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Editorial on the Research Topic

The intersection of cognitive, motor, and sensory processing in aging:

links to functional outcomes, volume II

The cognitive processes of encoding, decoding, and interpreting information about
biologically significant events represent fundamental neural functions that require extensive
integrated neural networks. These processes have played a central role in the course of
evolution, giving rise to a variety of specialized sensory organs, each intricately connected
to multiple specialized brain regions (Stein and Stanford, 2008). While the sophisticated
interactions between neural circuits are of great scientific interest, it is the practical
manifestation of these processes that allows us to monitor and understand the physical
execution of activities of daily living (ADL). Whether it is the rhythmic act of walking, the
successful balancing act needed to avoid falling, the efficient performance of daily activities
needed to bathe or eat, or the complex cognitive-motor interplay involved in activities such
as dancing, our ability to engage in such structured multisensory endeavors underscores the
importance of these neural functions in our daily lives.

Multisensory integration (MSI) is a multimodal process in which the brain combines and
coordinates information frommultiple sensorymodalities such as vision, hearing, touch, and
proprioception to produce a unified and coherent perceptual experience. This integration
enhances our understanding of the external world, promotes more accurate and reliable
perception, and enables effective responses to the environment (Stein et al., 2014). These
processes, which are evident at both neural and behavioral levels, can lead to enhancement
or attenuation of responses (Wallace et al., 1998; Stein et al., 2009) and significantly influence
our sensations, perceptions, and associated behaviors. Response enhancement, which often
affects the accuracy and speed of stimulus detection, localization, and identification (Hughes
et al., 1994; Ernst and Banks, 2002; Foxe and Schroeder, 2005; Hecht et al., 2008), serves
as a reliable index of MSI, which involves a wide range of computations that combine
information from multiple sensory modalities.

A well-documented phenomenon in aging is the gradual decline of individual sensory
modalities and body functions. These age-related changes affect several areas, including
visual acuity (Faubert, 2002; Schieber, 2006), auditory abilities (Van Eyken et al., 2007;
Murphy et al., 2018), muscle strength (Hortobágyi et al., 1995; Lindle et al., 1997), and
postural balance (Laughton et al., 2003; Marusic et al., 2019), among others. However, the
extent to which changes in MSI contribute to age-related deterioration in ADLs remains a
less explored area of investigation in the existing literature (de Dieuleveult et al., 2017).
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Mahoney et al. have generated evidence for robust, but
differential MSI effects in healthy aging and discovered significant
links with clinically meaningful outcomes (Mahoney et al., 2014,
2015, 2019; Mahoney and Verghese, 2018, 2020). Specifically,
they report that older adults with intact levels of visual-
somatosensory integration demonstrate better balance, faster gait
velocity and lower incidence of falls, compared to those with
integrative deficits. Further they reveal that older adults with
MCI and dementia demonstrate significantly reduced magnitude
of multisensory integration compared to older adults without
cognitive impairments.

The current Research Topic of Frontiers in Aging Neuroscience
represents a continuation of Volume I entitled “The intersection of

cognitive, motor, and sensory processing in aging: links to functional

outcomes.” This latest Research Topic includes ten manuscripts
that collectively address various facets of sensory integration along
with cognitive and motor performance in the context of aging.
The primary goal of this Research Topic is to foster new scientific
discoveries detailing the complex inter-relationships between
sensory, motor, and cognitive functions in aging. Contributors to
this Research Topic examine age-related changes in one or more
of these systems—sensory, motor, and cognitive—and discuss the
impact of these interactions on important functional outcomes,
including but not limited to clinical and social aspects. A better
understanding of the effective (or ineffective) convergence of these
systems holds promise for the wellbeing of older people and offers
insights for improving and adapting multimodal interventions
aimed at preventing decline and minimizing disability.

Handling et al. and Thompson et al. both focus on
predictors and interactions related to cognitive and physical
decline in older adults. Handling et al. identify risk factors for
dual decline, with depressive symptoms and APOE-ε4 status
increasing the odds of developing cognitive and physical decline.
In contrast, Thompson et al. employed canonical correlation
analysis, unveiling two interconnected clusters of cognitive
and physical function tasks in a cross-sectional cohort of
cognitively intact older adults. These findings underscore a
predominant emphasis on speed-related tasks in both gait and
cognition, along with a secondary focus on complex motor and
cognitive tests.

Basharat et al. and Šlosar et al. investigate the impact
of multisensory processing and virtual reality (VR).
Basharat et al. reveal that immersive VR can enhance
multisensory processing and improve performance in untrained
cognitive tasks. While Šlosar et al. explore the potential
of enriched VR environments in mitigating the effects of
prolonged bed rest, offering a novel approach to improving
rehabilitation outcomes.

In a mini review Meulenberg et al. discuss the potential
of dance therapy as a non-pharmacological intervention for
Parkinson’s disease. Dance interventions induce neuroplastic
changes, improving both motor and cognitive functions in
PD patients. The authors conclude that more research is
needed to determine the optimal dance style and duration for
therapeutic benefit.

Tabei et al. investigate the impact of an online physical
exercise program with music on cognitive function, particularly
working memory in older adults. Their results show significant

improvements in working memory, suggesting the potential of
online exercise programs to enhance cognitive functions.

In a study protocol, Mahoney et al. outline the potential use
of visual-somatosensory integration as a marker for Alzheimer’s
disease. This protocol details the methodologies used to examine
the interplay of sensory, cognitive, and motor functions, as well
as study their impact on mobility decline in aging. The main
objective is to assess the validity of MSI as a novel non-cognitive,
non-invasive, behavioral marker of preclinical Alzheimer’s disease.

In a cross-sectional study, Hu et al. investigated age-related
changes in cortical control of standing balance and their effects on
falls in older adults. Despite some limitations in the reliability of
the mechanical perturbation, the results suggest increased cortical
recruitment for postural control in older adults and emphasize
the need for further studies to improve the understanding of
these mechanisms.

Fatokun et al. investigated the relationship between dual-task
gait cost (DTC) and white matter hyperintensities (WMH) in
Lewy body disorders. Higher DTC was associated with greater
frontal WMH burden, providing insights into cognitive-motor
interactions in Parkinson’s disease and dementia with Lewy bodies.

Finally, Torre et al. investigated the effects of bimanual
coordination training on inhibitory functions in older adults. The
training, which involved maintenance of an antiphasic pattern and
inhibition of the in-phase pattern, effectively delayed the frequency
of spontaneous transitions and transferred the benefits to untrained
tasks involving inhibitory functions.

Overall, this compilation collectively contributes to our
understanding of the complex relationships among sensory, motor,
and cognitive functions in the context of aging while shedding
light on predictors, interventions, and novel markers that have
the potential to improve the wellbeing of older adults. This
Research Topic serves as a continuation of ongoing research on
the intersection of these functions and highlights the importance
of a much-needed multifaceted approach to addressing age-
related decline across multiple domains. The research presented
here underscores the ongoing commitment to improving the
quality of life of older adults and emphasizes the importance of
multidisciplinary research in the field of aging neuroscience.
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Examining the intersection of 
cognitive and physical function 
measures: Results from the brain 
networks and mobility (B-NET) 
study
Atalie C. Thompson 1,2*, Michael E. Miller 2,3, Elizabeth P. Handing 4, 
Haiying Chen 5, Christina E. Hugenschmidt 2, Paul J. Laurienti 6 and 
Stephen B. Kritchevsky 2
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United States, 2 Section on Gerontology and Geriatric Medicine, Department of Internal Medicine, Sticht 
Center for Healthy Aging and Alzheimer’s Prevention, Wake Forest School of Medicine, Winston-Salem, NC, 
United States, 3 Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, NC, 
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Background and objectives: Although evidence exists that measures of mobility and 
cognition are correlated, it is not known to what extent they overlap, especially across 
various domains. This study aimed to investigate the intersection of 18 different 
objective cognitive and physical function measures from a sample of unimpaired 
adults aged 70 years and older.

Research design and methods: Canonical correlation analysis was utilized to explore 
the joint cross-sectional relationship between 13 cognitive and 6 physical function 
measures in the baseline visit of the Brain Networks and Mobility Function (B-NET) 
Study (n = 192).

Results: Mean age of participants was 76.4 years. Two synthetic functions were 
identified. Function 1 explained 26.3% of the shared variability between the cognition 
and physical function variables, whereas Function 2 explained 19.5%. Function 
1 termed “cognitive and physical speed” related the expanded Short Physical 
Performance Battery (eSPPB), 400-m walk speed, and Dual Task gait speed measures 
of physical function to semantic fluency animals scores, Digit Symbol Coding (DSC), 
and Trail Making Test B. Function 2 termed “complex motor tasks and cognitive tasks” 
related the Force Plate Postural Sway Foam Task and Dual Task to the following 
cognitive variables: MoCA Adjusted Score, Verbal Fluency L words, Craft story 
immediate and delayed recall, and Trail Making Test B.

Discussion and implications: We identified groups of cognitive and physical 
functional abilities that were linked in cross-sectional analyses, which may suggest 
shared underlying neural network pathway(s) related to speed (Function 1) or 
complexity (Function 2).

Translational significance: Whether such neural processes decline before measurable 
functional losses or may be  important targets for future interventions that aim to 
prevent disability also remains to be determined.

KEYWORDS

cognitive function, mobility, aging, canonical correlation analysis, physical function

TYPE  Original Research
PUBLISHED  02 February 2023
DOI  10.3389/fnagi.2023.1090641

OPEN ACCESS

EDITED BY

Jeannette R. Mahoney,  
Albert Einstein College of Medicine, 
United States

REVIEWED BY

Richard Camicioli,  
University of Alberta,  
Canada
Emma Gabrielle Dupuy,  
Université de Montréal, Canada

*CORRESPONDENCE

Atalie C. Thompson  
 atathomp@wakehealth.edu

SPECIALTY SECTION

This article was submitted to  
Neurocognitive Aging and Behavior,  
a section of the journal  
Frontiers in Aging Neuroscience

RECEIVED 05 November 2022
ACCEPTED 11 January 2023
PUBLISHED 02 February 2023

CITATION

Thompson AC, Miller ME, Handing EP, Chen H, 
Hugenschmidt CE, Laurienti PJ and 
Kritchevsky SB (2023) Examining the 
intersection of cognitive and physical function 
measures: Results from the brain networks and 
mobility (B-NET) study.
Front. Aging Neurosci. 15:1090641.
doi: 10.3389/fnagi.2023.1090641

COPYRIGHT

© 2023 Thompson, Miller, Handing, Chen, 
Hugenschmidt, Laurienti and Kritchevsky. This 
is an open-access article distributed under the 
terms of the Creative Commons Attribution 
License (CC BY). The use, distribution or 
reproduction in other forums is permitted, 
provided the original author(s) and the 
copyright owner(s) are credited and that the 
original publication in this journal is cited, in 
accordance with accepted academic practice. 
No use, distribution or reproduction is 
permitted which does not comply with these 
terms.

8

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fnagi.2023.1090641﻿&domain=pdf&date_stamp=2023-02-02
https://www.frontiersin.org/articles/10.3389/fnagi.2023.1090641/full
https://www.frontiersin.org/articles/10.3389/fnagi.2023.1090641/full
https://www.frontiersin.org/articles/10.3389/fnagi.2023.1090641/full
https://www.frontiersin.org/articles/10.3389/fnagi.2023.1090641/full
https://www.frontiersin.org/articles/10.3389/fnagi.2023.1090641/full
https://www.frontiersin.org/journals/aging-neuroscience#editorial-board
https://www.frontiersin.org/journals/aging-neuroscience#editorial-board
https://doi.org/10.3389/fnagi.2023.1090641
mailto:atathomp@wakehealth.edu
https://doi.org/10.3389/fnagi.2023.1090641
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Thompson et al.� 10.3389/fnagi.2023.1090641

Frontiers in Aging Neuroscience 02 frontiersin.org

Introduction

Walking is a complex task integrating neuromuscular and cognitive 
components (Wilson et al., 2019). Several studies have shown that gait 
speed is associated with cognitive function as measured by a variety of 
global and domain specific assessments, but the strength and direction 
of associations have varied depending on the test and cohort, with some 
studies suggesting slow gait predicts cognitive changes and others that 
cognitive performance predicts decline in gait speed (Fitzpatrick et al., 
2007; Watson et al., 2010; Mielke et al., 2013; Verghese et al., 2013; 
Morris et al., 2016; Peel et al., 2019; Handing et al., 2021; Jayakody et al., 
2021). Many studies include persons with mild cognitive impairment or 
clinical neurological disease and so some associations may reflect 
concomitant impairments in both areas. Thus, examining these 
relationships in a cognitively intact cohort could help to determine 
whether the observed associations are intrinsic.

Moreover, the majority of the literature examining cognition and 
physical function to date have focused on gait speed but not particular 
aspects of physical function that contribute to gait, such as balance, 
muscle strength, and power. Given the limited range of physical 
assessments in prior work, it is not clear whether the association of gait 
and cognition stems from particular components of gait or if these 
components may differentially relate to different aspects of cognitive 
function especially on different tests (Clouston et al., 2013; Mignardot 
et al., 2014; Szturm et al., 2015; Rosano et al., 2016; Bahureksa et al., 
2017; Bohannon, 2019; Chou et al., 2019; Wiśniowska-Szurlej et al., 
2019; Meunier et al., 2021). A better understanding of the basis of the 
relationship of cognitive and physical function is needed.

In this analysis, we used canonical correlation analysis (CCA) to 
describe the patterns of association between 18 different objective 
measures of physical and cognitive function collected at the baseline 
visit of the Brain Networks and Mobility Function (B-NET) study. 
B-NET is a longitudinal study of 192 older adults free of mild cognitive 
impairment (MCI), dementia, or a clinical history of neurologic disease 
in order to understand the relationship between functional brain 
networks involving the sensorimotor cortex and lower extremity 
mobility function. CCA estimated linear combinations of the cognitive 
and physical measures in order to maximize the amount of explained 
shared variance (Sherry and Henson, 2005; Zhuang et al., 2020). Such 
linear functions describe the intersection of specific cognitive and 
physical measures, which may reflect shared underlying neural networks 
that could be considered novel therapeutic targets in future work. While 
this analysis was exploratory in nature, we expected to replicate prior 
observations of the association between executive function and gait 
speed (Fitzpatrick et al., 2007; Watson et al., 2010) as well as better 
elucidate which particular cognitive functions may be related to specific 
aspects of physical function.

Materials and methods

Study design

This study includes participants in the baseline visit of the B-NET 
study, an ongoing longitudinal, observational study of community-
dwelling older adults aged 70 and older recruited from Forsyth County, 
NC and surrounding regions (NCT03430427). Participants were 
excluded from the study if they were a single or double lower extremity 
amputee, had musculoskeletal impairments severe enough to impede 

functional testing (e.g., joint replacements), or dependency on a walker 
or another person to ambulate. The participants were also excluded if 
they had a history of any of the following: surgery or hospitalization 
within the past 6 months, serious or uncontrolled chronic disease (e.g., 
stage 3 or 4 cancer, stage 3 or 4 heart failure, liver failure or cirrhosis of 
the liver, uncontrolled angina, respiratory disease requiring the use of 
oxygen, renal failure requiring dialysis, diagnosis of schizophrenia, 
bipolar, or other psychotic disorders, or alcoholism (>21 drink per 
week)), clinical manifestation of a neurologic disease affecting mobility, 
prior traumatic brain injury with residual deficits, brain tumors, seizures 
within the last year, and major uncorrected hearing or vision problems. 
In addition, they were excluded if they reported plans to relocate within 
the next 2 years, were participating in a behavioral intervention trial, or 
had evidence of impaired cognitive function. Cognitive impairment was 
defined based on scores on the Montreal Cognitive Assessment 
(MoCA). MoCA scores of 20 or lower on the MoCA were considered 
ineligible. The full complement of cognitive tests in those with scores 
between 21 and 25 was reviewed by the study neuropsychologist, and 
those with a pattern consistent with MCI were excluded. Each 
participant signed a written informed consent form and the Institutional 
Review Board (IRB) of the Wake Forest School of Medicine approved 
the study.

Cognitive function testing

MoCA
The MoCA is a brief cognitive screening tool for global cognition 

and is scored out of a possible total score of 30 points, with higher scores 
indicating better cognitive performance. It assesses different cognitive 
domains including attention and concentration, memory, language, 
conceptual thinking, calculations, and orientation (Nasreddine et al., 
2005; Freitas et al., 2013). The overall MoCA score was evaluated in 
this study.

Semantic fluency
Semantic fluency is a measure of speeded word retrieval and 

executive function. The participant is asked to name various items of a 
given semantic category (animals or vegetables), and the number of 
unique responses named is scored. Participants are given 60 s to generate 
as many distinct responses as they can, with a higher score indicating 
better performance. The individual score for animals or vegetables was 
evaluated in this study.

Verbal fluency
Verbal Fluency is a measure of speeded word retrieval and executive 

function. The participant is asked to name items that begin with a 
certain letter of the alphabet (F or L). The number of unique responses 
named is scored. Participants are given 60 s to generate as many distinct 
responses as they can, with a higher score indicating better performance. 
The individual score for F or L was evaluated.

Craft story
The Craft Story 21 Recall (Immediate) assesses the ability to recall a 

short story. The study staff reads a short story and immediately after 
hearing the story, the participant is asked to retell the story from 
memory. Points are given for correct recall of details from the story. 
After approximately a 20-min delay, the participant is asked to repeat 
the story and scored for correct recall of details from the story, with 
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higher scores indicating better performance. The immediate and delayed 
scores were each assessed in this study.

Digit symbol coding
The Digit symbol coding (DSC) assesses processing speed. The 

participant is asked to translate numbers (1–9) to symbols using a key 
provided at the top of the test form. The outcome included here is the 
total number of correct responses within 90 s, with higher scores 
indicating better performance.

Auditory verbal learning test
The Auditory verbal learning test (AVLT) is a 15-word, six trial list 

learning task with immediate and delayed recall conditions. Fifteen 
words are read aloud and then the participant must recall the words 
from the list. Correct words recalled after each trial are awarded 1 point. 
After a 20- to 30-min delay, the participant is asked to recall the same 
words from the list again (Schmidt, 1996). The Delayed Recall score is 
the mean number of words correctly recalled across all six trials, and the 
Short Delay Recall (Trial 6) reflects the raw number of words recalled 
after an interference trial, with higher scores indicating better 
performance. The short and delayed recall scores were considered in 
this analysis.

Trail making A and B
The Trail making (TMT) includes Parts A and B. Part A requires 

participants to connect a series of circles numbered 1 to 25, and it 
assesses visual scanning, sequencing, and psychomotor speed. Part B 
adds a set shifting element by requiring the participant to switch 
between numbers and letters. The maximum time in seconds is 150 for 
Part A and 300 for Part B, with higher number of seconds indicating 
worse performance. TMT A and TMT B scores were each analyzed in 
this study.

Flanker
A computerized assessment of executive function and response 

inhibition administered using the EPRIME software 2.0 (Psychology 
Software Tools, Inc.). The Flanker task required participants to indicate 
the direction, by button press, of a central target arrow flanked by 
congruent or incongruent arrows. Accuracy and response times were 
recorded with the differenced in response time between the congruent 
and incongruent conditions being the summary score (Sanders et al., 
2018). Higher difference scores are considered poorer performance. For 
this analysis, the log of the ratio of median response times was used.

Mobility function testing

Grip strength
Grip strength (kg) was measured using a Jaymar handheld 

dynamometer. Three trials were performed and the maximum was taken 
across the 3 trials of the dominant hand, with larger values representing 
better performance.

Postural sway
Postural sway was assessed using Center-of-Pressure (COP) 

trajectory data collected at 100 Hz using an Advanced Mechanical 
Technology Incorporated (AMTI) AccuSway biomechanics force 
platform. Participants were barefoot in an upright closed stance and 
asked to stand comfortably on the platform for a series of five, 30-s trials. 

Postural sway was measured using a standard firm force plate as well as 
a foam force plate. For both plates, the area (in.2) within the 95% 
confidence ellipse path around the center of pressure was used to 
represent performance, with higher values representing 
worse performance.

Expanded short physical performance battery
The expanded Short Physical Performance Battery (eSPPB) was 

adapted from the test described by Guralnik et al. (1994) in order to 
address ceiling effects that could limit the value of the traditional SPPB 
in a well-functioning cohort such as BNET. The eSPPB increases the 
challenge to participants’ physical function assessments for balance and 
gait. Participants are asked to hold a side-by-side posture for 10 s, and 
the semi-tandem, tandem, and one-leg position for 30 s each. If 
participants are unable to hold the semi-tandem stand for 30 s, then they 
are requested to hold a short tandem stand for 10 s instead of 30 s. In 
addition to the usual 4-m gait speed (m/s), a narrow walking pace is also 
assessed over 4 m wherein participants are required to keep their steps 
in between 2 parallel lines marked 20 cm apart. The number of times a 
participant can stand up from a seated position, or chair pace, is also 
measured during a 5 s period. Scores for each subcomponent are then 
calculated based on the proportion of the best possible score (a 
continuous measure), not according to ranges of performance (a 
categorical measure). The resulting overall eSPPB score ranges from 0–4, 
rather than the traditional 12-point right-skewed categorical score 
distribution of the SPPB. The higher values represent better performance.

400-m walk test
Participants completed the fast-paced 400-m walk protocol 

developed by the Health Aging and Body Composition study, which has 
been shown to predict future mobility disability and mortality (Newman 
et al., 2006). The 400-m gait speed in m/s was analyzed in this study.

Dual task
During the Dual Task, participants completed 4 trials of walking 

over the 4-m GaitRITE Mat while saying the alphabet but skipping every 
other letter (e.g., B D F H J, etc.). The gait velocity was measured in cm/s 
and converted to m/s for the purpose of analysis.

Statistical methods
Means (SD) and proportions were calculated for descriptive 

statistics and Spearman correlations were calculated between all 
cognitive and physical function variables. The distributions of variables 
were examined, and log transformation was performed for postural 
sway, 400-m walk pace, Trails A and B. For the main analysis, a canonical 
correlation analysis (Mielke et al., 2013) (CCA) was used to relate the 12 
cognition measures to the 6 physical function measures (see Table 1 for 
a listing of cognition and physical function variables) after adjusting for 
sex and years of education (i.e., the CCA was run on the residuals for 
each variable after removing the sex and education effect). Sex was 
included as an adjustment factor due to significant associations of sex 
with strength, especially grip strength, and education was adjusted for 
since it can affect cognitive performance. This CCA analysis creates 
linear functions of the two groups of variables that maximize the 
correlation between the synthetic variables (e.g., one for cognition and 
one for physical function) formed by those linear functions, with the 
number of pairs of synthetic variables being equal to the lower number 
of variables within a group (6 physical function measures in our case). 
Each synthetic variable is mathematically constructed so that it is 
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uncorrelated with the other synthetic variables, and the canonical 
correlation Rc is the Pearson correlation between these linear functions. 
The square of this value represents the proportion of variance shared 
between the cognition and physical function variables, after accounting 
for all previous pairs of synthetic variables. This technique accounts for 
the correlation structures among the cognitive and physical variables to 
help elucidate shared aspects of physical and cognitive measures. An 
advantage of this technique is that it provides this information in a single 

analysis, reducing concerns over multiple testing that one might have if 
comparing sets of cognitive and physical measures in a pairwise fashion.

As suggested by Sherry and Henson (2005) we  used both the 
magnitude of the standardized canonical function coefficients and the 
structure coefficients (rs) to inform interpretation of the synthetic 
variables. Structure coefficients measure the bivariate correlation 
between an observed individual variable and the synthetic variable that 
incorporates that measure. The square of the structure coefficients (rs

2) 
measures the proportion of variance shared by the observed variable and 
the created synthetic variable. The communality coefficient (h2) 
measures the proportion of variance that each observed measure shares 
with the solution across the selected functions, is equal to the sum of the 
structure coefficients, and is informative as to the importance of the 
individual variable across the selected functions. The Wilks lambda 
criterion was used to test the full model and perform hierarchal tests of 
groups of functions. We followed the recommendations of Sherry and 
Henson in our presentation of CCA results.

Results

Descriptive statistics for demographic characteristics, cognitive 
measures, and physical function measures are presented in Table 1. To 
explore the multivariate shared relationship between cognition and 
physical function, the CCA was conducted using data from 174 
participants with complete data for the 12 cognition variables and the 6 
physical function variables. Twenty participants did not have complete 
data and therefore were excluded from the main analyses. Six functions 
were obtained with squared canonical correlations of 0.263, 0.195, 0.133, 
0.098, 0.053, 0.012 for each, respectively. We found that the full model 
incorporating all six functions was statistically significant with Wilks’s 
λ = 0.434, F (78, 838.7) = 1.76, and p = 0.0001. Moreover, the full model 
explained 57% (1-λ × 100) of the shared variance between the variable 
sets. In contrast, hierarchal tests for functions 2–6 had p = 0.021, 
functions 3–6 had p = 0.25, and all remaining hierarchal groups had 
p ≥ 0.62. Function 1 explained 26.3% of the shared variability between 
the cognition and physical function variables, whereas Function 2 
explained 19.5% of the remaining variance in the variable sets after 
accounting for the variability explained by the first function. All 
remaining functions each explained ~13% or less of the remaining 
variance. We focused our results presentation on the first two functions.

Standardized canonical function coefficients, structure coefficients 
(rs), squared structure coefficients (rs

2) and communalities (h2) are 
presented in Table 2 for Functions 1 and 2. Function 1 was labeled as a 
“cognitive and physical speed” variable because the primary cognitive 
and physical measures in this canonical correlation reflected speed of 
performance. Inspection of the coefficients for Function 1 revealed that 
the important physical function variables were primarily eSPPB score, 
log transformed 400-m walk speed, and the Dual Task pace. These 
variables had the largest squared structure coefficients (all ≥43.2). Note 
that the sex- and education-adjusted, Pearson correlation coefficients 
between the eSPPB and the log transformed 400-m walk speed (r = 0.58), 
and Dual Task (r = 0.62) were fairly large (Supplementary Table S1).

Focusing on the cognitive variable set in Function 1, we found that 
semantic fluency (animals), DSC total score, and log transformed TMT 
B cognitive measures were the primary measures that contributed to the 
linear synthetic variable. Because the DSC and animals scores were 
inversely related to TMT B, the structure coefficient for TMT B 
was negative.

TABLE 1  Descriptive statistics from participants at baseline in the BNET 
study.

Overall (N = 192)

Mean (SD); range

Age 76.43 (4.72); 70 to 90

Sex

 � Women 108 (56.2)

 � Men 84 (43.8)

Race/Ethnicity

 � Caucasian or White/Non-Hispanic 171 (89.1)

 � African American or Black/Non-Hispanic 18 (9.4)

 � Caucasian or White/Hispanic 2 (1.0)

 � Asian/Non-Hispanic 1 (0.5)

BMI 28.39 (5.63); 15.7 to 59.8

Years of education 15.68 (2.45); 12 to 25

Cognitive measures

 � MoCA adjusted score 25.64 (2.20); 21 to 30

 � Semantic fluency: Animals (no. in 60 s) 18.78 (4.82); 7 to 34

 � Semantic fluency: Vegetables (no. in 

60 s)

13.26 (3.87); 0 to 26

 � Verbal Fluency: F words (no. in 60 s) 12.33 (3.94); 3 to 26

 � Verbal Fluency: L words (no. in 60 s) 13.23 (4.02); 4 to 28

 � Craft immediate recall (no.) 21.03 (5.99); 7 to 35

 � Craft delayed recall (no.) 18.67 (5.74); 7 to 34

 � DSC (no. in 90 s) 55.18 (12.20); 21 to 87

 � AVLT short delay recall, Trial 6 (no.) 8.37 (3.20); 0 to 15

 � AVLT delayed recall (no.) 7.94 (3.46); 0 to 15

 � TMT A (sec) 36.75 (11.15); 18 to 89

 � TMT B (sec) (N = 191) 98.70 (43.96); 36 to 300

 � Flanker (log of ratio of medians) 

(N = 189)

0.11 (0.08); −0.03 to 0.39

Physical function measures

 � Maximum grip strength (kg) (N = 189) 28.80 (9.78); 8 to 52

 � Force plate postural sway 95% area 

(in.2) - Firm (N = 188)

0.37 (0.34); 0.07 to 2.40

 � Force plate postural sway 95% area 

(in.2) – Foam (N = 188)

1.18 (0.82); 0.34 to 8.68

 � eSPPB score (N = 190) 2.00 (0.52); 0.48 to 3.26

 � 400-m walk pace (m/s) 1.27 (0.43); 0.31 to 4.17

 � Dual Task pace (m/s) (N = 186) 1.07 (0.21);0.55 to 1.67

MoCA, Montreal Cognitive Assessment; DSC, Digit Symbol Coding; AVLT, Auditory Verbal 
Learning Test; TMT, Trail Making Test.
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The 2nd function explained 19.5% of the remaining shared variance 
after accounting for the first function. The coefficients in Table 2 for this 
function suggested that this function primarily relates a synthetic 

cognition variable with primary contributions of the MoCA adjusted 
score, Verbal Fluency L words, Craft story immediate and delayed recall 
measures, and log transformed TMT B to the log transformed 

TABLE 2  Canonical correlation analysis results adjusted for sex (n = 174).

Function 1 Function 2 h2 (%)

Standardized coefficient rs rs2 (%) Standardized coefficient rs rs2 (%)

Physical function measures

 � Grip strength (kg) −0.151 0.127 1.61 −0.276 −0.147 2.16 3.77

 � Log transformed force 

plate postural sway 95% 

area (in.2) - Firm

−0.072 −0.233 5.41 0.926 0.227 5.17 10.58

 � Log transformed force 

plate postural sway 95% 

Area (in.2) - Foam

0.306 −0.239 5.72 −1.051 −0.454 20.63 26.36

 � eSPPB 0.896 0.948 89.82 −0.376 0.074 0.54 90.36

 � Log transformed 400-m 

walk pace (m/s)

0.126 0.657 43.17 −0.221 −0.098 0.96 44.13

 � Dual task pace (m/s) 0.207 0.694 48.14 0.722 0.384 14.78 62.92

Canonical correlation (Rc) 0.51 0.44

Squared canonical 

correlation [Rc
2(%)]

26.31 19.52

Cognitive measures

 � MoCA Adjusted Score −0.048 0.091 0.82 0.205 0.381 14.55 15.37

 � Semantic fluency 

animals (no. in 60 s)

0.531 0.497 24.72 −0.318 −0.071 0.50 25.22

 � Semantic fluency 

vegetables (no. in 60 s)

−0.080 0.203 4.12 −0.199 −0.080 0.64 4.76

 � Verbal fluency (L words) 

(no. in 60 s)

0.045 0.105 1.11 0.720 0.536 28.73 29.84

 � Verbal fluency (F words) 

(no. in 60 s)

−0.281 −0.149 2.23 −0.318 0.164 2.69 4.93

 � Craft immediate recall 

(no.)

−0.546 −0.209 4.37 0.426 0.547 29.92 34.30

 � Craft delayed recall (no.) 0.347 −0.102 1.05 0.072 0.458 21.01 22.05

 � DSC (no. in 90 s) 0.493 0.625 39.09 0.142 0.318 10.09 49.19

 � AVLT short delay recall, 

Trial 6 (no.)

0.121 −0.044 0.19 −0.587 0.162 2.63 2.82

 � AVLT delayed recall 

(no.)

−0.322 −0.151 2.29 0.627 0.322 10.34 12.64

 � Log transformed TMT A 

(sec)

0.423 −0.187 3.50 −0.190 −0.296 8.78 12.28

 � Log transformed TMT B 

(sec)

−0.527 −0.571 32.63 −0.160 −0.456 20.80 53.43

 � Flanker (log of ratio of 

medians (sec))

−0.217 −0.265 7.02 −0.025 −0.107 1.14 8.16

Underlined effects have rs
2 > ~15%; Hierarchical Tests of canonical correlations (1–6: p = 0.0001; 2–6: p = 0.0211; 3–6: p = 0.2545; 4–6: p = 0.6252; 5–6: p = 0.9125; 6: p = 0.9832). The standardized 

function coefficients (Std. Coef.) define the linear combinations used to construct each synthetic variable. The structure coefficients (rs) measure the bivariate correlation between an observed 
individual variable and the synthetic variable that incorporates that measure. The square of the structure coefficients × 100 (rx

2) measures the proportion of variance shared by the observed variable 
and the created synthetic variable. The communality coefficient × 100 (h2) measures the proportion of variance that each observed measure shares with the solution across the selected functions, is 
equal to the sum of the structure coefficients, and is informative as to the importance of the individual variable across the selected functions. The canonical correlation (Rc) is the Pearson correlation 
between the linear functions for the physical and cognitive measures. The square of this value represents the proportion of variance shared between the cognition and physical function variables, 
after accounting for all previous pairs of synthetic variables.
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foam-based force plate postural sway time and the Dual Task. We labeled 
this function as “complex motor tasks and complex cognitive tasks” 
many of which provided an additional challenge to executive function 
and cognitive attention. Because software performing valid missing data 
imputation and analysis methods appropriate for CCA are very limited, 
we performed a sensitivity analysis to increase our sample size. This was 
done by dropping the grip strength and flanker variables to gain data 
from 4 participants, bringing the analytical sample with complete data 
to 93% of the baseline sample (n = 176). There were no substantial 
changes to the results.

Discussion

There is a growing body of literature suggesting a relationship 
between gait speed and cognition, and moreover that dysfunction in both 
domains may predict onset of dementia (Inzitari et al., 2007; Clouston 
et al., 2013; Chou et al., 2019; Jayakody et al., 2019, 2021). However, 
which types of cognitive measures are associated with gait speed has 
varied across studies (Morris et al., 2016) and there are more limited 
analyses relating other measures of physical performance to specific tests 
of cognitive performance. This study is the first to apply CCA to 18 tests 
of cognitive and physical performance to determine whether there are 
any important underlying synthetic functions relating these assessments 
in cognitively healthy older adults. The first function explained a large 
proportion (26.3%) of the joint variability between these sets of variables 
and included tests of cognitive and physical speed. The second function 
explained 19.5% of the remaining variance and included complex motor 
tasks and challenges to cognitive function including executive function 
and cognitive attention. The relative grouping of these measures may 
suggest the involvement of shared underlying neurophysiologic pathways 
required to accomplish those tasks.

Slowed gait speed has been previously shown to predict decline in 
processing speed as measured by the Symbol Search and DSC (Inzitari 
et al., 2007; Chou et al., 2019; Jayakody et al., 2019). Similarly, in our 
study, multiple timed assessments that included gait speed were 
associated with several timed assessments of cognition related to 
processing speed in Function 1. The eSPPB included both usual 4-m gait 
speed and narrow walking pace, and the eSPPB score was highly 
correlated with the 400-m walking pace. The Dual Task also measured 
walking pace on the GaitRITE mat while completing a cognitive verbal 
task. All three of the correlated cognitive tasks were also timed 
assessments that partially capture processing speed: semantic fluency 
(naming animals), DSC, and TMT B. Participants in BNET were 
cognitively intact at baseline, so the underlying association observed 
between these measures of gait speed and cognitive speed may 
be  intrinsic rather than due to impairment in cognition and could 
suggest a common shared neurophysiologic pathway related to speed. 
Moreover, injury to such a pathway could result in dual impairments in 
gait speed and cognitive processing. Concurrent declines in gait speed 
and cognition could place those individuals at significantly greater risk 
of incident dementia compared to those who decline in gait speed or 
cognitive function alone (Collyer et  al., 2022). Study of the 
neuropathophysiology underlying these associations will be  an 
important next step toward identification of potential upstream targets 
that could be intervened upon to prevent cognitive disability.

As one ages, gait also increasingly relies on higher order executive 
function, which may explain why performing a cognitive verbal dual task 

while walking was not only associated with processing speed (Function 
1) but also executive function and cognitive attention (Function 2; Ezzati 
et al., 2015). For example, dual task was related to cognitive tasks like 
semantic fluency and verbal fluency that draw on both speed and 
executive function. A recent study by Holtzer and colleagues used 
principal components analysis to determine cognitive factors, and then 
used multiple regression analyses to examine the relationship between 
the cognition factors and gait velocity with and without interference by 
dual task in a cohort of cognitively normal older adults (Holtzer et al., 
2006). Most notably, they found that speed/executive attention and 
memory both predicted gait velocity not only under usual conditions but 
also whenever there was interference by introduction of a secondary 
verbal task (i.e., dual task). A recent meta-analysis also found strong 
evidence that mild cognitive impairment was associated with impaired 
gait in particular during dual task conditions (Bahureksa et al., 2017), 
which may suggest a stronger association between early cognitive 
dysfunction and gait dysfunction under conditions that make competing 
demands on attention or that challenge both physical and cognitive 
reserve. Older adults with slower gait speed, particularly during dual task, 
are also at particularly higher risk of incident falls (Verghese et al., 2002). 
Similarly, cognitive impairment may increase one’s risk for falls but which 
specific domains are responsible for falls is not known (Shaw, 2002; Allali 
et al., 2017). The relationship between cognition, gait speed, and falls is 
complex and multifactorial. Future studies should consider if concurrent 
decrements in dual task gait speed and cognitive tests that challenge 
speed and executive function may help to identify a subgroup of older 
adults at substantially greater risk of not only cognitive impairment but 
also mobility disability, including falls.

The predominant complex motor task in the second function was 
maintaining postural stability on the foam-based force plate. Similar to 
the dual task, which provided an additional cognitive challenge while 
walking, standing on the foam rather than firm surface provided an 
additional stress to cognitive attention which is otherwise known to 
decline with age (Craik and Byrd, 1982). This may explain why postural 
sway on the foam surface was associated with cognitive assessments of 
executive function such as verbal fluency and log transformed TMT 
B. Older adults have been shown to have significantly worse postural 
control on compliant, unstable surfaces (e.g., foam) relative to younger 
adults (Hsiao et  al., 2020). Moreover, in one study, the association 
between poor executive function and falls was mediated by postural 
sway (Taylor et al., 2017), which may correspond to the connection 
between postural sway and executive function observed in Function 2 in 
our study. More global cognitive (e.g., MOCA) and memory tasks were 
also associated, possibly due to the complex nature of these assessments, 
but further research is needed to elucidate what neurophysiologic 
pathways may relate these measures.

Although the underlying neuropathophysiology connecting the 
physical and cognitive measures in Functions 1 or 2 cannot be directly 
ascertained by CCA, the groupings of particular measures with gait 
speed or complex motor tasks like postural sway on a foam surface may 
suggest future directions for further exploration on neuroimaging. A 
growing body of literature has examined whether associations between 
mobility, especially gait speed, and brain structure are explained by 
cognitive measures (Wilson et al., 2019). In some cases, adjusting for 
cognition attenuated the relationship between gait velocity and specific 
regions of the brain (Wilson et al., 2019) or other structural imaging 
measures such as beta amyloid burden (Nadkarni et al., 2017). For 
example, the relationship between gait and hippocampal volume was 

13

https://doi.org/10.3389/fnagi.2023.1090641
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org


Thompson et al.� 10.3389/fnagi.2023.1090641

Frontiers in Aging Neuroscience 07 frontiersin.org

attenuated after adjustment for verbal memory (Ezzati et al., 2015). 
Similarly, after adjustment for MMSE there was no association of gait 
speed with frontal and parietal lobe gray matter volume, but there was 
a persistent relationship with sensorimotor cortex, insula, thalamus, 
basal ganglia, and caudate nucleus volumes (Dumurgier et al., 2012). 
Additional adjustment for TMT-A also had little impact on the 
association of gait speed with subcortical volumes of the caudate 
nucleus and basal ganglia. In the Health, Aging and Body Composition 
study, larger cognitive cerebellar gray matter volume were associated 
with faster gait speed but this was not independent of DSC scores, and 
larger sensorimotor cerebellar volume was also associated with higher 
DSC but not gait (Nadkarni et al., 2014). Meanwhile vestibular volumes 
were associated with neither gait nor DSC. The authors concluded that 
information processing speed may influence the association between 
gait speed and cerebellar gray matter volumes, especially in the 
cognitive sub-region. These findings track well with our finding of a 
correlation between cognitive measures of processing speed and gait 
speed in Function 1.

Similarly, older adults are known to experience decrements in 
postural and volitional balance control (Kanekar and Aruin, 2014) that 
are more pronounced in those with mild cognitive impairment 
(Bahureksa et al., 2017). Reduced gray matter volumes in the brainstem 
and cerebellum have been significantly associated with reduced 
postural control (Kannan et al., 2022). Compared to cognitively normal 
older adults, those with mild cognitive impairment and Alzheimer’s 
dementia have also been shown to have more vestibular impairment, 
which in turn was associated with lower hippocampal volumes (Cohen 
et al., 2022). One limitation of the current literature is that most of the 
imaging methodologies applied in the context of mobility and cognition 
have examined structural rather than functional metrics. Exploration 
of particular pathways via network science, however, may provide 
better insight into how and why specific aspects of gait speed, balance, 
and cognition are functionally related, and will be  the focus of 
future analyses.

Limitations

A notable limitation of this study was the exclusion of participants 
who had evidence of substantial cognitive impairment (i.e., MOCA 
scores 21–25 who were deemed ineligible by a neuropsychologist or 
MOCA scores of 20 or lower). Similarly, potential participants were 
excluded if they had substantial mobility restrictions due to prior 
amputations or joint replacement, or if they depended on a walker or 
another person to ambulate. Since all included participants had 
higher cognitive and physical function at baseline, this likely 
restricted our ability to detect correlations between very poor 
cognitive and physical performance on these tests. However, it is 
possible that older adults with substantial physical or cognitive 
impairment would not have been able to complete these complex 
motor and cognitive tasks. Moreover, our findings highlight that there 
is correlation between these cognitive and physical measures even 
when assessed in a cohort of highly functional older adults. Thus, 
these early markers of dysfunction may be  preclinical and hence 
upstream of disability, suggesting a possible point of intervention for 
future work. The reasons that particular tests grouped into Function 
1 versus 2 are likely multifactorial and may not be fully explained by 
the more general names we ascribed to these functions. While some 

common themes were noted, such as the importance of speed to the 
tests of Function 1, there were also timed cognitive assessments that 
did not group into Function 1. Similarly, executive function was not 
exclusively important to the tests in Function 2 and why certain 
assessments were not highly correlated with one of the functions is 
not well understood but should be  further investigated. Whether 
common neurologic pathways may underlie these groups of functions 
will be a focus of future study.

Conclusion

In summary, we applied CCA to identify two connected groups of 
cognitive and physical function tasks in a cross-sectional cohort of 
cognitively intact, healthy older adults. The predominant function 
included speed related tasks in gait and cognition, while the second 
function included complex motor and cognitive tests. Future studies 
should investigate whether common underlying neurologic pathways 
are shared by these functions and may provide a point of intervention 
to prevent downstream disability.
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Examining the intersection of cognitive and physical function measures:

Results from the brain networks and mobility (B-NET) study

by Thompson, A. C., Miller, M. E., Handing, E. P., Chen, H., Hugenschmidt, C. E., Laurienti, P. J., and

Kritchevsky, S. B. (2023). Front. Aging Neurosci. 15:1090641. doi: 10.3389/fnagi.2023.1090641

In the published article, there was an error in Table 1 as published. Two participants were
miscategorized as American Indian or Alaskan Native and should have been categorized as
Caucasian or White race with Hispanic ethnicity. In addition, the standard deviation for age
was incorrectly written as 4.74 and should have been 4.72. The corrected Table 1 appears
below and includes updated race/ethnicity variable labels.

The authors apologize for this error and state that this does not change the scientific
conclusions of the article in any way. The original article has been updated.
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TABLE 1 Descriptive statistics from participants at baseline in the BNET

study.

Overall (N = 192)
Mean (SD); range

Age 76.43 (4.72); 70 to 90

Sex

Women 108 (56.2)

Men 84 (43.8)

Race/Ethnicity

Caucasian or White/Non-Hispanic 171 (89.1)

African American or Black/Non-Hispanic 18 (9.4)

Caucasian or White/Hispanic 2 (1.0)

Asian/Non-Hispanic 1 (0.5)

BMI 28.39 (5.63); 15.7 to 59.8

Years of education 15.68 (2.45); 12 to 25

Cognitive measures

MoCA adjusted score 25.64 (2.20); 21 to 30

Semantic fluency: Animals (no. in 60 s) 18.78 (4.82); 7 to 34

Semantic fluency: Vegetables (no. in 60 s) 13.26 (3.87); 0 to 26

Verbal fluency: F words (no. in 60 s) 12.33 (3.94); 3 to 26

Verbal fluency: L words (no. in 60 s) 13.23 (4.02); 4 to 28

CRAFT immediate recall (no.) 21.03 (5.99); 7 to 35

CRAFT delayed recall (no.) 18.67 (5.74); 7 to 34

DSC (no. in 90 s) 55.18 (12.20); 21 to 87

AVLT short delay recall, Trial 6 (no.) 8.37 (3.20); 0 to 15

AVLT delayed recall (no.) 7.94 (3.46); 0 to 15

TMT A (sec) 36.75 (11.15); 18 to 89

TMT B (sec) (N = 191) 98.70 (43.96); 36 to 300

Flanker (log of ratio of medians) (N = 189) 0.11 (0.08);−0.03 to 0.39

Physical function measures

Maximum grip strength (kg) (N = 189) 28.80 (9.78); 8 to 52

Force plate postural sway 95% Area (in.2) –
Firm (N = 188)

0.37 (0.34); 0.07 to 2.40

Force plate postural sway 95% Area (in.2) –
Foam (N = 188)

1.18 (0.82); 0.34 to 8.68

eSPPB score (N = 190) 2.00 (0.52); 0.48 to 3.26

400m walk pace (m/s) 1.27 (0.43); 0.31 to 4.17

Dual Task pace (m/s) (N = 186) 1.07 (0.21); 0.55 to 1.67

MoCA, Montreal cognitive assessment; DSC, Digit symbol coding; AVLT, Auditory verbal

learning test; TMT, Trail making test.
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Background: Risk factors for cognitive decline and physical decline have been 
studied independently, however older adults might experience decline in both areas 
i.e., dual decline. Risk factors associated with dual decline are largely unknown and 
have significant implications on health outcomes. The aim of this study is to explore 
risk factors associated with dual decline.

Methods: Using data from the Health, Aging and Body Composition (Health ABC) 
study, a longitudinal prospective cohort study, we examined trajectories of decline 
based on repeated measures of the Modified Mini-Mental State Exam (3MSE) and the 
Short Physical Performance Battery (SPPB) across 6 years (n=1,552). We calculated 
four mutually exclusive trajectories of decline and explored predictors of decline: 
cognitive decline (n = 306) = lowest quartile of slope on the 3MSE or 1.5 SD below 
mean at baseline, physical decline (n = 231) = lowest quartile of slope on the SPPB 
or 1.5 SD below mean at baseline, dual decline (n = 110) = lowest quartile in both 
measures or 1.5 SD below mean in both measures at baseline. Individuals who did 
not meet criteria for one of the decline groups were classified as the reference group. 
(n= 905).

Results: Multinomial logistic regression tested the association of 17 baseline risk 
factors with decline. Odds of dual decline where significantly higher for individuals 
at baseline with depressive symptoms (CES-D >16) (Odds Ratio (OR)=2.49, 95% 
Confidence Interval (CI): 1.05-6.29), ApoE-ε4 carrier (OR= 2.09, 95% CI: 1.06-1.95), 
or if individuals had lost 5+lbs in past year (OR=1.79, 95% CI: 1.13-2.84). Odds were 
significantly lower for individuals with a higher score on the Digit Symbol Substitution 
Test per standard deviation (OR per SD: 0.47, 95% CI 0.36-0.62) and faster 400-meter 
gait (OR per SD= 0.49, 95% CI: 0.37-0.64).

Conclusion: Among predictors, depressive symptoms at baseline significantly 
increased the odds of developing dual decline but was not associated with decline 
in the exclusively cognitive or physical decline groups. APOE-ε4 status increased the 
odds for cognitive decline and dual decline but not physical decline. More research 
on dual decline is needed because this group represents a high risk, vulnerable subset 
of older adults.
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1. Introduction

Declines in cognitive and physical function are major concerns for 
older adults, and can result in loss of independence, higher health care 
utilization, and increased risk for dementia (Verghese et  al., 2002; 
Hardy et al., 2011). The research community has commonly viewed 
these two abilities as independent trajectories, although emerging 
research is beginning to show a consensus that cognitive abilities and 
physical abilities are correlated, dynamic, and bidirectional (Tabbarah 
et al., 2002; Atkinson et al., 2007, 2010; Fitzpatrick et al., 2007; Inzitari 
et al., 2007; Rosano et al., 2008; Soumare et al., 2009; Watson et al., 
2010; Mielke et al., 2013; Gothe et al., 2014; Krall et al., 2014; Best et al., 
2016; Finkel et al., 2016; Montero-Odasso et al., 2019; Okley and Ian, 
2020). A meta-analysis by Clouston and colleagues (Clouston et al., 
2013) found evidence from 36 longitudinal studies consistently showing 
a correlation between physical function and cognitive function, 
although the strength of the association varied depending on 
assessment type. For example, grip strength was associated with 
changes in global cognition, while walking speed was correlated with 
changes in fluid cognition. Few studies have modeled changes in 
cognitive function and physical function together as a dual process 
longitudinally, i.e., dual decline. In prior studies examining combined 
decline (Montero-Odasso et al., 2020; Tian et al., 2020; Collyer et al., 
2022) the authors primarily investigated dual decline as a predictor for 
dementia, which all three studies found significant associations. 
Additionally, each of those studies used scores from gait speed only and 
cognition/memory to define dual decline. In the current study, we seek 
to define dual decline by using a variety of physical function tests that 
represent different domains of function including balance, sit to stand, 
and walk speed.

What has not been well characterized are if there are certain 
predictors that predispose an individual for dual decline. The first study 
to examine predictors of dual decline was published in 2005 and 
identified smoking and low hemoglobin as significant predictors 
(Atkinson et  al., 2005), albeit the sample only included 522 older 
women. Since then, little work has been conducted on risk factors of 
decline and thus a gap in the literature exists.

The purpose of this study is to (a) define four mutually exclusive 
groups (dual decline, cognitive decline only, physical decline only, and 
a reference group) and (b) explore predictors that may have a particularly 
strong association with dual decline. Determining predictors and 
modeling dual decline may help in early identification of a high-risk 
group of older adults and potentially develop interventions in order to 
prevent poor health outcomes in the future.

2. Materials and methods

Our study includes information from over 1,500 older adults from 
the Health, Aging and Body Composition (Health ABC) study, a 
longitudinal prospective cohort study of well-functioning, community 
dwelling older adults with a comprehensive examination of physical 
function, cognitive function, health data, and biomarkers. Health ABC 
recruited 3,075 men and women aged 70–79 years from a random 
sample of White and Black Medicare eligible residents in the Pittsburgh, 
PA, and Memphis, TN, metropolitan areas between April 1997 and June 
1998 (51.5% female, 41.7% African American). Participants were eligible 
if they reported no difficulty walking ¼ mile, climbing 10 steps, or 
performing basic activities of daily living.

2.1. Subject selection

For this project, we examined previously collected data across 6 years 
(1997/1998–2002/2003). We considered baseline to be inclusive of data 
through the 36-month visit (to include certain biomarkers not collected 
at month 0). All participants were free of mobility and cognitive 
impairments at baseline per self-report. Trajectories of decline were 
evaluated from three timepoints across 6 years. Participants who 
completed the Modified Mini-Mental State Exam (3MSE) and Short 
Physical Performance Battery (SPPB) at baseline with at least one 
successive measure after baseline were included in the analysis to calculate 
the slope. The SPPB was collected at the 0-, 48-, and 72-month follow-up 
visits and the 3MSE was collected at 0-, 36-, and 60-month follow-up visits.

Participants were excluded if they had a previous stroke (n = 88), 
Parkinson’s Disease (n = 21), or died before the 72-month visit (n = 384). 
Participants with only one measure of 3MSE or SPPB were excluded 
from analyses (n = 329). Complete case analysis was used and 
participants with missing baseline variables were excluded (n = 701). The 
final sample size was 1,552.

2.2. Risk factors at baseline

Selection of risk factors in this study were based upon previous 
research in this area (Atkinson et al., 2005) and we hypothesized that 
poor metabolic health (i.e., diabetes, hypertension, current smoker, 
alcohol drinker, high body mass index, and low hemoglobin) would be a 
particularly potent set of risk factors for those with dual decline.

2.3. Demographic variables

Demographic information and health questions were collected from 
self-report and included: age, sex, years of education completed, marital 
status, race (black, white), weight history, and self-reported health (poor, 
fair, good, very good, excellent). Participants were asked about smoking 
(are you a current smoker), and alcohol intake (do you currently drink 
alcohol, and how much per day). Participants were asked if they had 
fallen in the past 12 months (dichotomized to ≤ 1 time or 2 + times) and/ 
or hospitalizations in the past 12 months (Yes or No). Disease status for 
diabetes and hypertension was ascertained from the question at baseline, 
“Has a doctor ever told you that you have….” Depressive symptoms were 
assessed using the Center for Epidemiologic Studies Depression Scale 
(CES-D 20; Radloff, 1977). A score of 16 is the screening cut-off for risk 
of clinical depression.

2.4. Functional variables

Objective measures of functioning were also collected at an 
in-person clinic visit. Body mass index was calculated as weight/height 
(m)2 (Fitzpatrick et  al., 2007). Lung function was measured as the 
percent predicted forced expiratory volume in 1 s (pFEV1). A value of 
less than 80 was used to indicate poor lung function. Hand grip strength 
was calculated as the average of two trials in the right hand using an 
adjustable grip strength dynamometer. Grip strength was adjusted for 
gender and body weight. Participants also completed a 400-m walk at 
baseline. Executive function was measured using the Digit Symbol 
Substitution Test (DSST; Wechsler, 1997).
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2.5. Biomarker variables

Blood samples were collected via a venipuncture during an 
in-person baseline assessment. The biomarkers chosen for this 
project included: total cholesterol (mg/dL), hemoglobin (g/dL), 
serum albumin (g/dL), and serum vitamin D (25-hydroxyvitamin 
D; ng/mL) deficient (< 20 ng/ml), and at least one Apolipoprotein 
ε4 allele (APOE-ε4). These biomarkers were selected based upon 
previous studies (Atkinson et al., 2005, 2007) and are known to 
influence physical function and cognitive function. All biomarkers 
were collected at month 0 with the exception of hemoglobin (values 
were from the 36-month visit because it was not collected at month 
0, and serum vitamin D is from the 24-month visit).

2.6. Outcome variables

Physical function was measured using the SPPB (Guralnik 
et  al., 1994). The SPPB is composed of three physical function 
domains: a balance test, an 8-m walk, and a timed chair sit to stand. 
Scores from each domain were summed to create a composite score 
which ranges from 0 to 12 with higher scores indicating better 
performance. Cognitive function was measured using the 3MSE 
(Teng and Chui, 1987). The 3MSE includes tests of orientation, 
registration, attention, calculation, recall, and visual–spatial skills. 
Scores can range from 0 to 100 points, with higher scores indicating 
better performance.

Four trajectory groups were defined by a decline in the slope across 
6 years (0–72 months) using repeated measures from participant-specific 
slopes of 3MSE and SPPB scores. Those with a predicted slope in the 
lowest quartile or 1.5 SD below the mean at baseline, exclusively in 
cognition or physical function were classified as “cognitive decline” only 
or “physical decline” only. Those who met the same criteria for both 
cognitive and physical decline were classified as “dual decline.” 
Individuals who did not meet criteria for one of the decline groups were 
classified as the reference group.

2.7. Analytic approach

The four trajectory groups were defined based upon 
participant-specific slopes of 3MSE and SPPB scores from 0 to 
72 months. Cognitive decline = lowest quartile of 3MSE slope or 1.5 
SD below the mean at month 0, physical decline = lowest quartile 
of SPPB or 1.5 SD below the mean at month 0, and dual 
decline = lowest slope quartiles of 3MSE and SPPB or 1.5 SD below 
the mean in both domains at month 0. Participants who did not 
meet criteria for one of the decline groups were categorized as the 
reference group. Descriptive statistics were used to describe group 
characteristics with baseline predictors (Chi-square for 
proportions, and ANOVA for continuous variables). Next, a risk 
profile was constructed to identify which variables from baseline 
were associated with membership of each prospective decline 
category. Multinomial logistic regression was performed to model 
decline category with significant baseline variables as predictors. 
Hemoglobin g/dL, serum albumin g/dL, grip strength kg, DSST, 
and 400 m walk m/s were converted to z-scores for ease of 
interpretation. Odds Ratios and 95% confidence intervals (95% CI) 
are presented. All analyses were conducted using SAS 9.4.

3. Results

Characteristics of the four trajectory groups are presented in Table 1. 
The cognitive decline group (n = 306) had an average 3MSE score of 88.8 
at baseline and decreased on average 1.1 points per year. The physical 
decline group (n = 231) had an average SPPB score of 10.2 at baseline 
decreased by 0.55 points per year. The dual decline group (n = 110) had 
an average 3MSE score of 89 and SPPB score of 10.0 at baseline and 
decreased by 2.40 points on the 3MSE and 0.76 points on the SPPB per 
year. The dual decline group was significantly older, included more 
women and those who were less educated, black, and those less likely to 
be married, and more likely to self-report having lost 5 or more pounds 
in the past year. They also had more depressive symptoms, poorer self-
rated health, and were less likely to be  a current alcohol drinker 
compared to the reference group. The dual decline group also had 
significantly lower grip strength, lower hemoglobin (g/dL), albumin (g/
dL), were more likely to be  deficient in serum vitamin D 
(25-hydroxyvitamin D; < 20 ng/ml ng/mL), and to have at least one 
APOE-ε4 allele.

When significant variables from baseline were entered into a 
multinomial logistic regression model, significant risk factors of 
cognitive decline were higher age (OR = 1.05, 95% CI: 1.00–1.11), low 
education (≤ high school; OR = 1.46, 95% CI: 1.07–1.98), poor self-rated 
health (OR = 1.78, 95% CI: 1.16–2.71) and APOE-ε4 (OR = 1.44, 95% CI: 
1.06–1.95). Higher serum albumin (OR per standard deviation 
(SD) = 0.81, 95% CI: 0.95–0.98), higher DSST score (OR per SD: 0.57, 
95% CI: 0.48–0.68), and faster 400 m walk (OR per SD 0.81, 95% CI: 
0.68–0.96) were significantly associated with lower odds of cognitive 
decline (Figure 1). Physical decline predictors are depicted in Figure 2. 
Higher age (OR = 1.07, 95% CI: 1.01–1.13) increased the odds, while 
serum albumin (OR per SD = 0.85, 95% CI 0.72–0.99) and 400 m (OR 
per SD = 0.67, 95% CI: 0.56–0.81) decreased the odds.

Risk factors for dual decline included: age (OR = 1.13, 95% CI: 1.04–
1.22), lost 5 + lbs. in past year (OR = 1.79, 95% CI: 1.13–2.84), depressive 
symptoms (OR = 2.49, 95% CI: 1.05–5.91), and APOE-ε4 (OR = 2.09, 
95% CI: 1.33–3.28). Higher scores on the DSST and faster 400 m walking 
speed were significantly related to lower odds of dual decline (OR per 
SD = 0.47, 95% CI: 0.36–0.62; OR per SD = 0.49, 95% CI 0.37–0.64), 
respectively (Figure 3). OR and 95% CIs for all groups are presented in 
Table 2.

4. Discussion

Across the four decline categories, different patterns of risk factors 
emerged. Having less than a high school education and poor self-rated 
health were significantly related to higher odds of cognitive decline but 
were not related to physical decline or dual decline. Losing weight and 
depressive symptoms were significant risk factors for dual decline, but 
not related to the other categories. APOE-ε4 and DSST were significant 
predictors of cognitive decline and dual decline, and 400 m walk was 
significant across all three groups.

Evidence from large epidemiological studies have consistently 
shown that educational attainment influences rates of cognitive decline 
and risk of dementia (Stern et al., 1994). The association between self-
rated health and cognitive decline is more novel, although it can 
be  postulated that self-report engages a mental representation of 
personal history that consists of semantic and episodic knowledge 
(Jylha, 2009). This may provide rationale that self-rated health has a 
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TABLE 1  Descriptive characteristics at baseline across four groups of decline, data from the Health, Aging and Body Composition (Health ABC) Study 
(n = 1,552).

Reference group 
(n = 905)

Cognitive decline 
(n = 306)

Physical decline 
(n = 231)

Dual decline 
(n = 110)

Value of p

Baseline characteristics:

Health

Age, mean (SD) 73.1 (2.7) 73.6 (3.0) 73.7 (2.9) 74.4 (3.0) <0.001

Women, n (%) 428 (47.3) 148 (48.3) 141 (61.0) 67 (60.9) <0.001

Education, n (%)

≤ High school 399 (44.1) 202 (66.0) 116 (50.2) 77 (70.0) <0.001

Race, n (%)

White 677 (74.8) 160 (52.3) 164 (71.0) 55 (50.0) <0.001

Black 228 (25.2) 146 (47.7) 67 (29.0) 55 (50.0)

BMI, mean (SD) 26.9 (4.1) 27.2 (4.3) 27.7 (5.1) 27.4 (5.6) 0.047

Not Married, n (%) 387 (42.7) 133 (43.5) 123 (53.3) 61 (55.5) 0.004

Weight history

Gained 5 + lbs. in past year 273 (31.0) 103 (34.6) 78 (34.2) 31 (29.0) 0.523

Lost 5 + lbs. in past year 260 (28.7) 103 (33.7) 85 (36.8) 47 (42.7) 0.004

Self-rated health, poor, n (%) 66 (7.3) 59 (19.3) 25 (10.8) 23 (20.9) <0.001

Lifestyle n, %

Current smoker 61 (6.7) 25 (8.2) 17 (7.4) 11 (10.0) 0.587

Smoked 100 + cigarettes 501 (55.4) 152 (49.7) 120 (52.0) 57 (51.8) 0.649

Current alcohol drinker 516 (57.0) 135 (44.1) 124 (53.7) 40 (36.4) <0.001

Depressive symptoms, % 24 (2.7) 8 (2.6) 6 (2.6) 11 (10.0) <0.001

Grip Strength (kg), mean (SE) 31.6 (0.3) 32.4 (0.6) 28.3 (0.7) 28.8 (0.9) <0.001

Walk > 150 min a week 297 (33.0) 85 (28.2) 74 (32.0) 36 (32.7) 0.138

PFEV1 < 80% 196 (21.7) 73 (23.9) 53 (22.9) 22 (20.0) 0.796

Fallen in past year 202 (22.4) 54 (17.7) 50 (21.8) 23 (21.1) 0.386

Two or more times 42 (4.7) 12 (3.9) 17 (7.4) 7 (6.4) 0.250

Been hospitalized in past year 102 (11.3) 31 (10.1) 26 (11.3) 13 (11.8) 0.944

Two or more times 16 (1.8) 4 (1.3) 3 (1.3) 1 (0.9) 0.851

Biomarkers, mean (SD)

Total cholesterol (mg/dL) 204.1 (38.3) 201.5 (36.7) 200.2 (36.0) 205.1 (35.3) 0.410

Hemoglobin (g/dL) 13.8 (1.2) 13.6 (1.4) 13.6 (1.3) 13.3 (1.3) <0.001

Serum albumin (g/dL) 4.0 (0.3) 3.9 (0.3) 4.0 (0.3) 3.9 (0.3) <0.001

Serum Vitamin D 

(25-hydroxyvitamin D) (ng/mL)

27.9 (10.1) 25.2 (10.3) 26.2 (11.7) 26.2 (10.0) <0.001

Deficient (< 20 ng/ml), n (%) 212 (23.4) 100 (32.7) 77 (33.3) 34 (30.0) 0.001

ApoE-4 + 219 (24.2) 101 (33.0) 46 (19.9) 45 (40.9) <0.001

Chronic disease, n (%)

Hypertension 404 (44.6) 136 (44.4) 120 (52.0) 58 (52.7) 0.102

Diabetes 96 (10.6) 36 (11.8) 31 (13.4) 18 (16.4) 0.258

Other, mean (SD)

3MSE 93.0 (4.8) 88.8 (9.4) 93.0 (4.8) 89.0 (7.9) <0.001

SPPB 10.5 (1.1) 10.3 (1.2) 10.2 (1.8) 10.0 (1.6) 0.001

DSST 42.1 (11.7) 32.9 (13.2) 39.3 (13.0) 30.4 (12.7) <0.001

400 m gait speed, m/s (SD) 1.3 (0.2) 1.2 (0.2) 1.2 (0.2) 1.1 (0.2) <0.001

BMI = body mass index, PFEV1 = predicted forced expiratory volume in 1 s, Depressive symptoms = score of > 16 on the Center for Epidemiologic Studies Depression Scale (CES-D-20), ApoE-
4 + = Apolipoprotein e4 +, 3MSE = Modified Mini Mental Status Exam, SPPB = Short Physical Performance Battery, DSST = Digit Symbol Substitution Test.
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cognitive underpinning which we were able to detect as a significant 
predictor of subsequent cognitive decline.

Our results also showed that APOE-ε4 was a significant risk factor 
for cognitive decline and dual decline. APOE-ε4 has been widely shown 
to be  a significant risk factor for Alzheimer’s disease and dementia 
(Corder et al., 1993). Less is known about APOE-ε4 and the association 
with physical decline, however in a recent study, Stringa et al. (2020) 
examined the modulation of APOE-ε4 on cognition including an 
interaction with self-reported physical activity in three longitudinal 
cohort studies: Longitudinal Aging Study Amsterdam, InCHIANTI, and 
Rotterdam Study. APOE-ε4 carriers had higher odds of cognitive decline 
in these cohorts, although there was no significant interaction between 
self-reported physical activity, APOE-ε4, and cognitive decline. This 
supports our finding that APOE-ε4 increases the risk of cognitive 
decline, however we  also found a significant association between 
APOE-ε4 and dual decline. It may be  that the association between 

APOE–ε4 and dual decline was simply driven by the cognitive portion 
of dual decline. Physical function was measured objectively in the 
Health ABC study using the 400 m walk and we found that faster 400 m 
walk time was related to lower odds of cognitive, physical, and 
dual decline.

Depressive symptoms and weight loss were uniquely related to 
dual decline. Depressive symptoms increased the odds by nearly 
2.5-fold that a person would develop dual decline. Major depressive 
disorder is a common mental health problem for older adults and 
has been correlated with increased risk of falls (Kvelde et al., 2013), 
slower gait (Brandler et  al., 2012), and increased executive 
dysfunction (Koenig et al., 2014). A systematic review examining 
this “triad” of physical function decline, cognitive decline, and 
depression was supported by 12 out of 15 studies suggesting a 
linkage among these factors (Patience et al., 2019). The basis for 
this connection is not fully understood, but this may be  an 
important area of research in the future. To note, the number of 
participants with depressive symptoms was 3% (49/115) which may 
limit the generalizability of our study. In the cognitive decline and 
physical decline groups, depressive symptoms was not significant 
although the OR’s appear to look protective. This could be due to 
fact that those with depressive symptoms tended to be grouped into 
dual decline as opposed to only a single decline. Depression 
represents a potent modifiable risk factor and more research is 
needed to understand the consequences associated with cognitive 
and physical decline.

The first study examining predictors of dual decline and using a four 
group trajectory model (Atkinson et  al., 2005) found smoking 
(OR = 5.66, 95% CI 1.49–21.54) and low hemoglobin (OR 0.68, 95% CI 
0.47–0.98) to be unique predictors of dual decline in older women from 
the Women’s Health and Aging Study. Our results did not confirm those 
results, but our sample was more diverse including both men and 
women, and different methods were used to construct our definition of 
dual decline.

Strengths of this study include a longitudinal, well-described sample 
of over 1,500 older adults. The key strengths of Health ABC are the 
in-depth health, physical function, and clinical examinations administered 

FIGURE 1

Correlates of cognitive decline. Odds Ratio [95% CI] compared to the 
reference group.

FIGURE 2

Correlates of physical decline. Odds Ratio [95% CI] compared to the 
reference group.

FIGURE 3

Correlates of dual decline. Odds Ratio [95% CI] compared to the 
reference group.
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TABLE 2  Odds ratios [95% CI] with all significant predictors from regression analyses with comparison to the reference group.

Cognitive 
decline (n = 306)

Physical decline 
(n = 231)

Dual decline 
(n = 110)

OR 95% CI OR 95% CI OR 95% CI

Health

Age 1.05 1.00 1.11 1.07 1.01 1.13 1.13 1.04 1.22

Female 1.32 0.85 2.05 1.14 0.71 1.85 1.22 0.62 2.40

Education (≤ High 

School)

1.46 1.07 1.98 1.04 0.76 1.44 1.39 0.85 2.27

Race (Black) 1.33 0.93 1.90 0.72 0.48 1.08 1.11 0.64 1.94

Body Mass Index 0.98 0.94 1.01 1.02 0.98 1.06 0.97 0.92 1.01

Not married 0.82 0.60 1.11 1.15 0.84 1.59 0.94 0.58 1.51

Lost 5 + lbs. in past year 1.24 0.91 1.68 1.29 0.93 1.79 1.79 1.13 2.84

Self-rated health, fair or 

poor

1.78 1.16 2.71 1.12 0.67 1.89 1.31 0.72 2.40

Current alcohol drinker 0.95 0.71 1.27 1.07 0.78 1.47 0.80 0.50 1.26

Depressive symptoms, 

(CES-D > 16)

0.70 0.29 1.67 0.75 0.30 1.92 2.49 1.05 5.91

Grip Strength (per SD) 1.15 0.94 1.41 0.87 0.68 1.10 0.91 0.64 1.28

Biomarkers

Hemoglobin (per SD) 0.97 0.83 1.14 0.92 0.78 1.09 0.92 0.72 1.17

Serum Albumin (per SD) 0.81 0.70 0.93 0.85 0.72 0.99 0.87 0.70 1.09

Serum Vitamin D, 

Deficient (<20 ng/ml)

0.97 0.70 1.36 1.38 0.96 1.97 0.72 0.43 1.21

ApoE-e4+ 1.44 1.06 1.95 0.72 0.50 1.05 2.09 1.33 3.28

Other

DSST (per SD) 0.57 0.48 0.68 0.84 0.70 1.01 0.47 0.36 0.62

400 m gait speed (per SD) 0.81 0.68 0.96 0.67 0.56 0.81 0.49 0.37 0.64

Sensitivity analysis

*CES-D > 10 1.00 0.62 1.62 0.94 0.56 1.57 1.58 0.85 2.95

SD = Standard Deviation, Depressive symptoms = score of > 16 on the Center for Epidemiologic Studies Depression Scale (CES-D-20), APOE-4+ = Apolipoprotein e4+, DSST = Digit Symbol 
Substitution Test. Bold text means significant value.

annually or bi-annually in a healthy, well-functioning sample of older 
adults. Our study used the SPPB, as opposed to gait speed alone, which 
provides more information about function and included measures of gait 
speed, chair stand, and balance. This is the first study to use this approach 
as well as 17 different predictors. We  chose to use a prospective 
longitudinal approach because participants at baseline reported no 
difficulty with physical function or cognitive impairment, and in this 
presumably healthy sample we could evaluate subsequent decline.

Our study has limitations, particularly since it used secondary 
data. The baseline age range of 70–79 and a presumably healthy 
cohort (i.e., self-reported no difficulties in cognition or physical 
function at baseline) was criterion for the Health ABC Study. 
We  acknowledge that using self-reported cognitive status as a 
criterion for inclusion or exclusion in Health ABC is a limitation, 
but concerns are mitigated by the fact that these participants were 
able to complete procedures and participate in the study for a 
minimum of 4 years. Another weakness is that our results only 
included those with complete data, therefore individuals with 
missing data were not captured. The group size, specifically for 

dual decline, was slightly underpowered to detect meaningful 
differences. Since the study was exploratory in nature, we believe 
that our results contribute to an important emerging topic and 
warrants replication in a larger sample. The use of a global measure 
of cognition, the 3MSE, is a weakness because it is a single general 
test of cognition and not as comprehensive as a full 
neuropsychological battery. Also, predictors such as weight loss, 
depression, and alcohol drinking were from one visit at baseline, 
and we are unable to determine if these conditions were acute vs. 
chronic/habitual. In the future, it would be interesting to compare 
short term vs. long term predictors of decline.

More research is needed to further explore the mechanisms and the 
connection between cognitive health and physical health. Many have 
posited the role of the central nervous system and the hippocampus as 
being an important contributor to decline (Sorond et al., 2015). Of note, 
imaging measures were not available on our sample of participants. 
However, given the role of psychosocial factors (i.e., depression, walking 
speed) these factors are more easily measurable and can provide valuable 
information about a person’s cognitive and physical function.
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5. Conclusion

Our study provides a longitudinal assessment of cognitive, physical, 
and dual decline among older adults providing new evidence for risk 
factors of decline. Future research should examine the role of 
psychosocial factors as they relate to cognitive and physical function and 
specifically target modifiable factors which may help reduce the burden 
of cognitive and physical decline among older adults.
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Identification of novel, non-invasive, non-cognitive based markers of Alzheimer’s

disease (AD) and related dementias are a global priority. Growing evidence

suggests that Alzheimer’s pathology manifests in sensory association areas well

before appearing in neural regions involved in higher-order cognitive functions,

such as memory. Previous investigations have not comprehensively examined

the interplay of sensory, cognitive, and motor dysfunction with relation to

AD progression. The ability to successfully integrate multisensory information

across multiple sensory modalities is a vital aspect of everyday functioning

and mobility. Our research suggests that multisensory integration, specifically

visual-somatosensory integration (VSI), could be used as a novel marker for

preclinical AD given previously reported associations with important motor

(balance, gait, and falls) and cognitive (attention) outcomes in aging. While

the adverse effect of dementia and cognitive impairment on the relationship

between multisensory functioning and motor outcomes has been highlighted,

the underlying functional and neuroanatomical networks are still unknown. In

what follows we detail the protocol for our study, named The VSI Study, which

is strategically designed to determine whether preclinical AD is associated with

neural disruptions in subcortical and cortical areas that concurrently modulate

multisensory, cognitive, and motor functions resulting in mobility decline. In

this longitudinal observational study, a total of 208 community-dwelling older
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adults with and without preclinical AD will be recruited and monitored yearly.

Our experimental design affords assessment of multisensory integration as a new

behavioral marker for preclinical AD; identification of functional neural networks

involved in the intersection of sensory, motor, and cognitive functioning; and

determination of the impact of early AD on future mobility declines, including

incident falls. Results of The VSI Study will guide future development of innovative

multisensory-based interventions aimed at preventing disability and optimizing

independence in pathological aging.

KEYWORDS

multisensory integration, sensory processing, mobility, cognition, Alzheimer’s disease

Introduction

Alzheimer’s disease (AD) affects over 6 million Americans and
is the most-common cause of dementia (Alzheimer’s Association,
2022). AD follows a prolonged, progressive disease course that
begins with pathophysiological changes affecting individuals’
brains years before any clinical manifestations are observed
(Jack et al., 2013). The notion that Alzheimer’s modifies sensory
processing is in its very early stages (Albers et al., 2015). Yet, this
supposition is supported by evidence demonstrating that amyloid-
beta (Aβ) protein accumulates in sensory-association areas of the
brain well before higher-order cognitive areas like the prefrontal
cortex (PFC; Thal et al., 2002). While it is well known that mobility
impairments are common in mild cognitive impairment and AD
(Beauchet et al., 2008; Verghese et al., 2008a), the National Institute
on Aging (NIA) has recognized that functional changes in sensory
and motor systems also modulate the progression of AD. Thus, the
NIA is supportive of new initiatives aimed at discovering novel,
non-cognitive and non-invasive biomarkers for early detection of
Alzheimer’s disease, and this is directly in line with the research
priorities of our division.

There is a well-established association of higher-order cognitive
processes including attention and executive functioning with
balance (Woollacott and Shumway-Cook, 2002; Zettel-Watson
et al., 2015), gait (Verghese et al., 2007b, 2008a; Holtzer et al.,
2012; Groeger et al., 2022) and falls (Hausdorff and Yogev,
2006; Holtzer et al., 2007) in healthy, as well as cognitively
impaired older adults. In fact, the PFC has been found to play
a critical role in successful gait and cognition (Beauchet et al.,
2016). Work from our division has linked gait to discrete brain
structures such as cerebellar, precuneus, supplementary motor,
insular, and PFC (Blumen et al., 2019). Additionally, we have found:
(1) associations between walking performance and functional
connectivity in sensory-motor and fronto-parietal resting-state
networks (Yuan et al., 2015); (2) links between gray matter
volume in areas involved in multisensory integration (including
superior temporal sulcus and superior temporal gyrus) with
aspects of gait and gait control (Tripathi et al., 2022); and (3)
significant associations between gait and visual somatosensory
integration (VSI) processes (Mahoney and Verghese, 2018,
2020). However, the interplay of multisensory, cognitive, and
motor processes and the underlying functional neural networks

involved remain largely undefined in healthy and pathological
aging.

Sensory inputs emanating from a device like a cell phone
(that simultaneously lights up, vibrates, and plays a ringtone)
combine in the brain to yield faster responses than responses to
individual unisensory components, thereby decreasing the time
it takes to answer the phone. The magnitude of multisensory
integration can be quantified using established probabilistic
modeling procedures of behavioral performance, such as reaction
time (RT) and accuracy (Mahoney and Verghese, 2019). Magnitude
of multisensory integration is operationalized as the area-under-the-
curve of the difference between actual and predicted cumulative
probability distribution functions during a pre-identified portion of
the difference waveform. For example, Figure 1 depicts cumulative
probability difference values (y-axis) between actual and predicted
distribution functions from our latest study for percentile binned
RT responses ranging from 0.0 to 1.0 in 5% increments (Mahoney
and Verghese, 2020).

The combined study cohort (n = 345; dashed trace)
reveals successful multisensory integration processes (i.e., positive
cumulative probability difference values) during the fastest tenth
(0.0–0.1) of RTs. Here, the area under the curve during the 0.0–0.1
percentiles (gray shaded box) is operationalized as the magnitude
of multisensory integration (a continuous measure). Higher
values indicate superior ability to integrate visual-somatosensory
information (i.e., benefit from multisensory inputs), whereas lower
and negative values indicate inability to integrate or to benefit
from multisensory inputs. Stratifying the overall group based
on cognitive status assigned during consensus case conference
procedures [normal cognition (n = 293) – solid light gray trace;
mild cognitive impairment (MCI; n = 40) – solid dark gray trace;
and dementia (n = 12) – solid black trace] revealed that magnitude
of multisensory integration is significantly reduced for individuals
with MCI or dementia. Further, cognitive status significantly
mediated the relationship between magnitude of multisensory
integration and measures of mobility, such that older adults
with cognitive impairments demonstrated impaired multisensory
integration and significantly slower gait, as well as poorer balance
compared to older adults without cognitive impairments (Mahoney
and Verghese, 2020). Our findings further revealed that VSI is also
correlated with attention-based performance measures (Mahoney
et al., 2012; Mahoney and Verghese, 2020) that may target PFC
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FIGURE 1

Visual-somatosensory integration (VSI) cumulative probability difference waves overall and by cognitive status (normal, mild cognitive impairment,
or dementia). Adapted from Mahoney and Verghese (2022). Reprinted by permission of Oxford University Press on behalf of The Gerontological
Society of America.

regions known to be compromised in AD. Consequently, we argue
that multisensory integration has potential utility in early AD
detection, though further work is needed to uncover the exact
structural and functional neural correlates of VSI.

Significance

Balance requires efficient interactions between musculoskeletal
and sensory systems (Shumway-Cook and Woollacott, 2012),
which are compromised in aging (Lord et al., 2007). Poor balance
is a major predictor of falls, a leading cause of injury and death
in older Americans. Our research reveals that better magnitude
of VS integration, is associated with better balance and gait,
as well as decreased risk of falls (Mahoney et al., 2019). Our
previous investigations, however, did not determine the association
of impaired VSI with early dementia stages, nor its contribution to
mobility decline.

Impairments in cognition could adversely affect the association
between magnitude of multisensory integration and mobility
measures because: (1) multisensory processing appears to be
regulated by PFC (Jones and Powell, 1970; Cao et al., 2019);
(2) selective attention modulates multisensory integration in
aging (Hugenschmidt et al., 2009; Mozolic et al., 2012); and
(3) disruptions in executive attention and cognition in aging
compromise multisensory integration and mobility processes
(Yogev-Seligmann et al., 2008; Holtzer et al., 2012; Mahoney
and Verghese, 2020). Although our preliminary findings are
encouraging and of high public health significance, we believe
that we are only scratching the surface for a much-needed larger
multisensory investigation. The proposed study, from here on
referred to as The VSI Study, is significant as it will identify the
functional neural correlates of VSI, while also determining whether
Alzheimer pathology concurrently impacts sensory integration and
motor processes. The goal of The VSI Study is to determine the
combined influence of multisensory, cognitive and motor changes
in early Alzheimer’s disease in an effort to shape the development

of future innovative multisensory-based interventions, prognostic
tools, and new research-driven therapies aimed at preventing
disability and optimizing independence in pathological aging.

Specific aims

The VSI Study seeks to achieve three main specific aims
denoted as stars in Figure 2. In this conceptual model, cognitive,
motor, and (multi) sensory functioning are depicted as individual
gears that must work together to transmit a behavioral response.
However, the impact of preclinical AD on each of the individual
gears, as well as on the overall system (requiring successful
interactions across all functions) requires systematic examination.
Thus, our three main study aims are as follows:

Identify baseline structural and functional neural
correlates of VSI in preclinical AD

Results from The VSI Study employing multimodal
neuroimaging procedures will provide a deeper understanding
of the structural and functional neural correlates of VSI in older
adults with normal and preclinical AD. Here, preclinical AD
will be defined as manifesting impaired cognitive performance
[performance worse than 1.5 standard deviations from the mean
on standardized neuropsychological tests] and presence of elevated
Aß in plasma at baseline using established cut scores (Bateman
et al., 2019). We hypothesize that the magnitude of VSI will be
correlated with gray matter volume, cortical thickness, and blood-
oxygen-level-dependent (BOLD) signal activation in subcortical
and cortical regions of interest including dorsal lateral prefrontal
cortex (DLPFC), rostral middle frontal, and superior frontal gyrus
at study baseline (Year 1). We predict that older adults with
preclinical AD will manifest reduced magnitude of VSI (worse),
decreased cortical volumetrics, decreased functional connectivity,
and lower BOLD responses when compared to older adults with
normal cognition.
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FIGURE 2

The VSI Study – a conceptual model of the main objectives of the VSI Study and how each afford examination of the intersection of cognitive,
motor, and multisensory functioning in healthy and pathological aging.

Determine whether VSI task-related BOLD
activation in prefrontal cortex predicts future
mobility decline and falls

Individuals with Alzheimer’s disease are at greater risks for
falls and mobility disability, but specific causes of AD and the
temporal onset of functional changes across systems are currently
not known. We have shown a mediating effect of dementia and mild
cognitive impairment on the relationship between VSI and motor
outcomes (Mahoney and Verghese, 2018; Mahoney et al., 2019).
These results suggested that individuals with cognitive impairments
manifested poor VSI and poor balance/slow gait. Using an fMRI
task where participants are asked to respond as quickly as possible
to unisensory visual, unisensory somatosensory and combined
visual-somatosensory stimuli in a 3-Tesla (3T) magnet, our second
specific aim will determine whether visual-somatosensory task-
related BOLD activation in the prefrontal cortex at baseline predicts
future mobility (gait) declines and risk of incident falls. We
hypothesize that preclinical AD causes disruptions in subcortical
and cortical (multisensory, motor, and cognitive) regions that
modulate multisensory, motor, and cognitive functions necessary
for efficient mobility.

Assess the validity of VSI as a novel Alzheimer’s
behavioral marker

The validity of VSI as a novel marker for AD will be established
by correlating the magnitude of VSI with presence of Aβ using
plasma-based measures at baseline. In Year 2, positron emission
tomography (PET) measures affording localization of Aβ deposits
(Piramal Imaging) to estimate Aβ neuritic plaque density will also
be examined in relation to magnitude of VSI. Aβ protein deposition
has been documented in both sensory and cognitive areas (Thal
et al., 2002; Jack et al., 2018, 2019; Bateman et al., 2019). Therefore,

we hypothesize that increased Aβ accumulation in sensory and
cognitive areas, areas related to increased AD pathology, will be
associated with decreased magnitude of VSI.

In keeping with the NIA-AA research framework (Jack et al.,
2018), our innovative and timely project will distinguish AD
symptomology (presence of mild cognitive impairment) from AD
pathology (Aβ accumulation), while also applying the AT (N)
classification system [Aβ (A), tau (T), and neurodegeneration
(N)] to attain more direct assessment of neuropathologic changes.
More specifically, and in keeping with the goals of establishing
whether magnitude of VSI is a novel and early biomarker of AD,
associations of VSI with plasma-based total and phosphorylated
Tau, neurofilament (NfL), ApoE, and multimodal neuroimaging
measures of Neurodegeneration will also be examined for study
completeness.

Innovation

Multisensory integration is not well-understood in aging and its
relation to cognitive and motor functioning is recognized as a major
knowledge gap in the field (Meyer and Noppeney, 2011; Wallace,
2012; Mahoney and Barnett-Cowan, 2019; Campos et al., 2022).
The NIA recognizes that functional changes in sensory and motor
(i.e., non-cognitive) systems have an impact on the development
and progression of AD and requests identification of novel, non-
cognitive non-invasive predictors to aid in early AD detection.
Our multisensory integration research meets this request, while
also addressing the knowledge gap and providing significant public
health implications. We are recognized as the first group to have
established the clinical utility of magnitude of VSI in aging by
linking it to poor motor outcomes including loss of balance, falls,
and gait decline.
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Additional innovation highlights of the VSI Study include:
(1) access to established research infrastructure and existing
collaborations; (2) cost and time-efficient design affording access
to a priori identified participants with and without preclinical
AD; (3) longitudinal design affording comprehensive examination
of systemic changes (and their interactions) over time on the
progression of AD and its subsequent link to mobility declines;
(4) novel project with comprehensive multimodal neuroimaging
approach providing clear clinical application of results; and (5)
identification of a novel, non-cognitive behavioral marker that
simultaneously taps multiple integrative systems that have not been
systematically examined in previous AD investigations.

The current study also provides innovation beyond its specific
aims as it affords: (1) a deeper investigation of the onset
of functional systemic changes over time; (2) comprehensive
investigation of the neurobiological consequences of AD and its
links to medical co-morbidities in relation to VSI processes given
previously reported diminished multisensory integration in older
adults with diabetes (Mahoney et al., 2021); (3) enhancement
of multisensory digital health tools like CatchU

R©

used to screen
and prevent falls for older adults in clinical settings (Mahoney
et al., 2022); and (4) development of future multisensory-based
interventions that will further enhance quality of life for seniors.

Methods

Study design

We propose a longitudinal study of older adults with (n = 104)
and without (n = 104) preclinical AD; participants meeting criteria
for dementia or AD will be excluded. In accordance with the NIA-
AA research framework (Jack et al., 2018) and as stated earlier,
our innovative project will allow us to disentangle differences in
outcomes related to Alzheimer’s symptomatology [mere presence
of mild cognitive impairment syndrome at established clinical
case conference (Holtzer et al., 2008)] from those related to
Alzheimer’s pathology (Aβ accumulation). Based on our previous
studies (Mahoney and Verghese, 2020), we expect our preclinical
AD group will include older adults with varying levels of cognitive
impairment, ranging from amnestic and mixed MCI to preclinical
AD. Sub-groupings of MCI and mild stage AD will afford post hoc
analyses aimed at examining the impact of cognitive impairment
syndromes on multisensory integration processes.

Interested participants will undergo extensive
neuropsychological, sensory, physical functioning (mobility),
neuroimaging, and blood testing, though we recognize that
participants may decline participation in some procedures. The
VSI Study includes three study sessions in Year 1 with subsequent
follow-up calls every 2 months (to monitor falls) and yearly
in-house visits in study Years 2 and 3. Initial enrollment of all
208 participants will be staggered across study Years 1–3, with
follow-up visits conducted during study Years 2–5. Baseline
sessions, designed using established divisional research studies as a
model, aim to minimize fatigue and maximize effort by spreading
test procedures out over three study sessions, each lasting about
3–4 h in duration (see Figure 3 for overview of study procedures
by session). Based on our experience with previous and currently

NIH-funded divisional studies that have similar protocols, we
estimate a 90% completion rate for this protocol.

Recruitment and study criteria

Participant recruitment for this project will be strategic. We will
utilize existing infrastructure, recruitment methods, and available
registration lists over 600 eligible and interested participants
from previously funded divisional studies (R01AG036921,
R01AG044007, and 1R01AG050448; and K01AG049813) for
enrollment in the VSI Study. Adults aged 65 and older living
in the NY metropolitan area may also be contacted using a
commercially available third-party list. We have used these and
other lists to recruit over 1,000 participants for various aging
studies over the past 12 years. Identification of older adults with
preclinical Alzheimer’s disease will be supplemented by clinical
recommendations from neurologists and neuropsychologists (Drs.
Verghese, Weiss, and Zwerling), as well as clinical patient lists from
Montefiore’s Center of Excellence for Alzheimer’s disease (CEAD),
including both the Center for the Aging Brain (CAB) and the
Memory Disorders Center. Since the VSI Study builds on existing
research infrastructure, we will ensure similar distributions of age,
gender, and ethnicity for older adults with and without preclinical
Alzheimer’s disease by monitoring demographic and clinical
parameters and adjusting as needed as we accrue our sample.

In terms of our recruitment procedures, we will first mail
letters to participants explaining the VSI Study. Then, the research
team will follow-up by telephone and inquire whether the
letter was received. If the participant received the letter, the
research assistant will conduct standardized telephone recruitment
interview procedures. If a letter was not received, the participant’s
name and mailing address will be verified by the research team
and a new letter will be mailed out, which will be followed by
a telephone interview call. Interested participants meeting study
eligibility criteria (see Table 1 for detailed inclusion and exclusion
criteria) will be scheduled to come to the Albert Einstein College of
Medicine, Division of Cognitive and Motor Aging, Sensorimotor
Integration in Aging Lab for all in-house study sessions. After
baseline study procedures are completed, the VSI Study case
consensus team will convene and provide clinical diagnoses based
on neuropsychological performance, neurological exam, medical
history, and Aβ plasma results. Study group assignment will be
determined during Year 1 case-conferences, and monitored every
study year.

Study measures

A comprehensive list of established assessment measures is
delineated in Table 2 by domain and session. The variables of
interest and their applications will be explained in detail below
as they relate to each specific aim. Note that additional measures
(i.e., pilot measures) unrelated to the study’s specific aims may
be included in the protocol but are not listed here. Variables and
test measures labeled in green will be used as covariates in certain
statistical models, depending on the specific research aim. As noted
earlier, our central hypothesis is that preclinical AD is associated
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FIGURE 3

VSI Study flow by Year with high-level overview of targeted domains by baseline (Year 1) and follow-up sessions.

with neural disruptions in subcortical and cortical areas that
concurrently modulate sensory, motor, and cognitive functions,
resulting in mobility decline. Therefore, our study strategically
includes a wide array of test measures in each domain.

Our independent variable is magnitude of VSI derived from
our established VSI test (Mahoney and Verghese, 2019), and our
dependent variables include neuroimaging measures of functional
integrity (BOLD signal and resting state functional connectivity),
motor outcomes (balance, gait, and falls), and Alzheimer
pathology (Aß presence and accumulation). Comprehensive
screening measures, neuropsychological and neurological/medical
history assessments will be used to ensure study appropriateness,
characterize our cohort, as well as aid in determination of cognitive
status and study group enrollment. Additional psychosocial, social,
emotional, and personality measures are included for study
completeness as they will foster future research initiatives.

Primary research outcomes and
statistical plan by aim

As stated earlier, our group has linked the magnitude of VSI
to important cognitive and motor outcomes (Mahoney et al.,
2014; Mahoney and Verghese, 2018, 2020; Mahoney et al., 2019).
Furthermore, we highlighted the adverse effect of dementia and

mild cognitive impairments on these outcomes (Mahoney and
Verghese, 2020). However, the functional neural substrates of
VSI have not been identified in healthy or cognitively impaired
adults. The justification for identifying associated functional
neural networks of multisensory integration will allow us to
design novel multisensory-based interventions to complement
existing interventions that demonstrate some fall reduction. The
VSI Study will employ a theoretical and empirical approach to
determine whether VSI is indeed a novel non-cognitive, non-
invasive predictor of early Alzheimer’s disease and specifically,
address the following research aims:

Identify baseline structural and functional neural
correlates of VSI in preclinical AD

Participants will complete a simple reaction time (RT)
test employing three bilaterally presented conditions (visual,
somatosensory, and multisensory visual-somatosensory) and a
control (i.e., “catch”) condition where no stimulation is presented,
and no response is expected. The four stimulus conditions will be
randomly presented with equal frequency (15 trials per condition
per block, 3 blocks, yielding a total of 180 trials). The addition
of “catch” trials and variable inter-stimulus-interval (ranging from
1–3 s) impedes anticipatory effects (see Mahoney and Verghese,
2018; Mahoney and Verghese, 2019, 2020; Mahoney et al., 2019;
for details). Participants will be instructed to respond to all stimuli
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TABLE 1 VSI Study eligibility criteria.

A General inclusion criteria

1 Adults aged 65 and older, residing in New York Metropolitan area who plan to be in area for next three or more years.

2 Able to speak English at a level sufficient to undergo our cognitive assessment battery.

3 Ambulatory. Participants are classified as “non-ambulatory” if they are unable to leave the confines of their home and attend a clinic visit. Participants
who require walking aids to walk outside but are able to complete our mobility protocols without an assistive device or the assistance of another person
will not be excluded.

B General exclusion criteria (one or more criteria)

1 Presence of dementia [Telephone based Memory Impairment Screen score (T-MIS) of < 5, Alzheimer’s disease 8 (AD8)≥ 2, or dementia diagnosed by
study clinician at initial visit].

2 Serious chronic or acute illness such as cancer (late stage, metastatic, or on active treatment), chronic pulmonary disease on ventilator or continuous
oxygen therapy or active liver disease. Individuals with recent cardiovascular or cerebrovascular event (MI, PTCA, CABG, or stroke) will not be
excluded if they meet above inclusion criteria.

3 Mobility limitations solely due to musculoskeletal limitation or pain (e.g., severe osteoarthritis) that prevent participants from completing mobility
tests. Mere presence of disease will not be used to exclude participants if they can complete the mobility tasks.

4 Any medical condition or chronic medication use (e.g., neuroleptics) in the judgment of the screening clinician that will compromise safety or affect
cognitive functioning or terminal illness with life expectancy less than 12 months.

5 Progressive, degenerative neurologic disease (e.g., Parkinson’s disease or ALS) diagnosed by study clinician and as per medical history.

6 Presence of clinical disorders that overtly alter attention like delirium.

7 Hospitalized in the past 6 months for severe illness or surgery that specifically affects mobility (e.g., hip or knee replacement) and that prevent
participants from completing mobility tests or plans for surgery affecting mobility in the next 6 months.

8 Severe auditory, visual, or somatosensory impairments: Vision is screened using a Snellen chart – significant loss of vision is defined as corrected vision
less than 20/400 on the Snellen chart with both eyes. Hearing is initially evaluated as part of the screening telephone interview. Participants will be
excluded only if they are unable to follow questions asked in a loud voice during in-house sessions. Somatosensory functioning will be measured using
quantitative sensory threshold protocols and presence of neuropathy will be assessed using the Michigan Neuropathy Screening Instrument.

9 Active psychoses or psychiatric symptoms (such as agitation) noted during the clinic visit that will prevent completion of study protocols. Past history
of these symptoms or presence of psychiatric illness not used as exclusion criteria.

10 Living in nursing home.

11 Participation in intervention trial. Participants can participate in other observational studies.

as quickly as possible. Performance accuracy will be defined
as the number of accurate stimulus detections divided by 45
trials per condition. Using our established methodology, robust
probability (P) models that compare the cumulative distribution
function (CDF) of combined unisensory visual (V) and unisensory
somatosensory (S) reaction times with an upper limit of 1 min
[P (RTV ≤ t) + P (RTS ≤ t), 1] to the CDF of multisensory
visual-somatosensory (VS) reaction times [P (RTVS ≤ t)] will be
implemented. For any latency t, the inequality holds when the
CDF of the actual multisensory VS condition [P (RTVS ≤ t)] is
less than or equal to the predicted CDF {min [P (RTV ≤ t) + P
(RTS ≤ t), 1]}. When the actual CDF is greater than the predicted
CDF (i.e., positive value), the model is violated, and the RT
facilitation is the result of multisensory interactions that allow
signals from redundant information to integrate or combine non-
linearly. Predicted CDF will be subtracted from the actual CDF to
form a difference curve. The area-under-the-curve of the group-level
violated portion of the difference curve will serve as the continuous
measure of magnitude of VSI.

All neuroimaging procedures will be conducted at the Gruss
Magnetic Resonance Research (MRRC) Center at Albert Einstein
College of Medicine under the direction of Dr. Lipton. The MRRC
offers state-of-the-art multimodal neuroimaging on Philips whole-
body Ingenia Elition 3.0 Tesla Magnetic Resonance Imaging (MRI)
scanner equipped with 32-channel head coil. Multimodal MRIs

will be captured at baseline (i.e., study Year 1) and processed by
our neuroimaging team consisting of Drs. Blumen, Fleysher, and
Hoptman. Our non-invasive multimodal MRI imaging techniques
are reliable and have been used extensively in both healthy aging
and dementia studies in our division/department. For the VSI
Study, specific MRI outcome measures are listed by modality
in Table 3. Structural MRI (sMRI; ∼5 min) will be acquired
using high-resolution T1-weighted whole head structural imaging
using axial 3D-MP-RAGE acquisition over a 240 mm field of
view (FOV) with 1.0 mm isotropic resolution. TE = 4.6 ms,
TR = 9.9 ms, α = 8◦, and SENSE factor = 2.6 (left-right) x 2
(head-foot). Functional MRI (∼10 min total) will be acquired
using whole brain T2∗ weighted images with echo planar weighted
images with echo planar imaging over a 224 mm FOV on a
112 × 112 acquisition matrix, 3 mm slice thickness (no gap);
TE = 30 ms, TR = 2,000 ms, flip angle = 90◦, SENSE factor = 2
and 42 trans-axial slices per volume. The fMRI procedures will
measure BOLD activation (outcome measure) during the VSI task.
This event-related design emulates our established psychophysical
protocol where 60 trials of visual alone, somatosensory alone,
multisensory visual-somatosensory (VS; Mahoney and Verghese,
2019) will be presented in the scanner, but will also include the
above-mentioned “catch” trials (60 trials). The visual (V) stimulus
will be bilateral asterisks presented for 100 ms on a VisuaStim
digital visor (Resonance Technology, Inc., Northridge, CA, USA).
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TABLE 2 Assessment measures by domain and session.

Domain Session Assessment measures

Screening Telephone Interview Demographic (including age, gender, ethnicity and education level)/Health screen/Telephone memory
impairment screen (Lipton et al., 2003); AD8 dementia screening interview (Galvin et al., 2005); life space
assessment scale (Baker et al., 2003)

Sensory Years 1–3 Visual sensory screen (Snellen test); Shoebox auditory testing; Vibratron (Shy et al., 2003); Michigan
neuropathy screening instrument (Feldman et al., 1994; Lunetta et al., 1998); Simple reaction time test;
Odor identification test (NIH Toolbox)

Multisensory Years 1–3 Visual-somatosensory integration test (Mahoney et al., 2019); CatchU
R©

(Mahoney and Verghese, 2022)

Neuropsychological Years 1–3 MoCA (Nasreddine et al., 2005); WRAT-3 (Ashendorf et al., 2009); WAIS-IV (Wechsler, 2008; Processing
speed index score); Trails A&B (Lezak et al., 2004); Golden stroop (Golden, 1978); Wisconsin card sorting
test (WCST-64; Heaton, 1981; Greve, 2001); Conner’s continuous performance test –3 (CPT-3; Conners,
2014); Flanker test (Fan et al., 2002); Boston naming test (Kaplan et al., 1983); Free-cued selective
reminding test (FCSRT; Grober et al., 1988); Control oral word association test (Benton, 1968); MINT
(Gollan et al., 2012); Benson complex figure (Possin et al., 2011); Craft story (Craft et al., 1996); Judgment of
line orientation test (SF-12 item); Established clinical case conference

Neurological/ Medical
History/ Physiological/Other

Years 1–3 Neurological exam; CDR; Medical history interview (medical comorbidities, including CVD);
Medication/Polypharmacy list; Height/Weight/Blood pressure/Pulse; AD family history questionnaire; TBI
history intake; History of COVID; SF-12 (Ware et al., 1996); Brief fatigue inventory (Shahid et al., 2011);
Smoking/Alcohol consumption intake; Pittsburgh sleep quality index (Buysse et al., 1989); STOP-BANG
(Chung et al., 2008); MOS pain (de Mos et al., 2007)

Gait/Mobility Years 1–3 Quantitative gait assessment (Verghese et al., 2002b, 2007a, 2009); Normal pace walking/Walking while
talking protocol (Holtzer et al., 2011) and Primary gait screen (Protokinetics); General mobility
questionnaire

Balance/Physical
Performance/Leisure

Years 1–3 Unipedal stance test (Hurvitz et al., 2000, 2001); Berg balance test (Berg et al., 1992); Biodex sensory
organization test; ABC scale (Powell and Myers, 1995); Short physical performance test (SPPB; Guralnik
et al., 1994); Stair climbing; Grip strength (Guralnik et al., 1994); Functional reach (Duncan et al., 1990);
Purdue pegboard (Tiffin and Asher, 1948); Maze (Sanders et al., 2008); Leisure scale (Verghese et al., 2003)

Falls Years 1–3 Baseline and bimonthly fall interviews (Verghese et al., 2004; Verghese et al., 2008b, 2009); Falls self-efficacy
scale (Tinetti et al., 1990)

Activities of Daily Living 4 ADLs; Instrumental ADLs (Lawton and Brody, 1970); Bathing scale

Psychosocial/Personality Years 1–3 Geriatric depression scale (Brink et al., 1982); Beck anxiety inventory (Beck et al., 1988); Big-5 inventory
(Barrick and Mount, 1991)

Social Support/Loneliness Years 1–3 Social network index; MOS social support survey (Sherbourne and Stewart, 1991); UCLA loneliness index-3
(Russell, 1996).

Multimodal Neuroimaging Year 1 Structural MRI (s-MRI) including total intracranial volume; Functional MRI (fMRI: task-based VSI test and
resting state fMRI (Yuan et al., 2015; Pillemer et al., 2017), FLAIR (3D); DTI/NODDI; Pseudo-continuous
arterial spin labeling (pc-ASL); Susceptibility weighted imaging (SWI) – (see Table 3 for more details)

Blood and Plasma Year 1 Basic chemistry; Lipid panel; Glucose/A1C; IL-6; CRP; Aβ/ApoE/pTau/Neurofilament (Bateman et al.,
2019)

Amyloid Imaging Year 2* Fluorine-18 florbetaben (Neuraceq) PET scan in individuals with preclinical AD [*case confirmed→
Aß + plasma test and confirmed poor neuropsychological performance]

Established study procedures labeled in green for use as covariate in statistical models.

The somatosensory (S) stimulus will be bilateral pneumatic
pulses presented for 100 ms through the Somatosensory Stimulus
Generator system (4-D Neuroimaging) which is compatible in
the MRI scanner. These stimuli will be presented alone and
concurrently in the case of the concurrent VS stimulus. The critical
contrast here will examine differences in BOLD activation between
the multisensory VS condition vs. the sum of the two unisensory
conditions (V + S). Resting-state (rs)-fMRI (10 min) will also be
captured while participant lay still and relax (i.e., a passive no-
task condition) with their eyes open. Fluid Attenuated Inversion
Recovery (FLAIR; ∼5 min total) will account for white matter
hyperintensities (WHI) indicative of small vessel disease. FLAIR
will be acquired using whole head imaging sagittal 3D-TSE-IR
acquisition over a 250 mm FOV with 1 mm isotropic resolution.

TE = 338 ms, TR = 4,800 ms, TI = 1,650 ms TSE Factor = 182,
compressed SENSE acceleration factor 3.5. FLAIR results will
account for presence/absence of small vessel disease and will be
considered as a covariate. Additional multimodal neuroimaging
procedures to be included for study completeness, beyond the
scope of the specific aims include: Susceptibility Weighting Imaging
(SWI); Pseudo-Continuous Arterial spin labeling (pc-ASL); and
Neurite orientation and dispersion density imaging (NODDI) – see
Table 3 for details.

In terms of our statistical approach for Aim 1, the magnitude
of VSI (independent variable) will be analyzed and quantified
using established probabilistic modeling procedures (Mahoney
and Verghese, 2019). The dependent measures of structural
and functional neural integrity include: (1) cortical thickness:
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TABLE 3 List of Magnetic Resonance Imaging (MRI) procedures.

MRI measures Modality Outcome measure(s)

Structural Structural MRI Cortical thickness and gray matter
volume

3D FLAIR Presence of white matter
hyperintensities and lacunes

Susceptibility Weighting
Imaging (SWI)

Presence of microbleeds

Pseudo-continuous
arterial spin labeling
(pc-ASL)

Quantitatively measures tissue
perfusion, or cerebral blood flow
(CBF)

Neurite orientation and
dispersion density
imaging (NODDI)

A diffusion imaging technique to
detect cortical and corticospinal
tract neurodegeneration (N)

Functional Functional MRI (fMRI) BOLD response (beta) during VSI
task

Resting state fMRI Fisher z-transformed Resting state
functional connectivity

(2) volumetric measures for regions of interest extracted from
structural MRI; (3) Beta-weights for the multisensory contrasts
for each region of interest extracted from task-based fMRI; and
(4) Fisher z-transformed resting-state functional connectivities
between pairs of regions extracted from resting-state fMRI.

Covariates identified in our prior studies (Holtzer et al., 2007;
Verghese et al., 2007b, 2008a; Mahoney and Verghese, 2018, 2019,
2020), including but not limited to age, gender, ethnicity, medical
comorbidities (including cardiovascular disease), total intracranial
volume, and attentional capacity will be selected to account for their
influence on VSI and association with outcomes. Participants will
be categorized into two groups based on preclinical AD diagnosis
at baseline. All statistical approaches will be supervised by our study
statistician, Dr. Wang.

SAS 9.4 (Cary, NC) will be used for the analyses. We will
conduct multivariate mixed effects models for imaging outcomes
for the following a priori selected regions of interest including:
dorsal lateral PFC, rostral middle frontal, and superior frontal
gyrus regions, superior temporal sulcus, motor cortex, thalamus,
basal ganglia, hippocampal, and cerebellum (one per outcome, with
group factors as necessary). These regions are selected based on
preliminary findings in 100 older adults (unpublished data) which
reveal significant (p < 0.05) associations between magnitude of VSI
and measures of structural integrity (defined here as either volume
or cortical thickness) in the following regions: parahippocampal
(memory); caudal middle-frontal dorsal lateral prefrontal cortex
(DLPFC: cognitive functions - especially executive & attention);
superior temporal sulcus (STS; multisensory); precentral (motor),
postcentral (somatosensory), and lateral occipital (visual).
Preliminary fMRI findings in 56 healthy older adults (ages 65–92;
unpublished data) further supports inclusion of these regions
given significant associations between VSI magnitude and blood-
oxygen-level-dependent (BOLD) responses in known multisensory
(middle temporal), motor (basal ganglia), and cognitive areas
(PFC including DLPFC). The outcomes in these models include
measures of neural integrity, structural (volume and thickness),
and/or functional (BOLD) activation isolated by region, and the
predictor of interest is the magnitude of VSI. Additional models

will further include cognitive status (normal or preclinical AD) and
its interaction with magnitude of VSI. The effect of cognitive status
(normal or preclinical AD) on magnitude of VSI will be evaluated
using similar mixed effects models. The hypothesis-driven analyses
will be limited to BOLD activation in the aforementioned regions
of interest. Models will be run unadjusted and then adjusted
for confounders.

Determine whether VSI task-related BOLD
activation in prefrontal cortex predicts future
mobility decline and falls in preclinical AD

Here, we propose that reduced VSI activation in specific
regions of PFC (fMRI BOLD responses), will be associated with
worse balance (unipedal stance), slower gait (worse Pace scores),
and increased risk of incident falls. Additionally, we propose
that preclinical AD will reduce VSI activation in PFC regions of
interest, which will in turn adversely affect mobility measures.
Our longitudinal design will allow us to identify the impact
of functional changes in (multi)sensory, motor, and cognitive
processes (and their interactions) on the progression of AD that
result in mobility decline.

The VSI task and multimodal neuroimaging procedures for
this aim have been described above in Aim 1. For Aim 2, the VSI
task will be run in the magnet to obtain fMRI task-related BOLD
responses with concurrent psychophysical data. The following
aim-related mobility procedures [established tests that have been
validated and utilized in our center for over two decades (Verghese
et al., 2002a, 2007b, 2008a, 2009, 2012; Holtzer et al., 2007, 2012,
2014; Verghese and Xue, 2010, 2011; Ayers and Verghese, 2014;
Mahoney et al., 2014, 2017, Holtzer et al., 2014; Mahoney and
Verghese, 2018, 2020)] will be included in Aim 2:

Balance (∼2 min) will be assessed using unipedal stance time,
which requires individuals to balance their body weight with foot
on the ground for a maximum of 30 s (Hurvitz et al., 2000, 2001).
Unipedal stance time is a widely used clinical test that is listed under
NIH’s toolbox. Poor scores on this test have been associated with
presence of neuropathy (Hurvitz et al., 2001), and predict falls in
older adults (Hurvitz et al., 2000). This test will be administered
twice during each study visit and maximum unipedal stance time
(sec) will serve as the outcome measure.

Quantitative Gait (∼5 min) will be assessed on a 28-foot
instrumented walkway (PKMAS system; Zenometrics LLC) with
embedded pressure sensors that provides spatial and temporal gait
parameters including: gait velocity, stride length, percentage of
double support, stride time, stance time, cadence, stride length
variability, and swing time variability. Participants will be assessed
twice while walking on the mat at their everyday pace. Gait
velocity, as well as the Pace Factor score comprised of gait velocity,
stride length and percentage of double support, will serve as
dependent measures.

History of falls (∼5 min) in the past 1 year, number of incident
falls over a 3 year longitudinal study-period, and fall information
such as type, injury and location will be tracked at yearly in-
house interviews and during bimonthly telephone interviews using
established criteria and standardized questionnaires (Tinetti et al.,
1994). Falls are defined as sudden, unintentional, unprovoked
changes in body posture, not due to a major intrinsic event (stroke)
or overwhelming hazard. Dichotomous ratings of fall-history over
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the past 1 year (0, 1), presence of incident fall over study period (0,
1) and time to fall/censor will serve as outcome measures.

The association of functional VSI activation in specific PFC
regions of interest with mobility measures of balance and
quantitative gait will be examined cross-sectionally at baseline
(Year 1), using linear regression models. Linear mixed effects
models (LMEM) will be used to examine the association of
baseline functional VSI activation in the PFC on the changes
in the longitudinal balance and quantitative gait performance.
The predictors will be examined as continuous variables to
facilitate clinical translation of results. Adjustments for multiple
comparisons will be made. Additional LMEMs will be employed
to examine interplay and time course of multisensory, cognitive,
and motor functioning. Cox proportional hazard model will be
used to evaluate the association of magnitude of VSI with the
risk of incident falls (Mahoney et al., 2019) and hazard ratios
(HR) with 95% confidence intervals (CI) will be reported. Time
to fall will be recorded as number of days from baseline study
date to the interview date when the fall was recorded. If the
participant does not report a fall, the follow-up time will be
defined as the number of days from the baseline in-house visit to
the last date of contact. Repeated incident falls will be examined
using Andersen-Gil extension of Cox model (Anderson and Gill,
1982) and Poisson models. Robust sandwich covariance estimates
account for correlations among multiple events within the same
participant. Cox models will be adjusted for potential confounders.
Proportional hazards assumptions of all models will be tested
graphically and analytically. We will also apply mediation analysis
using product of coefficients methods to evaluate whether cognitive
status (normal vs. preclinical AD; independent variable) causes
variation in PFC-related VSI activation (mediator), which in turn
causes variation in specific mobility measures (dependent variables)
using separate mediation models (balance and pace). Mediation
analyses will be run using IBM’s Statistical Package for the Social
Sciences (SPSS-28) and Hayes’ PROCESS package (Hayes, 2018).
Confidence intervals that do not include 0 for the mediator will be
defined as mediation.

Assess the validity of VSI as a novel Alzheimer’s
behavioral marker

Alzheimer’s disease is associated with build-up of specific
proteins (i.e., biological markers) in the brain, namely Amyloid-
βeta (Aβ) in the form of plaques (Thal et al., 2002) and tau (T)
in the form of neurofibrillary tangles. Common brain imaging
techniques such as MRI or Computerized Tomography (CT)
do not afford assessment of amyloid plaques and neurofibrillary
tangles. However, molecular imaging procedures like Positron
Emission Tomography (PET) imaging directly visualize these
characteristic features of Alzheimer’s disease. Aβ accumulates in
sensory association areas well before higher-order cognitive areas
like the PFC (Thal et al., 2002). In Aim 3, we predict that
AD pathology (i.e., accumulation of Aβ) will be associated with
decreased magnitude of VSI in preclinical Alzheimer’s disease
participants. Here, presence of Aβ will be measured in blood
at baseline using plasma-based assays and established cut-scores
(Bateman et al., 2019). Individuals that are Aβ+ on plasma-based
tests at baseline, will receive amyloid PET imaging in study year 2.
The combined use of conventional MRI with these techniques will
also contribute to the early identification of Alzheimer’s disease.

The experimental design for this aim has been described
above. Beyond the VSI task the following specific Aβ procedures
will be implemented to determine its association with magnitude
of VSI, and ultimately its use as a novel and early biomarker
for preclinical AD.

Plasma-Based Blood Testing will be conducted during baseline
visits for each participant. Aβ (40 and 42) and Apolipoprotein
E (ApoE) will be assessed by C2N Diagnostics lab using novel
multiplexed assays (Jack et al., 2018). PrecivityADTM accuracy for
determining amyloid positive versus negative status was 86%. Blood
samples will be collected and placed in Einstein’s biorepository.
Frozen samples will be subsequently shipped to C2N Diagnostics
to be processed. Results from plasma-based testing conducted on
bloods drawn at baseline, in conjunction with neuropsychological
performance, will be critical for study group assignment, as well as
disentangling AD symptomology from AD pathology.

Amyloid PET Imaging will only be conducted in study Year 2
for participants enrolled in the preclinical AD group (n = 104).
All PET scans will be conducted at Montefiore Medical Center
by Dr. Valdivia and her team. Positron emission tomography
(PET) is expensive and involves the use of an imaging device
(scanner) and a radiotracer that is injected into the patient’s
bloodstream. The radiotracer used to estimate Aβ neuritic plaque
density for this specific aim is called Neuraceq (florbetaben F-18)
and is manufactured by Piramal Imaging. PET imaging after the
radiotracer is injected, will afford quantification of the distribution
of Aβ in the brain, where affected brain regions containing Aβ

will be tabulated.
The association of magnitude of VSI with presence of Aβ

protein levels in both plasma-based Aβ levels (continuous measure)
and amyloid PET scans (dichotomous ± rating by brain region)
will be examined using logistic and linear regression models,
respectively, while adjusting for potential confounders.

Discussion

In summary, we propose to recruit 208 community-dwelling
older adults with and without preclinical AD for a three-year
longitudinal study. Our central hypothesis is that preclinical
Alzheimer’s disease is associated with neural disruptions in
subcortical and cortical areas that concurrently modulate sensory,
cognitive, and motor functions, resulting in mobility decline.
Our project seeks to address a NIH-identified high-priority
research topic, where the interplay of multisensory integration
with cognitive and mobility outcomes will be extensively studied
in individuals with and without preclinical Alzheimer’s disease.
A deeper understanding of the underlying neural correlates of
VSI and their association with cognitive and motor outcomes will
support the advance of novel, non-invasive, and non-cognitive AD
markers, as well as foster the development of novel multisensory
interventions designed to target specific neural derailments,
while significantly augmenting existing interventions to prevent
disability and optimize independence.

As with any study, there are potential pitfalls and limitations
that should be discussed, along with strategies to mitigate
any potential shortcomings. Missing data is a concern of any
longitudinal study; to reduce the likelihood of missing data, we
will reschedule study visits that are missed and update participant
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contact information annually. Though not a main objective,
diffusion tensor imaging data will be collected and analyzed using
FSL software to provide a measure of functional anisotropy. Further
examination of multimodal neuroimaging relationships will be
computed using probabilistic tractography between regions of
interest (ROIs). Neuroimaging data access can enable investigations
of additional cortical pathways not identified in our proposed
neural circuit; our approach here, however, is to focus on theory-
based predictions. We recognize that biomarkers, including the AT
(N) classification system [Aβ (A), tau (T), and neurodegeneration
(N)] recently developed the NIA-AA task-force, affords a more
direct assessment of neuropathologic changes (Jack et al., 2019).
In an effort to determine whether magnitude of VSI is a novel
and early biomarker of mild stage Alzheimer’s disease, the current
study will also assess plasma-based total and phosphorylated Tau,
neurofilament (NfL) and (ApoE).

In line with current preventative approaches, results from
The VSI Study will provide insight into the neurobiology of
early AD and aid the development of novel prognostic tools and
therapeutic interventions. The primary focus of this project will
guide strategic design of new multisensory-based interventions
for non-cognitive outcomes like falls. Although not a specific
aim of the current study, development of future multisensory-
based interventions in high-risk patients requires identification
of the structural and functional neural networks involved in
multisensory integration processes, as well as understanding of
the impact of early AD on these networks and systems. Such
knowledge will be essential to designing future remediation
trials that target key PFC and other regions involved in
multisensory integration to induce neural plasticity that will
be associated with improvements in sensory, cognitive, and
mobility outcomes for older adults with and without pre-existing
cognitive impairments.
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Background: Parkinson’s disease (PD) and dementia with Lewy bodies (DLB) are

part of a spectrum of Lewy body disorders, who exhibit a range of cognitive and

gait impairments. Cognitive-motor interactions can be examined by performing

a cognitive task while walking and quantified by a dual task cost (DTC). White

matter hyperintensities (WMH) on magnetic resonance imaging have also been

associated with both gait and cognition. Our goal was to examine the relationship

between DTC and WMH in the Lewy body spectrum, hypothesizing DTC would

be associated with increased WMH volume.

Methods: Seventy-eight participants with PD, PD with mild cognitive impairment

(PD-MCI), PD with dementia or DLB (PDD/DLB), and 20 cognitively unimpaired

participants were examined in a multi-site study. Gait was measured on an

electronic walkway during usual gait, counting backward, animal fluency, and

subtracting sevens. WMH were quantified from magnetic resonance imaging

using an automated pipeline and visual rating. A median split based on DTC was

performed. Models included age as well as measures of global cognition and

cardiovascular risk.

Results: Compared to cognitively unimpaired participants, usual gait speed was

lower and DTC was higher in PD-MCI and PDD/DLB. Low DTC participants

had higher usual gait speed. WMH burden was greater in high counting DTC
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participants. Frontal WMH burden remained significant after adjusting for age,

cardiovascular risk and global cognition.

Conclusion: Increased DTC was associated with higher frontal WMH burden

in Lewy body disorders after adjusting for age, cardiovascular risk, and global

cognition. Higher DTC was associated with age.

KEYWORDS

dual task, gait, white matter hyperintensities, cognition, Lewy body disease, Parkinson’s
disease

Introduction

Lewy body disorders (LBD) represent a spectrum of disorders,
characterized by the over-accumulation of alpha-synuclein in
the brain, leading to the formation of Lewy bodies, which
are associated with neuronal loss (Galasko, 2017; Kouli et al.,
2018). Neuronal loss progression in subcortical and cortical
brain regions results in increasing motor (including gait) and
cognitive impairment (Galasko, 2017; Mirelman et al., 2019, 2021).
Consequently, diagnoses range from Parkinson’s disease (PD) with
intact cognition, PD with mild cognitive impairment (PD-MCI) to
PD with dementia (PDD) and dementia with Lewy bodies (DLB)
(grouped as PDD/DLB).

Gait slowing in aging, especially while performing a
simultaneous cognitive task (dual task), is thought to be an
early predictor of significant cognitive decline (Mielke et al.,
2012; Montero-Odasso et al., 2012a). The extent of slowing can
be quantified by dual task cost (DTC), which indicated slowing
during a secondary task, relative to the participant’s usual task gait
speed (Montero-Odasso et al., 2012b). Essentially, DTC reflects
cognitive-motor reserve. While it is clear that gait is affected by
dual tasks in healthy older adults (Smith et al., 2017), patients
with LBD (Raffegeau et al., 2019), and older people with cognitive
decline (Montero-Odasso et al., 2017) associated brain imaging
correlates are not well established (Veldkamp et al., 2021).

White matter lesions presenting as white matter
hyperintensities (WMH) on magnetic resonance imaging (MRI)
have also been related to cognitive and gait deficits in healthy
aging (Crockett et al., 2022), cerebral small vessel disease (Sharma
et al., 2022), and PD (Toda et al., 2019; Dadar et al., 2020). Some
studies have found participants with PDD may have greater WMH
volumes than controls and PD with intact cognition (Butt et al.,
2021).

Overall, the relationship between dual task gait change and
WMH in the Lewy body spectrum is not well understood. To
address this gap, we explored the association between white
matter changes and DTC across the Lewy body spectrum. We
hypothesized that WMH would be associated with DTC, regardless
of the secondary task.

Materials and methods

Participants were enrolled in the multi-center Canadian
Consortium on Neurodegeneration in Aging’s (CCNA),

Comprehensive Assessment of Neurodegeneration and Dementia
(COMPASS-ND) study (Chertkow et al., 2019) and the Functional
Assessment and Vascular Reactivity (FAVR)-II study (Beaudin
et al., 2022). The COMPASS-ND was approved by the research
ethics boards of all the involved institutions while FAVR-II was
approved at the University of Alberta and University of Calgary.
Both studies were carried out in accordance with the Code of
Ethics of the World Medical Association. Participants provided
their written informed consent to participate.

Participants

Participants were recruited from movement disorder and
cognitive clinics as well as referrals from community physicians
and community advertisements. Three COMPASS-ND study sites
(University of Alberta, University of Calgary, and the Sunnybrook
Research Institute in Toronto) completed assessments with
electronic walkways. Cognitively unimpaired (CU) participants
from FAVR-II, which is harmonized with COMPASS-ND, were
recruited at the University of Alberta and University of Calgary.
Sequential male and female participants from the recruiting sites
were included. All met published criteria for a LBD or were CU
as outlined previously (Chertkow et al., 2019; Pieruccini-Faria
et al., 2021). Patients with severe cognitive impairment (MoCA
<13), active neuro-psychiatric problems or immobility were not
included.

Eighty-two participants diagnosed with PD or DLB were
included from the COMPASS-ND cohort: 42 had PD without
cognitive impairment (PD), 20 had PD-MCI, 9 had PDD, and
11 were diagnosed with DLB. Initial diagnosis criteria included
Montreal Cognitive Assessment (MoCA) score (range 0–30, higher
score represents better cognition) where a score ≤24 indicated
PD-MCI or PDD/DLB. The PDD/DLB group had sufficient
cognitive impairment to interfere with independent function.
A MoCA score between 8 and 20 inclusive was considered
indicative of dementia. Final diagnosis was based on further
evaluation by an experienced neurologist (RC/ES/MM/SEB) using
established criteria as previously described (Pieruccini-Faria et al.,
2021). Given the small number of participants and that PDD
and DLB are both Lewy body dementias with overlapping
pathological features (Galasko, 2017), the PDD and DLB groups
were combined for statistical analysis (PDD/DLB). CU participants
were included, with 13 from COMPASS-ND and 7 from FAVR-II.
Four participants were unable to undergo MRI and subsequently
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excluded. The final number of participants for analysis was 20 CU,
41 PD, 17 PD-MCI, and 20 PDD/DLB.

Clinical assessment

Demographic descriptors included age, sex, and years
of education. Global cognition was measured using MoCA.
Cardiovascular health was summarized using the Framingham
cardiovascular risk score (D’Agostino et al., 2008), which includes
age, sex, diabetes, current smoking status, systolic blood pressure,
treatment for hypertension, and body mass index. Patients were
characterized by disease duration, levodopa equivalent daily dose
(LEDD) (Tomlinson et al., 2010), and Movement Disorder Society-
Unified Parkinson’s Disease Rating Scale Part 3 (MDS-UPDRS III)

(range 0–132, higher score indicates greater severity) (Goetz et al.,
2008). The patients were in the ON state when their gait was tested
if they were on dopaminergic medications. They were tested at a
time they were comfortable with doing the walking task. While
dyskinesia were present in some patients these did not interfere
with the walking tasks. Self-reported gait freezing was assessed
using the Freezing of Gait Questionnaire (range 0–24, higher score
indicates greater severity of gait impairment) (Giladi et al., 2000).

Gait measurement and analysis

Gait was evaluated according to the standardized COMPASS-
ND protocol (Cullen et al., 2018). A ProtoKinetics Zeno Walkway
(Edmonton and Calgary) or a GAITRite (Sunnybrook) walkway

TABLE 1 Demographics and DTC variables for all groups.

CU PD PD-MCI PDD/DLB p

N 20 41 17 20 –

Age (years) 68.7± 5.8 66.7± 7.2 70.5± 8.0 72.9± 8.5 0.02

Females, N (%) 15 (75.0) 22 (53.7) 3 (17.6) 2 (10.0) <0.001

Education (years) 16.1± 2.9 15.8± 3.0 15.6± 3.3 16.2± 5.0 1

FCRS† (%) 18.9± 14.6 19.3± 14.4 30.0± 11.7 28.7± 14.0 0.01

MoCA 27.5± 1.8 27.9± 1.4 22.4± 4.3 18.70± 4.4 <0.001

Disease duration (years) – 6.4± 3.7 8.0± 5.9 7.8± 5.8 0.4

MDS-UPDRS III – 21.2± 10.7 26.2± 12.5 29.0± 19.0 0.1

LED (mg) – 640± 375 852± 477 469± 531 0.1

FOG-Q – 3.4± 3.6 5.1± 5.4 7.0± 6.3 0.03

Baseline gait speed (cm/s) 141.1± 16.2 132.6± 23.9 119.3± 22.5 104.5± 23.1 <0.001

Counting

DTC (%) 1.4± 4.5 3.5± 6.6 7.6± 6.3 14.0± 16.8 <0.001

Correct subtractions 6.8± 1.8 8.3± 2.3 8.4± 2.3 7.8± 3.9 0.2

Fluency

DTC (%) 5.2± 7.3 7.1± 9.0 15.2± 9.8 19.1± 11.4 <0.001

Number named 6.0± 1.0 6.6± 1.6 5.6± 1.3 4.8± 1.7 <0.001

Serial 7s

DTC (%) 9.6± 10.1 11.6± 12.5 23.0± 12.1 20.4± 14.5 0.001

Correct subtractions 2.8± 1.7 3.8± 1.9 2.5± 1.6 2.0± 1.9 0.001

Raw WMH volume (mm3)*

Total 6,210± 4,833 8,790± 11,543 14,541± 15,566 20,581± 16,742 0.001

Frontal lobe 3,207± 2,757 43,89± 5,842 7,051± 7,397 8,912± 6,562 0.008

Temporal lobe 730± 575 968± 990 1,575± 1,417 2,341± 2,607 0.002

Parietal lobe 1,406± 1,440 2,315± 4,409 4,234± 5,949 6,573± 6,821 0.004

Occipital lobe 864± 596 1,111± 1,103 1,658± 1,271 2,747± 2,026 < 0.001

Fazekas score#

Total 1.50± 1.10 2.22± 1.30 2.65± 1.27 2.90± 1.21 0.003

Periventricular 0.60± 0.60 1.10± 0.70 1.35± 0.70 1.80± 0.83 <0.001

Subcortical 0.90± 0.72 1.12± 78 1.29± 0.69 1.10± 0.55 0.4

PD, Parkinson’s disease; PD-MCI, Parkinson’s disease with mild cognitive impairment; PDD, Parkinson’s disease with dementia; DLB, dementia with Lewy bodies; FCRS, Framingham
cardiovascular risk score; MoCA, Montreal Cognitive Assessment; MDS-UPDRS III, Movement Disorders Society-Unified Parkinson’s Disease Rating Scale; FOG-Q, Freezing of Gait
Questionnaire; LED, levodopa equivalent dose; DTC, dual task cost; WMH, white matter hyperintensities. †Missing for one participant. *Not significant after for correction for age and sex,
except for occipital WMH. p-Values for raw comparisons are shown. #Significant for total and periventricular scores after correction for age and sex. p-Values for raw comparisons are shown.
Bold values represent the statistically significant.
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was used to measure gait parameters from 6 m walks (Cullen
et al., 2018). To ensure steady gait speed on the walkway and
minimum acceleration and deceleration effects, walks commenced
1 m before and ended 1 m after the gait mat. Usual gait was
measured while participants walked at a comfortable pace. Three
trials were performed to calculate average usual gait. Participants
were then instructed to walk while simultaneously engaging in the
following verbal tasks in a fixed order: (1) counting backward by
1s starting from 100 (“counting”), (2) naming as many animals as
possible without repetition (“fluency”), and (3) counting backward
by 7s starting from 100 (“serial 7s”). Performance on the verbal
tasks were measured by the number of correct subtractions for
counting and serial 7s, and the number of unique animals named
for fluency. The cognitive task performance was recorded but
cognitive task costs were not analyzed.

The following formula was used to calculate the DTC on gait
speed for each condition (Montero-Odasso et al., 2012b):

DTC =
(
[usual gait speed − dual gait speed]

usual gait speed

)
× 100

Evaluation of WMH on MRI

All MRI scans were completed on a Siemens Prisma 3.0
T system (Edmonton and Sunnybrook) or 3.0 T GE Discovery
MR750 (Calgary), according to the Canadian Dementia Imaging
Protocol (Duchesne et al., 2018). T1-weighted, T2-weighted, and
fluid-attenuated inversion recovery images were used to measure
WMH volumes with an automated tool (Dadar et al., 2017).
Total WMH volume was normalized for intracranial volume and
log10 transformed to obtain a normal distribution. Additionally,
the presence and severity of WMH was rated qualitatively using
Fazekas Visual Rating Scale (Fazekas et al., 1987). Illustrative
images and technical details are published (Dadar et al., 2022).

Statistical analysis

Data was analyzed using SPSS (Version 26, IBM Corporation,
Armonk, NY, USA). One-way analysis of variance (ANOVA) was
used for continuous variables and Chi-squared test for categorical
variables. Two analyses were performed, (1) across the groups
(CU, PD-MCI, and PDD/DLB) where we looked at overall group
comparisons and pair wise comparisons between the groups. The
Sidak correction for multiple corrections was used for post-hoc
pairwise comparisons between the groups, and (2) high vs. low
DTC groups within the Lewy body spectrum.

First, clinical characteristics, gait and dual task gait were
compared across groups for each task separately using ANOVAs
or ANCOVAs. For all three dual task conditions, DTC was not
normally distributed and attempts to normalize with commonly
used transformations such as log10, various functions (powers,
exponential, and arcsinh), and a Box Cox transformation failed.
Consequently, and based on the observation that some participants
show no DTC, while others showed a range of increased cost, a
median split of DTC for each task within the Lewy body group,
excluding CU, was used to convert DTC into a categorical variable.

FIGURE 1

Boxplot of dual task cost (DTC) % for cognitively unimpaired health
participants (CU), Parkinson’s disease (PD), Parkinson’s disease with
mild cognitive impairment (PD-MCI), and a combined group of
participants with either Parkinson’s disease with dementia (PDD) or
Dementia with Lewy Bodies (DLB).

FIGURE 2

Scatterplot of total white matter hyperintensity (WMH) volume and
dual task cost (DTC) under the counting condition for patients with
Lewy body disorders with high vs. low DTC (median split).

Differences in WMH volumes between the high and low DTC
groups were modeled to explore contributions from covariates.
An ANOVA model was first used to compare log10 transformed
WMH volumes between high and low DTC groups across the
Lewy body spectrum (model 1). Subsequent analysis of covariance
(ANCOVA) was performed with age as a covariate (model 2) due
to its potential association with gait, cognition, and white matter
changes. Cardiovascular risk (FCRS) was added (model 3) due
to the established relationship with WMH (Moroni et al., 2018).
The impact of global cognition was evaluated by including MoCA
(model 4). While MDS-UPRDS III did not differ significantly
between the high and low DTC group, it has been shown to
correlate with WMH volumes (Chen et al., 2021; Jeong et al.,
2021); hence, supplementary modeling was performed with it as a
covariate.

Estimated marginal means ± standard deviations are reported
for the ANOVAs and ANCOVAs. A threshold of p < 0.05
was considered statistically significant. With the exception of
multiple pair wise comparisons across study groups, multiple
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comparisons corrections were not performed, given the exploratory
nature of the study.

Results

Controls and Lewy body spectrum
groups

Differences in age and sex proportion of the four study groups
(CU, PD, PD-MCI, and PDD/DLB) were statistically significant
(Table 1). Global cognition, as assessed by MoCA, was significantly
different between groups (p < 0.001) as expected. Education did
not differ significantly between groups (p = 0.99). Framingham
cardiovascular risk score differed significantly between groups
(p = 0.01) and was highest in PD-MCI and PDD/DLB groups (post-
hoc CU vs. PD: p = 0.9, CU vs. PD-MCI: p = 0.02, CU vs. PDD/DLB:
p = 0.03). The groups did not differ significantly with respect to
disease duration (p = 0.4) or MDS-UPDRS III (p = 0.1). LEDD
significantly differed between the groups (p = 0.04); PD-MCI had
higher LEDD than PDD/ DLB (post-hoc p = 0.03). Self-reported
gait freezing differed between the PD groups (p = 0.03) with the
PDD/ DLB group reporting greater freezing than PD (post-hoc
p = 0.009) while the PD and PD-MCI groups were similar (post-hoc
p = 0.2). Baseline gait speed significantly differed between groups
(p < 0.001) with both the PD-MCI and PDD/DLB groups being
slower than the CU and PD groups (post-hoc CU vs. PD-MCI:
p = 0.004, CU vs. PDD/DLB: p < 0.001, CU vs. PD, p = 0.2).
The DTC for counting, fluency, and serial 7s were all significantly
different between groups (p < 0.001 for counting and fluency,
p = 0.001 for serial 7s). For all tasks, PD-MCI and PDD/DLB
participants had significantly higher DTC compared to CU (post-
hoc CU vs. PD-MCI: p = 0.04 for counting, p = 0.002 for fluency
and serial 7s; CU vs. PDD/DLB: p < 0.001 for counting and
fluency, p = 0.007 for serial 7s). Cognitive task performance was
similar in all groups for counting (p = 0.2); but differed for fluency
(p < 0.001), where the PDD/DLB group performed worse than CU
(post-hoc p = 0.02), and for serial 7s (post-hoc p = 0.001), where
the PD group performed better than the other groups (post-hoc
PD vs. CU: p = 0.05, PD vs. PD-MCI: p = 0.01, PD vs. PDD/DLB:
p< 0.001). We show DTC by group, including the control group in
Figure 1.

White matter hyperintensities volume was significantly
different across groups for total volume (p = 0.001) as well
as each lobe (frontal: p = 0.008, temporal: p = 0.002, parietal,
p = 0.004, occipital: p < 0.001), though this was not significant
after correction for age and sex except for the occipital lobe.
In uncorrected post hoc comparisons, the PDD/DLB group
was significantly different from CU and PD but not PD-MCI
with respect to total WMH volume (post-hoc CU vs. PDD/DLB:
p = 0.003, PD vs. PDD/DLB: p = 0.005) as well as all lobes (post-hoc
CU vs. PDD/DLB: frontal p = 0.02, temporal p = 0.005, parietal
p = 0.001, occipital p < 0.001; PD vs. PDD/DLB: frontal p = 0.03,
temporal p = 0.006, parietal p = 0.002, occipital p < 0.001). The
differences in WMH burden were also evident qualitatively via
Fazekas score, where total score (p = 0.003) and periventricular
score (p < 0.001) were significantly different between groups, and
remained significant after correction for age and sex; the total

Fazekas score was greater in PD-MCI and PDD/DLB compared
to CU (post-hoc CU vs. PD-MCI: p = 0.03, CU vs. PDD/DLB:
p = 0.003) and the periventricular score was greater in all three
PD groups vs. CU (post-hoc CU vs. PD: p = 0.04, CU vs. PD-
MCI: p = 0.005, CU vs. PDD/DLB: p = 0.001). In addition,
the PDD/DLB had a higher periventricular score than the PD
group (post-hoc p = 0.001). We show the association between
DTC and WMH in Figure 2. We show the difference in total
and frontal WMH for each dual task divided by median split in
Figure 3.

High vs. low DTC groups

The DTC medians for the Lewy body spectrum were 4.5%
for counting, 10.9% for fluency, and 14.5% for serial 7s. After
median splitting the Lewy body spectrum participants by DTC,
the difference in age was statistically significant in all dual task
conditions (Table 2), with the low DTC group being younger
(counting: p = 0.04, fluency: p = 0.03, serial 7s: p = 0.03). Sex,
years of education, Framingham cardiovascular risk score, disease
duration, and LEDD did not significantly differ between the low
and high DTC groups across conditions. For all conditions, MoCA
was significantly different, with the low DTC group performing
better than the high DTC group (counting: p = 0.01, fluency:
p < 0.001, serial 7s: p = 0.001). The proportion of patients with
freezing of gait only differed between the high and low serial 7s
DTC groups (p = 0.008), with the high DTC group reporting
significantly greater gait freezing. A higher proportion of PD
participants were in the low DTC groups, and the majority of PD-
MCI and PDD/DLB participants were in the high DTC groups for
all conditions (counting: p = 0.01, fluency: p < 0.001, serial 7s:
p = 0.01).

As expected, mean DTC and baseline gait speed differed
significantly between the low and high DTC groups for all
conditions (counting: p = 0.006, fluency: p = 0.001, serial 7s:
p < 0.001). Mean DTC for the low DTC groups was significantly
lower than the mean for the high group (p < 0.001 for all
conditions). For usual gait speed, the low DTC group was
consistently faster than the high DTC group (counting: p = 0.006,
fluency: p = 0.001, serial 7s: p < 0.001). Performance on the
cognitive task did not differ between high and low DTC groups
for counting (p = 0.3) or fluency (p = 0.5); however, for serial 7s,
the low DTC had more correct subtractions than the high DTC
group (p < 0.001). Total WMH volume was significantly different
between high and low DTC groups for counting only (p = 0.02),
with the differences predominantly in the frontal (p = 0.01) and
parietal (p = 0.03) lobes. For fluency and serial 7s, the differences
in total and lobar WMH volumes were not significantly different
between the high and low DTC groups. Similar trends were
observed with Fazekas scoring, where the high and low DTC groups
for counting differed in total score (p = 0.03) and periventricular
score (p = 0.01), but not for fluency or serial 7s.

Counting dual task cost
Boxplots of log10 transformed WMH volumes are shown in

Figures 3A, D for the counting condition. The low DTC group
had lower WMH burden which was statistically significant in three
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FIGURE 3

Boxplots of log10-transformed total white matter hyperintensity (WMH) volume (A–C) and frontal lobe WMH volume (D–F) for low vs. high dual task
cost (DTC) under counting, fluency and serial 7s conditions, respectively.

of the four models (Table 3). Without covariates (model 1), the
estimated difference in the log10 transformed total WMH volume
between the low vs. high DTC group was 0.245 (p = 0.006).
The frontal, parietal, and occipital lobes had greater WMH
burden in the high DTC group compared to the low DTC group
(difference = 0.259, p = 0.003 for frontal, difference = 0.319,
p = 0.008 for parietal, and difference = 0.177, p = 0.04 for occipital).

For the second model, with age included, the estimated
difference in log10 transformed total WMH volumes between the
low and high DTC group was 0.133 but was no longer statistically
significant (p = 0.07); however, the adjusted R2 value increased
from 0.083 with no covariates to 0.413 for total WMH, with
similar trends for all lobes, suggesting age significantly improved
the model. While the difference in WMH in the frontal lobe
remained significant (difference = 0.154, p = 0.03), the parietal and
occipital lobes no longer differed between the low vs. high DTC
group for counting.

Including the Framingham cardiovascular risk score as a
covariate (model 3) resulted in an estimated difference in log10
transformed total WMH volumes of 0.163 (p = 0.03) between
the low and high DTC group. The adjusted R2 value increased
slightly to from 0.413 to 0.428 for total WMH. In this model, the
frontal and parietal log10 transformed WMH volumes were greater
in the high DTC group (difference = 0.174, p = 0.02 for frontal,
difference = 0.213, p = 0.03 for parietal).

In the fourth model, which included age, cardiovascular risk,
and MoCA as covariates, the estimated difference between the
log10 transformed total WMH volumes of the low and high DTC
groups was 0.150 but was not statistically significant (p = 0.053). For
total WMH, the adjusted R2 value slightly decreased to 0.423 from
0.428 with the addition of MoCA. Frontal lobe WMH, however,
remained significantly different between the high and low DTC

groups (difference = 0.166, p = 0.03). Additional modeling with
MDS-UPDRS III as a covariate did not substantially change the
above results (see Supplementary material).

Fluency dual task cost
For all models, the difference in the log10 transformed WMH

volumes were not significantly different between the low vs. high
DTC with the exception of the occipital lobe using the model with
no covariates (difference = 0.177, p = 0.04). Similar to counting
DTC, adding age improved the model with the adjusted R2

increasing from 0.026 to 0.388 for total WMH burden with similar
changes for all lobes; however, WMH burden was not significantly
different between the low and high DTC groups for either the total
or any of the lobes. The addition of the Framingham cardiovascular
risk and MoCA, as well as additional modeling with MDS-UPDRS
III (see Supplementary material), did not alter the results.

Serial 7s dual task cost
In the model with no covariates (Table 3), the log10

transformed WMH volume between low and high DTC groups
was significantly different for total volume (difference = 0.181,
p = 0.04) as well as in the frontal (difference = 0.180, p = 0.03) and
occipital lobes (difference = 0.177, p = 0.04). After controlling for
age (model 2), the estimated differences in log10 transformed total
or lobar WMH volumes were no longer significant. The adjusted
R2 value for total WMH burden increased from 0.040 from the
first model to 0.400 for the second model; again; suggesting the
addition of age significantly improved the model. Modeling with
the Framingham cardiovascular risk and MoCA did not alter this
result (Table 3), nor did the addition of MDS-UPDRS III as a
covariate (Supplementary material).
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TABLE 2 Demographics and dual task cost (DTC) variables for median
split data without cognitively unimpaired healthy participants.

Low DTC High DTC p

Counting DTC

Age (years) 68.2± 8.2 71.0± 7.6 0.04

Females, N (%) 13 (33.3) 14 (35.9) 0.8

Education (years) 15.9± 2.9 15.9± 4.3 1

FCRS (%) 25.6± 16.7 22.4± 11.9 0.3

MoCA 25.8± 4.0 22.9± 5.6 0.01

Disease duration
(years)

6.9± 4.4 7.3± 5.2 0.7

MDS-UPDRS III 23.1± 13.7 25.4± 14.1 0.5

LED (mg) 580± 366 706± 527 0.2

FOG-Q 4.6± 5.0 4.7± 5.0 0.9

Baseline gait speed
(cm/s)

130.5± 21.4 114.51± 27.88 0.006

DTC (%) −0.5± 3.5 14.7± 10.6 <0.001

Correct on cognitive
task

8.6± 2.0 8.0± 3.4 0.3

Raw WMH volume (mm3)

Total 9,261± 10,779 16,873± 16,939 0.02

Frontal lobe 4,279± 4,898 7,978± 7,564 0.01

Temporal lobe 1,144± 1,050 1,760± 2,157 0.1

Parietal lobe 2,414± 3,776 5,236± 6,840 0.03

Occipital lobe 1,412± 1,630 1,887± 1,478 0.2

Fazekas score

Total 2.2± 1.1 2.8± 1.4 0.03

Periventricular 1.1± 0.6 1.5± 0.8 0.01

Subcortical 1.1± 0.6 1.3± 0.8 0.2

PD/PD-
MCI/PDD/DLB
(%)

70/15/15 36/28/36 0.01

Fluency DTC

Age (years) 67.1± 7.5 71.1± 8.2 0.03

Females, N (%) 15 (38.5) 12 (30.8) 0.5

Education (years) 16.0± 2.6 15.8± 4.5 0.8

FCRS (%) 22.6± 15.2 25.4± 13.7 0.4

MoCA 26.2± 4.1 22.4± 5.2 <0.001

Duration of disease
(years)

7.3± 4.9 7.0± 4.8 0.8

MDS-UPDRS III 22.2± 3.2 26.3± 14.4 0.2

LED (mg) 656± 442 630± 471 0.8

FOG-Q 4.5± 4.7 4.9± 5.3 0.7

Baseline gait speed
(cm/s)

131.9± 22.5 113.1± 26.1 0.001

DTC (%) 3.0± 4.8 20.9± 7.8 <0.001

Correct on cognitive
task

6.1± 1.7 5.8± 1.8 0.5

Raw WMH volume (mm3)

Total 103,712± 12,160 15,762± 16,434 0.1

Frontal lobe 5,130± 6,060 7,127± 7,066 0.2

Temporal lobe 1,100± 1,003 1,803± 2,166 0.07

(Continued)

TABLE 2 (Continued)

Low DTC High DTC p

Parietal lobe 2,769± 4,603 4,881± 6,455 1.0

Occipital lobe 1,364± 1,489 1,934± 1,605 1.0

Fazekas score

Total 2.3± 1.3 2.6± 1.3 0.3

Periventricular 1.2± 0.6 1.5± 0.8 0.06

Subcortical 1.2± 0.8 1.2± 0.6 1

PD/PD-
MCI/PDD/DLB
(%)

74/13/13 31/31/38 <0.001

Serial 7s DTC

Age (years) 67.7± 7.2 70.5± 8.8 0.03

Females, N (%) 15 (38.5) 12 (30.8) 0.5

Education (years) 16.0± 3.8 15.7± 3.4 0.7

FCRS (%) 23.6± 16.0 24.3± 12.9 0.8

MoCA 26.1± 4.1 22.5± 5.3 0.001

Duration of disease
(years)

6.2± 3.8 8.0± 5.5 0.09

MDS-UPDRS III 22.5± 12.5 26.0± 15.1 0.3

LED (mg) 560± 391 686± 514 0.4

FOG-Q 3.2± 3.6 6.2± 5.7 0.008

Baseline gait speed
(cm/s)

132.2± 20.0 112.8± 27.9 <0.001

DTC (%) 5.4± 5.4 27.2± 10.6 <0.001

Correct on cognitive
task

3.8± 2.1 2.32± 1.7 <0.001

Raw WMH volume (mm3)

Total 1,0434± 2,951 15,700± 5,840 0.1

Frontal lobe 4,830± 5,946 7,427± 7,029 0.08

Temporal lobe 1,203± 1,269 1,701± 2,053 0.2

Parietal lobe 2,868± 4,699 4,783± 6,416 0.1

Occipital lobe 1,516± 1,658 1,780± 1,476 0.5

Fazekas score

Total 2.3± 1.2 2.7± 1.4 0.2

Periventricular 1.2± 0.6 1.4± 0.8 0.2

Subcortical 1.1± 0.7 1.2± 0.7 0.3

PD/PD-
MCI/PDD/DLB
(%)

70/15/15 36/28/36 0.01

DTC, dual task cost; FCRS, framingham cardiovascular risk score; MoCA, Montreal
Cognitive Assessment; MDS-UPDRS III, Movement Disorders Society-Unified Parkinson’s
Disease Rating Scale; LED, levodopa equivalent dose; FOG-Q, Freezing of Gait
Questionnaire; WMH, white matter hyperintensities; PD, Parkinson’s disease; PD-MCI,
Parkinson’s disease with mild cognitive impairment; PDD, Parkinson’s disease with dementia;
DLB, dementia with Lewy bodies. Bold values represent the statistically significant.

Discussion

The goal of this study was to assess the relationship between
WMH burden and DTC across the spectrum of Lewy body related
diseases. Baseline gait speed differed between the LBD groups,
decreasing with increasing cognitive impairment (Table 1) and
consistent with other studies (Mielke et al., 2012; Doi et al., 2014;
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Stegemöller et al., 2014). Similarly, WMH increased with increasing
cognitive impairment. Under all conditions, the low DTC group
was younger, had faster usual gait speed, was less cognitively
impaired, and had lower WMH burden corresponding (Figure 1).
Consistent with studies showing frontal brain areas are relevant for
dual task walking performance (Kim and Fraser, 2022), dual task
gait costs were associated with increased global WMH volume and
most consistently with greater frontal WMH volume in the simplest
counting backward task. We conclude that DTC may differ based
on the secondary task and that WMH are associated with DTC. Age
was a significant covariate. The associations were not statistically
significant for the other dual task conditions after adjusting for
covariates. The influence of different dual tasks on gait may differ
between different patient populations (Smith et al., 2017; Raffegeau
et al., 2019).

In a CU elderly population, increased volume of deep WMH
was associated with slower walking speed under dual task
conditions (Ghanavati et al., 2018). A study of patients with
dementia showed white matter tract integrity was associated with
lower speed under dual task conditions supporting an association
between white matter changes and dual task gait performance
(Hairu et al., 2021). Toda et al. (2019) concluded that higher WMH
burden, measured with Scheltens visual rating scale, was associated
with slower speed under dual task conditions in PD.

The overall model between median split DTC and log10
transformed WMH volume was statistically significant for the
counting and serial 7s DTC conditions, but not for fluency
DTC, without covariates (Table 3). Low or high DTC group
membership may explain a statistically significant portion of the
variance in the total WMH burden. It is not clear why results
were only significant after age-adjustment for the counting DTC,
but not the other tasks given that some studies suggests that
DTC does not depend on the secondary task. One possibility
is that there are differences in the impact of different DTCs
in the population studied. Alternatively, participants may not
have persisted in performing the secondary task. Adding age to
the model significantly increased the adjusted R2 values for the
whole model for all conditions, indicating age is an important
factor that is associated with WMH and dual task gait (Table 3).
The literature parallels this finding showing DTC increases and
overall cognitive ability decreases, while WMH burden increases,
with age (Murman, 2015; Sartor et al., 2017; Garnier-Crussard
et al., 2020). Future studies should examine age-related imaging
changes, such as brain atrophy and structural and functional
connectivity.

Adding cardiovascular risk and MoCA did not significantly
increase the adjusted R2 values (Table 3; Moroni et al., 2018).
In a study of individuals with severe cerebral small vessel
disease, in a younger population, single task and dual task
gait performance was relatively preserved and showed little
decline compared to healthy controls (Finsterwalder et al., 2019).
In our sample WMH increased with cognitive impairment
raising the possibility of a neurodegenerative contribution to
white matter changes (Dadar et al., 2022). Although a positive
correlation between cognitive function and gait speed under
normal and dual task conditions has been shown (Chen et al.,
2021), the lack of effect seen when MoCA is added to the
model suggests that the relationship between DTC and WMH
is not solely driven by global cognitive ability. In contrast,

Ghanavati et al. (2018) found the relationship between deep
WMH and dual task gait was not statistically significant after
controlling for global cognition or executive function; however,
the participants were cognitively normal community dwelling
individuals.

One concern regarding the current study is data collection
across multiple sites; however, this was mitigated with harmonized
gait and imaging protocols. Furthermore, by using speed measures
from electronic walkways (vs. stopwatch) and automated WMH
volume measurements, variability and subjectivity was minimized.
A major limitation of this study is sample size. Expanding
the study to the rest of the COMPASS-ND cohort, which has
stopwatch gait data for all participants could address this or
examining other cohorts that include the spectrum of LBD
(Montero-Odasso et al., 2020). Another limitation is that we
did not examine the patients prior to and following taking
medications, and hence cannot comment on the impact of
medications on DTC and its associations. While many patients
had a history of freezing of gait this did not interfere with gait
performance, consistent with the patients being in an ON state
(Camicioli et al., 1998). We provide the average freezing of gait
score for descriptive purposes, but did not specifically examine
differences in DTC between patients with or without freezing of
gait.

The Lewy body group was treated as a continuous group,
given that Lewy body pathology defines the population; but it
is possible that other pathologies, particular Alzheimer pathology
(Dadar et al., 2021), in addition to vascular pathology are present.
Mixed pathology or misdiagnosis could influence the results.

Given sample size, associations between specific cognitive
subdomains, dual task gait, and WHM were not examined.
In a study of mild cognitive impairment, Alzheimer’s disease,
and cognitively normal individuals, the visuospatial domain
of the MoCA was independently associated with dual task
gait measures (Ansai et al., 2017). Another study – of active
cognitively normal elderly individuals – also found an association
between dual task and the visuospatial/executive domains of
the MoCA and Mini-Mental State Exam (Lima et al., 2015).
The lack of change observed when MoCA was included
in present analyses, could be due to a specific aspect of
cognition driving the relationship rather than global cognition.
A future direction could be to use MoCA domains or other
domain-specific neuropsychological tests to determine which
are related to DTC in the Lewy body spectrum and other
neurodegenerative disorders with different cognitive profiles, given
that stop-watch based DTCs will be available in COMPASS-ND
(Montero-Odasso et al., 2020).

Future work could also include a more extensive analysis of
dual task gait parameters. Dual task costs could be calculated for
gait measures other than speed, like stride length or other specific
gait domains, as they may show distinct relationships with specific
regional brain changes (Murray et al., 2010; Lord et al., 2012;
Pieruccini-Faria et al., 2021).

Some participants may have given up on the verbal tasks
midway, as suggested by lower performance in the fluency and
serial 7s tasks in the cognitively impaired groups. Such behaviors
would not be adequately represented by measures that are averaged
over the walking distance, and may account for the lack of
statistically significant associations in these models. Additionally,
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TABLE 3 Models of linear univariate analysis with estimated marginal means.

Condition Lobe Log10 (WMH volume) Estimated
difference

p-value Adjusted R2

Low DTC High DTC

MODEL # 1: no covariates

Counting DTC Total 3.80± 0.38 4.04± 0.38 0.245 0.006 0.083

Frontal 3.47± 0.37 3.73± 0.37 0.259 0.003 0.100

Temporal 2.90± 0.39 3.04± 0.39 0.143 0.1 0.02

Parietal 3.08± 0.52 3.40± 0.52 0.319 0.008 0.078

Occipital 2.97± 0.37 3.15± 0.37 0.177 0.04 0.044

Fluency DTC Total 3.84± 0.39 4.00± 0.39 0.156 0.08 0.026

Frontal 3.53± 0.39 3.67± 0.39 0.138 0.1 0.019

Temporal 2.89± 0.39 3.05± 0.39 0.154 0.09 0.025

Parietal 3.13± 0.53 3.35± 0.53 0.222 0.07 0.031

Occipital 2.97± 0.37 3.15± 0.37 0.177 0.04 0.043

Serial 7s DTC Total 3.83± 0.39 4.01± 0.39 0.181 0.04 0.040

Frontal 3.51± 0.38 3.69± 0.38 0.180 0.03 0.054

Temporal 2.89± 0.39 3.04± 0.39 0.150 0.1 0.023

Parietal 3.12± 0.52 3.35± 0.52 0.230 0.06 0.034

Occipital 2.97± 0.37 3.15± 0.37 0.177 0.04 0.043

MODEL #2: age

Counting DTC Total 3.85± 0.31 3.98± 0.31 0.133 0.07 0.413

Frontal 3.52± 0.31 3.68± 0.31 0.154 0.03 0.409

Temporal 2.95± 0.34 2.99± 0.34 0.040 0.6 0.313

Parietal 3.15± 0.42 3.32± 0.42 0.169 0.08 0.406

Occipital 3.01± 0.33 3.11± 0.33 0.100 0.2 0.253

Fluency DTC Total 3.90± 0.32 3.93± 0.32 0.035 0.6 0.388

Frontal 3.59± 0.31 3.61± 0.31 0.020 0.8 0.372

Temporal 2.95± 0.34 2.99± 0.34 0.045 0.6 0.314

Parietal 3.21± 0.42 3.27± 0.42 0.061 0.5 0.384

Occipital 3.02± 0.33 3.11± 0.33 0.090 0.2 0.252

Serial 7s DTC Total 3.87± 0.32 3.96± 0.32 0.094 0.2 0.400

Frontal 3.55± 0.31 3.65± 0.31 0.103 0.1 0.389

Temporal 2.93± 0.33 3.00± 0.33 0.072 0.3 0.319

Parietal 3.18± 0.42 3.29± 0.42 0.114 0.2 0.392

Occipital 3.03± 0.33 3.09± 0.33 0.060 0.5 0.243

MODEL #3: age and FCRS†

Counting DTC Total 3.84± 0.31 4.00± 0.31 0.163 0.03 0.428

Frontal 3.52± 0.31 3.69± 0.31 0.174 0.02 0.414

Temporal 2.93± 0.33 3.01± 0.33 0.080 0.3 0.351

Parietal 3.13± 0.42 3.35± 0.42 0.213 0.03 0.428

Occipital 3.00± 0.34 3.12± 0.33 0.121 0.1 0.266

Fluency DTC Total 3.90± 0.31 3.94± 0.32 0.039 0.6 0.391

Frontal 3.59± 0.32 3.62± 0.32 0.024 0.7 0.369

Temporal 2.95± 0.33 3.00± 0.33 0.049 0.5 0.344

Parietal 3.21± 0.43 3.28± 0.42 0.068 0.5 0.395

Occipital 3.02± 0.34 3.11± 0.33 0.094 0.2 0.257

(Continued)
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TABLE 3 (Continued)

Condition Lobe Log10 (WMH volume) Estimated
difference

p-value Adjusted R2

Low DTC High DTC

Serial 7s DTC Total 3.88± 0.31 3.97± 0.31 0.091 0.2 0.401

Frontal 3.56± 0.31 3.65± 0.32 0.096 0.2 0.382

Temporal 2.93± 0.33 3.01± 0.33 0.078 0.3 0.350

Parietal 3.19± 0.42 3.29± 0.43 0.105 0.3 0.400

Occipital 3.04± 0.34 3.09± 0.34 0.040 0.5 0.246

MODEL #4: age, FCRS, and MoCA†

Counting DTC Total 3.85± 0.32 4.00± 0.32 0.150 0.053 0.423

Frontal 3.52± 0.32 3.68± 0.32 0.166 0.03 0.407

Temporal 2.93± 0.34 3.02± 0.34 0.088 0.3 0.342

Parietal 3.15± 0.44 3.33± 0.43 0.187 0.07 0.427

Occipital 3.02± 0.34 3.10± 0.34 0.080 0.3 0.288

Fluency DTC Total 3.92± 0.33 4.00± 0.32 0.012 0.9 0.392

Frontal 3.60± 0.32 3.60± 0.33 0.000 1 0.368

Temporal 2.95± 0.34 3.00± 0.34 0.050 0.5 0.335

Parietal 3.23± 0.44 3.25± 0.44 0.023 0.8 0.401

Occipital 3.04± 0.34 3.08± 0.34 0.045 0.6 0.281

Serial 7s DTC Total 3.89± 0.32 3.96± 0.33 0.071 0.4 0.399

Frontal 3.56± 0.32 3.64± 0.32 0.081 0.3 0.377

Temporal 2.93± 0.34 3.02± 0.34 0.083 0.3 0.341

Parietal 3.21± 0.43 3.28± 0.44 0.067 0.5 0.404

Occipital 3.06± 0.33 3.06± 0.33 0.000 1 0.378

†One participant was missing data needed to calculate FCRS thus is not included in analysis for Models #3 and 4. WMH, white matter hyperintensity; DTC, dual task cost; FCRS, framingham
cardiovascular risk score. Bold values represent the statistically significant.

the analysis did not control for the possibility of a cueing effect,
whereby participants walk faster while completing a rhythmic
task like counting.

Conclusion

In this study, higher dual task gait cost with counting backward
was associated with increased frontal WMH burden in participants
across the spectrum of LBD, independent of age, vascular risk and
MoCA score. However, the relationship appears to be strongly
influenced by age. The impact of age-related neurodegeneration
should be examined in future analyses and specific interventions,
such as dual task training, should be examined to improve DTC.
The study provides support for using the counting DTC as a
practical task and motivates further examination of the neural
substrates of DTC.
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Does bimanual coordination
training benefit inhibitory
function in older adults?
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Introduction: Whether complex movement training benefits inhibitory functions

and transfers the e�ects to non-practiced motor and cognitive tasks is still

unknown. The present experiment addressed this issue using a bimanual

coordination paradigm. The main hypothesis was that bimanual coordination

training allows for improving the involved cognitive (i.e., inhibition) mechanisms

and then, transferring to non-practiced cognitive and motor tasks, that share

common processes.

Methods: 17 older participants (72.1 ± 4.0 years) underwent 2 training and

3 test sessions (pre, post, and retention one week after) over three weeks.

Training included maintaining bimanual coordination anti-phase pattern (AP) at

high frequency while inhibiting the in-phase pattern (IP). During the test sessions,

participants performed two bimanual coordination tasks and two cognitive tasks

involving inhibition mechanisms. Transfer benefits of training on reaction time

(RT), and total switching time (TST) were measured. In the cognitive tasks (i.e.,

the Colour Word Stroop Task (CWST) and the Motor and Perceptual Inhibition

Test (MAPIT)), transfer e�ects were measured on response times and error rates.

Repeated one-way measures ANOVAs and mediation analyses were conducted.

Results: Results confirmed that training was e�ective on the trained task and

delayed the spontaneous transition frequency.Moreover, it transferred the benefits

to untrained bimanual coordination and cognitive tasks that also involve inhibition

functions. Mediation analyses confirmed that the improvement of inhibitory

functions mediated the transfer of training in both the motor and cognitive tasks.

Discussion: This study confirmed that bimanual coordination practice can transfer

training benefits to non-practiced cognitive and motor tasks since presumably

they all share the same cognitive processes.

KEYWORDS

bimanual coordination training aging, cognition, inhibition function, cognitive-motor

training, bimanual coordination

1. Introduction

As we age, cognitive functions undergo a decline that is often considered a forerunner of
neurodegeneration and loss of behavioral adaptability in everyday tasks. It is now widely
admitted that these alterations can be attenuated or delayed in healthy older adults by
cognitively and physically enriched life habits. Therefore, understanding how effective
training protocols can prevent cognitive decline in healthy older adults is a major challenge
for the aging research community (Erickson et al., 2013; Voss and Jain, 2022).
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For a long time, age-related alterations in cognitive and motor
domains have been considered separately (Zapparoli and Mariano,
2022). Accordingly, cognitive training was hypothesized to be the
only means to improve cognitive functioning. By demonstrating
the benefits of aerobic exercise on cognition, Colcombe and
Kramer (2003) played a pivoting role in the Copernican revolution
that led to considering physical exercises as a critical means to
enhance brain functions and cognitive performance. Since then,
several studies have confirmed the benefits of endurance and
muscular resistance training on executive functions, attention and
memory (e.g., Netz, 2019). More recently, it has been reported
that older individuals that have a high level of motor fitness
(Voelcker-Rehage, 2008; Voelcker-Rehage et al., 2010; Ludyga
et al., 2020) or who participated in complex coordination training
programs demonstrated superior cognitive performance, especially
in executive functions and perceptual speed (Voelcker-Rehage
et al., 2011; Niemann et al., 2014). These findings suggested
that repetitive practice of complex movements might be a very
effective strategy to improve brain functions and cognition in older
adults due to embodiement of cognition in human behavior (e.g.,
Raab and Araújo, 2019). It might be the case since, due to the
so-called age-related cognitive-motor dedifferentiation, cognitive
mechanisms and their related brain structures become more
and more involved in movement control (e.g., Sleimen-Malkoun
et al., 2013). However, while there is abundant literature on the
effects of endurance or muscular resistance training on cognitive
performance interventional studies that have investigated whether
and how complex movement training may transfer to the efficiency
of cognitive functions in older adults are scarce. The present
experiment addressed this issue by using a rhythmic bimanual
coordination paradigm.

In a laboratory context, bimanual coordination is frequently
characterized by two stable and flexible patterns [in-phase (IP)
and anti-phase (AP)] (Kelso, 1984). Conventionally, the in-phase
(IP) pattern is achieved through the simultaneous activation of
homologous forearm muscles groups thereby giving rise to mirror-
symmetrical movements concerning the body midline; while the
anti-phase pattern (AP) is achieved through the simultaneous
activation of non-homologous muscles groups thereby one limb
moves toward the body midline, while the other limb moves away
from it and vice versa (e.g., Temprado et al., 2010, 2020). AP and
IP coordination patterns can be captured by the value of relative
phase (RP) between the two hands (180◦ and 0◦, respectively), while
their stability can be indexed by the magnitude of fluctuations of
RP (i.e., the SD of RP) (Kelso, 1984; Haken et al., 1985; Temprado
et al., 2010). The dynamics of bimanual coordination reflect i)
the existence of these stable patterns and ii) the appearance of
spontaneous transitions from AP to IP when the frequency of
movements increases.

Over the last 20 years, the role of cognition in the control of
bimanual coordination patterns has been the subject of numerous
studies in young (Lee et al., 1996; Pellecchia and Turvey, 2001;
Temprado et al., 2002, 2010; Pellecchia et al., 2005; Shockley and
Turvey, 2005) and older adults (Wishart et al., 2000; Lee et al.,
2002; Temprado et al., 2010, 2020). In particular, it has been
shown that attention and/or inhibition mechanisms were involved
in bimanual coordination (e.g., Fujiyama et al., 2009; Levin et al.,

2014), in the voluntary stabilization of existing patterns (Monno
et al., 2002; Temprado et al., 2010), in the inhibition of spontaneous
transitions (Lee et al., 1996; Temprado et al., 2002), and in the
voluntary transition between the AP and IP patterns (Temprado
et al., 2020). These findings open the door to the development
of training protocols, grounded on bimanual coordination tasks,
to improve the efficiency of cognitive functioning in older adults,
and especially, inhibition functions, which are highly affected
by age-related decline. In the present study, we capitalized on
this framework to investigate whether, in healthy older adults,
bimanual coordination training in conditions that required strong
involvement of inhibition processes transferred to non-practiced
cognitive and motor tasks also involving inhibitory mechanisms.

To verify this hypothesis, we assessed the effects of bimanual
coordination training on the ability to maintain the AP pattern
at high oscillations frequencies that is, to inhibit spontaneous
transition to the IP pattern. According to a previous study
(Temprado et al., 2002), we expected to observe that training
delayed the transition frequency at which the spontaneous
transition occurred. Then, we assessed the consequences of
bimanual coordination training on performance in a non-practiced
intentional pattern switching task (AP to IP et IP to AP), similar
to those previously used by Temprado et al. (2020). To fulfill
this objective, we assessed transfer effects of training in post-test
and retention test conditions carried out immediately and 1 week
after the training session, respectively. Consistent with a previous
study (Temprado et al., 2002), the retention test should allow to
determine whether an overcompensation of training effects take
place during the retention period.

We expected to observe a decrease in switching times, especially
for the AP to IP direction, as a result of bimanual training. Finally,
we tested the effects of bimanual training in two non-practiced
cognitive tasks that is, the ColorWord Stroop Test and theMAPIT.
We expected to observe decreases in response times, in the two
tasks. Such results would demonstrate the existence of transfer
effects, presumably due to the training of common (inhibition)
processes between the bimanual coordination task and the non-
practiced cognitive tasks. To further understand the transfer effects,
if existed, we used mediation analyses to determine whether
performance improvement in the non-practiced tasks resulted from
the mediation of inhibition mechanisms trained during bimanual
coordination practice.

2. Methods

2.1. Participants

Only older adults were tested. Seventeen participants, 6 women
and 11 men (mean age 72.18 ± 4.04), were included according
to the following self-reported criteria: (i) age ≥ 65 ≤ 80 years,
(ii) normal or corrected-to-normal vision and hearing, and (iii)
agreeing to follow the entire protocol (5 participants weren’t able
to finish the program). The non-inclusion criteria were: (i) pain
or disability affecting the hand, arm, or shoulder (e.g. arthritis),
(ii) upper or lower limb surgery in the last 6 months, (iii) an
Mini Mental State Ewamination (MMSE) score ≤24 (Trzepacz
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et al., 2015) (mean 28.8 ± 1.2). Participants signed written
informed consent.

2.2. Design

The protocol was approved by the French ethic committee
CERSTAPS IRB00012476-2022-12-05-181. It consisted of two
training sessions in a bimanual coordination task and three
testing sessions (pre-test, post-test, and retention) in two bimanual
coordination tasks and two cognitive tasks. In each testing session,
both training and transfer effects were assessed. Training effects
were assessed in the practiced bimanual coordination task while
transfer effects were assessed in the non-practiced motor and
cognitive tasks. The 5 sessions (of about 75min each) were spread
over 3 weeks. During the first week, participants completed the pre-
test. During the second week, they performed two training sessions
and one post-test session on three different days (i.e., with 1 day off
in between). During the third week, 7 days after the second training
session, they performed the retention test (see Table 1). For the
evaluation session, the order of presentation of cognitive andmotor
tests were randomized. Exception wasmade for the spontantaneous
transition frequency test, which served as assessment test and,
accordingly, was always performed before the others.

2.3. Intervention

Participants had to perform the AP pattern, starting at the
transition frequency (TF) identified in the pre-test, minus 0.25Hz
(see below). The training frequency was then increased gradually by
0.25Hz after each block of 10 trials. They were instructed to resist
to the transition to IP that is, to inhibit the switching from AP to
IP (see description of patterns in Figure 1). Bimanual coordination
training was divided in two separate sessions of 50 trials each (i.e.,
a total of 100 trials of 20 s).

2.4. Testing

Two motor and two cognitive tasks were used during the
testing sessions. The effect of bimanual coordination training was
assessed through the measurement of changes in the spontaneous
transition frequency (TF), while transfer effects were assessed
through performance measurement in (unpracticed) intentional
switching motor task, Stroop task and the MAPIT, respectively.

2.4.1. Spontaneous transition frequency
The spontaneous transition frequency (TF) between the AP and

IP patterns was measured in each testing session. The bimanual
coordination task consisted of pronation-supination movements
of the forearms in the frontal plane, in synchronization with a
metronome according to the AP or IP pattern. For each of the
two coordination patterns, 3 to 5 familiarization trials, consisting
of oscillating at their spontaneous frequency, were provided to
participants. Then, the transition frequency was determined by

asking participants to perform the AP pattern, following an
auditory metronome. The oscillation frequency was increased from
1 to 3Hz by steps of 0.25Hz, changing every 10 s. They were
instructed not to resist when they felt they were losing the AP
coordination for the easier IP pattern. Ten trials were performed.
The effective frequency at which transition occurred to the IP
pattern (which may be different from the frequency prescribed
by the metronome) was recorded online by a lab-customized
LabVIEW program. The effective frequency at which a transition
was observed for at least 60% of the trials was considered the
reference frequency for the training session. Effective oscillation
frequencies were calculated based on averaged cycle periods in
each metronome condition. Mean values of discrete relative phase
(DRP) allowed us to determine when the transition started.

The procedure used to analyze bimanual coordination
performance was similar to the one used by Temprado et al.
(2020). The raw signals were processed with two customizedMatlab
routines (MathWorks Inc, Natick, M.A, United States). The first 5 s
of each trial allowed to ensure that a stable pattern was performed.
They were filtered with a Butterworth filter (cut-off frequency
10Hz, order 2). Then, the amplitude centering procedure was used
to remove frequency artifacts of the non-sinusoidal signals, when
existing. According to Lamb and Stöckl (2014), the normalization
was based on the function:

(

y (ti)
)

= 2

(

2(y (ti) −min
(

y (t)
)

)

max
(

yt
)

−min
(

y (t)
)

)

− 1

This function transformed the original values y(t) in such a way that
the minimum value of g(y(t)) equals−1 and the maximum value of
g(y(t)) equals 1.

Detection of spontaneous transition frequency. Effective
oscillation frequencies were calculated on the basis of averaged
cycle periods in each metronome conditions. Then, mean values
and SD of discrete relative phase (DRP) were calculated and
tracked to determine when the transition started. The transition
was considered starting when the last value of DRP = 180◦ ± 45◦

was followed by five consecutive DRP values lower than 135◦. The
same procedure was applied to identify the end of transition to
the IP pattern. The transition considered accomplished when the
value of DRP post-transition was equal to 0◦±45◦ for at least 3
consecutive cycles. Notably, a transition occurring during the first
second of a given step of frequency was considered occurring in
the previous step.

2.4.2. Intentional switching between bimanual
coordination patterns

Performance in intentional switching tasks was assessed, in two
directions (APtoIP and IPtoAP) to determine whether the effects
of bimanual coordination training transferred to an unpracticed
motor task presumably involving similar inhibition mechanisms.
Two blocks of 10 trials from AP to IP and from IP to AP were
presented in random order. The oscillation frequency was paced
by a metronome set at the transition frequency (TF) identified
in the pre-test, minus 0.25Hz. Between the 15th and 18th s,
the metronome was changing its signal’s tone, indicating to the
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TABLE 1 Overview of the protocol.

First week Second week Third week

Pre-test First
training
session

Second
training
session

Post-test Retention-test

Cognitive test MMSE Stroop test
MAPIT test

50 trials of AP at
increasing
frequency

50 trials of AP at
increasing
frequency

Stroop test
MAPIT test

Stroop test MAPIT test

Bimanual
coordination tests

Spontaneous transition
frequency detection test
(10 trials) Intentional
switching: 10 trials in each
direction (IPtoAP
and APtoIP)

Spontaneous transition
frequency detection test
(10 trials)
Intentional switching: 10
trials in each direction
(IPtoAP and APtoIP)

Spontaneous transition
frequency detection test
(2 x 10 trials) Intentional
switching: 10 trials in each
direction (IPtoAP
and APtoIP)

FIGURE 1

Device used for the bimanual coordination task and visual representation of IP (In-phase) and AP (Anti-Phase) patterns.

participants to change as fast as possible from the ongoing pattern
to the other one. Each trial lasted 30 s.

According to our previous study (Temprado et al., 2020), to
analyze intentional switching, in each condition, we calculated the
continuous relative phase (CRP), after the application of the Hilbert
transform sign according to the following formula:

CRP (ti ) = CRPleft (ti ) CRPright (ti )

arctan

(

H1 (t1) x2 (t1) − H2 (t1) x1 (t1)

x1 (t1) x2 (t1) − H21 (t1)H2 (t1)

)

Then, we calculated the mean and SD of the CRP for each
participant. After calculation, the times series of CRP were divided
into pre-switching and post switching phases (Lamb and Stöckl,
2014). For the pre-switching phase, we calculated the mean and
SD of CRP. CRP artifact was taken into consideration, two cycles
before and one after were deleted, so we calculated the CRP
two cycles before and one after our region of interest. The TST

was defined as the time lapsing between the switching signal
and the first mean value of CRP post-transition that preceded at

least 3 s of stabilization within a range of 45◦ around the CRP

value corresponding to the requested pattern (i.e., either IP or
AP). In addition, the switching phase was decomposed into RT

that is, the interval between the signal of changing given by the

metronome and the first value of RP outside of+/– 45◦ of the value
corresponding to the currently performed pattern (i.e., 180◦ or 0◦).

Reaction times (RT) and Total Switching Times (TST)
were calculated for the two switching directions. In each

condition, continuous relative phase (CRP) was calculated for each

participant. Then, the times series of CRP were divided into pre-
switching and post-switching phases (Lamb and Stöckl, 2014). For
the pre-switching phase, two measures of response times were
defined (see Temprado et al., 2020, for a similar procedure). The
TST was the time lapse between the switching signal and the
first mean value of CRP post-transition that preceded at least
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3s of stabilization within a range of 45◦ around the CRP value
corresponding to the requested pattern (i.e., either IP or AP). The
RT was the interval between the signal of change given by the
metronome and the first value of RP outside of+/– 45◦ of the value
corresponding to the currently performed pattern (i.e., 180◦ or 0◦)
(see Figure 2 for visual details).

2.4.3. Cognitive and motor inhibition
The Color Words Stroop Test (CWST) was used to test

cognitive inhibition. It was carried out on a computer with
lab-customized software. Participants were comfortably seated in
front of a screen (Dell24 P2418HT, 23.8 inches). A colored word
appeared on the screen and they were asked to indicate the color
of the word by pressing the corresponding letter on the keyboard
in front of them as quickly as possible. The keyboard was adapted
so that only the letters required for the test were visible on the
keyboard. Four different colors were used: green, blue, red, and
yellow. Thus, depending on the consistency between semantics
and color, the condition was considered either congruent (C) or
incongruent (I). Neutral trials (N) were also presented in different
words (e.g., arm, leg...) and were written in one of the different
colors (green, blue, red, and yellow). After familiarization with 9
words not used for the test, 75 trials were presented randomly
for testing (25 congruent, 25 incongruent, and 25 neutral; color
words and answers per color were balanced). Each word remained
on the screen until the answer was given. In each condition, the
number of errors and the reaction time (RT) that is, the time
elapsed between the appearance of the word and the pressing of
the key on the keyboard, were recorded. Using a similar procedure
as those used by Temprado et al. (2020), we didn’t calculate
inhibition costs.

The MAPIT (Nassauer and Halperin, 2003; Jennings et al.,
2011) was used to assess, separately, perceptual (PI) and motor
inhibition (MI). The test was carried out on a computer
lab-customized software (ICE R© software, https://trello.com/b/
EtNCNrZH/ice). Its general principle consisted of responding as
fast as possible to the direction or location of arrows presented
on the screen (Dell24 P2418HT, 23.8 inches) by pressing a
corresponding key on a modified keyboard, in which only two keys
(“Q” and “M”), used for the right direction and left directions,
respectively, were visible (see Figure 3). Each trial started with the
fixation of a black cross presented in the center of the screen,
which disappeared when the arrow appeared and remained on the
screen until the participant pressed the key. The test consisted of
3 different blocks of trials designed to assess either perceptual or
motor inhibition (see Figure 3): (i) a preliminary block of 80 trials
used as familiarization in which participants had to press the key
corresponding to the direction an arrow or square’s location on
the screen (i.e., either right or left), (ii) a perceptual inhibition

block of 80 trials in which participants had to press the button
corresponding to the direction of the arrow’s pointing, even if the
location of the arrow was opposite (e:g. arrow pointing to the left
and placed on the right of the screen), and (iii) a Motor inhibition

block of 80 trials in which the arrows were presented in the center
of the screen and participants were asked to either to press the
button corresponding to the direction of the arrow’s pointing, or

the opposite direction (for details see supplementary material).
Based on measured median reaction times (RT) (Jennings et al.,
2011), perceptual (PI) and motor (MI) interference scores were
calculated as follows:

PI=Median RT of the perceptual incongruent – Median RT of
the perceptual congruent condition

MI=Median RT of themotor incongruent condition –Median
RT of the motor congruent condition.

2.5. Statistical analyses

One-way repeated-measures ANOVAs (SPSS Inc., Chicago,
IL, USA) were used to compare the performance measured
during pre-test, post-test, and retention test in: (i) the trained
bimanual coordination task (transition frequency, TF). A two-ways
ANOVA was used to test the effects of time (test) and direction
(APtoIP/IPtoAP) on switching times in the bimanual switching
task, while two ways (condition x time) ANOVAs were used to
compare the performance observed in the CWST (RT of neutral,
congruent, and incongruent conditions) and in the MAPIT (for PI
and MI interference scores). The Shapiro-Wilk Normality test was
performed before all, and Newman—Keuls post hoc analysis was
also run.

In addition, mediation analyses were carried out following the
procedures from mediation and moderation in repeated measures
design, using the MEMORE macro for IBM SPSS Statistics (IBM
Corp., Armonk, NY, United States) (Montoya and Hayes, 2017).
Mediation analysis allows to quantify the degree to which a
mediator (M) acts as the “mechanism” by which an independent
factor (X) affects an outcome (Y). In this variant of mediation
analysis, X does not actually exist in the data and represents the
effect of the intervention influencing M and Y over time. The
effects of bimanual coordination training (X) on Y corresponded
to the total effects “c”, and the effects of the training on Y while
controlling for the mediator are called the direct effects “c”. The
effects of the training on M corresponded to the “a” path and the
effects of M on Y to the “b” paths. The amount of mediation, the
indirect effect (“ab”), refers to the role of the mediator (M) in the
effect of the training on Y. We tested the significance of the indirect
effects using bias-corrected bootstrap confidence intervals (CIs)
(based on 2000 bootstrap samples). CI that did not contain zero
represents significant effects, and therefore significant mediation of
X on Y through M. The centrality and normality of the residuals
were verified.

Two sets of mediation analysis were carried out. The first
one aimed to determine whether training-related enhancement of
intentional switching variables (i.e., RT and TST) was mediated by
improvements in inhibition capacities, as measured by the CSWT
and the MAPIT. The second set of analyses aimed to determine
whether transfer effects observed in CWST and MAPIT were
mediated by enhanced performance in the intentional switching
task. The threshold chosen for statistical significance is p<0.05
(details in Figure 4). This type of mediations analysis has been
recently widely used in a variety of research domains related to
interventions, and in different populations (Bell et al., 2018; Boidin
et al., 2020; Sidhu and Cooke, 2021).
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FIGURE 2

Decomposition of the switching phase into di�erent sub-parts.

FIGURE 3

Panels of stimuli presented in the di�erent conditions of the MAPIT.

3. Results

3.1. Training e�ects on the maintenance of
the AP pattern

The one-way ANOVA performed on the mean effective
transition frequency revealed an effect of time [F(2,32) = 69.83, p <

0.01]. For testing sessions, he Newman-Keuls post-hoc test revealed
a significant improvement between the pre-test (1.68 ± 0.28) and
the post-test (2.15 ± 0.32), as well as between the pre-test and
the retention test (2.16 ± 0.37), of about 0.5Hz, on average. In
other words, transition frequency was significantly delayed after
bimanual coordination training.

3.2. Transfer to the untrained intentional
switching task

For TST, the two-ways ANOVA revealed significant main
effects of direction [F(1,31) = 49.20, p < 0.01] and time [F(2,62)
= 20.49, p < 0.01]. Specifically, the Newman-Keuls post-hoc test
carried out on the two directions of switching revealed that TST
was longer for the IP to AP direction than for the AP to IP direction
(1,668 ± 525.04ms, and 865 ±248.2ms, (p < 0.00). Moreover,
the post hoc analysis carried out on testing sessions revealed that
independently of the switching direction, the TST observed in the
pre-test was significantly longer than in the post-test and retention
[1,505 ± 664.66ms > 1,181 ± 530.79 and 1,151 ±474.27ms; p <
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FIGURE 4

Illustration of the two mediation models.

0.001]. For RT, main effects of direction [F(1,31) = 5.59, p < 0.05]
and time [F(2,62) = 3.74, p < 0.05] were observed. Specifically, the
Newman-Keuls post-hoc test carried out on the two directions of
switching revealed that RTwas longer in the AP to IP direction than
in the IP to AP direction (348 ± 83.65ms, and 310 ± 59.92ms;
p < 0.02). Moreover, the post-hoc analysis carried out on testing
sessions revealed that independent of the switching direction, RT
was significantly longer during the pre-test than during the post-
test and the retention test (358 ± 103.61ms >319 ± 63.21ms and
308± 67.97ms; p < 0.03).

3.3. Transfer to the untrained cognitive
tasks

For the CWST, the two-ways ANOVA revealed main effects of
condition [F(2,48) = 3.28, p < 0.05] and time [F(2,96) = 47.30, p
< 0.01] on response time. The incongruent condition was always
slower than the congruent one, independent of the testing time
(1,277ms and 1,099ms, respectively). Moreover, response times
were shorter in the both the post-test and the retention test than
in the pre-test (p < 0.05). Also, responses times were shorter in
the retention test than in the post-test (pre-test: 1,272ms; post-test:
1,168ms; retention test: 1,090ms). Interaction time x condition
effect was not significant (p > 0.63).

For the MAPIT, the analysis revealed an effect of time on
MI score [F(2,30) = 3.56, p < 0.05], which improved between the
pre-test and the retention test (145ms and 86ms, respectively). A
tendency (p = 0.07) was observed for the difference between the
pre-test and the post-test 145 and 105ms, respectively).

3.4. Mediation analyses

The results of the first set of mediation analyses are presented
in Tables 2, 3. A significant indirect effect was found for the effect

of the bimanual coordination training on the reaction time of
the incongruent condition of the CWST, through the TST (52.5%
of the total effect) and RT (23.8% of the total effect); in the AP
to IP direction. The direct effect (≪ c’ ≫) was not significant
after taking into account the mediators, being consistent with a
full mediation hypothesis (the training no longer affects Y after
controlling for M). All other mediation analyses were inconsistent
(negative ≪ ab ≫) or not significant. The results of the second
set of mediation analyses are presented in Table 3. A significant
indirect effect was found for the effect of the bimanual coordination
training on the TST in the AP to IP direction, mediated by the
RT observed in the incongruent condition of the CWST (39.0 %
of the total effect). The direct effect (≪ c’ ≫) was not significant
after taking into account the mediators, being consistent with
a full mediation hypothesis. All other mediation analyses were
not significant. Mediation analyses carried out with the outcome
variables of the MAPIT were not significant.

4. Discussion

The present study aimed to determine if training in a
bimanual coordination task involving inhibition mechanisms
transferred to untrained motor and/or cognitive tasks involving
similar mechanisms.

4.1. Evidence of bimanual coordination
training e�ect on spontaneous transition
frequency

As a pre-requisite, we analyzed the effects of bimanual
training to resist to the transition from the AP to the IP
pattern on changes in spontaneous transition frequency and the
number of transitions. Results showed that repetitive bimanual
coordination practice at high frequencies delayed spontaneous
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TABLE 2 Training-related enhancement of intentional switching variables

(i.e., RT and TST) mediation through improvements in inhibition capacities

as measured by the CSWT (unstandardized reported e�ect).

Coe�cient SE t P

Relation
≪ a≫

RT IP to
AP

29.20 25.62 1.13 0.27

TST IP to
AP∗

405.05 93.43 4.33 <0.01

RT AP to
IP

47.62 30.97 1.53 0.14

TST AP to
IP∗

238.75 88.57 2.69 0.01

Relation
≪ c≫
(Total
Effect)

RT
Congruent∗

96.00 23.28 4.12 <0.01

RT
Neutral∗

80.21 35.45 2.26 0.03

RT
Incongruent∗

134.24 42.54 3.15 <0.01

Coefficient BootSE BootLLCI BootULCI

Bootstrap
analyses
of the
indirect
≪ ab≫
paths

RT IP to

AP

RT
Congruent

27.31 21.88 −0.8070 92.86

RT Neutral −5.90 23.18 −48.27 29.66

RT
Incongruent

16.74 31.23 −8.22 118.28

TST IP to

AP

RT
Congruent

−10.96 29.38 −57.16 43.83

RT Neutral 28.68 50.77 −34.76 148.89

RT
Incongruent∗

−67.43 41.52 −165.52 −6.68

RT AP to

IP

RT
Congruent

17.91 18.29 −3.77 69.53

RT Neutral 6.67 23.11 −25.20 68.99

RT
Incongruent∗

27.31 22.06 0.1147 103.58

TST AP to

IP

RT
Congruent

34.93 36.85 −10.55 139.59

RT Neutral 18.13 63.51 −142.34 148.59

RT
Incongruent∗

60.21 87.36 11.54 321.00

TABLE 3 Training-related enhancement of inhibition capacities as

measured by the CSWT mediation through improvements in intentional

switching variables (i.e., RT and TST) (unstandardized reported e�ect).

Coe�cient SE t P

Relation
≪ a≫

RT
Congruent∗

96.00 23.28 4.12 <0.01

RT
Neutral∗

80.21 35.45 2.26 0.03

RT
Incongruent∗

134.24 42.54 3.15 <0.01

Relation
≪ c≫
(Total
Effect)

RT IP to
AP

29.20 25.62 1.13 0.2712

TST IP to
AP∗

405.05 93.43 4.33 <0.01

RT AP to
IP

47.62 30.97 1.53 0.14

TST AP to
IP∗

238.75 88.57 2.69 0.01

Coefficient BootSE BootLLCI BootULCI

Bootstrap
analyses
of the
indirect
≪ ab≫
paths

TST IP to

AP

RT
Congruent

54.31 107.31 −277.17 155.16

RT Neutral 18.48 58.40 −100.29 138.14

RT
Incongruent

−81.35 74.19 −277.76 14.02

TST AP to

IP

RT
Congruent

77.60 69.15 −63.00 217.42

RT Neutral 21.04 45.16 −37.96 131.32

RT
Incongruent∗

93.17 65.44 18.22 297.41

transition frequency of about 0.5Hz. This result extend those
observed by Temprado et al. (2002), in young adults, by showing
that a reserve of behavioral flexibility still persisted in older
adults, which allowed improving motor adaptability thanks to an
appropriate training protocol.

Presumably, training to maintain the AP pattern was
hypothesized to improve inhibition mechanisms. Accordingly, an
important issue was whether the effects of bimanual coordination
training on underlying inhibition mechanisms transferred
to untrained motor task (i.e., intentional switching) and
cognitive tasks (CWST and MAPIT) that involved, at least in
part, similar cognitive mechanisms. The subsequent analyzes
performed on the different dependent variables allowed to test
this hypothesis.
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4.2. Transfer of bimanual coordination
training e�ects to the intentional switching
task

The results observed for the intentional switching task (i.e., RTs
and TSTs), in the post-test and the retention test, showed a transfer
of bimanual coordination training to performance in the untrained
intentional switching task.

First of all, for both RTs and TSTs, a significant difference was
found between the two directions of switching (AP to IP and IP
to AP), independent of the assessment session (pre-test, post-test
and retention test). Specifically, analyses of RTs revealed that it
was more difficult to dismantle the AP pattern to switch to the IP,
while analyses of TSTs revealed it was more difficult to stabilize
the AP pattern when switching from the IP pattern. These results
are consistent with the hypothesis that, in older adults, dismantling
and re-stabilizing the AP pattern more strongly involved inhibitory
functions (i.e., more cognitive load) than switching from the IP
pattern or stabilizing it after switching from the AP pattern.

Regarding the effects of training, as expected, both RTs and
TSTs significantly decreased during post-test and retention test, in
both directions of switching. Due to the required the suppression
of a concurrent response (the IP pattern) to maintain the AP
pattern in the training task, these results strongly suggest that
inhibition processes were involved in maintaining the AP at higher
frequencies during bimanual training. In this respect, they extend
those reported by Temprado et al. (2002) in younger adults by
showing that, in older adults, inhibitory processes were involved
to resist to the spontaneous transition from AP to IP, in addition to
attentional mechanisms.

Accordingly, the results observed in the pre-test and the
retention test in the intentional switching task suggested training-
related improvements of transition frequency presumably
reflected enhanced efficiency of inhibition processes, which finally
transferred to the untrained motor tasks involving (at least in
part) similar cognitive mechanisms to facilitate the production of
a new response by inhibiting the current one. This hypothesis was
confirmed by the results observed in the CSWT and the MAPIT.

4.3. Transfer to the CWST and the MAPIT

In the CWST, RTs decreased in post-training sessions in
both congruent and incongruent conditions. These results suggest
that improvements in inhibitory mechanisms resulting from
bimanual coordination training also transferred to an untrained
cognitive task, at least in the incongruent condition, which involves
similar mechanisms. Morevoer, the lack of interaction between
time and conditions in the Stroop task suggests that bimanual
coordination training also improved other cognitive functions (e.g.,
processing speed, attention. . . ), which are presumably involved in
the CWST (for a consistent interpretation, see mediation analyses).
These findings are consistent with those reported by Temprado
et al. (2020), which showed that, in older adults, inhibition
mechanisms assessed through the CSWT, mediated performance in
the intentional switching task, at least for the AP to IP direction.

The MAPIT was used to distinguish possible separate effects
of training on motor and perceptual inhibition. Indeed, it has
been shown that bimanual coordination not only results from
the prevalence of neuromuscular constraints (i.e., simultaneous
activation or homologous/non-homologous muscle groups) [e.g.,
(Kelso, 1984)], but also from perceptual (in particular, visual)
constraints [e.g., (Zaal et al., 2000; Mechsner et al., 2001)],
though to a lesser extent (Salter et al., 2004). Results showed
a reduction in MI interference following training, but not on
the PI interference score. These findings confirm that MAPIT
is suitable to assess the involvement of inhibition mechanisms
in cyclic, bimanual movement tasks, which has been a matter
of debate in the literature [e.g., (Hervault et al., 2019)].
Secondly, they suggest that bimanual coordination training
improvedmotor inhibitionmechanisms instead of perceptual ones,
which is consistent with the predominance of neuromuscular
constraints in bimanual coordination dynamics (Kelso, 1984).
In addition, this result suggests that perceptual and motor
inhibition are separate mechanisms, not necessarily related in
bimanual coordination performance (but see Netz et al., 2023, for
different results).

Mediation analyses allowed us to further explore the role of
inhibition mechanisms in the transfer effects of bimanual training.
Taken together, these analyses confirmed: (i) the mediation
by inhibition mechanisms assessed with the CWST in the
improvement of responses times in the intentional switching task,
especially in the AP to IP direction and (ii) the mediation by
(inhibition) mechanisms involved in the intentional switching
in the improvement of CWST performance, especially in the
incongruent condition. These findings confirm that inhibition
functions are strongly involved in maintaining and, therefore,
dismantling and re-stabilizing the AP pattern. It could explain
why intentional switching was longer from AP to IP than from
IP to AP in the present study (see Temprado et al., 2020, for
confirming evidence and a convergent interpretation). Notably,
the PI and MI inhibition mechanisms were not involved in any
mediating effects. Also, with respect to the CSWT, the lack of time
x condition interaction was rather unexpected. It suggests that, at
least, information processing speed has been improved, together
with other processes involved to perform the task (i.e., inhibition).
However, according to the fact that: (i) the to-be-trained task
strongly loaded inhibition mechanisms and (ii) mediation analyzes
was only significant for the incongruent RT, we contend that
inhibition processes were sensitive to the transfer effect.

The question remains, however, of the different brain
structures and mechanisms that could contribute to the observed
effects. Identifying the neural underpinnings of training transfer
effects might be an objective for future studies. With respect
to the underlying mechanisms, interestingly, in the present
study, learning and transfer effects were observed following a
short-duration training (50 trials), compared to that used by
Voelcker-Rehage et al. (2011). These results suggest that the benefits
of “guidance” obtained thanks to this short-duration training
could be based on other mechanisms than the “facilitation” effects
resulting from the release of neurotrophic factors, during the
training of longer duration.
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5. Conclusion

The present study contributes, in different ways, to the existing
literature on exercise and cognition in older adults. First of all, it
confirmed that complex motor skills training may allow exploiting
the flexibility reserve that persists in the aging neuro-cognitive
system to enlarge behavioral adaptability facing higher levels of
task constraints. In this respect, our results are consistent with
the existing literature demonstrating the positive impact of whole-
body coordination training (Voelcker-Rehage et al., 2011) or motor
fitness (Voelcker-Rehage et al., 2010) on cognitive functions. They
show that bimanual coordination is a suitable task to achieve this
objective. Indeed, in the present study, bimanual coordination
training allowed effectively and quickly improving cognitive
mechanisms in non-practiced cognitive and motor tasks. Thus, it
can be concluded that when common cognitive mechanisms are at
work in cognitive and motor tasks, training them in motor tasks
may transfer to cognitive tasks. It remains however to determine
whether the present finings can be extended to other types of
complex movements.

Thirdly, this study is the first to test and detect positive
cognitive improvements after a bimanual coordination training,
which is of high impact for the field of age-related cognitive-decline
prevention. Indeed, our findings (re)open the question of what
type of physical and/or motor training programs may be most
effective to improve cognition and cognitive-motor behavior in
older adults (see also (Raichlen and Alexander, 2017; Tait et al.,
2017; Herold et al., 2018; Torre et al., 2021; Torre and Temprado,
2022a,b). Indeed, though it is commonly considered that endurance
training should be preferably used in combination with cognitive
stimulations (Torre et al., 2021; Torre and Temprado, 2022a,b),
when referring to the program duration, our results suggest
that complex motor skill training might be even more efficient
than endurance training for obtaining strong and transferable
effects on cognitive function. Thus, instead of combining physical
(endurance) training and cognitive stimulations, a promising
combination might be those associating endurance training and
complex motor skills training. This hypothesis has been scarcely
been addressed in the literature (Raichlen and Alexander, 2017)
and should be the objective of further studies. In particular, the
present results remain to be extended to different complex motor
skills training programs.

6. Limitations of the study

A limitation of the present study might be the lack of a
control group. Indeed, while transfer effects of the training were
strong and reliable they could, at least in part, reflect a test-
retest effect. Notably, few studies showed that Stroop task delivered
repeteadly through smartphone application may be used as a
short and valid method to screen some forms of encephalopathy,
thereby suggesting that it the Stroop test presents a high test/re-
test reliability and is resistant to test/re-test learning effect (see
Franzen et al., 1987 for confirming evidence). In addition, the
causal effect of the intervention on cognition was explored through
mediation analyses, which allowed quantifying the extent to which
a variable participates in the transmittance of change from a

cause to its effect. Specifically, mediation analyses explored how
the changes in bimanual coordination from before to after the
training, participated in the improvement in cognitive abilities.
While it does not replace control group, mediation analyses give
a robust understanding of the relationship between cognition
and bimanual coordination, and how training coordination could
improve cognitive abilities. In this respect, these analyses suggested
that the presence of a test-retest effect was not enough to explain
the observed results. One could argue that test retests effects
may be more pronounced in some participants and not others,
causing the within subject association between mediators changes
and outcomes changes. While this could explain some of the
results, mediation were only seen in a small specific part of
our outcomes (not known to be more sensitive to test retests
than the others). Distinguishing fast from slow learners, if the
formers, in the mediator fields are the same in the outcome
field, and given the high specificity of these variables among
our set of variables, this highlights a strong relationship between
mediator and outcomes. Nevertheless, further studies are necessary
to confirm these results and to extend them to different complex
motor skills training programs.
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Background: Age-related changes in the cortical control of standing balance 
may provide a modifiable mechanism underlying falls in older adults. Thus, this 
study examined the cortical response to sensory and mechanical perturbations 
in older adults while standing and examined the relationship between cortical 
activation and postural control.

Methods: A cohort of community dwelling young (18–30 years, N = 10) and 
older adults (65–85 years, N = 11) performed the sensory organization test 
(SOT), motor control test (MCT), and adaptation test (ADT) while high-density 
electroencephalography (EEG) and center of pressure (COP) data were recorded 
in this cross-sectional study. Linear mixed models examined cohort differences 
for cortical activities, using relative beta power, and postural control performance, 
while Spearman correlations were used to investigate the relationship between 
relative beta power and COP indices in each test.

Results: Under sensory manipulation, older adults demonstrated significantly 
higher relative beta power at all postural control-related cortical areas (p < 0.01), 
while under rapid mechanical perturbations, older adults demonstrated 
significantly higher relative beta power at central areas (p < 0.05). As task difficulty 
increased, young adults had increased relative beta band power while older adults 
demonstrated decreased relative beta power (p < 0.01). During sensory manipulation 
with mild mechanical perturbations, specifically in eyes open conditions, higher 
relative beta power at the parietal area in young adults was associated with worse 
postural control performance (p < 0.001). Under rapid mechanical perturbations, 
specifically in novel conditions, higher relative beta power at the central area in 
older adults was associated with longer movement latency (p < 0.05). However, 
poor reliability measures of cortical activity assessments were found during MCT 
and ADT, which limits the ability to interpret the reported results.

Discussion: Cortical areas are increasingly recruited to maintain upright postural 
control, even though cortical resources may be limited, in older adults. Considering 
the limitation regarding mechanical perturbation reliability, future studies should 
include a larger number of repeated mechanical perturbation trials.
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1. Introduction

With a rapidly increasing number of individuals over 65 years of 
age globally, more people face functional impairment associated with 
the aging process, such as reductions in balance function and increases 
in fall risk (Lord et al., 2018). Nearly 30% of older adults report falling 
(Bergen et al., 2016), and falling once doubles the chances of falling 
again (O’loughlin et al., 1993). Falls lead to injuries, reductions in 
quality of life, and even death(Kannus et al., 1999; Hartholt et al., 2011; 
Bergen et  al., 2016), with death rates in the United  States having 
increased 30% from 2007 to 2016 for older adults (Burns and Kakara, 
2018). Considering the severe consequences of falls in older adults, it 
is essential to further our understanding on the mechanisms 
underlying falls and identification of modifiable factors that can 
reduce the fall rate in older adults.

Standing postural control ability tends to decline with increased 
age, and is significantly associated with falls (Quijoux et al., 2020). 
Postural control is defined as the act of maintaining, achieving or 
restoring a state of balance that may involve either a fixed-support or 
a change in support response (Pollock et  al., 2000). Studies 
investigating postural control commonly utilize posturography to 
quantitatively assess postural stability (Sullivan et  al., 2009). 
Specifically, larger postural sway areas have been associated with 
worse postural stability and a higher risk of falling (Johansson et al., 
2017). Older adults have demonstrated increases in postural sway 
ranges and center of pressure (COP) velocities while standing with 
eyes open or close (Roman-Liu, 2018). Older adults have also 
exhibited larger COP peak displacements after perturbations while 
standing in comparison to young adults (Kanekar and Aruin, 2014; 
Quijoux et al., 2020).

Upright postural and balance control requires a complex interplay 
within and between the sensory and the motor systems. Furthermore, 
there is strong evidence for the crucial contribution of the cerebral 
cortex in the control of balance (Jacobs and Horak, 2007; Maki and 
McIlroy, 2007; Papegaaij et al., 2014). A growing number of studies 
have demonstrated increasing cortical activities in more challenging 
balance conditions (Wittenberg et  al., 2017; Malcolm et  al., 2021; 
Barollo et al., 2022; Tsai et al., 2022). Specifically, cortical activity and 
high-order cognitive processes are important when static postural 
control is challenged by mechanical and sensory perturbations, as the 
responsive adjustments depend on the integration of reliable sensory 
feedback and planning and execution of appropriate motor responses 
(O’Connor and Kuo, 2009; O’Connor et al., 2012; Francis et al., 2015; 
Franz et al., 2015, 2017; Goodworth et al., 2015; Malcolm et al., 2021; 
Tsai et al., 2022).

As suggested by current electroencephalography (EEG) studies, 
multiple brain regions and cortical beta band (13–30 hz) electrical 
activities are involved in maintaining upright static balance in adults 
(Ibitoye et al., 2021; Malcolm et al., 2021; Barollo et al., 2022; Tsai 
et al., 2022). The parietal-occipital region, frontal-central region, and 
occipital lobe are involved in response to visual challenges while 
standing (Chang et al., 2016; Malcolm et al., 2021; Tsai et al., 2022). 
Parietal and central areas beta band power were sensitive to 
proprioceptive challenges while standing (Tse et al., 2013). Electrical 
activity at the central coronal reference curve, such as Cz (related to 
sensory and motor cortex), Pz (related to parietal lobe), Fz (related to 
frontal lobe), and nearby electrodes are associated with responses to 
mechanical perturbations while standing (Adkin et al., 2006; Jacobs 

et al., 2008; Mochizuki et al., 2009; Smith et al., 2014). Previous work 
also investigated the association between cortical activities and 
postural control abilities while standing. Specifically, in response to 
backward mechanical perturbation, higher cortical beta powers are 
associated with larger perturbations (Ghosn et al., 2020).

Recent EEG work (Ibitoye et al., 2021; Malcolm et al., 2021; Tsai 
et al., 2022) has started to examine age-related changes on the cortical 
control of upright stance, confirming prior evidence suggesting 
(Rubega et  al., 2021) that the cortical neural activities during the 
balance task also changes along with aging and are associated with 
poor postural control and higher fall risk (St George et al., 2021). 
However, while modifications to stance and visual feedback have been 
primarily used in studies examining age-related changes, a wider 
examination of age-related changes due to sensory manipulation and 
mechanical perturbations could provide valuable information about 
aging’s effect on cortical contributions to balance control in more 
complex environments, crucial for linking to changes in fall risk.

Thus, the purpose of this study was to examine (a) the effect of 
aging on the cortical response to sensory manipulation and 
mechanical perturbations while standing and (b) the relationship 
between cortical activation and the underlying postural control. 
We hypothesized that (1) compared to young adults (YA), older adults 
(OA) would demonstrate significantly higher relative beta power at 
postural control-related cortical areas, specifically at Fz, Cz, and Pz; 
and (2) increased relative beta band power would be found as task 
difficulty increased, particularly in OA. Secondarily, we examined the 
association between relative beta power and postural 
control performance.

2. Methods

This study consisted of a single session cross-sectional 
experimental design. Community-dwelling adults with the following 
inclusion criteria were recruited (1) Right-handed; (2) Young adults 
between 18 to 30 years of age and older adults over 65 years of age. (3) 
Free of chronic or acute neurological conditions, such as Parkinson’s 
disease, Huntington’s disease, stroke, epilepsy, and seizures; and (4) 
Free of severe heart conditions, such as heart attack, heart failure, and 
angina. Exclusion criteria included: (1) Cognitive impairment, as 
defined by a Modified Telephone Interview for Cognitive Status 
(TICS-M) questionnaire score lower than 18 (Cook et al., 2009); (2) 
Physical disability or inability to walk independently without an 
assistive device; and (3) Severe chronic pain that limits physical 
function. Once in the study, all participants read and signed a written 
informed consent form. The protocol and procedures have been 
reviewed and approved by the Institutional Review Board of the 
University of Illinois Urbana Champaign.

To incorporate sensory and mechanical perturbation and provide 
comparable results to previous studies, the Sensory Organization Test 
(SOT), Motor Control Test (MCT), and Adaptation Test (ADT) were 
used in this study. Participants were asked to stand as still as possible in 
all three tests, while high-density electroencephalography (EEG), and 
center of pressure (COP) data was recorded. SOT, MCT, and ADT are 
clinically used standardized instrumented balance tests performed using 
the SMART EquiTest-Clinical Research System (SECRS, Neurocom, a 
division of Natus). The SOT is designed to assess a patient’s use of 
sensory systems that contribute to balance and identify any abnormalities 
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in the systems (Mcguirk, 2005). The six conditions of the SOT manipulate 
or eliminate information normally delivered to the patient’s eye, head, 
feet, and joints. Specifically, there are three trials per condition and 20 s 
per trial in the SOT. The SOT measures an individual’s ability to suppress 
the misleading information from the conflicting senses and use the 
remaining sensory input to maintain an upright stance (Honaker and 
Criter, 2013). Thus, in this study, the SOT introduces visual and 
somatosensory perturbations using sway-referenced mechanical ankle 
rotations, as part of the different sensory and minor mechanical 
perturbations presented to participants. To provide higher levels and two 
different types of mechanical perturbation, the MCT and ADT were 
conducted after the SOT. The MCT contains six conditions, including 
three forward and three backward translations graded in magnitude 
[small (2.8 degrees/s), medium (6.0 degrees/s), and large (8.0 degrees/s)], 
which were scaled to subject’s height, with three trials of each condition 
and 2.5 s per trial (Jacobs and Horak, 2007; NeuroCom International, 
2008). The ADT consists of two different conditions (toes-up, toes-down 
with an 8-degree platform rotation at a rate of 20 degrees/s) with five 
trials of each condition and 2.5 s per trial. In each trial, a sudden and 
randomly timed movement (8 degree over 400 ms) of the platform about 
the ankle in the toes-up (dorsiflexion) and toes-down (plantar flexion) 
planes elicit an automatic balance response (NeuroCom International, 
2008) to participants. The MCT contains six conditions, including three 
forward and three backward translations graded in magnitude [small 
(2.8 degrees/s), medium (6.0 degrees/s), and large (8.0 degrees/s)], which 
were scaled to each subject’s height, with three trials of each condition 
and 2.5 s per trial (Jacobs and Horak, 2007; NeuroCom International, 
2008). Furthermore, baseline functional balance, cognitive, and 
psychological function was evaluated to help control for potential 
covariates in cortical activation and postural control. Functional balance 
was evaluated by the MiniBESTest battery. The repeatable battery for the 
assessment of neuropsychological status (RBANS) was also used to 
identify and characterizing abnormal cognitive decline (Randolph et al., 
1998) of the participants. Lastly, the fall risk of the participants was 
assessed by the Falls Efficacy Scale-International (FES-I; Delbaere 
et al., 2010).

2.1. Cortical activation assessment

High-density EEG data from a 64-channel active system 
(ActiCHamp system, Brain Vision LLC, Morrisville, NC USA) were 
recorded at 1 kHz, using the average of the left and right mastoids as 
reference. EEG sensor placement was based on the international 
10–10 system. All three tests were recorded as one continuous EEG 
recording. Raw EEG data were imported into EEGLAB (version 
2020.0) using MATLAB (The MathWorks, Natick, MA, USA) for 
pre-processing. Pre-processed data were then labeled based on the 
start and end markers of each trial under each condition in each test, 
and epoch to eliminate preparation and resting time in between each 
trial. Thus, 20s epochs from SOT paradigms and 2.5 s epochs from 
MCT and ADT paradigms were used for followed EEG analysis. As 
supported by previous literature regarding the aging effect on cortical 
control of postural, the main outcome measurement of the EEG data 
was relative beta (13–30 Hz) power (% Power) at Fz, Cz, and Pz 
(Adkin et al., 2006; Jacobs et al., 2008; Mochizuki et al., 2009; Tse et al., 
2013; Smith et  al., 2014; Chang et  al., 2016; Ghosn et  al., 2020). 
Equation 1 was used to calculate relative beta power for each 

participant in each unique condition. In which, power was computed 
by ‘bandpower’ function in MATLAB. This function computes the 
average power in the input signal vector based on the selected 
frequency range. The total power was calculated to ½ sampling rate to 
provide reliable results. Thus, the total power was calculated with a 
range of 0 to 500 Hz, while band of interest is 13-30 Hz for the beta 
wave. Relative beta power was calculated at the electrode level; thus, 
the results were specific to electrodes and bands of interest.

	

Relative power of band of interest
absolute power of the b

     
    

=
aand of interest

total power of the condition
  

    �
(1)

Before calculating Relative beta power, a grand average calculation 
was performed on each unique condition, thus eliminating the trial 
effect. Additionally, an interclass correlation coefficient (ICC) analysis 
were used to determine the trial effect use the epoch data before grand 
average. Each condition’s clean EEG data was re-referenced to a 
subject level baseline average voltage; therefore, the results describe 
the changes relevant to a baseline condition (eyes open standing).

2.2. Postural control assessment

COP data were collected through the SERCS. The primary 
outcome measure from the COP data in SOT is Equilibrium Score. 
Equilibrium score reflecting the overall coordination under each SOT 
condition and calculated by comparing the angular differences 
between the patient’s estimated maximum and minimum sagittal 
plane body sway to a theoretical maximum displacement (12.5 degree) 
and provided a score between 100 (no body sway) to 0 (fall; Honaker 
and Criter, 2013). The major outcome measure in MCT is the time 
elapsed (Latency) which SECRS directly reports. Latency is defined as 
the time in milliseconds between the onset of a translation and the 
onset of the patient’s active force response to the induced sway. 
Specifically, latency detection is based on differentiation of force plate 
data from each foot. The resulting velocities are analyzed with four 
separate algorithms, each of which produces a latency estimate. 
Latency estimates that differ by 10 milliseconds or less are taken as 
identical. The longest latency estimate is then considered the latency. 
The number of algorithms that find the same latency is the “quality 
factor,” or degree of consistency. A quality factor of 4 indicates all four 
algorithms agree. When no two algorithms agree, a quality factor of 1 
is assigned, and the longest latency estimate is used. If none of the 
algorithms detect a onset of response, no latency can be identified, and 
a quality of 0 appears on the display/printout. Essentially, this 
determines how long it takes to go from the onset of the perturbation 
to the onset of the center of gravity balance correction response to 
maintain upright stance, with shorter latency corresponding to a faster 
reaction to the perturbation (NeuroCom International, 2008; Shepard 
and Janky, 2008). The primary outcome measure from the COP data 
in ADT is the sway energy score (range 0 to 300) directly reported by 
SECRS. This score was calculated based on COP position in the 
anterior–posterior direction during each perturbation condition 
(Vanicek et al., 2013) using the following formula:

Sway Energy = C1* PY′(RMS) + C2* PY′′ (RMS).
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Where PY′ denote velocity and PY′′ denote acceleration, C1 and 
C2 are weighting constants used to give dimensionless energy values:

C
in

1
1

=
/ sec

 and C2 0 025

2
=
.

sec

A higher sway energy score corresponds to a higher force required 
to overcome the postural instability (Trueblood et al., 2018).

2.3. Statistical analysis

All the statistical analyses were performed using R (R 4.0.3, 
Rstudio 1.2.1335). There were four sets of statistical analyses that were 
performed to answer the research questions. The independent t-test 
was used to test for cohort demographic differences. The ICC analysis 
was used to assess the trial effect in each test paradigm. For primary 
outcome measurements, linear mixed effect models (LMMs) were 
used to identify the cohort differences for cortical activities and 
postural control performance. Specifically, LMMs of relative power of 
beta band at Fz, Cz, and Pz were used to test the hypotheses of aging 
effect and age-task interaction effects on relative power during SOT, 
MCT, and ADT. LMMs were also constructed on COP equilibrium 
score, COP average latency score, and COP sway energy to identify 
the aging effect on postural control from the biomechanical aspect. 
When significant interaction effects were found, Least Square Means 
(LSM) posthoc comparisons were performed, and a p < 0.05 was 
considered statistically significant. Moreover, Spearman correlations 
were used to investigate the relationship between relative beta power 
and COP indices in each test, and between relative beta power in each 
test and miniBest score. The correlation strength was evaluated based 
on Evans’s method (Evans, 1996). Thus, the relative beta power was 
averaged on test conditions level and on subject level accordingly. 
Additional details of LMMs are described in 
Supplementary materials Section 1.2.

3. Results

3.1. Descriptive characteristics

Overall, the two participant groups were not significantly different 
in cognitive function, gender, and self-reported fall risks (Table 1). In 
comparison to the young adult (YA) group, the older adult (OA) group 
was significantly older and had lower functional balance, as 
demonstrated by lower miniBest scores.

3.2. Postural control performance

3.2.1. SOT equilibrium score
To achieve residual normality in LMMs, the SOT equilibrium 

score (Eq) went through outlier removal and log transformation of the 
data. As the raw data was negatively skewed, the transformed data 
negatively correlates with the original score. A significant condition 
effect (p < 0.01) was found. Specifically, in comparison to the eyes open 
condition (estimate: 1.48, standard error: 0.16), eyes closed condition 
(b = 0.53, p < 0.01), eyes open sway surrounding condition (b = 0.77, 
p < 0.01), eyes open sway platform condition (b = 1.44, p < 0.01), eyes 

closed sway platform condition (b = 2.02, p < 0.01), eyes open sway 
surrounding and platform condition (b = 2.03, p < 0.01) all 
demonstrated higher log transformed equilibrium score, 
corresponding to higher postural sway. There were no statistically 
significant age or age condition interaction effects on equilibrium score.

3.2.2. MCT average latency
To achieve model residual normality, average latency went 

through outlier removal and square-root data transformation. As the 
raw data was positively skewed, transformed data is in a positive 
relationship with original data. Significant condition (p < 0.01) and age 
effects (p < 0.01) were found for the average latency, but no 
age × condition interaction effect was found. For age effects, compared 
to YA (estimate: 11.85, standard error: 0.15), OA demonstrated 
significantly higher average latencies (b = 0.73, p < 0.01). For the 
condition effect, compared to small forward perturbations (estimate: 
12.59, standard error: 0.15), forward large perturbations (b = −0.42, 
p < 0.05), backward median perturbations (b = −0.50, p < 0.01), and 
backward large perturbations (b = −0.94, p < 0.01) demonstrated 
statistically significant shorter average latencies.

3.2.3. ADT sway energy
Sway energy score went through outlier removal and achieved 

model residual normality. Linear mixed effect models indicated 
significant condition (p < 0.01) and age effects (p < 0.01) on sway 
energy scores. For age effects, compared to young adults (estimate: 
56.52, standard error: 4.04), older adults demonstrated higher sway 
energy scores (b = 17.34, p < 0.01). For condition effect, compared to 
toe down condition (estimate: 56.36, standard error: 4.04), toe up 
condition demonstrated higher sway energy score (b = 17.50, p < 0.01). 
There were no statistically significant age × condition interaction 
effects found in any of the measures.

3.3. Cortical activities in response to 
perturbations

In data pre-processing, an average of 0.20 channels (range 0–1) 
were visually rejected in the YA group and an average of 0.55 channels 

TABLE 1  Participants demographics.

Young adults 
(n = 10) mean 

(standard 
deviation)

Older adults 
(n = 11) mean 

(standard 
deviation)

Age 21.90 (1.91) 72.64 (5.63)*

Sex (F/M) 4/6 5/6

RBANS 97.00 (10.53) 104.64 (9.89)

 � Visuospatial/

Constructional
87.80 (15.54) 80.09 (7.11)

 � Attention 107.70 (15.56) 118.36 (15.76)

FES-I 18.20 (1.75) 19.00 (2.49)

MiniBEST 26.89 (0.93) 24.36 (2.25)*

RBANS, repeatable battery for the assessment of neuropsychological status; FES-I, falls 
efficacy scale-international; *, statistically difference between groups, p < 0.05.
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(range 0–1) were visually rejected in the OA group. For SOT, an 
average of 0.10 trials (range 0–6) were rejected in the YA group and 
an average of 0.18 trials (range 0–6) were rejected in the OA group. 
For MCT, an average of 0.10 trials (range 0–6) were rejected in the YA 
group, and an average of 0.09 trials (range 0–6) were rejected in the 
OA group. For ADT, 0 trials were rejected in the YA group and an 
average of 0.20 trials (range 0–2) were rejected in the OA group.

3.3.1. Cortical activation distribution pattern and 
ICC results

Figure  1 demonstrates EEG topographic maps for beta-band 
absolute power separated based on age groups, tests, and conditions. 
Differences between OA and YA groups can be found in all tests and 
conditions. Specifically, higher activations in beta-band are observed 
in the areas around central and right parietal-occipital regions. To 
access the intertrial reliability of EEG findings, the intraclass 
correlation value on EEG data before grand averages were performed 
in SOT, MCT, and ADT tests was calculated. Specifically, the SOT 
demonstrated a good reliability in all conditions (ICC: 0.875, 95% CI: 
0.851–0.895). However, there was a poor reliability in the ADT (ICC: 
0.423, 95% CI: 0.338–0.514) and MCT (ICC: 0.416, 95% CI: 
0.35–0.481).

3.3.2. SOT relative beta power
Linear mixed effect models suggested significant condition 

(p < 0.01), age (p < 0.05), electrode (p < 0.01), and age condition 
interaction effects (Figures 2A, P < 0.01) on relative beta power. For 
age effect, compared to YA, OA demonstrated higher relative beta 
power (b = 0.09, p < 0.01). For electrode effect, compared to Cz, relative 
beta power was significantly lower at Pz (b = −0.02, p < 0.01). For 
condition effect, compared to the eyes open condition, eye closed 
condition (b = −0.09, p < 0.01), eye open sway platform condition 
(b = −0.03, p < 0.01), eye close sway platform condition (b = −0.10, 
p < 0.01), and eye open sway surrounding and platform condition 
(b = −0.04, p < 0.01) demonstrated statistically significant lower 
relative beta power.

Figure  2A illustrates the age condition interaction effect on 
relative beta power. Young adults increased relative beta power from 
the first condition to the last condition, while older adults decreased 
relative beta power. Moreover, compared to eye open condition, young 
adults (b = 0.048, p < 0.01) and older adults (b = 0.089, p < 0.01) 
demonstrated lower relative beta power in eye close condition. 
Similarly, compared to eye open sway platform condition, young 
adults (b = 0.043, p < 0.05) and older adults (b = 0.061, p < 0.01) 
demonstrated lower relative beta power in eye close sway 
platform condition.

FIGURE 1

Grand average topographical maps of electroencephalography (EEG) absolute power for beta frequency band during (A) sensory organization test, 
time duration 20s, (B) motor control test, time duration 2.5 s, and (C) adaptation test, time duration 2.5 s. The red regions correspond to high 
concentration of maximal (58.5 dB) and blue areas correspond to high concentration of minimal (33 dB). EO, eyes open condition; EC, eyes closed 
condition; EOSS, eyes open sway surrounding condition; EOSP eyes open sway platform condition; ECSP, eyes closed sway platform condition; 
EOSSP, eyes open sway surrounding and platform condition.
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3.3.3. MCT relative beta power
Linear mixed effect models suggested significant condition 

(p < 0.01) and age electrode interaction effects (Figures 2B, P < 0.05) 
on relative beta power. Specifically, compared to the forward median 
amplitude condition, the backward median amplitude condition 
demonstrated significantly lower relative beta power (b = −0.040, 
p < 0.01). For the age electrode interaction, older adults demonstrated 
statistically significantly higher relative beta power at Cz compared to 
young adults (b = 0.081, p < 0.05, Figure 2B).

3.3.4. ADT relative beta power
Linear mixed effect models suggested a significant condition effect 

(p < 0.01) on relative beta power. Specifically, compared to the toe up 
condition, the toe down condition demonstrated significantly higher 
relative beta power (b = 0.03, p < 0.01).

3.4. Correlation between cortical activation 
and postural control

For relative beta power, only a very weak negative correlation was 
found in overall level at Pz ( ρ = −0 160. , p < 0.10). The age subgroup 
analysis revealed no correlation in OA, but a significant moderate 
negative correlation in YA at Pz ( ρ = −0 436. , p < 0.001). Moreover, 
the age and condition subgroup analysis at Pz suggested that in the 
eyes open and eyes open sway surrounding conditions, higher relative 
beta power was strongly correlated with lower equilibrium scores in 
YA (EO: ρ = −0 81. , p < 0.01; EOSS: ρ = −0 69. , p < 0.05). No other 
statistically significant correlation was identified in subgroup analysis.

Significant correlations were found between relative beta power 
and average latency score at Fz ( ρ = 0 214. , p < 0.05) and Cz 
( ρ = 0 300. , p < 0.01) during MCT paradigms. Moreover, subgroup 
analysis found positive correlations between relative beta power and 
average latency score in OA at Fz ( ρ = 0 299. , p < 0.05) and Cz 

( ρ = 0 315. , p < 0.05), but not in YA. Moreover, the age and condition 
subgroup analysis at Cz suggested that in the forward small 
perturbation (FS) condition, higher relative beta power was strongly 
correlated with higher average latency in OA ( ρ = 0 7. , p < 0.05). No 
statistically significant relationship was detected between relative beta 
power and sway energy during ADT paradigms.

4. Discussion

This study investigated the effects of aging on cortical activities in 
response to sensory manipulation and different types of mechanical 
perturbation while standing and their relationships with condition-
specific postural control performance and function balance ability. 
Our main findings were that: (1) under sensory manipulation, OA 
demonstrate significantly higher beta power at all postural control-
related cortical areas; (2) under rapid mechanical perturbation, OA 
demonstrate significantly higher relative beta power at central areas; 
(3) As task difficulty increased, YA increased relative beta power while 
OA demonstrated decreased relative beta power; (4) during sensory 
manipulation with mild mechanical perturbations, specifically in the 
easier eyes open conditions, higher relative beta power at the parietal 
area in YA was associated with worse postural control performance; 
and (5) under rapid mechanical perturbation, specifically in novel 
conditions, higher relative beta power at the central area in OA are 
associated with longer movement latency. However, poor reliability 
measures of cortical activity assessments were found during MCT and 
ADT, which limits the ability to interpret the reported results.

Confirming our first hypothesis, older adults displayed 
significantly higher relative beta power at postural control-related 
cortical areas, relative to younger adults. These observations were 
consistent with the literature, where higher cortical engagement has 
been found in older adults under challenging postural conditions 
(Seidler et  al., 2010). Moreover, our results suggest that the 

FIGURE 2

(A) Age × condition interaction in SOT. (B) Age × electrode interaction in MCT. Beta %Power, beta band relative power; EO, eyes open condition; EC, eyes 
closed condition; EOSS, eyes open sway surrounding condition; EOSP eyes open sway platform condition; ECSP, eyes closed sway platform condition; 
EOSSP, eyes open sway surrounding and platform condition. OA, older adults; YA, young adults. *p < 0.05.**p < 0.01.
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compensatory cortical activity seen in older adults is task specific, 
meaning that aging influences cortical oscillatory activity differently 
depending on the type of postural perturbation. Our results further 
support the compensation theory in aging functional brain 
recruitment patterns (Seidler et  al., 2010). Compensation theory 
suggests that older adults require additional brain activity to perform 
the task at the same level as young adults, as was observed in the 
SOT paradigms.

Confirming our second hypothesis, there were significant age by 
condition interaction effects in relative beta power in the sensory 
organization test. As task difficulty increased, greater beta band 
relative power was found in young adults, consistent with prior work 
(Ghosn et al., 2020). However, decreased beta band relative power was 
found in older adults as task difficulty increased. This finding is 
consistent with recent work in older adults, which found increased 
beta desynchronization as balance demands increase (Malcolm et al., 
2021). Combined with the significantly higher general relative beta 
power in older adults, it is very likely that older adults already had 
reached a limit in cortical activity with eyes open and may have been 
unable to further increase beta activity as balance demands increased. 
Alternatively, the decrease in beta activity in older adults may 
be  associated with beta desynchronization and use of voluntary-
controlled movement strategies (Seeber et al., 2014) to overcome the 
postural control challenge brought about increased task difficulties, 
rather than the use of automatic postural responses to the sensory 
perturbations in young adults.

Consistent with prior work (Ghosn et al., 2020), higher relative 
beta power was correlated with worse postural control performance 
under sensory manipulation and rapid mechanical perturbations. 
Further, postural control-EEG connectivity has been found to result 
in positive beta oscillatory networks in older adults, such that 
increased beta network connectivity has been found with increased 
sway (Ibitoye et al., 2021). As beta power is sensitive to both sensory 
and mechanical perturbations and aging, cortical beta activity may 
be  a good electrophysiological marker to assess and predict the 
postural control ability of an individual in the context of aging.

The present study has several limitations. First, the primary 
outcome measurement was focused on power spectral density, which 
was calculated on the time windows of each trial of each test condition. 
Due to this limitation, in mechanical perturbation tests, which include 
a clear perturbation onset, we cannot investigate the corresponding 
changes before and after the perturbation onset. Analysis focus on 
before and after perturbation is needed to investigate whether the 
changes of beta power is related to anxiety, fear and lack of confidence 
about the balance task. Second, this project was focused on using well-
established clinical instrumented balance tests MCT and ADT to 
introduce mechanical perturbations, which has limited repeated trials 
and demonstrated poor reliability in EEG results. Future studies 
investigating cortical control of balance specific to mechanical 
perturbation should include larger repeated trials to improve intra-
trial reliability. Third, in EEG preprocessing, we implemented a grand 
average to minimize the trial effect, resulting in limited data points in 
correlation analysis, which led to a lower correlation coefficient and 
non-significant relationship in subgroup analysis. Thus, future work 
should examine a larger sample size to make more generalizable 
conclusions regarding the relationship between cortical activities and 
postural control and balance performance. The current study focused 
on cortical activities and postural control performance, which 

indicates the shift from an automatic postural response towards a more 
cortically engaged strategy due to aging. However, evidence from the 
peripheral motor system, such as muscle activation patterns, is needed 
to further explain and confirm these observations. Thus, future work 
should incorporate electromyography and cortical-muscular 
coherence to connect cortical activities and movement executions.
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Parkinson’s disease (PD) is a neurodegenerative disorder that affects >1% of

individuals worldwide and is manifested by motor symptoms such as tremor,

rigidity, and bradykinesia, as well as non-motor symptoms such as cognitive

impairment and depression. Non-pharmacological interventions such as dance

therapy are becoming increasingly popular as complementary therapies for PD,

in addition to pharmacological treatments that are currently widely available.

Dance as a sensorimotor activity stimulates multiple layers of the neural system,

including those involved in motor planning and execution, sensory integration,

and cognitive processing. Dance interventions in healthy older people have been

associated with increased activation of the prefrontal cortex, as well as enhanced

functional connectivity between the basal ganglia, cerebellum, and prefrontal

cortex. Overall, the evidence suggests that dance interventions can induce

neuroplastic changes in healthy older participants, leading to improvements in

both motor and cognitive functions. Dance interventions involving patients with

PD show better quality of life and improved mobility, whereas the literature on

dance-induced neuroplasticity in PD is sparse. Nevertheless, this review argues

that similar neuroplastic mechanisms may be at work in patients with PD, provides

insight into the potential mechanisms underlying dance efficacy, and highlights

the potential of dance therapy as a non-pharmacological intervention in PD.

Further research is warranted to determine the optimal dance style, intensity, and

duration for maximum therapeutic benefit and to determine the long-term effects

of dance intervention on PD progression.
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dance, neurodegeneration, tremor, rhythm, sensorimotor integration
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Highlights

- Dance interventions are a multi-task practice.
- In healthy older adults dancing induces both neuroplasticity

and motor changes.
- Patients with Parkinson’s disease would experience multiple

benefits with regular dance-instructed interventions.
- Optimal dance style, intensity, and duration for maximum

therapeutic effect depend on the participants.
- It is suggested to involve certified dance instructors during

interventions with patients.

Introduction

Parkinson’s disease (PD) is a neurological disorder caused
by programmed cell death of dopamine-producing neurons
in the basal ganglia, leading to progressive deterioration of
motor symptoms. PD affects 1% of people over 60 years
of age and 3% of people over 80 years of age (Balestrino
and Schapira, 2020). Tremor, bradykinesia, rigidity, postural
instability, impaired balance and coordination disorders are
the most common motor symptoms (Moustafa et al., 2016;
Müller et al., 2019; Balestrino and Schapira, 2020). In addition,
cognitive impairment, psychological problems, fatigue, and pain
are the representatives of non-motor symptoms. These PD
symptoms affect quality of life, especially when the disease
progresses over time and symptoms accumulate, making even
activities of daily living increasingly difficult, leading to reduced
independence and withdrawal from social life (Soh et al.,
2013).

Although the main cause of PD is the decrease of 60–70% of
dopaminergic cells in the substantia nigra, this neurodegeneration
is associated with multiple brain changes, such as atrophy of
cortical gray matter in frontal, temporal, occipital, and limbal
regions (Pagonabarraga et al., 2013; Rektorova et al., 2014;
Chen et al., 2016), as well as changes in functional connectivity
in cortical-striatal pathways (Tessitore et al., 2019). The most
frequent finding in PD showed reduced connectivity in the
posterior putamen (Tessitore et al., 2019), and reduced connectivity
within the basal ganglia network (Szewczyk-Krolikowski et al.,
2014; Rolinski et al., 2015). At the cortical level, decreased
resting-state functional connectivity has been found in the
supplementary motor area (SMA) (Wu et al., 2011; Esposito
et al., 2013; Agosta et al., 2014), while increased functional
connectivity in the premotor cortex (PMC) has been described as
a compensatory mechanism (Wu et al., 2011) to preserve global
motor functions. Furthermore, significantly reduced expression of
neurotrophic factors such as Glia-Derived-Neurotrophic Factor
(GDNF) and Brain-Derived-Neurotrophic-Factor (BDNF) in
substantia nigra has been reported (Chauhan et al., 2001),
leading to loss of dopamine transporter binding (Fisher et al.,
2013).

Activity-dependent neuroplasticity could possibly modify
disease progression in neurodegenerative disorders, for example
by restoring basal ganglia homeostasis and synaptic integrity

in PD (McMahon and Chazot, 2020). Previous studies have
shown positive short-term effects of traditional physical therapy
on both motor and non-motor symptoms of patients with PD
(Sharp and Hewitt, 2014; Tomlinson et al., 2014). Short-term
aerobic training was found to elevate the binding potential of
striatal dopamine D2 receptors in individuals with early-stage
PD (Fisher et al., 2013). After 10 days of intensive training a
significant increase in serum levels of BDNF has been observed,
and this change was maintained throughout 4 weeks of training
(Frazzitta et al., 2014). Four weeks of multidisciplinary intensive
rehabilitation treatment decreased symptom progression, with the
decrease attributed to enhanced BDNF tyrosine receptor kinase
B signaling in lymphocytes (Fontanesi et al., 2016). Six weeks of
dynamic balance training resulted in performance improvements
in patients with PD and healthy controls. Healthy controls
exhibited gray matter changes in the left hippocampus, while
in PD patients, performance improvements were correlated with
gray matter changes in the right anterior precuneus, left inferior
parietal cortex, left ventral premotor cortex, bilateral anterior
cingulate cortex, and left middle temporal gyrus. A 3-month
aerobic training program resulted in increases in functional activity
in the hippocampus, striatum and cerebellum in PD patients,
as well as in the striatum in healthy controls (Duchesne et al.,
2016).

However, there is no evidence of long-term benefit or
preference for any specific physical therapy intervention
(Tomlinson et al., 2013; Sharp and Hewitt, 2014). Recent research
and studies have led to physical therapy guidelines recommending
various non-pharmacological physical interventions (e.g.,
Domingos et al., 2018; Grimes et al., 2019; Osborne et al.,
2022). These physical therapy guidelines for patients with PD
recommend improving muscle strength, aerobic capacity, balance,
gait, and functional mobility through the utilization of cueing
techniques and cognitive movement strategies (Mak et al., 2017).

Dancing is consistent with these guidelines and may provide
similar or even better overall health benefits compared with
traditional exercise for patients with PD. Recently, dancing has
gained interest as an intervention for older adults because of
its combination of motor learning and non-motor engagement
(Westheimer, 2008; Kattenstroth et al., 2010; Karpodini et al., 2022;
Wu et al., 2022). Studies have shown that dancing can produce
positive motor and non-motor outcomes, as well as improve quality
of life in both healthy older adults and patients with PD with mild
to moderate symptoms (e.g., McNeely et al., 2015,a,b; Shanahan
et al., 2015, and for more recent reviews see Karpodini et al.,
2022; Wu et al., 2022). In a meta-analysis conducted by Zhang
et al. (2023) comparing 109 studies and 14 types of exercise (e.g.,
dancing, Nordic walking, strength training, tai chi) to assess long-
term changes in motor function in patients with PD, dancing
was found to be the most effective exercise. Dancing showed the
strongest overall improvement in motor function, which can be
attributed to the additional motor learning involved.

However, dance-induced neuroplasticity has been described
to a limited extent in patients with PD. To our knowledge, only
one single case study has been published showing significantly
increased network connectivity between the basal ganglia and
premotor cortices following dance intervention (Batson et al.,
2014). Therefore, the aim of this review is to gather information on
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FIGURE 1

Demands of dancing and impacts of dance-interventions. Indicated are studies that demonstrate the demands or impacts, of which the full citation
can be found in the references. Note that the citations do not exhaustively cover the impacts and demands, and are predominantly covered by the
cited (systematic) reviews, while in the main body of the text detailed claims from specific studies can be found. 1 Allen et al. (2017); 2 Batson et al.
(2014); 3 Burzynska et al. (2017); 4 Duncan and Earhart (2012); 5 Duncan and Earhart (2014); 6 Esposito et al. (2013); 7 Hackney and Earhart (2009c); 8

Ji et al. (2018); 9 Karpodini et al. (2022); 10 Kattenstroth et al. (2010); 11 Li et al. (2015); 12 McKay et al. (2016); 13 McNeely et al. (2015a); 14 McNeely
et al. (2015b); 15 Müller et al. (2017); 16 Niemann et al. (2016); 17 Porat et al. (2016); 18 Rehfeld et al. (2018); 19 Shanahan et al. (2015); 20 Westheimer
(2008); 21 Wu et al. (2022).

the possible mechanism of how dancing can induce neuroplastic
and motor changes in patients with PD and to provide valuable
evidence for prospective studies of dance-intervention.

Effects of dancing on motor and
non-motor symptoms in patients
with PD

Dancing is a promising rehabilitation strategy because its
multisensory nature addresses multiple sensorimotor systems
through whole-body movements in complex environments (Batson
et al., 2014). Dancing is a typical multitasking practice that
engages aerobic capacity, balance and postural control, gait, and
cognitive skills with music and rhythmic cueing (e.g., Earhart, 2009;
Kalyani et al., 2019; Pereira et al., 2019; Figure 1), and fulfills the
requirements of clinical guidelines for physical therapy for patients
with PD.

The parameters of dance vary across different dance styles, and
several systematic reviews have shown that a variety of dance styles
applied separately as an intervention improve functional fitness
in older adults (Hwang and Braun, 2015; Fong Yan et al., 2018;
Liu et al., 2021). Hence dancing interventions might influence
PD symptoms differently. Tango, for instance, is characterized
by firm walking steps and involves quick stops and starts that
could counteract freezing episodes, so participation in tango
interventions could strengthen the brain network for initiating
movements. Ballet offers especially flowing, rhythmic movements
and waltz works on backward walking, sidesteps and turns, whereas

step-dance get the hips to swing which might specifically impact
tremor and non-motor symptoms.

There are already several certified dance programs for PD
(e.g., NeuroTango R©, Dance for PD

R©

, Dance Movement Therapy
R©

)
that have been shown to positively impact motor and cognitive
abilities and quality of life in patients with PD (Hackney and
Earhart, 2009a,b,c; Duncan and Earhart, 2012, 2014; Allen et al.,
2017; Beerenbrock et al., 2020; Krotinger and Loui, 2021).
These programs for PD use different music speeds and have
different overall lesson structure. A short description of these
certified dance programs for PD and the various outcomes,
including significant observations from RCT studies using these
certified dance programs for patients with PD are summarized in
Table 1.

Ten RCTs were identified for Hackney/Eckhart Adapted
Tango. In general, participation in dance interventions with
Adapted Tango improved the quality of life of PD patients,
as evidenced by lower Parkinson’s disease questionnaire (PDQ-
39) scores (e.g., Hackney and Earhart, 2009a,b) and improved
movement disorder society-unified Parkinson’s disease rating scale
I (MDS-UPDRS-I) scores (Duncan and Earhart, 2014). Motor
changes in neuromuscular control of gait (Allen et al., 2017)
and improved balance were observed after only a few weeks
of intervention (Hackney and Earhart, 2009c; McKay et al.,
2016; Allen et al., 2017). Trends of overall improvement were
particularly evident around week 12–13 of the intervention
(Hackney and Earhart, 2009a,b; McKee and Hackney, 2013;
Holmes and Hackney, 2017), while a substantial extension
of the intervention to 48 weeks and beyond resulted in
further improvement in scores at both DMS-UPDRS-II and III
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TABLE 1 Structured dance models for patients with PD.

Dance model
General structure of individual lesson

Intervention
weeks/lessons per week/minutes per
lesson/presence of dance
instructor/partnered dance/study
reference

Outcomes

Adapted Tango according to Hackney/Earhart

60–70 min:
5 min greeting and practice
10 min warm-up
10 min new steps
15 min music/rhythm training
17 min amalgamation and encapsulation
3 min closure

3/5/90/Y/Y
Allen et al., 2017*

48/2/60/Y/Y
Duncan and Earhart, 2012**

96/2/60/Y/Y
Duncan and Earhart, 2014**

48/2/60/Y/Y
Foster et al., 2013**

13/2/60/Y/Y
Hackney and Earhart, 2009a,b**

2/5/90/Y/Y
Hackney and Earhart, 2009c**

12/4/90/Y/Y
Holmes and Hackney, 2017*

5/5/90/Y/Y
McKay et al., 2016*

12/2/90/Y/Y
McKee and Hackney, 2013**

Changes in neuromuscular control of gait and
balance

MDS-UPDRS-III ↑
MDS-UPDRS-II≈
MDS-UPDRS-I≈
MiniBESTest ↑
FOG-Q≈
6MWT ↑

MDS-UPDRS-III ↑
MDS-UPDRS-II ↑
MDS-UPDRS-I ↑
MiniBESTest ↑
6MWT ↑
TUG≈
Walking velocity≈
FOG-Q≈

Participation ↑
Activity retention ↑
New social activities ↑

Mobility ↑
Social support ↑
PDQ-39 ↓

MDS-UPDRS-III ↑
BBS ↑
Walking dual task ↑
TUG≈
6MWT≈

Improved skills for participation in daily activities
and increased QOL

MDS-UPDRS-III ↑
BBS ↑
FAB ↑
DGI ↑
6MWT≈
TUG≈
FOG-Q≈
EMG≈

MDS-UPDRS-III≈↑
FAB ↑
TUG ↑
PDQ-39 ↑
FOG-Q ↑

Dance for PD
R©

60–70 min:
Seated exercises 20–40 min: Warm-up, Rhythmic warm-up;
Storytelling through movement; Geographic sequence.
Barre 10–20 min: Plie and relevé; Rhythmic exercise; Tendu and
alagio.
Center 15–30 min: Rhythmic walking; Partnered dance; Other
dances; Mirroring improvisation; Pass the pulse.

12/2/60/Y/Y
Carapellotti et al., 2022*

12/2/60/Y/Y
Kalyani et al., 2019**

16/2/75/Y/Y
Krotinger and Loui, 2021**

PDQ-39 ↓
TUG ↑
PHQ-9 ↑

PDQ-39 ↓
Cognitive skills ↑
Psychological
symptoms ↓

BAT ↑
Sensorimotor
coupling ↑
UPDRS ↑

(Continued)
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TABLE 1 (Continued)

Dance model
General structure of individual lesson

Intervention
weeks/lessons per week/minutes per
lesson/presence of dance
instructor/partnered dance/study
reference

Outcomes

NeuroTango
R©

60 min:
Welcome; Personal wellbeing assessment; Motivation
Preparatory brain warm-up sitting exercises; Preparatory balance
and coordination standing exercises
Partnered tango dances (10–35 min)
Personal wellbeing assessment; Chill-out

10/1/60/Y/Y
Poier et al., 2019**

10/1/60/Y/Y
Beerenbrock et al., 2020*

PDQ-39≈ ↓
BMLSS ↑

body awareness ↑
motor symptoms
and movement ↑
general feelings ↑
body sensations
and disease-related
feelings ↑

Dance Movement Therapy
15 min check-in
20 min warm-up: sitting/standing
5 min break
30 min process work: activities of physical, social and emotion
conditions; prop work; partner and group work.
5 min break
10 min relaxation
5 min closure

8/2/90/Y/Y
Lihala et al., 2021*

MoCA ↑
PDQ-39 ↓
Better overall cognition and QOL

BAT, beat alignment test; BBS, berg balance scale; BMLSS, brief multidimensional life satisfaction scale; DGI, dynamic gait index; DT-TUG, dual-task timed up and go; EMG, electromyography;
FAB, Fullerton advanced balance scale; FES-I, falls efficacy scale international; FOG-Q, freezing of gait questionnaire; MiniBESTest, mini-balance evaluation systems test; MoCA, Montreal
cognitive assessment; 6MWT, 6-Min walk test; PDQ-39, Parkinson’s disease questionnaire-39; PHQ, patient health questionnaire-9; QOL, quality of life; TUG, timed up and go; UPDRS, Unified
Parkinson’s disease rating scale; Y = yes; ↑ = significant increase; ↓ = significant decrease;≈ unchanged. Note that for the studies indicated by * the outcomes are reported as a difference between
pre and post test results, while for the studies indicated by ** the outcomes are a comparison of test results between intervention and control group.

(Duncan and Earhart, 2014), with walking endurance in particular
improving significantly (6-min walk test, 6MWT, Duncan and
Earhart, 2012, 2014).

Limitations in comparing RCTs for the same dance
intervention model include, first, that individual lessons may
not have been delivered structurally according to Table 1, as
instructions were monitored by different research groups. Second,
the duration of the tabulated interventions varied widely (mainly
for Hackney/Eckhart Adapted Tango), whereas different timing of
interventions was lacking for the other models. Thus, a wide variety
of intervention parameters from insufficiently consecutive RCT
studies prevents the reporting of very detailed efficacy outcomes
for the four types of PD dance intervention models. In addition,
it remains to be determined what style of dance applied at which
intensity and duration, or whether a combination of dance styles
as an intervention would yield the greatest long-term therapeutic
benefit for patients with PD. Nevertheless, dance therapy improves
mobility and quality of life in patients with PD.

Neuronal mechanism of music

Parkinson’s disease is associated with a loss of internal
cueing systems that impairs rhythmic motor tasks and musical
rhythm perception, based on decreased dopaminergic activity in
corticostriatal circuits in patients with PD (Grahn, 2009; Rose
et al., 2020). Furthermore, patients with PD exhibit impaired beat
perception and sensitivity caused by impaired basal ganglia and
motor activity and connectivity (Grahn and Rowe, 2009).

While the music itself plays an important role by itself,
dancing requires matching movement patterns to the timed beat

of the music. More specifically, dancing requires matching the
musical rhythm, and rhythmic auditory cues must be combined
with visual cues to coordinate movement (e.g., Earhart, 2009;
Pereira et al., 2019). Overall, music and dance provide external
auditory and visual cues that lead to deficits in timing and
cues due to basal ganglia impairments in patients with PD
(Krotinger and Loui, 2021). Music contributes to the activation
of areas such as the putamen and releases biochemical mediators
such as endorphins (Lihala et al., 2021), as well as dopamine
(Stegemöller, 2014). One characteristic of music is the groove,
which conveys the way auditory rhythms excite the motor system
and drives sensorimotor coupling (Krotinger and Loui, 2021).
Applied to PD, this suggests that groove may be a factor that can
influence responsiveness to dance interventions due to its effect
on spontaneous motor excitability (Krotinger and Loui, 2021).
Taken together, this modulates the reward and motivation systems
contributing positively to various tasks and behaviors. Hence,
experiencing music (both passively and actively performing) and
music as therapy leads to neuroplastic changes (e.g., Stegemöller,
2014; Chatterjee et al., 2021; Olszewska et al., 2021). Evidence
from healthy adults indicates that musical training impacts gray
matter structure in premotor and supplementary motor areas
(Gaser and Schlaug, 2003; Chaddock-Heyman et al., 2021). People
with musical training also showed superior beat perception (Grahn
and Rowe, 2009). Auditory cues appear to be most effective
in improving gait compared to visual and proprioceptive cues
(Hackney et al., 2015), but it depends on the person’s beat
perception and ability to synchronize movement with music. Thus,
for rehabilitative purposes salience of a beat and familiarity with
music should be considered, because when these are considered,
interventions show promising results in gait, with less variable
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strides, faster stride velocity, and better synchronization (Hackney
et al., 2015). A possible mechanism is given by Zhang et al.
(2023) who mention that rhythmic stimulations during dance
interventions for patients with PD are an external cue that increases
activity in the putamen, which then facilitates movement, and
compensates for the lack of dopaminergic stimulation.

Dancing induced-neuroplasticity

Cortico-basal ganglia loops are essential in dancing because they
control posture, movement, and action selection (Nambu, 2004; Li
et al., 2015). Entrainment of dance steps to music is supported by
the activation of the anterior cerebellar vermis (Brown et al., 2006).
In addition, the right putamen is involved in voluntary control of
metric movements. Spatial navigation is one of the most notable
features in dancing and is associated with activation of the medial
superior parietal lobe in the control of muscle contraction during
spatial navigation of leg movements in dancing (Brown et al., 2006).
This reflects proprioceptive and somatosensory contributions to
spatial cognition/awareness during dancing.

One of the best investigated dance styles in patients with
PD is the Argentine Tango, a partnered dance with leading and
following roles: distinctions in internally-guided (IG = leading)
and externally-guided (EG = following) movements have been
postulated by several authors (Hackney et al., 2015; Drucker
et al., 2019; Kashyap et al., 2021), suggesting that EG movements
rely more heavily on the cerebello-thalamo-cortical circuit (CTC),
whereas IG movements rely more on the striato-pallido-thalamo-
cortical circuit, which is known to be impaired in patients with
PD. IG training focuses on critical aspects of movement such
as longer steps, quicker movements and is thought to achieve
normal speed and amplitude in patients with PD (Hackney et al.,
2015). Improved movement initiation, faster reaction times were
stated for EG, as well as facilitating effects for alleviating freezing
of gait. In partnered Argentine Tango, the leader (IG) self-
initiates direction, timing and amplitude of movements, whereas
the follower (EG) receives proprioceptive, visual, auditory and
tactile cues from the leader (IG) explaining the use of circuits
patterns for both, leader and follower. Behavioral data revealed
improved balance and endurance performances for IG groups
(Kashyap et al., 2021). Patients with PD, who were the follower
(EG), showed improvements in freezing of gait, endurance, spatial
memory and working memory as well as a reduction in depressive
symptoms. Ongoing fMRI analysis showed initial evidence that
neural pathways are affected differently after IG and EG training.
Only the EG group had significant increase in recruitment of CTC
pathway and increased activation in the motor cortex (Kashyap
et al., 2021).

Several intervention studies have attempted to shed light on the
neuroplasticity of dance compared to other sports in healthy older
adults (Ehlers et al., 2017; Müller et al., 2017; Baniqued et al., 2018;
Rehfeld et al., 2018).

Six months of dancing for instance showed an increase in
anterior and medial cingulate cortex (which is associated with
working memory, cognitive control and attention regulation),
in the left supplementary motor area and left precentral gyrus
(preprocessing and executive function within the motor system),
left medial frontal gyrus, left superior temporal gyrus, left insula,

and left postcentral gyrus (which transmits information from
proprioceptive organs such as neuromuscular spindles, joint
and tendon receptors). The most remarkable increase in white
matter was observed in the corpus callosum, which connects
almost all parts of both hemispheres and enables coordinated
movements (Rehfeld et al., 2018). An aged-matched fitness
group exercising strength-endurance, endurance and flexibility for
6 months revealed smaller and less pronounced volume increases,
mainly in the cerebellum (unconscious planning and execution of
movements) and visual areas (Rehfeld et al., 2018). In this study the
level of BDNF increased significantly only in the dance group.

Müller et al. (2017) showed a significant increase in gray matter
volume in the left precentral gyrus (control of voluntary motor
functions) and a significant increase in BDNF levels after six
months of dancing, whereas the fitness group showed no significant
change. A total of 18 months of dancing increased volume in the
parahippocampal region (associated with working memory and
episodic memory retrieval), although the BDNF levels returned
almost to baseline. In the fitness group, however, brain volume and
BDNF levels remained stable during the 18-month training period.

Summary and conclusion

Dance interventions have been shown to be beneficial in
improving quality of life, balance, and mobility in older patients,
including those with PD. These interventions, which involve
multisensory, cognitive-motor demands, have demonstrated
multifaceted effects on older participants, whether healthy or
with neurological disorders. Specific dance styles that focus on
movement initiation, postural control, walking, flexibility, social
interaction, and fun may be necessary to address the predominant
motor symptoms of PD. Dancing for PD is gaining popularity
as a community-based intervention (e.g., Westheimer, 2008),
but the only structured and studied dance intervention is the
Dance for PD

R©

model (Hackney et al., 2007; Heiberger et al., 2011;
McNeely et al., 2015; Westheimer et al., 2015), and more recently
NeuroTango

R©

(Schlafhorst, 2020a,b). While these certified dance
programs have provided evidence for motor and cognitive skills in
patients with PD (Hackney and Earhart, 2009a,b,c; Duncan and
Earhart, 2012, 2014; Allen et al., 2017; Beerenbrock et al., 2020;
Krotinger and Loui, 2021), the underlying neural mechanisms
remain poorly understood.

Dancing places various demands on the sensorimotor system,
and studies in healthy older adults and young adults have
revealed neuroplastic changes associated with dancing (see
Figure 1). Brain areas and circuits involved in movement initiation,
planning, sequencing, and control, such as the premotor cortex,
supplementary motor area, and cortico-striatal circuits including
the basal ganglia (putamen and striatum), have been shown to
benefit from dancing. However, these regions and functions often
exhibit decreased activity and lower connectivity in patients with
PD. Further imaging studies, including prospective investigations,
are needed to elucidate the neural mechanisms of dancing in
PD patients. An imaging study of tango step performance has
highlighted the involvement of the putamen, a region that suffers
from the presence of PD (Brown et al., 2006). However, this is only
one of many avenues that can be pursued to understand the neural
mechanisms of dancing in PD.
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Collaboration between patient groups, care centers, and
certified dance instructors is recommended to develop tailored
dance interventions that can induce neuroplastic changes that lead
to improved quality of life. Structured dance models developed
specifically for this purpose are presented in Table 1. While dance
interventions have demonstrated positive outcomes in cognitive-
motor skills and quality of life in older adults (Hwang and
Braun, 2015; Fong Yan et al., 2018; Liu et al., 2021; Wang
et al., 2022), further research is needed to determine the optimal
parameters, including dance style, duration, and intensity, for
maximum therapeutic benefit. In addition, further studies are
needed to understand the neuroplastic changes induced by dance
interventions in PD patients (Batson et al., 2014; Mak et al.,
2017). As an emerging field, the neuroscience of dance utilizing
Mobile Brain/Body Imaging, can provide valuable insights into
brain plasticity, dynamics, and behavior in more ecologically valid
research settings (Barnstaple et al., 2021).

Overall, dance interventions hold promise for positively
impacting motor skills, quality of life, mood, and neuroplasticity.
However, much remains to be discovered regarding their specific
effects in PD patients, and determining the optimal parameters
will be critical to their therapeutic potential. However, the existing
literature on dance interventions for older adults shows clear
short- and long-term benefits attributable to changes in the brain.
Given the aging population in our society, dance interventions
could be a valuable and socially accepted tool to counteract
cognitive, motor, and social impairments. Further research in this
area, including prospective imaging studies, will contribute to a
better understanding of the effects of dance and its potential as a
therapeutic intervention.
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Objective: The spread of coronavirus disease (COVID-19) has limited the

implementation of face-to-face non-pharmacological treatment for the

prevention of dementia. As a result, online non-pharmacological treatment has

become increasingly important. In this study, we used an online conferencing

system to implement an online version of a physical exercise program with music,

and examined its effect on cognitive function.

Methods: The participants were 114 healthy older adults [63 men and 51 women;

mean age of 70.7 years (standard deviation = 4.6)]. Seventy-five participants were

allocated to the physical exercise with music group (60 min, once a week, total

20 sessions), while the remaining 39 participants were assigned to the control

group, and only underwent the examinations. In the physical exercise with music

group, we performed neuropsychological examinations and brain tests both

before and after the exercise program. Neuropsychological tests included the

Mini-Mental State Examination, Raven’s Colored Progressive Matrices (RCPM), the

Rivermead Behavioral Memory Test, graphic imitation, word fluency (WF) (animal

names and initial sounds), and the Trail Making Test-A/B. As an assessment of

brain function, we developed an online examination of subtle cognitive decline,

including tests of number and word memory, spatial grasp, the N-back task, and

change inference.

Results: In the N-back task, the physical exercise with music group improved

significantly relative to the control group (p = 0.008).

Discussion: The present findings suggest that the online version of the physical

exercise with music program improved working memory, which mainly involves

the frontal lobe.

KEYWORDS

physical exercise,music, COVID-19, dementia, neuropsychological test, workingmemory

Abbreviations: ExM, physical exercise with music; COVID-19, coronavirus disease; Cont, control; LM,
Logical Memory; WF, word fluency; BA, brain assessment; CS, cognitive scores.
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1. Introduction

Dementia affects over 55 million individuals worldwide
(Gauthier et al., 2021), and this prevalence is increasing
such that 78 million may be diagnosed with dementia by
2030 (Gauthier et al., 2021). Although there are two broad
categories of dementia treatments, i.e., pharmacological and
non-pharmacological therapy, there are currently no successful
pharmacological interventions that can cure dementia or halt
its progression (Mecocci and Boccardi, 2021). Therefore, non-
pharmacologic therapies that are believed to be safe with
minimal side effects are actively implemented to treat dementia.
These therapies include cognitive interventions, music therapy,
reminiscence, and physical exercise (Yorozuya et al., 2019; Ito
et al., 2022; Sharew, 2022). Non-pharmacological interventions
can be delivered separately or as part of a multimodal approach.
Multimodal non-pharmacological interventions combine two or
more types of non-pharmacological interventions (Han et al.,
2017), and are typically recommended as the “gold standard” for
treating dementia (Schneider and Yvon, 2013; Livingston et al.,
2020; Sharew, 2022).

In our previous studies, we examined the effects of a non-
pharmacological intervention that combined physical exercise with
music therapy (ExM). We found that both neuropsychological
testing and brain imaging indicated that ExM was effective in
the primary prevention of dementia (Satoh et al., 2014, 2020;
Tabei et al., 2017). The goal in these previous studies was to
use a non-pharmacological ExM intervention to maintain and
improve cognitive function in healthy older people living in
the community. The physical exercise regimen was identical
for the ExM and exercise-only groups. However, music was
played during the exercise routine in the ExM group, while
the exercise-only group only heard a percussive sound that
counted the beat. Both groups performed the exercises for 1 h
per week for 1 year. As a control, a brain test group who
did not complete any special activities was also included. The
results showed that visuospatial cognition and cognitive status
were significantly improved in the ExM group compared with
those in the other two groups (Satoh et al., 2014). Furthermore,
brain magnetic resonance imaging analysis of changes in brain
volume revealed that the brain test group showed progressive
age-related atrophy over the 1-year period, whereas the volume
of the frontal lobes in the ExM and exercise groups was
maintained or increased, with a greater increase in the ExM group
(Tabei et al., 2017). We also examined the effects of a 5-year
ExM intervention on cognitive function in healthy older adults
(Satoh et al., 2020). The results showed that the long-term ExM
intervention enhanced multidimensional cognitive function in the
study sample, and that it was particularly beneficial for improving
psychomotor speed.

The lockdown measures put in place to contain the spread
of coronavirus disease (COVID-19) during 2020 led to severe
limitations in access to healthcare services for individuals with
dementia (Gauthier et al., 2021). These measures also led to a
general reduction in the number of non-pharmacological therapies
implemented during the pandemic. A previous study showed that
low-cost, scalable in-home programs were effective in supporting
the physical health of previously inactive adults during the

COVID-19 pandemic (Beauchamp et al., 2021). To expand upon
this, we developed an online version of an ExM program and
tested its effectiveness in the primary prevention of dementia
among healthy older adults. We conducted neuropsychological
examinations and online cognitive tests to evaluate the effectiveness
of the intervention. We hypothesized that the effects of the
online version of the ExM program would be similar to those of
face-to-face ExM.

2. Materials and methods

2.1. Study participants

We used the internet to recruit participants for our experiment.
The goal of the experiment was to investigate the effect of an online
version of the ExM on cognitive function. We sent a direct email
describing the study goals to approximately 1 million older persons
(≥65 years old) who were members of SAISON Credit Card, which
is the parent company of the Research Institute of Brain Activation
in Japan. The research ethics committee of the Advanced Institute
of Industrial Technology in Japan approved the experimental
protocol, and all participants provided written informed consent
prior to participation. The study was performed according to the
guidelines of the Declaration of Helsinki. The inclusion criteria
were as follows: (a) 65 years of age or older; (b) physically and
mentally healthy; (c) normal vision or vision corrected with glasses,
contact lenses, etc.; (d) ability to hear instructions clearly; (e)
living independently; (f) have access to a personal computer, tablet,
or smartphone with the ability to use the Zoom app1; (g) have
Wi-Fi access at the location where they will be participating; (h)
have an email address and willing to be contacted via email.
Participants were excluded if they met any of the following
exclusion criteria: (a) apparent history of cerebrovascular attack;
(b) presence of chronic disease such as malignancy or infection;
(c) severe cardiac, respiratory, or orthopedic problems that would
prevent participants from exercising; (d) use of medication that
could adversely affect cognition (antidepressants or antipsychotics);
(e) a previous diagnosis of dementia; or (f) attendance rate less
than 75%. The inclusion and exclusion criteria for the control
(Cont) group were identical to the aforementioned requirements.
Participants in the control group were simply required to undergo
neuropsychological and physiological assessments at baseline and
6 months after the start of the study.

Between February 9 and 5 May 2021, 228 respondents
expressed interest in participating in the ExM group, and 136
were interested in participating in the Cont group. In the
ExM group, 88 participants dropped out (did not complete
neuropsychological testing). In the Cont group, 60 participants
dropped out (did not complete neuropsychological testing). During
the second assessment, 7 participants dropped out of the ExM
group, while 37 dropped out of the Cont group (did not
complete neuropsychological testing). We analyzed participants
whose overall attendance rate was above 75%. Consequently, data
from a total of 114 participants were included (Figure 1).

1 https://zoom.us/
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FIGURE 1

Flow chart of ExM and Cont group recruitment. Cont, control group; ExM, physical exercise with music group.

2.2. Exercise intervention

The ExM program was described in detail in our previous
papers (Satoh et al., 2014, 2020; Tabei et al., 2017). The intervention
period spanned over a period of 6 months, and participants were
involved in a total of 20 exercise sessions. The exercise intensity
gradually increased with each session. The exercise program and
musical accompaniment were developed by the Yamaha Music
Foundation approximately 20 years prior via a collaboration
between the Japan Fitness Association and sport medicine experts.
The musical accompaniment is classified as “synthesizer-heavy,
dance-pop music.” The ExM program consists of nine stages and
was implemented by professional trainers. Exercises from the face-
to-face program were implemented directly online. Individuals
participated in the online version of the ExM (60 min, once a
week, 20 times in total). The ExM was delivered to participants
in real-time via Zoom, which is an application developed to
hold seminars and conferences online using devices such as
computers, smartphones, and tablets. Individuals participated
in the ExM program by launching the Zoom software on a
computer, smartphone, or tablet. Using the camera, the instructor
provided appropriate instructions for the exercise. The participants’
microphones were muted during the exercise program to limit
sound disturbances and other problems.

2.3. Neuropsychological assessment

The neuropsychological assessment procedures were as
described previously (Satoh et al., 2014, 2020; Tabei et al., 2017).
The Mini-Mental State Examination (Folstein et al., 1975) and

Raven’s Colored Progressive Matrices (Raven and Court, 1993)
were used to screen cognitive ability and quantify intellectual
function, respectively. Memory was evaluated using the Logical
Memory (LM)-I/-II subtests of the Rivermead Behavioral Memory
Test (Wilson et al., 1985), which includes immediate and delayed
recall of four short stories with different levels of difficulty and
numbers of words. We used different stories for the pre- and
post-testing periods to avoid familiarity with the story content.
Visuospatial constructional ability was evaluated using the method
described by Strub and Black (2000). Five types of figures (vertical
diamond, two-dimensional cross, three-dimensional block, three-
dimensional pipe, and triangle within a triangle) were shown
to the participants, who were asked to draw them one by one.
Each drawing was scored on a scale from 1 to 4 (0: poor, 1: fair,
2: good, and 3: excellent), with a maximum score of 15. Frontal
lobe function was assessed using two tasks: the word fluency (WF)
task and the Trail-Making Test-A/B task (Partington and Leiter,
1949). The WF task had category and letter domains. For the
categorical WF task, participants were asked to name as many
animals as possible in 1 min. For the letter WF task, participants
were asked to say the name of objects that begin with each of the
four phonemes, ka, sa, ta, and te (Dohi et al., 1992). We used the
average scores for the four phonemes for statistical analyses. The
neuropsychological tests described above can be conducted either
in person or online using Zoom (Satoh et al., 2021a). Our group
developed an online brain assessment tool (BA) for evaluating
subtle cognitive decline (Satoh et al., 2021b). In the previous study,
5,000 participants completed the online BA, which consisted of
five subtests: number memory, word memory, mental rotation,
N-back, and judgment tests. Based on the results of our preceding
research (Satoh et al., 2021a), cognitive scores (CS) were calculated
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using the following formula: CS = ([raw score] − [mean of raw
scores])/(standard deviation of raw scores) × 10 + 50. Additional
details are available in our previous paper (Satoh et al., 2021b).
The BA can be completed on the internet within 30 min. These
neuropsychological assessments were administered before and
after the 6-month intervention period among the ExM group.
Cont group participants performed these assessments twice with
an interval of 6 months.

2.4. Statistical analyses

We searched for group differences in the demographic
variables, and assessed post-intervention changes in the
neuropsychological assessment results between the ExM and
Cont groups. The data regarding gender were evaluated using
the chi-square test for dichotomous variables. The data regarding
age, educational history, and cognitive function test scores were
analyzed using the Shapiro–Wilk test. Based on the results, we
performed t-tests for continuous variables and the Mann–Whitney
U test for non-parametric data. Statistical analyses were conducted
using IBM SPSS Statistics software version 27 (IBM Corp.,
Armonk, NY, United States).

3. Results

The participants were 114 healthy older adults (75 in the ExM
and 39 in the Cont group; 63 men and 51 women; mean age
70.4 years). The age and educational history did not significantly
differ between the two groups (Table 1). Although previous studies
have suggested that a longer educational history may reduce the
risk of developing dementia by either increasing the ease of clinical
detection of dementia or imparting prior knowledge that delays the
onset of the clinical symptoms (Stern et al., 1994), we found no
significant differences in the present data. In the N-back task, the
ExM group showed significantly greater improvement compared
with the control group (p = 0.008). The groups did not significantly
differ in terms of the other test measures (Table 2).

4. Discussion

The results indicated that the ExM group showed significantly
higher improvements than the control group in the BA N-back
task. The results suggested that the online version of ExM improved
working memory. In contrast, there was no improvement in
frontal lobe function as measured by the WF task or the Trail-
Making Test-A/B task. Previously, it was assumed that there was
one overarching frontal lobe syndrome, but it is now clear that
several different cognitive and behavioral processes are mediated
by the frontal lobes (Henri-Bhargava et al., 2018). For example, the
dorsolateral prefrontal cortex is responsible for working memory,
goal-directed attention, task switching, planning, problem solving,
and novelty seeking (Jones and Graff-Radford, 2021). The ventral
lateral prefrontal cortex is responsible for inhibition, response
selection, and monitoring, whereas the medial prefrontal cortex is
responsible for self-awareness, motivation, emotion regulation, and
updating goal-directed behavior (Jones and Graff-Radford, 2021).

The orbitofrontal cortex is involved in personality, inhibition, and
emotional and social reasoning (Jones and Graff-Radford, 2021).
The above-mentioned evidence suggests that the BA N-back task,
the WF task, and the Trail-Making Test-A/B task measure different
cognitive and behavioral processes, and that this was reflected in the
improvement we observed in the N-back task but not in the Trail-
Making Test-A/B and WF tasks. In a previous study (Tabei et al.,
2017) in which the ExM was conducted face-to-face, significantly
higher improvements were found for visuospatial processing.
Visuospatial processing has been shown to consistently activate
frontal regions such as the superior and inferior parietal regions
responsible for spatial attention and the dorsolateral prefrontal
cortex and anterior cingulate gyrus involved in working memory
(Cohen et al., 1996; Silk et al., 2006). In a previous study that used
face-to-face ExM (Tabei et al., 2017), the most important of the
multiple brain regions involved in visuospatial processing could not
be identified because the BA N-back task was not performed. Taken
together, the results of this study and the previous study of face-to-
face ExM (Tabei et al., 2017) suggest that physical exercise while
listening to music has a positive effect on working memory.

With regard to memory, a previous study (Tabei et al., 2017)
reported that within-group comparisons showed significant post-
intervention improvements in the LM-I and -II subtests of the
Rivermead Behavioral Memory Test in the ExM group. However,
we only found a significant trend in the LM-II subtest when
using the online version of the ExM. This could be related to the
difference in the intervention period between the studies (1 year
versus 6 months) or the difference between face-to-face and online
interactions. Further research is needed to assess these possibilities.

While the online version of the ExM appears to be an effective
alternative to face-to-face exercise programs in situations like the
COVID-19 pandemic because it can be conducted at home, it may
also be disadvantageous in that individuals do not have to physically
go to the exercise center, resulting in a lack of commitment
regarding participation and higher dropout rates. Individuals may
be more likely to withdraw from the online ExM program because
they have fewer chances for interaction and camaraderie among
participants. Since the effects of ExM are expected to be sustained
over a long period of time (Satoh et al., 2020), interactions and
camaraderie among the participants could increase the sense of
continuity and decrease the dropout rate.

This study had several limitations. First, the intervention period
was 6 months. A previous study with healthy older participants
applied an intervention period of 1 year. Therefore, future studies
with a 1-year intervention using the online ExM are needed.
Second, we did not compare our program with other interventions.
Previous studies have assessed the effects of exercise without music
and included these participants as a comparison group. Therefore,
in the future, the online ExM program should be compared with
other interventions to determine the source of changes in frontal
lobe function. Third, it would be helpful to examine the extent
to which participants in each group had active lifestyles. Last,
access to online interventions is limited for older adults. It is
often difficult for older people to operate a computer or tablet
and thus to participate in neuropsychological testing and ExM.
Although a national study (Sōmushō, 2021) showed that the use of
digital technology is increasing among Japanese older adults, future
studies and programs must implement methods to mitigate this
“digital divide” to facilitate the ease of participation amongst older
individuals.
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TABLE 1 Characteristics of study participants.

ExM Cont P-value

Age (SD), years 70.4 (4.3) 71.3 (4.9) 0.291

N (male: Female) 75 (36.39) 39 (27.12) 0.157

Education (SD) 14.91 (2.3) 15.41 (2.4) 0.370

Cognitive status MMSE Score 28.85 (1.4) 28.80 (1.3) 0.745

RCPM Score 31.88 (3.2) 33.60 (2.0) 0.147

Time 251.00 (46.2) 267.90 (92.8) 0.972

Memory LM-I 11.52 (3.3) 10.30 (4.4) 0.327

LM-II 10.18 (3.0) 9.85 (4.5) 0.778

Visuospatial Necker cube 2.88 (0.3) 3.00 (0.0) 0.250

Copy 14.61 (0.7) 14.40 (0.7) 0.246

Frontal WF Category 17.22 (4.3) 16.40 (2.8) 0.572

Letters 10.21 (2.5) 9.98 (3.3) 0.806

TMT -A 111.72 (33.1) 114.50 (33.7) 0.816

-B 134.97 (40.2) 137.40 (81.2) 0.356

BA Number memory 48.99 (12.8) 49.69 (12.3) 0.778

Word memory 48.44 (12.1) 46.90 (9.6) 0.491

Mental rotation 49.12 (16.1) 49.59 (12.5) 0.874

N-back 51.37 (14.5) 55.56 (14.2) 0.142

Judgment 51.16 (12.5) 47.59 (11.7) 0.143

CS 49.85 (10.4) 49.75 (8.1) 0.959

ExM, physical exercise with music group; Cont, control group; SD, standard deviation; CS, cognitive score; MMSE, Mini-Mental State Examination; RCPM, Raven’s Colored Progressive
Matrices; LM, logical memory; WF, word fluency; TMT, Trail-Making Test; BA, brain assessment. Values in parentheses indicate standard deviation.

TABLE 2 Neuropsychological assessment result before and after intervention.

Pre- and post-intervention differences, mean (± SD)

Test ExM Cont P-value

Cognitive status MMSE Score 0.46 (1.7) 0.30 (0.8) 0.370

RCPM Score 0.90 (2.2) −0.80 (2.5) 0.070

Time −14.37 (45.1) −27.00 (27.5) 0.403

Memory LM-I 1.44 (2.6) 0.75 (3.1) 0.471

LM-II 1.95 (2.8) −0.05 (4.6) 0.080

Visuospatial Necker cube 0.07 (0.4) −0.10 (0.3) 0.216

Copy −0.07 (0.7) −0.10 (1.1) 0.860

Frontal WF Category −2.10 (3.2) −2.10 (3.8) 0.998

Letters 0.40 (2.3) −1.08 (2.0) 0.065

TMT -A 1.94 (22.4) −7.8 (24.7) 0.248

-B 1.91 (40.6) −10.4 (56.5) 0.695

BA Number memory 7.23 (11.1) 7.67 (9.84) 0.835

Word memory 3.24 (10.9) 2.74 (8.4) 0.979

Mental rotation −1.32 (15.8) −1.51 (12.6) 0.947

N-back 7.57 (12.5) 1.21 (10.6) 0.008*

Judgment 5.59 (11.2) 6.08 (12.9) 0.652

CS 4.25 (6.7) 3.15 (5.2) 0.375

Cont, control group; ExM, physical exercise with music group; LM, logical memory of the Rivermead Behavioral Memory Test; MMSE, Mini Mental State Examination; RCPM, Japanese
Raven’s Colored Progressive Matrices; SD, standard deviation; TMT, Trail-Making Test; WF, word fluency; BA, brain assessment; CS, cognitive scores; *p < 0.05.
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5. Conclusion

In conclusion, the significant observed improvement in the
N-back task suggests that the online version of the ExM
improves working memory.
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Prolonged bed rest causes a multitude of deleterious physiological changes in

the human body that require interventions even during immobilization to prevent

or minimize these negative effects. In addition to other interventions such as

physical and nutritional therapy, non-physical interventions such as cognitive

training, motor imagery, and action observation have demonstrated efficacy in

mitigating or improving not only cognitive but also motor outcomes in bedridden

patients. Recent technological advances have opened new opportunities

to implement such non-physical interventions in semi- or fully-immersive

environments to enable the development of bed rest countermeasures. Extended

Reality (XR), which covers augmented reality (AR), mixed reality (MR), and

virtual reality (VR), can enhance the training process by further engaging the

kinesthetic, visual, and auditory senses. XR-based enriched environments offer a

promising research avenue to investigate the effects of multisensory stimulation

on motor rehabilitation and to counteract dysfunctional brain mechanisms

that occur during prolonged bed rest. This review discussed the use of

enriched environment applications in bedridden patients as a promising tool

to improve patient rehabilitation outcomes and suggested their integration into

existing treatment protocols to improve patient care. Finally, the neurobiological

mechanisms associated with the positive cognitive and motor effects of an

enriched environment are highlighted.

KEYWORDS

physical inactivity, bed rest, disuse, mechanical unloading, non-physical interventions,
virtual reality

Introduction

Prolonged bed rest has been identified as a risk factor for physiological deconditioning
since 1947. A seminal study entitled "The Dangers of Going to Bed," (Asher, 1947) called
attention to the risks it posed to older adults and the general population. Recent research
conducted on hospitalized older adults has revealed that these patients spend up to 86%
of their hospital days inactive, even though only a small percentage of cases, 5%, had a
medical indication for bed rest (Jasper et al., 2020). This type of behavior is detrimental to
both the physical and mental health of patients and poses a significant risk for functional
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independence and chronic disability, collectively referred to as
hospital-associated disability (Loyd et al., 2020).

Recent advances in the field of aerospace science and the
development of experimental models of forced bed rest in
healthy subjects provided a better physiological understanding
of immobilization and strategies to counteract immobilization-
induced functional deterioration. Prolonged immobilization can
lead to adverse consequences not only in older adults, but also
in younger individuals, affecting cardiovascular (Hoffmann et al.,
2022), endocrine (Belavy et al., 2012), immune (Hoff et al., 2015),
gastrointestinal (Iovino et al., 2013), vestibular (Dyckman et al.,
2012), and cognitive (Lipnicki et al., 2009) systems. An interesting
phenomena of non-uniform loss of muscle mass and strength
was recently systematically reviewed on 318 subjects exposed
to experimental bed rest (Marusic et al., 2021). After longer
periods of bed rest, such as 35 days, the decline in strength
was found to be two times higher compared to muscle atrophy.
In the early days of bed rest, such as 5 days, even higher
ratios were reported (Marusic et al., 2021). These findings raise
new questions about the underlying mechanisms responsible for
the disproportionate decline in strength compared with muscle
atrophy. They also highlight the importance of early interventions
to prevent or minimize the adverse effects of prolonged bed
rest.

Body posture and prolonged bed rest also directly affect the
brain, which was mainly studied with electroencephalography
(EEG) and functional magnetic resonance imaging (fMRI). One
of the first reviews to examine EEG dynamics under bed
rest conditions reported changes in the theta and alpha bands
suggestive of cortical inhibition, and highlighted the need for
further evidence in this area (Marušič et al., 2014). More
specifically, the 6◦ head-down tilt position (HDTP) during the
bed rest reduced the resting-state spectral power within the
delta, theta, alpha, and beta frequency bands (Brauns et al.,
2021b). Lower activity in alpha and beta frequency bands was
also observed in several sources within the centroparietal and
occipital regions. These effects occurred shortly after posture
establishment, remained stable during 60 days of bed rest, and
returned to baseline upon the end of the bed rest (Brauns
et al., 2021b). In addition to posture-specific changes in brain
activity, functional brain changes, such as decreased amplitudes
of P300 and late positive potential (LPP) of the event-related
potentials (ERPs) indicated that 30-day bed rest adversely affected
affective picture processing suggesting that physical inactivity
might play a role in emotion regulation. These effects were
localized in the insula, precuneus, and cingulate gyrus (Brauns
et al., 2019). Furthermore, the investigation into electrocortical
correlates of selective attention showed that a 60-day bed rest
negatively affected task performance and ERP potentials in fronto-
central and parietal brain regions. Importantly, these data did not
return to their baseline values after an eight-day recovery period
(Brauns et al., 2021a). A preliminary data on eight bedridden
healthy older adults showed increased P100 and P200 amplitudes
and decreased P100 latencies after being exposed to 14 days of
horizontal bed rest (Marušiè et al., 2021). Finally, Friedl-Werner
et al. (2020) used fMRI to show impaired memory formation
and associated dysfunctional mechanisms in the hippocampus and
parahippocampus after 60 days of continuous bed rest. Taken
together, these studies suggest that immobilization and inactivity

resulting from prolonged bed rest induce functional brain changes
and cognitive impairments, the recovery of which may be longer
than the cessation of bed rest. To counteract the formation
of dysfunctional brain mechanisms and cognitive impairment,
appropriate intervention strategies must be implemented during
bed rest as part of a comprehensive recovery strategy. The
recovery process following prolonged bed rest deconditioning
is a complex and multifactorial process influenced by several
factors, including the duration of bed rest, age, overall health
status, and the degree of deconditioning. In older adults,
the detrimental effects of skeletal muscle deconditioning are
particularly pronounced and may even lead to catabolic changes
in muscle tissue that favor the development of sarcopenia, as
shown in a recent meta-analysis (Di Girolamo et al., 2021).
In addition to various countermeasures developed to alleviate
the deleterious effects of prolonged immobilization, such as
centrifugation (Kramer et al., 2020), nutritional support (Gao
and Chilibeck, 2020), and aerobic interventions (Holt et al.,
2016), non-physical rehabilitation interventions (Marusic and
Grosprêtre, 2018) administered during immobilization resulted
in significant improvements in cognitive (Marusic et al., 2018,
2019) as well as physical function (Marusic et al., 2015;
Paravlic et al., 2018). Non-physical rehabilitation encompasses
interventions that focus on cognitive and/or sensory stimulation
to improve cognitive and physical function rather than physical
exercise or movement. Interventions aimed at enhancing sensory
stimulation include multiple modalities, including visual, auditory,
and tactile stimulation, with the goal of promoting an engaging
and interactive experience for the individual. Virtual reality
(VR) as a form of enriched environment holds the potential
of a breakthrough technology for non-physical rehabilitation by
providing multisensory information and more realistic simulations
to improve patient rehabilitation outcomes. This paper reviewed
current non-physical rehabilitation practices, assessed the potential
impact of integrating VR systems in enhancing the recovery
process, and finally highlighted the implicated neurobiological
mechanisms associated with beneficial cognitive, and motor effects
of enriched environment exposure. The report provided a synthesis
of existing empirical evidence and suggested future avenues for
investigation in this field.

Non-physical rehabilitation
techniques

The frailty commonly experienced by bedridden patients
poses a challenge to the implementation of conventional physical
rehabilitation therapies in the early stages of hospitalization. The
resulting deprivation of sensory input, including somatosensory
and proprioceptive information, along with bed confinement,
leads to rapid alterations in the organization of the sensorimotor
system (Langer et al., 2012). These alterations revealed to have
detrimental effects on postural balance and mobility (Koppelmans
et al., 2017), movement duration and accuracy (Bassolino et al.,
2012), tactile acuity (Lissek et al., 2009), and muscle properties
(Clark et al., 2006). The decline in motor performance is attributed
to the lack of feedback and feedforward mechanisms of motor
control, which affects postural predictions and real-time movement
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adjustments (Scotto et al., 2020). To counteract immobilization-
induced functional decline, non-physical rehabilitation methods
such as cognitive interventions (CI), motor imagery (MI), action
observation (AO), and their combination, provide a valuable
compensatory strategy (Marusic and Grosprêtre, 2018). These types
of interventions can create an enriched environment in which
certain cognitive functions can be trained (Marusic and Grosprêtre,
2018) or even a neural resemblance to actual voluntary movement
can be established (Fox et al., 2016; Grosprêtre et al., 2016).

The field of CI encompasses various approaches, such as
cognitive stimulation, cognitive rehabilitation, and cognitive
training, as described by Marusic and Grosprêtre (2018). Briefly,
cognitive stimulation involves social and group cognitive activities,
including discussions and therapeutic conversations, with the
goal of improving social and cognitive functioning. Cognitive
rehabilitation uses personalized programs to improve activities
of daily living, with healthcare providers, patients, and families
working together to achieve goals primarily by improving cognitive
function. Cognitive training consists of personalized, guided
exercises tailored to individual abilities to improve cognitive
function and can be delivered in paper-pencil or computerized
versions (Marusic and Grosprêtre, 2018). As for the effects of bed
rest on cognitive function, the results are still controversial; some
studies indicated a positive (facilitating) effect, while others showed
the opposite (Lipnicki and Gunga, 2009). Although there is limited
literature on cognitive interventions during bed rest (Marusic et al.,
2019), it is reasonable to assume that cognition (such as working
memory, selective attention, inhibition, and cognitive flexibility)
forms the basis of any non-physical intervention.

MI in which movements are mentally rehearsed through a
kinesthetic experience or a visual representation with an internal
or external perspective (Decety, 1996) elicits intracortical and
corticospinal modulations that attenuate the deleterious effects of
immobilization (Rannaud Monany et al., 2022). The kinesthetic
experience, i.e., imagining the sensation experienced during the
action, showed to be more efficient in motor learning (Fontani
et al., 2014), in gaining (Yao et al., 2013), and in maintaining muscle
strength (Paravlic et al., 2018), thus being generally more successful
in activating sensorimotor representations (Meugnot et al., 2015;
Oldrati et al., 2021). At the neurological level, the use of kinesthetic
imagery resulted in greater similarity of activated brain networks to
actual motor execution compared to visual methods (Yang et al.,
2021). The results may be attributed to the insufficient sensory
information in visual MI, which negatively affects the individual’s
ability to form a vivid and detailed representation of the movement.
Studies employing a combination of AO and MI showed increased
effectiveness in motor learning and rehabilitation outcomes,
supporting to our hypothesis and demonstrating superiority over
the use of each method individually (Eaves et al., 2016; Marusic
and Grosprêtre, 2018). In this combined approach, the internally
generated kinesthetic representations of an action are synchronized
with the concurrent perception of the movement, augmenting
the sensory experience of individuals through the integration of
visual and auditory inputs, thereby enhancing the vividness of
the MI task and leading to an increased sense of embodiment
(Meers et al., 2020). With this in mind, the integration of enriched
environments such as VR, which create the illusion of physical
movement, has the potential to enhance the activation of motor-
related brain regions. As a result, specific neural circuits are further

activated, facilitating the desired neuroplastic adaptations (Slater,
2017).

Enriched environments: a
multisensory approach for
enhanced rehabilitation

In everyday life, people are typically exposed to variety
of multimodal experiences, from the sounds of nature to the
sights of the surrounding environment. However, in a hospital
setting, these experiences are often limited, leading to a more
restricted sensory experience. In addition, patients’ attention may
be disproportionately focused on their struggles, which may impair
their ability to participate effectively in the rehabilitation process.

Despite the effectiveness of MI and AO in mitigating the loss
of various physiological factors and facilitating motor recovery
in bedridden patients, the implementation of these practices is
generally limited to highly controlled and structured rehabilitation
environments with limited variability and complexity compared
with the unpredictable and dynamic nature of daily living.
Failure to consider the impact of broader contextual factors,
such as emotional and environmental influences, on real-world
performance will limit the rehabilitation experience and may
compromise the overall effectiveness of rehabilitation outcomes.
XR-based environmental enrichment systems, in contrast, allow
for the implementation of realistic scenarios engaging the patient’s
sensorimotor system (Brugada-Ramentol et al., 2022) due to the
enhanced simulation of the kinesthetic, visual, and auditory senses.
Moreover, the three-dimensionality (3D) of VR showed to elicit
stronger fronto-parietal activations compared to AO and its two-
dimensional (2D) representations (Jastorff et al., 2016).

Recent systematic reviews and meta-analyses have
demonstrated the efficacy of VR in the rehabilitation of various
conditions, including stroke (Leong et al., 2022), Parkinson’s
disease (Kashif et al., 2022), and cerebral palsy (Ziab et al., 2022),
with demonstrated functional improvements (Howard, 2017) and
structural changes in the brain (Feitosa et al., 2022). However,
according to Šlosar et al. (2022), a clearer terminology for the
variety of digital environments (see Figure 1 for an overview)
should be used to study the effects of interventions. Following this
terminology, we proposed to use such non-physical interventions
in conjunction with technological advances (Figure 1) in bedridden
patients to mitigate the deterioration caused by bed rest.

Personal computers and consoles
with displays and controlling
gadgets (PC)

In a 14-day bed rest study (Marusic et al., 2015), a
computer-assisted spatial navigation intervention consisting of
moving through virtual environments using a joystick controller
was used to counteract the adverse effects of immobilization
on gait performance in healthy older adults. Compared with
the control group (passive watching of TV), the intervention
group showed significant improvement in dual-task effects for
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FIGURE 1

Evolution of intervention systems for bedridden patients: from real environment to fully immersive technologies. Intervention systems for bedridden
patients have evolved over time, beginning with motor imagery (MI) and cognitive training (CT) in real environments (RE). These interventions have
been enhanced with the use of personal computers and consoles (PC), incorporating action observation (AO) and displaying images through various
screens. Advancements in technology have now made it possible to employ extended reality (XR) applications, such as virtual reality (VR),
augmented reality (AR), and mixed reality (MR), in combination with MI or CT. Future developments aim to create fully immersive technologies that
stimulate both the interoceptive and exteroceptive senses, a concept referred to as "Matrix-like" VR (MX).

self-selected and fast paced gait speed after bed rest. In the
same study, control subjects were found to have increased gait
variability under dual-task conditions (Marusic et al., 2015). The
effects of such an intervention are explained in more detail in
Marusic et al. (2019). In a usability study, Knols et al. (2017)
demonstrated high acceptance and adherence to a gaming console
adapted to be easily positioned at the patient bedside. Despite
lacking clinical validation, the COPHYCON prototype showed
significant short-term effects on measures of prefrontal cortex
function in healthy elderly participants. In a study with patients
with spinal cord injury (Villiger et al., 2013), an interactive
game was integrated into an AO plus execution protocol.
Wheelchair-bound participants were asked to observe an avatar
performing movements with the lower limbs, and then mimic
these movements by ankle flexion, hip extension, knee flexion,
and leg adduction/abduction to control the avatar and complete
gaming tasks. After a 4-week intervention period, assessments
of gait capacity, postural stability, and muscle strength showed
significant gains in lower extremity functionality. In addition,
50% of participants experienced reductions in both the intensity
and unpleasantness of neuropathic pain symptoms. A study by
Roosink et al. (2016) explored the use of a virtual feedback
mechanism in a MI intervention for patients with the same
pathology. The rehabilitation protocol consisted of performing
MI of walking while seated in a wheelchair in front of a
screen displaying an avatar walking through a forest. Participants
were asked to concentrate on the sensory experiences produced
by the interactive feedback, which was triggered by swinging
their arms equipped with inertial sensors to match the pace of
the imagined walking. The feasibility study reported improved
vividness of MI with minimal adverse effects, indicating promising
results for the response to MI interventions utilizing interactive

feedback. Im et al. (2016) investigated the effects of combining
MI (kinaestheic imagination of movements) with an interactive
feedback mechanism on corticomotor excitability in both healthy
older adults and stroke patients. They found that the combination
resulted in increased amplitudes of motor evoked potentials
compared to MI alone. This has significant implications for
rehabilitation and recovery during periods of immobilization, as
the combined approach can be utilized to target specific motor
functions and improve motor performance, aiding in the recovery
of lost motor abilities.

Virtual reality (VR)

In contrast to PC-assisted interventions, VR systems allow
users to experience a fully synthetic, computer-generated digital
environment that replaces the physical world (Šlosar et al.,
2022). The increased sense of embodiment that is perceived
positively influences the user’s perception of their own body
movements (Kong et al., 2017), leading to more accurate and
effective outcomes in physical therapy. At the neurophysiological
level, a study by Choi et al. (2020) demonstrated that event-
related desynchronizations exhibited greater amplitudes with more
distinct spatial features of the brain when MI is performed using
a VR headset, compared to the display of the same images on
a monitor. This modulation of neural activity by the degree
of immersion provides important evidence for the use of VR
technology in rehabilitation practice for bedridden patients (Xie
et al., 2022). A recent study by Köyağasıoğlu et al. (2022) found
that a 4-week intervention combining VR and MI significantly
improved balance skills in healthy adults. While no significant
differences were found in the center of pressure variable using a
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TABLE 1 Comparative overview of intervention approaches for
enriched environment.

Intervention
approach

Potential
benefits

Distinctive features

Personal
computers and
consoles (PC)

Provides interactive and
engaging activities to
stimulate cognitive
functions.

Familiar and widely
accessible technology.

Provides a diverse array
of games and
applications, fostering a
stimulating environment.

Suitable for patients with
varying levels of computer
experience.

Virtual reality
(VR)

Creates a fully immersive
and interactive digital
environment, enhancing
sensory experiences.

Greater sense of immersion,
leading to more effective
outcomes in rehabilitation.

Provides a more realistic
and vivid experience,
promoting a stronger
sense of presence.

Potentially better neuro-
physiological modulation
during tasks due to the
immersive nature.

Allows for realistic
simulations and
scenarios for therapeutic
purposes.

May facilitate improved body
movement perception during
virtual exercises.

Offers a more
stimulating and engaging
atmosphere compared to
traditional therapies.

Provides personalized and
tailored programs with
authentic scenarios for
effective MI and AO
practices.

stabilometry device compared to a group combining PC and MI,
the VR group demonstrated superior results on the Star Excursion
Balance Test, particularly in posteromedial and posterolateral reach
distances. In a similar experimental design, Bedir and Erhan
(2021) compared the effects of 2D vs. 3D MI intervention on
shot performances of archery, bowling, and curling athletes. Their
findings showed the advantages of VR mental training in terms
of shot performance after the 4-week training period. Yoshimura
et al. (2020) investigated the effects of a VR contribution to
the MI practice on the acquisition of prosthetic control using a
prosthetic simulator in healthy individuals. Although the study
was conducted with non-amputee participants, it yielded positive
results in terms of supporting the daily activities of amputees, as
evidenced by the enhancement in short-term prosthetic control
acquisition following the acute practice of VR plus MI. In addition,
self-assessed VR-based AO immersion level was found to have a
negative correlation with the execution time of the bilateral manual
dexterity task, supporting the idea that immersion is a crucial
modulator of experience (Cummings and Bailenson, 2016) and
thus has a positive influence on motor learning performance. See
Table 1 for an overview of the potential benefits and distinctive
features of different enriched environment approaches in long-term
immobilization.

In cases of functional decline due to immobilization, XR holds
the potential to mitigate the early stages of muscle disuse-related
declines in strength, which are attributed to loss of neuromuscular
function (Campbell et al., 2019). The central and peripheral neural
changes that occur can be effectively counteracted by corticospinal
excitability elicited by MI in combination with VR. To illustrate

the potential benefits of this approach, we adapted the figure from
Marusic et al. (2021) showing the effects of bed rest on muscle
atrophy and strength by adding a curve depicting the hypothetical
decline in muscle strength if a XR intervention were implemented
in conjunction with non-physical training interventions (Figure 2).

Despite the physical limitations imposed by illness or
postoperative conditions that prevent patients from participating in
conventional physical therapy, the psychosocial aspect of recovery
is often overlooked. Previous research has found an association
between the presence of anxiety and depressive symptoms and
prolonged bed rest after discharge from critical care (Peris et al.,
2011) and in experimental studies of bed rest (Ishizaki et al., 1994;
Dimec Èasar, 2015). Enriched environments have been shown to be
a critical tool in motivating patients to participate in rehabilitation
practices (Boiko et al., 2022). They provide a stimulating and
engaging atmosphere that promotes mental and emotional well-
being, thus addressing patients’ often neglected psychosocial needs,
resulting in better overall outcomes.

Neurobiological mechanisms
supporting beneficial effects of
enriched environments

Several enriched environments related neurobiological
mechanisms have thus far been recognized as neuroprotective and
their effectiveness was also demonstrated in neurodegenerative
disorders, such as in delaying the onset of Alzheimer’s disease (AD)
(Liew et al., 2022) and the progression of Parkinson’s Disease (PD)
(Alarcón et al., 2023). The following paragraphs highlight the most
commonly known mechanisms, however, are not meant to provide
an extensive overview (for this, see Liew et al., 2022; Alarcón et al.,
2023).

Several animal studies have demonstrated that exposure to
enriched environments led to beneficial effects on hippocampal
structures, such as promoting hippocampal neurogenesis (Garthe
et al., 2016), as well as increasing proliferation of progenitor
cells and hippocampal cell survival (Olson et al., 2006; Ramírez-
Rodríguez et al., 2014; Grońska-Pęski et al., 2021). Furthermore,
the enriched environments exposure also restored the impaired
neurogenesis in adult transgenic rodent models of AD after the
deposition of Aβ plaques (Rodriguez et al., 2011; Valero et al., 2011;
Llorens-Martín et al., 2013). The structural changes increasing the
volume of the hippocampus may result in improved cognitive
function (Hüttenrauch et al., 2016), while the hippocampal activity
of the excitatory neurons could promote learning and memory
formation (Stuchlik, 2014). Furthermore, enriched environments
revealed to promote the expression of neurotrophins, such as the
brain-derived neurotrophic factor (BDNF) (Kazlauckas et al., 2011;
Kondo et al., 2012; Xu et al., 2015; Dandi et al., 2018), and nerve
growth factors (NGF) (Torasdotter et al., 1998; Gelfo et al., 2011),
which induce the differentiation and survival of neurons (Miranda
et al., 2019), and regulate the excitatory and inhibitory transmission
in the adult brain.

The dopaminergic system plays a central role in the pathology
of PD and its dysfunction was implicated in movement and
coordination difficulties (Glenthøj and Fibiger, 2019). Rodent
models of PD mimic the neurodegeneration of the nigral
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FIGURE 2

Speculative decline in muscle strength following XR intervention in conjunction with non-physical intervention: Adapted from Marusic et al. (2021).

dopaminergic system by inducing lesions and these studies
have demonstrated that exposure to enriched environments
beneficially affected the dopaminergic system including dopamine
metabolism, the enzymes implicated in both dopamine synthesis
and degradation, dopamine receptors, and its storage into
vesicles (Jungling et al., 2017). The beneficial effects of enriched
environments were also demonstrated in other neurotransmitter
systems affected by PD, namely cholinergic, glutamatergic, and
GABAergic (Alarcón et al., 2023).

Taken together, the neurobiological mechanisms supporting
enriched environments, indicate that interventions combining
sensory, cognitive, and physical stimulation at a heightened level
could be used as a strategy for preventing cognitive/motor decline,
but also as an approach or supporting treatment in managing
aspects of complex neurodegenerative disorders.

Conclusions and future perspectives

From a neurophysiological standpoint, observing movements
promotes the development of motor skills (Ferrari, 1996). Among
cutting-edge technologies, XR presents a viable way to activate the
sensorimotor system and consequently boosting cognitive abilities
and adaptability. XR in combination with MI can serve as a tool
for enhanced sensorimotor feedback that promotes procedural
learning. The use of 3D visualization systems that provide real-time
360-degree visual scanning can enhance the effectiveness of MI by
allowing participants to rely on relevant stimuli and cues in a way
that mimics real-world scenarios, thus overcoming the limitations
of conventional 2D display methods used in AO. The enhanced
proprioception, i.e., the sense of the position and movement of the

body and its parts, and the vestibular system that arise from the
user’s head movements while using a VR device (Michalski et al.,
2019) provide a more interactive experience.

VR systems allow precise control of rehabilitation treatment,
including manipulation of stimuli and distractors, so therapy
sessions can be tailored to each individual’s needs. In this regard,
the sensory information delivered through head-mounted displays
goes beyond visual data, incorporating synchronized auditory
information to further immerse the participant in the desired
virtual environment. Current research focuses on incorporating
haptic stimuli into VR-assisted MI to enhance the illusion of
body ownership and the overall experience (Du et al., 2021).
In addition, studies showed that the use of synchronized visual-
haptic neurofeedback during MI can lead to improved outcomes in
traditional neurofeedback training with brain-computer interfaces,
particularly with respect to sensorimotor cortical activation (Wang
et al., 2019).

Emerging evidence suggests that XR-based enriched
environments may offer superior multisensory stimulation
than traditional approaches, such as AO techniques combined
with MI. However, the use of XR in bedridden patients is an
area that requires further investigation, as most studies were
limited to feasibility and usability assessments in symptomatic
patients. In the absence of randomized controlled trials of the
efficacy of XR in bedridden patients, it is difficult to draw definitive
conclusions about its effectiveness. Future research is needed to
fully understand the potential benefits and limitations of using
XR-based enriched environments for bedridden patients and
to explore how this technology can be integrated into existing
treatment protocols to improve patient outcomes.
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Virtual reality as a tool to explore 
multisensory processing before 
and after engagement in physical 
activity
Aysha Basharat 1*, Samira Mehrabi 1, John E. Muñoz 2, 
Laura E. Middleton 3, Shi Cao 2, Jennifer Boger 3 and 
Michael Barnett-Cowan 1

1 Department of Kinesiology and Health Sciences, Faculty of Health, University of Waterloo, Waterloo, 
ON, Canada, 2 Department of Systems Design Engineering, Faculty of Engineering, University of 
Waterloo, Waterloo, ON, Canada, 3 Research Institute for Aging, Waterloo, ON, Canada

Introduction: This pilot study employed a non-randomized control trial design to 
explore the impact of physical activity within a virtual reality (VR) environment on 
multisensory processing among community-dwelling older adults.

Methods: The investigation compared both chronic (over 6 weeks) and acute 
effects of VR-based physical activity to a reading control group. The evaluation 
metrics for multisensory processing included audiovisual response time (RT), 
simultaneity judgments (SJ), sound-induced flash illusion (SIFI), and temporal 
order judgments (TOJ). A total of 13 older adults were provided with VR headsets 
featuring custom-designed games, while another 14 older adults were assigned 
to a reading-based control group.

Results: Results indicated that acute engagement in physical activity led to higher 
accuracy in the SIFI task (experimental group: 85.6%; control group: 78.2%; p = 
0.037). Additionally, both chronic and acute physical activity resulted in quicker 
response times (chronic: experimental group = 336.92; control group = 381.31; 
p = 0.012; acute: experimental group = 333.38; control group = 383.09; p = 
0.006). Although the reading group showed a non-significant trend for greater 
improvement in mean RT, covariate analyses revealed that this discrepancy was 
due to the older age of the reading group.

Discussion: The findings suggest that immersive VR has potential utility for 
enhancing multisensory processing in older adults. However, future studies 
must rigorously control for participant variables like age and sex to ensure more 
accurate comparisons between experimental and control conditions.

KEYWORDS

aging, audiovisual integration, physical activity, multisensory, virtual reality

Introduction

Physical activity has been consistently shown to play a crucial role in maintaining and 
improving cognitive and perceptual processes. This is particularly relevant for older adults, as 
illustrated in foundational studies by Colcombe and Kramer (2003). Perceptual processes like 
multisensory integration—the ability to combine and interpret sensory information from 
various sources such as vision, hearing, and touch—are enhanced by regular physical exercise. 
This leads to better cognitive function, motor learning, and overall well-being (Colcombe and 
Kramer, 2003; Hillman et al., 2008).
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The majority of research on the effects of physical activity on 
cognition involves traditional exercise forms like biking and treadmill 
running. Studies often span several months and focus on older adults, 
with or without cognitive impairment. For instance, in a landmark 
study by Colcombe et al. (2006), they found significant increases in 
brain gray and white matter among aerobic exercise participants, 
particularly in regions tied to cognitive functions like attention and 
memory. A follow-up study (Erickson et al., 2011) established a direct 
link between aerobic exercise and memory improvements.

However, most research has focused on the chronic effects of 
exercise. Yet, single bouts of aerobic exercise also hold promise for 
improving cognitive and perceptual function (Davranche and 
Audiffren, 2004; Davranche and Pichon, 2005; Lambourne et al., 2010; 
Chang et al., 2012; Pontifex et al., 2019). Specifically, limited studies 
have investigated how aerobic exercise influences multisensory 
processing in older adults. One seminal study by O’Brien et al. (2017) 
found that after 60–80 min of aerobic exercise, sensitivity to the Sound 
Induced Flash Illusion (SIFI) increased, particularly when the aerobic 
activity was unpredictable.

The underlying mechanisms for these effects are thought to 
be multifaceted. Changes in arousal levels, indicated by metrics like 
heart rate and skin conductance, are often cited (Lambourne et al., 
2010; Chang et al., 2012; Pontifex et al., 2019). Other physiological 
factors such as the production of neurotrophic factors like BDNF, 
IGF-1, and VEGF also play roles in cognitive and perceptual function 
enhancement (Cotman et  al., 2007; Chang et al., 2012; Pontifex 
et al., 2019).

The COVID-19 pandemic highlighted the need for alternative 
physical activity options. This is particularly crucial for older adults, 
who faced disruptions to their exercise routines due to closures of 
fitness facilities. Exergames, or interactive games that combine 
physical activity and gaming, have thus emerged as a viable alternative. 
Virtual reality (VR) exergaming (Šlosar et  al., 2022) can offer an 
especially immersive experience and has shown promise in enhancing 
physical activity, motor learning, cognitive function, and emotional 
well-being in older adults (Miller et al., 2014; Molina et al., 2014; 
Amorim et al., 2019; Campo-Prieto et al., 2021; Yen and Chiu, 2021).

Yet, there is limited research on the effects of VR-based physical 
activity on sensory integration processes in older adults. Merriman 
et al. (2015) studied balance training using a VR display that was 
placed approximately 2 M away from the participant (i.e., 
non-immersive environment) and found a correlation between 
improved balance and susceptibility to the SIFI. Given the potential 
risks associated with aging, such as falling and poor decision-making 
due to perceptual processing changes (Setti et al., 2011a; Donoghue 
et  al., 2014; Merriman et  al., 2015), VR interventions may offer 
unique benefits.

In light of these gaps, our project aims to extend the evidence 
related to the effects of acute and long-term physical activity in a VR 
setting on perceptual processes. Specifically, we hypothesize that a 
6-week VR the intervention will positively impact multisensory 
integration processes. These hypotheses are based on previous 
research suggesting both acute and chronic exercise can influence 
these processes (O’Brien et  al., 2017; Basharat and Barnett-
Cowan, 2023).

To this end, we  developed an immersive VR physical activity 
intervention called Seas the Day, specifically tailored to the needs and 
preferences of older adults. This pilot study assesses the impact of this 

intervention on multisensory integration, aiming to contribute to our 
understanding of how alternative forms of exercise can benefit 
cognitive and perceptual function in older adults.

Methods

This study is based on data from a larger pilot, non-randomized 
controlled trial that assessed the effects of a VR physical activity game 
on cognition, perception, mental well-being, changes in physical 
activity behaviour outside of the game, and game experience in 
community-dwelling older adults. Primary outcomes reflect the 
feasibility of a VR intervention that engaged upper extremity 
movement and assessments to evaluate its effects on cognition and 
perception. Effectiveness analyses presented below are exploratory. 
Assessments were conducted both before and after the 6-week 
intervention period (chronic effects) and before and after game plan 
on several days within the intervention period (acute effects).

Intervention: VR hardware and software

Seas the Day1 is a custom-made VR intervention co-created to 
promote exercise among older adults. The game is publicly available 
and has been designed to foster an enjoyable physical activity session 
using a Tai-Chi routine, boat rowing task, and fishing. Seas the Day 
requires the use of the standalone VR headset, Oculus Quest 2 and the 
entire experience lasts 15–20 min. Generally and for the purpose of 
this study, the headset was an all-in-one solution for participants to 
engage with the VR games, through the use of two controllers. Seas 
the Day was designed to be played in a seated position to prevent falls 
as shown in Figure 1.

Intervention: reading

Participants read from a physical book for 15–20 min in the 
comfort of their homes. Each participant read what they felt was 
interesting and engaging. When inquired about the content of the 
materials participants read, none revealed it to be  content that 
increased their heart rate or their level of anxiety. Informally, 
participants reported the activity to be relaxing and engaging.

Participants

The study included a convenience sample of 13 participants in the 
experimental (physical activity intervention) group and 14 
participants in the control (reading) group, all of whom were 
community-dwelling older adults with or without cognitive 
impairment. Participants were recruited through various sources, 
including the Waterloo Research in Aging Pool (WRAP), the Centre 
for Community, Clinical and Applied Research Excellence (CCCARE) 
mailing list, professional networks, and personal social media accounts.

1  https://www.oculus.com/experiences/quest/4164068860279573
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The inclusion criteria were as follows: aged 60 years or older, able 
to provide consent, able to complete the Montreal Cognitive 
Assessment (MoCA) with a score of 18 or higher, able to communicate 
verbally in English, able to participate in light-to-moderate 
unsupervised activity without requiring medical approval, ability to 
access a laptop or desktop PC, and access to internet at their residence. 
Participants were excluded based on criteria related to dementia, 
hearing impairment, ear infection, middle ear diseases, uncorrected 
visual impairment, motion sickness, pre-existing conditions that 
preclude exercise, or having a heart pacemaker. Demographic 
information was collected for both the physical activity (mean 
age = 68.46, n  = 6 females) and reading (mean age = 74.83, n  = 12 
females) intervention groups. See Tables 1, 2 below for further 
information regarding the participants included in the study as part 
of the experimental and control group, respectively.

Procedure

Participants were asked to play Seas The Day three times a week 
for 6 weeks. Seas The Day was the only game that participants had 
access to in the provided VR headset. Participants were encouraged to 
maintain consistency in engaging with the VR intervention by playing 
in the mornings and preferably on the same days every week. They 
were notified that each intervention session would take approximately 
15–20 min to complete. Participants were introduced to the OMNI 
rate of perceived exertion scale and were encouraged to achieve a light 
to moderate intensity (as indicated by the scale; ≤6 out of 10) when 
playing the game. Set-up of the VR intervention and ongoing 
participation in the intervention were supported in a number of ways. 
First, participants were provided with step-by-step software and 
hardware manuals (see Mehrabi et al., 2022). Second, each participant 

met with study staff or trainees for a remote introductory session via 
a video conference platform. The team member showed participants 
how to use the system while sharing their screen, so participants could 
see and become familiar with the visual information and the overall 
interaction with the system. The team member also demonstrated how 
to calibrate the system and played the game, stage by stage, while 
answering any questions as they arose. Participants were then 
encouraged to interact with the system during a familiarization 
session where they tried engaging with the intervention in the 
presence of a team member. During the familiarization session, 
participants were encouraged to speak aloud about what they were 
seeing and experiencing so they could be guided by the team member 
if they faced any difficulties. In addition to the familiarization session, 
participants were able to contact study staff and trainees to 
troubleshoot the system via email, phone, text or video calls at any 
time, as most appropriate for the situation and the participant’s 
comfort. During the troubleshooting video calls and to facilitate the 
explanation, participants were offered screen-sharing options as well 
as the option to see the view from the frontal camera of the study staff 
or trainee’s computer to see how the team member was located and 
moving in the physical space. Finally, study staff and/or trainees 
interacted with participants on a bi-weekly basis to ensure that 
participants were playing the game and engaging with the cognitive 
and perceptual tasks appropriately.

This study specifically used data from four perceptual tasks 
(audiovisual RT task, SIFI, SJ task, and TOJ task) to investigate the 
effects of engagement in physical activity in a virtual environment in 
community-dwelling older adults to determine how chronic (6 weeks) 
and acute bouts of physical activity within virtual environments, as 
compared to reading, impact multisensory integration processes. 
Participants completed various assessments, questionnaires, and 
cognitive tasks at baseline, before, and after selected intervention 

FIGURE 1

Screenshots of Seas the Day, a VR intervention to promote exercise among older adults.
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sessions. The pre-assessments took between 1 h and 40 min to 2 h and 
10 min to complete. In addition, the researchers maintained bi-weekly 
meetings with the participants to monitor their progress and address 
any concerns. The post-assessments took approximately 1 h and 
20 min to 1 h and 50 min to complete. Due to the fact that the materials 
presented in this manuscript stem from a larger pilot-study, time for 
testing the effects of engagement with a VR game on multisensory 
processes was limited and therefore not all tasks could be performed 
every week. Thus, the tasks with the most evidence for changes post-
engagement in physical activity were selected to be performed more 

regularly as compared to tasks with limited evidence (see Merriman 
et al., 2015; O’Brien et al., 2017 for effects of physical activity on the 
SIFI task and see Mahoney et al., 2015; Basharat and Barnett-Cowan, 
2023 for effects of physical activity on RT).

Once all the assessments and tasks were completed in week 1, 
participants began either the VR or reading intervention remotely 
from their homes. Each participant in the VR intervention group 
received an Oculus Quest 2 VR headset with Seas the Day installed, 
VR controllers, an instruction booklet, a weekly checklist for progress 
tracking, a VR system care guide, various questionnaires (see Table 3; 

TABLE 1  Demographic details regarding sex (males  =  7), age (mean  =  68.46, s.e. = 1.34), education (1 individual with a high school degree or equivalent; 
8 with at least some post-secondary education including post-secondary certificate, diploma, or degree; 4 with postgraduate degrees), and ethnicity 
(all Caucasian, but one).

ID Sex Age Education Ethnicity MoCA PASE - B PASE - PI

1 M 61 Post-Secondary Caucasian 27 153.27 133.75

2 F 71 Post-Secondary Caucasian 27 50 113.6

3 F 64 Post-graduate degree Mixed 22 153.64 142.4

5 M 77 Post-graduate degree Caucasian 29 97.74 60.61

6 F 60 Post-secondary Caucasian 28 124.85 166.56

7 M 67 Post-secondary Caucasian 29 176 143.2

8 F 67 Some post-secondary Caucasian 28 52.31 83.2

9 M 70 Post-graduate degree Caucasian 25 164.4 233.42

10 F 70 High school diploma Caucasian 28 172.86 174.82

11 M 69 Post-secondary Caucasian 30 219.67 176.3

12 M 75 Post-graduate degree Caucasian 21 85.25 39.5

14 F 69 Post secondary Caucasian 28 60.61 67.31

15 M 70 Some post-secondary Caucasian 25 58.6 32.53

Cognitive function of each participant was assessed using the Montreal Cognitive Assessment (MoCA) and the scores of each participant have been reported above (mean = 26.69, s.e = 0.75). 
Participants also reported on their habitual exercise habits using the Physical Activity Scale for the Elderly (PASE) both at baseline (B; mean = 120.71, s.e. = 15.72) and at post-intervention (PI; 
mean = 120.55, s.e. = 16.84); the values self-reported by each participant are presented in the table. A higher PASE score indicates higher level of physical activity.

TABLE 2  Demographic details regarding sex (males  =  2), age (mean  =  74.83, s.e.  =  1.48), education (4 individuals with high school degrees or equivalent; 
7 with at least some post-secondary certificate, diploma, or degree; 3 with postgraduate degrees), and ethnicity (all Caucasian).

ID Sex Age Education Ethnicity MoCA PASE - B PASE - PI

17 F 69 Post-Secondary Caucasian 29 131.8 111.8

18 F 76 High school diploma Caucasian 27 131.8 106.57

19 F 80 Post-secondary Caucasian 23 165.86 143.71

21 M 74 Post-secondary Caucasian 24 255.81 163.7

22 F 89 Post-secondary Caucasian 26 76.4 51.4

23 F 86 Post-graduate degree Caucasian 28 93.6 116.89

24 F 77 High school diploma Caucasian 24 89.91 78.11

26 F 75 High school diploma Caucasian 29 123.2 142.23

28 F 79 Post-secondary Caucasian 28 99.54 91.53

29 F 71 Post-graduate degree Caucasian 30 95 130

30 M 71 Post-graduate degree Caucasian 27 133.53 182.71

31 F 74 Post-secondary Caucasian 20 - 148.37

33 F 77 High school diploma Caucasian 23 163.58 140.88

34 F 75 Post-secondary Caucasian 25 124.6 162.8

Cognitive function of each participant was assessed using the Montreal Cognitive Assessment (MoCA) and the scores of each participant have been reported above (mean = 25.93, s.e = 0.77). 
Participants also reported on their habitual exercise habits using the Physical Activity Scale for the Elderly (PASE) both at baseline (B; mean = 129.59, s.e. = 12.98) and at post-intervention (PI; 
mean = 126.59, s.e. = 9.67); the values self-reported by each participant are presented in the table. A higher PASE score indicates higher level of physical activity.
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TABLE 3  Summary of data collected for the larger pilot non-randomized controlled trial (adapted from Mehrabi et al., 2022).

Time Points

Baseline Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Post-
intervention

Pre Post Pre Post Pre Post Pre Post Pre Post Pre Post

Background and 

demographic

Demographic 

questionnaire

x

MoCA x

GDS-15 x

GAQ x

Executive 

function

OTMT x x x x x x x x

VF x x x x x x x x

Modified flanker 

task

x x x x x x x x

Multisensory 

integration

SIFI task x x x x x x x x

SJ task x x

TOJ task x x

RT task x x x x x x x x

Physical activity, 

mood, and 

exercise self-

efficacy

PAAS x x x x x x x x x x x x x x

PASE x x

Exercise self-

efficacy

x x x x

PRE x x x x x x

Perceived 

enjoyment

x x x x x x

Usability and 

game user 

experience 

questionnaire

x

Alongside demographic information, only the Response Time (RT), Sound Induced Flash Illusion (SIFI), Simultaneity Judgment (SJ), and Temporal Order Judgment (TOJ) tasks were analyzed for this manuscript and presented below to assess the effects of engaging in 
physical activity in VR and reading on multisensory processing. RPE (OMNI Rate of Perceived Exertion), perceived enjoyment, and the usability and game user experience questionnaire were completed only by those in the VR intervention group, as they pertain to 
their experience with Seas the Day. MoCA, Montreal Cognitive Assessment; GDS-15, Geriatric Depression Scale; GAQ, Get Active Questionnaire; OTMT, Oral Trail Making Test Part A and B; VF, Verbal Fluency test; PAAS, Physical Activity Affect Scale; PASE, 
Physical Activity Scale for the Elderly.
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Mehrabi et al., 2022 for further information) and blank sheets of paper 
for noting comments and concerns. The headset, sanitizing protocol, 
instruction booklet, and questionnaires were all delivered to 
participants’ homes via mail or by a research team member, adhering 
to public health guidelines for social and physical distancing during 
the pandemic. Participants in the reading group received the same 
items as the VR group, except for the Oculus Quest 2 VR headset, VR 
controllers, and the VR-related questionnaires (RPE, perceived 
enjoyment, and game user questionnaires [Self-reported physical (e.g., 
motion sickness, vertigo, nausea, etc.) or emotional (e.g., fear, anxiety, 
etc.) discomfort]). Those in the reading group read a physical book of 
their choice. Chronic effects of intervention were investigated via 
comparison of performance between the two groups on baseline and 
post-intervention sessions, while exploratory analyses were conducted 
to assess acute performance by comparing the weeks between baseline 
and post-intervention.

Experimental setup

Participants were divided into an intervention group (physical 
activity in VR) and a control group (reading), recruited consecutively 
using the same inclusion and exclusion criteria (see Participants 
section). The intervention was 6-weeks long, with pre- and post-
assessments as well as semi-structured interviews post-intervention. 
Note that in this paper we present the quantitative results related to 
sensory processing and the qualitative results will be  discussed 
elsewhere in a separate publication.

The perceptual tasks presented in this manuscript were created 
with PsychoPy builder, exported into PsychoJS (Javascript), and 
hosted on Pavlovia, allowing the experiments to run in a browser with 
a precision of under 3.5 ms (Bridges et  al., 2020). Participants 
completed the perceptual tasks on their computing device of choice 
(laptop or desktop computer) using Firefox as their browser. They 
were provided with instructions embedded in each task and were 
asked to sit in a quiet room, adjust the brightness and sound on their 
device, and not use headphones to ensure that the auditory stimuli 
appeared to stem from the same location as the visual stimuli.

During the perceptual tasks, participants were asked to directly 
face their personal computing device and place it at an approximate 
distance of 57 cm. The visual stimuli were presented as white circles 
subtending 2° of visual angle, appearing approximately 8° below the 
fixation cross (visual angle = 1.5°) for approximately 16 ms. Auditory 
stimuli were presented as a beep (approximately 3,500 Hz, 16 ms, 68 
dBA) through the device’s speakers or through external speakers 
placed beside the screen. Each trial began with a stimulus presented 
after a delay of 1,000–3,000 ms to reduce temporal predictability. 
Participants used a computer keyboard to input their responses for 
each trial. They completed the SIFI, SJ, TOJ, and RT tasks in a 
randomized order during the baseline and post-intervention sessions. 
Practice trials were conducted before each experimental task.

Detailed procedure of the perceptual tasks

Auditory stimuli were presented at a suprathreshold level 
(3,500 Hz, 16 ms, 68 dBA). The visual stimuli were presented as a 0.4° 
white circle (49.3 cd/m2) against a black background (0.3 cd/m2), 

appearing 2° below the fixation cross for 17 ms. The fixation cross, 
designed to minimize involuntary eye movements, resembled a 
combination of a bullseye and crosshair (visual angle = approximately 
1.5°). Participants were instructed to fixate on this cross throughout 
the experimental procedure, as in previous in-lab studies. The stimulus 
onset asynchronies (SOAs) used in this study were chosen to ensure 
that participants could complete each task in a short period of time 
without losing interest or abandoning the task. To maintain 
consistency across the four perceptual tasks, the same stimuli and 
stimulus duration were used.

Sound induced flash illusion

The SIFI task consisted of three conditions (vision-only, auditory-
only, and audiovisual). In the vision-only block, participants were 
shown two flashes and asked to indicate the number of flashes they 
saw. In the auditory-only block, participants were presented with two 
beeps and asked to indicate the number of beeps they heard. The 
following SOAs were used in these conditions: 70 ms, 150 ms, and 
230 ms for both 2 beep and 2 flash conditions. There were 30 trials in 
each of the unimodal conditions, with each SOA presented 10 times. 
Participants were explicitly told to respond as accurately as possible 
instead of quickly. The unimodal visual condition trials were randomly 
interleaved with the multimodal audiovisual trials, and the auditory 
block was completed separately, as instructions and modality of 
interest differed between auditory and audiovisual conditions.

The audiovisual trials included two control conditions (1 beep/1 
flash and 2 beeps/2 flashes) and an illusory condition (2 beeps/1 flash). 
In the audiovisual control conditions, the auditory and visual stimuli 
were presented simultaneously. In the 2 beeps/1 flash illusory 
condition, auditory-lead trials presented the auditory stimulus first, 
followed by simultaneous auditory and visual stimuli at variable SOAs. 
In vision-lead trials, the first auditory stimulus was accompanied by a 
visual stimulus, and the second auditory beep was presented after a 
variable SOA. The multimodal condition used the following SOAs: 
0 ms, ±70 ms, ±150 ms, and ± 230 ms, with ‘+’ indicating vision-lead 
trials and ‘-’ indicating auditory lead trials. The three audiovisual 
conditions were randomly presented within the testing block to 
prevent response bias (see Figure 2 as well as Supplementary Figure S1; 
Supplementary Table S1 for further information).

Participants were asked to fixate on the fixation bullseye 
throughout the task and reported the number of flashes seen while 
ignoring the auditory stimuli. All conditions were repeated 10 times, 
totaling 100 trials (including 10 repetitions for 0 SOA with 
simultaneous presentation of a single beep and flash). In total, 166 
trials were presented for all three conditions (vision-only, auditory-
only, and audiovisual), including 6 practice trials to familiarize 
participants with the task. The task took approximately 10 min to 
complete. Previous literature indicates that participants may report 
perceiving three or more stimuli; thus, responses were not limited to 
‘1’ or ‘2’, as participants could have perceived more than the presented 
number of stimuli (audio or visual). Participants were explicitly 
instructed to prioritize accuracy over speed.

Participants completed this task not only at the beginning and end 
of the intervention, but also six times during the intervention (pre- 
and post-gameplay or reading engagement during weeks 2, 4, and 6), 
for a total of 8 times.
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Literature reveals that In this task, when a single flash is 
accompanied by two beeps in close temporal proximity, it can lead to 
the perception of two flashes (Shams et al., 2000, 2002). It has been 
found that healthy younger adults generally perceive the illusion when 
the SOA between the beeps and flash is less than or equal to 
70–150 ms, whereas older adults are susceptible over a wider range of 
temporal SOAs. Here, susceptibility to the SIFI at longer SOAs (e.g., 
230 ms) would indicate poorer temporal multisensory processing, as 
it would suggest that the central nervous system is unable to 
differentiate which cues belong together and which do not (Setti et al., 
2011a,b, 2014).

Simultaneity judgment

In the Simultaneity Judgment (SJ) task, participants were 
instructed to report whether they perceived the auditory and visual 
stimuli as occurring simultaneously (using the number ‘1’ key) or not 
(using the number ‘2’ key; see Figure 3). Participants were explicitly 
instructed to respond as accurately as possible, rather than responding 
quickly. The following SOAs were utilized: 0 ms, ±70 ms, ±150 ms, 
and ± 230 ms; here ‘+’ indicates vision-lead trials while ‘-’ indicates 
auditory lead trials. Ten trials were presented in a randomized order 
for each SOA, along with six practice trials, totaling 76 trials. This task 
took approximately 5–10 min to complete. Participants completed this 

task twice: before and after engagement in either intervention 
(physical activity or reading).

Temporal order judgment

The Temporal Order Judgment (TOJ) task’s experimental design 
was identical to the SJ task, except for the task instructions. In this 
task, participants were asked to report whether they perceived the 
visual (using the number ‘1’ key) or auditory (using the number ‘2’ 
key) stimulus as appearing first. ‘Synchronous’ or ‘I do not know’ 
options were not provided for this task (see Figure 3). Participants 
were explicitly instructed to respond as accurately as possible, 
rather than responding quickly. This task took approximately 
5–10 min to complete. Participants completed this task twice: before 
and after engagement in either intervention (physical activity 
or reading).

In both the SJ and TOJ tasks, participants were provided with 
the same pairs of audiovisual stimuli and they were either asked 
to determine if the stimuli occurred at the same or different times 
(SJ) or which stimulus appeared first (TOJ). These tasks have been 
found to be  sensitive to both the temporal binding window 
(TBW), a window of time within which stimuli from different 
modalities are integrated and perceived as simultaneous, as well 
as the point of subjective simultaneity (PSS), the point at which 

FIGURE 2

Sound induced flash illusion. The control conditions consited of the presentation of 2 flashes/2 beeps (trial 1) and 1 flash/1 beep (trial 3), while the 
illusory condition consisted of the presentation of 1 flash/2 beeps (trial 2). In the 1 flash/1 beep control condition, the auditory and visual stimuli were 
presented simultaneously. In the 2 flashes/2 beeps condition, the following SOAs were used: 70, 150, and 230  ms. In the illusory condition, the auditory 
stimulus was either presented prior to the presentation of the auditory and visual stimuli (auditory-lead) following a variable SOA of 70, 150, or 230  ms, 
or a visual stimulus was presented alongside the auditory stimulus followed by the second auditory stimulus (vision-lead) at a variable SOA of 70, 150, 
or 230  ms. For all the conditions, the first stimulus could appear 1–3  s after the fixation cross, and the second stimulus appeared between 0 and 230  ms 
after the first stimulus.
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participants are most likely to perceive stimuli as occurring 
simultaneously for the SJ task, and the point of maximal 
uncertainty for the TOJ task. Literature from the SJ and TOJ tasks 
indicates that there is an impairment in older adult’s ability to 
perceive the temporal order of events from multiple modalities 
due to a widening of the TBW (i.e., less precision) and a larger 
shift from true simultaneity (i.e., less accuracy; Poliakoff et al., 
2006; Setti et  al., 2011a,b; Chan et  al., 2014a,b; Bedard and 
Barnett-Cowan, 2016; Basharat et al., 2018, 2019). A wider TBW 
has been associated with decreased speech comprehension 
(Maguinness et  al., 2011; Setti et  al., 2013), an inability to 
dissociate from distracting or inaccurate information (Wu et al., 
2012), and an increase in susceptibility to falls (Setti et al., 2011a; 
Mahoney et al., 2014). Thus, a PSS closer to 0 and a narrower 
TBW would indicate optimal multisensory processing.

Response time task

For the Response Time (RT) task, participants were informed that 
they would either see a flash of light, hear a beep, or experience a 
combination of the two. Participants were instructed to press the 
response button (spacebar key) as soon as they detected any of the 
three experimental conditions: unisensory Visual (V), unisensory 
Auditory (A), or multisensory Audiovisual (AV) (audio and visual 
stimuli were presented simultaneously for each trial; see Figure 4). In 
this task, each stimulus was presented 50 times in random order, along 
with 6 practice trials. However, if a participant responded too quickly 
(<100 ms) or took longer than 3 s to respond to a trial where stimuli 
were presented, that trial was repeated. This task took approximately 
5–10 min to complete. Participants completed this task not only at the 
beginning and end of the intervention period but also six times during 
the intervention (pre- and post-gameplay or reading during weeks 1, 
3, and 5, for a total of 8 times).

Research indicates that multisensory stimuli are detected faster 
than unimodal stimuli and therefore may confer enhancement in 
activities of daily living (Laurienti et al., 2006; Peiffer et al., 2007; 
Diederich et al., 2008; Mahoney et al., 2011; Couth et al., 2018). Thus, 
a faster response time would indicate optimal integration.

Statistical analysis

Physical activity in VR and reading group 
comparison

Independent t-tests were used to compare the intervention and 
control group to assess differences between age, MoCA scores, and 
PASE scores at baseline and post-intervention.

Sound induced flash illusion

Repeated measures ANOVAs were conducted to determine whether 
there were sensory differences between participants in the physical 
activity intervention and those in the reading control. Analyses were 
conducted separately on the proportion correct for unimodal and 
multimodal conditions (Merriman et al., 2015; O’Brien et al., 2017; Chan 
et al., 2018), as well as on acute and long-term data. To investigate the 
effects of long-term exposure to unimodal and multisensory perception 
between community-dwelling older adults who participated in the 
physical activity intervention and those in the reading control, a 2 (group: 
experimental or control) × 2 (time: baseline and post-intervention) 
mixed-design ANOVA was conducted for both auditory and visual cues. 
In order to assess whether participation in the physical activity 
intervention, compared to a reading control, would reduce susceptibility 
to the SIFI (hypothesis 1), a 2 (group) × 2 (time) × 4 (accuracy per 
condition: overall, 1-flash/1-beep, 2-flash/2-beep, or 1-flash/2-beeps) 
mixed-design ANOVA was conducted for the multisensory cues. 
Exploratory analyses were further conducted to examine potential acute 
changes in unimodal and multisensory perception, with a 2 (group) × 6 
(time: pre- and post-week 2, pre- and post-week 4, pre- and post-week 
6) mixed-design ANOVA conducted for both auditory and visual cues, 
and a 2 (group) × 6 (time) × 4 (accuracy per condition: overall, 1-flash/1-
beep, 2-flash/2-beep, or 1-flash/2-beeps) mixed-design ANOVA 
conducted for the multisensory cues. Mauchly’s test of sphericity was 
conducted, and Greenhouse–Geisser adjustments were used to correct 
for lack of homogeneity of variance for all analyses if needed. Pairwise 
comparisons were also made to further assess the differences between 
group, condition, and time.

FIGURE 3

SJ task (left) and the TOJ task (right), presented with the SOAs of 0, ±70, ±150, ±230  ms (−ve  =  sound appeared before light). In both tasks, the first 
stimulus of the audiovisual pair appeared 1–3  s following the fixation cross, and the second stimulus appeared between 0 and 230 ms after the first 
stimulus. The figure depicts the auditory stimulus (i.e., beep) as appearing before the visual stimulus (i.e., flash). Note that the experimental design for 
the SJ and TOJ tasks is identical, but the instructions vary by task.
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To further investigate the data, difference scores were calculated 
by subtracting baseline accuracy from post-intervention accuracy to 
assess long-term changes and by subtracting pre-session accuracy 
from post-session accuracy for sessions 1, 2, and 3 to assess acute 
changes. The data were analyzed using mixed-design ANOVAs. A 2 
(group) × 1 (time: baseline  - post-intervention) × 4 (condition) 
mixed-design ANOVA was conducted to investigate the effects of 
chronic effects of engaging in physical activity versus reading, and a 
2 (group) × 3 (time: post-session 1 - pre-session 1, post-session 2 - 
pre-session 2, post-session 3 - pre-session 3) × 4 (condition) mixed-
design ANOVA was conducted to investigate acute changes on the 
multisensory trials. A 2 (group) × 3 (time) mixed-design ANOVA 
was conducted for the unisensory conditions to investigate acute 
changes. Mauchly’s test of sphericity was performed, and 
Greenhouse–Geisser adjustments were used to correct for lack of 
homogeneity of variance for all analyses, if necessary. Pairwise 
comparisons were also conducted to further assess the differences 
between group, condition, and time. Additionally, independent 
t-tests were computed to investigate long-term changes for the 
unisensory conditions.

Simultaneity and temporal order judgment 
tasks

To estimate the accuracy (PSS values) and precision (TBW) with 
which participants made their judgments for SJ and TOJ tasks, 
psychometric functions were fitted to each participant’s responses as 
a function of SOA using SigmaPlot version 12.5. Each task was 
analyzed individually for each participant, with participant data fit to 
both Gaussian (for the SJ task; Eq. 1) and logistic (for the TOJ task; 
Eq. 2) functions:
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Where a  is the amplitude, x0 is the PSS and b is the 
standard deviation.
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Where a is fixed to 1, x0 is the PSS and b is the standard deviation.
The best-fit parameters corresponding to the PSS and TBW were 

identified for each participant separately, and participants whose data 
were poorly estimated were excluded from further statistical analyses 
(r2 < 0.2; n = 1 in the physical activity group, n = 3 in the reading group).

As we were interested in the relationships between TBWs obtained 
from the two tasks and not their absolute size, we chose to analyze the 
b values (i.e., standard deviation) of these psychometric functions as 
a proxy for the size of the TBW to avoid discrepancies in the literature 
that differ when defining the absolute size of the TBW.

To assess whether participation in the physical activity 
intervention, as compared to the reading control, would reduce the 
width of the TBW (hypothesis 2), a 2 (group: engaging in physical 
activity or reading) × 2 (task: SJ or TOJ) × 2 (time: baseline and post-
intervention) mixed-design ANOVA was conducted for the TBW to 
determine the impact of task, time, and participation in the 
intervention (or lack thereof). The same analysis was conducted with 
PSS values. For both the SJ and TOJ tasks, difference scores were also 
calculated by subtracting baseline values from post-intervention 
values for the TBW and PSS, and exploratory 2 (group) × 2 (task) 
mixed-design ANOVAs were conducted with said difference scores 

FIGURE 4

Participants were presented with unimodal [auditory (A) or visual (V)] or bimodal [audiovisual (AV)] stimuli and were asked to make speeded responses 
to all stimuli, regardless of sensory modality, by pressing the spacebar, which triggered the next trial. A, V, and AV stimuli were randomly presented with 
random inter-trial-intervals (ITIs) of 1–3  s.
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to further investigate and understand the data. Additionally, 
difference scores were computed for the ‘a’ values and an exploratory 
independent t-test was conducted with said values. Mauchly’s test of 
sphericity was conducted, and if the dependent variables were not 
proportional to the identity matrix, the Greenhouse–Geisser 
adjustment was used for the mixed-design ANOVA. The Shapiro–
Wilk test was used to determine normality for the independent 
t-tests. Pairwise comparisons were also made to assess differences 
between the tasks, intervention, and group for the mixed-
design ANOVA.

Response time task

Error analysis and outlier removal
As previously mentioned, participants responded to 150 trials in 

total (50 per condition). Data trimming procedures were not applied 
(see Gondan, 2010; Gondan and Minakata, 2016; Mahoney and 
Verghese, 2018, 2019; Basharat et al., 2019; Mahoney et al., 2019); 
however, responses faster than 100 ms and slower than 1,500 ms were 
set to infinity rather than excluded (see Mahoney and Verghese, 2019 
for a race model inequality (RMI) tutorial and (Basharat et al., 2019) 
where this method of data trimming was recently used). Here, 
we found that <1% of trials for both engagement in physical activity 
(average accuracy = 99.78%) and reading (average accuracy = 99.4%) 
groups were outliers that were set to infinity.

Mean response time analysis
In order to assess whether participation in the physical activity 

intervention would reduce response time more than participation 
in the reading control (hypothesis 3), a 2 (group) × 2 (time: 
baseline and post-intervention) × 3 (modality: auditory, visual, or 
audiovisual) mixed-design ANOVA was conducted to determine 
the long-term impact of time, modality, and participation in the 
physical activity versus reading interventions. Additionally, an 
exploratory mixed-design 2 (group) × 6 (time: pre-, post-week 1; 
pre-, post-week 3; pre-, post-week 5) × 3 (modality) ANOVA was 
conducted to determine the acute impact of time, modality, and 
participation in the physical activity versus reading interventions. 
To further investigate the data, difference scores were calculated by 
subtracting baseline response time from post-intervention 
response time to assess long-term changes, and by subtracting 
pre-session response time from post-session response time for 
sessions 1, 2, and 3 to assess acute changes, which were compared 
using exploratory mixed-design ANOVAs. A 2 (group) × 1 (time: 
baseline - post-intervention) × 3 (modality) mixed-design ANOVA 
was conducted to assess long-term effects of intervention on 
multisensory processing. A 2 (group) × 3 (time: post-session 1 - 
pre-session 1, post-session 2  - pre-session 2, post-session 3  - 
pre-session 3) × 3 (modality) mixed-design ANOVA was 
conducted to assess acute effects of intervention on multisensory 
processing. Mauchly’s test of sphericity was conducted, and 
Greenhouse–Geisser corrections were applied if necessary. 
Pairwise comparisons were utilized to further assess the differences 
between time, modality, and experimental group. The same 
analyses as those conducted with mean RT data were conducted 
for the median RT data; these results can be  found in the 
Supplementary material.

Test of the race model
The race model asserts that the response to redundant signals is 

produced by the modality that processes its respective signal the 
fastest and thus is the “winner” of the race (Raab, 1962). Race model 
violations are typically tested using cumulative distribution function 
(CDF) models, which compare the observed CDF distribution to the 
predicted CDF distribution (Miller, 1982).

To compute CDFs, each participant’s data was sorted in ascending 
order for all three conditions (A, V, AV). Each participant’s RTs were 
then quantized into 5th percentile bins until the 100th percentile was 
reached, yielding a total of 21 bins.

Observed CDF distributions were formed using the following 
equation (Eq. 3):

CDFobserved = P (RTAV ≤ t)	 (3)

Where RTAV represents the RT observed for the multisensory 
condition for any latency, t (Colonius and Diederich, 2006; Mahoney 
et al., 2011).

Predicted CDF models were formed using the following equation 
(Eq. 4):

CDFpredicted = Min [P (RTA ≤ t) + P (RTV ≤ t), 1]	  (4)

Where RTA and RTV represent the RTs observed for unisensory 
condition ‘A’ (i.e., auditory) and ‘V’ (i.e., vision), for any time, t 
(Colonius and Diederich, 2006; Mahoney et al., 2011).

Differences between the observed CDF distribution and the 
predicted CDF distribution were calculated for every participant 
across all percentile bins as follows (Eq. 5):

RT P RT P RT P RT ,AV AV A V� �� � � �� � � �� ��� ��t t tmin 1 � (5)

When the observed CDF is less than or equal to the predicted 
CDF, the race model is accepted. However, the race model is violated 
when the observed CDF is greater than the predicted CDF. Thus, a 
negative value (or zero) indicates acceptance of the race model, while 
values greater than zero provide evidence for multisensory integration 
as they are indicative of race model violations (Colonius and 
Diederich, 2006; Mahoney et al., 2011, 2014).

To investigate if the race model inequality was violated, Gondan’s 
permutations were computed over the fastest quartile (0–25%) of 
responses (Gondan, 2010; Gondan and Minakata, 2016; Mahoney and 
Verghese, 2019) for all sessions for both those who engaged in physical 
activity and reading (see Tables 4, 5 below for outcomes of Gondan’s 
permutations for the experimental and control groups). Further, in 
addition to performing Gondan’s permutation test of the race model 
(Gondan and Minakata, 2016), we also calculated the area under the 
curve (AUC), which served as our independent variable, to further 
quantify the magnitude of RMI violation over the first quartile of 
responses. As described in (Mahoney and Verghese, 2019), the AUC was 
calculated for each time bin over the 0-25th percentile, where the 
difference value obtained from the observed CDF and the predicted CDF 
from the first time bin (i.e., 0%) was summed with the difference value 
obtained from the second time bin (5%) and divided by two. This process 
was repeated for the subsequent time bins until the 25th percentile was 
reached. All the values obtained were summed to generate a total AUC 
of the CDF difference wave during the 25th percentile.
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In order to assess whether participation in the physical activity 
engagement intervention would increase race model violations more so 
than participation in the reading control (hypothesis 3), a mixed-design 
2 (group: engagement in physical activity or reading) × 2 (time: baseline 
and post-intervention) ANOVA was conducted with AUC values to 
compare the long-term effects of engagement in physical activity and 
reading interventions on the AUC. Additionally, an exploratory mixed-
design 2 (group: engagement in physical activity or reading) × 6 (time: 
pre-, post-week 1; pre-, post-week 3; pre-, post-week 5) ANOVA was 
conducted with AUC values to compare the acute effects of engagement 
in physical activity and reading interventions on the AUC.

To further investigate the data, difference scores were computed 
for the AUC by subtracting baseline AUC from post-intervention 

AUC to assess long-term changes and by subtracting the pre-session 
AUC from post-session AUC for sessions 1, 2, and 3 to assess acute 
changes. These were compared using mixed-design ANOVAs. 
Exploratory independent t-tests were computed to compare the 
difference score obtained from post-intervention and baseline sessions 
between participants who engaged in physical activity versus reading 
interventions. Moreover, an exploratory 2 (group) × 3 (time: post-
session 1 - pre-session 1, post-session 2 - pre-session 2, post-session 
3 - pre-session 3) mixed-design ANOVA was conducted to assess 
acute effects of intervention on multisensory processing. Mauchly’s 
test of sphericity was conducted, and Greenhouse–Geisser corrections 
were applied if necessary. Pairwise comparisons were also made to 
assess the differences between time and experimental group.

Results

The results revealed that the reading group (mean age = 74.83, s.e. 
= 1.48) was significantly older compared to those who engaged in 
physical activity (p < 0.001; mean age = 68.46, s.e. = 1.34) and there 
were significantly more females in the reading as compared to those 
who engaged in physical activity. No further differences were found.

SIFI: audiovisual conditions

A 2 (group) × 2 (time) × 4 (conditions) mixed-design ANOVA was 
conducted to investigate the effects of long-term exposure to physical 
activity and reading on the SIFI. The analysis revealed a significant 
interaction between time and condition (F (3, 69) = 9.004, p  < 0.001; 
η2

p = 0.281). Planned pairwise comparisons showed that compared to 
accuracy on the illusory trials at baseline, the accuracy was higher for all 
conditions at both baseline and post-intervention, including the accuracy 
in the illusory condition at the time of post-intervention (p  < 0.001). 
Additionally, the results indicated that compared to overall accuracy 
achieved at baseline, the accuracy was higher for all other conditions (i.e., 
1-flash/1-beep, 2-flashes/2-beeps, 1-flash/2-beeps) at both baseline and 
post-intervention (p  < 0.05), except for the accuracy achieved for the 
illusory condition from the post-intervention session (see Table 6 for more 
information). Note that Levene’s test for Equality of Variance was violated 
for time and condition; thus, non-parametric Friedman tests were 
conducted, revealing a main effect of time (χ2 (1) = 6.570, p = 0.010) and a 
main effect of condition (χ2 (3) = 70.024, p < 0.001).Conover’s post-hoc 
pairwise comparisons investigating the main effect of condition revealed 
that the main effect was driven by significantly higher accuracy for the 
1-flash/1-beep condition compared to the illusory (p = 0.002) and overall 
accuracy conditions (p = 0.019). The pairwise comparison investigating the 
main effect of time failed to reveal a significant difference between accuracy 
obtained at baseline and post-intervention (p = 0.254), suggesting a lack of 
power to differentiate where the effect arose from. Finally, the analysis did 
not find a significant effect of group (F (1, 23) = 2.711, p = 0.113; η2

p = 0.105). 
See Figure 5 and Supplementary Figure S2 for long-term accuracy scores 
obtained from those who engaged in physical activity and reading 
interventions. The results used to assess hypothesis 1 are concluded; what 
follows are exploratory analyses that investigate potential acute changes, 
difference scores, and changes in unimodal perception.

A 2 (group) × 6 (time) × 4 (conditions) mixed-design ANOVA 
investigating the acute effects of engagement in physical activity and 
reading revealed a significant main effect of group (F (1, 18) = 5.051, 

TABLE 4  Outcome of Gondan’s permutation for 8 of the sessions where 
data was collected for those who engaged in physical activity; the 
statistically significant outcome of Gondan’s permutations indicate that 
race model inequality was violated for all the sessions.

Session tmax tcrit value of p

Baseline 4.503 2.281 ≤0.001

1 �Pre-physical activity 

engagement

3.064 2.337 ≤0.05

1 �Post-physical activity 

engagement

3.605 2.260 ≤0.05

2 �Pre-physical activity 

engagement

5.807 2.208 ≤0.001

2 �Post-physical activity 

engagement

4.965 2.095 ≤0.001

3 �Pre-physical activity 

engagement

5.866 2.336 ≤0.001

3 �Post-physical activity 

engagement

4.879 2.205 ≤0.001

Post-physical activity 

engagement

6.185 2.164 ≤0.001

TABLE 5  Outcome of Gondan’s permutation for 8 of the sessions where 
data was collected for the reading group; the statistically significant 
outcome of Gondan’s permutations indicate that race model inequality 
was violated for all the sessions.

Session tmax tcrit value of p

Baseline 5.991 2.27 ≤ 0.01

1 �Pre-physical 

activity

7.207 2.26 ≤ 0.01

1 �Post-physical 

activity

9.201 2.146 ≤ 0.001

2 �Pre-physical 

activity

3.620 2.179 ≤ 0.01

2 �Post-physical 

activity

4.773 2.094 ≤ 0.001

3 �Pre-physical 

activity

5.909 2.153 ≤ 0.0001

3 �Post-physical 

activity

6.394 2.339 ≤ 0.0001

Post-physical 

activity

7.094 2.291 ≤ 0.001

107

https://doi.org/10.3389/fnagi.2023.1207651
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org


Basharat et al.� 10.3389/fnagi.2023.1207651

Frontiers in Aging Neuroscience 12 frontiersin.org

FIGURE 5

Accuracy for overall and illusory conditions during baseline and post-intervention sessions in the physical activity (PA) and reading interventions. 
(A) Overall accuracy at baseline and post-intervention. (B) Illusory condition accuracy at baseline and post-intervention. Error bars represent SEM. A 
main effect of time was found (p =  0.010), but pairwise comparison between baseline and post-intervention was not significant (p =  0.254).

TABLE 6  Post-hoc comparisons for the audiovisual condition of the SIFI during baseline and post-intervention sessions.

Time*Condition Time*Condition Mean Difference SE t Cohen’s d pbonf.

B, Overall PI, Overall −0.147 0.037 −3.966 −0.833 0.005

B, Illusion 0.143 0.043 3.347 0.812 0.031

B, 2 flash −0.191 0.043 −4.467 −1.083 < 0.001

PI, 2 flash −0.203 0.047 −4.329 −1.154 < 0.001

B, 1 flash −0.285 0.043 −6.682 −1.620 < 0.001

PI, 1 flash −0.350 0.047 −7.454 −1.986 < 0.001

PI, Overall B, Illusion 0.29 0.047 6.173 1.645 < 0.001

PI, 1 flash −0.203 0.043 −4.754 −1.153 < 0.001

B, Illusion PI, Illusion −0.228 0.037 −6.152 −1.293 < 0.001

B, 2 flash −0.334 0.043 −7.814 −1.895 < 0.001

PI, 2 flash −0.346 0.047 −7.375 −1.965 < 0.001

B, 1 flash −0.428 0.043 −10.029 −2.432 < 0.001

PI, 1 flash −0.493 0.047 −10.499 −2.798 < 0.001

PI, Illusion B, 1 flash −0.201 0.047 −4.276 −1.139 0.001

PI, 1 flash −0.265 0.043 −6.207 −1.505 < 0.001

B, 2 flash PI, 1 flash −0.159 0.047 −3.389 −0.903 0.027

PI, 2 flash PI, 1 flash −0.147 0.043 −3.433 −0.833 0.023

Results indicate higher accuracy for all conditions at both baseline and post-intervention compared to the illusory condition at baseline (p < 0.001). Higher accuracy was found for all 
conditions compared to overall accuracy at baseline (p < 0.05), except for the illusory condition during post-intervention. Only significant results are presented.
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p = 0.037; η2
p = 0.219). Pairwise comparisons found that participants 

in the physical activity intervention (mean accuracy = 85.6%) were 
significantly more accurate compared to those in the reading group 
(mean accuracy = 78.2%; p  = 0.037). Additionally, a significant 
interaction between time and condition (F (15, 270) = 1.753, 
p = 0.041; η2

p = 0.089) was found. Pairwise comparisons investigating 
the interaction between time and condition revealed multiple 
significant outcomes (refer to Supplementary Table S2 for details). 
Of primary interest, the results showed that compared to 
pre-intervention accuracy for the illusion in session 1, accuracy was 
higher for both pre- (p = 0.001) and post-sessions (p = 0.047) of 
session 3. Moreover, the results demonstrated that participants 
achieved higher accuracy on the 1-flash/1-beep trials at all times that 
SIFI was administered as compared to overall accuracy (p < 0.01) 
and the accuracy achieved for the illusory condition (p  < 0.05). 
Additionally, accuracy for the 1-flash/1-beep condition was also 
higher than the 2-flash/2-beep condition, primarily during sessions 
2 and 3. Note that Levene’s test for Equality of Variance was violated 
for time and condition, so non-parametric Friedman tests were 
conducted, revealing a main effect of condition (χ2 (3) = 138.972, 
p < 0.001), but no main effect of time (χ2 (5) = 3.282, p = 0.657). 
Pairwise comparisons investigating the main effect of condition 
found that accuracy for the 1-flash/1-beep condition was 
significantly higher than all the other conditions, including accuracy 
for the overall condition (p = 0.003), illusory condition (p = 0.003), 
and 2-flashes/2-beeps condition (p  = 0.014). See Figure  6 and 
Supplementary Figure S3 for acute accuracy scores obtained during 
the 6-week intervention from those who engaged in physical activity 
and reading. Given that there was a significant difference in age 
between the exercise and reading groups, we reran these analyses 
using age as a covariate. When age was added as a covariate, the 
analysis revealed no main effect of group (F (1, 17) = 0.4706, 
p = 0.412; η2

p = 0.040) and there were no other subsequent effects. 
What this indicates is that the effects reported above related to 
engagement in physical activity for the SIFI task may be due to the 
fact that the participants in the physical activity intervention were 
younger than those in the reading group and therefore less 
susceptible to the SIFI.

To further investigate the data, difference scores were computed 
by subtracting baseline accuracy from post-intervention accuracy to 
assess long-term changes and by subtracting pre-session accuracy 
from post-session accuracy for sessions 1, 2, and 3 to assess acute 
changes. A 2 (group) × 1 (time: post-intervention - baseline) × 4 
(condition) mixed-design ANOVA investigating the effects of long-
term exposure to physical activity and reading revealed a main effect 
of condition (F (3, 72) = 8.070, p  < 0.001; η2

p  = 0.252). Pairwise 
comparisons were conducted to investigate the main effect of 
condition, which revealed that the difference in accuracy for the 
illusory condition was significantly higher than that for the 
2-flashes/2-beeps (p  < 0.001) and 1-flash/1-beep conditions 
(p = 0.005). This indicates that susceptibility to the illusion not only 
decreased after 6 weeks of both engagement in physical activity and 
reading interventions, but also showed greater improvement 
compared to the control conditions. Further, the pairwise 
comparisons revealed that the difference in overall accuracy was 
significantly higher than that for the 2-flashes/2-beeps condition 
(p = 0.035). The ANOVA failed to find a main effect of group (F (1, 
24) = 0.225, p  = 0.639; η2

p  = 0.009) or a significant interaction 

between condition and group (F(3, 72) = 0.223, p = 0.880; η2
p = 0.009). 

See Supplementary Figures S4, S5 for a comparison of difference 
scores obtained by subtracting baseline accuracy from post-
intervention accuracy scores for the physical activity and 
reading interventions.

A 2 (group) × 3 (time: post-session 1  - pre-session 1, post-
session 2  - pre-session 2, post-session 3  - pre-session 3) × 4 
(condition) analysis was conducted to investigate the acute effects of 
time, condition, and intervention. The analysis failed to reveal 
significant effects for group (F(1, 20) = 1.606, p = 0.220; η2

p = 0.074), 
time (F(2, 40) = 0.433, p = 0.652; η2

p = 0.021), and condition (F(3, 
60) = 0.017, p  = 0.997; η2

p  < 0.001). Additionally, no significant 
interactions were found for group and time (p = 0.837), group and 
condition (p = 0.818), or time, condition, and group (p = 0.996). 
See Supplementary Figures S6, S7 for a comparison of the 
acute difference scores between the physical activity and 
reading interventions.

See Supplementary Figures S8–S11 for unimodal (control) 
condition analysis for the SIFI. To summarize, we did not find any 
significant differences between the two groups. Of interest, accuracy 
for auditory cues during the post-intervention session was significantly 
higher than at baseline (p = 0.011). Additionally, when an independent 
t-test was conducted to examine the long-term effects of physical 
activity and reading on the visual condition, the results revealed a 
near-significant difference between the two groups (t(25) = −1.837, 
p = 0.078; Cohen’s d = − 0.707), with the reading group demonstrating 
a larger difference in accuracy compared to those who engaged in 
physical activity.

Simultaneity and temporal order judgment 
tasks

Initially, a mixed-design ANOVA (2 × 2 × 2) was conducted for 
TBW, considering group (engagement in physical activity or reading), 
task (SJ or TOJ), and time (baseline and post-intervention). Due to a 
violation of Levene’s test for Equality of Variance, Friedman tests were 
performed, revealing a significant main effect of task (χ2(1) = 13.365, 
p  < 0.001) but not of time (χ2(1) = 2.504, p  = 0.114). Pairwise 
comparisons indicated wider TBWs for the SJ task (p = 0.021) and 
wider TBWs at baseline compared to post-intervention. No significant 
effect of group (F (1, 21) = 0.055, p = 0.816; η2

p = 0.003) or interaction 
between group, time, and task (F (1, 21) = 0.054, p = 0.818; η2

p = 0.003) 
was found. See Supplementary Figure S12 (average Gaussian [SJ] 
function) and Supplementary Figure S13 (average Logistic [TOJ] 
function).

The following exploratory analyses investigated long-term 
intervention effects on TBW, PSS and amplitude. Difference scores 
were used to assess the long-term effects of engagement in physical 
activity and reading on SJ and TOJ tasks. A mixed-design ANOVA 
(2 × 2) with difference scores for TBW and PSS did not reveal any 
significant main effects or interactions for either TBW or PSS. An 
independent t-test investigating amplitude differences between the 
physical activity and reading interventions did not reveal a significant 
difference. See Supplementary Figure S14 for a graphical 
representation of the difference scores obtained for the SJ and TOJ 
tasks for both groups, and Supplementary Figure S15 for the amplitude 
difference scores.
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Response time

A 2 (group) × 2 (time: baseline and post-intervention) × 3 
(modality: auditory, visual, or audiovisual) mixed-design ANOVA was 
conducted to determine the long-term effects of participation in the 
two interventions. The analysis revealed significant main effects of 
group (F (1, 24) = 7.318, p = 0.012; η2

p = 0.234) and modality (F (1.445, 
34.673) = 67.898, p < 0.001; η2

p = 0.739). Pairwise comparisons showed 
longer response times for the reading group compared to those who 
engaged in physical activity (p = 0.012), and both auditory (p < 0.001) 
and visual (p < 0.001) stimuli had significantly longer response times 
than audiovisual stimuli. No significant main effect of time (F (1, 
24) = 0.907, p = 0.350; η2

p = 0.036) or interaction between group, time, 
and modality (F (1.684, 40.417) = 0.593, p = 0.556; η2

p = 0.024) was 
found. Figure 7 presents mean response time data for baseline and 
post-intervention sessions for both groups. Hypothesis 3 analyses on 

mean response time are followed by exploratory analyses investigating 
potential acute changes and difference scores from longitudinal and 
acute sessions. Just as the main effect of group was investigated above 
for the SIFI due to a significant difference in age between the exercise 
and reading groups, we re-ran these analyses using age as a covariate. 
When age was added as a covariate, the analysis revealed no main 
effect of group (F (1, 23) = 0.707, p  = 0.409; η2

p  = 0.030). We  did 
however find a significant interaction between group and time (F (1, 
22) = 5.00, p  = 0.035; η2

p  = 0.179), a main effect of time (F (1, 
23) = 4.360, p = 0.048; η2

p = 0.159), and a main effect of age (F (1, 
23) = 5.140, p = 0.033; η2

p = 0.183). The lack of a main effect of group 
and a main effect of age indicate that the effects reported above related 
to those in the reading group as having longer response times may 
be due to the fact that the participants in the reading group were older 
than those who engaged in physical activity and therefore had slower 
response times.

FIGURE 6

Acute accuracy for overall and illusory conditions during sessions 1, 2, and 3 in the physical activity (PA) and reading interventions. (A) Overall acute 
accuracy. (B) Illusory condition acute accuracy. Those who engaged in physical activity had significantly higher accuracy than the reading group 
(p =  0.037). Error bars represent SE.
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A 2 (group: experimental or control) × 6 (time: pre-, post-week 1; 
pre-, post-week 3; pre-, post-week 5) × 3 (modality: auditory, visual, 
or audiovisual) mixed-design ANOVA was conducted to determine 
the acute impact of physical activity engagement versus reading. The 
analysis revealed a significant main effect of group (F (1, 23) = 9.127, 
p = 0.006; η2

p = 0.284), with longer response times for the reading 
group compared to those who engaged in physical activity (p = 0.006). 
Due to a violation of the Levene’s test for Equality of Variance, a 
Friedman test was conducted, revealing a significant main effect of 
modality (χ2(2) = 134.776, p < 0.001). Pairwise comparisons showed 
longer response times for both auditory (p  < 0.001) and visual 
(p < 0.001) stimuli compared to audiovisual stimuli. No significant 
main effect of time (χ2(5) = 8.246, p = 0.143) or interaction between 
group, time, and modality (F (4.692, 107.914) = 1.052, p  = 0.389; 
η2

p  = 0.044) was found. See Supplementary Figure S16 for mean 
response time data for acute conditions. Just as the main effect of 
group was investigated above, here too we re-ran these analyses using 
age as a covariate. When age was added as a covariate, the analysis 
revealed no main effect of group (F (1, 22) = 0.759, p  = 0.393; 
η2

p = 0.033). We did however find a significant main effect of age (F (1, 
22) = 5.289, p = 0.031; η2

p = 0.194). Similar to the results presented 
above, this lack of a main effect of group and the significant main 
effect of age indicate that the effects reported above of those in the 
reading group having longer response time may be explained by the 
age difference between the two groups.

To further investigate the data, difference scores were used to 
assess long-term and acute effects. A 2 (group) × 3 (modality) 
mixed-design ANOVA was conducted to assess long-term 
intervention effects on multisensory processing using difference 
scores. No significant main effect of group (F (1, 24) = 1.356, 
p  = 0.256; η2

p  = 0.053), modality (F (2, 48) = 1.086, p  = 0.346; 
η2

p  = 0.043), or interaction between group and modality (F (2, 
48) = 0.593, p  = 0.556; η2

p  = 0.024) was found. Additionally, a 2 
(group) × 3 (time: post-session 1 - pre-session 1, post-session 2 - 
pre-session 2, post-session 3  - pre-session 3) × 3 (modality) 

mixed-design ANOVA was conducted to assess acute intervention 
effects on multisensory processing. This analysis did not reveal 
significant main effects of group (F (1, 23) = 3.445, p  = 0.076; 
η2

p = 0.130), modality (F (2, 46) = 2.206, p = 0.122; η2
p = 0.088), or 

time (F (2, 46) = 1.726, p = 0.189; η2
p = 0.070). However, a significant 

interaction between time and modality (F (2.957, 68.002) = 3.157, 
p = 0.018; η2

p = 0.121) was found. Pairwise comparisons investigating 
the interaction between time and modality revealed that the 
interaction was driven by the auditory modality exhibiting a larger 
difference when pre-session 3 scores were subtracted from post-
session 3 scores (i.e., greater improvement; mean = −27.54, s.e. = 
19.86) compared to the session 3 difference scores obtained for the 
audiovisual modality (p  = 0.027; mean = −1.768, s.e. = 4.363). 
Although not significant, the main effect of group approached 
significance, and post-hoc pairwise comparisons revealed that those 
in the reading condition showed a larger difference in performance 
(mean = −27.25, s.e. = 4.84) compared to those who engaged in 
physical activity (mean = −3.63, s.e. = 2.55). Figure 8 displays both 
acute (panel a) and long-term (panel b) difference scores. Here for 
the acute sessions, a significant interaction between time and 
modality was found, potentially driven by a larger difference for the 
auditory modality compared to the audiovisual modality over 
session 3 (p = 0.027). Although not significant, the reading group 
showed a larger difference in performance (i.e., greater improvement) 
compared to those who engaged in physical activity. No other 
significant effects or interactions were found. As we did not expect 
reading to positively affect performance, we suspected that here too 
the nearing-significant effect of group was driven by age, and indeed 
when age was added as a covariate, the analysis revealed no main 
effect of group (F (1, 22) = 2,273, p = 0.146; η2

p = 0.094). No other 
effects were significant. These results indicate that the effect of 
reading leading to a greater difference in performance (i.e., greater 
improvement) may be explained by age. Those in the reading group 
may have exhibited greater improvement as there is greater room for 
improvement with older age.

FIGURE 7

The mean response time for baseline (darker shade) and post-intervention (lighter shade) sessions in both the physical activity (PA; dark grey) and reading 
(light grey) groups across auditory, visual, and audiovisual trials. The reading group displayed longer response times (mean  =  381.305, s.e. = 16.832) 
compared to those who engaged in physical activity (mean  =  336.9172, s.e. = 12.954, p =  0.012). Moreover, response times for audiovisual stimuli 
(mean  =  314.792, s.e. = 9.275) were significantly faster than auditory (mean  =  372.524, s.e. = 18.195; p <  0.001) and visual (mean  =  390.0177, s.e. = 13.047; 
p <  0.001) modalities. Aud, auditory stimuli; Vis, visual stimuli; AV, audiovisual stimuli; pre, baseline; post, post-intervention. Error bars indicate the SEM.
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See Supplementary material for analyses conducted with median 
response times that confirm and supplement our findings from mean 
response times.

Area under the curve

To investigate the long-term effects of the interventions, a 2 
(group) × 2 (time) mixed-design ANOVA was conducted. This 
analysis revealed a near-significant effect of time (F (1, 25) = 3.526, 
p = 0.072; η2

p = 0.124) but did not show a main effect of group (F (1, 
25) = 0.859, p = 0.363; η2

p = 0.033) or a significant interaction between 
group and time (F (1, 25) = 0.10, p  = 0.923; η2

p  < 0.001). Pairwise 
comparisons investigating the near-significant effect of time revealed 
an increase in the area under the curve post-intervention compared 
to baseline, indicating increased violations post-intervention. See 
Figures 9 and 10 for the probability difference waves. This section 
concludes the analyses used to assess the effects of intervention on 
race model violations (hypothesis 3). The following exploratory 
analyses investigate potential acute changes and difference scores 
obtained from longitudinal and acute sessions.

A 2 (group) × 6 (time) mixed-design ANOVA investigating 
the acute effects of intervention on AUC revealed no significant 
effect of group (F (1, 23) = 1.332, p  = 0.260; η2

p  = 0.055) or time 
(F (3.531, 81.209) = 1.913, p  = 0.124; η2

p  = 0.077). Additionally, no 

significant interaction between group and time was found (F (3.531, 
81.209) = 0.931, p = 0.442; η2

p = 0.039). See Supplementary Figures S11, 12 
for the graphical representation of the acute and long-term area 
under the curve for the physical activity and reading interventions, 
respectively.

To further investigate the long-term effects of intervention on 
AUC using difference scores, an independent t-test was conducted, 
which did not reveal a significant difference between the two groups 
(t (25) = 0.098, p = 0.923; Cohen’s d = 0.038). Difference scores were 
also used to assess acute effects. A 2 (group) × 3 (time: post-session 
1 - pre-session 1, post-session 2 - pre-session 2, and post-session 
3 - pre-session 3) mixed-design ANOVA investigating acute effects 
failed to reveal a significant main effect of group (F (1, 24) = 0.039, 
p  = 0.846; η2

p  = 0.002) or time (F (2, 48) = 1.829, p  = 0.172; 
η2

p = 0.071). Furthermore, no significant interaction between group 
and time was found (F (2, 48) < 0.01, p = 0.999; η2

p < 0.001). See 
Supplementary Figure S17 for both the acute (panel A) and long-
term (panel B) difference scores from those in the physical activity 
and reading interventions.

Discussion

Our study aimed to investigate the effects of a physical activity 
intervention in a VR setting on perceptual processing compared to a 

FIGURE 8

Scores calculated by subtracting pre-session response time for auditory, visual, and audiovisual stimuli from post-session response time. Response 
times are collapsed across 3 times (session 1 post - pre-session 1, session 2 post - pre-session 2, and session 3 post - pre-session 3) in panel (A) and 1 
time (post - baseline) in panel (B). Error bars indicate the SEM.
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reading control condition. Initial analyses revealed that those who 
engaged in physical activity in a VR environment exhibited higher 
accuracy scores on the SIFI task (acute effect) and faster response 
times on the audiovisual RT task (both chronic and acute effect). The 
significant improvements in perceptual processing in both the 
experimental and control groups suggest that these interventions may 
positively impact multisensory processing.

Apart from group differences, time was also a significant factor of 
interest as data was collected across multiple sessions (baseline and post-
intervention for all tasks and three additional pre- and post-sessions for 
the RT and SIFI tasks in between) to investigate chronic and acute 
effects of physical activity in VR or reading on multisensory processing. 
Starting with the chronic effects observed for the SIFI, we found that 
accuracy to the illusory condition was significantly lower at baseline as 
compared to post-intervention, suggesting that susceptibility to the 
illusory condition can decrease either because of repetition effects or 
because of the interventions that each group was exposed to. Further, 
the difference score analysis revealed that difference in accuracy to the 
illusory condition was larger than that for the 2 flash 2-beep condition 
suggesting that repetition or exposure to our experimental and control 
conditions is more likely to impact components of perceptual 
performance that have greater potential for improvement. Further 
evidence for such a process is provided by the near-significant effect of 
group for the visual-only trials of the SIFI, where those in the reading 
group showed a larger difference in performance after 6 weeks of 

intervention. Our acute-analysis results from the RT task also indicate 
larger differences on trials with greater room for improvement, where 
although the mean response times to audiovisual trials were significantly 
faster than auditory and visual trials across time, the auditory modality 
showed a larger difference in performance as compared to the 
audiovisual modality. Additionally, both mean and median response 
time difference scores investigating acute and long-term effects also 
revealed that those in the reading group showed larger improvement 
(i.e., greater difference score) as compared to those in the experimental 
group. As the reading group had significantly longer response times to 
all modalities and showed a greater reduction in response time as 
compared to the experimental group, this finding further suggests the 
potential of our interventions or repetition to target areas or populations 
that are most in need of improvement.

Although not significant, we found that those in the reading group 
had wider TBWs at baseline as compared to post-intervention (i.e., 
greater improvement) for the SJ and TOJ tasks.I. These results suggest 
that either reading and engaging with VR can directly affect the width 
of the TBW, or that exposure to, and improvement on the SIFI and RT 
tasks, may have beneficial transferable effects. Previous research 
provides some guidance related to transfer effects. A study conducted 
by Setti et al. (2014) aimed to determine the impact of perceptual 
training on older adults where they trained twenty-four individuals to 
judge the temporal order of auditory and visual stimuli using the TOJ 
task, while providing feedback after each trial, over five consecutive 

FIGURE 9

Test of the race model for those who engaged in physical activity showing the probability difference wave, where the predicted CDF is subtracted from 
the observed CDF for (A) acute changes (sessions 1, 2, and 3) and (B) long-term differences (i.e., baseline and post-intervention). The grey box indicates 
the area analyzed. A near-significant effect of time from the acute analysis revealed that the area under the curve increased after both interventions 
(p =  0.072). No further significant effects or interactions were found.
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days. They found that the majority (eighteen of the twenty-four) of the 
participants were significantly more accurate on the TOJ task on the 
fifth as compared to the first day. Additionally, the researchers aimed 
to determine whether training participants on the TOJ task would 
reduce susceptibility to the SIFI and although training on the TOJ task 
did not improve susceptibility to the SIFI for all the stimulus onset 
asynchronies, significant improvement appeared for the longest SOA 
of 270 ms.

Our results additionally revealed that (prior to our covariate 
analysis) the control group showed greater improvement (i.e., 
reduction) in response time compared to the experimental group. 
However, when age was added as a covariate in our analysis, this 
difference disappeared. These results indicate that older adults are 
more likely to benefit from interventions, possibly due to repetition or 
transfer effects, because they have greater room for improvement 
(Powers III et al., 2009, 2016). Future research should employ a more 
systematic approach to participant selection, matching age and sex 
between intervention and control groups.

As single-bouts of exercise have been shown to impact not only 
higher-order cognitive function (Audiffren et al., 2008; Chang et al., 
2012; McSween et al., 2018; pontifex et al., 2019) but also sensory 
processing (O’brien et  al., 2017; Basharat and Barnett-Cowan, 
2023), it is not surprising that our physical activity intervention 

(‘Seas the Day’) affected multisensory processing as assessed via the 
RT and SIFI tasks. One potential explanation for changes observed 
through exercise in multisensory processing could be related to 
increases in Gamma-aminobtyric acid (GABA), the chief inhibitory 
neurotransmitter in the central nervous system. GABA tends to 
decrease in concentration with aging and indeed, Gao et al. (2013) 
found that the levels of GABA are reduced in frontal and parietal 
regions by approximately 5% per decade of life. Such a reduction in 
GABA can reduce the brain’s ability to ignore or inhibit the 
integration of erroneous cues and can potentially increase the 
difficulty in discriminating the temporal order of information. 
GABA levels have been found to increase in concentration not only 
with chronic exercise but also following acute bouts of exercise 
(Maddock et al., 2016; Li et al., 2017). Indeed, in a study conducted 
by Maddock et  al. (2016), GABA levels were found to increase 
significantly after vigorous exercise (80% of predicted maximal 
heart rate) in 38 young adults (mean age = 26.68). It is important to 
note however that although there is evidence to indicate that single 
bouts of aerobic exercise can increase GABA concentration, which 
may have an impact on multisensory processing, most of the 
neurophysiological research has been conducted with high or 
moderate intensity exercise, which is unlike the intensity utilized in 
this intervention. The participants in this study were asked to exert 

FIGURE 10

Test of the race model for the reading group showing the probability difference wave, where the predicted CDF is subtracted from the observed CDF 
for (A) acute changes (sessions 1, 2, and 3) and (B) long-term differences (i.e., baseline and post-intervention). The grey box indicates the area 
analyzed. A near-significant effect of time from the acute analysis revealed that the area under the curve increased after both interventions (p =  0.072). 
No further significant effects or interactions were found.
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light to moderate effort and most participants reported exerting 
light effort. This can help to explain the lack of group differences 
observed for the SJ and TOJ tasks between the control and 
experimental groups. However, a meta-analysis conducted by 
Chang et al. (2012) did find that 20 min of light exercise can induce 
cognitive enhancement as long as cognition is tested within the first 
20 min following exercise, which may help to explain the effects that 
were indeed observed. It is interesting however that the larger 
differences between the mean and median scores were observed for 
the reading group.

Although changes in multisensory processing were expected from 
engaging in the experimental intervention, the unexpected 
improvements from engaging in reading may arise from the fact that 
reading is thought to be a relaxing activity which has been shown to 
improve mental health, maintain cognitive abilities, reduce the risk of 
mortality, and reduce stress in young and older adults (Rizzolo et al., 
2009; Bavishi et  al., 2016; Levine et  al., 2022). Indeed, in a study 
conducted by Rizzolo et  al. (2009), a single session of 30 min of 
reading was found to reduce stress by reducing elevated systolic blood 
pressure, diastolic blood pressure, and heart rate in 24 young adults 
(mean age = 23). Most interestingly, it was found that 30-min of 
reading had similar effects to 30-min of yoga and watching a 
humorous video. In an older study, 60 min of reading was similarly 
found to reduce anxiety, heart rate, and blood pressure in 24 adults 
(mean age = 36.2), however in this study, Tai-Chi was found to have 
superior effects (Jin, 1992). One possible mechanism through which 
reading can reduce stress is via easing of tension in the muscles of 
readers, which may occur when an individual becomes immersed into 
the topic of interest. Another potential mechanism, not dissimilar to 
exercise, is the GABergic system, where reading may reduce stress 
through the modulation of GABA (refer to de Souza Spinosa et al., 
2002 and Lydiard, 2003 that indicate an increase in GABA with a 
reduction in stress and anxiety). The evidence presented here and 
above indicates that the GABAergic system may underlie the changes 
in multisensory processes observed in this study and warrants 
further investigation.

While reading served as a control condition in our study, it may not 
be optimal for researchers investigating multisensory processing, as 
reading is considered a multisensory activity (Boerma et  al., 2016; 
Brosch, 2018). Notably, the additional covariate analyses (with age as a 
factor) rendered the difference between the two groups insignificant. 
Future research should explore alternative control conditions less likely 
to engage multisensory processing and systematically investigate control 
conditions utilized by the exercise literature (e.g., stretching, socializing 
with others, disengaged, etc.; Pontifex et al., 2019). Additionally, future 
researchers may consider increasing the intensity of their exergaming 
intervention, as moderate to vigorous intensity has been found to 
optimally affect cognitive processing following both acute (Chang et al., 
2012; McSween et al., 2018; Pontifex et al., 2019) and chronic physical 
exercise (Erickson et al., 2011, 2019). Finally, including the perceived 
enjoyment questionnaire for both groups would provide a more 
comprehensive comparison between the interventions.

It is crucial to interpret these results with caution, however, due to 
potential group differences, such as the older age of participants and 
higher number of females in the reading group. The age discrepancy 
could have provided greater potential for improvement in the reading 
group, as evidenced by the larger difference scores obtained for the 
SIFI and RT tasks. Prior research has demonstrated that the age of the 

perceiver directly impacts the temporal binding window (TBW) and 
susceptibility to illusions, which can be  associated with various 
adverse outcomes (Poliakoff et al., 2006; Setti et al., 2011a,b; Chan 
et al., 2014a,b; Bedard and Barnett-Cowan, 2016; Basharat et al., 2018, 
2019). To mitigate the effects of age between the control and 
experimental groups, we added age as a covariate each time a main 
effect of the group was found, revealing that age significantly affected 
performance in this study. An additional limitation of this study is the 
learning effects that may arise from repetition of the SIFI and RT 
tasks. Although learning effects are inevitable, especially for the RT 
task, future studies can consider the utilization of randomization of 
SOAs for each session for the SIFI task to reduce such effects from 
affecting their results.

In conclusion, our study aimed to demonstrate that participation 
in our co-designed physical activity intervention, compared to a 
reading control, would reduce susceptibility to the SIFI, reduce the 
width of the TBW for both the SJ and TOJ tasks, and reduce response 
time while increasing race model violations. Although we  found 
evidence for a reduction in susceptibility to the SIFI and a reduction 
in response time, we did not find any evidence of change for the SJ 
and TOJ tasks or a change in race model violations. More importantly, 
we found that the older age of our participants in the reading group 
was the driving factor for the observed group differences. Researchers 
should consider alternative control conditions and ensure that age 
and sex are matched between intervention and control groups to 
provide a more accurate comparison. Regardless of this limitation, 
our study demonstrates that both physical activity in a VR setting and 
reading interventions can influence perceptual processing. Despite 
potential group differences and limitations, our findings contribute 
valuable insights into the impact of these interventions on 
multisensory processing.

Our research indicates that VR may be a useful tool to investigate 
and subsequently impact multisensory processing, while promoting 
physical activity. As we  aimed to create an intervention that was 
accessible to all older adults with intact auditory and visual processing, 
we were therefore limited to light-to-moderate intensity of physical 
activity. However, researchers hoping to utilize this tool in the future 
may see larger effects with exercise intervention requiring a higher 
intensity of exertion. Future research should focus on exploring the 
underlying mechanisms, such as the GABAergic system, that may 
contribute to the observed changes in perceptual processing. 
Additionally, it is recommended that future researchers investigate the 
longer-term effects (i.e., longer than 6 weeks) of these interventions on 
multisensory processing and cognitive function in older adults with 
and without cognitive impairment.

Author’s note

Physical activity plays a crucial role in maintaining and 
improving cognitive and perceptual processes, particularly in older 
adults. Perceptual processes, such as multisensory integration, 
refer to the ability to combine and interpret sensory information 
from various sources (e.g., vision, hearing, touch) to better 
understand and interact with the environment. Research has 
demonstrated that regular physical activity can enhance these 
perceptual processes, leading to improvements in cognitive 
function, motor learning, and overall well-being. In this 
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exploratory, pilot non-randomized control trial, we investigated 
the effects exergaming in a virtual reality as compared to our 
reading control during the COVID-19 pandemic to encourage 
participation in physical activity. We found that exergaming and 
reading interventions can influence perceptual processing as tested 
via four different tasks including the Sound-induced flash illusion. 
More importantly, however, we  found that the older age of our 
participants in the reading group was the driving factor for the 
observed group differences. Regardless of this limitation, our study 
demonstrates that perceptual processes are malleable and can 
be  influenced by both reading and exergaming interventions. 
Despite potential group differences and limitations, our findings 
contribute valuable insights into the impact of these interventions 
on multisensory processing.
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