoter and non-promoter. In this study, we  have 
trained and evaluated the prediction model on the benchmark 
dataset which have been used in ample of previously published 
methods such as 70Propred, iPro70-FMWin, iPro70-PseZnc, 
IPMD, iProEP, and iPromoter-FSEn. In order to investigate the 
validity of the generated model, we  have also created the 
independent dataset with no common sequences with the 
benchmark dataset. We  calculated the performance of the 
proposed method on the independent dataset and also compared 
it with the working existing methods. A user-friendly and freely 
accessible web server and Python and Perl-based standalone 
software have been developed to serve the scientific community 
for predicting the sigma70 promoters. Moreover, the same 
package has also been distributed via docker-based technology 
through GPSRdocker (Agrawal et al., 2019).

Materials and methods

Dataset generation

The choice of a standard benchmark dataset is a crucial first step 
in developing a prediction method. In this study, we have used the 
high-quality pre-constructed benchmark dataset, which has been 
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used previously published studies such as, 70Propred (He et al., 
2018), iPro70-FMWin (Rahman et al., 2019a), iPro70-PseZNC (Lin 
et al., 2019), iProEP (Lai et al., 2019), IPMD (Lin and Li, 2011), and 
iPromoter-FSEn (Rahman et al., 2019b). We have trained and tested 
our models using cross-validation, on the benchmark dataset 
downloaded from RegulonDB9.0 (Gama-Castro et al., 2016), which 
is one of the best available databases on bacterial gene regulation in 
the model organism E. coli. K-12. It contains 741 sigma70 promoters 
and 1,400 non-promoters from the E. coli. K-12 genome, and each 
sequence is of length 81 bp. Due to the lack of sufficient 
experimentally verified negative data (that is, the locations that are 
identified not to be transcription start site), randomly generated 
sequences from the same chromosome have been obtained in the 
benchmark dataset to generate the non-promoter sequences. As 
shown by Gordon et al., 81% of the transcription start sites are 
located at the intergenic non-coding regions and 19% are available 
in the coding region (Gordon et al., 2003). Therefore, number of 
methods used the middle regions of long coding sequences of E. coli. 
K-12 genome to create the negative/non-promoter dataset (Shujaat 
et al., 2020; Hernandez et al., 2022), whereas, other methods used 
both the coding and non-coding regions to extract non-promoter 
sequences (Lin and Li, 2011; He et al., 2018; Lai et al., 2019; Liu and 
Li, 2019; Rahman et  al., 2019a,b; Amin et  al., 2020). In the 
benchmark dataset used in this study, half of the negative samples or 
non-promoter sequences were extracted from the coding and rest 
half were obtained from convergent intergenic spacers (non-coding 
regions). In order to validate our model on external or independent 
dataset, we have extracted the data from RegulonDB 10.8, which 
comprises 1,134 sigma70 and 638 non-promoters. There is no 
identical sequence in training and independent dataset. The datasets 
can be downloaded from our server.

Overall workflow

The comprehensive workflow for Sigma70Pred is shown in 
Figure 1.

Feature generation

We have generated a wide range of features like Position-
Specific Tri-Nucleotide Propensity (PSTNPP), Electron-Ion 
Interaction Pseudopotentials of trinucleotide (EIIIP; He et al., 
2018), dimer count, trimer count, motif counts, GC and AT skew 
(Rahman et al., 2019a), Dinucleotide Auto-Correlation (DAC), 
Dinucleotide Cross-Correlation (DCC), Dinucleotide Auto Cross-
Correlation (DACC; Friedel et al., 2009), Moran Auto-Correlation 
(MAC), Normalized Moreau-Broto Auto-Correlation (NMBAC; 
Chen et al., 2015), and Parallel Correlation Pseudo Tri-Nucleotide 
Composition (PC_PTNC; Liu et al., 2014), which resulted in 8465 
features. The aforementioned features were calculated using 
Nfeature webserver (Mathur et al., 2021) available at https://webs.
iiitd.edu.in/raghava/nfeature/. Then, we have used the Min-Max 

scaler from the scikit-learn library (Pedregosa et al., 2011) to scale 
down the values of the features, we have constructed. Further, 
we  have implemented Recursive Feature Elimination (RFE; 
Pedregosa et  al., 2011) for the feature selection with logistic 
regression as the estimator and step-size 10. RFE is a wrapper-style 
technique, i.e., we have used logistic regression algorithm which 
is wrapped by RFE, to choose features by iteratively considering 
smaller sets of features progressively. First, the classifier is trained 
on the initial set of features and importance of each feature is 
calculated. Further, the features with least importance are 
eliminated from the current set of features. This process is 
recursively repeated on the current feature-set until we are left 
with the desired number of features. Less number of features can 
make the models developed using machine learning classifiers, 
more efficient and effective in terms of space and complexity. It 
also aid the model to achieve the better predictive performance by 
avoid learning on the irrelevant input features. Details of each 
feature and processing of the features are explained in the 
Supplementary File. The comprehensive details of the top-200 
features are reported in Supplementary Table S1, where we have 
provided the description of each feature along with their mean in 
sigma70-promoter and non-promoter sequences and value of p to 
check if the difference is significant or not. The features are sorted 
as per their importance which is calculated using the random 
forest based classifiers and top-20 features are plotted as per their 
rank in Supplementary Figure S1.

Model development

In this study, we developed models for predicting sigma70 
promoters using wide range of machine learning techniques such 

FIGURE 1

Architecture of sigma70Pred.
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as decision tree (DT), random forest (RF), k-nearest neighbor 
(KNN), extreme gradient boosting (XGB), gaussian Naïve Bayes 
(GNB), and support vector machine (SVM; Pedregosa et  al., 
2011). We got the best performance using SVM based model. Our 
best model on training dataset was evaluated on independent 
dataset (obtained from RegulonDB 10.8).

Cross-validation

In order to avoid the biasness and test the prediction models’ 
performance, we have implemented five-fold cross-validation. In 
this approach, the complete dataset is divided into five parts, the 
model is trained on four out of five parts, whereas the model is tested 
on the left part, and the performance is recorded. The same process 
is iterated five times so that each part gets the chance to be used for 
the purpose of testing. The overall performance is calculated by 
taking the mean of all five iterations (Patiyal et al., 2020).

Measures of performance

To assess the performance of generated prediction models, 
we  have used various threshold-dependent and independent 
parameters. We  have considered sensitivity that is, percent of 
sigma70 samples classified correctly; specificity that is, percent of 
non-promoter samples classified as negative; accuracy that is, 
percentage of samples which are correctly predicted by the model; 
and Matthews correlation coefficient (MCC) that explains the 
relationship between the observed and predicted value, under 
threshold-dependent parameters, whereas, in threshold-
independent measures, we have considered Area Under the Receiver 
Operating Characteristics (AUROC) which is the relation between 
true positive rate and false positive rate. The AUROC was computed 
using the pROC package (Sachs, 2017) of R. The equations depicting 
the threshold-dependent parameters are as follows:
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where, PT refers to number of true positives; PF refers to 
number of false positives; NT refers to number of true negatives; 
and NF refers to number of false negatives.

Results and discussion

Compositional analysis

In order to assess the proportion of the nucleotides in the 
sigma70 promoter and non-promoter, we  have calculated the 
mono-nucleotide composition. As shown in Figure 2, nucleic acid 
adenine and thymine are abundant in sigma70 promoter 
sequences, whereas cytosine and guanine are higher in percentage 
in the case of non-promoter sequences.

Position conservation analysis

In this analysis, we explored the preference of each nucleotide at 
each position of the sigma70 promoter sequences. For the same, 
we have created the one-sample and two-sample logo using WebLogo 
(Crooks et al., 2004) and Two Sample Logo (TSL) tool (Vacic et al., 
2006). One Sample logo reports the abundance of nucleotides at each 
position in a single dataset (i.e., positive/negative dataset), whereas 
TSL takes two files as input (i.e., positive dataset and negative dataset) 
to exhibits the preference of nucleotides in the positive dataset in 
comparison to the negative dataset. Therefore, we have provided 
sigma70 promoter sequences in the FASTA format to WebLogo tool 
to generate the one-sample logo, and provided both the files, i.e., 
sigma70 promoter and non-promoter sequences in the FASTA 
format to TSL tool. Figure 3A represents the one sample sequence 
logo and Figure  3B exhibits the two-sample logo for sigma70 
promoter sequences. In Figure  3A, consensus short sequences 
“TATAAT” and “TTGACA” at position-10 and-35, respectively, is 
blurred due to the variability in the spacing between these regions 
(Shultzaberger et al., 2007), as we have taken all the sequences to 
generate the sequence logo. However, the region around-10 and-35 
is abundant with the nucleotides involve in the consensus sequences 
at-10 and-35. As shown in Figure 3B, sigma70 promoter sequences 
are enriched in “A” and “T” nucleotides at most of the positions, 
whereas, depleted in nucleotides “G” and “C.” “T” is most abundant 
nucleotide at positions −59, −56, −50, −49, −40, −38 to-34, −28, 
−22, −19, −15, −14, −6, −5, +5, and + 11. Whereas nucleotide “A” is 
preferable at positions −60, −58, −57, −52, −45, −3, +6, +8, +14, 
+15, +17, and + 18 in the sigma70 promoter sequences. On the other 
hand, at positions −13, 0, and + 20 nucleotide “G” is also preferred, 
and positions −2, −1, and + 1 are also occupied with nucleotide “C.” 
Whereas, on the rest of the positions, both “A” and “T” are the most 
abundant nucleotides in the sigma70 promoter sequences, as shown 
in Figure  3B. In order to represent the-10 and-35 consensus 
sequence, we have generated the motif using MEME software (Bailey 
et  al., 2009) and highlighted the sigma70 promoters’ conserved 
sequences “TATAAT” and “TTGACA” in Supplementary Figure S2.

Performance of machine learning 
classifiers on benchmark dataset

Initially, we have generated more than 8,000 nucleotide-
based features, and then selected 200 most relevant features 
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after applying feature scaling method min-max scaler and 
feature selection method RFE. Using these selected 
features, we have generated various models by implementing 
various machine learning techniques. To compare the 
performance of each generated model, we  have calculated 

different performance measures as reported in Table  1. 
The model developed using SVM-based classifier 
performed best among all the other classifiers with 
97.38% accuracy, 0.996 AUROC, and 0.94 MCC on the 
benchmark dataset.

FIGURE 2

Mono-nucleotide composition of sigma70 promoters and non-promoters. ****p < 0.0001.

A

B

FIGURE 3

Positional preference analysis (A) One sample logo exhibiting nucleotide preference in sigma70 promoter sequences at different positions. (B) Two 
sample logo to exhibit the preference of nucleotides at each position in sigma70 promoter sequences with respect to non-promoter sequences.
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TABLE 2 Comparison of performances of our model with existing method on benchmark dataset evaluated using cross-validation technique.

Methods Sensitivity Specificity Accuracy AUROC MCC

Sigma70Pred 97.44 97.36 97.38 0.996 0.943

iPro70-FMWin 83.81 95.07 91.17 0.960 0.803

70ProPred* 92.40 96.90 95.30 0.990 0.897

iPro70-PseZNC* 80.30 86.80 84.50 0.909 0.663

Z-Curve* 74.60 79.50 77.80 0.848 0.527

IPMD* 82.40 90.70 87.90 – 0.731

iProEP 89.52 64.03 76.88 0.654 0.554

*Reported by the authors in the manuscript. The values in the tables are in bold to represent the best performing classifier or method.

Performance comparison with existing 
methods on benchmark dataset

There are ample of methods which are trained and evaluated 
on the same benchmark dataset such as, 70ProPred (He et al., 
2018), iPro70-FMWin (Rahman et al., 2019a), iPro70-PseZNC 
(Lin et al., 2019), Z-Curve (Song, 2012), IPMD (Lin and Li, 2011), 
iProEP (Lai et al., 2019), and iPromoter-FSEn (Rahman et al., 
2019b). Out of all the considered methods, four methods such as 
70Propred, iPro70-PseZnc, Z-curve, and IPMD were not available 
or working. Therefore, for such methods we have considered the 
performance reported by the authors in their respective articles 
for comparison. For rest of the methods, we have predicted the 
class by providing the benchmark dataset as input and calculated 
the performance measures based on the predictions made by the 
respective methods. We  have compared the performance of 
Sigma70Pred with sigma70 promoter prediction methods and 
found out that Sigma70Pred has outperformed all the considered 
methods, as shown in Table 2. In terms of AUROC, out of the all 
the methods developed on the same benchmark dataset, 
70Properd attained the second highest performance with AUROC 
of 0.990, followed by iPro70-FMWin with AUROC of 0.960.

Performance comparison on 
independent dataset

In order to evaluate the proposed method’s robustness and 
performance, we have also investigate the performance of our 
proposed model on the independent dataset of DNA sequences 
extracted from RegulonDB 10.8. We have also considered the 

existing methods for performance comparison on the independent 
dataset, which were trained and evaluated on different datasets 
such as MULTiPly (Zhang et al., 2019), iPromoter-2L (Liu et al., 
2018), and, iPromoter-2L2.0 (Liu and Li, 2019). Moreover, to 
compare the efficiency of our generated model with deep-learning 
based classifiers, we  have compared the performance with 
methods like iPromoter-BnCNN (Amin et  al., 2020), 
pcPromoter-CNN (Shujaat et  al., 2020), and PromoterLCNN 
(Hernandez et  al., 2022). We  have calculated the different 
performance measures for all the working sigma promoter 
predictors. The results on the independent dataset showed that 
our proposed model is quite robust towards the unseen data and 
performs well on it (Table 3). It also implies that our SVM model 
is significantly free from bias and overfitting on training dataset. 
As shown in Table 3, method named “MULTiPly” considered for 
the comparison which is not able to produce the results, therefore 
we have reported the performance achieved by the authors in this 
method. For comparison, we  have considered the methods 
developed using machine-learning as well as deep-learning based 
classifiers. As exhibited in Table 3, SVM-based model developed 
on top-200 features in Sigma70Pred outperformed all the existing 
approaches in terms of each performance measure. Two-layer 
predictor method iPromoter2L-2.0 achieved the second highest 
accuracy of 83.36% on the independent dataset, followed by 
light-CNN based method PromoterLCNN with 79.56% accuracy.

Implementation of model in web server

In order to serve the scientific community, we  have also 
developed the webserver Sigma70Pred by implementing our best 

TABLE 1 Performance of various machine learning classifiers on benchmark dataset.

Classifier Sensitivity Specificity Accuracy AUROC MCC

DT 74.49 87.14 82.77 0.808 0.62

RF 92.04 91.57 91.73 0.977 0.82

XGB 91.90 92.14 92.06 0.980 0.83

KNN 90.15 91.79 91.22 0.958 0.81

GNB 88.66 88.71 88.70 0.955 0.76

SVM 97.44 97.36 97.38 0.996 0.94

The values in the tables are in bold to represent the best performing classifier or method.
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model to predict the sigma70 promoters. The web server consists 
of three modules namely “Predict,” “Scan,” and “Design.” Our 
final model is based on SVC, it calculates SVC score for a 
sequence. SVC score is proportional to probability of correct 
prediction to promoter. SVC score varies from 0 to 1, higher the 
SVC score chances are higher that sequence is a sigma70 
promoter. To provide balance between sensitivity and specificity, 
we provide default threshold. User may select desire threshold 
depending on their need. The detailed description of each module 
is as follows:

Predict
This module allows users to classify the submitted sequence 

as sigma70 promoter or non-promoter. There is a restriction of 
length in this module, as the model is trained on sequences with 
length 81 bp, hence if the submitted sequence is having a length 
less than 81, “A” will be added as the dummy variable and then, 
the sequence will be classified into one of the class, and if the 
length is greater than 81, only first 81 nucleotides will 
be considered for prediction. The user can submit sequences in 
either FASTA or single line format, and can select the desired 
threshold as SVC score above which the sequence will 
be classified as sigma70 promoter, otherwise non-promoter. The 
user can either provide single or multiple sequences, and can also 
upload the text file containing sequences. The output page 
displays the results in the tabular form, which is downloadable in 
the csv format.

Scan
Scan module allow users to scan or identify the sigma70 

promoter region in given genome. This module does not have any 
length restriction as in the “predict” module. In this module, 
overlapping patterns of length 81 will be generated from submitted 
sequences and then used for prediction. The user can provide 
single or multiple sequences either in FASTA or in single line 
format. The user is also allowed to upload the sequence file. The 
output result will exhibit the overlapping patterns of length 81 
with the prediction as promoter or non-promoter. The result is 
downloadable in the csv format.

Design
Design module allow users to identify the minimum 

mutations that can convert the sigma70 promoter into 
non-promoter or vice-versa. This module also has the restriction 
of sequence length 81, as it generates all the possible mutants by 
changing nucleotides at each position and then make the 
predictions based on the selected threshold. Since, generating all 
possible mutants is a time and computational expensive process, 
hence only one sequence is allowed at a time. The output page 
displays all the possible mutants with its prediction as promoter 
or non-promoter in tabular form which is downloadable in 
csv format.

Standalone
We have also developed Python and Perl-based standalone 

package, which is downloadable from URL: https://webs.iiitd.edu.
in/raghava/sigma70pred/stand.html. The advantage of this 
module is that, it is not dependent on the availability of the 
internet, the user can download these standalone on their local 
machines and can use all the aforementioned modules. This 
module also take the input as single or multiple sequences in a file, 
in either FASTA or single line format. The output will be stored in 
the user-defined file in the comma separated value format.

Discussion

The expression of genes decides the cell’s fate, which is 
regulated by the promoter regions present upstream of the 
transcription start site (Atkinson and Halfon, 2014). The 
interaction between the promoter region and the holoenzyme, 
switch on or off the expression of the respective genes. Various 
sigma factors are associated with the holoenzyme responsible for 
different functions, such as regulating nitrogen levels, controlling 
stationary phase genes, etc. (Paget, 2015). One of the essential 
sigma factors is sigma70, as it regulates the expression of most of 
the housekeeping genes required for the cell’s survival (Paget and 
Helmann, 2003). The accurate identification of the promoter 
regions associated with the respective sigma factors may help in 

TABLE 3 The performance of existing methods on independent dataset.

Methods Sensitivity Specificity Accuracy AUROC MCC

Sigma70Pred 91.45 88.56 90.41 0.953 0.794

iPro70-FMWin 84.12 86.67 85.04 0.921 0.693

iProEP 84.50 53.83 69.30 0.541 0.404

MULTiPly* 90.43 76.93 84.91 – 0.685

iPromoter-2L 86.21 72.81 79.56 – 0.601

iPromoter-2L2.0 88.72 77.91 83.36 – 0.674

iPromoter-FSEn 68.76 68.16 68.46 0.751 0.369

iPromoter-BnCNN 80.64 72.70 76.71 – 0.543

pcPromoter-CNN 81.44 61.07 71.35 – 0.445

Promoter-LCNN 88.77 70.15 79.54 – 0.604

*Reported by the authors in the manuscript. The values in the tables are in bold to represent the best performing classifier or method.
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the understanding of the regulatory mechanism, which can 
further be exploited to treat diseases caused by the disease-causing 
variants. The recognition of the promoter regions has been an 
important aspect of gene structure recognition and it is also the 
fundamental problem in building a network of gene transcriptional 
regulation. However, the experimental methods to identify the 
promoters are laborious, expensive, and time-consuming. On the 
other hand, computational approaches are reliable and fast with 
equivalent accuracy. Although, several methods have been 
developed in the past for the prediction of sigma promoters in the 
DNA sequences based on machine-learning (Lin and Li, 2011; 
Song, 2012; He et al., 2018; Liu et al., 2018; Lai et al., 2019; Liu and 
Li, 2019; Zhang et al., 2019) and deep-learning approaches (Amin 
et al., 2020; Shujaat et al., 2020; Hernandez et al., 2022), but the 
accurate identification of the sigma promoters remained a 
strenuous task due to the inter-and intra-class similarities and 
variations in the different sigma-specific promoter sequences 
(Zhang et al., 2019). It has been seen in the past that promoter 
sequences often differ at one or more locations from the consensus 
sequences (Mrozek et al., 2014, 2016), which makes the task of 
prediction of sigma70 promoters more difficult as sigma70 factor 
specific promoters are responsible for the transcription of most of 
the genes in prokaryotic genome. Moreover, the exponential 
increase in the data of promoter sequences due to the advancement 
in the high-throughput sequencing technology, also increased the 
level of difficulty in the identification of sigma70 promoter regions 
in the DNA sequences. Therefore, an accurate and robust method 
is required that can distinguish the sigma70 promoter sequences 
from the non-promoter sequences.

To understand the preference of nucleotides in the sigma70 
promoter sequences, we have conducted the compositional and 
positional preference analysis for the sigma70 promoter sequences 
(Figures 2, 3). The compositional analysis showed that nucleotides 
“A” and “T” are in higher abundance in sigma70 promoter 
sequences in comparison with non-promoter sequences. For 
positional preference analysis, we have generated one-sample and 
two-sample logo using WebLogo and TSL logo tool. In one-sample 
logo, the preference of nucleotide at each position is shown in 
Figure 3A, however, the consensus sequences at position-10 and-35 
is not clear. As shown by Shultzaberger et al. (2007) the gap between 
the regions-10 and-35 is not fixed, it varies from promoter to 
promoter. Therefore, they have shown the consensus sequences in 
their Figure 2 of the article at-10 and-35 regions in the form of 
sequence logos by vary the spacing between 21 and 26. On the other 
hand, we have generated the sequence logo by taking all the sigma70 
promoter sequences without considering the variability in the 
spacing between the-10 and-35 regions. Whereas, in Figure 3B, 
we  have represented the two-sample logo, by considering the 
sigma70 promoter and non-promoter sequences. It corresponds 
with the compositional analysis that most of the positions in the 
sigma70 promoter sequences are abundant in nucleotides “A” and 
“T” in comparison to the non-promoter sequences.

There are different methods which are specific to the 
classification of sigma70 promoters (Lin and Li, 2011; Song, 2012; 

He et al., 2018; Lai et al., 2019; Rahman et al., 2019a,b) whereas 
others are developed for the identification and classification of 
different sigma promoters such as sigma24, sigma28, sigma32, 
sigma38, sigma54, and sigma70 (Liu et al., 2018; Liu and Li, 2019; 
Zhang et al., 2019; Amin et al., 2020; Shujaat et al., 2020; Hernandez 
et al., 2022). In this study, we have also developed a bioinformatic-
ware to classify the sigma70 promoters using only sequence 
information. The models were trained and evaluated using the 
nucleotide sequences of length 81 bp in the benchmark dataset 
retrieved from RegulonDB9.0 (Gama-Castro et al., 2016), which 
consists of 741 sigma70 promoters and 1,400 non-promoters. 
Initially, we calculated more than 8,000 features for each sequence, 
which were further processed using min-max scaling and top-200 
most relevant features were selected using RFE feature selection 
technique. Further investigation was performed on these selected 
features. Then, we  have implemented six different machine-
learning classifiers to develop the prediction models on the 
selected features. The SVM-based model outperformed all the 
other classifiers with AUROC of 0.996 on the benchmark dataset 
(See Table 1). To understand the advantages and disadvantages of 
a new method, it is important to compare the proposed method 
with the already existing methods. We have considered already 
existing methods, some of them were non-functional, hence 
we have considered the performance reported in their respective 
articles for those methods. For rest of the methods, we have used 
the benchmark dataset to evaluate and compare the performance. 
Our proposed method has outperformed the methods developed 
on the same benchmark dataset, as shown in Table 2. Further, in 
order to check the efficiency of the proposed method, the 
generated model was evaluated and compared with existing 
methods using the unseen independent dataset, where 
sigma70pred outperformed the existing working method with 
AUROC of 0.953 (see Table 3). This comparison signified that our 
feature-set of 200 features is more effective to identify the sigma70 
promoter sequences.

To understand the reason behind the wrong predictions made 
by our proposed model, we have selected all the sigma70 promoter 
sequences which were predicted as non-promoter, and provided 
them to the other existing sigma promoters predicting approaches. 
We found that most of the selected sequences were also wrongly 
predicted by other methods. Further, we checked the similarities 
of these sequences with the benchmark dataset using the “blastn” 
approach. For that, we have created a customized database using 
the sequences in the benchmark dataset by implementing the 
“makeblastdb” module of the BLAST program version 2.1.2. Then, 
we hit the wrongly predicted sequences to the customized dataset 
and considered the top-hit for further analysis. We have observed 
that most of the top-hit were non-promoter sequences, i.e., 
sigma70 promoter sequences in the independent dataset share 
similarity with the non-promoter sequences in the benchmark 
dataset. The negative data in the benchmark dataset used by 
several studies, was generated randomly from the coding and 
non-coding regions of E. coli. K-12 genome. Therefore, there is a 
need to develop the experimentally verified non-promoter 
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sequence dataset to improve the overall performance and 
efficiency of the prediction methods.

Moreover, Shimada et al. (2014) introduced the whole set of 
constitute promoters which was defined as the promoters 
recognized in vitro by the RNA polymerase RpoD holoenzyme 
without needing the additional supporting proteins. They have 
provided the list of the promoter sequences along with the genes 
which is controlled by the respective promoters. In order to 
investigate the efficiency of the our proposed method to classify 
the constitutive promoters, we have extracted the sequences from 
RegulonDB (Tierrafria et al., 2022) and colibir (Medigue et al., 
1993) and used them for the prediction. We were able to extract 
the 329 promoter sequences, which were then submitted to the 
“predict” module Sigma70Pred web server with default 
parameters. 268 (81.46%) out of 329 were predicted as sigma70 
promoters at the default threshold, which was increase to 276 
(83.89%) on dropping the threshold to 0.2. The result on each 
promoter sequence is reported in Supplementary Table S2 along 
with the SVC score. These results signify that our proposed model 
is able to classify the constitutive promoters with reliable accuracy.

Sigma70Pred offers a web server and standalone packages to 
predict the sigma70 promoters using sequence information. This 
method uses 200 different optimal features, and we assume that 
our features have more capability to classify sigma70 promoters. 
Sigma70Pred provides three major modules: predict, scan, and 
design. As the application of our method, the user can scan the 
entire prokaryote genome to identify the sigma70 promoter using 
the scan module. By using the design module, the user can also 
determine the minimum number of mutations required to exploit 
the sigma70 promoter regions, i.e., either induce or deteriorate the 
capability of the sigma70 promoter. As compared to the existing 
methods of predicting sigma70 promoters, Sigma70Pred 
produced commending outcomes. We believe that Sigma70Pred 
will play an essential role in the area of genomic analysis.

Data availability statement

Publicly available datasets were analyzed in this study. This 
data can be  found at: https://webs.iiitd.edu.in/raghava/
sigma70pred/data.html.

Author contributions

GR conceived the idea and supervised the entire project. NS, 
MA, and DP collected and curated the datasets. SP, NS, MA, and DP 
wrote all the in-house scripts, performed the formal analysis, and 
developed the prediction models. SP developed the web interface 
and standalone. SP and GR prepared all the drafts of manuscript. All 
authors contributed to the article and approved the submitted version.

Acknowledgments

We are thankful to funding agencies Department of 
Biotechnology (DBT), Govt. of India for financial support and 
fellowships. We are also thankful to Megha Mathur and Anjali 
Dhall for python scripts to generate features and help in the 
figure’s preparation.

Conflict of interest

The authors declare that the research was conducted in the 
absence of any commercial or financial relationships that could 
be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the 
authors and do not necessarily represent those of their affiliated 
organizations, or those of the publisher, the editors and the 
reviewers. Any product that may be evaluated in this article, or 
claim that may be made by its manufacturer, is not guaranteed or 
endorsed by the publisher.

Supplementary material

The Supplementary material for this article can be found online 
at: https://www.frontiersin.org/articles/10.3389/fmicb.2022.1042127/
full#supplementary-material

References
Agrawal, P., Kumar, R., Usmani, S. S., Dhall, A., Patiyal, S., Sharma, N., et al. 

(2019). GPSRdocker: a Docker-based resource for genomics, proteomics and 
systems biology. BioRxiv, 827766. doi: 10.1101/827766

Amin, R., Rahman, C. R., Ahmed, S., Sifat, M. H. R., Liton, M. N. K., 
Rahman, M. M., et al. (2020). iPromoter-BnCNN: a novel branched CNN-based 
predictor for identifying and classifying sigma promoters. Bioinformatics 36, 
4869–4875. doi: 10.1093/bioinformatics/btaa609

Atkinson, T. J., and Halfon, M. S. (2014). Regulation of gene expression in the 
genomic context. Comput. Struct. Biotechnol. J. 9:e201401001. doi: 10.5936/
csbj.201401001

Bailey, T. L., Boden, M., Buske, F. A., Frith, M., Grant, C. E., Clementi, L., et al. 
(2009). MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res. 
37, W202–W208. doi: 10.1093/nar/gkp335

Bernardo, L. M. D., Johansson, L. U. M., Skarfstad, E., and Shingler, V. (2009). 
Sigma54-promoter discrimination and regulation by ppGpp and DksA. J. Biol. 
Chem. 284, 828–838. doi: 10.1074/jbc.M807707200

Chen, W., Zhang, X., Brooker, J., Lin, H., Zhang, L., and Chou, K.-C. (2015). PseKNC-
general: a cross-platform package for generating various modes of pseudo nucleotide 
compositions. Bioinformatics 31, 119–120. doi: 10.1093/bioinformatics/btu602

Crooks, G. E., Hon, G., Chandonia, J.-M., and Brenner, S. E. (2004). WebLogo: a 
sequence logo generator. Genome Res. 14, 1188–1190. doi: 10.1101/gr.849004

Friedel, M., Nikolajewa, S., Suhnel, J., and Wilhelm, T. (2009). DiProDB: a database 
for dinucleotide properties. Nucleic Acids Res. 37, D37–D40. doi: 10.1093/nar/gkn597

Gama-Castro, S., Salgado, H., Santos-Zavaleta, A., Ledezma-Tejeida, D., 
Muniz-Rascado, L., Garcia-Sotelo, J. S., et al. (2016). RegulonDB version 9.0: high-

27

https://doi.org/10.3389/fmicb.2022.1042127
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://webs.iiitd.edu.in/raghava/sigma70pred/data.html
https://webs.iiitd.edu.in/raghava/sigma70pred/data.html
https://www.frontiersin.org/articles/10.3389/fmicb.2022.1042127/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fmicb.2022.1042127/full#supplementary-material
https://doi.org/10.1101/827766
https://doi.org/10.1093/bioinformatics/btaa609
https://doi.org/10.5936/csbj.201401001
https://doi.org/10.5936/csbj.201401001
https://doi.org/10.1093/nar/gkp335
https://doi.org/10.1074/jbc.M807707200
https://doi.org/10.1093/bioinformatics/btu602
https://doi.org/10.1101/gr.849004
https://doi.org/10.1093/nar/gkn597


Patiyal et al. 10.3389/fmicb.2022.1042127

Frontiers in Microbiology 10 frontiersin.org

level integration of gene regulation, coexpression, motif clustering and beyond. 
Nucleic Acids Res. 44, D133–D143. doi: 10.1093/nar/gkv1156

Gordon, L., Chervonenkis, A. Y., Gammerman, A. J., Shahmuradov, I. A., and 
Solovyev, V. V. (2003). Sequence alignment kernel for recognition of promoter 
regions. Bioinformatics 19, 1964–1971. doi: 10.1093/bioinformatics/btg265

He, W., Jia, C., Duan, Y., and Zou, Q. (2018). 70ProPred: a predictor for 
discovering sigma70 promoters based on combining multiple features. BMC Syst. 
Biol. 12:44. doi: 10.1186/s12918-018-0570-1

Hernandez, D., Jara, N., Araya, M., Duran, R. E., and Buil-Aranda, C. (2022). 
PromoterLCNN: a light CNN-based promoter prediction and classification model. 
Genes 13:1126. doi: 10.3390/genes13071126

Lai, H.-Y., Zhang, Z.-Y., Su, Z.-D., Su, W., Ding, H., Chen, W., et al. (2019). iProEP: 
a computational predictor for predicting promoter. Mol. Ther. Nucleic Acids 17, 
337–346. doi: 10.1016/j.omtn.2019.05.028

Lin, H., and Li, Q.-Z. (2011). Eukaryotic and prokaryotic promoter prediction 
using hybrid approach. Theory Biosci. 130, 91–100. doi: 10.1007/s12064-010-0114-8

Lin, H., Liang, Z.-Y., Tang, H., and Chen, W. (2019). Identifying Sigma70 
promoters with novel pseudo nucleotide composition. IEEE/ACM Trans. Comput. 
Biol. Bioinform. 16, 1316–1321. doi: 10.1109/TCBB.2017.2666141

Liu, B., and Li, K. (2019). iPromoter-2L2.0: identifying promoters and their types 
by combining smoothing cutting window algorithm and sequence-based features. 
Mol. Ther. Nucleic Acids 18, 80–87. doi: 10.1016/j.omtn.2019.08.008

Liu, B., Yang, F., Huang, D.-S., and Chou, K.-C. (2018). iPromoter-2L: a two-layer 
predictor for identifying promoters and their types by multi-window-based 
PseKNC. Bioinformatics 34, 33–40. doi: 10.1093/bioinformatics/btx579

Liu, B., Zhang, D., Xu, R., Xu, J., Wang, X., Chen, Q., et al. (2014). Combining 
evolutionary information extracted from frequency profiles with sequence-based 
kernels for protein remote homology detection. Bioinformatics 30, 472–479. doi: 
10.1093/bioinformatics/btt709

Lu, C., Xie, M., Wendl, M. C., Wang, J., McLellan, M. D., Leiserson, M. D. M., et al. 
(2015). Patterns and functional implications of rare germline variants across 12 
cancer types. Nat. Commun. 6:10086. doi: 10.1038/ncomms10086

Mathur, M., Patiyal, S., Dhall, A., Jain, S., Tomer, R., Arora, A., et al. (2021). 
Nfeature: a platform for computing features of nucleotide sequences. BioRxiv, 
10.1101/2021.12.14.472723

Medigue, C., Viari, A., Henaut, A., and Danchin, A. (1993). Colibri: a functional 
data base for the Escherichia coli genome. Microbiol. Rev. 57, 623–654. doi: 10.1128/
mr.57.3.623-654.1993

Mrozek, D., Daniłowicz, P., and Małysiak-Mrozek, B. (2016). HDInsight4PSi: 
boosting performance of 3D protein structure similarity searching with HDInsight 
clusters in Microsoft Azure cloud. Informat. Sci. 349-350, 77–101. doi: 10.1016/j.
ins.2016.02.029

Mrozek, D., Malysiak-Mrozek, B., and Klapcinski, A. (2014). Cloud4Psi: cloud 
computing for 3D protein structure similarity searching. Bioinformatics 30, 
2822–2825. doi: 10.1093/bioinformatics/btu389

Paget, M. S. (2015). Bacterial sigma factors and anti-sigma factors: structure, 
function and distribution. Biomol. Ther. 5, 1245–1265. doi: 10.3390/biom5031245

Paget, M. S. B., and Helmann, J. D. (2003). The sigma70 family of sigma factors. 
Genome Biol. 4:203. doi: 10.1186/gb-2003-4-1-203

Patiyal, S., Agrawal, P., Kumar, V., Dhall, A., Kumar, R., Mishra, G., et al. (2020). 
NAGbinder: an approach for identifying N-acetylglucosamine interacting residues of a 
protein from its primary sequence. Protein Sci. 29, 201–210. doi: 10.1002/pro.3761

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., et al. 
(2011). Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830.

Rahman, M. S., Aktar, U., Jani, M. R., and Shatabda, S. (2019a). iPro70-FMWin: 
identifying Sigma70 promoters using multiple windowing and minimal features. 
Mol. Gen. Genomics 294, 69–84. doi: 10.1007/s00438-018-1487-5

Rahman, M. S., Aktar, U., Jani, M. R., and Shatabda, S. (2019b). iPromoter-FSEn: 
identification of bacterial sigma(70) promoter sequences using feature subspace based 
ensemble classifier. Genomics 111, 1160–1166. doi: 10.1016/j.ygeno.2018.07.011

Sachs, M. C. (2017). plotROC: a tool for plotting ROC curves. J. Stat. Softw. 79:2. 
doi: 10.18637/jss.v079.c02

Shimada, T., Yamazaki, Y., Tanaka, K., and Ishihama, A. (2014). The whole set of 
constitutive promoters recognized by RNA polymerase RpoD holoenzyme of 
Escherichia coli. PLoS One 9:e90447. doi: 10.1371/journal.pone.0090447

Shujaat, M., Wahab, A., Tayara, H., and Chong, K. T. (2020). pcPromoter-CNN: 
a CNN-based prediction and classification of promoters. Genes 11:1529. doi: 
10.3390/genes11121529

Shultzaberger, R. K., Chen, Z., Lewis, K. A., and Schneider, T. D. (2007). Anatomy 
of Escherichia coli sigma70 promoters. Nucleic Acids Res. 35, 771–788. doi: 10.1093/
nar/gkl956

Song, K. (2012). Recognition of prokaryotic promoters based on a novel variable-
window Z-curve method. Nucleic Acids Res. 40, 963–971. doi: 10.1093/nar/gkr795

Tierrafria, V. H., Rioualen, C., Salgado, H., Lara, P., Gama-Castro, S., Lally, P., et al. 
(2022). RegulonDB 11.0: Comprehensive high-throughput datasets on transcriptional 
regulation in Escherichia coli K-12. Microb. Genomics 8, 8:mgen000833. doi: 10.1099/
mgen.0.000833

Vacic, V., Iakoucheva, L. M., and Radivojac, P. (2006). Two sample logo: a 
graphical representation of the differences between two sets of sequence alignments. 
Bioinformatics 22, 1536–1537. doi: 10.1093/bioinformatics/btl151

Zhang, M., Li, F., Marquez-Lago, T. T., Leier, A., Fan, C., Kwoh, C. K., et al. (2019). 
MULTiPly: a novel multi-layer predictor for discovering general and specific types 
of promoters. Bioinformatics 35, 2957–2965. doi: 10.1093/bioinformatics/btz016

28

https://doi.org/10.3389/fmicb.2022.1042127
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://doi.org/10.1093/nar/gkv1156
https://doi.org/10.1093/bioinformatics/btg265
https://doi.org/10.1186/s12918-018-0570-1
https://doi.org/10.3390/genes13071126
https://doi.org/10.1016/j.omtn.2019.05.028
https://doi.org/10.1007/s12064-010-0114-8
https://doi.org/10.1109/TCBB.2017.2666141
https://doi.org/10.1016/j.omtn.2019.08.008
https://doi.org/10.1093/bioinformatics/btx579
https://doi.org/10.1093/bioinformatics/btt709
https://doi.org/10.1038/ncomms10086
https://doi.org/10.1101/2021.12.14.472723
https://doi.org/10.1128/mr.57.3.623-654.1993
https://doi.org/10.1128/mr.57.3.623-654.1993
https://doi.org/10.1016/j.ins.2016.02.029
https://doi.org/10.1016/j.ins.2016.02.029
https://doi.org/10.1093/bioinformatics/btu389
https://doi.org/10.3390/biom5031245
https://doi.org/10.1186/gb-2003-4-1-203
https://doi.org/10.1002/pro.3761
https://doi.org/10.1007/s00438-018-1487-5
https://doi.org/10.1016/j.ygeno.2018.07.011
https://doi.org/10.18637/jss.v079.c02
https://doi.org/10.1371/journal.pone.0090447
https://doi.org/10.3390/genes11121529
https://doi.org/10.1093/nar/gkl956
https://doi.org/10.1093/nar/gkl956
https://doi.org/10.1093/nar/gkr795
https://doi.org/10.1099/mgen.0.000833
https://doi.org/10.1099/mgen.0.000833
https://doi.org/10.1093/bioinformatics/btl151
https://doi.org/10.1093/bioinformatics/btz016


fmicb-13-1048478 November 30, 2022 Time: 13:59 # 1

TYPE Methods
PUBLISHED 06 December 2022
DOI 10.3389/fmicb.2022.1048478

OPEN ACCESS

EDITED BY

Hao Lin,
University of Electronic Science
and Technology of China, China

REVIEWED BY

Wen Zhang,
Huazhong Agricultural University,
China
Jiangning Song,
Monash University, Australia

*CORRESPONDENCE

Guohua Huang
guohuahhn@163.com

SPECIALTY SECTION

This article was submitted to
Evolutionary and Genomic
Microbiology,
a section of the journal
Frontiers in Microbiology

RECEIVED 19 September 2022
ACCEPTED 26 October 2022
PUBLISHED 06 December 2022

CITATION

Zheng P, Qi Y, Li X, Liu Y, Yao Y and
Huang G (2022) A capsule
network-based method
for identifying transcription factors.
Front. Microbiol. 13:1048478.
doi: 10.3389/fmicb.2022.1048478

COPYRIGHT

© 2022 Zheng, Qi, Li, Liu, Yao and
Huang. This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s)
are credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

A capsule network-based
method for identifying
transcription factors
Peijie Zheng1, Yue Qi1, Xueyong Li1, Yuewu Liu2, Yuhua Yao3

and Guohua Huang1*
1School of Electrical Engineering, Shaoyang University, Shaoyang, China, 2College of Information
and Intelligence, Hunan Agricultural University, Changsha, China, 3School of Mathematics
and Statistics, Hainan Normal University, Haikou, China

Transcription factors (TFs) are typical regulators for gene expression and play

versatile roles in cellular processes. Since it is time-consuming, costly, and

labor-intensive to detect it by using physical methods, it is desired to develop a

computational method to detect TFs. Here, we presented a capsule network-

based method for identifying TFs. This method is an end-to-end deep learning

method, consisting mainly of an embedding layer, bidirectional long short-

term memory (LSTM) layer, capsule network layer, and three fully connected

layers. The presented method obtained an accuracy of 0.8820, being superior

to the state-of-the-art methods. These empirical experiments showed that

the inclusion of the capsule network promoted great performances and that

the capsule network-based representation was superior to the property-

based representation for distinguishing between TFs and non-TFs. We

also implemented the presented method into a user-friendly web server,

which is freely available at http://www.biolscience.cn/Capsule_TF/ for all

scientific researchers.

KEYWORDS

transcription factors, capsule network, deep learning, LSTM, semantics

Introduction

Transcription factors (TFs) are also sequence-specific DNA-binding factors, a family
of proteins that control the expression of target genes (Karin, 1990; Latchman, 1997).
The TFs are widely distributed, and their numbers vary with the size of the genome
(Nimwegen, 2006). The larger genomes are likely to have a larger number of TFs
on average. Approximately 10% of genes in the human genome are conservatively
estimated to code for TFs. Consequently, the TFs are the potentially largest family
of proteins in humans. The TFs exert regulating roles alone or together with other
proteins in a complex by hindering or facilitating the recruitment of RNA polymerase
(a type of enzyme) to specific DNA regions (Roeder, 1996; Nikolov and Burley, 1997).
The regulation roles of the TFs are either positive or negative. The TFs promote the
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recruitment of RNA polymerase function as activators and
contrarily ones to hold back recruitment as repressors.
The TFs are involved in many important cellular processes
including transcription regulation. Some TFs are responsible
for cell differentiation (Wheaton et al., 1996), some respond
to intercellular signals (Pawson, 1993), and some reply
to environmental changes (Shamovsky and Nudler, 2008).
Mutations in the TFs are discovered to be implied in many
diseases (Bushweller, 2019). The TFs are a control switch to
turn on or off to ensure when, where, and how many genes are
accurately expressed. Thus, it is a fundamental problem but a
therapeutic opportunity for drug discovery and development to
accurately identify TFs. Physical or chemical methods (called
wet experiments) are a prime alternative to identify TFs. The
wet experiments include SELEX-based methods (Roulet et al.,
2002), MITOMI (Rockel et al., 2012), and ChIP-based assays
(Yashiro et al., 2016). Most known TFs were discovered by
wet experiments and deposited in public databases (Wingender
et al., 1996; Riaño-Pachón et al., 2007; Zhu et al., 2007; Zhang
et al., 2020). The wet experiments accumulated a limited number
of TFs at the expense of an enormous amount of time and
money. It is only by the wet experiments that it is impossible and
insufficient to discover all TFs in all the tissues or species all over
the world. With advances in artificial intelligence, it is becoming
possible to learn a computational model from these known TFs
to recognize new unknown TFs which will be subsequently
examined by the wet experiments. The computational methods
shrank greatly the numbers of potential TFs that the wet
experiments scanned, and thus, save a vast volume of time and
money. The computational methods are becoming essentially
complementary to the wet experiments, and both are jointly
accelerating the exploration of the TFs.

To the best of our knowledge, Liu et al. (2020) pioneered
the first computational method for discriminating TFs from
non-TFs. Liu et al. extracted three types of sequence
features: composition/transition/distribution (CTD) (Tan et al.,
2019), split amino acid composition (SAAC), and dipeptide
composition (DC) (Ding and Li, 2015). Comprehensively
comparing the contribution of features and performances
of five frequently used machine learning algorithms: logistic
regression, random forest, k-nearest neighbor, XGBoost, and
support vector machine (SVM). Liu et al. finally chose 201
optimal features and SVM for building the classifier. Liu et al.
opened an avenue to identify TFs. Lately, Li et al. (2022) created
a different idea from Liu et al. to distinguish TFs and non-
TFs. Instead of designing sophisticated features. Li et al. directly
took the sequence as input, split three amino acid residues as
a basic unit, and employed long short-term memory (LSTM)
for capturing semantic differences between TFs and non-TFs. Li
et al. promoted the predictive accuracy to 86.83%. The LSTM is
a special recurrent neural network (RNN) which suffered from
the long-distance dependency. The capsule network proposed
is a novel neural work architecture (Sabour et al., 2017),

whose remarkable advantage is to capture relationship between
local parts. This just made up for the deficiency of LSTM.
Inspired by this, we proposed a capsule network-based method
for TFs prediction.

Materials and methods

Data

The training and the testing data were downloaded from
the website1 (Li et al., 2022), which was manually collected by
Liu et al. (2020). The original dataset contained 601 human
and 129 mouse TFs which preferred methylated DNA (Graves
and Schmidhuber, 2005; Wang et al., 2018) and 286 TFs which
preferred non-methylated DNA (Yin et al., 2017). Liu et al.
(2020) conducted the following steps for improving the quality
of the dataset. The sequences containing illegal characters such
as “X”, “B”, and “Z” were first removed. Then, the CD-HIT,
which is a clustering tool (Huang et al., 2010; Zou et al., 2020),
was used to decrease redundancy between sequences. The cutoff
threshold was set to 0.25, meaning that the sequence identity
between any two sequences was no more than 0.25. Third, less
than 50 amino acid sequences were excluded. A total of 522
TFs were finally preserved as positive samples after the above
three processes. Liu et al. sampled the same number of non-TFs
from the UniProt database (release 2019_11) which meets the
following five requirements: (1) reviewed proteins, (2) proteins
with evidence at protein level, (3) proteins in full length and of
more than 50 amino acid residues, (4) proteins without DNA-
binding TF activities, and (5) Homo sapiens proteins with less
than 25% sequence identity in the CD-HIT. Liu et al. divided the
data further into the training and the independent test dataset at
the ratio of 8:2, with the former containing 406 positive and 406
negative samples, and the latter containing 106 positive and 106
negative samples.

Methods

As shown in Figure 1, the proposed method called
Capsule_TF is a deep learning-based method. It mainly contains
five layers, namely, embedding layer, bidirectional LSTM layer,
capsule network layer, and three fully connected layers. The
protein sequence as input goes through the embedding layer
and is then embedded into low-dimensional vectors. The
bidirectional LSTM layer and the capsule network layer are used
to extract high-level representations of protein sequences. Three
fully connected layers are finally used to discriminate TFs from
non-TFs. The Capsule_TF is an end-to-end deep learning model
without designing any features.

1 https://bioinfor.nefu.edu.cn/TFPM/
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FIGURE 1

The architecture of the proposed capsule network-based method. On represents the word vector after the bidirectional LSTM layer. TF and NTF
represent the final predicted outcome as a transcription factor or not.

Embedding
It is mandatory for text sequence input to be converted

into digital sequences which are suitable to be processed by
the subsequent machine learning algorithms. There are many
ways of converting text sequences into digital sequences, such
as a one-hot encoding scheme (Buckman et al., 2018) and
Word2vec (Rong, 2014). The one-hot encoding scheme fails to
capture relationships between words and is opt to yield sparse
representation when the vocabulary is large. It is a common
practice to use embedding to translate text sequences into dense
digital vectors. In the field of text analysis by the deep neural
network, the embedding is generally the first layer generally
defined by

x̂i = Wexi (1)

where x̂i denotes the embedding of the word, xi represents
input, and We ∈ Rn × k denotes a lookup table that stores the
embedding of words. We is the learnable parameter.

Long short-term memory
The LSTM (Hochreiter and Schmidhuber, 1997) belongs to

the family of recurrent neural networks (RNNs) (Sherstinsky,
2020), which is typically a neural network sharing parameters
at all time steps. The LSTM was pioneered by Hochreiter and
Schmidhuber (Hochreiter and Schmidhuber, 1997) and later
was continuously improved. The structure of the current LSTM
was mainly made up of the cell state, the hidden state, the
input, and the output. Figure 2 demonstrates the structure of
the LSTM at the time step t which is identical at all the time
steps. The cell state preserved memories for preceding words but
was regulated by the gates to determine how much information
was conveyed to the next time step. There are three gates in the
LSTM: forget gate, input gate, and output gate. The forget gate is
defined as

ft = σ
(
Wf ·

[
ht−1, xt

]
+ bf

)
(2)

where ht−1 denotes the hidden state at time step t − 1, xt is the
input at time step t, Wf and bf are learnable parameters, and σ

is the sigmoid function. Obviously, the output of the forget gate
falls between 0 and 1. The input gate and the candidate cell are
defined, respectively, as

it = σ
(
Wi ·

[
ht−1, xt

]
+ bi

)
(3)

and
C̃t = tanh

(
Wc ·

[
ht−1, xt

]
+ bc

)
(4)

where Wi, Wc, bi, and bc are learnable parameters. The cell state
is updated by

Ct = ft ∗ Ct−1 + it ∗ C̃t (5)

The preceding information is all forgotten if the forget gate
is 0, namely, ft = 0, all the information is born in mind if
ft = 1, and part are born if ft is more than 0 but less than 1.
Obviously, the forget gate determines how much memories for
preceding words are preserved. The input gate and the candidate
cell determine how much new information about the time step
is added to the cell state. The contribution of the time step t to
the cell state is nearly nothing if the second item in Equation (5)
is equal to 0. The hidden states are updated jointly by the cell
state and the output gate

ht = Ot ∗ tanh (Ct) (6)

where Ot denotes the output gate which is computed by

Ot = σ
(
Wo

[
ht−1, xt

]
+ bo

)
(7)

Compared with the traditional RNN, the LSTM solved
well long-term dependency issues by the cell state conveying
memory. To capture both directional dependencies between
words, the bidirectional LSTM was used here. Due to
its efficiency and effectiveness in sequence analysis, the
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FIGURE 2

Illustration of long short-term memory (LSTM) structure (Olah, 2015).

LSTM has been widely applied to the N6-methyladenosine
prediction (Chen et al., 2022), speech recognition (Sak
et al., 2015), continuous B-cell epitope prediction (Saha and
Raghava, 2006), N4-Acetylcytidine prediction (Zhang et al.,
2022), lysine succinylation identification (Huang et al., 2021),
sentiment analysis (Arras et al., 2017), and action recognition
(Du et al., 2015).

Capsule network
The capsule network is a newly developed neural network

in 2017 (Sabour et al., 2017). The capsule network is different
from the conventional neural network. The basic unit of the
capsule network is capsules which are defined as a set of neurons,
while the latter consists of neurons. The neuron is generally a
scalar value that represents a single pattern, while the capsules
are a multi-dimensional vector, being able to represent multi-
patterns. In addition, the capsule network is capable of capturing
links between different local properties (Jia and Meng, 2016; Xi
et al., 2017), which the convolution neural network (Shin et al.,
2016) fail to discover. At the heart of the capsule network lies the
dynamic routing as illustrated in Figure 3. vi was assumed to be
the capsules in the layer L, whose prediction vectors are defined
by

uj|i = Wijvi (8)

where Wij is a learnable matrix. The capsule sj in the layer L+1
denotes a weighted sum over the prediction vectors, which is
computed by

sj =
∑
i = 1

cijuj|i (9)

where cij is the coupling coefficient. The output of the capsule sj

is further activated by a non-linear "squashing" function so that
short vectors get shrunk to almost zero length and long vectors

get shrunk to a length slightly below 1.

aj =
||si||

1+ ||si||
2

si

||si||
(10)

The coupling coefficient represents the probability of two
capsules to the couple. The more consistent the two capsules,
the large the coupling coefficient. The coupling coefficient is
initialized as the log prior probabilities that the capsule j was
coupled to the capsule i.

cij =
exp

(
bij
)∑

k exp
(
bkj
) (11)

The prior probabilities are updated by the dynamic routing
algorithm

bij = bij + ajuj|i (12)

The dynamic routing algorithm is to iterate the Equations
(9) to (12).

ui = Wivi (13)

Metrics

For binary classification, there are four common metrics:
sensitivity (Sn), specificity (Sp), accuracy (Acc), and Matthews
correlation coefficient (MCC), which are defined by

Sensitivity = Sn =
TP

TP + FN
(14)

Specificity = Sp =
TN

TN + FP
(15)

Accuracy = Acc =
TP + TN

TP + TN + FP + FN
(16)

MCC =
TP × TN − FP × FN

√
(TP × FP)(TP + FN)(TN + FP)(TN + FN)

(17)
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FIGURE 3

Illustration of dynamic routing in the capsule network (Lee, 2018).

where TP and TN are the numbers of correctly predicted
positive and negative samples, respectively, as well as FP and
FN are the numbers of wrongly predicted positive and negative
samples, respectively. In addition, we also employed the receiver
operating characteristic (ROC) to evaluate performances. The
area under the ROC curve (AUC) lies between 0 and 1. The more
the AUC, the better the performance.

Results

There are two state-of-the-art methods for predicting TFs.
One is the deep learning-based method by Li et al. (2022),
which is called Li’s method, and another is the sequence feature-
based method by Liu et al. (2020), which is called Liu’s method.
To examine the Capsule_TF for efficiency and effectiveness in
identifying TFs, we compared it with these two methods by
the independent test. As shown in Table 1, the Capsule_TF
is completely superior to the two methods. The Capsule_TF

TABLE 1 Comparison with two states of the art methods in the
independent test.

Method Sn Sp Acc MCC AUC

Capsule_TF 0.9151 0.8490 0.8820 0.7658 0.9252

Li et al. (2022) 0.8868 0.8396 0.8663 0.7272 0.9130

Liu et al. (2020) 0.8019 0.8585 0.8302 0.6614 0.9116

The bold highlighted the best values.

increased the Sn by 0.0283 over Li’s and even 0.1132 over Liu’s.
The Capsule_TF increased MCC by 0.0386 over Li’s and even
0.1044 over Liu’s.

Discussion

Effect of position

The length of amino acid sequences varies with TFs. The
longest reached 4,834 amino acid residues, the shortest is only
51 residues, and each TFs have an average of 536 residues. It is
compulsory that the input is of the unified length in the machine

TABLE 2 Predictive performance of amino acid residues from
different positions.

Data Sn Sp Acc MCC AUC

Upstream_500 0.9151 0.8490 0.8820 0.7658 0.9252

Centre_500 0.8773 0.8679 0.8726 0.7453 0.9084

Downstream_500 0.9056 0.8396 0.8726 0.7469 0.9149

TABLE 3 Predictive performance of the method without capsule
network.

Method Sn Sp Acc MCC AUC

Non-Capsule 0.6320 0.8867 0.7594 0.5365 0.8120

With-Capsule 0.9151 0.8490 0.8820 0.7658 0.9252
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FIGURE 4

Principal component analysis (PCA) visualization about the different features: (A) PKx, (B) relative amino acid propensity, (C) physicochemical
characteristics, and (D) capsule network-based features. As seen in this image, orange represents non-TFs and blue represents TFs.

learning algorithm. We investigated the effects of the number
of amino acid residues at different positions on discriminating
TFs from non-TFs. We chose 500 amino acid residues at
the start, at the middle, and the end, respectively. As shown
in Table 2, their predictive performances are approximately
equivalent, meaning that positions have little effect. A potential
reason is that 500 amino acid residues might contain sufficient
information about TFs.

Contribution of capsule network

In comparison with Li’s method, the remarkable
characteristic of the Capsule_TF is to utilize the capsule
network. In order to investigate the contribution of the

capsule network to classifying TFs, we removed it. The
predictive performance after excluding the capsule network is
listed in Table 3. Obviously, all metrics except Sp. decreased
precipitously. Sn decreased from 0.9151 to 0.6320, Acc from
0.8820 to 0.7594, MCC from 0.7658 to 0.5365, and AUC from

TABLE 4 Performance comparison across different features by SVM.

Feature Sn Sp Acc MCC

PKx 0.5660 0.7452 0.6556 0.3164

Relative amino acid propensity 0.6792 0.7075 0.6933 0.3869

Physicochemical characteristics 0.5283 0.6981 0.6132 0.2297

Capsule network-based feature 0.9151 0.8396 0.8773 0.7568

The bold highlighted the best values.
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TABLE 5 Performance comparison across different features by
logistic regression.

Feature Sn Sp Acc MCC

Pkx 0.7075 0.5660 0.6368 0.2764

Relative amino acid propensity 0.5943 0.6509 0.6226 0.2457

Physicochemical characteristics 0.6981 0.5849 0.6415 0.2849

Capsule network-based feature 0.9245 0.7924 0.8584 0.7233

TABLE 6 Performance comparison across different features by linear
discriminant analysis (LDA).

Sn Sp Acc MCC

Pkx 0.6981 0.5094 0.6038 0.2113

Relative amino acid propensity 0.6321 0.5472 0.5896 0.1799

Physicochemical characteristics 0.7736 0.5189 0.6462 0.3024

Capsule network-based feature 0.8962 0.7830 0.8396 0.6836

0.9252 to 0.8120. The results indicated that the capsule network
contributed much to identifying TFs.

Comparison with feature-based
methods

The discriminative features provide a potential explanation
to distinguish between both classes of samples. We compared
three frequently used property-based features with the capsule
network-based features. Three property-based features are PKx,
relative amino acid propensity (RAA), and physicochemical
characteristics (Li et al., 2008, 2021; Zhang et al., 2019).
The output of the capsule layer was considered as the
capsule network-based feature. Figure 4 visualizes the first two
components of four types of features. The first two components
were computed by PCA (Yang et al., 2004). Obviously, the first
two components of the capsule network-based features are more
discriminative than those of the other three types of features.
We used the SVM (Noble, 2006) to compare the discriminative
abilities of these features. As shown in Table 4, the capsule
network-based feature is superior to the three property-based
features. We also compared the logistic regression and LDA
with the Capsule_TF. As listed in Tables 5, 6, the Capsule_TF
is superior to the logistic regression and the LDA, and the
capsule network-based features are superior to the conventional
representations.

The previous results indicated that the Capsule_TF
outperformed two state-of-the-art methods: Li’s method (Li
et al., 2022) and Liu’s method (Liu et al., 2020). Li’s method (Li
et al., 2022) is a Bi-LSTM-based method, while Capsule_TF not
only employed Bi-LSTM but also utilized a capsule network.
The inclusion of a capsule network effectively promoted the
representation of protein sequences of TFs. The ablation

experiments validated the contribution of the capsule network
to the identification of TFs (Table 3). Liu’s method (Liu et al.,
2020) is feature-based. We compared features extracted by
Capsule_TF with traditional sequence property-based features.
As shown in Figure 4 and Table 4, the capsule network-based
feature is more discriminative than the traditional sequence
property-based feature. Despite the Capsule_TF obtaining
superior performances over the state-of-the-art methods, there
were some limitations that need to be improved in the
feature. First, the consumption time in dynamic routing is
very large. Therefore, Capsule_TF is not suitable to deal with
large-scale datasets. Second, the interpretability of Capsule_TF
needs to be improved.

Web application

We realized the presented method into a web application
which is freely available.2 The web application is based on the
Django framework and utilized python and Tensorflow. The
web application is very easy for users to use. The first thing is for
the user to upload the predicted protein sequences in the FASTA
format to the textbox or the file to the web. Clicking the “submit”
button, users will obtain the results. The consuming time is
directly proportional to the number of protein sequences. In
addition, users could download the training and testing dataset
in the experiments.

Conclusion

The TFs are very influential in transcription regulation. It
is a challenging task to accurately recognize TFs at present.
We presented a capsule network-based method for identifying
TFs, which outperformed the state-of-the-art methods in the
experiments. The presented method benefits from the inclusion
of a capsule network, which captures a more informative
representation than the property-based method. We also
developed a web application that facilitated the detection of
TFs. The method and the web application are helpful to
identify TFs and to further explore their roles. The TFs play
typically regulating roles in gene expression by binding to
short DNA sequences. The roles of TFs depend on their
binding to DNA sequences. In the future, we hope to create an
effective and efficient method to recognize such binding and
interpret its mechanism from the semantics of both protein
and DNA sequences.

2 http://www.biolscience.cn/Capsule_TF/
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It is realized that the first intron plays a key role in regulating gene expression, 

and the interactions between the first introns and other introns must 

be related to the regulation of gene expression. In this paper, the sequences of 

mitochondrial ribosomal protein genes were selected as the samples, based 

on the Smith-Waterman method, the optimal matched segments between 

the first intron and the reverse complementary sequences of other introns 

of each gene were obtained, and the characteristics of the optimal matched 

segments were analyzed. The results showed that the lengths and the ranges 

of length distributions of the optimal matched segments are increased along 

with the evolution of eukaryotes. For the distributions of the optimal matched 

segments with different GC contents, the peak values are decreased along 

with the evolution of eukaryotes, but the corresponding GC content of the 

peak values are increased along with the evolution of eukaryotes, it means 

most introns of higher organisms interact with each other though weak bonds 

binding. By comparing the lengths and matching rates of optimal matched 

segments with those of siRNA and miRNA, it is found that some optimal 

matched segments may be related to non-coding RNA with special biological 

functions, just like siRNA and miRNA, they may play an important role in the 

process of gene expression and regulation. For the relative position of the 

optimal matched segments, the peaks of relative position distributions of 

optimal matched segments are increased during the evolution of eukaryotes, 

and the positions of the first two peaks exhibit significant conservatism.

KEYWORDS

local matched alignment, first intron, optimal matched segments, mitochondrial 
ribosomal protein genes, interaction

Introduction

An intron sequence is regarded as a kind of non-coding sequence of interrupted gene, 
and its functions are being discovered. A large number of studies have shown that intron 
can regulate gene expression as a kind of regulatory element (Palmiter et al., 1991; Li 
et  al., 2015; Abou et  al., 2020), for example, the heterologous introns can enhance 
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expression of transgenes in mice (Palmiter et al., 1991). In recent 
years, it has also been found that some introns can influence 
many stages of mRNA metabolism, including initial transcription 
of a gene, editing of pre-mRNA, and nuclear export, translation 
and decay of the mRNA (Bo et al., 2019). Furthermore, introns 
contain kinds of non-coding RNA such as microRNA and 
snoRNA (Mattick and Gagen, 2001), they also participate in the 
functional activities of a variety of non-coding RNA (Abou et al., 
2020). And it has shown that GC-AG introns are mainly 
associated with lncRNAs and are preferentially located in the 
first intron (Abou et al., 2020), additionally, many studies have 
shown that introns are closely related to various diseases 
(Sowalsky et  al., 2015; Malekkou et  al., 2020; Ong and 
Adusumalli, 2020), for example, a novel mutation deep within 
intron 7 of the GBA gene can cause Gaucher disease (Malekkou 
et al., 2020), and increased intron retention is associated with 
Alzheimer’s disease (Ong and Adusumalli, 2020), and metastatic 
castration-resistant prostate cancer is related to some non-coding 
RNA (Sowalsky et al., 2015).

The most basic and important interaction among bases is base 
matching, for example, the formation of a correct codon-
anticodon pair is essential to ensure efficiency and fidelity during 
translation, and circRNA formed by exon cyclization or intron 
cyclization contains long flanking introns with complementary 
repeats (Han et al., 2022). Besides, many studies indicated that 
intron complementary matching fragments are not only the cause 
of circular RNA, but also the potential factors for the complexity 
and diversity of gene expression at the transcriptional/post 
transcriptional level (Zhang et al., 2013, 2014; Jiao et al., 2021). 
Therefore, it is particularly important to study the circular 
matching problem of introns.

The first introns have gained increasing attentions in recent 
years because of their unique features that are located in close 
proximity to the transcription, and the distinct deposition of 
epigenetic marks and nucleosome density on the first intronic 
DNA sequence (Fu et al., 2022; Singh et al., 2022; Spijker et al., 
2022; Vosseberg et al., 2022), and it is realized that the first introns 
play a key role in several mechanisms regulating gene expression. 
We  determined that the matching features between the first 
introns and the corresponding reverse complementary sequences 
of other introns must provide many useful information.

The genome consists of an extremely complex network of 
interactions among functional elements, and its functions are 
achieved primarily through these interactions. We have known 
that a complete match between siRNA and targeted genes can lead 
to targeted genes silencing, and high but incomplete matching 
between miRNA and targeted genes can suppress gene expression. 
It means base matching is an important way for non-coding RNA 
to interact with targeted genes, intron as a kind of non-coding 
DNA is rich in eukaryote genomes, introns must interact with 
each other, and the interactions can be embodied by the modes of 
base matching. Based on this, in this work, the mitochondrial 
ribosomal protein gene sequences were selected as samples, the 
characteristics of the optimal matched segments between the first 
intron and the corresponding reverse complementary sequences 
of other introns were analyzed, and the variations of the 
characteristics along with the evolution of eukaryotes were studied.

Materials and methods

Datasets

All the sequences of mitochondrial ribosomal protein genes 
in the Ribosomal Protein Gene Database (RPG) were selected as 
our samples, they were from Homo sapiens, Mus musculus, Fugu 
rubripes, Drosophila melanogaster and Caenorhabditis elegans. 
Considering that the mitochondrial ribosomal protein gene has 
many advantages in biological research as a kind of housekeeping 
gene, they are involved in the key process of all protein translation 
and have very good evolutionary conservatism (Yoshihama et al., 
2002), thus forming a family of conservative genes. They exist 
widely in all eukaryotes, and their intron lengths and amounts 
have little difference in all eukaryotes. We  believe that more 
reliable and functional interactions among introns can be obtained 
by selecting these conserved genes. Information about the protein 
genes is given in Table 1.

Matching method

The intron sequences were obtained from the above gene 
sequences, then, they were transformed into their reverse 
complementary sequences except the first introns. Next, similar 
alignments were done by the local similarity matching software 
called Smith-Waterman.1 We adopt Ednafull matrix to similarity 
matching, and parameters chosen as follows, each Gap penalty is 
50.0, in the gap each extend penalty is 5.0, thus, we got the optimal 
similar segment between the first intron and corresponding 
reverse complementary sequences of other introns in each 
gene sequence.

1 http://mobyle.pasteur.fr/cgi-bin

TABLE 1 Mitochondrial ribosomal protein genes.

Species The amount 
of genes

The amount 
of introns

The amount 
of first 
introns

Homo sapiens 114 512 114

Mus musculus 79 351 79

Fugu rubripes 69 266 64

Drosophila 

melanogaster

75 118 66

Caenorhabditis 

elegans

74 251 71
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The optimal matching frequency

We calculated the length, GC content, matching rate of each 
optimal matched segment considering that they must provide the 
basic characteristics of the optimal matched segments, then 
divided the optimal matching segments into several groups, 
respectively, according to their lengths, GC contents or matching 
rates. And then calculated the frequencies of the optimal matched 
segments with different ranges of lengths, GC contents and 
matching rates, marked with FLm, FGCm, and Fmat respectively, they 
were defined as follows,
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Where, FLmi is the frequency of the optimal matched segments 
whose length are within the ith group, NLmi is the amount of the 
optimal matched segments in the ith group, and nL is the amount 
of the groups divided according to their lengths. FGCmj is the 
frequency of the optimal matched segments whose GC contents 
are within the jth group, NGCmj is the amount of the optimal 
matched segments in the jth group, and nGC is the amount of the 
groups divided according to their GC contents. Fmatk is the 
frequency of the optimal matched segments whose matching rate 
are within the kth group, Nmatk is the amount of the optimal 
matched segments in the kth group, and nmat is the amount of the 
groups divided according to their matching rates.

The lengths of the first introns in different gene sequences are 
different, we  standardized the first introns as sequences with 
100 bp length in order to conveniently compare the relative 
position distributions of the optimal matched segments. The 
method of length standardization as follows (Zhang et al., 2016a),
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Where, Li is the length of the ith first intron, Nij is the jth base site 
of the ith first intron, and nij is its relative position corresponding 
to the ith standardized first intron. In this way, the first introns are 
all transformed into 100 bp long sequences.

According to the base site of each optimal matching sequence 
on the first intron, each base site of the first intron is scored, if in 

the optimal matching region, base site is scored 1, but if not, it is 
scored 0, and the definition of matching score as follows (Zhang 
et al., 2016a),
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Where, fij is the score of the jth base site on the standardized ith 
first intron, nia and nib are the initiation base relative site and the 
termination base relative site of the optimal matched segments 
on the standardized ith first intron. Thus, for each optimal 
matching sequence, the first intron is transformed into a sequence 
consisted of 0 and 1. if there are m optimal matching sequences 
in a gene, we can obtain m sequences consisted of 0 and 1. On this 
basis, we divided the 100 sites of each number sequences into 10 
regions on average, the relative position frequency of the optimal 
matched segments on each site and in each region are defined 
as follows,
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Where, Frj is the relative position frequency of the optimal 
matched segments on the jth base site of the standardized first 
intron, Frk is the relative position frequency of the optimal 
matched segments in the kth region, fij is the score of jth base site 
on the standardized first intron, pka and pkb are the initiation base 
site and the termination base site of the kth region, Nia and Nib are 
the initiation base site and the termination base site of the optimal 
matched segments, and m is the total number of the optimal 
matched segments in the gene.

Results

The optimal matched segments between the first introns and 
the reverse complementary sequences of other introns in each 
mitochondrial ribonucleo protein gene of five species were 
counted, and the dataset of the optimal matched segments was 
established. Then, the lengths of the optimal matched segments of 
each species were counted, and the frequencies of the optimal 
matched segments with different ranges of lengths were calculated 
by formula (1). The GC contents of the optimal matched segments 
of each species were counted, and the frequencies of the optimal 
matched segments with different ranges of GC contents were 
calculated by formula (2). The matching rates of the optimal 
matched segments of each species were calculated, and the 
frequencies of the optimal matched segments with different ranges 
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of matching rates were calculated by formula (3). The first introns 
were standardized to sequences with 100 bp length, and their 
relative base positions were calculated according to formula (4), 
and then, according to the base sites of each optimal matching 
sequence on the first intron, each base site of the first intron is 
scored according to formula (5), based on this, the relative 
position frequency were calculated according to formula (6) and 
(7). On this basis, the characteristics of the optimal matched 
segments of five species were analyzed. The results are presented 
in Figure 1.

The length distributions of the optimal 
matched segments

The lengths of the optimal matched segments of five species 
are mainly concentrated at 10–50 bp, while some optimal matched 
segments of Homo sapiens, Mus musculus and Fugu rubripes are 
up to 100 bp in length, and the ratio of the optimal matched 
segments of Homo sapiens concentrating at 90–100 bp is up to 24.6 
percent. In addition, the length distribution of the optimal 
matched segments of Homo sapiens is similar to that of Mus 
musculus. The results showed that the optimal matched segments 
of high eukaryotes have a longer length and a wider length 
distribution than that of the low eukaryotes, and it means the 
length and the ranges of length distribution of the optimal 
matched segments are increased along with the evolution 
of eukaryotes.

The GC content distributions of the 
optimal matched segments

The distributions of GC content of the optimal matched 
segments of five species ranged from 0 to 0.9. And comparing the 
results of the five species, it is found that the peak values of FGCm 
are decreased along with the evolution of eukaryotes, but the 
corresponding GC content of the peak values are increased along 
with the evolution of eukaryotes.

The matching rate distributions of the 
optimal matched segments

As seen from the matching rate distributions of the optimal 
matched segments, most of the matching rates are distributed 
between 60% and 80%. Interestingly, studies showed that the 
matching rates between miRNA and target mRNA are distributed 
between 65% and 95% (Cui et al., 2010). Comparing the matching 
rate ranges of the optimal matched segments with that of siRNA 
or miRNA with target mRNA (Volpe et al., 2002; Lim et al., 2005; 
Cui et al., 2010; Zhang et al., 2016b), it is found that there is a high 
similarity between the optimal matched segments with the most 
probable matching rates and siRNA or miRNA, this also suggests 

these optimal matched segments may be  related to some 
non-coding RNAs with special biological functions, just like 
siRNA and miRNA, they may play an important role in the 
process of gene expression and regulation.

The relative position distributions of the 
optimal matched segments in the first 
introns

It can be seen from Figure 1 that the relative positions of the 
optimal matched segments vary with the different species. And 
the peaks with Fr values bigger than 10% are analyzed, the results 
showed that for Homo sapiens, there are 3 peaks with Fr values 
bigger than 10%, which are at 20–30 bp, 50–60 bp and 90–100 bp, 
and there is two peaks with Fr values bigger than 10%, which are 
at 20–30 bp and 50–60 bp for Mus musculus, 30–40 bp and 
60–70 bp for Fugu rubripes and Drosophila melanogaster, but for 
Caenorhabditis elegans, there is only one peak with Fr value bigger 
than 10%, which is at 70–80 bp. This also indicates that the relative 
position frequencies of the optimal matched segments are 
distinctively differences among the five different species, and the 
peaks of relative position distributions of optimal matched 
segments are increased along with the evolution of eukaryotes, but 
the positions of the first two peaks exhibit significant conservatism.

In order to further confirm the conservatism of the relative 
position distributions of optimal matched segments, Figure 2 was 
made according to the calculations by formula (6), which express 
the relative position frequencies with the base sites of the 
standardized first intron.

As we can see from Figure 2, the distributions do not accord 
with normal distribution, so, for the relative position frequency of 
the optimal matched segments on each site of the standardized 
first intron, the test for differences between any two species were 
performed by non-parametric test with level of significance 0.05 
using R software, the results are presented in Table 2.

It can be seen from Table 2 that the p-values between any two 
species are >0.05, it indicates that the differences between any two 
species were not statistically significant, means, in terms of the 
distributions on each site of the standardized first intron, the 
optimal matched segments exhibited high conservatism during 
species evolution. These results further confirmed the 
conservatism of the relative position distributions of optimal 
matched segments, which let us be sure that optimal matched 
segments are organized and functional sequences for each species.

Conclusion

We analyzed the matching features between the first intron 
and the reverse complementary sequences of other introns in each 
gene sequence, for the lengths of the optimal matched segments, 
we found the most probable lengths are distributed between 20 
and 30 bp, it can be seen from Figure 1, and we calculated the 
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ratios of the optimal matched segments whose lengths are between 
21 and 30 bp, they are 25%, 27%, 31%, 15%, and 26% in Homo 
sapiens, Mus musculus, Fugu rubripes, Drosophila melanogaster 
and Caenorhabditis elegans, respectively. Interestingly, we know 
that the siRNA, whose length is from 21 to 25 bp, guiding mRNA 
to silent by perfect complementarity with target mRNA (Volpe 
et al., 2002; Lim et al., 2005), and the miRNA, whose length is 

from 18 to 25 bp, restrains transcription and expression of target 
mRNA by different degree complementarity with target mRNA 
(Zhang et al., 2016a), the results indicate that the probable lengths 
of the optimal matched segments are remarkably similar to the 
lengths of siRNA and miRNA. For the matching rates of the 
optimal matched segments, we found that most of the matching 
rates are distributed between 60% and 80%, they are very 

A B C

D E F

G H I

FIGURE 1

The distributions of the optimal matching frequencies. (A) The length (Lm) distributions of the optimal matched segments. The values on the x-axis 
are the length ranges of groups divided according to lengths of the optimal matched segments, and those on the y-axis are the length frequency 
of the optimal matched segments. (B) The GC content (CGCm) distributions of the optimal matched segments. The values on the x-axis are GC 
content ranges of groups divided according to GC contents of the optimal matched segments, and those on the y-axis are the GC content 
frequencies of the optimal matched segments. (C) The matching rate (fmat) distributions of the optimal matched segment of five species. The 
values on the x-axis are matching rate ranges of groups divided according to matching rates of the optimal matched segments, and those on the 
y-axis are the matching rate frequencies of the optimal matched segments. (D–H) The relative position distributions of the optimal matched 
segments on the first intron sequences. The values on the x-axis are relative position ranges of groups divided according to relative positions of 
the optimal matched segments, and those on the y-axis are the relative position frequencies of the optimal matched segments. (D) Homo sapiens, 
(E) Mus musculus, (F) Fugu rubripes, (G) Drosophila melanogaster, (H) Caenorhabditis elegans. (I) The length (Lm) distributions of the optimal 
matched segments of 5 species. The calculations of the optimal matched segment lengths of 5 species are combined into one, the optimal 
matching segments were divided into several groups according to their lengths, the frequency of the optimal matched segments in each group 
was calculated, the values on the x-axis are the length ranges of groups, and those on the y-axis are the length frequency of the optimal matched 
segments.
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remarkably similar to the matching rate ranges with target mRNA 
of siRNA or miRNA. It means there is a high similarity between 
some optimal matched segments and siRNA or miRNA. Is this a 
coincidence? we do not think so. The basic interaction between 
introns is base complementary pairing, the matched sequences, 
especially between the first intron and corresponding 

complementary sequences of other introns in the same gene, must 
be related to some elements with special functions. Taking all the 
analyzes and conclusions above into account, we  come to a 
conclusion that some optimal matched segments may be a kind of 
non-coding RNA with special biological functions, just like siRNA 
and miRNA, they are likely to participate in the process of gene 
expression and regulation. And we think, the optimal matched 
segments with special characteristics in the first introns may take 
part in regulating gene expression by RNA matching competition 
with other introns or exon.

In addition, we have got some interesting results by comparing 
the results of different species. In terms of the species selected in 
this work, Caenorhabditis elegans, Drosophila melanogaster, Fugu 
rubripes, Mus musculus, and Homo sapiens are listed from lower 
eukaryotes to higher eukaryotes. Based on this order and the 
calculations, we tried to analyze the variation law of matching 
features of introns along with the species evolution. For the 
lengths of the optimal matched segments, the average length of the 
optimal matched segments for the high eukaryotes are longer than 
that of the low eukaryotes. It suggests that the lengths of the 
optimal matched segments are increased in the evolution of 
eukaryotes. And the results showed that with the evolution of 
eukaryotes, the distributions of the length of the optimal matched 
segment become wider and wider. It means the lengths and the 
ranges of length distributions of the optimal matched segments 
are increased along with the evolution of eukaryotes. For the GC 
content of the optimal matched segments, the peak values of FGCm 
are decreased along with the evolution of eukaryotes, it suggests 

A B

D E

C

FIGURE 2

(A–E) The distribution of the relative position frequencies with the base sites of the standardized first intron.

TABLE 2 Results of the test for differences of relative position 
frequency of the optimal matched segments on each site of the 
standardized first intron.

Species Value of p Species Value of p

Homo sapiens-Mus 

musculus

0.54 Mus musculus-

Drosophila 

melanogaster

0.30

Homo sapiens-Fugu 

rubripes

0.40 Mus musculus-

Caenorhabditis 

elegans

0.33

Homo sapiens-

Drosophila 

melanogaster

0.66 Fugu rubripes-

Drosophila 

melanogaster

0.91

Homo sapiens-

Caenorhabditis 

elegans

0.52 Fugu rubripes-

Caenorhabditis 

elegans

0.68

Mus musculus-Fugu 

rubripes

0.10 Drosophila 

melanogaster-

Caenorhabditis 

elegans

0.64
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the GC contents of the optimal matched segments are more widely 
distributed with the evolution of eukaryotes. If some functional 
elements are related to the optimal matched segments with special 
GC contents, the result means that higher organisms have more 
kinds of functional elements than lower organisms. But the 
corresponding GC content at the peak values are increased along 
with the evolution of eukaryotes. Both AT and GC basepairs form 
one set of hydrogen bonds, and it is a truth universally 
acknowledged that a GC base pair has three hydrogen bonds 
whereas AT has two, it means that DNA with high GC-content is 
more stable than DNA with low GC-content. Based on the above 
theories, it can be concluded that introns of higher organisms 
interacting with each other though weak bonds binding are more 
than that of lower organisms, we hypothesized that interactions 
through weak bonds can ensure the flexibility to take part in gene 
regulation. For the relative position of the optimal matched 
segments, the peaks of relative position distributions of optimal 
matched segments are increased with the evolution of eukaryotes, 
and the positions of the first two peaks exhibit significant 
conservatism. We think that some functional elements are related 
to the optimal matched segments at these proper positions, the 
results indicated that these elements of higher eukaryotes may 
have a more specific division of labor.

To conclude, in this work, we  analyzed the possibility of 
interactions between the first introns and the other introns of 
mitochondrial ribosomal protein genes, then tried to interpret the 
modes of interactions between introns. We found some universal 
characteristics of the optimal matched segments between the first 
introns and the reverse complementary sequences of other 
introns, and we noticed there is a high similarity between some 
optimal matched segments and siRNA or miRNA, so, we believe 
that the characteristics of interactions among introns obtained in 
this work are the basic characteristics of the RNA–RNA 
interactions. It means the optimal matched segments are probably 
functional non-coding RNAs including siRNA and miRNA. At the 
same time, we found some variation law of the optimal matched 
segments with the evolution of eukaryotes, which indicates that 
there may be a great difference in the complexity of the interactions 
of introns among species at different evolutionary levels, these 
results are of great significance in explaining the function of 
non-coding RNA. An increasing number of people are realizing 
the importance of non-coding RNA in gene expression regulating, 
but the functions and regulating mechanisms are not very clear, 
our results indicate that the base matching plays a key role in the 

interactions among introns. However, the related works have just 
started, the sample size in this study is relatively small, further 
large-sample studies are needed to obtain more detailed and 
clearer mechanism of introns interactions.
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Studies have shown that post-spliced introns promote cell survival when nutrients
are scarce, and intron loss/gain can influence many stages of mRNA metabolism.
However, few approaches are currently available to study the correlation between
intron sequences and their corresponding mature mRNA sequences. Here, based
on the results of the improved Smith-Waterman local alignment-based algorithm
method (SWmethod) and binding free energy weighted local alignment algorithm
method (BFE method), the optimal matched segments between introns and their
corresponding mature mRNAs in Caenorhabditis elegans (C.elegans) and their
relative matching frequency (RF) distributions were obtained. The results showed
that although the distributions of relative matching frequencies on mRNAs
obtained by the BFE method were similar to the SW method, the interaction
intensity in 5’and 3’untranslated regions (UTRs) regions was weaker than the SW
method. The RF distributions in the exon-exon junction regions were comparable,
the effects of long and short introns on mRNA and on the five functional sites with
BFE method were similar to the SW method. However, the interaction intensity in
5’and 3’UTR regions with BFEmethodwas weaker thanwith SWmethod. Although
the matching rate and length distribution shape of the optimal matched fragment
were consistent with the SW method, an increase in length was observed. The
matching rates and the length of the optimal matched fragments were mainly in
the range of 60%–80% and 20-30bp, respectively. Although we found that there
were still matching preferences in the 5’and 3’UTR regions of themRNAs with BFE,
the matching intensities were significantly lower than the matching intensities
between introns and their corresponding mRNAs with SW method. Overall, our
findings suggest that the interaction between introns and mRNAs results from
synergism among different types of sequences during the evolutionary process.
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1 Introduction

The past decades have witnessed unprecedented medical
breakthroughs. In this respect, the decade-long human genome
project, ENCODE (Encyclopedia of DNA Elements) project
improved our understanding that the human genome is a
complex network system in which individual genes, regulatory
elements, and DNA sequences unrelated to coding proteins
interact in an overlapping manner to jointly control human
physiological activities (The ENCODE Project Consortium, 2007;
Zhang et al., 2007). The ENCODE project debunked the concept of
“junk DNA”, which refers to very small protein-coding genes that
are just one of many DNA elements with specific functions. It was
also found that 93% of the DNA in the human genome could be
transcribed into RNA, and many transcripts were non-coding RNA
that could interact with each other (Comeron, 2001; Mattick and
Gagen, 2001; Nott et al., 2003; Roy et al., 2003; Gabriel et al., 2005;
Gazave et al., 2007).

Intron sequences represent an important and special class of
ncRNA transcripts. They are transcribed together with mRNA and
spliced to form a relatively independent class of ncRNA. The
corresponding mature mRNA is the most important class of
transcripts for storing genetic information and performing
biological functions. According to the results of ENCODE
project, an interaction is present between these two types of
transcripts. Although it has been established that intron
sequences (especially post-spliced introns) are regulatory
elements with biological functions, their functions warrant
further systematic study and exploration.

Intron sequences are carriers of important functional elements.
It has been found that introns have many important biological
functions and actively regulate gene expression. Six definite
functions of spliceosome introns have been documented
(Fedorova and Fedorov, 2003). Over the years, it has been shown
that intron sequences are the vectors of important eukaryotic
elements and play important biological functions in eukaryotic
gene expression.

Intron loss/gain can affect many stages of mRNA metabolism.
The gain and loss of intronic genes can affect the evolution of
eukaryotes (Duret, 2001; Maquat and Carmichael, 2001; Jeffares
et al., 2006; Nguyen et al., 2006; Roy and Hartl, 2006; Fawcett et al.,
2011; Landen et al., 2022). Many experiments have found that
introns play important roles in mRNA metabolism, such as
transcription, splicing, nuclear transport and translation, as well
as in regulating or maintaining the dynamic structure of mRNA (Le
Hir et al., 2003; Elmonir et al., 2010; He et al., 2010; MariatiHo et al.,
2010). At the transcription level, introns in many genes can
significantly improve their transcription efficiency (Alexander
et al., 2010; Akaike et al., 2011). In mice, the transcription levels
of transgenes containing introns are 10–100-fold higher than those
without introns (McKenzie and Brennan, 1996). It has been
established that at the level of mRNA editing, introns are directly
involved in splicing and contribute to synthesizing the 5’cap and
3’tail of the mRNA. An increasing body of evidence suggests that the
cap structure can promote splicing and enhance the excision of its
proximal first intron (Komarnitsky et al., 2000; Lewis and Izaurflde,
2004). During mRNA nuclear export, intron splicing is directly
related tomRNA export (Le Hir et al., 2000; Gatfield et al., 2001; Kim

et al., 2001; Lykke-Andersen et al., 2001). Early experiments have
shown that mRNAs transcribed from cDNA cannot exit the nucleus
and thus cannot express proteins, whereas mRNAs containing
introns can exit the nucleus and express proteins (Ryu and
Mertz, 1989; Rafiq et al., 1997). Besides, there is a growing
consensus that introns can also affect the translation efficiency of
mRNA (Torrado et al., 2009; Li and Pintel, 2012; Rocchi et al., 2012).
Interestingly, Braddock et al. found that when a mature mRNA was
injected directly into Xenopus oocytes, its translation was inhibited.
This effect could be abolished by adding a spliceable intron to the
3’UTR of the gene or by injecting the FRGY2 antibody into the
cytoplasm (Braddock et al., 1994). Indeed, intron deletion/gain can
regulate gene expression at many stages of mRNA metabolism.

Introns can promote cell survival under stress. It is well-
established that introns can regulate the survival and apoptosis of
biological cells at the cellular level. In 2019, two research groups by
Parenteau and Morgan found that yeast cells lack essential nutrients
during the growth phase. Intriguingly, introns could accumulate by
forming pre-mRNA (the Parenteau research group used pre-mRNA
to judge the role of introns) or post-spliced intron (the Morgan
research group used post-spliced) intron defines the function of
introns) to adjust the rate of cell growth to adapt to this changing
environment (Combs et al., 2006; Parenteau et al., 2008; Munding
et al., 2013; Wanichthanarak et al., 2015; Awad et al., 2017;
Venkataramanan et al., 2017; Wan et al., 2017; Morgan et al.,
2019; Parenteau et al., 2019), thereby helping its survival. Results
of these studies indicate that the huge family of intron sequences
may have many potential functions and unknown binding ways,
which warrant further exploration.

The use of binding free energy is an important means of
studying RNA-RNA interactions. Based on the binding free
energy principle, relative binding free energy calculation
represents an effective means to study the interaction between
biological macromolecules. During the analysis of the expression
of coding RNA and the function of non-coding RNA, the
minimum binding free energy method is used to predict its
structure and further infer its close association, It has been
established that 40%–70% of the known base pairs of RNA
below 700bp can be correctly predicted (Deigan et al., 2009).
The method of calculating free energy is also widely used in
protein folding (Jackson, 1998; Schaefer et al., 1998; Selkoe,
2003), protein structure prediction (Bower et al., 1997; Zhang
and Skolnick, 2005; Faraggi et al., 2009), molecular docking (Woo
and Roux, 2005; Woo, 2008; Mitomo et al., 2009; Hay and
Scrutton, 2012), and analysis of the interaction between
biological macromolecules (Tollenaere, 1996; Anderson, 2003;
Manke et al., 2003; Thomas et al., 2003; Gao et al., 2004; Martin
and MacNeill, 2004; Prathipati et al., 2007). Introns and mRNAs
are two types of RNA sequences. The binding free energy
principle represents an important way to calculate the
sequence interaction (mutual matching).

Based on the Smith-Waterman local alignment method, Li Hong
et al. documented interactions between spliced introns and
corresponding mRNA/CDS, and the distribution of their
preferred interaction regions was universal among species. Since
there are obvious differences in the binding free energies of base-
base (A-T, C-G) during sequence matching, it is essential to fully
consider these differences in binding free energies and to further
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study the matching association between introns and mRNA
sequences from the perspective of thermodynamic stability.

Herein, the protein-coding genes in the genome of C. elegans
were analyzed. The local high-throughput combined with free
energy weighted local alignment method was used to perform
local matching analysis of introns and mRNA sequences, to
characterize the distribution of preferred regions of intron-
associated fragments on mRNA sequences and near functional
sites, and to analyze the sequence structure characteristics. We
identified the putative biological functions of spliced introns and
revealed the evolutionary relationship between introns and
corresponding mRNA sequences, which lays the groundwork for
exploring the potential biological functions of spliced introns and
other ncRNAs.

2 Materials and methods

2.1 The gene sequences

The C. elegans genome and its annotation information were
downloaded from the Beijing Multi Subnet of Gene Bank (ftp://ftp.
cbi. pku.edu.cn/pub/database/genomes). The protein-coding genes
of the C. elegans genome were selected as our dataset. In this dataset,
the genes which contain ncRNAs and/or repetitive elements were
excluded first. Next, the genes whose intron lengths are shorter than
40 bp were removed because the 5’splice region (about 8bp) and
3’splice region contain a pyrimidine-rich layer (about 30bp) of
introns and functional regions conserved over evolutionary time
(Petrov, 2002), and introns below 40 bp do not play other roles.
Finally, after genes associated with alternative splicing were
excluded, we obtained the C. elegans genome consisting of
5736 genes and 24312 introns.

2.2 Matched alignment

If interactions were found between introns and their mRNAs,
there were positively matched segment pairs between introns and
their mRNAs and vice versa. The potential interaction between
introns and their mRNAs can be represented by the optimal

matched segments (OMS). To obtain the OMS, the introns were
first transformed into their complementary sequences. Next, the
mRNAs were renamed as tested sequences and the complementary
sequences of introns were renamed as aligned sequences; the
assessment of similarity between different alignments was
performed using an improved Smith-Waterman local alignment
software (http://mobyle. pasteur. fr/cgi-bin/). Finally, the optimal
similarity segments of the introns were transformed again into their
complementary segments, which were the OMSs in the introns.
During the similarity aligning process, the Ednafull matrix was used
to calculate the OMS using the following parameters: 50.0 for the gap
open penalty and 5.0 for the gap extension penalty.

Accordingly, an objective optimal matched segment of a tested
sequence and its aligned sequence could be obtained. The local
alignment sketch map is shown in Figure 1.

The method based on the weighted comparison of binding
free energy involves maximizing the number of hydrogen bonds
and predicting the minimum free energy structure according to
the negative correlation between the number of hydrogen bonds
and the free energy (Zuker and Sankoff, 1984). The effect of base
stacking force is not considered for the time being. Suppose the
energy obtained by combining A-T/T-A base pair is EA-T/T-A,
and the energy obtained by the G-C/C-G base pair is EG-C/C-G,
then EA-T/T-A/EGC/CG ≈ 2:3. Due to the different release
energy between A-T/T-A base pair and G-C/C-G base pair. In
that case, different weights were assigned to them in the specific
alignment process. The following principles were adopted during
the matching process: If the base pair was correct, +3.0 would be
awarded. +2.0 would be added if the base pair was A-T/T-A. If the
base pair was G-C/C-G, it increased by +3.0. In this way, A
correct matching of base pairs A-T/T-A yields +5.0 and a correct
matching of base pairs G-C/C-G yields +6.0. If the base pairing
was wrong, the penalty was −4.0. In this paper, the Ednafull
matrix was still used to calculate The optimal matched fragments
between the intron sequence and its corresponding mRNA
sequence by using the binding free energy weighted local
alignment method, and the selected parameters were as
follows: The gap open penalty was −50.0 and the gap
extension penalty was −5.0 for each base site. Finally, an
optimal local matching fragment was obtained with the
highest probability of interaction between the two sequences.

Definition 1: Sequence length normalization
Due to the different lengths of the tested sequences, they were

normalized into 100 to obtain the relative site distributions using the
following method.

The relative base site (k) of the jth base site in the tested
sequence is

k �
100
L

( )*j[ ] 100
L

( )*j is integer

100
L

( )*j[ ] + 1
100
L

( )*j is non − integer

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (1)

Where, j means the jth base site of the tested sequence, L is the length
of the tested sequence. The square brackets are gauss integer
functions which mean to take integer part of a real number.
Thus, the different lengths of the tested sequences were
normalized to 100.

FIGURE 1
One optimal matching segment pair between introns sequence
and corresponding mRNA sequence. (A) One optimal local alignment
of fragment. cIntron10 represents complementary fragment of
intron10. (B) Authentic matching alignment.
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Definition 2: matched score function
For a tested sequence, the matched score function (fk) is

fk � 1 ks ≤ k≤ ke
0 kπks or kϕke{ (2)

Where, and represent the start base site and the end base site of the
optimal matched segment in the normalized tested sequence. The
effective value 1 is assigned to each base site within the optimal
matched segment, while the ineffective value 0 is assigned to the base
sites outside the optimal matched segment. Accordingly, the
matched score values are assigned to each base site in the
normalized tested sequences.

Definition 3: matched frequency
For the tested sequences, matched frequency function (F) is

F � 1
N

∑N
i�1
fik (3)

Where, i means the ith tested sequence, N means the number of the
tested sequence. F reflects the interacting probability or the potential
interaction intensity in the kth relative base site of the normalized
tested sequences between the tested and aligned sequences.

Definition 4: average matched frequency
The average matched frequency function (<F>) for each base

site is

〈F〉 � 1
N

∑N
i�1

li
Li

(4)

Where, li is the length of the optimal matched segment for the ith
tested sequence. Li is the length of the ith tested sequence. For our
normalized tested sequences, Li = 100. The <F> indicates the
average matched frequency of the N-tested sequences, and it is a
constant value for each tested set.

Definition 5: relative matched frequency
The relative matched frequency function (RF) of the kth base site

in N tested sequence is

RF � F

〈F〉 (5)

Where, RF reflects the relative bias of each base site in the N-tested
sequences. If RF > 1, it indicates that the interaction in the kth base
site is preferred, and the regions with RF > 1 are termed optimal
matched regions (OMR). RF = 1 represents an average matched
frequency of base sites for tested sequences.

2.3 Information entropy analysis

Information entropy can be used to characterize the
organizational nature of a sequence. Second-order
informational redundancy D2 is a suitable parameter to
describe the adjacent base correlation of the sequence (Luo
and Li, 1991; Li, 1990).

For an analyzed sequence, the second-order informational
redundancy D2 is defined as:

D2 � ∑pijlog2 pij/pipj
( ) ≈ 1/2 ln 2∑ pij − pipj( )2/pipj

(6)

Where pi or pj is the probability of the base i or j (i, j = A, C, G,
U), and pij is the joint probability of the base pair ij in the sequence.
A bigger D2 value means that the base correlation is stronger. For a
finite sequence of length N, the fluctuation bound (f.b.) of D2 is D2
(f.b.) = 15.65/N (Luo and Li, 1991; Luo, 2004). When D2≥15.65/N,
the neighboring bases occur not independently and the correlation
does exist at 99% confidence level. Generally, D2≥0. For infinite
random sequences, D2 = 0.

3 Results and discussion

3.1 Matched alignment between mature
mRNAs and their introns

The relative matched frequency distribution (RF) on the mRNA
sequence was assessed using the binding free energy weighted local
alignment method and denoted as BFE-mRNA distribution. For the
control, the relative matched frequency distribution on the mRNA
sequence was assessed using the improved Smith-Waterman local
alignment method and denoted as SW-mRNA distribution. The
intron sequence was taken as the comparison sequence, and the
corresponding mRNA sequence was taken as the test sequence. The
optimal matched fragment between the two types of sequences was
obtained using the binding free energy weighted local alignment
method. Finally, the optimal matched frequency distribution on the
BFE-mRNA sequence was obtained (Figure 2).

The results showed that the relative matched frequency (RF)
distribution on the BFE-mRNA sequence was similar to the SW-
mRNA sequence, and there were two preferred regions at the 5’and

FIGURE 2
Relative Frequency (RF) distributions of mRNA. SW-mRNAmeans
the RF value came from the base matching local alignment method.
BFE-mRNA means the RF value came from the binding free energy
weighted local alignment method. CC-Random means the local
alignment were done between the component constraint random
mRNA and their own component constraint random introns. Average
value (RF = 1) means the theoretical average value of relative matched
frequencies.
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3’ends of mRNAs (Appendix A:Supporting Information S1). The
first region was located at about 5%–12% of the 5’end of the mRNA,
and its peak value was about 1.05. The second region was located
between 80% and 98% of the 3‘end of the mRNA, and its peak value
was almost 2.0. The relative matched frequency of the 12%–80%
region in the middle of the mRNA sequence was relatively low,
slightly lower than the theoretical average, and its RF value
fluctuated between 0.8 and 0.9. Compared with the CC-Random
group (Appendix A:Supporting Information S2), The relative
matched frequency (RF) of the BFE-mRNA sequence was more
obvious in these two regions, and the difference in RF at the 3’end
was highly significant (t-test, p < 0.00002).

Compared with SW-mRNA (Appendix A:Supporting
Information S3), the preference of the relative matched frequency
of the BFE-mRNA sequence was relatively weak at the 5’end region,
exhibiting only one peak, which shifted slightly downstream.
Although the distribution width of the preferred peak area at the
3’end remained unchanged, its peak value was only 1/2 that of the
SW method and the difference was highly significant (t-test, p <
0.00003). The optimal relative matching frequency of the middle
region was higher than the SW method, and it was significantly
different from the CDS region (t-test, p < 0.00001) since the binding
free energy weighted local alignment algorithm makes the optimal
matched fragment combine with CDS with high G + C content.

The improved Smith-Waterman local alignment method and
the binding free energy weighted local alignment method were used
to describe the interaction between introns sequences and
corresponding mRNA sequences. Analysis of the relative
matched frequency distribution of mRNA sequence showed a
consistent distribution preference by the two types of method.
However, the regional difference in relative matched frequency
distribution obtained by the base matched method was more
obvious. To carefully analyze the distribution characteristics of
each part of the mRNA sequence, The relative matched
frequency distribution rule of each functional site region was
studied next.

3.2 The distribution of relative matching
frequency in functional site regions

There are many regions within the transcript that have
regulatory functions, Such as translation initiation region,
translation termination region and exon-exon junction region.
The sequence of these functional domains plays a key role in the
accurate expression of eukaryotic protein-coding genes. Therefore, it
is necessary to explore the relative matched frequency of functional
site regions.

The sites for translation initiation, translation termination and
exon-exon junction are important functional regions of mRNA that
regulate gene translation. Besides, the sequence of these functional
regions is of great significance for the accurate expression of
eukaryotic protein-coding genes. In this paper, we selected
the ±60 bp regions of the translation start site (AUG), translation
termination site (UAA) and exon-exon junction site (EE), which
were denoted as AUG regions, UAA regions and EE regions,
respectively, to analyze the relative matched frequency
distribution of these regions by the BFE method, andcompared

with that obtained by the SW method. (Castillo-Davis et al., 2002).
Showed a close correlation between intron length and efficient gene
expression. Halligan and Keightley et al. (Halligan and Keightley,
2006). Showed that long introns (>80bp) and short intron (&80bp)
distributions were significantly different. Therefore, we used 80bp as
the threshold to distinguish between short and long introns.

Next, the introns were divided into three groups: An intron
group, a long intron group and a short intron group named as
intron, long intron and short intron, respectively. We compared and
analyzed the overall differential characteristics of introns and the
interactions between long and short introns with mRNA near
functional sites. After obtaining The optimal matched fragment
on the mRNA sequence, the distribution of the matched rate on the
corresponding region was obtained by taking each functional site as
the origin of the coordinate without length normalization.

3.2.1 Relative matched frequency distribution of
AUG and UAA regions

Analysis of the relative matched frequency distribution of
translation initiation and termination regions was conducted to
verify whether the matching preference region at both ends of the
BFE-mRNA sequence is located in the UTR region. To avoid a
boundary effect during comparison, mRNA sequences with 5‘UTR
of less than 50bp and 3’UTR of less than 80bp were eliminated.
Taking the first base of the translation start codon and translation
stop codon as the coordinate origin, the relative matched frequency
distribution characteristics of the translation start region and
translation stop region were obtained (Figure 3).

As shown in Figure 3A, the peak distribution of mRNA was
found at the 5’UTR and 3’UTR regions. The relative matched
frequency at the 5’end gradually increased from −28bp of the
AUG site and peaked at −10bp (RF = 1.3), then decreased to an
average value of 10bp (RF = 1.0). Overall, The optimal matched
fragments with introns ranged from −28bp to 10bp. The matched
frequency of short introns in the AUG region was significantly
higher than long introns, suggesting that short introns preferred
interacting with the AUG region.

In the UAA region, the relative matched frequency distribution
was significantly different from the AUG region (Figure 3B).
From −28 bp of the UAA site, the relative matched frequency
increased rapidly, the RF value reached 2.8 at the UAA site,
peaked at about 28bp (RF = 3.8), and then gradually decreased,
but the RF value remained high. In the 3’UTR region, it suggested
that the interaction region is longer and much stronger than in the
5’UTR region. In addition, in the 3‘UTR region, the interaction
intensity of long introns was significantly higher than short introns,
which is opposite to the AUG region, suggesting that long introns
preferred to interact with the UAA region.

The results obtained by the base matching method (SWmethod)
and the binding free energy weighted method (BFE method) were
compared in the AUG and UAA region (Figures 4, 5).

Compared with the base matching method (SW method), the
optimal matching frequency distribution trend of the AUG and
UAA regions obtained by the binding free energy weighted methe
binding free energy weighted local alignment method (BFE method)
was similar. In the AUG region, The relative matched frequency
distribution of both the whole intron group and the short intron
group was slightly lower than that obtained by the base matching
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method (Figure 4), and the difference was more significant near
the −10bp region of the AUG site. For long introns, the distribution
was almost the same. In the UAA region, The relative matched
frequency of the whole intron and long intron was significantly
lower than the SW-mRNA group. Moreover, there was no
significant difference in the distribution of short introns (Figure 5).

The analysis results of the two representative interactions
indicated a significant preference for intron-mRNA interaction in
the UTR region, especially in the 3’UTR region. Short and long
introns preferentially acted in the 5’and 3’UTR region, respectively.

3.2.2 Relative matched frequency distribution in EE
region

The EE region is divided into three groups: The first exon
connection region, the intermediate exon connection region and

the last exon connection region, composed of the corresponding
exon connection site ±60 bp region. The relative matched frequency
distribution was obtained by the binding free energy weighted local
alignment method (BFE method), as shown in Figure 6.

The relative matched frequency distribution of EE regions in the
three groups was similar. The relative matched frequency of the
upstream region of the exon-exon junction site was higher than the
downstream region. The difference was more significant in the first
and last exon regions and least significant in the middle exon region.
The minimum values of the distributions occurred 30bp
downstream of the first exon connection point, while it is about
15bp downstream of the last exon connection point. However, there
was no obvious difference in the minimum values of the
distributions at the middle exon-exon junction. It was also found
that the relative matched frequency of short introns was higher than

FIGURE 3
Relative Frequency (RF) distributions on AUG region (A) and UAA region (B) of mRNA. The RF distributions related long introns and short introns are
also presented in the figure.

FIGURE 4
Comparations of Relative Frequency (RF) distributions between SW method and BFE method on AUG regions. (A) The total introns, (B) the long
introns and (C) the short introns.
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long introns in all three EE regions. Based on the findings of previous
studies, we hypothesized that the region with low relative matched
frequency might be the protein factor binding region.

We next compared the matched frequency distribution
characteristics of the exon-exon junction regions of the mRNA
group based on between the improved Smith-Waterman local
alignment method and the binding free energy weighted local
alignment method (BFE method). The mRNA group based on
the improved Smith-Waterman local alignment method was used
as the control group. The distribution of the optimal matched
frequencies of the whole intron, long intron, and short intron
groups on exon junction regions on mRNA based on the binding
free energy weighted local alignment method was compared with
that of the SW method group. The results were showed in
Figures 7–9.

The optimal matched frequency distribution trend of the OMF
in the junction region on the mRNA sequence (which is of the

corresponding mRNA sequences and the intron sequences) based
on the binding free energy weighted local alignment method was
comparable to the SWmethod. In the exon-exon junction regions of
the first, last and intermediate exons, although the weighted
matched frequency distribution of the whole intron, long intron
and short intron groups were slightly higher than the SW method
(Figures 7–9), there was no significant difference between them.

These results indicated that the distribution of the matched
frequency of exon junction regions obtained by SWmethod and BFE
method is conservative. The matched frequency values of the exon-
exon junction regions obtained by the BFE method were larger than
those obtained by the SW method, which was caused by the
tendency of the binding free energy weighted local alignment
algorithm to combine the optimal matched fragment with CDS
with high G + C content. The binding preference of intron sequence
(especially short introns) and exon connection sites upstream
regions suggests a preferred interaction between the intron

FIGURE 5
Comparations of Relative Frequency (RF) distributions between SW method and BFE method on UAA regions. (A) The total introns, (B) the long
introns and (C) the short introns.

FIGURE 6
Relative Frequency (RF) distributions on the exon-exon junction (EE) regions of the mRNA. (A) The first EE regions, (B) the middle EE regions, (C) the
last EE regions. The RF distributions related long introns and short introns are also presented in the figure.
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FIGURE 7
Comparations of Relative Frequency (RF) distributions between SWmethod and BFEmethod on the first EE regions. (A) the total introns, (B) the long
introns,(C) the short introns.

FIGURE 8
Comparations of Relative Frequency (RF) distributions between SWmethod and BFE method on the middle EE regions. (A) the total introns, (B) the
long introns,(C) the short introns.

FIGURE 9
Comparations of Relative Frequency (RF) distributions between SWmethod and BFEmethod on the last EE regions. (A) the total introns, (B) the long
introns, (C) the short introns.
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sequence and the exon-exon junction region of the mRNA sequence.
Besides, the process of short introns is more advantageous, which
may be attributed to the fact that the biological function of short
introns is mainly related to mRNA splicing or alternative splicing.
These interesting results are worth thinking about.

3.3 Sequence characteristics of the optimal
matched fragments

We calculated four sequence features of the optimal matched
fragment pairs based on the BFE method, including the match rate
distribution, length distribution, G +C content distribution and base
association (D2 value). The results were compared with those
obtained by the SW method.

3.3.1 The distribution of match rate and length
The match rate distribution of the optimal matched fragment of

intron obtained by the BFE method is shown in Figure 10A. The
distribution of the match rate of the optimal matched fragment
obtained by the two methods was very similar, except that the
distribution curves have relatively small fluctuations. The length
distribution of the optimal matched fragment of intron obtained by
the BFE method is shown in Figure 10B.

The functional fragments representing the interaction between
introns and mRNA are a class of functional fragments similar to
miRNA, and their match rate and the most length should be similar
to miRNA fragments. The length of functional segments of siRNA was
very conserved, ranging from 21 to 23 bp, while that of miRNA ranged
from 18 to 25 bp. Themost length of the optimal matching fragment by
SW method was 23bp, and its characteristics were similar to miRNA
fragments. However, the biologically roles of the interaction between
introns andmRNA should be differ from the biologically roles of siRNA
and miRNA, we believe that the biologically roles of the interaction
between introns and mRNA should be protected mRNA from
degradation and be beneficial to transport of mRNA from nucleus
to cytoplasm. The interaction strength of between introns and mRNA

should be weaker than siRNA and miRNA, and the lengths of the
optimal matched segments (OMS) should be longer than siRNA and
miRNA. Our results show that the maximum length obtained by BFE
method is 36bp, which is quite different frommiRNA fragment, and the
mated rate obtained by BFE method is lower than SW method and
siRNA and miRNA. So, the results by BFE method may have a
biological significance.

3.3.2 G + C content and D2 value
TheG+C content distribution of the optimalmatched fragment on

the introns by the BFEmethod is shown in Figure 10C. The distribution
range of G + C content in the optimal matched fragment of the BFE
method was consistent with the SWmethod, but the peak region of G +
C content was about 0.25, which moved toward high G + C content, it
increased 0.05 compared with the SW method. The reason for the
general increase in G + C content is caused by the fact that was the
preference for intron fragments with high G + C content during
selecting the optimal matched fragments by the binding free energy
weighted local alignment method.

Their D2 values are calculated by formula (6), and the results are
shown in Table 1. It can be found that the D2 value of the optimal
matched fragment was significantly higher than CDS, 5 and 3’UTR
sequences, it suggested the base association in the OMF was significantly
stronger than the other three types of sequences, with a strong sequence
structure. Besides, the D2 value of the optimal matched fragment by the
BFE method was about 20% lower than the SWmethod, indicating that
the formermethod can document the interaction between the intron and
mRNA sequences and characterize their interaction.

FIGURE 10
Distributions of the match rates (A), the length (B) of optimal matched segments. SW represents the result came from SW method and BFE
represents the result came from BFE method G + C content distributions (C) for CDS, 5, UTR, 3, UTR, optimal matched segments (SW method) and
optimal matched segments (BFE method).

TABLE 1 D 2 values of different sequences in Caenorhabditis elegans protein-
coding genes.

mRNA Intron

CDS 5, UTR 3, UTR OMS (SW) OMS (BFE)

D 2 0.029 0.032 0.036 0.066 0.053

Note: OMS indicates The optimal matched fragment of the introns.
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4 Conclusion

In the present study, the binding free energy weighted local
alignment algorithm method was used to obtain the optimal
matched fragment between the post-spliced intron and its
corresponding mRNA sequence, and the relative matched frequency
distribution on the mRNA and near the functional site. Our results
showed that the relativematched frequency distribution obtained by the
BFE method was similar to the SW method; there were the region of
preference at the UTR region at both ends of the mRNA sequence was
identified as a favorable region, especially in the 3’UTR region.
However, the suggestion of the combination show that was more in
favor of the optimal matched fragments with CDS with high G + C
content, which was the weaker interaction in the 5’and 3’UTR regions,
and higher in the middle CDS region than the SW method, when the
BFE method was applied.

Moreover, we found that the region of preference of theshort
introns in the 5’UTR region, and the long introns in the 3’UTR
region, which consistent with the SW method. Besides, the relative
matched frequency distribution in the exon connection region was
similar to the SWmethod. The interaction intensity of the upstream
connection point was greater than that of the downstream, and there
was a minimal relative matching frequency distribution of the
downstream of the first and last exon connection region, and the
interaction of short introns was stronger than long intron sequences.

The match rate distribution and the length distribution shape of
The optimal matched fragment were similar to the SW method,
although an increase in optimal matching fragment length was
observed. When the SW method was applied, the maximum value
length was 23bp, and an increase to 36bp was observed with the BFE
method. It was still broad (0.05–0.5) with the distribution range of the
content of G + C of the optimal matched fragment, but the maximum
value of the content of G + C by the SW and BFE methods was 0.2 and
0.25, respectively, which display the content of G + C by the BFE
method was generally higher. Although the base correlation of the
optimal matched fragment remained strong, it was slightly lower than
the D2 value in the SW method. These results substantiate that the
optimal matched fragment is a special sequence fragment with a highly
structured organization.

Overall, the BFEmethod and SWmethod yielded similar results.
However, it was the less intensity of the interaction between introns
and corresponding mRNA by the BFE method, the length of the
optimal matched fragements was longer, and the bases association
or sequence structure of the OMF was relatively weaker. Compared
with SW, the BFE method is more sensitive than the SWmethod for
representations the RNA-RNA interaction and can avoid the false
positives which may occur in SW method.

In conclusion, the BFE method and SW method yielded similar
results, the results obtained by the BFE method and SW method
were basically the same, indicated that the binding free energy
weighted local alignment method can be used to predict the
interaction between introns and their corresponding mRNAs.
According to the comparison of the matched frequency
distribution between introns and corresponding mRNA
sequences, the BFE method was more conducive to predict the
weak interaction between sequences with high G + C content. The
sequence characteristics of the optimal matched fragments obtained
by the BFE method implyed that the structures of sequence with

longer length, higher G + C content and looser sequence structure
are more likely to predict weak interactions between sequences with
higher GC content, compared with those calculated by the SW
method.

We advocate that using local base matching to characterize the
interaction between introns and mRNAs has huge prospects.
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Appendix A: Supplementary data to this
article

1. Instruction about the database. txt (Taking an example).

2. Supporting Information S1-for the optimal matched regions
located at UTR. txt.

3. Supporting Information S2-for CC-Random group. txt.
4. Supporting Information S3-for mRNA group. txt.
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novel feature descriptor and 
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Computer Engineering, Northeast Forestry University, Harbin, China, 3 Department of Neurology, The 
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The promoter is an important noncoding DNA regulatory element, which 
combines with RNA polymerase to activate the expression of downstream genes. In 
industry, artificial arginine is mainly synthesized by Corynebacterium glutamicum. 
Replication of specific promoter regions can increase arginine production. 
Therefore, it is necessary to accurately locate the promoter in C. glutamicum. In 
the wet experiment, promoter identification depends on sigma factors and DNA 
splicing technology, this is a laborious job. To quickly and conveniently identify 
the promoters in C. glutamicum, we have developed a method based on novel 
feature representation and feature selection to complete this task, describing 
the DNA sequences through statistical parameters of multiple physicochemical 
properties, filtering redundant features by combining analysis of variance and 
hierarchical clustering, the prediction accuracy of the which is as high as 91.6%, 
the sensitivity of 91.9% can effectively identify promoters, and the specificity of 
91.2% can accurately identify non-promoters. In addition, our model can correctly 
identify 181 promoters and 174 non-promoters among 400 independent samples, 
which proves that the developed prediction model has excellent robustness.

KEYWORDS

promoter, Corynebacterium glutamicum, physicochemical properties, analysis of 
variance, hierarchical clustering, feature selection, random forest

1. Introduction

Corynebacterium glutamicum is a prokaryote, which was first discovered in the 1950s (Sano, 
2009). It is mainly responsible for the production of L-glutamic acid and has played a huge 
potential in the production of amino acids in the industrial field. C. glutamicum is considered 
the best bio-manufacturing substrates by many countries because it can produce amino acids 
with few nutrients and sufficient capacity (Sun et al., 2011; Vertes et al., 2012). Considering the 
excellent characteristics of C. glutamicum, the genome has been modified to produce a variety 
of amino acids, organic acids, alcohols, and proteins through biological genetic technology 
(Okino et al., 2008; Hu et al., 2013). At the beginning of the 20th century, C. glutamicum first 
was published its complete genome sequence, named C. glutamicum ATCC 13032. The whole 
genome consists of a circular chromatin with a length of 3282708 bp, containing 3000 coding 
protein genes, and the ‘C + G’ content is 53.8% (Kalinowski et al., 2003). The complete genome 
sequencing of this species provides convenient conditions for gene editing and regulatory 
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analysis that can further improve the efficiency of C. glutamicum to 
produce amino acids (Barrangou and Horvath, 2017; Cho et al., 2017; 
Jiang et al., 2017; Huang et al., 2019). The above biotechnology mainly 
involves the knockout and inactivation of specific genes, and the key 
is to locate the starting site of genes and the promoter region of the 
target gene (Okino et al., 2008; Theron and Reid, 2011; Silar et al., 
2016). In Hebert et  al. (2018) and Shang et  al. (2018) designed a 
special promoter, which improved the expression level of sucCD and 
the production of L-lysine. Thus, it is very important to identify and 
locate the promoter of C. glutamicum.

The promoter, as a pivotal regulatory element, is responsible for 
activating the expression of target genes (Canzio et al., 2019; Xiao et al., 
2019; Jeon and Tucker-Kellogg, 2020). In preparation for gene expression, 
promoters are affected by macromolecular complexes that are produced 
by the combination of specific transcription factors and regulatory factors 
to complete the transcription from DNA to RNA (La Fleur et al., 2022; 
Liu et  al., 2022; Rengachari et  al., 2022). In industrial systems, the 
recognition of promoters of C. glutamicum requires the help of Sigma 
factors, which requires the support of gene isolation, polymerase chain 
reaction (PCR), and gene cloning techniques (Blumenstein et al., 2022; 
Stepanek et al., 2022). Although the wet lab methods described above can 
specifically identify promoters, they are time - and labor-consuming, and 
it is essential to develop a method-based calculating model to rapidly 
identify promoters. At present, models of promoter recognition already 
exist for many species (Silar et  al., 2016; Bharanikumar et  al., 2018; 
Leemans et al., 2019), but cannot be applied to Corynebacterium because 
of the large differences in homology between the species. Moreover, these 
models employed features that do not accurately describe the inherent 
properties of DNA sequences, resulting in poor overall prediction 
performance. For example, in the human promoter recognition task, Li 
et al. (2022b) used five feature descriptors to express DNA sequences, but 
the final prediction accuracy was only 80%. Hence, it is necessary to 
design a mathematical prediction model to accurately identify the 
promoter of C. glutamicum for the industrial production of amino acids.

Here, we  have collected promoter sequences that have been 
verified and annotated by experiments (Su et al., 2021), and designed 
a new feature expression method according to the distribution of 
multiple physical and chemical properties of sequence DNA. In 
addition, we have developed a novel feature selection method for 
redundant information between features. The proposed model has 
strong robustness by independent set verification.

2. Materials and methods

The following three conditions are indispensable to the excellent 
properties of the prediction model. First, building a rigorous and 
proven dataset. Second, designing the corresponding feature 
descriptor according to the inherent attributes of the sample and the 
specific distribution. Finally, selecting the machine learning algorithm 

that conforms to the regular pattern of descriptors. The flow of the 
whole method is drawn in Figure 1.

2.1. Benchmark dataset

To build a reasonable and interpretable dataset, the promoter of 
C. glutamicum selected comes from the PPD database that collected 
promoters of 63 eukaryotes, including 129,148 promoter sequences, each 
of which was confirmed by strict experiments (Su et al., 2021). Therefore, 
we take 3,581 promoters of C. glutamicum ATCC 13032 in the dataset as 
positive samples. Initially, we filter promoters with incomplete annotation 
information and the same starting site. Immediately, CD-HIT software 
was employed to reduce the sequence consisting of the filtered promoters 
to less than 0.6 (Li and Godzik, 2006; Huang et  al., 2010). Finally, 
we obtained 1,000 promoter sequences with a length of 81 bp. For the 
selection of negative sample non-promoters, we  downloaded the 
complete genome data from the GenBank database1, and randomly cut 
81 bp from different gene fragments as the original negative samples to 
enhance the diversity of the sequence. Similarly, the CD-HIT was applied 
to reduce its sequence consistency to 60%, then we  reserved 1,000 
non-promoter sequences as negative samples. Aiming to prove the 
robustness of the model, 2000 samples are randomly divided into the 
training set and independent set according to the ratio of 8: 2, 800 
positive samples and 800 negative samples were used for model fitting 
and training by five-fold cross-validation, and the remaining 200 positive 
samples and negative samples are employed to test the model’s ability to 
recognize the unlabeled sample.

2.2. Feature descriptor

The key step in building a model is to accurately describe the 
inherent attributes and reflect the differences between samples. The 
combination of promoters with various regulatory elements is 
inseparable from the physicochemical properties of their bases, such 
as hydrophilicity and hydrophobicity. Therefore, we design a novel 
digital feature containing a variety of physical and chemical properties 
to describe the DNA sequence. First, we found the 90 physical and 
chemical properties of dinucleotides from published literature. 
Furthermore, we analyzed the distribution of these physicochemical 
properties of 16 dinucleotides (Dao et al., 2019). It can be found from 
Figure 2 that the distribution of 16 kinds of dinucleotides is more 
remarkable. The minimum value of dinucleotide ‘CG’ is obtained, 
while the maximum value of ‘TA’ is obtained. The ordinate of the 
violin chart corresponds to the frequency density of data distribution. 
For example, the distribution of ‘GA’, ‘CT’, and ‘TC’ shows a standard 
normal distribution, but their wave peaks and widths are different, so 
they have different mean values and variances. In addition, the area 
occupied by different dinucleotides also varies greatly, which infers the 
sum is diverse. Hence, we use the minimum, maximum, variance, 
mean, and sum of 90 physical and chemical properties to represent the 
overall physical and chemical property level of 16 dinucleotides, the 
90 dimensional physical and chemical properties are replaced by 5 

1 https://www.ncbi.nlm.nih.gov/nuccore/NC_006958.1

Abbreviations: SVM, support vector machine; RF, random forest; MLP, multi-layer 

perceptron; KNN, k-nearest neighbors; Sn, sensitivity; Sp, specificity; Acc, accuracy; 

MCC, matthew correlation coefficient; ROC, receiver operating characteristic; 

AUC, area under receiver operating characteristic (ROC) curve; ANOVA, analysis 

of various; HC, hierarchical clustering.
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statistical parameters. The method can not only describe the 
distribution characteristics of dinucleotides but also greatly reduce the 
dimensions used to describe the descriptor. Suppose a DNA sequence 
s with length L, which can contain L-1 dinucleotides, as defined below:

 
D a a a a a a AA AT AC AG TA GGs i L i= éë ùû Î ¼( )-1 2 3 1, , , , ,, ,.. .. , , , ,

 
(1)

where, ai represents the arrangement of dinucleotides in the sequence, 
which is one of 16 kinds of dinucleotides because the four bases can 
form 16 kinds of arrangement combinations in pairs. Dinucleotide ai 
is converted into five statistical parameters, which are defined 
as follows:

 
max varmin , , , ,i i i i i

i mean suma p p p p p =    
(2)

where pimin , pimax , pmeani , pivar , psumi  is the minimum, maximum, 
mean, variance, and sum of 90 physical and chemical properties of the 
i-th dinucleotide. Therefore, the DNA sequence with a length of 81 bp 
is finally converted into an (81–1) × 5 = 400-dimensional feature 
vector. Detailed parameters of physical and chemical properties can 
be  downloaded at http://lin-group.cn/server/iORI-PseKNC2.0/
download.html.

2.3. Feature selection

Feature selection (Nasi et al., 2018; Zhang et al., 2019; Razzak 
et  al., 2020) is to filter the redundant information in the original 
feature set to reduce the feature dimension and improve the calculation 
speed, which can reduce the model learning error caused by noise and 
improve (Aaron et al., 2019) the accuracy and robustness of the model. 

FIGURE 1

The workflow of Corynebacterium glutamicum promoter prediction model.

FIGURE 2

Violin chart of physical and chemical properties of 16 dinucleotides.
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In the process of feature expression, 400-dimensional statistical 
parameters of physical and chemical properties are used to describe 
DNA sequences. Due to the similarity between multiple physical and 
chemical properties and dinucleotide distribution, it is necessary to 
apply a feature selection algorithm to eliminate highly similar features. 
Currently, the main feature selection algorithms employed in 
biological sequence recognition are analysis of variance (ANOVA) 
(UniProt Consortium, 2012; Hebert et  al., 2018; Wu et  al., 2020; 
Moorthy and Gandhi, 2021) and maximum relevance maximum 
distance (MRMD) (Zou et al., 2016; Ao et al., 2021). ANOVA mainly 
reflects the contribution of features to the model by calculating the 
difference between positive and negative samples, then features with 
less contribution are deleted. MRMD judges the independence 
between samples and labels through various distance formulas, and 
features with low independence are filtered. However, the above 
methods have some defects, ANOVA only measures the difference 
between positive and negative samples of features, without considering 
the similarity between features. Oppositely, MRMD lacks the 
characteristics of analysis of positive and negative samples.

Considering the advantages and disadvantages of MRMD and 
ANOVA, we  propose a novel feature selection method based on 
ANOVA and hierarchical clustering (HC) (Karna and Gibert, 2022; 
Zhu et al., 2022). As shown in Figure 3, the method comprehensively 
considers the similarity between features and the difference between 
a positive and negative sample of features. The first step is to calculate 
the F value of each one-dimensional feature, which is obtained by 
ANOVA of differences between groups and within groups, the ‘f_
classif ’ function in the ‘sklearn’ Python package is used to calculate the 
F value of each dimension feature. The second step is the hierarchical 
clustering analysis of features, the ‘AgglomerativeClustering’ function 
in ‘sklearn’ Python package is employed to measure the similarity 
between features. This algorithm mainly classifies two pairs of features 
into one cluster according to the distance between features, and 
we reserve the features with a large F value in each cluster of the 

first-level clustering results, when the F values are the same, a feature 
was selected at random. As shown in Figure  3, in the first-level 
clustering results, F2 and F3 are clustered into one cluster. If F2 is larger 
than F3, the feature of F2 is retained, while F1 is directly retained for a 
cluster alone. Therefore, the 3 dimensions feature ultimately remains 
2 dimensions feature. In practical application, the 400 dimensions 
features are selected as the best subset of 215 dimensions for the final 
model construction.

2.4. Model development

The construction of the prediction model is the process of fitting 
sample labels according to the distribution of features. Because the 
feature descriptor designed is based on statistical parameters, it can 
be seen from Figure 2 that the designed feature distributions are very 
different, the positive and negative samples of feature subsets after 
feature selection also have this property. Therefore, the promoter 
prediction model has superior performance that required to 
accurately measure the confusion between sample features. The RF 
algorithm distinguishes the category of samples according to the 
confusion of feature information, so the algorithm is applied to the 
construction of the classifier. RF judges the disorder degree of samples 
according to the ‘Gini’ coefficient. A small ‘Gini’ coefficient means 
that the lower the disorder degree of samples, the greater the 
probability of correct recognition. The ‘RandomForestClassifier’ 
function in the ‘sklearn’ Python package is used to build the model. 
In the process of model training, the value range of five parameters is 
mainly adjusted by grid searching, the ‘n_estimators’ is 80 to 150 with 
5 steps, the ‘max_depth’ is 15 to 20 with 1 in step, ‘min_samples_leaf ’ 
is 1 to 8 with 1 in step, ‘min_samples_split’ is 2 to 5 with 1 in step, and 
‘max_features’ is 0.1 to 1 with 0.1  in step, respectively. The 
determination of the best combination parameters is based on five-
fold cross-validation.

FIGURE 3

Feature Selection Schematic. Fi is the F value of the i-th dimension feature, 2SB  and 2SW  are differences between groups and within groups.
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2.5. Evaluation parameters

The performance of the model needs to be evaluated by some 
indicators. For the second classification problem, the most common 
evaluation parameters (Xu et al., 2018; Chao et al., 2019; Demidova, 
2021; Li et al., 2022a,b) are sensitivity (Sn), specificity (Sp), accuracy 
(Acc), Matthews correlation coefficient (MCC) and area under the 
Receiver Operating Characteristic (ROC) curve (AUC), which are 
defined as follows:

 

Sn TP
TP FN

Sp TN
TN FP

Acc TP TN
TP FP TN FN

MCC
TP TN FP FN

=
+

=
+

=
+

+ + +

=
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(3)

where TP and FP are correctly labeled promoters and incorrectly 
labeled promoters, and TN and F are correctly labeled non-promoters 
and incorrectly labeled non-promoters. Sn is employed to describe the 
model’s ability to detect promoters, while Sp is employed to describe 
non-promoters. Acc, MCC, and AUC are used to describe the overall 
prediction capability of the model.

3. Result and discussion

3.1. Model performance analysis

A model with superior performance can not only accurately fit the 
sample labels on the training set, but also accurately judge the labels of 
unknown samples. To prove that the model proposed has the above 
qualifications, we summarize the results of five-fold cross-validation and 
independent set validation based on the RF (Zhang et al., 2009; Wei 
et al., 2017; Ao et al., 2021) prediction model in Table 1. It can be found 
from the table that in the first cross-validation, Sn, Acc and MCC, 
respectively, obtained the maximum value of 94.51, 93.13, and 86.26%, 
and Sp obtained the maximum value of 93.49% at the fourth cross-
validation, which shows that different partition strategies of the dataset 
affect the fitting of the model, so the mean value of five-fold 

cross-validation is finally regarded as the standard prediction result. In 
general, the model proposed can accurately identify promoters and 
non-promoters, with an average Acc of 91.56%, Sn of 91.87%, and Sp of 
91.17%. In addition, it can be seen from the ROC curve in Figure 4 that 
the performance of the model is superior, which shows that the AUC 
reaches more than 95%. To verify the robustness of the model, 
we conducted independent set tests and found that the model can also 
accurately distinguish promoters and non-promoters. In 400 
independent samples, the model can correctly identify 181 promoters 
and 174 non-promoters, which confirms that our proposed model is 
capable of predicting annotated promoter fragments.

3.2. Feature composition analysis

The excellent performance of the proposed model is driven by the 
accurate representation of feature descriptors and the filtering of 
redundant information by feature selection. It can be seen from Figure 5 
that the features marked in red and marked in blue are clustered together 
and connected by dotted lines. The connected red-blue paired samples 
have high similarity, and the red samples with low F values are removed 
for noise removal, which horizontal dashed lines represent the points with 
far distance for dimensions, while vertical dashed lines represent the 
points with close distance, which proves that our method can filter global 
features rather than local features. Hence, 370 features are filtered out in 
half. The black diamond indicates that the samples are grouped into a 
single category, and they are directly retained. Finally, the feature 
dimension used to construct the samples is 215. More importantly, the 
feature accuracy of 400 dimensions has been improved from 90.69 to 
91.56% of 215 dimensions, which shows that our feature selection method 
based on ANOVA and HC can reduce the redundancy of features and 
improve the model performance to a certain extent.

3.3. Multi-algorithm analysis

In the process of building the model, the RF classification 
algorithm is selected according to the characteristics of descriptor 
distribution. Although this algorithm has achieved good prediction 

TABLE 1 The prediction performance of different subsets in RF.

Descriptor Sn (%) Sp (%) Acc (%) MCC (%)

1-th validation 94.51 91.67 93.13 86.26

2-th validation 92.59 91.39 91.88 83.75

3-th validation 91.39 91.72 91.56 83.08

4-th validation 90.73 93.49 92.19 84.32

5-th validation 90.12 87.84 89.06 77.99

Mean of validation 91.87 91.17 91.56 83.08

Independent 

verification

90.50 87.00 88.75 77.55

The bold value represents the maximum value. Sn, sensitivity; Sp, specificity; Acc, accuracy; 
MCC, matthew correlation coefficient.

FIGURE 4

ROC curve of cross validation results.
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performance, it is still possible that other classification algorithms 
have better results, such as K nearest neighbor (KNN) (Wang et al., 
2012; Demidova, 2021), Support vector machine (SVM) (Xu et al., 
2018; Xiao et al., 2019), Multi-layer perceptron (MLP) (Majidzadeh 
Gorjani et  al., 2021; Lin et  al., 2022). Therefore, we  compared 
different classification algorithms based on filtered features. It can 
be seen from Table 2 that in cross-validation, the performance of 
the RF is the best. The prediction accuracy of SVM is 87.63%, which 
is closest to the RF, followed by the MLP with an accuracy of 85%, 
and the worst KNN accuracy is only 75.62%. The situation of 
independent verification is consistent with the above situation. And 
only the accuracy of the RF algorithm has the smallest difference 
between independent set verification and cross verification, which 
also proves that the proposed model has strong robustness and 
small overfitting analysis.

4. Conclusion

In this work, we collected promoter and non-promoter sequences of 
C. glutamicum with annotation information, then designed a feature 

descriptor based on statistical parameters according to the distribution 
characteristics of physical and chemical properties. Further, we defined 
the novel feature selection method to filter redundant information 
among features. Finally, we successfully built the prediction model based 
on RF that can accurately identify promoters. In a word, the model 
we  designed can accurately identify the promoter sequences of 
eukaryotes, and we hope that the feature descriptors and feature selection 
methods designed can s make positive contributions to other sequence 
classification problems.
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TABLE 2 Comparison of different classification algorithms.

Classifier Verification Sn 
(%)

Sp 
(%)

Acc 
(%)

MCC 
(%)

KNN Five-fold cross-validation 72.98 78.55 75.62 51.58

Independent testing 67.00 81.00 74.00 48.48

SVM Five-fold cross-validation 88.59 86.77 87.63 75.31

Independent testing 82.00 81.50 81.75 63.50

MLP Five-fold cross-validation 85.25 85.58 85.44 70.85

Independent testing 79.00 82.50 80.75 61.51

RF Five-fold cross-validation 91.87 91.17 91.56 83.08

Independent testing 90.50 87.00 88.75 77.55

The bold value represents the maximum value. Sn, sensitivity; Sp, specificity; Acc, accuracy; 
MCC, matthew correlation coefficient; SVM, support vector machine; RF, random forest; 
MLP, multi-layer perceptron; KNN, k-nearest neighbors.

FIGURE 5

Visualization of feature selection results. The features marked in red and marked in blue are clustered together and connected by dotted lines. The 
black diamond indicates that the samples are grouped into a single category.
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Introns, as important vectors of biological functions, can influencemany stages of
mRNA metabolism. However, in recent research, post-spliced introns are rarely
considered. In this study, the optimal matched regions between introns and their
mRNAs in nine model organism genomes were investigated with improved
Smith–Waterman local alignment software. Our results showed that the
distributions of mRNA optimal matched frequencies were highly consistent or
universal. There are optimal matched frequency peaks in the UTR regions, which
are obvious, especially in the 3′-UTR. The matched frequencies are relatively low
in the CDS regions of the mRNA. The distributions of the optimal matched
frequencies around the functional sites are also remarkably changed. The
centers of the GC content distributions for different sequences are different.
The matched rate distributions are highly consistent and are located mainly
between 60% and 80%. The most probable value of the optimal matched
segments is about 20 bp for lower eukaryotes and 30 bp for higher eukaryotes.
These results show that there are abundant functional units in the introns, and
these functional units are correlated structurally with all kinds of sequences of
mRNA. The interaction between the post-spliced introns and their corresponding
mRNAs may play a key role in gene expression.

KEYWORDS

local matched alignment, optimal matched region, interaction patterns, ubiquitous
conservative, gene expression

1 Introduction

Since introns, a kind of non-coding DNA, were discovered, there have been many
investigations of their functions and evolutionary origin (Roy, 2003). A research study
recognized that the main function of introns is alternative splicing, facilitating the expression
of multiple proteins from a single gene (Daehyun and Phil, 2005). Recently, it has become
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increasingly clear that introns are very important vectors of
biological functions (Mattick and Gagen, 2001; Nott et al., 2003;
Bianchi et al., 2009; Charital et al., 2009), and the sequence
structures of introns and behavior of introns when removed by
spliceosomes can influence many stages of mRNA metabolism
(Orphanides and Reinberg, 2002; Hir et al., 2003). Many
experiments have shown that introns can boost gene expression
(Buchman and Berg, 1988; McKenzie and Brennan, 1996). Intron-
containing transgenes in mice are transcribed 10–100 times more
efficiently than their intron-less counterparts (Brinster et al., 1988),
and the transcription of intron-less mRNA in vivo directs this
mRNA toward translational silencing, while mRNA translational
efficiency is dramatically increased by the addition of just one
generic intron to the pre-mRNA (Callis et al., 1987). Although
some genes contain no introns or their expressions do not require
introns, introns can still improve the gene expression of genetically
modified organisms (Duncker et al., 1997; Ko et al., 1998). It has also
been discovered that the two small introns of the Drosophila
affinidisjuncta (Adh) gene are required for normal transcriptions
(Braddock et al., 1994). Intron mutation can cause many diseases.
Besides the mutation at each end (GU and AG), the mutation in the
middle of the intron sequences can also cause diseases by activating
recessive splice sites (Stover and Verrelli, 2010; Nordin et al., 2012).

An increasing body of evidence shows that there are many
introns in the cytoplasm and that they directly regulate gene
translational efficiency. Intron sequences are retained in a
number of dendritically targeted mRNAs in the cytoplasm
(Buckley et al., 2011). Certain spliced mRNAs can be efficiently
exported and translated, whereas the same mRNA transcribed from
cDNA fails to exit the nucleus and express protein (Ryu and Mertz,
1989; Rafiq et al., 1997; Matsumoto et al., 1998). Removal of an
intron from a pre-mRNA, without significantly altering the steady-
state cytoplasmic mRNA level, can also affect translational efficiency
(Luo and Reed, 1999). Similarly, when a mature mRNA is injected
directly into oocyte nuclei, the translation efficiency is repressed and
overcome by either adding a spliced intron or injecting
FRGY2 protein antibodies into the cytoplasm (Hir et al., 2003).
In addition, it is interesting to note that introns can suppress RNA
silencing in Arabidopsis (Christie et al., 2011).

Many experiments have proved that introns function
significantly in all processes of regulating the dynamic structure
of mRNAs, their transport and nuclear export, and translation and
regulation (Guigó and Ullrich, 2020; Gozashti et al., 2022). However,
how introns take part in these biological processes is still unclear. In
the past, it was believed that most pre-mRNAs were spliced to liner
molecules with only exons. However, circular RNAs (circRNAs)
were discovered, showing that the exon–circRNA model is formed
by lariat-driven cyclization and intron-paired cyclization (Hansen
et al., 2011; Jeck et al., 2013; Sebastian et al., 2013) and circular
intronic RNAs can be formed by introns as well (Julia et al., 2012).

Based on these observations, it is believed that introns can
directly affect gene expression after splicing by their interactions
with the corresponding mRNAs. These kinds of interactions can
maintain and regulate mRNA structures. The loss/gain of an intron
does affect gene expression after splicing and plays a very important
role in the evolution of the eukaryotic genome and the presence of
new eukaryotic species (Duret, 2001; Halligan and Keightley, 2006).
The interaction between post-spliced introns and their CDS was

studied in our early works (Zhao et al., 2013; Zhang et al., 2016; Bo et
al., 2019), but the 5′-UTR and 3′-UTR of mRNA are very important
to gene expression. It is therefore very meaningful to study the
interaction between introns and their corresponding mRNAs and to
uncover how introns influence stages of gene expression after
splicing by their interactions. Here, we report on the interaction
characters between post-spliced introns and their mRNAs in whole
genomes.

2 Materials and methods

2.1 Gene sequences

Genes from nine model organism genomes were selected as our
dataset. They are Caenorhabditis elegans, Drosophila melanogaster,
Apis mellifera, Anopheles gambiae, Arabidopsis thaliana, Oryza
sativa, Danio rerio, Mus musculus, and Homo sapiens, and their
gene sequences were downloaded from the Beijing Multi Subnet of
Gene Bank (ftp://ftp.cbi.pku.edu.cn/pub/database/genomes). In this
dataset, the genes that contain more than one mRNA were excluded
first. Next, the genes that contain ncRNAs and/or repetitive
elements were excluded. Last, introns with lengths shorter than
40 bp were also excluded. The results of the dataset are shown in
Table 1.

2.2 Matched alignment

The interaction between introns and their mRNAs was
represented by optimal matched segments. The interaction
probability was determined by the quality of the optimal
matched segments. The mRNAs were renamed as tested
sequences, while their corresponding introns were aligned
sequences. To obtain the matched alignment segments, introns
were transformed into their complementary sequences, and
similar alignments were performed using improved
Smith–Waterman local alignment software (http://mobyle.
pasteur.fr/cgi-bin/). In the alignment process, the EDNAFULL
matrix was used for calculating the optimal matched segments
with the following parameters: 50.0 for the gap penalty and 5.
0 for extend penalty. In this way, the most credible optimal
matched segment of the tested sequence and its aligned
sequence were obtained. The local alignment sketch map is
shown in Figure 1.

For the tested sequence, the matched score function f is defined
by Eq. 1.

f � 1 Ns ≤ j≤Ne

0 j<Ns or j>Ne
{ , (1)

where jmeans the jth base site of the tested sequence (j = 1,2, . . . , L),
L means the length of the tested sequence, and Ns and Ne mean the
start base site and the end base site of the optimal matched segment
in the tested sequence, respectively. The effective value 1 is assigned
to each base site within the optimal matched segment, while the
ineffective value 0 is assigned to the base sites outside the optimal
matched segment. The matched score values are assigned to each
base site in the tested sequences.
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For the tested sequences, matched frequency F is defined by
Eq. 2.

F � 1/m∑m
i�1
fij, (2)

where m means the number of the tested sequences, i means the
ith tested sequence (i = 1,2, . . . , m), j means the jth base site of
the ith tested sequence (j = 1, 2, . . . , Li), Li means the length of
the ith tested sequence, and fij means the matched score
function of the jth base site of the ith tested sequence. F is a
relative matched value at the jth base site in m tested sequences.
It reflects the interacting probability or the interaction
intensity between the tested and aligned sequences in the jth
base site.

The average matched frequency <F> for each base site is also
defined by Eq. 3.

〈F〉 � 1/m∑m
i�1
li/Li. (3)

Here, i means the ith tested sequence (i = 1, 2, . . . , m), li is the
length of the optimal matched segment for the ith tested

sequence, and Li is the length of the ith tested sequence.
The <F> indicates the average matched frequency of the m
tested sequences.

The relative matched frequency RF of the jth base site in the
tested sequence is defined by Eq. 4.

RF � F/〈F〉. (4)
Here, RF reflects the relative bias of each base site in the tested
sequences. If RF > 1, it indicates that the interaction in the jth
base site is positive in the tested sequence, and the regions with
RF > 1 were optimal matched regions. RF = 1 represents an
average matched frequency of the base sites for the tested
sequences.

To test the significance of our results, we constructed
corresponding component constraint random sequences for
comparison with real sequences. Component constraint
random sequences mean the length and contents of A, C, G,
and U are the same as the analyzed sequence, but the order of
each base is random. We call them CC-random sequences. The
sample of the corresponding component constraint random
sequences is 10 times as many as the analyzed sequences, and
then the corresponding RF or F distributions are obtained in the
same way. When the RF values in the optimal matched regions of
the mRNA all are higher than the CC-random sequences and
average matched frequency <F>, we call these cases positive
tests.

2.3 Sequence normalization

Due to the different lengths of the tested sequences, they are
normalized to 100 to obtain the relative site distributions of RF or F
by the following method.

We hypothesized that nij is the jth relative site of the ith
normalized tested sequence; the nij is obtained by the following
formulation:

nij � 100Nij/Li[ ] 100Nij/Liis integer

100Nij/Li[ ] 100Nij/Liis non − integer

⎧⎨⎩ . (5)

TABLE 1 Genes of nine eukaryotes.

Chromosome Number of genes Number of introns

Caenorhabditis elegans 1 956 4,052

Drosophila melanogaster 1 1,322 3,846

Arabidopsis thaliana 1 3,311 16,822

Apis mellifera 1 439 2,894

Anopheles gambiae 1 2,238 7,919

Oryza sativa 1 594 2,905

Danio rerio 1 1,005 8,563

Mus musculus 1 1,126 10,117

Homo sapiens 1 1,194 9,265

FIGURE 1
Sketch matched map between intron and corresponding CDS.
(A) Smith–Waterman local alignment. cIntron10 means the
complementary segment of intron 10. (B) Authentic matched
alignment.
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Here, Nij means the jth base site of the ith tested sequence, and Li is
the length of ith tested sequence (i = 1, 2, . . .,m; j = 1, 2, . . ., Li). The
square brackets are Gaussian integer functions which are meant to
take the integer part of a real number. Then, the m tested sequences
with different lengths are normalized to 100. In addition, nis, nie,
nie
- nis+1, nij and 100 are used to replace Nis, Nie, li, Nij and Li in the

formulation (1), (2), (3) and (4) respectively, the normalized
relative matching frequency function RF or matching frequency
function F distribution can be obtained.

2.4 Information entropy analysis

Information entropy conception was used to analyze the
characters of sequence composition. Second-order informational
redundancy D2 is a suitable parameter to describe the sequence
characters; its definition is shown in Eq. 6.

For an analyzed sequence, the second-order informational
redundancy D2 is defined as

D2 � ∑pijlog2 pij/pipj( ) ≈ 1/2 ln 2∑ pij − pipj( )2/pipj, (6)

where pi or pj is the probability of the base i or j (i, j =A, C, G, U), and
pij is the joint probability of the base pair ij. D2 reflects the adjacent
base correlation of sequences (Luo and Hong, 1991; Li, 1990). In
other words, a bigger D2 value means that the sequence is more
conservative. For a finite sequence of lengthN, the fluctuation bound
(f.b.) of D2 is D2(f.b.) = 15.65/N (Luo and Hong, 1991; Luo, 2004).
When D2 ≥ 15.65/N, the neighboring bases do not occur
independently, and the correlation exists at a 99% confidence
level. Generally, D2 ≥ 0. For infinite random sequences, D2 = 0.

3 Results and discussion

3.1 Distributions of optimal matched regions
in mRNA

For the nine model organisms, mRNAs are regarded as the
tested sequences, and their corresponding introns are regarded as
the aligned sequences. The matched alignments between the
mRNAs and their corresponding introns were performed, and
the RF distributions with base relative sites of mRNA sequences
were obtained (Supplementary Appendix SA1). Meanwhile, the
local alignments were also performed between the component
constraint random mRNAs and their own component constraint
random introns, and they were marked as CC-random
(Supplementary Appendix SA2). The results are shown in
Figure 2.

The relative matched frequency distributions of the mRNA
sequences of the nine model organisms were very similar to each
other, which meant that the interaction patterns between the introns
and their mRNAs are universal. When compared with the CC-
random group, their characteristics are as follows: there are high
relative matched frequencies in the UTR regions but a relatively low
matched degree in the central protein-coding sequence. The relative
matched frequency distributions of 3′-UTR are significantly higher
than those of 5′-UTR (Supplementary Appendix SA3). It is

speculated that the function of post-spliced introns is related to
NMD. Compared with those in higher organisms, the matched
frequency distributions in the mRNAs of lower eukaryotes are
slightly different, and the distribution difference between the
coding sequences and the UTR regions in lower organisms is
more obvious, which reflects that the interaction modes between
introns and their mRNAs in higher organisms are more complex.

Despite the species being very similar to each other for the
matched frequency distributions in the mRNAs of the nine model
organisms, the distributions of peak regions and peak values are
slightly different (Figure 2). For C. elegans, the peak regions of the
matched frequency distribution in the mRNAs are mainly located in
3%–8% of the 5′-end and between 80% and 98% of the 3′-end of the
mRNA; the peaks are approximately 1.1 and 3.9, respectively. The
peak regions for D. melanogaster are primarily found in 2%–10% of
the 3′-end and 85%–99% of the 5′-end of the mRNA; the peak values
are about 1.8 and 4.2, respectively. The peak regions for A. thaliana
are mainly located in 2%–10% of the 5′-end and 85%–98% of the 3′-
end of the mRNA, and the peak values are about 1.6 and 2.3,
respectively. The peak regions for A. mellifera are mainly located in
2%–10% of the 5′-end and 80%–98% of the 3′-end of the mRNA,
and the peak values are about 1.5 and 3.7, respectively. The peak
regions of the distribution of A. gambiae are mainly located in 2%–
20% of the 5′-end and 82%–98% of the 3′-end of the mRNA,
respectively, and both peak values are about 1.4. The peak
regions for O. sativa are mainly located in 80%–98% of the 3′-
end of the mRNA, and the peak value is about 1.8. The peak regions
for D. rerio are mainly in the 5%–8% of the 5′-end and 78%–99% of
the 3′-end of the mRNA, and the peak values are about 1.1 and 3.1,
respectively. The peak regions forM. musculus are mainly located in
80%–99% of the 3′-end of the mRNA, and both peak values are
about 2.2. The peak regions forH. sapiens are distributed in 5%–10%
of the 5′-end and 62%–99% of the 3′-end of the mRNA, and the
peaks are about 1.1 and 2.0, respectively. It is suggested that introns
have a strong preference for interactions with the corresponding
mRNAs.

3.2 Matched characteristics of optimal
matched segments of introns

It is of great significance when the interaction between introns
and the corresponding coding sequences are studied and the
sequence characteristics of the optimal matched fragments are
analyzed. The sequence paired rate and distribution length of the
optimal matched segments of introns between the introns and
corresponding mRNA are explored in this section. The results
are shown in Figure 3.

From lower eukaryotes to higher eukaryotes, the high
consistency of the matched rate of distribution of the optimal
matched segments is seen, and the matched rate fluctuates
between 60% and 80%. Several clear and conservative peaks are
observed, with a clear maximal peak at about 68% and a distinctly
sub-maximal peak at about 75%, followed by several discrete peaks
with a gradual decrease in distribution (Figure 3).

It is inferred that introns have a precise “quantum state” with
the sequences of the optimal matched mRNA segments for each
corresponding intron and that each “quantum state” might
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represent a specific kind of pattern group in which introns
control gene expressions. There is no doubt that this
distribution is universal from lower eukaryotes to higher
eukaryotes. The optimal matched segments between introns
and their associated mRNAs have a very noticeable peak in
their sequence length distribution. The most probable value,
however, varies between the lower and higher eukaryotes; it is
roughly 20 bp for lower eukaryotes and 30 bp for higher
eukaryotes. It can be implied that higher and lower eukaryotes
may differ significantly in the intricacy of gene expression
patterns mediated by introns. When compared with siRNA
and miRNA, the optimal matched segment from the introns
with the associated mRNA appears to have a beneficial impact on
gene expression.

3.3 Distributions of optimal matched regions
near functional sites

Translation initiation sites, translation termination sites, and
exon junction sites exert an irreplaceable role in the normal
expression of genes. It is particularly crucial to comprehend the
distribution of optimal matched frequency near functional locations.

The optimal matched intron segments around each functional site
containing the UTR gene are separated, functional sites are set as the
origin of coordinates, and the distribution law of the optimal
matched regions is counted. These functional sites are translation
initiation sites, translation termination sites, the junction sites
between the first exon and second exon (the first exon junction
site), the junction sites between the last exon with the penultimate
exon (the last exon junction site), and the junctions in the middle
exon (the middle exon junction site). The results are shown in
Figures 4–7 (the results of the junction sites Figures 8, 9 are shown in
Supplementary Material S5).

3.3.1 Distribution of optimal matched regions of
translation initiation regions

Analytically, the distribution of optimal matched frequency of
translation initiation sites of the nine model organisms is revealed to
be of high consistency, that is, these model species show good
universality for the distributions. The matched frequencies bounded
by the translation initiation sites on the sequences near the
translation initiation site are significantly altered, it is specifically
manifested in the relative matched frequencies of the UTR on the left
side of the translation initiation site, and the corresponding intron is
generally higher. There is an excellent agreement between their

FIGURE 2
RF distributions of mRNA. The X-axis is the relative position of mRNA and the Y-axis represents the RF values. CC-Random means the local
alignment were done between the component constraint random mRNA and their own component constraint random introns. RF = 1 represents the
average value of relative match frequencies theoretically.
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distribution of optimal matched regions and the 5′-end of the
mRNA. When comparing short introns, the distribution of their
optimal matched region is consistent with that of long introns. Large
differences in the distribution of optimal matched regions are
observed in the short introns, but some distributions are very
peculiar in that they may be significant and deserve to be studied
in depth.

The distribution of the peak regions and peak value are
slightly different despite having very similar distributions of
optimal matched regions on the flanks of the translation
initiation sites of the nine model organisms (see Figure 4).
For C. elegans, the optimal matched regions between the
flanks of the translation initiation site of mRNA and its
corresponding introns are mainly located in the range of
about −30 to 10 bp, and the peak value is about 1.4. The
optimal matched regions of D. melanogaster are mainly
located in the range of about −30 to 5 bp, and the peak value
is about 2.0. The optimal matched regions of A. thaliana are
mainly located in the range of about −30 to 10 bp, and the peak
value is about 1.5. The optimal matched regions of A. mellifera
are mainly located at about −10 bp, and the peak value is about
2.0. The optimal matched regions of A. gambiae are mainly
located in the left range of about −30 to 5 bp, and the peak value
is about 1.9. The optimal matched regions of O. sativa are

mainly located at about −20 bp, and the peak value is about 1.2.
The optimal matched regions of D. rerio are mainly located in
the left range of about −30 bp, and the peak value is about 1.0.
There is no distinctly optimal matched region for M. musculus.
The optimal matched regions of H. sapiens are mainly located in
the range of about −45 to −10 bp, and the peak value is about 1.3.
These facts demonstrate that introns do interact with the
translation initiation sites flanking their corresponding
mRNAs.

3.3.2 Distribution of optimal matched regions of
translation termination regions

Analytically, the distribution of optimal matched frequency of
translation termination sites of the nine model organisms is revealed
to be alike, that is, these model species show good universality for
this distribution. The matched frequencies bounded by the
translation termination sites are significantly altered; it is
specifically manifested in the relative matched frequencies of the
UTR on the right side of the translation termination sites, where it is
generally higher. There is an excellent agreement between their
distribution of optimal matched regions and the 3′-end of the
mRNA. When comparing short introns, the distribution of their
optimal matched region is consistent with that of long introns. Large
differences in the distribution of optimal matched regions are

FIGURE 3
Matched rate and Length distributions distributions of different intron optimal matchedsegments, separately. The X-axis is Length andmatched rate
(%)of intron optimal matched segment,separately and the Y-axis represents the Frequency values.
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observed in the short introns, but some distributions are very
peculiar in that they may be significant and deserve to be studied
in depth.

The distribution of the peak regions and peak value are slightly
different despite being very similar for the distribution of optimal
matched regions on the flanks of the translation termination sites of
the nine model organisms (Figure 5). The optimal matched regions
between the flanks of the translation termination sites of the C.
elegans mRNA and their corresponding introns are mainly located
in the right range of about −20 bp, and the peak value is about 4.5.
The optimal matched regions of D. melanogaster are mainly located
in the right range of about −10 bp, and the peak value is about 3.3.
The optimal matched regions of A. thaliana are mainly located in
the right range of about −20 bp, and the peak value is about 1.8. The
optimal matched regions of A. mellifera are mainly located in the
right range of about −20 bp, and the peak value is about 4.6. The
optimal matched regions of A. gambiae are mainly located in the
right range of about −15 bp, and the peak value is about 1.8. The
optimal matched regions of O. sativa are mainly located in the range
of about −30–60 bp, and the peak value is about 1.6. The optimal
matched regions of D. rerio are mainly located in the right range of
about −18 bp, and the peak value is about 2.6. The optimal matched

regions of M. musculus are mainly located in the right range of
about −10 bp, and the peak value is about 1.5. The optimal matched
regions of H. sapiens are mainly located in the right range of about
16 bp, and the peak value is about 1.8. These facts demonstrate that
introns do interact with the translation termination sites flanked by
their corresponding mRNAs.

3.3.3 Distribution of optimal matched regions of
exon–exon junction regions

The distribution of the optimal matched regions around the first
exon junction sites, the last exon junction sites, and the middle
junction sites of the nine model organisms is detected to be alike
after analysis, that is, these model species show good universality for
this distribution. It is specifically manifested in the generally low
relative matched frequencies of the junction flanked by the first exon
with the corresponding introns (Figure 6), the last exon junction
sites (see Supplementary Figure S1), and the middle junction sites
(Supplementary Figure S2). There is an excellent fit between their
distributions of the optimal matched regions and CDS regions in all
the exon–exon junction regions. When comparing short introns, the
distributions of their optimal matched regions are consistent with
those of long introns. For short introns, large differences in their

FIGURE 4
RF distributions around translation initiation site. The X-axis is the position of mRNA and the Y-axis represents the RF values. RF = 1 represents the
average value of relative match frequencies theoretically.
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distributions of the optimal matched regions are observed, but some
distributions are very peculiar in that they may be significant and
deserve to be studied in depth.

3.4 Sequence feature of optimal matched
segment of introns

The UTR regions of the mRNA preferentially interact with the
introns, while the CDS regions of the mRNA are poorly matched to
the introns. This is probably why the sequence features of the
optimal matched segments are similar to the UTR features. GC
content and second-order information redundancy D2 of the
optimal matched segment, CDS, 3′-UTR, and 5′-UTR are
analyzed, and the correlation between these sequences is
discussed. The results are shown in Figure 7 and Table 2.

3.4.1 GC content of optimal matched segment of
intron

The distributions in Figure 6 are compared, and the GC content
distributions of the optimal matched segments, CDS, 3′-UTR, and
5′-UTR in the nine model organisms are analyzed.

There are significant differences in the distribution center of
the GC content in different sequences; however, the GC content of
the optimal matched segments shows a special distribution pattern.
In addition to having the lowest distribution center when
compared to the other three types, the GC content distribution
also has a very broad distribution range that almost completely
encloses the distribution of the other sequences. It is shown that
interactions between introns and mRNAare primarily based on
weak bond binding, i.e., AT matching, but that high GC matching
canalso occur. The average GC content of the optimal matched
segments of introns in the nine model organisms is the closest to
that of the 3′-UTR. The average GC content of the optimal
matched segments, 3′-UTR, 5′-UTR, and CDS of C. elegans, D.
melanogaster, A. thaliana, A. gambiae, A. mellifera,D. rerio, andH.
sapiens increased gradually. The average GC content of the optimal
matched segments, 3′-UTR, CDS, and 5′-UTR in O. sativa and M.
musculus increased gradually. It is an interesting case that there are
two clear peaks in the average GC content distributions of the
optimal matched segments for A. gambiae, M. musculus, and H.
sapiens, and these results show that there are abundant functional
units in the introns. Based on the GC content analysis results of the
above sequences, similar GC content values may lead to the mRNA

FIGURE 5
RF distributions around translation termination site. The X-axis is the position of mRNA and the Y-axis represents the RF values. RF = 1 represents the
average value of relative match frequencies theoretically.
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UTR preference for intron interaction, except for O. sativa and M.
musculus.

3.4.2 Second-order information redundancy of
optimal matched segments of introns

The intron of each gene is connected with the optimal matched
segments of the mRNA, CDS, 3′-UTR (which includes 50 bp
downstream of the translation initiation site), and 5′-UTR (which
includes 50 bp upstream of the translation termination site) in a new
line in sequence and are denoted as the optimal matched segments of
the intron, CDS, 3′-UTR, and 5′-UTR. The results of the second-
order information redundancy D2 are shown in Table 2.

By comparing the D2 values in Table 2, it is seen that the 3′-UTR
D2 values are the closest to those of the optimal matched intron
segments in the nine model species. This agrees with the GC content
of the optimal matched intron segments. This is one of the reasons
why there are optimal matched frequent peaks in the regions of
UTR, which is obvious, especially in the 3′-UTR.

4 Conclusion

At the genome-wide level, the optimal matched regions of
the introns and their corresponding mRNAs for protein-coding

genes in nine model organisms (such as H. sapiens) were
analyzed. It was observed that the distribution of optimal
matched frequencies in the mRNA sequence showed high
consistency or universality among the nine model organisms.
A peak distribution appeared in the untranslated regions
(UTRs) of the mRNA, especially in the 3′-UTR, and the
matched frequency in the coding sequence (CDS) was
relatively low. It was discovered that introns, particularly the
3′-UTR, have a high preference for interacting with the UTR
region of the mRNA. The function of the introns after splicing
could be related to NMD. The matched frequencies bounded by
functional sites in the sequences near the translation initiation
site and translation termination site were different significantly,
and the matched frequency of the junction region of the exon
was relatively low. The distribution centers of the GC content in
different sequences were different, but the GC content in the
optimal matched segments showed a special distribution
pattern. In addition to having a lower distribution center
than the other three types, the GC content also had a very
broad distribution range that almost completely enclosed the
distribution of the other sequences. The results showed that the
interactions between the introns and mRNAs were mainly
dominated by weak bond binding, that is, not only AT
matching but also in juggling high GC matching. In all nine

FIGURE 6
RF distributions around the first exon junction site. The X-axis is the position of mRNA and the Y-axis represents the RF values. RF = 1 represents the
average value of relative match frequencies theoretically.
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species, a high degree of concordance of the distribution of the
matched rate of the optimal matched segments was observed,
primarily falling between 60% and 80%. In lower eukaryotes and
higher eukaryotes, the most probable value of the optimal
matched segment length distribution is around 20 bp and

around 30 bp, respectively. These conclusions are in line with
the results obtained in the ribonucleoprotein genes. Some peaks
of the distribution of matched frequency are conserved for all
organisms, and the results reveal the inherent mechanisms of
the optimal matched segment composition.

TABLE 2 D2 for different sequences of nine eukaryotes.

D2

CDS 5′-UTR 3′-UTR Intron matched segment

Caenorhabditis elegans 0.029 0.032 0.32 0.066

Drosophila melanogaster 0.015 0.023 0.009 0.010

Arabidopsis thaliana 0.018 0.026 0.012 0.010

Apis mellifera 0.019 0.021 0.009 0.012

Anopheles gambiae 0.014 0.025 0.010 0.011

Oryza sativa 0.016 0.015 0.015 0.011

Danio rerio 0.021 0.028 0.014 0.013

Mus musculus 0.042 0.031 0.040 0.046

Homo sapiens 0.041 0.028 0.043 0.063

FIGURE 7
GC content distributions of different sequences. The X-axis is GC content and the Y-axis represents the Frequency values.
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Computational prediction of
promotors in Agrobacterium

tumefaciens strain C58 by using
the machine learning technique
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Bakanina Kissanga Grace-Mercure2, Farwa Hassan2,

Zhao-Yue Zhang2* and Fen Liu3*

1Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China,

Huzhou, China, 2School of Life Science and Technology and Center for Informational Biology, University

of Electronic Science and Technology of China, Chengdu, China, 3Department of Radiation Oncology,

Peking University Cancer Hospital (Inner Mongolia Campus), A�liated Cancer Hospital of Inner

Mongolia Medical University, Inner Mongolia Cancer Hospital, Hohhot, China

Promotors are those genomic regions on the upstream of genes, which are

bound by RNA polymerase for starting gene transcription. Because it is the

most critical element of gene expression, the recognition of promoters is

crucial to understand the regulation of gene expression. This study aimed to

develop a machine learning-based model to predict promotors in Agrobacterium

tumefaciens (A. tumefaciens) strain C58. In the model, promotor sequences were

encoded by three di�erent kinds of feature descriptors, namely, accumulated

nucleotide frequency, k-mer nucleotide composition, and binary encodings. The

obtained features were optimized by using correlation and the mRMR-based

algorithm. These optimized features were inputted into a random forest (RF)

classifier to discriminate promotor sequences from non-promotor sequences in

A. tumefaciens strain C58. The examination of 10-fold cross-validation showed

that the proposed model could yield an overall accuracy of 0.837. This model will

provide help for the study of promoters in A. tumefaciens C58 strain.

KEYWORDS

prokaryotic promotors, feature extraction, agrobacterium tumefaciens strainC58, feature

selection, algorithms

1. Introduction

Agrobacterium belongs to the family of ubiquitous gram-negative soil bacteria.

Infectious strains of agrobacterium such as agrobacterium tumefaciens strain C58 cause

hairy root and crown gall diseases in plants (Goodner et al., 2001). Promotors are

the genomic regions upstream of a gene on DNA where transcription factor and RNA

polymerase bind together to initiate gene transcription (Sawadogo and Roeder, 1985; Zhao

et al., 2017; Zhang et al., 2018). The biological process of prokaryotic promotors is shown in

Figure 1. The study of promoters is the first step to understanding gene expression.

Correct identification of the promotor sequence could produce vital signs for

understanding its mechanism of the regulation (Cao et al., 2022; Li et al., 2022b).

Currently, numerous tentative techniques, such as mass spectrometry (Flusberg et al.,

2010), reduced-representation bisulfite sequencing (Doherty and Couldrey, 2014), and

single-molecule real-time sequencing (Boch and Bonas, 2010), have been developed. Though

these procedures are quite helpful in the identification of promotors prediction, they are
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FIGURE 1

Schematic diagram of the prokaryotic promotor structure and its biological processes.

costly when applied to large sequencing data. Thus, a

bioinformatics tool to recognize the promotor sequence is

urgently needed. At present, some computational tools have been

presented to recognize promotors in multiple species, such as

PePPer (de Jong et al., 2012) for Escherichia coli (E.coli) and Bacillus

subtilis (B.subtilis); Promotech for Bacillus amyloliquefaciens (B.

amyloliquefaciens) XH7 bacterium (Chevez-Guardado and Peña-

Castillo, 2021); DeePromotors (Oubounyt et al., 2019) for TATA

promotors (Zou et al., 2016) in eukaryotic genomes; iProEP (Lai

et al., 2019) forHomo sapiens (H. sapiens),Drosophila melanogaster

(D. melanogaster), Caenorhabditis elegans (C. elegans), B. subtilis,

and E. coli; and iPromotor-2L (Liu et al., 2018) for bacterial

promotors. However, there is no such model for A. tumefaciens

C58 strain. To address the above-mentioned problems, we

designed an RF-based model to predict promotor sequences in

agrobacterium tumefaciens strain C58. Figure 2 illustrates the

workflow of the projected model.

Accumulated nucleotide frequency, binary encodings, and k-

mer nucleotide composition were utilized to convert sequences

into numerical features, and then these features were optimized by

using correlation and themRMR-based feature selection algorithm.

After this, these optimized features were inputted into a random

forest classifier for the identification of promotor sequences on

the basis of 10-fold cross-validation. As a result, an ideal model

was attained.

2. Materials and methods

A precise and accurate dataset is necessary to establish

a prediction model (Liang et al., 2017; Ning et al., 2021a,b;

Su et al., 2021). Therefore, we obtained the experimentally

verified Agrobacterium tumefaciens strain C58 promotors data

of 706 sequences from PPD (http://lin-group.cn/database/ppd/

index.php) and also collected negative data of 2860 sequences

of 81 bp from (http://bioinformatics.hitsz.edu.cn/iPromotor-2L/

data). Moreover, we divided the dataset into 80/20 ratios for

training and testing the model.

2.1. Feature descriptors

Selecting the feature encodings that are useful and autonomous

is a key stage in establishing machine learning-based models (Lv

et al., 2021; Zhang D. et al., 2021; Ao et al., 2022a; Li et al., 2022a;

Ning et al., 2022; Teng et al., 2022; Wei et al., 2022). Representing

the DNA sequences with a mathematical manifestation is very

important in functional element identification. Some DNA

sequences coding strategies such as accumulated nucleotide

frequency, physiochemical properties, binary encodings, nucleotide

chemical properties and k-tuple nucleotide frequency component,

nucleotide pair spectrum encoding, and natural vector have been

applied in bioinformatics (Dao et al., 2020; Yang X. et al., 2021;

Zhang Y. et al., 2021; Ao et al., 2022b; Ren et al., 2022). The

performance of these feature descriptors was good. Here, to extract

DNA sequence information as more as possible, accumulated

nucleotide frequency, k-mer nucleotide composition, and binary

encodings were presented to describe the DNA sequences based on

their superior performance.

2.1.1. Accumulated nucleotide frequency
The encoding of ANF consists of the distribution and frequency

of nucleotides ni in the sequences. The nucleotide density Di at any

position in the sequence can be calculated as follows:

Di =
1

|ni|

z
∑

k=1

f (ni) , f
(

g
)

=

{

1 if ni = g

0 in other case
(1)

where z is the sequence length, ni is the length of the string {n1, n2,

. . . , ni} (Li et al., 2022c,d) in the sequence, and g ∈ {A, G, C, T}.

2.1.2. k-mer nucleotide composition
k-mer nucleotide composition can reflect short-range

nucleotide interaction of sequences (Salimi and Moeini, 2021;

Zhang et al., 2022b; Dao et al., 2023). The nucleotide residues can

be obtained via a sliding window method by setting the window
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FIGURE 2

Overall workflow of the study.

size of k bp with a step size of 1 bp to examine a sequence with n

bp. An arbitrary sample Z with the sequence length of n (where n

is 81bp) can be characterized as

Z = Q1 Q2 Q3 . . . .. Qi . . . .. Q(n−1) Qn (2)

where Qi signifies the nucleotide {A, G, C, T} at the i-th position.

The sequences can be transformed into the 4k D vector using k-mer

nucleotide composition as follows:

Qk = [p
k−tuple
1 p

k−tuple
2 . . . . .p

k−tuple
i . . . ..p

k−tuple

4k
]
t

(3)

where t denotes the transposition of the vector, and p
k−tuple
1

symbolizes the occurrence of the i-th k-mer nucleotide composition

in the sequence. When k = 1, a DNA sample can be decoded into

a 4 D vector Q1 = [p(A), p(T), p(G), p(C)]t .When k = 2, the DNA

sample can be described by a 16-dimension vector. In this study,

the value of k was set as 4 due to the best results. The whole results

of k-mer nucleotide composition (k = 1,2,3,4,5,6) on training and

independent data are shown in Supplementary Table S1.

2.1.3. Binary encoding
Encoding “0” and “1” can represent any information in the

computational work (Zou et al., 2019). Therefore, we can directly

convert a DNA sequence into a string of characters, which is

consisted of “0” and “1.” A= (1,0,0,0), T= (0,1,0,0), G= (0,0,1,0),

and C= (0,0,0,1). Thus, a DNA sample of 81 bp length is converted

into a 324 (4× 81) dimension vector in this study.

2.2. Feature selection

2.2.1. Correlation
Feature selection is an important step for improving model

performance (Dao et al., 2020). Correlation is a familiar

comparison measure between two features. If two features are

linearly dependent, then their correlation coefficient will be “±1.” If

the features are uncorrelated, the correlation coefficient will be “0.”

There are two comprehensive classes that can be used to measure

the correlation between two random variables. One is based on

information theory, and the other is classical linear correlation.

The most familiar measure is the linear correlation coefficient. The

linear correlation coefficient “d” for a pair of (m, n) variables is

specified as

d =

∑

(mi − mi)(ni − ni)
√

∑

(mi − mi)
2
√

∑

(ni − ni)
2

(4)

Due to the expansion of the data, the correlation coefficient

which is good for a sample may not produce decent outcomes for

the whole population. Therefore, it is necessary to determine the

significant association between the features, while captivating the

whole population. The most commonly used method to examine

statistical correlation is the t-test. The procedure used in the

projected algorithm is to use the t-test for choosing the most

important features from the whole feature set. The formula for

calculating the suitable “T” value to test the consequence of a

correlation coefficient employs the “T” distribution. The “T” value

can be calculated as

T = d

√

i− 2

1− d2
(5)
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where “i” is the number of instances and “d” is the correlation

coefficient for sample data. The significance of the relationship is

expressed in probability levels: p (e.g., significant at p = 0.05). The

degrees of freedom for entering the T-distribution are i – 2. If the

value of “T” is higher than the threshold value at the 0.05 significant

level, then the feature will be significant and selected (Zulfiqar et al.,

2022a).

2.2.2. mRMR
mRMR is a very popular feature selection technique, and it has

been applied in many bioinformatics and biological applications

(He et al., 2020; Zulfiqar et al., 2021b; Su et al., 2023). The

compactness functions are described as “i” and “y,” and their

corresponding probabilities are P (i) and P(y). The common

information between these two functions can be defined as

Qmin(fi, fy) =
∑

i∈Q

∑

y∈Y

P
(

fi, fy
)

log
P(i, y)

P (i) , P(y)
) (6)

If the target is Ji, then calculating the mutual information in

relation to the target and can be defined as

Qmax(fi, Ji) =
∑

fi∈Q

∑

Ji∈i

P
(

fi, Ji
)

log
P(fi, Ji)

P
(

fi
)

, P(Ji)
) (7)

Thus,mRMR(fi)can be calculated as

mRMR(fi) =
Qmax(fi, Ji)

Qmin(fi, fy)
(8)

2.3. Machine learning classifiers

Naïve Bayes (NB) classifier has been used widely in

bioinformatics due to its simplicity (Ye et al., 2021). This

classification method totally depends on the Bayes theorems. Ada

boost (AB) is another popular machine learning technique. The

main idea of AB is to set the classifiers’ weights and trained the data

in each and every iteration. The support vector machine (SVM)

is also very famous and has been used in many bioinformatics

and computational biology-related tools (Tao et al., 2020; Ahmed

et al., 2022; Manavalan and Patra, 2022; Zou et al., 2022; Bupi et al.,

TABLE 1 Best parameters of the proposed model.

Best parameters

“N-estimators” 80

“Max_depth” 20

“Bootstrap” True

“Min_samples_leaf” 1

“Min_samples_split” 2

Input: Training data: = H (x1, x2, ......,

xk, xc)

Output: Hbest

1st Round

1 Start

2 for i =1 to k do

3 d = calculate correlational coefficient

(xi, xc)

end

4 let p = 0.05 significant level

5 let ρ = 0 / suppose there is no

significant correlation between fi and fc

6 for i = 1 to k do

q = calculate the significance (d, ρ) for xi

/ by using the T-test

7 if T > CV / critical value

8 Hbest = Hlist

9 end

10 return Hbest

2nd Round

11 Start

12 By sorting the features

13 for each feature fi in Z do

14 By calculating the mutual information in

relation to other features as

15 Qmin(fi, fy) =
∑

i∈Q

∑

y∈Y P
(

fi, fy
)

log
P(i,y)

P(i),P(y)
)

16 By calculating the mutual information in

relation to the target:

17 Qmax(fi, Ji) =
∑

fi∈Q

∑

Ji∈i P
(

fi, Ji
)

log
P(fi,Ji)

P(fi),P(Ji)
)

18 By calculating the mRMR(fi) as

19 mRMR(fi) =
Qmax(fi ,Ji)
Qmin(fi ,fy)

20 end

21 for by sorting the features in descending

order

22 By updating the matrix Z’ with sorted

features

23 end

24 return Z’

Algorithm 1. Correlation and mRMR-based Feature Selection Algorithm.

2023; Zulfiqar et al., 2023). It is mostly used to perform binary

classification. We implemented these algorithms in Weka version

3. 8.4. by using the default values. RF is a combined knowledge

algorithm and is widely used in bioinformatics (Ao et al., 2022c;

Zhang et al., 2023). The main idea of this is to combine several

weak classifiers and outcomes generated on the basis of voting. The

brief description is clearly described by Zulfiqar et al. (2021a). We

have used randomized and grid search cross-validations to tune the

hyperparameters. We executed this job in the Scikit-learn package

version 0.22.2, and its parameters are summarized in Table 1. All

experiments were carried out on a Windows operating system with

1.7 GHz intel quad-core i5.
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TABLE 2 Performance of models using di�erent classifiers on the training and independent dataset.

Training dataset Independent dataset

Classifier FS k Method Accuracy Precision Recall F1 AUC Accuracy Precision Recall F1 AUC

AB 256 4 k-mer 0.761 0.772 0.761 0.791 0.812 0.775 0.820 0.801 0.798 0.881

50 4 k-mer 0.799 0.802 0.785 0.789 0.856 0.787 0.824 0.799 0.805 0.872

324 Binary 0.738 0.742 0.756 0.712 0.786 0.700 0.702 0.700 0.730 0.765

48 Binary 0.745 0.742 0.698 0.789 0.820 0.720 0.732 0.702 0.726 0.789

82 ANF 0.684 0.645 0.689 0.743 0.731 0.641 0.692 0.688 0.655 0.699

38 ANF 0.743 0.726 0.775 0.746 0.796 0.696 0.702 0.698 0.710 0.756

662 Fusion 0.745 0.732 0.785 0.775 0.799 0.720 0.732 0.775 0.745 0.774

136 Fusion 0.778 0.768 0.792 0.800 0.845 0.738 0.745 0.765 0.725 0.806

SVM 256 4 k-mer 0.761 0.802 0.789 0.799 0.865 0.749 0.838 0.761 0.648 0.860

50 4 k-mer 0.796 0.802 0.802 0.812 0.883 0.753 0.748 0.753 0.756 0.832

324 Binary 0.744 0.747 0.778 0.765 0.792 0.725 0.755 0.760 0.763 0.786

48 Binary 0.774 0.775 0.732 0.778 0.815 0.748 0.800 0.778 0.769 0.845

82 ANF 0.666 0.697 0.732 0.705 0.766 0.612 0.623 0.633 0.605 0.699

38 ANF 0.755 0.768 0.748 0.759 0.820 0.695 0.703 0.713 0.705 0.806

662 Fusion 0.710 0.722 0.708 0.709 0.745 0.705 0.700 0.700 0.710 0.740

136 Fusion 0.752 0.759 0.758 0.768 0.801 0.741 0.750 0.770 0.765 0.810

NB 256 4 k-mer 0.748 0.780 0.778 0.719 0.823 0.788 0.801 0.799 0.802 0.884

50 4 k-mer 0.802 0.821 0.823 0.827 0.881 0.792 0.778 0.792 0.802 0.878

324 Binary 0.737 0.775 0.765 0.789 0.794 0.776 0.770 0.778 0.793 0.835

48 Binary 0.777 0.789 0.759 0.788 0.864 0.782 0.810 0.815 0.816 0.891

82 ANF 0.675 0.689 0.720 0.696 0.756 0.665 0.685 0.691 0.701 0.741

38 ANF 0.735 0.741 0.728 0.733 0.770 0.723 0.715 0.705 0.740 0.762

662 Fusion 0.712 0.754 0.726 0.745 0.768 0.764 0.777 0.756 0.750 0.788

136 Fusion 0.778 0.802 0.808 0.810 0.880 0.790 0.807 0.803 0.800 0.892

RF 256 4 k-mer 0.809 0.830 0.810 0.74 0.861 0.808 0.841 0.811 0.799 0.897

50 4 k-mer 0.837 0.840 0.841 0.801 0.900 0.831 0.842 0.837 0.818 0.900

324 Binary 0.792 0.632 0.792 0.701 0.842 0.784 0.804 0.808 0.788 0.887

48 Binary 0.796 0.653 0.801 0.732 0.865 0.806 0.825 0.811 0.806 0.892

82 ANF 0.791 0.630 0.791 0.702 0.850 0.788 0.803 0.773 0.778 0.878

38 ANF 0.795 0.642 0.789 0.743 0.866 0.794 0.726 0.792 0.80 0.868

662 Fusion 0.792 0.630 0.790 0.708 0.822 0.794 0.771 0.790 0.789 0.856

136 Fusion 0.801 0.786 0.795 0.800 0.881 0.807 0.799 0.820 0.812 0.889
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FIGURE 3

Performance comparison on di�erent machine learning classifiers by using training and independent datasets. The higher point represents the

training accuracy and the lower point represents the accuracy on independent data (A). AUC curve of the anticipated model (B).

2.4. Evaluation metrics

Accuracy, precision, recall, and F1 (Hasan et al., 2020; Zhang

et al., 2020; Wei et al., 2021b; Shoombuatong et al., 2022; Yang

et al., 2022; Zulfiqar et al., 2022b) were employed to assess the

performance of the prediction model and are expressed as























Acc =
tp + tn

tp+fp + tn+fn

Pre =
tp

tp +fp

Rec =
tp

tp +fn

F1 = 2× Pre × Rec
Pre + Rec

(9)

where tp symbolizes the correctly predicted promotor sequences

and fp signifies the non-promotor sequences classified as the

promotor sequence. On the other hand, tn represents the

correctly identified non-promotor sequences, and fn demonstrates

the promotor sequences, which were classified as the non-

promotor sequence.

3. Results and discussion

3.1. Performance evaluation

On the basis of sequence features, we constructed an

anticipated model to recognize promotor sequences in A.

tumefaciens C58 strain. First, the training data were converted into

numerical feature vectors using accumulated nucleotide frequency,

binary encodings, and k-mer nucleotide composition. After this,

these features were optimized by using correlation and the mRMR-

based algorithm. First, correlation measures and then mRMR

were used to select the finest feature subset for the improved

prediction outcomes. Afterward, these features were inputted

into four machine learning methods. Cross-validation (CV) is a

statistical analysis procedure and has been applied in machine

learning to evaluate the model’s performance (Yang H. et al., 2021;

Chen et al., 2022; Liao et al., 2022; Xiao et al., 2022; Zhang et al.,

2022a; Yang et al., 2023). In this study, the 10-fold CV test was

used to investigate the performance of machine learning methods.

In 10-fold CV, the benchmark dataset was randomly separated

into ten groups of about equal size. Each group was individually

tested by the model which trained with the remaining nine groups.

Therefore, the 10-fold CVmethod was performed 10 times, and the

average of the results was the final result (Charoenkwan et al., 2021;

Wei et al., 2021a; Hasan et al., 2022). We have trained 32 models

on AB, SVM, NB, and RF. At first, we used single encodings and

their fusion to train and test the models, and then we optimized

the feature encodings and their fusions by using correlation and

the mRMR-based algorithm. In this phase, we utilized the t-test

and picked the significant features by selecting the probability of

the significance relation 0.05, and then used mRMR and picked

the top features. Moreover, we inputted these features into AB,

SVM, NB, and RF and found that the performance of k-mer was

good as compared to other feature encodings and their fusion. The

accuracy of k-mer in RF was 3.5%−4.1% higher than the other

three classifiers. TheAUC curve of the anticipated model was 0.900.

The accuracy, precision, recall, and F1 are recorded in Table 2. The

performance comparison on different machine learning classifiers

by using training and independent datasets and ROC plot of the

anticipated model is shown in Figures 3A, B.

4. Conclusion

Promotors have a significant role in the transcription process

because they are located on upstream of genes where RNA

polymerase binds with the transcription factor and initiate the

transcription. In this study, an RF model was established to
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identify promotors sequences in agrobacterium tumefaciens strain

C58. In the proposed model, sequences were encoded using

accumulated nucleotide frequency, k-mer nucleotide composition,

and binary encodings and then optimized with correlation and

the mRMR-based algorithm. After this, these optimized features

were inputted into the RF-based classifier using the 10-fold CV

test and achieved the best model. The estimated outcomes on

independent data showed that the projected model provided

brilliant performance and oversimplification. We provided the

source codes and data freely at https://github.com/linDing-groups/

model_promotor. Researchers can yield good results for DNA

sequences and recognize their roles by using our freely available

source codes. In future, we will further improve the efficiency by

using CNN/GNN and release a webserver to make our anticipated

model more convenient for users without mathematical and

programming knowledge.
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Promoters are the basic functional cis-elements to which RNA polymerase binds 
to initiate the process of gene transcription. Comprehensive understanding gene 
expression and regulation depends on the precise identification of promoters, as 
they are the most important component of gene expression. This study aimed 
to develop a machine learning-based model to predict promoters in Klebsiella 
aerogenes (K. aerogenes). In the prediction model, the promoter sequences in 
K. aerogenes genome were encoded by pseudo k-tuple nucleotide composition 
(PseKNC) and position-correlation scoring function (PCSF). Numerical features 
were obtained and then optimized using mRMR by combining with support vector 
machine (SVM) and 5-fold cross-validation (CV). Subsequently, these optimized 
features were inputted into SVM-based classifier to discriminate promoter 
sequences from non-promoter sequences in K. aerogenes. Results of 10-fold CV 
showed that the model could yield the overall accuracy of 96.0% and the area 
under the ROC curve (AUC) of 0.990. We hope that this model will provide help 
for the study of promoter and gene regulation in K. aerogenes.

KEYWORDS

promoter, pseudo k-tuple nucleotide composition, position-correlation scoring 
function, feature selection, support vector machine

1. Introduction

Klebsiella aerogenes (K. aerogenes) is a ubiquitous Gram-negative bacterium found in a 
variety of environments, such as soil, sewage, mammalian gastrointestinal tract et  al. The 
K. aerogenes can also colonize in human gut and most community-or hospital-acquired 
bloodstream infections are caused by this common multi-drug resistant pathogen, which is a 
source of opportunistic infections. Although most of these bacteria are sensitive to the antibiotics 
targeting them, the drug resistance still exists, and the induced resistance mechanisms are 
complex (Price and Sleigh, 1970). Promoters are the genomic regions upstream of genes, where 
RNA polymerase and other transcription factors bind together to initiate genes transcription 
(Sawadogo and Roeder, 1985). Thus, promoter identification is the first step to understand gene 
expression mechanism. Thus, a precise identification of promoter sequence could generate 
dynamic signs for understanding its mechanism of regulation (Zuo and Li, 2010).
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In fact, several experimental methods, such as mass spectrometry 
(Flusberg et al., 2010), reduced-representation bisulfite sequencing 
(Doherty and Couldrey, 2014), and single-molecule real-time 
sequencing (Boch and Bonas, 2010), have been developed to recognize 
promoters. Although these methods are relatively helpful in the 
identification of promoters, they are exorbitant when implemented to 
large sequencing data (Hu et al., 2022a). Therefore, a bioinformatics 
tool to identify promoter sequence is instantly needed.

At present, some machine learning-based methods have been 
presented to predict promoters in multiple species (Ao et al., 2022). Li 
and Lin have ever designed a position weight matrix (PWM) method 
to identify sigma70 promoters in Escherichia coli (E. coli) (Li and Lin, 
2006). Subsequently, they developed a hybrid approach (called IPMD) 
to identify eukaryotic and prokaryotic promoters (Lin and Li, 2011). 
PePPER is another webserver for recognizing prokaryote promoter 
elements and regulons (de Jong et  al., 2012). In 2014, Lin et  al. 
proposed a first model called iPro54-PseKNC to predict sigma54 
promoters in prokaryotes (Lin et al., 2014). Liu et al. established a 
friendly tool called iPromoter-2 l for the prediction of bacterial 
promotors. These works mainly used sequence composition to 
perform prediction. By using Z-curve theory, the bacterial promoters 
could also be formulated and predicted (Song, 2012; Lin et al., 2019). 
Combining various of sequence information, Lai et al. built a powerful 
model named iProEP for the identification of promoters in three kinds 
of eukaryotes and two kinds of bacteria (Lai et al., 2019). Chevez-
Guardado designed a general tool (Promotech) for bacterial promoter 
recognition (Chevez-Guardado and Peña-Castillo, 2021). Recently, 
the promoters in two prokaryotes: Corynebacterium glutamicum and 
Agrobacterium Tumefaciens Strain C58 were studied by using 
machine learning based models (Zulfiqar et al., 1011; Li et al., 2023). 
Among them, the sigma70 promoter is the most extensively studied 
in prokaryotes (Patiyal et al., 2022). iProm-phage is a two-layer model 
for phage promoters and their types prediction (Shujaat et al., 2022).

Although there are already many prediction models for 
prokaryotic promoters, due to species specificity and prediction 
performance limitations, there is a need for trainning more specific 
promoter prediction models for K. aerogenes (Hu et al., 2022b). Thus, 
in this paper, we  designed a SVM-based model to predict the 
promoters of K. aerogenes. The Figure 1 illustrates the workflow of this 
project, mainly including the core content and key steps. Thereinto, 
two feature extraction methods, namely PseKNC and PCSF, were 
employed to convert DNA sequences into numerical features. And 
then these features were optimized by using mRMR feature selection 
algorithm based on SVM machine learning model and 5-fold 
CV. Moreover, the selected optimal feature subset was applied to train 
a SVM classifier for identifying K. aerogenes promoter sequences on 
the basis of 10-fold CV. As a result, an ideal model with prediction 
accuracy and AUC of 96.0% and 0.990 was attained.

2. Materials and methods

2.1. Data collection and preprocessing

The construction of a prokaryotic promoter dataset is crucial for 
obtaining a good promoter model. Prokaryotic Promoter Database 
(PDD, http://lin-group.cn/database/ppd/) developed by Lin et  al. 
contains comprehensive information on experimentally verified 
promoters of numerous prokaryotic species and can be freely accessed 

(Su et al., 2021). The sequence data of 763 K. aerogenes promoters 
were downloaded from the database and defined as positive dataset. 
Each promoter sequence was composed of 81 nucleotides, including 
transcription start site (TSS) (namely the 0-th site), upstream 20 bp 
and downstream 60 bp regions of TSS. In order to generate a reliable 
negative dataset, we firstly extracted the convergent intergenic (length 
greater than 81 bp) and coding (length greater than 2000 bp) regions 
from K. aerogenes genome. Secondly, sliding window method with 
step of 1 bp was applied to generate convergent intergenic and coding 
sequences, with length of 81 bp. Then, we used CD-HIT program to 
estimate the sequence similarity of convergent intergenic and coding 
sequences, and filtered highly similar sequences by setting cutoff value 
as 0.8. Finally, 763 convergent intergenic sequences and 763 coding 
sequences were randomly picked out and regarded as negative dataset.

2.2. Feature extraction

Referring to the well-designed eukaryotic and prokaryotic promoter 
identification tool, iProEP,1 we also adopted two algorithms, including 
pseudo k-tuple nucleotide composition (PseKNC) and position-
correlation scoring function (PCSF), to transform raw promoter/
non-promoter sequence data into suitable numeric features 
for modeling.

1 http://lin-group.cn/server/iProEP/

FIGURE 1

The overall workflow of this study.
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In this study, the type II PseKNC method was used to transform 
each nucleotide sequence into a feature vector of 4k +λΛ  dimensions 
(Tang et al., 2021),

 
D d d d d d d dpseKNC

T
k k k k k= ⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅ + + + + +1 2 4 4 1 4 4 1 4λ λ λΛ  (1)

where k  means k -tuple nucleotide component, λ  is an integer 
less than L k−  ( L  denotes the length of a DNA sequence). And Λ  
is the number of physicochemical properties, the value of which is 6 
corresponding to the six types of DNA local structural properties 
included in this work. Each element in DpseKNC  is defines as:
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The former 4k elements are nucleotide composition features, 
which can reflect local or short-range sequence-order information. 
The latter λΛ  factors are pseudo nucleotide composition features 
corresponding to global or long-range effect. In equation (2), fi

k tuple−
 

represents the normalized frequency of occurrence of the i -th k
-tuple nucleotides in the sample sequence. The weight factor ω  can 
adjust the effects of nucleotide composition and local structural 
properties of DNA. And τ j  indicates the m -tier correlation factor 
and is formulated with the form of equation (3), the value of which 
corresponds to the sequence-order correlation between all the m -tier 
contiguous k -tuple nucleotide component along a promoter/
non-promoter sequence.
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where H R Ri iξ +( )1  is the standardized value of the ξ -th DNA 
local structural properties for the dinucleotide R Ri i+1  at position i . 

The original values of these physicochemical properties are provided 
by Goñi et al. (2008) and the standardization approach are the same 
as previously described in iProEP. In addition, the processes of 
Position-Correlation Scoring Matrix (PCSM) construction and PCSF 
feature transformation and selection are directly referring to the E. coli 
model in iProEP.

2.3. mRMR

mRMR is a well-known feature selection method and has been 
used in many computational and biological applications (Zulfiqar 
et al., 2021; Su et al., 2023). The density functions are described as ‘i’ 
and ‘y’ and their corresponding probabilities are P i( )  and P y( ) . The 
common information between these two functions can 
be demarcated as
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If the target is Ji then calculating the mutual information in 
relation to the target and can be defined as
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So, calculating the mRMR as Mi( )
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2.4. Machine learning classifiers

SVM is a well-known classifier and has been utilized in many 
bioinformatics and computational biology related tools (Basith 
et al., 2021; Arif et al., 2022; Basith et al., 2022; Bupi et al., 2023; Dao 
et al., 2023). It is typically used to perform binary classification. Ada 
boost (AB) is another famous classifier (Wang et al., 2021). The 
main idea of AB is to set the classifiers weights and trained the data 
in each and every iteration. Naïve Bayes (NB) classifier has been 
widely used in bioinformatics due to its simplicity (Naseer et al., 
2022; Zulfiqar et  al., 2022). This classification method totally 
depends on the Bayes theorems. Random Forest (RF) is a collective 
knowledge algorithm and broadly used in bioinformatics (Zhu 
et al., 2022; Zhang et al., 2023). The main idea of this is to unite 
multiple weak classifiers and outcome generated on the basis of 
voting (Zulfiqar et  al., 2023). The brief description is clearly 
described in (Zulfiqar et al., 2021). The k-nearest neighbor (KNN) 
is a non-parametric and supervised learning classifier, which uses 
vicinity to make classifications about the grouping of an individual 
data point. Logistic Regression (LR) is a classification algorithm and 
used when the value of the target variable is categorical in nature 
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FIGURE 2

The prediction accuracies of SVM models constructed with different numbers of features. (A) IFS process for feature selection and (B) ROC curve 
based on the optimal features.

(Yang et al., 2021). We have executed these algorithms in Weka 
version 3.8.4. by using the default values.

2.5. Evaluation metrics

Accuracy, sensitivity, specificity (Cao et al., 2017; Tang et al., 
2022; Yang et al., 2022; Zhang et al., 2022; Chen et al., 2023) were 
utilized to evaluate the performance of the prediction model and 
termed as
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(8)

where ‘tp’ represents the correctly predicted promoter sequences 
and ‘fp’ shows the non-promoter sequences classified as promoter 
sequence. And the other hand, ‘tn’ characterizes the correctly 
recognized non-promotor sequences and ‘fn’ exhibit the promoter 
sequences which were classified as non-promoter sequence.

3. Results and discussion

In the fields of statistical analysis and machine learning (ML) 
prediction, cross-validation (CV) strategy has been widely utilized 
to evaluate the prediction performance of ML models (Hasan et al., 
2022; Shoombuatong et al., 2022; Xiao et al., 2022; Yu et al., 2022; 
Zhang et al., 2022). In this work, 5-fold CV technique was used in 
the processes of PseKNC parameter optimization and optimal 
feature subset selection and 10-fold CV technique was used to 
assess the performance of the six machine learning methods. In 
n-fold CV, the benchmark dataset was randomly divided into n 

groups with equal size. Each group was individually tested on the 
model which was trained with the remaining n-1 groups. According 
to this, the n-fold CV method was performed n times, and the final 
evaluation result was the average prediction performance of the 
n models.

We constructed a computational model on the basis of sequence 
features to recognize promoter sequences in K. aerogenes. Based on 
the definition of pseudo nucleotide characteristics, we debugged the 
parameters k ， λ ，and ω  according to the following range to 
determine the optimal combination of k-mer nucleotide 
composition information and long-range sequence 
order information.,
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Based on the feature set generated by each combination and the 
LIBSVM algorithm, we can construct promoter prediction models 
and evaluate their accuracies using a 5-fold CV method. The final 
determined values of k, λ, and ω were 5, 29, and 0.1, respective. The 
original vector contains 1,198 features which could produce the 
prediction accuracy of 88.0%. Then, 17 positional correlation 
scoring features were calculated based on the most conserved sites 
in the promoter sequence of the 3-mer nucleotide fragment. After 
integrating two types of features, the mRMR algorithm was applied 
to sort all features, and an incremental feature selection (IFS) 
method was applied to eliminate redundant information to obtain 
the optimal feature subset for improving the accuracy of the 
promoter classifier. In the process of IFS, we also used a 5-fold CV 
method to evaluate the promoter prediction accuracy of each 
classifier, as shown in Figure 2A. As shown in the figure, the model 
constructed based on the first 586 features has the highest 
prediction accuracy of 95.9%.

After determining the optimal subset of features, we  further 
evaluated its promoter prediction ability using a 10-fold CV method 
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for determining the parameters c and γ in SVM, where c ∈ [2−5, 215] 
with a step of 2, γ∈ [23,2−15] with a step size of 2−1. The final optimal 
values of c and γ are 2 and 2−3, respectively. The optimal SVM model 
could produce the best performance with the accuracy of 96.0%, 
sensitivity of 95.7%, and specificity of 96.2%. The area under the ROC 
curve (AUC) was 0.990 with 95% confidence interval (CI): 0.987–
0.993 (as shown in Figure 2B).

In order to evaluate the performance of this SVM prediction 
model, we also constructed five models based on LR, KNN, RF, AB 
and NB for K. aerogenes promoter recognition by using the same 
optimal features. The 10-fold CV results showed that the AUC 
values of the LR, KNN, RF, and AB models were 0.960, 0.941, 0.939, 
and 0.959, respectively, as shown in Figure 3. We observed that the 
sensitivity of the RF model was poor (68.8%), while the overall 
predictive performance of the NB model was the weakest, with 
accuracy and AUC values of 81.3% and 0.882 (Table  1). The 
accuracy of SVM-based model was 96.0% which was 5.6–14.7% 
higher than the other five classifiers. Overall, identifying 
K. aerogenes promoter sequences based on optimal pseudo 
nucleotide features and positional correlation scoring features is 
effective, and the model constructed based on SVM algorithm has 
the best predictive performance.

4. Conclusion

Promoters play an important role in the initiation of 
transcription, because they are located upstream of genes. RNA 
polymerase and a quantity of transcription factors bind to promoter 
to start the transcription. Therefore, studying promoters is crucial 
for studying gene expression regulation. In this study, we proposed 
an SVM-based model to identify promoter sequences in 
K. aerogenes. In the proposed model, sequences were encoded using 
PseKNC and PCSF and then optimized with mRMR and 
SVM-based algorithm on 5-fold CV. Then, these optimized features 
were inputted into SVM-based classifier using 10-fold CV and 
achieved the best model. The results show that our model can 
predict promoters accurately, suggesting that our feature extraction 
and selection methods are able to capture the important sequence 
features. In the future, we will develop more suitable and robust 
models for more prokaryotic species.
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FIGURE 3

The ROC curves for different machine learning models.

TABLE 1 The prediction performance of different machine learning 
models based on 10-fold cross-validation.

Method Sn (%) Sp (%) Acc (%) AUC

LR 85.1 93.1 90.4 0.960

KNN 85.7 92.7 90.4 0.941

RF 68.8 96.2 87.1 0.939

AB 84 92.9 89.9 0.959

NB 83.9 79.9 81.3 0.882

SVM 95.7 96.2 96.0 0.990

Note: The K. aerogenes promoter prediction model constructed with SVM classifier produces 
the highest accuracy, sensitivity, specificity and AUC,which is the finally determined model.
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