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Editorial on the Research Topic

New advances in the biology and pathogenesis of free-living amoebae

Introduction

Free-living amoebae (FLA) are fascinating unicellular eukaryotic microorganisms

found worldwide in aquatic and soil habitats. They have an important role in the

ecosystems, actively feeding mainly on bacteria and other microorganisms. FLA life cycle

is mainly composed of two stages: the trophozoite (the metabolically and replicative

form of the amoeba) and the persistent cyst (which is highly resistant to various adverse

conditions such as water disinfection processes and therapeutic treatments). While being

mainly non-pathogenic, some FLA (namely Acanthamoeba and Naegleria fowleri) are

currently considered emerging opportunistic pathogens (Bartrand et al., 2014; Sente

et al., 2016). FLA are also well-known reservoirs of amoeba-resistant bacteria (ARB),

possibly contributing to the spread of pathogenic ARB (such as Legionella), which

constitutes a potential threat to water quality and human health (Samba-Louaka et al.,

2019; Chaúque et al., 2022). It is therefore crucial to increase awareness of these neglected

waterborne pathogens and related diseases. This Research Topic presents recent research

on several FLA topics and includes studies presented by participants who attended the 19th

International Free-Living AmoebaeMeeting (FLAM) held in Poitiers, France, in June 2023.

Summarizing the papers accepted

In this Research Topic, Naegleria fowleri extracellular vesicles (EVs) have garnered

great interest in our community, with two papers by independent lab groups being

published. Russell et al. and Retana Moreira et al. have both investigated EV

characterization and their effect on various clinical isolates of Naegleria fowleri, as well

as on host cells such as B103 neuroblastoma or primary cultures of mouse cell microglia,
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using SEM methods. Staying on the theme of N. fowleri, Nadeem

et al. highlight the emerging threat and “outbreak” of N. fowleri in

Pakistan. This review highlights the need for improved awareness,

public health measures, and water surveillance. Dereeper et al.

contributed six new high-quality Naegleria genomes to establish

the Naegleria genus pangenome with a near-to-complete repertoire

of core and accessory genes, highlighting new architecture and

functional features in Naegleria.

Excitingly, there was a description of one new putative host

species of mycobacteria, Rosculus vilicus, within the environment

that was published by Jessu et al.. This may pose as a potential host

and transmission route for Johne’s disease and should be kept a

close eye on in the future.

A review from Wang et al. describes the characteristics

of Acanthamoeba infection, including biological characteristics,

classification, disease, and pathogenic mechanism, in order to

provide a scientific basis for the diagnosis, treatment, and

prevention of Acanthamoeba infection.

Loufouma Mbouaka et al. used Realtime-Glo as a novel

two-dimensional (2D) cytotoxicity viability assay, being able to

monitor the cell health and the pathobiology of Acanthamoeba

on feeder cells. This assay could be adapted for Balamuthia

pathogenicity models as well, but because Naegleria can

also metabolize the propriety reagent, it may be difficult

to differentiate between the pathogen or host response in

that model.

One study assessed the phylogenetic diversity of the

mitochondrial genome ribosomal protein S3 (rps3) over

10 strains of B. mandrillaris. Law et al. proposed that due

to the copy-number variations (CNVs) and highly variable

sequences of the protein tandem repeats of rps3, this

could be a perfect target for a clinical genotyping assay for

B. mandrillaris.

Whangviboonkij et al. presented a three-dimensional (3D)

human neurospheroid model to assess the cytotoxicity and

pathobiology response of B. mandrillaris. Using 3D models that

mimic the human central nervous system (CNS) can provide a

more physiologically relevant environment than traditional 2D cell

culture for studying the pathogenicity of amoeba. These models

are particularly useful for reducing the need for experiments using

animal models.

Sticking to the theme of 3D models, Campolo et al. describe

the aggregation and encystment of Acanthamoeba’s response on

various contact lens materials under the same conditions. They

found that some lenses will promote this aggregation phenotype,

which will induce rapid encystment of some Acanthamoeba cells

within a few hours to fully mature cysts, which they believe helps

Acanthamoeba to withstand the disinfection process of contact lens

care solutions.

Finally, to bring all the amoebae together, Ferrins et al.

describe novel chemical pharmacophores that have various

inhibitory activities against Acanthamoeba sp., Naegleria fowleri,

or Balamuthia mandrillaris, which have been shown to cross

the blood–brain barrier. This exciting physiological property

is much needed for the development of any future anti-

amoebic therapeutics for CNS disease. We cannot just stop at

showing the amoeba inhibitory activity and stating that in vivo

pharmacokinetic/pharmacodynamic or in vivo efficacy models are

necessary to “validate the compounds future potential.”

Conclusion

In conclusion, this Research Topic brings together diverse

examples of the ongoing research on FLA regarding (i) FLA biology

and pathogenesis (such as Naegleria pangenome or Balamuthia

mandrillaris’mitochondrial heterogeneity), the role of extracellular

vesicles in N. fowleri–host interaction, (ii) FLA as hosts of zoonotic

bacteria, (iii) drug development against FLA (namely brain

permeable therapeutics against Acanthamoeba, Naegleria, or

Balamuthia), various newly described 2D and 3D pathobiological

models for brain organoid, cytotoxicity, or Acanthamoeba

aggregation models, and (iv) FLA epidemiology. While this surely

represents a glimpse of the ongoing research worldwide, we believe

that increased research in disease, epidemiology, diagnostics, and

treatment of pathogenic FLA species and the characterization of

other emerging FLA should be encouraged, namely within the One

Health concept.

Furthermore, we expect the emergence of the use of artificial

intelligence (AI) in amoebae research. Indeed, the development

and application of machine learning (ML) in the field of infectious

diseases have gained massive attention in recent years, including

other protozoans such as Plasmodium and Trypanosoma (Hu

et al., 2022). We caught a glimpse of machine learning with Dr.

Rice’s (unpublished data) and Dr. Debnath’s (Shing et al., 2022)

novel Acanthamoeba cysticidal methodologies at the recent FLAM

2023 conference. Although the European Parliament and the US

administration are trying to impose obligations for general-purpose

AI to mitigate possible risks to health, fundamental rights, and

democracy, we are assisting in the boost of AI in research and

innovation. How AI will impact research in free-living amoebae

is worth investigating. Beyond the identification of trophozoites

or cysts, will AI be able to predict genera of amoebae present

within the water or soil during sampling campaigns? Regarding the

virulence factors identified in some pathogenic amoebae, will AI

suggest human outcomes or some area to investigate, interrogate,

and suggest optimal patient-specific treatment options? How deep

will this rapidly advancing generative AI turn our field upside

down? The next FLAM to be held in Mexico City, Mexico, in 2025,

could be a place for an exchange around the impact of AI on the

study of amoebae.
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Acanthamoeba spp. aggregate 
and encyst on contact lens 
material increasing resistance to 
disinfection
Allison Campolo 1†, Reed Pifer 1†, Rhonda Walters 1, Megan 
Thomas 1, Elise Miller 1, Valerie Harris 1, Jamie King 1, Christopher 
A. Rice 2,3,4, Paul Shannon 1, Brian Patterson 1‡ and Monica 
Crary 1‡*
1 Alcon Research, LLC, Fort Worth, TX, United States, 2 Department of Comparative Pathobiology, 
College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States, 3 Purdue 
Institute for Drug Discovery (PIDD), Purdue University, West Lafayette, IN, United States, 4 Purdue 
Institute of Inflammation, Immunology and Infectious Disease (PI4D), Purdue University, West 
Lafayette, IN, United States

Introduction: Acanthamoeba keratitis is often caused when Acanthamoeba 

contaminate contact lenses and infect the cornea. Acanthamoeba is 

pervasive in the environment as a motile, foraging trophozoite or biocide-

resistant and persistent cyst. As contact lens contamination is a potential first 

step in infection, we  studied Acanthamoeba’s behavior and interactions on 

different contact lens materials. We  hypothesized that contact lenses may 

induce aggregation, which is a precursor to encystment, and that aggregated 

encystment would be more difficult to disinfect than motile trophozoites.

Methods: Six clinically and/or scientifically relevant strains of Acanthamoeba 

(ATCC 30010, ATCC 30461, ATCC 50370, ATCC 50702, ATCC 50703, and ATCC 

PRA-115) were investigated on seven different common silicone hydrogel 

contact lenses, and a no-lens control, for aggregation and encystment for 

72 h. Cell count and size were used to determine aggregation, and fluorescent 

staining was used to understand encystment. RNA seq was performed to 

describe the genome of Acanthamoeba which was individually motile or 

aggregated on different lens materials. Disinfection efficacy using three 

common multi-purpose solutions was calculated to describe the potential 

disinfection resistance of trophozoites, individual cysts, or spheroids.

Results: Acanthamoeba trophozoites of all strains examined demonstrated 

significantly more aggregation on specific contact lens materials than others, 

or the no-lens control. Fluorescent staining demonstrated encystment in as 

little as 4 hours on contact lens materials, which is substantially faster than 

previously reported in natural or laboratory settings. Gene expression profiles 

corroborated encystment, with significantly differentially expressed pathways 

involving actin arrangement and membrane complexes. High disinfection 

resistance of cysts and spheroids with multi-purpose solutions was observed.

Discussion: Aggregation/encystment is a protective mechanism which 

may enable Acanthamoeba to be more disinfection resistant than individual 

trophozoites. This study demonstrates that some contact lens materials 
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promote Acanthamoeba aggregation and encystment, and Acanthamoeba 

spheroids obstruct multi-purpose solutions from disinfecting Acanthamoeba.

KEYWORDS

Acanthamoeba, aggregate, spheroid, cyst, contact lens, contact lens solution

Introduction

Acanthamoeba keratitis (AK) is a serious ocular infection that 
is extremely difficult to treat and can lead to blindness (Siddiqui 
and Khan, 2012; Szentmary et al., 2019). Currently, AKANTIOR® 
(polyhexanide; PHMB) at 0.08% concentration is the only drug 
approved by the FDA (as an orphan drug designation) for 
Acanthamoeba keratitis (Pharma Boardroom, 2022). 
Acanthamoeba is a free-living protist that is pervasive in the 
environment, and often found in soil and water. Critically, this 
amoeba is not only commonly found in tap water specifically, but 
transmission via tap water and contact lens association has been 
linked to the leading causes of AK in Western countries (Carnt 
et al., 2018, 2020). There are significant education campaigns to 
inform contact lens wearers of the importance of avoiding water 
on their contact lenses at all times (Arshad et al., 2019, 2021; British 
Contact Lens Association, 2021). This amoeba is frequently 
introduced into the eye via contact lenses (Siddiqui and Khan, 
2012; Randag et al., 2019), either as the result of inadequate contact 
lens hygiene habits or due to an ineffective multi-purpose solution 
(MPS; Verani et al., 2009; Tu and Joslin, 2010; Brown et al., 2018; 
Carnt et al., 2018). Data indicates that AK cases are increasing, 
including recent outbreaks in Western countries (Antonelli et al., 
2018; Carnt et al., 2018; Randag et al., 2019) which were generally 
found to be the result of product-specific low Acanthamoeba MPS 
disinfection efficacy (Verani et al., 2009; Yoder et al., 2012). These 
outbreaks and the incidence rate of AK associated with contact lens 
users highlight the critical importance of adequate MPS 
disinfection efficacy against Acanthamoeba. While poor MPS 
disinfection efficacy is often blamed for Acanthamoeba infections, 
it is possible that contact lens materials themselves play an 
important role in the potential of Acanthamoeba to infect the eye. 
While Acanthamoeba trophozoites and cysts will bind to a wide 
variety of polymeric surfaces (Kilvington and Larkin, 1990; Beattie 
et  al., 2011), the differences in silicone hydrogel contact lens 
materials have not been considered as playing a role in 
Acanthamoeba pathogenesis. Thus, contact lenses may have 
inappropriately avoided blame by being recognized as a mere 
vector in the path to Acanthamoeba keratitis infection, as opposed 
to having an impact on the potential for a corneal infection.

Acanthamoeba exists either in the motile, infective trophozoite 
form or as the more resistant, persistent cyst form, which can 
remain viable for years (Mazur et al., 1995; Siddiqui and Khan, 
2012). Cysts are notoriously difficult to eradicate versus the 
trophozoite form, and have been shown to be impervious to most 

disinfection methods that do not involve hydrogen peroxide or 
povidone iodine (Johnston et al., 2009; Coulon et al., 2010; Ahearn 
et al., 2012; Walters et al., 2022). While not generally considered a 
social amoebae like Dictyostelium, which can become a 
multicellular structure during their lifecycle, Acanthamoeba has 
been shown in the literature as forming clumps of cysts. This 
social behavior has not been studied significantly though 
Acanthamoeba aggregation has been observed during viral 
infection of the amoeba (Oliveira et al., 2019) as well as a precursor 
to encystment (Coulon et al., 2010). Both mechanisms suggest a 
protective action similar to that seen in Dictyostelium where the 
multicellular structure differentiates with some amoeba becoming 
cysts and others sacrificing themselves to form the protective 
fruiting body (Kilvington et al., 2009; Schaap, 2011; Kilvington 
and Lam, 2013; Oliveira et al., 2019). Acanthamoeba aggregation 
as a precursor to encystment has an evolutionary advantage that 
would allow protection of interior trophozoites from the 
environmental trigger promoting encystment. However, 
Acanthamoeba aggregation has not been studied outside of viral 
infection and many Acanthamoeba investigations identify that 
Acanthamoeba cysts are observed as clumps or spheroids but 
provide no hypothesis on the biological mechanisms occurring. 
Spheroids can be made of either trophozoites or cysts (Griffiths, 
1969; Coulon et al., 2010; Ahearn et al., 2012) and it is currently 
unknown how aggregation affects cyst adherence to contact 
lenses. The underlying genes associated with aggregation remain 
largely unknown and the cellular pathways involved in encystment 
are still being described (Rolland et al., 2020). Encystment occurs 
when Acanthamoeba identifies the environment as unfavorable 
but any number of triggers from temperature, osmolarity, or 
nutrient availability, have been associated with encystment (Lloyd, 
2014; Mahboob et al., 2016).

Encystment is a patient safety risk as Acanthamoeba cysts are 
difficult to kill both when they are on contact lenses and when they 
are in the cornea (Rayamajhee et al., 2021). One Acanthamoeba 
keratitis outbreak was specifically associated with a multi-purpose 
solution that induced encystment of Acanthamoeba trophozoites 
and failed to effectively kill Acanthamoeba cysts (Verani et al., 
2009). This allowed Acanthamoeba to be transferred to the eye via 
contact lenses where Acanthamoeba then excysted and became 
pathogenic. Previous research on Acanthamoeba’s interaction with 
contact lenses has focused on its rate of adherence and the number 
of Acanthamoeba that can form strong bonds to the surface of 
contact lenses (Kilvington and Larkin, 1990; Ibrahim et al., 2009; 
Lee et al., 2018). Unfortunately, many of the published results in 
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this field are contradictory and little consensus can be found in the 
literature on which contact lenses demonstrate the most abundant 
Acanthamoeba adherence (John et al., 1989; Kilvington, 1993; Seal 
et al., 1995; Lee et al., 2016). Meanwhile, the contact lens industry 
continues to expand with new materials and surface chemistries 
(Musgrave and Fang, 2019). Here, we developed new methods to 
observe and quantify the behavior of six different potentially 
keratitis-causing Acanthamoeba strains on contact lens materials 
to determine if the Acanthamoeba response to different materials 
could possibly play a role in Acanthamoeba transmission to the 
eye. We observed that Acanthamoeba aggregates and encysts in 
response to some lens materials, independent of MPS exposure. 
To understand the mechanisms by which contact lenses contribute 
to aggregation, we  evaluated the altered gene expression of 
Acanthamoeba when in contact with different lens materials and 
identified genes which may be critical to this material-specific 
aggregation process. Finally, we  evaluated resistance to multi-
purpose solution disinfection when Acanthamoeba are aggregated. 
Thus, we show here not only an extremely robust investigation into 
the behavior and motility of this pervasive pathogenic amoeba, but 
we also show for the first time that contact lens materials may play 
a critical role in increasing the risk of Acanthamoeba keratitis and 
affecting patient safety through disinfection resistance.

Materials and methods

Acanthamoeba culturing

Acanthamoeba strains were obtained from ATCC (American 
Type Culture Collection, Manassas, VA). Strains used and their 
information can be found in Table 1.

As previously described (Walters et al., 2022), trophozoites 
were axenically cultured in AC6 media (axenic culture medium, 
containing 20 g biosate peptone, 5 g glucose, 0.3 g KH2PO4, 10 μg 
vitamin B12, and 15 mg L-methionine per liter of distilled 
deionized water). Media was adjusted to a pH of 6.6–6.95 with 1 M 
NaOH and autoclaved at 121°C for 20 min before storing at room 
temperature for use within 3 months. ¼ Ringer’s solution was used 
to harvest organisms. To create a homogenous population of 
Acanthamoeba trophozoites, Acanthamoeba were scaled up in 
fresh AC6 media 24 h to testing. Cells were then collected and 
centrifuged at 500 g for 5 minutes, followed by a wash and 
resuspension using ¼ Ringer’s solution. Count seeding was 
confirmed via manual counting using a hemocytometer.

Contact lenses and mutli-purpose 
solutions used

Information about contact lenses and multi-purpose solutions 
used and their details can be  found in Table  1. Multi-purpose 
solutions tested were chosen by their representation of popular 
multi-purpose solutions and are identified by biocide throughout 

the manuscript: PAPB/PQ [polyaminopropyl biguanide (0.00013%), 
polyquaternium (0.0001%)], PAPB/PQ/AD [polyaminopropyl 
biguanide (0.00013%), polyquaternium (0.0001%), alexidine 
dihydrochloride (0.00016%)], and PAPB [polyaminopropyl 
biguanide (0.00013%)]. Lenses were always paired by power for 
each replicate of an experiment (that is, for each replicate, every lens 
would be of the same power to reduce variability). Lenses were 
acquired based on market availability. For aggregation 
quantification, −12 power lenses were used. For RNA collection, 
−12 and −6 power lenses were used. For confocal experiments, −3 
power lenses were used. All lenses used were recorded visually 
during the experimental procedure to ensure similar behavioral 
patterns – power was not observed to impact aggregation.

Acanthamoeba observation and 
quantification of count and particle size 
on contact lens materials

Contact lenses were trimmed to 12 mm utilizing a biopsy 
punch. In a 48-well plate, a silicone O-ring was placed at the bottom 
of each well (Figure 1A). The contact lenses were placed on top of 
the silicone O-ring, then an additional O-ring was placed on top of 
the contact lens. This allowed the contact lens to maintain its 
normal curvature but prevented lens floating during extended 
timelapse observation. 500 μl of ¼ Ringer’s was added to the top of 
the contact lenses. ~3,000 trophozoites were added to each well 
containing a contact lens. Amoeba occasionally demonstrated a ring 
pattern due to a slight wrinkle in the bottom of the lens caused by 
the round lens being sat on a flat well. A no-lens control (containing 
both O-rings) was also executed in the same polystyrene plate. The 
48-well plate was transferred to a Nikon microscope with motorized 
stage. Acanthamoeba were allowed to settle for 10 min and then each 
well was imaged using a 2×2 stitched large image (NIS Elements AR 
3.2) at 4× magnification for a continuous period of 12 h, with each 
well being imaged every 3 min. Later timepoints at 24, 48, and 72 h 
were also conducted for 30 min of continuous imaging with each 
wellbeing imaged every 3 min. All videos were concatenated such 
that each contact lens had a single video file containing 274 images 
representing the entire 72-h period of observation. Seven contact 
lenses plus a no lens control were executed for each replicate. Six 
replicates were conducted for each strain of Acanthamoeba and six 
strains of Acanthamoeba were utilized.

Timelapse videos were recorded in grayscale using bright-field 
microscopy. Using ImageJ (version 1.53q), videos were converted 
into a high-contrast, binary format for analysis (Figure 1B). Briefly, 
image thresholding as determined by ImageJ was used to convert 
greyscale images into binary. Non-amoebic artifacts were removed 
utilizing fill and clear functions within ImageJ as needed. Particle 
analysis was conducted on the binary images, which included count 
and size of all particles (amoeba) within a frame. Individual images 
were created by duplicating frames within the timelapse video into 
new image files as needed. The size and count of each contact lens/
replicate/strain were evaluated independently. For each timelapse 
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video, 30-min (10 frame) sections were averaged for size and count 
across the 72 h. Size counts were normalized such that 100% 
represented a single individual trophozoite size, and anything over 
100% indicates a spheroid of more than one trophozoite combined. 
This was conducted independently for each video as the image field 
had slight differences in plane, resulting in variable trophozoite size 
depending on if the microscope was focused on the top, middle or 
bottom of the cell. The size and count across the six replicates for a 
specific contact lens/no lens control were averaged for each strain 
of Acanthamoeba. Count and normalized particle size were graphed 
as a function of time for each strain.

To allow the amoeba to settle onto the lens and compensate for 
size differences observed between strains, the size of each strain-
lens condition was normalized to its own 0.5–1.0 h reference time 
(Campolo et al., 2021). Additionally, due to the count difference of 
the no lens control, which was not confined to a smaller field of 
view by the bowl of the contact lens, the individual particle count 
of the no lens control was not included in the statistical analysis. 
Amoeba size and count within each timepoint within each replicate 
of each strain and lens combination were averaged, and standard 
deviation was calculated to identify outliers. Replicates (n = 6) of 
identical conditions were then averaged by timepoint, and standard 
error of the mean calculated. Normality was assessed using a 
Shapiro–Wilk test, and size and count (between conditions (lens 

material) at any timepoint, and within each condition over time) 
were analyzed via two-way repeat measure ANOVA with a post-hoc 
Tukey’s multiple comparisons test (GraphPad Prism 9.2.0). An 
alpha of 0.05 was used to assess significance in all comparisons.

Standard curve spheroid generation

Acanthamoeba ATCC 30461 trophozoites were seeded into 
Biofloat plates (faCellitate, Mannheim, Germany) at a density of 
8, 16, 32, 125, 250, 500, 1,000, or 2,000 cells/well in replicates of 8 
per plate. The experiment was conducted across 4 independent 
96-well plates per time period. Timelapse images were taken of 
each spheroid every 5 min for 3 h, then every 15 min for the 
subsequent 6 h, and then every 30 min from hours 9 through 24. 
Each well made one spheroid and the timelapse videos were 
converted to binary images in the same fashion as the contact lens 
videos. Each spheroid video was analyzed to determine the 
number of trophozoites per spheroid, as well as the area of each 
spheroid as a function of time. A standard curve was generated as 
a function of trophozoite count vs. spheroid size over time using 
spheroid area (Supplementary Figure S1). To validate standard 
curve cell count estimation method, count estimates using the 
standard curve were compared against traditional hemocytometer 

TABLE 1 Description of the strains of Acanthamoeba used (de Lacerda and Lira, 2021) contact lens material tested, and multi-purpose solutions used.

Acanthamoeba Genotype Strain Keratitis-causing genotype Original source

ATCC 50702 T3 TIO:H37 Yes (Sawyer, 1971; Chelkha et al., 2020) Keratitis

ATCC 30461 T4 Eye Yes (Acanthamoeba polyphaga 

(Pushkarew), 2019; Pushkarew, 1913)

Keratitis

ATCC 50370 T4 Ma Yes (Douglas, 1930; Gatti et al., 1998) Keratitis

ATCC 30010 T4 Neff Yes (Neff, 1957; Chelkha et al., 2020) Environment

ATCC 50703 T5 45 Yes (Molet and Ermolieff, 1976; Cruz 

and Rivera, 2014)

Human Nose

ATCC PRA-115 T11 4RE Yes (Sawyer et al., 1977; Gast, 2001) Lens case

Contact lens material Brand name Manufacturer Group/Water content

omafilcon B ProClear CooperVision, San Ramon, CA, USA 

CooperVision, San Ramon, CA, USA 

CooperVision, San Ramon, CA, USA

2

comfilcon A Biofinity 5C/48%

fanfilcon A Avaira Vitality 5B /55%

samfilcon A Ultra Bausch + Lomb® Rochester, NY, USA 5C/46%

etafilcon A Acuvue 2 Johnson & Johnson Vision Care, Jacksonville, FL, USA 

Johnson & Johnson Vision Care, Jacksonville, FL, USA

4

senofilcon A Acuvue Oasys 5C/38%

lehfilcon A TOTAL30 Alcon® Fort Worth, TX, USA 5B/55%

Multi-purpose solution biocide composition Brand name Manufacturer Disinfection time

Polyaminopropyl biguanide (0.00013%),

(PAPB)

Lite CooperVision, San Ramon, CA, USA 6 h

Polyaminopropyl Biguanide Hydrochloride (0.00013%), polyquaternium 

(0.0001%)

(PAPB/PQ)

Biotrue® Bausch + Lomb® Rochester, NY, USA 4 h

Polyaminopropyl biguanide (0.00013%), polyquaternium (0.0001%), 

alexidine dihydrochloride (0.00016%)

(PAPB/PQ/AD)

Biotrue® Hydration 

Plus

Bausch + Lomb® Rochester, NY, USA 4 h
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method (Buck and Rosenthal, 1996) and validated across a range 
of 100–1,500 cells per spheroid.

Confocal imaging of spheroids

Spheroids were generated on Biofloat (faCellitate, Mannheim, 
Germany) plates or contact lenses as described above (Figure 1C). 

Spheroid age was between 2 and 72 h depending on the images. Prior 
to aggregation experiments, control trophozoites and cysts 
[pre-generated separately via starvation (Walters et al., 2022)] were 
stained to verify stain response to cells. No control cells were added 
to aggregation experiments. To investigate spheroid formation, 
trophozoites on normal tissue culture plates were incubated for the 
same time period as spheroids as a control. Following spheroid 
generation, spheroids were stained using calcofluor white (Millipore 

A

C

B

FIGURE 1

Methodological representations. (A) Plate set up for time lapse count and strain analysis of Acanthamoeba aggregation on contact lens materials. 
(B) Representative large images taken at 4× magnification in brightfield, and then as they appear in binary which is used for count and size analysis 
(scale bar = 100 μm). (C) Representative large images of fluorescent confocal microscopy images, taken in brightfield, with three different filters, 
and merged (please refer to Figure 7 for details; scale bar = 50 μm) depicting encystment at 6 h using a Biofloat spheroid plate.
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Sigma, Darmstadt, Germany, Catalog #F1303), ethidium homodimer 
(ThermoFisher Scientific, Massachusetts, USA, Catalog #E1169), 
and fluorescein diacetate (ThermoFisher, Catalog #F1303). Spheroids 
were stained with calcofluor white (blue color) which binds to the 
cellulose of cell walls and is only present in cysts (Magistrado-Coxen 
et al., 2019). Ethidium homodimer (orange staining) binds to nucleic 
acids and indicates a compromised cell wall (cell death) or the 
formation of an extracellular matrix. Fluorescein diacetate (green 
color) is a dye that can penetrate cell walls and indicates ongoing 
enzymatic activity as only living cells will convert the nonfluorescent 
dye into the green fluorescent compound fluorescein.

Acanthamoeba DNA sequencing

Crude DNA extracts were prepared from ATCC 30461 with a 
cetyl trimethylammonium bromide-based procedure using 
Carlson Lysis Buffer (CLB; Bioworld, Dublin, OH, USA, # 
10450002; Vaillancourt and Buell, 2019). Briefly, Acanthamoeba 
trophozoites were passaged and collected to create a pellet of 
2 × 107 cells. Pellets were resuspended in CLB containing 0.25% 
2-mercaptoethanol and 0.7 mg/ml RNase A and incubated at 
54°C–56°C for 60 min at 1200 RPM in an Eppendorf Thermomixer 
R. Proteinase K was added to 7 U/ml and incubated with shaking 
for an additional 20 min. Two sequential chloroform:isoamyl 
alcohol extractions were performed, followed by an isopropanol 
precipitation. Crude extracts were dissolved at 54–56°C in Qiagen 
G2 buffer containing 0.2 mg/ml RNase A and 15 U/ml Proteinase 
K and further purified by through a 20/G genomic tip according 
to the manufacturer’s instructions. DNA purity was assessed by 
agarose gel electrophoresis and quantified using a Take3 Micro-
Volume Plate with a Synergy H4 plate reader and Gen5 Software 
(Biotek, Winooski, VT, USA). Illumina sequencing, Oxford 
Nanopore sequencing, and analysis were performed by Seqcenter 
(Pittsburgh, PA, USA). Quality control and adapter trimming was 
performed with bcl-convert (2021) and rrwick/Porechop, Github.
Com (2017) for Illumina and ONT sequencing, respectively. Long 
read assembly with ONT reads was performed with Flye (Lin 
et  al., 2016). The long read assembly was polished with Pilon 
(Walker et  al., 2014). To reduce erroneous assembly artifacts 
caused by low quality nanopore reads, long read contigs with an 
average short read coverage of 15x or less were removed from the 
assembly. Assembly statistics were recorded with QUAST 
(Gurevich et al., 2013). Assembly annotation was performed with 
Funannotate (Jon and Jason, 2019).

Acanthamoeba RNA harvesting and 
sequencing

In a 24-well plate, contact lenses were place concave side up 
in each well. 100 μl of ¼ Ringer’s solution was placed below the 
lens to keep it supported and moist, and the lid was secured to the 
plate to prevent drying. 75 μl of ¼ Ringer’s suspending 5 × 104 

Acanthamoeba was placed onto the upward-facing concave side. 
Wells were imaged continuously at one image every 24 s while 
amoeba were on the lens to ensure that lenses were centered, 
amoeba were on top of the lens, and amoeba exhibited similar 
behavior as seen in Acanthamoeba quantification experiments. At 
the end of the specified time period, amoeba were harvested 
without disturbing the lenses by pipetting amoeba off and pipette-
washing the lens with 50 μl ¼ Ringer’s. All wells within a technical 
replicate were combined in a singular sample collection tube for a 
total minimum of 5×105 cells per sample. Lenses and wells were 
examined via microscope after harvesting to ensure all amoeba 
were collected and none remained in the well. Acanthamoeba 
castellanii (ATCC 30461) samples were collected from the lenses 
directly into TRIzol (ThermoFisher, Waltham, MA, USA, 
#15596026) and RNA was isolated immediately using the 
PureLink RNA Micro Scale Kit (ThermoFisher, #12183016). RNA 
integrity was assessed by agarose gel electrophoresis and quantified 
using a Take3 Micro-Volume Plate with a Synergy H4 plate reader 
and Gen5 Software. For each condition and time point, six 
independent replicates were prepared on separate days. RNA 
sequencing and analysis was performed by Seqcenter. Samples 
were then DNase treated with Invitrogen DNase (RNase free). 
Library preparation was performed using Illumina’s Stranded 
Total RNA Prep Ligation with Ribo-Zero Plus kit and 10 bp IDT 
for Illumina indices. Sequencing was done on a NextSeq2000 
giving 2x50bp reads. Quality control and adapter trimming was 
performed with bcl-convert v3.9.3 (2021). Read mapping was 
performed via STAR (Dobin et al., 2012) using the previously 
sequenced genome of ATCC 30461 as reference. Feature 
quantification was performed using RSEM (Li and Dewey, 2011). 
Read counts loaded into R and were normalized using edgeR’s 
(Robinson et  al., 2009) Trimmed Mean of M values (TMM) 
algorithm. Subsequent values were then converted to counts per 
million (cpm). Differential expression analysis was performed 
using edgeR’s Quasi-Linear F-Test (qlfTest) functionality against 
treatment groups. Differentially expressed genes were considered 
those with |log2FC| > 1 and p < 0.05.

Affinity Propagation clustering (17218491) of RNA 
sequencing results was performed in Python version 3.8.8 using 
scikit-learn version 0.24.1. Parameters used were 0.5 damping, a 
maximum of 200 iterations, 15 unchanged iterations until 
convergence. The dimensional inputs for Euclidean distance-
based affinity propagation were composed of the following gene 
expression comparisons: lehfilcon A vs. polystyrene control at 4, 
12, or 24 h, samfilcon A vs. polystyrene control at 4, 12, or 24 h, 
and comfilcon A vs. polystyrene control at 4, 12, or 24 h. The 
average log2 fold changes in gene expression from six RNA 
sequencing replicates were used as value inputs for each 
dimension. Only significantly differentially expressed genes were 
included in analysis. The resulting gene clusters were further 
reduced into phenotypic clusters by correlational distance-based 
affinity propagation on the median expression change of all genes 
included in each primary cluster. Heatmaps of the resulting gene 
subsets were constructed in GraphPad Prism 9.2.0.
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Locus tags from the genomic database created by DNA 
sequencing (of the ATCC 30461 strain, internal identifiers from 
these datasets are FUN_*) and the associated information with 
each tag was used to identify homologs and inferred gene function 
based on the known function of the ATCC 30010 strain. The 
amino acid sequence of each ATCC 30461 gene was used to search 
NCBI’s BLAST (National Center for Biotechnology Information, 
Basic Local Alignment Search Tool) to determine percent 
homology with known genes of all species. As homology with 
ATCC 30010 was most prevalent, this and the associated Neff 
strain locus tag were used to estimate gene function. Neff strain 
locus tags (ACA1_*) were searched in the AmoebaDB informatics 
resource repository to define the GO (Gene Ontology) terms for 
each gene. Neff strain locus tags were also used to identify the 
associated protein ID in either the UniProt or KEGG (Kyoto 
Encyclopedia of Genes and Genomes) databases, and significant 
common pathways were identified using STRING (Search Tool for 
the Retrieval of Interacting Genes/Proteins; false discovery 
rate < 0.05 using the Benjamini-Hochberg procedure).

Disinfection efficacy

The disinfection efficacy of individual trophozoites, spheroids, 
and cysts were evaluated in a disinfection study. The disinfection 
study was conducted concurrently across conditions with three 
independent inoculums of Acanthamoeba ATCC 30461.

Spheroids: The wells of a 96-well Biofloat plate (faCellitate, 
Mannheim, Germany) were seeded with a serial dilution of 
Acanthamoeba trophozoites such that wells contained either 100, 
375, or 1,000 cells per well.

Cysts: Cysts were generated by starvation on non-nutrient 
agar plates. Briefly, trophozoites were harvested into ¼ Ringer’s 
and plated on non-nutrient agar plates and incubated at 28°C for 
a minimum of 10 days. After incubation, cysts were rinsed from 
plates using ¼ Ringers and stored at 4°C until testing.

Trophozoites and cysts: The wells off a 96-well flat bottom tissue 
culture plate were seeded with a serial dilution of Acanthamoeba 
cells such that wells contained either 100, 375, or 1,000 cells per well.

Spheroids, trophozoites, and cysts: Eight replicates of each 
concentration were conducted per multi-purpose solution and 
independent inoculum. Cells were incubated in the wells for either 
12 or 24 h prior to being exposed to multi-purpose solutions. 
Excess ¼ Ringer’s was removed from each well, and 200 μl of the 
designated multi-purpose solution was added to the well. At 
disinfection time (4 or 6 h), the MPS was removed and 25 μl of 
Letheen broth was added to each well to neutralize any remaining 
biocide. The total contents of each well were transferred to a 
48-well plate containing 500 μl of non-nutrient agar. Heat-killed 
Escherichia coli was added to each well and the 48-well plates 
taped and incubated for 21 days at 28°C.

After 21 days, all plates were scored for growth. Each multi-
purpose solution/cell type/incubation length/inoculum was 
quantified as a % outgrowth for a particular condition. 

Comparisons between cell type, incubation length and multi-
purpose solutions were conducted and analyzed via 2-way 
ANOVA, with post hoc Tukey’s test (GraphPad Prism 9.2.0). 
Significance was set at 0.05.

Results

Acanthamoeba behavior on lens 
materials

To understand the differences in Acanthamoeba behavior 
on popular lens materials, we  investigated six different 
potentially keratitis-causing strains of Acanthamoeba for 72 h 
on seven different lens materials, as well as a polystyrene no 
lens control in which Acanthamoeba appeared to move 
independently and consistently similar to previously examined 
surfaces (Campolo et  al., 2021; Figures  2–5; 
Supplementary Figures S2–S4). An experimental timeline was 
designed to allowed us to observe and quantify aggregation 
both in the clinically normal periods of when a contact lens 
might be stored individually in a contact lens case overnight, as 
well as longer periods to determine if any behavior was 
transient (de-aggregation of Acanthamoeba on their own 
without conditions otherwise changing). To quantify behavior, 
we  determined both the particle count (the number of 
individual amoeba or spheroids identifiable in the field of view) 
and the particle size. As spheroids form, an inverse relationship 
between particle count and average size is observed (i.e., as 
counts decrease, size increases).

When data from all strains were combined (Figures 2A,B; 
Supplementary Figure S2), we found that all lens materials tested 
demonstrated a significantly lower particle count than lehfilcon 
A (p < 0.05) from timepoints 1.5–2.0 h to 9.0–9.5 h, with 
comfilcon A, senofilcon A, samfilcon A, fanfilcon A, and 
omafilcon A being significantly lower through at least 12 h. 
Similarly, with all strains data combined, all lens materials except 
etafilcon A demonstrated a significantly higher particle size from 
at least 3.0–3.5 h through 72 h than lehfilcon A (p < 0.05). In this 
analysis, etafilcon A demonstrated a significantly higher particle 
size than lehfilcon A from 6.0–6.5 h through 11.5–12 h. All lens 
materials were also analyzed for their change compared to their 
baseline (0.5–1.0 h) in both particle count and particle size. When 
all strains were combined it was noted that lehfilcon A, omafilcon 
A, and etafilcon A did not demonstrate a significant change 
compared to their particle count baseline, while comfilcon A, 
senofilcon A, samfilcon A, and fanfilcon A did, beginning by 
1.5–2.0 h to 2.0–2.5 h (p < 0.05). Some lens materials (comfilcon 
A, fanfilcon A) maintained this difference through 72 h, while 
others (senofilcon A, samfilcon A) demonstrated a relative return 
to their baseline before the end of the experiment. Overall, when 
combining the data from all six Acanthamoeba strains examined 
(Figures 2A,B), this demonstrated that the lehfilcon A material 
specifically allowed significantly lower aggregation versus all 
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FIGURE 2

Acanthamoeba demonstrated significantly less aggregation on lehfilcon A lenses compared to other materials. Mean ± SE of (A) all strains (ATCC 
30010, 30461, 50370, 50702, 50703, and PRA-115) count (number of individual particles), (B) all strains normalized particle size. (C) Enlarged 
representative binary images of amoeba (ATCC 30461) on contact lenses at 12 h timepoint (scale bar = 100 μm), (D) Representative binary images 
of amoeba (ATCC 30461) on all materials tested (scale bar = 1 mm). Size is normalized to the baselines obtained in the 0.5–1.0 h. Statistical 
comparisons for subpanels (A) and (B) noted in Supplementary Figure S2. n = 6 per group.

other materials tested. Visually, the no lens control and  
lehfilcon A showed individual trophozoites moving freely as 
individuals across the surface while other materials demonstrated 

aggregation to various degrees across the course of the  
experiment (Figures  2C,D; Supplementary Videos S1–S6). 
Supplementary Videos S1: ATCC 30010, S2: ATCC 30461, S3: 
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ATCC 50370, S4: ATCC 50702, S5: ATCC 50703, S6: ATCC 
PRA-115.

Additionally, despite being seeded with the same number of cells 
in the same plate at the same time, the no lens control in most strains 
tested demonstrated a lower particle count in the field of view than all 
lenses tested. This was due to amoeba having a larger available space 
(flat-bottomed well vs. bowl of a contact lens), although they were 
consistently observed to be evenly dispersed throughout the well both 
in this study and in previous ones (Campolo et al., 2021). Further, it 
is a noticeable phenomenon that count increases in all lens materials 
and in all strains from time 0–0.5 h to 0.5–1.0 h. This is due not only 
to amoeba settling onto the lens, but also to their inclination to walk 
down to the bottom of the bowl of the lens upon adherence to the 
lens, thereby coming into the field of view and being counted. When 
observed, aggregation into spheroids is most often seen at the 
0.5–1.0 h time point (demonstrated by the marked decrease in count), 
while non-aggregation results in consistently higher particle counts.

When examined individually (Figures  3–5; 
Supplementary Figures S3, S4), most strains demonstrated the 
similar trend of lehfilcon A maintaining a statistically higher cell 
count than other lens materials at most time points (p < 0.05). 
The exceptions to this were etafilcon A, which demonstrated 
little aggregation in ATCC 30010 or ATCC 50703. The ATCC 
50703 strain was the only strain tested where cell count 
continued to increase over time for senofilcon A, samfilcon A, 
and omafilcon A. Senofilcon A produced the highest particle size 
(i.e., largest spheroid size) in ATCC 30010 and ATCC 30461, 
while fanfilcon A and/or comfilcon produced the largest 
spheroid size in ATCC 50370, ATCC 50703, and ATCC 
PRA-115, and omafilcon A produced the largest spheroid size in 
ATCC 50702. The particle size of the no lens control and 
lehfilcon A were not statistically different from each other at any 
time point in any strain tested. It is noted that some strain-material 
combinations produced a pronounced peak in spheroid size in 
later timepoints, which may be slightly reduced before 72 h (such 
as ATCC 50703 comfilcon A) or may continue to grow through 
the 72 h timepoint (such as ATCC 30461 comfilcon A), while the 
majority of other strain-material combinations demonstrated a 
more consistent particle size from at least 3.0–3.5 h onwards. To 
note, ATCC 50703 had the least stable spheroids of all strains, with 
several lens materials showing susbtantial early aggregation 
followed by deaggregation at later timepoints.

Cell counts within aggregated spheroids

Each spheroid (defined as more than four cells touching at 
once) was analyzed to determine the number of cells it 
contained from baseline (0.5 h) through hour 24 (Figure 6). 
Each lens material was noted to have unique aggregation 
profiles: the No Lens Control and lehfilcon A maintained no 
significant aggregation through all 24 h. Etafilcon A did not 
demonstrate aggregation at hours 0.5, 6, or 12, but did have 
significantly more aggregation vs. its own baseline and vs. the 

No Lens Control at hour 24 (p < 0.05). Comfilcon A, senofilcon 
A, samfilcon A, and fanfilcon A maintained significantly 
larger spheroids than the No Lens Control and lehfilcon A at 
hours 6, 12, and 24. Omafilcon A showed signficant 
aggregation at hours 6 and 12, with a moderate dispersal of the 
spheroids by hour 24. Comfilcon A also demonstrated the 
largest spheroids by size (>1,500 cells per spheroid at multiple 
time points) while aggregating materials such as senofilcon A 
and samfilcon A were more likely to produce several spheroids 
of more moderate size (between 100 and 1,500 cells 
per spheroid).

Visualization of encystment within 
Acanthamoeba spheroids

To understand the formation of Acanthamoeba cysts within 
spheroids and evaluate if aggregation was a similar process 
regardless of material trigger, we utilized fluorescent confocal 
microscopy and three different spheroid-forming conditions: a 
BIOFLOAT™ spheroid plate, senofilcon A, and comfilcon A 
(Figure 7). Results were highly similar between all three materials 
tested, indicating that spheroids made on Biofloat spheroid 
plates were structurally similar to those made on contact lens 
materials. As early as 4 h, Calcofluor-white-positive cysts were 
observed on contact lens materials. Likewise, ethidium 
homodimer staining became evident in the vicinity of newly 
formed cysts, indicating the general building of an extracellular 
matrix, while still demonstrating some enzymatic activity via 
fluorescein diacetate staining. Notably, the ethidium homodimer 
staining outlining cell shapes (but not often filling a cell 
cytoplasm) indicates for the first time that Acanthamoeba 
spheroids may be forming an extracellular matrix as they age. 
Fluorescein diacetate was noted in spheroids at all timepoints 
and in both trophozoites and cysts, although it was more 
prominent in older spheroids, indicating mature spheroids are 
still viable, metabolically active, infectious cells (Garajová 
et al., 2019).

Genomic analysis of Acanthamoeba on 
lens materials

Following the observation of material-dependent 
Acanthamoeba behavior leading to either independently motile 
trophozoites or enmeshed spheroids, we  analyzed the 
transcriptome of Acanthamoeba ATCC 30461 (a commonly 
utilized strain) on lehfilcon A, comfilcon A, samfilcon A, and 
the no lens control (Figures  8–10, online repository for 
complete data set). This study was undertaken to identify which 
genes or potential pathways may be  contributing to the 
aggregation or may be  contributing to the persistence of a 
spheroid (when it does not dissociate over time), and 
downstream cellular changes in Acanthamoeba as a result of 
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being part of a spheroid. Lehfilcon A was again consistently 
noted as a non-aggregating lens. While both comfilcon A and 
samfilcon A dependably demonstrated aggregation, more 

significantly differentially expressed genes were found at all 
time points in lehfilcon A vs. samfilcon A than lehfilcon A vs. 
comfilcon A.

A B

C D

E F

G H

I J

K L

FIGURE 3

Acanthamoeba demonstrated significantly less aggregation on lehfilcon A lenses compared to other lens materials. Mean ± SE of (A) ATCC 30010 
count, (B) ATCC 30010 particle size, (C) ATCC 30461 count, (D) ATCC 30461 particle size, (E) ATCC 50370 count, (F) ATCC 50370 particle size, 
(G) ATCC 50702 count, (H) ATCC 50702 particle size, (I) ATCC 50703 count, (J) ATCC 50703 particle size, (K) ATCC PRA-115 count, (L) ATCC PRA-
115 particle size. Size is normalized to the baselines obtained in the 0.5–1.0 h. Statistical comparisons noted in Supplementary Figures S3 and S4. 
Matching representative images presented in Figures 4 and 5. n = 6 per group.
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Twenty three genes were significantly differentially 
expressed at all timepoints (4, 12 and 24 h) in lehfilcon A vs. 
comfilcon A and samfilcon A, including two tRNA genes that 
were removed from the detailed analysis. The resulting 21 genes 
were visualized via heatmap and the homologous genes from 
ATCC 30010 (Neff strain) were identified (Figure 8D). All 21 
genes demonstrated some degree of homology with ATCC 
30010, and the majority demonstrated over 75% homology, 
although not all genes have inferred functions; 6 of the 21 genes 
are currently unknown. Further, all 21 genes possessed a similar 
differential expression profile between lehfilcon A vs. comfilcon 
A and lehfilcon A vs. samfilcon A (that is, if a gene was 
downregulated in one, it was downregulated in the other, and 

so on). Overall, as indicated by the white coloration in the 
heatmap, the genes that were significantly differentially 
expressed between the aggregating lenses and the 
non-aggregating lens demonstrated very little difference when 
the two aggregating lenses were compared to each other, thus 
further signifying that these genes are involved in highly similar 
behavioral responses to lens materials. Protein–protein 
interactions and the significantly differentially expressed 
pathways were further identified (Figure 8E) and alterations 
were noted in pathways involving the actin cytoskeleton, 
intracellular vesicle formation, and metabolic activity. Further 
visualizations along with Neff strain homology and GO term 
descriptions can be found in Figures 9, 10.

A B

FIGURE 4

Representative images of Acanthamoeba on contact lens materials at 6, 12, and 72 h. (A) ATCC 30010, (B) ATCC 50370. Mean ± SE representation 
in Figure 3. n = 6 per group.
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Aggregated Acanthamoeba impedes 
disinfection efficacy

To determine MPS disinfection efficacy of Acanthamoeba in 
different cellular formations (Figure  7), Acanthamoeba were 
assessed for biocide resistance in either trophozoite, cyst, or 

spheroid forms after cells had been allowed to adhere (or 
aggregate) in plates for 12 or 24 h (Figure 11). Consistent with 
published findings (Gabriel et al., 2019; Walters et al., 2022), cells 
in the trophozoite form were the most susceptible to MPS biocides 
while cysts were significantly more challenging to disinfect. PAPB/
PQ showed little ability to kill any form, with 100% survival for 

A

C

B

FIGURE 5

Representative images of Acanthamoeba on contact lens materials at 6, 12, and 72 h. (A) ATCC 50702, (B) ATCC 50703, (C) ATCC PRA-115. 
Mean ± SE representation in Figure 3. n = 6 per group.
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FIGURE 6

Once aggregated, cell counts of Acanthamoeba polyphaga (ATCC 30461) spheroids are maintained through 24 h. (A) Cell count of five largest 
spheroids on any one lens combined, calculated per lens type and presented at mean ± SE among 6 replicates. (B) Percentage of cells that are 
maintained in spheroids of various sizes over time, delineated by color for each spheroid size. Percentages are an average from 6 replicates per 
lens material. (C–F) Individual spheroid cell counts at the 0.5 h, 6 h, 12 h, and 24 h timepoints. Each individual spheroid on any lens, replicate, and 
timepoint is represented by a dot corresponding to its cell count. Replicates are visualized from left to right for each lens material (n = 6). Time 0 
baseline is calculated from the 0.5 h to allow cells to adhere to the material. Analyzed via two-way repeat measure ANOVA. Within a given 
timepoint: (a) p < 0.05 vs. lehfilcon A, (b) p < 0.05 vs. comfilcon A, (c) p < 0.05 vs. senofilcon A, (d) p < 0.05 vs. omafilcon A, (e) p < 0.05 vs. samfilcon A, 
(f) p < 0.05 vs. fanfilcon A, (g) p < 0.05 vs. etafilcon A, (h) p < 0.05 vs. No Lens Control. Within a given lens type, *p < 0.05 baseline (0.5 h).
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FIGURE 7

Acanthamoeba polyphaga (ATCC 30461) demonstrated encystment at 4 h on all three materials tested, and maintained encystment through 72 h. 
Controls: Control cells (trophozoites, and cysts pre-made via starvation) were imaged on a glass slide to indicate stain response prior to 
aggregation experiments. Aggregation: Representative images of fluorescently stained Acanthmoeba spheroids on a spheroid-producing Biofloat 
plate, senofilcon A, or comfilcon A, without other encystment-inducing substrates. Calcofluor white staining (DAPI filter, blue color) binds to the 
cellulose of cell walls and indicates cysts. Ethidium homodimer staining (TRITC filter, orange color) binds to nucleic acids and indicates 
compromised cells or cell death (able to be pentrated by stain and bind to nucleic acids) or presence of extracellular matrix. Fluoroscein diacetate 
(FITC filer, green color) is a dye that can penetrate trophozoite cell walls and indicates enzymatic activity. All scale bars equal 50 μm. Eight 
spheroids were created and imaged for each condition in separate wells and representative images were chosen at random.
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spheroids and cysts across all cell concentrations. Likewise, PAPB 
had no ability to disinfect cysts though some efficacy was observed 
against trophozoites. The increased survivability for trophozoites 

with PAPB over time may be due to individual cysts forming by 
24 h that PAPB has no ability to kill. PAPB demonstrated less 
efficacy against spheroids compared to individual trophozoites at 

A

D

E

B C

FIGURE 8

Genomic analysis of Acanthamoeba polyphaga (ATCC 30461) on three different contact lens materials at hours 4, 12, and 24. (A) Venn diagram of 
overlapping genes that were significantly different between lehfilcon A vs. comfilcon A, by hour, (B) Venn diagram of overlapping genes that were 
significantly different between lehfilcon A vs. samfilcon A, by hour, and (C) Venn diagram of overlapping genes that were significantly different 
between lehfilcon A vs. comfilcon A and lehfilcon A vs. samfilcon A, by hour. (D) 23 genes were significantly differentially expressed between 
lehfilcon A and both other materials, and in all three time points; p < 0.05, n = 6 per group. Genes are described according to locus identifier, closest 
identified homologue in ATCC 30010, and GO terms associated with ATCC 30010 protein according to AmoebaDB. (E) All 21 genes are visualized 
as proteins and their protein–protein interactions are identified via STRING: significant pathways are identified using a false discovery rate of <0.05. 
Proteins that were significantly upregulated in aggregating lenses at any timepoint are indicated in the protein–protein interaction map with a blue 
circle. All other proteins visualized were significantly downregulated in aggregating lenses compared to the non-aggregating lens. Further 
visualizations of other significant genes presented in Figures 9 and 10.
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FIGURE 9

Genomic analysis of Acanthamoeba polyphaga (ATCC 30461) on three different contact lens materials at hours 4, 12, and 24. Eighty two genes 
were found to be significantly differentially regulated in at least two consecutive time points; p < 0.05, n = 6 per group. Genes were clustered 
according to gene expression pattern with those depicted falling into a predominantly contact lens material-dependent expression pattern. Heat 
maps display the kinetics of log2 fold change in expression on lehfilcon A relative to comfilcon A (left), lehfilcon A relative to samfilcon A (middle), 
and comfilcon A relative to samfilcon A (right). Genes are described according to locus identifier, closest identified homologue in ATCC 30010, 
and GO terms associated with ATCC 30010 protein according to AmoebaDB.
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all concentrations and time periods despite the cells originating 
from the same stock. PAPB/PQ/AD demonstrated nearly complete 
kill of trophozoites for all concentrations and time points with 
limited survivors at the highest concentration of trophozoites at 
24 h, again likely due to the development of individual cysts within 
the population. PAPB/PQ/AD also had the best efficacy against 
cysts due to the activity of alexidine where only 50% of the 375 

cysts/well condition survived. In contrast, 100% of the spheroid 
wells survived disinfection with PAPB/PQ/AD for both timepoints 
at the two highest cell concentrations, and 50% spheroid survival 
at the lowest concentration, highlighting how the physical barrier 
of aggregated cells and subpopulations of cysts presented a 
substantial challenge for MPS disinfection compared to individual 
trophozoites and cysts at the same concentration.

FIGURE 10

Genomic analysis of Acanthamoeba polyphaga (ATCC 30461) on three different contact lens materials at hours 4, 12, and 24. Seventy seven genes 
were found to be significantly differentially regulated in at least two consecutive time points; p < 0.05, n = 6 per group. Genes were clustered 
according to gene expression pattern with those depicted falling into a time and material-dependent expression pattern. Heat maps display the 
kinetics of log2 fold change in expression on lehfilcon A relative to comfilcon A (left), lehfilcon A relative to samfilcon A (middle), and comfilcon A 
relative to samfilcon A (right). Genes are described according to locus identifier, closest identified homologue in ATCC 30010, and GO terms 
associated with ATCC 30010 protein according to AmoebaDB.
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FIGURE 11

Acanthamoeba polyphaga (ATCC 30461) in three different cell concentrations (1,000, 375, or 100 cells per 100 μl) was used to examine MPS 
disinfection efficacy against (A) trophozoites, cysts, and spheroids, after cells had adhered to the plate for 12 or 24 h. (B) An inoculum control was 
run concurrently with the same cultures used in (A). Each bar represents a mean ± SE of 3 replicates, each replicate being composed of 8 wells 
from which percent survivorship was calculated. Statistical analysis via 2-way ANOVA: comparisons versus a MPS within the same cell condition 
and same time, *p < 0.05 vs. PAPB/PQ, **p < 0.05 vs. PAPB; comparisons versus a cell condition within the same MPS and same time, †p < 0.05 vs. 
trophozoites, ††p < 0.05 vs. cysts.

Discussion

Acanthamoeba and its risk to contact lens users remains at the 
forefront of ophthalmology and optometry due the devastating 
consequences of infections and limited options for treatment 
(Siddiqui and Khan, 2012; Szentmary et al., 2019). While studied 
for decades, Acanthamoeba research has only recently expanded to 
utilize robust -omic methods to understand more about this 
amoeba’s dynamic lifecycle (Bernard et al., 2022). Even now, limited 
genome annotation and no stable methods for impacting gene 
expression have significantly hampered Acanthamoeba research 
where the pathogenesis of other ocular microorganisms like 
Pseudomonas are well-described and the risk factors for infection 
clearly delineated (Gu et al., 2022). Equally, the infrequent diagnosis 
of Acanthamoeba keratitis’ has prevented significant investment in 
treatment development and infection prevention, despite 
devastating outcomes for those affected (Siddiqui and Khan, 2012; 
Szentmary et al., 2019). Most outreach and publicity stems from 
survivors, though education of contact lens users and, equally, their 

optometrists, is being pioneered by experts around the globe. 
Currently, the sole defense for contact lens users beyond water 
avoidance is the disinfecting solutions utilized to clean contact 
lenses (Arshad et al., 2019, 2021; British Contact Lens Association, 
2021). Most disinfecting solutions were developed to reduce the 
bacterial and lipid/protein deposit load on a lens as opposed to 
engineering a lens or lens solution with a more challenging 
organism like Acanthamoeba in mind (although, the reduction of 
bacteria binding to a lens could limit the nutrient source and 
proliferation for Acanthamoeba). The regulatory requirements for 
Acanthamoeba multi-purpose solution disinfection efficacy 
continue to lag despite calls for action (Jobson Medical Information, 
LLC, 2009; Primary Care Optometry News, 2014). However, no 
multi-purpose solutions have a requirement to disinfect 
Acanthamoeba (ISO 14729:2001/A1:2010, 2010) and effective 
chemicals available against Acanthamoeba are unable to be utilized 
at sufficient concentrations due to toxicity to the cornea. Equally, 
the most effective products against all types of Acanthamoeba are 
hydrogen peroxide  based (Walters et al., 2022). However, many 
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consumers avoid hydrogen peroxide use because of the risk of 
accidently burning the corneal surface through misuse, despite the 
disinfection benefits, as well as the slightly more complicated user 
instructions. Here, we have shown it is most important to keep 
Acanthamoeba in their most susceptive state (trophozoites) where 
most multi-purpose solutions offer some level of disinfecting ability.

Contact lenses have evolved significantly from the polymethyl 
methacrylate and original rigid gas permeable lenses. Contact 
lens manufacturers must continue to evolve new materials to 
increase oxygen permeability and wettability to combat user 
discomfort that can cause patients to revert to glasses. For 
Acanthamoeba keratitis with small outbreaks associated with 
poor MPS efficacy, little examination has been done to evaluate 
the role of the contact lens in Acanthamoeba pathogenesis. Here, 
we  have described a novel finding that many strains of 
Acanthamoeba will aggregate in response to specific contact lens 
materials. This is a significant potential risk to patients as 
Acanthamoeba aggregation is a precursor to encystment (Coulon 
et al., 2010; Bernard et al., 2022). As part of its natural life cycle, 
Acanthamoeba will aggregate into small clusters to encyst. Likely 
a protective measure, aggregation in response to a newly toxic 
environment makes evolutionary sense where even if the entire 
population fails to encyst, at least some individuals, potentially at 
the center of an spheroid, may survive the unfavorable 
environment (Coulon et al., 2010). To our knowledge, this is the 
first time this aggregation and encystment phenomenon has been 
observed in this short duration where issues like food availability 
and chemical induction were not at play. Trophozoites were 
induced to aggregate and encyst by the material they were in 
contact with, versus a change in chemical or nutrient availability 
commonly used in other studies (Coulon et  al., 2010, 2012; 
Bernard et  al., 2022). Gene expression evaluation indicated 
alterations in encystment pathways where actin cytoskeleton 
rearrangement is critical to the aggregation pathways as well as 
changes in metabolic activity and intracellular vesicles. 
Fluorescent confocal microscopy confirmed the presence of cysts 
as early as four hours after introduction to a contact lens surface. 
This demonstrates a significantly faster aggregation than has been 
observed in chemical induction such as Neff ’s encystment media 
(>24 h) or starvation (7–14 days; Aqeel et al., 2013). The contact 
lens surface demonstrated such a significant risk that 
Acanthamoeba actively initiated a terminal differentiation 
resulting in cysts far earlier than normal nutrient unavailability 
would stimulate. Other contact lens-associated risks were 
apparent as well, including the upregulation of autophagy and 
ubiquitination in the aggregating lenses verses lehfilcon 
A. Interestingly, spheroids removed from contact lens materials 
can de-aggregate on polystyrene or lehfilcon A though cysts 
within the spheroid remain cysts without a food source 
(Supplementary Video S7). For polystyrene controls and lehfilcon 
A, there was no indication that any binary fission occurred based 
on cell count, and eventually individual trophozoites encysted 
though active trophozoites were visible through the 72 h despite 
no nutrient source. This supports previous work that shows 

trophozoites will maintain motility through 24 h with no decrease 
in activity even without nutrients (Campolo et al., 2021). Here, 
Acanthamoeba trophozoites show a remarkable response to a 
surface they identified as inhospitable, responding quickly (<1 h) 
to many contact lens materials, aggregating and initiating 
encystment (< 4 h) despite no chemical induction beyond the 
contact lens surface. No nutrients are provided on the lens but 
this is not a long enough time period to be considered starvation. 
The properties of the aggregation-inducing contact lens materials 
that trigger this response are unknown and would require future 
investigation, but this response could potentially be  due to 
diminished water content or surface topography of the contact 
lens materials. Acanthamoeba prefers to exist at the interfaces 
between soil and water, and surfaces indicating a strong water-
aversion (Liang et al., 2022; Wesley et al., 2022) may trigger the 
protective response.

The risk of aggregation and encystment for Acanthamoeba 
and its potential to cause human disease has so far been 
dependent on the ability to kill Acanthamoeba before patient 
contact. For contact lenses, the creation of spheroids and cysts 
could significantly hamper multi-purpose solutions from 
adequately disinfecting Acanthamoeba from lenses. Here, 
we  demonstrated that spheroids can resist disinfection in 
clinically relevant, low cell concentrations (Li et  al., 2020). 
Seeding a well at a concentration of ~100 trophozoites/well 
was equivalent to a low inoculum concentration of 5.0×102 
cells/mL. Most microbial efficacy standards require 
inoculation at 105–106 cells/mL for a microorganism, and a 
resulting 3-log disinfection efficacy for the solution being 
tested (ISO 14729:2001/A1:2010, 2010). Here, 
we demonstrated that spheroids could survive disinfection at 
far lower densities than any standard is currently evaluating. 
The resistance of the spheroid is two-fold: the spheroid itself 
provides a protective layer preventing penetration of biocides 
to interior cells, and the rapid formation of cysts at the center 
of spheroids offers cells with a naturally high biocide 
resistance. Interestingly, even biocides like alexidine known to 
be capable of killing cysts were less effective against spheroids 
despite showing efficacy against individual trophozoites 
and cysts.

This data indicates the need for continued research into 
Acanthamoeba’s interactions with contact lenses. For instance, the 
timeline of encystment noted in the observations here, as amoeba 
appear to encyst on contact lenses much faster than they do via 
starvation or via encystment media, should be further studied as 
the transcriptome analysis did not show differentially expressed 
genes from known encystment genes (Dudley et al., 2009; Rolland 
et al., 2020; Bernard et al., 2022). We attribute this to the speed at 
which encystment is being induced which is significantly faster 
than other studies that used chemical induction of encystment. 
Further, the observations made here regarding disinfection 
efficacy should be followed up with in in vivo examinations to 
determine the risk that aggregating lenses may pose to patients. 
Similarly, to our knowledge, there are no meta-analyses relating 
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contact lenses themselves to Acanthamoeba keratitis cases or 
prevalence, and this would be a critical investigation to supplement 
the information presented here. Finally, while we  did observe 
variability between strains, with ATCC 50703 being the most 
divergent from the group, we do note that when all strains are 
combined the results are consistently statistically significant 
regarding which lenses do and do not promote aggregation. 
We  thought it important to show the differences between 
genotypes even when some strains did not show the strong 
aggregation behaviors found in others. These divergent strains or 
behaviors merit future investigation.

Together, this study demonstrates that Acanthamoeba 
behavior can be significantly altered by different polymeric surface 
properties, particularly those found in contact lens materials. That 
behavior, which results in a protective mechanism that promotes 
Acanthamoeba encystment far faster than natural stressors like 
starvation, may contribute to the pathogenesis of this organism by 
making it resistant to available disinfection methods. 
Acanthamoeba spheroids and the underlying surface properties 
that lead to their formation represent an under-investigated field 
of research. While promotion of proper disinfection of lenses is 
critical to patient safety, now it becomes equally important to 
impress on patients that their contact lenses should never come in 
contact with any water source that may contain Acanthamoeba. 
With contact lens materials continuing to diversify, 
Acanthamoeba’s response to contact lenses must be further studied 
to understand the complete implications to patient safety.
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Naegleria genus pangenome 
reveals new structural and 
functional insights into the 
versatility of these free-living 
amoebae
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Introduction: Free-living amoebae of the Naegleria genus belong to the 

major protist clade Heterolobosea and are ubiquitously distributed in soil and 

freshwater habitats. Of the 47 Naegleria species described, N. fowleri is the 

only one being pathogenic to humans, causing a rare but fulminant primary 

amoebic meningoencephalitis. Some Naegleria genome sequences are 

publicly available, but the genetic basis for Naegleria diversity and ability to 

thrive in diverse environments (including human brain) remains unclear.

Methods: Herein, we constructed a high-quality Naegleria genus pangenome 

to obtain a comprehensive catalog of genes encoded by these amoebae. 

For this, we  first sequenced, assembled, and annotated six new Naegleria 

genomes.

Results and Discussion: Genome architecture analyses revealed that 

Naegleria may use genome plasticity features such as ploidy/aneuploidy 

to modulate their behavior in different environments. When comparing 14 

near-to-complete genome sequences, our results estimated the theoretical 

Naegleria pangenome as a closed genome, with 13,943 genes, including 

3,563 core and 10,380 accessory genes. The functional annotations revealed 

that a large fraction of Naegleria genes show significant sequence similarity 

with those already described in other kingdoms, namely Animalia and Plantae. 

Comparative analyses highlighted a remarkable genomic heterogeneity, even 

for closely related strains and demonstrate that Naegleria harbors extensive 

genome variability, reflected in different metabolic repertoires. If Naegleria core 

genome was enriched in conserved genes essential for metabolic, regulatory 

and survival processes, the accessory genome revealed the presence of genes 

involved in stress response, macromolecule modifications, cell signaling and 

immune response. Commonly reported N. fowleri virulence-associated genes 

were present in both core and accessory genomes, suggesting that N. fowleri’s 

ability to infect human brain could be related to its unique species-specific 
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genes (mostly of unknown function) and/or to differential gene expression. 

The construction of Naegleria first pangenome allowed us to move away from 

a single reference genome (that does not necessarily represent each species 

as a whole) and to identify essential and dispensable genes in Naegleria 

evolution, diversity and biology, paving the way for further genomic and post-

genomic studies.

KEYWORDS

free-living amoebae, Naegleria, whole genome sequencing, genome plasticity, 
pangenome, core genome, species-specific genes, Naegleria fowleri virulence-
associated genes

1. Introduction

Members of the Naegleria genus belong to the major 
eukaryotic lineage Heterolobosea, that deviated from other 
eukaryotic lineages over a billion years ago (Fritz-Laylin et al., 
2010). They are ubiquitous in soils and freshwater habitats and are 
important predators of cyano-and eubacteria, hereby regulating 
bacterial populations in lakes and rivers (De Jonckheere, 2011). 
Some species can naturally grow at 37°C, and others can grow up 
to 45°C (De Jonckheere, 2014). Naegleria usually have two 
developmental stages: the trophozoite (which is the metabolically 
active form in which they can move, feed and multiply) and the 
cysts (the dormant and resistant form); some species can 
transform into flagellates, allowing the amoeba to rapidly move 
around and look for more favorable conditions (Fritz-Laylin et al., 
2010; De Jonckheere, 2014). The Naegleria genus currently 
contains 47 recognized species (De Jonckheere, 2011) but only 
N. fowleri (also popularly known as “brain-eating amoeba”) is a 
confirmed human pathogen, causing primary amoebic 
meningoencephalitis (PAM).

PAM is a rare but fatal disease (with a 95% mortality rate), 
affecting mainly healthy children or young adults (Sarink et al., 
2022). Infection occurs when contaminated water enters the nose, 
N. fowleri (specially trophozoites) follows the olfactory nerve to 
the brain through the cribriform plate. There, it induces 
phagocytosis of brain material, provoking tissue damage and 
hemorrhagic necrosis causing a fatal brain infection. The disease 
progresses rapidly leading to death within 7–12 days (Moseman, 
2020). Combined with its low incidence (Trabelsi et al., 2012; 
Siddiqui et  al., 2016), early diagnosis is difficult as the PAM 
symptoms closely resembled bacterial meningitis (Jahangeer et al., 
2020); the link with Naegleria is usually made post-mortem by 
microscopic examination of the cerebral spinal fluid or by 
conventional or real-time PCR. In recent years, an increased 
number of PAM cases have been reported worldwide, in particular 
in temperate regions and developing countries; this is probably 
due to global warming, global overpopulation and increased 
industrial activities (Kemble et  al., 2012; Siddiqui et  al., 2016; 
Maciver et al., 2020). In the Caribbean region, the first fatal case 

of N. fowleri was reported in a geothermal bath in Guadeloupe in 
2008 (Nicolas et al., 2010). Despite successful treatment in a very 
few cases with miltefosine and other antimicrobial medication 
(Debnath, 2021), the same antibiotic regime failed in other cases, 
suggesting the need to find effective therapies (Khan et al., 2021). 
Several studies have shown that N. fowleri pathogenesis involves 
both contact-dependent interaction with the host (through brain 
damaging, sucker-like surface structure called “food cup” which 
enables N. fowleri to interact with the host extracellular matrix 
(ECM) through a process of adhesion, invasion and degradation 
of ECM and nerve cell) and contact independent interaction 
(through the release of different proteases with proteolytic 
function and hydrolysing activity, that in central nervous system, 
cause further destruction of nerves; Jamerson et al., 2012; Herman 
et al., 2021; Rodriguez-Anaya et al., 2021; Sarink et al., 2022). 
Despite such work, the pathogenic factors of N. fowleri are 
still unclear.

At the moment, over 60 Naegleria genome sequences are 
publicly available (with different levels of completeness and using 
different sequencing methodologies) for the non-pathogenic 
species N. gruberi (Fritz-Laylin et al., 2010) and N. lovaniensis 
(Liechti et al., 2018; Joseph et al., 2021), and for the pathogenic 
N. fowleri (Zysset-Burri et al., 2014; Ali et al., 2021; Herman et al., 
2021; Joseph et  al., 2021). Comparative genomic studies were 
already performed within N. fowleri species (Joseph et al., 2021) 
and between Naegleria species (Liechti et al., 2018; Herman et al., 
2021) but they do not describe the complete gene landscape of a 
Naegleria species or genus because of the large numbers of 
variations between accessions.

To better understand Naegleria genome evolution, phenotypic 
diversity and versatility, we  aimed to construct the first high-
quality genus pangenome for Naegleria that would list the core 
genes (involved in housekeeping and conserved survival 
processes) and dispensable genes that are present only in a subset 
of species (being responsible for phenotypic differences between 
isolates and may be involved in pathogenesis). For this, we first 
sequenced and annotated three new N. fowleri strains (NF_AR12 
from United States, NF_PA34 from Australia and NF_NF1 from 
Guadeloupe, with different genotypes and all being environmental 
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isolates) and three new N. lovaniensis strains: NL_F9 (from 
Belgium), NL_Lova6 and NL_Lova7 (both isolated in 
Guadeloupe). Afterwards, we compared these 6 new genomes to 
available genomic data with different levels of completeness, from 
different Naegleria species (and strains) isolated from distinct 
geographical regions and environments (water, soil, human).

2. Materials and methods

2.1. Amoebae samples

The biological samples used for Illumina sequencing are 
presented in Table 1. DNA samples originated from N. fowleri 
AR12 and PA34, and N. lovaniensis F9 were kindly provided by 
Professor J. F. De Jonckheere and produced as described elsewhere 
(De Jonckheere, 1998); the others 3 strains (1 N. fowleri and 
2 N. lovaniensis) were obtained as described in the following 
section. For pangenome and comparative genomics analyses, 
we  also included 8 assembled and annotated whole-genome 
sequences of Naegleria genus published (Table 1). At the time of 
writing this paper, 49 draft genome sequences of N. fowleri species 
(from clinical and environmental origin; Joseph et al., 2021) were 
also available in the NCBI’s Sequence Read Archive (SRA). These 
sequences (Supplementary Table S1) were downloaded and used 
for whole-genome SNPs phylogenetic analysis (as described in 
Section 2.7.1).

2.1.1. Amoebae isolation and identification 
(Guadeloupean strains)

Water samples (1 L) were collected from 3 geothermal baths 
in Guadeloupe: Curé (Bouillante), Dolé (Gourbeyre) and La Lise 
(Bouillante) and treated as previously described (Moussa et al., 
2013, 2020). Amoebae cultivated in NNA-E.coli were recovered by 
scrapping the agar plate with 800 μL of T1 Lysis Buffer (from the 
kit NucleoSpin Tissue, Macherey Nagel, Germany). Afterwards, 
the samples went through a DNA extraction protocol 
(NucleoSpin® Tissue DNA extraction kit, Macherey-Nagel), 
following the manufacturer’s recommendations. DNA was stored 
at −20°C until use. Amoebae identification was performed by 
PCR using ITS primers, as described elsewhere (Moussa et al., 
2013). ITS amplicons Sanger sequencing was performed at 
Eurofins Genomics (Germany). A homology search was 
performed with BLAST software from the National Center for 
Biotechnology Information homepage.1 The sequence data 
obtained were aligned by ClustalW software2 with the sequences 
of Naegleria species are presented in Supplementary Table S2 and 
were also deposited in GenBank.3

1 http://www.ncbi.nlm.nih.gov/

2 http://www.nig.ac.jp

3 http://www.ncbi.nlm.nih.gov/

For whole genome sequencing purposes, NF_NF1 (5 
biological replicates), NL_Lova6 and NL_Lova7 were cultured in 
axenic culture during at least 5 passages in tissue culture flasks 
using the SCGYEM conditions (De Jonckheere, 1977). 
Trophozoites (1 × 106 Naegleria per strain) cultivated in axenic 
culture conditions were scraped from T-flasks and centrifuged at 
1,000g for 10 min at room temperature; after supernatant removal, 
200 μL of T1 buffer was added. “T1-cell suspension” was kept at 
−20°C until further use. For genome Illumina sequencing, 
we  included a RNAse step during the extraction protocol, 
following the manufacturer’s recommendations.

2.2. Whole genome sequencing

DNA samples were used for library preparation using TruSeq 
DNA PCR-free library prep kit (following fragmentation into 
350 bp-long fragments) and TruSeq DNA UD Indexes (Illumina). 
Paired-end sequencing was performed on a MiSeq system with a 
nano v2 flowcell and reagents for 2 × 151 cycles (Illumina). Whole 
genome Illumina sequencing was performed at the Biomics Core 
Facility (Institut Pasteur, Paris, France). Number of reads by 
experiment or replicate are presented in Supplementary Table S3.

2.3. Bioinformatics analyses

2.3.1. Whole-genome SNP-based phylogenetic 
analysis

A whole-genome phylogenetic analysis based on SNPs was 
performed for N. fowleri and N. lovaniensis. For the comparison 
of N. fowleri strains, we compiled our 11 samples (including the 5 
biological replicates of NF_NF1) with the published raw data 
publicly available from SRA (N = 49; Supplementary Table S1; 
Joseph et al., 2021). For N. lovaniensis, we used our 3 samples plus 
the reads from the sequencing projects of the strains NL_ATCC 
30569 (Liechti et  al., 2018) and NL_76-15-250 (Joseph et  al., 
2021). After a cleaning of raw reads using Cutadapt, Illumina raw 
reads were first mapped either against the N. fowleri TY “close-to-
complete” genome (Ali et al., 2021) or the N. lovaniensis ATCC 
30569, using BWA-MEM (version 0.7.17-r1188) software (Li, 
2013). BAM mapping files were then converted to pileup format 
using SAMtools (Danecek et  al., 2021) and SNP calling was 
performed using VarScan (Koboldt et al., 2012) for each sample, 
using a minimum read coverage of 8X with a Phred quality score 
of at least 15. Genetic variations and alleles were then compiled 
into a global SNP matrix file (VCF file), using a home-made script. 
SNP-based phylogenetic tree was then generated using the 
SNiPlay web application (Dereeper et  al., 2015). Finally, the 
phylogenetic tree was displayed using the iTOL v6 online 
application (Letunic and Bork, 2021). In addition, N. fowleri 
samples were assigned to internal transcribed space (ITS) 
genotype, using a home-made script searching for ITS genotyping 
loci directly from raw reads.
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TABLE 1 Genome assemble and annotation statistics of published and newly sequenced genomes of Naegleria sp.

Species N. gruberi N. fowleri N. lovaniensis

Strain NEG-M 
ATCC 
30224

NF_
ATCC 
30894 
(Lee)

NF_ATCC 
30863 

(Carter)

NF_
V212

NF_986 NF_TY* 
(ATCC 
30107)

NF_
NF1

NF_
AR12

NF_
PA34

NL_
ATCC 
30569

NL_76–
15-250

NL_F9 NL_
Lova6

NL_
Lova7

Genotype – 3 2 2 5 3 3 2 5 n/a n/a n/a n/a n/a

Origin Environ. (soil) Clinical Environ. 

(water)

Clinical Environmental (water) Environmental (water)

Geographical location United States United States Australia United States Guadeloupe United 

States

Australia United 

States

Belgium Belgium Guadeloupe

Year of origin 1969 1968 1978 1990 – 1969 2018 1976 1972 1970 1976 1980 2018 2018

Sequencing 

technology

Sanger Nanopore Illumina/Roche 

454

Illumina/

Roche 454

Illumina Illumina/PacBio Illumina Illumina Illumina PacBio PacBio Illumina Illumina Illumina

Genome size (Mbp) 40.9 29.5 29.6 27.7 27.5 27.9 27.6 27.3 27.3 30.8 30.8 27.7 26.9 26.5

GC content (%) 35 36.9 35 36 36 36.9 36.9 36.9 36.9 37 36.3 36.9 37 37

Number of scaffolds 

(anchored in N 

chromosomes)

1,977 90 2,530 1962 1919 37 500 (37) 656 (37) 534 (37) 111 199 754 (37) 1,959 

(37)

2,384 

(37)

N50 of scaffolds (bp) 159,679 717,491 38,800 86,051 45,674 756,811 125,650 81,421 112,144 657,933 455,122 78,479 26,705 17,708

Number of predicted 

genes (ORFs)

16,620 13,925 11,499 12,677 11,599 9,405 9,336 9,441 11,036 15,195 11,305 9,481 9,578 9,305

Average gene length 

(bp)

1,677 – 1984 1785 1955 – 3,003 2,946 2,284 – – 3,283 3,010 3,034

Coding (%) 57.8 – 70.79 71.35 73.01 68 59.4 58.5 68.5 – 65 57.5 60 61.5

Repeat content (%) 5.1 6 2.5 – – 5.3 5 3.3 1.4 3.5 10.8 2.7 2.4 2.4

Complete BUSCOs 

(%)

85.7 86.5 87.8 88.3 87.9 84.3 82.0 84.8 87.2 85.5 78.8 88.3 87.2 86.0

Fragmented BUSCOs 1.3 2.3 2.7 2.4 3.1 2.8 6.7 4.1 2.9 2.6 5.1 4.7 3.5 4.1

BUSCO Missing 13 11.2 9.5 9.3 9.0 12.9 11.3 11.1 9.9 11.9 16.1 7.0 9.3 9.9

Reference Herman et al. 

(2021)

Liechti et al. 

(2019)

Herman et al. (2021) Ali et al. (2021) 

and Joseph et al. 

(2021)

This work Liechti et al. 

(2018)

Joseph et al. 

(2021)

This work

“–” stands for not-available while “n/a” stands for non-applicable.*Out of 52 N. fowleri genomes sequenced and presented by Joseph et al. (2021), we only shown only for the “close-to-complete” genome of the N. fowleri TY isolate.
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2.3.2. Genome assembly
In order to estimate the conservation of scaffolds between 

genomes from different species, we first aligned the published 
scaffolds of N. lovaniensis (ATCC 30569) (Liechti et al., 2018) 
against the recently published genome of N. fowleri TY (Ali et al., 
2021), which consists of 37 well defined pseudo-chromosomes. 
For this, we used the D-genies online application (Cabanettes and 
Klopp, 2018), taking advantage of minimap2 alignment software 
(Li, 2018). Except for minor rearrangements detected in only one 
pseudo-chromosome, a good collinearity was observed between 
N. lovaniensis scaffolds and N. fowleri pseudo-chromosomes 
(Supplementary Figure S1), suggesting that scaffolds from the 2 
species can be  simply ordered according to their matching 
positions in pseudo-chromosomes. This data manipulation 
prevents the generation of heterogeneous outputs for the different 
genomes and will facilitate thereafter the comparison of genomes 
and their graphical representation, notably for synteny analysis. 
The 6 new Naegleria genomes were assembled using the same 
strategy. Briefly, after a cleaning step by cutadapt, filtered reads 
were de-novo assembled using SPAdes (Prjibelski et al., 2020), to 
generate scaffolds independently of the respective reference 
genome and ensure subsequent microsynteny analysis. In a second 
step, scaffolds were anchored, ordered and oriented, using the 37 
chromosomes of N. fowleri TY by running the RaGOO program 
(Alonge et al., 2019).

2.3.3. Ploidy and heterozygosity analyses based 
on SNPs

An estimate of ploidy level was performed for each of the 
newly sequenced genomes, based on the ratio of alleles of SNPs. 
For this purpose, cleaned reads were mapped back against the 
corresponding assembly of the genome with BWA mem, and SNPs 
were called with the same approach as previously with the 
combination SAMtools mpileup/VarScan. A home-made script 
was developed for evaluating the level of heterozygosity, and for 
extracting the information of allele depth ratio (i.e., between 
reference and alternate allele) at each heterozygous position. Allele 
ratios were then reported along the chromosomes using Circos 
visualization (Krzywinski et  al., 2009) and the distribution of 
ratios was calculated for each genome. This technique allows to 
evaluate the global level of ploidy as well as its variation along the 
chromosomes and thus to detect potential abnormality in specific 
chromosomes or genomic regions.

2.3.4. Gene prediction and annotation
A complete Galaxy annotation workflow based on iterative 

runs of MAKER2 annotation pipeline (Holt and Yandell, 2011) 
was constructed and implemented on Galaxy KaruBioNet 
(Couvin et al., 2022) and applied for the annotation of each 
new genome, independently. The protein-coding gene 
annotation by MAKER2 combines homology prediction, ab 
initio prediction [using SNAP (Korf, 2004) and AUGUSTUS 
(Hoff and Stanke, 2013)], and full-length transcriptome 
prediction based on NGS sequencing. Transcriptomic 

resources were prepared separately for N. fowleri and 
N. lovaniensis genomes, from public RNASeq datasets 
downloaded from European Nucleotide Archive (ENA), 
PRJNA642022 project, using, respectively, samples NF_
Nelson_medium with NF_PYNH_medium (3 replicates each) 
and NL_Nelson_medium with NL_PYNH_medium (3 
replicates each; Zysset-Burri et  al., 2014; 
Supplementary Table S1). For each, RNASeq raw reads were 
cleaned using Cutadapt (Martin, 2011), mapped against the 
genome using MapSplice (Wang et al., 2010) and a genome-
guided de-novo transcriptome assembly was constructed by 
Trinity (trinityrnaseq; Grabherr et  al., 2011) using the 
–genome_guided_bam option. Assemblies were then gathered 
and concatenated by species to be subsequently provided as 
EST evidence for gene prediction; herein, we used 183,318 and 
97,050 ESTs for N. fowleri and N. lovaniensis, respectively. In 
this work, 3 rounds of MAKER2 were performed. At each 
round, the gene annotation obtained was evaluated by trained 
gene predictors SNAP and AUGUSTUS. The new gene models 
were re-used in the next round of MAKER2 to improve the 
annotation and create a weighted consensus of the gene 
structures. Repeat sequences were annotated by both Repbase 
and a custom repeat library. The Repbase library (Jurka, 2000) 
was downloaded from https://www.girinst.org/server/
RepBase/, and the custom repeat library was constructed on 
each genome sequence by using RepeatModeler (version 2.0.1; 
Flynn et al., 2020). These two libraries were concatenated and 
provided to RepeatMasker (Tarailo-Graovac and Chen, 2009) 
as implemented in MAKER2, to identify repetitive elements. 
Subsequently, the annotation completeness was evaluated with 
BUSCO (Simão et  al., 2015). Finally, the density of genes, 
exons and repeats were calculated from GFF annotation files 
thanks to a home-made script.

2.3.5. Functional annotation
Gene functions were assigned according to the best alignment 

of predicted protein sequences using BlastP (default values: 
E-value 1E-03) to the Uniprot database (including the SWISS-
PROT and TrEMBL databases). We used InterProScan program 
(Jones et al., 2014) to assign conserved protein motifs (PFAM, 
InterPro). An additional assignation of predicted proteins to 
specific COG (Clusters of Orthologous Groups) was performed 
independently using the “COG assignation” Galaxy wrapper 
available in Galaxy KaruBioNet,4 (Couvin et al., 2022), based on 
rpsblast and cdd2cog Perl script.

2.3.6. Pangenome analysis
To perform the pangenome analysis of Naegleria genus, 

we  used a dataset of 14 Naegleria genomes with clinical and 
environmental isolates from distinct geographic location, 8 
genomes of N. fowleri (NF_ATCC 30894, NF_ATCC 30863, 

4 http://calamar.univ-ag.fr/c3i/galaxy_karubionet.html
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NF_V212, NF_986, NF_TY, NF_NF1, NF_AR12 and NF_PA34), 
5 genomes of N. lovaniensis (NL_ATCC 30569, NL_76–15-250, 
NL_F9, NL_Lova6 and NL_Lova7) and one of N. gruberi (strain 
NEG-M-ATCC 30224; Table 1).

For this, published protein FASTA files containing predicted 
protein sequences were downloaded either from the AmoebaDB 
resource5 (release 53) or from the NCBI FTP server, and were 
compiled together with the MAKER2 output files generated for 
our 6 new genomes to perform a genomic and protein comparison.

The pangenome analysis was conducted using OrthoFinder 
software (Emms and Kelly, 2019) with all-versus-all BLAST 
strategy to define the orthogroups among the 14 genomes. The 
resulting presence/absence matrix was analyzed with an in-house 
developed Perl script to extract and classify genes as core-genes 
(genes present in all Naegleria sp.) and accessory genes (genes 
present at least once in 1 or more but not all Naegleria species). In 
this latter category, we emphasize on species-specific genes which 
can be subdivided in 2 gene sets: species-core specific genes (gene 
shared by all strains within one Naegleria species) and species-
specific accessory genes (genes present at least once in 1 or more 
strains of one Naegleria species). To determine whether the 
pangenome can be considered closed or open, we calculated the 
alpha parameter using the MicroPan R library (Snipen and 
Liland, 2015).

2.3.7. Synteny analysis on Naegleria core 
genome

Chromosomal synteny was estimated by connecting core-
genes between two representative genomes, NF_NF1 and NL_
Lova7 for N. fowleri and N. lovaniensis, respectively. A home-
made Perl script was used to extract core-gene locations and 
identify (i) specific links that connect core-genes located in 
different chromosomes between the two species, and (ii) links that 
connect core-genes that physically distant more than 50 kb 
between homologous chromosomes to highlight insertion or 
inversion. Syntenic regions shared between pairs of homologous 
chromosomes were visualized using both Circos (Krzywinski 
et al., 2009) and Mauve Viewer.6

2.3.8. Protein–protein interaction network
Schematic information on Naegleria biological pathways is 

mainly available for N. gruberi.7 However, based on our 
pangenome results, several genes present in NG are absent in NF 
and NL (and vice-versa) and many Naegleria genes are of unknown 
function. Herein, in attempt to bring new insights on Naegleria 
biological pathways, we used Cytoscape v3.8.0 software platform 
(Su et al., 2014) combined with StringApp (Doncheva et al., 2019) 
plugin. STRING is a database of quality-controlled protein–
protein association networks and enables researchers to construct 

5 https://amoebadb.org/amoeba/app/

6 https://github.com/PATRIC3/mauveviewer

7 Namely at https://www.genome.jp/kegg

a functional association network of uploaded genes/proteins of an 
organism based on three aspects: computational prediction, from 
knowledge transfer between organisms, and from interactions 
aggregated from other (primary) databases (Szklarczyk et  al., 
2019). From the 13,972 genes in Naegleria pangenome 
(Supplementary Table S4), we  first constructed a network 
consisting of 8,829 protein nodes and 44,347 edges (data not 
shown), and then, we selected only the connected nodes to create 
a Protein–Protein Interaction (PPI) Network (PPIN) with 3,970 
nodes and 44,314 edges. The enrichment analysis using StringApp 
was performed with a high confidence score of 0.75 and based on 
non-redundant terms (threshold above 0.75) of Gene Ontology 
(GO) term, Kyoto encyclopedia of genes and genomes (KEGG) 
pathway data and Reactome Pathways Functional Interaction (FI) 
Network. This allowed us to group genes/proteins according to 
their biological function.

3. Results and discussion

3.1. Naegleria phylogenic structure

A description of the phylogenetic relationships within the 
genus Naegleria using different methods has been previously 
reported (Pelandakis et al., 2000; De Jonckheere, 2002; Joseph 
et al., 2021). Herein, we sequenced, assembled, and annotated new 
genomes from N. fowleri and N. lovaniensis species, and searched 
for genome-wide SNPs between strains of these two species 
(Figure 1; Supplementary Table S1). This measure of phylogenetic 
diversity has proven to be useful to discriminate among closely 
related organisms and help resolve both short and long branches 
in a tree (as reviewed by Ngoot-Chin et  al., 2021). The reads 
associated with each sample were mapped to the N. fowleri TY 
reference genome (Ali et al., 2021) and a SNP calling process was 
performed. A total of 1,200,000 high-quality reference-based 
SNPs were detected across the 65 Naegleria genomes analyzed. 
Our results show that (i) additional clades were created when 
we included our new N. lovaniensis strains and (ii) N. lovaniensis 
is more diverse than N. fowleri, as 773,266 SNPs were detected 
within intra-N. lovaniensis species against only 70,026 SNPs 
within intra-N. fowleri.

By restricting the SNP matrix and associated genotyping 
information (reduced VCF file) to N. fowleri strains only, we could 
perform a whole-genome SNP-based phylogenetic analysis for 
comparing the 3 new genomes (NF_AR12, NF_PA34, and NF_
NF1) against 52 strains of N. fowleri (close-to-complete genomes 
or reads only, Supplementary Table S1) available in online 
databases at the time of the analysis (Joseph et al., 2021). Figure 1 
reveals a low level of SNP variation within the 55 N. fowleri isolates 
and we concluded that the classical typing of N. fowleri on the 
basis of their ITS sequence somehow reflects the genetic diversity 
of the species, which is apparently associated by geographical 
regions as previously established (De Jonckheere, 2011). Indeed, 
the newly sequenced isolates NF_AR12, NF_PA34 and the five 

35

https://doi.org/10.3389/fmicb.2022.1056418
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://amoebadb.org/amoeba/app/
https://github.com/PATRIC3/mauveviewer
https://www.genome.jp/kegg


Dereeper et al. 10.3389/fmicb.2022.1056418

Frontiers in Microbiology 07 frontiersin.org

biological replicates for NF_NF1 are located in the phylogenetic 
clades Genotype 2, 5, and 3, according to the numbering scheme 
proposed by De Jonckheere (2011), respectively, as observed using 
the traditional mitochondrial small subunit (mtSSU) rRNA and 
ITS genotyping loci (Supplementary Tables S1, S2). The SNP-based 
phylogenetic tree however showed no clustering between clinical 

and environmental isolates of N. fowleri strains (Figure  1; 
Supplementary Table S1), as recently observed by Joseph 
et al. (2021).

Additionally, this approach allowed us to define diagnostic SNP 
markers allowing to discriminate 4 genotypes of N. fowleri, i.e., 
markers whose alleles are exclusively and systematically found in all 

A

B

FIGURE 1

A neighbor-joining phylogenomic tree of Naegleria fowleri and Naegleria lovaniensis strains using the whole-genome SNPs. Phylogenomic trees 
are, respectively, based on 1,235,636 SNPs found in Naegleria genus (A) and 70,026 SNPs found in N. fowleri species (B). Yellow stars indicate 
strains sequenced in the present study, blue triangles indicate environmental strains, and double asterisks indicate strains for which a reference 
genome assembly and annotation were available at the date of writing. Bootstrap support estimates of major ancestral nodes are also shown.
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isolates of a genotype (Figure 1). More precisely, we could identify a 
relatively high number of specific SNPs for genotype 1 and 5 (3,744 
and 298 respectively) while the number of diagnostic SNPs identified 
is lower for genotypes 2 and 3 (respectively 8 and 16).

3.2. An overview of the newly sequenced 
Naegleria fowleri and Naegleria 
lovaniensis genomes

3.2.1. Genome assembly statistics and quality
Assembly statistics for the six new genomes together with the 

other Naegleria sp. whose genomes are published are presented in 
Table 1 and Supplementary Table S3. The six genomes have an 
average depth-of-coverage superior to 100X, in particular the 
NF_NF1 strain which benefits from the compilation of 5 
replicates. The final assemblies of the new N. fowleri genome 
consist of 500, 656, and 534 scaffolds (all anchored in 37 
chromosomes) with a N50 size of 125,650, 81,421 and 112,144 bp, 
respectively for NF_NF1, NF_AR12 and NF_PA34. Regarding the 
new N. lovaniensis genomes, we obtained for NL_F9, NL_Lova6 
and NL_Lova7, 754, 1959 and 2,384 (all anchored in 37 
chromosomes) with N50 values of 78,479, 26,705 and 17,708 bp, 
respectively. Comparison between the genome size and GC 
content of N. fowleri strains NF_ATCC 30894, NF_ATCC 30863, 
NF_V212, NF_986 and NF_TY and the new genomes NF_NF1, 
NF_AR12 and NF_PA34 show relative conservation of genome 
statistics. Regarding N. lovaniensis strain NL_ATCC 30569 and 
NL_76–15-250 compared to the new isolates NL_F9, NL_Lova6 
and NL_Lova7, we observed that they share a similar GC content 
but the genome sizes for the new N. lovaniensis strains are smaller. 
As previously observed, N. gruberi present a slightly larger genome 
(40 Mb), with a 35% GC content (Table 1).

To evaluate the quality and the completeness of our assemblies, 
the percentage of Benchmarking Universal Single-Copy Orthologs 
(BUSCOs) was calculated and compared to previously sequenced 
Naegleria species (Table 1). The comparison shows globally similar 
numbers of complete BUSCOs within the N. fowleri strains, while 
more fragmented and missing BUSCOs could be identified in the 
new N. fowleri genomes (Table 1). Regarding the new N. lovaniensis 
genomes, the numbers of complete and fragmented BUSCOs are 
slightly higher than those obtained for N. lovaniensis NL_ATCC 
30569 and NL_76–15-250. On the other hand, N. lovaniensis 
NL_F9, NL_Lova6 and NL_Lova7 present less missing BUSCOs.

3.2.2. Content and organization of the 
genomes

To identify protein coding genes in the newly assembled 
Naegleria genomes, we performed gene prediction analyses using 
MAKER2 by providing evidence from transcriptomic datasets 
collected for each of species. Genomic features collected from the 
new genomes are presented in Table 1. MAKER2 gene annotation 
revealed that N. fowleri NF_NF1 and NF_AR12 have 
approximately the same number of genes as N. fowleri strain TY 

(N = 9,405), while the number of genes predicted for NF_PA34 
(N = 11,036) is close to those predicted for the N. fowleri strains 
ATCC 30863 and strain 986 (N = 11,499 and 11,599, respectively). 
For N. lovaniensis, even though complete BUSCO levels are 
higher, the 3 new genomes present a significantly lower number 
of predicted genes, but the average length of the genes is higher 
(~3,000 bp). The repeat content is shown to be variable within 
N. fowleri strains and appears to be lower in N. lovaniensis new 
genomes (Table 1).

The architecture of the new genomes for N. fowleri and 
N. lovaniensis isolated in Guadeloupe is graphically represented in 
Figures  2A,B, respectively. Characteristics such as scaffolds 
boundaries after anchoring, sequencing coverage depth, gene 
density (with distribution of exons and introns), heterozygous 
SNPs and GC content were integrated into the Circos 
representations. The figures show that the 2 genomes are dense in 
gene and exon content, with a homogenous distribution among 
the 37 chromosomes. In addition, we could observe variations 
between chromosomes in the coverage depth level, suggesting 
potential indirect effect of ploidy during the mapping process.

3.2.3. Ploidy, aneuploidy, and loss of 
heterozygosity in Naegleria

Ploidy shifts, aneuploidy phenomena and loss of 
heterozygosity (LOH) have been observed in several eukaryotes 
(such as yeast, fungi, plants and in the parasitic amoeba Entamoeba 
histolytica; Kawano-Sugaya et al., 2020) and they have proven to 
be  potent modulators of cell behavior, adaptation to the 
environment and pathogenesis (Bennett et al., 2014). The first 
evidence in ploidy and gene recombination in Naegleria was 
reported in 1986 using electrophoretic variation (Cariou and 
Pernin, 1987). In 1989, electrophoretic karyotyping showed that 
the number of chromosomes and their size can vary between 
species and even between strains of the same species (De 
Jonckheere, 1989).

Herein, to assess the genomic plasticity of Naegleria species, 
we collected high probability whole genome SNPs from N. fowleri 
NF_NF1, NF_AR12 and NF_PA34 strains and N. lovaniensis 
NL_Lova6, NL_Lova7, and NL_F9 strains. We made use of the 
B-Allele Frequency (BAF) information, which is a normalized 
measure of the allelic intensity ratio of two alleles (A and B), as an 
indicator measure of ploidy. For the three isolates of each species, 
BAF measures were either reported as a distribution curve over 
the whole genome (number of SNPs holding BAF values) or 
directly plotted physically along sequences as a Circos graphical 
representation of the N. fowleri chromosomes (Figures  3A,C, 
respectively) or N. lovaniensis chromosomes (Figures  3B,D, 
respectively). For N. fowleri NF_NF1, NF_AR12 and NF_PA34 
strains, we observed a peak in heterozygosity globally centered on 
50% (Figure 3A), [which is consistent with the assumption that 
the Naegleria genome is diploid (Fritz-Laylin et al., 2010)], with 
NF_AR12 strain presenting the highest number of heterozygous 
positions. When analyzing the B-allele frequency (Figure 3C), 
we observed the N. fowleri strains are mainly diploid, but that 
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trisomy phenomenon (aneuploidy with an additional 
chromosome) can be hypothesized visible on chr8 for NF_AR12 
and chr32 for NF_PA34. This abnormality can be slightly visible 
also on the distributions with a slight increase to 33 and 66%. 
Aneuploidy is less pronounced for NF_NF1 strain, but 
we observed that on chr7 or chr28, the allelic ratio seems more 
toward 33% than toward 50%, and on the chr9 where there are 
slightly 2 levels of allele ratio.

For N. lovaniensis strains, the allele ratio fluctuates; for NL_
Lova6 and NL_Lova7, we showed a major peak of allele ratios at 
50%, indicating that these 2 strains are diploid with just a few 
triploid chromosomes observed occasionally in chr15 and 
chr28 in NL_Lova6, but for NL_F9, 3 peaks are observed around 
33%, 50%, and 66%, suggesting that NL_F9 might be triploid on 
a larger number of chromosomes, reflecting several aneuploidy 
events (Figure 3B). Environmental conditions (such as in vitro 
culture conditions) can influence ploidy levels, as previously 
observed for diploid organisms such as Saccharomyces cerevisiae 
and Candida species (Gerstein et al., 2017). The strain NL_F9 was 
isolated in the 1970 and was probably more subjected to adaptative 
conditions, leading to an accumulation of SNP and higher 
variation in ploidy compared to the other strains. This increased 
ploidy is well observable on the Circos (Figure 3D, blue color) and 
it manifests notably well among others on chromosomes 5, 7, 9, 
10, 11, 19, 20, 22, 25, 33.

In all strains from both species, we observed several regions 
of loss-of-heterozygosity (LOH), which is translated by a 

segmental or total loss of heterozygous SNPs. While LOH is 
observed in few N. fowleri chromosomes (chr26 for NF_NF1, chr9 
for NF_PA34, chr11 for NF_AR12; Figure 3C), it is particularly 
widespread in the NL_F9 genome (chr4, chr13, chr23, chr28; 
Figure 3D).

Naegleria is mainly a heterozygous diploid that reproduces 
primarily via mitotic division as reviewed by De Jonckheere 
(2002). If the two alleles provide a differential benefit under a 
given stress, cells that retain the more beneficial allele after LOH 
may exhibit a growth advantage compared to the cells that do not 
undergo LOH. Extra chromosomes can arise rapidly and be lost 
rapidly, even within a single mitotic division. These genetic 
variations represent a rapid solution for adaptation to stress 
(Bennett et al., 2014; Peter et al., 2018).

3.3. Naegleria pangenome content

As a first step to genome functional annotation and 
comparative genomics, similarity searches and clustering from the 
14 analyzed genomes were performed using pairwise BlastP and 
Orthofinder. We  then analyzed two main components of the 
pangenome: the core genome (genes conserved across all observed 
genomes from a species or a genus) and accessory genome 
(gene(s) found at least in one strain, but not in all strains). To 
compare the possible advantage of using species versus genus 
pangenome analysis, we construct the intra-species pangenome 

A B

FIGURE 2

Architecture of the new genomes of Naegleria fowleri (A) and Naegleria lovaniensis (B) The outer circle represents the 37 chromosomes and their 
size. From outside to inside: (i) scaffolds anchoring (scaffolds were anchored and ordered using RaGOO program), (ii) sequencing depth of 
coverage in purple, (only one replicate (NF_NF1_1) is used for N. fowleri, both are plotted on a 200X scale), (iii) gene distribution (the relative part 
of exons and introns is colored in yellow and red respectively), (iv) heterozygous SNP density in blue and (v) GC skew (positive GCskew value in 
red, negative GCskew value in green). All density and distribution plots are based on 10-kb sliding windows.
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for N. fowleri (n = 8) and N. lovaniensis (n = 5), and the Naegleria 
genus pangenome based on 14 assembled and independently 
annotated isolates from (i) three different species (one for 
N. gruberi, five for N. lovaniensis and height for N. fowleri), (ii) 
different origin (clinical and environmental, with different abilities 
to grow at temperatures above 37°C and with pathogenic and 
non-pathogenic traits in human) and (iii) from distinct 
geographical regions (United States, Europe, Australia, and 
the Caribbean).

3.3.1. Naegleria fowleri and Naegleria 
lovaniensis species-specific pangenomes

Genome wide statistics shows that N. fowleri (Figure 4A) 
and N. lovaniensis (Figure 4B) pangenomes can comprise up 
to 12,308 and 12,207 genes, respectively, 6,531 and 5,855 being 
core genes for each species. The remaining genes constitute 
the accessory genome, being 5,777 for N. fowleri and 6,352 for 
N. lovaniensis. Interestingly, Figures  4A,B reveal that two 
N. fowleri and two N. lovaniensis strains have unique genes; 
indeed, 183 genes were detected only in N. fowleri strain NF_
ATCC 30863, 137  in N. fowleri strain NF_V212, 545  in 
N. lovaniensis strain NL_ATCC 30569 and 41 in N. lovaniensis 
strain NL_76–15-250.

The maximum proportions of genes not shared between 
isolates of a single species reach a maximum 10.6% of the genes 
for NF (for 1,006 genes, absence in Ty only), and 11.7% of the 
genes for NL (for 1,116 genes, found in 2 strains among 5). This 
rather high proportion has already been shown in other 
comparative genomics analyzes in other protists (Majda 
et al., 2019).

The Core/Pangenome ratio of N. fowleri and N. lovaniensis 
correspond to 53% for and 48% of the pangenome, respectively, 
indicating a large potential for both Naegleria species to adapt to 
their environment.

3.3.2. Naegleria genus pangenome
Figure 4C shows that the Naegleria pan-genome is composed 

of 13,943 genes, and that the different isolates share 3,563 genes. 
These gene subset corresponds to the Naegleria core genome and 
provide evidence for conserved biological features among the 
several strains from the three species N. gruberi, N. lovaniensis and 
N. fowleri, suggesting that these genes are involved in vital role for 
Naegleria survival. The other 10,380 annotated genes correspond 
to the accessory genome and can be related to the evolution of a 
trait, speciation, or niche/host adaptation. A detailed analysis of 
the accessory genome allows us to detect genes exclusively present 

A

C D

B

FIGURE 3

The ploidy patterns of the newly sequenced genomes from Naegleria fowleri and Naegleria lovaniensis. (A,B) Frequency distribution of SNP allele 
ratios and (C,D) circos scatter plots showing allelic ratios of heterozygous SNPs along chromosomes analyzed in N. fowleri NF_NF1, NF_PA34 and 
NF_AR12 strains (left panel) and N. lovaniensis NL_F9, NL_Lova6 and NL_Lova7 strains (right panel). Examples of suspected aneuploidy areas are 
highlighted by red arrows.
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or absent in certain species (Figure 4C). For instance, we found (i) 
599 genes absent in N. gruberi, while present in isolates from 
N. lovaniensis and N. fowleri and (ii) 92 genes absent in N. fowleri 
while present in both non-pathogenic N. gruberi and N. lovaniensis 

strains. We  also looked at species-specific gene lists within 
accessory, regrouping 944 and 742 genes for N. fowleri and 
N. lovaniensis, respectively. Among these, 160 and 64 genes 
exclusively present in all strains of the N. lovaniensis and N. fowleri, 

A

C

D

B

FIGURE 4

Naegleria pangenome analysis using OrthoFinder and visualized as UpSet and heatmap plots. UpSet plots show the intersections of the set of 
orthogroups from height genomes of N. fowleri (A) and five genomes of N. lovaniensis (B) species. Each vertical bar corresponds to a combination 
of gene sharing between strains. For each bar, black dots represent presence of the strain in the orthogroup while light gray dots denote its 
absence. Only the first 20 most abundant combinations are shown. The numbers of gene families (clusters/orthogroups) are indicated for each 
strain and strain intersection. (C) Gene presence/absence matrix for 14 strains of the three studied Naegleria species. The heatmap shows the 
presence (blue) or absence (light yellow) of all 13,943 orthogroups. Each row in the matrix corresponds to a strain/genome and each column 
represents an orthogroup. This representation has been conceived to visually separate Naegleria core-genes, species-specific genes and other 
accessory genes. (D) Gene accumulation curves showing how the Naegleria pangenome (blue) and core-genome (blue) vary as genomes are 
added in random order to the analysis. The power law alpha parameter shown inside the plot equals 2, which is indicative of a closed pangenome.
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respectively; these genes were identified as core-specific genes (i.e., 
species-specific and belonging to the core genome of the species).

The Core/Pangenome ratio of the Naegleria genus correspond 
to 25% of the pangenome. Compared to species-specific 
pangenome, our results show that the Naegleria core genome 
becomes smaller when diversity increases among the organisms. 
This clearly indicates that Naegleria community is complex and 
can adapt to varied niches. Additionally, the modeling of the 
Naegleria pangenome expansion show that the number of core 
genes (Figure 4D, red dots) and the pangenome size (Figure 4D, 
blue dots) stabilized after the addition of the 13 genomes, 
presenting an alpha parameter of 2. This demonstrates that 
Naegleria pangenome is closed (or very close to completion) and 
its size will not likely increase with subsequent isolates.

3.3.3. Functional annotation of the Naegleria 
pangenome

To understand the functional roles of the genes that constitute 
the core and pan-genome, we  used the COGs functional 
classification. An enrichment analysis of COG categories assigned 
to the genes was performed by calculating the odds-ratio values 
(between a particular list of genes to be compared with the rest of 
the genes) and associated statistics Fisher test to define enrichment 
if the odds-ratio is significantly superior to 1 (Figure 5).

We first compared the COG annotations assigned to the 
genes between the core and accessory genes in Naegleria sp. 
sequenced strains (Figure  5A; Supplementary Table S4). The 
Naegleria core genome is mainly enriched (p < 0.05) in protein 
families related to “Information storage and processing” [4 out of 
5 COG categories: COG-A (RNA processing and modification), 
COG-B (Chromatin structure and dynamics), COG-K 
(Transcription) and COG-L (Replication, recombination and 
repair)] and “Metabolism” [5 out of 8 COG Categories: COG-C 
(Energy production and conversion), COG-E (Amino acid 
transport and metabolism), COG-G (Carbohydrate transport 
and metabolism) and COG-Q (Secondary metabolites 
biosynthesis, transport, and catabolism)] and “Cellular 
processing and signaling” [only 2 out of 9 COG Categories: 
COG-V (Defense mechanisms) and COG-Z (Cytoskeleton)]. The 
conservation of these shared genes among Naegleria species can 
be  correlated with their biological importance in amoebae 
growth and survival. On the other hand, the COG functional 
categories of “Cellular processing and signaling” [COG-D (Cell 
cycle control, cell division, chromosome partitioning), COG-M 
(cell wall/membrane/envelope biogenesis), COG-T (Signal 
transduction mechanisms)], “Information storage and 
processing” COG-J (Translation, ribosomal structure and 
biogenesis) and “Metabolism” COG-F (nucleotide transport and 
metabolism), COG-H (Coenzyme transport and metabolism), 
and COG-I (Lipid transport and metabolism) are more 
concentrated in Naegleria accessory genome (Fisher t-test, 
p < 0.05; Figure  5A; Supplementary Table S4). Functional 
enrichment was not statistically significant, but Naegleria 
accessory genomes clearly showed higher proportion of genes in 

categories COG-N (Cell motility) and COG Y (Nuclear structure) 
compared to the core genome (Figure 5A). This indicates that 
pathways related to cell communication, ability to adapt to 
ecological conditions (potential niche or host-specific 
adaptations), genetic material processing and the metabolism of 
lipids and inorganic ions depend on the Naegleria species and/or 
the strain. Finally, genes within COG-S (unknown function), 
COG-R (general function prediction only) categories, were 
abundant across the pan-genome and had higher proportions in 
accessory genes.

To ascertain whether pathogenesis was associated with a 
specific functional category, we  also examined the number of 
genes in each COG category for species-specific genes detected in 
pathogenic N. fowleri and non-pathogenic N. lovaniensis and 
N. gruberi (Figure 5B; Supplementary Table S4). We noticed that 
genes in the categories “Cellular processing and signaling” 
[COG-O (Post-translational modification, protein turnover, and 
chaperones) and COG-V (Defense mechanisms)] were remarkably 
enriched in N. fowleri strains (p < 0.05). Functional enrichment 
was not statistically significant (certainly due to the low number 
of genes), but still N. fowleri genomes clearly showed higher 
proportion of genes in categories COG-N (Cell motility), COG-Z 
(Cytoskeleton), COG-A (RNA processing and modification) and 
COG-B (Chromatin structure and dynamics; Figure  5B). 
Interestingly, our results show that non-pathogenic N. lovaniensis 
and N. gruberi have a similar profile of statistically relevant 
overexpressed proteins in COG categories T (Signal transduction 
mechanisms), COG-K (Transcription), COG-L (Replication, 
recombination and repair), and COGs R and S (poorly 
characterized proteins). Naegleria lovaniensis species-specific 
genes are enriched in proteins COG-J (Translation, ribosomal 
structure and biogenesis). Therefore, N. fowleri genomes shared 
more genes related to communication and gene control, probably 
allowing amoebae to respond to environmental changes more 
readily, while N. lovaniensis and N. gruberi genomes shared more 
genes involved in information storage and processing.

3.3.4. Synteny between Naegleria fowleri and 
Naegleria lovaniensis core genomes

After establishing Naegleria core genome, conserved regions 
in terms of synteny were identified and visualized with Circos for 
both N. lovaniensis and N. fowleri; N. gruberi was not included in 
this analysis as it is more distant from the two other species. 
We  observe in Figure  6A that gene synteny along the 37 
chromosomes is highly conserved, with few microsyntenic breaks. 
Gray lines connecting core-genes with no change in gene order are 
in the vast majority (n = 4,151), while red lines (n = 37) highlighting 
regions with order changes on the same chromosome are relatively 
rare. For some of these cases (chr2, chr5, chr11, chr12, chr28) a 
zoom-in of chromosome alignment between N. fowleri and 
N. lovaniensis is displayed as a Mauve alignment to focus on and 
localize the disruption of gene order conservation (Figure 6B). 
Finally green lines (n = 88) materialize order change on different 
chromosomes. All together, these results showed a high 
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conservation of gene sequences and synteny between N. lovaniensis 
and N. fowleri.

3.3.5. Naegleria genes present sequence 
similarities with major organism groups

As a geographically widespread microorganism feeding on 
algae, bacteria, yeasts, and viruses in the soil and water, and with 
the possibility of harboring bacteria, Naegleria encounters a rich 
and diverse supply of foreign DNA, providing a large opportunity 
for gene exchange and acquisition (Bertelli and Greub, 2012; 
Sibbald et al., 2020). Herein, the functional annotation of Naegleria 

genes allowed to identify thousands of genes showing similarities 
with sequences from diverse kingdoms such as Animalia 
(including Metazoa and Homo sapiens), Plantae, other amoebae, 
Bacteria/Monera, Fungi, viruses, and other eukaryotes 
(Supplementary Table S4).

The social amoeba Dictyostelium proteins were also found to 
be more similar to Plants, Metazoa and Fungi (Eichinger et al., 
2005). Naegleria genomes are known to present key features of 
eukaryotic origin and 2.7% of N. gruberi genes are homologous to 
bacteria (Fritz-Laylin et  al., 2011; Clarke et  al., 2013). This 
corresponds to a notably high number of laterally acquired 

A

B

FIGURE 5

Functional analyses of Naegleria pangenome based on COG function enrichment (odd ratios). (A) COGs present in Naegleria core and accessory 
genomes and (B) COGs specifically detected in N. fowleri (NF), N. lovaniensis (NL) and N. gruberi (NG) strains.
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bacterial genes compared to the parasitic Entamoeba histolytica or 
the social Dictyostelium discoideum (Clarke et  al., 2013). In 
protists, fungi, plants, animals and even amoebae such as 
Acanthamoeba, Dictyostelium and Naegleria, lateral (or horizontal) 
gene transfer (LGT) has been considered a key process of genome 
evolution (Eichinger et al., 2005; Keeling and Palmer, 2008; Fritz-
Laylin et al., 2010; Clarke et al., 2013; McCarthy and Fitzpatrick, 
2019). Many of the LGT candidates across all of the Naegleria 
strains analyzed in this work have many predicted metabolic 
functions (Supplementary Table S4), suggesting that LGT in 
Naegleria might be  driven by the selective pressure of new 
ecological niches.

Interestingly, we  also noticed that Naegleria genes share 
similarities with human genes (Supplementary Table S4). Human 
orthologues have previously been found in the social amoeba 
Dictyostelium discoideum (Eichinger et al., 2005); and due to the 
strong protein homology, this amoeba is currently being used as a 
model to study genes related to human degenerative diseases 
(Haver and Scaglione, 2021). To assess if Naegleria could be used 
to investigate the functions of genes related to human disease, 
we  performed a filtering of significant matches from Blast 

similarity searches between Naegleria and Homo sapiens protein 
sequences, using a stringent threshold E-value < 10E-20 and 
protein similarity extending over 65% (Table 2) with sequence 
coverage above 80%. Surprisingly, despite the lack of a nervous 
system, Naegleria’s genome encodes genes that cause brain and 
neurodegenerative diseases (Table 2), including the gene RAB7a 
(also identified in Dictyostelium). We also found one gene related 
to eye disease (which would be more related to Acanthamoeba 
species). Although orthologues of human genes implicated in 
disease were identified in eukaryotes (including Dictyostelium and 
yeast), Naegleria could provide a potentially valuable vehicle for 
studying their functions in a system which is experimentally 
tractable and intermediate in complexity between the yeasts and 
the higher multicellular eukaryotes Dictyostelium.

3.4. Naegleria biology and ecology

Naegleria face many complex challenges in their surrounding 
environment. They must compete with other microorganisms for 
limited nutrient resources, while defending themselves against 

A B

FIGURE 6

Synteny between Naegleria fowleri and Naegleria lovaniensis using core-genes. (A) In the circos plot, protein coding genes of N. fowleri (NF_NF1 
strain, blue) can be connected with those of N. lovaniensis (NL_Lova7, green) if they belong to the core-genome. Preliminary anchoring of 
scaffolds using a 37 pseudo-molecules reference (NF_TY) during the assembly process, genes can be positioned onto 37 newly assembled 
pseudo-molecules references. Each species’ chromosome is labeled with the genus species abbreviation (NF for N. fowleri and NL for N. 
lovaniensis). Highly conserved syntenic blocks between the genomes are colored in gray, gene order rearrangement on the same chromosome 
are highlighted in red while gene order rearrangement on different chromosomes are highlighted in green. (B) Focus on chromosomes that show 
gene order rearrangement within the same chromosome using Mauve viewer. Pairwise chromosomal synteny between gene homologs of N. 
fowleri and N. lovaniensis in chromosomes 2, 5, 11, 12, and 28. Each colored box corresponds to a distinct core-gene that can be connected 
between the two reference genomes.
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predation and toxins. The knowledge of how Naegleria adapt to 
their habitats (including during the occasional infection of the 
human brain) is critical for our understanding of Naegleria 
biology and pathogenesis. To move from gene content to gene 
context, we  used Cytoscape and StringApp to construct and 
visualize PPI networks (Figure  7) from Naegleria pangenome 
information (Supplementary Table S4), using publicly available 
protein–protein-interaction information. This functional analysis 
allowed to infer major biological processes in Naegleria (Figure 7), 
discussed below and summarized in Figure 8.

3.4.1. Life cycle and reproduction
Naegleria are known for their ability to form three types of 

cells: invasive trophozoites (amoeboid form) that divide by binary 
fission/mitosis, transient motile non-dividing flagellates, and 
latent double-walled cysts (De Jonckheere, 2002; Figure 8). The 
information in differential expression of genes between the 
different forms of Naegleria is very limited. Lê and co-workers 

found evidence that a Cystatin-B like protein (encoded by the 
gene mRNA1_NF0117700-p1 in NF_ATCC 30863) may play a 
critical role in N. fowleri encystation (Lê et al., 2021). We recovered 
Cystatin-B orthologs in N. gruberi, N. fowleri (7 out the 8 strains 
analyzed) and in only N. lovaniensis strain 
(Supplementary Table S5). But our results suggest that other genes 
might be involved in Naegleria encystment, which it is not fully 
surprising since it has been recently shown that the encystment 
process is a complex phenomenon, notably for the free-living 
amoeba Acanthamoeba castellanii (Bernard et  al., 2022). For 
instance, A. castellanii encystment is induced by the down-
regulation of the acetyltransferase-like gene ACA1_384820 
(Rolland et  al., 2020). The Naegleria pangenome contains 
26 N-acetyltransferase-like genes, 6  in the core and 20  in the 
accessory genome (3 being specific to N. gruberi; 
Supplementary Table S4) but none was found to be homologous 
to gene ACA1_384820. We also identified the presence of 17 genes 
involved in “starvation” status (and possibly involved in Naegleria 

TABLE 2 Comparative analyses of Naegleria and human protein sequences.

Disease 
category

Annotation* Gene 
name*

Homo 
sapiens 

accession 
number 
(Uniprot)

BlastP alignments results Additional 
information

Query 
cover 

(%)

Identity of 
coverage 

(%)

Probability 
(E-value)

Brain disease Cell division cycle 

protein 48 homolog

VCP P55072 93 75 0 Naegleria core 

genome

Eukaryotic 

translation initiation 

factor 2 subunit 3

EIF2S3 P41091 83 78 0 Naegleria core 

genome

Isocitrate 

dehydrogenase 

[NADP], 

mitochondrial

IDH2 P48735 95% 65 0 Naegleria accessory 

genome

14–3-3 protein 

epsilon

14–3-3epsilon/

YWHAE

P62258 83 73 5E-136 Naegleria core 

genome

Neurodegenerative 

disease

Ras-related protein 

Rab-7A

RAB7A P51149 96 69 6E-74 Naegleria core 

genome; also 

detected in 

Dictyostelium 

discoideum

Eye disease Pre-mRNA-

processing-splicing 

factor 8

PRPF8 Q6P2Q9 95 75 0 Naegleria core 

genome

Autosomal recessive 

metabolic disorder

Glutaryl-CoA 

dehydrogenase, 

mitochondrial

GCDH Q92947 90 72 0 Naegleria accessory 

genome

Mitosis disorder/

cancer

Serine/threonine-

protein phosphatase 

4 catalytic subunit

PP4C P60510 100 78 0 Naegleria core 

genome

Intellectual disability Thioredoxin-like 

protein 4A

TXN4A P83876 100 82 1E-95 Naegleria accessory 

genome

*Based on Supplementary Table S4.

44

https://doi.org/10.3389/fmicb.2022.1056418
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Dereeper et al. 10.3389/fmicb.2022.1056418

Frontiers in Microbiology 16 frontiersin.org

FIGURE 7

Overview of the protein–protein interaction (PPI) and functional modules identified in Naegleria pangenome. PPI network generated with STRING 
(using a high confidence score of 0.75 and visualized with Cytoscape) was built using information available in the STRING database. The nodes 
represent the genes, and the edges represent the protein interactions. Functional node clusters were created based on the results obtained with 
the STRING enrichment plugin (with a high confidence score of 0.75 and based on non-redundant terms of Gene Ontology (GO) term, Kyoto 
encyclopedia of genes and genomes (KEGG) pathway data and Reactome Pathways Functional Interaction (FI) Network); they highlight major 
biological processes in Naegleria. Node color code stands as red for NF, pink for genes absent in NF (but present in both NL and NG), green for NL, 
light green for genes absent in NL (but present in both NF and NG), blue for NG, light blue for genes absent in NG (but present in both NF and NL), 
black for core genes and gray for accessory (Network figures generated using https://cytoscape.org/).

encystment): 11 in the accessory genome, 5 in core genome, and 
one specific to N. fowleri (the gene ULK2 coding for a Serine/
threonine-protein kinase involved in autophagy in response to 
starvation; Supplementary Table S4). The gene coding for the 
transcriptional repressor XBP1 [which is known to repress 15% of 
all yeast genes as cells switch to quiescence (Miles et al., 2013)] was 
also reported and we registered the presence of 26 orthogroups 
encoding for adenylate cyclase, which has been involved in 
encystation in Dictyostelium (Chen et al., 2010) and A. castellanii 
(Achar and Weisman, 1980). As observed in Saccharomyces 
cerevisiae (Yi and Huh, 2015) and previously suggested by 
Opperdoes et al. (2011), Naegleria might take advantage of the 
enzymes such as UTP:glucose-1-phosphate uridylyltransferase 
(which plays an important role in carbohydrate metabolism) and 

trehalose synthase and trehalose phosphatase to produce trehalose 
(a protectant against various abiotic stresses) for osmoregulation 
and cyst formation (Supplementary Tables S4, S7).

But other mechanisms could be  involved in Naegleria 
encystment. Dictyostelium discoideum grows as a unicellular 
organism, but can switch to a multicellular development upon 
starvation (Eichinger et  al., 2005). It has been suggested that 
D. discoideum transformation mechanism could be mediated by 
small non-coding RNA (ncRNA) mediated gene silencing (known 
as RNAi). Some genes involved in RNAi silencing was previously 
found in N. gruberi (Fritz-Laylin et al., 2010). Herein, elements of 
the RNAi machinery were found in all Naegleria species studied 
(n = 16, in both core and accessory genome, Supplementary Table S4). 
The identification of Piwi-interacting RNAs (piRNAs), a class of 
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small RNAs that are 24–31 nucleotides in length, indicates that 
Naegleria can use gene silencing as a regulatory mechanism of gene 
expression. These results might encourage the use of RNAi to 
unravel novel aspects of Naegleria biology.

Despite the knowledge of the replicative ability of Naegleria 
trophozoites, little is known on the genes on Naegleria “sexuality.” 
Heterozygosity and genetic recombination found in Naegleria 
gruberi (Fritz-Laylin et al., 2010) and N. lovaniensis (Pernin et al., 
1992) is typical of a sexual organism, and suggest some form of 
mating type. Meiotic and mitotic machinery was previously found 
in N. gruberi and N. fowleri genomes (Fritz-Laylin et al., 2010; 
Herman et  al., 2021). Our results are in agreement with this 
observation as the three species studied can reproduce by mitosis 
(n = 63 genes) and they also have a complete meiosis toolkit gene 
(Supplementary Table S6). Indeed, we  detected several genes 
involved in syngamy (HAP2), sister chromatid cohesion (cohesin 
complex, SMC1, SM1A, DCC1, PDS5, RAD21/REC8), formation 
of DNA double stranded breaks (SPO11, MRE11, and RAD50), 
homologous recombination (DMC1, RAD51, HOP2, and MND1), 
crossing over pathways (MSH4-5, MLH1, MLH3, EXO1, MUS81 
and MMS4), and gene conversion (mismatch correction, MSH2, 

MSH6, PMS1-2; Supplementary Table S6). We did not recover the 
genes GEX1 [a nuclear membrane protein involved in karyogamy, 
also absent in Entamoebae (Hofstatter et al., 2018)] and MER3 (a 
DNA helicase that unwinds double-stranded DNA, previously 
detected by Herman et al., 2021). Although the formation of the 
synaptonemal complex (SC) is one of the hallmarks of meiosis, 
we only detected one gene (SCP-2-like) potentially involved in this 
process. As previously observed (Fritz-Laylin et al., 2010; Herman 
et al., 2021), we also noticed that some of these genes (e.g., RAD51, 
HAP2, MSH6, SPO11) have several paralogs and certain meiosis-
specific genes are differentially present in Naegleria species 
(N. fowleri 986 presenting the highest number of gene paralogs 
namely for HAP2, MSH5, MLH1, MSH6 and MLH4, 
Supplementary Table S6). This variation in sexual mechanism has 
been previously reported for amoebozoans (Tekle et al., 2017, 
2022) and Symbiodiniaceae dinoflagellates (Shah et al., 2020).

3.4.2. Feeding and metabolism
Naegleria colonize environments that frequently vary in 

nutrient supply (carbon-, nitrogen-, phosphorus-, sulfur-
sources, metal ions). To obtain nutrients such as methionine, 

FIGURE 8

Naegleria biology and ecology. Naegleria is found worldwide in natural (such as rivers, lakes, hot springs, underground waters) and man-made 
(including pipes, swimming pools) aquatic environments and soil habitats. As a free-living genus, they live primarily as an amoeboid trophozoites, 
moving around using pseudopodia and by changing their shape. They replicate by mitosis and feed mainly on bacteria via phagocytosis, using 
chemotaxis as a possible hunting mechanism. Though they can obtain nutrients from the environments, they need to adapt their metabolism 
between feast and starvation conditions. Under nutrient deprivation, trophozoites can transform to resistant and dormant cysts; these can 
be transported by dust during dust storms. Several Naegleria species (namely N. fowleri) can exhibit a flagellate state, allowing to move around 
more rapidly searching for food or stressless situations. This incredible ability to swap between different forms must requires significant 
biochemical and genetic modifications. Naegleria can use other strategies to survive to stress (oxidative and osmotic stress, high temperatures, 
toxic preys, and predators) namely through macromolecule modification and post-translation modifications (PTMs). Genes acquired by lateral 
gene transfer can also provide additional help to survive in harsh situation. Few species are pathogenic but Naegleria fowleri trophozoites can 
opportunistically infect animals and humans. If water containing N. fowleri enters the nose, the trophozoite can enter the nasal cavity, travel to the 
brain and feed on the brain, beginning with the meninges. As several virulent-associated genes (such as Cathepsin and Naegleriapore pore) were 
found in non-pathogenic N. gruberi and N. lovaniensis and pathogenic N. fowleri, this suggests that high-pathogenicity of N. fowleri might 
be linked to differential expression of these genes and/or related to N. fowleri specific genes involved in autophagy, motility, membrane and 
cytoskeleton dynamics, and even PTMs.
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purine and heme, the amoebae still needs to feed on various 
microorganisms including algae, bacteria, yeasts, and viruses 
(Fritz-Laylin et  al., 2011). Unicellular organisms such as 
Entamoeba histolytica and Dictyostelium discoideum can use two 
complementary strategies to feed on microorganisms: 
chemotaxis (for detection and foraging) and phagocytosis (for 
recognition and digestion; Bailey et al., 1985; Xu et al., 2021). 
While microorganisms ‘detection and hunting are facilitated by 
chemoattractant G-protein-coupled-receptors (GPCRs), 
recognition and digestion require pattern-recognition receptors 
(PRRs), such as Toll-like receptors (TLRs) and C-type lectin 
receptors [as reviewed by Xu et  al. (2021)]. Chemotaxis was 
previously observed in N. fowleri to bait for bacteria (Marciano-
Cabral and Cline, 1987). Naegleria fowleri but not N. australiensis, 
N. gruberi, or N. lovaniensis, demonstrated enhanced motility 
when placed in proximity to mammalian cells (Cline et  al., 
1986). It has been also suggested that N. fowleri might actively 
use chemotaxis to reach the brain tissue (Baig, 2016). We also 
know that Naegleria uses mainly phagocytosis to digest bacteria, 
but the components involved in both chemotaxis and 
phagocytosis remain largely unknown. Herein, we detected 188 
genes involved in Naegleria chemotaxis and phagocytic process: 
71  in the Naegleria core genome and 117  in the accessory 
genome (7 being specific to N. lovaniensis strains, 3 to N. gruberi 
and 4 to N. fowleri; Supplementary Table S4). To sense microbial 
pathogens, TLRs proteins bind to bacterial elicitors through 
leucine-rich repeats (LRRs) and signal through adaptor/effector 
proteins which in turn, initiates the transcriptional programs 
that mediate specific defense responses (Chen et  al., 2007). 
Herein, we  identified 43 genes coding for TLRs with ligand-
binding leucine-rich repeats (LRRs) in Naegleria core genome, 
21 integrins (12 in accessory and 9 in core), C-type lectin (2 in 
the core genome) and 15 genes coding for concanavalin-type A 
lectin found in both core (n = 5) and accessory (n = 10), with one 
being specific to N. lovaniensis (OG0012291). Like human 
integrins, D. discoideum contain von Willebrand factor type A 
and a glycine-rich transmembrane domain and can interact with 
the actin-binding protein talin (Dunn et  al., 2018). Herein, 
we found 15 genes coding for van Willebrand factor type A and 
interestingly only two were detected in the core genome. Among 
the 13 genes present in the accessory genome, 2 are specific to 
N. lovaniensis and 2 others to N. fowleri (Supplementary Table S4).

The phagocytotic process requires actin and cytoskeleton 
dynamics to accommodate the newly formed phagosome. 
Naegleria gruberi genome sequence revealed that the amoeba holds 
complete actin and microtubule cytoskeletons (Fritz-Laylin et al., 
2010). Besides these actin-related genes, we  also detected a 
considerable number of upstream signaling components required 
for cytoskeletal reorganization, such as Rho family GTPases and 
small GTPases. Indeed, we  found that of the 25 Rho family 
GTPases and 111 small GTPases family detected in Naegleria, most 
of them were in the accessory, indicating that this feature is 
differential between the different strains or species 
(Supplementary Table S4). Contrary to what is observed in the 

social amoeba Dictyostelium, Cdc42 (with a profound effect on cell 
polarity) is specifically present in N. lovaniensis. The activities of 
these GTPases are regulated by members of the RhoGDI family, by 
components of ELMO1–DOCK180 complexes and by a large 
number of proteins carrying RhoGEF and RhoGAP domains. 
Herein, we found 1 gene coding for RhoGDI (in the core genome), 
6 genes with ELMO domains (mainly in the accessory genome), 2 
RhoGEF (in the accessory genome) and 14 RhoGAP 
(Supplementary Table S4). Phosphatidylinositol phosphates are 
crucial players during phagosome formation phagocytic uptake 
and maturation (Gillooly et al., 2001). As for Dictyostelium (Dunn 
et al., 2018), Naegleria also possesses class I phosphatidylinositol-
3-OH kinases (PI3K), which are at the crossroad of several critical 
signaling pathways (Supplementary Table S4). The diverse array of 
these regulators and the discovery of many additional actin-
binding proteins suggest that there are many aspects of cytoskeletal 
regulation that have yet to be explored in Naegleria.

To breakdown several bacterial components or disrupt 
membrane integrity, Naegleria phagosome acquires a series of 
proteases, hydrolases, lysozymes, and antimicrobial peptides. Our 
results revealed the presence of 178 genes related to such pathways, 
with a strong homology to the genes detected in the social amoeba 
Dictyostelium (Supplementary Table S4) and with some of them 
being considered as virulence factors in N. fowleri (Herman et al., 
2021). For instance, we  found 19 genes coding for cathepsin 
proteases, including Cathepsin D (considered as a virulence factor 
in N. fowleri), a lysosomal protease involved in early phagosome 
steps, detected in the accessory genome. We  also found that 
Naegleria is equipped with a large arsenal of lysozymes (up to 6 
genes for N. lovaniensis, Supplementary Table S7), which suggest 
that each of them might be useful to kill and degrade different 
subsets of microorganisms. Other enzymes such as acid 
phosphatase, phospholipases (namely A, B, and D) and esterase 
[probable constituents of Naegleria’s phago-lysosomal system 
(Opperdoes et  al., 2011)], chitinase, alpha and beta-amylases, 
alpha and beta-glucosidases, anhydro-N-acetylmuramic acid 
kinase and lysosomal alpha-mannosidase (that degrade bacterial 
peptidoglycans and glycoproteins), glucokinase, regulatory 
protein homolog and D-lactate dehydrogenase (involved in 
bacterial cell walls degradation) were also detected 
(Supplementary Table S7). Interestingly, the genes coding for beta-
glucosidase (present in the core genome), acid phosphate 
(accessory genome) and lysozyme are more abundant in 
N. lovaniensis. On the other hand, the lysosomal enzyme alpha-
galactosidase (involved in glycoproteins, glycolipids, and 
polysaccharides cleavage) was found only in some N. fowleri 
strains. Whether this relates to improved efficacy to digest bacteria 
or the ability to digest different bacteria genera remains to 
be elucidated.

As mentioned above, Naegleria undertake frequent transitions 
between feast and starvation feeding conditions, by adopting one 
of the three forms presented in Figure 8. All these transitions 
require adequate metabolic adaptations. Naegleria’s genomes 
sequencing allowed to reveal important insights into the versatility 
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of Naegleria’s metabolic capacities, including the existence of 
aerobic and anaerobic modes of metabolism (Fritz-Laylin et al., 
2011; Opperdoes et  al., 2011). Our results showed that genes 
involved in carbohydrate and amino acid metabolism, cholesterol 
and sphingolipid biosynthesis, metabolism of co-factors 
(Supplementary Tables S4, S7) are distributed both in Naegleria 
core and accessory genomes. Although the presence of several 
enzymes involved in sugar transport, pentose phosphate pathways, 
glycolysis/gluconeogenesis suggest that Naegleria utilizes a variety 
of monosaccharides for its carbohydrate needs (Fritz-Laylin et al., 
2010; Opperdoes et al., 2011; Supplementary Table S7), the role of 
glycolysis in N. fowleri during human infection remains 
unresolved (Milanes et al., 2019). In fact, Bexkens et al. (2018) 
revealed that N. gruberi trophozoites would prefer to oxidize fatty 
acids to generate acetyl-CoA, rather than use glucose and amino 
acids as growth substrates (Bexkens et al., 2018). Recently, several 
genes involved in metabolism of both lipids and carbohydrates 
were shown to be upregulated in mouse-passaged N. fowleri, being 
possibly related to the amoeba pathogenesis (Herman et al., 2021). 
Herein, we found several orthogroups encoding for Acyl-CoA 
synthetase (n = 9) which could possibly explain why lipids are 
more use that sugars (Supplementary Table S7). We also detected 
several orthogroups for adenylate kinase (n = 7) and succinate 
dehydrogenase (n = 4; present in all N. lovaniensis strains) which 
are implicated in energy homeostasis and production. It should 
be noted that N. gruberi, N. lovaniensis and N. fowleri strains are 
able to grow in the absence of bacteria (i.e., in axenic culture 
medium), in the laboratory (Cline et  al., 1983; this work). 
Although the reasons for this are not yet clear, we suggest that, as 
an analogy to what was observed in the laboratory strains of 
Dictyostelium, a mutation in the gene encoding the Ras-regulating 
neurofibromin (that we found in the core and accessory genomes 
analyzed) would result in enlarged macropinosomes, and hereby 
facilitate the uptake of sufficient nutrients from liquid media to 
support growth (Bloomfield et al., 2015).

To compete for food supply and eventually inhibit the growth 
of the surrounding organisms, Naegleria might likely rely on the 
production of antimicrobial compounds. The analyses performed 
in this work revealed the presence of gene involved in the 
biosynthesis of secondary metabolites and resistance to antibiotics 
and/or other toxic compounds (Supplementary Table S4). The 
high number of genes encoding efflux pumps (such as 
ATP-binding cassette, ABC) and polyketide synthases for 
producing and exporting small molecules in the Naegleria 
genomes fully supports this view. ABC transporters are known to 
be prevalent in the proteomes of soil microorganisms such as 
Dictyostelium (Eichinger et al., 2005) and are thought to provide 
resistance to xenobiotics through their ability to translocate small-
molecule substrates across membranes against a substantial 
concentration gradient. In Naegleria, we  found 33 ABC 
transporters encoded by the genome (11 in the core genome and 
22 others in the accessory, with one being specific to N. fowleri 
strains). In addition to polyketide synthases (n = 16, 5 in the core 
pangenome), the predicted Naegleria pangenome has O-methyl 

transferases, which could increase the diversity of natural products 
made. Like Dictyostelium, Naegleria appears to have a large 
secondary metabolism, which deserves further investigation.

3.4.3. Motility
Naegleria display motility that is characteristic of human 

leukocytes (Fritz-Laylin et al., 2011). Naegleria trophozoites move 
slowly by extension of directional movements by means of broad, 
rounded anterior pseudopodia (lobopodia) while the flagellate 
possesses two basal bodies and flagella, providing a mechanism to 
locomote quickly in search of more favorable local conditions. The 
shape and locomotion of Naegleria are amazingly plastic.

Actin is also strongly associated to motility in Naegleria 
flagellate and amoeba stages (Velle and Fritz-Laylin, 2020). Herein, 
we  found several genes coding for actin-related protein 2/3 
complex subunit (n = 5), profilin (n = 4), WASP (n = 5), WAVE-
complex (n = 2), formin (n = 6), and WASH-complex elements 
(n = 6; Supplementary Table S4), but most interestingly we noticed 
that Actin-1 [implicated in N. fowleri pathogenicity due to its role 
in trogocytosis via food cup formation (Sohn et al., 2010)] can 
be  encoded by 4 (N. lovaniensis) to 64 genes for N. gruberi 
(Supplementary Tables S4, S5); Actin-1 can be  encoded to an 
average of 15 genes in N. fowleri. The reasons for this 
remain unclear.

For amoeboid locomotion, the amoeba must modulate their 
adhesiveness to the substrate, the extracellular matrix and to other 
cells. To accomplish this, Naegleria genome encodes numerous 
proteins previously described as components of adherens 
junctions in animal Metazoa, such as β-catenin (n = 1, absent in 
N. gruberi, Supplementary Table S4), α-actinin (n = 6, one being 
specific to N. fowleri, Supplementary Table S4), myosin (n = 26, 
Supplementary Table S4), laminin (40 predicted proteins) and 
fibronectin. We also identified sets of genes enriched in functions 
specific to flagellar motility (such as dynein) in both Naegleria 
core and accessory genome. We identified 6 gene families capable 
of amoeboid locomotion (AMs) first detected in N. gruberi (Fritz-
Laylin et al., 2010). Among those, only one is present in Naegleria 
core pangenome (AM46), another being specific to N. fowleri 
(AM6) and the others to accessory (Supplementary Table S4). 
We  nevertheless noticed that N. lovaniensis and N. fowleri 
presented more orthogroups related to motility (namely laminin, 
which could represent a benefit for host tissue colonization) and 
in particular N. fowleri genomes are enriched with genes encoding 
proteins with leucine rich and dynein heavy chain domains 
(Supplementary Table S4). This higher number of genes encoding 
for modulation of cytoskeletal protein could be linked to N. fowleri 
pathogenesis, as previously suggest (Herman et al., 2021).

3.4.4. Survival
To efficiently feed, replicate and survive, Naegleria must 

be able to sense its surrounding environments (soil, water, brain), 
which present different physicochemical conditions, especially in 
pH value and oxygen partial pressure and to compete with other 
amoebae (including those from the same genus), fungi and 
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bacteria for limited resources in the different habitats. For this, 
Naegleria must have developed its gene repertoire to feed on 
(potentially pathogenic) microorganisms and to defend 
themselves against predation, toxins and environmental oxidative 
stress (Supplementary Table S4).

3.4.4.1. Environmental sensing

Naegleria gruberi‘s genome encodes an extensive array of 
intracellular signaling machinery that presumably coordinates 
the environmental sensing (Fritz-Laylin et  al., 2010). From 
Supplementary Table S4, this repertoire includes G-protein-
coupled receptor signaling (n = 37) and histidine kinases (n = 17), 
as well as 265 predicted protein kinases, 32 protein phosphatases, 
and 182 monomeric Ras-like GTPases (Supplementary Table S3). 
Many organisms sense their environment via membrane-bound 
adenylate/guanylate cyclases; Naegleria contains at least 81 
cyclases, 6 being specific to N. fowleri and 4 to N. lovaniensis. 
We also detected 4 response receiver domain proteins, whereas 
other protists such as T. brucei, Giardia, and Entamoeba have 
none (Fritz-Laylin et al., 2010). We also found 17 sensor protein 
(all homologous to bacteria) genes with PAS domain and histidine 
kinase domaine genes. Iron–sulfur (Fe–S) clusters have long been 
recognized as essential and versatile cofactors of proteins involved 
in sensing of ambient conditions, being essential for viability; 
however, these clusters can be degraded in the presence of copper. 
Naegleria fowleri has shown to be able to respond to limited iron 
availability (Arbon et al., 2020) and excess of copper (Grechnikova 
et al., 2020) to overcome oxidative stress. Herein, we detected 
genes coding for Fe-S cluster assembly, namely a cysteine 
desulfurase (with 5 orthogroups, and up to 5 gene encoding for 
the protein in N. fowleri 986), the iron chaperone frataxin and a 
NifU-like protein. To regulate copper levels, Naegleria uses 
copper-translocating ATPase, Selenium-binding protein 1-A, 
Globin/Protoglobin and Hemerythrin-like proteins (Grechnikova 
et  al., 2020), detected in both core and accessory genome. 
Interestingly, the Globin/Protoglobin (OG0000194) and 
Hemerythrin-like protein (OG0000115) can be  encoded by 
several genes in different Naegleria strains, which strongly suggest 
the importance of copper regulation for Naegleria survival.

3.4.4.2. Response to “toxic” preys

During their hunt for food, Naegleria must often cope with the 
toxic traits of its prey. In aquatic environments, Naegleria can feed 
on cyanobacteria or eukaryotic algae which can expose them to 
photosynthetic oxidative stress (Uzuka et  al., 2019). Herein, 
we found that Naegleria accessory genome encodes a gene for 
chlorophyllide-a oxygenase (CAO), which likely play a role in the 
degradation/detoxification of chlorophylls derived from prey 
during digestion. We also found other genes that could protect 
Naegleria from phototoxicity including RCC1 (Ultraviolet-B 
receptor UVR8 protein, n = 18), SOQ1 (n = 11, 5 being specific to 
N. lovaniensis) and Photoactivated adenylate cyclase (n = 2; 
Supplementary Table S3) homologous to Euglena genes and for 
photoresponsive behavior (Ntefidou and Häder, 2005).

It is widely recognized that some bacteria have evolved 
mechanisms to escape degradation within amoebae phagosomes 
(Dunn et al., 2018). In the social amoeba D. discoideum, as in 
other eukaryotic phagocytes, when bacteria escape from the 
phagosome, an alternative pathway to phagocytosis is triggered to 
eliminate infection in a more stringent catabolic way: autophagy 
(Mesquita et al., 2017). Herein, we detected at least 108 genes 
related to autophagy mechanism (Supplementary Table S3). These 
included previously considered N. fowleri virulence associated 
genes (n = 25) such as Beclin and Serine/threonine-protein kinase.

Additionally, we found evidence that Naegleria genome can 
encode at least 194 genes related to inflammatory and subsequent 
adaptive immune responses which supports the facts that 
Naegleria use additional defense mechanism and secretion of 
intercellular signals to provide a rapid antimicrobial response. 
Among those, 5 are specific to N. fowleri and 12 to N. lovaniensis. 
The genomes of the amoebae Acanthamoeba castellani and 
Dictyostelium are also known to encode a diverse repertoire of 
genes with predicted orthologous functions in the innate immune 
systems of higher organisms (Eichinger et  al., 2005; Clarke 
et al., 2013).

3.4.4.3. Response to high temperature

The vast majority of eukaryotes cannot survive prolonged 
exposure to temperatures above 40°C–45°C. Eukaryotic 
thermophiles (such as N. fowleri and N. lovaniensis) must have 
evolved to include several mechanisms of stabilization of enzymes 
or optimization of their activity, modulation of proportion of 
saturated fatty acids incorporated into phospholipids [so that their 
membrane fluidity is kept constant for the optimal functioning of 
membrane-localized transporters and enzymes (Arthur and 
Watson, 1976; Maheshwari et al., 2000)] and modulation of heat 
shock proteins. Herein, we found 97 genes involved in heat stress, 
two of them being in the core genome of N. fowleri 
(Supplementary Table S3).

3.4.4.4. Response to oxygen levels

Although Naegleria present oxidative and non-oxidative 
modes of metabolism, when N. fowleri reaches the brain tissue it 
must possess an efficient antioxidant system to survive the 
invasion of oxygenated tissues and survive to the aerobic stress 
caused by the host immune response. Herein, we found 64 gene 
involved in oxidative stress. The amoebae Mastigamoeba 
balamuthi and Entamoeba histolytica share antioxidant system 
characteristics and their antioxidant machinery relies on the 
thioredoxin-based system (thioredoxin, NADPH: flavin 
oxidoreductase, peroxiredoxin), Fe-superoxide dismutase and 
rubrerythrin, and proteins (Žárský et al., 2021). Naegleria also 
encodes genes for thioredoxin (n = 21), peroxiredoxin (n = 3), 
superoxide dismutase (n = 4) and rubrerythrin (n = 1). These genes 
can either be  found in the core and accessory genomes 
(Supplementary Table S3). As for M. balamuthi, Naegleria also 
possess (in the accessory genome) a homolog of the common 
bacterial osmotically inducible protein C (OsmC), which may 
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serve as a peroxidase (Žárský et al., 2021), and multiple homologs 
of hemerythrin (n = 5, including one in the core genome) and may 
be involved in oxygen sensing. However, contrary to M. balamuthi 
and E. histolytica which lack glutathione-based pathways and 
catalases, we  found several glutathione peroxidases that are 
antioxidant enzymes involved in the amoeba defense against 
reactive oxygen species.

3.4.4.5. Response to changes in osmolality

Fluctuations in external osmolality are one of the most 
encountered stress signals of living cells (Saran and Schaap, 2004). 
Eukaryotes such as yeast and Arabidopsis use histidine kinases to 
activate mitogen-activated protein (MAP) kinase pathway after 
osmotic up-shift; MAP kinase pathways also mediate osmotic 
stress responses in animals. In D. discoideum, osmotic up-shift 
reverts the histidine kinase DokA into a histidine phosphatase, 
which results in inactivation of the cAMP phosphodiesterase 
RegA. In the amoeba spore stage, osmotic up-shift activates 
adenylyl cyclase G, an enzyme that is structurally homologous to 
the Trypanosoma receptor adenylyl cyclases (Saran and 
Schaap, 2004).

Herein, we detected several genes encoding histidine kinases 
(as above mentioned), MAP kinases (n = 30), the 3′,5′-cyclic-
nucleotide phosphodiesterase regA and adenylyl cyclases (n = 24, 
3 are specific to N. fowleri; Supplementary Table S3). The presence 
of the genes might explain the ability of Naegleria to survive in 
various water environments.

3.4.4.6. Post-translational modifications

Stress responses and environmental adaptation is frequently 
achieved in eukaryotes through posttranslational modifications 
(PTMs) of signaling (Leach and Brown, 2012; Prabakaran et al., 
2012; Beltrao et al., 2013). Herein, we identified for the first time, 
a wide repertoire of genes (at least 214 genes, 64 in core and 150 in 
accessory) encoding for several PTMs [such as protein 
SUMOylation (n = 4), ubiquitination (n = 191), neddylation 
(n = 9), Farnesylation (n = 10), N-and O-Mannosylation (n = 4); 
Supplementary Table S3]. This diverse variety of PTMs that might 
allow Naegleria to mount effective responses to adapt to their 
surroundings [including human brain, for N. fowleri, as previously 
suggested by Joseph et al. (2021)] and nutrient availability.

Ubiquitination is a reversible PTM that can modulate the 
activity of target proteins in various ways of numerous cellular 
processes, including cell cycle progression, gene transcription, 
DNA repair, and inflammation. Ubiquitination has been shown to 
be required for the survival of S. cerevisiae and C. albicans under 
starvation conditions (Leach and Brown, 2012). Herein, 
we detected 5 genes specific to N. fowleri, 11 to N. lovaniensis and 
14 absent from N. gruberi but present in both N. fowleri and 
N. lovaniensis. We identified 14 E3 ubiquitin ligase (9 are specific 
to N. lovaniensis and 5 to N. fowleri). These enzymes are involved 
in the transfer of ubiquitin to substrate proteins, a process that 
determines the fate of the modified protein. The role mediated by 
E3 ligases is so crucial, that their activity must be tightly controlled 

to ensure they solely act when necessary. The mechanisms of 
protein neddylation have multiple essential functions in the cell 
and it appears to be important for facilitating the attachment of 
ubiquitin E2 to the E3 ubiquitin ligase. Cullins are a key 
component of cullin-RING E3 ligases, which regulate the 
degradation, function, and subcellular trafficking of proteins. 
Herein, we detected 9 genes of the cullin family of proteins. Cullin 
proteins were also detected in Dictyostelium (Kim et al., 2022).

The importance of N-and O-glycosylation in pathogenic fungi 
has been largely attributed to their key roles in the construction 
and maintenance of a robust cell wall, an essential structure in 
fungi. Herein, we  also found α1,6-mannosyltransferase and 
Dol-P-Man:protein O-mannosyltransferases involved in 
O-Mannosylation. We  also found evidence of GPI-anchored 
proteins that are also involved in C. albicans cell wall biosynthesis 
and modeling. The implication of these enzymes in Naegleria 
biology deserves further investigation.

3.4.5. Virulence-associated genes
According to the initial “pangenome” concept (Tettelin et al., 

2005), genes which enable the bacterial microorganisms to occupy 
and survive in often-hostile habitats could be  considered as 
virulence genes. Here, we observed that many genes potentially 
considered as N. fowleri virulence associated genes (Zysset-Burri 
et  al., 2014; Herman et  al., 2021), were often found in 
non-pathogenic Naegleria strains analyzed to survive in these 
different habitats. These included prosaposin (termed 
Naegleriapore A), cathepsins B, C, L, Z, and F, serine protease, 
phospholipase B and serine/threonine-protein kinase.

Therefore, we  specifically looked for candidate genes 
associated to virulence based on differences between N. fowleri 
with the non-pathogenic N. gruberi and N. lovaniensis. We could 
identify a set of genes exclusively present (n = 946) in N. fowleri (at 
least in one strain), 69 being present in all N. fowleri strains 
analyzed (Supplementary Table S4). Of these, 481 (50%) are 
unique to N. fowleri, with no clearly homologous sequence in any 
other organisms based on NCBI BLAST. Many of the annotated 
genes specific to N. fowleri are involved in autophagy, cytoskeletal 
and membrane dynamics, motility, response to stress and 
posttranslational modifications. Secretory products (such as 
glycosidase) from N. fowleri has been shown to play an important 
role in mucus degradation during the invasion process (Martínez-
Castillo et al., 2017). Herein, we detected several genes coding for 
glycoside hydrolase (17 in core genome, 21 in accessory and 3 
specific to N. fowleri). These enzymes could be useful to Naegleria 
to evade the mucus of the olfactory mucosa, which is part of the 
innate immune response (Martínez-Castillo et al., 2017). We also 
looked at genes specifically absent in N. fowleri, in particular, 
those potentially involved in host immune response. The absence 
of von Willebrand factor A domain-containing protein 3B (VWA 
domain-containing protein 3B) could help N. fowleri to escape 
from human immune response during infection. The presence of 
genes strongly homologous to human genes (Table 2) could also 
be useful to N. fowleri to go undercover in the human host.
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As already discussed above, motility, proteases and lysosomal 
machinery have been related to N. fowleri pathogenesis. Recent 
transcriptomics experiments performed in mice suggest that 
up-regulation of genes involved in glutamate metabolism and 
ammonia transport could facilitate the spreading of N. fowleri in 
the central nervous system (Herman et al., 2021). Enzymes such as 
kynurenine-oxoglutarate transaminase, glutamate dehydrogenase 
and isocitrate dehydrogenase (involved in glutamate metabolism) 
and ammonium transporter were all found in the accessory 
genome (Supplementary Table S7) allowing the amoeba to produce 
brain-related neurotropic factors with impact on human 
mechanisms of neuroregeneration (Kim et  al., 2017; Herman 
et al., 2021).

4. Conclusion

Pangenomes are becoming widely used to represent, analyze 
and predict the genomic diversity for populations of a single 
species or genus. Although the concept of the “pangenome” 
analysis was initially proposed in prokaryotes (Tettelin et al., 2005; 
Golicz et al., 2020), nowadays it is being performed in eukaryotes 
such as unicellular eukaryotes, fungi, plants, and animals (Aherfi 
et al., 2018; McCarthy and Fitzpatrick, 2019; Bayer et al., 2020; 
Golicz et  al., 2020). In fact, pangenomics has somehow 
transformed eukaryote genome analyses as, regardless of their 
quality, eukaryote reference genomes do not and cannot contain 
all genetic information for a species due to genetic and genomic 
variation between individuals within a species or a genus 
(McCarthy and Fitzpatrick, 2019).

Since 2010, the number of published Naegleria genomes is 
increasing, with different levels of completeness ranging from 
“close-to-complete,” draft, scaffolds or reads (Fritz-Laylin et al., 
2011; Liechti et al., 2018, 2019; Ali et al., 2021; Herman et al., 2021; 
Joseph et al., 2021). A detailed comparison of these genomes and 
additional functional studies using RNAseq and proteomics 
allowed to identify differently expressed genes potentially involved 
in N. fowleri pathogenesis (Herman et al., 2021; Joseph et al., 2021; 
Rodriguez-Anaya et al., 2021). Still, the understanding on how 
Naegleria can adapt to different environments, how they are 
phenotypically different, and why N. fowleri is the only pathogenic 
species to humans in Naegleria genus remains unclear.

Herein, we  aimed to construct the first Naegleria genus 
pangenome, to assess the genomic repertoire of the genus and 
hereby open new ways to address issues related to microorganisms’ 
adaptation, evolution, diversity and pathogenesis (Tettelin et al., 
2005; Golicz et al., 2020). For this, we presented 6 new genomes 
(increasing the number of genomes available for N. fowleri but 
especially for N. lovaniensis) and compared 14 Naegleria strains.

From a whole-genome SNP phylogenetic point of view, 
N. lovaniensis species displays a greater degree of variability, 
whereas N. fowleri is characterized by a phylogenetic shallowness. 
By defining core genomes (all genes present throughout species) 
and accessory genomes (strain-specific genes or genes specific to 

individual groups of strains), we  find strong evidence for 
pan-genomic structure within Naegleria. The analysis of the 
pangenome of the 3 species groups revealed how they are 
characterized by a closed pangenome, underlining that the gene 
repertoire encoded by these amoebae genus is nearly complete. A 
more expansive analysis of the pangenome covering more 
genomes (including more genomes from N. gruberi but also other 
species such as N. australiensis and N. italica known to be virulent 
in animals) would not substantially increase the number of genes 
identified in this work.

Naegleria inhabit a wide range of soil and aquatic 
environments worldwide, which represents an ideal situation for 
gene exchanges. The functional analyses of the Naegleria genomes 
support this idea as they revealed the existence of a large fraction 
of genes homologous to several kingdom such as plant, animal, 
archaea, to bacteria and virus. The biological significance of such 
degree of exchange and the high number of unique genes might 
rely on the fact that most of amoebae have explored many possible 
genetic/genomic combinations, to find the more efficient 
phenotype for the colonization of a given ecological niche. 
Interestingly, Naegleria share orthologous genes related to human 
diseases. Due to a high number of conserved features comparable 
to Animalia (including human) and Dictyostelium, Naegleria 
could be a valuable and attractive tool for the study of eukaryotic 
cell biology and evolution. Thermophilic Naegleria species could 
also be  useful to study human disease in a system which is 
experimentally tractable.

Successful adaptation to different habitats must require a 
balance between exploiting surrounding nutrients resources, 
competition or symbiosis with other species, replication rate and 
mobility efficiency. Naegleria has been already considered as a 
versatile eukaryote due its gene repertoire (Fritz-Laylin et  al., 
2010, 2011). Our results reveal that genomic plasticity due to 
changes in ploidy and aneuploidy might be underlying its ability 
to adapt to several environments. An important question that will 
need to be answered is how Naegleria employs these genomic 
strategies as a general mechanism to adapt rapidly and flexibly to 
changing environmental assaults.

We observed that Naegleria core genomes are enriched for 
genes that facilitate many essential metabolic, regulatory and 
survival processes in both non-pathogenic (N. gruberi and 
N. lovaniensis) and pathogenic N. fowleri species. Accessory 
genomes are enriched for genes involved in processes like gene 
duplication and gain/loss events within strains, and are enriched 
for genes involved in molecule transport, motility, immune 
response and proteins modification using PTMs.

While searching for a pathogenic profile in N. fowleri, 
we  found virulence factors in the Naegleria core genome 
suggesting that pathogenic and non-pathogenic lifestyles might 
be also a result of genes expressed differentially, as it has been 
shown for other taxa (Meysman et al., 2013; Lòpez-Fernàndez 
et al., 2015). The analysis of N. fowleri species-specific accessory 
genome allowed us to detect genes that could permit increased 
virulence. Validation of the role of these virulence factors will 
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require experimental confirmations.The results obtained herein 
suggest that drawing the line between pathogens and 
non-pathogenic Naegleria strains might be difficult, as strain-level 
differences in niche overlapping, ecological interactions, state of 
the host’s immune system and environmental factors are seldom 
considered. Moreover, pathogenicity must be  the result of a 
complex, multifactorial interaction, not only dependent on 
qualitative issues such as the presence of specific species, strains, 
or genes, but also on their relative abundances (Ehrlich et al., 
2008) but also genomic structure.

Globally, the characterized structural and functional 
divergences and similarities identified here represent an important 
contribution toward understanding the evolution, phenotypic 
diversity and versatility of the poorly studied free-living amoebae 
of the Naegleria species, paving the way for further genomic and 
post-genomic studies.

Because of a high number of conserved features comparable 
to Animalia (including human), these versatile protists could 
be used as a non-mammalian model to study of eukaryotic cell 
biology features such as resistance to temperature, cell-
autonomous defense mechanisms, and host-pathogen interaction. 
At the moment, the non-mammalian host models predominantly 
used belong to the genera Acanthamoeba and Dictyostelium 
(phylum Amoebozoa; Eichinger et al., 2005; Chen et al., 2007; 
Sandström et al., 2011; Dunn et al., 2018; Swart et al., 2018; Haver 
and Scaglione, 2021). Although they have proven to be particularly 
useful to study different eukaryotic mechanisms such as host-
pathogen interaction, cell motility, chemotaxis, phagocytosis, and 
more recently autophagy and microbiome formation, one of the 
major drawbacks in using these amoebae is that most of them do 
not grow at “elevated” temperatures such as the human body 
temperature. As several Naegleria species can withstand 
temperatures at 37°C (and above), these free-living amoebae 
could be a useful alternative to study human disease in a system 
which is experimentally tractable.
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Acanthamoeba is an opportunistic protozoa, which exists widely in nature and is

mainly distributed in soil and water. Acanthamoeba usually exists in two forms,

trophozoites and cysts. The trophozoite stage is one of growth and reproduction

while the cyst stage is characterized by cellular quiescence, commonly resulting

in human infection, and the lack of effective monotherapy after initial infection

leads to chronic disease. Acanthamoeba can infect several human body tissues

such as the skin, cornea, conjunctiva, respiratory tract, and reproductive tract,

especially when the tissue barriers are damaged. Furthermore, serious infections

can cause Acanthamoeba keratitis, granulomatous amoebic encephalitis, skin,

and lung infections. With an increasing number of Acanthamoeba infections in

recent years, the pathogenicity of Acanthamoeba is becoming more relevant

to mainstream clinical care. This review article will describe the etiological

characteristics of Acanthamoeba infection in detail from the aspects of biological

characteristic, classification, disease, and pathogenic mechanism in order

to provide scientific basis for the diagnosis, treatment, and prevention of

Acanthamoeba infection.

KEYWORDS

Acanthamoeba, biological characteristics, classification, disease, pathogenesis

1. Introduction

Acanthamoeba is an opportunistic protozoa that is widely distributed in the natural
environment, such as sea water, swimming pools, tap water, natural thermal water, soil, dust,
and even the nasal mucosa of healthy individuals (Rivera et al., 1989, 1991; Michel et al., 1994;
Tawfeek et al., 2016; Lass et al., 2017; Carnt et al., 2020; Wopereis et al., 2020). Pathogenic
species can cause serious blindness in humans, arising from Acanthamoeba keratitis (AK)
and rare granulomatous amoebic encephalitis (GAE) as well as skin and lung infections.
Cases of AK and GAE were first reported by Fowler and Carter (1965) and by Naginton
et al. (1974), respectively. The epidemiological investigation shows that the number of
Acanthamoeba infection is increasing year by year, especially those with AK infection. In
the United States, a study examining AK at thirteen ophthalmology centers and laboratories
found that over the course of 2004–2007, a precipitous increase in AK cases had occurred: 22
cases were diagnosed in 1999, 43 cases were diagnosed in 2003, and 170 cases were diagnosed
in 2007 (Yoder et al., 2012). In the UK, the numbers of AK cases diagnosed annually at the
Moorfields Eye Hospital in London from 2011 to 2014 (range of 36–65 cases/year) were
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FIGURE 1

Number of publications related to Acanthamoeba. Increasing
scientific interest in the field of Acanthamoeba as determined by
published articles cataloged in PubMed over time.

approximately two-to-three times higher than in 2004–2010 (range
of 15–23 cases per year) (Carnt et al., 2018). In Australia, a study
from the quaternary referral center in Sydney found that over the
period from 2002 to 2016, the average annual number of cases
was 50% higher post-2007 relative to pre-2007, and the highest
numbers of cases were reported in 2007 and 2014 (Höllhumer
et al., 2020). Studies found that wearing corneal contact lenses
is the main risk factor for infection (Lindsay et al., 2007; Carnt
and Stapleton, 2016; Dos Santos et al., 2018). With the increase
of Acanthamoeba infection especially AK infection in recent years,
scholars have begun expending extensive effort in characterizing
and classifying the Acanthamoeba genus, as shown in Figure 1. This
article summarizes the breadth of this work in order to provide
scientific basis for the diagnosis, treatment, and prevention of
Acanthamoeba infection.

2. Biological characteristics

2.1. Life history of Acanthamoeba

In general, the life cycle of Acanthamoeba consists of two stages,
trophozoite and cyst (Marciano-Cabral and Cabral, 2003; Siddiqui
and Khan, 2012; Siddiqui et al., 2012), except for Acanthamoeba
pyriformis, which is recognized to include facultative sporocarp
fruiting in its life cycle (Tice et al., 2016). The trophozoite
stage dominates when the growth conditions are suitable, such
as abundant food supply, neutral pH, appropriate temperature
(i.e., 30◦C) and osmolarity between 50 and 80 mOsmol (Siddiqui
et al., 2012). The cell cycle of Acanthamoeba consists of growth
and replication, which is carried out through mitosis under
optimal living conditions (Band et al., 1970; Byers et al., 1991;
Quinet et al., 2020). In axenic cultures, Acanthamoeba exhibits
a typical exponential growth phase, followed by a period of
reduced growth rate, and finally stationary phase during which
no further increase in cell density occurs (Band and Mohrlok,
1973; Stevens and Pachler, 1973). Studies have revealed that
the majority of Acanthamoeba cells in stationary phase culture

develop into quiescent cysts in response to adverse conditions
such as lack of food, hyper- or hypo-osmolarity, extremes in
temperature and pH, high cell densities, and chemicals (Neff
and Neff, 1969; Band and Mohrlok, 1973; Weisman, 1976;
Stohr et al., 1987; Sriram et al., 2008). The trophozoites of
Acanthamoeba mainly feed on bacteria, algae, yeast, or small
organic particles via phagocytosis or pinocytosis and form many
food vacuoles in the cytoplasm (Bowers, 1977; Bowers and
Olszewski, 1983; Marciano-Cabral and Cabral, 2003). Pinocytosis is
considered to be non-specific endocytosis (Bowers and Olszewski,
1972), while phagocytosis is considered to be receptor-dependent
endocytosis (Alsam et al., 2005a). Once Acanthamoeba cells enter
stationary phase, phagocytic activity ceases, while pinocytic activity
is halved. The reduced pinocytic activity remains sensitive to
respiratory inhibitors. The unequal responses of phagocytosis
and pinocytosis to the onset of stationary-phase growth suggest
that they are independent processes subject to different controls
(Chambers and Thompson, 1976).

During the stationary phase shift, cysts begin to form with
minimal metabolic activity (Siddiqui and Khan, 2012). Early
in encystation, large numbers of vacuoles are observed in the
encysting cells and many lysosomes and peroxisomes are present
in the mature cysts (Müller, 1969; Müller and Moller, 1969;
Siddiqui et al., 2012). Bowers and Olszewski (1983) showed that
Acanthamoeba have the ability to distinguish vacuoles containing
digestible and indigestible particles. For example, when cells were
allowed to phagocytose yeast to capacity, endocytosis stopped and
subsequent presentation of particles (either yeast or beads) did not
result in further uptake. By contrast, when cells were allowed to
phagocytose plastic beads to capacity and a second dose of particles
was presented (either yeast or beads), the cells exocytosed the
internal particles and took up the new ones. Therefore, the fate of
vacuoles containing yeast and vacuoles containing plastic beads in
encystation is different (Bowers and Olszewski, 1983). The digestive
vacuoles disappear during later stages of encystation and their
contents are discharged. This phenomenon explains the weakening
of phagocytic activity and pinocytic activity in this period. Cysts
are highly tolerant to the extreme environmental conditions, which
allows Acanthamoeba to spread in the environment and/or carry
these pathogens into host species, which is described later in
the text.

2.2. The morphological structure of
Acanthamoeba

2.2.1. Trophozoite
The trophozoite varies in size from 25 to 40 µm in diameter

(Marciano-Cabral and Cabral, 2003) and has a long oval or irregular
shape. The cytoplasmic boundary of trophozoite is unclear and
the endoplasm is granular, which emits several acicular or spinous
pseudopods extending to the whole surface of the cell (Figure 2A).
The pseudopods give the trophozoite a characteristic appearance
and participate in the feeding and movement of Acanthamoeba.
Pseudopods in Acanthamoeba have a peculiar form. The term
“acanth” is a Greek word meaning “spike” to indicate the presence
of spine-like structures (also known as acanthopods) on the surface
of the amoeba (Preston and King, 1984; Preston et al., 2001;
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Marciano-Cabral and Cabral, 2003). Pseudopods are responsible
for adhesion to the surface of contact lenses, increasing the chance
of Acanthamoeba infection in the cornea (John et al., 1989; Omaña-
Molina et al., 2014). The trophozoite is typically uninucleate with
a nucleus that is approximately one sixth the size of the cell
body, but multinucleated individuals can be seen in laboratory
cultures when grown with constant agitation (Byers and James,
1967). To some extent, this phenomenon reflects the real living
condition of Acanthamoeba in nature because the existence of
Acanthamoeba can often be found in an aquatic environment. Any
flux perturbations, such as water currents or waves, might detach
amoebae from their substrate and suspend them in the water in
a non-adherent state, which creates conditions for the formation
of multinucleation. This process will help amoebae to colonize
new environmental niches that are difficult to reach using an
adherent state. When adhesion is restored, multinucleated amoebae
generate a higher progeny population compared to uninucleate
mother cells. This process is beneficial from the point of view
of continual population reproduction (Quinet et al., 2020). The
nuclear envelope is separated by a distance of about 350 Å with
numerous nuclear pores (Bowers and Korn, 1968). Chromatin
is located on the inner surface of the nuclear envelope. The
nucleolus is perhaps the most striking feature appearing large and
dense and surrounded by a unique zona pellucida (Pussard and
Pons, 1977). In the trophozoite stage, Acanthamoeba does not
differ greatly at the internal structural level from a mammalian
cell. It also contains various cell organelles such as mitochondria,
ribosomes, centrosome, Golgi apparatus, and vacuoles (Bowers
and Korn, 1968; Figure 2B). Vacuoles are conspicuous elements
in trophozoite. They exist mainly in two separate systems: one
is the contractile vacuole, involved in cellular osmotic regulation
(Kitching, 1967) and the other is the digestive vacuole involved in
the decomposition of intake particles (Kitching, 1956). Contractile
vacuoles are periodically expelled and then refilled in a specific
manner, ranging in size from 0.1 µm in diameter to larger
than the nucleus. Multiple small vacuoles fuse together to form
large vacuoles, which are morphologically akin to digestive
vacuoles (Bowers and Korn, 1968). The contractile vacuole can be
distinguished from a digestive vacuole by the absence of flocculent
content when examined by electron microscopy (Bowers and Korn,
1968). In addition to contractile vacuoles and digestive vacuoles,
other types of vacuoles can also be observed in the cytoplasm such
as lysosomes and a large number of glycogen-containing vacuoles
(Bowers and Korn, 1973; Siddiqui and Khan, 2012).

2.2.2. Cyst
There can be a lot of variability in cyst shape, most cysts are

round and the diameter is about 13–20 µm (Bowers and Korn,
1969). Unlike trophozoites, the cyst has a double-layer cell wall,
which gives cysts strong resistance to many harsh environmental
conditions (Figure 2C). The outer layer consists of a laminar
fibrous layer also known as an ectocyst, while the inner layer is
made up of fine fibers also known as an endocyst. The ectocyst is
the first to be synthesized in the encysting cells and appears as an
amorphous discontinuous layer just outside the plasma membrane
(Bowers and Korn, 1969). The ectocyst terminates in a loose fibrous
layer and the entire ectocyst is 0.3–0.5 µm in thickness. The
endocyst differs from the ectocyst in texture and appears finely
granular. The fibrils of both the ectocyst and the endocyst appear

to be less than 50 Å in diameter. When the cysts are fully mature,
a space of about 0.1 µm is formed between the endocyst and the
plasma membrane (Bowers and Korn, 1969).

The cyst wall of cyst forming protozoa is generally composed
of chitin, while Acanthamoeba is an exception and includes
both chitin and cellulose (Linder et al., 2002; Derda et al.,
2009). Cellulose becomes the main component of the endocyst,
accounting for about one third of the cyst wall (Tomlinson
and Jones, 1962). However, it is not clear where chitin exists
in ectocyst or endocyst. Cellulose is basically a straight chain
polymer of β-1, 4 linked D-glucose units which are arranged in
alternate orientation with respect to one another (Béguin and
Aubert, 1994; Lakhundi et al., 2015). It is with no coiling and
rod-like conformation that provokes spontaneous crystallization of
the molecule (Schwarz, 2001). An exceptional feature of cellulose
that is also relatively unusual in the polysaccharide world is its
crystalline structure (Brown and Saxena, 2000; Lynd et al., 2002).
Approximately 30 individual molecules of cellulose are assembled
into larger units called elementary fibrils (protofibrils), which in
turn are packed into larger units called microfibrils (Brown and
Saxena, 2000; Lynd et al., 2002). The chains in the microfibrils
are held together by hydrogen bonds giving them a high tensile
strength. It is this inter- and intrachain hydrogen bonding between
multiple parallel layers of cellulose that results in the formation
of tightly packed microfibrils. The microfibrils then associate
into crystalline cellulose fibers. The organization of individual
microfibrils in crystalline cellulose is such that the component
molecules are packed tightly enough to prevent penetration by
enzymes. In addition, cellulose also contain various irregularities
such as twists or voids, surface micropores, large pits and capillaries
etc., increasing the total surface area much larger than that of an
ideally smooth fiber of the same dimensions (Blouin et al., 1970;
Cowling, 1975; Fan et al., 1980; Lynd et al., 2002). Overall, cellulose
imparts high tensile strength to the wall it is contained in, serving
as a structural component. It is an extracellular polysaccharide
and is a part of the cell wall in plants, algae, bacteria, slime mold
Dictyostelium and other protists such as the Acanthamoeba cyst
wall (Schramm and Hestrin, 1954; Cook and Colvin, 1980; Williams
and Cannon, 1989; Bishop et al., 2002). Given the structure of
cellulose, it practically makes it impossible for an enzyme to clasp
cellulose into a substrate site. Hence there is only a single enzyme
to hydrolyze cellulose. This, together with its association with other
polymers, makes cellulose containing material withstand harsh
conditions making it hardy and resistant to degradation, hence its
role as a structural and protective barrier.

The change of environmental factors is an important link in the
transformation of trophozoites into cysts. Cyst formation occurs
under adverse environmental conditions such as glucose deficiency,
dryness, extreme temperature, and non-neutral pH environments
(Bowers and Korn, 1969; Chagla and Griffiths, 1974; Byers et al.,
1980). Even more notable is the durability of cysts with one study
noting that cysts can grow after 21 years even in a completely dry
environment while another conversely showed cysts surviving in
water at 4◦C for more than 24 years (Mazur et al., 1995; Sriram
et al., 2008). Cysts have been shown to be resistant to fungicides,
chlorinating agents, and antibiotics (De Jonckheere and van de
Voorde, 1976; Khunkitti et al., 1998; Turner et al., 2000; Lloyd et al.,
2001). However, chloroquine effectively inactivated the cells in a
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FIGURE 2

The structure of Acanthamoeba. (A) Scanning electron micrograph of an Acanthamoeba trophozoite showing many spinous pseudopods around
the whole surface of the cell. Acanth, acanthopod. (B) Transmission electron micrograph of the trophozoite stage of Acanthamoeba. Nu, nucleus;
V, vacuoles; M, mitochondria; PM, plasma membrane. (C) Transmission electron micrograph of an Acanthamoeba cyst. OL, outer layer; IL, inner
layer. These pictures are from the work of Siddiqui et al. (2012).

dose-dependent manner during encystation (Jha et al., 2014). This
result indicates that there is a potential target of chloroquine in
the process of encystation, while also suggesting the importance of
timing for the treatment of Acanthamoeba infection.

The viability and virulence of 17 Acanthamoeba isolates after
they have been stored in water at 4◦C for a period of 24 years
was determined, and 3 of them were found inactivated. The
remaining 14 isolates after inoculation on non-nutrient agar
(NNA) gave rise to new subculture. Due to the low number of
viable cysts (0–5%) measured by eosin exclusion, most of the
cells entered the trophozoite stage. These results revealed the
resistance and viability of Acanthamoeba in long term storage
(Mazur et al., 1995). Separate groups of mice were inoculated
intranasally with 10 subcultures characterized by varying primary
virulence. In 8 groups, the mice were successfully infectious (at
varying degree), and some of the mice succumbed to disease,
indicating that even after 24 years, some of strains still keep
very high virulence. Interestingly, however, some of the examined
isolates completely lost their virulence only after 8 years of
cultivation. On the basis of these results, we can assume in the
environment that the period of viability for a cyst may be at
least 25 years, and, more importantly, some of them still maintain
high virulence (Mazur et al., 1995). It is this durability of cysts
to the external environment and drugs that makes the treatment
of Acanthamoeba infection particularly difficult. However, a 0.02%
polyhexamethyl biguanide (PHMB) solution can be used as a first
line of defense topical therapy for AK (Schuster and Visvesvara,
2004; Oldenburg et al., 2011; Carrijo-Carvalho et al., 2017) and is
recommended by the leading national public health organizations
in the USA (Centers for Disease Control and Prevention, 2020).
A recent phase I study of human subjects has shown general
tolerance to higher concentrations of PHMB, which makes it
possible to treat deep stromal invasion of AK (Papa et al.,
2022). PHMB 0.08% monotherapy is being further explored in
a phase III randomized control trial for AK (ClinicalTrials.gov/
NCT03274895, National Library of Medicine, 2020).

2.2.3. Encystation
2.2.3.1. Cellulose and encystation

Encystation is an essential biological process for survival of cyst
forming protozoa (Eichinger, 2001). In the process, Acanthamoeba

undergoes drastic changes in gene expression to adapt to the new
environment (Moon et al., 2009b, 2011b; Bernard et al., 2022).
The most prominent characterization is the formation of cyst
wall, which serves as a shelter under stressful external conditions
(Marciano-Cabral and Cabral, 2003; Turner et al., 2004). The cyst
wall contains at least 2 major products that are not detected in the
trophozoite stage; cellulose (Tomlinson and Jones, 1962) and an
acid-insoluble protein-containing material (Neff and Neff, 1969).

As described above, cellulose constitutes a major component
of the Acanthamoeba defense system during encystation. The
precursor of cellulose is glucose that is incorporated into the
cell wall as β (1, 4)-glucans (Weisman, 1976). Acanthamoeba
stores glucose in the form of glycogen in the active growth
stage and degrades it to form glucose during the process of
encystation before final conversion into cellulose (Weisman et al.,
1970; Potter and Weisman, 1971; Stewart and Weisman, 1974).
It has been demonstrated that glycogen is the most rapidly
degraded macromolecule during the initial phase of Acanthamoeba
encystation (Bowers and Korn, 1969; Weisman et al., 1970).
Glycogen is broken down into glucose via glycogen phosphorylase
(Lorenzo-Morales et al., 2008; Moon and Kong, 2012). This was
demonstrated by gene silencing of glycogen phosphorylase, which
prevented Acanthamoeba from forming a double-layered cyst wall
(Lorenzo-Morales et al., 2008). There has been some debate about
cellulose existing only in the endocyst (Tomlinson and Jones,
1962). However, a recent study by Garajová et al. (2019) revealed
cellulose fibers through several electron microscopy methods and
observed cellulose in the outer layer. Acanthamoeba transfected
with siRNA of glycogen phosphorylase can still form outer layer of
cyst wall during encystation, which may be due to the differences
in the mechanisms that provide glucose for the synthesis of
polysaccharides in the inner and outer cyst wall layers. It may
also be attributed to the fact that the lack of cellulose is not
enough to hinder the formation of the basic structure of outer
layer because the main components of the ectocyst are proteins
(Barrett and Alexander, 1977; Dudley et al., 2009). However, no
matter what, the fact that glycogen phosphatase is required for
cyst wall assembly, mainly the cell wall inner layer, has been
demonstrated (Lorenzo-Morales et al., 2008). The gene expression
level of glycogen phosphorylase also gradually increases during
cyst formation and has been shown to reach a maximum at day 3
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(10.3 times) (Moon and Kong, 2012). After glycogen breakdown,
glucose is then converted to cellulose by the enzyme cellulose
synthase (Delmer and Amor, 1995). Targeting cellulose synthase
by siRNA has been shown to significantly inhibit the formation
of mature cysts (Aqeel et al., 2013; Moon et al., 2014). The
sturdy nature of Acanthamoeba cysts is attributed, in part, to
cellulose (Potter and Weisman, 1972), but other polysaccharides
(such as xylose, galactose, and mannose) may also be involved
(Dudley et al., 2009). The analysis of cyst walls of Acanthamoeba
castellanii, using gas chromatography/mass spectrometry (GC/MS)
revealed that xylose (in addition to β-1, 4-glucan-forming cellulose)
was another important component of the cyst wall (Dudley
et al., 2009). Xylose isomerase is involved in the intracellular
transformation of xylose. Xylose isomerase, also known as glucose
isomerase, catalyzes the reversible isomerization of xylose into
xylulose and glucose into fructose (Lee et al., 1990). An siRNA
against xylose isomerase and its exogenous inhibitor, sorbitol,
blocked A. castellanii encystation, suggesting that xylose isomerase
plays an important role in amoebae differentiation (Aqeel et al.,
2013). Aqeel et al. (2013) proposed that xylose biosynthesis could
replace cellulose biosynthesis, resulting in hemicellulose entering
the cyst wall and forming immature cysts. However, Moon et al.
(2014) showed that cellulose synthetase and xylose isomerase were
expressed independently in encysting Acanthamoeba, and that
one cannot replace each other. Therefore, how xylose isomerase
interferes with cyst wall formation leading to reduced encystation
in A. castellanii needs to be further studied.

2.2.3.2. Autophagy and encystation
Autophagy is a degradative pathway necessary for the

clearance of damaged or superfluous proteins and organelles
and the recycling of intracellular constituents as well as
providing energy during periods of unfavorable environments
such as under nutrient-limiting conditions (Huang and Klionsky,
2002; Xie and Klionsky, 2007). Autophagy starts with the
formation of a double-layered membrane, called a phagophore,
which recruits proteins and lipids into a presumed membrane
structure known as the pre-autophagosomal structure (PAS)
through a series of reactions involving autophagy (Atg) proteins
(Kim et al., 2002; Suzuki et al., 2002). The phagophore is
enlarged and then forms an autophagosome that encloses the
cytosolic components and organelles including mitochondria and
endosomes (Ishihara et al., 2001; Reggiori et al., 2005). Thereafter,
mature autophagosomes fuse with lysosomes and their contents are
degraded (Nakatogawa, 2020).

The formation of autophagosome involves two ubiquitin like
conjugation systems (UBL); Atg8 and Atg12 systems (Ohsumi
and Mizushima, 2004). In the Atg8 conjugation system, Atg8
is cleaved at the C-terminal end by a cysteine protease, Atg4,
producing Atg8Gly−116 (Kirisako et al., 2000). It is then transferred
to Atg3, an E2-like enzyme, after being activated by Atg7, an E1-
like enzyme (Ichimura et al., 2000, 2004). Finally, Atg3 conjugates
Atg8 with phosphatidylethanolamine (PE) (Ichimura et al., 2000),
anchoring Atg8 to the autophagosome membrane. In the Atg12
conjugation system, the C-terminal glycine residue of Atg12 is
activated by Atg7, an E1-like enzyme, transferred to Atg10, an
E2-like enzyme, and conjugated to Atg5 covalently (Geng and
Klionsky, 2008). The Atg12-Atg5 conjugate which has E3-like
activity promotes the elongation of the autophagosomal membrane

by forming a multimeric complex with Atg16 (Hanada et al.,
2007; Yang and Klionsky, 2009). Later studies have found that
Atg12-Atg5 conjugates directly activate E2 enzyme activity of
Atg3 to promote conjugation of Atg8 to phosphatidylethanolamine
(Sakoh-Nakatogawa et al., 2013), indicating that two UBL systems
are not completely independent in mediating autophagy.

The Atg8 and Atg12 UBL systems are well conserved in
A. castellanii (Moon et al., 2011a; Song et al., 2012). The mediation
of Atg8 and Atg12 systems in the autophagy process during
encystation has been identified and autophagy proteins including
Atg3, Atg8, Atg8b (isoform of Atg8), Atg12 and Atg16 have been
characterized (Moon et al., 2009a, 2011a, 2013; Song et al., 2012;
Kim et al., 2015). The mRNA expression level of Atg8, Atg8b,
and Atg16 are highly induced during encystation (Moon et al.,
2009a, 2013; Song et al., 2012). However, the transcriptional level
of Atg3 and Atg12 did not change markedly in both trophozoites
and cysts (Moon et al., 2011a; Kim et al., 2015). Therefore, it can
be speculated that Atg3 and Atg12 proteins are used in the form of
recycling during encystation. The discrepancy on gene expression
does not cast their role in encystation into doubt since siRNA
against the respective genes inhibited cyst formation effectively.
Atg3, which is uniformly distributed in trophozoite cells, aggregates
around the autophagosomal membrane in encystation and shows
an activity for Atg8 lipidation (Moon et al., 2009a). As mentioned
above, ATG8 is one of the ubiquitin-like proteins required for
autophagosome formation. PE conjugated ATG8 is tightly bound
to the autophagosome membrane and participates in autophagy
(Moon et al., 2009a). Complete inhibition of encystation was
not achieved in Acanthamoeba transfected with siRNA against
Atg8, which suggests that an Atg8 isoform such as Atg8b exists
(Moon et al., 2013). Both Atg8 and Atg8b were highly expressed
during encystation, probably because they were needed to enable
the establishment of autophagy rapidly. Atg12 together with
Atg16 constituted another UBL system related to autophagy (Song
et al., 2012) and the knockdown of Atg12 or Atg16 showed
ultrastructural changes of the cyst. The main features of Atg12-
knockdown cells are the absence of maturation of cyst wall,
decrease in autophagic structures, and vacuolization (Kim et al.,
2015). The ultrastructural characteristics of Atg16-knockdown
cells showed that many mitochondria were still undigested and
these cells are prevented from forming mature cysts, which
supports the view that autophagy is necessary for the effective
degradation of mitochondria during encystation in Acanthamoeba
(Song et al., 2012).

Proteases from various protozoan parasites have been
characterized at the molecular and cellular levels (Klemba and
Goldberg, 2002). Comparative microarray analysis of trophozoite
and cyst showed high expression of cysteine in the cyst stage
(282-fold change) (Moon et al., 2011b), suggesting a pivotal
role of this protease in the cyst formation. Because of its high
expression in cysts, people named the gene cyst specific cysteine
protease (CSCP). During encystation, CSCP showed colocalization
with LysoTracker, an autophagosome marker. Acanthamoeba
transfected with siRNA against CSCP was unable to form mature
cysts and the undigested mitochondria in vacuole-like structures
were observed in CSCP siRNA treated cells (Moon et al., 2012b).
Mitochondria are a major target of autophagy in Acanthamoeba,
as compared with trophozoites, the number of mitochondria
left in mature cysts is significantly reduced (Moon et al., 2012b).
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To degrade a large number of mitochondria, various types of
autophagy may be needed. As mentioned above, Atg16, as an
important component of Atg 12 UBL system, together with CSCP
involved in the degradation of mitochondria during encystation.
Further studies need to clarify the possible interaction between
these two proteins in this regulatory process.

The encystation of Acanthamoeba was inhibited by the serine
protease inhibitor phenylmethanesulfonyl fluoride, indicating that
serine protease was also involved in encystation (Moon et al.,
2008b). To confirm the role of encystation-mediating serine
protease (EMSP) during encystation of Acanthamoeba, a gene
silencing assay was performed and showed that the formation of
mature cysts was almost completely inhibited in EMSP siRNA-
transfected cells. Additionally, both gene and protein expression of
EMSP are highly induced during encystation (Moon et al., 2008b).
However, the increased gene level of EMSP during encystation was
not revealed by comparative microarray analysis of trophozoite and
cyst (Moon et al., 2011b). This may be due to the inconsistency of
sample collection timing in the process of encystation or the use
of different strains, A. healyi instead of A. castellanii. The protein
turnover during Acanthamoeba encystation has also been studied
by two-dimensional gel electrophoresis (2DE). The results showed
that protein degradation mainly occurred early in the process
and these changes could be significantly inhibited specifically by
cysteine protease inhibitors. The conclusion is that the encystation
process in A. castellanii is of a bipartite nature consisting of an
initial phase of protein degradation by a cysteine protease and
the late stage accompanied by the expression of cyst-specific gene
expression (Leitsch et al., 2010).

2.2.3.3. Other factors of encystation
A cDNA fragment containing a member of the sirtuin family

of proteins was found in a comparative microarray analysis of
trophozoites and cysts (Moon et al., 2011b). Sirtuins are a silent-
information regulator 2 (SIR2)-like family of protein deacetylases
that require nicotinamide adenine dinucleotide (NAD+) as a
cofactor in the deacetylation reaction (Sauve et al., 2001). The Sir2
homolog of A. castellanii (AcSir2) contains the YEATS domain
which recognizes and binds acetylated lysine followed by a Sir2
catalytic domain. Nuclear extracts of AcSir2-overexpressing cells
also exhibit NAD+ dependent deacetylase activity (Joo et al., 2020).
The overexpression of AcSir2 converted cells into mature cysts
more rapidly while the encystation of A. castellanii was suppressed
by treatment with salermide, a sirtuin inhibitor. The transcription
of cellulose synthase was induced in AcSir2 overexpressing cells
while the transcription was completely abolished in salermide-
treated cells (Joo et al., 2020), which indicated that cellulose
synthesis may serve as a potential target of Sir2. The same
group also found that AcSir2 promotes encystation by increasing
the expression of cyst-specific cysteine protease (CSCP). Sirtinol,
another Sir2 inhibitor, suppresses CSCP transcription, suggesting
that the undegraded organelles and large molecules remained
in sirtinol-treated cells during encystation (Joo et al., 2022).
In Saccharomyces cerevisiae, SIR2 levels increase during calorie
restriction (Lin et al., 2000), and sirtuin overexpression is known to
extend the lifespan by silencing HML and HMR loci and inhibiting
the formation of extrachromosomal rDNA circles (Sinclair and
Guarente, 1997; Kaeberlein et al., 1999). Therefore, it was proposed
that Sirtuins may be involved in all cell survival events related

to metabolic reduction caused by nutritional deficiency, including
Acanthamoeba encystation.

Bernard et al. (2022) studied the regulation of transcription,
protein and phosphoprotein level in the early stage of
Acanthamoeba encystation by a time-resolved multi-omics
analysis. The global analysis of three omics approaches showed
that the quantity of transcripts and phosphorylation sites were
modified as early as 1 h after triggering encystation while the
change of proteome was more gradual and occurred 8 h later.
Interestingly, 1 h after induction of encystation, a decrease of
phosphorylated sites was observed and accompanied by a global
increased phosphatase activity (Bernard et al., 2022). A. castellanii
is predicted to encode the largest number of protein kinases
among amoebozoans (Clarke et al., 2013). However, only few
signal pathways, such as PKC, Ras, and cyclic AMP (cAMP) have
been proposed to be involved in encystation (Raizada and Krishna
Murti, 1972; Fouque et al., 2012; Moon et al., 2012a), and there
is no clear link between signals and cellular response. During
encystation, these kinases may be involved in the regulation of
phosphorylation at a specific site that is currently undefined.
Bernard et al. (2022) also explained the transcriptomic and
proteomic data at the initial stage of encystation. Their hypothesis
is that the early regulation of transcription is achieved by the
repression of transcription factors through phosphorylation. Some
of these factors like GSK3 are highly promiscuous with a broad
array of known substrates, regulate many transcription factors
such as Fos/Jun AP-1 or p53 (Beurel et al., 2015). Lectins are an
important part of cyst wall and three sets of these proteins have
been identified as the most abundant in A. castellanii, which are
named as the Jonah, Luke, and Leo families (Magistrado-Coxen
et al., 2019). 23 out of 31 lectins described by Magistrado-Coxen
et al. (2019) were present in transcriptomic data and 16 were
significantly differentially expressed. However, none of them were
significantly regulated at the protein level. This may be due to
timing because their expression peak may be later than 8 h after
induction of encystation (Magistrado-Coxen et al., 2019; Bernard
et al., 2022). Part of the transcriptomic data in the multi-omics
analysis (Bernard et al., 2022) may come from epigenetic regulation
in the early stage of encystation. Epigenetics is associated to many
cellular processes such as gene and microRNA expression, DNA-
protein interactions, suppression of transposable element mobility,
cellular differentiation, embryogenesis, etc. (Portela and Esteller,
2010). A. castellanii transfected with siRNA against Protein
Arginine Methyltransferase 5 (AcPRMT5) failed to form mature
cysts (Moon et al., 2016). DNA methylation is also involved in the
control of CSCP expression during encystation (Moon et al., 2017).

In addition, several genes related to Acanthamoeba encystation
have been identified from encystation-related gene profiles, such
as cyst specific protein 21, Na P-type ATPase, subtilisin-like serine
proteinase genes, proteasome and heat shock protein, genes like
cullin 4, ubiquitin-conjugating enzymes, suggesting their potential
roles in the process of cyst formation (Moon et al., 2007, 2008a).

2.3. Classification of Acanthamoeba

2.3.1. Traditional classification
Pussard and Pons (1977) classified Acanthamoeba cysts into

three categories (I-III) according to their size and morphological
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characteristics. This was the most appropriate classification method
at that time, but has been replaced by modern advances in DNA
sequencing. However, at least 30 species of Acanthamoeba with
clear names have been classified in this manner (Table 1).

Group I: This group includes five clearly named Acanthamoeba
listed in Table 1. The average diameter of cysts of this group
is greater than or equal to 18 µm. The morphological defining
features are that the internal cyst wall is separated from the external
wall, the outer cyst wall is slightly wrinkled or smooth, and the
internal cyst is often star-shaped (Kong, 2009).

Group II: This group has relatively smaller cysts with an average
diameter of less than 18 µm. The outer cyst wall is folded or
wavy, and the inner cyst wall is various in shape, which is wavy,
round or oval, as well as star-shaped, triangular or tetragonal. The
inner wall and outer wall of the cyst are obviously separated and
some are closely connected. This group is the most widely isolated
Acanthamoeba, and most pathogenic Acanthamoeba belong to this
group (Kong, 2009; Corsaro, 2020). So far, there are 17 species of
Acanthamoeba which have been clearly named in this group listed
in Table 1.

Group III: At present, eight species have been clearly named
in this group. This group Acanthamoeba cysts are also small and
the average diameter is less than 18 µm. The inner wall is round
or slightly angular while the outer wall is thin and close to the inner
wall, so the outer wall is sometimes difficult to observe (Kong, 2009;
de Lacerda and Lira, 2021).

The morphology of Acanthamoeba cysts depends upon growth
medium used to culture them (Stratford and Griffiths, 1978), while
the Acanthamoeba cysts in the same group are similar, sometimes
there is only a temporary difference between the two kinds of
Acanthamoeba cysts, therefore, the morphological distinction is
subjective and a more scientific classification method with clinical
application value was needed.

2.3.2. 18S ribosomal RNA (18S rRNA) gene
sequence typing

Gast et al. (1996) began classifying Acanthamoeba according
to 18S rRNA sequencing. The analysis of full-length 18S rRNA of
Acanthamoeba is a fast and reliable identification method which is
now used extensively to identify Acanthamoeba isolates (Maciver
et al., 2013). However, the 18S-based genotyping was rendered
easier and more rapid by targeting smaller regions of the gene,
such as the 464 bp long Acanthamoeba-specific amplimer (ASA.S1)
which contains the diagnostic fragment 3 (DF3) (Taher et al., 2018).
The DF3 region is a 280 bp long single highly variable region within
the ASA.S1 region, which is widely used for genotyping studies
since it provides equivalent results as that of ASA.S1 (Booton et al.,
2002). Each genotype exhibits at least 5% sequence divergence as
the typing standard (Khan, 2006). Using this technology, Maghsood
et al. (2005) proposed to subdivide T2 into further two groups, i.e.,
T2a and T2b. T4 is further subdivided into seven groups, T4A,
T4B, T4C, T4D, T4E, T4F, and T4G (Corsaro, 2020; Putaporntip
et al., 2021). Indeed, DNA sequencing helps to differentiate
pathogenic and non-pathogenic isolates within a genotype (Khan,
2006). Currently, most of the diagnostic and epidemiological
investigations are indeed carried out with this fragment. Albeit
rarely misidentifications may occur, and moreover, reliability of
short fragments remains to be discussed especially for phylogenetic

analyses and identify new genotypes. Therefore, the full-length gene
sequences are strongly recommended (Corsaro and Venditti, 2011;
Corsaro et al., 2015).

Based on this method, all Acanthamoeba isolates found to
date have been divided into 23 genotypes (T1-T23) (Corsaro
et al., 2015, 2017; Taher et al., 2018; Corsaro, 2021; Putaporntip
et al., 2021). Studies have shown that Acanthamoeba genotypes are
related to pathogenicity (Walochnik et al., 2000), and the diseases
and pathological characteristics caused by different genotypes are
unique (Corsaro, 2021). Acanthamoeba isolated from patients with
the most severe clinical Acanthamoeba infections belong to the
T4 genotype (Booton et al., 2005; Maciver et al., 2013; Walochnik
et al., 2015) followed by the T3 genotype (Booton et al., 2002;
Walochnik et al., 2015). There are also reports of Acanthamoeba
keratitis (AK) caused by T2, T5, T6, T10, T11, T12 and T15
genotypes (Maghsood et al., 2005; Di Cave et al., 2009; Nuprasert
et al., 2010; Lorenzo-Morales et al., 2011; Roshni Prithiviraj et al.,
2020; Otero-Ruiz et al., 2022) and GAE caused by T1, T2, T5,
T10, T12, and T18 (Khan, 2006; Lackner et al., 2010; Qvarnstrom
et al., 2013; Duggal et al., 2017; Matsui et al., 2018; Otero-
Ruiz et al., 2022). It is difficult to classify the rarer species of
Acanthamoeba. At present, gene sequencing and morphological
classification are often used simultaneously (Walochnik et al., 2000;
Kong, 2009). In terms of distribution, the T4 genotype was the
most prevalent worldwide, followed by T3, T15, T11, and T5.
Furthermore, the T4 genotype contains a higher number of species
(Diehl et al., 2021). The currently known Acanthamoeba genotypes
and corresponding diseases are summarized in Table 2. Meanwhile,
phylogenetic relationship with 49 various genotypes or subtypes
of Acanthamoeba T1-T23 based on “complete” 18S rRNA gene
sequence has been shown in Figure 3.

3. Acanthamoeba related diseases

3.1. Disease type

3.1.1. Acanthamoeba keratitis
Acanthamoeba keratitis (AK) is the most common disease

caused by Acanthamoeba (Stehr-Green et al., 1989; Ibrahim et al.,
2007; Jiang et al., 2015). The incidence of AK correlates significantly
with corneal trauma, exposure to sewage, and wearing of contact
lenses (CLs) (Moore et al., 1985; Maycock and Jayaswal, 2016;
Hassan et al., 2019). Wearing CLs can cause slight abrasion on
the cornea, which destroys the integrity of corneal epithelium and
increases the chance of invasion of pathogenic microorganisms
(Ibrahim et al., 2009). Acanthamoeba adhesion to the surface
of contact lenses is one of the essential first steps in the
pathogenesis of AK (Lee et al., 2016) and it was found that
the adhesion rate of trophozoites to CL material was higher
than that of cysts (Kilvington, 1993). Even when exposed to
a minimally contaminated solution or environment for a few
seconds, trophozoites immediately show adherence to CLs (John
et al., 1989; Heidemann et al., 1990). Later, silicone hydrogel lenses
became popular, accounting for 30% of new lenses in 2005 (Morgan
et al., 2006). However, the first generation of silicon hydrogel lenses
were found to be highly sticky to trophozoites (Beattie et al., 2003).
To overcome this issue, second generation silicon hydrogel lenses
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TABLE 1 The traditional classification of Acanthamoeba.

Classification Species Genotypes ATCC # References

Group I

A. astronyxis T7 30137 Ray and Hayes, 1954

A. tubiashi T8 30867 Lewis and Sawyer, 1979

A. comandoni T9 30135 Pussard, 1964b

A. byersii T18 PRA-411 Qvarnstrom et al., 2013

A. echinulate T4 50239 Pussard and Pons, 1977

Group II

A. castellanii T4 50374= 30011 Douglas, 1930

A. polyphaga T4 30871 Page, 1967

A. triangularis T4 50254 Pussard and Pons, 1977

A. rhysodes T4 30973 Singh and Das, 1970

A. lugdunensis T4 50240 Pussard and Pons, 1977

A. quina T4 50241 Pussard and Pons, 1977

A. mauritaniensis T4 50253 Pussard and Pons, 1977

A. diuionensis T4 50238 Pussard and Pons, 1977

A. paradiuionensis T4 50251 Pussard and Pons, 1977

A. griffinii T3 30731 Sawyer, 1971

A. pearcei T3 50435 Nerad et al., 1995

A. stevensoni T11 50388 Sawyer et al., 1993

A. hatchetti T11 30730 Sawyer et al., 1977

A. micheli T9 – Corsaro et al., 2015

A. pyriformis T21 – Tice et al., 2016

A. terricola T4 30134 Pussard, 1964a

A. gigantean – 50670 Schmoller, 1964

Group III

A. healyi T12 30866 Moura et al., 1992

A. culbertsoni T10 30171 Singh and Das, 1970

A. lenticulata T5 30841 Rivera et al., 1987

A. pustulosa T2 50252 Pussard and Pons, 1977

A. palestinensis T2 30870 Reich, 1935

A. royreba T4 30884 Willaert et al., 1978

A. sohi – – Im and Shin, 2003

A. jacobsi T15 30732 Sawyer and Nerad, 1992; Hewett et al., 2003

have been developed and trophozoite attachment rates for this
generation of lenses were much lower than for the first generation
and not statistically different from those of conventional hydrogel
lenses (Beattie et al., 2006). Recently, Campolo et al. (2022)
found that some contact lens materials are more conducive to
cyst formation than the natural environment with encystation
occurring within as little as 4 h of incubation. They hypothesized
that aggregation of cysts directly obstructs multi-purpose solutions
from disinfecting Acanthamoeba, which further indicates that
contact lens materials may need to be reevaluated in the future as
infection incidence increases (Campolo et al., 2022). The adhesion
of trophozoites and cysts to the surface of CLs depends on the
structure of both. Pseudopods of trophozoites play an important
role in adhesion (John et al., 1989; Omaña-Molina et al., 2014), but
cysts do not have pseudopod structure. Instead, adhesion occurs
through adhesive substances in the ectocyst (Kilvington, 1993).
Infection by Acanthamoeba starts on the epithelium and progresses

slowly into the stroma (Marciano-Cabral and Cabral, 2003). In
most cases, AK is unilateral, however, evidence also suggests that
it can affect both eyes (Voyatzis and McElvanney, 2007; Lee and
Gotay, 2010). Symptoms of AK include conjunctival hyperemia,
edema, tearing, foreign body sensation, blurred vision, decreased
visual acuity, photophobia, and severe ocular pain (Kaiserman
et al., 2012; Lorenzo-Morales et al., 2013, 2015). When treatment
is inadequate, AK can cause corneal perforation and melting
(Lorenzo-Morales et al., 2015). The process of AK infection is
complex and requires both host and pathogen factors discussed
later in the text.

Poor CL hygiene habits are also risk factors to induce AK
(Ahearn and Gabriel, 1997; Cope et al., 2015). Studies have
shown that Acanthamoeba exist in tap water (Carnt et al., 2020);
therefore, rinsing and cleaning lenses with tap water before putting
them in the storage case may cause contamination of lenses and
cause infection (Nau and Dhaliwal, 2018). Repeated use of lens

Frontiers in Microbiology 08 frontiersin.org63

https://doi.org/10.3389/fmicb.2023.1147077
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/


fmicb-14-1147077 March 30, 2023 Time: 16:24 # 9

Wang et al. 10.3389/fmicb.2023.1147077

TABLE 2 Known Acanthamoeba genotypes and associations with human
diseases.

Acanthamoeba
genotypes

Human diseases

T1 – GAE

T2 AK GAE –

T3 AK – –

T4 AK GAE –

T5 AK GAE –

T6 AK – –

T7 AK (rare) – –

T8 AK – –

T9 AK (rare) – –

T10 AK GAE –

T11 AK – –

T12 – GAE –

T13 AK – –

T14 – – –

T15 AK – –

T16 AK (rare) – AP

T17 – – –

T18 – GAE –

T19 – – –

T20 – – –

T21 – – –

T22 – – –

T23 – – –

disinfectant by “topping off” old solution with new disinfectant
should be avoided (Tu and Joslin, 2010). Additionally, the use of
expired solution (Abjani et al., 2016), the use of self-made saline
solution, and chlorine-based disinfection can increase the risk of
disease (Schaumberg et al., 1998; Seal et al., 1999; Radford et al.,
2002). In general, the long-term use of the same CL storage case
and insufficient drying after cleaning are a breeding ground for
bacteria, protozoa, and fungi which themselves are a food source
of trophozoites (Kuzman et al., 2014; Zimmerman et al., 2017;
Mirsayafov et al., 2018; Tan et al., 2018). Bad habits also include
rubbing the eyes while wearing CLs, leading to corneal damage
and promoting the invasion of Acanthamoeba (Taher et al., 2018).
Other risk factors include sleeping with contact lenses that can
lead to corneal hypoxia, edema, thinning in the center of the
cornea (Ibrahim et al., 2009), and superficial punctate keratitis
(Taher et al., 2018).

The symbiotic relationship of bacteria and Acanthamoeba
(Rayamajhee et al., 2022) may increase corneal damage after
Acanthamoeba infection. The ability of bacteria to survive as
an amoebal endosymbiont was first reported in 1975 (Proca-
Ciobanu et al., 1975), while the role of Acanthamoeba as a host
of pathogenic microorganisms was reported in 1978 (Prasad and
Gupta, 1978). Spores of Bacillus anthracis (Ames strain) can
germinate in the amoeba phage, and the number of spores can

increase 50-fold after 72 h (Dey et al., 2012). A. castellanii can
also host Legionella (Swart et al., 2018; Nomura et al., 2022),
Vibrio cholerae, Francisella tularensis (Abd et al., 2003) and the
causative agent of Johne’s disease, Mycobacterium avium subsp.
paratuberculosis (MAP) (Phillips et al., 2020). These bacteria have
been referred to as amoeba-resistant bacteria. A. castellanii releases
undigested V. cholerae in expelled food vacuoles (EFVs) in the
form of free spherical pellets (1–5 µm size) (Espinoza-Vergara
et al., 2020). If given the right amount of nutrients or cultured
at 37◦C, hundreds of bacteria can escape from EFV (Rayamajhee
et al., 2022). Therefore, the difficulty of treatment can increase
dramatically in opportune situations.

3.1.2. Granulomatous amoebic encephalitis
Granulomatous amoebic encephalitis (GAE) caused by

Acanthamoeba infection is a rare central nervous system disease
that is highly fatal with mortality rate greater than 90% despite its
low occurrence worldwide (Kot et al., 2018; Kalra et al., 2020). GAE
is a subacute or chronic granulomatous encephalitis characterized
by neck ankylosis, headache, and fever. Other progressive
neurological symptoms include altered mental state, seizures,
confusion, hallucination, focal neurologic signs, diplopia, cranial
nerve palsies, ataxia, high grade flaccid paralysis of right lower
limb, lethargy, stiff neck, and personality changes (Coven et al.,
2017; Ghadage et al., 2017; Geith et al., 2018). GAE is a progressive
disease leading to death within 1–2 months of symptom onset due
to increased intracranial pressure (Duggal et al., 2017). It occurs
especially in immunocompromised individuals including those
infected with human immunodeficiency virus (HIV) or acquired
immunodeficiency syndrome (AIDS), organ transplant recipients,
patients with diabetes, systemic lupus erythematosus (SLE),
those undergoing cancer treatment as well as immunocompetent
individuals (Lalitha et al., 1985; Gonzalez et al., 1986; Carter et al.,
2004; Vernon et al., 2005; Duarte et al., 2006; Sütçü et al., 2018).
The pathogenesis of GAE is not fully understood. Acanthamoeba
may enter through various routes including lower respiratory tract
or breaks in the skin resulting in hematogenous dissemination
to the brain (Duggal et al., 2017). Although there is no clinical
evidence, Acanthamoeba is likely to enter the central nervous
system through the blood-brain barrier and cause infection. It
is worth noting that the olfactory epithelium may be another
pathway for Acanthamoeba to enter the central nervous system
(Kalra et al., 2020). GAE cases are often under diagnosed and hence
strong clinical suspicion along with laboratory technical expertise
is required for early diagnosis and therapeutic intervention
(Parija et al., 2015).

3.1.3. Other diseases
Acanthamoeba can also cause a skin disorder known as

cutaneous acanthamoebiasis (CA) and pulmonary infection,
Acanthamoeba pneumonia (AP), but both conditions are rare. The
first case of cutaneous Acanthamoeba infection in an AIDS patient
was reported in 1986 (Gonzalez et al., 1986). Eighteen patients
with AIDS and cutaneous acanthamoebiasis have been reported
in the literature to date (Torno et al., 2000). A recent article
of Acanthamoeba infections identified a number of symptoms,
including fever, headache, dizziness, nausea, altered mental status,
seizures, and facial palsies prior to cutaneous manifestations
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FIGURE 3

Phylogenetic relationship of 49 various genotypes or subtypes of Acanthamoeba T1-T23 based on “complete” 18S rRNA gene sequence. The tree
was constructed using the Neighbor-Joining algorithm in MEGA 4.

(Zhang and Cheng, 2021). Lesions frequently occur on the face and
extremities and exhibit heterogenous morphology, ranging from
papules, pustules, nodules, ulcers, eschars, or abscesses (Murakawa
et al., 1995). However, diagnosing cutaneous acanthamoebiasis
is challenging given its variable clinical presentation and lack of
pathognomonic findings (Kutner et al., 2018).

Acanthamoeba pneumonia occurs mostly in patients with a
low immune response (Visvesvara et al., 1983; Kaul et al., 2008).
So far, 19 case reports of Acanthamoeba pneumonia (AP) or
disseminated acanthamoebiasis with lung infection have been
published. Most patients came from the USA, but there were
also cases from Poland, Austria, France, Korea, Japan, and India.
None of the patients survived (Kot et al., 2021). In patients with
AP, a decrease in body weight and respiratory efficiency was
observed, and in the radiological examination, interstitial changes

with visible pulmonary edema were observed (Im and Kim, 1998;
Kot et al., 2021).

3.2. Pathogenic mechanism

Among the diseases caused by Acanthamoeba, the pathogenic
mechanism of the rare GAE, CA, and pulmonary infection is not
apparent and critically understudied compared to the relatively
common AK infection. Once Acanthamoeba adheres to the target
cells, intracellular signal transduction is quickly activated and a
series of cascade effects are triggered including phagocytosis of
target cells, secretion of protease, and induction of apoptosis, which
will cause direct pathological damage to the host. These are further
explored in-depth below.

Frontiers in Microbiology 10 frontiersin.org65

https://doi.org/10.3389/fmicb.2023.1147077
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/


fmicb-14-1147077 March 30, 2023 Time: 16:24 # 11

Wang et al. 10.3389/fmicb.2023.1147077

3.2.1. Adhesion
The ability of Acanthamoeba to bind to epithelial cells is the

basis of infection. At present, it is believed that there are two
main factors involved in this process, one is acanthopod, the
other is surface adhesion. These two factors are very important
with adhesion ability of Acanthamoeba and directly correlate to
the pathogenicity of different isolates. Studies in recent years
have found that the total number of acanthopods is closely
related to the adhesion rate. Pathogenic Acanthamoeba has more
than one hundred acanthopods per cell, whereas non-pathogenic
Acanthamoeba has no more than twenty acanthopods per cell
(Lorenzo-Morales et al., 2013).

Current consensus is that the adhesion of pathogenic
Acanthamoeba to corneal epithelial cells is mainly mediated by
adhesins, including mannose-binding protein (MBP) and laminin-
binding protein (LBP) (Huth et al., 2017; Corsaro, 2022). MBP is
expressed by Acanthamoeba protozoa which is composed of several
130 kDa subunits distributed on the surface of Acanthamoeba
and can be isolated and extracted by mannose affinity column
affinity chromatography (Garate et al., 2006a,b). Acanthamoeba
MBP is a transmembrane protein encoded by a gene containing
six exons and five introns and has a typical cell surface receptor
function (Garate et al., 2004). As an exogenous lectin, it is
generally bound to specific mannose-containing glycoproteins
through the carbohydrate recognition domain (CRD) (Garate et al.,
2006a). MBP binds to two glycoproteins of corneal epithelial
cells, which are purified mannose protein and mannose bovine
serum albumin (isolated and identified from primary cell cultures
of rabbit corneal epithelium) (Yang et al., 1997). This is further
demonstrated by studies showing that binding can be inhibited by
exogenous α-mannose competitively (Rocha-Azevedo et al., 2010;
Kim et al., 2012), while galactose bovine albumin and other non-
competitive sugars could not inhibit MBP binding, indicating that
mannose’s inhibitory effect was achieved by competing with MBP
for sugar binding sites (Rocha-Azevedo et al., 2010). The binding
of Acanthamoeba and mannose-containing glycoproteins leads to
an increase of serine protease secretion, which is the decisive
factor in host cell injury (Rocha-Azevedo et al., 2010; Lorenzo-
Morales et al., 2013). MBP-mediated adhesion of Acanthamoeba
to host cells depends on the level of MBP expression on the
surface of Acanthamoeba and the number of mannose-containing
glycoproteins synthesized by host cells. The study found that the
damaged cornea can expose more mannose-rich glycoproteins,
the number of Acanthamoeba attached to its surface is higher
than healthy corneas. In addition, compared with non-pathogenic
Acanthamoeba, pathogenic strains showed higher MBP expression
levels (Yoo and Jung, 2012; Huth et al., 2017). Currently two
types of MBP (MBP1 and MBP2) have been found (Corsaro,
2022). MBP1 is a conventional membrane protein with a signal
peptide at the N-terminus and a transmembrane domain located
at the C-terminus. The extracellular portion contains a Cys-rich
repetitive motif (CXCXC) and a domain of unknown function
(DUF 4114), while two NPLF motifs involved in intracellular
signaling are located in the intracytoplasmic region (Garate et al.,
2004). MBP1 appears to be specific only to Acanthamoeba species
of groups 2 and 3, with different gene structure and amino acid
sequence depending on the genotype, while shorter MBP-like
sequences could be identified in the group 1 species (A. astronyxis

T7 and A. byersi T18), as well as in T4 and T2 genotypes.
The resulting protein, labeled MBP2, covers the N-terminal part
containing DUF 4114 but lacks the Cys-rich repetitive elements
(usually only a single CXCXC motif is present), as well as the
intracytoplasmic domain (Corsaro, 2022). MBP2 has a signal
peptide at the N-terminal followed by a transmembrane motif,
although a second short transmembrane motif is predicted at
the C-terminus for group 1 species (Corsaro, 2022). In silico
alignment of two kinds of MBP (L8GXW7, 360 aa; Q6J288, 833 aa)
demonstrated 19.4% identity (94 similar positions). Both proteins
also share a domain of unknown function (DUF4114), sharing
61.6% identity (L8GXW7, 164–256 aa and Q6J288, 156–254 aa;
61 identical positions) (Gonçalves et al., 2019). MBP1 sequences
from different genotypes are variable, with identity/similarity
values < 60/75%. Moreover, values between MBP1 and MBP2
are even lower (between 25 and 35%), the most conserved region
being the DUF4114 domain (approximately 65% of identical sites)
(Corsaro, 2022).

In addition to MBP, another important Acanthamoeba adhesin
is the laminin-binding protein (LBP), which allows further
progression of infected tissues (Rocha-Azevedo et al., 2009),
as laminin is a major glycoprotein of the extracellular matrix
separating epithelia from other tissues. The molecular weight is
predicted to be 28.2 kDa (Hong et al., 2004; Omaña-Molina
et al., 2017) and 55 kDa in A. culbertsoni (Rocha-Azevedo
et al., 2009, 2010). Acanthamoeba LBP belongs to the family
of non-integrin 37/67-kDa laminin receptors (37/67LR), also
involved as receptors for viruses and other pathogens as well as
in other cellular processes such as motility and differentiation
(DiGiacomo and Meruelo, 2016). LBP homologs are present in all
organisms including prokaryotes as this adhesin derives from a
40S ribosomal protein which evolved the ability to bind laminin
(Ardini et al., 1998). Overall, LBPs have a short transmembrane
domain at the N-terminal, three recognition domains for laminin
on the extracellular C-terminal domain, comprising a palindromic
LMWWML motif located in the peptide G (Castronovo et al.,
1991), a direct binding region (DBR), and TEDWS motif repeats.
LBP sequences are highly conserved with identity/similarity values
> 80/90% for those of group 2 and 3 species and around 60/70%
between these and those of group 1 species (Corsaro, 2022). It
is generally believed that the adhesion of Acanthamoeba to the
cornea is a crucial prerequisite for the subsequent inflammatory
response and the degree of adhesion is directly proportional to
the strength of the host’s inflammatory response (Wang and Zhu,
2010). LBP participates in the initial phase where infiltration is
limited to the corneal epithelium, particularly in the intercellular
space (Gu et al., 2022). Therefore, the selectivity of Acanthamoeba
for the host cornea also determines the differences in the specificity
of AK in different hosts. A similar view has been established in
the pathogenic mechanism of other protozoa such as the binding
and lysis of Entamoeba histolytic to host cells being mediated by
galactose adhesion protein (Guzmán-Téllez et al., 2020). Studies
shows that expression levels of both MBP and LBP vary between
Acanthamoeba strains and correlate with pathogenicity (Garate
et al., 2006b; Ng et al., 2017). They were found in either low or
non-existent quantities in non-pathogenic Acanthamoeba (Rocha-
Azevedo et al., 2009; Singh et al., 2012; Huth et al., 2017;
Corsaro, 2022).
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3.2.2. Phagocytosis
Phagocytosis plays an essential role in the pathogenesis of

Acanthamoeba infection. Phagocytosis is an actin-dependent
process that drives cytoskeleton rearrangement. Cytochalasin D
(a toxin that blocks actin polymerization) inhibits Acanthamoeba-
mediated host cell death, confirming that actin-mediated
cytoskeleton rearrangement plays an important role in
Acanthamoeba phagocytosis (Taylor et al., 1995; Niederkorn
et al., 1999; Alsam et al., 2005a). In order to study the relationship
between cellular signal transduction pathway and phagocytosis,
phagocytosis assays have been performed in the presence of
protein tyrosine kinase inhibitor, genistein and a protein tyrosine
phosphatase inhibitor, sodium orthovanadate. Acanthamoeba
uptake of Escherichia coli is significantly reduced in the presence
of genistein. In contrast, sodium orthovanadate increases bacterial
uptake by Acanthamoeba (Alsam et al., 2005a). Rho GTPases are
the key regulators of the actin cytoskeleton in all eukaryotic cells
and link external signals to cytoskeleton (Mackay and Hall, 1998).
This process involves three major pathways including RhoA, Rac1,
and Cdc42 (Mackay and Hall, 1998). The Rho kinase inhibitor,
Y27632, which partially blocks RhoA pathway, reduced bacterial
uptake (Alsam et al., 2005a). These results suggested that the
signal transduction pathway may regulate phagocytosis through
mediating actin polymerization. Some evidence suggests that
phosphatidylinositol 3-kinase (PI3K) may play important roles in
regulating actin dependent-processes (Wymann and Pirola, 1998).
For example, studies have shown that PI3K controls Rho-mediated
changes in actin cytoskeleton in fibroblasts (Reif et al., 1996;
Cantrell, 2001). When studying the phagocytosis of Acanthamoeba,
it was found that LY294002, a specific inhibitor of PI3K, could
significantly reduce the phagocytosis of E. coli (Alsam et al., 2005a).
Interestingly, studies have also shown that the involvement of PI3K
in Rac1-dependent lamellipodia formation (Wennström et al.,
1994) and Cdc42-dependent cytoskeletal changes (Jiménez et al.,
2000), suggesting that other GTPases such as Cdc42 and Rac1 are
also involved in the phagocytosis of Acanthamoeba.

In addition, there is a unique actin-rich sucking structure
(amoebostomes) on the surface of Acanthamoeba, also known
as the food cup structure, which is a temporary structure that
mediates phagocytosis of bacteria, yeasts, or cells (Pettit et al., 1996;
Marciano-Cabral and Cabral, 2003). The mechanism involved
in these goblet structures is called “trogocytosis,” which is the
process whereby sections of host cells are ripped off by the
amoeba (Nakada-Tsukui and Nozaki, 2021). Trogocytosis can be
regarded as a special type of phagocytosis. The initial discovery
of cell nibbling is from unicellular eukaryotes (Nakada-Tsukui and
Nozaki, 2021). Culbertson (1970, 1971) described trogocytosis-like
events in two species, Naegleria fowleri HB-1 and Hartmannella-
Acanthamoeba A-1. When these amoebae were inoculated into
guinea pigs, pathological examination showed that amoeba in
thrombi internalized erythrocytes only halfway (i.e., trogocytosis)
(Culbertson, 1971). Later, trogocytosis of a mouse embryonic cell
by N. fowleri was also confirmed (Brown, 1979). Petti found that
trophozoites of 4 species of Acanthamoeba were cytopathic for
cultured rat B 103 neuroblastoma cells and this process is achieved
by destroying nerve cells through the food cup (Pettit et al.,
1996). The same process can be observed in the pathogenesis of
other protozoa such as N. fowleri (Tiewcharoen et al., 2008) and

E. histolytica (Miller et al., 2019). In the study of E. histolytica,
it was found that there was pronounced actin polymerization
within the amoebae at the site of human cell contact and ingested
fragments were surrounded by polymerized actin, which indicates
that trogocytosis is related to actin rearrangement (Ralston et al.,
2014). Further studies found that Gal/GalNAc lectin, EhC2PK, and
PI3K signaling were also involved in the amoebic trogocytosis-
mediated human cell killing (Ralston et al., 2014; Miller et al.,
2019).

In recent years, some additional proteins that play a role in
Acanthamoeba phagocytosis have been reported. For example,
Acanthamoeba SBDS (Shwachman-Bodian-Diamond Syndrome)-
related proteins are highly expressed during phagocytosis,
which may be related to cytoskeleton-related phagocytosis
and cystogenesis (Wang et al., 2021). Studies have shown
that Acanthamoeba secreted extracellular M20/M25/M40
superfamily aminopeptidase plays an important role in the
Acanthamoeba pathogenesis (Huang et al., 2017). Acanthamoeba
Type-I metacaspase (Acmcp) is a caspase-like protein which
is expressed during the encystations of A. castellanii. When
vectors containing Acmcp (pDneo2a-GFP-Acmcp) were electro-
transfected into wild type Dictyostelium discoideum cells, they
showed a significant increase in the fluid phase internalization and
phagocytosis rate compared to the control cells (Saheb et al., 2015).
Therefore, metacaspase is proposed as a candidate drug target
against infections caused by A. castellanii. Finally, A. castellanii
Rab7 (AcRab7), which is involved in endosomal delivery after
phagocytosis and dominates energy production and cell growth,
may be an important target in some species (Hong et al., 2022).

It has also been reported that mannose inhibits Acanthamoeba
phagocytosis, which suggests that Acanthamoeba phagocytosis
is a receptor-dependent process and Acanthamoeba adhesin (or
MBP) is involved in phagocytosis (Allen and Dawidowicz, 1990).
Further study of other molecular pathways and the interaction
between various intracellular signaling pathways will help the field
to understand the phagocytosis of Acanthamoeba and provide a
basis for clinical treatment. Acanthamoeba-mediated host signaling
pathways as well as self-signaling pathways are shown in Figure 4.

3.2.3. Apoptosis of host cells
In addition to directly causing cell death, Acanthamoeba

can induce programmed cell death, such as apoptosis. After
Acanthamoeba infection, cell membrane rupture, condensation of
nucleoplasm, and degradation of DNA can be seen, eventually
forming apoptotic bodies (Khan, 2006; Lorenzo-Morales et al.,
2013). Based on current research, there are at least three pathways
related to apoptosis. First, Ecto-ATPase driven cell apoptosis.
Ecto-ATPases hydrolyze extracellular ATP and other nucleoside
triphosphates and the resulting ADP has a toxic effect on host
cells. It has been shown that the ADP released binds to the P2y2
purinergic receptor on the host cell, resulting in the increase
of intracellular calcium and the activation of caspase-3, which
eventually leads to cell apoptosis (Mattana et al., 2002). Suramin,
a P2 receptor antagonist, inhibits Acanthamoeba-mediated host
cell apoptosis, indicating that extracellular ATP enzymes play an
essential role in the pathogenesis of Acanthamoeba (Mattana et al.,
2002). Compared with weakly pathogenic isolates, clinical isolates
of Acanthamoeba show higher extracellular ATP activity (Sissons
et al., 2004a). Several Ecto-ATPases with estimated molecular
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FIGURE 4

Host-Parasite interaction molecular signaling pathways. Adhesion through spinous pseudopodia and adhesin (such as MBP) is the basis for
Acanthamoeba to establish infection. Once adhesion is completed, the intracellular signal transduction process is activated and further triggers
cascade effects such as phagocytosis of target cells, secretion of protease, and apoptosis, resulting in direct pathological damage. Phagocytosis:
There are three fully studied pathways involved in this process. The RhoA pathway, which leads to stress fiber formation; Rac1 activation, which
triggers plate foot formation; and Cdc42 activation, which promotes filamentous foot formation. Apoptosis: There are at least three pathways
related to apoptosis after infection of Acanthamoeba. Ecto-ATPases driven cell apoptosis; Interference with the expression of important genes that
regulate cell cycle; and the phosphatidylinositol 3-kinase (PI3K) mediated apoptosis pathway. Lysis: Acanthamoeba secretes a variety of proteases
involved in cell lysis. A serine protease (MIP133) has been identified as a key component in the pathogenesis of Acanthamoeba.

weights of 62, 100, 218, 272, and exceeding 300 kDa are described
in Acanthamoeba (Sissons et al., 2004a). However, further studies
are needed to clarify their function in Acanthamoeba biology and
their pathogenicity to the host. Secondly, Acanthamoeba causes cell
cycle arrest by affecting the expression of GADD45A, p130Rb, F,
G1 protein, and cyclin-dependent kinase 6. The dephosphorylation
of retinoblastoma protein (pRb) further supports this theory
(Sissons et al., 2004b). Unphosphorylated pRb binds to the E2F
transcription factor during the cell cycle, which inhibits E2F
entry into the nucleus. When phosphorylated by CDKs, the
conformational change of pRb leads to the dissociation of the
pRb-E2F complex. The released E2F enters the nucleus and
initiates the synthesis of DNA (Dyson, 1998; Harbour and Dean,
2000; Stevaux and Dyson, 2002). Recent studies have found
that Acanthamoeba can induce cell cycle arrest of host cells
by inhibiting this process in human corneal epithelial cells and
brain microvascular endothelial cells (Sissons et al., 2004b). Third,
Acanthamoeba-mediated apoptosis of host cells depends on the
activation of phosphatidylinositol 3-kinase (PI3K) (Sissons et al.,
2005). This conclusion was confirmed by using LY294002 to inhibit
the activity of PI3K specifically and to express the mutant form of
PI3K regulatory subunit P110 in host cells (Sissons et al., 2005).
Traditionally, it has been known that PI3K plays an important role
in regulating cell survival pathways. For example, Thyrell et al.
(2004) have shown that α-interferon (IFNa) can induce PI3K-
mediated apoptosis in myeloma cells without Akt phosphorylation.
Further studies have shown that PI3K can mediate apoptosis by

activating the downstream pre-apoptotic molecules Bak and Bax,
inducing the loss of mitochondrial membrane potential and the
release of cytochrome c (Mattana et al., 2002; Chusattayanond et al.,
2010). A similar mechanism may exist in the process of host cell
apoptosis mediated by Acanthamoeba.

3.2.4. Lysis
When Acanthamoeba adheres to the host cells, it secretes a

variety of proteases that create pores in host membranes, resulting
in the lysis of cells and tissues (Lorenzo-Morales et al., 2013).
Pathogenic Acanthamoeba shows higher extracellular protease
activity. Protease-mediated lysing plays an important role in the
pathogenesis of various protozoa, such as amoeba, trichomonas,
leishmania, trypanosoma, and malaria parasites, and is directly
involved in cell and tissue invasion and damage (Serrano-Luna
Jde et al., 2006). It was found that Acanthamoeba mainly produce
three types of proteases: serine proteases, cysteine proteases, and
metalloproteinases (Khan, 2006). Serine proteases are the most
abundant and present in almost all Acanthamoeba genotypes
(Serrano-Luna Jde et al., 2006; Cirelli et al., 2020). Several serine
proteases with molecular weights ranging from 20 to 200 kDa have
been identified. They not only have collagen degradation activity,
but also can degrade plasminogen activator, fibrinogen, IgG,
IgA, albumin, hemoglobin, protease inhibitor, and interleukin-
1 (Na et al., 2001, 2002). A serine protease called MIP133
has been identified as a key component in the pathogenesis of
Acanthamoeba. MIP133 serine protease can induce the lysing of
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corneal cells, iris ciliary body cells, retinal pigment epithelial cells,
corneal epithelial cells, and corneal endothelial cells as well as
induce apoptosis of macrophage-like cells (Lorenzo-Morales et al.,
2015). The direct damage of serine protease in Acanthamoeba
infection can be observed by injecting Acanthamoeba into the
corneal stroma. This damage can be inhibited by the serine
protease inhibitor phenylmethanesulfonyl fluoride (Na et al., 2001,
2002). In addition, siRNA targeting the catalytic domain of
serine proteases reduced protease activity and host cytotoxicity
mediated by Acanthamoeba (Lorenzo-Morales et al., 2005). The
protease activity of pathogenic isolates, especially serine proteases,
is significantly higher than that of non-pathogenic isolates, which is
consistent with their cytotoxic effect on host cells.

Cysteine proteases with different molecular weights are
detected in Acanthamoeba cell lysate and culture supernatant.
These enzymes are thought to be involved in cell degradation
(Hadas and Mazur, 1993; Mitro et al., 1994; Alfieri et al., 2000;
Leitsch et al., 2010; Moon et al., 2012b; Ramírez-Rico et al., 2015).
For example, two L-cysteine proteases, AcCP and AhCP, were
identified in Culbertson and Healyi Acanthamoeba (Yun et al.,
1999; Hong et al., 2002, 2018). Recombinant AcCP showed enzyme
activity under acidic conditions and is the most suitable for pH4.0.
Recombinant enzymes can effectively hydrolyze human proteins,
including hemoglobin, albumin, immunoglobulin A and G, and
fibronectin under acidic conditions (Ramírez-Rico et al., 2015;
Hong et al., 2018; Cirelli et al., 2020). In addition, cysteine proteases
with molecular weights of 43, 65, 70, and 130 kDa have also been
reported (Khan, 2006). Although the histolytic role of cysteine
proteases in the pathogenesis of parasitic pathogens has been
identified (Singh et al., 2004; Jimenez-Sandoval et al., 2017), the
studies on cysteine proteases in Acanthamoeba are limited.

In addition to serine and cysteine proteases, there is evidence
of metalloproteinase activity in Acanthamoeba (Łanocha-
Arendarczyk et al., 2018). Metalloproteinases usually play an
important role in cell differentiation and migration, regulation
of growth factor activity, angiogenesis, and inflammation
(Sternlicht and Werb, 2001; Parks et al., 2004). An extracellular
metalloprotease of 150 kDa was identified from the T1 genotype
isolate of Acanthamoeba (Alsam et al., 2005b; Sissons et al., 2006).
This metalloprotease exhibits extracellular matrix lytic properties
for collagen I and III (the main components of the extracellular
collagen matrix), elastin (the elastic fibers of the extracellular
matrix), and plasminogen (involved in the extracellular matrix
proteolysis). These, as well as casein, gelatin, and hemoglobin are
degraded (Sissons et al., 2006). The specific mechanism needs to be
further studied.

Phospholipases are known to cleave phospholipids, suggesting
their possible involvement in the host cell plasma membrane
disruption leading to host cell penetration and lysis. Matin and
Jung (2011) tested the phospholipase activity and cytotoxicity of
three different Acanthamoeba strains including an encephalitis
isolate (T1 genotype), a keratitis isolate (T4 genotype), and
an environmental isolate (T7 genotype) in vitro. The results
show that all strains exhibited phospholipase A(2) [PLA(2)]
and phospholipase D (PLD) activities. Moreover, Acanthamoeba
isolates exhibited higher PLD activities compared with the
PLA(2). Interestingly, the encephalitis isolates of Acanthamoeba
exhibited higher phospholipase activities as compared with the
keratitis isolates, but the environmental isolates exhibited the

highest phospholipase activities, suggesting possible differences in
phospholipases in Acanthamoeba belonging to different genotypes
(Matin and Jung, 2011). The result supporting this inference is
that compound 48/80 partially blocked the encephalitis isolate-
mediated cytotoxicity, i.e., 49% cell death in the presence of the
inhibitor compared with 73% in the absence of the inhibitor,
while it had no effect on the keratitis isolate cytotoxicity and the
environmental isolate exhibited minimal cytotoxicity even in the
absence of inhibitors (Matin and Jung, 2011).

Although phospholipase inhibitors do not clearly block the
cytotoxicity mediated by Acanthamoeba alone, this does not
rule out that they are involved in Acanthamoeba pathogenesis.
Acanthamoeba pathogenesis is a process involved in many factors,
including adhesion, phagocytosis, apoptosis, proteolytic enzyme,
extracellular ATPase and so on as showing in Figure 4. The
inhibition of a single factor may not be sufficient to kill host cells. In
support of this notion, previous studies have shown that inhibition
of Acanthamoeba binding to host cells is not adequate to block
host cell cytotoxicity (Leher et al., 1998). It is also possible that
cytotoxicity is a delayed event and that phospholipases are involved
in the early events. Studies have shown that phospholipases
involved in interference with the intracellular signaling pathways.
Phospholipases generate lipids and lipid-derived products that
act as mediators and second messengers, which may act as the
modulators of signal transduction pathways (Dennis et al., 1991;
Serhan et al., 1996). Studies have shown that lysophospholipids, a
by-product of PLA2 and phospholipase B (PLB), can induce the
activation of protein kinase C, which has diverse function in host
cell signal transduction pathways (Oishi et al., 1988). Phospholipase
C of Clostridium perfringens induces expression of IL-8 synthesis in
endothelial cells (Bryant and Stevens, 1996; Bunting et al., 1997).
These studies suggest that Acanthamoeba phospholipase may play
a role in causing host cell damage or affecting other cellular
functions such as inducing inflammation. In addition, studies
on the pathogenicity of other species mediated by phospholipase
have also been reported, such as the potential to prevent Candida
infection by targeting phospholipase with synthetic compounds
(Hänel et al., 1995). Future studies are needed to identify and
characterize Acanthamoeba phospholipases, which should help
determine their potential role for therapeutic interventions and
in differentiation of Acanthamoeba isolates belonging to different
genotypes.

Acanthamoeba species also show neuraminidase activity
(Pellegrin et al., 1991). Acanthamoeba can release sialic acid
after invading human cells, so the neuraminidase may be related
to its colonization and play an important role in damaging
the corneal epithelium rich in sialic acid (Pellegrin et al.,
1991). In immunofluorescence, immunoblotting, and enzyme-
linked immunosorbent assays, the neuraminidase antibody of
Trypanosoma cruzi cross-reacted with Acanthamoeba, indicating
that Acanthamoeba does have neuraminidase activity (Pellegrin
et al., 1992). Although the role of Acanthamoeba neuraminidase
in the pathogenesis of keratitis is unclear, the fact that cell damage
can occur without direct contact (Visvesvara and Balamuth, 1975)
suggests that the release of parasite products is involved in the
mechanism of tissue injury. Neuraminidase-induced cleavage of
sialic acid from glycoproteins and gangliosides of cerebral tissue
may lead to the onset of granulomatous amoebic encephalitis.
Such an effect of neuraminidase was suggested in primary amoebic
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meningoencephalitis caused by N. fowleri, also a free living amoeba
(Eisen and Franson, 1987). It is generally accepted that the ability
of microorganisms to produce disseminated infections is related to
their capacity to destroy colonized tissues. Neuraminidase may be
related to the components and enzymes of several other amoebae,
such as phospholipase A, sphingomyelinase, elastase, collagenase,
and a cytolytic and granule-associated cytotoxic activity. The
synergistic effect of these factors may participate in the destruction,
mucosal surface penetration, and dissemination of Acanthamoeba
(Ferrante and Bates, 1988; He et al., 1990).

3.2.5. Immune escape
The immune escape ability of Acanthamoeba is also an

important component of its pathogenicity. Compared with
uninfected individuals, the levels of IgA and IgG in tears of
AK patients are lower (Carnt and Stapleton, 2016; Neelam and
Niederkorn, 2017), which may be related to the fact that its
secreted serine protease can destroy IgA and IgG antibodies in
human tears (Kong et al., 2000; Marciano-Cabral and Cabral, 2003;
Foulks, 2007). This reduction of antibodies allows Acanthamoeba
to evade the human immune response and survive long-term in the
host. Continuous low-level turnover of complement components
within the eye has been recognized for many years (Sohn et al.,
2000) and is known to be a major contributor to the immune
privilege status of the eye (Niederkorn, 2007). For example, the
major component of immune privilege, termed anterior chamber-
associated immune deviation (ACAID), has been shown to be
complement-dependent (Sohn et al., 2003). The complement
cascade has a well-established role in the maintenance of a
healthy cornea (Mondino et al., 1996). Although membrane-
bound complement regulators such as CD46, CD55, and CD59
are expressed throughout the various layers of the cornea, there
is a disproportionately high level of expression in the corneal
epithelium (Bora et al., 1993). This may be due to the fact
that the corneal surface is often exposed to various pathogens,
resulting in the continuous activation of the complement system.
Some bacteria produce phospholipases and other enzymes that can
remove CD55 and CD59 from the surface of corneal epithelium
(Cocuzzi et al., 2000), causing complement regulation disorders,
which aggravate bacterial keratitis and even lead to loss of
vision (Tang et al., 2009). By comparing the results of systematic
analysis of Acanthamoeba isolates, Huang’s group identified a new
secretory protein, M28 aminopeptidase (M28AP). The molecular
functions and characteristics of M28AP protein were studied
by using anti-M28AP antibody and M28AP mutant produced
by CRISPR/Cas9 system. The results showed that M28AP was
involved in the degradation of human complement, such as C3b
and iC3b, suggesting it played a vital role in pathology (Huang
et al., 2019). The study also found that Acanthamoeba is usually
associated with biofilms distributed throughout the environment. It
has been confirmed that biofilms can promote protozoan infection
(Schaumberg et al., 1998). The biofilm provides a protective
niche for Acanthamoeba, which is conducive to immune escape,
thereby enhancing invasiveness (Marciano-Cabral and Cabral,
2003; Lorenzo-Morales et al., 2015; Hasby Saad and Khalil,
2018) and thought to even provide nutrition for Acanthamoeba
(Khan, 2006).

4. Conclusion

In conclusion, Acanthamoeba, is an opportunistic pathogenic
protozoa widely existing in nature that can cause various
diseases such as AK, GAE, and CA, as well as lung infections.
Although its incidence is currently low, resulting infection is
serious and treatment options are lacking due to understudied
complex pathogenic mechanisms. An in-depth understanding of
the biological characteristics and pathogenicity of Acanthamoeba
can provide help for clinical diagnosis, effective treatment, and
control of Acanthamoeba infection to provide a theoretical basis for
the development of new drugs and vaccines against Acanthamoeba.

Although the widely used classification method based on 18S
rRNA sequence is not as reliable as full-sequence gene analysis,
it provides a rapid, simple and relatively accurate method for
the study of genetic diversity of Acanthamoeba, which can assist
in the differential diagnosis of pathogens in Acanthamoeba spp.
The identification of Acanthamoeba from other cyst forming
protozoa can be performed by a method based on the coupling of
cellulose binding protein to fluorescent dyes. The main component
of cyst wall is chitin, however, Acanthamoeba is an exception
since its cyst wall contains cellulose (Garajová et al., 2019).
Specific cytochemical differentiation between cellulose and chitin
by microscopy has not been possible due to the similarity of the
constituent β-1, 4-linked hexose backbones of these molecules.
Therefore, it is necessary to develop new methods to distinguish
cellulose from chitin in order to identify the source of infection.
Derda et al. (2009) developed a novel immunocytochemical
method for identification of Acanthamoeba spp. Cellulose-binding
protein consisting of two cellulose-binding domains (CBDs) from
Trichoderma reesei cellulase coupled to fluorescent dyes. No
staining reaction was observed with the chitin-containing cyst walls
of Giardia intestinalis, Entamoeba dispar, or Pneumocystis carinii.
Thus, the recombinant CBD can be used as a marker to distinguish
between cellulose and chitin (Derda et al., 2009). However, in
later studies, cellulose was also identified as a cyst wall component
of Balamuthia mandrillaris, which is closely related to amoeba
(Siddiqui et al., 2009). Even so, it still helps to narrow the scope
of differential diagnosis.

Current studies have found that Acanthamoeba produces
a variety of proteases in the process of infecting the host,
which may be an avenue for therapy. Still, the exact molecular
mechanism is unclear. Future research should further explore
the feasibility of protease inhibitors as therapeutic treatments.
The cyst transformation function of Acanthamoeba increases the
pathogenicity and increases the difficulty of clinical treatment.
Therefore, the screening of Acanthamoeba cyst formation
inhibitors may also prove fruitful for clinical treatment of
Acanthamoeba. Finally, the unique morphological structure
of cysts gives Acanthamoeba a remarkable ability to adapt to the
environment and may provide another target for clinical treatment.
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Assessing Acanthamoeba
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common cell viability assays
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Irene Heredero-Bermejo2, Rounik Mazumdar3,
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Background: In vitro models for studying interactions between Acanthamoeba

and host cells are crucial for understanding the pathomechanism of

Acanthamoeba and assessing differences between strains and cell types. The

virulence of Acanthamoeba strains is usually assessed and monitored by using cell

cytotoxicity assays. The aim of the present study was to evaluate and compare the

most widely used cytotoxicity assays for their suitability to assess Acanthamoeba

cytopathogenicity.

Methods: The viability of human corneal epithelial cells (HCECs) after co-culture

with Acanthamoeba was evaluated in phase contrast microscopy.

Results: It was shown that Acanthamoeba is unable to considerably reduce

the tetrazolium salt and the NanoLuc R© Luciferase prosubstrate to formazan

and the luciferase substrate, respectively. This incapacity helped to generate

a cell density-dependent signal allowing to accurately quantify Acanthamoeba

cytotoxicity. The lactate dehydrogenase (LDH) assay led to an underestimation

of the cytotoxic effect of Acanthamoeba on HCECs since their co-incubation

negatively affected the lactate dehydrogenase activity.

Discussion: Our findings demonstrate that cell-based assays using the aqueous

soluble tetrazolium-formazan, and the NanoLuc R© Luciferase prosubstrate

products, in contrast to LDH, are excellent markers to monitor the interaction

of Acanthamoeba with human cell lines and to determine and quantify effectively

the cytotoxic effect induced by the amoebae. Furthermore, our data indicate that

protease activity may have an impact on the outcome and thus the reliability of

these tests.

KEYWORDS

Acanthamoeba, human corneal epithelial cells, pathogenesis, amoeba-host cell
interaction, viability, cytotoxicity

1. Introduction

Acanthamoeba spp. are ubiquitous free-living amoebae occurring worldwide in water
environments and soil, but they can also be isolated from dust and the air. They
are facultative pathogens and can cause different diseases, importantly, the so-called
Acanthamoeba keratitis (AK), a severe infection of the cornea, most commonly observed
in contact lens wearers. The incidence of AK has increased within the past decades, which
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may be attributed to the increasing number of contact lens users,
but also to advances in diagnostics (Chawla et al., 2014; Randag
et al., 2019; List et al., 2021). Acanthamoeba spp. may also cause
granulomatous amoebic encephalitis, a fatal disease of the central
nervous system, and other disseminating infections, mainly in
immunocompromised individuals (Morrison et al., 2016). Treating
these infections is challenging, as no specific drugs are currently
available (Siddiqui et al., 2014; Lorenzo-Morales et al., 2015;
Loufouma Mbouaka et al., 2021).

The pathomechanism of these amoebae still remains
incompletely understood, despite significant progress made
in recent years (Clarke and Niederkorn, 2006; Khan, 2006;
Walochnik and Duchêne, 2016). Adhesion to the host cells
is mediated by a mannose-binding protein (MBP) and other
adhesion proteins, triggering the release of proteases, mainly of
the serine and metalloprotease type. The immune reaction of the
host is characterized by neutrophil migration and macrophage
activation resulting in the release of proinflammatory cytokines
such as tumor necrosis factor alpha (TNF-α), interleukin-
1β (IL-1β), and interleukin-6 (IL-6). In AK, secretory IgA
antibodies in the tears can prevent binding of the Acanthamoeba
trophozoites (Mattana et al., 2002; Garate et al., 2004; Walochnik
and Duchêne, 2016). However, only a comparably small percentage
of environmental Acanthamoeba isolates are able to lyse human
cells and cytopathogenicity is known to decline during long-term
axenic culture – but can also be enhanced by mouse passage or
serial passage over human cell lines (Mazur and Hadaś, 1994;
Koehsler et al., 2009). Cell viability and cytotoxicity assays are
useful tools to determine the cytotoxic effects of Acanthamoeba
on human cells because they measure in vitro modifications
at the cellular and metabolic levels by detecting structural
changes such as loss of membrane integrity or physiological and
biochemical responses associated with non-viable and viable
cells, respectively (Riss et al., 2004). They are typically used in
drug discovery screening to assess the effect of a compound on
cell proliferation (Riss et al., 2004). However, depending on the
research aims and owing to the limitations of these assays, their
use may be challenging. Recently, it was demonstrated that some
of these assays, when used to study and evaluate host–pathogen
interactions, may interfere with the pathogen and lead to an
inaccurate estimation of pathogen cytotoxicity and their effects
on host cells during and after co-culture (Van den Bossche et al.,
2020). Thus, it is crucial to identify or develop and validate reliable
methods and models to study such interactions and to avoid
any interference with the culture medium or the pathogen in
co-culture.

The present study aimed to evaluate and compare the most
widely used cell viability assays for their usefulness to assess the
cytotoxicity of Acanthamoeba spp. on human corneal epithelial
cells (HCECs) during co-culture. Cell morphology, viability and
integrity were evaluated by phase contrast microscopy.

2. Materials and methods

2.1. Acanthamoeba strains

The non-pathogenic environmental isolate strain
Acanthamoeba castellanii Neff (ATCC 50373) and two pathogenic

isolates from patients with keratitis, strains 1BU and strain SIN20,
isolated in 1998 and 2020, respectively, all belonging to the
T4 genotype group, were used in this study. The strains were
maintained on non-nutrient agar plates coated with Escherichia
coli. Prior to the experiments, all strains were sub-cultured
and grown axenically at 34◦C in peptone, yeast extract, and
glucose (PYG) medium containing 10 g proteose peptone, 10 g
yeast extract, 5 g NaCl, 5 g glucose, 0.7 g Na2HPO4, and 0.7 g
KH2PO4 per liter.

2.2. Human corneal epithelial cells
(HCECs)

Cells and media components were purchased from Innoprot
(Derio, Bizkaia, Spain). Immortalized human corneal epithelial
cells (HCECs; P10871-IM) were sub-cultured in corneal epithelial
cell medium (CEpiCM, P60189) containing the 5% fetal bovine
serum (FBS), 1% epithelial cell growth supplement (ECGS) and 1%
penicillin/streptomycin at 37◦C and 5% CO2. T75 flasks and 96-
well plates were coated with a thin layer of type I collagen (P8188)
to enhance cell attachment and proliferation. Prior to the assays,
different concentrations of HCECs were assessed to determine the
optimal concentration for the subsequent experiments.

2.3. Acanthamoeba–HCEC co-culture

At least three independent experiments were performed in
triplicates. Before the assays, 1 × 104 HCECs per well were seeded
in a 96-well plate and incubated overnight. Then, the medium was
replaced with a serum-free medium, and cells were maintained at
34◦C and 5% CO2 during the co-culture to mimic the conditions
of the human eye. Amoebae were added into the wells at different
ratios or multiplicity of infection (MOI 1, MOI 2, and MOI 3; see
Table 1) and incubated for 2, 4, 6, and 8 h. Wells containing only
the HCECs were considered as positive controls, with a percentage
of viability close to 100% for the following assays.

2.4. Cell viability and cytotoxicity assays

2.4.1. Lactate dehydrogenase assay
Lactate dehydrogenase (LDH) assay is a colorimetric method

used to assess cytotoxicity and quantify cell viability. The damage
to the plasma membrane allows the release of LDH from the
intracellular environment into the cell culture medium and can be
quantified using a coupled enzymatic reaction. The LDH activity
was determined using the CyQUANTTM LDH Cytotoxicity Assay

TABLE 1 Multiplicity of infection (MOI) used for cytotoxicity assays.

MOI Number of amoeba* Number of HCEC*

1 1.0 × 104 1.0 × 104

2 2.0 × 104 1.0 × 104

3 3.0 × 104 1.0 × 104

*The total volume of the experimental serum-free medium per well containing either amoeba
alone, in co-culture with HCECs or HCECs alone was 100 µl.
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Kit (Thermo Fisher Scientific, Eugene, OR, USA), and strictly
following the manufacturers’ instructions (Thermo Fisher, 2019).
Simultaneously, the LDH positive control was established by
adding the same volume of lysis buffer to samples containing
only HCECs or Acanthamoeba alone. The plate was incubated at
room temperature and protected from light for 30 min. Then, the
absorbance was measured at 490 nm using a microplate absorbance
spectrophotometer (Anthos Labtec Instruments HT2, Salzburg,
Austria). The percentage of cytotoxicity was determined following
the formula provided with the LDH assay kit and then converted to
relative cell viability.

2.4.2. MTS assay
The MTS assay is a colorimetric method used to assess cell

viability. Viable cells reduce the yellow tetrazolium compound
[3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-
(4-sulfophenyl)-2H-tetrazolium, inner salt; MTS] to soluble
formazan, which is purple. CellTiter 96

R©

AQueous One Solution
Reagent (Promega, Madison, WI, USA) was added to each
sample (20 µl per well) in a 96-well plate, and the plate was
incubated at 34◦C and 5% CO2. After 1 h incubation, absorbance at
490 nm was determined using a spectrophotometer (Tecan, Spark
10M, Switzerland).

2.4.3. RealTime-GloTM MT Cell Viability assay
The RealTime-GloTM MT Cell Viability assay (Promega,

Madison, WI, USA) is a bioluminescence assay used to assess
cell viability in real time. Metabolically active cells reduce the
NanoLuc R© luciferase prosubstrate to the luciferase substrate, thus
producing a luminescence signal, which correlates with the number
of viable cells. During this assay, an opaque-walled tissue culture
plate was used. The 2X RealTime-GloTM reagent was prepared with
serum-free CEpiCM, and 50 µl was added into each well containing
HCECs, followed by inoculation with an equal volume of serum-
free medium containing amoebae in suspension at different MOIs.
The plate was placed in a cell culture incubator at 34◦C and 5%
CO2, and cell viability was measured every 2 h. The viability was
assessed in real time over 8 h, using a plate-reading luminometer
(Tecan, Spark 10M, Switzerland).

2.5. Microscopy

All cells were analyzed by phase contrast microscopy and
trypan blue staining. Trypan blue facilitates the determination
of the cell number and percentage of viability within a cell
population (Riss et al., 2004; Strober, 2015). A µ-slide 8-well
chamber (Ibidi, Martinsried, Germany) coated with collagen I was
used for microscopic observation and analysis. HCECs (5 × 103

per well) were seeded in the chamber and incubated overnight.
After approximately 16 h, the medium was replaced with a serum-
free medium, and amoebae were added at different MOI as
previously described; the plates were incubated for different time
periods (2, 4, 6, 8, and 24 h). For phase contrast microscopy and
microphotography, a Nikon Eclipse TE200 microscope with NIS-
Elements version 4.00.07 software (Optoteam, Vienna, Austria) was
used.

2.6. Statistical analysis

Data was analyzed through two-way ANOVA with Dunnett’s
multiple comparisons test using GraphPad Prism version 7.0 for
Windows (GraphPad Software Inc, San Diego, CA, USA).

3. Results

3.1. Growth of Acanthamoeba under
various conditions

To ensure cell integrity, Acanthamoeba SIN20 and 1BU were
monitored under various conditions, using CEpiCM with serum,
serum-free CEpiCM, and PYG medium. Under these conditions,
in serum-containing and serum-free CEpiCM, the number of
amoebae on both strains remained constant over time for up to
24 h (Figure 1). Under all conditions, no dead cells were observed
during the experiments. In PYG medium, the number of amoebae
slightly increased after 8 h of incubation, followed by a significant
increase after 12 h (Figure 1). Therefore, the time point of 8 h was
selected as the maximal duration for all cytotoxicity assays, also to
maintain the defined MOI ratio.

3.2. Acanthamoeba cell density affected
lactate dehydrogenase production

The effect of the cell density of the Acanthamoeba strains
Neff, SIN20, and 1BU and of the HCECs on LDH activity was
assessed using a defined volume of LDH lysis buffer. As shown
in Figure 2, the cell density affected the linearity of LDH activity.
This effect was more pronounced with HCECs (Figure 2A) than
with Acanthamoeba strains (Figures 2B–E). This finding may be
attributed to the fact that, owing to their larger size, mammalian
cells can release more LDH into the extracellular environment
than amoebae. In contrast, the incubation time and type of
Acanthamoeba strain in serum-free medium did not affect LDH
release.

3.3. Acanthamoeba produced low signals
in presence of tetrazolium salt and
NanoLuc R© luciferase prosubstrate

Similarly, the effect of cell number on absorbance at 490 nm
and bioluminescence was evaluated using the MTS and RealTime-
GloTM MT Cell Viability assays, respectively, (Figures 3, 4). In
contrast to the observations made in the LDH assay, Acanthamoeba
did not increase the linear response between cell density
and absorbance at 490 nm and bioluminescence, respectively,
suggesting the inability of Acanthamoeba to considerably reduce
the tetrazolium salt and NanoLuc R© luciferase prosubstrate,
respectively, and to produce a strong signal. However, a strong
signal was observed with HCECs (Figures 3A, 4A). No differences
in linearity were observed between the different Acanthamoeba
strains used in this study.
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FIGURE 1

Growth curves of Acanthamoeba strains 1BU and SIN20 under various conditions over time at 34◦C with 5% CO2 atmosphere. The numbers of
amoebae were determined by cell counting with a hemocytometer.

FIGURE 2

Effect of HCEC (A) and amoeba (B–E) densities on absorbance at 490 nm by using the LDH release assay, at different times. The background
absorbance obtained with the media alone without cells was subtracted from all data. “Maximum” corresponds to the quantity of LDH released into
the cell culture medium by lysed or damaged cells, and “Spontaneous” represents the quantity released by living or non-lysed cells.

3.4. Cytotoxic effects of Acanthamoeba
on human corneal epithelial cells during
co-culture

Subsequently, the cytotoxic effects of Acanthamoeba on HCECs
and the effects on their viability at various incubation periods (2, 4,
6, and 8 h) and different MOIs (MOI 1, MOI 2, and MOI 3; see
Table 1) were evaluated using the cytotoxicity assays. All assays
were performed according to the manufacturer’s instructions,

and wells containing only serum-free medium were used as
controls to account for culture medium background absorbance
and luminescence.

As shown in Figure 5A, in the LDH assay to evaluate
Acanthamoeba-induced cytotoxicity in HCECs, no significant
differences were observed in the viability of HCECs inoculated with
the environmental Neff and pathogenic 1BU strains and incubated
for different periods. HCECs co-cultured with the SIN20 strain
showed a slight difference in the viability of the mammalian cells
at MOI 2 and MOI 3 after 8 h incubation, which refers to minor
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FIGURE 3

Effect of HCEC (A) and amoeba (B–E) densities on absorbance at 490 nm by using the MTS assay, at different times. The background absorbance
obtained with the media alone without cells was subtracted from all data.

cytotoxic effects of this strain, but no significant differences were
observed at other MOIs and incubation times.

The MTS and RealTime-GloTM Cell Viability assays were used
to assess the effect of Acanthamoeba on the viability of HCECs in
co-culture. Both pathogenic strains showed a considerable effect
on the viability of HCECs in both assays, except at MOI 1 and
MOI 2 after 2 h incubation in the MTS assay (Figures 5B, C).
The percentage of viability of HCECs in contact with pathogenic
strains 1BU and SIN20 was markedly reduced after 4, 6, and 8 h
of incubation in the MTS assay and at all incubation periods in
the RealTime-GloTM Cell Viability assay (except for 1BU at MOI 1
and 4 h incubation). No significant differences were observed in the
viability of HCECs in contact with the non-pathogenic Neff strain
in both assays.

3.5. Microscopic examination and
consistency with cytotoxicity assays

The monolayer integrity of HCECs after inoculation with
Acanthamoeba and incubation was assessed on the basis of cell

detachment by phase contrast microscopy, and microphotographs
were taken (Figure 6 and Supplementary material). Under all
conditions, the microscopic estimation was consistent with the
results obtained with the MTS and RealTime-GloTM MT Cell
Viability assays, but not with the LDH assay. The presence of
cell aggregates was observed after 2 h of co-culture, and was
more pronounced after 8 h of co-culture, especially at MOI 2
and MOI 3 (Figure 6). Moreover, microscopic observations after
24 h showed total or at least significant destruction of the HCEC
monolayer at MOI 2 and MOI 3, while at MOI 1, numerous
HCECs were still intact in co-culture (Figure 6). Owing to the
difficulty in distinguishing between non-viable HCECs and non-
viable Acanthamoeba SIN20, cell death could not be determined by
cell counting using trypan blue staining.

3.6. Monitoring Acanthamoeba
cytotoxicity

After inoculation and co-culture of Acanthamoeba with
HCECs, significant differences in results were observed between
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FIGURE 4

Effect of HCEC (A) and amoeba (B–E) densities on the luminescence signal by using the RealTime-GloTM MT Cell Viability assay. The background
absorbance obtained with the media alone without cells was subtracted from all data.

conventional LDH assay and other methods used in this study
(Figure 5). Results of the MTS and RealTime-GloTM MT Cell
Viability assays, which were consistent with the microscopic
observations of cell detachment, showed that the viability of
HCECs was substantially affected by the presence of pathogenic
Acanthamoeba strains, whereas almost no difference was observed
with the LDH assay.

4. Discussion

Three different cytotoxicity assays, namely the LDH, MTS
and RealTime-GloTM MT Cell Viability assays, were compared in
terms of their sensitivity in detecting and measuring Acanthamoeba
cytotoxicity on human corneal epithelial cells (HCECs), in
combination with microscopic examination. It was shown that
pathogenic A. castellanii significantly reduced HCECs viability
in a dose-dependent manner starting from 2 h of co-culture
at varying ratios, and this effect could be monitored reliably
with the MTS and RealTime-GloTM MT Cell Viability assays,
well corresponding with the observation of cell detachment and
destruction.

Various methods to monitor and evaluate in vitro cell
viability and cytotoxicity are available, such as colorimetric and
luminescence assays and microscopic examination in combination
with staining and cell counting. The methods compared in the
present study, except for the rather new RealTime-GloTM MT
Cell Viability method, have been extensively used during recent
years to evaluate the cytotoxicity of novel antimicrobial agents
against protozoan parasites such as Leishmania, Toxoplasma gondii,
Naegleria fowleri or also Acanthamoeba (Ganguly et al., 2006;
Jin et al., 2009; Jha et al., 2015; López-Arencibia et al., 2015;
Colon et al., 2019). The LDH assay is typically used to identify
host cells that have lost membrane integrity and are considered
dead on the basis of LDH release into the cell culture medium;
in contrast, the MTS and RealTime-GloTM MT Cell Viability
assays use compounds that are metabolized and reduced by viable
mammalian cells.

In this study, we first evaluated whether the number of amoebae
(0–30,000 per well) and HCECs (0–20,000 per well) influenced the
signal obtained with the LDH, MTS, and RealTime-GloTM MT
Cell Viability assays (Figures 2–4). Although HCECs produced
a strong signal in all assays, this was not observed with the
amoebae. While the LDH assay showed a cell density-dependent
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FIGURE 5

LDH release (A), MTS (B) and NanoLuc R© Luciferase prosubstrate assays (C). Percentage of the viability of HCEC alone and after co-culture with
Acanthamoeba strains Neff A (N), SIN20 (S) and 1BU (B) for different time periods (2, 4, 6, and 8 h), and MOIs (MOI 1: N1, S1, and B1; MOI 2: N2, S2,
and B2; MOI 3: N3, S3, and B3). Values represent the means of three independent experiments, each in triplicate. Data were plotted after the
correction of the media background. Statistical analysis was performed through two-way ANOVA with Dunnett’s multiple comparisons test
(*P < 0.01, **P < 0.001, and ***P < 0.0001).

signal also for the amoebae, the MTS and RealTime-GloTM

MT Cell Viability assays showed very weak signals for various
concentrations of amoebae and incubation periods, indicating that
the amoebae poorly metabolized the substrates. The MTS results
are consistent with a previous study, in which the density of
Acanthamoeba castellanii also did not affect the tetrazolium salt
reduction and produced a weak signal (Heredero-Bermejo et al.,

2013). No differences in the activity of LDH released and reduction
of tetrazolium salt and NanoLuc R© luciferase prosubstrate were
observed between the Acanthamoeba strains investigated.

Subsequently, the cytotoxic effects of the different
Acanthamoeba strains on HCECs were assessed using the above-
mentioned tests. Interestingly, there was a striking discrepancy
between the cytotoxicity results obtained with the LDH assay and

Frontiers in Microbiology 07 frontiersin.org85

https://doi.org/10.3389/fmicb.2023.1175469
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/


fmicb-14-1175469 April 19, 2023 Time: 16:49 # 8

Loufouma Mbouaka et al. 10.3389/fmicb.2023.1175469

FIGURE 6

Effect of Acanthamoeba strain SIN20 after co-culture with HCECs, at MOI 1 (B,F,J, N,R), MOI 2 (C,G,K,O,S) and MOI 3 (D,H,L,P,T) and at different
times (2, 4, 6, 8, and 24 h). Panels (A,E,I,M,Q) represent the HCEC alone without co-culture. Scale bar = 50 µm. See Supplementary material for the
amoeba controls.

the results obtained with the two other assays as well as with the
microscopic examination of cell detachment. While generally, the
cytotoxicity measured with the LDH assay was similar to that
reported for A. castellanii on HCECs in a previous study (Sohn
et al., 2019), we found that the LDH assay underestimated the
proportion of dead cells and overestimated the proportion of
living cells and thus was not reliable to determine the cytotoxic
effect of Acanthamoeba on HCECs. However, the LDH assay
has also been used to evaluate the activity of potentially anti-
amoebic agents, because this enzyme is released into the culture
medium when the cell membrane integrity is affected (Sissons
et al., 2005; Lorenzo-Morales et al., 2010; Anwar et al., 2018;
Shi et al., 2020; Akbar et al., 2022). The results obtained in the
current study corroborate the suitability of the LDH assay for
evaluating Acanthamoeba viability, but not when Acanthamoeba is
co-cultured with other cells. We assume that proteases produced

by the pathogenic Acanthamoeba strains acted on the LDH
released by the HCECs and thereby led to inaccurate results.
A similar effect was reported for pathogenic bacteria in a recent
study, where proteases produced by the bacteria during host–
pathogen co-culture interacted with the LDH and thus lead to
an underestimation of bacterial cytotoxicity (Van den Bossche
et al., 2020). However, further studies will be necessary to confirm
this hypothesis. In contrast to the LDH assay, the MTS and
RealTime-GloTM MT Cell Viability assays provided reliable
and comparable results for Acanthamoeba cytotoxicity. The
RealTime-GloTM MT Cell Viability assay was more sensitive in
determining the cytotoxic effect of Acanthamoeba; the lowest
percentage of cell viability detected with the RealTime-GloTM MT
Cell Viability assay and MTS assay was approximately 2% with
the SIN20 strain and 15% with the 1BU strain, respectively. Good
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correlation in significant findings in both pathogenic strains was
observed between the two assays, especially after 4 h of co-culture
with HCECs (p < 0.0001).

The ability of Acanthamoeba to establish contact with and
adhere to host cells and induce apoptosis is crucial for their
pathogenicity, but varies dramatically between strains. We used
Acanthamoeba strains belonging to the genotype T4, since it is the
most frequently genotype isolated from keratitis and non-keratitis
diseases cases (Maciver et al., 2013; Walochnik et al., 2015; Castro-
Artavia et al., 2017). Strains 1BU and SIN20 are AK-causing clinical
isolates, isolated from patients with severe keratitis, while the Neff
strain (ATCC 50373) is a non-virulent environmental isolate; and
this is in line with the variations in the results obtained between
1BU and SIN20, on one hand, and Neff strains, on the other hand.

Usually, the presence of proteases and the production of
extracellular vesicles are used to determine the pathogenicity of
Acanthamoeba isolates (Khan et al., 2000; Walochnik and Duchêne,
2016; Moreira et al., 2020). The MTS and RealTime-GloTM MT
Cell Viability assays can be applied as valuable screening tools to
assess directly the pathogenicity of Acanthamoeba isolates from
environmental and clinical sources, in co-culture with mammalian
cell lines.

In conclusion, the present study demonstrates the importance
of choosing the most suitable method in accordance with the
research purpose to meaningfully quantify cell viability and
cytotoxicity in vitro. While the LDH assay, in contrast to the
MTS and the RealTime-GloTM MT Cell Viability assays, is suitable
to determine Acanthamoeba viability in axenic culture, it is
unsuitable to determine the cytotoxic effect of Acanthamoeba on
host cells. However, the tetrazolium- and luciferase prosubstrate-
based assays, although and because unsuitable to evaluate
Acanthamoeba viability, were found to sensitively and reliably
assess the cytotoxic effects of Acanthamoeba on human cells
in vitro. To the best of our knowledge, this is the first
report of a potential interference between proteases produced by
Acanthamoeba with the LDH assay during Acanthamoeba–host
cell co-culture leading to an underestimation of the cytotoxic
effect.
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Mazur, T., and Hadaś, E. (1994). The effect of the passages of Acanthamoeba strains
through mice tissue on their virulence and its biochemical markers. Parasitol. Res. 80,
431–434. doi: 10.1007/BF00932382

Moreira, L., Ramírez, D., Linares, F., Ledezma, A., Garro, A., Osuna, A., et al.
(2020). Isolation of Acanthamoeba t5 from water: characterization of its pathogenic
potential, including the production of extracellular vesicles. Pathogens 9:144. doi:
10.3390/pathogens9020144

Morrison, A., Morris, R., Shannon, A., Lauer, S., Guarner, J., and Kraft, C.
(2016). Disseminated Acanthamoeba infection presenting with cutaneous lesions in
an immunocompromised patient: a case report, review of histomorphologic findings,
and potential diagnostic pitfalls. Am. J. Clin. Pathol. 145, 266–270. doi: 10.1093/ajcp/
aqv081

Randag, A., Van Rooij, J., Van Goor, A., Verkerk, S., Wisse, R., Saelens, I., et al.
(2019). The rising incidence ofAcanthamoeba keratitis: a 7-year nationwide survey and
clinical assessment of risk factors and functional outcomes. PLoS One 14:e0222092.
doi: 10.1371/journal.pone.0222092

Riss, T., Moravec, R., Niles, A., Duellman, S., Benink, H., Worzella, T., et al. (2004).
Cell viability assays. Assay Guid. Man. 1–25. Available online at: http://www.ncbi.nlm.
nih.gov/pubmed/23805433 (accessed October 2022).

Shi, L., Muthukumar, V., Stachon, T., Latta, L., Elhawy, M., Gunaratnam, G., et al.
(2020). The effect of anti-amoebic agents and Ce6-PDT on Acanthamoeba castellanii
trophozoites and cysts, in vitro. Transl. Vis. Sci. Technol. 9, 1–15. doi: 10.1167/tvst.9.
12.29

Siddiqui, R., Chaudhry, T., Lakhundi, S., Ahmad, K., and Khan, N. (2014). Failure of
chemotherapy in the first reported cases of Acanthamoeba keratitis in Pakistan. Pathog.
Glob. Health. 108, 49–52. doi: 10.1179/2047773213Y.0000000124

Sissons, J., Kwang, S., Stins, M., Jayasekera, S., Alsam, S., and Khan, N. (2005).
Acanthamoeba castellanii induces host cell death via a phosphatidylinositol 3-kinase-
dependent mechanism. Infect. Immun. 73, 2704–2708. doi: 10.1128/IAI.73.5.2704-
2708.2005

Sohn, H., Seo, G., Lee, J., Ham, A., Oh, Y., Kang, H., et al. (2019). Cytopathic
change and inflammatory response of human corneal epithelial cells induced by
Acanthamoeba castellanii trophozoites and cysts. Korean J. Parasitol. 57, 217–223.
doi: 10.3347/kjp.2019.57.3.217

Strober, W. (2015). Trypan blue exclusion test of cell viability. Curr Protoc Immunol
111, A3.B.1–A3.B.3.

Thermo Fisher (2019). CyQUANTTM LDH Cytotoxicity Assay Kit Product
Information Sheet. Catalog Numbers C20300 and C20301. https://www.thermofisher.
com/order/catalog/product/C20300 (accessed October 2022).

Van den Bossche, S., Vandeplassche, E., Ostyn, L., Coenye, T., and Crabbé, A. (2020).
Bacterial interference with lactate dehydrogenase assay leads to an underestimation
of cytotoxicity. Front. Cell Infect. Microbiol. 10:494. doi: 10.3389/fcimb.2020.0
0494

Walochnik, J., and Duchêne, M. (eds). (2016). Molecular parasitology: Protozoan
parasites and their molecules, Vol. IX. Vienna: Springer Publishing, 1–547.

Walochnik, J., Scheikl, U., and Haller-Schober, E. (2015). Twenty years of
Acanthamoeba diagnostics in Austria. J. Eukaryot. Microbiol. 62, 3–11. doi: 10.1111/
jeu.12149

Frontiers in Microbiology 10 frontiersin.org88

https://doi.org/10.3389/fmicb.2023.1175469
https://doi.org/10.1093/infdis/jiy622
https://doi.org/10.1093/infdis/jiy622
https://doi.org/10.1016/j.mimet.2005.10.011
https://doi.org/10.1074/jbc.M402334200
https://doi.org/10.1007/s00436-013-3599-5
https://doi.org/10.1016/j.exppara.2015.09.005
https://doi.org/10.1128/JCM.38.8.2858-2861.2000
https://doi.org/10.1111/j.1574-6968.2009.01680.x
https://doi.org/10.1111/j.1574-6968.2009.01680.x
https://doi.org/10.1038/s41598-020-80222-3
https://doi.org/10.1051/parasite/2015010
https://doi.org/10.1128/AAC.00329-10
https://doi.org/10.1128/AAC.00329-10
https://doi.org/10.1016/j.ejop.2012.11.004
https://doi.org/10.1128/IAI.70.8.4424-4432.2002
https://doi.org/10.1128/IAI.70.8.4424-4432.2002
https://doi.org/10.1007/BF00932382
https://doi.org/10.3390/pathogens9020144
https://doi.org/10.3390/pathogens9020144
https://doi.org/10.1093/ajcp/aqv081
https://doi.org/10.1093/ajcp/aqv081
https://doi.org/10.1371/journal.pone.0222092
http://www.ncbi.nlm.nih.gov/pubmed/23805433
http://www.ncbi.nlm.nih.gov/pubmed/23805433
https://doi.org/10.1167/tvst.9.12.29
https://doi.org/10.1167/tvst.9.12.29
https://doi.org/10.1179/2047773213Y.0000000124
https://doi.org/10.1128/IAI.73.5.2704-2708.2005
https://doi.org/10.1128/IAI.73.5.2704-2708.2005
https://doi.org/10.3347/kjp.2019.57.3.217
https://www.thermofisher.com/order/catalog/product/C20300
https://www.thermofisher.com/order/catalog/product/C20300
https://doi.org/10.3389/fcimb.2020.00494
https://doi.org/10.3389/fcimb.2020.00494
https://doi.org/10.1111/jeu.12149
https://doi.org/10.1111/jeu.12149
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/


Frontiers in Microbiology 01 frontiersin.org

Mitochondrial genome diversity of 
Balamuthia mandrillaris revealed 
by a fatal case of granulomatous 
amoebic encephalitis
Cherie Tsz-Yiu Law 1,2†, Thirapa Nivesvivat 3†, Qing Xiong 1,2†, 
Kasem Kulkeaw 4†, Ling Shi 1,2, Pichet Ruenchit 4, 
Detchvijitr Suwanpakdee 3, Piradee Suwanpakdee 5, 
Nongnat Tongkrajang 4, Patsharaporn T. Sarasombath 4* and 
Stephen Kwok-Wing Tsui 1,2*
1 School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China, 
2 Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, 
China, 3 Infectious Disease Unit, Department of Pediatrics, Phramongkutklao Hospital, Bangkok, 
Thailand, 4 Siriraj Integrative Center for Neglected Parasitic Diseases, Department of Parasitology, 
Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand, 5 Neurology Division, 
Department of Pediatrics, Phramongkutklao Hospital, Bangkok, Thailand

Introduction: Balamuthia (B.) mandrillaris is a free-living amoeba that can cause 
rare yet fatal granulomatous amoebic encephalitis (GAE). However, efficacious 
treatment for GAE is currently unavailable, especially when genomic studies on B. 
mandrillaris are limited.

Methods: In this study, B. mandrillaris strain KM-20 was isolated from the brain 
tissue of a GAE patient, and its mitochondrial genome was de novo assembled 
using high-coverage Nanopore long reads and Illumina short reads.

Results and Discussion: Phylogenetic and comparative analyses revealed a 
range of diversification in the mitochondrial genome of KM-20 and nine other B. 
mandrillaris strains. According to the mitochondrial genome alignment, one of 
the most variable regions was observed in the ribosomal protein S3 (rps3), which 
was caused by an array of novel protein tandem repeats. The repeating units in 
the rps3 protein tandem region present significant copy number variations (CNVs) 
among B. mandrillaris strains and suggest KM-20 as the most divergent strain 
for its highly variable sequence and highest copy number in rps3. Moreover, 
mitochondrial heteroplasmy was observed in strain V039, and two genotypes of 
rps3 are caused by the CNVs in the tandem repeats. Taken together, the copy 
number and sequence variations of the protein tandem repeats enable rps3 to be 
a perfect target for clinical genotyping assay for B. mandrillaris. The mitochondrial 
genome diversity of B. mandrillaris paves the way to investigate the phylogeny 
and diversification of pathogenic amoebae.
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1. Background

Balamuthia mandrillaris is one of the free-living amoeba species 
that can cause brain infections in humans besides Acanthamoeba 
spp., Naegleria fowleri, and Sappinia spp. (Visvesvara et al., 2007; 
Visvesvara, 2013, 2014). B. mandrillaris can enter the human body 
through the skin via wound or inhalation, and the infection causes 
a cutaneous lesion or brain infection called GAE, with up to 95% 
mortality rate (Matin et  al., 2008; Siddiqui and Khan, 2008; 
Visvesvara, 2013, 2014; Vollmer and Glaser, 2016). This species was 
first identified from the brain of a pregnant mandrill baboon at the 
San Diego Wildlife Park in 1986, and the first human brain infection 
was reported in 1990 (Visvesvara et al., 1990). Since then, more 
than 200 cases of Balamuthia encephalitis have been reported 
worldwide (Intalapaporn et al., 2004; Cope et al., 2019; Wang et al., 
2020). Due to the rarity and non-specific presentations of GAE, the 
diagnosis is usually delayed and often made postmortem (Schuster 
et al., 2009).

Unlike other free-living amoebae, which can be cultured on agar 
overlaid with bacteria, this organism needs to be  grown on 
mammalian cell monolayer cultures such as monkey kidney cells, 
human lung fibroblasts, and human neuroblastoma cells (Schuster, 
2002). Thus, the diagnosis of B. mandrillaris infection mainly relies 
on other laboratory methods including serology and genotyping 
based on the molecular marker in mitochondrial DNA (da Rocha-
Azevedo et  al., 2009). Currently, only two complete genomes of 
B. mandrillaris are available, both of which were obtained from 
patients in the United States (Detering et al., 2015; Greninger et al., 
2015). The genome sizes of the two assemblies are 44.3 and 67.6 Mbp, 
respectively (Detering et al., 2015; Greninger et al., 2015). A total of 
nine mitochondrial genomes of B. mandrillaris are available, but none 
of them were isolated from Asia (Detering et al., 2015; Greninger 
et al., 2015). A previous study compared the mitochondrial genome 
of seven B. mandrillaris strains isolated from patients and the 
environment in the United States (Greninger et al., 2015). In addition 
to the various lengths of mitochondrial DNA sequences, the 
phylogenetic tree shows three distinct lineages (Greninger 
et al., 2015).

Mitochondrial genomes are increasingly used for phylogenetic 
and epidemiological analyses. In addition, several antiprotozoal 
drugs including pentamidine exert their functions by interfering 
with mitochondrial metabolism (de Souza et  al., 2009). 
Mitochondrial genome analysis of B. mandrillaris may provide 
further insights into the diversity within species and shed light on 
the functions of mitochondrial genes, which could serve as potential 
drug targets.

Using both Nanopore long-read and Illumina short-read 
sequencing data, we de novo assembled the mitochondrial genome of 
the B. mandrillaris strain isolated from Asia named strain KM-20. 
Phylogenetic and comparative analyses of KM-20 and nine other 
strains were performed to investigate the mitochondrial genome 
diversity among strains. Notably, a previous study has reported the 
difference in the mitochondrial rps3 gene, but the authors suggested 
that the difference is due to a putative intron or intergenic region 
(Greninger et al., 2015). In this study, our results demonstrated that 
the diversity of the rps3 length is attributed to an array of protein 
tandem repeats, and the number of repeating units is different among 
B. mandrillaris strains.

2. Materials and methods

2.1. Balamuthia mandrillaris culture and 
DNA extraction

Balamuthia mandrillaris strain KM-20 was obtained by 
inoculating the left frontoparietal brain tissue of the GAE patient 
reported here in a monolayer of human lung carcinoma A549 cells in 
Dulbecco’s modified Eagle medium plus 10% fetal bovine serum at 
37°C with 5% CO2, following the protocol as previously described 
(Schuster et al., 2009). The amoeba was first observed in the culture 
4 weeks after inoculation and was maintained in a culture with A549 
cells at 37°C with 5% CO2 (Schuster, 2002). B. mandrillaris strains 
V039 (50209) and V416 (PRA-290) were obtained from ATCC 
(Manassas, VA, United  States) and maintained in culture media 
containing human neuroblastoma SH-SY5Y cells at 37°C with 5% 
CO2. DNA extractions of the amoeba were performed using a QIAmp 
DNA Mini Kit (Qiagen, Hilden, Germany), following the 
manufacturer’s protocol for isolating DNA from cell cultures.

2.2. DNA sequencing, assembly, and 
annotation

Balamuthia mandrillaris KM-20 genomic DNA was sequenced 
using Oxford Nanopore GridION Mk1 with a Ligation Sequencing Kit 
(SQK-LSK109) on an R9.4.1 MinION flow cell and an Illumina 
NovaSeq  6,000 sequencing system. The mitochondrial genome of 
B. mandrillaris strains 2046, V039, BeN, GAM-19, OK1, RP5, SAM, 
V188, and V451 (Table 1) was downloaded and used as a reference to 
map against the raw reads of KM-20 using Minimap2 (v2.20) to 
identify the mitochondrial DNA sequences of KM-20 (Li, 2018). The 
identified sequences were assembled into a single contig using Flye 
(v2.8.3) and subsequently polished by Illumina data using Pilon 
(v1.24) (Walker et  al., 2014; Kolmogorov et  al., 2019). The 
mitochondrial genome of KM-20 was visualized in Proksee (Stothard 
and Wishart, 2005; Grant and Stothard, 2008). The coding genes, 
introns, and novel open reading frames were identified by MITOS 
WebServer and GeSeq (v2.03) (Bernt et al., 2013; Tillich et al., 2017). 
The transfer RNA (tRNA) annotation was performed by GeSeq with 
ARAGORN (v1.2.38), and the rRNA subunit genes were checked by 
RNAweasel (Laslett and Canback, 2004; Lang et  al., 2007). The 
coverage of the mitochondrial genome of B. mandrillaris KM-20 was 
obtained by mapping the nanopore raw reads to the assembled 
mitochondrial genome by Minimap2 (v2.20), and the mapping 
coverage was obtained using SAMtools (v1.5) (Li, 2018; Danecek et al., 
2021). The B. mandrillaris KM-20 mitochondrial genome has been 
deposited in the National Center for Biotechnology Information 
(NCBI) under the accession number OM994889.

2.3. Comparative mitochondrial genome 
analysis

Concatenated sequence data of cytochrome oxidase subunit 1 
(cox1), cytochrome oxidase subunit 3 (cox3), cytochrome b (cob), 
ATP synthase F0 subunit 6 (atp6), ATP synthase subunit alpha 
(atpa), NADH dehydrogenase subunit 1 (nad1), NADH 
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dehydrogenase subunit 2 (nad2), NADH dehydrogenase subunit 3 
(nad3), NADH dehydrogenase subunit 4 (nad4), NADH 
dehydrogenase subunit 5 (nad5), NADH dehydrogenase subunit 6 
(nad6), NADH dehydrogenase subunit 7 (nad7), and NADH 
dehydrogenase subunit 9 (nad9) of 10 strains of B. mandrillaris 
were aligned with MAFFT (v7.487) (Kuraku et al., 2013). The same 
set of genes in a concatenated sequence of A. castellanii (GenBank 
Accession number: U12386.1) was chosen as the outgroup. The 
alignment was imported into MEGA-X (v10.2.6) to perform 
phylogenetic analysis, and a maximum likelihood phylogenetic tree 
was computed using a JTT matrix-based model, with a bootstrap 
value of 1,000 (Jones et  al., 1992; Kumar et  al., 2018). The 
phylogenetic data were subsequently visualized using the Interactive 
Tree of Life (iTOL) (v5) (Letunic and Bork, 2021). The phylogenetic 
relationship and the mitochondrial sequences of 10 strains of 
B. mandrillaris were imported to AliTV for comparison and 

visualization (Ankenbrand et al., 2017). Regions with a low link 
identity were further aligned and examined by Clustal Omega 
(v1.2.4) (Sievers et al., 2011).

The rps3 protein tandem repeat sequences of all B. mandrillaris 
strains were extracted to perform a phylogenetic analysis using 
MEGA-X (v10.2.6) (Kumar et al., 2018). A parent tree with all protein 
tandem repeat sequences was constructed by the maximum likelihood 
method and JTT matrix-based model with a bootstrap value of 1,000 
(Jones et al., 1992; Kumar et al., 2018). A subtree of the protein tandem 
repeats was constructed by removing the most conserved branch of 
repeating units and the fourth repeating unit of KM-20 rps3 from the 
parent tree. The remaining sequences were, then, used to construct a 
phylogenetic subtree by the maximum likelihood method and JTT 
matrix-based model and a bootstrap value of 1,000 (Jones et al., 1992). 
The phylogenetic data were visualized using iTOL (v5) (Letunic and 
Bork, 2021).

TABLE 1 Balamuthia mandrillaris strains used in this study.

Strain Accession no. Location Source Sequencing 
technology

References

KM-20 OM994889 Thailand 4-year-old girl, cultured 

on A549 feeder cells

Oxford Nanopore, Illumina Current study

2046 KP888565 California 26-year-old man, 

survivor, cultured on 

Vero cells

Illumina Vollmer and Glaser (2016) 

and Greninger et al. (2015)

CDC-V039 CM003363 California 3-year, 10-month-old 

pregnant mandrill from 

the San Diego Zoo Wild 

Animal Park, axenic 

culture

PacBio Visvesvara et al. (1990) and 

Detering et al. (2015)

V039a KT175741 California 3-year, 10-month-old 

pregnant mandrill from 

the San Diego Zoo Wild 

Animal Park, cultured on 

Vero cells

Illumina Visvesvara et al. (1990) and 

Greninger et al. (2015)

V451 KT030670 New York 6-year-old girl, cultured 

on Vero cells

Illumina Greninger et al. (2015)

GAM-19 KT175739 – V188-frozen stock Illumina Greninger et al. (2015)

RP5 KT030672 California Environmental sample, 

cultured on Vero cells

Illumina Greninger et al. (2015) and 

Schuster et al. (2003)

SAM KT030673 California 3-year-old girl, isolated 

from brain

Illumina Greninger et al. (2015) and 

Bakardjiev et al. (2003)

V188 KT175738 Georgia 59-year-old man, isolated 

from brain/skin lesion, 

cultured on Vero cells

Illumina Greninger et al. (2015); 

Gordon et al. (1992)

V416a AF477015 Australia 10-year-old girl, isolated 

from brain

- Booton et al. (2003)

OK1 KT030671 California Environmental sample, 

cultured on Vero cells

Illumina Dunnebacke et al. (2004)

BeN NC_027736 – – Illumina Alexander LG 

(Unpublished)

The accession number, location, and source of the strains used in this study are presented in the table.
aObtained from ATCC.
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3. Results

3.1. De novo assembly and annotation

The brain debridement of the GAE patient was sent for culture 
on A549 cell lines. Genomic DNA of B. mandrillaris KM-20 was 
extracted from the culture and sequenced to obtain a total of 7.66 Gb 
data using Oxford Nanopore long-read sequencing technology and 
23Gb data using the Illumina NovaSeq  6,000 system. A circular 
mitochondrial genome of the B. mandrillaris KM-20 was de novo 
assembled in size of 42,630 bp and 35.34% GC content (Figure 1A). 
A total of 33 protein-coding, two rRNA, and 13 tRNA genes were 
annotated and located in the plus strand of the mitochondrial 
genome of B. mandrillaris KM-20 (Figure 1A). The protein-coding 
genes were classified into five groups, namely, ribosomal protein, 
NADH dehydrogenase, ATP synthase, cytochrome c oxidase, and 
cytochrome b.

According to a previous report, the mitochondrial genome size of 
B. mandrillaris strains ranges from 39,996 bp to 42,823 bp 
(Supplementary Table S2) (Greninger et al., 2015). The mitochondrial 
cox1 gene of KM-20 is interrupted by a LAGLIDADG endonuclease-
containing group IB intron (Supplementary Figure S2), which was 
also observed in four other strains, namely, 2046, SAM, RP5, and OK1 
(Greninger et al., 2015). The length of LAGLIDADG endonuclease in 
these five strains ranges from 281 to 283 amino acids. For other 
strains, including, V451, V188, BeN, and GAM-19, the LAGLIDADG 
endonuclease is in the 23S rRNA gene, instead of the cox1 gene 
(Greninger et  al., 2015). V039 is the only strain that has no 
LAGLIDADG endonuclease inserted in protein-coding genes 
(Greninger et al., 2015).

3.2. Comparative analysis of Balamuthia 
mandrillaris strains

The phylogenetic analysis of B. mandrillaris mitochondrial 
genomes divided 10 strains into two clades and suggested KM-20 as 
the most distant strain (Figure 1B). In agreement with a previous 
study (Greninger et al., 2015), the four California strains (RP5, SAM, 
2046, and OK1) formed a highly conserved cluster in the 
phylogenetic tree.

To perform a global mitochondrial genes comparison, the coding 
genes of 10 B. mandrillaris strains were compared in a matrix of 
pairwise identity percentage using KM-20 as a reference, and rps3 was 
the only mitochondrial gene that has a percentage identity lower than 
85% (Supplementary Figure S3). To further investigate the genomic 
diversity of B. mandrillaris, the mitochondrial genomic architectures 
of 10 strains were visualized by AliTV, and the result revealed a 
generally conserved gene synteny (Figure 1B) (Stajich et al., 2002; 
Harris, 2007; Ankenbrand et al., 2017). A break in synteny indicated 
in the purple triangle was observed in cox1 and 23S rRNA, which 
corresponds to the introns that contain LAGLIDADG endonuclease. 
Other mapping gaps were caused by sequences missing in strain V039 
and are not intron after manual checking. A region with only 70% link 
identity at approximately 14,500 bp was identified in the mitochondrial 
genome, and the variable position was confirmed to be the rps3 gene. 
Interestingly, multiple sequence alignment of rps3 protein sequences 
of 10 B. mandrillaris strains revealed that the variation could 

be  attributed to an array of protein tandem repeats 
(Supplementary Figure S4). The tandem repeat unit in rps3 is named 
the R unit, and each R unit is composed of 17 amino acid residues, 
most of which started with four consensus amino acids, namely, 
arginine (R), proline (P), tryptophan (W), and leucine (L) 
(Supplementary Figure S4). KM-20 has seven R units, which is the 
highest number among all strains; V451 and BeN have six; GAM-19, 
V188, V039, RP5, and OK1 have five; SAM and 2046 have four and 
three R units, respectively. Despite the amino acid sequence within 
each R unit being conserved, the nucleotide sequences are highly 
degenerated and can be differentiated from each other. The identified 
repeats, therefore, are not due to sequencing error or collapse 
(Supplementary Figure S5). The length of the protein tandem repeat 
region in rps3 ranges from 51 to 121 amino acid residues. The CNVs 
of the R units account for the difference in rps3 length, which makes 
rps3 a promising target for strain identification and genotyping of 
B. mandrillaris (Greninger et al., 2015).

The distribution of R units in rps3 was illustrated with colors 
according to their phylogenetic relationship (Figure 2). A parent 
phylogenetic tree was constructed with all R units in 10 
B. mandrillaris strains (Supplementary Figure S6). The last R units 
of all strains form a highly conserved branch in the parent 
phylogenetic tree and are colored in gray (Supplementary Figure S6). 
To better explore the R unit divergence, the gray-colored R units 
together with the most distant R4 unit of KM-20 were removed to 
construct a high-quality phylogenetic subtree (Figure 2B). The R 
units in 10 B. mandrillaris strains can be divided into nine main 
clades (Figure 2B).

A consensus sequence motif was generated to identify the 
conserved amino acid residues in different clusters by WebLogo 
(Figure 3) (Schneider and Stephens, 1990; Crooks et al., 2004). The 
R units of KM-20 are highly variable (Figure 3A), while the R units 
of the California strains (RP5, SAM, 2046, and OK1) are significantly 
conserved and start with RPWL amino acid residues (Figure 3B). 
The consensus sequences of the gray-colored R units in Figure 2A 
and overall R units from all strains are RPWLMSTWKNWKPGYAD 
and RPWL-G-RK--Y-EK--, respectively (Figures 3C,D). Positions 
2–5 are populated by hydrophobic amino acids, which are colored 
in black (Figures 3A–D). The R units of all strains start with RPWL 
except R2, R3, and R4 of KM-20 and R5 of V451 and BeN, but the 
substituting amino acid residues, such as alanine, isoleucine, 
phenylalanine, and methionine, are also hydrophobic in nature, 
suggesting an N-terminal hydrophobic region is important for 
R units.

The general structure of rps3 was predicted to have four 
transmembrane helices and three cytosolic domains by InterPro88.0 
(Jones et al., 2014; Blum et al., 2021) (Supplementary Figure S7). The 
R units and the C-terminal domain of rps3 are predicted to be in the 
cytosolic compartments (Supplementary Figure S7). The protein 
tandem repeats in rps3 were identified as an intrinsically disordered 
region (IDR) by IUPred3 (Figure 3E) (Erdős et al., 2021). IDRs have 
no well-defined three-dimensional structures but are dynamically 
disordered and can fluctuate rapidly through different conformations 
(Wright and Dyson, 2015). The disordered region is in position 
145–253 and overlaps with the repeating R units of KM-20, which are 
in position 167–293. Further structural and molecular analysis may 
assist in understanding the function of this highly variable region 
of rps3.
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FIGURE 1

The mitochondrial genome of B. mandrillaris KM-20 and mitochondrial comparison among 10 strains of B. mandrillaris. (A) The whole mitochondrial 
genome of B. mandrillaris KM-20. The circular mitochondrial map depicts 33 protein-coding, two rRNA, and 13 tRNA genes. The average coverage of 
the mitochondrial genome assembly is 4464.09×, and the highest site coverage is 5,263×. The height of the innermost ring is calculated by dividing 
the site coverage by 5,263. (B) Phylogenetic relationship and mitochondrial genome alignment of 10 B. mandrillaris strains. Syntenic comparisons of 
linear mitochondrial chromosomal maps of 10 B. mandrillaris strains are visualized on AliTV software. Phylogenetic analysis was performed using 
concatenated sequences of B. mandrillaris, with A. castellani chosen as an outgroup. The phylogenetic relationship between 10 strains of B. 
mandrillaris is retained for mitochondrial genome comparison. The line color represents the percentage of linked sequence identity. A red-colored 
variable region with approximately 70% link identity was identified at approximately 14,500 bp in all strains of B. mandrillaris, which codes for the rps3 
gene. The purple triangle indicates the LAGLIDADG-endonuclease. Branch lengths are not drawn to proportion, and bootstrap values are shown for 
each node.
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4. Discussion

Balamuthia mandrillaris is one of the free-living amoebae that 
occasionally cause GAE in humans and animals (Visvesvara et al., 
2007; Visvesvara, 2013; Visvesvara, 2014), which is often life-
threatening with limited treatment options (Cope et  al., 2019). 
Owing to the restricted number of documented cases worldwide, 
establishing a conclusive link between genotype variation and 
clinical manifestation poses a challenge. It is speculated that 
variations in the genotypes of B. mandrillaris may account for the 

dissimilar clinical presentations of its infection across diverse 
regions of the world. Retrospective reports from China and Peru 
demonstrated that the main clinical manifestations of B. mandrillaris 
infection are cutaneous lesions, which precede neurological 
involvement that develops several years later. In contrast, reported 
cases from the US presented solely with neurological symptoms, 
without any preceding skin lesion (Bravo and Seas, 2012; Wang et al., 
2020), which is similar to the clinical presentation of our current 
case. Thus, the dissimilarity in disease aggressiveness and clinical 
manifestations could potentially stem in part from the genetic 

FIGURE 2

Distribution of the protein tandem repeats in rps3 with their phylogenetic relationship matching the colors. (A) Distribution of protein tandem repeats 
in rps3. Sequence segments are not drawn to scale. KM-20 has seven R units; V451 and BeN have six; GAM-19, V188, V039, RP5, and OK1 strain have 
five; SAM strain has four, and the 2046 strain has three R units in rps3. (B) Phylogenetic analysis of rps3 R units. The subtree of rps3 R units shows nine 
main clades. R units that are not phylogenetically clustered with other repeating units are shaded in white, such as all R units of KM-20, R2 of SAM, and 
R2 of V039.
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variability within the species. Unfortunately, mitochondrial genome 
sequences of the cases reported in Peru and China, apart from those 
in the US, are unavailable for comparison with the current case. To 
comprehend the genetic variation that could be  associated with 
clinical manifestations, the mitochondrial genome of B. mandrillaris 
strain KM-20 was de novo assembled and annotated in this study. To 
our knowledge, this study reports the first complete mitochondrial 
genome of B. mandrillaris clinical isolate obtained from Asia, as 
others were sequenced from samples isolated in the US. By 
comparing the mitochondria of KM-20 with other strains collected 
from the non-Asian area, we  found the mitochondrial genome 
diversity can be attributed to the LAGALIDADG-containing intron 
in either cox1 or 23S rRNA and a novel array of protein tandem 
repeats in rps3, which raises questions about the functional roles of 
this region within mitochondria and cells. In addition to clinical 
genotyping, the CNVs and domain architecture of the rps3 tandem 
repeat can also infer the phylogenetic relationship among strains. 
The close phylogenetic relationship of the last R units among strains 
suggested that they could be  the most ancient R unit 
(Supplementary Figure S6). Cox1 gene has been widely used for 
species identification, phylogeography, and phylogenetic inference 
studies; however, the efficacy of using other mitochondrial genes has 
become less explored (Luo et al., 2011). The variable region in rps3 
can provide additional information on the phylogenetic relationship 
among strains, such as the copy number and divergence of the R 
units in rps3.

The mitochondrial features of B. mandrillaris among strains are 
generally conserved in terms of gene synteny and coding sequence, 
except for the presence of LAGLIDADG-containing endonuclease in 
either cox1 or 23S rRNA, and the CNVs of protein tandem repeats in 
rps3. LAGLIDADG is a homing endonuclease occasionally included 
in the Group I self-splicing introns, which can cleave an intronless 
allele, resulting in the insertion of an intron and endonuclease into the 
previous intronless allele (Heidel and Glöckner, 2008). Group I introns 
are commonly found in fungi and protist nuclear rRNA genes as well 
as in organellar genomes, yet other organisms usually have no Group 
I introns in the genome (Haugen et al., 2007). Electrophoretic mobility 
shift assay and DNA cleavage assays can be  further performed to 
identify the target sites of the LAGLIDADG-containing endonuclease 
(Grindl et al., 1998).

It is known that rps3 plays a critical role in ribosome biogenesis 
and DNA repair in humans (Kim et al., 2013). Under stress conditions 
that promote DNA damage in which the cellular reactive oxygen 
species level increase, rps3 accumulates in the mitochondria to repair 
damaged DNA (Kim et al., 2013). The analysis of ribosomal protein 
genes is currently lacking since metazoan mitochondrial genomes do 
not carry ribosomal protein genes (Gray et  al., 1998; Heidel and 
Glöckner, 2008). The function of the rps3 gene and the implication of 
CNV in the rps3 tandem region in B. mandrillaris are currently 
unknown. Alterations in ribosomal genes in other species are shown 
to be related to adaptation and survival (Finken et al., 1993; Chittum 
and Champney, 1994). For example, amino acid changes in rps12 in 

FIGURE 3

Tandem repeat consensus amino acid sequence of B. mandrillaris rps3. (A) Tandem repeat consensus amino acid sequence of KM-20 rps3. (B) Tandem 
repeat consensus amino acid sequence of California strains (RP5, 2046, SAM, and OK1 strain) rps3. (C) Tandem repeat consensus amino acid sequence 
of the most conserved R units, which are the sequences nearest to the C-terminal of rps3. (D) Tandem repeat consensus amino acid sequence of R 
units in 10 B. mandrillaris strains. The consensus sequence for each repeat is RPWL-G-RK--Y-EK--. The WebLogo consists of stacks of letters as 
follows: one stack for each position in the sequence. The overall height of the stack shows the sequence conservation at that position, which is 
measured in bits, while the height of the symbols within the stack represents the relative frequency of each amino acid at that position. Amino acids 
are colored according to their chemical properties as follows: polar amino acids are colored in green; basic are in blue; acidic are in red, and 
hydrophobic amino acids are in black. (E) Intrinsically disordered protein region was identified in the tandemly repeated region of KM-20 rps3. The 
functional ribosomal protein S3 is identified in the C-terminal domain.
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Mycobacterium tuberculosis are adaptive for streptomycin resistance 
(Finken et al., 1993). Mutation in the ribosomal protein gene sequence 
in Escherichia coli is related to erythromycin resistance (Chittum and 
Champney, 1994). The function of CNVs in rps3 tandem repeats will 
be interesting to further investigate.

The rps3 protein sequence of KM-20 was searched in the NCBI 
non-redundant (NR) database using BLASTp on 26 September 
2022. The result showed a significant match to the C-terminal 
domain of rps3 with an e-value of 1.88e-05 
(Supplementary Figure S8a), confirming the gene annotation. The 
percentage identities of the rps3 protein sequence of KM-20 to 
humans, Saccharomyces cerevisiae, Dictyostelium discoideum, and 
A. castellanii were calculated by Clustal Omega (v1.2.4), which are 
19.69%, 17.28%, 18.37%, and 30.53%, respectively. The C-terminal 
region of rps3 of all B. mandrillaris strains constituted 113 amino 
acid residues and shared pairwise identities in the range of 99.12% 
to 100%, suggesting high conservation of rps3 C-terminal within 
the species. In contrast, high variation was observed in the rps3 
sequence between B. mandrillaris and other species, including 
A. castellanii. Surprisingly, the rps3 of B. mandrillaris is more 
similar to bacteria than to other amoebae, as the top BLASTp 
matches of KM-20 rps3 are sequences of bacteria such as 
Candidatus Calescamantes, Caldiserica bacteria, and 
Metallibacterium scheffleri (e-value: 4e-06, 5e-06, and 7e-06, 
respectively) (Supplementary Figure S8b). However, the rps3 
protein sequence of humans, mice, Drosophila melanogaster, 
S. cerevisiae, and D. discoideum is relatively conserved, with 
pairwise amino acid residues identities in the range of 59.15% to 
99.59%. It is speculated that the origin of the rps3 gene in 
B. mandrillaris is different from other amoeba species. Further 
investigations can be  performed to investigate the evolutionary 
origin of rps3 in amoeba species.

Amoebae inhabit a wide range of ecological niches and rapid 
adaptation to new environments is advantageous to their survival. 
Varying the number of tandemly arrayed repeating units can increase 
the genomic sequence diversity and may enable the organisms to 
adapt to new environments relatively quicker and undergo more rapid 
and error-prone evolution than non-repeat-containing proteins 
(Marcotte et al., 1999; Jernigan and Bordenstein, 2015). All 10 strains 
of B. mandrillaris contain an array of protein tandem repeats in the 
rps3 gene, which is not found in other amoebae, including A. castellani 
and N. fowleri, raising questions about the function of the protein 
tandem repeats in B. mandrillaris exclusively. Although unicellular 
organisms can have significant deviations from typical animal 
mitochondrial genomes (Lavrov and Pett, 2016), a CNV in the 
mitochondrial coding region with substantial size variation among 
strains has not been reported in amoeba before. The conserved 
specific residues within each R unit may be critical for the structure 
or function, despite the precise number of repeats and the amino acid 
sequence may vary among strains (Javadi and Itzhaki, 2013).

A total of two genotypes of rps3 were observed in strain V039, and 
the genetic difference lies in a 102 bp insertion in rps3 which accounts 
for two extra R units (Detering et al., 2015; Greninger et al., 2015) 
(Supplementary Figure S9a). Both samples of V039 were isolated from 
the brain of a pregnant baboon that died from meningoencephalitis at 
the San Diego Zoo Wild Animal Park in 1990 but was subsequently 
cultured in different culture media (Detering et al., 2015; Greninger 
et  al., 2015). The mitochondrial genome of the axenic cultivated 
CDC-V039 has a size of 39,894 bp while the other published 

mitochondrial genome of V039 was cultured on Vero cells and has a 
size of 39,996 bp (Detering et  al., 2015; Greninger et  al., 2015) 
(Supplementary Figure S9b). Multiple sequence alignment has 
confirmed that the axenic CDC-V039 has three R units, whereas the 
Vero cell-cultured V039 has five, suggesting the possibility of 
mitochondrial heteroplasmy in B. mandrillaris. To verify whether the 
mitochondrial heteroplasmy of B. mandrillaris can be observed under 
certain conditions, we examined whether the change in culture media 
or temperature would induce mitochondrial heteroplasmy. However, 
we did not observe any evidence of mitochondrial heteroplasmy in the 
rps3 gene of three B. mandrillaris strains including KM-20, V039, and 
V416 under various culture temperatures and culture medium 
conditions (Supplementary Figure S10).

5. Conclusion

In this study, we de novo assembled and annotated the complete 
mitochondrial genome of B. mandrillaris KM-20 using long-read and 
short-read sequencing data. Our comparative results explored the 
mitochondrial genome diversity among B. mandrillaris strains and 
revealed that one of the mitochondrial variations arises from an array 
of protein tandem repeats in the rps3 gene, which has not been 
reported in other amoebae before. The copy number and sequence 
variations of the protein tandem repeats enable rps3 to be a promising 
gene target for genotyping B. mandrillaris and can provide additional 
phylogenetic information. Collectively, this comparative mitochondrial 
genome analysis paves the way to investigate the evolution and genetic 
diversity of B. mandrillaris and other pathogenic amoebae.
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Acanthamoeba species, Naegleria fowleri, and Balamuthia mandrillaris are 
opportunistic pathogens that cause a range of brain, skin, eye, and disseminated 
diseases in humans and animals. These pathogenic free-living amoebae (pFLA) 
are commonly misdiagnosed and have sub-optimal treatment regimens which 
contribute to the extremely high mortality rates (>90%) when they infect the 
central nervous system. To address the unmet medical need for effective 
therapeutics, we  screened kinase inhibitor chemotypes against three pFLA 
using phenotypic drug assays involving CellTiter-Glo 2.0. Herein, we report the 
activity of the compounds against the trophozoite stage of each of the three 
amoebae, ranging from nanomolar to low micromolar potency. The most potent 
compounds that were identified from this screening effort were: 2d (A. castellanii 
EC50: 0.92 ± 0.3 μM; and N. fowleri EC50: 0.43 ± 0.13 μM), 1c and 2b (N. fowleri EC50s: 
<0.63 μM, and 0.3 ± 0.21 μM), and 4b and 7b (B. mandrillaris EC50s: 1.0 ± 0.12 μM, 
and 1.4 ± 0.17 μM, respectively). With several of these pharmacophores already 
possessing blood–brain barrier (BBB) permeability properties, or are predicted 
to penetrate the BBB, these hits present novel starting points for optimization as 
future treatments for pFLA-caused diseases.

KEYWORDS

pathogenic free-living amoeba, Acanthamoeba species, Naegleria fowleri, Balamuthia 
mandrillaris, kinase inhibitors, cross-screening, hit-identification
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Introduction

Free-living amoebas are ubiquitously found in various natural and 
man-made sources. Many are of no significant medical importance, 
but some are opportunistic pathogens of humans and animals. 
Acanthamoeba was the first potential pathogenic free-living amoebae 
(pFLA) described by Castellani (1930). Since then, the genus of 
Acanthamoeba has been divided into 23 genotypes (T1-T23), based 
on the 18S rRNA gene sequences (Diehl et al., 2021; Putaporntip et al., 
2021). Of these, the most common genotype belongs to the T4 clade 
which has multiple species and thousands of isolates associated, these 
are found to cause the majority of the cases of Acanthamoeba keratitis 
(Diehl et  al., 2021). Although T4 is the most prevalent genotype 
worldwide, T1, T3, T4, T10, and T12 have all been found to cause 
granulomatous Acanthamoeba encephalitis (GAE; Megha et al., 2018). 
Acanthamoeba can enter the body by various means, it is thought to 
initially infect the skin (cutaneous lesions) or respiratory tract before 
entering the blood circulatory system. Through hematogenous 
dissemination it can reach other organs and becomes a major problem 
when it reaches the blood–brain barrier where it can break down and 
enter the brain causing GAE (Marciano-Cabral and Cabral, 2003). The 
vast variation of genotypes, species, and clinical isolates of 
Acanthamoeba pose a significant problem with drug susceptibility 
variation and for treatment of the diseases that they cause. To further 
complicate amoeba infections and resolution of AK disease, amoebae 
can harbor other human pathogens where they can exchange genetic 
material increasing pathogenicity of both amoeba (host) and symbiont 
(Rayamajhee et al., 2022). Assessing the microbiome during an active 
infection, may provide insight into a tailored drug therapy which 
resolves the disease quicker without secondary infection caused by 
such symbiont. Further work needs to be researched to determine if 
specific symbionts and amoeba infections cause for concern for 
amoeba specific drug sensitivities and resistant profiles since we are 
now seeing more clinical failures and blindness with AK disease.

In 1965, Naegleria was first described as causing 
meningoencephalitis in four patients in Adelaide, Australia by Fowler 
and Carter (1965). Based on the 5.8S rDNA and the internal 
transcribed spacers (ITS; one or two) gene sequences, the genus of 
Naegleria has been identified to contain 47 different species unevenly 
distributed around the world (De Jonckheere, 2014). Of these 47, three 
have been found to cause disease in animals and one of these three, 
N. fowleri is the only species to cause the brain-eating disease in 
humans, primary amoebic meningoencephalitis (PAM). Naegleria 
pathology starts with contaminated water going up the nose through 
nasal ablution, sinus rinsing, or jumping/sliding into contaminated 
water sources. In the sinuses, the trophozoites are thought to use the 
olfactory nerve to cross the cribriform plate into the olfactory bulbs 
and frontal lobes of the brain where it causes major pathology (Grace 
et al., 2015). One of the most recent deaths in the United States from 
PAM came in 2021 after a child fell ill following a swim in a private 
pond in North Carolina (North Carolina Department of Health and 
Human Services, 2021).

Balamuthia mandrillaris is currently the only pathogenic species 
within the Balamuthia genus; it was described by Dr. G. S. Visvesvara 
in 1986 presenting similar encephalitis as Acanthamoeba GAE in a 
pregnant mandrill (Mandrillus sphinx) in San Diego Zoo Wild Animal 
Park, United  States (Visvesvara et  al., 1990). Although one study 
suggested B. mandrillaris uses a similar invasion pathway to N. fowleri 

(Kiderlen and Laube, 2004), this is not typically presented in human 
infection (Cope et al., 2018). Similar to Acanthamoeba, B. mandrillaris 
trophozoites and the persistent cyst stage, are both found in multiple 
infected tissues. Furthermore, in support of hematogenous 
dissemination, B. mandrillaris are typically found in clusters of 
patients brains close to blood vessels (Recavarren-Arce et al., 1999). 
Granulomatous Acanthamoeba Encephalitis (GAE) and Balamuthia 
Amoebic Encephalitis (BAE) are indistinguishable by diagnostic light 
microscopy. Recently, Next-Generation Sequencing (NGS) has proven 
to be a cost effective, unbiased, and quick method in the diagnosis of 
unknown diseases and several pFLA infections (Wang et al., 2018; 
Yang et al., 2019; Holmgaard et al., 2021). China has one of the fastest-
growing genomics markets worldwide; it is not surprising that this is 
enabling earlier diagnosis of these neglected diseases. Although earlier 
diagnoses does not translate to curing these patients; it does open the 
therapeutic treatment window.

For these pFLA infections, therapeutic approaches include a 
multi-drug cocktail of amphotericin B and pentamidine, azoles 
(fluconazole, itraconazole, or posaconazole), macrolides 
(azithromycin), and other anti-bacterials and anti-fungals (Schuster 
et  al., 2006; Visvesvara, 2010; Cope, 2013). Even with multi-drug 
cocktail treatments, CNS-involved infections are almost always fatal. 
The current inability to kill the trophozoites quickly, or in the case of 
Acanthamoeba and Balamuthia infections to inactivate the double-
walled resistant cyst stage that have been found in all host infected 
tissues, e.g., skin, lungs, eyes, or brains, highlight the lack of effective 
treatments and the urgent need for developing new therapeutics 
against these pathogens. Given that prolonged therapy is often 
required, there are concerns for emergence of drug resistance 
(Siddiqui and Khan, 2012). Clearly, there is an unmet medical need to 
discover new drugs that are potent against pFLAs, are less toxic, and 
can cross the blood–brain barrier (BBB).

We have phenotypically screened compounds that were originally 
synthesized for ongoing human African trypanosomiasis and 
Leishmaniasis neglected tropical disease drug discovery programs 
(Diaz et  al., 2014; Bachovchin et  al., 2019) that yielded 
benzoxazepinoindazoles (Klug et al., 2019), pyrazolopyridazines (Tear 
et  al., 2020), substituted azaindoles (Klug et  al., 2021), and 
aminopurines (Singh et al., 2020). The imidazopyridines (Akao et al., 
2021) were identified by the Drugs for Neglected Diseases initiative 
(DNDi) via the Neglected Tropical Disease (NTD) Drug Discovery 
Booster project (Drugs for Neglected Diseases Initiative, 2015).

The compounds were screened against A. castellanii, N. fowleri, 
and B. mandrillaris logarithmic phase trophozoites. Compounds with 
an EC50 < 10 μM were classed as hits, while those between 10 and 
20 μM were considered moderately potent, and compounds >20 μM 
were considered inactive (summarized in the Supporting Information). 
Of the compounds tested, seven met the hit criteria for A. castellanii, 
and an additional five were moderately potent. Against N. fowleri, 31 
compounds met the potency criteria to be classed as a hit, and an 
additional 14 compounds had moderately potent activity. There were 
26 hit compounds identified against B. mandrillaris, and another 10 
compounds exhibited moderately potent activity. Compounds that 
yielded no activity against any of the pFLA are summarized in the 
Supplementary Table S1. Given the need for new hits that are potent 
against these pFLA, and that have demonstrated BBB exposure, this 
dataset provides a strong starting point for medicinal 
chemistry optimization.
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Materials and methods

Maintenance of amoebae

Pathogenic Acanthamoeba castellanii T4 isolate (ATCC 50370) 
used in these studies was isolated from the eye of a keratitis patient in 
New York, NY, United States in 1978. This isolate was purchased from 
American Type Culture Collection (ATCC). Trophozoites were 
routinely grown axenically at 27°C in Protease Peptone-Glucose 
Media (PG) in non-vented 75 cm2 tissue culture flasks (Olympus), 
until the cells were 80–90% confluent. For sub-culturing, cells were 
mechanically harvested to detach the cells from the culture flasks. The 
cells were collected by centrifugation at 3,214 RCF at 4°C. Complete 
PG media is prepared by the addition of 100 U/mL penicillin, and 
100 μg/mL streptomycin antibiotics.

Pathogenic Naegleria fowleri (ATCC 30215), a clinical isolate 
obtained from a 9-year old boy in Adelaide, Australia, who died of 
PAM in 1969 was previously purchased from ATCC. Trophozoites 
were routinely grown axenically at 34°C, 5% CO2, in Nelson’s complete 
medium (NCM) in non-vented 75 cm2 tissue culture flasks (Olympus), 
until the cells were 80–90% confluent. For sub-culturing, cells were 
placed on ice to detach the cells from the culture flasks. The cells were 
collected by centrifugation at 3,214 RCF at 4°C. Complete NCM 
media is prepared by the addition of 10% fetal bovine serum (FBS) 
and 100 U/mL penicillin, and 100 μg/mL streptomycin antibiotics.

Pathogenic Balamuthia mandrillaris (CDC:V039; ATCC 50209), 
a GAE isolate, isolated from a pregnant mandrill that died at the San 
Diego Zoo in 1986 was donated by Dr. Luis Fernando Lares-Jiménez 
ITSON University, Mexico. Trophozoites were routinely grown 
axenically in BMI media at 37°C, 5% CO2 in vented 75 cm2 tissue 
culture flasks (Olympus), until the cells were 80–90% confluent. For 
sub-culturing, 0.25% Trypsin–EDTA (Gibco) cell detachment reagent 
was used to detach the cells from the culture flasks. The cells were 
collected by centrifugation at 3,214 RCF at 4°C. Complete BMI media 
is prepared by the addition of 10% FBS and 100 U/mL penicillin, and 
100 μg/mL streptomycin antibiotics.

Compound preparation

All compounds were synthesized at Northeastern University 
(NEU) and had purity > 95% as determined by LCMS analysis, 
compound identity was confirmed using 1H Nuclear Magnetic 
Resonance (NMR). The specific instruments used to fully characterize 
each compound are reported in the relevant reference listed in the 
tables, or in the Supporting Information. Compounds were supplied 
as powder stocks, which were reconstituted to a 20 mM stock 
concentration in DMSO and diluted in each amoeba’s representative 
neat media for standardized susceptibility screening from 20 μM.

In vitro CellTiter-Glo trophocidal assay

The trophocidal activity of compounds was assessed using the 
CellTiter-Glo 2.0 luminescent viability assay (Promega, Madison, WI), 
as previously described (Rice et al., 2015, 2020a,b,c). Trophozoites 
were routinely cultured as described above and only logarithmic 
trophozoites were used. In brief, A. castellanii, N. fowleri, or 

B. mandrillaris trophozoites cultured in their corresponding complete 
media were seeded at 1,440, 3,000, or 16,000 cells/well into white 
96-well plates (Costar 3370), respectively.

All compounds were assessed in 2-fold serial dilutions from 20 to 
0.625 μM. Control wells were supplemented with 0.2% DMSO, as the 
negative control, or 12.5 μM of chlorhexidine as the positive control. 
All assays were incubated at each of the parasites’ representative 
growth temperatures, described above, for 72 h. At the 72-h time 
point, 25 μL of CellTiter-Glo 2.0 reagent was added to all wells of the 
96-well plates by hand. The plates were protected from light and 
contents were mixed using an orbital shaker at 300 rpm at room 
temperature for 2 min to induce cell lysis. After shaking, the plates 
were equilibrated at room temperature for 10 min to stabilize the 
luminescent signal. The ATP luminescent signal (relative light units; 
RLUs) were measured at 490 nm with a SpectraMax I3X plate reader 
(Molecular Devices, Sunnyvale, CA, United States). The concentration 
of a drug that gives half-maximal response (EC50) were generated 
using total ATP RLUs where controls were calculated as the average of 
replicates using the Levenberg–Marquardt algorithm, using DMSO as 
the normalization control, as defined in CDD Vault (Burlingame, CA, 
United  States). Values reported are from a minimum of three 
biological replicates with standard deviation.

Cytotoxicity screening of reconfirmed 
compounds

Human fetal lung fibroblast (MRC5) cell assay
Intermediate plates were made as described, adding 95 μL of 

DMEM complete media to 5 μL of compound per well setting a 5% 
DMSO amount. Log-phase MRC5 cells were removed from a T-75 TC 
flask using TrypLE® Express (Thermo®) and dispersed by gentle 
pipetting. Cell density was adjusted to working concentration in 
prewarmed DMEM medium: 25,000 cells in 90 μL of culture were 
plated in 96-well transparent Nunclon plates and allowed to settle for 
24 h at 37°C and 5% CO2. After settling incubation, 10 μL of freshly 
made intermediate plate were added per well: final maximal 
concentration for compounds was 50 μM in 0.5% DMSO per well. 
Plates were incubated for 48 h at 37°C and 5% CO2. At 4 h prior to 
fluorescence measurement, 20 μL of 500 μM resazurin solution was 
added. Fluorescence was read in an Infinite F200 plate reader (Tecan®) 
at 550 nm (excitation filter) and 590 nm (emission filter), as previously 
described (Ioset et al., 2009).

A four-parameter equation was used to fit the dose–response 
curves and determination of EC50 by SigmaPlot ® 13.0 software. 
Assays were performed in duplicate at least twice for positive 
compounds, to achieve a minimal n = 2 per dose response.

Rat skeletal muscle cell line (L6) cell assay
One hundred microliters (100 μL) per well of culture medium 

containing the compounds and controls were added to L6 cells 
previously cultured (4 × 103 L6 cells per well). After 72 h at 37°C the 
medium was exchanged, and the viable cell number was determined 
by resazurin (Sigma–Aldrich) reduction. 20 μl of resazurin (1.1 mg/
ml) was added to each well and incubated in the dark for 2 h at 
37°C. Cell viability was estimated by using the same method as 
described above in the MRC5 cytotoxicity section, as previously 
described (Ioset et al., 2009).
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Results and discussion

Acanthamoeba castellanii

The preliminary data for the benzoxazepinoindazole series, although 
limited, shows promising biological potency. Strong structure–activity 
relationships (SAR) dependent on N-alkylation was observed where 
alkylation of the aminopyrimidine 1c was tolerated but not on the 
benzoxazepinoindazole core (1e; EC50: >20 μM). As part of our NTD 
optimization program, 1e was tested at 10 mg/kg, Intraperitoneal injection 
(I.P.), in a pharmacokinetic (PK) model and was found to have a blood/
brain ratio of 2.4 at 0.5 h and 2.1 at 4 h (Klug et al., 2019). Truncation to 
1d, with a methyl group on the indazole nitrogen, led to retention of 
potency against A. castellanii. Further analogs are needed to explore the 
SAR of this related chemotype which has demonstrated improved 
absorption, distribution, metabolism and elimination (ADME) 
properties, and in vivo exposure, though it showed decreased BBB 
penetration. The limited initial screen has provided promising leads 
meeting the hit criteria. Aqueous solubility will need to be addressed in a 
hit-to-lead optimization campaign.

The two most potent compounds identified against A. castellanii 
came from the pyrazolopyridazines, with 2b being a low micromolar 
inhibitor and 2d demonstrating sub-micromolar potency, though 
there is potent inhibition against skeletal muscle myoblast, L6 (ATCC 
CRL-1458), cells for both (< 0.62 μM). The aminopyrimidine of the 
pyrazolopyridazines is a known hinge binding motif in human kinases 
and the limited modifications that were tested [replacement with an 
aniline (2 g), 4-methyl aminopyrimidine (2e), or 2-pyridyl (2f) led to 
a loss of potency]. Compound 2b was tested at 10 mg/kg, I.P., in a PK 
study and had a blood/brain ratio of 1.1 at 0.5 and 4 h (Tear et al., 
2020). However, in vivo toxicity was observed and will be a focus of a 
hit-to-lead optimization campaign.

Two of the imidazopyridines tested had potency <10 μM (3a and 
3b) against A. castellanii and there is valuable SAR that can be derived 
from the screening set. Incorporation of the pyrazole in place of the 
pyridine was well tolerated and led to a moderately potent inhibitor 
(cf. 3b and 3c). Further, the free amine (3a) demonstrated improved 
activity versus the aliphatic (3d) and aromatic (3e)—NH derivatives. 
While no data is available on the BBB exposure of these compounds, 
the calculated Blood–Brain Barrier (BBB) Score (Gupta et al., 2019) 
for this series indicates potential exposure.

Azadinoles are another common motif in kinase inhibitor drug 
discovery. While two of the compounds tested demonstrated moderate 
potency versus A. castellanii (4a and 4b) and the series had predicted 
brain penetration, when a related compound (4c) was progressed to 
PK there was negligible brain exposure; resolving this issue would 
need to be a focus of a subsequent hit-to-lead optimization campaign 
(Klug et al., 2021). There is some preliminary SAR that is apparent 
with the series, replacement of the tetrahydropyran with the piperidine 
(4c) was not tolerated and could indicate that the presence of a 
hydrogen bond donor at this position is unfavorable. Additionally, it 
is apparent that substituting the azaindole with a 4-methyl (4b) was 
well tolerated, as was introduction of the additional heteroatom (4a).

Naegleria fowleri

The benzoxazepinoindazoles yielded the most potent hit for 
N. fowleri (1c EC50: <0.63 μM) which demonstrated >10-fold selectivity 

versus THP-1 (see Supplementary Table S1 for full data set) and 
MRC5 cells. Alkylation of the indazole nitrogen was unfavorable (1e 
and 1d) though the loss of potency for 1d may be impacted by the 
removal of the northern aromatic ring and further analogs are needed. 
The aminopyrazine motif that is present in 1a–c leads to potent 
activity against N. fowleri and the alkylation of the amine in 1c is 
well tolerated.

Modifications to the aminopyrazine of the pyrazolopyridazines 
led to the identification of 2f which had potent N. fowleri activity 
(EC50: 1.0 μM) and no activity against MRC5 or L6 cells at 
50 μM. This compound is significant as it demonstrates that 
alteration to the reported hinge binding region (Tavares et  al., 
2004; Stevens et al., 2008) and removal of one of the hydrogen 
bond acceptors, is tolerated, and may afford an opportunity to 
obtain selectivity versus human kinases. Also tolerated was 
replacement of the benzonitrile with the cyclohexylamine (2p), or 
3-aminopyridine (2b), and substitution of the 2-position of the 
pyrazolopyridazine with an isopropyl (2n) or alkyl ether (2 l). 
While these compounds were all low micromolar versus N. fowleri, 
variable levels of toxicity were observed particularly for 2p, 2b, and 
2d, notably, when 2b and 2d (L6 CC50: <0.62 μM) was advanced 
into PK studies (dosed I.P. at 10 mg/kg) acute toxicity was seen. 
Given the selectivity of 2f this serves as an excellent starting point 
for further optimization.

Of the imidazopyridines there were three moderately potent, or 
better, inhibitors of N. fowleri. Compound 3e was the most potent 
compound with a BBB Score (5.1) that predicts BBB penetration. 
However, replacement of the aniline portion with aliphatic amines led 
to a complete loss of potency (3f and 3d). Truncation of the aniline to 
the free amine was reasonably well tolerated (3a; EC50: 15 μM). 
Derivatization to the amide was unfavorable (3k, 3l, and 3h). 
Modification to the pyridine region was also trialed and pyrimidines 
(3i and 3j), methylpyridine (3c) and 3-pyridine (3 g) all led to a loss 
of potency. Though replacement with the N-methylpyrazole was 
reasonably well tolerated (3b).

Of the five 2,4-disubstituted azaindoles tested, four were found to 
be potent against N. fowleri with only the amide 5e being inactive. No 
modifications to the pyrazole were made, though secondary (5d) and 
tertiary (5a and 5c) amines were both tolerated, as was removal of the 
benzylic methylene (5b). Of the seven 3,5-disubstituted azaindoles 
tested, only one was active (4d) and any replacement of the pyrazole 
led to a complete loss of potency (4f and 4e). Additionally, the 
benzonitrile at the 3-position appears to be unfavorable for potency 
when comparing 4d with 4e.

The preliminary data for the aminopurines, although limited, 
shows moderate biological potency against N. fowleri, though valuable 
SAR data has been gleaned. Alkylation of the purine -NH (6c) led to 
a loss of activity, as did elongation (replacement with the 
ethylpyrrolidine; 6d), increased bulk (4,4-difluoropiperidine; 6e) or 
incorporation of heteroatoms (replaced with morpholine) into the 
aliphatic amine, and replacement of the thiophene with either 
4-fluoroaniline or N-methylpyrazole amine. While we have PK data 
on compounds in this series, brain exposure levels were not measured 
and need to be assessed as part of any optimization campaign.

Only one of the lapatinib derivatives (7a) tested had moderate 
potency against N. fowleri. Replacement of the aryl ether with the 
aminopyrazine led to a complete loss of activity and, given the 
lipophilicity of the aryl ether the lipophilic ligand efficiency (LLE) is 
poor (1.40). Additional analogs with improved aqueous solubility 
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need to be tested to confirm the activity of this series and improve 
our analysis.

There were 19 carbazoles tested with most of the modifications in 
the pendant amine. In general, the secondary amines were preferred 
with 8c being more potent than 8 f. Though, the piperidine derivative 
(8d) opposed this trend and was equipotent with 8c. There may also 
be a shape and steric component to the secondary amines with 8a 
showing optimal activity (EC50: 5.1 μM; LLE: 1.9) versus the 
cyclopentane (8 k; LLE: 1.95) and cycloheptane (8 h; LLE: 1.1). Two 
compounds from this series have previously been advanced into PK 
studies and 8c was found to have excellent exposure in the brain and, 
at 40 mg/kg per os (P.O.; oral administration), it had a brain:blood 
ratio at 1 h of 5.1 (male) and 4.1 (female); and at 4 h it was 3.6 (male) 
and 5.2 (female; Singh et al., 2023). Further SAR scoping with a focus 
on reducing the lipophilicity and maintaining the potency is underway.

Balamuthia mandrillaris

Alkylation of the indazole -NH for the benzoxazepinoindazoles 
led to a compound with moderate potency against B. mandrillaris (1e; 
EC50: 14 ± 0.29 μM). Additionally, the pyrimidine regioisomers appear 
to have an impact on the activity of the compounds (cf. 1a and 1b). 
Preliminary SAR suggests that the 2-pyridyl-5-amino motif may 
be driving the potency against B. mandrillaris. Finally, the truncated 
analog 1d demonstrated improved potency (EC50: 9.49 ± 0.23 μM) 
particularly when compared to 1e (which retains the same 
aminopyrazine motif).

Differential SAR was observed for the pyrazolopyridazines with 
the m-benzonitrile not well tolerated against B. mandrillaris (cf. 2c), 
though this trend is complicated due to a lack of match pairs. Removal 
of either nitrogen in the pyrimidine led to a loss of activity (2 g and 2f) 
which is largely consistent with the SAR observed across the other 
pFLA. Replacement of the aniline with the 4-aminocyclohexanol was 
generally not well tolerated (2 k), though activity could be recovered 
via substitution of the 6-methoxy (cf. 2 s and 2u) which led to potent 
activity against B. mandrillaris.

For the 2,4-disubstituted azaindoles, one compound demonstrated 
potent activity against B. mandrillaris (5e), however, this also had high 
L6 toxicity which would prevent their progression forward. Moving 
to the 3,5-disubstituted azaindoles led to the identification of 4b which 
demonstrated potent activity and was not toxic against MRC5 cells. 
However, 4b has a moderate predicted BBB penetration from the BBB 
Score (3.2). As opposed to the SAR that was observed for N. fowleri 
the benzonitrile substituent is preferred (4e, 4a, and 4b). Replacement 
of the methyl on the pyrazole is tolerated with the tetrahydropyran (4a 
and 4b), but not the piperidine (4c, Table 1) suggesting that a basic 
nitrogen may not be tolerated.

Only one of the lapatinib derivatives (7b) tested was active against 
B. mandrillaris, and it showed potent inhibition. Compound 7b is 
structurally related to several analogs in the data set and its activity 
could be driven by either a change in the lipophilicity (though this 
would be negligible when compared to the other bridged piperazines, 
or spirocycles), or due to the change in vector. Further analogs are 
required to try and understand the specifics of the observed SAR.

The SAR for the carbazoles largely tracks with that observed for 
N. fowleri with 8c being the most active compound against 
B. mandrillaris (EC50: 2.4 μM). Though there are some notable 

differences; for example, the homomorpholine (8j) was well tolerated 
(EC50: 3.3 μM), and the (R)-methylmorpholine derivative (8 l) showed 
moderate inhibition (EC50: 12 μM) which could be  due to the 
configuration of the methyl group.

Current anti-amoebic remedies, and the 
drug discovery landscape

No standardized treatment regimens or FDA compounds are 
approved for Acanthamoeba CNS infections with the recommended 
treatments being empirically based on previous reports of the very 
limited number of patients that have survived GAE. As is true with 
other free-living amoeba infections, therapeutic approaches include 
the use of a multi-drug cocktail of antimicrobials (amphotericin B and 
pentamidine), azoles (fluconazole or itraconazole), macrolides 
(azithromycin), and, recently, miltefosine (Schuster et  al., 2006; 
Visvesvara, 2010; Cope, 2013). Even with the laborious use of multi-
drug cocktail-based treatments, CNS-involved infections are almost 
always fatal possibly due to the likelihood of inducing encystation. The 
current inability to kill the double-walled resistant cyst stage that have 
been found in all host infected tissues, e.g., skin, lungs, eye(s), or brain, 
and emphasizes the lack of effective treatments and the urgent need 
for developing new therapeutics against this pathogen. Besides from 
5-fluorocytosine being rigorously tested in in vivo models of 
Acanthamoeba GAE in 1974 (Stevens and O'dell, 1974) there has not 
been any dedicated efforts in this space. We have previously identified 
repurposed drugs with a demonstrated potential for therapeutic use 
but many of these are not known to cross the BBB and will require 
significant optimization (Rice et al., 2020a). Therefore, compounds 1a, 
and 1c from the benzoxazepinoindazole series, 2b, 2c, and 2d from 
the pyrazolopyridazine series, and 3a and 3b from the imidazopyridine 
series would suggest utility and further development of these 
pharmacophores against Acanthamoeba.

Of the CDC recommended multi-drug combination therapeutics 
suggested for Naegleria fowleri CNS disease, PAM, only amphotericin 
B, posaconazole, and azithromycin displayed great nanomolar activity 
(Colon et  al., 2018). Fluconazole and miltefosine both display 
micromolar activity (Troth and Kyle, 2021). We  note that several 
CYP51 inhibitors have previously been reported with low nanomolar-
to-micromolar activity against N. fowleri, and acceptable cLogP 
values, though there is no measure of BBB penetration potential 
(Debnath et al., 2017). Separately, compounds which were predicted 
to have BBB penetration properties through in vivo models such as, 
posaconazole, ketoconazole, corifungin, rokitamycin, and 
roxithromycin have demonstrated varying level of curative effects for 
PAM resolution (Debnath et al., 2012; Debnath, 2021). Though there 
has not been any reported follow up on these compounds and the 
addition of compounds that will likely have a different mechanism of 
action would be  advantageous. Therefore, compounds with 
EC50 ≤ 14 μM (better than fluconazole) will be prioritized for hit-to-
lead optimization. This would include the benzoxazepinoindazoles 
(1a, 1b, and 1c), pyrazolopyridazines (2a-d, 2f, 2 h, 2j, 2 k, 2l, 2n-q, 
and 2 s), 3-5-substituted azaindoles (4d), 2,4-substituted azaindoles 
(5a–d), and carbazoles (8a–d, 8 g, 8h, and 8j-k) from this study.

Currently, no effective treatments for infections caused by 
B. mandrillaris have been identified, instead a cocktail of drugs has 
been recommended by the CDC based on previous reports of 
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TABLE 1 Active compounds against Acanthamoeba castellanii, n = 3.

Class ID Structure Acanthamoeba 
castellanii

MRC5 L6 CC50

EC50 (μM) ± SD CC50 (μM) ± SD (μM) ± SD

Benzoxazepinoindazoles 

(Klug et al., 2019)

1a 3.8 ± 0.46 > 50 32 ± 2.5

1b 12 ± 8.2 > 50 1.0 ± 0.14

1c 3.3 ± 0.31 > 50 6.3 ± 0.55

1d 12 ± 8.3 > 50 > 17 ± 0.05

1e > 20 > 50 > 50

Pyrazolopyridazines 

(Tear et al., 2020)

2a 13 ± 6.9 > 50 3.2 ± 0.08

2b

1.5 ± 0.12 > 50 < 0.62

(Continued)
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TABLE 1 (Continued)

Class ID Structure Acanthamoeba 
castellanii

MRC5 L6 CC50

EC50 (μM) ± SD CC50 (μM) ± SD (μM) ± SD

2c 5.9 ± 0.17 > 50 22 ± 2.1

2d 0.92 ± 0.3 > 50 < 0.62

2e > 20 > 50 > 50

2f > 20 > 50 > 50

2 g > 20 19 ± 1.0 28 ± 1.1

Imidazopyridines 

(Dichiara et al., 2022)

3a 6.94 ± 0.11 nt nt

3b 4.33 ± 0.57 nt nt

(Continued)
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Class ID Structure Acanthamoeba 
castellanii

MRC5 L6 CC50

EC50 (μM) ± SD CC50 (μM) ± SD (μM) ± SD

3c > 20 nt nt

3d > 20 nt nt

3e > 20 nt nt

3-5-substituted 

azaindoles (Klug et al., 

2021)

4a 11 ± 9.0 > 50 2.8 ± 0.92

4b 11 ± 2.3 > 50 11 ± 1.5

4c > 20 13 ± 2.4 9.0 ± 0.78

Reference Drugs

Azithromycin 0.26 ± 0.14

Chlorhexidine 11 ± 3.5

Pentamidine 4.2 ± 0.08

nt, not tested.

TABLE 1 (Continued)

successful therapeutic intervention (Centers for Disease Control and 
Prevention, 2021). We have previously tested all compounds within 
the CDC’s suggested treatment regimen (Phan et al., 2020). Of these 
active therapeutics, only pentamidine, flucytosine, and 
chlorpromazine are known to cross the BBB yet CNS-involved 
infections are almost always fatal, emphasizing the lack of effective 
treatments and the urgent need for developing new therapeutic 
approaches. We define any compound with ≥2x better activity than 
pentamidine (EC50 = 18.35 μM) would warrant further exploration, 
therefore, the benzoxazepinoindazoles (1b, 1c, and 1d), 
pyrazolopyridazines (2a, 2b, 2c, 2 h, 2j, 2p, and 2u), 3-5-substituted 
azaindoles (4a-b, and 4e), 2,4-substituted azaindoles (5b and 5e), 

4-aminoquinolines (7b), and carbazoles (8a, 8c, 8 h-k) will 
be  prioritized against B. mandrillaris in our future hit-to-
lead optimization.

With a dearth of ongoing drug discovery efforts for anti-amoebics 
we  believe that the described results (Tables 1–3) represent a 
significant contribution to this community. These compounds 
demonstrate superior activity in comparison to currently used anti-
amoebic therapies. This, coupled with predicted, or measured BBB 
exposure in mice, establish this data set as highly unique. Hit-to-lead 
optimization efforts are underway for several of these chemotypes 
against the respected pathogenic free-living amoebae and we  will 
report the results of this in future communications.
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TABLE 2 Active compounds against Naegleria fowleri, n = 3.

Class ID Structure Naegleria fowleri MRC5 CC50 L6 CC50

EC50 (μM) ± SD (μM) ± SD (μM) ± SD

Benzoxazepinoindazoles 

(Klug et al., 2019)

1a 8.5 ± 0.34 > 50 32 ± 2.5

1b 3.9 ± 0.62 > 50 1.0 ± 0.14

1c < 0.63 > 50 6.3 ± 0.55

1d > 20 > 50 > 17 ± 0.05

1e > 20 > 50 > 50

Pyrazolopyridazines 

(Tear et al., 2020)
2a 0.94 ± 0.17 > 50 3.2 ± 0.08

(Continued)
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TABLE 2 (Continued)

Class ID Structure Naegleria fowleri MRC5 CC50 L6 CC50

EC50 (μM) ± SD (μM) ± SD (μM) ± SD

2b 0.3 ± 0.21 > 50 < 0.62

2c 3.5 ± 0.7 > 50 22 ± 2.1

2d 0.43 ± 0.13 > 50 < 0.62

2f 1.0 ± 0.01 > 50 > 50

2 h 1.3 ± 0.26 > 50 4.2 ± 0.89

2i 17 ± 3.5 > 50 48 ± 9.4

2j 0.98 ± 0.13 > 50 4.1 ± 0.94

(Continued)
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Class ID Structure Naegleria fowleri MRC5 CC50 L6 CC50

EC50 (μM) ± SD (μM) ± SD (μM) ± SD

2 k 7.5 ± 2.5 > 50 9.9 ± 1.7

2 l 1.1 ± 0.16 > 50 14.2 ± 1.1

2 m 17 ± 0.76 > 50 nt

2n 1.3 ± 0.33 33 ± 2.0 19 ± 1.1

2o 9.6 ± 6.6 > 50 14 ± 0.75

2p 1.4 ± 0.76 > 50 5.5 ± 1.1

TABLE 2 (Continued)

(Continued)
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Class ID Structure Naegleria fowleri MRC5 CC50 L6 CC50

EC50 (μM) ± SD (μM) ± SD (μM) ± SD

2q 12 ± 7.8 > 50 50 ± 0

2r 16 ± 3.7 > 50 31 ± 2.1

2 s 2.3 ± 1.0 > 50 30.5 ± 1.3

Imidazopyridines 

(Dichiara et al., 2022)
3a 15 ± 4.7 nt nt

3b 13 ± 6.7 nt nt

3c > 20 nt nt

3d > 20 nt nt

3e > 20 nt nt

TABLE 2 (Continued)

(Continued)
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Class ID Structure Naegleria fowleri MRC5 CC50 L6 CC50

EC50 (μM) ± SD (μM) ± SD (μM) ± SD

3f > 20 nt nt

3 g > 20 nt nt

3 h > 20 nt nt

3i > 20 nt nt

3j > 20 nt nt

3 k > 20 nt nt

3 l > 20 nt nt

3-5-substituted 

azaindoles (Klug et al., 

2021)

4d 8.4 ± 0.71 > 50 17 ± 2.0

TABLE 2 (Continued)

(Continued)
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Class ID Structure Naegleria fowleri MRC5 CC50 L6 CC50

EC50 (μM) ± SD (μM) ± SD (μM) ± SD

4e > 20 > 50 17 ± 2.0

4f > 20 > 50 > 50

2,4-Disubstituted 

azaindoles
5a 4.0 ± 0.36 16 ± 1.4 < 0.62

5b 7.4 ± 0.25 5.7 ± 0.45 < 0.62

5c (Diaz et al., 

2014)
5.6 ± 0.29 11 ± 0.90 < 0.62

5d 5.4 ± 0.21 1.3 ± 0.05 < 0.62

5e > 20 > 5.5 ± 0.00 nt

Aminopurines (Singh 

et al., 2020)

6a (Diaz et al., 

2014)
11 ± 0.60 50 ± 0.00 nt

TABLE 2 (Continued)

(Continued)
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Class ID Structure Naegleria fowleri MRC5 CC50 L6 CC50

EC50 (μM) ± SD (μM) ± SD (μM) ± SD

6b 14 ± 5.7 > 50 nt

6c > 20 > 50 > 50

6d > 20 > 50 > 50

6e > 20 > 50 > 50

4-Aminoquinolines 

(Mehta et al., 2018)
7a 16 ± 4.1 nt

nt

Carbazoles (Singh et al., 

2023)

8a 5.1 ± 0.06 nt nt

8b 8.8 ± 0.71 nt nt

TABLE 2 (Continued)

(Continued)
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Class ID Structure Naegleria fowleri MRC5 CC50 L6 CC50

EC50 (μM) ± SD (μM) ± SD (μM) ± SD

8c 4.8 ± 0.09 nt nt

8d 4.3 ± 0.22 nt nt

8e 17 ± 0.65 nt nt

8f 17 ± 0.2 nt nt

8 g 9.6 ± 0.05 nt nt

8 h 13 ± 2.6 nt nt

TABLE 2 (Continued)

(Continued)
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Class ID Structure Naegleria fowleri MRC5 CC50 L6 CC50

EC50 (μM) ± SD (μM) ± SD (μM) ± SD

8i 18 ± 0.45 nt nt

8j 10 ± 1.4 nt nt

8 k 9.0 ± 0.01 nt nt

8 l 16 ± 2.6 nt nt

Reference Drugs Azithromycin 0.02 ± 0.01

Chlorhexidine 5.8 ± 0.22

Pentamidine > 50

nt, not tested.

TABLE 2 (Continued)

Conclusion

This work represents a significant screening campaign against 
three pFLA from which we have identified several new chemical 
series with sub-to-low-micromolar potency. Many of the 
compounds discovered and described here have better potency 
and selectivity profiles than the suggested multi-drug cocktail 
treatment regimen against A. castellanii, N. fowleri, or 
B. mandrillaris from the U.S. Centers for Disease Control and 
Prevention (CDC). These pharmacophores are currently being 
further optimized using medicinal chemistry to develop 

compounds with greater potency for these pFLA, selectivity, and 
higher brain exposure. The results of these studies will be reported 
in due course.

Data availability statement

The datasets presented in this study can be  found in online 
repositories. The names of the repository/repositories and 
accession number(s) can be  found in the article/ 
Supplementary material.
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TABLE 3 Active compounds against Balamuthia mandrillaris, n = 3.

Class ID Structure Balamuthia 
mandrillaris

MRC5 CC50 L6 CC50

EC50 (μM) ± SD (μM) ± SD (μM) ± SD

Benzoxazepinoindazoles 

(Klug et al., 2019)

1a 17 ± 3.0 > 50 32 ± 2.5

1b 1.8 ± 0.46 > 50 1.0 ± 0.14

1c 1.9 ± 1.3 > 50 6.3 ± 0.55

1d 9.5 ± 0.23 > 50 > 17 ± 0.05

1e 14 ± 0.29 > 50 > 50

Pyrazolopyridazines (Tear 

et al., 2020)
2a 4.2 ± 0.6 > 50 3.2 ± 0.08

(Continued)
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Class ID Structure Balamuthia 
mandrillaris

MRC5 CC50 L6 CC50

EC50 (μM) ± SD (μM) ± SD (μM) ± SD

2b 5.0 ± 0.1 > 50 < 0.62

2d 1.6 ± 0.1 > 50 < 0.62

2f > 20 > 50 > 50

2 g > 20 19 ± 1.0 28 ± 1.1

2 h 3.3 ± 0.97 > 50 nt

2j 4.9 ± 1.6 > 50 4.1 ± 0.94

TABLE 3 (Continued)

(Continued)
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Class ID Structure Balamuthia 
mandrillaris

MRC5 CC50 L6 CC50

EC50 (μM) ± SD (μM) ± SD (μM) ± SD

2 k > 20 > 50 9.9 ± 1.7

2p 7.5 ± 3.1 > 50 5.5 ± 1.1

2r 13 ± 7.5 > 50 31 ± 2.1

2 s 11 ± 4.2 > 50 31 ± 1.3

2 t 10 ± 2.8 > 50 3.7 ± 0.46

2u 9.4 ± 3.4 > 50 > 50

TABLE 3 (Continued)

(Continued)
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Class ID Structure Balamuthia 
mandrillaris

MRC5 CC50 L6 CC50

EC50 (μM) ± SD (μM) ± SD (μM) ± SD

3-5-substituted azaindoles 

(Klug et al., 2021)

4a 3.3 ± 0.62 > 50 2.8 ± 0.92

4b 1.0 ± 0.12 > 50 11 ± 1.5

4e 8.3 ± 1.3 > 50 17 ± 2.0

2,4-substituted azaindoles

5b 7.25 ± 0.7 5.7 ± 0.45 < 0.62

5c (Diaz et al., 

2014)
12 ± 0.09 11 ± 0.90 < 0.62

5e 1.8 ± 0.24 > 5.5 ± 0.00 nt

4-Aminoquinolines 

(Bachovchin et al., 2019)
7b 1.4 ± 0.17 nt nt

Carbazoles (Singh et al., 

2023)
8a 6.8 ± 0.1 nt nt

TABLE 3 (Continued)

(Continued)
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Class ID Structure Balamuthia 
mandrillaris

MRC5 CC50 L6 CC50

EC50 (μM) ± SD (μM) ± SD (μM) ± SD

8b 11 ± 0.35 nt nt

8c 2.4 ± 0.17 nt nt

8d 12 ± 0.26 nt nt

8f 19 ± 1.1 nt nt

8 g 12 ± 0.07 nt nt

8 h 7.3 ± 0.38 nt nt

TABLE 3 (Continued)

(Continued)
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Class ID Structure Balamuthia 
mandrillaris

MRC5 CC50 L6 CC50

EC50 (μM) ± SD (μM) ± SD (μM) ± SD

8i 7.3 ± 0.28 nt nt

8j 3.3 ± 0.24 nt nt

8 k 7.4 ± 0.36 nt nt

8 l 13 ± 0.35 nt nt

Reference Drugs

Azithromycin >20

Chlorhexidine 1.6 ± 0.17

Pentamidine 18.35 ± 1.47

nt, not tested.

TABLE 3 (Continued)
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Introduction: The phenotypic screening of drugs against Balamuthia mandrillaris, 
a neuropathogenic amoeba, involves two simultaneous phases: an initial step 
to test amoebicidal activity followed by an assay for cytotoxicity to host cells. 
The emergence of three-dimensional (3D) cell cultures has provided a more 
physiologically relevant model than traditional 2D cell culture for studying the 
pathogenicity of B. mandrillaris. However, the measurement of ATP, a critical 
indicator of cell viability, is complicated by the overgrowth of B. mandrillaris 
in coculture with host cells during drug screening, making it challenging to 
differentiate between amoebicidal activity and drug toxicity to human cells.

Methods: To address this limitation, we introduce a novel assay that utilizes 
three-dimensional hanging spheroid plates (3DHSPs) to evaluate both activities 
simultaneously on a single platform.

Results and discussion: Our study showed that the incubation of neurospheroids 
with clinically isolated B. mandrillaris trophozoites resulted in a loss of 
neurospheroid integrity, while the ATP levels in the neurospheroids decreased 
over time, indicating decreased host cell viability. Conversely, ATP levels in 
isolated trophozoites increased, indicating active parasite metabolism. Our 
findings suggest that the 3DHSP-based assay can serve as an endpoint for the 
phenotypic screening of drugs against B. mandrillaris, providing a more efficient 
and accurate approach for evaluating both parasite cytotoxicity and viability.

KEYWORDS

granulomatous amoebic encephalitis, Balamuthia mandrillaris, neurospheroid, 
cytotoxicity, drug discovery, neglected disease, tropical disease

1. Introduction

Some protozoan species naturally reside in the environment, while some are amphizoic and 
capable of adapting to survive in the human body (Haston and Cope, 2023). Balamuthia 
mandrillaris is an environment-dwelling amoeba that causes lethal brain damage, termed 
granulomatous amoebic encephalitis (GAE). Metabolically active trophozoites of B. mandrillaris 
can be  isolated from soil and freshwater (Gompf and Garcia, 2019). Thus, two routes of 
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transmission are proposed: direct exposure to soil and water via skin 
ulcers or inhalation via the olfactory epithelium in the nose (Kiderlen 
and Laube, 2004; Piper et al., 2018; Gompf and Garcia, 2019) or the 
respiratory tract (Schuster and Visvesvara, 2004a). According to the 
report in 2019, more than 200 cases of GAE have been estimated 
(Gompf and Garcia, 2019). Although Balamuthia-GAE is extremely 
rare, the disease is highly fatal (Schuster and Visvesvara, 2004b). More 
than a 95% mortality rate is documented worldwide. Regardless of 
immune competency, everyone is at risk of being infected by 
B. mandrillaris (Wu et al., 2020; Xu et al., 2022). Hence, environment-
derived B. mandrillaris infections have challenged our efforts to 
prevent this highly lethal disease.

The poor prognosis of GAE is multifactorial. Differential diagnosis 
of GAE from other inflamed brains is difficult. GAE has symptoms 
similar to those of viral or bacterial encephalitis, which are more 
common. Moreover, a definitive diagnosis is based on observation of 
the trophozoites in the histological section of the inflamed brain 
under a microscope (Peng et al., 2022; Liu et al., 2023). The sensitivity 
of the microscopic diagnosis depends on the site of the brain biopsy, 
the number of trophozoites, and the skill of the examiner. Other 
laboratory procedures may support definitive diagnosis, including 
time-consuming in vitro culture and/or high-sensitivity detection of 
trophozoite DNA (Wu et al., 2020; Yang et al., 2020). However, the lack 
of a sensitive diagnosis makes GAE more dangerous (Schuster and 
Visvesvara, 2004b). A definitive diagnosis is often made after death by 
autopsy of brain tissue. Importantly, there is no specific drug targeting 
B. mandrillaris. Current treatments for GAE rely primarily on trial 
combinations of antimicrobial and antifungal drugs, resulting in 
variations in clinical outcomes (Doyle et al., 2011; Cuoco et al., 2022). 
Thus, the development of more effective drugs remains a topic of 
intensive research (Phan et al., 2021; Ferrins et al., 2023).

Three-dimensional (3D) cell cultures have emerged as useful 
models for the study of pathogenicity owing to their similarity to cell 
and tissue physiology compared to conventional 2D cell culture. 
Several cancer cell lines are capable of forming spherical cell 
aggregates, known as spheroids (Kapalczynska et al., 2018). Additional 
physiological relevance of spheroids has been recognized, including 
cell functions (Lagies et al., 2020) and drug response (Mittler et al., 
2017). Previously, our group developed a chemiluminescence assay for 
assessing the cytotoxicity of B. mandrillaris against the human 
neurospheroid, a 3D cell clump (Pengsart and Kulkeaw, 2022). 
However, the measurement of ATP, a critical indicator of cell viability, 
is complicated by the overgrowth of B. mandrillaris in coculture with 
host cells during drug screening, making it challenging to differentiate 
between amoebicidal activity and drug toxicity to human cells. 
We  previously reported the use of a three-dimensional hanging 
spheroid plate (3DHSP) to facilitate the formation of spheroids and 
the separation of unbound and dead cells during cytotoxicity assays 
using chimeric antigen receptor (CAR) T cells and demonstrated the 
direct measurement of cytotoxic effects of CAR T cells on spheroids 
using optical imaging without the need for live and dead fluorescent 
staining of the cells (Chen et al., 2022). This study adapts the 3D 
neurospheroid plate by which the growing trophozoites were separated 
before measuring the ATP level. Thus, it is applicable for screening 
amoebicidal activity and cytotoxicity in the same setting. This dual 
phenotypic assay allows the identification of drugs that ameliorate the 
severity of disease and drugs that are safe in a single step.

2. Materials and methods

2.1. Culture of a clinical isolate of 
Balamuthia mandrillaris trophozoites

Balamuthia mandrillaris trophozoites were isolated from 
biopsied brain tissue of a human subject who gave consent to 
participate (COA no. Si806/2020). The experiments involving 
B. mandrillaris trophozoites were approved by the Siriraj Institutional 
Review Board (COA. no. 146/2022). The detailed protocol was 
explained in Pengsart et  al. (2022). Briefly, small pieces of the 
biopsied brain were digested with pepsin. After passing through a 
sterile gauze bandage, the small cell clumps were mixed with DMEM 
supplemented with 10% heat-inactivated fetal bovine serum (FBS, 
HyClone, Utah) and subjected to coculture with a monolayer of 
human lung carcinoma A549 cells (as feeders). The culture medium 
was renewed every 2–3 days. The floating cells were transferred to a 
new lot of feeder cells every week. Any cells with a morphology 
distinct from that of the A549 cells were observed for slow movement 
of the projecting cytoplasm. Moreover, a small area of the feeder 
cell-free appearance could indicate the presence of trophozoites. For 
regular maintenance, B. mandrillaris trophozoites were cultured 
with A549 cells. Prior to studying neurospheroid damage, 
trophozoites were plated onto a monolayer of human SH-SY5Y cells 
for 2–3 passages. When the monolayer of SH-SY5Y cells was 
removed from more than 80% of the surface area, the trophozoites 
were transferred to a new monolayer of 80–90% confluent SH-SY5Y 
cells. For human cell-free culture, the trophozoites were maintained 
in the feeder-free culture (Law et al., 2023). BM-3 medium was used 
and consisted of peptone (16.4 mM), yeast extract (4 mg/mL), yeast 
RNA (1 mg/mL), liver digest (10 mg/mL), glucose (5.5 mM), hemin 
(3 µM), taurine (0.4 mM), 1xMEM vitamin mixture, 1xlipid mixture, 
and 10% newborn calf serum.

2.2. Culture of human lung carcinoma 
A549 and neuroblastoma SH-SY5Y cells

Human neuroblastoma SH-SY5Y cells were obtained from the 
American Type Culture Collection (ATCC® No. CRL-2266TM), while 
human lung carcinoma A549 cells were kindly provided by Prof. 
Wanpen Chaicumpa. Both cell types were maintained following the 
ATCC’s instructions. For the SH-SY5Y cells, a 1:1 ratio of ATCC-
formulated Eagle’s minimum essential medium (EMEM) (ATCC, 
Utah) and F12 medium (Gibco, Gaithersburg, MD) was prepared. The 
complete medium of the human neuroblastoma SH-SY5Y cells is 
EMEM-F12 medium supplemented with 10% heat-inactivated FBS 
(HyClone, Utah), herein called complete EMEM-F12 medium. For the 
A549 cells, 10% FBS-supplemented DMEM was used. Cells were 
incubated at 37°C in a humidified atmosphere containing 5% CO2 and 
subcultured every 2–3 days or when the cell density reached 60–80% 
confluence. Cells were detached from the polystyrene well using 
0.25% trypsin in 0.5 mM EDTA solution (STEMCELL Technologies, 
Vancouver, Canada). Viable and nonviable cells were identified using 
Trypan blue and counted using a hemocytometer under a light 
microscope. Human neuroblastoma SH-SY5Y cells were subcultured 
at a 1:10 ratio per well of a 6-well plate.
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2.3. Formation of human neurospheroids in 
3DHSP

The 3DHSP is a 24-well plate consisting of two layers. The upper 
layer forms hanging drops, and the lower layer consists of a spheroid 
retaining well and a waste well connected by channels with a height of 
40 μm (Figure 1A). The upper layer was printed using a 3D printer 
(Cubicon, Seongnam, Korea) with acrylonitrile butadiene styrene 
(ABS) filaments. The lower layer was made of polydimethylsiloxane 
(PDMS) (Dow Corning Co., Midland, MI, United States) (Chen et al., 
2022). Human neuroblastoma SH-SY5Y cells were collected from the 
2D culture well using cell dissociation buffer (Life Technology, 
New York). Viable cells were prepared at 1.7 × 104 cells per 25 μL of 
complete EMEM-F12. Then, the cell suspension was filled into a small 
channel on the upper layer of the 3DHSP. The complete EMEM-F12 
was placed into the waste well to prevent evaporation of the hanging 
drop. The plate was placed in a reservoir containing sterile distilled 
water and covered with a lid to prevent evaporation of the culture 
medium in the hanging drop.

2.4. Culture of Balamuthia mandrillaris with 
human neurospheroids

After 2 days of hanging drop incubation, 1,000 trophozoites in 
10 μL were filled into the same small channel, allowing the coculture 
of trophozoites with human cells in a hanging drop. For analysis of 
human cell viability, 100 μL of complete EMEM-F12 medium was 
added to the hanging drop at 24 h post-coculture to push the cell 

mixture into the retaining well. The 3DHSP plate was tilted for 45 or 
90 min to allow the single cells to pass through a 40 μm-diameter 
hole. The neurospheroids in the retaining well and the separated cells 
in the waste well were subjected to analysis of size, morphology, and 
viability. To measure the diameter of the nonspherical neurospheroid, 
lines were drawn from the perimeter of the spheroid, passed through 
the center, and ended at the opposite perimeter. Lengths of the lines 
were measured using ImageJ software and calculated for a 
diameter mean.

2.5. Fluorescence labeling of human 
neurospheroids

Human neuroblastoma SH-SY5Y cells were cultured in 2D, and 
single cells were prepared, followed by incubation with 2.5 μM 
CellTracker™ Green CMFDA (5-chloromethylfluorescein diacetate, 
Invitrogen, OR) and 1:1600 diluted DiD (Invitrogen, OR) to label 
proteins and lipids, respectively. The labeled cells were subjected to 
neurospheroid formation as mentioned above. After 48 h of hanging 
drop culture, B. mandrillaris trophozoites were added to the hanging 
drop and incubated for 24 h. The drops were pushed into the lower 
plate by adding 100 μL of culture medium. The lower plate was tilted 
at an angle of more than 60° for 45 min at room temperature to 
separate the cell debris and trophozoites into the waste well. For 
visualization, neurospheroids and cell debris were transferred into 
ultralow attachment (SPL Life Sciences, South Korea) and flat-bottom 
plates (Thermo Fisher Scientific, United  States), respectively, for 
confocal imaging (Nikon Eclipse Ti, Nikon, Japan).

FIGURE 1

Neurospheroid formation in a three-dimensional hanging spheroid plate (3DHSP). (A) Schematic diagram of neurospheroid formation in the 3DHSP. 
Single cells were hung in a drop in the retaining well, while the waste well was filled with the culture medium. After a 48-h incubation, B. mandrillaris 
trophozoites were incubated with neurospheroids. After 24  h of trophozoite incubation, cells in the hanging drop were collected by adding culture 
medium. The 3DHSP was tilted at an angle of 60°C for 45  min to separate the trophozoites from the neurospheroids. (B) Representative images of 
human neurospheroids in after 48  h of hanging drop culture. A higher magnification is shown on the right-hand side (scale bar  =  100  μm). The dark 
hypoxic area is marked by the white line. (C) Measurement of spheroid diameter. ImageJ was used to measure the diameter. Due to incomplete 
spherical shape, ten lines are drawn across the neurospheroid, and the lengths of the drawn lines were averaged.
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2.6. Efficiency of trophozoite removal from 
human neurospheroids

To examine the separation of the trophozoites from the 
neurospheroid after 3DHSP tilting, the presence of trophozoites 
adhering to the neurospheroid in the retaining well and those in the 
waste well was measured using quantitative PCR. Genomic DNA was 
isolated using a QIAamp DNA Mini Kit (QIAGEN, Hilden, Germany) 
following the manufacturer’s instructions. The primer set used for the 
amplification of 16S rRNA gene of the B. mandrillaris included a 
forward primer (5’-TAACCTGCTAAATAGTCATGCCAAT-3′) and 
a reverse primer (5’-CAAACTTCCCTCGGCTAATCA-3′) (Wu et al., 
2020). The thermal cycles for each transcript were as follows: initial 
denaturation at 95°C for 1 min, followed by 40 cycles of DNA 
denaturation at 95°C for 15 s, primer annealing at 60°C for 30 s, and 
DNA strand extension at 60°C for 5 s. Given the same volume of DNA 
extracts, the level of B. mandrillaris DNA was directly compared 
among samples using the cycle threshold (Ct). Delta cycle threshold 
(∆Ct) was calculated following the formula: ∆Ct = [Ct of the 
trophozoite DNA in the waste well - Ct of the trophozoite DNA in the 
retaining well] (Rao et al., 2013). The DNA obtained from an untilted 
plate was set as a positive control because all trophozoites remained. 
Then, the 2-∆Ct was calculated and displayed as a relative expression 
compared to the positive control (the untilted plate).

2.7. Cell viability

Intracellular ATP was used as a readout indicating the 
metabolically active stage of viable cells. The CellTiter-Glo® 3D 
Cell Viability Assay (Promega, United States) was deployed for 
direct detection of the intracellular level of ATP. ATPs can change 
luciferin to a luminescence-emitting oxyluciferin. Briefly, the 
neurospheroids and the separated trophozoites were transferred 
to a low attachment round-bottom well of the 96-well plate (SPL 
Life Sciences, South Korea) and a Nunclon Delta Surface 96-well 
plate (Thermo Fisher Scientific, MA), respectively, followed by 
adding the CellTiter-Glo® solution. The luminescence signal was 
measured by using a BioTek Synergy H1 Hybrid Multi-Mode plate 
reader. After removing the background luminescence of the 
culture medium, the data were displayed as relative light units 
(RLUs). Changes in the RLUs of each sample were related to the 
RLUs of control neurospheroids that were free from 
B. mandrillaris trophozoites.

2.8. Statistical analysis

Differences between two independent samples were calculated 
using the Mann–Whitney test. Student’s t test was used to examine the 
difference in the means of relative DNA and ATP levels and the RLUs 
of ATP levels. Multiple comparisons of the spheroid diameter of more 
than two groups were assessed by using one-way ANOVA with 
Bonferroni correction. A statistically significant difference was 
dependent on a p value: less than 0.05 indicated that a given value of 
each sample was different, while more than 0.05 implied a probability 
that a given value was the same among samples.

3. Results

3.1. Formation of human neurospheroids in 
the 3DHSP

First, the number of cells was optimized to form a spheroid in 
a hanging drop. Various numbers of human SH-SY5Y cells were 
hung as a drop in the upper part of the 3DHSP 
(Supplementary Figure S1A). To capture images of spheroid-
forming cells, culture medium needs to be added to push the cell 
clump into a well of the lower part, or a stereomicroscope needs to 
be used to capture the cells in the hanging drop. Thus, early-forming 
spheroids could not be  imaged due to fragmentation. Finally, 
we determined that the optimal number of human SH-SY5Y cells 
was 6.8 × 105 cells/mL (Supplementary Figure S1A). At 48 h post 
cell hanging, the neurospheroid was opaque with central dark 
zones, and clearly seen edges were observed (dotted line in the right 
panel, Figure 1B). Given an incomplete spherical shape, several 
straight lines were drawn from side to side through the center 
(Figure 1C). The average diameter of the 48-h neurospheroids was 
438.4 ± 18 μm (n = 6) (Figure 1B). Thus, the human neuroblastoma 
SH-SY5Y cells could proliferate and form spherical shapes in a 
hanging drop of the 3DHSP. Notably, sterile distilled water or 
culture medium was added underneath the hanging drop in the 
lower part of the plate. Due to proximity to the solution below, 
some SH-SY5Y cells migrated to adhere to the surface of the lower 
plate (Supplementary Figure S1B). Thus, the original protocol was 
modified by placing the 3DHSP in a humidified chamber without 
the liquid fill in the lower part. Instead, the culture medium was 
filled in the waste well, preventing the evaporation of liquid from 
the hanging drop.

3.2. Separation of cell debris from the 
human neurospheroid using 3DHSP

An advantage of the 3DHSP is the ability to remove cell debris, 
as demonstrated previously (Chen et  al., 2022). To assess the 
efficiency of trophozoite separation from neurospheroids, the cells 
in the retaining and waste wells after plate tilting were visualized. 
Human neuroblastoma SH-SY5Y cells were labeled with two 
fluorophores: CMFDA for protein and DiD for lipid (Figure 2A). 
Following cell labeling, the fluorescence intensity remained 
detectable for up to 48 h (Figures 2B,C). CMFDA and DiD had 
different patterns. CMFDA-bound protein was dispersed, while 
DiD-bound lipids appeared as globules of various sizes. Without 
plate tilting, the neurospheroids were retained in the chamber. No 
cell debris was observed in the waste chamber (lower panels, 
Figure 2B). In contrast, the 60 degree-tilted 3DHSP allowed cell 
debris to be moved into the waste well (lower panels, Figure 2C). 
The cell debris observed in the waste well still showed CMFDA and 
DiD fluorescence. Without fluorescent labeling, it was difficult to 
observe cell debris using the phase contrast view of the inverted 
microscope. The representative image shows 47 fluorescent particles 
per waste well following the 60-degree-tilted 3DHSP while there 
was no fluorescent particle detected in the waste well without 
plate tilting.
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3.3. Loss of neurospheroid integrity in 
coculture with Balamuthia mandrillaris

To apply an optical measurement for examining neurospheroid 
integrity, the diameter of neurospheroids was measured after the 
settling of spheroids in the retaining well (Figure  3A). Since the 
trophozoites could be cultured with or without a monolayer of human 
neuroblastoma SH-SY5Y cells, we examined both types of trophozoites 
regarding their effects on neurospheroid integrity 
(Supplementary Figure S2A). The trophozoites were collected after the 
monolayer of human neuroblastoma SH-SY5Y cells disappeared. 
After 48 h of coculture with the neurospheroids, some trophozoites 
adhered to the neurospheroids, while some did not (Figure  3B). 
Different morphologies of the trophozoites were observed to relate to 
the source of the trophozoites. Some trophozoites obtained from the 
monolayered SH-SY5Y cells scattered as single cells, while some 

adhered to the neurospheroid (Supplementary Figure S2B). In 
contrast, most of the trophozoites obtained from the feeder-free 
culture (BM-3 medium) formed clumps proximal to the 
neurospheroid (Supplementary Figure S2C). Without plate tilting, the 
sizes of the neurospheroids cocultured with the feeder-derived 
trophozoites were not different from those of the noninfected 
neurospheroids (red bar in the untilted plate in Figure  3D). In 
contrast, the BM3-derived trophozoites significantly reduced the size 
of the neurospheroid (teal bars, Figure 3D). Following plate tilting, the 
cell debris and trophozoites were separated into the waste well 
(Figure 3C). The size of the neurospheroids cocultured with feeder-
derived trophozoites was significantly decreased (red bar in tilted 
plate, Figure 3D). When cocultured with trophozoites from BM-3 
medium, the neurospheroids were significantly smaller than the 
control neurospheroids in both tilted and untilted plates (teal bars, 
Figure 3D). In summary, a size-based assay allows the assessment of 

FIGURE 2

Removal of single SH-SY5Y cells from the neurospheroid. (A) Illustration of the method for forming fluorescent neurospheroids. Human neuroblastoma 
SH-SY5Y cells were incubated with protein-binding CMFDA and lipid-binding DiD in the 2D cell culture well. After cell labeling, single SH-SY5Y cells 
were subjected to neurospheroid formation in the 3DHSP. After plate tilting, the neurospheroids and the cells in the waste well were transferred to a 
round or flat bottom-containing plate, respectively. The fluorescence-labeled neurospheroids and cells were imaged under a confocal microscope. 
(B) Confocal microscopic images of SH-SY5Y neurospheroids in the retaining well (upper panel, scale bar  =  100  μm) and waste well (lower panel, scale 
bar  =  100  μm) of the untilted plate. Images of CMFDA-and DiD-labeled neurospheroid are merged with the differential interference contrast (Merge). A 
higher magnification of the CMFDA-and DiD-visualizing waste well is shown on the right-hand side (scale bar  =  100  μm). (C) Confocal microscopic 
images of SH-SY5Y neurospheroids in the retaining well (upper panel, scale bar  =  100  μm) and the waste well (lower panel, scale bar  =  100  μm) after 
tilting for 90  min. Images of CMFDA-and DiD-labeled neurospheroid are merged with the differential interference contrast (Merge). A higher 
magnification of the CMFDA-and DiD-visualizing waste well is shown on the right-hand side (scale bar  =  100  μm).
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neurospheroid damage in coculture with trophozoites. The culture 
method used to prepare trophozoites affects this size-based assay.

3.4. Decrease in intracellular ATP in 
coculture with Balamuthia mandrillaris

After plate tilting, the neurospheroids in the retaining well and the 
cells in the waste well were transferred into new round bottom and flat 
bottom plates, respectively (Figure 3A). To examine the survivability 
of human neurospheroids in coculture with B. mandrillaris 
trophozoites, intracellular ATPs of cells were measured in the retaining 
well, while those of the trophozoites were measured in the waste well 
after tilting the 3DHSP for 45 and 90 min (left and right panel, 
Figure  4A). In the absence of trophozoites, the 3DHSP-derived 

neurospheroids remained intact in the retaining wells, as indicated by 
the ATP level (teal dots in control groups in left and right panel, 
Figure  4A). Nevertheless, the 3DHSP enabled the removal of cell 
debris, as shown by detectable ATP in the waste well, albeit at the 
lowest level (dark purple dots, Figure  4A). After coculture with 
trophozoites and 45-min plate tilting, the levels of intracellular ATPs 
in neurospheroids were significantly lower by 6-fold than those in 
noninfected neurospheroids (teal dots in the test groups, Figure 4A). 
Due to the presence of the trophozoites in the waste wells, the ATP 
levels increased after plate tilting (dark purple dots, Figure  4A), 
suggesting a separation of active trophozoites from the neurospheroids. 
There was no difference in ATP levels between the remaining and 
waste wells when the 3DHSP was tilted for 45 min; however, a longer 
tilting time allowed more trophozoites to be  separated from the 
neurospheroids when cocultured with the SH-SY5Y-derived 

FIGURE 3

The effects of B. mandrillaris trophozoites on the integrity of neurospheroids. (A) Schematic diagram illustrating the assessment of the cytotoxicity of 
trophozoites against neurospheroids. The trophozoites were obtained from two sources: the coculture with human SH-SY5Y cells and the human 
cell-free BM-3 culture. Following 3DHSP tilting, the neurospheroids and cells in the waste well were transferred into a new round bottom and flat 
bottom plate for measuring the intracellular ATP and neurospheroid size. (B) Illustration of neurospheroids cultured with and without B. mandrillaris 
trophozoites in the hanging drops of the untilted plate. The spherical shape of the neurospheroid in the drop observed under a stereomicroscope. 
Scale bar, 100  μm. (C) Illustration of the neurospheroid and B. mandrillaris trophozoites in the retaining well and the waste well after plate tilting. 
(D) Sizes of the neurospheroids in the retaining wells were calculated from the untilted and tilted plates. Due to asymmetry, several lines of diameter 
were drawn and subjected to the calculation of spheroid diameter using ImageJ (left panel). The bar graph is the diameter of the neurospheroid (right 
panel). The B. mandrillaris trophozoites used in the coculture with neurospheroid (SP) were from the culture with human neuroblastoma cells (SH-
SY5Y) or the feeder-free culture (BM-3).
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B. mandrillaris (right panel, Figure 4A). However, the intracellular 
ATP level does not discriminate trophozoites, small cell clumps or 
single cells. To confirm the separation of the trophozoites, PCR was 
performed to detect the DNA of trophozoites in a relative quantitative 
manner. As shown in Figure 4B, the DNA of the trophozoites in the 
retaining well was not changed after 45 min of tilting (orange bars in 
upper panel, Figure 4B). In contrast, longer 3DHSP tilting (90 min) 
allowed greater removal of the trophozoites from the neurospheroids 
(orange bars in lower panel, p < 0.001, Figure  4B). Plate tilting 
significantly increased the number of trophozoites in the waste wells 
as well (blue bars in the upper and lower panel, Figure 4B). Moreover, 
the use of trophozoites obtained from feeder-free culture (right panel, 
Figure  4B) allowed higher efficiency in the separation of the 
trophozoites from the neurospheroid after 45-min 3DHSP tilting 

(orange bars in the upper right panel, Figure 4B). In all experiments, 
the number of trophozoites in the waste well significantly increased 
following plate tilting (blue bars in all panel, Figure 4B). Regardless of 
the source of the trophozoites, the 90-min 3DHSP tilting removed the 
trophozoites from the neurospheroid (blue bars in all panel, 
Figure 4B), confirming the microscopic imaging (Figure 3C) and ATP 
detection in the waste wells.

3.5. Cytophagy of the Balamuthia 
mandrillaris trophozoites

To demonstrate the use of 3DHSP for elucidating the mechanisms 
of trophozoite survival, we observed host cell ingestion by trophozoites. 

FIGURE 4

The effects of B. mandrillaris trophozoites on the survival of neurospheroids. (A) The level of intracellular ATP produced by the neurospheroid in the 
retaining wells and the B. mandrillaris trophozoites in the waste wells. The control group consisted of human neurospheroids without trophozoites, 
while the test groups consisted of human neurospheroids cocultured with trophozoites. The 3DHSPs were tilted for 45 and 90  min (left and right 
panels, respectively). Each colored dot represents three biological replicates. (B) PCR data show the relative DNA quantity of B. mandrillaris DNA 
remaining in the retaining and waste wells before and after 3DHSP tilting for 45 and 90  min (upper and lower panel, respectively). Trophozoites were 
obtained from a culture with human neuroblastoma SH-SY5Y cells (left panel) and a feeder-free BM-3 medium (right panel). Circles represent triplicate 
wells of the quantitative PCR.
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Proteins and lipids of human neuroblastoma cells were labeled with the 
fluorophores CMFDA and DiD, respectively. A 90-min tilting was 
performed to obtain more trophozoites in the waste cells. Regardless 
of the sources, the trophozoites scattered throughout the retaining well 
(arrowheads in Figures 5A,B). Most of the trophozoites in the waste 
well were positive for CMFDA and DiD (Figure 5C), indicating human 
cell ingestion. After plate tilting, the trophozoites in the waste wells 
were observed under a laser confocal microscope. The SH-SY5Y-
derived trophozoites had more elongated cytoplasm, while the feeder-
free trophozoites were rounder with short protrusions of cytoplasm 
(DIC images, Figure 5C). Human lipid and protein were observed in 
the cytoplasm of the trophozoites in a distinct pattern. The SH-SY5Y-
derived trophozoites had dispersed granules containing human protein 
and lipids (arrowheads in upper panel in Figure 5C). In contrast, larger 
vacuoles were observed in the trophozoites obtained from the feeder-
free culture. These vacuole-like structures contained both human lipids 
and proteins (arrowheads in upper panel in Figure 5C). These results 
imply that the amoebae obtained the energy source from a human 
neurospheroid in a different way.

4. Discussion

Forming the neurospheroid in a hanging drop of the 3DHSP 
allows assessment of the cytotoxicity of B. mandrillaris trophozoites, 

a clinical isolate of the parasitic amoeba. The 3DHSP offers advantages 
for host–parasite interaction in a context relevant to the 3D organizing 
cells in a given tissue. In the hanging drop, the B. mandrillaris 
trophozoites decreased the viability of human cells in the 
neurospheroid. The 3DHSP is capable of separating the amoebic 
trophozoites from the neurospheroid, allowing accurate measurement 
of host and parasite survivability. Following separation, it is also 
feasible to study the mechanism of host cell ingestion of the amoeba. 
Although the separation efficiency of trophozoites and amoebas needs 
further improvement, the dual phenotype platform is likely applicable 
for screening a lead compound that has low cytotoxic and amoebicidal 
effects in a single plate.

Several strains of B. mandrillaris have been isolated from patients 
and from the environment across continents. B. mandrillaris 
trophozoites can be maintained in a standard laboratory as a routine 
procedure, allowing the study of their pathogenicity (Greninger et al., 
2015). Here, the B. mandrillaris strain was isolated from the third case 
of Balamuthia amoebic encephalitis in Thailand (Intalapaporn et al., 
2004; Krasaelap et al., 2013) and used as a representative virulent 
strain (Law et al., 2023). We have been able to grow this amoeba strain 
in feeder-free conditions using BM-3 medium in addition to coculture 
with human lung carcinoma A549 and neuroblastoma SH-SY5Y cells 
(Pengsart et  al., 2022). Regardless of the culture conditions, the 
B. mandrillaris trophozoites exert a cytotoxic effect on the 
human neurospheroid.

FIGURE 5

Cytophagy of the B. mandrillaris trophozoites in the 3DHSP. (A) Representative images of human neurospheroids cocultured with B. mandrillaris 
trophozoites obtained from culture with human neuroblastoma SH-SY5Y cells. Scale bars, 100  μm. (B) Representative images of human neurospheroids 
cocultured with B. mandrillaris trophozoites obtained from the feeder-free culture (BM-3 medium). Scale bars, 100  μm. (C) Zoomed-in images of B. 
mandrillaris trophozoites. The upper panels are representative images of the trophozoites obtained from (A), while the lower panels are images of the 
trophozoites obtained from (B). Microscopic images were captured in differential interference contrast (DIC) and fluorescence modes. The 3DHSP was 
tilted for 90  min. Scale bars, 20  μm. CMFDA, the protein-binding fluorophore, and DiD, the lipid-binding fluorophore.
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A decrease of neurospheroid size was observed in the presence of 
B. mandrillaris originating from BM-3 medium in both tilted and 
non-tilted plates. However, the size of neurospheroid cocultured with 
B. mandrillaris originating from human feeder cells decreased only in 
the tilted plates. This difference is likely due to rapid damage of 
neurospheroid caused by the trophozoite derived from the BM-3 
medium. Moreover, there was discrepancy in the data of DNA detection 
and ATP measurement in this study. In Figure 4B, a factor of difference 
of 600 was observed at 45 min in the waste well in the tilted plated in 
comparison to the non-tilted plate. This difference is much higher than 
in the other conditions, especially, at 90 min in the same condition, 
where only a factor of difference of 20 was observed. This difference 
between 45 min and 90 min for spheroids incubated with B. mandrillaris 
originating from human cells was not in agreement with the ATP results 
in Figure 4A. This discrepancy issue might be due to sensitivity and 
nature of the parameter detected. The amount of DNA represents dead 
and alive cells (Cangelosi and Meschke, 2014) while ATP levels are 
dependent on metabolic activity of cells (Chan et al., 2013).

However, there is a noticeable question regarding which culture 
to use. The trophozoites harvested from the coculture with human 
SH-SY5Y neuroblastoma cells cannot be used until the monolayer of 
human cells is removed from the culture dish. Moreover, the 
trophozoites obtained from coculture with human SH-SY5Y cells tend 
to form cell clumps in the hanging drop of the 3DHSP, limiting the 
separation of trophozoites from the neurospheroid. Thus, optimizing 
the tilting time of the 3DHSP is recommended. In contrast, our results 
showed that the BM-3-derived trophozoites could be separated from 
the neurospheroid at a higher efficiency in the 3DHSP. No cell clump 
was observed when culturing the BM-3-derived trophozoites in the 
hanging drop on the 3DHSP. Due to the ease of cell preparation, the 
feeder-free culture in BM-3 is suitable for coculture with 
neurospheroids. Nevertheless, BM-3 medium contains many nutrients 
and is not commercially available (Schuster and Visvesvara, 1996). 
Thus, the use of BM-3 medium is limited. The reason underlying the 
clump of the trophozoites remains unknown. It is likely that 
trophozoites tend to form clumps when lacking nutrient sources or in 
response to changes in the microenvironment. However, this opens a 
question that needs to be  further elucidated since this cell clump 
might also be a mechanism of drug resistance, as observed in quorum 
sensing of bacteria (Donabedian, 2003; Bassler and Losick, 2006).

Physiologically relevant models are essential for validating the 
therapeutic effect of lead pharmaceutical substances. It is also feasible 
to use immunodeficient and immunocompetent mice to study the 
pathogenesis of granulomatous encephalitis (Janitschke et al., 1996) 
and the route of infection (Kiderlen and Laube, 2004). However, the 
use of animal models in drug screening is time-consuming and 
expensive and is possible only in laboratories with standard animal 
care. The culture of brain tissue or neurons may recapitulate in vivo 
conditions. A drug screening study used human brain tissue explants 
to indicate the therapeutic effect of nitroxoline (Laurie et al., 2018), 
leading to successful treatment of Balamuthia amoebic encephalitis in 
a human patient (Spottiswoode et al., 2023). Thus, a greater degree of 
physiological relevance allows higher similarity between in vitro and 
in vivo assays. Nevertheless, the in vitro culture of human brain tissue 
faces several concerns, such as tissue shortage, limited number of cells, 
and difficulty in culture and expansion. Cancer cell lines are more 
convenient for culture and expansion, supporting high-throughput 
drug screening. Human neuroblastoma SH-SY5Y cells originate from 

immature neurons (Biedler et al., 1978; Gilany et al., 2008). However, 
in vitro models of human neuroblastoma SH-SY5Y cells are applicable 
for elucidating the mechanisms of neuron dysfunction (Elyasi et al., 
2020). Therefore, the use of neuroblastoma cells reduces the need for 
primary neurons and is more suitable for drug screening. After drug 
screening in the cancer cell-based platform, the use of brain tissue 
explants or cerebral organoids is more relevant to the brain and can 
be used as a secondary screening phase without animal models.

Several cell culture platforms allow the generation of spheroids, 
including the embedding of cells in semisolid medium. A limit of the 
semisolid platform is the physical barrier against trophozoite 
penetration. Thus, a liquid drop allows cell contact without the 
physical barrier. Similar to other spheroid models, 3DHSP-derived 
neurospheroids have a hypoxic core (Anada et al., 2012; Leek et al., 
2016). The advantage of hanging drop-based spheroid formation is the 
lack of dependence on a scaffold. Nevertheless, it remains difficult to 
capture images of a spheroid in a drop using an inverted microscope. 
Moreover, the drop is prone to evaporation, requiring a humid 
environment. Due to the tight adherence of trophozoites to the 
neurospheroid, it was difficult to separate the trophozoites from the 
neurospheroid. Moreover, there were trophozoites surrounding the 
neurospheroid without cell contact after the 3DHSP was tilted. The 
sizes of trophozoites in the retaining well and the waste well were 
similar, implying that the trophozoites could be drained out from the 
retaining well. The presence of trophozoites in the retaining well might 
suggest a need to increase the flow but not the pore size.

Originally designed to assess the cytotoxic effect of CAR T cells 
against cancer spheroids (Chen et al., 2022), the 3DHSP is unsuitable 
for separating trophozoites from neurospheroids due to cell-to-cell 
interaction (Pengsart et  al., 2022; Pengsart and Kulkeaw, 2022); 
however, it may be useful in a drug screen for assessing both cytotoxic 
and amoebic effects by adjusting the size of the neurospheroids and 
using the ATP of trophozoites as a readout, despite the low separation 
efficiency, thereby reducing interexperimental variation (Iversen et al., 
2006; Larsson et al., 2020). However, improvements are needed for the 
use of 3DHSPs with fluorescence-or chemiluminescence-based plate 
readers for ATP measurement and high-content imaging for 
measuring the size of the neurospheroids.
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Introduction: As global temperatures rise to unprecedented historic levels, so 
too do the latitudes of habitable niches for the pathogenic free-living amoeba, 
Naegleria fowleri. This opportunistic parasite causes a rare, but >97% fatal, 
neurological infection called primary amoebic meningoencephalitis. Despite 
its lethality, this parasite remains one of the most neglected and understudied 
parasitic protozoans.

Methods: To better understand amoeboid intercellular communication, 
we  elucidate the structure, proteome, and potential secretion mechanisms 
of amoeba-derived extracellular vesicles (EVs), which are membrane-bound 
communication apparatuses that relay messages and can be used as biomarkers 
for diagnostics in various diseases.

Results and Discussion: Herein we propose that N. fowleri secretes EVs in clusters 
from the plasma membrane, from multivesicular bodies, and via beading of thin 
filaments extruding from the membrane. Uptake assays demonstrate that EVs are 
taken up by other amoebae and mammalian cells, and we observed a real-time 
increase in metabolic activity for mammalian cells exposed to EVs from amoebae. 
Proteomic analysis revealed >2,000 proteins within the N. fowleri-secreted EVs, 
providing targets for the development of diagnostics or therapeutics. Our work 
expands the knowledge of intercellular interactions among these amoebae and 
subsequently deepens the understanding of the mechanistic basis of PAM.

KEYWORDS

Naegleria fowleri, extracellular vesicles, ultrastructure, intercellular interactions, 
parasite

1. Introduction

Naegleria fowleri is a thermophilic free-living amoeba found ubiquitously in soil, fresh, 
and brackish waters (Fowler and Carter, 1965; Grace et al., 2015; Siddiqui et al., 2016; Xue 
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et al., 2018). This amphizoic pathogen is the etiologic agent for the 
fulminant disease known as primary amoebic meningoencephalitis 
(PAM), a neurological illness that commonly affects young healthy 
individuals (Visvesvara et al., 2007; Capewell et al., 2015). Infections 
in humans occur when contaminated warm water enters the nose—
usually during recreational water sports or nasal irrigation/
ablutions—and the invasive trophozoite stage of the parasite binds 
to and colonizes the nasal epithelium (Visvesvara et al., 2007; Pugh 
and Levy, 2016). N. fowleri then travels through the nasal mucosa 
and along the neuro-olfactory nerves through the cribriform plate 
to reach the olfactory bulbs in the frontal lobes where it feeds on 
neurons and damages brain membranes and meninges (Barnett 
et al., 1996; Capewell et al., 2015; Grace et al., 2015; Siddiqui et al., 
2016). Although the pathogenicity of the amoeba contributes to 
some of the damage, the host’s profound immune response 
ultimately leads to death due to increased intracranial pressure and 
brain herniation resulting in pulmonary edema and 
cardiopulmonary arrest (Visvesvara et al., 2007). The incubation 
period of PAM ranges from 2 to 15 days with >97% of cases resulting 
in death approximately one week after the initial appearance of 
symptoms (Ma et al., 1990; Siddiqui et al., 2016). Hundreds of cases 
have been documented worldwide with the majority of cases being 
reported in countries with developed medical systems (Visvesvara 
et al., 2007) including the United States, Australia, and Europe, thus 
it can be assumed that there are many more cases globally that go 
undiagnosed, mistaken for bacterial or viral meningitis, and 
unreported in less developed tropical regions. Though a rare 
infection, it most likely kills thousands worldwide, but is overlooked 
due to lack of routinely performed post-mortem examination of 
inexplicable neurological deaths. In the last 20 years, a rise in the 
number of reported PAM cases can be  attributed to increased 
awareness and the onset of globalwarming (Kemble et al., 2012) 
leading to the expansion of suitable climates for N. fowleri (Booth 
et al., 2015; Cope and Ali, 2016).

Various proteins have been identified that aid N. fowleri in the 
attachment to host cells, in invasion of the host central nervous system 
(CNS), and in obtaining nutrients from target cells (Sohn et al., 2010; 
Jamerson et al., 2012; Lam et al., 2017), but little is known regarding 
the mechanism of secretion of vesicles containing these proteins and 
other cargoes. Extracellular vesicles (EVs), which are membrane-
bound particles shed from cells, are known to carry cargo that consists 
of proteins, DNA, mRNAs, and microRNAs (van Niel et al., 2018; 
Malkin and Bratman, 2020). These particles, known as exosomes and 
microvesicles, merge with recipient cells and deliver their contents, 
thereby altering the function of the recipient cell (Mathieu et  al., 
2019). Numerous pathogens and eukaryotic parasites are known to 
secrete EVs to mediate host responses to infection and to communicate 
intercellularly (Marcilla et al., 2014; Quintana et al., 2017; Goncalves 
et al., 2018; Lin et al., 2019; Rai and Johnson, 2019). Additionally, 
recent reports show that N. fowleri secretes EVs (Nf-EVs) that are 
immunogenic, contain at least 200 proteins, and are taken up via 
phagocytosis by macrophages (Lertjuthaporn et  al., 2022; Retana 
Moreira et al., 2022), but no research has been performed that explores 
the mechanism of EV release, or the uptake of Nf-EVs by amoebae or 
multiple mammalian cell lines. The uptake of secretions by multiple 
cell lines could be  important because N. fowleri must traverse 
numerous types of cells before reaching the brain (Martinez et al., 
1973). Moreover, little has been done to elucidate specific physical 

structures that amoebae may exhibit when in the process of invading, 
interacting with, or actively feeding upon mammalian cells versus 
typical morphology of axenically cultured amoebae. Information 
about specific morphological changes as well as the mechanism by 
which immunogenic Nf-EVs are secreted could be vital in illuminating 
novel structures and downstream processes to target by drugs and 
potential prophylactics.

Herein, we  use scanning electron microscopy (SEM) to 
characterize the ultrastructural morphology of five clinical isolates of 
N. fowleri in both axenic culture and when feeding on various 
mammalian cell lines. Isolates of N. fowleri are known to have 
differences in drug susceptibilities and growth rate (Duma and Finley, 
1976; Schuster et al., 2006; Russell and Kyle, 2022), thus we selected 
five of varying genotypes for further characterization in this study: 
Nf69 (genotype IV/5), V067 (III/3), HB4 (III/3), V631 (I/2), and 6088 
(II/1). Additionally, we propose the secretion of clusters of Nf-EVs 
from the amoebae via multivesicular bodies, plasma membrane 
budding and a novel secretion technique in which clusters of uroid 
and/or adhesive filaments attach to the substrate and either break off 
from the cell in an intact form, or vesicularize in a beaded manner. 
Furthermore, we show the uptake of Nf-EVs by various mammalian 
cell lines and the real-time response of three of these cell lines when 
taking up Nf-EVs over time. Lastly, we provide a proteomic profile of 
>2,000 proteins found within Nf-secreted EVs which could be used as 
a resource for the development of novel therapeutics and protein-
based diagnostics.

2. Materials and methods

2.1. Naegleria fowleri cultivation

All clinical isolates were obtained as previously described in 
Russell and Kyle (2022). Trophozoites were cultured axenically as 
previously described with some changes according to desired uses. 
Shortly, trophozoites were grown from stocks axenically at 34°C and 
5% CO2 in non-vented 75-cm2 tissue culture flasks (Olympus, El 
Cajon, CA, United  States; cat#:25-208) with Nelson’s complete 
medium (NCM) supplemented with 10% fetal bovine serum (FBS; 
Corning, Oneonta, NY, United  States; cat#:35-016-CV) and  
1,000 U/mL penicillin and 1,000 mg/mL streptomycin (penstrep; 
Gibco, Gaithersburg, MD, United  States; cat#:15140-122) until 
80–90% confluent.

2.2. Mammalian cell cultivation

All mammalian cells were grown in vented 75-cm2 tissue 
culture flasks (ThermoFisher, Waltham, MA, United  States; 
cat#:156367) at 37°C and 5% CO2. A549 cells (Human lung 
carcinoma cells; ATCC CCL-185) were purchased from American 
Type Culture Collection (ATCC) and grown in F12K media 
(Corning, Oneonta, NY, United  States; cat#:10-025-CV) 
supplemented with 10% FBS and 1% penstrep. B103 cells (rat 
neuroblastoma cells) were purchased from AddexBio 
(cat#:C0005003) and were grown in DMEM (Corning, Oneonta, 
NY, United States; cat#:10-013-CM) supplemented with 10% FBS 
and 1% penstrep. HFF cells (Human foreskin fibroblasts; HFF-1 
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ATCC SCRC-1041) were purchased from ATCC and were cultured 
in DMEM supplemented with 15% FBS and 1% penstrep. Vero cells 
(green monkey kidney cells; E6; ATCC CRL-1586) were purchased 
from ATCC and were cultured in DMEM supplemented with 10% 
FBS and 1% penstrep. For passaging, all cell types were first washed 
with pre-warmed PBS to remove residual serum and then incubated 
with pre-warmed 0.25% Trypsin–EDTA (Gibco, Gaithersburg, MD, 
United  States; cat#:25200-056) for 5 min at 37°C. Following 
incubation, flasks were lightly tapped until all cells were detached 
and respective pre-warmed media supplemented with FBS was 
added to inactivate the trypsin prior to centrifugation at 37°C for 
5 min at 3,900 rpm and resuspension in respective media.

2.3. Preparation of samples for SEM

For imaging axenic cultures, 5 × 105 amoebae were allowed to 
attach to 13 mm Thermanox coverslips (Electron Microscopy 
Sciences, Hatfield, PA, United States; cat#:50-949-480) in 12-well 
plates prior to fixation. For feeding assays, 2.5–6 × 105 mammalian 
cells were seeded into plates containing coverslips and allowed to 
attach/grow for 18–24 h before adding 3–6 × 105 amoebae that were 
allowed to feed for various timepoints prior to fixation. Media was 
initially gently removed from samples and replaced with 2.5% 
glutaraldehyde (Electron Microscopy Sciences, Hatfield, PA, 
United States; cat#:16220) diluted in respective base media (no FBS 
or antibiotics added) and incubated for 1 h at RT. This was replaced 
with 2.5% glutaraldehyde diluted in 0.1 μm filtered 1X PBS (Gibco, 
Gaithersburg, MD, United States; cat#:10010-023) and incubated for 
10 min at RT prior to being washed with PBS two times, each with a 
10 min incubation period. Samples were then incubated for 5 min 
each with serially increasing concentrations (30, 50, 70, 90%) of 
molecular biology grade absolute ethanol (EtOH; Fisher BioReagents, 
Pittsburgh, PA; cat#:BP2818-500) diluted in 0.1 μm filtered MilliQ 
H2O. This was followed by two incubation periods of 5 min each in 
100% EtOH. A final incubation step of 5 min in hexamethyldisilazane 
(Electron Microscopy Sciences, Hatfield, PA, United  States; 
cat#:16700) was performed, liquid was removed, and samples were 
allowed to air dry in fume hood for 30 min – 1 h before being 
mounted on carbon-conductive tape (Ted Pella, Redding, CA, 
United  States; cat#:16084-8) on microscope slides. Samples were 
transported to SEM facility, carbon-coated and imaged with a Hitachi 
SU70 scanning electron microscope at 2 kV. For preparation of EVs 
for imaging, EVs were diluted in 1 mL of 0.1 μm-filtered 1X PBS and 
this dilution was passed over a 13 mm 0.2 μm Whatman Nucleopore 
Track Etch Membrane (Cytiva, Marlborough, MA, United States; 
cat#:10417001) mounted in a 13 mm Swinnex Filter Holder 
(MilliporeSigma, Burlington, MA, United States; cat#:SX0001300) 
using a 3 mL syringe. Following this step, a new syringe containing 
2.5% glutaraldehyde in 0.1 μm filtered PBS was attached and some of 
the contents were passed over the filter before capping and allowing 
to rest for 2 h at 4°C. Subsequent steps through imaging were 
performed in parallel with previously described samples in plates 
starting at 2.5% glutaraldehyde in PBS 10 min incubation step. 
Measurements were either performed upon pre-calibrated 
micrographs using the Quartz PCI SEM software (v8) or by manually 
calibrating to scale bars with ImageJ (v1.53k). Figures were generated 
using Adobe Photoshop (v23.5.2).

2.4. EV extraction

2.4.1. Conditioned media preparation
To generate conditioned media for EV extractions, amoebae were 

extracted from flasks containing NCM supplemented with normal FBS 
by placing flasks on ice for ~15 min to detach adherent cells which were 
collected via centrifugation at 4°C for 5 min at 4,000 rpm. The resulting 
supernatant was discarded, and the amoebae pellets were washed two 
times with 0.1 μm-filtered 1X PBS to remove any residual FBS EVs or 
proteins. These washed cells were then placed into a non-vented 
225-cm2 tissue culture flask (Corning, Oneonta, NY, United States; 
cat#:431081) containing 2× 0.1 μm filtered ~50 mL of Nelson’s 
Complete Media supplemented with 2× 0.2 μm filtered 10% 
EV-depleted FBS (Gibco, Gaithersburg, MD, United  States; 
cat#:A2720801) and 5% penstrep and allowed to adapt to the differing 
conditions (with media changes as needed to remove debris/dead cells) 
and grow until ~80–90% confluent. This flask was then passaged to 
5–10,225-cm2 flasks each containing ~200 mL of NCM supplemented 
with 10% EV-depleted FBS and 5% penstrep and these flasks were 
allowed to grow for 5–15 days with daily gentle swirling/agitation to 
induce growth until a peak yield was reached (based on morphology/
visual inspection of health of amoebae) and flasks were > 90% 
confluent. To harvest cells and conditioned media, flasks were placed 
on ice for 30 min to thoroughly cool the contents, and the cell 
suspensions were spun at 3,900 rpm for 15 min at 4°C in 500 mL bottles 
(VWR, Radnor, PA, United States; cat#:525-1598). The resulting cell 
pellet was separated, and all pellets were combined for a final count (in 
duplicate) via hemocytometer for each prep. The supernatant was 
removed and spun for an additional 15 min at 10,000 g at 4°C to 
remove remaining cellular debris. The final supernatant was then 
sterile filtered through a 0.45 μm filter (ThermoFisher, Waltham, MA, 
United States; cat#:167-0045) to remove any remaining large particles 
or aggregates and create amoeba-conditioned media that was stored at 
4°C for no more than 48 h prior to ultracentrifugation.

2.4.2. Ultracentrifugation protocol
Using 70 mL polycarbonate centrifuge tubes (Beckman Coulter, 

Brea, CA, United States; cat#:355655), conditioned media was spun 
using a Ti45 fixed-angle rotor in an Optima XE-90 ultracentrifuge at 
~118,000 g/39,000 rpm for 1 h 34 min with max acceleration and 
deceleration at 4°C. Additional spins were performed as needed by 
pouring off supernatant and adding remaining conditioned media 
until the entire volume was processed into a pellet. The resulting pellet 
was washed for 30 min at 4°C in 2–3 mL of ice-cold 0.1 μm sterile-
filtered 1X PBS on a shaker, followed by another spin and one final 
wash/spin to remove secreted proteins and other components. After 
the final spin, the supernatant was discarded, and the EV pellet was 
resuspended in 3 mL of 1X PBS by incubating at 4°C on a shaker for 
45 min-1 h. The resulting EV suspension was then concentrated down 
to 500 μL using a Amicon Ultra-4 3 kDa centrifugal filter unit 
(MilliporeSigma, Burlington, MA, United States; cat#:UFC800396) 
that was previously primed with 3 mL of PBS that was centrifuged out 
to remove particulates from the filter.

2.4.3. Size exclusion chromatography
Size Exclusion Chromatography was then performed on the 

500 μL concentrated suspension to clean up sample and remove 
secreted proteins using a qEVoriginal 70 nm column (Izon Science, 
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Christchurch, New Zealand) according to manufacturer protocols. 
In short, column was first equilibrated to room temperature and 
then washed with three column volumes (10 mL each) of sterile 
0.1 μm filtered 1X PBS. The concentrated 0.5 mL suspension from 
the ultracentrifugation protocol was then added to the column 
followed by 2.5 mL of PBS. The next 3–4 fractions (each consisting 
of 0.5 mL) were then collected depending on whether a purer EV 
suspension was desired or a higher yield. These fractions were 
pooled and transferred to another Amicon Ultra-4 3 kDa centrifugal 
filter and concentrated to ~100–250 μL according to 
manufacturer’s protocols.

2.4.4. EV protein concentration measurement
Protein contents of EVs were measured using the Bio-Rad Protein 

Assay Kit II (BioRad, Hercules, CA, United  States; cat#:5000002) 
according to the manufacturer’s microtiter plate protocol. Briefly, 5 μL 
of the 100–250 μL EV suspension plus 5 μL of 0.1 μm filtered 1X PBS 
was added to Corning 96-well clear polystyrene microplates 
(MilliporeSigma, Burlington, MA, United States; cat#:CLS3370) in 
duplicate, and a serial dilution of the provided bovine serum albumin 
(BSA) was performed in triplicate with 10 μL of each standard being 
added to three wells each prior to adding 200 μL of the dye reagent 
solution. Absorbance was measured after a 5 min incubation at 595 nm 
using a SpectraMax I3X plate reader (Molecular Devices, Sunnyvale, 
CA, United  States), and protein concentrations of samples were 
determined by creating a standard curve of the BSA.

2.4.5. Nanoparticle tracking analysis
A NanoSight NS300 (Malvern Pananalytical, Malvern, 

United Kingdom) instrument equipped with a syringe pump and 
utilizing NTA software v3.2 was used to determine particle size and 
concentration according to the following protocol. While 3 mL of 
0.1 μm filtered 1X PBS was running through the machine with an 
infusion rate of 1,000, a 1:100 (10 μL EVs in 990 μL PBS) dilution was 
made before loading sample into the syringe pump and allowing 
~300 μL to run through the line until particles were visible under 
camera. In the case of a highly concentrated sample in which particles 
are not easily identifiable and differentiated from one another, a new 
dilution of 1:1000 (1 μL of EVs in 999 μL PBS) was created and tested. 
A camera level of 14 was used for 10 captures with durations of 60 s 
each with a syringe pump infusion rate of 100. Once captures were 
collected, a detection threshold of 4 to 5 was selected depending on 
sensitivity required to detect the majority of particles in sample frames 
prior to data processing.

2.4.6. SDS-PAGE gel
Protein contents of EVs were visualized on SDS PAGE gels prior to 

sending samples for mass spectrometry to confirm concentration and 
expected complexity of EV proteome. To obtain protein lysates of serial 
dilutions of amoebae, cell pellets were subjected to three freeze–thaw 
cycles (−80°C to 37°C) prior to resuspending in PBS. EV and cell lysate 
samples were first mixed with 4x Laemmli Sample Buffer (BioRad, 
Hercules, CA, United States; cat#:1610747) that was pre-mixed 1:10 
(v/v) with 2-mercaptoethanol according to manufacturer protocols. 
Samples were then vortexed for 3 s prior to incubating at 70°C for 
10 min followed by another 3 s vortex. Mini-PROTEAN 4–15% TGX 
Stain-Free protein gels (BioRad, Hercules, CA, United  States; 
cat#:4568085) were prepared by rinsing with diH2O prior to 

submerging in SDS-PAGE running buffer and manually rinsing each 
well of the gel. Samples, 1 μL of BenchMark Protein Ladder (Invitrogen, 
Waltham, MA, United States; cat#:10747012) or blanks (sample buffer 
with PBS) were loaded to each well and gel was run at 100 V first for 
2–3 min followed by 200 V for 20–30 min prior to imaging with a 
Bio-Rad ChemiDoc Imaging System.

2.5. Fluorescence microscopy of 
nanotubes

Amoebae were grown on glass coverslips under normal culturing 
procedures in 6-well plates until ~70–80% confluent. For fluorescence 
microscopy, samples were first fixed with 4% PFA and 0.5% 
glutaraldehyde for 15 min followed by a wash with PBS and a 
subsequent incubation with 2 μg/mL Hoescht 33342 (Invitrogen, 
Waltham, MA, United  States; cat#:H21492) for 30 min. This was 
followed by another wash and a subsequent incubation step with 4 μL 
of the 1,000X DMSO suspension of SPY620-actin stain (Cytoskeleton 
Inc., Denver, CO, United  States; cat#:CY-SC505) in a 1 mL stain 
solution for 30–45 min. A final wash with PBS was performed prior to 
mounting and imaging with either the DeltaVision II (pd20621) 
microscope or the Carl Zeiss Elyra 7 microscope. For the DeltaVision 
II, we show the maximum intensity projection of z-stacks imaged with 
the 100X objective that were deconvolved using the SoftWorx software 
(settings: enhanced ratio(aggressive), 10 cycles, medium(200 nm) 
noise filtering). For the Zeiss Elyra 7, a z-stack of 106 slices (9.546 μm) 
was obtained with the 63X objective and the Lattice SIM2 
reconstruction algorithm was used to reconstruct the images and 
generate a 3D rendering (Grating Period: 617.32 nm, Processing: 3D, 
Input SNR: Medium, Iterations: 16, Regularization Weight: 0.065, 
Processing and Output Sampling: 4, Filter: Median, Detrend: No, 
Sectioning: 100, Baseline: Yes).

2.6. R18 EV uptake assays

2.6.1. R18 EV labeling and excess dye removal
Octadecyl rhodamine B chloride (R18; Biotium, Fremont, CA, 

United  States; cat#:60033) was diluted from 10 mM to 1 mM in 
DMSO (5 μL in 45 μL DMSO). EV suspensions that were split into 
20 μg aliquots and stored at −80°C until use were allowed to thaw 
on ice, and PBS was added to reach a volume of 1 mL. 1 μL of 1 mM 
R18 was added to each tube for a final concentration of 1 μM. In 
parallel, 1 μL of 1 mM R18 was added to 999 μL of PBS as a control 
which was treated the same as samples from this step forward. All 
sample tubes were covered in foil to protect from light and 
incubated at 4°C overnight. The next morning, two PD-10 desalting 
columns (Cytiva, Marlborough, MA, United States; cat#:17-0851-
01) were equilibrated per sample with 25 mL of 0.1 μm filtered 1X 
PBS. R18:vesicle solutions were passed through an equilibrated 
column by first adding the 1 mL suspension followed by 1.5 mL 1X 
PBS before eluting with 3.5 mL 1X PBS directly into a pre-washed 
Amicon Ultra-4 3 kDa centrifugal filter. These samples were 
concentrated to 1 mL before passing through a second desalting 
column and being concentrated to a final volume of 500 μL 
(equivalent to 1 μg of protein in 25 μL). Dyed EVs and control 
samples were stored in dark at 4°C until use (within 24 h).
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2.6.2. Deltavision high resolution imaging
3 × 105 B103 cells were seeded onto glass coverslips in 6-well plates 

and allowed to attach and grow under normal growth conditions for 
24 h. Media was then removed, and cells were washed once with 1 mL 
of pre-warmed serum-free DMEM prior to adding 2 mL of serum-free 
DMEM and serum starving cells for at least 1 h prior to EV treatment. 
All media was removed and replaced with ~500 μL of prewarmed 
serum-free DMEM (or enough to just coat glass coverslip) and 25 μL 
(equivalent to 1 μg) of R18-stained EVs were added to glass coverslips 
for various timepoints. At end of timepoint, samples were carefully 
washed thrice with prewarmed PBS prior to a combined stain/fix step 
with 4% PFA and 10 μg/mL Hoescht 33342. Coverslips were mounted 
on glass slides and sealed with clear nail polish prior to being imaged 
at 100X with the DeltaVision I (pd125225) Olympus IX-71 inverted 
microscope. Images were obtained with consistent percent 
transmission and exposure settings regardless of timepoint. Images 
were acquired as z-stacks that were deconvolved using the SoftWorx 
software (settings: enhanced ratio(aggressive), 10 cycles, 
medium(200 nm) noise filtering). The scaling for image/wavelength 
attributes of each channel for the maximum intensity projections were 
edited to the same values for every exported photo (DAPI = 82/872/1; 
TRITC = 51/1044/1) to reflect any changes in fluorescence intensity 
consistently without introducing bias.

2.6.3. High-content imaging of R18-stained EV 
uptake by mammalian cells

Cells were seeded at 10,000 cells per well for A549, 7,500 cells per 
well for HFF, and 5,000 cells per well for B103 and Vero into μClear 
black Cellstar 96-well microplates (Greiner Bio-One, Kremsmünster, 
Austria; cat#:655090) in 100 μL of their respective media per well. The 
next morning, media was removed and replaced with respective 
serum-free base medias to serum starve cells for 1–3 h. Cells were then 
treated with 0.25 μg (6.25 μL), 0.5 μg (12.5 μL) or 1 μg (25 μL) of Nf69-
secreted R18-labeled EVs starting at the longest timepoints and 
followed by shorter timepoints prior to the final 3 washes with 50 μL 
of PBS and fixation with 4% PFA for 15 min prior to a wash with PBS 
followed by staining with 10 μg/mL of Hoescht for 45 min and one 
final wash in PBS. Plates were then sealed with Axygen sealing film 
(Corning, Somerville, MA, United  States; cat#:PCR-SP) prior to 
imaging at 20X with an ImageXpress Micro Confocal system using a 
DAPI filter to image Hoescht-stained nuclei and a TRITC filter to 
image R18-labeled membranes. The MetaXpress High-Content Image 
Acquisition and Analysis Software (v6.7.2.290) was used to create a 
custom module to analyze images and enumerate fluorescence 
intensity at the cell population level in a non-biased manner. Cells 
were detected with a cell scoring mask that first identified nuclei using 
the DAPI channel (size range of 2–30 μm; intensity 1,500–15,000 
above background). The nuclei were then deemed positive or negative 
depending on the intensity above the local background surrounding 
the nucleus in the TRITC channel (size range of 5–50 μm; intensity of 
200–425 above background). The mean integrated intensity of the 
fluorescent values in the TRITC channel for “positive nuclei” was 
calculated and the summation of these values are presented in 
Supplementary Figure S4. The exact intensity cutoffs for the above 
masking strategy were calibrated to each plate and cell line using 
unstained controls. Four technical replicate wells were used per 
treatment group and two independent biological replicates 
were performed.

2.6.4. Amoebae R18-stained EV uptake 
visualization via ImageStream

Two days before assay, V631 amoebae were harvested, counted, 
and seeded into microcentrifuge tubes at concentrations of 50,000 
cells per tube in a total volume of 1 mL of NCM supplemented with 
10% EV-depleted FBS and penstrep. Tubes were gently agitated once 
a day to induce growth. Nf69 EVs were stained as described earlier and 
each tube was treated with 1 μg of R18-stained EVs and incubated at 
34°C for various timepoints. At the end of a timepoint, tubes were 
spun down at 14,000 rpm for 2 min and the supernatant was carefully 
aspirated and replaced with 500 μL of incomplete NCM. This wash 
process was repeated two more times prior to adding a stain/fixative 
mixture that consisted of 4% PFA, 0.5% glutaraldehyde and 2 μg/mL 
Hoescht and incubating at RT for 45 min. Tubes were spun down at 
14,000 rpm for 2 min and washed with 500 μL of PBS prior to a final 
spin and resuspension in 100 μL of PBS. The imaging flow cytometry 
data acquisition template was set to collect 15,000 events at 60X 
magnification with channel 405 set to 10 mW, channel 561 set to 
200 mW and the SSC channel set to 1 mW. Flow cytometry data was 
analyzed and compensated using the IDEAS software (Luminex, 
Austin, TX, United States; v6.2.187.0). Unstained and single-color 
controls were used to compensate data for each replicate. Gating was 
first performed to select for focused cells followed by Hoescht-positive 
cells as a secondary gate to exclude debris. Data was exported to FCS 
Express 7 Plus (De Novo Software, Pasadena, CA; v7.12.0007) to create 
histogram overlays and visualize shifts in fluorescence intensity for cell 
populations from each timepoint.

2.7. RealTime-Glo EV assay

The RealTime-Glo MT Cell Viability Assay (RTG; Promega, 
Madison, WI; cat#:G9712) previously described by Colon et al. and 
Rice et al., was used to assess whether any differences in viability of 
Vero, A549, or B103 cells occurred in response to exposure to 
Nf-secreted EVs (Colon et al., 2019; Rice et al., 2020). As shown in 
Supplementary Figure S5, we first determined the optimal seeding 
density of cells within 96-well plates for each mammalian cell line by 
performing dilution series testing (2,500 to 40,000 cells/well) at 
various timepoints (6 h, 12 h, 24 h and 36 h) using the CellTiter-Glo 
2.0 assay as described in our previous publication (Russell and Kyle, 
2022). Being that 5,000 cells fell within the linear range of the assay at 
all timepoints tested (except for HFFs which were excluded from this 
assay due to a lack of linearity), we selected this concentration and 
seeded cells with four technical replicates per concentration tested in 
a volume of 35 μL per well. Cells were allowed to attach and then 
serum-starved by adding non-supplemented base media 1–2 h prior 
to adding EVs. The protein concentration of freshly extracted brain 
passaged Nf69 EVs was determined, and dilutions were made as 
necessary to allow a standard volume of 15 μL to be added to each 
well. The same process was followed for frozen stocks that were pulled 
from −80°C storage and thawed on ice for testing. Prior to adding 
EVs, the RTG substrate and enzyme were equilibrated to 37°C and 
mixed in respective base growth medias of each cell line. EVs were 
added to cells and 50 μL of the 2X RTG enzyme-substrate mixture was 
immediately added to obtain a 1X concentration. Plates were quickly 
sealed and incubated in a SpectraMax i3x plate reader (Molecular 
Devices, Sunnyvale, CA, United  States) at 37°C and relative 
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luminescence units (RLUs) were recorded every 2.5 min for 20 h. 
Negative/untreated controls were seeded with four replicates per cell 
line and included 15 μL PBS + cells, 15 μL media + cells, 50 μL media 
only, and 50 μL PBS only. EV only controls were included for each 
replicate and consisted of 1 μg of EVs (15 μL) in 35 μL of PBS. Initial 
dilution series testing of varying EV protein concentrations exposed 
to B103 cells was performed (Supplementary Figure S6) prior to 
proceeding with 1 and 0.5 μg. Data was analyzed and graphed using 
GraphPad Prism 9 (GraphPad Software, La Jolla, CA, United States; 
v9.5.0).

2.8. Proteomic characterization of EVs

2.8.1. Preparation of samples
Three biological replicates of 2 L EV preps for Nf69-conditioned 

media were extracted under aseptic conditions (in biosafety cabinet, 
with 70% EtOH sterilized equipment, etc) and concentrated to 
<200 μL in PBS prior to measuring protein concentration as described 
above. Aliquots of 20 μg were frozen at −80°C and sent on dry ice for 
mass spectrometry analyses at UC Davis. The protein samples were 
subjected to proteolysis by using suspension-trap (ProtiFi) devices. 
S-Trap is a powerful Filter-Aided Sample Preparation (FASP) method 
that consists in trapping acid aggregated proteins in a quartz filter 
prior enzymatic proteolysis. Here, proteins were resuspended in 50 μL 
of our solubilisation buffer consisting of sodium dodecyl sulphate, 
50 mM triethyl ammonium bicarbonate in water, pH 7.55. Disulfide 
bonds were reduced with dithiothreitol and alkylated (in the dark) 
with iodoacetamide in 50 mM TEAB buffer. Digestion constituted of 
a first addition of trypsin 1:100 enzyme: protein (wt/wt) for 4 h at 
37°C, followed by a boost addition of trypsin using same wt/wt ratios 
for overnight digestion at 37°C. Peptides were eluted from S-Trap by 
sequential elution buffers of 100 mM TEAB, 0.5% formic acid, and 
50% acetonitrile 0.1% formic acid. The eluted tryptic peptides were 
dried in a vacuum centrifuge and re-constituted in 0.1% 
trifluoroacetic acid. A small portion of the extract is used for 
fluorometric peptide quantitation (ThermoFisher, Waltham, MA, 
United States), to confirm the amount of peptide injected into the 
LCMS system.

2.8.2. LC–MS
Liquid chromatographic peptide separation was done on an ultra-

high pressure nano-flow Easy nLC (Bruker Daltonics, Billerica, MA, 
United  States). Flow rate of buffers was 0.85 μL/min, on a 
PepSep  150 μm x 25 cm C18 column (Bruker, Billerica, MA, 
United States) with 1.5 μm particle size (100 Å pores; Bruker Daltonics, 
Billerica, MA, United States), heated to a constant temperature of 
40°C; nanoESI via a ZDV spray emitter (Bruker Daltonics, Billerica, 
MA, United States). Mobile phases A and B consisted of water with 
0.1% formic acid (v/v) and 80/20/0.1% ACN/water/formic acid (v/v/
vol), respectively. Peptides were separated using a 35 min gradient: 
from 0–2 min increase buffer B to 5%, 2–5 min 5–10% B, 5–28 min 
10–36% B, 28–35 min 80% B. This was followed by direct elution into 
the mass spectrometer. MS was performed on a hybrid trapped ion 
mobility spectrometry-quadrupole time of flight mass spectrometer 
(timsTOF Pro; Bruker Daltonics, Billerica, MA, United States) with a 
modified nano-electrospray ion source (CaptiveSpray; Bruker 
Daltonics, Billerica, MA, United States). In the experiments described 

here, the mass spectrometer was operated in PASEF mode. Desolvated 
ions entered the vacuum region through the glass capillary and 
deflected into the TIMS tunnel which is electrically separated into two 
parts (dual TIMS). Here, the first region is operated as an ion 
accumulation trap that primarily stores all ions entering the mass 
spectrometer, while the second part performs trapped ion mobility 
analysis. Data-independent analysis (DIA) was performed on a 
nanoElute UHPLC coupled to a timsTOF Pro. The acquisition scheme 
used for DIA consisted of four 25 m/z precursor windows per 100 ms 
TIMS scan. Sixteen TIMS scans, creating 64 total windows, layered the 
doubly and triply charged peptides on the m/z and ion mobility plane. 
Precursor windows began at 400 m/z and continued to 1,200 m/z. The 
collision energy was ramped linearly as a function of the mobility 
from 63 eV at 1/K0 = 1.5 versus cm − 2 to 17 eV at 1/K0 = 0.55 
versus cm − 2.

2.8.3. Data analysis
The data-independent LCMS data was analysed with Spectronaut 

(Biognosys) software v16. First, the Bruker LCMS DIA files were 
converted into htrms files using the htrms converter (Biognosys). MS1 
and MS2 data were centroided during conversion, and the other 
parameters were set to default. First the htrms files were analyzed with 
Spectronaut (version: 14.0.200601.47784, Biognosys). Then, the htrms 
files were subjected to quantitative data analysis via direct DIA. Here, 
the Spectronaut software generates a directDIA library. To generate it, 
calibration was set to non-linear iRT calibration with precision iRT 
selected. We  used the protein sequence database of unreviewed 
N. fowleri, rUP000444721 and the Uniprot Crap common 
contaminants were used. Decoy sequences were generated and 
appended to the original database. A maximum of two missing 
cleavages were allowed, the required minimum peptide sequence 
length was 7 amino acids, and the peptide mass was limited to a 
maximum of 4,600 Da. Carbamidomethylation of cysteine residues 
was set as a fixed modification, and methionine oxidation and 
acetylation of protein N termini as variable modifications. The initial 
maximum mass tolerances were 70 ppm for precursor ions and 
35 ppm for fragment ions. A reversed sequence library was generated/
used to control the false discovery rate (FDR) at less than 1% for 
peptide spectrum matches and protein group identifications. Decoy 
database hits, proteins identified as potential contaminants, and 
proteins identified exclusively by one site modification were excluded 
from further analysis.

2.8.4. Functional analyses of identified proteins
The returned list of identified proteins consisted of 2,295 proteins, 

2,270 of which were specific to N. fowleri (others included common 
human or bovine contaminants such as keratin, serum albumin, etc. 
that came from the media or the preparation process). These amoebae-
specific proteins were first run through the Blast2GO (v6.0.3) pipeline 
(steps included: blast search, interpro classification, GO mapping, 
annotation, and goslim reduction) and this annotation data was 
associated with the protein list in Supplementary Table S2 (Conesa 
et al., 2005; Conesa and Gotz, 2008; Gotz et al., 2008). Because the 
hierarchical charts generated by Blast2GO were too complex/difficult 
to follow, we utilized the Panther Classification System (v17.0) to 
perform functional classifications and identify potential gene family 
enrichment (Thomas et al., 2022). Data lists were exported, and pie 
charts were generated in Microsoft Excel (v2212).
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3. Results

3.1. Axenically cultured clinical isolates of 
Naegleria fowleri are distinguishable by 
size

We utilized SEM to visualize and compare five axenically cultured 
clinical isolates of N. fowleri. When analyzing each isolate, we made 
morphometric observations and took measurements of structures 
that are labeled throughout Figure  1 and summarized in 
Figure 1F. When comparing between culturing conditions (axenic or 
fed over mammalian cells), we found no significant differences in the 
average width of each individual isolate, however we did discover 
statistically significant differences when comparing the overall widths 
among isolates as determined by one-way analysis of variance 
(ANOVA) [F(4,893) = 6.983; p  < 0.0001]. The average combined 
width of the five clinical isolates (composed of at least 3 measurements 
of length and/or width per amoeba ± s.e.m.) was 10.3 ± 0.6 μm 
(n = 898 amoebae measured), with Nf69 being significantly larger 
than both 6088 (p = 0.0012) and V631 (p = 0.0001), and HB4 also 
being larger than V631 (p = 0.0012; post hoc Tukey comparisons; 
Table 1; Figure 1F).

We took note of one structural motif known as the uroid—an 
organelle previously observed on the posterior end of N. fowleri 
trophozoites with trailing filaments or processes (Carter, 1970; 
Visvesvara et al., 2005). It is referred to as an excretory organelle in 
limax amoebae (Vickerman, 1962), the potential location of the 
contractile vacuole in N. fowleri (Martinez et al., 1971), and a structure 
potentially involved in releasing vacuoles, waste, and excretory 
granules in Entamoeba histolytica (Hopkins and Warner, 1946). Our 
current work shows that the uroid of N. fowleri consists of clusters of 
hemispherical bulges of the membrane (rounded blebs or clusters of 
membranous invaginations) and was identified in all clinical isolates 
analyzed except for 6088, although it was only visible in a subset of the 
amoebae. The size of the uroid regions (reported in Table  1 and 
Figure  1F) seemingly correlated with the width of the isolates as 
evidenced by the largest isolate, Nf69, boasting a significantly larger 
uroid region compared to V067 (p = 0.0081), to V631 (p = 0.0002), and 
to HB4 (p  = 0.0109) [one-way ANOVA and post hoc Tukey 
comparisons; F(3,132) = 6.540; p = 0.0004].

Often, we observed bundles of thin filaments with occasional 
bulbous tips—herein referred to as uroid filaments—that extruded 
from the uroid region, adhered to the substrate, and were repeatedly 
found broken off on either the mammalian cell or the substrate 
surface surrounding imaged amoebae. Other filaments with 
occasional bulbous tips that we suggest are adhesive filaments, often 
extended from the membrane around the entire cell periphery. 
We measured the diameters of these filaments in axenic cultures and 
report them in Table 1. Lastly, we have confirmed the observation 
made by Antonios et al. that no or very few organized “suckers” or 
food-cups/amoebastomes were identified on the trophozoite stages 
examined (Antonios, 2010). Contrary to some reports of one or more 
food cups per amoeba (John et al., 1984; Sohn et al., 2010), easily 
identifiable food cups were rare, and only identified in a small 
fraction of images taken of axenically cultured amoebae as well as 
those cultured over mammalian cells (Figures  1A,F; Table  1; 
Supplementary Figures S1A,D,H,J).

3.2. Feeding Naegleria fowleri produces 
distinct structures and induces cytopathic 
effects in co-cultured mammalian cells

Evidence shown by John and John (1994) indicates that allowing 
N. fowleri clinical or environmental isolates to feed over mammalian 
cells for multiple passages confers higher levels of pathogenicity, thus 
we reasoned that this mechanism could be leveraged in a controlled 
visual assay for understanding the structural differences arising from 
actively feeding versus growing axenically in culture. We exposed the 
amoebae to three different food sources: human foreskin fibroblasts 
(HFF), B103 rat neuroblastoma cells (B103), and Vero green monkey 
kidney cells. All isolates, except for 6088, readily consumed HFF and 
Vero monolayers, while feeding on B103s was rare and commonly 
resulted in amoeboid encystation. Initial criteria for the selection of 
mammalian cells to monitor sub-micron level interactions among 
amoebae and their food allowed for the exclusion of B103s and HFFs 
as these both produce long/fibrous cellular connections and raise from 
the substrate at times when growing in a semi-confluent to confluent 
monolayer (Supplementary Figures S2A,C). Vero cells were selected 
as these produced uniformly flat monolayers with little to no visual 
fibrous intracellular connections or extracellular nanotube structures, 
thereby allowing for the least confounding identification and 
differentiation between amoebae and mammalian cells 
(Supplementary Figures S2E,G). Cytopathic effects were noted for all 
strains and cell lines when cultured with amoebae (Figure  2C; 
Supplementary Figure S2) and consisted of initial apoptotic bleb 
formation (inset in Figure  2C) followed by rounding of the 
mammalian cell accompanied by partial detachment from the 
substrate and the formation of long thin dendritic fibrils extending 
from main cell body. When these thin fibrils are formed, the amoebae 
attach to them and cluster along them (regardless of whether they are 
still associated with the substrate), and a common phenomenon seen 
when culturing over mammalian cells are networks of floating 
mammalian cell connections with dense clusters of amoebae dispersed 
along their lengths (example in right side of Figure 2C).

Prior work on N. fowleri by Antonios et  al., described a thin 
surface extension when comparing the morphology of axenically 
cultured amoebae versus those freshly extracted from a brain and 
speculated that they played a role in adherence to brain tissues 
(Antonios, 2010). In our study, we  also noted the formation of 
elongated thin filopodia extending from amoebae to mammalian cells 
(Figure  2Ai,ii). Due to their thick nature and extension over 
mammalian cells, we speculate that these could provide a basis for 
material exchange (inset in Figure 2Ai). Additionally, in an axenically 
cultured V631 prep, we noted a thick filopodial extension connecting 
three different trophozoites (Figure 2E) which could contribute to 
biofilm formation. We  also observed pseudopodia with raised 
topographies extended onto mammalian cells, sometimes with 
thinner tubular structures connecting them to the main cell body 
(Figure 2B), but mostly with the canonical fan-shaped pseudopodia 
(Figure 2Bi,ii,iii; Supplementary Figures S1C,F,L). We speculate that, 
due to the raised nature of the pseudopodia, there are likely 
amoebastomes or other structures facilitating material exchange being 
formed at the interface between the pseudopodia and the mammalian 
cell, but further characterization was not possible due to the 
limitations of SEM.
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Another phenomenon that we noted was the formation of thin 
branching filaments—sometimes emanating from the uroid region 
(Figures  2C,D), sometimes surrounding the entire cell periphery 
(Figure 2F; Supplementary Figure S1C)—that seem to be in contact 
with other amoebae and/or mammalian cells. We hypothesize that this 
could be a method of probing of the environment employed by the 
amoebae. We show that these thin filopodial extensions are formed 
via actin polymerization and can be visualized with high resolution 
fluorescence microscopy (Figures 3A–G; Supplementary Video S1). 
Moreover, we  also observed the formation of thin filamentous 
connections from cysts to neighboring trophozoites 
(Supplementary Figures S1F,I). We  speculate that this is either a 
tethering technique or a technique for intracellular signaling between 
cysts and/or trophozoites and the environment. The cysts exhibited 
the canonical rounded/oval form—sometimes with an exit pore 
(Supplementary Figure S1F) – and a finely reticulated membrane 
texture previously described by Lastovica (1974).

3.3. Nf-EVs are spherical and secreted in 
clusters from multiple sources

To ascertain the structure and mechanism of secretion of Nf-
EVs, we designed an ultracentrifugation and purification technique 
following the Minimal Information for the Study of Extracellular 
Vesicles (MISEV) guidelines (Théry et al., 2018), and adapted from 
Bayer-Santos et al. (2013) and Szempruch et al. (2016) to extract 
vesicles from amoeba-conditioned media of four of the five isolates 
analyzed in this study. We extracted EVs from all isolates except 
6088 as it was particularly sensitive to the transition from normal 
culture media to the EV-depleted fetal bovine serum (FBS) 
supplemented media. Nanoparticle tracking analysis revealed an 
average diameter of 152.6 nm for Nf-EVs across all isolates (Table 1; 
Figure 1F; Supplementary Figures S3A–D). Upon examination of 
freshly extracted Nf69 and V631 EV suspensions passed over a filter, 
we  observed clusters of Nf-EVs with spherical morphologies 

FIGURE 1

SEM micrographs of each clinical isolate in axenic culture. (A) Nf69, (B) V067, (C) HB4, (D) 6088, (E) V631. (F) Graphical depiction of SEM 
measurements and EV size comparison between analysis techniques (NTA, EVs run over filter, and EVs identified on/around cells). Error bars on the 
charts represent the standard error of the mean. af, adhesive filament (originating from regions other than the uroid and  <  300  nm); a, amoebastome; f, 
filopodia(>300  nm); u, uroid region; uf, uroid filaments (generally associated with uroid region and  <  300  nm); p, pseudopodia; l, lobopodia; r, rough. 
Data shown are representative of 2 independent experiments.
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(Figures 4A,B). We took measurements of individual Nf-EVs found 
on the filter, including those with easily interpretable edges and 
excluding those associated with clusters, and present them in 
Table 1. Following this, we examined the SEM images of amoebae 
and took measurements of potential EVs being secreted from the 
cell membrane or from filaments around the cell that are 
summarized in Table 1 and Figure 1F. Our results coincide with the 
range of 131–172 nm reported by Lertjuthaporn et al. (2022) and 
43.88–216 nm reported by Retana Moreira et  al. (2022). When 
comparing the sizes of measured Nf-EVs across the 3 measurement 
techniques and also among the 5 isolates, we  found them to 
be  significantly different via two-way ANOVA (across 
measurement techniques: [F(2,314,849) = 15.91; p  < 0.0001]; 
among isolates: [F(4,314,849) = 27.42; p < 0.0001]; Figure  1F; 
Supplementary Table S1). In short, among the NTA preparations, 
V631, HB4 and V067 EVs were significantly larger than Nf69 EVs; 
V631 EVs were significantly larger than V067 EVs; and HB4 EVs 
were significantly larger than V067 EVs. When comparing NTA to 
filter measurements, Nf69 and V631 NTA EVs were significantly 
larger than their counterparts measured on the filter. This could 
be due to clusters of EVs being detected as a single EV in NTA and 
our exclusion of these clusters from our manual measurements of 
SEM images.

To determine the potential source of the secreted EVs, we scanned 
our SEM images for secretions from amoebae that resembled the EVs 
visualized on filters and identified three probable sources 
(Figures 4C–G). Firstly, we observed that the uroid/adhesive filaments 
commonly separate into vesicles via beading or pearling (Rilla, 2021) 
and break off onto the substrate leaving behind clusters of material 
(Figures 4C,D,F,G). This source of EVs from filopodial extensions has 
been described for numerous types of mammalian cells (Lai et al., 
2015; Mathieu et al., 2019; Rilla, 2021). To support this phenomenon 
in N. fowleri, we mined the images of Nf-EVs passed over filters and 
found an example of a filament associated with clusters of EVs in a 
similar manner to those that we  visualized in amoebae cultures 
(Figure 4H). Secondly, we noted the release of clusters of EVs from the 
periphery of the cell membrane (Figure 4E) which could indicate 
emission of vesicles via multivesicular bodies (MVBs). Lastly, 

we observed clusters of materials being released from regions of the 
plasma membrane (Supplementary Figure S1D). Upon taking 
measurements of the adhesive/uroid filaments, the putative vesicles 
formed via beading of filaments, and the clusters of putative vesicles 
secreted from the plasma membrane, we found that the size range 
overlaps with measurements that we obtained via NTA and manually 
on filters.

3.4. R18-stained Nf-EVs are taken up by 
mammalian cells and other amoebae

To determine whether Nf-EVs are taken up by mammalian cells, 
we  labeled Nf69-EVs with the lipophilic fluorophore octa-decyl 
rhodamine B (R18) and performed fluorescence dequenching assays 
to monitor time-dependent increases in fluorescence that would 
be indicative of EV uptake by recipient cells. We first exposed B103 
cells to Nf69-secreted R18-stained EVs for various timepoints and 
imaged the resulting cells (Figure 5). At the 5-min timepoint we noted 
initial dim lipid equilibration with B103 cell body membranes 
indicated by dim/diffuse staining through the 30-min timepoint 
(Figures  5E–H) compared to the R18-stained PBS control cells 
(Figures 5A–D). As more EVs were taken up by host cells over time, 
more of the R18 dye was diluted resulting in brighter fluorescent 
signals on the host cell membranes (Figures 5I–P). Initial punctate 
staining patterns occurred over the cell body, and this escalated to 
bright coverage of the full membrane (including the axons and 
dendrites) until fluorescence reached a plateau at ~6 h (Figures 5Q–T). 
We next quantified levels of Nf69-EV uptake for different cell lines at 
the population level (as a function of integrated fluorescence intensity) 
by using different concentrations of Nf69-EVs with B103, HFF, Vero, 
and A549 cells. We developed a 96-well plate assay using high-content 
imaging to detect host cell nuclei which were defined as Hoescht+ and 
then host cytosol defined as R18−/+. When quantifying the mean 
fluorescent intensity of double positive cells (host nuclei and cytosol), 
we observed a time and concentration-dependent increase in mean 
integrated fluorescence intensity per treatment group that plateaued 
at approximately 6–12 h (Supplementary Figure S4).

TABLE 1 Measurements of Naegleria fowleri amoebae and Nf-EVs taken with SEM and NTA (mean  ±  s.e.m.).

Clinical Isolate Nf69 V067 HB4 6088 V631

Width (μm) n = number of 

amoebae measured
11.8 ± 0.5 (n = 174) 10.6 ± 0.4 (n = 199) 11.37 ± 0.5 (n = 208) 8.73 ± 0.6 (n = 47) 9.15 ± 0.3 (n = 270)

Uroid region (μm) n = number of 

measurements
5.18 ± 0.3 (n = 27) 3.75 ± 0.3 (n = 20) 3.97 ± 0.3 (n = 34) n/a 3.69 ± 0.2 (n = 55)

Number of amoebastomes 

n = number of amoebae analyzed
0.24 ± 0.06 (n = 104) 0.23 ± 0.13 (n = 22) 0.03 ± 0.04 (n = 61) 0.05 ± 0.05 (n = 22) 0.35 ± 0.18 (n = 26)

Filament diameter (nm) 

n = number of measurements
137.2 ± 8.0 (n = 174) 172.3 ± 4.4 (n = 301) 212.2 ± 4.0 (n = 758) 156.7 ± 4.4 (n = 369) 173.0 ± 5.0 (n = 658)

EV NTA diameter (nm) 

n = number of EVs measured
150.2 ± 0.6 (n = 61,130) 153.8 ± 0.7 (n = 106,876) 157.2 ± 0.2 (n = 75,436) n/a 158.9 ± 0.7 (n = 68,157)

EVs on filter diameter (nm) 

n = number of EVs measured
117.0 ± 1.4 (n = 1,369) n/a n/a n/a 158.1 ± 1.8 (n = 817)

EVs on/near cells diameter (nm) 

n = number of EVs measured
162.7 ± 7.1 (n = 150) 168.4 ± 9.6 (n = 69) 164.2 ± 3.7 (n = 496) 219.2 ± 19 (n = 14) 130.9 ± 2.1 (n = 342)
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To determine whether EVs are taken up by other amoebae, 
we grew the amoebae in suspension and treated V631 with 1 μg of 
Nf69-secreted R18-stained EVs for various timepoints and 
performed imaging flow cytometry. We used Hoescht+ gating to 
select for viable amoebae followed by R18+ gating to quantify 
fluorescence levels of each treatment population of amoebae. 
Similar to mammalian cells, we saw initial rapid lipid equilibration 
with amoeba cell membranes (Figure  6A, 5 min) and this was 
followed by increasing numbers of punctate staining patterns 
(Figure 6A, 15 min – 2 h) indicative of vacuolized EVs taken up by 

the amoebae via phagocytosis with increasing levels of uptake over 
time (Figure 6B).

3.5. Exposure to Nf-EVs induces an 
increase in metabolic activity in 
mammalian cells

To determine if there are any measurable effects on cellular 
metabolism in real-time after treating cells with Nf69-EVs, we first 

FIGURE 2

Representative SEM micrographs of intercellular interactions among amoebae and mammalian cell monolayers. (A) Main panel shows V067 
trophozoite (white arrow) extending a filopodium of ~300  nm in diameter (red arrowheads) a distance of ~6.3  μm away from the cell body to a nearby 
Vero, subpanel i shows a V631 trophozoite (white arrow) feeding on HFF and extending filopodia of ~300  nm diameter a distance of >6.75  μm 
containing potential cargo of ~200  nm (white arrowheads) onto HFF, while subpanel ii shows a V631 trophozoite (white arrow) feeding on HFF cell 
with 5.6  μm long uroid filament extending from rear of cell (left white arrowhead) and filopodia of varying width (right red arrowheads) reaching onto 
HFF cell (of which the largest varies in diameter from 600  nm to 1.1  μm and extends ~6.74  μm from cell), a white bracket shows contact point; (B) V631 
trophozoite (white arrow) producing pseudopodia that act as contact points with Vero cells (white brackets) and extend from the cell body via rough 
tubular structures (red arrowheads), also labelled with red arrowheads are uroid/adhesive filaments, subpanel i shows a V631 trophozoite with a rough 
surface feeding on a Vero cell and extending a pseudopodium (white bracket), subpanel ii shows a V631 trophozoite feeding on an HFF cell with a long 
filament (white arrowhead) extending from a thicker filopodium (white bracket), and subpanel iii shows a V631 trophozoite extending a pseudopodium 
with raised topography onto an HFF; (C) HB4 with connections to neighboring amoeba via uroid filaments (red arrows), white curly bracket shows 
apoptotic Vero cell with adhesive filopodia (white arrowheads w/red outline) that amoebae on right side of photo are attached to and cluster along 
when feeding; inset shows apoptotic blebs forming on Vero; (D) Nf69 trophozoite (white arrow) on Vero cell and extending a thin, branching filament 
(red arrows); (E) axenically cultured V631 trophozoites connected via a filopodial structure ranging from 172.6  nm to 1.27  μm a total distance of 
~15.4  μm from the originating cell; (F) Nf69 trophozoite (white arrow) producing filaments around the cell perimeter that make contact with 
neighboring Vero cells (red arrowheads).
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optimized the seeding densities of tested cells using the CellTiter-Glo 
2.0 kit in 96-well plates to confirm that the luminescence readings fell 
within the linear range of the RealTime-Glo MT cell viability assay at 
various timepoints throughout the planned incubation period 
(Supplementary Figure S5). The RealTime-Glo MT kit allows real-
time monitoring of cell viability depending on the ability of exposed 
cells to take up and metabolize/reduce the prosubstrate to a substrate 
that is exported from the cell to bind to the NanoLuc Enzyme and 
produce the bioluminescence (in RLUs) that is measured as an output 
for the assay. We anticipated a decrease in cellular viability in response 
to Nf-EV uptake according to prior work showing that the EVs of 
another free-living amoeba, Acanthamoeba castellanii, induce 
cytotoxic effects in mammalian cells (Goncalves et al., 2018). On the 
contrary, we observed an increase in RLUs in the treatment groups 
compared to control groups regardless of low versus high doses, or the 
cell line used (Supplementary Figure S6; Figure 7). We observed the 

same phenomenon when we compared the efficacy of freshly extracted 
and processed EVs to those that were frozen immediately after 
processing and stored at −80°C for 14 weeks prior to thawing for the 
assay (Supplementary Figure S7).

3.6. Naegleria fowleri EV proteome consists 
of a diverse range of proteins

To date, little is known about the protein composition of Nf-EVs. 
A preliminary visualization of protein contents of Nf69-EVs via 
SDS-PAGE gel is shown in Supplementary Figure S3E and the 
presence of at least 24 bands indicates that many different protein 
populations are present in the secreted EV proteome. To elucidate 
these proteins, we  performed LC–MS/MS on two independent 
preparations of Nf69-EVs extracted from amoeba-conditioned media 
and identified 2,270 proteins present within both samples that 
represent the EV proteome (Supplementary Table S2). This represents 
a subset of 16.7% of the full 13,596 protein N. fowleri proteome 
(Zysset-Burri et al., 2014). These EV proteins were run through the 
Blast2GO suite, and the resulting annotations are also provided in 
Supplementary Table S2. We then compared our proteomic profile to 
the previously reported N. fowleri EV proteome and found that out of 
the 184 proteins reported by Retana Moreira et al. (2022), 18 proteins 
were specific to the non-pathogenic Naegleria gruberi. Of the 
remaining 166 N. fowleri specific proteins, 16 were not recapitulated 
in our study, resulting in an overlap of 150 proteins (highlighted in 
yellow in Supplementary Table S2) that are reiterated in our proteomic 
profile. We utilized the Panther classification system (Thomas et al., 
2022) to identify enriched protein classes or functionalities. Out of the 
2,270 proteins submitted to Panther, 1,876 were recognized for each 
of the 3 classification schemas. Graphical summaries of the Panther 
results are presented in Figure 8 and Supplementary Figures S9A,B 
with 1,430 protein class hits, 1,312 molecular function hits, and 2,109 
biological process hits. The 5 categories in the Protein Class schema 
with the highest prevalence were: metabolite interconversion enzyme 
(26.6%; 380 proteins), protein-binding activity modulator (14.8%; 211 
proteins), transporter (8.5%; 121 proteins), translational protein 
(7.8%; 112 proteins), and membrane traffic protein (6.9%; 98 proteins). 
The 5 categories in the Biological Process schema with the highest 
prevalence were: cellular process (38.3%; 808 proteins), metabolic 
process (22.0%; 465 proteins), localization (12.7%; 267 proteins), 
biological regulation (11.7%; 246 proteins), and response to stimulus 
(7.0%; 147 proteins). Lastly, the 5 categories in the Molecular Function 
schema with the highest prevalence were: catalytic activity (45%; 591 
proteins), binding (31.5%; 413 proteins), transporter activity (5.9%; 77 
proteins), molecular function regulator (5.4%; 71 proteins), and 
ATP-dependent activity (3.3%; 43 proteins). A direct comparison of 
PANTHER protein class hit categories for the entire N. fowleri 
proteome (Supplementary Figure S8) compared to hits for the Nf-EV 
proteome is provided in Supplementary Table S3.

4. Discussion

Ultrastructural analyses of pathogens have proven to play a 
significant role in the discovery of novel cell–cell interactions and 
provide insight into the mechanisms of cellular processes (de Souza 
and Attias, 2018; Caldas et al., 2020; Qian et al., 2022). Prior studies 

FIGURE 3

Fluorescent microscopy of filopodia and filaments of amoebae. (A-E) 
V631 trophozoites at 100X using Deltavision II [(A) DIC, (B) Actin, 
(C) Hoescht, (D) 132A RNA stain, (E) merge]; (F–G) super-resolution 
images of actin-stained HB4 filament of ~100  nm diameter (red 
arrowheads) that looks to be protruding from a thicker filopodial 
extension from cell body (white bracket).
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using high-resolution electron microscopy on parasitic protozoans 
have identified the mechanisms of extracellular vesicle secretion in 
Trypanosoma cruzi (Szempruch et al., 2016; Diaz Lozano et al., 2017; 
Garrison et al., 2021), monitored phenotypic effects in response to drug 

treatment of Leishmania amazonensis (de Macedo-Silva et al., 2013), 
and characterized the intercellular interactions between Trichomonas 
vaginalis or Tritrichomonas foetus and mammalian cells (Vilela and 
Benchimol, 2012). Thus, we  utilized this technique to perform a 

FIGURE 4

SEM micrographs showing EV shape and size as well as routes of secretion. (A,B) Spherical Nf69 EVs and clusters of EVs with an avg. diameter of 
~117  nm (smaller than the mean of ~140.6  nm obtained with NTA shown in Supplementary Figure S3A). (C) HB4 releasing filaments that adhere to the 
substrate and are separating into potential EVs in a sequential beading manner. (D) Putative vesicles being formed in a “beads on a string” manner with 
successive fusion of thin filaments (red arrowheads) that ranged from ~175–200  nm. The cluster of secreted material on the right side of the panel (red 
arrowheads). (E) Nf69 releasing clusters of EVs of various size from the periphery of the cell, potentially from a multivesicular body (MVB; red 
arrowheads) with another cluster on the right side of the panel (red arrowheads). (F) Nf69 releasing a suspension of EVs from the uroid area of the cell. 
(G) V631 uroid filaments surrounded by dissociated and dissociating EVs. (H) Example of filamentous connection of ~71  nm in diameter between EVs 
collected on filter from V631 EV prep, supporting the hypothesis that extracted EVs come from both the amoeba cell membrane and adhesive/uroid 
filaments.

148

https://doi.org/10.3389/fmicb.2023.1264348
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Russell et al. 10.3389/fmicb.2023.1264348

Frontiers in Microbiology 13 frontiersin.org

thorough characterization of multiple clinical isolates of N. fowleri and 
EVs secreted by these amoebae. EVs are known to have a central role 
in intercellular communication, thus EVs and their cargo have high 
utility when studying infectious parasites as they have been shown to 
play key roles in the modulation of infection processes (Twu and 
Johnson, 2014; de Souza and Barrias, 2020; Drurey and Maizels, 2021). 
Additionally, using multiple clinical isolates of an infectious organism 
allows one to confirm whether specific phenotypes are conserved 
within the species, or potentially identify differences that could 
be leveraged for downstream therapeutic and diagnostic development.

In the present study, we  observed significant size differences 
between isolates of N. fowleri. We also observed that actively feeding 
amoebae are more likely to produce filopodial or pseudopodial 
extensions to reach their food than their axenically cultured 
counterparts. Furthermore, we  identified elongated filamentous 
structures that could aid the amoebae in communication, adherence 
to and steering on substrates or host cells (Xue et  al., 2010), or 
probing the environment and searching for prey. Our observations 
with N. fowleri agree with previous studies of Naegleria gruberi that 
explore the adhesive properties and the trailing dendritic loss of 

FIGURE 5

Uptake of R18-stained Nf-secreted EVs by B103 Rat Neuroblastoma cells. At early timepoints up to 30  min (E–H), initial diffuse lipid equilibration with 
outer cell membranes (mainly on the cell body) occurred in treated cells compared to control samples (A–D). At 1  h onward (I–L), punctate staining 
patterns in not only the cell body but also on the axons and dendrites occurred until maximal fluorescence potential was reached at 6  h (M–T). EV 
uptake was measured by fluorescence dequenching of R18-labeled Nf69 EVs with mammalian cell membranes by imaging with deconvolution 
microscopy.
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cellular material as related to amoeboid locomotion (Preston and 
King, 1978; Preston and O'dell, 1980; King et  al., 1983). 
We hypothesize that these are formed as the amoebae initially attach 
or move while adhering to different types of substrates. Furthermore, 
when we allowed the amoebae to adhere for longer periods of time 
(>3 h as compared to ~45 min-1 h), we noticed a flatter phenotype 
with less filament production (Supplementary Figures S1E,K). The 
functionality of the thicker filopodial extensions remains unknown, 
but we speculate that they could participate in material exchange as 
shown in Trichomonas vaginalis (Salas et  al., 2023) or assist the 
amoebae in attaching to and feeding on bacterial biofilms. 
Additionally, clusters of amoebae connected by filopodia (Figure 2E) 
could explain our observation that amoebae float in biofilms when 
cultures reach high confluency, exhibit density-dependent behaviors 
such as cluster formation, and seemingly grow/feed faster at 
higher densities.

Our findings also suggest that Nf-EVs are released individually and 
in clusters and are secreted via three different mechanisms. These 

findings coincide with those reported for other free-living amoebae such 
as A. castellanii, which sheds vesicles from the plasma membrane 
(Goncalves et al., 2018), and E. histolytica, which sheds vesicles from 
MVBs and the plasma membrane (Nievas et al., 2020). Furthermore, our 
results with R18-stained EV uptake assays, as well as the measurement 
of Nf-EV zeta potential by Retana Moreira et al. (2022) indicate that 
amoebae EVs are easily taken up by numerous types of mammalian cells 
and other amoebae. Further experimentation utilizing plasma 
membrane, endosome, and lysosome markers as well as temperature 
controls and/or endocytosis inhibitors is warranted to provide 
clarification of the extent of vesicle fusion and the route of material 
uptake within cells. Lastly, our real-time data indicates that Nf-EVs 
induce an increase in metabolic activity in mammalian cells. 
We hypothesize that this could be a stress response by the mammalian 
cells. This metabolic response could also be explained by data from 
recent publications by Lertjuthaporn et al. and Moreira et al., the first 
showing that the EVs are immunogenic for macrophages, and the latter 
showing that the protein contents are immunogenic and antibodies were 

FIGURE 6

Imaging flow cytometry shows EV uptake by amoebae. (A) ImageStream flow cytometry data showing representative panels of mean fluorescence 
intensity for each timepoint. (B) Histogram depicting the fluorescence intensity of each of the treatment groups shows a time-dependent increase in 
fluorescence intensity across each treated population compared to the R18-stained PBS control.

FIGURE 7

RealTime Glo results indicating increase in reducing potential in EV-treated cells. (A) A549 human lung carcinoma cells; (B) B103 Rat Neuroblastoma 
cells; (C) Vero green monkey kidney cells treated with freshly extracted Nf69-secreted EVs. AUC, area under the curve.
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raised against them (Lertjuthaporn et  al., 2022; Retana Moreira 
et al., 2022).

Very few studies have examined Nf-EVs and the methods used 
have varied significantly. Previous studies performed upon Nf-EVs 
have several shortcomings; for example, the extraction process in 
one study involves two separate freeze–thaw cycles (one being at 
−20°C for an undisclosed amount of time before EV extraction) 
prior to downstream analyses (Lertjuthaporn et al., 2022). This is 
problematic as prior EV studies have shown that conditioned media 
should be  stored at 4°C for no longer than a week prior to 
processing and then samples should be stored at −80°C in aliquots 
that are only put through one freeze–thaw cycle to prevent 
degradation of EV cargoes and maintain optimal quality and 
enzymatic activity (Lorincz et  al., 2014; Bachurski et  al., 2019). 
Secondly, a prior study on Nf-EVs used a PKH26 dye to perform 
fusion and uptake assays (Lertjuthaporn et al., 2022), and various 
EV publications have shown that PKH26 dyes form contaminating 
aggregates (Puzar Dominkus et al., 2018; Melling et al., 2022) that 
must be  separated from dyed EVs via sucrose gradients. This 
additional purification step was not performed in the prior Nf-EV 
study (Lertjuthaporn et  al., 2022), thus raising the question of 
whether Nf-EVs rather than PKH26 nanoparticle contaminants are 
being internalized by recipient cells. In this study we utilized an 
extraction process that provided fresh EVs to definitively show 
internalization of Nf-EVs over a broader time range, and more 
accurately characterize the uptake and morphology, without 
destruction of membrane integrity. Lastly, another study on Nf-EVs 
(Retana Moreira et  al., 2022) implemented an MISEV guided 
extraction process to prevent degradation, but their proteomic 
characterization of Nf-EVs consists of significantly fewer proteins 
(184) than we found (2,270). These differences are likely due to the 
short period of time (5 h) that trophozoites were incubated in 

media, and the lower volume of media (10 mL) used to extract EVs 
(Retana Moreira et al., 2022).

While SEM is powerful in deducing three-dimensional 
micron-level surface characteristics over a considerable area, it 
has limited capabilities in determining the fine microstructure of 
internal cellular components (Carr, 1971; de Souza and Attias, 
2018). This drawback could have hindered our ability to fully 
explore the interaction and secretion mechanisms proposed in 
this study. Future studies using TEM could provide valuable 
mechanistic insights into the intercellular interactions and allow 
for definitive determination of the mechanisms of EV secretion 
described in this study. Being that our data has implicated the 
uroid structure as a key player in the secretion of materials, future 
functional analyses should be performed to determine whether it 
could assist in feeding (Chapman-Andresen, 1977) or in 
pathogenicity as it releases materials into the CNS that could 
contribute to the intense immune response associated with the 
disease. Despite limitations of some studies, the data on Nf-EVs 
obtained thus far warrant additional studies to establish the 
responses elicited by Nf-EVs extracted from amoebae cultured 
with various food sources and with differing stressors. The latter 
could yield significant results according to evidence that EVs 
secreted by E. histolytica contribute to parasite:parasite 
communication and that the amoeboid encystation process is 
modulated according to whether populations were exposed to EVs 
extracted from logarithmically growing trophozoites or encysting 
cells (Sharma et al., 2020). Furthermore, research exploring the 
effects of exposure to EVs secreted by more or less pathogenic 
N. fowleri amoebae as well as other amoebae species should 
be explored. Ongoing studies to characterize the RNA contents of 
Nf-EVs as well as the potential effects of EV exposure to other 
amoebae are being carried out in our laboratory.

FIGURE 8

Representation of top groups of protein classes present in Nf69 EVs. Data obtained from PANTHER analyses of the 2,270 EV proteins identified via 
LCMS.
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The outbreak of Naegleria fowleri in Pakistan presents a significant public health

concern due to its high fatality rate and limited treatment options. This review

explores the impact of the outbreak on communities and the challenges faced in

combating the disease. It evaluates available treatment options and highlights the

need for early diagnosis and intervention. The study proposes recommendations

to improve public health preparedness, including public awareness campaigns,

enhanced healthcare infrastructure, and robust water surveillance systems.

Collaboration between research institutions and public health organizations is

emphasized to develop e�ective outbreak response strategies.
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1. Introduction

Naegleria fowleri known more frequently as the “brain-eating ameba,” is a free-living

ameba species belonging to the Naegleria genus and it is the only pathogenic species of

the genus (1). It is the causative agent of Primary amebic meningoencephalitis (PAM),

an infection that is rare but has a mortality rate of 95–99% (2). It is a thermophilic

microorganism that flourishes at elevated temperatures of up to 46◦C (115◦F) and may

endure even greater temperatures for brief periods of time (1, 2). As such, it is found in

warm freshwater bodies and soil. Apart from that, it may also be present in swimming pools,

splash pads, surf parks, or other recreational venues that are inadequately maintained and

insufficiently chlorinated. Its thermophilic nature also explains why it is more likely to cause

infection in the summer season (1).

The ameba can enter the nasal cavity when swimming or diving in contaminated water

bodies or as is more commonly seen in Pakistan, irrigating the nose with contaminated water

as part of ritual ablution. From here, it makes its way into the brain and starts devouring the

brain tissue thus deriving the name “brain-eating ameba” (3).

According to a study, Pakistan had the second highest prevalence of Naegleria infections

around the world (4). The first case of PAM in Pakistan was recorded in Karachi in October

2008. Within a decade of this, the number of cases in Pakistan had overtaken those reported

in the USA in a span of 50 years (5, 6). As of 2023, Naegleria has claimed seven lives in
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Pakistan. Of these, six deaths were reported in Karachi (four cases

originating in Karachi, one in Hyderabad, and one in Quetta)1 and

one in Lahore.2

It has been pointed out that while Pakistan produces <

1% of the world’s greenhouse emissions, it is disproportionately

vulnerable to the wide-ranging effects of climate change because of

its geographic location (7). One of these effects has substantialized

in the form of worsening heat waves (8) that provide suitable

temperatures for N. fowleri which is already a growing problem for

the country.

Additionally, recentmortalities have raised a question about the

maintenance and chlorination of recreational water bodies and tap

water provided by the KarachiWater & Sewerage Board (KWSB) in

the city that may be housingN. fowleri1 (9). Moreover, the COVID-

19 pandemic unveiled some significant deficiencies in Pakistan’s

healthcare system’s ability to provide health equity (10) and the

country simply cannot afford another outbreak, that too with such

a high rate of mortality.

Thus, keeping all of this in mind, it is of vital importance that

this infection is recognized and timely addressed to prevent further

morbidity and mortality.

2. Understanding Naegleria fowleri

N. fowleri, belongs to the Percolozoa phylum (20) and is

primarily transmitted through water, although another method of

infection is through dirt or dust (11, 12).

As a free-living protist, N. fowleri mostly consumes bacteria,

both Gram-positive and negative, along with yeast, algae, and other

microorganisms. N. fowleri responds to bacteria by forming food

cups, engaging in chemotaxis, and secreting chemokines (13, 14).

While more than 40 species of Naegleria have been found, only N.

fowleri causes primary amebic meningoencephalitis (PAM), a fatal

brain infection (2, 15).

2.1. Habitat of Naegleria fowleri

This thermophilic microorganism can be categorized into two

groups based on its habitat, with one group inhabiting natural

settings and the other being found in urban areas. Natural habitats

include locations like hot springs, warm water bodies, ponds,

freshwater lakes, and rivers, while urban areas may harbor N.

fowleri in drinking water distribution systems (DWDS) within

pipe wall biofilms (16). It can also be encountered in various

settings such as hospitals, geothermally heated water sources,

contaminated drinking water supplies, water parks, dental unit

waterlines (DUWLs), and instances where nasal exposure to tap

water occurs, including swimming pools in hotels and homes.

1 Reemergence of Deadly Brain-Eating Amoeba Sets O� Alarms. Available

from: https://tribune.com.pk/story/2425212/reemergence-of-deadly-

brain-eating-amoeba-sets-o�-alarms (accessed July 11, 2023).

2 Pakistan Man Dies From ‘Brain-Eating Amoeba’ After Going for a

Swim. Available from: https://www.telegraph.co.uk/global-health/science-

and-disease/pakistan-amoeba-man-dies-naegleria-fowleri/ (accessed July

11, 2023).

Moreover, the prevalence ofN. fowleri tends to be higher in regions

where the water temperature reaches or exceeds 28◦C (17).

2.2. Life cycle of Naegleria fowleri

N. fowleri’s life cycle is divided into three phases: trophozoites,

cysts, and flagellates (18).

The ameboid trophozoite shown in Figure 1, is the active,

reproducing and feeding stage ofN. fowleri (19). These trophozoites

enter the body through the nasal tissue and travel to the brain via

the olfactory nerves, resulting in a condition known as primary

amoebic meningoencephalitis (PAM). Once N. fowleri reaches the

olfactory bulbs, it elicits a significant immune response through

activation of the innate immune system, including macrophages

and neutrophils. Among the three stages, only the trophozoite is

capable of causing infection in humans (20). When faced with

certain conditions, such as a scarcity of nutrients, trophozoites

can temporarily transform into a non-feeding flagellated stage.

They can then revert back to the trophozoite form when favorable

conditions return (18). Trophozoites of Naegleria fowleri primarily

localize in the tissues of the central nervous system, particularly

within the brain. However, flagellated forms of the organism are

typically observed in cerebrospinal fluid (CSF) when the CSF is

intentionally diluted for diagnostic flagellation tests. These tests

are conducted to evaluate the presence and characteristics of the

flagellated form, aiding in the diagnosis of N. fowleri infections.

The third form is a dormant spherical cyst. Notably, cysts

are not detected in brain tissue (21). Trophozoites or flagellates

encyst under unfavorable environmental circumstances such as

lack of nutrients, overcrowding, desiccation, the buildup of waste

materials, and extreme temperatures (22) (Figure 2). This enhances

the chances of survival until better environmental conditions

are present.

2.3. Transmission routes for Naegleria
fowleri

PAM is substantially more common in immunologically

healthy people, healthy children, and young adults who have

recently been exposed to recreational freshwater (23). Since PAM

is a waterborne illness, the majority of cases are linked to diving

and swimming in under-chlorinated pools, polluted canals, spas, or

engaging in recreational activities like water skiing in contaminated

water sources, as well as the use of neti pots for nasal cleansing

and ablution (24). When contaminated water is forced or splashed

into the nasal cavity under pressure during swimming, diving,

or otherwise, the ameba colonizes the nasal cavity. After nasal

inoculation, the ameba passes through the respiratory epithelium

and attaches to the olfactory mucosa. The pathogen then moves

along the olfactory nerve and past the cribriform plate, which is

more permeable in children and young adults, to reach the olfactory

bulbs within the central nervous system (CNS) (11). OnceN. fowleri

enters the olfactory bulbs, it triggers the innate immune system,

which includes neutrophils and macrophages, to produce a strong

immunological response (12, 13).
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FIGURE 1

A wet mount of Naegleria fowleri trophozoites cultured from a patient of primary amebic encephalitis (PAM) (from https://www.cdc.gov/parasites/

Naegleria/Naegleria-fowleri-media.html).

FIGURE 2

Life cycle and transmission route of Naegleria fowleri.3

3 BioRender. Available online at: https://app.biorender.com/user/signin

(accessed July 14, 2023).
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TABLE 1 Onset signs and symptoms of Naegleria fowleri infection (26).

Onset Signs and Symptoms

Early Fever

Headache

Nausea

Vomiting

Changes in smell and taste

Late Stiff neck

Fatigue

Hemorrhage

Confusion

Changes in personality

Hallucinations

Seizures

Coma

3. Clinical manifestations and signs
and symptoms

PAM is characterized by symptoms that resemble those of

bacterial or viral meningitis, such as fever, stiff neck, headache,

vomiting, anorexia, and seizures (25). Fatigue, headaches, nausea,

and vomiting are a few of the early signs of the illness.

Later, more serious symptoms including confusion, neck stiffness,

photophobia, seizures, and cranial nerve abnormalities start to

appear (18) (Table 1). The amount of time between initial contact

with the pathogenic N. fowleri strain and the onset of clinical

symptoms can range from 2 to 3 days to as long as 7–15 days,

depending on the strain’s virulence and the size of the inoculums

(27). Clinical signs like changes in smell perception and respiratory

infections indicate involvement of the olfactory epithelium and

invasion of brain tissue (28). Before showing signs of PAM, such

as meningitis, patients with PAM do not exhibit any nasal irritation

symptoms, such as pain, bleeding, tenderness at the bridge of the

nose, sneezing, and/or prolonged rhinorrhea (25). Severe headache,

fever, chills, positive Brudzinski and Kernig signs, photophobia,

confusion, seizures, and potential coma are among the most typical

symptoms. In a few cases, myocardial necrosis and aberrant heart

rhythms have also been reported (29). The apparent correlation

between elevated cerebral spinal fluid (CSF) and intracranial

pressure and mortality is, arguably, the most significant finding.

Patients with N. fowleri infections have been shown to have CSF

pressures of 600mm H2O (28). According to CSF analysis, there

are several color anomalies, ranging from gray in the early stages

of infection to red in the late stages of sickness because of a

large increase in red blood cells (30, 31). Additional increases in

trophozoites and polymorphonuclear cell densities (up to 26,000

mm3) are also observed (28, 29). In the majority of cases, primary

amebic encephalitis advances quickly, resulting in hemorrhage,

coma, and death (18) (Figure 3). Death usually occurs 3–7 days

following the onset of these symptoms (25).

4. Virulence of Naegleria fowleri

N. fowleri’s pathogenicity can be attributed to two primary

characteristics. First, N. fowleri may consume brain tissue

by a sucker-like surface structure known as a “food cup”.

These feeding cups are created by the phagocytic activity

of N. fowleri, which is mediated by Nfa1 and Nfactin (32).

Second, N. fowleri secretes a variety of cytolytic chemicals,

such as neuraminidases, acid hydrolases, phospholipases, and

phospholipolytic enzymes, which can damage nerves in the central

nervous system (CNS). Additionally, N. fowleri infection triggers

a strong immune response that further damages the CNS (33).

Although not fully understood (32), it is believed that N. fowleri

has also developed mechanisms that inhibit the host immune

system (34).

5. Replication of Naegleria fowleri

N. fowleri reproduces through a process known as binary

fission, a form of asexual reproduction that allows a single

organism to divide and generate two identical offspring (2).

Reproductive division in N. fowleri involves promitosis, which

occurs without the breakdown of the nuclear envelope (35).

During this process, the mature parent cell undergoes replication

of its genetic material while simultaneously increasing in size.

The DNA within the parent cell then migrates toward opposite

poles, and eventually, the cell membrane undergoes division,

resulting in the formation of two daughter cells that are

genetically indistinguishable from each other and from the parent

cell (2).

6. Epidemiology of Naegleria fowleri

N. fowleri may be found anywhere around the world

except for Antarctica (36), but it is dominant in certain

geographic areas that offer suitable conditions for its survival

and growth. Statistics show that infections with N. fowleri have

been documented in 39 different nations. However, Pakistan,

Mexico, Australia, the Czech Republic, and India have been

the countries most impacted, along with the United States of

America (USA) (19). This is because Naegleria thrives in hot

temperatures and may be more prevalent in certain regions of

these countries with warmer temperatures and an abundance

of warm freshwater bodies, such as lakes, ponds, and poorly

maintained swimming pools. For instance, in the USA, they

were more prevalent in the Southern states (37) that have hotter

temperatures (38).

Pakistan has faced several N. fowleri outbreaks in the past,

causing serious public health issues. In several parts of Pakistan,

the temperature can rise beyond 50◦C,4 and the monsoon season,

which is characterized by increased rainfall and stagnant water,5

4 Pakistan Records Hottest Day Ever in Turbat Area of Balochistan. Al

Arabiya English. Available online at: https://english.alarabiya.net/News/

world/2017/05/29/Pakistan-records-hottest-day-ever-in-Turbat-area-of-

Balochistan (accessed September 6, 2023).

5 Pakistan - Climatology. Climate Change Knowledge Portal. Available

from: https://climateknowledgeportal.worldbank.org/country/pakistan/

climate-data-historical (accessed September 6, 2023).

Frontiers in PublicHealth 04 frontiersin.org158

https://doi.org/10.3389/fpubh.2023.1266400
https://english.alarabiya.net/News/world/2017/05/29/Pakistan-records-hottest-day-ever-in-Turbat-area-of-Balochistan
https://english.alarabiya.net/News/world/2017/05/29/Pakistan-records-hottest-day-ever-in-Turbat-area-of-Balochistan
https://english.alarabiya.net/News/world/2017/05/29/Pakistan-records-hottest-day-ever-in-Turbat-area-of-Balochistan
https://climateknowledgeportal.worldbank.org/country/pakistan/climate-data-historical
https://climateknowledgeportal.worldbank.org/country/pakistan/climate-data-historical
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Nadeem et al. 10.3389/fpubh.2023.1266400

FIGURE 3

Focal hemorrhage and necrosis in frontal cortex due to Naegleria fowleri (from https://www.cdc.gov/parasites/Naegleria/Naegleria-fowleri-media.

html).

also has an impact on the epidemiology of the disease there (39).

A significant number of cases were reported in Karachi which

has particularly scorching temperatures (40), most of them being

reported between April and September when temperatures are

peaking (41).

It is also noteworthy that individuals are more likely to

engage in water-related activities such as swimming during

the hot summer months, thereby increasing the likelihood of

contracting Naegleria.

A study revealed that the water chlorination levels in

Karachi’s municipal water supply fell below the World

Health Organization’s recommended level of 0.5 ppm

(41). Moreover, a significant number of individuals,

particularly those from rural backgrounds, rely on unfiltered

and non-chlorinated groundwater, which can act as a

conducive breeding environment for N. fowleri. Pakistan is a

predominantly Muslim country, and the use of groundwater

and contaminated tap water for ritual ablution is a crucial

factor contributing to the increase in Naegleria infections within

the country.

7. Global geographic spread of
infection

PAM is an uncommon but lethal disease that primarily

affects young adults in wealthy nations but has also lately been

documented in poorer nations, with a 95–99% fatality rate (2). After

four patients died in Australia’s Adelaide Children’s Hospital in

1965, Fowler and Carter became the first to characterize PAM (19).

An ameba invasion of their meninges, which caused significant

damage and inflammation in the brain, was identified as the cause

of death (42–44). PAM has since been recorded in other nations,

with an estimated 400 victims globally. The total number of cases,

however, is unknown and may be higher because of incorrect

diagnoses or unreported cases (45–47). Except for Antarctica, 15

countries throughout the world have reported PAM cases (48, 49).

These cases, which only number a few hundred, are primarily from

Europe, Australia, the United States, and several Asian nations (13).

Despite the stability of the reported infections in the United States

each year (0–8), recent alterations in the epidemiology of PAM are

quite concerning (50). In 2010, a PAM case from the northern state

of Minnesota was reported for the first time. In 2011 and 2012,

additional cases from Indiana, Minnesota, and Kansas were then

reported, raising concerns about the infection’s potential to spread

across a wider geographic area due to the heat-loving, potentially

climate-sensitive pathogen (51). In the United States, 142 PAM

patients were recorded between 1937 and 2013. Approximately

260 cases have been reported worldwide between 1962 and 2014,

according to a comprehensive study. Of these, 132 cases originated

from the United States, 19 from Australia, 17 from Pakistan,

16 from the Czech Republic, 11 from India, 9 from Mexico, 9

from New Zealand, 7 from Venezuela, 5 each from Thailand

and Belgium, 4 from Nigeria, 2 from the United Kingdom,

and 1 case each from Namibia, Iran, Costa Rica, New Guinea,

South Africa, and Madagascar. Out of the 260 documented cases

(50, 52), just 11 individuals were said to have survived. The

US Center for Disease Control and Prevention (CDC) reports
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TABLE 2 Reported cases and fatalities of primary amebic

meningoencephalitis (PAM) in Pakistan (2008-2023) by year and gender.

Year Number of
cases and
fatalities

Age group-gender References

2008 2 cases Age group:

30-y-old, 25-y-old

Gender: all are males

(24)

2009 11 cases Age group: from 16 to 64 y (55)

2010 20 cases Age group: not reported

Gender: all are males

(56)

2011 13 cases Age group: not reported

Gender: all are males

(24)

2012 22 cases Gender: all are males (41)

2013 3 cases Age group: from 14 to 40 y

Gender: all are males

(41)

2014 14 cases Age group: from 14 to 40 y

Gender: all are males

(41)

2015 13 cases Age group: from 16 to 56 y

Gender:10 males, 3 females

(41)

2016 5 cases Not reported (57)

2017 6 fatalities Not reported (57)

2018 7 fatalities Not reported (58)

2019 11 fatalities Age group: from 21 to 45 y

Gender: 10 males

(58)

2020 16 cases Not reported (59)

2021 1 case Age:19 y old (60)

2022 5 cases Age: 2 cases of 59 y old, 1

case of 38 y old, 1 case of 28

y old

Gender: 2 males, rest

not reported.

(54)

2023 5 cases Age: 1 case of 21 y old, 1

case of 45 y old

Gender: 1 female, 2 males,

rest not reported.

(61)

that there were 138 PAM cases in the US between 1962 and

2015 (53). A recent rise in PAM instances has been observed in

Asian nations.

8. Naegleria fowleri outbreak in
Pakistan

In Karachi, Pakistan’s largest city, this ameba has been a

growing concern (54). The Aga Khan University Hospital in

Karachi, Pakistan, reported a noticeable death rate of about 20

deaths per year caused by PAM in Pakistan (2). As shown in Table 2

and Figure 4, from 2008 onwards N. fowleri has consistently been

associated with a variable number of cases and fatalities.

Up to October of the year 2019, fifteen fatalities were

documented (58, 62). 2020 had no confirmed deaths, although

there is no assurance because of a lack of data collecting and

TABLE 3 Detection methods for Naegleria fowleri in clinical and

environmental samples.

Detection
method

Description

Direct visualization The motile ameba can be observed under a

microscope in a fresh sample of cerebrospinal

fluid (CSF).

Antigen detection Specific antibodies can be used in conjunction

with immunohistochemistry (IHC) or indirect

immunofluorescence (IIF) to directly stain amebic

antigens in tissue.

Polymerase chain

reaction (PCR)

Specific molecular tools can amplify DNA from

the ameba in CSF or tissue.

Ameba culture The ameba can be grown into culture, increasing

the likelihood of detecting it by direct visualization

or PCR.

Environmental

detection

Water samples can be collected, concentrated, and

put into culture to grow and select for N. fowleri.

unreported instances. In 2021, six fatalities were recorded (63). As

of July 1, 2022, there have been four fatalities (64).

9. Factors contributing to the outbreak

The environment where N. fowleri infection is most likely

to occur is characterized by warmer, polluted water. Infectious

trophozoites can enter the body through the nose, cross the

cribriform plate, and enter the human brain, where they can cause

serious CNS damage, brain hemorrhage, and eventually death

within 3–7 days. Moreover, this illness is made more deadly by

delayed diagnosis and a lack of effective treatment options (2).

Since the 1970s, researchers have known that N. fowleri and other

free-living ameba multiply best between 30–42◦C (65–67). When

compared to cultures cultivated at the ideal 37◦C, N. fowleri has

also been proven to endure temperatures up to 45◦C, however

with reduced survival (66, 68). Environmental investigations have

established that Naegleria can be found in thermal saline baths and

naturally low-salinity water (68, 69). Lam et al. determined that

after 48 h N. fowleri could survive in moderate salinity of up to

1.4%. This is roughly half as salty as ocean water and three to four

times as salty as saltwater swimming pools (70).

10. Diagnostic modalities for Naegleria
fowleri and primary amebic
meningoencephalitis

It is difficult to treat Naegleria patients because of the rarity

of the infection and the challenges in initial detection. Usually,

the parasite is detected posthumously in the CSF samples of the

victim using microscopy and advanced referral testing techniques.

To form a definitive diagnosis, PAM can be confirmed in patients

through investigations mentioned in Table 3 below.

Typically, cultivation and confirmation of N. fowleri in

the cerebrospinal fluid (CSF) are required for the laboratory

diagnosis of PAM. A flagellation test (FT) is also frequently
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FIGURE 4

Reported cases of PAM in Pakistan from 2008 to 2023.

employed as an additional diagnostic method for N. fowleri.

Due to the prevalence of some false negatives, FT must be

followed by Enzyme-linked immunosorbent assay (ELISA) or

another diagnostic technique [PCR, Restriction fragment length

polymorphism (RFLP)] following both positive and negative

results (71).

Diagnostic techniques based on ELISA typically only offer

postmortem, retrospective, and late diagnoses. The genus

Naegleria’s various restriction profiles serve as the foundation for

the species-specific diagnostic technique known as RFLP. This

method’s advantage is its capacity to diagnose not only N. fowleri

but also other Naegleria genus species. In the middle of the 1990s,

a DNA probe-based detection approach was described (72). A

useful alternative to microscopy and culture, molecular approaches

are generally quite sensitive and may enable the discovery of

microorganisms that are challenging to identify.

Most of these procedures have limitations, though, such as

taking a long time (cultivation), being expensive (RFLP), only

offering a late and retrospective diagnosis (ELISA), or yielding

insufficient data (flagellation test). Many of these issues are resolved

by PCR diagnostic techniques, which are helpful for the diagnosis

of clinical and environmental specimens. One of the main benefits

is that these PCR procedures take less time because it is possible to

isolate DNA from the sample without prior culture. Additionally,

PCR permits not only the detection of N. fowleri but also the

distinction between other species of the Naegleria genus. Real-time

PCR-based diagnostic techniques have the advantage of producing

results quickly and allowing for real-time amplification process

observation (73).

LAMP, or loop-mediated isothermal amplification, is a recent

technique for amplifying DNA. LAMP is a gene amplification

assay that is extremely specific, sensitive, quick, and repeatable.

LAMP has several key advantages over other approaches, including

ease of use, the ability to produce many precise amplification

products at a consistent temperature without the need for expensive

equipment, and the ability to visually assess the outcome of an

amplification response. In clinical laboratories or field studies, such

a test could be a helpful diagnostic tool, particularly in countries

with limited resources. LAMP has been extensively utilized to

find protozoan infections. Only one study proves that LAMP can

be used to detect Naegleria in place of conventional PCR tests.

This is because only a few of the putative DNA targets of the

parasite have been investigated, probably because PAM is a rare

disease (74).

Furthermore, patients with N. fowleri infections have been

seen to have CSF pressures as high as 600 mm3 H2O. Due to a

considerable rise in red blood cells, CSF analysis reveals a variety

of color abnormalities, ranging from gray in the early stages of

infection to red in the late stages. Additional increases are noted in

trophozoites present in the CSF (using trichrome or Giemsa stain)

and polymorphonuclear cell concentrations (as high as 26,000

mm3). The midbrain and subarachnoid space are two areas of the

brain that Magnetic resonance imaging (MRI) frequently reveals to

be abnormal (28, 29) in PAM.

11. Treatment options available

Since the discovery of primary amebic meningoencephalitis,

numerous antifungal, antiprotozoal, antibacterial, and

antipsychotic therapeutics have been tested against N. fowleri.

Most of these medications were shown to be ineffective or hardly

effective against N. fowleri, both in vitro and in vivo. Even though

Amphotericin B (AmB) is still the drug of choice for treating
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primary amebic meningoencephalitis, using it is usually linked

to renal damage, which manifests as azotemia and hypokalaemia.

AmB frequently results in anemia, and many patients also have

headaches, nausea, vomiting, chills, and fever. Additionally, not

all AmB-treated patients have recovered from primary amebic

meningoencephalitis (75).

Azithromycin (AZM) has demonstrated in vivo action against

experimental toxoplasmosis as well as in vitro activity against

Acanthamoeba spp. By attaching to the bacterial 50S ribosomal

subunit and preventing the creation and translocation of peptide

bonds, AZM prevents the production of proteins by bacteria.

However, the mechanisms of action of AZM in Acanthamoeba,

Naegleria, and Toxoplasma spp. have not been determined and

require further research (75).

In combination with some of these other medications, the

anti-leishmanial and breast cancer medication, miltefosine (MLT),

has shown some promise against free-living amebae. MLT has

demonstrated amebicidal activity against Balamuthia, N. fowleri,

and Acanthamoeba in vitro and in mice models. It has been

used to successfully treat patients with disseminatedAcanthamoeba

infection and Balamuthia infection. At high doses, patients

taking MLT may experience nausea, vomiting, or diarrhea. It is

somewhat nephrotoxic meaning that people with compromised

kidney function may need to have their dosage modified and the

risk for nephrotoxicity should be weighed against the risk for

PAM-related mortality. It is important to note that there is still

limited data on the dose of MLT that effectively treats amebic

infection (76).

Auranofin, an anti-rheumatic medication, is amebicidal against

N. fowleri. Auranofin treatment of N. fowleri cultures resulted

in decreased ameba numbers, increased metabolic activity, and

enhanced cell permeability at biologically relevant concentrations

of 0.75–3.0 g/ml. These findings imply that the inclusion of

auranofin in the treatment regimen for N. fowleri-infected

individuals experiencing PAMmay be beneficial (77, 78)

Staurosporine (STS), an indolocarbazole isolated from the

bacteria Streptomyces sanyensis, has also demonstrated high activity

against N. fowleri trophozoites in vitro. It has been suggested that

its amebicidal activity occurs by inhibiting the ameba’s protein

kinase (PK) and inducing an apoptosis-like mechanism via the

mitochondrial pathway, but more studies are required to confirm

the mechanism of action (19).

Another drug with potential against N. fowleri trophozoites is

pitavastatin. This medication has shown EC50 values against five

different strains that range from 0.3 to 4µM, demonstrating that

it is more potent than miltefosine (EC50 values between 15 and

58µM), but less potent than AmB (EC50 values between 0.06 and

0.2µM). Pitavastatin decreases the development of the ameba in

vitro by more than 60% as early as 10 h after exposure. Inhibition

reaches 81% after 16 h and 96% after 24 h. Pitavastatin is an FDA-

approved cholesterol-lowering drug, therefore its effects on various

human cell lines have been well-studied (19, 79).

In a more recent investigation, different antibiotics and

antifungals that could be used to treat PAM were evaluated using

a high-throughput phenotypic screening method. The antifungal

posaconazole (PCZ) stood out amongst these medications. This

substance has an IC50 value of 0.24µM and can stop an ameba’s

growth in about 12 h. Although no synergy was seen, PCZ also

showed additive activity with AZM, AmB, and MLT. Additionally,

sick mice who received 20 mg/kg of PCZ intravenously had a 33%

survival rate; however, when PCZ and AZM were combined, the

survival time was dramatically increased (80, 81).

Fluconazole, rifampin, and dexamethasone are some other

drugs used in combination with amphotericin B. To kill the ameba

inside the CNS, however, a minimum inhibitory concentration

(MIC) of these medications must be provided, and they have

demonstrated poor blood-brain barrier penetration (19).

The limited efficacy that many medications display because of

their failure to successfully cross the BBB is one of the key issues

associated with CNS infections. Sometimes, the solution to this

issue is to deliver more of the medicine, however doing so may

cause cell toxicity. Since they can increase a drug’s effectiveness and

enable a reduction in dosage, nanoparticles have drawn interest

from the pharmaceutical sector. Studies have been conducted to

understand the benefits of employing medications conjugated with

nanoparticles to treat PAM because nanoparticle drug delivery

methods have been shown to boost bioavailability, minimize cell

toxicity, and are site-specific (19).

Recently, AmB and nystatin (NYS) coupled with silver

nanoparticles (AgNp) have been shown to be more effective against

N. fowleri than on their own. Apart from that gold nanoparticles

(AuNp) are also being investigated as potential drug delivery

techniques to treat PAM. In one study, AuNp was combined with

curcumin to test its effectiveness against N. fowleri because the

compound has anti-inflammatory characteristics and can reduce

lipid peroxidation. At a concentration of 200µM, curcumin

exhibited a 66% amebicidal activity against N. fowleri because of

concentration-dependent action. The bioavailability of curcumin

was greatly increased by conjugation with AuNp, and this led

to a 69% amoebicidal activity at a concentration of 10µM. The

human keratinized skin cells were not cytotoxically affected by

curcumin conjugated with AuNp. Additionally, the secondary plant

metabolite trans-cinnamic acid, which is derived from plants, has

been conjugated with AuNp. Green nanoparticles created using

green chemistry have also been investigated as potential safer

and more environmentally friendly medicine delivery systems.

Therefore, more recently, plant-derived polysaccharides such as

gum tragacanth (Gt) and gum acacia (Ga) have been used to

stabilize metal nanoparticles. Hesperidin (HDN) and Naringin

(NRG), two flavonoids with antioxidant and anti-inflammatory

properties that may help lessen the immunopathogenic process

released during PAM, were conjugated to the green nanoparticles.

In comparison to the nanoparticles alone, both Ga-AgNPs-HDN

and Gt-AuNPs-NRG have shown substantial amebic activity

against N. fowleri (19).

12. Impact on communities

Both communicable and non-communicable disorders are

already overburdening Pakistan’s healthcare system. Pakistan

is one of the few nations where poliovirus is still prevalent

and at this point, if a Naegleria epidemic occurs, it would

further exacerbate already existing gaps in the healthcare

system (54).
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Pakistan has experienced massive outbreaks of diseases like

diarrhea, dengue, malaria, polio, and COVID-19 amid record

floods that have harmed over 900 medical facilities and affected 33

million people. The nation has the second-highest global hepatitis

C burden.6 Following the floods, Pakistan has seen an increase in

both malaria and dengue cases and 78% of all confirmed malaria

cases in 2022 occurred in Sindh and Balochistan (82). Flood water

stands still and can be a breeding ground for Naegleria. The hot

temperature of Punjab and Sindh province of Pakistan further

boost survival conditions for N. fowleri. The optimal temperature

range for N. fowleri growth is up to 115◦F (46◦C) and it may

endure greater temperatures for brief periods even though it

may not be able to develop as effectively. The trophozoites and

cysts may endure 122–149◦F (50–65◦C) for minutes to hours,

with the cysts being more resilient (35). The community can

face harsh consequences due to an N. fowleri outbreak. This is

keeping in mind that the public and economy still haven’t been

able to move on from the damage imposed by previous outbreaks

like malaria and dengue which were also due to massive floods

in Pakistan.

The cases ofN. fowleri infections that have occurred in Pakistan

during the past 8 years have not been completely described by any

study. Most of the data for the nation is either missing or not

reported. The healthcare system in Pakistan is already overstrained.

The system has a lack of employees and is underfunded. Since

PAM progresses quickly, most patients have clinically deteriorated

by the time the diagnosis is made. Due to the disease’s rarity,

the CDC reports that autopsies performed after patient deaths

confirm the diagnosis in 75% of instances. After the development

of clinical symptoms, the patient only has a very small window of

time for therapy to be effective. Given the exceedingly high death

rates associated with PAM (almost 100%), it is likely that many

individuals seek medical care at a point where current treatments

are useless. The available information summarized in Section 8,

Table 2, and Figure 4 indicates that there have been more deaths

in recent years, thus reiterating the need for action to combat the

increasing trend.

13. Overcoming the crisis

No significant measures are being taken by the Government of

Pakistan to counter the N. fowleri outbreak because of the rarity

of the disease and absence of definitive treatment. But during

1970s and 1980s cases of Naegleria associated PAM came up in

Australia (83). There, drinking water was distributed by overland

pipes for hundreds of kilometers before it arrived at household

faucets with no discernible residual disinfection. Implementing an

ameba monitoring scheme and raising disinfection residual levels

was the successful Australian reaction to these PAM incidents (19);

nevertheless, certain systems necessitated switching to chlorination

to maintain disinfectant residual levels over extended distances

6 Pakistan Faces Widespread Outbreaks of Infectious Diseases Amid

Unprecedented Floods. Available online at: https://www.news-medical.

net/news/20220909/Pakistan-faces-widespread-outbreaks-of-infectious-

diseases-amid-unprecedented-floods.aspx (accessed July 14, 2023).

(89). The health authorities of Pakistan should adopt the methods

used by the Australians with the hope of ensuring the safety

of the civilians and countering this outbreak. The concerned

authorities could also set up an ameba monitoring system and

an efficient chlorination system. The chlorination facility is

available in Pakistan but no check and balance is implemented

for its proper working. Moreover, for the first time, a PAM-

associated death was linked to a U.S. treated drinking water

system that had culturable N. fowleri in it (84). Previously, in

2011, one neti pot PAM incident occurred in the same US area

of St. Bernard Parish, Louisiana and this discovery sparked an

environmental assessment of the household and parish water

distribution system, and the results finally revealed the presence

of N. fowleri along with numerous undetected disinfectant residual

areas (84).

Water utility and health officials decided that a temporary

chlorine conversion was necessary to inactivate N. fowleri and

reduce biofilm in the distribution systems because the St. Bernard

and DeSoto Parish water utilities used chlorination to maintain a

disinfectant residual in their systems. According to health officials,

N. fowleri should not grow if a free chlorine level of 2.0 mg/L

is maintained in all storage tanks for at least 60 days and a

free chlorine level of 2.0 mg/L is maintained at all points in the

distribution system. Each water system turned off the ammonia

feed and boosted the free chlorine feed to start the chlorine

conversion process after warning the public about the upcoming

conversion of chlorine. Disinfectant residuals in the St. Bernard

and DeSoto distribution systems met or exceeded the 1 mg/L free

chlorine objective following the chlorine conversion (85). Since N.

fowleri is vulnerable to chlorine inactivation, no N. fowleri was

found in either system after the chlorine conversion. Conditions

in the St. Bernard distribution system favored N. fowleri growth

and persistence. The distribution system’s water temperatures rose,

thus allowing N. fowleri to flourish (86). It was challenging to keep

the disinfectant residual consistent throughout the distribution

system, as seen by a decline in average concentration over time.

Over the course of the year, Heterotrophic Plate Count (HPC)

concentrations also increased. HPC is widely regarded as a good

measure of biofilm formation and is an indicator of bacterial

regeneration inside a distribution system (87). Because N. fowleri

easily forms biofilms and survives there, more residual or contact

time with the disinfectant is needed to sufficiently inactivate it

(85). Therefore, a rise in HPC over time suggests that N. fowleri

may be present and that the distribution system’s circumstances

are conducive to biofilm formation and persistence. According

to a 1984 study, the abundance of N. fowleri in drinking water

distribution systems was inversely correlated with chlorine residual

and positively correlated with water temperature and colony counts

at 35◦C (like HPC) (88). N. fowleri was both eliminated and

prevented from recolonizing in bulk water and biofilm at a constant

free chlorine concentration of>1 mg/L (85). The discovery of non-

viable N. fowleri in the St. Bernard system in September suggests

that the circumstances in the distribution system were suitable for

containingN. fowleri. To find out what other elements contribute to

the discovery of N. fowleri in drinking water distribution systems,

further research is required. If such a chlorination system is

recruited by the government of Pakistan then combating N. fowleri
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outbreak will be quite easy. Managers of water distribution systems

should be knowledgeable about the ecology of their systems, be

aware of any changes in water quality brought on by rising water

temperatures, and seek to minimize any locations where biofilm

formation may be an issue and have an impact on water quality

(89). There aren’t any biofilm monitors (such as) for water in

pipelines in Pakistan but to avoid a dangerous N. fowleri outbreak

such monitoring systems should be installed. Also, strict measures

to chlorinate tap water should be adopted to eliminate any parasites

existing in this supply.

The public should take extra precautions when using tap

water for nose or sinus cleaning because there is no guarantee

that even the most careful drinking water system can entirely

eradicate N. fowleri. At the point of use, water used for nasal, or

sinus rinses should receive additional treatment. This can include

boiling the water for 1min and letting it cool before using, filtering

the water through a device with an absolute pore size of one

micron or less, disinfecting the water with chlorine bleach, or

using distilled or sterile water (89). Furthermore, if swimming

in water bodies can at no cost be avoided then one should put

nose plugs in use to prevent water entering the nose. In addition,

whilst swimming one’s head should be held up above the surface

of water. It would be better to ensure that chlorine levels of the

water body are appropriately high to keep the parasite out of

it (20).

14. Lessons learned and
recommendations

To build resilience for future outbreaks and to promote early

detection of N. fowleri in Pakistan, both of which mitigate the

potential dangers associated with this lethal ameba, it is important

that we first evaluate the gaps in preparedness and response

mechanisms to N. fowleri in Pakistan and then work toward filling

those gaps.

Pakistan is a developing country with a high percentage of

people living under the poverty line (90). It has a literacy rate of

only 62.3% which indicates that at present, ∼60 million people are

illiterate in the country.7 Public awareness and education are two

major areas that require attention. The existence and consequences

of N. fowleri are still largely unknown among the general public

in Pakistan.

The deficiencies in our healthcare system also need to be

dealt with. These include rural-urban disparity in healthcare

provision, lack of essential diagnostic and therapeutic facilities, and

a low doctor-population, nurse-population, and hospital beds to

population ratio in the country (10).

Third, as mentioned before, poorly maintained and chlorinated

water supply systems, swimming pools, and recreational water

bodies are all possible breeding grounds for N. fowleri and serve

as sources of infection. This is a major challenge in Pakistan

7 Ministry of Federal Education and Professional Training.

Available online at: https://mofept.gov.pk/ProjectDetail/

NjQ4ZTg2NjItOWM2NC00Y2IxLTkzMDgtMjU2OTFhMjA4NzNh (accessed

July 13, 2023).

where water surveillance and water standards are far from

satisfactory (9).

To bridge these gaps and to safeguard public health in Pakistan

it should be ensured that information on symptoms, preventive

measures like the use of nose clips and water chlorination,

and the value of early diagnosis and treatment, which have

been shown to increase survival rates (91) is communicated

widely among the people. This can be done by way of public

health advertisement campaigns on social media, TV, radio, and

newspapers in addition to conducting informative sessions about

the disease.

The current health expenditure in Pakistan is only 2.95% of the

GDP8 and a greater budget needs to be allocated to healthcare to

deal with the various problems associated with it. The formation

of well-equipped healthcare centers and laboratories along with

the training of health workers to promptly identify and formulate

effective treatment regimens for N. fowleri patients is of vital

importance. It must also be made certain that all patients, including

those living in far-off rural areas, have access to appropriate medical

services to help tackle the infection.

Besides that, laws should be set in place tighten water

surveillance and improve water quality in line with WHO

standards,9 and greater investment in water infrastructure also

needs to be made.

Finally, and most importantly, cooperation and a joint,

collaborative effort between the various interested parties including

the public, governmental organizations, healthcare providers, and

water supply authorities is imperative and will help to ensure an

effective and systemized response even if an N. fowleri epidemic

arises in the future.

15. Role of research and public health
organizations in Naegleria prevention
and control

Research institutions play a crucial role in providing up-

to-date information necessary for a better understanding of N.

fowleri. This knowledge contributes to the development of effective

preventive measures, targeted therapies, and advancements in

disease detection and diagnosis. Through studies on the prevalence

and distribution of disease, research institutions can also help

identify disease patterns and high-risk groups. Additionally, they

can investigate water quality and contamination to identify

potential sources of infection. Furthermore, research allows for

the evaluation of the effectiveness of preventive measures and

treatment options.

Consequently, establishing a strong link between research

institutions and public health organizations is vital in creating

comprehensive strategies that encompass prevention, monitoring,

and rapid intervention to safeguard the public from the threat

8 Current health expenditure (% of GDP) - Pakistan. Data. Available online

at: https://data.worldbank.org/indicator/SH.XPD.CHEX.GD.ZS?locations=PK

(accessed July 13, 2023).

9 Water Sanitation and Health. Available online at: https://www.who.int/

teams/environment-climate-change-and-health/water-sanitation-and-

health/water-safety-and-quality (accessed July 13, 2023).
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of N. fowleri. Collaboration and teamwork between these entities

facilitate the pooling of resources and data. This collaborative effort

leads to the formulation of policies and treatments that are firmly

grounded in scientific evidence, thereby improving the overall

health of the general population. Moreover, this collaborative

approach aims to reduce or eliminate inequalities in healthcare,

ensuring that all individuals have access to appropriate care and

resources (92).

16. Conclusion

In conclusion, the N. fowleri crisis in Pakistan has exposed

an alarming situation that requires urgent action and recovery

initiatives. The devastating impact of this brain-eating ameba

on public health necessitates a comprehensive and well-executed

action plan. Despite this, through collective efforts and an

unrelenting dedication to public health, there is hope that the

country can overcome this calamity. The outbreaks of N. fowleri

in Pakistan have compounded existing healthcare burdens and

environmental issues, making it imperative for the government

to take proactive measures. Implementing an ameba monitoring

system and efficient water chlorination are crucial steps to prevent

further spread of the ameba.

Public awareness campaigns and education are vital to

inform the population about preventive measures and the

significance of early diagnosis and treatment. Collaboration

between research institutions and public health organizations is

crucial in formulating evidence-based policies and treatments,

ensuring the safety and wellbeing of the people.
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Characterization of Rosculus 
vilicus sp. nov., a rhizarian 
amoeba interacting with 
Mycobacterium avium subsp. 
paratuberculosis
Amélie Jessu 1,2, Vincent Delafont 1, Jean-Louis Moyen 2, 
Franck Biet 3, Ascel Samba-Louaka 1 and Yann Héchard 1*
1 Université de Poitiers, CNRS, EBI, Poitiers, France, 2 Laboratoire Départemental d’Analyse et de 
Recherche de la Dordogne, Coulounieix-Chamiers, France, 3 Institut National de Recherche pour 
l’Agriculture, l’Alimentation et l’Environnement, Université de Tours, UMR 1282, Infectiologie et 
Santé Publique, Nouzilly, France

Free-living amoebae are described as potential reservoirs for pathogenic 
bacteria in the environment. It has been hypothesized that this might be the 
case for Mycobacterium avium subsp. paratuberculosis, the bacterium 
responsible for paratuberculosis. In a previous work, we isolated an amoeba 
from a water sample in the environment of infected cattle and showed 
that this amoeba was associated with Mycobacterium avium subsp. 
paratuberculosis. While a partial 18S rRNA gene has allowed us to suggest 
that this amoeba was Rosculus-like, at that time we were not able to sub-
cultivate it. In the present study, we  succeeded in cultivating this strain 
at 20–25°C. This amoeba is among the smallest (5–7  μm) described. The 
sequencing of the whole genome allowed us to extract the full 18S rRNA 
gene and propose this strain as a new species of the Rosculus genus, i.e., R. 
vilicus. Of note, the mitochondrial genome is particularly large (184,954  bp). 
Finally, we showed that this amoeba was able to phagocyte Mycobacterium 
avium subsp. paratuberculosis and that the bacterium was still observed 
within amoebae after at least 3  days. In conclusion, we  characterized a 
new environmental amoeba species at the cellular and genome level that 
was able to interact with Mycobacterium avium subsp. paratuberculosis. 
As a result, R. vilicus is a potential candidate as environmental reservoir for 
Mycobacterium avium subsp. paratuberculosis but further experiments are 
needed to test this hypothesis.

KEYWORDS

amoeba, Rosculus, rhizarian, Mycobacterium, paratuberculosis, genome, protist, 
water

1 Introduction

Free-living amoebae (FLA) are single-celled eukaryotes, omnipresent in water and 
soil environments (Rodríguez-Zaragoza, 1994; Samba-Louaka et al., 2019). These protists 
share common morphological features, notably pseudopods that allow them to move 
upon surfaces and to thrive by phagocytosis. Even though they are likely to play an 
important role in microbial ecology due to their ability to ingest bacteria as their main 
food sources (Jürgens and Matz, 2002), FLA have yet to be adequately described.
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FLA constitutes a highly polyphyletic group of microbial 
eukaryotes and can be affiliated not only to Amoebozoa, the sole 
supergroup exclusively represented by amoeboid microorganisms, but 
also to Opisthokonta, Heterolobosea and Rhizaria. Among those three 
large eukaryotic groups, FLA consist mostly in small clades of 
amoebae, featuring a varied array of cell morphologies (Bass et al., 
2009; Samba-Louaka et  al., 2019). Among Rhizaria, the most 
notorious amoebae representatives are Vampyrellids, a group of 
predatory amoebae found in freshwater and marine environments. 
They can feed on bacteria and other eukaryotic preys (Hess and 
Suthaus, 2022). Additionally, other lesser known rhizarian amoebae 
were recently described. Most notably, molecular analyses highlighted 
the existence of a potentially very diverse clade, the Sainouroidea. The 
latter encompasses several genera of small-sized amoeba, such as 
Rosculus, which can be found in cattle, snake, fish feces, freshwater 
and soil (Schuler et al., 2018).

While FLA ingest bacteria by phagocytosis, some bacteria can 
resist phagocytosis and, consequently, might more specifically be able 
to resist phagocytosis by the immune cells of animals. This is due to a 
high level of conservation between phagocytosis mechanisms of FLA 
and animal cells (Escoll et  al., 2013). This resistance was initially 
described for Legionella pneumophila, and many similar observations 
were made later on, involving diverse bacteria such as Mycobacterium 
spp., including Mycobacterium avium subsp. paratuberculosis (MAP) 
the bacterium responsible for paratuberculosis (Drancourt, 2014; 
Claeys and Robinson, 2018). In addition, amoeba-resistant bacteria 
might become more virulent insofar as they are adapted to the 
phagocyte environment and express virulence genes, thereby 
exemplifying the concept of coincidental evolution (Primm et al., 
2004; Sun et al., 2018). Consequently, interest in FLA was revived by 
their capacity to become reservoirs of pathogenic bacteria in 
the environment.

It has been hypothesized that amoebae might be environmental 
reservoirs of Mycobacteria (Salah et al., 2009). To test this, we tried to 
isolate amoebae from water in the environment of infected cattle and 
look for the association between MAP, the bacterium responsible for 
paratuberculosis, and indigenous amoebae (Samba-Louaka et  al., 
2018). One amoeba was detected and identified, via 18S rRNA partial 
gene sequencing, as a Rosculus-like amoeba belonging to the 
supergroup Rhizaria. However, we  were not able at that time to 
maintain the growth of this strain.

In this work, we  ultimately identified optimal conditions for 
growing and isolating the strain associated with MAP. We  fully 
sequenced the genome of this amoeba and analysis of the 18S rRNA 
gene sequence allowed us to confirm this amoeba among the Rosculus 
genus. Finally, an interaction study was performed to test the ability 
of this amoeba to phagocytose MAP.

2 Materials and methods

2.1 Isolation and cultivation of amoeba

This amoeba was previously isolated from an environmental water 
sample from the environment of infected cattle (Samba-Louaka et al., 
2018). A sample (cryotube) frozen at that time was used to obtain a 
pure culture by critical dilution. Then, the cultivation was maintained 
within PAS buffer (Na3C6H5O7 1 g/L, MgSO4:7H2O 0.4 M, CaCL2:2H2O 

0.05 M, Na2HPO4:2H2O 0.25 M, KH2PO4 0.25 M, pH 6.5) containing 
E. coli (5.108 bacteria/mL) as nutrient.

To determine the optimal growing temperatures, Rosculus vilicus 
was cultured at 20, 25, 30 or 37°C for 24 h. Cells were detached and 
counted after an incubation of 3, 6 and 24 h. The experiment was 
repeated three times.

2.2 DNA extraction and genome 
sequencing

From pure culture, DNA was extracted in order to sequence this 
amoeba genome with two sequencing technologies, short and long-
read approaches. Briefly, lysis buffer was added directly on adherent 
R. vilicus. Then, DNA was extracted with Blood & Tissue kit (Qiagen) 
following the manufacturer’s recommendations and quantified using 
the Qubit fluorometer (Thermo Fischer Scientific).

For the long-read approach, 3 μg of DNA was used for library 
preparation using the Oxford Nanopore Technologies ligation kit 
(SQK-LSK109) according to the manufacturer’s protocol with the 
Long Fragment Buffer (LFB). The library was then loaded on a flow 
cell (R9.4.1) and sequenced with MinION Mk1C. Base calling was 
done using Guppy v6.5.7  in high-accuracy mode. Simultaneously, 
genomic DNA was sent to SeqCenter (Pittsburgh, PA, USA) for library 
preparation and short read sequencing on an Illumina NovaSeq 6000. 
Demultiplexing, quality control and adapter trimming were 
performed with BCL convert software at SeqCenter.

2.3 Phylogenetic and genome analysis

We strived to follow a hybrid-based approach inspired by recently 
published protocols (Wick et al., 2023) to assemble a high-quality draft 
genome. For this, initial assembly was performed using Flye v. 2.9.1 
(Kolmogorov et al., 2019) with long reads only, displaying quality score 
(Q) > 9 after base calling. A step of self-polishing was then implemented 
using Medaka v 1.7.2. Illumina reads were trimmed based on Q > 30 
using Cutadapt v 4.4 (Martin, 2011), and for additional polishing of 
contigs using Polypolish v 0.5 (Wick and Holt, 2022). The resulting, 
fully polished assembly was then binned using Metabat2 V 2.15 (Kang 
et al., 2019). Manual inspections of bins were performed to ensure 
proper binning of sequences. For inferring phylogeny, Barrnap v 1.2.2 
was used to identify and extract gene sequences coding for ribosomal 
RNA.1 Full-length 18S rRNA gene sequence was used to reconstruct 
phylogeny using IQ-TREE v 2.0.3 (Minh et al., 2020). The optimal 
substitution model was chosen based on the output of ModelFinder 
(Kalyaanamoorthy et  al., 2017), according to the best Bayesian 
information criterion score. The robustness of nodes was tested by 
1,000 iterations of conventional bootstraps and 1,000 iterations of the 
Shimodaira–Hasegawa approximate likelihood ratio test.

Mitochondrial genome was extracted based on joint analysis of 
graph assemblies, contig coverage and GC content. After manual and 
putative identification, the supposedly mitochondrial genome was 
further confirmed as such using multiple dedicated annotation tools, 

1 https://github.com/tseemann/barrnap
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i.e., MITOS 2 (Donath et al., 2019), Mfannot2 and RNAweasel3 to 
identify mitochondrial proteins and RNAs. The nuclear genome and 
mitochondrial genome data were deposited at NCBI under the 
BioProject ID PRJNA1029052.

2.4 Morphological characterization of 
amoeba strain

Trophozoites and cyst-like forms from R. vilicus were observed 
by microscopy (Olympus IX73 inverted microscope, 1,000x 
magnification) using a differential interference contrast. All sizes 
were measured using ImageJ (Schneider et  al., 2012). The 
morphological comparison between trophozoite and cyst-like 
forms was also assessed by electron microscopy. For scanning 
electron microscopy (SEM), cells were cryofixed in nitrogen with 
VCM (Leica), sublimed and 4 nm wolfram coated in ACE 600 
(Leica). Each step was performed under vacuum and samples were 
transferred from one station to another using VCT 500 (Leica). 
Samples were observed at −100°C in scanning electron microscope 
Teneo VolumeScope (Thermo Fisher) to 3.5 kV and 10 kV.

For transmission electron microscopy (TEM), amoebae were fixed 
with 2.5% glutaraldehyde and 2% osmium tetroxide. Dehydration was 
carried out using different concentrations of acetone. Epon resin were 
used for impregnation and embedding process. After cutting with 
ultramicrotome UC6 (Leica), samples were contrasted with uranyl 
acetate and lead citrate. Samples observations were proceeded on 
transmission electron microscope (JEOL 1010) at 80 keV. Images were 
acquired with Quemesa camera (Olympus).

2.5 Infection experiments

To study the permissiveness of R. vilicus to MAP infection, an 
infection experiment was set up using a MAP K10-GFP strain (Li 
et al., 2005). R. vilicus (2.105 cells) were added in each well of a 6-well 
plate in a 2 mL PAS buffer and incubated for 1 h at 20°C. MAP clumps 
were disaggregated with 3 passages in 27 gauges needle, centrifuged 
for 5 min at 200 g and added to R. vilicus at MOI 10 during 2 h at 
20°C. Amikacin (100 μg/mL) was added for 2 h to remove 
extracellular mycobacteria before the washing step. Finally, the 
infected cells were incubated in PAS buffer added with E. coli (4.108 
bacteria/mL) for 3 days at 20°C. Colocalization of MAP K10-GFP 
with R. vilicus was observed under fluorescence microscope 
(Olympus IX51 inverted fluorescence microscope).

3 Results

3.1 Rosculus vilicus grows preferentially 
between 20 and 25°C

We previously isolated a Rosculus-like amoeba that 
we  cultured at 30°C but we  ultimately lost over subcultures, 

2 https://megasun.bch.umontreal.ca/apps/mfannot/

3 https://megasun.bch.umontreal.ca/apps/rnaweasel/

suggesting at that time that growth conditions were not 
appropriate for this isolate. To determine the optimal temperature, 
we cultivated this amoeba at 20, 25, 30, and 37°C. As demonstrated 
in this study, the optimal growth temperatures ranged from 20°C 
to 25°C. Indeed, at 30°C the development was inhibited while at 
37°C, the total number of cells decreased, suggesting cell death 
(Figure 1).

3.2 Rosculus vilicus shares morphological 
features with Rosculus genus

To characterize this isolate, microscopic studies were 
performed. Differential interferential contrast micrographs 
showed a monopodial lobose amoeba with a well-defined frontal 
hyaline area. Trophozoite cells usually displayed rapid eruptive 
locomotion with some lateral eruption (Figures  2A–C). An 
uroidal structure could be observed on some trophozoites, the 
opposite of that found in the hyaline area (Figures  2A–C). 
Average length was estimated at 7.1 μm (range of 4.2–13.8 μm) 
and average width was 4.8 μm (range of 2.7–12.1 μm). During 
observations, some amoebae adopted a floating form, more 
rounded than trophozoite (6.0 μm average length and 4.9 μm 
average width), harboring a long stem, about 18.9 μm on average 
(10.2–31.4 μm) (Figures 2F,G). All amoeba cells contained a large 
vacuole and several granularities. Given the ability of amoebae to 
differentiate into cyst forms, we incubated our amoebae in an 
encysting buffer for 4 days. We observed rounded cells with an 
average width of 4.8 μm (Figures  2D,E). The observation of 
trophozoites and cyst-like forms under a scanning 
electron microscope confirmed their estimated size 
(Figures 3A–D). The cell surface of cyst-like forms displayed one 
ostiole (Figure 3D).

Transmission electron micrographs enabled us to observe the 
ultrastructure of both trophozoites and cyst-like forms. The cell 
membrane in both trophozoites and cyst-like forms consisted of a 
thin single membrane (Figures 4A,B). Regarding trophozoites, the 
cytoplasm contained a large nucleus bordered by a dense chromatin, 
large mitochondria with discoidal mitochondrial cristae and several 
vacuoles (Figure 4A). Interestingly, in encystment conditions, the 

FIGURE 1

R. vilicus optimal growth was at 20°C and 25°C. Growth comparison 
of R. vilicus was tested by counting number of cells per ml at 
different incubation temperatures. The results represent three 
independent counts, and errors bars represent the standard error of 
the mean (±SEM). Statistical analysis was performed using Kruskal-
Wallis test and uncorrected Dunn’s test (*p <  0.05).
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FIGURE 2

R. vilicus adopts different forms. Trophozoite forms (A–C), rounded cells (D,E) and floating forms with a stem (F,G). Bar length represents 10  μm.

FIGURE 3

R. vilicus external morphology viewed by scanning electron microscopy. Trophozoite forms (A,B) and cyst-like forms (C,D).
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extracellular medium contained free bacteria and numerous vesicle-
like structures filled with bacteria (Figure 4C).

3.3 Rosculus vilicus is a new species with a 
large mitochondrial genome

As no genome was described in the Rosculus genus and even in 
the Sainouroidea clade, we decided to further characterize the isolate 
on this aspect. Whole genome sequencing was undertaken, using a 
hybrid, short and long-read sequencing approach. Based on this, the 
assembled genome of this isolate was predicted to be 40.8 Mb long, 
showing 37.7% GC enrichment (Table 1). While E. coli genome (used 
as a food source) was recovered in the sequencing data, no other 
bacterial genome could be  retrieved. In this hybrid assembly, 
particular focus was given to recovery of the mitochondrial genome. 
One contiguous, highly covered sequence was recovered from the 
assembly, consisting in a 184,954 bp long sequence, with overall 
24.9% GC enrichment. While it was unusually long, even when 
compared with other mitochondrial genomes from other related 
protists from the Cercozoa group (Wideman et  al., 2020) we are 
confident that it corresponds to a bona fide mitochondrion. Indeed, 
mitochondrial genome annotation revealed gene repertoires similar 
to mitochondria from other cercozoans, while showing even coverage 
and reproducible assembly features, even with short reads only 
(Supplementary Figure S1).

This sequencing effort brought into focus the first draft genome 
for the whole Sainouroidea. Because of this, however, comparative 
analyses of gene and genome sequences was clearly hampered, and 
consequently restricted to widely used marker genes. Given the 
resulting paucity of genomic information on this clade (and on 
Cercozoa in general), in order to investigate the taxonomy and 
phylogenetic positioning of our isolate, we focused on 18S rRNA gene 
sequences. The full-length 18S rRNA gene sequence (2,128 bp) used 
for BLASTn search showed its highest match with a sequence 
designated as ‘uncultured Cercozoa isolate 1’ (98.18% identity, 59% of 
query coverage). This sequence indeed corresponds to the previously 
published partial 18S rRNA gene sequence of this isolate (Samba-
Louaka et al., 2018).

To confirm the belonging of this amoeba to the Rosculus genus, a 
phylogenetic tree of the 18S rRNA gene was constructed, using a set 
of rRNA sequences from all available Sainouroidea representatives as 
of June 2023. Phylogeny inferences clearly placed our isolate within 
the Rosculus genus (Figure 5). The relationship between the sequence 
from our isolate, compared to other known sequences of the Rosculus 
genus, justified our proposal of a new species, which we tentatively 
named Rosculus vilicus sp. nov., pertaining to the farm where the 
amoeba was isolated.

3.4 Rosculus vilicus interacts with MAP for 
at least a few days

Rosculus vilicus was previously isolated in association with a MAP 
(Samba-Louaka et al., 2018). Here, we evaluated the permissiveness of 
R. vilicus to the MAP K10 strain. An interaction experiment was 
carried out with the MAP K10-GFP strain to follow the fate of the 
bacteria by fluorescence microscopy. The result showed that R. vilicus 
co-localized with MAP K10-GFP at least 72 h post-infection (indicated 
by white arrows, Figures  6A–D). SomeMAP K10 were localized 
extracellularly (Figures  6A,B). Furthermore, video-microscopy 
experiments highlighted R. vilicus moving by ameboid movement with 
MAP K10 following the same course (Supplementary Figures S2, S3). 
These results suggest an association for a period of at least 3 days 
between R. vilicus and MAP.

FIGURE 4

R. vilicus internal ultrastructure viewed by transmission electron 
microscopy; trophozoite form (A) cyst-like form (B) and extracellular 
medium observed for encystment condition containing vesicles and 
bacteria (C). N, nucleus; M, mitochondria; V, vesicle containing 
bacteria; B, bacteria.

TABLE 1 Statistics and features of R. vilicus nuclear and mitochondrial 
genome assemblies.

Rosculus vilicus 
nuclear genome

Rosculus vilicus 
mitochondrial 

genome

Total length 40,828,467 184,954

Coverage 309X (Illumina) / 300X 

(MinIon)

1,152X (Illumina) / 1,110X 

(MinIon)

GC content 37.72% 24.95%

No of contigs 69 1

Largest contig 4,194,092 184,954

N50 1,847,826 184,954

N90 622,946 184,954

L50 8 1

L90 22 1
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4 Discussion

It is well-known that FLA can host pathogenic and non-pathogenic 
bacteria, thereby playing a potential role on their persistence in the 
environment. However, in the environment the interactions between 
FLA and MAP have been very poorly investigated (Drancourt, 2014).

In a previous study, aimed at isolating FLA associated with MAP 
in the environment of infected cattle, we  isolated a strain, which 
we identified at the time as being somehow related to Rosculus, from 
a drinking trough (Samba-Louaka et al., 2018). This strain was grown 
for a short period of time, but lost along subcultures, most likely 
indicating that the growth conditions were not fully adequate at that 
time. Here, the first challenge was to identify the conditions for 
optimal and perennial cultivation of this FLA. Different incubation 
temperatures were tested, clearly showing an optimum at 
20–25°C. This result is in accordance with the cultivation conditions 
described for other Rosculus species (Schuler et al., 2018). Current 
knowledge on Sainouroidea, and more particularly on Rosculus spp., 
suggests that they are amphizoic (Bass et al., 2016). Members of the 
Rosculus genus were repeatedly isolated from both soil and fecal 
matter (Schuler et al., 2018) and sometimes even directly from rectal 
sampling of the animal host (Hawes, 1955). This would indicate that 

Rosculus are not only able to grow in the environment, but also in the 
feces and even in the digestive system of their respective hosts. In the 
case of Rosculus vilicus, our inability to grow at 37°C may 
be surprising, as one may expect its ability to thrive at temperatures 
close to the bovine digestive system (Burfeind et  al., 2010). The 
presence of complex bacterial consortia and oxygenation levels may 
play an important role in growth capabilities of this amoeba and 
would necessitate further characterization. Also, it is possible that 
Rosculus is present in feces but may be  able to grow only in the 
environment when the temperature drops to 20–25°C and not in the 
gut at 37°C.

The morphology of R. vilicus, observed under light microscopy, 
displays features comparable to the Rosculus strain previously 
described in the literature. For example, its small size is a 
morphological trait found in the other Rosculus isolates described. In 
line with this, we observed that R. vilicus trophozoites were on average 
7.1 μm long and 4.8 μm wide, while cyst-like forms were round and on 
average 4.8 μm in diameter. These observations correspond to the 
measurements of previously isolated Rosculus strains. Depending on 
the species, they are between 2.5 and 13 μm long and between 4.2 and 
5.5 μm wide in their locomotive forms (Hawes, 1963; Bass et al., 2009; 
Tyml and Dyková, 2018). Trophozoite forms of Rosculus were shown 

FIGURE 5

R. vilicus is likely a new species, closely related to R. vulgaris. Phylogeny of Sainouroidea rooted with Filoreta as outgroup based on 18S rRNA gene.
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to have a rapid eruptive locomotion with an elongate hyaline 
pseudopod. Endoplasm is described as crowded with vacuoles, 
resulting in a “sandy appearance” (Hawes, 1963; Bass et al., 2009). In 
our observations, similar morphological traits were noticed; rapid 
eruptive locomotion with one hyaline pseudopod and dense 
granuloplasm. No flagella were observed on R. vilicus, as described on 
the other Rosculus strains (Hawes, 1963; Bass et al., 2009; Tyml and 
Dyková, 2018). However, a new morphological trait, hitherto 
undescribed in Rosculus species, was a long stem on floating forms 
(Figures  3A,B). To our knowledge, it had not been described 
previously, and while the associated function is not obvious, we may 
hypothesize that adopting such a morphology may impact cell 
buoyancy, thereby facilitating dispersal along with the flow of liquid.

Cyst-like forms observed under light microscopy were round or 
oval-shaped, with refringent wall, and correspond to previously 
observed cystic form. Observation by TEM was more difficult because 
few cells were observed in our encystment conditions. The cells 
observed had a thin cell wall, contrary to what had been observed 
before, and which is generally found in amoeba encystment forms 
(Hawes, 1963; Bass et al., 2009; Tyml and Dyková, 2018). Despite the 

lack of thick cell wall, the observation of an ostiole with SEM suggests 
that it is really a cyst form.

As is the case with most protist clades, genomic information on 
FLA is dramatically lacking. This should stimulate a systemic 
attempt at producing genomic data for novel protists isolates 
(Sibbald and Archibald, 2017). In line with this intent, we proceeded 
with the genomic characterization of R. vilicus, which has yielded 
the first genomic data for the Sainouroidea and adds to the (poorly) 
known genomic diversity of rhizarian protists. The draft genome of 
R. vilicus, assembled through a combination of long and short read 
data, provided an estimate of its size, which is ca. 40.8 Mbp long. 
This genome size is comparable with other FLA from distinct 
groups, such as Acanthamoeba castellanii (43.8 Mbp; Matthey-Doret 
et al., 2022), Vermamoeba vermiformis (39.5 Mbp; Delafont et al., 
2021) or Naegleria gruberi (41 Mbp, Fritz-Laylin et  al., 2010). 
Further studies providing transcriptomic data on R. vilicus could 
provide an initial annotation of this genome, a prerequisite for 
in-depth studies of gene repertoire. Aside from this nuclear genome, 
our hybrid assembly approach enabled us identify and isolate the 
mitochondrial genome of R. vilicus, which is unusually long 

FIGURE 6

R. vilicus co-localized with MAP K10-GFP. Micrographs with magnification x400 show R. vilicus in co-localization with MAP K10-GFP at 4  h (A) 24  h 
(B) 48  h (C) and 72  h post-infection (D). The interaction is highlighted with white arrows or framed and magnified three times.

174

https://doi.org/10.3389/fmicb.2023.1324985
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Jessu et al. 10.3389/fmicb.2023.1324985

Frontiers in Microbiology 08 frontiersin.org

(185 kbp). This size estimate far exceeds the size of other 
mitochondrial genomes from the Cercozoa, for which recent 
estimates indicated sizes around 40 to 50 kbp (Wideman et  al., 
2020). While significantly larger than other known sequences from 
the same clade, mitochondrial gene repertoire of R. vilicus is highly 
comparable to that of other cercozoans and seems to once again 
prove that we have identified and correctly assembled this organellar 
genome (Supplementary Figure S1). To our knowledge, the 
characterization of R. vilicus mitochondrion represents the largest 
known mitochondrial genome ever described for a single-celled 
organism, thereby providing an interesting model for investigation 
of the dynamics of mitochondrial genome evolution. The novelty of 
this isolate should be  seen as another argument in favor of the 
systematic implementation of genome sequencing for all novel 
protist isolates, as it represents a huge source of original findings.

In the process of assembling R. vilicus genome, we noted that no 
bacteria (apart from E. coli used as food source) was recovered. This 
suggests that R. vilicus does not live in symbiotic associations with other 
bacteria, as is the case for numerous other FLA (Samba-Louaka et al., 
2019). However, one cannot rule out the possibility that the growth 
conditions we used, and more globally a switch from environmental to 
in vitro conditions, may have contributed to a loss of this association, on 
which we may have missed out in this study.

The strain isolated from water trough of infected cattle herds 
with paratuberculosis was a good candidate to verify our hypothesis 
that free-living amoebae could be  MAP vectors. Since the first 
evidence the ability of mycobacteria species to survive in amoebae 
(Prasad and Gupta, 1978) different Mycobacterium species have been 
investigated regarding their interactions with phagocytic protozoan 
such as Acanthamoeba, Dictyostelium or Tetrahymena. Several 
Mycobacterium species were able to resist amoebal digestion, 
suggesting a role of amoebae in mycobacterial infections (Thomas 
and McDonnell, 2007). Most of these findings documented the 
involvement of amoebozoans and heteroloboseans representative in 
such interactions (Balczun and Scheid, 2017; Shi et  al., 2021). 
However, recent work has demonstrated that numerous rhizarian 
FLA could also bear intracellular bacteria, thereby confirming that 
tight FLA-bacteria interactions indeed occur in all these taxonomic 
groups (Pohl et al., 2021; Solbach et al., 2021).

Few studies have related MAP association with amoebae. Among 
them, it was shown that incubation of MAP with Acanthamoeba 
polyphaga and Acanthamoeba castellanii, led to a decreasing MAP 
number in the first few post-internalization days, but increased after 
an extended period of several weeks (Mura et al., 2006; Whan et al., 
2006; Phillips et al., 2020). Our results provide evidence that MAP can 
also persist for at least for 3 days in association with R. vilicus. However, 
it was a rare event, as only a few amoebae were associated with the MAP 
K10-GFP and it was not possible to distinguish if the bacteria were 
inside (phagocytized) or outside the amoebae. This suggests, added to 
previous observations using different FLA, that MAP might interact 
with a wide range of amoebae distantly related.

In conclusion, our study enabled to recover R. vilicus, a new 
species of Rosculus that grows preferentially between 20 and 
25°C. Microscopic observations showed a small amoeba with 
morphological traits representative of the genus Rosculus. Whole 
genome sequencing added genomic data to the poorly known 
genomic diversity of rhizarian protists. Unexpectedly, this work 
highlighted the particularities mitochondrial genome size. R. vilicus 

can interact with MAP for at least a few days. This result suggests the 
possible role of amoebae in the persistence of MAP and contributes 
new evidence about the protists range that interact with MAP 
in environment.

4.1 Description of Rosculus vilicus sp. nov

Description of Rosculus vilicus [vi.li.cus. N.L. adj.] sp. nov.
Taxonomic assignment: Eukaryota; TSAR; Rhizaria; Cercozoa; 

Sainouroidea; Guttulinopsidae; Rosculus.
Diagnosis: Cercozoan, limax-shaped amoeba. Single nucleus. 

Found in freshwater. Trophozoites: 4.2–13.8 μm (average: 7.1 μm) in 
length and 2.7–12.1 μm (average: 4.8 μm) in width. Trophozoites can 
adopt a more rounded floating form which typically displays a 10.2–
31.4 μm stem (average: 18.9 μm). The amoebae can form a cyst-like 
structure when starved (average: 4.8 μm). The amoebae feed on the 
bacteria Escherichia coli.

Type strain: Isolate AJ1 (available upon request). Isolated from 
cattle drinking trough located in Indre et Loire department, France. 
The amoebae were isolated on a non-nutrient agar plate seeded with 
E. coli and routinely cultivated on PAS buffer with E. coli (OD 0.5) 
at 20°C.

Etymology: vilicus from villa (“country house”) + icus; pertaining 
to the farm.

The genome size of this isolate is was predicted to be 40.8 Mb long, 
showing 37.7% GC enrichment. This is the first genome of Rosculus 
spp. and there is no genome available in related species shown in 
Figure 5. The sequence was deposited at NCBI under the BioProject 
ID PRJNA1029052.
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SUPPLEMENTARY FIGURE S1

The unusually large mitochondrion of R. vilicus shows a gene repertoire 
comparable to, and phylogenetic affinities with, other cercozoans. 
Analyses of mitochondrial contig coverage suggests that its unusual size 
does not result from artefactual assembly (A). Gene and transfer RNA 
repertoire from R. vilicus almost perfectly mirror that of other cercozoans, 
as identified by Wideman et al. (2020). For tRNA, a red-filled square 
indicates an independent codon reassignment. The ‘extras’ category 
indicates the unusual codons N (auu) in A (uau) in B (B). Maximum 
likelihood phylogeny of the COX1 protein (332 amino acid residues) 
shows clear affiliation of R. vilicus with other cercozoans, congruent with 
nuclear rRNA phylogeny (C).

SUPPLEMENTARY FIGURE S2

R. vilicus and MAP K10-GFP co-localize on the video taken 4 hours 
post-infection.

SUPPLEMENTARY FIGURE S3

R. vilicus and MAP K10-GFP co-localize on the video taken 72 hours 
post-infection.
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Naegleria fowleri is the causative agent of primary amoebic meningoencephalitis, 
a rapid and acute infection of the central nervous system with a fatal outcome 
in >97% of cases. Due to the infrequent report of cases and diagnostic gaps that 
hinder the possibility of recovering clinic isolates, studies related to pathogenesis 
of the disease are scarce. However, the secretion of cytolytic molecules has 
been proposed as a factor involved in the progression of the infection. Several 
of these molecules could be  included in extracellular vesicles (EVs), making 
them potential virulence factors and even modulators of the immune response 
in this infection. In this work, we evaluated the immunomodulatory effect of 
EVs secreted by two clinic isolates of Naegleria fowleri using in vitro models. 
For this purpose, characterization analyses between EVs produced by both 
isolates were first performed, for subsequent gene transcription analyses post 
incubation of these vesicles with primary cultures from mouse cell microglia 
and BV-2 cells. Analyses of morphological changes induced in primary culture 
microglia cells by the vesicles were also included, as well as the determination 
of the presence of nucleic acids of N. fowleri in the EV fractions. Results revealed 
increased expression of NOS, proinflammatory cytokines IL-6, TNF-α, and IL-23, 
and the regulatory cytokine IL-10 in primary cultures of microglia, as well as 
increased expression of NOS and IL-13 in BV-2 cells. Morphologic changes from 
homeostatic microglia, with small cellular body and long processes to a more 
amoeboid morphology were also observed after the incubation of these cells 
with EVs. Regarding the presence of nucleic acids, specific Naegleria fowleri 
DNA that could be amplified using both conventional and qPCR was confirmed 
in the EV fractions. Altogether, these results confirm the immunomodulatory 
effects of EVs of Naegleria fowleri over microglial cells and suggest a potential 
role of these vesicles as biomarkers of primary acute meningoencephalitis.

KEYWORDS

extracellular vesicles, trophozoites, Naegleria fowleri, microglia, cytokines, 
morphological changes, DNA
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1 Introduction

Primary amoebic meningoencephalitis (PAM) is an infection 
of the central nervous system (CNS) produced by Naegleria 
fowleri, a thermophilic free-living amoeba (FLA) that can 
be found in different water sources and in soil. This infection is 
characterized by an acute and fulminant course, with initial 
symptoms that are undistinguishable from bacterial meningitis, a 
fact that complicates its diagnosis. Since the first description of 
the infection (Fowler and Carter, 1965), approximately 440 cases 
have been reported worldwide (Jahangeer et al., 2020); around 
one third of these cases have occurred in the Unites States, a 
country in which is suggested an underestimation of cases that 
could exceed 50% (Matanock et al., 2018). Due to the low number 
of diagnosed cases, PAM is considered a rare disease; however, 
mortality rates of this disease surpass 97% (CDC, 2023). The most 
affected population includes children and young adults and 
among the risk factors, aquatic activities like diving, waterskiing, 
surfing, swimming, exposition to hot springs, and nasal rinsing 
with tap water can be listed, as N. fowleri enters the host through 
the nose (Pana et al., 2023).

Since more than two decades, the study of free-living amoebae 
and its impact in human health has increased. In this sense, 
research has focused in trying to identify the mechanisms 
employed by these organisms to produce damage, as well as 
possible diagnostic and therapeutic alternatives for this type of 
infections. For N. fowleri, some virulence factors that could 
contribute to the pathogenesis of the infection have been identified 
and can be  classified into contact-dependent and contact-
independent. It has been also demonstrated that the adhesion of 
trophozoites of the amoeba to the nasal mucosa via integrin-like 
adhesins and fibronectin binding protein is a critical initial step 
during the infection process. Once the amoeba is adhered to the 
mucosa, the increase in its locomotion rate and the chemotactic 
response to components of the CNS are crucial factors for the 
progression of the disease (Marciano-Cabral and Cabral, 2007; 
Naqvi et al., 2016). Moreover, food cups employed by the amoeba 
for trogocytosis and the secretion of cytolytic molecules like 
neuraminidases, hydrolases, phospholipases and pore-forming 
proteins (naegleriapores A and B) participate in the invasion 
process and in tissue damage.

The invasion of Naegleria fowleri to the host induces 
an intense immune response, characterized by the activation 
of innate defense mechanisms during the early stages of 
the infection, including an increased secretion of mucin 
(MUC5AC) and the production of IL-8 and IL-1β by respiratory 
epithelial cells (Siddiqui et al., 2016). Once the amoeba reaches the 
brain, an intense inflammatory response is produced, 
characterized by tissue infiltration of eosinophils, neutrophils, and 
macrophages, as well as increased levels of TNF-α, which is 
considered to stimulate the adherence of neutrophils to the 
amoeba, triggering its destruction (Marciano-Cabral and 
Cabral, 2007).

It has been proposed that activated macrophages have an 
amoebicidal effect over N. fowleri by the production of reactive 
oxygen species (ROS) during the oxidative burst, besides nitric 
oxide (NO) and mediators like TNF-α and IL-1 (Siddiqui et al., 
2016). Studies performed by other groups using microglia, the 

primary immune cells in the brain, confirm the production of 
inflammatory cytokines after the contact with trophozoites of the 
amoeba, reporting robust levels of mRNAs for IL-1α, IL-1β, IL-6, 
and TNF-α after 6 h of incubation (Marciano-Cabral et al., 2001; 
Marciano-Cabral and Cabral, 2007). Regarding the role of the 
immune response during this infection, recent investigations 
have focused in analyzing excretion/secretion products of the 
amoeba as possible modulators of this response in the host. 
Within the secreted products by different microorganisms and its 
target cells, research in extracellular vesicles (EV) has played a 
leading role in this and other protozoan microorganisms (Wan 
et al., 2022).

Initially considered as cellular waste products, the role of EVs 
in intercellular communication is now fully recognized, a process 
that is highly conserved among eukaryotic and prokaryotic cells. 
Moreover, the participation of EVs in inflammatory processes and 
the transference of genetic information has been confirmed, also 
demonstrating that their cargo, as well as structural molecules of 
the vesicles, could trigger and modulate the immune response 
(Islek et al., 2022). For example, in the case of Plasmodium, it has 
been reported that EVs are able to regulate the immune activity, 
increasing the parasite’s survival inside the host and considering 
these vesicles key for the pathogenesis of the disease (Opadokun 
and Rohrbach, 2021). For extracellular protozoan parasites like 
Entamoeba histolytica, EVs have shown a role in NETosis and ROS 
production by neutrophils (Díaz-Godínez et  al., 2022), while 
exosomes of Trichomonas vaginalis can induce IL-6 production 
and downregulate the expression of IL-8 (cytokine that recruits 
neutrophils) in cells of the vaginal epithelium; besides, it has been 
shown that EVs could modulate the immune response of 
macrophages in vitro, stimulating the release of NO and inducing 
IL-10 production (Nievas et al., 2020).

Regarding FLA, the production and characterization of EVs 
has been recently documented. For Acanthamoeba, biological and 
nanomechanical properties of EVs secreted by clinical and 
environmental isolates have been reported (de Souza Gonçalves 
et al., 2018; Gonçalves et al., 2019; Retana Moreira et al., 2020a), 
including an analysis of the immunostimulatory effect of these 
vesicles over the THP-1 cell line that revealed an increment in 
transcription levels of cytokines IL-6 and IL-12 (Lin et al., 2019). 
For N. fowleri, the isolation and characterization of EVs from two 
different clinic isolates was achieved in 2022, demonstrating the 
presence of proteins as part of their cargo, as well as the induction 
of the expression of costimulatory molecules and IL-8 in THP-1 
macrophages (Lertjuthaporn et al., 2022; Retana Moreira et al., 
2022). Taking into account that brain tissue is the target of 
N. fowleri and that the immune response contributes significantly 
to the damage produced during the infection with this species, the 
aim of the present work is to evaluate the effect of EVs secreted by 
two clinic isolates of N. fowleri using an in vitro model with 
primary cultures of mouse brain microglia and BV-2 cells, a 
microglial cell line derived from C57/BL6 mice. For this purpose, 
transcription levels of different cytokines and NOS after the 
incubation of these cells with EVs secreted by trophozoites of the 
amoeba during different time points were determined. 
Characterization analysis of EVs secreted by both N. fowleri 
isolates, analyses of morphological changes induced by these 
vesicles in primary cultures of mouse brain microglia and a 
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preliminary detection of nucleic acids (including bioactive DNA) 
of N. fowleri in the EV fractions were also achieved.

2 Materials and methods

2.1 Axenic culture of Naegleria fowleri 
trophozoites

Trophozoites of two clinic isolates of Naegleria fowleri from 
Costa Rica (accession numbers MT090627 and MT210902) (Retana 
Moreira et al., 2020b) were cultured in 75 cm2 Nunc EasYFlask cell 
culture flasks (Thermo Fisher Scientific, Waltham, Massachusetts, 
United States) with 2% casein hydrolysate (Sigma Aldrich, Missouri, 
United States) culture medium, supplemented with 10% inactivated 
fetal bovine serum (Gibco, GranIsland, New York, United States) and 
antibiotics (penicillin/streptomycin). The flasks were incubated at 
37°C, with daily observation of the cultures under an inverted 
microscope. For each flask, the culture medium was replaced, at least, 
every 2 days.

2.2 Animal handling and permission of the 
animal welfare and ethics committee

The experiments performed using animals were approved by 
the Ethical Committee of the University of Granada (235-CEEA-
OH-2018) and by the authorities of the Regional Government of 
Andalucía (JJAA) (number 12/11/2017/162). The use of animals 
was performed according to the institutional guidelines (Spanish 
government regulations) (Real Decreto RD1201/05) and the 
guidelines of the European Union (European Directive 
2010/63/EU).

2.3 Isolation of extracellular vesicles

Extracellular vesicles of trophozoites of each Naegleria fowleri 
isolate were obtained as previously described by Retana Moreira 
et al. (2022), following the Minimal Information for the Study of 
Extracellular Vesicles (MISEV) guidelines (Théry et  al., 2018). 
Briefly, trophozoites were washed 3 times using sterile PBS and 
then, 5 × 107 trophozoites were incubated for 5 h at 37°C in 75 cm2 
Nunc EasYFlask cell culture flasks (Thermo Fisher Scientific, 
Waltham, Massachusetts, United States) with 3.5 mL of 2% casein 
hydrolysate (Sigma Aldrich, Missouri, United  States) culture 
medium without serum nor antibiotics. After this incubation, the 
supernatants were collected and centrifuged at 3,500 × g for 15 min 
at 4°C to remove possible remaining trophozoites. The resulting 
supernatants were collected again for extracellular vesicle 
purification as previously described (Retana Moreira et al., 2022), 
applying a protocol that includes a centrifugation step at 16,000 × g 
for 30 min at 4°C to remove larger vesicles, filtration of the 
supernatant using 0.22 μm pore filters (Sartorius, Göttingen, 
Germany) and ultracentrifugation steps at 120,000 × g for 150 min 
at 4°C in a Sorwall™ WX80 ultracentrifuge (Thermo Fisher 
Scientific, Waltham, Massachusetts, United States). The resulting 
pellets were washed two times in sterile filtered (0.22 μm pore 

filter) PBS at 120,000 × g for 150 min and suspended in 100 μL 
sterile PBS. The viability of trophozoites after the 5 h secretion 
period was evaluated using the trypan blue exclusion test and the 
protein concentration of each sample was quantified using  
the Micro-BCA protein assay (Thermo Fischer Scientific, 
Waltham, Massachusetts, United  States), following the 
manufacturer’s instructions.

The characterization of EVs secreted by each isolate was 
performed using transmission electron microscopy (TEM), scanning 
electron microscopy (SEM) and nanoparticle tracking analysis (NTA), 
as described in previous works (Retana Moreira et al., 2019, 2021, 
2022; Cornet-Gomez et al., 2023).

2.4 Transmission electron microscopy

To confirm the production of extracellular vesicles by each 
Naegleria fowleri isolate, pellets of the samples obtained after the 
ultracentrifugation steps were fixed in 500 μL of Karnovsky’s 
fixative (2.5% glutaraldehyde and 2% formaldehyde in 0.1 M 
cacodylate buffer, 50 mg of CaCl2 in 100 mL) for 2 h at 37°C. Then, 
the samples were dehydrated and embedded in Spurr resin 
(Sigma Aldrich, Missouri, United States) and ultra-thin sections 
were performed and stained using 1% uranyl acetate. Final 
examination of the samples was performed using a Carl Zeiss 
LIBRA 120 PLUS SMT electron microscope (Carl Zeiss, 
Oberkochen, Germany).

2.5 Scanning electron microscopy

Trophozoites of each isolate of Naegleria fowleri were washed 
3 times using sterile PBS and 5 × 104 trophozoites were suspended 
in 2% casein hydrolysate (Sigma Aldrich, Missouri, United States) 
culture medium and placed in 18 mm round coverslips (Fisher 
Scientific, New Hampshire, United States). After 5 h of incubation 
at 37°C, the coverslips with trophozoites were carefully fixed with 
2.5% glutaraldehyde in cacodylate buffer with 0.1 M saccharose 
and maintained in the fixative solution for 24 h at 4°C. Then, the 
samples were dehydrated in a graded series of ethanol, desiccated 
using a critical point dryer (Leica EM CPD 300) and then 
evaporated with high vacuum carbon coater (Emitech K975X) as 
described by Díaz Lozano et al. (2017). The samples were finally 
carbon-coated for 3 min and analyzed using a Zeiss Supra 40VP 
high-resolution scanning electron microscope.

2.6 Nanoparticle tracking analysis

Distribution, size, and concentration of extracellular 
vesicles of Naegleria fowleri were determined by measuring the 
rate of Brownian motion according to the particle size, using a 
Nanosight NS300 (Malvern Panalytical, Worcestershire, UK). The 
system was equipped with a sCMOS camera and a blue 488 nm 
laser beam.

Before the analysis, the samples were diluted 1/100 in low-binding 
Eppendorf tubes with sterile-filtered (0.22 μm pore filter) 
PBS. Measurements were performed at 25°C. For data acquisition and 
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information processing, the NTA software 3.2 Dev Build 3.2.16 
was employed.

2.7 Protein pattern and recognition of 
extracellular vesicles secreted by each 
isolate by polyclonal anti-Naegleria fowleri 
antibodies

2.7.1 Preparation of whole protein extracts of 
Naegleria fowleri trophozoites

Whole protein extracts of lysates of each isolate of Naegleria 
fowleri were obtained as previously described (Retana Moreira et al., 
2022). Briefly, 5 × 107 trophozoites were washed three times in sterile 
PBS, suspended in 500 μL sterile PBS and submitted to sonication in 
a 4710 series ultrasonic homogenizer (Cole-Parmer Instrument Co., 
Illinois, United  States) applying 3 cycles of 30 s, with a 60 s pause 
between cycles. Protein quantification of the whole protein extracts 
was also achieved using the Micro-BCA protein assay (Thermo 
Fischer Scientific, Waltham, Massachusetts, United States).

2.7.2 Electrophoretic separation of proteins using 
SDS-PAGE

To obtain protein profiles, samples of extracellular vesicles and 
whole protein extracts of each isolate of Naegleria fowleri were diluted 
1:1 in sample buffer (Laemmli, 1970), heated for 10 min at 98°C and 
subsequently loaded onto 12% SDS-polyacrylamide gels. 
Electrophoretic runs were performed for 90 min (120 V). Once the 
electrophoresis was completed, silver stain was performed, following 
previously described protocols (Heukeshoven and Dernick, 1988).

2.7.3 Polyclonal antibody production
Polyclonal anti-Naegleria fowleri antibodies were produced after 

the immunization of four-week-old female Wistar rats with 40 μg of 
whole protein extract of lysates of trophozoites of Naegleria fowleri 
(ATCC N. fowleri Carter 30808), following the methodology 
previously described by our group (Retana Moreira et  al., 2022). 
Briefly, the antigen was prepared by emulsification of the amoebae 
lysate (prepared in sterile PSB) in complete Freund’s adjuvant (Sigma, 
Ronkonkoma, NY, United States), using a 1:1 ratio (final volume: 
500 μL). This emulsion was administered intraperitoneally to the rats. 
For subsequent immunizations, the adjuvant was switched to 
incomplete Freund’s adjuvant (Sigma-Aldrich, St. Louis, MO, 
United  States). A total of 8 immunizations (1 per week) were 
performed and the antibody production was evaluated using ELISA 
and Western blot (WB), as described elsewhere (Towbin et al., 1979).

2.7.4 Western blot
The recognition of the origin of extracellular vesicles, as coming 

from trophozoites of Naegleria fowleri, was performed by Western 
blot, where proteins separated from lysates of trophozoites and EVs 
using SDS-PAGE electroforesis were confronted to polyclonal 
anti-N. fowleri antibodies obtained as described above. Briefly, 
SDS-PAGE electrophoresis was performed, the separated proteins in 
the polyacrylamide gels were transferred to nitrocellulose 
membranes (60 min, 90 V) in an Enduro VE10 Vertical Gel System 
(Labnet International, New Jersey, United  States) and, after the 
transference, the membranes were blocked overnight with 5% 
non-fat milk in PBS-0.1% Tween 20, washed four times in a solution 

of PBS-0.1% Tween 20 and incubated overnight at 4°C with the 
polyclonal anti-Naegleria fowleri antibodies (1: 10,000). After the 
incubation, the membranes were washed and incubated for 1 h with 
peroxidase-conjugated goat anti-rat IgGs (1, 10,000) (Thermo 
Scientific, Massachussetts, United States) and, once four washing 
steps with PBS-0.1% Tween 20 were performed, the reaction was 
visualized using the Clarity ECL Western substrate (BioRad, 
California, United States) in a ChemiDoc Imaging system (BioRad, 
California, United States).

2.8 Cytokine expression analyses in 
microglial cultures

2.8.1 Primary culture from mouse cell microglia 
and BV-2 cell line culture

Primary cultures of mouse brain microglia were prepared 
according to Morales-Ropero et al. (2021). Briefly, newborn (1-day 
old) C57BL/6 mice were obtained from the animal facility service of 
the “Centro de Instrumentación Científica” at the University of 
Granada (UGR) and meninges-free cerebral cortex from the brains 
were dissected and collected in DMEM with 4.5 g/L D-glucose, 4 mM 
glutamine, 10% fetal bovine serum, 10% horse serum, 100 U/mL 
penicillin and 100 μg/mL streptomycin (all reagents from GIBCO, 
Waltham, Massachusetts, United States). After disaggregation and 
homogenization, cells were seeded and incubated at 37°C with 5% 
CO2 for 10–12 days. Then, cultures were softly shaken at 37°C for 2 h 
and the primary microglia-enriched supernatant was subcultured in 
the same medium for 2 days before the experiments. Cultures of 
microglia showed >95% of microglial marker Iba1-positive cells 
by immunocytochemistry.

BV-2 cells (AcceGen Biotechnology, Fairfield, NJ, United States) 
were cultured in 25 cm2 Nunc EasYFlask cell culture flasks (Thermo 
Fisher Scientific, Waltham, Massachusetts, United  States) using 
RPMI-1640 culture medium (Sigma Aldrich, Missouri, United States) 
supplemented with 10% inactivated fetal bovine serum (Gibco, 
GranIsland, New York, United States), 2 mM glutamine, 100 U/mL 
penicillin and 100 μg/mL streptomycin (complete culture medium).

2.8.2 EVs-cell interactions and cytokine 
expression analyses

For primary microglial cultures, 2.5 × 104 cells were seeded in in 
6-well plates (Thermo Fisher Scientific, Waltham, Massachusetts, 
United States), using DMEM with 4.5 g/L D-glucose, 4 mM glutamine, 
10% fetal bovine serum, 10% horse serum and 100 U/mL penicillin, 
100 μg/mL streptomycin (all reagents from GIBCO, GranIsland, 
New York, United States). After 72 h of incubation at 37°C, 50% of the 
culture medium in each well was removed and 25 μg of EVs of each 
N. fowleri isolate was suspended in fresh culture medium and added 
to the cells. In this case, the incubations were performed for 48 h, and, 
after this time, the supernatants were removed and the cells were lysed 
and homogenized using TRIzol reagent (Thermo Fischer Scientific, 
Waltham, Massachusetts, United States) for RNA purification, which 
was performed following the manufacturer’s instructions. Incubation 
of cells with bacterial 100 ng/mL lipopolysaccharide (LPS, serotype 
0111: B4; Sigma Aldrich, Missouri, United  States) and with the 
complete culture medium were also included as control of 
cell stimulation.
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For BV-2 cell line, 2.5 × 105 cells were seeded in 6-well plates (Thermo 
Fisher Scientific, Waltham, Massachusetts, United States) with RPMI-
1640 culture medium (Sigma Aldrich, Missouri, United  States) 
supplemented with 10% inactivated fetal bovine serum (Gibco, 
GranIsland, New York, United States), 2 mM glutamine and antibiotics 
(penicillin/streptomycin). After 24 h of incubation at 37°C, the culture 
medium was removed and cells were incubated with 25 μg of EVs of each 
N. fowleri isolate, suspended in complete culture medium and incubated 
for different time points: 4, 24 and 48 h. After each incubation time, the 
culture medium was removed and TRIzol reagent (Thermo Fischer 
Scientific, Waltham, Massachusetts, United States) was added for RNA 
extractions, which were performed as previously mentioned.

After RNA extractions, an incubation with DNase I, RNase-free 
(Thermo Fischer Scientific, Waltham, Massachusetts, United States) 
was performed according to the manufacturer’s recommendations 
and, once the RNAs were purified and quantified, expression analyses 
of genes IL-1β, IL-6, IL-10, IL-12, IL-13, IL-18, IL-23, TNF-α, IFN-γ, 
TGF-β and nitric oxide synthase (NOS) were performed by qRT-PCR 
(primer sequences are shown in Supplementary Table S1). For this 
purpose, the iTaq™ universal SYBR® Green one-step universal 
SYBR® kit (BioRad, Hercules, CA, United States) was employed, using 
gapdh and actin as reference genes. The sequences of the primers 
employed in this analysis are listed in Supplementary Table S1; primer 
sequences were located across exon–exon borders, avoiding any 
interspecifically and intraspecifically variable positions. Moreover, a 
calibration curve was performed according to Gómez-Samblas et al. 
(2018) to calculate the efficiency of each pair of primers.

Reactions were performed in a CFX-96 qRT-PCR system (BioRad, 
Hercules, CA, United States), using a final volume of 10 μL, which 
included 300 nM of each primer and 50 ng of RNA per reaction. The 
thermal cycling conditions consisted of retrotranscription at 50°C for 
10 min, followed by an enzymatic activation step and DNA 
denaturation at 95°C for 1 min, 40 cycles of denaturation at 95°C for 
10 s and annealing and extension steps at 60°C for 30 s, followed by 
plate reading. At the end of the qRT-PCR reactions, a melting gradient 
was applied from 65°C to 95°C in 0.5°C increments. Cytokine 
expression results were normalized against gapdh and actin, as well as 
the negative control (cells in complete culture medium).

2.8.3 Analysis of morphological changes induced 
by EVs of Naegleria fowleri in culture primary 
culture from mouse cell microglia using 
immunofluorescence

Primary cultures of mouse brain microglia were prepared as 
previously described. Briefly, primary microglia (2.5 × 104 cells) were 
seeded onto 12 mm-diameter round glass coverslips coated with 
0.1 mg/mL poly-D-lysine and cultured in DMEM with 4.5 g/L 
D-Glucose, 4 mM glutamine, 10% fetal bovine serum, 10% horse 
serum and 100 U/mL penicillin, 100 μg/mL streptomycin for 2 days 
before the experiments. Cell stimulation was induced by 100 ng/mL 
LPS and 25 μg of EVs of each N. fowleri isolate suspended in the 
culture medium for 24 and 48 h.

To analyze microglial cell morphology, microglial cells were fixed 
with 4% cold paraformaldehyde in PBS for 20 min. After a washing 
step using PBS, the cells were permeabilized with 0.2% Triton X-100 in 
PBS for 10 min, blocked with 3% bovine serum albumin in PBS for 
1 h, and stained with isolectin B4 from Griffonia simplicifolia (GS-IB4) 
Alexa Fluor 488 conjugate (Thermo Fisher Scientific, Waltham, 

Massachusetts, United  States) diluted 1:100  in PBS for 1 h. DAPI 
staining was used to visualize nuclei. Coverslips were mounted in 
slides with FluorSave Reagent (Millipore, Burlington, Massachussetts, 
United  States) and images were taken using a Zeiss Axiophot 
fluorescent microscope.

Images were analyzed by Image J software (version 1.50i, NIH). 
The cell morphology was studied by determination of the aspect ratio, 
as the ratio of width to height, of individual cells. Values of aspect ratio 
start at 1.0, which indicates a circle, while ascending values indicate 
enhanced cell ramification and elongation.

2.9 Determination of nucleic acids of 
Naegleria fowleri in EVs and PCR

In order to evaluate the presence of nucleic acids of N. fowleri in 
the EV fractions, samples of conditioned media (supernatants 
collected after the 5-h incubation period of trophozoites of the amoeba 
in 2% casein hydrolysate), and from the pellets obtained after the 
16,000 × g (larger vesicles) and the 120,000 × g centrifugations (EV 
fraction, enriched in exosomes) from the EV isolation protocol were 
submitted to DNA extractions using phenol:chloroform:isoamyl 
alcohol (25:24:1) (Sigma Aldrich, Missouri, United States), following 
the manufacturer’s instructions. For these experiments, 50 mL of 
conditioned media collected for EV isolation (from approximately 
7.9 × 107 trophozoites) were employed and DNA samples were finally 
suspended in 40 μL nuclease-free water. DNA concentration was 
determined using a NanoDrop  2000 spectrophotometer (Thermo 
Fisher Scientific, Waltham, Massachusetts, United States).

After nucleic acid quantification of the samples, amplification of 
the ITS region of Vahlkampfiids was performed by PCR, using the 
pair of primers Vahl-F and Vahl-R, as previously described. Besides, 
N. fowleri species-specific conventional and quantitative PCR (qPCR) 
using primers NfITS-F and NfITS-R were also performed, according 
to the protocols described by Retana Moreira et  al. (2020b) and 
including at least 12 DNA dilutions. Negative controls (template DNA 
replaced with distilled water) and positive controls (DNA extracted 
from trophozoites of Naegleria fowleri) were also included.

Amplification reactions of conventional PCRs were run in a 
Biometra TOne thermal cycler (Labgene Scientific, Châtel-Saint-Denis, 
Switzerland) and visualization of PCR products was performed using 1% 
agarose gels with SYBR safe DNA gel stain (Invitrogen, Waltham, 
Massachusetts, United States). For qPCR, the StepOne Real Time PCR 
System (Thermo Fischer Scientific, Waltham, Massachussetts, 
United States) was employed.

3 Results

3.1 Characterization of extracellular 
vesicles secreted by two clinic isolates of 
Naegleria fowleri

3.1.1 Transmission electron microscopy, scanning 
electron microscopy and nanoparticle tracking 
analyses

The production of extracellular vesicles secreted by trophozoites 
of two clinic isolates of Naegleria fowleri was confirmed by TEM and 
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NTA, after applying the isolation protocol described. Under our 
incubation conditions, amoebae produced approximately 0.94 μg/μL 
(N. fowleri Guanacaste) and 1.02 μg/μL (N. fowleri Limón) protein in 
extracellular vesicles and, after the 5 h incubation, viability of 
trophozoites was not affected.

Figure 1 shows representative transmission electron microscopy 
images and nanoparticle tracking analysis of extracellular vesicles 
secreted by both isolates, after applying the isolation procedure. NTA 
revealed a mean hydrodynamic size of extracellular vesicles of 
216 nm ± 83 nm and a mode of 206 nm for N. fowleri, as previously 
described (Retana Moreira et al., 2022), while the mean size of EVs 
secreted by N. foweri Limón was 268 ± 139 nm, with a mode of 234 nm. 
Using the same methodology, it was also possible to determine that 
5 × 107 trophozoites of N. fowleri Guanacaste secreted 4.96 × 108 
particles/mL, while trophozoites of N. fowleri Limón secreted 3.2 × 108 
particles/mL.

Scanning electron microscopy also confirmed the secretion of 
extracellular vesicles by both clinic isolates of Naegleria fowleri, as 
shown in Figure  2. In these images, it is possible to observe 
individual vesicles and clusters of different sizes surrounding the 
trophozoites. Vesicles of variable sizes being released from 

different regions of the plasma membrane are also observed 
(Figure 2).

3.2 Protein pattern and recognition of 
extracellular vesicles by polyclonal 
anti-Naegleria fowleri antibodies

The protein profile of extracellular vesicles secreted by 
trophozoites of both isolates of Naegleria fowleri after silver staining is 
shown in Figure 3 and Supplementary Figure S1, in which protein 
bands ranging from approximately >15 kDa to 260 kDa were 
identified. In this Figure, high molecular weight bands seem to 
be more predominant in EVs from both isolates.

Western blot analysis using polyclonal anti-Naegleria fowleri 
antibodies confirmed the recognition of proteins of N. fowleri in 
lysates of trophozoites employed to produce the antibodies 
(Supplementary Figure S2), as well as the recognition of N. fowleri 
proteins in extracellular vesicles secreted by both isolates. In this 
sense, recognition of EV bands was observed from over 10 kDa to 
175 kDa, as previously reported.

FIGURE 1

Transmission electron microscopy images and nanoparticle tracking analysis graphs of extracellular vesicles secreted by trophozoites of two clinic 
isolates of Naegleria fowleri. Typical cup shaped EVs of different diameters are produced by both isolates; hydrodynamic mean sizes of EVs obtained 
were 216  ±  83  nm in N. fowleri Guanacaste and 268  ±  139  nm in N. fowleri Limón.
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3.3 Cytokine expression analyses

NOS and cytokine expression analyses performed after the 
incubation of primary cultures of mouse brain microglia with EVs of 

each isolate of N. fowleri for 48 h are shown in Figure 4. In this Figure, 
an upregulation of NOS and proinflammatoy cytokines IL-6, IL-23, 
and TNF-α was observed, as well as the increased expression of IL-10, 
the latter a regulatory cytokine. In all cases, transcription levels of 

FIGURE 2

Scanning electron microscopy of trophozoites of Naegleria fowleri Guanacaste and N. fowleri Limón that confirms the secretion of extracellular 
vesicles. In these images, individual and grouped EVs of different sizes can be observed surrounding the trophozoites, as well as vesicles of variable 
sizes being released from different regions of the plasma membrane. In these Figure correspond to magnifications of 1. Scale bars: 40 μm (1), 10 μm (2), 
and 5 μm (3).
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genes were significantly higher than the expression levels found in 
control cells, especially when the isolate N. fowleri Guanacaste was 
employed. LPS activation of cells and its cytokine expression analysis 
is shown in Supplementary Figure S3.

For BV-2 cells, results of interleukin expression after the 
incubation with EVs of the two isolates of N. fowleri revealed a 
downregulation in the expression of IL-18 and an upregulation for 
IL-13 48 h after the stimuli (Figure  5). However, non-statistically 
significant differences were found in the expression levels of the rest 
of cytokines assayed with respect to control cells 
(Supplementary Figure S4). For NOS, transcription levels were 
significantly higher after 4 h of incubation of cells with the EVs; 
moreover, these differences were not found after 24 and 48 h 
of incubation.

3.4 Microglial cell morphology analysis 
using fluorescence microscopy

In order to perform an analysis of inflammatory phenotype of 
microglia, primary microglia from newborn mouse brains were 
incubated with EVs of the two isolates of N. fowleri; the bacterial 
endotoxin LPS-induction in primary microglia was also included 
(Figure  6). GS-IB4 staining showed the characteristic change in 
morphology from homeostatic microglia, with small cellular body and 
long processes in control cultures, to LPS-stimulated microglia with a 
more amoeboid morphology (Figure 6A), as it was determined in 
terms of the aspect ratio parameter (Figure 6B) However, evident 
changes in the morphology of cells were observed after the incubation 

with EVs of each isolate of N. fowleri. In this sense, cells incubated 
with EVs from N. fowleri Limón exhibited a clear morphological 
change to a more rounded shape, more similar to that found under 
LPS conditions. However, the incubation with EVs isolated from 
N. fowleri Guanacaste induced changes in morphology to a lesser 
extent, since cells still showed long processes, but with larger 
lamellipodia than controls. Similar results were found between 24 and 
48 h of cell incubation with the stimuli.

3.5 Detection of DNA of Nagleria fowleri in 
EV fractions

Figure 7 reveals conventional PCR results in which DNA from the 
EV fractions were employed. In this sense, conditioned media and 
samples of pellets obtained after the 16,000 × g and 120,000 × g 
centrifugation steps for EV isolation were submitted to 
phenol:chloroform:isoamyl alcohol DNA extractions, for further 
analyses of N. fowleri specific DNA amplification using family 
(Vahlkampfiid) and N. fowleri species-specific primers. In 
Figures 7A,B, conditioned media (lane 1) and the pellets obtained 
after the 16,000 × g centrifugation (lane 2) resulted negative for 
Valhkampfiids and N. fowleri at the DNA amounts employed (700 ng) 
while the pellets corresponding to DNA obtained from the EV 
fraction resulted positive, demonstrating the presence of bioactive 
N. fowleri-specific DNA in these fractions.

To confirm this result, another species-specific PCR using primers 
NfITS and applying serial dilutions to the DNA extracted from the EV 
fraction was performed, resulting in amplification until employing a 

FIGURE 3

Protein profile of extracellular vesicles secreted by Naegleria fowleri and recognition by polyclonal anti-Naegleria fowleri antibodies: (A) Silver staining 
apparently showing similar band patterns in extracellular vesicles from isolates Guanacaste and Limón, which range from >15  kDa to 260  kDa. 
(B) Western blot that shows the recognition of different bands in EVs of each isolate. In this sense, bands over 70–80  kDa were highly recognized in 
EVs of both isolates by the polyclonal antibodies; however, recognition of more protein bands was observed in EVs secreted N. fowleri Guanacaste 
(Retana Moreira et al., 2022). For silver staining, approximately 9  μg of protein/EV sample were loaded onto the gel; for Western blot, approximately 
6  μg of protein/EV sample were loaded onto the gel. WPE, whole protein extracts of trophozoites of N. fowleri; EVs, extracellular vesicles.
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FIGURE 4

Differential mRNA expression analyses of NOS and cytokines after the incubation of primary culture of mouse brain microglia with extracellular vesicles 
secreted by Naegleria fowleri Guanacaste and N. fowleri Limón. Primary cultures of mouse brain microglia were stimulated with extracellular vesicles 
(25  μg) of two clinic isolates of N. fowleri for 48  h and qRT-PCRs were performed to analyze the expression pattern of NOS and cytokines. Values are 
presented as the mean  ±  SD and one-way ANOVA with Tukey post hoc test was performed for multiple comparisons to the negative control without 
treatment. ***p  <  0.0005, **p  <  0.005, *p  <  0.05.
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DNA concentration of 3.125 ng, the last dilution in which the specific 
conventional PCR for N. fowleri resulted positive (Figures  7C,D). 
These results were confirmed with a N. fowleri species-specific qPCR 
(Retana Moreira et  al., 2020a,b), in which mean CT = 30 for the 
dilution that contained 0.4 ng of DNA, mean CT = 31.5 for the dilution 
that contained 0.2 ng of DNA and mean CT = 32 for the dilution that 
contained 0.1 ng DNA.

4 Discussion

Extracellular vesicles are a heterogeneous group of vesicles 
delimited by a lipid bilayer and are considered part of the 
excretion/secretion products. These vesicles are released by almost 
all cell types and have a pivotal role in intercellular communication, 
as they have been considered “delivery trucks” that transport 
diverse molecules from one cell to another, inducing changes at 
different levels in the recipient cell (Dong et al., 2021). A role of 
EVs in the pathogenesis of several diseases has also been proposed 
by different authors, which supports their study and evaluation as 
potential biomarkers. In this sense, it has been demonstrated the 
presence of virulence factors as part of the cargo of the vesicles, 
related to adhesion, invasion and survival processes, as well as the 
modulation of the immune response they could exert (Nievas 
et al., 2020).

Isolated from most organisms, the study and characterization of 
EVs in protozoan parasites has gained considerable interest, mostly in 
the case of infections that lack efficient diagnostic tools and effective 
treatments (Dong et al., 2021; Cruz Camacho et al., 2023); primary 
amoebic meningoencephalitis, caused by the free-living amoeba 
Naegleria fowleri, is one of this type of infections. Primary acute 
meningoencephalitis is a necrotizing haemorragic meningoencephalitis 
of acute and fulminant course, with a letality rate of 97–98% (Siddiqui 
et al., 2016). In this infection, the trophozoite stage of the amoeba 
enters the host through the nasal passage and reaches brain tissue 
throughout the olfactory bulb as early as 24 h post inoculation (Jarolim 
et al., 2000). The establishment of the amoeba in the brain induces an 

intense inflammatory response that, along with the mechanic damage 
directly provoked by the microorganism (Cervantes-Sandoval et al., 
2008; Lertjuthaporn et  al., 2022), are responsible of the extensive 
lesions observed. Previous studies have demonstrated that  
excretion/secretion products, including EVs, are involved in the 
pathogenic processes of infections, mainly by the stimulation and 
modulation these products could exert over the immune response of 
the host (Kim et  al., 2009). In this work, a characterization of the 
extracellular vesicles secreted by two clinic isolates of N. fowleri was 
performed, and the effect these vesicles exert over microglial cells 
was analyzed.

For the purpose of our analyses, EVs from trophozoites of two 
clinic isolates of N. fowleri were obtained after applying differential 
centrifugation, filtration and ultracentrifugation of conditioned media 
obtained after 5 h of incubation. Size ranges of the vesicles obtained, 
analyzed by NTA, revealed particles of 216 ± 83 nm (EVs of N. fowleri 
Guanacaste) and 268 ± 139 nm (EVs of N. fowleri Limón). These sizes 
coincide with previous studies performed by our research group 
(Retana Moreira et al., 2022), but result slightly higher to the sizes 
reported by Lertjuthaporn et al. (2022). Moreover, scanning electron 
microscopy images show the secretion of individual EVs, as well as 
EVs forming small clusters, that appear to be released through the 
plasma membrane of trophozoites of amoebae. With the 
methodologies employed for characterization of EVs in this study, it 
was not possible to observe statistically significant differences between 
the vesicles secreted by both clinical isolates.

To evaluate the presence of proteins in EVs that could 
be recognized by the antibodies obtained after the immunization, 
SDS-PAGE electrophoresis and Western blot were employed, the latter 
using polyclonal anti-N. fowleri antibodies produced in rats against a 
complete extract of trophozoites of N. fowleri (ATCC N. fowleri Carter 
30808). Results obtained after these analyses also revealed similarities 
in both isolates (Figure  3), in which antibody recognition was 
confirmed. In these experiments, a lysate of trophozoites of N. fowleri 
was also included and the recognition of bands by the antibodies was 
also observed, a result that evidences that EVs of both isolates of 
N. fowleri include cytosolic and plasma membrane components of the 

FIGURE 5

Differential mRNA expression analyses of NOS, IL-13, and IL-18 after the incubation of BV-2 cells with extracellular vesicles secreted by Naegleria 
fowleri Guanacaste and N. fowleri Limón. BV-2 microglial cells were stimulated with extracellular vesicles (25  μg) of two clinic isolates of N. fowleri for 
4, 24, and 48  h and qRT-PCRs were performed to analyze the expression pattern of NOS and cytokines. Values are presented as the mean  ±  SD and 
one-way ANOVA with Tukey post hoc test was performed for multiple comparisons to the negative control without treatment. ***p  <  0.0005, 
**p  <  0.005, *p  <  0.05.
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trophozoites that are recognized by the antibodies obtained. More 
studies are necessary to identify potential significant differences 
between the cargo of EVs secreted by both isolates.

Regarding band components above 80 kDa, the recognition of 3 
bands was clearly observed. Previous proteomic analyses performed 
by our research group (Retana Moreira et al., 2022) demonstrated the 
presence of components of the plasma membrane and cytoskeleton in 
these bands, as well as some virulence factors reported in infections 
with this and other species of parasites, that can eventually activate or 
modulate the immune response, such as leucine aminopeptidase and 
elongation factor 1-alpha (eeEF1-α), the latter an important factor for 
immunosuppression and priming of host cells for Leishmania invasion 
(Silverman and Reiner, 2011; Vyas et al., 2014; Timm et al., 2017).

Since brain tissue is the target during a N. fowleri infection, 
we  decided to evaluate the possible role of EVs of N. fowleri in the 
immune modulation of microglial cells. These are highly specialized 
resident cells responsible of monitoring brain microenvironment, 
detecting and responding to any type of tissue damage, infections, or 
homeostatic disturbance (Nimmerjahn et al., 2005). Microglia stimulation 
may induce a drastic change in cellular morphology and, to evidence 
possible cell responses after the stimulus with EVs N. fowleri, we employed 
isolectin-B4 fluorescence staining for the observation of morphological 
changes in microglia. In this sense, we  employed primary microglia 
obtained from newborn mice brain in order to have a more physiological 
approach compared to transformed cell lines. Results revealed a change 
from a ramified cell with small cellular bodies and long processes (related 

FIGURE 6

Morphological changes of primary microglia from mouse brain stimulated with LPS or with extracellular vesicles secreted by two isolates of Naegleria 
fowleri. (A) GS-IB4 Alexa Fluor 488 conjugate (green) was used to visualize microglial cell morphology and DAPI staining (blue) to visualize nuclei. Cells 
showed the expected change in morphology from control microglia in culture with small cellular bodies and long processes (Ctr) to LPS-stimulated 
microglia with amoeboid morphology (LPS). While cells incubated with EVs isolated from N. fowleri Guanacaste barely showed a morphological 
change except for lamellipodia expansion (arrows), cells incubated with EVs from N. fowleri Limón strongly reacted and showed processes retraction 
and a more amoeboid morphology (*). Moreover, similar results were found after 24 and 48  h of incubation. Scale bar: 30  μm. (B) Determination of the 
aspect ratio parameter in control cells, LPS-activated microglia, and cells stimulated with EVs from the two N. fowleri isolates. Values of aspect ratio 
start at 1.0, which indicates a circle, while ascending values indicate enhanced cell ramification and elongation. Data are presented as the mean  ±  SEM 
and one-way ANOVA with Tukey post hoc test was performed for multiple comparisons to the negative control for each time point. ***p  <  0.0005, 
**p  <  0.005.
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to a homeostatic microglial state), to an amoeboid morphology more 
characteristic of a pro-inflammatory phenotype, including transient states 
that reflect functional events related to the disturbing fact (Colonna and 
Butovsky, 2017). In this study, when primary microglia was challenged 
with EVs secreted by N. fowleri, evident morphological changes were 
observed when compared to control cells, especially when EVs from 
N. fowleri Limón were employed, which confirmed the proinflammatory 
microglial response induced by EVs produced by amoebae.

Cell responses to EVs secreted by N. fowleri were also 
quantitatively assayed, determining changes in the expression levels 
of cytokines and NOS using qRT-PCR, which revealed increased 
levels of NOS and proinflammatory cytokines IL-6, IL-23, and 
TNF-α, as well as increased levels of the regulatory cytokine IL-10. 
In all cases, statistically significant differences were observed when 
compared to control unstimulated cells, especially when EVs of the 
isolate Guanacaste were employed. Similar results -but registered 
during the first 12 h after the stimulus- were reported by other 
authors when rat primary microglia cells were co-cultured with 
trophozoites of the amoeba (Oh et al., 2005), or when excretory/
secretory products were employed (Lee et al., 2011), reinforcing the 
idea that these cells (and the cytokines they produce after the 

contact with trophozoites of N. fowleri or its excretory/secretory 
products) have a crucial role in the exacerbated inflammatory 
response observed during PAM. Moreover, the concomitant and 
very marked increase in the expression of TNF-a, NOS, and IL-6 in 
the primary microglial culture suggests a N. fowleri EV-induced 
polarization of the cells to a proinflammatory profile, capable of 
secreting destructive factors that contribute to neuronal damage. A 
more discrete augmentation in the regulatory cytokines IL-10 and 
TGF-β was also observed, and these are markers of more anti-
inflammatory phenotype, the other side of the spectrum. Although 
it may appear as a contradiction, the plasticity of the functional 
polarization in microglial cells could provide some clarity. In 
contrast to the behavior in non-CNS sites, where macrophages tend 
to first acquire proinflammatory characteristics upon the harmful 
stimulus and then, the response evolves toward a regulatory profile, 
in the CNS this process is inversed (Hu et al., 2015). Moreover, and 
according to Saraiva and O'Garra (2010), IL-10 could be induced in 
many situations in which proinflammatory cytokines are also 
induced, despite the pathways that induce its expression can 
regulate the expression of those cytokines in time. Park et al. (2007) 
demonstrated the endogenous production of IL-10 by rat microglial 

FIGURE 7

Detection of DNA from Naegleria fowleri in the EV fractions using phenol:chloroform:isoamyl alcohol extractions and conventional PCR. (A) Agarose 
gel electrophoresis after the amplification of the ITS region of Vahlkampfiids using Vahl-F and Vahl-R primers. (B) Agarose gel electrophoresis after the 
amplification of the ITS region of N. fowleri using NfITS-F and NfITS-R primers. For these PCRs, the same amount of DNA (700  ng) was employed in 
each sample. (C,D) Agarose gel electrophoresis after the amplification of the ITS region of N. fowleri using NfITS-F and NfITS-R primers, in which serial 
dilutions of the DNA obtained from the EV fraction were employed (expressed in ng). CM, conditioned media; LV, 16,000  ×  g pellet sample that 
contains larger vesicles; EVs: pellet of extracellular vesicles obtained after the 120,000  ×  g ultracentrifugation; PC 1: DNA from trophozoites of N. 
fowleri Guanacaste (positive control); PC 2: DNA from trophozoites of N. fowleri Limón (positive control); NC: negative control. GeneRuler 100  bp Plus 
DNA ladder (Thermo Fischer Scientific, Waltham, Massachussetts, United States) was employed as the DNA ladder.
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cells after the stimulation with LPS; interestingly, IL-10 was 
simultaneously produced with proinflammatory cytokines like 
IL-1β, TNF- a and iNOS. The authors propose that this endogenous 
production of IL-10 could help to control the production of 
inflammatory mediators in microglia in an autocrine way, resulting 
in neuroprotection even in the early stage of an acute inflammation 
of the brain. Due to the technical challenges of primary microglial 
culture and to minimize the number of animals used in the 
experiments, a kinetic evaluation of the markers’ expression was not 
performed, nor the use of different doses of EVs was included in 
this study, but it would be  suggested to evaluate this aspect. A 
further consequence of this expression profile could be the priming 
of CD4+ T lymphocytes for a Th17 adaptive response, a response 
that has not been studied during a N. fowleri infection, but it has 
been shown to amplify the inflammatory response in murine 
models of CNS inflammation (Rostami and Ciric, 2013). As stated 
by Moseman (2020), there are many open questions surrounding 
fundamental immunological processes during a N. fowleri infection, 
so that more studies should be carried out to clarify the contribution 
of the early proinflammatory response by microglial cells to the 
immune-mediated pathological mechanisms of PAM.

Antiparasitic effects of nitric oxide in infections caused by 
helminths and protozoan parasites are widely known and described; 
however, it has also been postulated its role in producing damage 
during this type of infections (Brunet, 2001; Omar and Abdelal, 2022). 
Regarding N. fowleri, the first published results related to this topic 
revealed that activated macrophages could destroy the amoebae by an 
arginase-dependent cytolytic mechanism that results in NO 
production (Fischer-Stenger and Marclano-Cabral, 1992). However, 
using an in vitro model, Rojas-Hernández et al. (2007) demonstrated 
that this amoeba was highly resistant to NO-destruction, suggesting 
that its production during PAM could contribute to tissue damage 
instead of amoeba destruction. Regarding TNF-α, its transcendental 
role in increasing the oxidative burst in neutrophils, as well as the 
release of lysosomal enzymes in response to the amoeba has also been 
reported (Ferrante et al., 1988; Michelson et al., 1990). Moreover, 
tentative anti-amoebic roles of IL-6 are still unclear, even suggesting 
that its upregulation during the infection could contribute, as a 
secondary effect, to the tissue damage observed in the brain during 
PAM (Chen and Moseman, 2023).

In this work, if we try to compare transcription levels of mRNA 
of cytokines evaluated after the incubation of primary cultures from 
mouse cell microglia and BV-2 cells with EVs of N. fowleri for 48 h, 
both similarities and differences could be found. For example, while 
expression levels of IL-12 and IFN-γ were not statistically different 
when compared to the controls for both cell types, an upregulation 
of NOS, IL-6, and IL-10 was found only in primary cultures of 
microglia; additionally, a downregulation of IL-18 was observed 
only in BV-2 cells. These results, especially the differences observed, 
are expected when different cell types are employed, particularly if 
responses of primary cells are compared to responses of 
immortalized cell lines. While the use of a primary cell model could 
more accurately reflect what occurs in an infection in vivo with this 
amoeba, it is clear that the use of cell lines such as BV-2 is 
advantageous for the experimental work at a laboratory level, since 
its “immortality” allows its indefinite cultivation, facilitating the 
analysis and characterization of biological processes. In a recent 
publication, Lê et al. (2023) analyzed the immune response in BV-2 

microglial cells upon incubation with EVs of N. fowleri (Carter 
NF69 strain, ATCC 30215) for 3, 6, and 9 h. In this work, besides 
IL-6 and TNF-α, increased expression levels of IL-1α, IL-1β, IFN-γ, 
MIP-1, and MIP-2 (but not IL-10) was also reported. The authors 
suggested that EVs of N. fowleri are pathogenic factors involved in 
contact independent pathogenic mechanisms of N. fowleri by 
inducing proinflammatory immune responses. In our study, and 
using the same cell line, increased expression levels of NOS (after 
4 h of incubation with EVs of N. fowleri) and IL-13 (after 48 h of 
incubation with EVs of N. fowleri) were observed, but not increased 
expression of IL-1β or IFN-γ, differences that could be explained 
due to differences in the incubation times employed and the 
individual characteristics of the N. fowleri clinical wild isolates in 
comparison to a reference strain.

It is also interesting to highlight the upregulation of IL-13 and 
the simultaneous downregulation of IL-18 expression found in our 
study using the BV-2 cell line. In a murine model of infection with 
the nematode Nippostrongylus brasiliensis, IL-13 was shown to 
inhibit the expression of IL-18, an inflammasome-activated 
cytokine that contributes to inflammation a cell death via pyroptosis 
(Chenery et al., 2021). Furthermore, IL-13 has been described as a 
key modulator of brain inflammation as it has been shown to induce 
microglial cell death to downregulate the inflammatory process and 
hinder neuronal damage and its blockade can increase the 
expression of TNF-α and iNOS (Shin et  al., 2004), which is 
consistent with our findings on the kinetics of NOS and IL-13 
expression. This study suggests that IL-13 expression may act as a 
mechanism for neuronal survival; however, in the case of N. fowleri, 
it may be insufficient to compensate for the damaged induced by 
the initial proinflammatory response. The authors also described 
regulation of IL-13 secretion by other cells present in the brain’s 
microenvironment, such as neurons, so a next step in the study of 
the IL-13/iNOS and IL-13/IL-18 regulation should be the study in 
co-culture or animal models. Altogether, the results derived from 
our work confirm the immunostimulatory role of EVs secreted by 
N. fowleri over microglial cells, suggesting that the strong 
proinflammatory response observed during primary acute 
meningoencephalitis could have a fundamental role in the tissue 
damage observed in in vivo infections in less than 96 h after the 
infection with the amoeba (Rojas-Hernández et al., 2004).

Finally, the existence of DNA in EVs is now considered a 
consensus in the field of EVs (Ghanam et al., 2022). In all previous 
works regarding the characterization of EVs secreted by N. fowleri 
(Lertjuthaporn et al., 2022; Retana Moreira et al., 2022; Lê et al., 2023; 
Russell et al., 2023), the presence of bioactive nucleic acids as part of 
the EV cargo or in the EV fractions has not been analyzed. However, 
in this work, we report the preliminary finding of DNA in the EV 
fraction that corresponds to small EVs, detectable using a 
phenol:chloroform extraction and N. fowleri species-specific PCR 
protocols even in a concentration of 3.125 ng for conventional 
PCR. DNA-containing EVs from human cells have been well studied 
in terms of DNA loading in vesicles and their role in homeostasis, 
immunomodulation and gene transference (Chang et al., 2020; Malkin 
and Bratman, 2020; Elzanowska et al., 2021). Moreover, the presence 
of DNA in EVs has also been described in EVs secreted by other 
protozoan organisms (Tatischeff et al., 1998; Douanne et al., 2022). In 
this sense, and as this is a preliminary report, there are pending assays 
to ascertain the location of this DNA in the vesicles, the profile of the 
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DNA content and its implication in host immune response and 
messaging with host-cells and other amoebae. Moreover, our group is 
currently working in applying different enzymatic treatments to the 
EV fractions to confirm that bioactive DNA in included within the 
smaller EVs, especially if it is taken into account that, at least in these 
preliminary experiments, bioactive N. fowleri DNA was not found in 
the larger vesicle fractions that are supposed to contain ectosomes, a 
type of EVs with a different cargo and formed through outward 
budding of the plasma membrane.

Regarding the DNA cargo in EVs secreted by trophozoites of 
N. fowleri, we suggest two prospective research opportunities: the 
DNA interaction with host cell machinery and its potential use 
as a biomarker in a clinical context. As described elsewhere, it has 
been shown that DNA-harboring EVs from malaria parasites 
could stimulate cytosolic pathogen DNA sensors in host 
monocytes to elicit a cytokine response (Sisquella et al., 2017). 
On the other hand, cancer related studies of EV-DNA in plasma 
and other body fluids for new liquid biopsy applications are a 
reality (Malkin and Bratman, 2020), and this sets a base for 
understanding and proposing that DNA from pathogens, 
included in EV fractions, could also be considered a molecular 
biomarker as it has been proposed in a study with chronic Chagas 
disease patients, in which the detection of Trypanosoma cruzi 
nuclear and kinetoplast DNA was performed in serum circulating 
EVs (Lozano et al., 2023). For the specific case of primary acute 
meningoencephalitis, a biomarker present in blood instead of 
cerebrospinal fluid could make the difference in timely and 
non-invasive diagnosis, and we suggest this could be studied as 
it has been found that DNA-carrying EVs could cross the intact 
blood–brain-barrier, being detectable in peripheral blood 
(García-Romero et al., 2017). Small RNAs have also been found 
in protozoan derived EVs (Sabatke et  al., 2021), which also 
suggests that EV nucleic acids represent open novel approaches 
for parasitic diseases research.
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